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Abstract 

Existing pedestrian navigation systems are mainly visual-based, sometimes with an 

addition of audio guidance.  However, previous research has reported that visual-based 

navigation systems require a high level of cognitive efforts, contributing to errors and 

delays.  Furthermore, in many situations a person’s visual and auditory channels may be 

compromised due to environmental factors or may be occupied by other important tasks.   

Some research has suggested that the tactile sense can effectively be used for interfaces to 

support navigation tasks.  However, many fundamental design and usability issues with 

pedestrian tactile navigation displays are yet to be investigated. 

This dissertation investigates human-computer interaction aspects associated with the 

design of tactile pedestrian navigation systems.  More specifically, it addresses the 

following questions: What may be appropriate forms of wearable devices? What types of 

spatial information should such systems provide to pedestrians? How do people use spatial 

information for different navigation purposes? How can we effectively represent such 

information via tactile stimuli? And how do tactile navigation systems perform?   

A series of empirical studies was carried out to (1) investigate the effects of tactile signal 

properties and manipulation on the human perception of spatial data, (2) find out the 

effective form of wearable displays for navigation tasks, and (3) explore a number of 

potential tactile representation techniques for spatial data, specifically representing 

directions and landmarks.  Questionnaires and interviews were used to gather information 

on the use of landmarks amongst people navigating urban environments for different 

purposes.  Analysis of the results of these studies provided implications for the design of 

tactile pedestrian navigation systems, which we incorporated in a prototype.  Finally, field 

trials were carried out to evaluate the design and address usability issues and performance-

related benefits and challenges.   

The thesis develops an understanding of how to represent spatial information via the tactile 

channel and provides suggestions for the design and implementation of tactile pedestrian 

navigation systems.  In addition, the thesis classifies the use of various types of landmarks 

for different navigation purposes.  These contributions are developed throughout the thesis 

building upon an integrated series of empirical studies.        
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Though pleased to see the dolphins play, I mind my compass and my way.  

(Matthew Green, 1737) 

Chapter 1 Introduction 

The motivation of this thesis stems from the fact that humans navigate on a daily basis.  

The history of navigation dates back to the days when humans lived in rural areas.  In 

1800, only 3% of the world’s population lived in cities (The Economist, 2007).  We 

migrated and discovered new lands by navigating the oceans.  Ancient travellers like the 

Greeks and Phoenicians relied on all five senses, but mainly the visual one, to gain an 

awareness of the environment and develop navigation skills helped by natural phenomena 

such as the Sun, the Moon, stars and wind. A visual approach to navigation using a paper-

based map and a magnetic compass requires various sets of skills and cognitive effort.  

Regularly, we suffered from environmental fluctuation and impoverishment (e.g. 

atmospheric conditions, fog, cloud, and navigation in the dark or in forests). 

Since 1950, the shift in rural to urban lives has been exponential.  As of 2008, more than 

50% of the world’s population live in the cities (Zuckerman, 2011).  Specifically, over 

75% of the population in highly developed countries live in the cities whereas the figure 

for the least developed country (classified by the UN) stands at 29% (The World Bank, 

2011).  Cities promise opportunities and options for living (Zuckerman, 2011) but entail 

navigation complexity.  Even though in modern days we have invented navigation 

techniques and visual technologies to help us with navigation, we still suffer from the same 

environmental factors.  Furthermore, new technologies, known as Global Positioning 

System (GPS) or Satellite Navigation System (SatNav)1, impose new problems such as 

mental disorientation (Seager et al., 2007) and disengagement from the environments 

(Leshed et al., 2008).   

City lives and urban environments do not always allow us to navigate easily.  We live in an 

era when we naturally multitask while moving (Tamminen et al., 2004).  Difficulties in 

navigation are more emphasised when we travel to new places.  There are elements of 

differences in architecture, layout, environmental features and people in those spaces with 

                                                 

1 GPS or SatNav refer to a system of satellites for navigation that provide precise geo-spatial positioning 

(longitude, latitude, and altitude) and time with global coverage. 
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which we have to interact throughout the course of navigation.  Our visual channel is 

pushed to excess; our cognition is overloaded by information from the world and the tools.     

Despite a high cognitive demand required by visual navigation displays, SatNavs’ 

perceived usefulness has given rise to their popularity.  Sales volumes of both SatNavs and 

smart phones reached close to 29 million units worldwide in 2007, and are projected to 

keep growing to hit 48 million units by 2015 (Chandrasekar, 2008).     

For some people, using maps is difficult because it is hard to identify and locate streets, 

some may be printed in different languages and require the ability to interpret graphical 

representation in the map (Millonig & Schechtner, 2006).  SatNavs can be difficult to look 

at given a small screen size (Tsukada & Yasumura, 2004).  The situation could worsen 

with fluctuation in the environments, e.g. too much natural light and bad weather.  Despite 

the flaws, visual displays dominate the market for assistive navigation tools.   

In the urban context where users are required to use their visual and auditory channels to 

interact intensively with the world around them, more use might usefully be made of 

alternative or complementary sensory channels such as touch.  Indeed, touch has been 

shown to be suitable for ubiquitous environments and to work more effectively than the 

visual channel under workload situations as well as in extreme conditions such as at night 

time (Wickens, 1980; Tan et al., 2003; Ternes & MacLean, 2008; Holland et al., 2002; 

Elliott et al., 2010).  It is reported to help increase performance and reduce workload and 

task failure (Elliott et al., 2010; Weinstein, 1980; Nordwall, 2000; U.S. Air Force, 2001; 

U.S Army Aeromedical Research Laboratory, 2004).  This thesis focuses on the use of 

tactile communication to support pedestrian navigation. 

Research into pedestrian navigation systems is still in its early stage.  This thesis examines 

wayfinding models of navigation as well as investigating relevant issues in order to 

propose innovative interactive system that allows pedestrians to navigate efficiently and 

effectively in urban environments aided by the tactile sense.  

This thesis builds upon insights from various fields relevant to the design, development 

and evaluation of tactile displays for pedestrian navigation.  It identifies problems with 

visual navigation and presents requirements for the design and development of a tactile-

based pedestrian navigation system, based upon empirical findings and a rich set of 

guidelines for tactile interaction.  These requirements draw on a series of studies in which 

we investigated the design, usability and user experience of prototype systems.  An in-
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depth evaluation of our prototypes allows us to develop an understanding of design for 

tactile-based navigation.    

This chapter presents the background to this research, describing land navigation, 

identifying problems with visual displays and proposing research topics in tactile displays 

for pedestrian navigation.  Research challenges and the research questions (RQs) tackled 

by the thesis are briefly addressed.  The contribution of the thesis is briefly outlined.  

Finally, we introduce the remaining chapters. 

1.1 Background  

The thesis centres on a form of land navigation2 called pedestrian navigation (i.e. 

navigation on foot) in urban canyons.  The model of navigation for pedestrians is different 

from that for vehicles (Gaisbauer & Frank, 2008).  Pedestrian navigation is not as 

constrained as vehicular navigation and more flexible.  Specifically, pedestrians are not 

restricted by speed of vehicles and the road network (e.g. turn restriction and lane 

direction).  As a result, it is possible that there could be many choices and shortcuts that are 

available to pedestrians for a particular journey.  In addition, there are open-ground 

walking areas such as parks that pedestrians can walk freely. 

1.1.1 Human navigation and pedestrian navigation  

In Latin, navigation refers to ships. The modern day term indicates the process or activity 

of accurately ascertaining one’s position, planning routes, and execution of movements to 

follow planned routes from one place to another (i.e. destination).  

Unlike migratory animals, e.g. birds and turtles, humans are not equipped with a built-in 

navigation system.  However, for many thousands of years, we have been able to find our 

way over great distances and open seas with the application of intelligence and techniques 

including dead reckoning, maps, nautical charts, quadrant, sextant and chronometer3.  

When the Chinese created a magnetic compass, travellers were able to orient themselves 

and travel on a course without reference to landmarks.  Nevertheless, orienteering with a 

                                                 

2 Land navigation concerns navigation on land, including navigation on foot (pedestrian) and vehicle 

navigation (RIN, 2011). 

3 
See Glossary.
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magnetic compass and map requires another set of skills in order to embark on successful 

route finding.     

During the course of a journey, one would have to constantly match one’s perception of the 

environment with particular features and positions on the map.  Specifically, visual 

navigation requires three sets of skills: preparatory, wayfinding and locomotion.  

Preparatory involves route planning; wayfinding refers to the requirement to know where 

to go and how to get there; and locomotion is the actual movement in the intended 

direction as well as avoiding obstacles along the route.  Travellers continuously apply these 

skills (i.e. perception, cognition and motor behavior) to navigate effectively.     

For the preparatory part, one would require skills in map reading, i.e. understanding 

components of maps, which typically include the concepts of direction, scale, distance, 

signs, marginal information, and grid references.   

For the wayfinding skills, one would have to (1) constantly locate one’s position, (2) 

constantly check if one is on the right route or planned path, and (3) orient the map by 

identifying specific features (e.g. landmarks) and either locating such a map’s feature to 

the actual feature or vice versa (Keay, 1989).  In addition, one would need to be able to 

estimate distance.  

For the locomotion skills, one would have to try to move successfully in the intended 

direction without injuring oneself or moving into obstacles (Montello & Sas, 2006).  This 

requires coordination of one’s sensory and motor systems to the environments.  One needs 

to be able to identify obstacles, barriers, surfaces and other relevant features in the 

environment and direct one’s movement toward the intended destination (Keay, 1989).   

One might think that with current positioning technologies (such as GPS), one could easily 

determine her position with sufficient, accurate, precise, and up-to-date information 

provided by such systems. Such systems’ perceived usefulness is reflected in the growth of 

satellite-based pedestrian navigation systems in mobile devices in recent years (see 

Chandreskar, 2008).   

Despite innovations in positioning technology, problems with visual navigation are 

reported to have remained the same.  From a human factors’ perspective, one would still be 

required to possess a high level of skills and expected to expend a high level of cognitive 

effort (e.g. to map oneself with the display and the more complex world).  Furthermore, 
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there are new problems introduced by the forms of this new technology, e.g. accessibility 

issues caused by small screen size and bright light. 

It has also been reported that a range of human factors issues, e.g. humans susceptibility to 

cognitive overload, form and modality of information and distractions in the environment, 

contribute to the failure of wayfinding with visual technologies (Montello & Sas, 2006).  

Investigating and understanding these issues could lead to improvements in application 

design and the use of alternative sensory channels that could help to minimise cognitive 

effort and increase the accuracy, efficiency, ease and safety of navigation.   

1.1.2 Mobile visual navigation systems: advantages and disadvantages   

According to market predictions, visual navigation on mobile devices is becoming 

dominant and the number of users is likely to increase exponentially in the next couple of 

years.   

Millions of users benefit from such systems to aid their wayfinding tasks.  At the same 

time, they suffer because of poor interface design, overloading content, and high cognitive 

demand (Huang et al., 2012).  During any course of navigation it is likely that there will be 

some degree of mismatch of a user’s perception and motor behavior among three frames of 

reference: the display of the system, the world and herself.   

In the next part we discuss the advantages and disadvantages of visual-based mobile 

navigation systems.   

Advantages of visual navigation systems  

Their benefits include: (1) performance over traditional maps and (2) perceived usefulness.  

Performance over traditional maps  

Researchers report that GPS offers advantages over traditional maps used in vehicular 

navigation (Burnett & Lee, 2005), and the compass used in military operations (Young et 

al., 2008).  Experimental results showed that GPS users spent less time looking at the map 

and less time making navigational decisions.    

Perceived usefulness  

According to researchers (Dillon & Morris, 1996; Varden & Haber, 2009; Hurst, 2010), 

GPS were perceived as useful because they were considered simple, portable, up-to-date, 

accurate and scalable.  Users trusted the system’s instructions and felt no risk; even 

distractions and errors were tolerable. 
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Disadvantages of visual navigation systems  

Although visual navigation has proved to be useful for route guidance and human 

wayfinding, there are a number of practical and psychological issues.  When we navigate, 

features in the physical environment remain fixed and we move across environments that 

may present other influential factors.  The fact that we move changes our spatial 

relationship with our environment and gives rise to the problem of identifying spatial 

orientation and other problems.  Known problems with SatNavs include: (1) poor 

positioning accuracy and poor map data, (2) poor interaction design, (3) transformation 

amongst frames of references (4) high level of mental orientation, (5) struggle in reduced 

visibility and audibility environments, and (6) loss of attention and situation awareness.  

Poor positioning accuracy and poor map data 

Researchers (e.g. Raper et al., 2007; RIN, 2011) in the field of positioning determination 

technology (PDT) acknowledge that current positioning techniques and map data are not 

completely reliable especially when navigating in urbanised areas.  Urban users experience 

low availability of satellite signals because the height of buildings contributes to the 

blockage of satellite visibility. Patel et al. (2006) pinpointed that coarse positioning 

coupled with poor map and poorly designed instructions lead users astray, resulting in high 

cognitive load.   

Poor interaction design  

Current SatNavs’ instruction design typically provide a moving map display and turn-by-

turn directions based on distances to turn rather than landmarks (May et al., 2003; Sefelin 

et al., 2005), despite landmarks being described as the most important spatial information 

for pedestrians (Pielot & Boll, 2010).  This suggestion is supported by May & Ross’s 

(2006) study reporting that both old and young GPS users performed better with landmark-

based than distance-based directions.  Distance information provided in the system is 

difficult to interpret because it is not directly perceived from the environment (Burnett, 

1998).  Users are required to possess a skill that allows them to understand and estimate 

distance metrics.  Generally, human judgment on absolute distance is far from being 

accurate.   

Despite these drawbacks, the SatNav market is continuously growing. This growth initially 

responded to the desire for in-vehicular navigation systems.  Unfortunately, when the 

system is being used for pedestrians, it lacks substantial consideration that land navigation 

relies on humans’ inherent navigation skills.  While the system tries to calculate the 
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shortest route based on the map database, the user may work out the best path given the 

target landmark’s visibility.  The main logic of most GPS assumes that users want to be 

guided to the most effective (shortest or fastest) route (based on road networks) for the 

destination.  This does not always fit with some navigation purposes.  For example, a 

tourist might prefer to explore a new area by walking long distances; the process in this 

case involves planning routes, passing places of interest in the cityscape, and spending 

considerable amounts of time at each place.       

A study by Ishikawa et al. (2008) backs this shortcoming.  They compared the 

effectiveness of GPS-based navigation with a paper map in walking scenarios.  Results 

showed that GPS users took longer distances, navigated slower, stopped more often and 

made more errors than map users.  At the end of the journey, GPS users drew a poorer 

topological map of the navigated area.  This phenomenon can be explained.  Burnett & Lee 

(2005) found that GPS users paid less attention to the environment than map users.  In 

conclusion, the use of GPS helps with building route knowledge but not survey knowledge 

(Krüger et al., 2004; Burnett & Lee, 2005; Young et al., 2008) and disengages users from 

the environments because their attention is preoccupied by the system’s instructions 

(Leshed et al., 2008). 

Another major design issue is the screen size of GPS.  Currently, multiple types of 

information being displayed on a very small screen are very difficult to read.  This visually 

cluttered screen is reported to violate cognitive ergonomics and slow down information 

processing (Kleppel et al., 2009).  Users from Hurst’s (2010) survey confirmed that they 

found a small screen size lowers the system’s usability. 

In addition to all the above issues, a recent survey by a leading UK insurance firm 

(Swinton, 2011) claimed that 63% of UK drivers, who own a GPS, keep paper maps in 

their vehicles because they consider their GPS to be untrustworthy.  Satnavs are also listed 

as a major source of in-car bickering.   

Transformation amongst frames of reference  

Human can perceive the visual world and judge directions, orientation, and movements 

of visual objects given that we have learnt to judge images/objects with the coordinate 

systems: egocentric and exocentric frames of reference (Howard, 1993).  The 

egocentric frame is defined with respect to some part of the observer, being the nodal 

point of the eye, the retina, the head or the body.  An exocentric frame of reference is 

external to the observer such as geographical coordinates and the direction of gravity.   
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Wicken et al. (2005) defined that frames of reference can be: (1) a world frame in which 

the surrounding space is represented (e.g. North, East, West, South), (2) an ego frame 

representing the momentary location and orientation of the user’s trunk (e.g. left or right in 

reference to the body trunk), (3) a head frame representing the orientation of the head (i.e. 

head orientation which might be different from ego-trunk), (4) a display frame where the 

orientation of the display and information movement is shown, and (5) a control frame, 

which is the orientation and movement of the control unit of the display (e.g. buttons on a 

display device). 

The navigation function through the visual channel involves transformation among at least 

three frames of reference: world, ego and display frames, in both two-dimensional (2D) 

and three-dimensional (3D) spaces.  Most of the visual navigation displays provide two 

inputs: forward field of view (FFOV) and guidance information (e.g. maps), specifically 

with three kinds of information: (1) navigational choices, (2) spatial direction judgments of 

the object, and (3) navigational checking (am I on the right path?).  Problems occur when 

there is a mismatch among the 3D world FFOV view of self and the 2D map view.  The 

need for transformations amongst frames of references happens in real time and varies in 

difficulty (Corballis, 1982).  This is believed to decrease user performance (Montello & 

Sas, 2006).  These transformations are sources of time delay, errors and mental workload 

(Wickens, 1999).  Other minor issues include the differences in resolution and shape of 

objects that lead to ambiguity problems.   

High level of mental orientation  

In navigation, orientation refers to the determination of one’s position relative to the 

destination and specific features, e.g. places and objects, on routes.    Many researchers 

(e.g. Seager & Stanton Fraser, 2007, Smets et al., 2008 and Namiki et al., 2010) pinpoint 

orientation and performance problems in using visual maps to assist egocentric tasks3 like 

navigation.  Disorientation occurs when travellers are not confident or fail to locate where 

they are or which way they need to go in relation to the information provided by the visual 

displays.  During the course of navigation, there would be circumstances, e.g. a case of 

                                                 

3 An egocentric task is when one has to judge the position, orientation or motion of an object with respect to 

an egocentric frame of reference. 
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slow system update, when the top of the map displayed is not aligned with the forward 

direction of the user’s movement (i.e. different frames of reference do not match).     

In these cases, the human operator has to perform extensive mental rotations, e.g. between 

the ego-trunk and the map, while carrying out their tasks.  A user may physically or 

mentally reorient the map or herself by matching features on the map with those in the 

immediate surroundings so that she will always get a head-up map.  Head-up maps are 

found to hold a positive effect on navigation performance (Aretz, 1991; Smets et al., 2008; 

Seager & Stanton Fraser, 2007; Namiki et al., 2010).  Sometimes disorientation may result 

in life threatening or serious outcomes; for example, in professional search and rescue 

tasks.  Most disorientation cases result in anxiety, frustration and tardiness (Montello & 

Sas, 2006).  

Struggle in reduced visibility and audibility environments  

When interacting in ubiquitous environments, users have strictly limited attention capacity 

to spare for the computer interface.  There are situations where users’ visual and audio 

channels are occupied by other important tasks at hand or not available due to 

environmental factors, such as bad weather or a noisy environment.  Hence, using today’s 

visual-based GPS could be problematic.  With an audio-assisted navigation system, an 

auditory display may conflict with other sounds in the environment (Tsukada & Yasumura, 

2004)—and wearing headphones may prevent users from hearing ambient noise crucial to 

their safety during navigation.  Hence, the use of visual and audio displays in some 

situations can be ineffective because dynamic characteristics of environments will affect 

users’ attention, awareness and performance.   

Loss of attention and situation awareness 

Different types of journeys and tasks demand different levels of attention.  Navigating in 

familiar areas demands less attention and could be automatic while navigating in 

unfamiliar environments demands much higher attention.  Distractions in environments 

may affect user’s attentional resources resulting in poor navigation performance.  On the 

other hand, if users focus mainly on the instructions from the system, they will lose the 

sense of engagement with the environment resulting in poor development of cognitive 

maps and poor reconstruction of the environment through which they navigate (Leshed et 

al., 2008).       
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Implications for design  

Human performance is limited (Gawron, 2008) and constrains visual-spatial thinking 

(Wickens, 1999).  These constraints have implications for the design of alternative displays 

that better support users’ understanding of spatial information and motion, and navigation 

task completion.  Despite claimed and perceived benefits of visual-based navigation 

displays, system drawbacks impose very high levels of cognitive effort and mental 

rotation.  Thus, our design goal is to create a display that: imposes fewer requirements for 

extensive transformations between frames of reference by the human operator; and allows 

the human operator to attain task performance with improved speed and accuracy.   

Although there are limitations in conveying semantically rich information via the tactile 

channel, its characteristics and potential benefits provide opportunities for designing novel 

and useful user interfaces. 

The next subsection will discuss using an alternative channel for the tasks in question. 

1.1.3 Finding an alternative communication channel 

Audio vs Haptic 

In the previous subsection, we saw that visual-based navigation requires a high level of 

cognitive effort (Yao & Fickas, 2007) and when there are many frames of reference to be 

considered, the design of the system can be overly complicated (Wicken et al., 2005).  

Although vision may not be the optimal modality to present spatial information in some 

situations, we do use our eyes to perceive distinctive features in an environment. 

Researchers and manufacturers realise these performance issues.  As a result, some SatNav 

units provide alternative or supplementary verbal in addition to graphical and textual 

information; they are multimodal.   However, the area of multimodality has not yet been 

fully investigated.  Researchers and manufacturers have yet to define the optimal mixture 

of audio and visual information for different situations.  There are problems such as the 

complexity in the association of functions with a number of modalities and modes 

available and the integration and dispersion of input and/or output streams from more than 

one sensory channel.  Hence, if we assume that visual display, even with the addition of 

verbal instructions, is not ideal for presenting spatial information, we should seek an 

alternative one.  
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Among the five senses, there are two, auditory and touch, which may potentially be used as 

a substitute for the visual sense.   

Auditory information may be provided as a series of verbal directions and an explanation 

of specific features, presented sequentially in a timely manner as users move along a route.   

However, with auditory displays, we must not forget that they could be varied in level of 

sound and sound quality.  One system can provide supplementary synthesised speech or 

abstract sound (see Table 1.1).  Researchers (Holland et al., 2002; Strachan et al., 2005; 

Warren et al., 2005; Jones et al., 2006; Wilson et al., 2007; Stark et al., 2007; Jones et al., 

2008; McGookin et al., 2009; Tardieu et al., 2009) have implemented audio-based 

navigation systems which incorporated audio-feedback with GPS technology for 

pedestrian navigation.  Field evaluation of Holland et al. (2002) and Strachan et al. (2005) 

did not provide promising results because the applications suffered from a lack of GPS 

availability and delayed response.  Other researchers reported that sound could be used 

effectively as directional cues (Wilson et al., 2007), as navigational homing information to 

more easily locate landmarks and destinations (McGookin et al., 2009; Warren et al., 2005) 

and as orientation & confirmation signals (Tardieu et al., 2009; Rehrl et al., 2010).  It is 

reported that sound used for turn-by-turn instructions is useful in reducing navigation time 

but may not be superior to visual maps as it did not yield significantly better performance 

compared to the visual-based one (Warren et al., 2005; Stark et al., 2007; McGookin et al., 

2009).   

Table 1.1 Representation format of different semantics via different senses 

Sense Semantic rich Semantically 

moderate 

Semantically poor 

Vision Text Icon Light 

Audio Speech Natural sound Earcon4 

Touch  -  - Tacton5 

Furthermore, in some situations there is a chance that important nonverbal cues might be 

lost because they cannot compete with other sounds in the environment (Tsukada et al., 

                                                 

4 The Earcons are abstract, structured synthetic tones that can be used to represent parts of an interface.  The 

sound design manipulates timbre, pitch, register, rhythm, intensity and a combination of these attributes.  See 

Brewster et al., 1999, 2002, 2003. 

5 Based on Earcons, the Tactons that are abstract, structured synthetic vibrotactile signals, are interface 

widgets constructed by synthesising tactile properties such as amplitude and frequency.  See Brewster & 

Brown, 2008. 
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2004; Kahol et al., 2006).  This scenario may be more serious if users were drivers of fast 

vehicles or attending to safety-critical tasks.   

The other channel being considered as an alternative is touch.  As Marston et al. (2006) 

compared tactile-based with audio-based navigation interfaces, it turned out users 

performed better with touch than sound.  There is much evidence that navigation with 

touch is effective (Holland et al., 2002; Tan et al., 2003, Tan et al., 2005; Ternes & 

MacLean, 2008; Raisamo & Myllymaa, 2010; Elliott et al., 2010).   

Tactile displays have the potential to be deployed as an alternative to conventional visual 

displays that help minimise transformations and cognitive demands.  We are interested in 

investigating if the number of frames of reference involved could be reduced with tactile 

displays.  We predict that at least two visual frames of reference can be reduced, the 

display and the control frames, which in turn will dramatically reduce the mental rotations 

that the human operator has to perform with visual navigation systems. Since tactile 

interaction uses the skin as a communication channel, input stimuli perceived via the skin 

are interpreted more directly without the intermediate processes of visual transformations 

between frames. 

Tactile communication is also reported to work effectively in environments where there are 

different forms of noise and environmental constraints and when users’ attention may be 

limited (Tan et al., 2003).  In addition, many tactile systems, which can be fitted to various 

parts of the body, can be aligned well with the ego-trunk frame (e.g. Duistermaat, 2005; 

Erp et al., 2005; and Frey, 2007). 

The next subsection will briefly describe the benefits of tactile interaction. 

Benefits of tactile navigation   

Research in tactile communication can be a promising area but it is still understudied. Aziz 

& Nicholas (2006) reported that only 1% of modality research is on the touch sense.   

Researchers have reported that tactile guidance systems have successfully guided 

navigation with acceptable performance in different environments, e.g. forested areas 

(Duistermaat, 2005; Elliott et al., 2010), and urban environments (Frey, 2007; Erp et al., 

2005), both in normal and extreme conditions.   

Interaction based on touch may help overcome situations where visibility and audibility are 

limited (e.g. Erp et al., 2005; Tan, 2000) or not available at all (e.g. Marston et al., 2006; 
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Ross and Blasch, 2000), and in challenging environments such as a smoke-filled building 

or a crowded, noisy space. 

A comparison between visual-based and tactile-based found that in normal walking 

conditions, the performance of both systems is equally good (Pielot & Boll, 2010).  

However, participants with the visual-based system experienced more collisions than with 

the tactile system.  Elliott et al.’s (2010) study concluded that the tactile-based 

outperformed the visual-based one under conditions of high cognition and visual workload.  

In addition, it is reported that tactile feedback helps improve the speed of navigation in a 

situation when the moving map orientation mismatches with user’s heading direction 

(Smets et al., 2008) and reduces errors and drift in a night-time context (Van Erp et al., 

2003).   

1.1.4 Current stage of research in tactile navigation and a proposal to 

further research in tactile pedestrian navigation  

Current stage of research in tactile navigation  

Research in navigation and wayfinding has a history dating back about 50 years.  

Researchers have since explored the cognitive (e.g. Weinstein, 1968), linguistic (e.g. 

Klippel, 2003), geographic (e.g. Wang, 2011), usability (e.g. Varden & Haber, 2009), and 

ubiquity (e.g. Tamminen et al., 2004) aspects of this very complex problem.  From a 

human factor perspective, we have made progress in understanding the influence of 

environmental factors, individual differences, frames of reference, spatial information, 

route orientation and cognitive maps on navigation performance (Raper et al., 2007).  

However, navigation research is still considered a ‘hard problem’ (Raper et al., 2007).  We 

need better technological advancements in positioning and a better understanding of 

psychophysics issues in relation to navigation tasks in the urban settings.  Specifically, we 

need to understand relationships and effects among different locations on the human body 

with represented vibration patterns of spatial information and human cognitive 

mechanisms.   

Tactile navigation research is in its early stage, dating back about 20 years.  In addition to 

the above generic knowledge, researchers have since explored the modality-specific 

understanding on the cognitive (e.g. Wickens, 1980), biopsychology (e.g. Gallace & 

Spence, 2008), engineering (e.g. Brewster & Brown, 2004), representation (e.g. MacLean, 

2008b), design (e.g. Van Erp, 2002) and proof of concept (e.g. Elliott et al., 2010) aspects 
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of tactile interaction for navigation in normal and extreme conditions both for sighted and 

visually impaired users.   

Much of the previous research emphasised the fundamental understanding and feasibility 

of touch as a means to communicate spatial information, mainly directional cues (e.g. Van 

Erp et al., 2005; Pielot & Boll, 2010a; Elliott et al., 2010).       

A proposal to further research in tactile pedestrian navigation 

The growth of the city offers new opportunities and introduces new problems to the urban 

population.  With the ever-changing world, there is an ongoing trend of people moving 

from rural areas to live in the dense, crowded and traffic-congested space of the city for 

better options: where to go, what to do and what to see (Zuckerman, 2011).  The number 

and the size of cities and cosmopolitans are continuing to expand too, with the rise of 

walkable cities (Zuckerman, 2011).  Daily movement is a part of city living.  We normally 

travel among places of work, home and hobbies (Chombart de Lauwe et al., 1952).  These 

hobbies may regularly involve traveling to unfamiliar destinations.  That is when the need 

for maps and tools to aid wayfinding in those places comes in.    

In modern days, navigation among places is made easier by the availability of positioning 

technologies and the advancement of satellite navigation systems.  We have learned from 

previous subsections that SatNavs, which were initially designed for vehicular navigation 

and mainly rely on the use of our vision, have imposed a few problems for their users 

despite their perceived usefulness.  Researchers have proposed the use of touch as an 

alternative.  

Whilst existing research demonstrated the feasibility of simple examples of useful tactile 

interfaces, there is a massive amount of research still to be done.  This consists of the 

investigation of the design and usability aspects of a proper tactile navigation system for 

pedestrians and its evaluation.  We have yet to find out, for example, how much tactile 

information a human can perceive, how to represent different levels of spatial granularity 

as well as users’ acceptance of the wearable system and its practicality.   

Hence, we propose further research in order to improve the level of usability, efficiency 

and effectiveness of future tactile pedestrian navigation applications. 

One question that might be asked is: Why don’t we first try to improve the quality of 

services of the visual-based display?  We consider that the drawback of trying to add more 
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information to visual representation could put an even greater load on the user’s visual 

perception that they will concurrently use to observe the environment.  We propose that 

touch has certain advantages. Touch should be used to replace visual and audio 

communication for this particular task, hence, freeing these resources to concentrate on 

other tasks (see Wickens et al.’s Multiple Resource Theory, 2005).  Touch can provide the 

sense of presence and make interaction more engaging whilst maintaining a low level of 

cognitive capacity (MacLean, 2008b).  Our skin contains the largest number of receptors, 

which can sense a vast amount of information through its greater bandwidth.  The tactile 

research community believes that we could benefit from its richness and potential 

communicative capacity.  However, this has not been fully understood.   

Clear understanding regarding these open issues shall help with the design of suitable 

means for transmitting necessary spatial information for the tasks.  Consequently, the user 

will be able to interpret the meaning of signals given appropriate stimulated locations and 

representation patterns.   Advancing research in tactile interaction could be beneficial for 

the human computer interaction (HCI) community.   

Research has shown that tactile interaction can enrich our navigation (e.g. Ross & Blasch, 

2000).  Nevertheless, much of the work focused on providing directional information (e.g. 

Van Erp et al., 2005), whereas in real life we use a few types of spatial information to aid 

wayfinding (Bradley & Dunlop, 2005).  We are interested in finding out the thresholds of a 

number of information types and amount of information that can be provided via the tactile 

display.       

There were reports on the positive effect of adding more types of information in visual 

navigation systems in terms of confidence and performance (e.g. Burnett et al., 2001).  We 

are interested to see whether adding more types, if any, of information to the systems will 

hold analogous positive results.  In addition, we expect to gain an understanding of the 

effect of represented signals on users’ cognitive model, judgment, association and 

navigation behavior.   

1.2 Research proposal 

1.2.1 Scope and aims of the thesis 

In urban canyons, navigating whilst simultaneously carrying out other tasks is considered a 

complex activity (Raper et al., 2007).  Pedestrian navigation has been studied across a 

number of perspectives and disciplines.  The scope of this thesis is concerned with the 
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human factors perspective and an investigation of human computer interactive aspects 

associated with the design and evaluation of tactile pedestrian navigation systems.  The 

thesis focuses on the use of tactile sensing as an alternative channel for output feedback. 

A review of relevant literature revealed a lack of knowledge in pedestrian navigation and 

especially the cognitive problems caused by visual-based navigation displays.  There is a 

major difference between vehicular and pedestrian navigation.  As a result, SatNavs 

designed for use in an automobile do not accommodate requirements for navigation on foot 

under changing environments.  Urban environments add complexity and a number of 

constraints to the tasks.  In order to develop effective navigation guidance, we need to 

address a range of issues.   

More specifically, the research presented in this thesis addresses: human tactile perceptual 

capabilities for pedestrian navigation tasks; the tactile perception capacity of spatial 

information; the effect of the form of wearable devices on tactile spatial perception; and 

the mapping between spatial information and its representation.  Additionally, the nature of 

directional information and landmark usage in pedestrian navigation is empirically 

explored.  The system evaluation will allow us to address the tactile-based navigation 

displays’ usability and user experience issues.   

1.2.2 Research questions  

This thesis aims to investigate a pedestrian guidance system that provides directional and 

landmark information via the tactile sense.  In order to explain an enhanced paradigm of 

touch communication at the human-computer interface for pedestrian navigation tasks, the 

prototype implementation and a series of empirical studies allow us to address the 

following research questions:     

 RQ1: What information types should the tactile navigation display provide to 

pedestrians? 

 RQ2: How do pedestrians use landmarks for different navigation purposes? 

o RQ2.1 Do pedestrians use landmarks differently for the three different 

navigation purposes of commuting, questing and exploring? 

o RQ2.2 When do pedestrians use landmarks during navigation? 

o RQ2.3 What are the most important landmarks for each navigation 

purpose? 
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 RQ3: What is the effective form of tactile displays for pedestrian navigation?  

 RQ4: How can we represent spatial information via the chosen device?  

Specifically: 

o RQ4.1 Which technique should be used to represent each type of spatial 

information?  

o RQ4.2 How to represent a few types of spatial information?   

 RQ5: How does the tactile navigation system perform?  

o RQ5.1 Does the system help with different navigation purposes? 

o RQ5.2 Can tactile landmark representation “increase/help” with 

performance/confidence as in visual pedestrian navigation systems? 

o RQ5.3 Is there a problem with the transfer of frames of reference with 

tactile navigation displays?  

o RQ5.4 What are user acceptance and perceived usefulness (practicality) of 

the tactile navigation system? 

 

These research questions will be addressed in more detail in Chapter 2. 

1.2.3 Research methodology and ethics 

Research methodology 

The research took an empirical approach.  To develop the arguments in this thesis, we 

roughly followed the four processes for interaction design outlined by Sharp et al. (2011): 

 Identifying needs and establishing requirements for tactile navigation systems  

 Developing alternative designs that meet those requirements 

 Building prototypes so that they can be assessed 

 Evaluating what is being built throughout the process  

We adopt both quantitative and qualitative methods to address both theoretical and 

practical perspectives of the design problems.  We used a number of techniques: a 

questionnaire study, lab-based experiments and field-based evaluations.  A questionnaire 

study allowed us to gather information on how pedestrians use spatial information, 

especially landmarks, during their course of navigation.  Lab-based experiments allowed 

us to investigate human cognitive capabilities for spatial information and the effects of 

tactile signal properties and manipulation on the human perception of spatial data as well 

as to explore a number of potential tactile representation techniques for spatial data, 
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specifically representing directions and landmarks.  Field-based evaluations were deployed 

to address the design and usability issues of the system in a realistic setting.   

Specifically for each study, we developed an understanding of a particular problem by 

reviewing existing designs and principles, and then carefully designed an empirical study 

built upon our developed insights.  A prototype was built and systematically evaluated.  

These systematic studies provide a theoretical explanation of why one condition was 

different from the other.  We also discussed alternatives. We drew conclusions from each 

study that fed into the next. 

Research ethics 

For research ethics, we strictly followed the University of Bath’s Institutional Code of 

Ethics6 which requires each department to have a local code of ethics (Watts, 2011).  The 

Department of Computer Science Local Code of Ethics is expressed as a 13-point checklist 

(see Appendix 7).   

Specifically, for any empirical study involving participants, we:  

 Prepared a modified 13-point Ethics Checklist – all questions answered with 

specific study information (see an example in Appendix 8); 

 Discussed the answers and the description of each study with Dr Eamonn O’Neill 

(who supervised the entire research project) ; 

 Had the final Checklist approved by the Department of Computer Science’s Ethics 

committee member, Dr Leon Watts, prior to running each study.   

Once the Checklist was approved, we prepared related documents including an informed 

consent to participate, an overview of the experiment and experimental instructions (see 

examples in Appendix 9).  Other details on codes of practice and procedures are described 

in Appendix 10.  

1.3 Research contributions and novelty 

This thesis focuses on pedestrian navigation tasks and investigates how to support them 

with a new form of interaction through the touch sense that may help solve existing 

problems occurring with visual-based navigation systems. 

                                                 

6 http://www.bath.ac.uk/vc/policy/ethics.htm  
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The thesis makes two contributions: a theoretical and a practical contribution.  Addressing 

the first two RQs:  RQ1: What information types should the tactile navigation display 

provide to pedestrians? And RQ2: How do pedestrians use landmarks for different 

navigation purposes? – we make a theoretical contribution.  The contribution comes in the 

form of limited sets of spatial information that should be provided by any assistive 

navigation systems.  These contributions act as part of the basis we use for the design of 

our practical studies. 

Our attempt to answer RQ3: What is the effective form of tactile displays for pedestrian 

navigation? and RQ4: How can we represent spatial information via the chosen device?  

allows us to make a practical contribution.  Through the attempts to understand the 

thresholds of tactile output channels on the human body (i.e. location, patterns, and 

frequency level) in relation to human perception and information representation issues, we 

elicit requirements and suggestions for the design of our prototype.  These requirements 

were then carefully analysed through lab-based evaluations.  The findings from lab studies 

identified appropriate forms of wearable device and developed our understanding of the 

capacity of a human’s tactile sensory channel for conveying spatial information.  This 

contribution is delivered in the form of heuristics for the design of tactile navigation 

displays: wearability, body sites’ sensitivity, suitable direction concepts, the enrichment of 

route directions with landmarks, the amount of training associated with the use of the 

display, and a representation technique for each type of spatial information. 

Dealing with the fifth RQ5: How did the tactile navigation system perform? – we also 

make a practical contribution.  RQ5 contains four sub RQs regarding the practicality of the 

system in real world environments.  Through field-based evaluations, we have established 

evidence for usability and user experience requirements of a unimodal tactile display.  This 

contribution is provided in the form of a number of answers synthesised through careful 

consideration of the experimental results.  We provide designers with performance-related 

and qualitative data as guidelines for the design of tactile feedback at the human-computer 

interface.      

The thesis contributions are mainly in the domain of location systems and tactile interface 

design within the field of HCI.  Whilst we focus on the domain of interaction design from 

the perspective of HCI, the thesis is also advantageous to the field of land navigation 

systems.  Other related domains such as psychology and biopsychology could benefit from 

the findings of this research.       
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1.3.1 Research novelty 

Chapter 3  

In 2007, we compared the two most popular wearable tactile torso displays for directional 

information: the belt and two sizes of the back array.  Results demonstrated that: between 

the belt and the array, the former afforded significantly much better performance; between 

the two sizes of the array (50mm and 80mm), the larger array size allowed participants to 

perform much faster and much more accurately.  We then replicated Van Erp & 

Duistermaat’s (2005), and Elliott et al.’s (2006) experimental design but moving the 

evaluation context to an urban landscape.  Our field evaluation corroborated the results of 

the original studies that had evaluated the system in a forested area, showing advantages 

for the tactile display over the visual display in urban canyons, thus supporting the MRT 

and Prenav predictions7.   

Chapter 4  

In 2009, we published three sets of landmarks (reported in Chapter 4) that are important for 

different navigation purposes.  The lists are novel because they were empirically gathered 

from urban spaces at a global scale and systematically classified by different navigation 

purpose. 

In 2010, we investigated how to represent two important spatial information types, 

direction and landmark, with tactile representation techniques.  Our study suggested that a 

single-actuator and a dual-actuator technique should be used to represent direction and 

landmark respectively. The planning, execution and results from a lab-based study, 

reported in Chapter 4, confirmed the effectiveness of the Choreme8 and Dual Coding9 

theories.     

                                                 

7 Both theories predicted performance advantage when information is presented to a less taxed sensory 

channel, i.e. touch. 

8 Eight egocentric directions 

9 Use of labels and images to improve learnability 
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Chapter 5 

In 2011, we evaluated our hybrid10 tactile-based navigation system, TactNav, in the field. 

Similar to Chapter 4, the planning, execution and results from a field-based study, reported 

in Chapter 5, confirmed the effectiveness of Choreme11 and Dual Coding12 theories.  

Similar to the results of the field study reported in Chapter 3, our field evaluation’s 

performance data and observations, reported in Chapter 5, fully confirmed the MRT and 

Prenav theories that performance advantage can only be achieved if a tactile display is 

intuitively comprehended.  In the hybrid system’s evaluation, our participants had to learn 

to remember arbitrary landmark signal patterns.  This made tactile communication less 

intuitive (in comparison to the more intuitive tactile directional signals).            

1.4 Structure of the thesis  

1.4.1 PhD research map 

Figure 1.1 demonstrates the structure of the thesis and how each chapter contributes to our 

research questions. 

Chapter 2 reviews research in the domain of tactile navigation and relevant adjacent areas.  

Chapter 3 investigates the design and use of a tactile guidance system to provide 

directional information.  Chapter 4 tackles the issues of landmark usage and their 

representation.  Chapter 5 draws the thesis work together, reporting a prototype system that 

has been developed and evaluated in an urban setting.  Chapter 6 summarises our research 

contributions, notes limitations, and discusses opportunities for future work.  

                                                 

10 The system provided both direction and landmark information. 

11 Eight egocentric directions 

12 Use of labels and images to improve learnability 
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Figure 1.1 Structure of the thesis 

1.4.2 Thesis outline 

Chapter 2 – Literature review 

Chapter 2 sets the scene for the rest of the thesis by visiting a rich list of literature crucial 

to the establishment of the research problems and our research proposal.  To assist with 

investigating these problems and developing the innovation, the chapter examines human 

factors issues (perception, cognition, and psychophysics), ubiquitous computing and 

environmental issues (the nature of urban canyons, environmental constraints, mobile 

users’ characteristics and behaviors including their navigation strategies) that affect 

navigation performance.  We then examine physical attributes of tactile signals and 

potential representation approaches in relation to spatial information.  We give details of 

previous work in tactile interaction design.   Towards the end of the chapter, we present 

our proposal in light of design and usability and user experience issues, as well as reporting 

on the research approach taken to address RQ1 (what information types should be 
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displayed).  In response to RQ1, the chapter introduces a limited set of spatial information 

types necessary for navigation completion including: direction, landmark, orientation, and 

confirmation cues.    

Chapter 3 – Investigation into tactile directional display  

This chapter builds upon chapter 2’s set of spatial information types necessary for 

navigation completion.  The primary focus of this chapter is the investigation of displays of 

tactile directional information.  The chapter aims to find out the more effective form of 

display between the two most popular types of wearable tactile displays: a back array and a 

waist belt.  Each type has its proponents and each has been reported as successful in 

previous independent experimental trials.  The chapter reports results from direct 

experimental comparisons which indicate that the tactile belt allowed participants to 

perform significantly faster and more accurately than the tactile back array.  Another 

conclusion that can be drawn in this chapter is the representation technique, i.e. absolute-

point vibration, for directional information.  This lab-based experiment addresses RQ3 (the 

form of wearable device) and RQ4 (how to represent directional information).   

We then took the waist belt device to develop a prototype system that provides directional 

and confirmation cues.  It was evaluated in an urban environment, along with a visual 

mobile maps application.  The second part of this chapter reports results of a comparison 

study as well as discussing performance-related issues.  Results indicated that users’ 

performance with the tactile-based navigation was equivalent to that of the visual-based 

system in terms of accuracy while route completion time was significantly faster with the 

tactile-based navigation.  This field-based evaluation addresses RQ4 (how to represent 

confirmation information), and RQ5 (system performance), specifically RQ5.1 (system for 

quest navigation). 

Chapter 4 – Investigation into landmark displays 

Chapter 4 builds upon Chapters 2 and 3.  The chapter reports results from two empirical 

studies: a survey research on landmark usage and a lab-based experiment on tactile 

landmark representation.   

The first section builds upon chapter 2’s set of spatial information types, focusing on the 

use of landmarks for different navigation purposes.  We achieve this by means of an online 

survey and face-to-face interviews.  The chapter provides a classification of important 

landmarks or landmark types used in the urban context, both local and worldwide.  This 
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empirical study addresses RQ2 (classification of landmark for different navigation 

purposes) 

The second section reports a study that compared two tactile display techniques for 

landmark representation using one or two actuators respectively.  The single-actuator 

technique generated different vibration patterns on a single actuator to represent different 

landmarks.  The dual-actuator technique generated a single vibration pattern using two 

simultaneous actuators and different pairs of actuators around the body represented 

different landmarks.  Results showed that users performed equally well when either 

technique was used to represent landmarks alone.  However, when landmark 

representations were presented together with directional signals, performance with the 

single-actuator technique was significantly reduced while performance with the dual-

actuator technique remained unchanged.  This lab-based experiment addresses RQ4 (how 

to represent landmark information). 

Chapter 5 – A field evaluation of tactile displays for pedestrian navigation 

Chapter 5 focuses on the system design, development, and evaluation of our prototype 

tactile navigation display, based upon requirements developed throughout the thesis (i.e. 

results from Chapters 2-4).  It was used to gather performance-related data regarding 

practical use of the tactile navigation display in urban settings.  The system being 

evaluated provides four types of spatial information: direction, landmark, destination and 

confirmation cues.  The chapter reports a number of usability and user experience issues 

and discusses navigation stages in tactile wayfinding in comparison with those in visual 

wayfinding.  This field-based evaluation addresses RQ4 (how to represent a few types of 

spatial information), and RQ5 (System performance). 

Chapter 6 – Conclusion and future work 

This chapter concludes the thesis, summarizing the outcomes, limitations and 

contributions.  This allows us to identify future research topics in the domain of tactile 

pedestrian navigation. 
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Yet the best pilots have need of mariners, beside sails, anchor and other tackle. 

(Ben Jonson, 1641) 

Chapter 2 Literature Review 

This chapter intends to visit related concepts and prior research in tactile interaction 

design.  The thesis focuses on how to represent spatial information via the tactile channel 

and provides suggestions for the design and implementation of tactile pedestrian 

navigation systems.  In order to appropriately explore the interactive aspects of the tactile-

based system design, we need to understand underlying physiological and psychological 

theories such as how the human body can deliver great potential for the tactile-based 

systems.  In addition to such understanding, we need to look into practical knowledge on 

characteristics of ubiquitous environments and mobile users, existing assistive technologies 

and their role, as well as tactile interfaces and wearable devices that provide a foundation 

for planning and assessing our studies.            

The organisation of this chapter is as follows.  The first part describes characteristics and 

constraints of ubiquitous environments and the nature of navigation tasks as well as 

information requirements.  The second part discusses role of technologies in navigation 

and problems with existing assistive navigation technologies.  In the third part, related 

research in the domain of tactile interaction design is reviewed.  In the fourth part, we 

introduce the basis for our research program and propose opportunities to advance tactile 

research in the pedestrian navigation domain.  The final part summarises the chapter.   

2.1 Pedestrian navigation in urban environments  

The key prerequisites to designing effective pedestrian navigation systems are to 

understand characteristics of spaces through which pedestrians navigate, the nature of the 

tasks, and the information requirements.  This section attempts to explain how pedestrians 

navigate in urban environments regardless of assistive navigation technologies.  It divides 

into three subsections.  The first subsection describes characteristics of urban environments 

that affect pedestrians’ performance and behavior.  The second subsection explains 

functional distinctions of wayfinding tasks in urban spaces.  And the third subsection 

clarifies information requirements for navigation tasks.     
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2.1.1 Urban environments 

In the real world, there are operating parameters that fluctuate which may affect 

pedestrians’ attention to navigation tasks.  These parameters include: noise level and their 

fluctuations, light level and their fluctuations, weather condition, number of people in the 

space, relationship between people present and activities (Zacharias, 2001).  

 

Figure 2.1 Different types of space classified by size (Darken & Sibert, 1993): A – A small world; B – A large 

world; C – An infinite world. (Source: Google images) 

Navigating in urban environments could be problematic because their characteristics make 

navigation different from navigation in other kinds of spaces.  According to Darken & 

Sibert’s (1993), urban areas can be considered as large, dense and dynamic spaces13 (see 

examples of different types of spaces in Figures 2.1 - 2.2).  The combination of the three 

characteristics makes navigation in such spaces very complex.  Carter & Fourney (2005) 

stated that the structure of environments plays a significant role in navigation success.  An 

area that has distinctive architectural structure and contains visually obvious features and 

landmarks affords the ease of wayfinding (Montello & Sas, 2006).  On the other hand, built 

environments that have more regular patterns, such as grids, lines or symmetric shapes 

(while natural landscapes have more curved and asymmetric shapes) may cause confusion 

                                                 

13 Spaces being classified by size, they can be small, large and infinite;  by density, spaces can be divided 

into three types: sparse, dense and cluttered; by level of activity of objects within spaces, they can be 

considered as static or dynamic worlds (Darken & Sibert, 1993).   
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leading to navigators becoming disorientated and eventually lost.   In other words, people’s 

performance and behavior in navigation are affected by the city’s structure, route qualities 

and landmark orientation (Millonig & Schechtner, 2006).  

 

Figure 2.2 Different types of space classified by density (Darken & Sibert, 1993): A – A sparse world has large 

open spaces; B – A dense world is characterised by a relatively large number of objects and cues; C – A cluttered 

world. (Source: Google images) 

Zacharias (2001) added that city structure has a direct effect on route preferences and the 

level of ease in navigation.  Types of activities play a significant role in engaging in the 

environment.  For example, in a recreational context, crowding can be attractive such that 

pedestrians may be drawn towards the crowd.  However, in other circumstances, the crowd 

is best avoided.     

Artificial qualities of space including sound and light are also important.  For example, the 

level of artificial lighting can have a substantial influence on route selection after dusk.  In 

fact, lighting patterns have a major influence on perceived friendliness and safety of the 

area (Zacharias, 2001).  Furthermore, such a low light condition can reduce visibility and 

the user may miss an important turning point resulting in getting lost.  Navigators walking 

at night feel more vulnerable and are more alert to strangers (Melbin, 1978).  The level of 

sound can have a significant effect on peripheral attention.  It is found that people walk 

faster in an area with high traffic noise; as a result, they could remember few details in that 

environment (Korte & Grant, 1980; Franěk, 2012).  

Other unexpected environmental factors such as bad weather may undermine task 

performance.  In some extreme conditions such as navigating a building filled with smoke 
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or an environment filled with fog, relying on the visual perception may lead to safety-

critical setback.  These diversities in the environments, which affect pedestrians’ visibility 

and audibility, add more complexity to the large, dense and dynamic spaces.   

2.1.2 Navigation purposes 

As our thesis aims to better support navigation in urban spaces, it is necessary that we 

understand the nature14 of the tasks that travellers must continuously coordinating route 

planning, wayfinding and locomotion skills thereby balancing their perception, cognition 

and motor behavior in order to navigate effectively.  In this subsection, we would like to 

further describe the different functional distinctions of wayfinding tasks.  Researchers 

(Allen, 1999; Millonig & Schechtner, 2005) reported that generally pedestrians have three 

different purposes including commute, explore and quest.           

Commute – refers to the journey between two familiar places.  The wayfinding process for 

this type is automatic and highly related to routinised behavior and, consequently, requires 

very little attention and cognitive effort.  Commuters are found to be able to select 

alternative routes between two points when needed.  Travellers deploy methods known as 

repetition of locomotion and piloting to reach the destination.  Repetition of locomotion 

involves repeating learned motor patterns along a route.  Piloting involves landmark-based 

navigation.  Specifically, they follow the temporal-spatio sequence of landmarks along the 

route in an automatic manner.         

Explore – refers to the journey between places in unfamiliar territory for the purpose of 

learning about the surrounding environment, e.g. to discover new places and new routes 

linking them.  The wayfinding process requires a high level controlled processing of 

attention and strategic cognitive effort.  A combination of three wayfinding methods is 

required to succeed in the task: piloting, path integration and navigation by cognitive map. 

(For an explanation of piloting, see in Commute).  Path integration is a technique involving 

the process of updating one’s current location with reference to a point of origin in order to 

find the way back.  Navigation by cognitive map is a technique in which a traveller relies 

on an internal representation of a set of interconnected places that include their locations, 

                                                 

14 We have described the nature of navigation tasks earlier in Section 1.1.1. 
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distances, directions among places.  A traveller uses information gained through a 

cognitive map for orientation.        

Quest – involves travel from a familiar place of origin to an unfamiliar destination, a place 

known to exist but a traveller has never visited before.  The wayfinding process requires a 

similar effort to those of exploratory purpose.  A combination of two wayfinding methods 

is required to succeed in the task: piloting, and navigation by cognitive map. (see 

explanation above)  

As we can see that each of these navigation purposes requires different set of skills and 

types of information, understanding the differences would dictate how the design of tactile-

based navigation systems should be realised to accommodate these three purposes. 

2.1.3 Information requirements for pedestrian navigation tasks  

The final part of prerequisites for the designing of effective systems is to understand tasks’ 

information requirements.  In pedestrian navigation, Bradley & Dunlop (2005) has 

reported that pedestrians use several types of important information and cues in space to 

help reach their destination (see Table 2.1).   

Table 2.1 Classes of Contextual Information Used by Sighted and Visually Impaired Users. (Bradley & Dunlop, 

2005) 

Class of contextual 

information 

Example % Used by 

sighted 

users 

% Used by 

visually 

impaired 

users 

1. Directional  Left/right, north/south  37.4 30.1 

2. Structural Road/Monument/Church 11.5 20.1 

3. Environmental Hill/river/tree 1.6 2.9 

4. Textual-structural  Greaves Sports/ Border’s bookshop 9.9 1.2 

5. Textual-area/street Sauchiehall St.George Sq. 15.6 2.7 

6. Numerical First/ second/ 100 m 5.0 7.5 

7. Descriptive Steep/tall/red 10.8 23.8 

8. Temporal/distance Walk until you reach...or just before you 

get to... 

8.2 5.1 
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In a related study, May et al. (2003) established that to reach their destination, both sighted 

and blind users depend mainly on directional information, which is used at key decision 

points (e.g. at turns).  Additionally, they may use landmarks to identify points en route and 

street names to confirm their navigation decisions.  Distance is used very rarely due to a 

slow moving speed (hence, not necessary).  Researchers noted that the use of information 

can be classified into two levels: primary and secondary.  Primary information is defined 

as information that a pedestrian must receive in order to navigate successfully or to identify 

points on route (including landmarks, road type and junction name).  Secondary 

information is defined as information that a pedestrian does not necessarily need but which 

aids navigation to a certain level (including street name and distance).   

Based on both studies (May et al., 2003; Bradley & Dunlop, 2005), we can conclude that 

directional information and landmarks are primary to navigation success for both sighted 

and visually impaired users.  We explain the two types in the next subsections.  

Direction  

Direction is the information contained in the relative position of one point with respect to 

another point (Klippel, 2003).  It can be either relative to the body (i.e. egocentric) or 

absolute grounded in the world (i.e. allocentric or cardinal directions).   

Egocentric directions are defined with respect to some part of the person being nodal point 

of the eye, the retina, the head or the body (Howard, 1993), including for example the 

directions of left, right, back, and forward.  On the contrary, allocentric directions are 

independent from one’s location, instead linked to a reference frame based on the external 

environments (Howard, 1993), including for example the geographical directions of north, 

south, east and west.  Directions appearing on the maps are allocentric (Tan, et al., 2003).  

As demonstrated in Table 2.1, pedestrians use both directional concepts during their 

journey (Bradley & Dunlop, 2005) and across all three navigation purposes (Allen, 1999; 

Millonig & Schechtner, 2005).   

Landmark  

Landmarks for human navigation can be any objects or places that are stationary, distinct 

and salient, which serve as cues for active navigation (i.e. wayfinding) and build a mental 

representation of the area (Millonig & Schechtner, 2005).      

Any object can be perceived as a landmark if it is unique enough in comparison to the 

adjacent items (Millonig & Schechtner, 2005).  Local landmarks are either used at decision 
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points, where a reorientation is needed, or they serve as route marks, as confirmation for 

being on the right way.  Distant landmarks, like mountains or large buildings, fulfill a 

compass-like role and are used for an overall guidance, as they can be seen from many 

points and greater distances.  (For more explanation on roles of landmarks, see Appendix 

A2.5) 

Once one experiences a fixed sequence of landmarks and their locations in traversing a 

route, one forms route knowledge.  Eventually, one will have an abstract understanding 

and an integrated knowledge of several routes; this is called survey knowledge of the 

surrounding area.    

Grabler et al. (2008) have classified landmarks into 3 categories: semantic, visual and 

structural.  Semantic landmarks are defined by their importance to pedestrians, e.g. their 

meanings are personal.  Visual landmarks are defined by their visual appearance such as 

façade color, shape complexity and building height.  Structural landmarks are defined by 

their location and their role in the surrounding environment, such as a building at an 

intersection or a square like Trafalgar in London. 

Humans use different types of landmarks for different navigation purposes (Sorrow & 

Hirtle, 1999).  According to Allen (1999), human wayfinding, which may need some kind 

of guidance, can be categorised into three types: traveling to a familiar destination 

(commuting); traveling to an unknown destination (questing); and exploring the area, 

which might or might not involve visiting important landmarks (exploring).  According to 

Sorrow & Hirtle, (1999), visual landmarks are used for navigation to a familiar destination; 

structural landmarks are used for navigation to an unfamiliar destination; and both types 

are used for exploring the area. 

Landmarks are picked by their saliency, subjectively and depending on mode of 

navigation.  In other words, they are picked subjectively particularly in learning and 

recalling turning points along the paths (Sorrow & Hirtle, 1999).  They help with the 

signaling where a crucial action should or should not take place at points on a route where 

changes in direction are likely to occur, helping to locate another less visible landmark.  

It is vital to note that only good landmarks are useful (Sorrow et al., 1999) and using bad 

landmarks lowers navigation performance (May & Ross, 2005).  Hence, it is important to 

clarify characteristics of good landmarks.   
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According to researchers, (May et al., 2001; Burnett et al., 2001; May & Ross, 2006), 

factors that constitute good landmarks include:  

 The landmark itself (e.g. its visibility and its uniqueness – whether it can be easily 

and unambiguously described) 

 The general setting of the landmark (e.g. the extent of visual clutter of the 

background) 

 The exact location of the landmark (e.g. proximity to a turning and the ease with 

which the position allows identification with a turning point) 

 The existence of other objects (e.g. whether other similar objects are nearby that 

may be confused with the intended landmark) 

 The existence of other information sources (e.g. whether there are any other 

information sources that can be used in preference to the landmark) 

 The navigator characteristics (e.g. the familiarity that a navigator has with that 

particular landmark) 

 The environment (e.g. whether it is night or day; foggy or clear). 

2.2 Role of technologies in navigation    

In the previous section, we have described how people navigate in urban spaces.  In this 

section, we would like to revisit the role of technologies in navigation and pinpoint 

navigation problems occurred while using existing navigation technologies.   

For many thousand years, humans have developed techniques and technologies15 to 

support our navigation tasks.  Using these technologies, especially maps both paper-based 

and electronic, we mainly rely on our vision and auditory senses and use different 

navigation strategies such as taxon
16 

and route
17

 navigation (Millonig & Schechtner, 2005), 

which requires us to constantly matching the real world with the map as well as performing 

mental orientation when directions change.  Specifically, sighted and able pedestrians 

navigate with any form of maps or visual guidance, gather information about the world 

through their eyes and ears when moving along routes, interpret perceived information 

                                                 

15 Please see Section 1.1.1 for the list of technologies and Glossary for explanation. 

16 An individual moves towards a visible cue, which leads to the arrival point  (Redish, 1999). 

17 An individual associates directions with visual cues, e.g. turn left at the church (Redish, 1999). 
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about the world in comparison with information seen on the map.  Navigation success 

depends on their ability to perceive and interpret information and then direct their 

movement towards intended destinations. 

To aid navigation within complex urban spaces, travellers may deploy electronic maps, i.e. 

SatNavs.  Somehow using such systems could be problematic because the building’s 

height may block satellite signals.  Specifically, both pedestrians and vehicular users who 

navigate with SatNavs in urban areas will suffer from limited availability and accuracy.  

Wang (2011) reported that pedestrians using satellite technologies will suffer more than 

vehicular drivers in that they will receive less signal strength.  Pedestrians move along the 

side of the road next to those buildings while drivers are situated in the middle of the road.   

Most SatNavs provide spatial information via visual and audio perception channels.  Users 

can choose to receive information simultaneously or switch to the preferred channel 

according to the current situation.  Information from both modalities complements each 

other during interaction.  Although the use of digital mobile technologies was reported to 

help decrease a problem with geocentric data reading (Chandrasekar, 2008), research in 

SatNavs pointed out that their use impedes an individual’s understanding on survey 

knowledge
18

 (i.e. overall understanding of spatial layout of the environment) and 

disengages such an individual from the environment because she/he has to concentrate on 

the turn-by-turn route instructions (Leshed et al., 2008; Aslan et al., 2006).  Additionally, 

there are other problems with these technologies.  For example, screen visibility could be 

poor if one tries to use it in a very bright light condition.  For more discussion on 

advantages and disadvantages of visual-based assistive technologies, see Section 1.1.2.  

Despite the system’ high cognitive demand and technical limitations19, SatNavs are 

popular among urban travellers (Chandrasekar, 2008).   

Research in mobile guides has found that using SatNavs in operational environments could 

be challenging because mobile users will be interacting more with the real world than with 

computers and they are always multi-tasking (Tamminen et al., 2004).  Specifically, 

navigating tasks restrict multitasking ability because users are occupied by activities that 

                                                 

18 Survey knowledge represents knowledge about interconnections between discrete features of locations and 

routes of the area known by the individual (Goldin & Thorndyke, 1983).   

19 Discussed earlier in Section 1.1.2. 
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demand a high level of attention and cognition (i.e. required to pay attention to the 

environments, perform route selection, checking timetable etc.) (Tamminen et al., 2004). 

Furthermore, interactions with computers are rapid and driven by contextual factors such 

as weather and the appearance of surrounding objects (Rodden, 2007).  The requirement 

for attention and cognition may even get higher for unexpected situations such as getting 

lost or getting closer to the destination.  Consequently, they have strictly limited attention 

capacity to spare for the computer interface and for other tasks.   

As we seek to understand how pedestrians use visual-based navigation application to 

support their tasks, there has been no documented model on pedestrian navigation with 

assistive technologies.  Instead, we found two navigation models proposed by Zhai (1991) 

and Burnett (1998), both focus on driving tasks with help of visual-based assistive 

technologies.  We document both models here because they are of particular interest to this 

thesis.  We hope that the models, albeit possibly inconsistent with those for pedestrians 

(Gaisbauer & Frank, 2008), can be used to guide our investigation, which eventually 

facilitates the development of better assistive systems.      

2.2.1 Navigation models  

In early navigation models (e.g. see Mark, 1989), the conceptual view of navigation 

models is composed of processes of route planning, instruction generation and vehicle 

control.  Zhai’s (1991) behavioral model is a more elaborate one which has accounted for 

the driver, assistive technology, vehicle and the environment (see Figure 2.3).  The model 

describes difficulties drivers have to encounter during a course of navigation using an 

assistive technology such as a SatNav.  To make a navigational decision, one has to divide 

attention and take into account information from the environment, the system and own 

cognitive map.  There is no further breakdown of navigation tasks in Zhai’s model.         
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Figure 2.3 Behavioral model of navigation task (Source: Zhai, 1991).  Transparent boxes are human activities; 

Shaded boxes are system functions; Transparent and shaded circles are human and system resources respectively 

Then in 1998, Burnett proposed a model of stages of navigation (Figure 2.4).  In his view, 

navigation is conceptualised as a continuous task across the whole timeframe.  It starts 

with trip planning then a navigator sets off to reach an intended destination.  During the 

course of navigation, a person carries out five activities: previewing next manoeuvre, 

identifying direction, confirming navigational choice, seeking confidence and orienting 

oneself with the environment and in relation to the destination.  

 

Figure 2.4 Burnett’s stages of navigation tasks (Source: Burnett, 1998) 

In comparison to Zhai’s model of behavior, Burnett’s stages of navigation tasks 

incorporate a temporal description that enables the drivers’ goals to be assigned to each 

stage of the navigation tasks (see full list of stages’ goals in Burnett, 1998, p. 178).   
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2.2.2 Navigation errors 

We have mentioned earlier that using visual-based technologies could lead to frustration 

and navigation errors.  In this subsection, we describe related research that has looked into 

navigation errors and pinpoint their causes and effects.   

Raisamo & Myllymaa (2010) indicated that there are three kinds of problems that make 

pedestrian navigation difficult: orientation errors, lack of confirmation of direction and 

lack of information about the remaining distance to be covered.  In a thorough study by 

Owens & Brewster (2011) in a paper map-based visual navigation context, they suggested 

that sources of errors in navigation and wayfinding could come from three things: map, 

navigator and environmental errors.  Specifically, the maps could be incorrect; navigator 

could read the map incorrectly or move incorrectly; or the environment could have 

changed (either temporarily or permanently) since the map was produced.   

Results from their study specify the detailed level of these errors.  It shows that there are 

10 common errors (resulting from a mix of three main error types above).  The ratio of 

error sources for Map:Navigator:Environment is 4:5:1 respectively.  These errors include:  

1. Map - no path join (omit parts of path),  

2. Map – no (full) path,  

3. Map – path not clear (obscured by other features),  

4. Map – feature missing,  

5. Navigator – missed environmental clue (not seen),  

6. Navigator – distance misjudgment,  

7. Navigator – disoriented,  

8. Navigator – choice hesitation (slow/stop),  

9. Navigator – wrong path,  

10. Environment – redundant choices (several paths to the same destination)     

The progression from paper maps to electronic ones presents additional challenges.  The 

Royal Institute of Navigation (RIN) made a comment in 2011 that people who navigate 

with electronic systems make mistakes in navigation because the current performance of 

positioning services (GPS) deployed by most SatNavs is not quite accurate (approximately 

50-80 meters error) and the map data used by the system is quite poor in quality.   
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These technological setbacks contribute to users’ confusion and errors.  Each of these 

errors causes different effects including inefficient route selection, confusion, 

misjudgment, disorientation resulting in slowing down, stopping navigation or making 

wrong turns and eventually getting lost.   

According to Owen & Brewster (2011), people used more than one tactic to overcome 

each navigation error.  They defined seven common tactics including: (1) backtracking to a 

known point, (2) exploring the surrounding area to gain more information, (3) care, (4) 

resetting the map, (5) planning ahead, (6) rerouting and (7) make a quick best guess (not 

optimal).  Statistically, the first two are the most common ones used by most navigators. 

The implication from these studies suggests that if we are able to (1) eliminate controllable 

mistakes such as map errors and (2) provide functionalities that prevent and accommodate 

potential navigation mistakes, potential errors in navigation could be reduced and 

performance should be improved.  However, improvement of the map and positioning 

accuracy are beyond the scope of our study. 

As our thesis aims to seek an alternative system that better accommodates navigators, the 

next section, we describe previous work in tactile navigation displays on how it has been 

developed and used to ease or solve problems founds in visual navigation. 

2.3 Tactile navigation aids 

2.3.1 Unimodal tactile navigation systems 

One may argue that to solve utility and usability issues of visual-based navigation system, 

multimodal interaction (a paradigm that combines several perception senses) should be 

adopted.  However, problems with multimodality are recognised.  The high-level problem 

with multimodality includes the complexity in the association of functions with a number 

of modalities and modes available.  The lower-level is that multimodal interaction deals 

with the processing of more than one stream of input and/or output from more than one 

sensory channel.  There is a need to integrate these inputs (modality fusion20) before the 

                                                 

20 Modality fusion refers to the process of combining multiple modality input streams into a single result 

which is modality-free but rich in semantic.    
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system can process and disperse these outputs (modality fission21) back to the users.  These 

issues are not yet fully understood.  There is also the issue of conflicts between 

semantically overlapped inputs/outputs.  In addition, as we learned earlier that the 

perception via one sense can affect another, we cannot be certain if the effect would not 

decrease the performance of the main task attended by the intended modality.   

In navigation, a lack of users’ attention on moving through the environment can lead to 

accidents (Holland et al., 2002; Tsukada et al., 2004).  The use of audio-based navigation 

systems was reported to be successful (Loomis et al., 2001; Holland et al., 2002; Fickas et 

al., 2008; Jones et al., 2008; Tardieu et al., 2009; Rehrl et al., 2010;).  However, it can be 

difficult hearing an auditory display when it conflicts with the other sounds in the 

environment (Tsukada et al., 2004).   

After careful consideration, we decide to head towards the use of a unimodal tactile system 

for navigation tasks.  In addition to the fact that it was an unexplored research space, we 

have earlier listed benefits of tactile navigation systems (Section 1.1.3).  In the next 

subsections, we describe related work that deployed tactile cues for navigation purposes, 

research projects that tested its effect on different body sites, and representation techniques 

used for spatial information.     

Tactile cues for direction and spatial orientation  

Research has investigated on the effect of tactile cues for direction and spatial orientation.   

Results have demonstrated that they enable hand-free and eye-free movement and thus 

allow attentional resources for other important tasks both in lab-based studies and in a real-

world environment (e.g. in Elliott et al., 2006; Elliott et al., 2010).  In particular, they allow 

faster reaction times, better awareness of the situation, and stable orientation (Elliott et al., 

2009).      

Direction cues can be a simple vibration pattern manipulating signal frequency and 

duration, composed of two tactors (Dobbins & Samways, 2002; Bosman et al., 2003), but 

are more often composed of 8-12 tactors arranged in a linear fashion around the body, i.e. 

belt (e.g. Tsukada & Yasumura, 2004), or an array pattern, i.e. a 3x3 array on a vest (e.g. 

Ross & Blasch, 2000).  The cues have been demonstrated to help aid navigation in virtual 

                                                 

21 Modality fission refers to the process of splitting semantic meaning from a modality-free into different 

modality streams for presenting back to users via appropriate output channels.   
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environments (Lindeman et al., 2005; Ghosh et al., 1998), bicycle (Poppinga et al., 2009), 

cars (Ho et al., 2007; Scott & Gray, 2008; Van Erp & Van Veen, 2004), aircraft 

(Cholewiak & McGrath, 2006; Chiasson et a., 2002), indoor navigation (Bosman et al., 

2003), land navigation (Van Erp, 2005; Nagel et al., 2005; Elliott et al., 2007; Frey, 2007; 

Pielot & Boll, 2010) and navigation for visually impaired users (Ghiani et al., 2008; 

Gustafson-Pearce et al., 2005; Amemiya et al., 2004; Marston et al., 2006; Amemiya & 

Sugiyama, 2008). 

Spatial orientation cues are similar to direction cues but are based on a specific purpose of 

providing positional and loci orientation, e.g. in an easily disorienting environment such as 

in an aircraft or a helicopter (Elliott et al., 2009).  Results have shown tactile cues’ 

effectiveness in guiding pilots for landing and hovering tasks (e.g. Van Erp, 2005; Van Erp 

et al., 2003) 

Body sites and wearable device layouts 

Table 2.2 Tactile Wearable Interfaces for Navigation Classified by Their Body Contact Areas and Forms 

Body 

contact 

areas 

Forms Products or Research Projects 

Head Headband Forehead Retina System (Kajimoto et al., 2006), Haptic Radar 

(Cassinelli et al., 2006) 

Shoulders Shoulder Pad Active Shoulder Pad (Toney et al., 2003) 

Back Torso Vest Tactile Land Navigation (Duistermaat, 2005) 

Back Torso Chair Haptic Back Display (Tan et al., 2003) 

Back Torso Backpack 3x3 Tapping Interface Grid (Ross et al., 2000), Personal 

Guidance System (Loomis et al., 2001) 

Around the 

waist 

Belt ActiveBelt (Tsukada et al., 2004), WaistBelt (Van Erp, 2002) 

(Van Erp et al., 2005) (Ho et al., 2005), Tactile Wayfinder 

(Heuten et al., 2008) 

Wrist Wristband GentleGuide (Bosman et al., 2003), Personal Guide System 

(Marston et al., 2007) 

Fingers Wristwatch 

with Finger-

Braille 

Interface  

Virtual Leading Blocks (Amemiya et al., 2004) 

Feet Shoes CabBoots (Frey, 2007) 

Table 2.2 summarises various forms of tactile wearable interfaces, which convey 

directional information on different body sites.  Some of these systems (e.g. Ross et al., 
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2000; Frey, 2007; Van Erp, 2002) have been tested in both virtual and operational 

environments and were reported to be successful. 

Since several tactile-based directional displays have already been proposed and 

successfully tested, we were interested in finding the most effective of these approaches.  

Representation of spatial information   

In this section, we review techniques used to represent spatial information seen in the 

abovementioned systems.  There are two main approaches to creating informative tactile 

stimuli: the abstract and symbolic approaches (MacLean, 2008b).  Abstract representation 

focuses on manipulating the characteristics of a stimulus, whereas the symbolic approach 

focuses on the semantic association of stimuli with known metaphors.  For example, 

MacLean & Enriquez22 (2003) and Brewster & Brown23 (2004) designed abstract stimuli 

by systematically varying waveform, amplitude and frequency of vibration signals, while 

Chan et al. (2005) designed a symbolic tactile set in which signal patterns were associated 

with heartbeat and finger-tapping metaphors.  We have found that much tactile spatial 

representation research using either technique focuses on two information categories: 

direction and distance.  

Previous research in tactile navigation (e.g.Tan et al., 2003; Van Erp et al., 2005; Raisamo 

& Myllymaa, 2010) proposed symbolic mapping for the representation of directional 

information, involving the mapping of a limited set of cardinal and ordinal directions (i.e. 

allocentric) to their associated vibration signals.  These signals have commonly been 

generated using one of two techniques: (1) simulation of straight-line patterns (i.e. pointing 

arrows) on an array of actuators, e.g. Tan et al., 2003 and Raisamo & Myllymaa, 2010; and 

(2) an absolute point vibration for each direction in a distributed placement of actuators 

around the waist, e.g. Van Erp et al., 2005.  Representing direction using an abstract 

approach may be useful if the sizes of the body contact area or devices are limited (e.g. see 

an example in MacLean & Enriquez, 2003). 

                                                 

22 The abstract tactile patterns known as Hapticons (see Glossary for explanation). 

23 The abstract tactile patterns known as Tactons (see Glossary for explanation). 
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A representation of distance was studied using both abstract and symbolic approaches.  

Raisamo & Myllymaa (2010) coded distance information on a back array with symbolic 

metaphor by generating a cutaneous sensation of an “up” or “forward” line (i.e. buzzing 

from bottom to top actuators in a sequential manner) when a user is closer to a destination.  

On the other hand, Pielot et al. (2010c) have experimented encoding distance on a belt 

wearable device using an abstract approach by manipulating three signals’ attributes: 

duration, rhythm and intensity.  Results for the best attribute were inconclusive.  

Researchers concluded that the duration-based technique was the most difficult to interpret.  

Van Veen et al. (2004) also used an abstract approach to code distance by manipulating 

signal rhythm (i.e. by increasing or decreasing interstimulus gap duration), generating a 

different level of “close” illusion when a user moved closer to a target.  Different from 

Pielot et al. (2010c), Van Veen et al. (2004) found that participants were able to interpret 

several distance coding techniques with no difficulty.         

Previous work cataloged in this section has shown that tactile interaction can be 

represented and understood by users and yield positive results.  The next section discusses 

how the research topic could be explored and extended.          

2.4 Resolving issues in tactile pedestrian navigation research 

In Sections 2.1-2.3, we have described relevant literature including pedestrian navigation 

in urban environments and, role of technologies in navigation and related work in tactile 

navigation.  In this section, we will define the needs to improve tactile navigation systems.         

As the tactile research has advanced, its potential benefits have grown beyond the initial 

suggestion that it can be used to substitute visual sensory for simple shape projection and 

braille learning (Duistermaat, 2005; Tan & Pentland, 2005).  Some research has already 

shown that tactile interaction can enrich our daily and recreation activities such as 

navigation (Ross & Blasch, 2000), dance training (Gentry & Murray-Smith, 2003) and 

alpine touring (Rehrl et al., 2010).  Although we have seen quite a rich list of literature 

involving the use of tactile channels to deliver useful information for a variety of tasks, 

tactile research in the navigation domain is still in its initial states.  There are several issues 

in relation to practical use that remain to be investigated.  These consist of the design and 

usability issues such as how to represent different levels of spatial granularity and how 

much spatial information we can transmit down the tactile channel as well as the effect of a 

unimodal tactile navigation system and its acceptance.  We need to further investigate and 

understand this less-studied sensory channel to benefit from its richness and flexibility.   
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As for tactile representation techniques, although proposed, they have not been fully 

investigated and compared.  Hence, careful design of tactile signal patterns is crucial to its 

effectiveness because we have learnt that touch is a private event and it is momentary 

(Schiffman, 1976).  Our research would investigate on how to properly design vibrotactile 

signals for spatial information in which individuals could perceive, distinguish, interpret 

and use them for navigational decisions.  Specifically, we aimed to examine these 

representation techniques for different types of spatial information including the effect of 

their combination. 

Prior to execution, it was necessary that we sought a clear definition of related concepts 

because this could help us identify factors affecting navigators’ cognitive process and 

behavior, thereby designing better experiments (Carroll, 2003); as well as understand how 

the touch sense works and what vibrotactile signal attributes are because these would 

enable us to associate physical stimulation parameters with well-defined percepts (Tan & 

Pentland, 2005).   

In the following subsections, we will first elaborate the basis of the research program 

(Section 2.4.1).  Then, we carefully examine the issues required to be investigated for the 

design and development of tactile navigation displays.  They are classified into two 

categories: design (Section 2.4.2) and usability (Section 2.4.3) issues.      

2.4.1 The basis for the research program 

This subsection covers four topics including related theories and design guidelines, 

psychophysics of touch in relation to navigation tasks, factors affecting touch perception, 

and vibration tactile attributes. 

Related theories 

Theories and guidelines reviewed in this subsection helped describe phenomena, explain 

processes, predict outcomes, and support recommendations in relation to the design of 

tactile-based assistive systems.  They provided the foundation of our research program.  In 

particular, these include MRT, Prenav, Choreme and several guidelines as follows.     

Multiple resources theory (MRT) 

Wickens’ Multiple Resource Theory (1980, 1984, 1992, 2002) focuses on aspects of 

workload and conflicts in information processing (Elliott et al., 2009).  MRT can be 

summarised as follows (Elliott et al., 2009):  
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 Humans have several semi-independent cognitive resources 

 Some resources can be used near-simultaneously without impairment to 

performance while others cannot 

 Tasks requiring the use of different resources can be effectively performed together 

 Competition for the same resource can produce interference 

 Dissimilar cognitive resources exist to process information from different sensory 

channels (e.g. visual, audio or touch information). 

In general, the theory predicts the human operator’s ability to perform in high-workload, 

multi-task environments by viewing processing as constrained by several pools (e.g. 

sensory systems) of limited resources.  Level of interference between two tasks that require 

the same modality’s attention is usually higher than that between two cross-modal tasks 

(MacLean, 2008b).  Wickens (1980, 2002) also suggested that presenting information 

through an idle sense would not increase overall cognitive load.  

Prenav           

Prenav24 is an integrated model of human navigation and workload proposed by Van Erp 

(2003).  Unlike MRT, Prenav emphasises performance that can be automated.  The model 

demonstrates a level at which some tasks can be performed automatically without 

involving cognition (Van Erp et al., 2006).  This could be achieved with regard to the long-

term effect, e.g. years of practice, automaticity and intuitive response (Elliott et al., 2009).  

It consists of two loops: the information processing and the workload loops.  The 

information processing loop contains four circulated processes: sensation -> perception -> 

decision -> action and back to the sensation process via environment or display (see Figure 

2.5).    The workload loop describes the state of the operator on the information processing 

loop.  It is suggested that external stressors such as sleep deprivation and vibration may 

affect the state of the operator (Van Erp et al., 2006). 

The Prenav model explains how tactile cues affect attention, cognition and performance 

that are highly intuitive and associated with the fastest reaction time compared to other 

modalities’ cues.   

                                                 

24 It combines Sheridan’s (1992) model for supervisory vehicle control, Wickens’ (1984, 1992) information 

processing model, Veltman and Jansen’s (2004) workload framework and Rasmussen’s (1982, 1983) 

framework of skill-based, rule-based and knowledge-based behavior. 
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Elliott et al. (2010) proved that Prenav and MRT are correct.  The studies compared the 

visual and tactile navigation systems’ performance under workload situations at night time.  

Both the Prenav model and MRT predict that an intuitive display is more effective in high 

workload situations than a non-intuitive display and that there are performance advantages 

if information is being represented via a less taxed channel (i.e. At night, the taxed channel 

is the visual one.  Hence, presenting information via touch is beneficial.). 

 

Figure 2.5 Prenav model (Source: Van Erp, 2007) 

Choremes theory and Qualitative spatial action model (QSAM)  

Choremes theory (Klippel, 2003; Klippel et al., 2005) is defined as a limited set of mental 

conceptualisations of primitive functional wayfinding and route direction elements.  The 

wayfinding Choreme theory follows QSAM (Hernandez, 1994; Cohn & Hazarika, 2001).   

QSAM is a sequence of abstract spatial actions.  Specifically, it combines landmarks and 

passages with the representation of orientations (e.g, turn left or right), spatial relations 

(e.g., on the left or right) and motion actions (e.g. walk, climb, cross, downhill, follow, 

pass, turn).  QSAM’s conceptual user model provides an abstract topological 

representation of navigation with well-defined spatial relations (Shi et al., 2007).  Figure 

2.6 demonstrates such a topology.  There are six areas, seven on the lines, and two points. 

Moreover, the concepts with respect to route segments, i.e., entry, exit and course, are used 

to represent some positions, like atEntry, onCourse, rightAtEntry.   
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Figure 2.6 QSAM’s orientation grids with 15 different positions (Source: Shi et al., 2007) 

Instead of modeling path networks, Choremes characterise routes based on concepts of 

turning actions at decision points.  In the eight-direction model (see Figure 2.7), each 

sector represents 45 degree increments for each direction.  Choremes conceptualise a 

person’s position on one route segment (the one that the navigator is on – see the right 

picture in Figure 2.7), leaving seven other possible directions to turn (see Figure 2.8).  

Back is considered a special concept and has not been explicitly included in the model.              

 

Figure 2.7 Choremes’ eight direction model (left picture) and seven potential turns (right picture) for a route 

direction context (Source: Klippel et al., 2005) 
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Figure 2.8 The seven wayfinding choremes’ graphical externalisation.  Their linguistic externalisation is known as 

sharp right, right, half right, straight, half left, left and sharp left accordingly. 

The combination of both Choremes and QSAM will be used as a basis for the design of our 

empirical studies’ conceptual design.  We have learned that directions can be classified as 

intrinsic (proposed within Choremes, e.g. veer left, sharp right) and extrinsic (proposed 

within QSAM, e.g. cross along, down to, out of, up to) concepts.  The QSAM’s turn and 

motion actions and Choremes’ primitive functions allow us to classify navigation activities 

according to actual environments (cf. allocentric directions).  For example, turns can be 

either intrinsic (e.g. turn right) or extrinsic (e.g. turn in the direction of the bridge).  

Similarly, motions can be intrinsic (e.g. walk straight) or extrinsic (e.g. walk towards the 

church).        

Useful guidelines for the design of tactile navigation systems   

A number of studies have proposed guidelines for the design of tactile navigation systems.  

This thesis has taken the following suggestions into account for our empirical studies’ 

design and execution.  

Research has indicated that users would like hand-free and eyes-free solutions to 

navigation tasks (Magnusson et al., 2009).  This can be best achieved by using the users’ 

torso as the display location (Subramanian et al., 2005).  Researchers recommended that 

the system should provide essential spatial information, e.g. confirmation cues, as well as 

additional functions, e.g. correcting user’s orientation (Magnusson et al., 2009).  However, 

an amount of information provided by the system should be kept to minimum (Kwok, 

2005).  These suggestions directly support our proposal to investigate the use of a wearable 

device for wayfinding tasks.  We expected to provide compelling evidence that the use of 

tactile feedback has the potential to reduce the number of navigation errors and decrease 

navigation completion times (Carter & Fourney, 2005; Oakley et al., 2002).   

For the design of tactile patterns, we incorporated suggestions from several guidelines 

(Jones & Sarter, 2008; Brewster & Brown, 2004; Van Erp, 2002; Van Erp, 2005b; 

Subramanian et al., 2005; Ternes & MacLean, 2008; Hale & Stanney, 2004; Nesbitt, 
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2005b).  Specifically, we would describe a list of vibrotactile signal attributes (Jones & 

Sarter, 2008), which we aimed to manipulate in our experiments, and their implications for 

design (e.g. Brewster & Brown, 2004; Jones & Sarter, 2008; Van Erp, 2002; Van Erp, 

2005b) in the later subsection on Vibrotactile signal attributes.  We also followed Hale & 

Stanney’s (2004) suggestions that the design of tactile feedback must consider 

psychophysical aspects of touch; this topic was explored in the next subsection on 

Psychophysics of touch.  

Previous research has reported that users can be trained to recognise abstract tactile 

representations (Subramanian et al., 2005); this has led us to explore several abstract 

techniques for landmark representation such as coding tactile information by location (Van 

Erp, 2002) and by temporal patterns (Ternes & MacLean, 2008) (see Section 5.3.2).   

These presented guidelines summarise accumulate knowledge in the tactile research 

domain and encourage reuse of good design solutions (Nesbitt, 2005b).  Our plan was to 

extend them by systematically manipulating and measuring the effect of different designs 

of tactile signals for spatial data.   

Psychophysics of touch in relation to navigation tasks 

One cannot design proper interaction to suit human needs without understanding people 

and their capabilities.  To clarify the focus of the thesis, we would like to clarify a 

distinction between active (manipulation) and passive (sensing) touch.  Active touch is 

known as haptic manipulation whilst passive touch can be either tactile (cutaneous) or 

kinestheic sensing.  Active touch involves active stimulus exploration and voluntary body 

movements25 whilst passive touch lacks these qualities and involves only the excitation of 

receptors in the skin and its underlying tissue (Gibson, 1962).  The focus of this thesis will 

be on tactile perception.  Specifically, we focus on the tactile sensing (i.e. mechanical 

pressure on skin) by providing a vibrotactile signal.   

In this subsection, the core aspects, both psychological and physiological, of touch are 

examined including tactile perception, sensitivity and tactile memory.      

                                                 

25 See Glossary. 
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Tactile perception  

Perception is the process by which we receive and interpret information from the world 

around us via different sensory organs and transform into experiences of objects, events, 

sounds and tastes (Schiffman, 1976; Sharp et al., 2007).   

Tactile perception26 is the sense of pressure perception, generally on the skin, the largest 

organ of the body27.  There are a variety of pressure receptors that respond to variations in 

pressure (e.g. firm, brushing, sustained etc.). Stimuli are detected through a large number 

of nerve endings and different types of sensory receptors (see Table 2.3) under the skin 

before being sent through sensory pathways leading towards the central nervous system in 

the brain for recognition and discrimination processes (Kostopoulos et al., 2007).  

Perception of the touch sense depends on the type of receptors that are sensitive to 

different kinds of stimulation on the skin. 

Table 2.3 Mechanical sensory receptors (Adaptation from Aragon, 2006; Myles & Binseel, 2007; and Hsiao et al., 

2003) 

 Sensory receptors Function 

Tactile  – see 

Figure 2.9 for 

reference  

Mechanoreceptor : Detect skin deformation 

(a) Merkel disks  Temporal sensitivity 0.4-100 Hz  

Small receptive field  

Sensing skin curvature, local shape, 

roughness and pressure 

 

(b) Meissner corpuscles  Temporal sensitivity 10-100 Hz  

Small receptive field 

Respond best to active touch involved 

object exploration (Sensing surface 

curvature, velocity, local shape, and grip 

control) 

 

(c) Ruffini endings  Temporal sensitivity 15-400 Hz 

Larger receptive field  

Sensing skin stretch and lateral force 

 

(d) Pacinian corpuscles  Temporal sensitivity 40-700 Hz 

Extremely sensitive over a large 

receptive field  

Sensing vibration, slip and acceleration 

                                                 

26 See Glossary. 

27 For example, an average 6 feet tall man has about 3000 inches
2
 of skin area (Schiffman, 1976). 



64 

Touch sensitivity  

Regions of the skin are not uniformly sensitive to all stimuli (Schiffman, 1976).  For each 

area on the body, the sensitivity level is different depending on the size of the receptive 

field (i.e. the density of receptors).  If there is a high density of receptors, it is likely that 

effective resolution is reduced.  Exploratory parts of the body (i.e. fingers, nose, mouth and 

tongue) are highly sensitive areas while legs, arms and trunk are much less sensitive.  

Figure 2.10 demonstrates examples of different sizes of receptive fields on a thumb and a 

wrist. 

 

Figure 2.9 Cross-section of the skin (Source: Aragon, 2006) 

 

Figure 2.10 Receptive fields on wrist and hand 
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Spatial resolving capacity (Two-point thresholds) 

 

Figure 2.11 Two-point threshold (Source: Aragon, 2006) 

The least distance between the two stimuli that is perceived as two distinct stimuli is 

known as a two-point threshold (Schiffman, 1976).   If a single region of the skin surface is 

stimulated by two stimuli, it could feel like a unitary sensation given that the two points are 

too close.  This situation can be avoided if there is a separation in distance between the two 

points (see Figure 2.11).  These two-point threshold values vary with different parts of the 

body; the more mobile the area stimulated, the lower the two-point threshold (Schiffman, 

1976).  For example, the two-point threshold values are 2-3 mm for fingers and 3.5-4 cm 

for around the waist and back areas.  For the full list of two-point threshold values, see 

Weinstein, 1968 (p.202) or Schiffman, 1976 (p.101).    

Sensory adaptation  

An area on the body which is stimulated for a lengthy period of time may experience 

sensory adaptation (Schiffman, 1976).  It is characterised by a decrease or even a complete 

elimination of a signal’s perceived intensity (Myles & Binseel, 2007).  Kaczmarek and 

Bach-y-Rita (1995) reported that the adaptation rate varies with frequency; little adaptation 

occurs with a 10Hz vibrotactile stimulus, while the skin adapts very quickly to a 1000Hz 

signal. It can be avoided by: providing a brief movement of the stimulus (Schiffman, 

1976), providing a form of abrupt change in the stimulation (Schiffman, 1976), and giving 

a signal with shorter length (Myles & Binseel, 2007).   

Memory vs Tactile memory 

Memory is the capacity to remember and involves recalling various kinds of knowledge 

that allow us to act appropriately (Eysenck & Keane, 2005).  It is usually divided into a set 

of memory processes and a number of different types of memory stores.  The processes of 

remembering include storing information in memory and then retrieving it later by way of 

recall and/or recognition processes.  Memory stores can be divided into two types: short 
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term or working memory; and long term memory.  Short-term storage is a system of high 

capacity but short duration (Gallace & Spence, 2009).  As a result, if any information is 

located in this part, it is likely to fade quickly.  Tactile memory is based on the same 

cognitive mechanism of storing and retrieving tactile information, for example to recognise 

sensations that have previously been explored.   

Spatial numerosity judgments  

Tactile numerosity judgments refer to the measurement of our spatially tactile span of 

consciousness (i.e. maximum threshold) of a number of stimuli simultaneously presented at 

any one time across the body.  This ability is sometimes being referred as subitising 

(Gallace & Spence, 2008).  

Researchers (Riggs et al., 2006; Bliss et al., 1966; Gallace et al., 2008) reported that 

humans were able to subitise up to three locations of simultaneously presented tactile 

signals across the body, subjected to signal’s intensity (i.e. the stronger, the better the 

detection performance).   

We should note here that the threshold of three in tactile numerosity judgments is similar 

to that of visual (2-3) and audio (2-3) judgments (Gallace & Spence, 2009).        

Temporal numerosity judgments  

Temporal numerosity judgments refer to the ability to distinguish stimuli presented 

sequentially on one location or across body sites.  It is reported that the maximum 

interstimulus interval between two stimuli is around 40-60 ms for the stimuli to be 

perceived as simultaneous (Gallace & Spence, 2008).   

Memory decay  

There are a few factors affecting how quick tactile memory decays.  These factors were 

reported to include:   

 The gap between the moment being stimulated and the recall event – the wider the 

gap, the more it fades (Gilson & Baddeley, 1969; Miles & Brothwick, 1996)  

 The sensitivity of the skin site – the less sensitive area, the higher the degree of 

forgetting rate (Murray et al., 1975)  

 A number of stimuli being presented simultaneously – the greater the number, the 

faster the decay (e.g. if there are less than five simultaneous stimuli, tactile memory 

could last 5000 ms, otherwise it lasts only 1000 ms) (Gallace et al., 2008)   
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 Articulatory suppression and crossmodal masking (see Gescheider & Niblette, 

1967; and the later subsection Effects from other modalities) 

Implications for design  

We must note here that all information presented in this Psychophysics of touch subsection 

came from studies as early as in the 1960s and focused on the finding of threshold values 

with static touch.  We are aware that all the values may deviate when it comes to 

vibrotactile stimulation.  However, understanding psychophysics of touch allows us to 

appropriately design the system and stimuli that are compatible with human’s physical 

capabilities and limitations.  For example, if we are to use vibrotactile stimuli for tactile 

communication, we need to make sure that the signal stimulates the Pacinian corpuscles 

(see Table 2.3 and Figure 2.9) by providing vibration at frequency range of 40 – 700 Hz.   

We have learned from previous research that we should present 1-2 stimuli at any one time 

in a tactile display.  The number may go up to three if the vibration is presented on the area 

where there are a high number of sensory receptors.   If we are to present sequential stimuli 

that are supposed to be perceived as separate ones, the interstimulus duration must exceed 

60 ms.   

We also see in this subsection’s explanation that tactile memory decays very quickly.  As a 

result, tactile feedback design should allow users to recognise the meaning of sensation 

rather than having them to be recalled from the users’ memory (Sharp et al., 2007; 2011).         

Factors affecting touch perception for navigation tasks 

Perception in real environments is influenced by various factors such as light & noise in 

the environment and users’ anxiety and fatigue (Révész, 1950; Sharp et al., 2011).  In 

addition, other factors include the effect from: (1) individual differences in terms of age, 

gender & navigation experience, (2) individual differences in spatial abilities and (3) other 

modalities. 

Individual differences in terms of age, gender and navigation experience  

For age difference, researchers (e.g. Verrillo, 1993; Klatzky & Lederman, 2002; 

Kaczmarek & Bach-y-Rita, 1995) have addressed that age has a significant effect on 

cutaneous thresholds due to the loss of a number of mechanoreceptors.  As a result, 

deterioration of tactile perception occurs in the older population.  
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As for gender difference in relation to navigation tasks, it is confirmed that there are 

differences between males and females in navigation behavior and ability (Burnett, 1998).  

Males seem to have stronger orientation skills than females and feel little or no anxiety 

during the course of navigation   (Mashimo et al., 1993; Millonig & Schechtner, 2008).   

Ward et al. (1986) revealed that males used cardinal directions (e.g. North, South) and 

distances whilst females relied on landmarks and relational directions (e.g. left, right).     

As for the difference in terms of navigation experience, there are factors such as 

experience in land navigation, especially in unfamiliar areas, assistive technologies and 

navigation techniques used.  For the navigation experience effect, Gould (1989) noted that 

experienced travellers possess a higher level of navigation skills than rare travellers. 

Please note that, to date, there is no empirical study to have directly indicated the 

implications of aging, gender and navigation experience for tactile pedestrian navigation.   

Individual difference in spatial abilities  

Individual differences in spatial abilities, identified by a few researchers (e.g. Michael et 

al., 1957; McGee, 1979) composed of separated abilities, mainly refer to three things: (1) 

spatial visualisation, (2) spatial relations and orientation, and (3) kinesthetic imagery.  

Carroll (1993) broadened the definition of spatial abilities to also include: (4) closure 

speed, (5) flexibility of closure, (6) perceptual speed and (7) visual memory.   

Spatial visualisation is thought to require mental manipulation of objects (ability to 

manipulate, rotate, twist or invert objects without reference to one’s self). Spatial relations 

and orientation involve the ability to understand the arrangement of elements within a 

visual stimulus.  Kinesthetic imagery associates with left-right discrimination. Closure 

speed and flexibility of closure both involve the ability to identify a stimulus or part of a 

stimulus that is either embedded in or obscured by visual noise.  Closure speed involves 

the ability to access representations quickly from long-term memory.  Flexibility of closure 

associates with the ability to hold a stimulus in working memory while attempting to 

identify it from a complex pattern.  Perceptual speed is speed in comparing figures or 

symbols, scanning to find figures or symbols, or carrying out other very simple tasks 

involving visual perception.  Visual memory is the ability to remember the configuration, 

location and orientation of figural material.  In general, the difference in high and low-

spatial individuals concerns the quality of the spatial representations that they construct 

and their ability to maintain this quality after transforming the representations in different 

ways. 
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Researchers (i.e. Goldin & Thorndyke, 1983; Streeter & Vitello, 1986) found that people 

with good navigation skills excelled at reading cues on the map, learning an environment 

from navigation or from a map, and at manipulating spatial information in memory.  

Streeter & Vitello (1986) also noted that people with poor spatial skills have a greater need 

for reassurance and mainly relied on landmarks during the course of navigation.   

Effects from other modalities 

It has been reported that information from different sensory channels can affect the 

awareness (Gallace & Spence, 2008) and performance (Klatzky & Lederman, 2005) of a 

signal presented in another sensory modality.  Effects can yield both positive and negative 

results.   

Turchet et al. (2010) created a simulation of audio and haptic sensation of walking on 

different surfaces (i.e. wood, snow, gravel, and metal).  The system provided both coherent 

and incoherent audio-haptic stimuli for those surfaces.  Results showed that using coherent 

information across two modalities results in sensory augmentation.  Papetti et al. (2010) 

created an audio-tactile system that provides the sensation of walking over grounds of 

different types (granular or crumpling properties) which enhances the user’s walking 

experience.  However, if they were incoherent, the auditory modality was dominant to the 

haptic one (i.e. participants chose answers based on audio stimuli).   

Implications for design  

Realising these factors could help us carefully design empirical studies such that we could 

avoid impotent results.  For example, the design of vibration patterns must not conflict 

with the sound produced or the vision displayed.    

Vibrotactile signal attributes  

The thesis would employ vibrotactile stimuli because they were considered safe28 and 

required low power consumption (Tan & Pentland, 2005).  Vibrotactile29 signals are 

                                                 

28 We did not consider different types of sensation such as electrical or electro-mechanical at all because of 

their tendency to induce pain and discomfort (Tan & Pentland, 2005).  

29 Besides vibrotactile sensation, there is another type of tactile stimulation called electrotactile signals. 

Electrotactile sensation is provided by stimulators generating direct electrical stimulation of the nerve ending 

on the skin.  
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vibration patterns generated by stimulators providing pressure through the properties of the 

mechanoreceptors of the skin.  The dynamic response of tactile nerve endings in 

the skin to these vibration signals is known as vibrotaction.  Vibrotactile experiences are 

formed by repeatedly stimulating parts of the body at a set of contact points.  Stimulators 

can be motors or vibrators on their own or be formed as an array or of specific layouts to 

deliver more sophisticated shapes and patterns. 

As vibrotactile patterns are aimed to stimulate mechanoreceptors to achieve intended 

vibrotaction experience, a few attributes of vibrotactile signals are required to be 

understood and carefully considered when designing tactile communication systems.  

These attributes include: frequency, duration, rhythm, size of body contact areas and 

location on the body (Jones & Sarter, 2008). 

Frequency of signal  

Frequency is the measurement of the number of occurrences of a repeated event per unit of 

time, or the rate of change of phase of a waveform, measured in Hertz (Hz) – how many 

times an event repeats per second.  Frequency is sometimes measured as revolutions per 

minute (rpm) – the number of full rotations completed in one minute around a fixed axis.  

For example, r/min = (1/60) revolutions per second = 0.01666667 Hz (see example in 

Figure 2.12).     

 

Figure 2.12 An example of different frequencies of sine waveforms, the bottom line is of the highest frequency. 

(Source: Google) 

Temporal attributes of signal 

For the time variable of the signals, there are three temporal attributes: the burst duration of 

the stimulus, the pulse repetition and the number of pulses.  The burst duration refers to the 

period of time during which a vibration continues.      

http://en.wiktionary.org/wiki/tactile
http://en.wiktionary.org/wiki/nerve_ending
http://en.wiktionary.org/wiki/skin
http://en.wiktionary.org/wiki/vibration
http://upload.wikimedia.org/wikipedia/commons/6/6d/Sine_waves_different_frequencies.svg
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Signal rhythm 

Signal rhythm is defined as a movement marked by the regulated succession of weak or 

strong elements of signals by manipulating a signal’s frequency, amplitude and duration—

or a combination of them.     

The size of body contact areas  

This refers to the dimension of skin contact points or locations on the body.  The size of 

body contact areas can be increased by two manners: (1) increasing the dimension of a 

single contact location and (2) increasing the number of contact points on the body.  

Location on the body 

We can provide vibrotactile signals to any area on the body.  However, some areas are too 

sensitive for some people that they experience a tickling effect when stimulated by 

vibrotactile feedback.  The torso area is the most popular location advised by researchers 

(e.g. Raisamo & Myllymaa, 2010; Hoggan & Brewster, 2006a; Myles & Binseel, 2007).         

Implications for design  

Manipulation of the abovementioned properties provides different tactile sensations 

(Brewster & Brown, 2004).  This dissertation focuses on vibrotactile feedback to allow a 

sense of vibrating objects.  Specifically, in our study such objects are disk motors (which 

will be called actuators interchangeably).  Mechanical vibration in motors is considered a 

kind of wave, which has a square shape.  Physical characteristics of vibration to be 

modeled are frequency and duration of vibration signals as well as their manipulation to 

achieve a variety of rhythms.  In any instance that these attributes are to be presented at the 

same time, the number of level values of each attribute should be between 2-4 levels 

(Brown et al., 2006b).     

It is advisable that we follow the level of thresholds suggested when it comes to testing 

frequency of signals.  For frequency threshold, researchers suggested generating vibration 

at 150-300 Hz (Van Erp, 2002; Van Erp, 2005b; Jones & Sarter, 2008).   

Please note that we did not seek to manipulate signals’ amplitude in this thesis following 

Hoggan & Brewster’s (2007) report on its inefficiency compared to signals’ frequency.    

We also realise that the tactile perception is adapted through time and could lead to fatigue.  

However, Van Erp (2005b) noticed that timing acuity can have both a positive and 

negative effect.  The preferred choice in the trade-off between speed of presentation 
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(dependent on timing parameters) and the spatial resolution may be dependent on the 

application.  He suggested that those applications requiring a high spatial resolution (i.e. 

localisation-ability to identify stimulated location) benefit from longer presentation times, 

whilst those requiring a short presentation may require a larger distance between actuators 

(Van Erp, 2005b).  Jones & Sarter (2008) suggested the optimal burst duration from 80 – 

500 ms when 50 – 200 ms is appropriate as an alert signal.      

All of the above information will be taken into account when we design signals and the 

actuator’s spatial resolution.        

Choosing an appropriate site on the body is crucial to tactile perception in relation to the 

task (Ternes & MacLean, 2008).  MacLean & Hayward (2008) advised that the location 

should not be on finger tips because they might be engaging with other tasks.  

Furthermore, given its tiny size, a finger can perceive only three intrinsic directions: left, 

right and backward (Lylykangas et al., 2009).  The more suitable sites include chest, waist 

and back.  Hoggan & Brewster (2006a) reported that the waist area is the most 

distinguishable body site compared to wrist and ankle when it comes to walking.  This 

suggestion is backed by Myles & Binseel’s (2007) advice that users were more 

comfortable with stimulation on the torso area.      

Humans’ tactile capabilities must be taken into account when designing signals.  

According to the European standard on haptic perception, people can perceive up to 15 

different intensity and nine frequency levels.  However, it is doubtful that in operational 

environments, where users’ attention is engaged with other important tasks, users can 

perform up to such a high standard.  In the absence of workload, it is reported users can 

learn seven signals with little training.  However with the presence of workload, it will take 

users 25 minutes to learn 7-9 signals (Myles & Binseel, 2008).  Researchers concluded that 

the more workload, the longer detection time required.           

Currently, there is no reported evidence on the optimum combination of these properties.  

Our thesis is set to trial and find a set of distinguishable and perceptible tactile signals that 

can be used to represent spatial information. 

Now that we have gathered all essential sources of clarification, next we discuss how we 

propose to investigate both design (Section 2.4.2) and usability (Section 2.4.3) issues 

regarding the design of tactile navigation displays guided by the abovementioned 

foundations.     
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2.4.2 Design issues in tactile research for pedestrian navigation 

The tasks 

This study of tactile representation for spatial information has a concern about the kinds of 

tasks to be represented.  It has been reported that different kinds of tasks require different 

levels of representation (Gallace & Spence, 2008).  We have to make sure that the 

representation we use is suitable for explicit tasks such as identification and categorisation 

of spatial information rather than a representation for more implicit tasks such as forced 

choice selecting or same/different judgment (Ladavas et al., 1997).  Before we can list 

what spatial information should be provided to pedestrians in our navigation systems, we 

should start with the list of tasks during users’ navigation process.   

According to the navigation models listed in Section 2.2.1, at this stage, we may assume 

that pedestrians require previewing routes, identifying directions (to take), 

identifying/classifying landmarks (as points of references and interest), confirming if they 

are on the right path, orienting themselves and controlling their movements towards 

intended directions and destination(s).  However, as we have learned that tactile 

communication lacks the ability to provide overview information, we will exclude this task 

from our consideration.  The controlling movement task will also be excluded because it is 

a person’s motor control ability and is beyond the scope of our study.      

Next, we will identify the types of spatial information that should be provided by our 

tactile navigation system for each task.  This is our attempt to answer our first RQ. 

RQ1: What information types should the tactile navigation display provide to 

pedestrians?     

Information to be represented  

Based on the list of tasks in the previous subsection, we can primarily conclude that spatial 

information types that will accommodate these tasks are direction (for identifying), 

landmark (for identifying and classifying) as well as cues for confirming and orienting 

tasks.    

Our list is congruent with those suggestions provided by other researchers (e.g. May et al., 

2003; Bradley & Dunlop, 2005; Magnusson et al., 2009; Ross et al., 2004; Pielot & Boll, 

2010).  Ross et al. (2004) and Pielot & Boll (2010) have identified landmarks as the most 

important spatial information required for pedestrian navigation because they help increase 
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users’ confidence and performance and build survey knowledge.  In some situations, Pielot 

& Boll (2010) noted that users did not require turn-by-turn information as long as they 

could visualise upcoming landmarks.  However, we insist that directional information is 

most crucial to navigation success especially with tactile communication because users 

will not be able to see both direction and landmark cues.  We assume that they would 

require both types of information to aid their navigation.  

According to Bradley and Dunlop (2005) the most important information that should be 

provided in any navigation system was distance.  However, May et al. (2003) stated 

otherwise, that distance was not necessary for pedestrian navigation due to the nature of 

slow moving speed.  In our study, we have decided that distance may not be a good choice 

to be included because current30 technology still has flaws in measuring distance.  The 

current technology has a high rate of errors resulting from the rough grained resolution of 

measurement, the mapping of measurement to distance, obstructions, reflections, and 

multi-path effects.  This makes measuring distance in reality uncertain (get a larger area 

not a point).  However, this requirement can be taken as our future system improvement.   

Other types of information suggested by Bradley & Dunlop (2005) such as street name and 

other types of textual information may not be achievable via tactile communication due to 

the limitation of tactile signals’ characteristics and human perception and cognition 

capabilities.   

In conclusion, we will focus on providing four types of information: direction, landmark, 

cues for confirmation of one’s point on route and information for orientation. 

As the Choremes theory and QSAM have identified a limited set of directions required for 

navigation, we use Choremes’ eight direction model as a basis for our signal design of 

direction, confirmation and orientation cues.   

However, landmark is a complex type of information not systematically classified into 

well-defined categories.  Lists of used landmarks in several research papers are subjected 

to the studied areas, i.e. they were chosen on a case-by-case basis.  Several lists of “most 

used” landmarks have been reported by researchers (e.g. Grabler et al., 2008; Baus et al., 

2007).  Nevertheless, it is not possible to generalise to a set of landmarks from such single 

location studies because the landmarks will be highly diverse from one place to another.  

                                                 

30 Circa 2007-2012. 
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Burnett (1998) notes the problem for research in this field that only a limited set of 

landmarks has been drawn from a limited set of evaluated routes.   

Sorrow et al. (1999) reported that people use different types of landmarks for different 

navigation purposes: e.g. visual landmarks are used for navigation to a familiar destination; 

structural landmarks are used for navigation to an unfamiliar destination; both types are 

used for exploring the area. There are currently no reported findings on the comparative 

importance of different landmarks or on their use across different navigation contexts.  

Hence, there is a need to further investigate the use of landmarks by pedestrians.  This 

leads to RQ2: 

RQ2: How do pedestrians use landmarks for different navigation purposes?   

We therefore adopted an empirical approach to identifying consistently used landmarks 

based on people’s experiences of journeys involving each of the three navigation purposes 

(i.e. commute, quest and explore).  We carried out the empirical identification and 

classification of a set of landmarks or landmark types appropriate for the use of mobile 

navigation systems in urban environments.  The classification of landmarks is reported in 

Chapter 4.     

Form of wearable devices and location on the body  

Since several tactile-based directional displays have already been proposed and 

successfully tested, we were interested in finding the most effective form of these layouts.  

This leads to RQ3.   

RQ3: What is the effective form of tactile displays for pedestrian navigation? 

We describe our investigation on this issue in Chapter 3.  Of the proposed forms (see Table 

2.2), we have focused on the wearable systems that use the torso as a display site, 

specifically belt-type and back torso vest devices.  According to researchers (e.g. Tan et 

al., 2003; Tsukada et al., 2004), their shape, size, and body contact areas support 

representation of a number of directions and other information.  We decided not to 

consider the headband because it was reported that users had experienced discomfort 

wearing the system (Myles & Binseel, 2007).  For the systems worn on wrists and feet, the 

size of body contact areas is too small effectively to afford the display of a number of 

directions (which are required according to the Choreme theory’s direction model).  We 

also did not consider the type of systems worn on fingers because users would normally 
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require their hands to be free to perform other activities when interacting in many 

environments. 

For the systems worn on the torso, their physical interface layout follows one of two forms: 

(1) a back array of vibrators generating straight-line patterns (e.g. Ross et al., 2000; Tan et 

al., 2003) and (2) a waist belt embedded with vibrators generating absolute point vibrations 

(e.g. Duistermaat, 2005; Erp et al., 2005; Tsukada et al., 2004).  Researchers have reported 

each of these interfaces as effective. 

How to represent tactile spatial information 

So far in this chapter, we have finalised that we focus on four types of spatial cues, namely 

direction, landmarks, confirmation and orientation cues.  In order to provide perceptive and 

distinguishable tactile feedback via the interfaces, we have to understand the limitation of 

human cognition as well as that of tactile displays.  In addition, chosen representation 

techniques depend largely on the chosen form of wearable devices.   

We already know that our system would provide several types of spatial information.  It is 

understandable that one pattern, which is used to represent one thing, e.g. direction, must 

be different from another pattern, which represents another thing, e.g. landmark.  This 

leads to our fourth RQ. 

RQ4: How can we represent spatial information via the chosen device?  

Specifically, which representation technique should be used for each type of 

spatial information?  

 

Figure 2.13 Example of Information categories, which cannot be easily conveyed through touch 
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Problem lies in tactile semantic representation 

There are two main approaches to creating informative tactile stimuli: the abstract and 

symbolic approaches (MacLean, 2008b).  Abstract representation focuses on manipulating 

a stimulus’ characteristics, whereas the symbolic approach focuses on the semantic 

association of stimuli with known metaphors (see Section 2.3.1).  Our thesis investigates 

these approaches for different types of spatial information. 

Providing the more arbitrary categories of information via the tactile channel is difficult.  

The main problem lies in the mapping between ideas (which represent concepts) and their 

corresponding tactile patterns.  The relationship between the level of arbitrariness of 

information types and their representation is demonstrated in Figure 2.13.  An information 

category like direction might be represented easily by simulated straight-line patterns or 

placements of tactile output devices.  The reason is that this spatial metaphor refers to a 

small set of possible discrete values, which can easily directly map to our perception.  For 

information categories like distance and landmark, mapping is more problematic.  

Proximity is either measured by distance or time; landmark refers to a set of continuous 

values.  The bigger the set of values one category represents, the more arbitrary the 

mapping becomes.  Since our thesis does not focus on proximity, we will omit its 

discussion.    

A representation of landmarks is challenging.  Landmarks can be any objects or places on 

routes that are stationary, distinct and salient (Burnett et al., 2001) (for explanation, see 

Section 2.1.3).  If we were to map landmarks using a symbolic approach, appropriate 

metaphors would require investigation.  For example, it might be possible to draw on a 

shape metaphor, with each landmark signal represented by a simplified form of its shape.  

However, such an approach would require a complex hardware layout, a large number of 

actuators and actuator placements (e.g. Bach-y-Rita et al., 1998).   

Too little is known about the exact communicative capacities and appropriate 

representation of tactile spatial information, unlike our better understanding of association 

of symbols (visual language) and sounds (auditory language) to their meaning.  Since a set 

of general rules to inform tactile design parameters is not well understood, we will 

investigate these representation issues in Chapter 3 (for direction, orientation and 

confirmation cues), Chapter 4 (for landmark) and Chapter 5 (for an integrative evaluation).   
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When to represent signals 

With visual displays, information is always available.  On the contrary, tactile 

communication is designed to grab users’ attention at the time that information is needed 

due to perception limitation of humans and skin adaptability.  There is no literature that has 

mentioned the issue of tactile cue timing, whether it should be delivered time-based or 

distance-based with reference to each decision point.  Although this issue is not our main 

focus, we attempted to propose the optimum timing thresholds for each information type.  

We discussed our suggestion along with other representation issues in Chapters 3, 4 and 5.         

2.4.3 Usability and user experience issues 

So far in this chapter we have listed tactile display design issues.  In this section, we will 

focus on an evaluation of the system.   Up until now, there has been no empirical study that 

evaluates the tactile navigation system which provides multiple types of spatial 

information on their usability.  This leads to our fifth RQ.   

RQ5: What is the tactile navigation system’s performance? 

Throughout Chapters 3 and 4, we demonstrate that our design of the system achieved 

usability goals, which include effectiveness, efficiency, safety, utility, learnability and 

memorability (Sharp et al., 2011).   

Theoretically, pedestrians have different purposes in navigation.  We assume that they 

would like to use a navigation aid for either quest or exploratory purposes.  Hence, we set 

out to find the answer.  This leads to RQ5.1.   

RQ5.1 Does the system help with different navigation purposes? 

 

We have evaluated our first version of the system and reported the answer to RQ5.1 in the 

2
nd

 part of Chapter 3 and Chapter 5 respectively.  In addition, we revisited usability goals 

in the results and discussion parts of Chapter 5. 

According to May et al. (2001), direction plays a significant part in navigation completion 

while landmarks help in building spatial knowledge of the surroundings.  Much of tactile 

navigation research focuses on providing a single type of information (being either 

direction or distance or their combination).  Therefore, they helped primarily with route 

guidance rather than with developing survey knowledge.  With regard to the most basic 

purpose of pedestrian navigation, which is to travel from a starting point to a destination, 

generating and comprehending directional information might be enough.  Nevertheless, 
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there are different purposes of pedestrian navigation.  Hence, a good navigation system 

should satisfy a variety of navigation purposes, and provide information necessary for 

those purposes (such as explore and quest).  In turn, a good navigation system with 

appropriate technology should help increase user confidence and improve their navigation 

performance (Ross et al., 2004).  From a study by Ross et al. (2004), visual landmarks 

assisted users in identifying the precise location of the manoeuvre (i.e. a point at which the 

user had to follow an instruction).  Landmarks help users with poor judgment of distance to 

be able to navigate with a better performance than if there was no landmark information 

presented.  Results from many studies (i.e. Vinson, 1999; Burnett et al., 2001; Baus et al., 

2007) suggested that tactile navigation systems’ value could be improved by providing 

landmark information.     

None of the previous research has attempted to provide directional together with landmark 

information or other types of spatial information.  Consequently, our overall research aim 

is to develop a navigation guidance that provides these two types of crucial information 

through the touch sense.  We would like to discover whether the tactile representation of 

landmark would hold an analogous effect to users’ confidence and performance the same 

as it does for visual systems.  This leads to RQ5.2. 

RQ5.2 Can tactile landmark representation “increase/help” with 

performance/confidence as in visual pedestrian navigation systems? 

 

We have identified major problems with visual navigation (see Chapter 1 Section 1.1.4).  

We expected that the tactile navigation system would allow pedestrians’ attention to focus 

on the navigation tasks rather than the usage of the technology.  Additionally, we expected 

that our system would impose fewer cognitive demands than visual-based applications 

(that impose a high level of cognitive workload for mental orientation and the transfer 

among different frames of references).  This introduces RQ5.3. 

RQ5.3 Is there a problem with the transfer of frames of reference with tactile 

navigation displays? 

Traditionally, HCI has been concerned with usability matters.  More recently, the 

community is also interested in the aspects of user experience with the system, e.g. to be 
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aesthetically pleasing or how it feels and looks.  We expected our users’ emotions and felt 

experiences to be desirable31 ones.  We introduce RQ5.4.       

RQ5.4 What are user acceptance and perceived usefulness (practicality) of the 

tactile navigation system? 

The discussion on RQ5.2 – RQ5.4 can be found in Chapter 5. 

Finally, we are interested in understanding the way pedestrians would navigate using a 

unimodal tactile system in an urban environment.  Our thesis refers to navigation models 

proposed by Zhai (1991) and Burnett (1998), which were based on vehicular navigation.  

We discussed the findings in Chapter 5. 

2.5 Summary  

This chapter has given an overview of related literature to the design and evaluation of 

tactile navigation systems including psychophysics of touch, ubiquitous environments and 

pedestrian navigation, synthetic tactile signals’ characteristics and related work.  We also 

listed the detailed description of our empirical plan to investigate both design and usability 

issues of the system.  We referred to the proposed guidelines and theories as a basis for the 

design of signals and the system.     

In summary, this thesis aims to find the best way to convey multiple types of spatial 

information necessary for pedestrian navigation tasks through artificial tactile feedback on 

a wearable device.  In effect, the result of this work will strengthen our understanding of 

tactile communication for navigation tasks.   

  

                                                 

31 Desirable aspects of user experiences can be described as: satisfying, enjoyable, engaging, pleasurable, 

exciting, entertaining, helpful, motivating, challenging, enhancing sociability, supporting creativity, 

cognitively stimulating, fun, provocative, surprising, rewarding and emotionally fulfilling.  On the other 

hand, undesirable aspects can be described as: boring, frustrating, making one feel guilty, annoying, childish, 

unpleasant, patronizing, making one feel stupid, cutesy, and gimmicky (Source: Sharp et al., 2007).  
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Lack of direction, not lack of time, is the problem. We all have twenty-four hour days.  

(Zig Ziglar, 1970) 

Chapter 3 An Empirical Investigation into Tactile 

Directional Display 

3.1 Introduction  

In Chapter 2, we analysed literature on information requirements and derived a limited list 

of spatial information types necessary for navigation completion.  They include four types 

of spatial data: directions, confirmation cues, orientation cues and landmarks.  This list 

provides an answer to RQ1: What information types should the tactile navigation display 

provide to pedestrians?   

This chapter builds upon such information requirements, focusing on the first three types: 

direction, confirmation cues and orientation cues.  An investigation of landmarks and their 

representation is reported in Chapter 4.         

The primary focus of this chapter is the investigation into the display of tactile directional 

information.  The chapter has two aims: (1) to find out the effective form of the display 

between the two popular types of wearable tactile displays: a back array and a waist belt; 

and (2) to evaluate our prototyping system in the actual environment for quest navigation.  

The chapter begins with the motivation and basis for the study (Section 3.2).  Then in 

Section 3.3, we report results from two direct comparison studies of two wearable devices, 

which were carried out in late 2007 and early 2008 respectively. Results indicated that the 

tactile belt allowed participants to perform significantly faster and more accurately than the 

tactile back array.  We then took the waist belt device to develop a prototyping system that 

provides directional and confirmation cues for quest32 navigation.  In late 2008, the system 

has been evaluated in the field compared with a visual mobile maps application.  Section 

3.4 reports results of the field comparison study as well as discusses performance-related 

                                                 

32 Quest involves travel from a familiar place of origin to an unfamiliar destination. 
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issues.  Section 3.5 is a general discussion for both the lab and the field studies.  Finally, 

Section 3.6 summarises the findings of the chapter leading to the next empirical study.     

3.2 Basis for the study: motivation and a review of tactile 

directional displays  

In order to reach designated destinations, both sighted and visually impaired users rely 

comprehensively on directional information, which is used at key decision points, e.g. at 

turns (Bradley & Dunlop, 2005; May et al., 2003).   Additionally, they may use landmarks 

to identify a point on route and street name to confirm their navigation decisions (see the 

full list in Table 2.1). 

Up to now, studies on tactile navigation displays were proof-of-concept studies 

demonstrating that the delivery of spatial information via the touch sense is possible 

(Elliott et al., 2010).  Given that the technology has matured, we need to take the study 

beyond the current state to focus on operational use.  Although substantial literature 

involving a variety of wearable device layouts and tactile representation approaches has 

been examined, there is no comprehensive comparative study available to inform the 

designers of the effect of layouts and representation approaches on direction identification 

performance.  We are interested in reviewing and comparing their effectiveness. 

In previous research, tactile signals were delivered on different areas of the body to 

provide cues for orientation and wayfinding both in virtual and real environments (see the 

full list of various forms of tactile wearable interfaces in Table 2.2). 

Of the proposed different locations, we have focused on the wearable systems that use the 

torso as a display site, specifically the belt-type and the back torso vest devices.     

We decided not to consider other areas.  We discarded the head area because users reported 

discomfort wearing the system (Myles & Binseel, 2007).  For the systems worn on the 

shoulders, the size of body contact areas does not afford the display of eight directions and 

detection suffers by the changing of the wearer’s posture affecting the degree of closeness 

of the wearable device to the wearer’s body surface, which in turn lowers signal perception 

(Toney et al., 2003).   

Although the wrists and fingers were reported to be the most sensitive perceptible areas 

compared to other sites such as torso and thighs (Karuei et al., 2011), we did not consider 

these locations because we predict that users would normally require their hands to be free 



83 

 

to perform other activities when interacting in operational environments.  For the system 

worn on the thighs, the ankles and the feet, the locations may not be suitable for actuator 

placement because they are main organs used for walking.  Specifically, users reported low 

signal detection on thighs, ankles and feet compared to other sites on the body affected by 

the nature of movement (Hoggan & Brewster, 2006; Karuei et al., 2011).   

Other locations being examined for the level of tactile signal perception in a mobile 

context include stomach, upper arm, and chest (Karuei et al., 2011).  Results demonstrated 

that these locations did not afford good performance compared to the torso area.  

Consequently, we follow researchers’ (Hoggan & Brewster, 2006; Karuei et al., 2011) 

suggestion that the spine, back torso and waist areas are top candidate sites for displaying 

directional information.  

For the systems worn on the torso, their physical interface layout follows one of two forms: 

(1) a back array of actuators generating straight-line patterns (e.g. Ross & Blasch, 2000; 

Tan et al., 2003); and (2) a waist belt embedded with actuators generating absolute point 

vibrations (e.g. Duistermaat, 2005; Van Erp et al., 2005; Tsukada & Yasumura, 2004; 

Heuten et al., 2008).  Researchers have reported each of these interfaces as effective. 

The back array device displays directions by generating different stimulation patterns on an 

array of vibrators to create the illusion sensation of a dotted line or a moving direction, 

known as the “cutaneous rabbit” phenomenon or saltatory signals (Geldard et al., 1972; 

Tan & Pentland, 2005).  Figure 3.1 demonstrates that the actual stimulation on the left 

graph creates an illusion sensation shown on the right graph.  Most of the wearable tactile 

interfaces using this approach are in the form of a vest and stimulate the user’s back.  Tan 

& Pentland (1997), Young et al. (2003), Tan et al. (2003) and Ross & Blasch (2000) built 

their interfaces using a 3x3 motor array whilst Ertan et al. (1998) and Tan & Pentland 

(2001) created a 4x4 layout.  Each direction was generated as a simulated line using 

multiple motors, e.g. vibrating motors in the middle vertical row of the array from bottom 

to top conveying straight.  The systems were tested with drawing (Tan et al., 2003), task 

switching under high workload situations (Hameed et al., 2006) and street-crossing (Ross 

& Blasch, 2000) tasks.  Researchers have reported that tactile interaction intuitively 

presented spatial information for the drawing tasks (Tan et al., 2003), managed attention 

during task switching (Hameed et al., 2006) and effectively assisted visually impaired 

pedestrians in their street-crossing tasks (Ross & Blasch, 2000). 
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Figure 3.1 The cutaneous rabbit or saltatory signals. A phenomenon where a series of tapping on separated but 

connected regions of the skin creates a sensation of sequential taps likened to that of a rabbit hopping along the 

skin (Geldard & Sherrick, 1972; Tan & Pentland, 2001; Tan et al., 2003) 

On the other hand, the waist belt interface represents a direction by triggering vibration of 

an actuator at the corresponding location around the waist.  Prototypes are embedded with 

a number of motors distributed around the waist.  The number of actuators varied from six 

(Heuten et al., 2008; Pielot et al., 2008; Pielot & Boll, 2010a) and eight (Tsukada & 

Yasumura, 2004; Brill et al., 2004; Van Erp et al., 2005; Duistermaat, 2005; Lindeman et 

al., 2005; Elliott et al., 2007; Elliott et al., 2010) to 12 (Van Erp, 2001; Svensson & 

Andersson, 2010) and 15 (Van Erp, 2005) actuators.  Each motor represented one of the 

directions, with each directional signal being generated using one motor.  These motors 

were individually adjusted to account for differences in body shape and size such that each 

point signifies a represented direction for any particular user.  For example, vibrating the 

motor located at the front in the middle of the waist conveyed straight.  Evaluation results 

of the interface suggested that they were practical for conveying directional information in 

operational environments including pedestrian navigation during daytime (Tsukada & 

Yasumura, 2004; Pielot et al., 2008), in low visibility environments such as at night in 

densely forested terrain in both normal and adverse circumstances (Duistermaat, 2005); 

navigation in visually cluttered environments like in the cockpit of an aircraft (Van Erp et 

al., 2005), and in vibrating environments as seen in a fast boat (Van Erp et al., 2005).  In 

general, it is reported that tactile direction and spatial orientation cues increased reaction 

time and an awareness of the task situation as well as stabilised spatial orientation (Elliott 

et al., 2009).   

These two interface designs, the back array presenting a saltatory line and the waist belt 

presenting absolute points, have dominated research on tactile navigation displays on the 

torso, with each claiming success as a navigation aid.  However, at the time of this research 

commencement (circa 2007), there was no reported research that directly compares these 
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two different approaches in terms of their performance and subjective preference.  

Therefore, to inform the design of effective pedestrian navigation systems, we 

experimentally compared these two established versions of wearable tactile displays.  We 

carried out two lab-based experimental evaluations involving directional pointing and line 

drawing tasks.  In the next section (3.3), we report these two lab-based studies and present 

findings directly comparing the back array and waist belt approaches. 

3.3 Lab-based experimental comparison: a comparative study of 

array and distributed tactile interfaces for indicating direction   

3.3.1 Overview: underlying theories for tactile directional study 

After cataloging all relevant work in tactile directional displays fitted on the torso area, an 

optimisation of hardware design is required prior to the commencement of our comparative 

experiment.  We have seen two variations of the back array (3x3 and 4x4); and four 

variations of the belt (6, 8, 12 and 15 linear actuators) interfaces.  We intend to compare 

one variation of each type, namely the 3x3 back array and the belt embedded eight 

actuators; chosen criterion is based on the number of directions that should be presented 

for wayfinding in the city.  According to QSAM (Hernandez, 1994; Shi et al., 2007) and 

Choremes theory (Klippel, 2003; Klippel et al., 2005), pedestrian navigation in an urban 

environment concerns a limited set of eight primitive directional elements.         

According to Klippel et al. (2004), mental representation of direction concepts in 

structured space like in the city canyons differ from those33 in open spaces such as in sea or 

air navigation.  Most city structures have been planned and built with regular geometric 

shapes such as straight lines, grids, and symmetric radial patterns34.  Directions in city 

street networks are usually of homogenous direction models, that is, bisecting directions 

into equally sized sectors and axes (see examples in Klippel, 2003; Hernandez, 1994).  

Although, there are parts of the city structure that may not be regularly shaped in grid 

patterns, humans have developed strategies and mentally conceptualised directional 

                                                 

33 Direction concepts in sea or air navigation are usually required to be exact angular information. 

34 The lack of variation in the city environments requires signposts to aid orientation (Montello, 2005). 
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choices in those environments.  These strategies can include straightening curved paths, 

squaring oblique intersections and aligning nonparallel streets (Evans, 1980).   

The QSAM’s and Choremes’ eight direction model provide the basis for the choice of 

hardware variations for the belt.  It is clear that the belt with eight actuators is chosen 

among all variations because each point perfectly represents each of the potential turning 

points in such a model.  Our prototype should not provide only six points (as seen in 

Heuten et al., 2008; Peilot et al., 2008; Pielot & Boll, 2010a) because the actual 

environment could be more complex than this coarse level of granularity design can afford.   

In one of the six-motor configurations (Pielot et al., 2008), the system was designed to give 

different degrees of veer by increasing signal intensity.  We decide that this may not be 

practical in the actual environment since it has been reported that humans are not as good 

at distinguishing amplitude as we are at other signal parameters such as burst duration.  We 

also discard the 12-point and 15-point designs (as seen in Van Erp, 2001; Svensson & 

Andersson, 2010) because it is not necessary for pedestrians to read directions using the 

same semantics of fine granularity as military personnel are required to do.   

For the back array, both the 3x3 and the 4x4 configurations can afford the delivery of eight 

saltatory directions (see an example in Figure 3.1).  In order to create the cutaneous 

illusion, the minimum array size is 3x3 (Geldard & Sherrick, 1972) and could possibly go 

up to 9x935.  However, there were only two variations of the existing prototypes being 

evaluated.  Since our main interest is not on the array optimisation, we chose the 3x3 over 

the 4x4 structures, the reason being the majority of previous studies were done with the 

3x3 configuration.   

We closely followed the designs of both established interfaces, both in terms of the form of 

the wearable devices and the tactile stimuli patterns used for each.  We wished to 

investigate which of the two approaches is more effective and which is more preferred by 

users.  Given the physical differences between the two interfaces, we compared them on a 

                                                 

35 On average, an adult human has a body surface area (BSA) of between 16000 – 19000 square centimetres 

(cm
2
), with 9% being the upper back torso (Mosteller, 1987; Wedro, 2011).  An illustration of percentage of 

BSA is given in Figure 3.2.  If we assume that the average surface area of an adult is 16,000 cm
2, 

the upper 

back torso could be 1,440 cm
2
, that is approximately 38x38 cm.  The array size of 9x9 reaches the maximum 

thresholds of tactile spatial resolution on the back torso of an average adult who has a BSA of 16,000 cm
2
, 

given the actuator inter-spacing of at least 40 mm – the two-point threshold on the back torso (Weinstein, 

1968).   
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number of different tasks, experimental settings and measures, in an attempt to eliminate 

bias and to balance the nature of the tactile feedback with the task requirements. 

 

Figure 3.2 Percentage of body surface area (Source: Medicine Net, Inc., 2008) 

In our first lab-based experiment, which we carried out in late 2007, we used a directional 

pointing task because it requires similar skills to those needed when maintaining spatial 

orientation whilst navigating in many real environments, e.g. the ability to maintain one’s 

“sense of direction” in order to remain heading in the desired destination (Ross & Blasch, 

2000).  In the second lab experiment, taking place in early 2008, we used a line drawing 

task because it requires similar skills to those needed when using a map-based navigation 

system, e.g. the ability to interpret the understanding of directions into two-dimensional 

representations (Yao et al., 2007) and the ability to associate one’s current view of the 

world to its location in the map (Aretz et al., 1991). 

3.3.2 Research questions  

Both the back array and the waist belt devices have their proponents and each has been 

reported as successful in previous independent experimental trials.  Our comparative 

studies of both interfaces address the following research question:   
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RQ3: What is the effective form of tactile displays for pedestrian 

navigation? 

In the case of representing direction, a series of lab studies also addresses: 

RQ4: How can we represent spatial information via the chosen device? 

Specifically, which representation technique should be used for direction, 

confirmation and orientation cues?   

3.3.3 Method: equipment, tactile stimuli and participants 

Equipment 

Our lab studies compared the back array with the belt tactile interfaces for indicating 

directions.  

 

Figure 3.3 A 3x3 back array: A – a 50mm, A1 – a 80mm layouts. Each numerical digit is an actuator number. 

For the 3x3 back array, we had to decide the hardware configuration, specifically on the 

distance between actuators, because previous work had tested different distance values.  

Tan et al. (2003) reported that different array sizes could affect performance; specifically, 

petite participants performed better with an array with an inter-motor distance of 50 mm 

whilst bigger participants performed better with a bigger array (inter-motor distance of 80 

mm).  Geldard & Sherrick’s (1972) research suggests that vibrators in a back array should 

be spaced at least 40 mm but no greater than 100 mm to create a “line effect” as saltatory 

signals.  This result is supported by Van Erp’s (2005b) study where it was found that the 

spatial acuity on the torso is relatively uniform in the order of 20-30 mm and the system 

can benefit from a larger distance between actuators.  With little other evidence, there is no 

established optimum value for inter-actuator distance.  Therefore, for our initial 

experiments we built and tested two sizes of the back array: a 50mm and an 80mm inter-

spacing layout (see Figure 3.3).  Our 50 mm back array (Figure 3.4), consisted of 9 
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actuators mounted into a fabric pad in a 3-by-3 array.  The motors had an equal inter-

spacing of 50 mm.  Our 80 mm back array was similar in shape but had an inter-spacing 

distance between motors of 80 mm.   

The waist belt tactile interface consisted of eight motors mounted in a belt (Figure 3.5).  

Following previous research (e.g. Van Erp et al., 2005; Tsukada & Yasumura, 2004), the 

actuators had an unequal interspacing (from 50 mm to 130 mm) to account for 

participants’ varying body shape and size36. 

 

Figure 3.4 A 3x3 back array, front and back view.  Each numerical digit is an actuator number. 

 

Figure 3.5 Vibrating actuators on a waist belt 

To summarise, the prototypes stimulated the waist and the back area; the size of each body 

contact area is 10mm (i.e. the size of the actuator).  All the interfaces were worn over light 

clothing, e.g. a t-shirt. 

                                                 

36 That is to say, if we assume that the shape of a human body is an ellipse, angles (ƒÆ) between pairs of 

motors are identical (ƒÎ/4) where x = A cos ƒÆ, y = B sin ƒÆ. 
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The main controller unit was built using two 0/16/16 interface kit controllers manufactured 

by Phidgets (http://www.phidgets.com).  The vibrating points were built using VPM2 

vibrating disk motors manufactured by Solarbotics (http://www.solarbotics.com).  The 

motors were 10 mm in diameter and were connected to the controller’s digital output 

channels.  Motor vibration was powered by a 6v battery and controlled by an additional 

custom-built controller switch.  All parts described are demonstrated in Figure 3.7.  Figure 

3.8 shows the actual system setup. 
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Figure 3.6 Side-by-side comparison of the two interfaces: A-the array worn on the back torso and B-the belt worn 

around the waist 

 

Figure 3.7 Top left – the Phidgets main controller unit, Top right – Solarbotics disk motors, Bottom left – a custom 

built controller switch and Bottom right – a 6v battery 
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Figure 3.8 Left – the connection of a controlling unit with motors, Right – The final products 

The controller was connected to a computer via a USB port.  The control software was 

written in Java.  Figure 3.9 demonstrates the system architecture.  

 

Figure 3.9 System Architecture 

Tactile stimuli 

The design of our tactile stimuli drew mainly on previous research’s design (e.g. Geldard, 

1985; Tan et al., 2003; Jones & Sarter, 2008) in combination with psychophysics described 

in Chapter 2 and tactile interaction design guidelines (see the list in Chapter 2).   

For frequency value, we followed suggestions that the square wave form is the most 

intense detectable threshold and that the optimum value is constant at 200 Hz (Jones & 

Sarter, 2008; Tan et al., 2003; Van Erp, 2005b; Van Erp, 2002). 



92 

For the three aspects of time variables (i.e. the burst duration of the stimulus, the pulse 

repetition and the number of pulses) of both layouts, we designed two sets of tactile 

stimuli: set A (Table 3.1) for the 50 mm and the 80 mm back arrays, and set B (Table 3.2) 

for the belt.  Stimuli set A involved actuation of three motors and consisted of four 

repetitions of signals at 50 ms pulse and inter-pulse on each motor, i.e. 12 pulses in total 

for each stimulus (see example in Figure 3.10).  The pattern for stimuli set B involved 

actuation of one motor and consisted of 12 repetitions of signals at 50 ms pulse and inter-

pulse duration (see example in Figure 3.11).  Hence, the number of pulses and duration of 

signal were the same across both stimuli sets.   

 

Figure 3.10 An example of sharp left signal of stimuli set A, from the controller 

 

Figure 3.11 An example of sharp left signal of stimuli set B, from the controller 

For the definition of directions, we followed linguistic externalisation in Choremes’ 

direction model (Klippel, 2003; Klippel et al., 2005).  Direction is defined with respect to 

the body trunk (i.e. egocentric frame of reference37), containing seven mental concepts of 

                                                 

37 During the course of navigation, humans have to maintain their orientation as they move.  This orientation 

involves a mixture of knowing ones’ location and directions with reference to particular features, concrete or 

abstract, in the environment (Montello, 2005).  This reference can be classified as egocentric or exocentric 

(Hart & Moore, 1973; Montello, 2005).  The egocentric system codes location relative to one’s body whilst 

the exocentric codes relative to cardinal directions or latitude/longitude coordinates.       
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route direction elements (see Figure 3.12).  In Choremes, direction opposite to the heading 

path is separately considered as ‘back’.   

 

Figure 3.12 The seven wayfinding choremes’ graphical externalisation.  Their linguistic externalisation are known 

as sharp right, right, half right, straight, half left, left and sharp left accordingly. 

Table 3.1 Stimuli set A’s signal patterns for the back array 

Stimuli 

code 

Signal pattern Direction 

A1 444455556666 Right 

A2 666655554444 Left 

A3 222255558888 Back 

A4 888855552222 Straight 

A5 111155559999 Sharp right 

A6 333355557777 Sharp left 

A7 777755553333 Half right 

A8 999955551111 Half left 

Number in signal pattern represents motor number in Figure 3.6A 

 

Table 3.2 Stimuli set B’s signal patterns for the belt 

Stimuli 

code 

Signal pattern Direction 

B1 111111111111 Right 

B2 222222222222 Half right 

B3 333333333333 Straight 

B4 444444444444 Half left 

B5 555555555555 Left 

B6 666666666666 Sharp left 

B7 777777777777 Back 

B8 888888888888 Sharp right 

Note: number in signal pattern represents motor number in Figure 3.6B 

To sum up, stimuli set A (Table 3.1) contained eight saltatory signals representing the 

egocentric directions sharp right, right, half right, straight, half left, left, sharp left, and 

back.  Stimuli set B (Table 3.2) represented the same eight directions based on the location 
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of the motors around the participant’s waist, with straight represented by the front centre 

actuator, i.e. actuator number three. 

Participants  

In experiment 1, there were 16 participants, 12 males and 4 females, with an average age 

of 25.  In experiment 2, there were a different group of 16 participants, 7 males and 9 

females, with an average age of 29.  All participants reported no irregularity with tactile 

perception on their back and around their waist at the time of the experiment. We 

established from pre-test questionnaires that all participants understood the concept of 

“direction” and had no difficulties identifying them.  They had never previously worn or 

experienced tactile displays.   

We were aware that the body size of participants may have an effect on the results.  

Therefore, we have recruited participants with a relatively equal distribution in terms of 

size.  In experiment 1, the smallest participant had a 67 cm waist size and the largest was 

106 cm.  Mean waist was 86.94 cm with SD 10.90.  In experiment 2, the smallest 

participant had a 69 cm waist size and the largest was 114 cm.  Mean waist size was 87.25 

cm with SD 11.90.  There were nine participants having a waist size below the mean in 

each experiment.   

In both experiments, participants used interfaces in random order. 

Overview of lab-based studies  

Table 3.3 shows a summary of a series of lab-based empirical comparative studies for 

tactile directional displays.  In the first experiment, we evaluated three wearable devices: a 

50mm array, an 80mm array and a waist belt.  Hence, there are three conditions.  Results 

from experiment 1 showed that the 80mm array allowed significantly better performance 

than the 50mm layout.  Therefore, we further compared the 80mm with the waist belt in 

experiment 2 for drawing tasks.  Experiment 2 attempted to eliminate any bias occurring in 

experiment 1 by having participants draw on both horizontal and vertical planes.  We are 

also interested in finding out whether a corresponding visual display will affect direction 

identification performance.  As there are two wearable devices (the array and the belt) with 

two levels of the presence of a visual display (with/without) and two levels of the display’s 

orientation planes (vertical/horizontal); consequently, there are eight experimental 

conditions in experiment 2.   
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Table 3.3 An overview of lab-based experiments 

Experiment Tasks 

No of prototypes 

being evaluated No of conditions 

Experiment 1 Pointing 

3 (50mm array, 80mm 

array, waist belt) 3 

Experiment 2 Drawing 

2 (80mm array and 

waist belt) 8 

 

Table 3.4 An overview of prototypes being evaluated 

Prototype layout Body contact area Representation technique Stimuli use 

50mm Array Back torso Saltatory line  Set A 

80mm Array Back torso Saltatory line Set A 

Waist belt Around the waist Absolute point  Set B 

An overview of prototypes being evaluated is listed in Table 3.4.   

3.3.4 Experiment 1: Pointing task 

Procedure 

In experiment 1, we investigated whether performance with the three interfaces, namely 

the 50mm and 80mm arrays and the waist belt, would differ for a pointing task in which 

participants identified perceived directions by touching corresponding sensors on 

surrounding walls.  We compared a range of performance measures: response time, 

correctly perceived directions (accuracy), failure to identify any direction for a given 

stimulus (breakdowns), and incorrectly identified directions (errors).  We established from 

pre-test questionnaires that all 16 participants understood the concept of “direction” and 

had no difficulties identifying them.  Participants used all three interfaces in random order 

to counterbalance any learning effect.  Although the number 16 was not perfectly 

compensated for the three conditions, a slight difference in the number of participants 

should not create substantial data analytic or interpretative problems (Reis & Judd, 2000).    

For the 50 mm and 80 mm back arrays, the middle column of the array was placed along 

the midline of the body to avoid the spinous processes of the thoracic vertebrae (i.e. the 

concave area along the spine).  Velcro straps were fastened comfortably tight for all motors 

to have good contact with the back area.  Fitting the waist belt was done carefully.  The 
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motors’ locations were individually adjusted to ensure that all motors were located at the 

appropriate body sites to denote the eight directions correctly for each participant. 

 

Figure 3.13 A: A side view of the experiment room, with a marked point at the centre of the room. There are 8 

touch sensors denoting 8 directions, each has equal distance from the marked point.  B: Touching the sensor. 

Participants were given a demonstration of how they would receive tactile stimuli via each 

prototype but were given no other training.  The reasons were that we wanted (1) to learn 

about users’ initial reaction to and their preferences between two forms of technology that 

were new to them, (2) to discover how well they could intuitively (i.e. without extensive 

training) interpret the meanings of different tactile patterns, and (3) to discover how usable 

the interfaces were without training.  Usually, novel consumer technologies typically do 

not come with extensive, or often any, training because usability is a key factor in 

successfully introducing new technology.  Furthermore, the tasks carried out in the 

experience were not too complex, i.e. with no training participants were still able to 

complete the tasks.  

During the trials, participants stood at a marked point in the middle of a closed square 

room (Figure 3.13A), which had eight touch sensors on the walls denoting the eight 

directions.  All participants were positioned facing in the straight direction.  When the 

experiment started, the tactile stimuli were generated.  Participants responded to the 

directions they perceived by tapping on the corresponding touch sensor on the wall (Figure 

3.13B).  Each participant responded to eight stimuli for each interface.  Response direction 

and response time (in ms) were automatically logged.  Response time was the duration 

between the end of each stimulus and the participant’s response to it.  Participants were 

instructed that they could take as much time as they wanted to identify each perceived 

direction, were allowed to make a guess if they were uncertain, and could skip any signal if 

they were unable to identify a direction from the stimulus. 
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Figure 3.14 Left: a participant wearing the 50mm array. Right: a participant wearing the belt. 

We predicted that, although the signal durations were the same, it would take longer for 

users to interpret the tactile flow generated by the back array than to interpret the absolute 

point generated by the belt.  This is because one must remember the start and end points of 

the tactile flow and decode it to a direction before responding, and is consistent with 

Gallace et al.’s finding (2006) that reporting and interpreting several stimuli positions 

required more time than simply reporting the number of presented stimuli. 

Thus, we hypothesised (H1) that the belt would allow participants to identify directions 

faster than the arrays.  However, there was no a priori evidence on which to base 

predictions of differences in the other performance measures. 

Results  

Overall accuracy and response time analysis 

The mean of performance measures is shown in Table 3.5.  A one-way repeated-measure 

ANOVA with Interface as the independent variable was used to analyse the results. 

For the accuracy scores (Table 3.5 first row), Mauchly’s test indicated that the assumption 

of sphericity had been violated (X
2
(2) = 7.71, p < 0.05); therefore, degrees of freedom 

were corrected using Greenhouse-Geisser estimates of sphericity (ε = 0.70).  Results 

showed a significant effect by tactile interface on accuracy, F(1.41, 21.08) = 90.05, p < 

0.002.  Post hoc Bonferroni pairwise tests revealed significant main effects between the 50 

mm array and the belt (p < 0.002), between the 80mm array and the belt (p < 0.002), and 
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between the 50 mm and the 80 mm arrays (p = 0.002).  The results suggest that 

participants performed best using the belt and worst using the 50 mm array. 

Table 3.5 Mean Accuracy, Breakdowns, Errors and Response Time across 3 Tactile Interfaces 

 
50mm 

Array 

80mm 

Array 
Waist Belt 

Accuracy 
4.50  

(0.82) 

5.44  

(1.21) 

7.62  

(0.50) 

Errors 
2.81  

(1.17) 

2.38  

(1.26) 

0.38 

 (0.50) 

Breakdowns 
0.69  

(0.87) 

0.19  

(0.54) 

0.00  

(0.00) 

Time 
4.12  

(1.24) 

2.61  

(0.67) 

1.86  

(0.68) 

Scores: n of 8, Time: in seconds.  SDs in parentheses. 

Participants made most errors (Table 3.5 second row) with the 50 mm array and fewest 

with the belt.  A one-way repeated-measures ANOVA found a significant effect by tactile 

interface on errors, F(2,30) = 43.52, p < 0.002.  Post hoc Bonferroni tests showed 

significant effects between the 50 mm array and the belt (p < 0.002), and between the 80 

mm array and the belt (p < 0.002).  There was no significant difference between the 50 

mm and the 80 mm arrays (p = 0.39). 

For breakdowns (i.e. failure to identify a direction, Table 3.5 third row), a one-way 

repeated-measures ANOVA found a significant effect by tactile interface on breakdowns, 

F(2,30) = 6.53, p < 0.05.  Post hoc Bonferroni pairwise tests showed a significant main 

effect between the 50 mm array and the belt (p < 0.05).  There was no significant 

difference between the 80 mm array and the belt (p > 0.05) or between the 50 mm and the 

80 mm arrays (p > 0.05). 

Mean response times are shown in the fourth row of Table 3.5.  Mauchly’s test indicated 

that the assumption of sphericity had been violated (X
2
(2) = 10.77, p < 0.05); therefore, 

degrees of freedom were corrected using Greenhouse-Geisser estimates of sphericity (ε = 

0.65).  A one-way repeated-measures ANOVA demonstrated a significant effect by tactile 

interface on response time, F(1.30, 19.52) = 31.80, p < 0.002.  Post hoc Bonferroni 

pairwise tests showed significant effects between the 50 mm array and the belt (p < 0.002), 

between the 80 mm array and the belt (p < 0.002) and between the 50 mm and the 80 mm 

arrays (p = 0.001).  The results suggest that participants responded fastest using the belt 

and slowest using the 50 mm array. 
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Accuracy and response time analysis by stimulus 

Further detailed analysis on each direction was carried out on accuracy scores and response 

time (see Figure 3.15 and 3.16).  Participants reacted fastest with the belt, then the 80 mm 

array and slowest with the 50 mm array for all directions. 

 

Figure 3.15 Accuracy of responses (%) for all directions with the 50 mm array, the 80 mm array and the waist 

belt. 

For both array prototypes, the data were statistically analysed using a one-way repeated-

measure ANOVA.  The results showed: no significant difference in participants’ accuracy 

with different stimuli in the 50mm array, F(5.55, 83.23) = 2.09, p > 0.05; and a significant 

difference in the 80mm array condition, F(4.31, 64.60) = 3.94, p < 0.05.  For the 80mm 

array, post hoc Bonferroni pairwise comparison showed a significant effect between 

directions back and half left (p < 0.05).  There was no significant difference between other 

pairs of directions (p > 0.05).  In terms of time performance, there was no significant 

difference for both array conditions (p > 0.05).  Based on descriptive data, participants 

performed worst in accuracy and response time with vertical saltatory signals (straight and 

back).  This might be due to an effect of the neurological gap on participants’ backs (Tan et 

al., 2003).  On average, they performed faster and more accurately with all diagonal 

saltatory signals (half right, half left, sharp right and sharp left).  For the 50 mm array, the 

orientation of inaccurate answers ranged widely from 45 to 180 degrees both to the left and 

to the right of the intended direction, while the 80 mm array ranged from 45 to 135 

degrees.   
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Figure 3.16 Response time (in seconds) for all directions with the 50 mm array, the 80 mm array and the waist 

belt. 

Using the belt, there was no significant difference in participants’ accuracy, F(2.38, 35.67) 

= 1.91, p > 0.05, and response times, F(2.19, 19.67) = 2.24, p > 0.05, with different 

stimuli.  Almost all incorrect answers were 45-degree errors (e.g. responding back for the 

sharp right stimulus), with only one 180-degree error.  Participants made the highest 

number of errors with right, back and sharp right respectively.  A detailed analysis of the 

data reveals that the more petite participants contributed to this part of the results. 

Other results 

Previous research (Tan et al., 2003) has suggested that body size has a strong relationship 

with accuracy in detecting tactile stimuli.  Hence, we performed a Pearson’s correlation 

analysis between body size and accuracy for all prototypes.  For the 50 mm (r = 0.38) and 

80 mm (r = 0.40) arrays, no significant correlation was found between body size and 

accuracy in each case (p > 0.05).  For the belt, the correlation coefficient was significantly 

positive (r = 0.70, p < 0.002).  In other words, when wearing the waist belt, participants 

with a bigger body could identify tactile stimuli more accurately than smaller participants. 

In addition to the relationship between body size and performance, we were interested in 

the relationship between sex and performance.  We performed a Pearson’s correlation 

analysis.  For all prototypes, no significant correlation was found between sex and 

accuracy in each case (p > 0.05). 

Participants reported that when wearing the 50 mm and 80 mm array prototypes they had 

to remember where the vibration started and where it ended in order to interpret the line, 
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and then respond.  This may be a reason for the significantly slower response times for the 

array prototypes. 

Although participants reported that it was easier to interpret the stimuli with the waist belt, 

one participant reported having looked down at the location of the motors on her body 

before touching the wall sensors.  In this case, unsurprisingly, her response times were 

longer than other participants. 

We also observed that the waist belt participants had difficulty differentiating directions on 

their back area, e.g. back and sharp right.  This kind of error tended to occur when a user, 

especially a small one, made a large error in point localisation, e.g. of the order of 150 mm.  

Then he or she experienced difficulty in deciding between the two immediately adjacent 

motors, sometimes failing to identify the correct one.  One of the possible reasons could be 

the difference in sensitivity to touch stimulation between a human’s back and front 

(Schiffman, 1976; Tsukada & Yasumura, 2004). 

Table 3.6 Mean Scores of Subjective Perception and Interpretation of Tactile Stimuli 

 50mm 

Array 

80mm 

Array 

Waist Belt 

Perception 1.94  

(0.93) 

2.69  

(0.70) 

3.19  

(0.54) 

Interpretation 1.75  

(0.68) 

2.19  

(0.75) 

3.94  

(0.57) 

Scores: n of a 5 point Likert scale, 1 is low, 5 is high.  SDs in parentheses. 

At the end of the first experiment, participants were asked to rate how strongly they felt the 

vibrations (perception level) and how well they could interpret the perceived vibration 

sensations to directions (interpretation level).  Mean scores of subjective perception and 

interpretation of the tactile stimuli for different prototypes are shown in Table 3.6 (first 

and second row respectively).  Perception refers to how clearly participants felt the tactile 

stimuli.  Interpretation refers to the degree to which participants understood the meaning of 

the given tactile information in order to identify directions.  These rating values have a 

strong relationship with users’ performance, i.e. the higher the ratings, the higher the 

performance. 

When asked to choose between the 50 mm and the 80 mm array, 13 participants (81%) 

chose the 80 mm array.  The three participants (19%) who picked the 50 mm array were 
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petite users.  These 3 participants stated that the size of the 50 mm array seemed to fit 

better than the bigger array.     

When asked for their preferred wearable interface between the arrays and the belt, all 

participants preferred the waist belt.  Their reasons included: the belt is easy to use, easy to 

understand, worn easily, worn on the waist which they preferred to the back, smaller in 

size, and gave them confidence in identifying directions because the signals were precise 

and required little effort to memorise and interpret. 

In summary, we accepted our hypothesis H1 since the results of experiment 1 show that 

participants performed fastest with the belt.  The results also indicated that participants 

performed significantly more accurately with the belt than with the arrays. 

3.3.5 Experiment 2: Line drawing task in two planes   

Procedure 

In experiment 2, we investigated whether performance between the two wearable layouts 

would differ for a line drawing task.  In addition, because of the significant differences in 

the results found in experiment 1, we wanted to investigate if the pointing task in 

experiment 1 might have favored the belt layout since the plane of the belt vibrators 

matched the plane of the wall sensors.  Hence, in experiment 2 we also varied the plane in 

which participants responded. 

The experimental conditions involved drawing arrowed lines, indicating perceived 

directions, on a touch screen with one of two orientations: vertical and horizontal.  We 

hypothesised that participants would perform better when the plane of the prototype 

matched the plane of the screen (H2).  Thus, participants would perform better with the 

back array when the task involved drawing directed lines on a vertical screen.  On the other 

hand, they would perform better with the belt when the task involved drawing directed 

lines on a horizontal screen. 

In addition, we investigated the effect of adding a complementary display on the 

performance of both interfaces.  As Carter & Fourney (2005) suggested that using other 

senses as cues may support tactile interaction, we introduced a visual display as an 

experimental factor with 2 levels.  In the first level, the touch screen presented a blank 

display on which participants drew their directed line (Figure 3.17A).  In the second level, 

the touch screen presented a visual display of a map indicating eight directions from a 

central roundabout, corresponding to the eight directions indicated by the tactile stimuli 
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(Figure 3.17B).  We predicted that the visual display of the map would aid the participant 

in interpreting and responding to the tactile stimulus. 

In summary, in experiment 2 we examined the effect of (1) the plane of output display and 

(2) the presence or absence of a visual map display on performance with the array and belt 

tactile interfaces.  The experimental hypotheses were as follows. 

 

Figure 3.17 A:  Line drawn by a participant on the blank display.  B: Line drawn by a participant on the map 

display. 

H2.  Performance will be better when the plane of the tactile stimuli matches the plane of 

the responses, specifically: 

H2a.  Participants will perform better with the back array when the task involves 

drawing lines on a vertical screen; 

H2b.  Participants will perform better with the waist belt when the task involves 

drawing lines on a horizontal screen; 

H3.  Participants will perform better with the map display than with the blank display. 

Table 3.7 Experiment 2’s Conditions and Their Code Names 

80 mm Array Waist Belt 

Vertical 

screen 

Horizontal 

screen 

Vertical 

screen 

Horizontal 

screen 

Blank 

(C1) 

Map 

(C2) 

Blank 

(C3) 

Map 

(C4) 

Blank 

(C5) 

Map 

(C6) 

Blank 

(C7) 

Map 

(C8) 

For experiment 2, the 80 mm array and the belt were used.  We discarded the 50 mm array 

since experiment 1 had found it to be significantly less effective than the 80 mm array.  

Tactile signals and methods were the same as those used in experiment 1. 
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A new set of 16 participants took part in experiment 2.  Participants used both tactile 

interfaces.  They were instructed to stand at a marked point which was approximately 200 

mm away from the vertical screen condition; and 130 mm away from the lower edge of the 

screen in the horizontal display condition.  The height of the screen was adjusted to suit 

individuals for vertical and horizontal conditions.  The mark point and height adjustment of 

the screen were designed to maintain participants’ body position as always straight.  The 

order of conditions was counterbalanced. 

Stimuli set A and B were generated by the 80 mm array and the belt respectively.  There 

were eight conditions, C1-C8, as shown in Table 3.7.  Participants responded to the 

directions they perceived by drawing arrows with a stylus on the touch screen.  Each 

participant responded to eight stimuli for each condition.  We did not design the 

experiment for each condition to be repeated because we used a within-group design where 

each participant ran eight conditions that took place for about one hour in total.  We were 

concerned that participants being stimulated with tactile feedback for a very long time 

could suffer from fatigue (see Schiffman, 1978).  We did not want the impact of fatigue 

and frustration to influence performance.     

Response direction and time were automatically logged.  Response time was the time that 

elapsed between the end of each stimulus and the response to it.  Participants were given a 

demonstration of how they would receive tactile stimuli via each interface but were given 

no other training—for the same reasons stated above for the first experiment. 

Results  

Overall accuracy and response time analysis 

The mean accuracy, error, breakdowns and response times for the 80 mm array and the belt 

are shown in Tables 3.8 and 3.9.  The data were analysed using a three-way repeated-

measures ANOVA with tactile interface, screen orientation and visual display (Table 3.7 

top, second and third rows respectively) as the independent variables. 

There was no significant interaction effect between tactile interface and screen orientation 

on accuracy F(1, 15) = 0.54, p > 0.05, errors F(1, 15) = 0.05, p > 0.05, breakdowns F(1, 

15) = 1, p > 0.05, or response time F(1, 15) = 1.74, p > 0.05.  These results tell us that the 

effects of the different tactile interfaces did not vary depending on the touch screen’s 

orientation. 
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Post hoc Bonferroni pairwise comparisons showed that accuracy was significantly better 

with the belt than with the array in each case (p < 0.002); errors were significantly fewer 

with the belt than with the array in each case (p < 0.002); and response time was 

significantly quicker with the belt than with the array in each case (p < 0.002).  No 

significant difference was found on breakdowns. 

Table 3.8 Mean Performance for Vertical Screen Conditions 

 80 mm Array  

Vertical Screen 

Waist Belt   

Vertical Screen 

Blank 

(C1) 

Map 

(C2) 

Blank 

(C5) 

Map 

(C6) 

Accuracy 
5.06  

(1.84) 

5.25  

(1.65) 

7.44  

(0.63) 

7.19  

(1.11) 

Error 
2.81 

 (0.63) 

2.44  

(1.59) 

0.50  

(0.63) 

0.75  

(1.07) 

Break-down 
0  

(0.00) 

0.31  

(0.60) 

0  

(0.00) 

0.06  

(0.25) 

Time 
2.13  

(0.50) 

2.08 

 (0.83) 

1.40 

 (0.37) 

1.54  

(0.67) 

Scores: n of 8, Time: in seconds.  SDs in parentheses.  

Table 3.9 Mean Performance for Horizontal Screen Conditions 

 80 mm Array   

Horizontal Screen 

Waist Belt 

Horizontal Screen 

Blank 

(C3) 

Map 

(C4) 

Blank 

(C7) 

Map 

(C8) 

Accuracy 
5.63 

(1.75) 

5.63 

(1.67) 

7.5 

(0.63) 

7.63 

(0.89) 

Error 
2.25 

(1.65) 

2.31 

(1.66) 

0.44 

(0.63) 

0.25 

(0.58) 

Break-down 
0.12 

(0.34) 

0.06 

(0.25) 

0 

(0.00) 

0.12 

(0.50) 

Time 
2.08 

(0.37) 

2.21 

(0.59) 

1.28 

(0.35) 

1.41 

(0.36) 

Scores: n of 8, Time: in seconds.  SDs in parentheses. 

Thus, hypothesis H2 was rejected since participants performed significantly faster and 

more accurately with the belt than with the array whether they had a vertical screen or a 

horizontal screen. 



106 

A three-way repeated-measures ANOVA was run to compare blank displays and visual 

map displays on accuracy, response time, breakdowns and errors.  No significant effect of 

display type was found on accuracy F(1, 15) = 0.01, p > 0.05, response time F(1, 15) = 

0.06, p > 0.05, breakdowns F(1, 15) = 2.56, p > 0.05, or errors F(1, 15) = 0.14, p > 0.05. 

Thus, we rejected hypothesis H3 since display type had no effect on performance. 

Accuracy and response time analysis by stimulus 

We performed a further analysis on accuracy and response times with respect to the 

stimuli.   

 

Figure 3.18 Accuracy of responses (%) for all directions with the vertical screen conditions 

 

Figure 3.19 Accuracy of responses (%) for all directions with the horizontal screen conditions 

In terms of accuracy, the data of the array conditions (C1-C4) were statistically analysed 

using a one-way repeated-measure ANOVA.  The results showed that there was a 
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significant difference in accuracy among different directions, F(6.05, 380.82) = 5.88, p < 

0.002.  Post hoc Bonferroni pairwise comparisons showed that accuracy was significantly 

lower with straight than with half right (p < 0.002), sharp left (p < 0.002), sharp right (p 

< 0.002), and half left (p < 0.05).  There was no significant difference with other direction 

pairs (p > 0.05).  In other words, using the array, participants performed worst in accuracy 

(C1 and C2 in Figure 3.18, and C3 and C4 in Figure 3.19) with vertical (straight and back) 

and horizontal saltatory signals (right and left), which was consistent with the results from 

experiment 1.  The inaccuracy ranged widely from 45 to 180 degrees (both to the left and 

to the right of intended directions).  Also similar to experiment 1’s results, they performed 

faster and more accurately with diagonal saltatory signals (sharp right, sharp left, half 

right and half left,).          

On the other hand, using the belt (C5-C8), there was no significant difference in 

participants’ accuracy with different stimuli, F(4.94, 311.20) = 1.83, p > 0.05). Namely, 

participants performed equally well across all directions (C5 and C6 in Figure 3.18 and C7 

and C8 in Figure 3.19).  Almost all incorrect answers were 45-degree errors.  

 

Figure 3.20 Average response time (in seconds) for array conditions (C1 – C4) and belt conditions (C5 – C8) 

In terms of time performance, a one-way repeated-measure ANOVA showed no significant 

difference across array conditions, F(1.45, 4.36) = 5.51, p > 0.05).  On the other hand, 

there was a significant difference across belt conditions, F(3.38, 128.26) = 5.21, p < 0.05).  

Post hoc pairwise comparisons demonstrated that participants responded slower with half 

left compared to half right, straight and sharp left (p < 0.05).  There was no significant 
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difference with other pairs of directions.  However, the time performance in this case is 

just a fraction of a second which we consider acceptable.  The largest difference between 

mean values of the quickest (0.89 seconds for straight) and the slowest (2.14 seconds for 

half left) was only 1.25 seconds.  Figure 3.20 demonstrates an average response time for 

array (C1-C4) and belt (C5-C8).  Results confirm that participants responded much slower 

with the array conditions than the belt conditions on all directions, especially with the 

straight signal.  Table 3.10 shows detailed mean response time for all directions across all 

conditions. 

Table 3.10 Detailed Mean Response Time across 8 Conditions 

Direction 

80 mm Array Waist Belt 

Vertical Horizontal Vertical Horizontal 

Blank 

(C1) 

Map 

(C2) 

Blank 

(C3) 

Map 

(C4) 

Blank 

(C5) 

Map 

(C6) 

Blank 

(C7) 

Map 

(C8) 

Left 2.56 2.13 1.79 2.74 1.57 1.44 1.54 1.47 

Half left 1.94 1.48 2.05 1.92 2.02 2.93 1.98 1.83 

Straight 3.13 1.88 2.41 3.23 1.05 0.94 0.88 0.75 

Half right 1.94 1.66 2.59 1.78 1.09 1 1.28 0.84 

Right 2.26 1.7 2.46 1.41 0.97 1.8 1.2 1.23 

Sharp right 1.92 1.96 1.56 1.97 1.42 1.94 1.06 0.88 

Back 1.67 4.08 2.04 2.07 1.74 1.23 1 1.05 

Sharp left 1.67 1.73 1.77 2.59 1.37 1.03 1.29 1.08 

Time in seconds.  

Other results 

Unlike experiment 1 in which we found a positive correlation between body size and 

performance with the belt, the second experiment showed no significant correlation in any 

belt condition (p > 0.05).  Again, unlike experiment 1 in which we found no correlation 

between body size and performance with the array, experiment 2 found a significant 

negative correlation in the vertical blank display (C1) (r = 0.56, p < 0.05) and horizontal 

guided display conditions (C4) (r = 0.57, p < 0.05).  That is, the smaller the body size, the 

better the performance with the array. 

Overall descriptive statistics showed that males performed slightly better than female 

participants across the belt conditions with an average accuracy score of 7.57 over 7.33.  

On the other hand, women were better than men across the array conditions with an 

average score of 5.92 over 4.71.  Across all conditions, women were slightly better than 

men with an average score of 6.63 per 6.15.  However, a Pearson’s correlation analysis 

found no significant correlation between sex and accuracy in all conditions (p > 0.05).   
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Three participants reported physical tiredness on their back after finishing the 4 array 

conditions.  Another three participants wearing the 80 mm array prototype mentioned a 

high cognitive load because there were many points on their back on which they had to 

concentrate and work out directions. 

With the waist belt, although all participants reported that it was easier to interpret the 

stimuli, four participants had occasionally looked down at the location of the motors on 

their body before responding. 

Similarly to experiment 1, the waist belt participants had difficulty differentiating 

directions at their back area, e.g. back, right, and sharp right. 

Table 3.11 Mean Scores of Subjective Perception and Interpretation of Tactile Stimuli 

 80 mm Array Waist Belt 

Vertical Horizontal Vertical Horizontal 

Blank 

(C1) 

Map 

(C2) 

Blank 

(C3) 

Map 

(C4) 

Blank 

(C5) 

Map 

(C6) 

Blank 

(C7) 

Map 

(C8) 

Perception 
2.19 

(0.83) 

2.31 

(0.79) 

2.31 

(0.79) 

2.25 

(0.77) 

3.13 

(0.72) 

3.13 

(0.89) 

3.13 

(0.72) 

3.19 

(0.75) 

Interpretation 
1.94 

(0.68) 

2.00 

(0.73) 

2.06 

(0.77) 

2.06 

(0.77) 

3.50 

(0.73) 

3.69 

(0.87) 

3.75 

(0.68) 

3.75 

(0.77) 

Scores: n of a 5 point Likert scale, 1 is low, 5 is high.  SDs in parentheses. 

At the end of the second experiment, participants were asked to rate their perception and 

interpretation of the vibration stimuli.  Mean scores of subjective perception and 

interpretation tactile stimuli for the different prototypes are shown in Table 3.11 (first and 

second row respectively). These rating values have a strong relationship with users’ 

performance, i.e. the higher the ratings, the higher the performance. 

Same as the results in experiment 1, when asked for their preferred wearable interface, all 

participants preferred the waist belt to the array.  Their reasons included: the belt is easy to 

wear, more flexible than the back array, more comfortable to wear, and provided clear and 

precise directional information. 

Participants indicated no preference between vertical and horizontal screen orientations 

(i.e. equal preference scores).  Although two participants stated that they preferred a 

vertical screen when wearing the array and a horizontal screen when wearing the belt, both 

of them performed better with the belt in the vertical screen conditions. 
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In summary, we rejected both hypotheses (H2 and H3) since the results of experiment 2 

showed that participants performed better and quicker with the belt than with the array 

regardless of screen orientation or visual display type. 

3.3.6 Discussion and limitations of lab-based studies 

The primary aim of our lab-based experimental evaluations was to directly compare the 

effectiveness of two established designs of wearable tactile interfaces that have each 

claimed success in assisting pedestrian navigation.  Our results suggest that the array, in 

either incarnation, was less effective than the belt, with participants unable to quickly and 

reliably identify directions, especially the vertical saltatory signals (straight and back).  

Our findings are consistent with that of a previous study (Tan et al., 2003), which 

suggested that to improve performance on vertical signals, a ‘thick line’ signal 

(simultaneous activation of all 3 columns on the array) might be used to expand the area of 

stimulation beyond the neurological gap on participants’ backs (see Figure 3.21). 

 

Figure 3.21 Neurological gap on human back.  Male participants have a deeper gap in the midline of their back 

than female participants. 

For the degree of error with the array device, it could be caused by the mental workload for 

signal mapping and interpretation.  However, the degree of error was random across 

conditions in both experiments. Further study is required to identify this issue.  With the 

belt device, there was a degree of systematic error of 45 degrees between the stimulated 

and the experienced direction.  This phenomenon could be explained by Van Erp’s (2005) 

finding that the bias was usually found to be toward the midagittal plane, that is, 

experienced directions are toward the naval for the front direction and toward the spine for 

the back side.           

Both experiments showed the belt as significantly better than the array across a wide range 

of conditions.  The findings of experiment 2 reassured us that the match between the plane 

of the stimuli and the plane of responses in experiment 1 did not unduly favor the belt. 
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Experiment 2 also suggested that the visual display of the directions (in the map 

conditions) did not aid the perception of and response to the tactile stimuli.  Our finding is 

congruent to that of Karuei et al.’s (2011) that visual workload and loci expectation had no 

effect on the detection of directions.  This offers further support to the notion that a 

unimodal tactile system, such as the tactile navigation aids presented by Tan et al. (2003) 

and Van Erp et al. (2005), is feasible without support from other modalities such as visual 

displays.   

During both experiments, we intended not to have participants wearing headphones to 

block the noise produced by actuators because we would like to observe the usage 

phenomenon and the effect from other modalities.  As we noted in Chapter 2, coherent 

information across modalities results in sensory augmentation (Turchet et al., 2010).  

Hence we were sure that the current design would not impede our users’ performance.  

During the experimental sessions, participants wore the devices as they were meant to be 

worn in practice, i.e. wearing the tactile device whilst other channels were freely available 

to perceive other stimuli in the environments.  Video analysis results revealed that: in the 

belt conditions, some participants looked at the possible actuators; in the array conditions, 

some participants used their hands to recall the shape of the line before responding.  When 

asked, none of them reported sound localisation.  Our participants were rather related to the 

vibration cognitively through a glance.  We may assume that with vibrotactile sensation, 

users tend to have made a relationship between what they felt with what they saw rather 

than with what they heard.  These phenomena offer support for MRT theory that our 

cognitive resources can be used near-simultaneously and effectively performed together 

given an intuitive display.  However, this assumption will require further investigation.   

Correlation between body size and performance seemed contradictory between the two 

experiments.  We found a positive correlation between these variables with the belt in the 

first experiment and a negative correlation between them with the array in the second 

experiment.  This may have resulted from differences in the numbers of petite and large 

participants in the experiments, i.e. there were more petite participants in the second 

experiment.  An 80 mm array covered quite a lot of their back, perhaps making it easier to 

distinguish some signals.  Even so, the correlation coefficient in these cases was relatively 

low and reached significance in only two of the eight conditions; therefore findings on this 

correlation are inconclusive. 
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Karuei et al. (2011) mentioned that gender has an impact on direction identification 

performance but the difference is not large.  Specifically, males are slightly better at 

detection and spent a shorter time than female participants.  We found that men were 

slighter better than women but there was no significant difference in terms of performance.  

This may suggest that tactile displays could help reduce differences in navigation and 

wayfinding performance in male and female participants (Saucier et al., 2002).  However, 

we did not have equal numbers of both genders so our results cannot be treated as unbiased 

in this regard.  Further studies could explore the effect of tactile communication on the 

ability to maintain orientation and navigation strategies and the ability to use the strategies 

in men and women. 

From the quantitative results, we conclude that the most important factor that conveyed 

effective directional information was the direct mapping of motor locations on the body 

surface to corresponding directions.  The layout of the belt wearable device provides this 

affordance because it provides precise single point stimulation, which is reported to be 

easily interpreted.  Whereas with the array layout, participants reported that they had to 

memorise start and end points, pay attention on where a signal came from and where it 

moved; sometimes this caused hesitation, resulting in longer response time and a guessed 

or skipped answer.  In summary, directional information displayed via the belt was 

perceived as more precise and easier to interpret than that displayed via the back array.   

From the qualitative results, users’ feedback tells us that all participants in both 

experiments preferred the waist belt to the array due to factors such as its ease of use, 

flexibility and comfort level.  In addition, the belt provided a directional presentation that 

was easy to understand and interpret and required no training to achieve high performance. 

Overall, the results suggest that the belt is a better choice for wearable tactile interaction 

than the back array.  It is worth noting that our experiments did not seek to tease out which 

particular features of these two established approaches led to the observed differences.  

The two approaches actually vary on at least three potentially significant features: physical 

layout of vibrators, stimuli patterns (tactile flow vs absolute point), and body contact areas.  

We have found no published research that attempts to systematically vary these three 

features.  In the experiments reported here, we have shown that the belt is more effective 

than the array in the form in which each of these designs has most commonly been 

realised. 
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The back array may be useful in some circumstances such as where a tactile display cannot 

be worn or when it is more appropriate to embed an array into everyday objects such as 

chairs or car seats.  In these cases it may be worth conducting further research to improve 

the effectiveness of the back array.  We did not examine the effects of more extensive 

training or long-term use.  Other studies would be required to investigate these effects, 

which might help to improve the performance of the back array. 

3.3.7 Conclusion of the lab-based experiments   

In our study, directional information can be represented straightforwardly by placement of 

vibrating devices relative either to each other or to parts of the body.  This is feasible 

because this representation requires a small set of discrete values, which can be mapped 

directly to simple stimuli. 

Previous research has shown that two types of wearable tactile displays, a back array and a 

waist belt, have successfully aided pedestrian navigation.  Each has its proponents and 

each has been reported as successful in experimental trials.  However, there is no previous 

research directly comparing which of the two is more effective and which users might 

prefer. 

In this section, we have reported results from a series of lab-based experimental 

evaluations, which directly compared the two tactile directional displays in order to 

address our two research questions:   

RQ3: What is the effective form of tactile displays for pedestrian navigation? 

RQ4: Which representation technique should be used for direction?   

Results indicated that the tactile waist belt with absolute point vibration allowed 

participants to perform significantly faster and more accurately than the tactile back array 

with tactile flow vibration.   

We did not attempt to isolate and investigate the possible individual effects of vibrator 

layouts, stimuli patterns or body contact areas that may have contributed to this result.  

Whether with the belt design or the array design, further research could investigate the 

effects of alternative instantiations in each of these dimensions.  However, this particular 

concern is out of our current scope of study.  Hence, it will be listed in the future work 
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chapter.  Future research could also examine the effect of more extensive training on 

performance and the long-term effects of wearing and using tactile interfaces. 

We are aware that the lab-based study is not very realistic for navigation tasks.  However, 

at the stage of the research, our lab-based study tackled abstract questions of vibrotactile 

interaction, specifically the effectiveness of saltatory cues on an array vs absolute cues on a 

belt.  Subsequent work will build on resulting understandings to investigate the 

application’s utility and acceptability with users in the field settings.  We explain and 

discuss such a field evaluation in the next section.  

3.4 Field evaluation: testing the tactile directional navigation 

system in the real urban environment 

3.4.1 Overview  

Results from the preliminary lab study gave us some confidence that participants would be 

able to navigate using the tactile belt.  We then built a tactile assistive pedestrian 

navigation system called, TactNav, to be evaluated in the actual urban environment.  

The basic concepts of TactNav are as follows: 

1. A unimodal tactile display that provides eight egocentric directions (straight, half 

right, right, sharp right, back, sharp left, left, half left).  A straight signal will also be 

used as confirmation cues; all other directions will also be used as orientation cues;  

2. A waist belt with adjustable size and location of actuators to account for users’ 

varying body shapes; 

3. Navigation using embedded GPS technology. 

As a prototype, our TactNav system was built for functionality and flexibility rather than 

for convenience or aesthetics of the wearable device.  Most of the system components were 

carried inside a backpack in order to keep the users’ hands free. 

Whilst recent research (e.g. Bradley & Dunlop, 2005; Ross & Blasch, 2000) has addressed 

a range of issues concerning navigation for visually impaired users, our TactNav interface 

was currently designed for only sighted people who may be concurrently involved in other 

tasks.  The two situations have different information requirements, as shown in Chapter 2 
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Table 2.1 (Bradley & Dunlop, 2005), which suggest that sighted people38 depend mainly 

on directional information.  Given the minimal information requirement for a sighted and 

minimally attentive user, a simple interface can be considered.  Consequently, our TactNav 

provided simple directional information via tactile output. 

The field study took results of the lab-based study to be evaluated in the urban 

environment in late 2008.  Our goal was to investigate performance with the TactNav 

system in comparison to another type of existing mobile navigation aid system, specifically 

a visual map-based navigation system on a mobile phone in urban canyons. 

We chose the visual mobile maps because they are widely used.  Nevertheless, it has been 

reported that the small visual display of most mobile GPS units presents users with 

usability problems caused by, but not limited to, the orientation of displayed maps not 

being regularly updated to align with the orientation of the user (Goodman et al., 2004).  

To eliminate this usability problem, we chose the “head-up” maps mode which was 

reported to be more effective and require less mental effort than the “north-up” maps39.   

Before we can state a hypothesis for the field study, we would like to discuss related work 

by Duistermaat (2005), Van Erp & Duistermaat (2005), and Elliott et al. (2006).  

Researchers compared the performance of a tactile-based and a visual-based navigation 

system in a forested area under conditions of high cognitive & high visual workload (i.e. 

adding secondary tasks: radio communication and searching for targets) and normal 

workload.  Results demonstrated that under extreme conditions, the tactile version 

provided better navigation and the secondary task’s performance than the visual version.  

On the other hand, under a normal cognitive load, both systems performed equally well in 

terms of navigational decision.  However, users of the tactile-based system navigated much 

faster and were able to locate a higher number of obstacles along the route.  Additionally, it 

received higher preference scores than the visual system.   

                                                 

38 Visually-impaired users depend on both directional and descriptive information.  Should this type of user 

be our participant, the system is required to provide more types of spatial information.  

39 North-up maps are found to be used in military operations in different types of spaces such as large, 

infinite or sparse spaces and in the normal pedestrian situation when the movement during a navigation 

course has paused.  In addition, some mobile navigation users prefer north-up maps (Smets et al., 2008). 
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Our field study was designed to strictly replicate previous experimental studies’ settings 

(i.e. Duistermaat, 2005; Van Erp & Duistermaat, 2005; and Elliott et al., 2006) and apply 

them to a different type of space.  Specifically, we intended to compare both systems in an 

urban canyon which is considered a large, dense, dynamic space.  Walking in an urban 

context is physically very different from walking in a sparse outdoor environment as in the 

forest.  Factors in the urban context such as city structure, route quality, landmark 

orientation, types of ongoing activities, and the level of sound and light and other 

environmental dynamics may constrain a pedestrian’s behavior and performance 

(Millonnig & Schechtner, 2006; Zacharias, 2001; Wang, 2011; Melbin, 1978).  However, 

we cannot necessarily generalise that it requires a higher or lower amount of mental 

demand in different types of space.  With no prior study on the urban environmental effect 

on navigation performance, we had no grounds to infer the possible outcome other than to 

anticipate analogous results of previous studies’ normal workload outcomes in the urban 

context.        

That is, we considered the testing scenario of a tourist trying to locate an unfamiliar 

destination as a normal cognitive workload condition.  We did not assign a secondary task 

for such a quest journey.   

Based on the original studies, our hypothesis predicted that the different-sensory-based 

navigation systems would have an effect on time performance. Specifically, navigation 

time of the tactile-based system would be faster than that of the visual-based system (H1).        

In summary, we compared our TactNav system with a commercial visual map-based 

pedestrian navigation application on a mobile phone.  We recorded several measures of 

performance including accuracy (i.e. correctly identified directions) and route completion 

time.   

We were aware that to evaluate mobile guides, percentage preferred walking speed 

(PPWS)40 should be measured (Goodman et al., 2004) and we have done so for the field 

evaluation of TactNav reported in Chapter 5.  Nonetheless, for this particular study, we did 

not use PPWS because the original studies (i.e. Duistermaat, 2005; Van Erp & 

Duistermaat, 2005; and Elliott et al., 2006) did not measure this value.        

                                                 

40 PPWS is used to measure the extent to which the use of wearable devices is lower than the user’s normal 

walking speed  (see Petrie et al., 1998).  For more information, see Glossary.       



117 

 

In the next subsections, we reprise research questions to be addressed by the field study.  

Then, we report results, findings and discuss advantages and disadvantages of the tactile-

based and visual-based navigation systems. 

3.4.2 Research questions  

As we have documented in Chapter 2, that pedestrians are likely to use navigation aids 

either for quest or exploratory purposes, our first field evaluation will set to test the system 

with the first scenario (quest) in order to address RQ5.1 and RQ5.3.   

RQ5: What is the tactile navigation system’s performance? Specifically,  

RQ5.1 Does the system help with different navigation purposes? 

RQ5.3 Is there a problem with the transfer of frames of reference with 

tactile navigation displays? 

Besides, the visual mobile system can provide some information that the tactile one cannot.  

That information includes the localisation information which the user is able to refer to 

with respect to waypoints and other surrounding objects to ensure that one is on the right 

path.  In order to make the TactNav system closely equivalent to the visual one, we have 

used a straight signal pattern (i.e. vibration on the front motor) that acts as a confirmation 

cue for the same purpose.  All other directions were used as orientation cues whenever was 

necessary.  Then, we tested this signal design in the field trial in order to address RQ4. 

RQ4: Which representation technique should be used for confirmation and 

orientation cues?  

3.4.3 Method: equipment, tactile stimuli and participants 

Equipment  

The tactile-based navigation system: TactNav  

We used the same equipment setup of a waist belt as in the lab-based experiments (see 

Figures 3.5 and 3.7).  An additional component was a GPS unit model BT-Q1000, 
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manufactured by QStarz (http://www.qstarz.com/).  The GPS unit was connected to the 

laptop via Bluetooth41.  Our final system architecture is demonstrated in Figure 3.22. 

 

Figure 3.22 TactNav System Architecture   

The design of our prototype system was based on an assumption that the route is navigable 

by establishing sequences of intermediate waypoints and proceeding forward in the 

direction of the next destination on the route.  When using a GPS system for navigation, it 

is crucial that the given directional information is relative to the direction in which the user 

is heading (Seager & Stanton Fraser, 2007).  Our prototype TactNav did not incorporate a 

digital compass so we had no means of knowing which way the users would be facing 

during navigation.  However, based on our assumption, i.e. given that the user is moving or 

has recently been moving forward towards a pre-determined destination, we could 

calculate the direction of motion and give the next waypoint information (during the trials, 

each participant was accompanied by an investigator so any problem could be dealt with).  

Such waypoint information was loosely considered as orientation cues. 

May et al. (2003) reported that sighted pedestrians use structural landmarks to identify a 

point on the route, and street names to confirm a correct navigation decision.  Visual-based 

navigation systems provided these two types of information whilst tactile-based ones, such 

as TactNav, would not be able to.  To compromise this lack of ability to provide a type of 

point localisation signal, a vibration on the front actuator, at pre-determined intermediate 

points between any two turning points (TP) which were far apart, was given as a 

                                                 

41 Bluetooth is an open wireless protocol for exchanging data over short distances.  

http://www.qstarz.com/
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confirmation cue in TactNav.  The cues were aimed to give the user confidence that he or 

she was traveling in the right direction towards the next turning point.   

The visual-based mobile navigation system: Nokia Maps 2.0
TM

 

The apparatus for the visual mobile maps condition was a Nokia N95 handset (Figure 3.23) 

running Nokia Maps 2.0
TM 

(Nokia Corporation, 2008).   

 

Figure 3.23 Nokia N95, display screen size diagonal 2.6 inches at 240x320 pixels  (Courtesy of Nokia Corporation) 

 

    

Figure 3.24 Examples of the maps displayed in Nokia Maps 2.0 application: Left – a fine granularity of a place 

with an azimuthal perspective; Middle – a medium granularity of a place with a plan (flat) perspective. Right – a 

coarse granularity of a place with a plan (flat) perspective.  (Courtesy of Nokia Corporation) 

The application provided a mapping and navigation service to Nokia’s customers.  The 

map system also provided a voice guided alternative.  Figure 3.24 demonstrates how the 

display would look in normal navigation circumstances. The system offers the ability to 

zoom in and out to see different granularities of the space and a wide variety 
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of azimuthal map projections42.  Users were able to display different types of spatial 

information such as direction, landmark and point of interest, distance to destination, speed 

of movement, travel time and satellite signal strength.      

During the field trial, the angular view, and voice guidance were turned off.  Other 

information types except direction were disabled.  Navigational logic and assumption in 

the visual system was set to be the same as in the tactile system.      

Stimuli 

TactNav 

The system was designed to help with quest navigation when a user intends to reach an 

unfamiliar destination.  Generally, the system provided direction information which 

functioned as waypoint instructions and cues for orientation and confirmation.  

Additionally, the system also provided a notification when the intended destination was 

reached.   

Stimuli set B was used (see Table 3.2 and Figure 3.11).  During the pilot session, our 

participants reported that simultaneous vibration of all eight motors gave them a very 

distinct sensation which could be interpreted as an alert.  We used this all-vibration signal 

to indicate “destination reached”. 

An additional signal pattern for destination is listed in Table 3.12 (please note that signal 

B3 will be used as a confirmation cue). 

Table 3.12 Signal patterns  (Number in signal pattern represents motor number in Figure 3.6B) 

Stimuli 

code 

Signal type Signal pattern Meaning  Actuator’s location 

around the waist 

B9 Destination Synchronised B1 to B8 

(in Table 3.2) 

Destination 

reached 

All actuators  

 

Prior to the navigation session, the control software was registered with the destination’s 

coordinates then calculated the route.  Once navigation started, the system received the 

user’s current position from the GPS unit, constantly compared positioning data with the 

                                                 

42 Different angular points of perspectives 
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pre-determined turning points (TP), and activated corresponding actuators as tactile cues at 

the appropriate turning points.   

Results from pilot sessions with four participants helped in determining signal delivery 

timing.  The system calculated the radius of turning points and triggered a set of two 

vibrotactile signals once participants entered the hot zone (radius of 10 meters).  The first 

signal was given at the defined range (i.e. the edge of the hot zone) and then the second 

signal was given three seconds later.   

Nokia Maps 2.0
TM

 

 

 

 

 

 

 

 

 

Generally, the mobile map application delivers route guidance instructions by delivering 

the following 6 types of information (see Figure 3.25 for reference): 

 Type 1 — Direction (as a big white arrow) 

 Type 2 — Route (in dark grey) 

 Type 3 — Your current location if driving (as an arrow at the bottom of the   

screen) 

 Type 4 — Compass (at the bottom left of the screen) 

 Type 5 — Information bar (travel speed, distance, and time accordingly) 

 Type 6 — Your current position if walking (as a red dot) 

 

We have turned off as many functions and information types as possible in the visual 

system so that it was closely equivalent to those provided in the tactile system.  In the final 

set up of the mobile map system, information types 1 (direction) and 2 (route) were 

6 

Figure 3.25 Visual stimuli on Nokia Maps 
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displayed.  Please note that the information bar (type 5) cannot be turned off; instead users 

were instructed not to pay attention to this information.   

For consistency across both types of navigation systems, two types of pin symbols have 

been used to refer to (1) confirmation cues and (2) destination reached.  Please note that 

both conditions used the same navigation route (with different groups of participants).  A 

confirmation cue appeared as a blue pin on the visual map application at the same points as 

the confirmation vibrations in TactNav.  A visual notification as a white star with a blue 

flag designated destination reached (see Figure 3.26).  

  

Figure 3.26 Confirmation cues and destination point in the visual mobile map condition; Left – confirmation 

points, and Right – a symbol for destination reached. 

Participants  

There were 24 paid participants, 11 males and 13 females with an average age of 29. We 

adopt the between-group design.  Namely, half of the participants performed the mobile 

maps condition and the other half used the TactNav to navigate the same route.  We used 

independent samples because location-based tasks are particularly sensitive to repetition 

(Goodman et al., 2004).  In other words, if users remembered the route after the first 

condition, it is likely that this would affect their performance in the second condition.  For 

the tactile-based navigation, none of the 12 participants (six males and six females) had 

ever used a tactile system.  The smallest participant had a 61 cm waist size and the largest 

96 cm.  Mean waist was 79.17 cm with SD 9.89.    

For the visual-based condition, there comprised five males and seven females.  83% of 

participants had never used a mobile maps application and 92% were not familiar with the 

particular mobile handset used here.  
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Figure 3.27 Left – a participant wearing TactNav, Right – a participant using Nokia Maps 

3.4.4 Experimental procedures 

Participants navigated on foot in an urban setting in the city of Bath where there are a 

relatively large number of objects and cues in the space.  Sessions took place over 10 days.  

Situations included navigation during weekdays (less busy environment) & the weekend 

(crowded and noisy environment), and day (bright natural light) & night (dimmer artificial 

light), clear conditions (clear sky, no wind or rain) & weather conditions (cloudy, windy 

and light rain). 

A pre-determined 1.3km route containing 20 TPs (including the start and end points) was 

set up (see Appendix 1).  Both systems constantly compared the participants’ current 

location (by GPS) with the pre-determined route and triggered an appropriate directional 

cue (visual or tactile according to the different technologies deployed) at each turning 

point. 

For the tactile condition, the participants were given an explanation of the tactile sensations 

they could expect and where they would be generated on their skin for each direction.  For 

the visual maps condition, all of the participants were given an explanation of how the 

mobile application works and what kinds of symbols and icons would be displayed on the 

screen during the navigation. 

For both conditions, as they walked the route shadowed by the experimenter, participants 

responded to any perceived directional cue by speaking out loud their turn-taking decision 

according to the direction perceived.  Their route and journey duration were automatically 

logged by the systems.  If they took a wrong turn or did not notice the stimulus, the 
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experimenter intervened, giving verbal information about the correct turn and taking note 

of any incorrect actions. 

The tactile condition provided directional, orientation and confirmation cues (the same as a 

signal to go straight).  Similarly, the maps on Nokia were always head-up maps.  Direction, 

orientation and confirmation cues in the visual mobile map condition had only been 

displayed to participants at exactly the same points as in the tactile condition.  For both 

conditions, there was no overview information provided.  Participants were told to omit the 

other types of information which might be shown on the phone’s screen.  No other 

concurrent activity was appointed or allowed during the experimental period.   

3.4.5 Results  

Performance  

Our primary aim for the field evaluation was to investigate the effectiveness of the tactile-

based navigation system in a real urban environment for the purpose of quest navigation.  

In addition, we were interested in comparing our TactNav with an existing commercial 

mobile assisted navigation technology.  We compared a range of performance measures: 

completion time, walking pace, correct and wrong turns, and missed signals.  Correct turns 

refer to the number of correctly identified directions.  Wrong turns suggest the number of 

incorrectly identified directions.  Missed signals reflect the number of times participants 

failed to notice the stimulus.  Results are shown in Table 3.13. 

Table 3.13 Mean scores of completion time and walking pace (Time: mins, Pace: km/h, Turns: n of 20, SDs in 

parentheses) 

 TactNav  Visual Mobile Maps 

 Mean  Min Max Mean  Min Max 

Missed signals 
0.67 

(0.99) 

0 3 n/a n/a n/a 

Correct turns 
18.58 

(1.17) 

17 20 19.08 

(0.79) 

17 20 

Wrong turns 
0.75 

(0.97) 

0 3 0.92 

(0.79) 

0 3 

Completion time 
20.4 

(1.8) 

16.2 22.8 23.2 

(0.05) 

20.0 30.0 

Walking pace 
3.9 

(0.39) 

3.45 4.81 3.39 

(0.38) 

2.60 3.94 
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The experimental route was almost traffic free except at one point where the waiting time 

to cross the street took around 5 - 30 seconds.  The waste duration has been subtracted 

from the overall completion time shown in Table 3.13. 

Results indicated that users’ performance with the tactile-based navigation was equivalent 

to that of the visual-based system in terms of accuracy while route completion time was 

significantly faster with the tactile-based navigation.   

With the tactile system, a number of missed signals were reported, i.e. the user did not 

perceive the tactile stimulus.  Independent samples t-tests showed no significant effect of 

the two systems on correct turns, t(22) = -1.23, p > 0.05, or on wrong turns, t(22) = -0.46, p 

> 0.05.  Our results corroborated with those of Elliott et al.’s (2010) indicating participants 

made waypoint decisions equally accurately in both conditions.   

With the visual mobile maps system, the users completed the route with a mean of 23 

minutes whilst the system estimated that navigation should take 19 minutes.  With the 

TactNav system, the users completed the route faster, with a mean of 20 minutes.  The 

average walking pace of the TactNav’s participants (3.9 km/h) was almost equal to the 

normal speed of adult pedestrians at 4.2 - 4.4 km/h (Knoblauch et al., 1996).  Independent 

samples t-tests found a significant effect of systems on route completion time, t(22) = -

3.18, p < 0.01, and walking pace, t(22) = 3.26, p < 0.01.  In other words, participants using 

TactNav moved much more quickly than Nokia Maps’ participants.  Hence, hypothesis H1 

was accepted.   

Pearson’s correlation analysis found that accuracy performance was not significantly 

correlated with sex, r =  -0.37, and waist size, r =  -0.50 (all p > 0.05).     

Other qualitative results 

Mean scores of subjective perception and interpretation of maps and tactile stimuli are 

shown in Table 3.14 (first and second row).  Perception refers to how clearly participants 

felt the tactile stimuli and saw the visual maps.  Interpretation refers to the degree to which 

participants understood the meaning of given tactile and visual information in order to 

identify directions.  Independent samples t-tests found no significant difference on 

subjective perception scores (t(22) = -1.43, p > 0.05); participants found that both types of 

stimuli were equally easily perceived.  However, there was a significant difference in the 

subjective ability to interpret tactile and visual stimuli for direction identification (t(22) = 
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2.16, p < 0.05).  In other words, users were likely to interpret tactile stimuli more 

accurately than the visual stimuli.        

Table 3.14 Mean scores of subjective perception and interpretation of maps / tactile stimuli, (Scores: n of a 5 point 

Likert scale, 1 is low, 5 is high).  SDs in parentheses. 

 TactNav  Visual Mobile 

Maps 

Perception 
2.92  

(1.00) 

3.50  

(0.96) 

Interpretation 
4.00  

(0.95) 

3.17  

(0.90) 

Paper-map replacement 
4.42  

(1.00) 

3.33  

(1.38) 

Paper-map complement 
3.50  

(1.09) 

3.33  

(1.23) 

We asked participants to rate the scores on which systems could be used to replace or 

complement paper maps, the most popular medium deployed as a navigation aid.  The 

mean of subjective paper-map replacement and complement scores are shown in Table 

3.14 (third and fourth row).  In our participants’ opinion, either system can be conveniently 

used to complement paper-based maps (t(22) = 0.35, p > 0.05).  However, the subjective 

preference for the TactNav system to replace the paper maps was significantly higher than 

that for the visual mobile application (t(22) = 2.25, p < 0.05).  We assumed that 

participants found that the TactNav worked quite effectively and that they could benefit 

from the hand-free and eye-free navigation.             

None of the participants reported discomfort with either system.  Half of the TactNav users 

agreed that unimodal tactile output for navigation is a feasible system for real world use.  

The other half suggested that a combination of tactile and audio communication (e.g. 

speech) would increase their level of confidence in a non-visual system.  An important 

aspect that should be noted here is that the wearability and aesthetics of tactile systems will 

be crucial to user acceptance.  With a computer in a backpack and a number of visible 

wires, our current TactNav prototype requires some improvements in that respect. 

For the visual mobile maps system, most participants reported a positive experience.  Two 

of the participants suggested that an addition of tactile or audio communication might 

improve the navigation performance since the concurrent information would help in 

affirming the decisions to turn and reduce orientation time. 
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3.4.6 Discussion 

The effect of sex and waist size on TactNav’s accuracy performance   

Results from the field-based study did not indicate any significant correlation between sex 

& waist size and accuracy performance.  The findings on the relationship between gender 

and accuracy were consistent with lab-based studies.  In the field evaluation, we recruited 

equal numbers of both genders.  Hence, the field study’s correlation results suggest that the 

tactile display could help reduce differences in navigation and wayfinding performance 

between men and women.   

For the relationship between performance and the size of the participant’s waist, results in 

both lab-based and field-based studies were inconsistent.  At this point, we can only 

conclude that the significant correlation that was found earlier in two of the eight lab-based 

conditions may have occurred by chance.  Further evaluation to confirm this point is 

required.    

The effect of GPS availability on visual maps orientation and tactile cues temporary 

absence 

Smets et al. (2008) concluded that ease of navigation and task performance with mobile 

maps are influenced by map alignment to the orientation of the user.  We observed the 

occurrence first hand.  The mobile maps application used in our study starts with a north-

up map and when the user starts walking it switches to a heading-up map.  The device 

infers user orientation from the recorded direction of travel up to that point.  This initial 

switch took up to 30 seconds and subsequent map rotations suffered from delays.  This was 

due to a combination of satellite signal shortage43 and the implementation logic of the 

application, which requires quite a few recorded GPS fixes in order to resolve the heading 

direction.  Therefore, in order to maintain heading-up maps, users often physically rotated 

the device to match the orientation of the map with the direction of travel.  They found it 

quite difficult to work out the correct orientation but would eventually manage to continue 

with the journey.   

                                                 

43 Pedestrians in an urban context are likely to suffer from GPS signal unavailability because the signal could 

be blocked by surrounded buildings (Wang, 2011).  
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TactNav’s users suffered from the same GPS problem.  However, without a screen to look 

at, users reported getting frustrated and felt lost; some remained idle at the spot while some 

walked around back and forth to get the signal.  Once the GPS signal came through and the 

system was able to deliver a corresponding cue, they reported that the course of navigation 

could be continued with minimum effort. 

Completion time  

All participants using the mobile maps spent time on (1) resolving their current position in 

physical space by mentally matching the displayed information with actual surrounding 

landmarks, and (2) reorienting themselves and the device by mapping the displayed 

information to their heading on the ground.  These behaviours occurred across all 

participants at every turning point regardless of the space’s complexity.  As noted above, 

this was due to the map’s presentation on the mobile phone not always being promptly 

aligned with the participants’ orientation and heading.  This presentation inconsistency 

caused frequent physical rotation of the phone by participants and longer consideration at 

each turning point, and required users’ mental rotation to align themselves and the maps to 

the space.  All participants suggested that it would be best if the displayed maps always 

aligned with their heading. 

In contrast, participants using the TactNav reported that they had not used any visual or 

auditory landmarks to navigate.  Four participants using the tactile system did spend extra 

seconds at some turning points waiting for the tactile signal to be presented.  This was due 

to poor performance of the GPS on those occasions.  Even so, the completion time and 

walking pace results suggest that participants performed significantly faster with the 

TactNav system.  We did not measure participants’ preferred walking speed (PWS) prior to 

the experiment (cf. Goodman et al., 2004) but we did attempt to eliminate systematic 

differences, such as height, between participants in the two conditions. 

Both systems at the time of running the experiment (circa 2007) suffered from the same 

GPS availability problem.  Nevertheless, the main factor affecting completion time with 

the visual mobile maps is the transfer of different frames of reference.  With the tactile-

based navigation technique, the problem seemed absent.      

Problematic part of the route 

In both the TactNav and mobile maps conditions, there was a problematic part of the route 

where there is no vantage point from which the entire space or landmarks can be seen in 
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detail and there are few objects or clues to help in navigation.  An aerial view is given in 

Figure 3.28.  Participants were supposed to navigate following the blue line. 

 

Figure 3.28 Problematic area containing the first four TPs 

 

Figure 3.29 A view at turning point 1 toward turning point 2; holding a phone vertically (i.e. the wrong heading-

up orientation) 

From TP1 to TP2, most participants in the mobile maps condition held the phone vertically 

upside down (as in Figure 3.29) and spent a lot of time reorienting themselves and the 

mobile phone.  At this point, the correct orientation of the phone to match the actual space, 

i.e. to give a heading-up map display, is a horizontal orientation (similar to Figure 3.30).  
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Since this area has no immediate landmark to refer to, after spending up to three minutes 

trying to resolve their position, all participants decided to walk straight ahead pending a 

change of the map display, deferring any decision on changes of direction.  In the tactile 

condition, upon reaching TP1, the front centre motor was triggered.  When the participants 

received the signal, they hesitated in making the decision whether to continue walking 

along the curved path or to go directly ahead as the stimulus suggested.  In the end, all 

participants made the (correct) decision to go straight ahead (i.e. cross the road to TP2). 

 

Figure 3.30 A view at turning point 2 toward turning point 3; holding a phone diagonally (i.e. the correct heading-

up orientation) 

Due to the traffic in the area, to navigate from TP 2 to TP 3 all pedestrians had first to 

cross the road from TP 2 to point A (a black dot in Figure 3.28), then continue walking to 

TP3.  In the tactile condition, the front left motor was triggered indicating the 45 degrees 

left (half left) direction.  75% of participants made the right decision while 25% turned 90 

degrees left.  In the mobile maps condition, a correct decision depended heavily on the 

phone orientation.  The correct orientation to give a heading-up display at this point is 

shown in Figure 3.30.  Strongly influenced by the map display on the current orientation of 

their mobile phone, only 33% of participants in the mobile maps condition made the right 

choice, while 42% decided to turn right and 25% decided to turn left. 

Our findings suggest that tactile-based navigation works better in such a problematic area.  

This conclusion is similar to that of Van Erp (2002) who reported that tactile-based 

interaction was successful in a space with few obvious landmarks, such as forested areas. 
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Cluttered environment  

In contrast to the problems mobile map users had in the sparse environment (few objects to 

refer to), participants also struggled with the mobile maps when the environment was 

cluttered, either physically or digitally.  We consider a physically cluttered space as a space 

in the real world where (1) the number of objects is so great that it obscures important 

landmarks or cues; or (2) the number of people is so great that it obstructs navigation flow.  

Similarly, we refer to a digitally cluttered space as a space displayed on a mobile map 

where the number of landmark icons and symbols is so great that it overloads users’ 

cognition and blocks a clear view of the map’s features and directions.  Even though we 

had switched off the display of touristic icons (e.g. museums, attractions) and navigation 

information (i.e. compass on the lower left corner), there were some types that could not be 

switched off such as distance information on the top row and other information such as 

speed on the bottom row (see Figure 3.25).  Almost all participants in the mobile maps 

condition complained about the information overload on a 4 x 5.5 cm screen but stated that 

the zoom / scroll functions helped.  The most severe problem they encountered was that the 

navigation direction arrow was so big that it covered street names.  In this case, we allowed 

participants to zoom and scroll to read street names so that they could continue with the 

journey. 

In contrast, participants in the tactile condition had a very simple, uncluttered (tactile) 

display and reported no problems navigating in a (physically) cluttered environment.  

Navigation with the TactNav allowed their eyes to remain free for the tasks of scanning the 

environment and avoiding collisions with other pedestrians and objects in the environment. 

Attention  

In the tactile condition, participants reported a number of occasions when they did not 

perceive a signal although the system had generated it.  We report these incidents as 

missed signals in Table 3.13.  They may be due to a lack of attention to the navigation 

system, either because the participants became used to wearing it and no longer noticed it 

or because of competing demands for their attention in a busy urban environment.  

Participants in the tactile condition navigated with their eyes free from looking at the 

system and were found to constantly look at the surroundings.  The vibration strength, 

which seemed to be adequate in the lab, turned out to be rather too weak in the field.  We 

could easily address the optimum level of tactile attention by increasing the signal strength 

or by giving users control of the signal strength.  Our observation is congruent with 
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Prenav’s44 (Van Erp, 2003/2007; Van Erp et al., 2006) and MRT’s45 (Wickens, 1980) 

prediction that tactile users could use their free mental resources to perform concurrent 

tasks effectively.     

On the other hand, visual maps’ participants were observed looking intently at the phone 

screen for at least 50% of the navigation duration and frequently manipulating the phone 

with one or both hands.  The high demand on visual attention led to a number of minor 

accidents during the course of the experiment, e.g. participants tripping over objects or 

uneven pavements.   

Dynamic situation 

To navigate with mobile maps, participants needed at least one hand and frequently both 

hands to manipulate the mobile device constantly whilst mentally reorienting and mapping 

their position in space.  These demands became even more problematic on a windy and 

rainy day.  We had three participants navigate with one hand manipulating a mobile device 

and another hand holding an umbrella.  None of them could conveniently operate the 

phone using only one hand.  Eventually, the evaluator helped by holding the umbrella 

while they concentrated on navigation.  It is perhaps worth noting that we had not intended 

to run the experiment on a bad weather day.  This was one of the uncontrollable factors 

that normally occur in field evaluation (Goodman et al., 2004).  

Confidence in navigation 

GPS precision and response time contributed to participants’ confidence levels in both the 

visual and tactile systems.  For the visual mobile maps, participants were impressed by the 

application’s response time but were disappointed with the GPS precision.  Especially 

between TP2 and TP3, the mobile maps displayed the current position of all participants 

incorrectly.  This may be due to the nature of the area, which is a churchyard rather than a 

street or road.  The system may have considered this area as inaccessible.  For the rest of 

the route, the current position was not always precise and it required the users to manually 

update their position (by pressing the handset’s ‘0’ button).  Once the users pressed it, the 

position was more accurate but the users lost their zoomed details and had to adjust the 

display again. 

                                                 

44 PRENAV emphasizes on automated tasks’ performance (see Chapter 2 Section 2.4.1). 

45 MRT focuses on aspects of workload and conflicts (see Chapter 2 Section 2.4.1). 
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With the tactile navigation, participants were excited by the unfamiliar technology.  

Nevertheless, unfamiliarity decreased their confidence level.  Slow response times, due to 

poor GPS reception, affected their confidence in the whole system.  Since there was no 

other channel to display current status, participants were left frustrated if there was no 

tactile stimulus triggered at any turning point.  Some participants walked backwards a few 

meters to try to resolve this problem and continued navigating once they had got the tactile 

signal. 

Bradley & Dunlop (2005) reported that sighted pedestrians use structural landmarks and 

street names to confirm a decision and gain confidence (see Table 2.1 in Chapter 2).  These 

landmark cues are absent from the tactile system.  Although the tactile system was 

designed to give a vibration on the front motor at pre-determined intermediate points 

between any two turning points which were far apart, some users reported having less 

confidence in their heading when the turning points were widely distributed.  They 

suggested that the front actuator vibration should be more frequent. 

Subjective feedback regarding the degree to which participants thought the technologies 

aided their navigation and level of confidence scores for both conditions are shown in 

Table 3.15.  Navigation assistance refers to the degree to which participants thought the 

system aided their navigation. Confidence refers to the degree to which participants 

believed that they could rely on the system. 

Independent samples t-tests found no significant effect of systems on navigation assistance 

scores (t(22) = 1.72, p > 0.05) and confidence scores (t(22) = 1.30, p > 0.05).   

Table 3.15 Mean scores of subjective level of navigation confidence of maps / tactile stimuli, (Scores: n of a 5 point 

Likert scale, 1 is low, 5 is high).  SDs in parentheses. 

 TactNav  Visual Mobile 

Maps 

Navigation assistance 
3.58  

(0.79) 

2.92  

(1.04) 

Confidence  
3.42  

(1.16) 

2.83  

(0.99) 
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3.4.7 Conclusion of the field evaluation  

In this section, we have reported the results of an empirical study which investigated the 

use of tactile interaction as a minimal attention interface for assisting quest navigation in 

an urban environment.  TactNav provides a single-point tactile indication of direction.  

Advantages of the single-point tactile signal include ease of perception and ease of 

interpretation. 

We conducted a preliminary lab-based evaluation to test the effectiveness of the tactile 

signal design.  In our main field evaluation, we compared the performance of our TactNav 

system with a commercially available visual mobile maps system, Nokia Maps 2.0
TM

.  

Results showed that the performance accuracy of tactile-based navigation was comparable 

to that of the visual-based navigation, while TactNav significantly outperformed the 

mobile maps application in route completion time. 

Our study has shown that minimal attention interfaces for specific tasks in the urban 

environment could be effectively achieved through unimodal tactile output.  At this point, 

we could provide the answer to RQ5.1 (Does the system help with different navigation 

purposes?) that the system can be used for quest with acceptable performance. 

Nevertheless, subjective data from participants in both conditions suggest that a 

combination of more than one perceptual channel could achieve better performance, or at 

least give users higher confidence in the system. 

Results demonstrated that participants in the tactile condition did not try to match 

themselves with any frames of reference during their course of navigation.  We conclude 

that for RQ5.3 (Is there a problem with the transfer of frames of reference with tactile 

navigation displays?), the transfer of frames of references does not seem to exist.   

As for RQ4 (Which representation technique should be used for orientation and 

confirmation cues?), our proposed technique seemed to work effectively.  Each direction 

cue served as a waypoint instruction as well as an orientation cue.  We provided 

confirmation cues in the same manner as when we generated the straight signal (i.e. 

vibrating the front centre actuator).  Comments from participants on the frequency of 

confirmation signal generation would be taken into account for future experiment trials.   

A useful lesson was that the vibration strength which seemed to be adequate in the lab 

turned out to be rather too weak in the field.  This finding supports Goodman et al’s (2004) 
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argument for the benefits of field experiments over lab-based experiments for evaluating 

mobile systems. 

Both the visual and tactile systems could benefit from the addition of a digital compass.  

The mobile maps system would then not rely on a series of GPS fixes to infer orientation 

and would be much less prone to the often severely delayed reorientation of the map as the 

system attempted to maintain a heading-up orientation.  The TactNav system would be 

able to indicate direction more accurately in the event of the user changing orientation with 

respect to their surroundings. 

Our studies have shown that pedestrians could benefit from the nature of touch-based 

communication to assist them with urban navigation.   

3.5 General discussion 

Perhaps ironically, the inability of the tactile display to provide overview information 

benefited the navigation tasks.  It completely eliminated previewing the immediate path 

and consequent attempts at reorienting the display as in the visual condition, resulting in 

significantly faster completion times.  The visual mobile map participants expended 

considerable time and effort matching the overwhelming amount of information they saw 

on the mobile screen with the artifacts in the real environment to confirm their route 

choices.  For example, at a turning point with three possible directions to turn, the user of 

the tactile system would turn left when he or she received a left vibration stimulus, while 

the user of the visual maps system would typically not turn left immediately even though 

they saw the big white arrow pointing left on the display.  Rather, they would check all the 

other street names in all the other directions before making the left turn. 

Problems with automatic screen orientation, exacerbated by GPS lag, frequently made it 

necessary to reorient the device and the users themselves.  Disadvantages of visual-based 

navigation included: (1) the inconsistent switching between north-up and head-up map 

modes led to user confusion; (2) users frequently adjusted a phone’s physical orientation to 

maintain a heading-up map orientation on the display, leading to longer route completion 

time; (3) visual-based navigation relies on landmarks such as buildings and street names 

and it takes considerable time and effort for users to cross-reference these with the 

displayed map.  Nevertheless, a visual navigation aid has the potential benefit to relatively 

easily provide complex and semantically rich information such as categories of landmarks 
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and street names.  Most importantly, electronic visual maps can provide overview 

information of the space. 

With the progress and advancement of future positioning technology46, some of the 

problems occurring during our field evaluation may be eliminated and the level of mental 

workload could be reduced.  Nevertheless, we are quite convinced that cognitive workload 

required by the visual-based system will always be higher than that required by the tactile-

based system because of the presence of the demand for the transfer of frames of reference 

in visual navigation.  

Additionally, based on our observation during the field study, we are persuaded that the 

tactile system suits the nature of mobile users’ characteristics (see Chapter 2 Section 2.2) 

better than the visual one.  Navigating in the city, pedestrians require their attentional 

resources to cope with multitasking, unplanned incidents, and dynamic interaction.  

Walking with their hand and eye free from constantly looking at the phone would allow 

them to, for example, take a phone call and carry items such as an umbrella when it is 

raining.  Should these scenarios occur with the mobile map users, they would struggle and 

their span of attention would be interrupted; they may or may not be able to perform either 

task effectively.  Naturally, if they chose to pick up a phone call, it would require a 

considerable amount of time to reorient themselves with the system and continue the 

journey.   

With the tactile-based navigation, it is important to note that the tactile signal is brief and 

skin perception adapts through time.  The result of continued stimulation may be a 

decrease or even a complete elimination of its sensory experience (Schiffman, 1976).  This 

may have occurred in our study, leading to some of the missed signals during the field 

evaluation.   

Nevertheless, tactile-based navigation has benefits that: (1) it is convenient because users 

do not have to carry the device and can have their hands free for other tasks; (2) tactile 

communication between the system and the user leaves the user’s other senses for other 

tasks; (3) users who are not good at reading maps or lack orientation and wayfinding skills 

                                                 

46 As of 2011, positioning technology’s users, both pedestrians and vehicular drivers, still suffer from the 

satellite signals being blocked by buildings (Wang, 2011).  The degree of satellite signal unavailability for 

pedestrians is higher than that for vehicular drivers due to the fact that pedestrians’ paths are next to buildings 

while drivers’ routes are further away.   
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can easily and successfully navigate with touch communication; and (4) tactile 

communication works under conditions including darkness and very noisy environments 

since it is a landmark-independent navigation technique.   

Disadvantages of our current tactile prototype are: (1) it is somewhat cumbersome to wear; 

(2) it lacks an automatic re-routing function if a wrong turn is taken; (3) it cannot provide a 

route overview; (4) it does not provide estimated distance to target points, (5) it does not 

provide landmark cues, undermining participants’ confidence in the correctness of their 

heading between turning points which are far apart; (6) long periods of use may lead to 

heat-accumulation and muscle fatigue; and (7) as with all vibration-based systems, it is 

susceptible to not working or not being perceived in high gravity (high G)47 or vibration 

environments (Van Erp, 2002). 

3.6 Summary  

In this chapter, we attempted to answer RQ3, RQ4 and RQ5. A series of empirical studies 

allows us to make a practical contribution.  Through the attempts to understand physiology 

in relation to human perception and information representation issues from literature, we 

gathered requirements and suggestions for the design of the wearable prototypes.  These 

requirements were then carefully analysed in lab-based evaluations.  The findings from lab 

studies identify the appropriate form of a wearable device and provide the designers with 

the representation techniques for directional and confirmation information.  This 

contribution is delivered in the form of heuristics for the design of tactile navigation 

displays: wearability, body sites’ sensitivity, suitable direction concepts, the amount of 

training associated with the use of the display, and a representation technique for the two 

types of spatial information. 

The next step was aimed at improving the effectiveness and efficiency of the system by 

providing the second most important type of spatial data, landmark (May et al., 2003; 

Bradley & Dunlop, 2005, Klippel et al., 2009).  

                                                 

47 High gravity (G) environments refer to the situation when the pull of gravity is significantly greater than 

normal gravity (i.e. gravity on Earth at sea level).  High ‘G’ situations include, for example, the sudden 

change in velocity or a very sharp turn at high speed.  A rollercoaster offers this high ‘G’ experience. 
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Prior to the deployment of landmark information in our tactile-based navigation system, 

we need to understand the nature of landmarks used in an urban setting.  As currently there 

is no conclusion on the comparative importance of different landmarks or on their use 

across different navigation contexts, we therefore adopted an empirical approach to 

identifying landmarks based on people’s experiences of journeys involving each of the 

three navigation purposes (i.e. commute, quest and explore).  Such classification of a set of 

landmarks (RQ2) is reported in the next chapter.  Following the identification of a minimal 

set of important landmarks, the next chapter of the thesis will also address tactile 

representation of landmarks (RQ4).        
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Long is the way, and hard, that out of Hell leads up to light.  

(John Milton, 1674) 

Chapter 4 An Empirical Investigation into Tactile 

Landmark Displays 

4.1 Introduction  

In Chapter 3, we have demonstrated that our prototype allowed users to navigate a city 

with satisfactory results48.  Moreover, participants were able to spare their attention to the 

environments and avoid obstacles along the routes.  However, our initial prototype 

provided only confirmation and directional information. Therefore, the system helped 

primarily with route guidance rather than with developing spatial knowledge since 

landmark information was not provided.      

As we aimed to improve the system’s value, our next phase was to investigate the use of 

landmarks and their representation in a three-step series of studies.  They include (1) 

selecting appropriate landmarks (a survey study), (2) representing landmarks with tactile 

signals (a lab study), and (3) deploying a tactile pedestrian navigation system in the real 

urban environment (a field study).  Steps 1 and 2 are reported in this chapter while step 3 is 

presented in Chapter 5. 

Regarding step 1, during the search to find the important type of spatial information, many 

researchers (e.g. May et al., 2003; Ross et al., 2004; Werner et al., 1997; Werner et al., 

2000) have suggested that landmarks are of vital importance.  In particular, May et al.’s 

(2003) study showed that pedestrians use landmarks the most at 72% compared to other 

types of information in the actual world (road type, junction, distance, street names 

respectively).  However, there is no clarification as to how they are being used across 

different contexts and navigation purposes because current research on landmarks is 

subjected to the evaluated locations (Burnett, 1998).  We therefore took this opportunity to 

                                                 

48 Our results were congruented with other researchers’ reports of the effective tactile guidance systems for 

forested areas (Duistermaat, 2005), and urban environments (Frey, 2007; Van Erp, 2005).   
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empirically classify the use of landmarks in urban environments based on different 

navigation purposes.  

Regarding step 2, we evaluated two tactile landmark representation techniques that could 

work effectively in combination with the absolute point vibration technique used to 

represent directions previously shown to be effective in Chapter 3.   

To summarise, this chapter is divided into 4 other subsections.  The immediate section 

describes motivations and objectives of both empirical studies.  Section 4.3 reports the 

identification and classification of a set of landmarks or landmark types appropriate for the 

use of mobile navigation systems in urban contexts.  Section 4.4 demonstrates the plan, 

execution and results of our empirical lab-based study.  Finally, the last section 

summarises the findings of the chapter, provides a limited list of landmarks and concludes 

with the chosen representation technique for landmarks which would be used in the field-

based evaluation of the system (i.e. step 3 of the series).       

4.2 Motivation and objectives   

4.2.1 A user survey study on important landmarks for pedestrian 

navigation in urban environments 

The motivation for the survey study builds upon a limited list of information requirements 

for pedestrian navigation derived from the literature in Chapter 2.  In pedestrian navigation 

research, the top two information types that pedestrians use are: directions and landmarks 

(Bradley et al., 2005; May et al., 2003).  Directional information is crucial to the success 

and performance of navigation (i.e. providing guidance to destinations).  Landmarks are 

navigation cues that help construct route49 (paths between locations) and survey50 

(relationships amongst locations and paths) knowledge which in turn builds cognitive 

representations of the surroundings, i.e. spatial knowledge.   

We have found that none of the landmarks studies ranked them by their usage popularity 

according to different navigation purposes.  We assumed that the reason behind the 

                                                 

49 Route knowledge is organised in a human’s mind and being accessed sequentially as an ordered list of 

different locations with an egocentric perspective (Werner et al., 2000).    

50 Survey knowledge is an integrated form of spatial locations and their relationships.  It is organised in a 

global, exocentric outlook, i.e. geographical coordinates (Werner et al., 2000).   
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absence of such a study is that it is difficult to define good landmarks beforehand or 

without visually analyzing the to-be-navigated area.  In addition, it is not practical to 

generalise them from a single location study because landmarks could be highly varied 

from one location to another.  As a result, visual navigation systems offer a large number 

of possible landmark categories (e.g. Millonig & Schechtner, 2005; Nokia Maps™ 2.0; 

Nokia Maps™ 3.0; Garmin Nüvi™).   

The focus of our empirical study is to identify and classify landmarks used with urban 

contexts for three navigation purposes, suggested by Sorrows & Hirtle (1999) and Allen 

(1999), namely commuting, questing and exploring.  We have two main objectives in 

carrying out this empirical study on landmark usage.  First, we would like to inform the 

design and use of the increasingly widespread visual navigation aids on mobile devices.  

Existing navigation systems typically present large lists of landmarks, some of which are 

not necessary.  It could be more efficient and effective to present only a minimal number 

of landmarks that have been identified as most useful for particular navigation purposes.   

Secondly, we expected that the limited list of seven landmarks would be useful for the 

development of tactile mobile navigation aids, an area that has so far seen some research 

but no successful commercialisation.  Specifically, the list would be used as a basis in the 

tactile landmark representation study.       

4.2.2 A lab-based comparison experiment: Comparing two vibration 

techniques for landmark representation 

Tactile directional representation has been widely studied and tested but there is no 

published study attempting to represent landmarks with tactile signal.   

As we aimed to develop a tactile navigation display that can provide directional and 

landmark information, the chosen techniques to represent landmarks must work effectively 

and be distinguishable from a tactile technique used to represent directions that has been 

demonstrated in Chapter 3.  This challenge entails controlling signal salience and 

perception capacity (MacLean, 2008b).  We had two main objectives in carrying out this 

lab-based empirical study: (1) investigating tactile representation techniques for landmarks 

and (2) investigating human cognitive capacity for spatial information when both direction 

and landmark signals were presented.  We were interested in the effect of presenting both 

information types on human perception, specifically in terms of learnability, 

distinguishability, memorability, performance and preference.     
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4.3 A user study on important landmarks for pedestrian 

navigation in urban environments   

4.3.1 Overview  

In both tactile and landmark research domains, researchers (Golledge, 1999; Klatzky & 

Lederman, 2002; Brown et al., 2005; Chan et al., 2005; Gallace et al., 2006; Millonig & 

Schechtner, 2005) reported that the thresholds of tactile patterns and number of landmarks, 

which humans can remember and distinguish, are 4-7 patterns (the lower the better), 

because human memory is limited and tactile communication requires training.  These 

findings suggest an upper bound on the number of landmarks it may be useful to represent 

within a given navigation task and context.  Given such constraint, it is important to 

identify which small set of landmarks is most likely to be useful because most commercial 

systems currently provide very large sets, each containing approximately 40-50 landmark 

categories (see Appendix 2.1 Table A2.2 for more detail).   

Several lists of ‘most used’ landmarks have been reported by researchers (Baus et al., 

2007; Grabler et al., 2008) (See Appendix 2.1 Table A2.1).  Nevertheless, restricted 

locations did not provide adequate data for a generalisation of a set of landmarks.   

Alternatively, the identification of reliable landmarks could be achieved using several data 

analysis and mining techniques (see Raubal & Winter, 200251; Grabler et al., 200852).  

However, these techniques do not account for differences in the visibility of objects 

depending on the direction from which they are viewed (Brenner & Elias, 2003; Millonig 

& Schechtner, 2005).  Furthermore, these techniques only focused on landmarks 

surrounding decision points while studies revealed that landmarks along the route help 

improve many aspects of navigation; for example, increasing users’ confidence and 

decreasing navigational error (Ross et al., 2004).  Hence, using such automatic capturing 

techniques may not provide a practical list of landmarks for different navigation purposes 

in real use.   

                                                 

51 Landmarks were captured automatically from existing spatial databases by using techniques such as an 

analysis of visual attraction of facades adjacent to decision points (Raubal & Winter, 2002). 

52 Grabler et al. (2008) analysed attribute values of spatial data records such as buildings’ shape/label and 

usage types and ranks these attribute values in order to identify the most suitable landmark at each decision 

point. 
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Therefore, to achieve our objectives for the first step in the series of landmark studies, we 

adopted an empirical approach to identifying consistently used landmarks based on 

people’s experiences of journeys involving each of the three navigation purposes.  Our 

chosen techniques were a questionnaire study targeting worldwide respondents as well as 

in situ face-to-face interviews with foreign and local pedestrians in the city of Bath, United 

Kingdom.       

4.3.2 Research questions  

For this particular step of the study, we seek to answer the following research question:  

RQ2: How do pedestrians use landmarks for different navigation purposes?  

Specifically, we were looking for answers to the following specific questions: 

RQ2.1 Do pedestrians use landmarks differently for the 3 different navigational 

purposes of commuting, questing and exploring? 

RQ2.2 When do pedestrians use landmarks during navigation? 

RQ2.3 What are the most important landmarks for each navigation purpose? 

4.3.3 Method: participants and choices of landmarks   

Given the requirement to question participants worldwide, an online survey was an 

appropriate approach for this study.  However, online surveys can be limited by their lack 

of direct interaction between an interviewer and interviewees; therefore, we also conducted 

face-to-face interviews in situ with participants who had just been engaged in an urban 

pedestrian journey.  We intended that the results from the online and face-to-face surveys 

would complement each other. 

Participants and their geographical locations 

Online participants were recruited by convenience sampling whilst face-to-face 

participants were approached randomly and recruited according to their different 

navigation purposes.  We interviewed tourists for questing and exploring purposes and 

local residents for the commuting purpose.  From the online participants, we collected 100 
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complete responses from different geographic locations53 (see Table 4.1).  There were 40 

men and 60 women, mean age 39 (SD=8.4, range 18–60 years old).  We conducted 60 

face-to-face interviews in the city of Bath, UK with 32 men and 28 women, mean age 36.2 

(SD=7.95, range 18-40 years old).   

For online participants, 76% (commuting), 23% (questing) and 5% (exploring) of 

respondents had made the reported journey within the week prior to the study.  86% 

(commuting), 64% (questing) and 26% (exploring) had made it within 1 month.  If the 

journey reported by an online participant was over a year ago, we discarded their data as 

unreliable.  All face-to-face participants made their reported journey immediately before 

their interview. 

Table 4.1 Percentages of Online Answers by Continents 

Continent % of 

Responses 

Countries of Origin 

Asia 61 Thailand, Korea, Japan, China, India, Singapore, Malaysia, 

Cambodia, Dubai, and Vietnam 

Europe 33 UK, Italy, Spain, France, Germany, Ireland, The Netherlands, 

Iceland, Poland, and Portugal 

North America 5 USA and Canada 

Australia 1 Australia 

For online responses, we were aware that there are probable differences in land use in the 

different geographical locations.  According to the routes described by our online 

participants, these urban spaces are similar with respect to the key characteristics we are 

                                                 

53 The full list of cities: Aachen (Germany), Amsterdam (The Netherlands), Barcelona (Spain), Bangkok 

(Thailand), Bath (UK), Bournemouth (UK), Bristol (UK), Cambridge (UK), Chiba (Japan), Cordoba (Spain), 

Dubai (), Dublin (Ireland), Durham (UK), Florence (Italy), Florida (U.S.A.), Glasgow (UK), Granada 

(Spain), Krakow (Poland), Leeds (UK), London (UK), Lyon (France), Funchal (Madeira, Portugal), 

Lamphun (Thailand), Madrid (Spain), Manchester (UK), Milan (Italy), Napoli (Italy), New Orleans (U.S.A.), 

Osaka (Japan), Oxford (UK), Paris (France), Phuket (Thailand), Pisa (Italy), Porto (Portugal), Rayong 

(Thailand), Reykjavik (Iceland), Rome (Italy), San Diego (U.S.A.), San Francisco (U.S.A.), Singapore, 

Tokyo (Japan), Torino (Italy), Toronto (Canada), andWollongong (NSW, Australia).    
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interested in for our purposes here.  That is, they can be considered as large, dense54 and 

cluttered55. 

The face-to-face interviews were conducted in the city of Bath, United Kingdom.  The city 

is relatively small, with an area of 11 square miles (28 km
2
).  The population of the city is 

approximately 100,000 inhabitants (as of 2009, the time of the study).  It is a major tourist 

centre of the region with over one million staying visitors and 3.8 million day visitors per 

year (B&NES council, 2008).  The city centre where the interviews were conducted is 

dense and cluttered. 

Choices of landmarks  

We gathered lists of landmarks from several lists published in research papers (e.g. 

Burnett, 1998) as well as ones provided in commercial pedestrian navigation systems (e.g. 

Nokia Maps 2.0).  We, then, compared and combined them resulting in a new collection 

of 50 landmark categories (see Appendix 2.1).     

4.3.4 Procedures and rating scales 

Procedures 

For the online version, participants were asked to think about actual journeys they had 

made for each navigational purpose and describe landmarks they used in those journeys 

together with the landmarks’ importance for that particular journey.  Each participant 

answered three parts of the questionnaire, corresponding to questions about using 

landmarks in pedestrian navigation for three purposes: commuting, questing and exploring.   

For each journey with a particular navigation purpose, each participant first identified: (1) 

a navigated area, (2) if they used landmarks, and (3) if such landmarks were in the physical 

space or they used landmarks on any guidance system, e.g. a map.  After that, they rated 

each of the 50 landmarks in our set by their importance as navigational aids for the journey 

on a 5-point scale, 1 being ‘not of use’, 2 being ‘use, not important’ and 5 being ‘use, very 

important’.  We also collected data on the timing of their use of each landmark.  Following 

                                                 

54 Dense space is one where there are relatively large numbers of objects and cues in the space (Carter & 

Fourney, 2005). 

55 In cluttered space, the number of objects is so great that it may obscure important landmarks or cues 

(Carter & Fourney, 2005). 
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May et al. (2003), we presented three choices of usage timing: before decision points, 

between points on the route, and both.  Participants were given opportunities to specify 

other kinds of landmarks used that were not included in our set. 

In the face-to-face interviews, each participant first identified which of the 3 purposes they 

had just been engaged in and then answered the questions only with respect to that purpose 

of navigation. 

Rating scales 

Responses from both online and face-to-face survey were used to calculate three rating 

scales: frequency (F), importance (I) and ranking (R) scores.   

The frequency score (F) is the number of times each landmark was used across responders 

for a particular navigational purpose.   

Frequency score =  (landmark usage frequency) 

For example, for the explore purpose, if the landmark type tourist attraction was used 41 

times, its frequency score is 41.   

Importance score (I) is a summation of weighted importance scores of each landmark 

across responders.  

Importance score = ( ( (not important rating) * 1) , ( (slightly important rating) * 2) , 

( (important rating) * 3) , ( (very important rating) * 4) ) 

For example, if the landmark type tourist attraction has received scores of 2, 8, 11, and 20 

for it being (1) used but not important, (2) slightly important, (3) important and (4) very 

important accordingly, its importance score is (2*1) + (8*2) + (11*3) + (20*4) = 131. 

A ranking score (R) is a summation of weighted ranked scores of each landmark across all 

respondents.  For this particular rating, participants subjectively chose seven important 

landmarks, regardless of the area they were navigating.     

Ranking score =  ( (Rank1*7) , ((Rank2*6) , (Rank3*5) , (Rank4*4) , (Rank5*3) , 

(Rank6*2) , (Rank7*1) ) 

For example, if there were 8, 7, 7, 1, 2, 1 and 0 respondents that gave a rank of 7 to 1 

respectively to the landmark type tourist attraction, its ranking score equals (8*7) + (7*6) 

+ (7*5) + (1*4) + (2*3) + (1*2) + (0*1) = 145. 
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4.3.5 Results  

The minimal set of important landmarks  

Table 4.2 shows top ranked landmarks in descending order of scores (see Appendix 2.3 for 

detailed rating scores).  Based on the overall ratings by both online and face-to-face 

participants, there are a few common landmarks that pedestrians use as cues to aid their 

navigation across all three navigation purposes.  Results suggest that the most important 

landmark is mall and market since it scores highly in all but one of the cells (i.e. the 

commuting purpose in the city in which we ran the interview sessions). 

Table 4.2 Side-by-Side Comparison of Top Ranked Landmarks (in descending order of scores) 

Purpose Top Landmarks  

(Global Rating) 

Top Landmarks  

(Global Ranking) 

Top Landmarks  

(of the city of Bath) 

Commute 

Mall and Market 

Traffic light 

Public transport 

Bridge 

Financial service 

Well-known shops / 

business  

Mall and Market 

Traffic light 

Public transport 

ATM 

Educational institute 

Bridge 

Monument and Memorial 

Quest 
Mall and Market 

Bridge  

Railway stations  

Tourist attraction 

Religious place 

Traffic light  

Restaurant  

Mall and Market 

Well-known shops / 

business  

Bridge  

Tourist attraction  

Hotels 

Religious place 

Restaurant 

Mall and Market 

Public transport 

River  

Religious place  

Bar and Pub 

Railway Station 

Monument and Memorial 

Explore Tourist attraction  

Hotels  

Mall and Market  

Bridge  

Monument and Memorial  

Religious place  

Public transport 

Tourist attraction 

Hotels  

Mall and Market 

Other unique landmarks 

Monument and Memorial  

Railway station 

Religious place  

Tourist attraction 

Railway station  

Mall and Market 

Monument and Memorial 

River 

Public transport  

Religious place 

Nonetheless, these top-ranked landmark categories might not be generalisable due to 

different morphologies of the surveyed cities.  Religious places provide a good example.  

Some cities contain hundreds of landmarks of this category, e.g. temples in Bangkok, that 

are highly visible and distinct from their environments, hence their high frequency of use 
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as landmarks by our respondents.  On the other hand, some other cities, e.g. London, 

contain hundreds of local churches which are not visually or structurally salient (cf. 

Klippel & Winter, 2005).  As a result, pedestrians did not select such landmark categories 

as cues for navigation in those cities. 

The other unique landmark category is frequently used in navigation but is not 

generalisable.  This category includes symbolic or iconic landmarks of a given city or 

famous chain stores that are located in strategic areas or at important decision points on the 

route.  Symbolic landmarks may be instances of the generic landmark categories, e.g. 

tourist attractions.  Famous chain stores could also be instances of more generic landmarks, 

e.g. restaurants.  Further work would be required to enable a mobile navigation aid to 

determine such examples in advance of use.  One potential approach may be to employ 

field assessment of each city for such landmarks (Burnett, 2001). 

The highest scoring landmarks for each navigation purpose were those that are part of the 

urban infrastructure rather than natural landmarks.  These high scoring landmarks, by their 

design although not necessarily by intention, possess the characteristics of good landmarks 

and their types and locations are useful as navigation cues for each purpose. 

We can see from the variability of participants’ ratings that the value of landmarks varies 

from one situation to another.  For example, tourist attractions offered little assistance to a 

quest journey while they were the main, if not sole, purpose of exploring.  According to 

Sorrows & Hirtle (1999), different types (i.e. semantic, visual and structural types) of 

landmarks are used for different navigational purposes.  Our findings here suggest that the 

same landmark may be used for different navigational purposes to a greater or lesser 

extent. 

It is worth noting that continuous objects, such as a river, were identified in our face-to-

face interviews as crucial to navigation.  While a visual navigation aid can readily 

represent such features, an auditory or tactile pedestrian navigation guide would struggle to 

indicate such landmarks clearly, more so even than the other kinds of landmarks 

considered.  This issue will require further investigation to clarify its potential for real 

world use. 

Qualitative data and other results  

Qualitative data from the face-to-face interviews revealed several interesting navigation 

patterns: 
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 For exploration, pedestrians generally have an intention to visit some culturally 

important landmarks.  These landmarks serve as their destinations.  Nevertheless, 

they have little idea what generic landmarks they would use to aid their navigation 

to reach such destinations.  Hence, they decided not to use landmarks as navigation 

cues or confirmation that they were on the right path.  Instead, to reach destination 

landmarks, they relied on directional and textual information (e.g. street names). 

 Some explorers navigated blindly by following another explorer (e.g. a friend who 

excels in navigation).  These pedestrians were not able to remember any landmarks 

along the route except destination landmarks.  Although they remembered these 

destination landmarks, they were not able to associate their locations with the 

whole route. 

 About 60% of explorers who used maps tended to use them continuously 

throughout their journey and depended entirely on them. 

 Most of the “questers” stated that they would first study the route and try to 

memorise directions and landmarks leading to the destination.  Once they embarked 

on the journey, they would try to recall the route and associate landmarks seen in 

physical space with landmarks in their memory. 

Results from both the online survey and face-to-face interviews also suggest the following: 

 Commuters made little use of landmarks but may use a few important landmarks 

for navigational choices, particularly in homogeneous urban environments. 

 From the online survey, the average number of landmarks used per journey for 

different navigation purposes was as follows: 6.5 (commuting), 12.47 (questing), 

and 11.04 (exploring).   From the face-to-face interviews, the average number of 

landmarks was: 1 (commuting), 4.42 (questing) and 10.4 (exploring).  Based on 

routes taken by each interviewee, we found that factors influencing these numbers 

include: differences in length of journey (i.e. a quest is normally shorter than an 

exploratory journey); and differences in the number of destinations (i.e. a quest 

normally involves one destination while an exploration involves one or many 

destinations).   
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 The number of landmarks used per journey for the quest and exploratory purposes 

may vary depending on the nature of routes and areas.  For example, some large 

cities contain a wide range of different landmarks that may be distant from each 

other, while other smaller urban areas contain few landmark categories that are 

more proximally located in the immediate vicinity.  To identify factors influencing 

these patterns, further study is required. 

 All responders across all navigational purposes stated that they have used 

landmarks both before decision points (to make navigational choices) and along the 

route (to confirm navigational decisions).  These findings are congruent with 

previous research (e.g. Michon & Denis, 2001; May et al., 2003).  Interestingly, 

most of the landmarks used for commute and quest purposes are located near 

decision points whilst landmarks used for explore can be both near decision points 

and scattered along the route.  

For the descriptive analysis of responses on landmark’s importance and usage from both 

online and face-to-face respondents, see Appendix 2.2. 

4.3.6 Limitations of the study 

In order to collect descriptive data from large samples, we decided to carry out a survey 

research using both questionnaires and interviews.  Hence, the study presented in this 

section is based on subjective ratings as opposed to field study observations.  Advantages 

of this environment independent setting technique include ease of conduct and relatively 

low cost (Kjeldskov & Graham, 2003).  However, we were aware that using surveys, data 

collected may be incomplete or unreliable because respondents: being reluctant to answer; 

not remembering details of their journeys; trying too hard to be helpful or to look smart; or 

just simply because they were too busy that they did not carefully answer the 

questionnaires.   

In addition to the above potential flaws, there were several limitations as follows: 

 Sample subjects of questionnaires were not entirely random.  They were among 

highly graduated peers and middle class population who use English as their first or 

second language.  Consequently, results reported here may suffer from sample bias. 

 The set of landmarks provided in our questionnaires was derived from several 

previous studies, which categorised them subjectively based on participants’ 
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responses on landmark usage and characteristics.  Hence, we are faced with mixed 

levels of landmark abstraction.     

 There is no concrete measurement of variability in our respondents’ spatial abilities 

that might contribute to the results. 

 The location for face-to-face interviews did not contain all 50 landmarks in our 

reference set.  Thus, results from the face-to-face sessions could be biased since 

some landmarks could never be chosen.   

 There were an unbalanced proportion of answers from the online survey (61% from 

Asia and 33% from Europe).  The face-to-face interview sessions were in a 

European city.  While interviewing in a single city reduces the generalisability of 

the interview results, it facilitates comparison across individual respondents in one 

specific locale where we expect to conduct further work, and provides some 

complementarity to the more distributed, and more Asian, online survey results. 

4.3.7 Conclusion   

Despite the abovementioned limitations, we believed that this survey study has yielded 

meaningful results on how people generally use landmarks in different urban areas.  The 

landmark study’s findings could be useful for designers in suggesting contextually 

prioritised landmarks for any-sensory-based navigation applications. 

The survey results would be used to address RQ2 as well as to form a basis for our next 

study. 

In response to RQ2.1 Do pedestrians use landmarks differently for the 3 different 

navigational purposes of commuting, questing and exploring?, our survey suggests that 

pedestrians with different navigation purposes use slightly different sets of landmarks 

while different cities have different culturally unique landmarks.   Landmarks are very 

important for questing and exploration purposes.  There are common important landmarks 

like malls and markets, and religious places, bridges, and railway stations in cities across 

the globe.  The importance of other types of landmarks as navigation cues is influenced by 

both the specific morphologies of the cities and the navigation purposes.  Each city usually 

has at least one unique ‘other’ landmark which is called by its unique name rather than 

being subsumed in a landmark category. 
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Usage patterns are also different for different navigation purposes.  The number of 

landmarks used and frequency of use are very low for commuting, with the vast majority 

of commuters not using them at all.  Pedestrians use more landmarks and more frequently 

for questing and exploring purposes.  For these two purposes, participants described 

different information processing models.  With questing, which refers to traveling from a 

starting point to an unfamiliar destination, most people would try to look at the map and 

memorise the route and landmarks before they embarked on their journey.  On the other 

hand, explorers continuously matched landmarks on maps with landmarks in physical 

spaces throughout the course of navigation. 

With respect to RQ2.2 When do pedestrians use landmarks during navigation? all our 

participants across all 3 navigational purposes stated that they used landmarks both before 

decision points (to make navigational choices) and along the route (to confirm navigational 

decisions).  These findings are consistent with previous research (e.g. May et al., 2003; 

Lovelace et al., 1999; Michon & Denis, 2001).  Results from our study informed that most 

landmarks used, if any, for commuting and questing purposes were located near decision 

points while landmarks used for exploring were distributed along the path of travel. 

In response to RQ2.3 What are the most important landmarks for each navigation 

purpose? we have demonstrated the most important landmarks for different navigation 

purposes in Table 4.2 (for detailed rating scores, see Appendix 2.3).      

4.4 A lab-based comparison experiment: Comparing two 

vibration techniques for landmark representation   

4.4.1 Overview 

Following the identification of a minimal set of important landmarks, the next step is to 

investigate their tactile representation.   

At this particular point in the research program, we needed to carefully choose appropriate 

representation techniques that make one spatial information type distinguishable from 

another.  Namely, the representation techniques were required to afford learnability and 

differentiability among tactically represented landmark signals themselves as well as with 

the direction signals.  The designed signals should not only allow the user to distinguish 

different sensations but also recognise the meaning of those various signals being emulated 

(Sharp et al., 2007; 2011). 
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According to suggestions, there are two approaches in such representations, either to use 

metaphorically developed symbols (i.e. symbolic mapping) or arbitrarily assign 

associations of chosen signal patterns and their meaning (i.e. abstract mapping) (MacLean, 

2008).    

The abstract approach focuses on manipulating a stimulus’ characteristics such as 

frequency and waveform.  The mapping involves the arbitrary association of a set of data 

to their manipulated vibration signals.  A few examples of the abstract approach exist in 

studies of signal differentiability & recognition (MacLean & Enriquez, 2003; Brown et al., 

2005; Van Erp & Spapé, 2003; Ternes & MacLean, 2008) and meaning recognition 

(Enriquez et al., 2006).  Results from these studies informed researchers about determining 

factors for differentiability such as frequency (MacLean & Enriquez, 2003) and evenness 

(Ternes & MacLean, 2008), but not about meaning association.   

Unlike the abstract approach, symbolic mapping is the mapping of a limited set of data to 

their symbolically associated vibration signals, i.e. semantic association of stimuli with 

known metaphors.  For example, Chan et al. (2005) designed a symbolic tactile set in 

which signal patterns were associated with heartbeat and finger-tapping metaphors.  The 

heartbeat metaphor was used to indicate the urgency situation (slow – fast); the finger-

tapping was used to indicate the ‘waiting’ status.   

If we were to map landmarks using a symbolic approach, appropriate metaphors would 

require investigation.  For example, it might be possible to draw on a shape metaphor, with 

each landmark signal represented by a simplified form of its shape.  However, such an 

approach would require a different hardware layout, number of actuators and actuator 

placement (e.g. Bach-y-Rita et al., 1998) from the waist belt approach adopted in this 

research.  In addition, the numerous landmarks studied in research projects and used in 

commercial systems are not systematically classified, are highly diverse and are often 

poorly differentiated.  Unlike a discrete set of directions, a landmark data set could be large 

and arbitrary.  As a result, signal patterns for landmarks and their meaning associations are 

effectively arbitrary.  All these constraints suggest an abstract approach to extending our 

tactile directional representation technique to include the tactile representation of 

landmarks.  Nevertheless, this abstract approach requires users to memorise and 

understand vibration patterns and their associations and later recall them.  Perception of 

these arbitrary signals is expected to be gained through explicit learning (Garzonis et al., 

2009).  In other words, we asked users to use their sense in a manner that does not happen 
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naturally.  In a way, an abstract mapping approach introduced an entirely different concept 

of landmark representation from that of directions.   

As there was no reported study that attempted to provide information presenting different 

approaches, we took the opportunity to evaluate and compare the following two abstract 

alternatives. 

To create a distinguishable and learnable set of abstract tactile stimuli, researchers (Chan et 

al., 2005; Van Erp & Spapé, 2003;  MacLean & Enriquez, 2003; Tan et al., 2003; Brown et 

al., 2005; Enriquez et al., 2006; Ternes & MacLean, 2008) have manipulated stimuli’s 

frequency, amplitude, waveform and rhythm.  Results suggested those tactile signals’ 

physical characteristics such as frequency (MacLean & Enriquez, 2003), tempo (Van Erp 

& Spapé, 2003) and note length (Ternes & MacLean, 2008) as well as signal’s qualitative 

characteristics like level of intrusiveness (Van Erp & Spapé, 2003) and evenness (Ternes & 

MacLean, 2008) were primary to tactile signals’ distinguishability.  We decided that the 

latter two qualitative characteristics are too intangible and not clearly described.  The 

analysis of the abovementioned related work has suggested that a technique of 

manipulation of tactile signal duration (i.e. note length & tempo) on a single actuator to 

create a variety of rhythms provides effective results.  Consequently, we chose the 

heuristic tactile rhythms proposed by Ternes & MacLean (2008) as the first assessed 

alternative of this comparative study.  The stimuli set contain 21 signals; the set will be 

discussed in more detail in Section 4.4.5.  

Another abstract technique that may help the users of a tactile navigation system 

distinguish direction from landmark signals is to introduce discontinuity.  Having 

motivated our objective of investigating representations of direction and landmark type 

with the waist belt, a technique to introduce discontinuity had to be localised to the waist 

area.  Since any directional signal is generated on one actuator, discontinuity may be 

achieved by increasing the number of contact points on the body (Schiffman, 1976), e.g. 

using a combination of two or more actuators (Loomis & Lederman, 1986).  Although 

proposed, this technique has not previously been investigated; therefore, in this study we 

examined the use of two actuators to create unique tactile stimuli as the 2
nd

 assessed 

alternative.  

The design challenges also include the creation of a usable set of tactile icons to be 

displayed on a device when rendering size is limited (MacLean, 2008) and human tactile 

perception capacity is restricted (Schiffman, 1976).  An approach to the tactile 
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representation of landmarks therefore requires two steps: the identification of a limited set 

of appropriate landmarks and the selection of appropriate representation techniques.  The 

number of unique landmarks that could be represented is very large but both Chan et al. 

(2005) and Gallace et al. (2006a) have suggested that the optimum number is seven.  In the 

previous section, we identified small sets of seven important and generalisable landmark 

types for different navigation purposes.   We use the set of Bath’s top landmarks here (see 

Table 4.2).  Specifically, landmarks used in this study includes: mall and market, railway 

station, tourist attraction, public transportation, monument and memorial, bridge56 and 

Bath Abbey57. 

To summarise, this comparative study investigated the following tactile landmark 

representation techniques: (1) manipulating the signal rhythms (Ternes & MacLean, 2008), 

and (2) increasing the number of actuators used to display information (Loomis & 

Lederman, 1986).  We refer to the two techniques as the single-actuator and dual-actuator 

techniques respectively.  We evaluated novel tactile representation techniques for the 

landmarks, both alone and in combination with the directional signals.  

4.4.2 Basis for the study: underlying theories 

MRT and Prenav model  

For this particular experiment, we drew our expectation upon two underlying theories, 

MRT (Wickens, 1980; 1984; 1992; 2002) and Prenav, an integrated model of human 

navigation (Van Erp, 2007) (see Chapter 2 Section 2.4.1). 

During the experiment, our participants would be asked to specify felt landmarks with and 

without the presence of direction signals.  With direction signals (using a symbolic 

mapping technique), signals’ meaning was believed to be recognised easily in a near-

automatic manner (Klippel et al., 2005) whilst with landmark signals (using an abstract 

mapping approach), meaning was expected to be memorised during a considerable amount 

                                                 

56 The original list derived from interview sessions in Bath contains river which we considered not practical 

for tactile displays.  We have replaced this landmark category with bridge which is an iconic non-continuous 

infrastructure situated just above the river in the real setting.  

57 The original list contain religious place.  We simply replace this category with a unique religious 

landmark of the city, the Bath Abbey. 
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of training and later recalled (Garzonis et al., 2009).  According to MRT, it assumes that 

the cognitive resource required for processing both the recognition of direction patterns 

and the recall of landmark signals would be the same.  Although the MRT indicates the 

interference effect at the inter-sensory level, we predicted that interference would occur in 

our experiment because the two representation approaches demanded different levels of 

cognitive effort.  This might result in a decrease in users’ ability to recognise and recall 

signal meanings and associations.   

Specifically, we assumed that the use of our tactile navigation display prototype follows 

the information processing loop of the Prenav model, which contains the circlet processes 

of sensation-perception-decision-action and back to sensation via the environment or the 

display (see Figure 2.5).  In other words, our participants would sense an instance of spatial 

signals via the stimulated modality, the skin.  Then, under the influence of cognitive 

resources such as memory and attention capacity, information would be further processed 

and interpreted into a percept.  A percept may be stored in memory and may lead to a 

decision, e.g. to turn or which route to take, and eventually an action following such a 

decision.  Then information from the environment or the system display will feed the next 

stimulus for the sensation process and so on.    

A specification of Prenav is the existence of two shortcuts: the sensation->action and the 

perception->action shortcuts.  The shortcuts bypass the cognitive ladder processing, i.e. 

perception->decision, hence, decreasing reaction time and mental effort.  This 

phenomenon occurs when a sensation or a percept directly evokes an action that does not 

involve a conscious decision.  Humans are able to react to stimuli quickly in this automatic 

manner because we possess innate reflexes and our sensory motor control for some tasks is 

well-trained (Van Erp, 2007).  For example, if we have seen the visual representation of a 

green man at the pedestrian light, we cross the road; if a driver sees a red traffic light, they 

decelerate.  It is the result of highly-trained skilled behavior of automated if-then rules.  

According to Prenav, the display that enables the two shortcuts is considered intuitive.               

We expected that with the given training duration in the experiment, the presentation of 

directions would enable the shortcuts while the presentation of landmarks would require 

the full processing loop because it required the users to memorise signals’ meaning 

association. 
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Dual Coding theory 

The Dual Coding theory emphasises the powerful mnemonic effects of visual and verbal 

imageries on memory and learning (Paivio, 1986).  The theory postulates that the human 

cognition consists of two subsystems, one processing pictorial and the other dealing with 

linguistic information.  Whilst the two subsystems can be activated independently, the 

interrelations between the two systems allow simultaneous process, i.e. dual coding of 

information (Dual Code™, 2011).   

To accommodate effective signal training sessions, we followed the Dual Coding theory by 

providing a set of images and a label for each vibration stimulus.   

NASA task load index (NASA TLX) 

To measure users’ workload (i.e. cognitive effort), we use a Task Load Index (TLX),  a 

subjective workload assessment tool developed by the United States government’s 

National Aeronautics and Space Administration (NASA) (see Hart & Staveland, 1988).  

NASA TLX provides an overall workload score based on average ratings of six subscales 

including Mental Demands, Physical Demands, Temporal Demands, Own Performance, 

Effort and Frustration.     

Following the example of a modified TLX in Fairclough (1991), we modified the original 

TLX so that it was suitable for measuring workload aspects of a wearable device being 

used for navigation tasks (see Appendix 4).     

4.4.3 Research questions  

This lab-based comparative study of tactile representation techniques for landmarks on a 

waist-belt wearable device was aimed at addressing the following questions: 

RQ4: How can we represent spatial information via the chosen device?  

Specifically, which representation technique should be used for landmarks?  

 

Additionally, we would like to investigate the maximum threshold of human cognitive 

capacity for spatial information.  Namely, whether users were able to perceive both 

direction and landmark signals effectively; if so, how many patterns they were able to 

memorise and recall after a considerable training duration. 
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4.4.4 Method: equipment and participants 

Equipment 

The same equipment and setting as in Chapter 3 was used (see Chapter 3 Section 3.3.3 and 

Figure 4.1).   

 

Figure 4.1 The Waist Belt Prototype (motor number 3 is the front centre actuator.) 

Participants  

There were 20 participants: 10 males and 10 females with an average age of 29 (SD=4.94, 

range 20-40 years).  None of the participants reported irregularity with tactile perception 

around their waist at the time of the study.  Participants’ average waist size was 78 cm 

(SD=9.93, range 62-99 cm).  We established from pre-test questionnaires that all 

participants understood the concept of “direction” and “landmark” and had no difficulties 

identifying them.  Each of them received a five British pounds monetary incentive at the 

end of the experiment. 

4.4.5 Tactile stimuli 

The single-actuator technique for landmarks  

For the single-actuator technique, we used a set of 2-sec rhythmic stimuli proposed by 

Ternes & McLean (2008).  The rhythmic tactile stimuli set was designed by using 

Eliminative heuristics and constraints58, a principled validation methodology based on 

                                                 

58 Eliminative heuristics and constraints (Ternes & MacLean, 2008): 

E1: All notes have the same amplitude and frequency. 

E2: A gap is required between successive notes. 

E3: Overall duration is 2 seconds. 

E4: Each base 500ms pattern should be repeated four times to create rhythm. 

E5: The shortest note is 1/16 (31.25ms). 

E6: There are five note lengths: whole (500ms), ½ (250ms), ¼ (125ms), ¾ (375ms), and 1/8 

(62.5ms).  Each includes 62.5ms off-time, except the 1/8 note that include 31.25ms off-time. 
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perceptual optimisation.  Each stimulus in the set contains a number of pulses with varying 

duration of note lengths grouped together.  There are five note lengths: whole (500ms), ½ 

(250ms), ¼ (125ms), ¾ (375ms), and 1/8 (62.5ms).  Each includes 62.5ms off-time, except 

the 1/8 note that include 31.25ms off-time.  Rhythm is then created as a repeated monotone 

pattern of variable-length notes, arranged relative to a beat (4/4) and played at a set tempo, 

manipulated by changing the length, number, or gaps between notes.   

Positive selection heuristics59, which are subjective rules that combine short and long notes 

(including gaps between them), allowed the generation of distinguishable tactile patterns.  

Figure 4.2 demonstrates the set of Ternes & MacLean’s rhythmic tactile stimuli containing 

21 signals.  For example, a 2-second short stimulus contains a number of repetitions of ¼ 

notes (group 1 in Figure 4.2); a 2-second long stimulus contains repetitions of ¾ notes 

(group 2 in Figure 4.2); a 2-second mixed stimulus contains repetitions of ¼ and ½ or ¾ 

notes (group 3 in Figure 4.2).   

Although signals have been systematically designed, tested and proved to be perceptible 

and distinguishable, Terne & MacLean’s participants experienced vibrations through their 

hands and a stylus in the original studies.  We were aware that different body locations 

have different sensitivity thresholds.  In order to make sure that these stimuli were still 

distinguishable when displayed on the waist area, we ran a pilot session with four 

participants.   

Results found that five out of 21 rhythms were clearly distinguishable (signals S1 to S5 in 

Figure 4.3).  We further followed the positive selection heuristics by testing a combination 

of two of the five rhythms.  As a result, signal S6 is a combination of S2 and S3; Signal S7 

is a combination of S5 and S2.  The final set of the most distinguishable rhythms is shown 

in Figure 4.3.  Unlike the original illustration (Figure 4.2), each bar in our set represents a 

1000ms stimulus, to be repeated two times as a 2 second stimulus.  Each stimulus would be 

displayed on a single actuator. 

                                                 

59 Positive selection heuristics (Ternes & MacLean, 2008): 

S1: Short notes – containing ¼ notes and gaps (group 1 in Figure 4.2) 

S2: Long notes – containing ½, ¾, whole notes and gaps (group 2 in Figure 4.2) 

S3: Mixed short and long notes – containing at least one ¼ note, other long notes and gaps (group 3 

in Figure 4.2) 

S4: Very-short replace short notes – replacing ¼ with 1/8 notes (group 4&5 in Figure 4.2) 
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Figure 4.2 The rhythmic tactile stimuli set.  Each row represents a 500ms bar, to be repeated 4 times as a 2-sec 

stimulus.  Each note contains vibration on-(grey) and off-time (white) that separates it from the next. (Ternes & 

MacLean, 2008) 

 

Figure 4.3 Single-actuator Landmark Signals. Each row represents a 1000ms bar, to be repeated 2 times as a 2-

second stimulus.  Each note contains vibration on- (grey) and off-time (white) that separates it from the next. 

The dual-actuator technique for landmarks  

In contrast to the single-actuator technique which used different vibration patterns to 

represent different landmarks, our dual-actuator technique used the same vibration pattern 

for all landmarks.  The pattern used was the same as that for directional signals: a 1.2 

second stimulus consisting of 12 repetitions of a 50-millisecond pulse and inter-pulse.  The 

waist belt contains eight actuators; the different landmarks were represented by different 
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combinations of actuators simultaneously providing the signal.  Schiffman (1976) 

suggested that increasing the contact area of tactile stimuli would result in better 

perception and distinguishability among different types of information.  Loomis & 

Lederman (1986) suggested that an effective approach to this would be to use multiple 

contact points; however, an optimum number was not suggested.   

Our pre-pilot testing found several possible combinations to be indistinguishable from each 

other, e.g. six and seven adjacent actuators.  Hence, we omitted these alternatives from 

further study.  Then we ran a pilot study with four participants using the remaining 

combinations to find the optimum number of simultaneously activated actuators to 

represent our seven landmarks.  During the pilot run, meaning association was not 

provided.   

Pilot’s tested alternatives included: (see Figure 4.1 for reference of actuator number) 

(a) Pair of non-adjacent actuators, e.g. actuator pair 2-4  

(b) Pair of adjacent actuators, e.g. actuator pair 2-3 

(c) Three non-adjacent actuators, e.g. actuators 2-4-6 

(d) Three adjacent actuators, e.g. actuators 1-2-3 

(e) Four non-adjacent actuators, e.g. actuators 2-4-6-8 

(f) Five adjacent actuators, e.g. actuators 1-2-3-4-5   

Using NASA TLX, we measured mental demand, physical demand, temporal demand, 

effort and level of frustration.  We also recorded localisation accuracy performance.  

Subjective distinguishability (both among the landmark signals themselves and from 

directional signals) and preference were gathered through questionnaires. 
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Overall results60 from the pilot session suggested that the best arrangement was two non-

adjacent actuators.  This alternative received high scores on distinguishability and accuracy 

performance, and low scores on mental, physical and temporal demand and effort required.  

It should be noted here that for the waist belt device with eight actuators, the more 

actuators that were simultaneously activated, the more confused the participants were.  

For ease of referring to the angles the belt is in the form of a circle; the final list of actuator 

pairs included: (see Figure 4.1 for referents of actuator numbers) 

 180º actuator pairs (3-7, 2-6, 1-5 and 4-8); 

 90º  actuator pairs (1-3, 2-4, 3-5, 4-6, 5-7, 6-8, 7-1 and 8-2);  

 135º actuator pairs (1-4, 2-5, 3-6, 4-7, 5-8, 6-1, 7-2 and 8-3). 

Directional stimuli 

 

Figure 4.4 Direction Signals. A row represents a 1200ms bar, 12 repetitions of signals at 50- millisecond pulse 

(vibration on-grey) and inter-pulse (vibration off- white) duration, producing a 1.2-second stimulus. 

Each directional tactile stimulus involved the actuation of one motor and consisted of 12 

repetitions of signals at 50-millisecond pulse and inter-pulse duration, giving a 1.2 second 

stimulus (see Figure 4.4).  The eight egocentric directions represented are: right, half right, 

straight, half left, left, sharp left, back and sharp right.  Each actuator represented a 

direction based on its location around the participant’s waist, with straight represented by 

                                                 

60 Descriptive statistics revealed the following: 

Accuracy: The actuator pairs, both adjacent and distant ones, afforded high localisation performance 

in conditions both with and without the presence of directional signals. 

   NASA TLX revealed the following: 

Mental, physical, temporal demand: All alternatives received nearly equal scores.  

Effort: Participants indicated the more number of actuators, the higher the level of effort required.  

Frustration: The more number of actuators, the higher the level of frustration.  

   Subjective ratings revealed the following: 

Distinguishability: The pair of non-adjacent actuators received the highest subjective rating.  

Preference: Participants preferred the pair of non-adjacent actuators. 
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the front centre actuator (see Table 4.3).  For details on the design, generation and use of 

the directional signals see Chapter 3. 

Table 4.3 Directional Stimuli 

Stimuli 

code 

Vibrated Actuator 

Number (see Figure 4.1 

for number reference) 

Direction 

B1 1 Right 

B2 2 Half right 

B3 3 Straight 

B4 4 Half left 

B5 5 Left 

B6 6 Sharp left 

le 

B7 7 Back 

B8 8 Sharp right 

4.4.6 Procedures 

Experimental conditions 

The experiment had two independent variables: (1) representation technique (the single- or 

dual-actuator techniques) and (2) the presence or absence of directional signals.  The 

dependent variables were response time (in ms) and accuracy performance.  Response time 

refers to the onset of the stimulus to the onset of the response, including the movement 

time.  The experiments were divided into two stages with five conditions (see Table 4.4), 

two of the stage-1 conditions being repeated in stage 2.  Each participant ran all conditions.  

In the first stage, we measured distinguishability, learnability and users’ preferences.  The 

first condition was a control condition in which only directional signals were presented.  In 

conditions 2 and 4, only landmark signals were presented.  In conditions 3 and 5, we 

presented directional signals together with landmark signals. 

In stage 2, we measured the short term memorability of each type of signal.  

Approximately 30 minutes after participants finished conditions 2 and 4, we interviewed 

them and asked them to complete a set of questionnaires.  They then repeated conditions 2 

and 4.  Both response time and accuracy performance were measured and compared with 

previous results in the first stage. Since our focus for the study was on landmark 

representation rather than directional representation, we did not repeat C3 and C5 during 

stage 2. 
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Table 4.4 Experimental Conditions 

Condi

tion 
Stage 

Direction Landmark 

Single-

actuator 

Landmark 

Dual-

actuator  

Description 

C1 1    Direction only 

C2 1    Landmark (single-actuator) 

C3 1    
Direction + Landmark           

(single-actuator) 

C4 1    Landmark (dual-actuator) 

C5 1    
Direction + Landmark            

(dual-actuator) 

C2r 2    Landmark (single-actuator) 

C4r 2    Landmark (dual-actuator) 

 

Hypotheses 

For this lab-based comparative study of tactile representation techniques for landmarks on 

a wearable device, there were five hypotheses. 

The vibration signals for directions are symbolically straightforward.  They involve 

symbolic mapping of a limited set of directions to their respective vibration signals on 

corresponding parts of the body.  In this and other research (e.g. Van Erp et al., 2005), 

there was an absolute point vibration for each designated direction on a distributed 

placement of actuators around the waist.  On the contrary, the representation of landmarks 

used the abstract approach which required users to memorise signal patterns and their 

meaning associations in an effectively arbitrary manner.  Hence, it was hypothesised that 

learning time required for landmark representations would be significantly longer than 

those for directions (H1) as participants have to learn the association between the signal 

and what it represents. 

Previous research (e.g. MacLean, 2008; Tan et al., 2003) has suggested that humans can 

recognise 4-7 abstract tactile patterns and associate them with predefined meanings.  We 

hypothesised that participants will be able to recognise landmarks with at least 80% 

accuracy in at least one non-control condition, either in condition 2 or 4 (H2).  Based on 

the same previous research, we predicted that participants will be able to distinguish 

landmark from directional signals in conditions 3 and 5 (H3). 
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However, in conditions 3 and 5 where we present directional signals together with 

landmark signals, we hypothesised that the presence of direction signals will reduce 

participants’ performance in recognizing landmark patterns (H4).  This is due to the 

constraints on human memory and attention capacity (Schiffman, 1976).  In both 

conditions, participants had to attend to directional signals then to landmarks and then 

provide responses.  

While many researchers (e.g. Tan et al., 2003; Ternes & MacLean, 2008) have concluded 

that using different signal rhythms will effectively make stimuli distinguishable, the 

combination of two simultaneous actuator vibrations may make the iconic stimuli for 

landmarks unique (Loomis & Lederman, 1986; Schiffman, 1976) and clearly 

distinguishable from directional stimuli.  With the single-actuator technique, signal 

patterns could be generated on an actuator that has just generated a direction signal, so 

participants might suffer from tactile adaptation, i.e. continued pressure stimulation that 

may result in a decrease of sensory experience (Schiffman, 1976).  As a result, they might 

fail to distinguish between different signal types.  Using two actuators to represent 

landmarks introduces discontinuity (Schiffman, 1976) that could help to make landmark 

signals perceptibly different from direction signals. Hence, we predicted that the dual-

actuator technique would afford better performance than the single-actuator technique 

when representing landmarks on a waist-belt tactile display that provides both directional 

and landmark information (H5). 

Experimental Procedures 

Training – Measuring learnability 

Participants were given a 4-phase training exercise to learn the signal patterns and their 

associations (assigned, counterbalanced across participants, by the experimenter).  

According to Sanderson et al. (2006), training with mnemonics
61

 lowers the range of 

confusion and enhances training effectiveness.  In a related study (Edworthy & Hards, 

1999), researchers reported that verbal labels worked better than graphic images.  We 

decided to provide both labels and images in order to magnify the mnemonic effect 

(Paivio, 1986).  To summarise, during training, each vibration stimulus was given with the 

                                                 

61 Mnemonics refer to the ability to see visual description corresponding to the stimulus (Sanderson et al., 

2006) according to the prediction of the dual-coding principle (Paivio, 1986; Sadoki & Paivio, 2004).     
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visual display of a label as well as a set of images.  Images and labels used during the 

training are illustrated in Figures 4.5 to 4.11 for seven landmarks; and in Figure 4.12 for 

eight directions.  

 

Figure 4.5 Landmark mnemonic for an iconic religious place in Bath, the Bath Abbey 

 

Figure 4.6 Landmark mnemonic for mall and market 
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Figure 4.7 Landmark mnemonic for tourist attractions 

 

 

Figure 4.8 Landmark mnemonic for bridge 
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Figure 4.9 Landmark mnemonic for monument and memorial 

 

 

Figure 4.10 Landmark mnemonic for public transportation 
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Figure 4.11 Landmark mnemonic for railway station 

 

 

Figure 4.12 Direction mnemonics for eight egocentric directions 

The 4-phase training consisted of display-memorise-trial-test phases.    
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In phase 1 – display, each vibration stimulus was generated twice along with its associated 

spatial mnemonic, i.e. a label and images of a landmark category.  Phase 1 ended once all 

stimuli in the set had been presented.  In phase 2 – memorise, participants were allowed to 

memorise the signals for four minutes.  Participants were presented with images of 

directions or landmarks on a tablet PC screen.  By clicking with a stylus on direction and 

landmark mnemonics on the screen, the system generated associated vibration signals.  In 

phase 3 - trial, vibration signals were generated in a random order.  For each generated 

signal, participants had to select the associated direction or landmark image according to 

what they had learned in phase 2.  They received feedback whether it was correct for every 

selection that they made.  Signals were repeated until the correct selection was made.  

Finally, in phase 4 – test, participants were presented with vibration signals and again they 

selected the associated direction or landmark.  Phase 4 was similar to phase 3 but 

participants were given a performance score only at the end of the trial of either all eight 

direction or all seven landmarks.  Feedback was in a form of percentage score of correct 

answers.  Training stopped when participants scored over 71% or had been through 4 

repetitions of the entire 4-stage process, whichever came first.   

(Each participant then completed all five conditions in stage 1 and repeated conditions 2 

and 4 in stage 2.) 

Stage 1 – Measuring performance and distinguishability 

In stage 1, we investigated whether performance with the two tactile representation 

techniques for landmarks differed in terms of learnability and distinguishability.  The 

system generated tactile stimuli and participants identified perceived directions or 

landmarks by selecting corresponding mnemonic icons on a touch screen tablet PC.  We 

measured: perceived directions, perceived landmarks and response time. 

All participants started with C1.  The order of experimental conditions C2-C5 was 

counterbalanced.  Vibration signals in all conditions were generated in a pseudo-random 

order.  In addition, landmark associations with vibration signals were systematically 

shuffled.  Vibration signals and meaning associations were counterbalanced amongst 

participants. 

In the control condition C1 (direction only), participants experienced 3 repetitions of 8 

directions.  In C2, C3, C4, and C5, participants experienced 21 signals (i.e. 7 landmarks x 

3 repetitions) for each condition.  Repetitions were introduced to mitigate the possibility 

that participants might make correct responses by chance. 
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In C2 and C3, the tactile single-actuator technique was used to generate landmark signals.  

In C2, only landmark stimuli were generated.  In C3, the system generated a random 

directional signal, paused for 2 seconds, and then generated a landmark signal on the same 

actuator. 

In conditions C4 and C5, the dual-actuator technique was used to generate landmark 

signals.  In C4, landmark stimuli were generated on pairs of actuators.  Of the seven 

landmark signals, four were generated using the 180º distance pairs.  The other three pairs 

were a mix of pseudo-random 90º, and 135º pairs, counterbalanced on the left and the right 

sides and front and back of the body.  We randomised the non-adjacent pairs and sought 

the optimum distance that provided the best performance.  In C5, the system generated a 

random directional signal, paused for 2 seconds, and then generated a landmark signal on a 

pair of actuators. 

Each stimulus was presented only once.  When each tactile stimulus had been generated, 

participants were required to indicate (as “quickly and accurately” as they could) to which 

direction or landmark they thought it corresponded, by selecting one of the associated 

mnemonic icons on the tablet PC.  The computer logged response time.  Each session was 

followed by a short questionnaire capturing subjective data on distinguishability and 

learnability.  When participants had finished all five conditions, they were asked to answer 

questions comparing the single- and dual-actuator techniques.  They were also asked to 

reflect on their experiences with tactile communication.  The final questionnaire took 

approximately 5-10 minutes to complete. 

Stage 2 – Measuring memorability 

In stage 2, we aimed to compare the two tactile representation techniques for their short 

term memorability.  Stage 2 took place after participants completed distraction tasks, i.e. 

answering a questionnaire and discussing their experience of the experiment, 

approximately 30 minutes after they had been exposed to each type of landmark vibration 

stimuli. 

Participants were asked to repeat conditions 2 and 4 in the same order that they had carried 

them out in stage 1.  In each condition, each stimulus was presented only once.  When each 

tactile stimulus had been generated, participants were required to indicate (1) the 

associated landmark by selecting an icon on the tablet PC and (2) their level of confidence 
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in their answer on a 1 to 5 likert scale (1 being very unconfident and 5 being very 

confident).  The computer also logged response time. 

4.4.7 Results    

Learnability  

Information gathered during the 4-phase training session was used to analyse signals’ 

learnability.  Figure 4.13 demonstrates learnability effort required by three different 

representation techniques.  At a glance, the charts show that participants spent significantly 

more effort to learn landmarks than to learn directions.  They spent significantly higher 

average number of rounds, longer average time and higher number of training signals. 

 

Figure 4.13 Training effort requirements of the three representation techniques 

Tables 4.5, 4.6 and 4.7 present quantitative results on learnability in each phase in terms of 

average number of rounds, average number of signal trials, and average training duration. 
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Table 4.5 Training requirements: average number of rounds 

Training phase Direction 
Single-

actuator 

Dual-

actuator 

Phase 1 1.20 1.65 1.65 

Phase 2 1.05 2.40 2.05 

Phase 3 1.00 1.00 1.00 

Phase 4 1.05 2.55 2.15 

Total 4.30 7.60 6.85 

 

Table 4.6 Training requirements: average number of signals 

Training phase Direction 
Single-

actuator 

Dual-

actuator 

Phase 1 10 12 12 

Phase 2 15 54 61 

Phase 3 8 7 7 

Phase 4 8 18 15 

Total 41 91 95 

 

Table 4.7 Training Requirements: Average Duration (min:sec) 

Training phase Direction 
Single-

actuator 

Dual-

actuator 

Phase 1 00:45 00:56 01:01 

Phase 2 00:36 01:26 01:38 

Phase 3 00:39 01:09 00:55 

Phase 4 00:39 00:45 00:39 

Total 02:40 04:17 04:14 

A repeated-measures ANOVA (sphericity assumed) indicated that overall training 

requirements for all representation techniques were significantly different: number of 

training rounds, F(2, 38) = 16.93, p < 0.01,  training duration, F(2, 38) = 26.07, p < 0.01, 

and number of signal trials, F(2, 38) = 20.91, p < 0.01.   

The repeated-measures ANOVA results indicated that the amount of training requirements 

was significantly affected by different representation techniques, in each case, F(2, 38), p 

< 0.01.     Statistical data for each training phase is demonstrated in Table 4.8.   
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Table 4.8 Repeated-measures ANOVA results for training requirements: * indicates that the result is significantly 

affected by representation techniques (f2, 38, p < 0.01). 

Training 

phase 
Duration 

No of 

Rounds 

No of 

Signals 

Phase 1 7.03* 7.03* 2.47  

Phase 2 26.49* 11.07* 19.91*  

Phase 3 6.11* n/a  n/a  

Phase 4 11.89* 12.78*  10.06*  

Post-hoc pairwise comparisons (Bonferroni adjustment) indicated that training 

requirements for both landmark representation techniques were significantly greater than 

those for the directional technique in number of training rounds (both p < 0.01), training 

duration (both p < 0.01), and number of training signals (both p < 0.01).  In other words, 

learning to associate landmark signals with their meanings required more effort than 

learning directions.  These results were congruent with our expectation, hence, we 

accepted H1. 

Prior to the study, we predicted that participants would spend more time and effort in 

learning landmarks with the single- than with the dual-actuator techniques (according to 

H5).  No significant difference was found in training duration, rounds and number of signal 

trials between the landmark’s single- and dual-actuator techniques (all three p > 0.05).  In 

other words, participants spent as much time and effort on either technique.  

In addition to the above analysis on learnability, we took an opportunity to analyse 

accuracy performance percentages from phase 4 of the training sessions.  Participants 

passed phase 4 with mean scores of: direction 92.86% (SD=7.59), landmark single-actuator 

83.57% (SD=19.81), landmark dual-actuator 84.28% (SD=15.99).  Performance scores for 

all techniques showed no significant difference, F(2, 38) = 2.82, p > 0.05).  Please note 

that this information was not included as our performance measurement (which will be 

reported in the next section). 

Performance  

Table 4.9 shows the means of accuracy and time performance results of different 

representation techniques from all experimental conditions in both stage 1 and stage 2.  

We statistically analysed data from C1, C2 and C4 (see Table 4.9, 1
st
 and 4

th
 rows for mean 

accuracy and time respectively) using the repeated-measures ANOVA technique 

(sphericity assumed).   
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Results showed that the time to complete each condition (Table 4.9, 4
th

 row) was not 

significantly affected by the type of representation technique, F(2, 38) = 1.60, p > 0.05).   

Table 4.9 Mean performance: accuracy in %, time in mm:ss 

Stage Description 
Direction Single-

actuator 
Dual-actuator 

1 
Accuracy                                

(C1, C2 and C4) 
93.75 80.00 82.14 

1 
Accuracy after adding direction 

(n/a, C3 and C5) 
n/a 68.1 81.43 

2 
Accuracy after distraction    

(n/a, repeating C2 and C4) 
n/a 77.14 83.57 

1 
Average completion time     

(C1, C2 and C4) 
01:22 01:40 01:37 

1 
Average completion time     

(n/a, C3 and C5) 
n/a 03:08 02:33 

2 
Average completion time      

(n/a, repeating C2 and C4) 
n/a 00:55 01:00 

 

 

Figure 4.14 Accuracy performance (%) of the three representation techniques (means of C1, C2 and C4) 

However, different techniques significantly affected accuracy performance, F(2, 38) = 

3.82, p < 0.05 (Table 4.9, 1
st
 row).  Figure 4.14 illustrates accuracy performance (%) of the 

three representation techniques.  Post-hoc pairwise comparison (Bonferroni adjustment) 

revealed that participants performed significantly better with directional identification than 

with both landmark techniques, (both p < 0.05).  There was no difference in accuracy 

performance between the landmark single- and dual-actuator techniques (p > 0.05). 
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We predicted that participants would exceed 70% accuracy performance with either 

landmark technique.  Results, in Table 4.9, 1
st
 row, show that participants were able to 

recognise landmark signals with over 80% accuracy rate for both landmark techniques.  

Therefore, H2 is accepted. 

 

Figure 4.15 Landmarks’ accuracy performance (%) with and without the presence of direction signals (mean 

values of C2 vs C3 and C4 vs C5) 

We predicted that the performance of landmark signal perception would be affected by the 

presence of directional signals.  For this particular case, means performance is shown in 

Table 4.9, 2
nd

 row with Figure 4.15 illustrating a downward trend for the single-actuator 

and a stable performance for the dual-actuator technique.  We ran a dependent t-test that 

compared accuracy performance of C2-C3 (single-actuator with/without direction) with 

C4-C5 (dual-actuator with/without direction).  With the single-actuator technique, 

landmark identification performance was significantly lower when directional information 

was present than when it was absent, t(19) = 2.65, p < 0.05.  In contrast, with the dual-

actuator technique participants were able to identify landmarks equally well whether or not 

directional signals were presented, t(19) = 0.32, p > 0.05.  Therefore, we reject H4 since 

the presence of directional signals affected only the landmark single-actuator but not the 

landmark dual-actuator technique. 

Memorability 

In order to measure the landmark signals’ memorability, we distracted participants with 

interviews and questionnaire sessions before asking them to repeat conditions 2 and 4.  

Results are presented in Table 4.9, 3
rd

 and 6
th

 row for accuracy and time performance 

respectively.  Figure 4.16 demonstrates slight changes in means of accuracy performance 

after distraction. 
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Paired-samples t-tests showed no significant difference in forgetting rates between the two 

landmark representation techniques.  There was no significant difference in accuracy 

performance between repeated C2 and repeated C4, t(19) = -0.95, p > 0.05; no significant 

difference in performance between C2 and repeated C2, t(19) = 0.64, p > 0.05, and no 

significant difference between C4 and repeated C4, t(19) = -0.51, p > 0.05.  

 

Figure 4.16 Landmarks’ accuracy performance (%) before and after distraction (mean values of C2 vs C2r and 

C4 vs C4r) 

 

Figure 4.17 Landmarks’ subjective memorability (n of 5) 

Subjective memorability rating (means illustrated in Figure 4.17 and Table 4.10, 2
nd

 row) 

also showed no significant difference between the two landmark techniques, t(19) = -1.76, 

p > 0.05.  Hence, we concluded that both landmark representation techniques were 

equivalent in terms of short-term memorability. 
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Distinguishability and other subjective data  

Post-questionnaires were used at the end of each experimental condition.  We gathered 

user’s subjective data on the two landmark representation techniques on several measures.  

They included: distinguishability from direction signals, distinguishability amongst 

landmarks themselves, memorability, ease of meaning association, and the level of 

directional signals’ interference.  Participants gave ratings on a 1-5 likert scale, 1 being low 

and 5 being high. 

The single-actuator representation technique scored lower than the dual-actuator technique 

in all subjective measures except for distinguishability amongst landmark signals, in which 

it scored equal with the dual-actuator technique (see Table 4.10). 

Paired-samples t-tests showed no significant difference in all subjective measures.  

Specifically, there were no significant differences between the two landmark 

representation techniques in: distinguishability amongst landmark signals, t(19) = 0.00, p > 

0.05; memorability, t(19) = -1.76, p > 0.05; association with landmarks, t(19) = -0.15, p > 

0.05; distinguishability from direction signals, t(19) = -1.10, p > 0.05; and level of 

interference with direction signals, t(19) = 0.84, p > 0.05. 

Table 4.10 Average scores of subjective measures: n of 5 on a 1-5 likert scale, 1 being low and 5 being high. 

Subjective Measurements Single-actuator Dual-actuator 

Distinguishable among themselves 3.55 3.55 

Memorable 2.75 3.20 

Associable with landmarks  2.60 2.65 

Distinguishable from directions  4.25 4.50 

Interference with directions  2.55 2.30 

Based on landmark accuracy performance and the subjective measurement scores on 

distinguishability (demonstrated in Figure 4.18), we conclude that all participants were 

able to distinguish landmarks from directional signals in both conditions 3 and 5.  

Therefore, we accept H3. 
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Figure 4.18 Left - Landmarks’ subjective distinguishability (n of 5); Right – Mean accuracy performance of C3 

and C5) 

As for subjective preference between the two landmark representation techniques, while 12 

participants (60%) preferred the dual-actuator to the single-actuator technique, paired-

samples t-tests showed no significant difference in preference, t(19) = -0.89, p > 0.05.  

Whichever technique a participant preferred, their comments and reasons were very similar 

and included “easy to remember and interpret”, “more natural”, and “easy to associate with 

landmarks”. 

 

Figure 4.19 User’s preference 

If we look carefully at accuracy performance, each participant performed better with his or 

her preferred technique in C2 and C4.  However, in C3 and C5 (when directional 

information was presented), performance of participants who preferred the dual-actuator 

technique dropped drastically when they carried out the single-actuator condition, while 

that of participants who favoured the single-actuator technique remained similar in both 
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conditions.  As a result, we found a significantly low overall accuracy performance score 

in condition 3. 

Overall 

Results showed that the single- and dual-actuator techniques offered almost equal support 

for landmark representation.  To be precise, they required equal amounts of training 

(approximately four minutes) and users performed equally well (~80% accuracy) in 

experimental conditions in which only landmark signals were presented. 

However, both direction and landmark information is crucial for navigation completion 

and should be provided in an operational tactile pedestrian navigation system.  According 

to the accuracy performance results of C3 and C5 (Table 4.9, 2
nd

 row), participants were 

able to perform significantly better with the dual-actuator technique than with the single-

actuator technique when landmark signals were presented together with directional signals 

t(19) = -2.63, p < 0.05.  In addition, the performance of the dual-actuator technique 

remained consistent after a 30-minute distraction task whilst that of the single-actuator 

technique decreased.  Therefore, H5 is accepted that the dual-actuator affords better 

performance than the single-actuator technique. 

Detailed results 

The single-actuator technique 

For the single-actuator technique, detailed results on the accuracy of each pattern are 

presented in Table 4.11. 

Table 4.11 The single-actuator’s accuracy performance (%) by signals (see reference in Figure 4.3) 

Signals 

C2 – 

landmark  

only 

C3 – 

landmark 

+ direction  

Repeated 

C2 

S1 68.33 63.33 70.00 

S2 88.33 76.67 90.00 

S3 78.33 73.33 75.00 

S4 71.66 43.33 65.00 

S5 93.33 83.33 90.00 

S6 83.33 60.00 65.00 

S7 81.66 75.00 85.00 

Participants performed well with the patterns containing repetitions of only a very short 

note (i.e. a 1/8 note – 62.5ms including 31.25ms off-time) or a very long note (i.e. a whole 

note – 500ms including 62.5ms off-time.  These patterns included the S5 (only 1/8 notes), 

S2 (only whole notes) and S7 (a mix of 1/8 and whole notes) in descending order by 
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accuracy performance.  Accuracy performance of the best (S5) and the worst (S4) patterns 

was significantly different (p < 0.05).      

We did not have prior expectation on the effect of different patterns on accuracy 

performance.  In the original study, researchers (Ternes & MacLean, 2008) maintained that 

rhythms would be easily distinguished primarily by note length and “evenness”.  Evenness 

is defined by a consistent repeating nature of notes and gaps in which each part of the 

rhythm feels the same as every other part, throughout the duration of the stimulus (Ternes 

& MacLean, 2008).  Our results confirmed the original study’s results provided that 

participants achieved high accuracy performance with signals that possess high level of 

evenness.   

The dual-actuator technique  

For the dual-actuator representation, we varied the pairs of actuators used.  All the 180º 

actuator pairs were used by all participants.  Other pairs were distributed evenly across all 

participants.  Detailed results of each actuator pair are presented in Table 4.12. 

Table 4.12 The dual-actuator’s accuracy performance (%) by actuator pairs (see number reference in Figure 4.20) 

Actuator 

Pairs 

C4 – 

landmark  

only 

C5 – 

landmark 

+ direction  

Repeated 

C4 

3-7 90.00 98.33 95.00 

2-6 80.00 75.00 80.00 

1-5 96.67 95.00 90.00 

4-8 71.67 68.33 75.00 

1-3 100.00 100.00 66.67 

1-7 100.00 66.67 100.00 

2-4 100.00 100.00 100.00 

2-8 88.89 72.22 100.00 

3-5 88.89 66.67 66.67 

4-6 85.71 80.95 85.71 

5-7 86.67 73.33 100.00 

6-8 100.00 100.00 83.33 

1-4 41.67 75.00 75.00 

1-6 66.67 66.67 50.00 

2-5 83.33 83.33 100.00 

2-7 55.56 66.67 100.00 

3-6 33.33 44.44 33.33 

3-8 88.89 100.00 100.00 

4-7 66.67 83.33 100.00 

5-8 58.33 66.67 50.00 
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Figure 4.20 Best actuator pairs (motor number 3 is the front centre actuator).  Horizontal lines show the three best 

pairs: 2-4, 1-5, 6-8; vertical lines demonstrate the next best three pairs: 2-8, 3-7, 4-6.  The diagonal line shows the 

next best pair: 3-8. 

Participants performed well with the actuator pairs that were horizontally or vertically 

aligned with their body.  These pairs included the 2-4, 1-5, 6-8, 2-8, 3-7 and 4-6 pairs.  The 

next best pair was the 3-8 pair.  The actuator pairs which afforded the highest performance 

are demonstrated in Figure 4.20.  We recommend choosing these seven pairs to represent 

our set of seven landmarks in a tactile navigation aid. 

Prior to the study, we expected participants to have performed well with the two diagonal 

180º actuator pairs (i.e. the pairs 4-8 and 2-6).  However, results revealed that asymmetric 

or diagonal pairs did not support good performance. 

4.4.8 Discussion 

Learnability 

Overall, the results supported the hypothesis H1 on learnability that it was easier to learn 

direction than landmark.  In fact, it was obvious that users did not ‘learn’ directions’ 

associations, but rather they used prior knowledge on egocentric directions to make 

connections with locations of vibrotactile stimuli around their waist.  This has been 

demonstrated earlier in the experiments described in Chapter 3 that participants achieved a 

very high level of accuracy performance in direction identification even without being 

trained.  

For the learning of landmarks, participants were required to establish an association 

between the signal and the landmark it represented.  In the current study, the experimenter 
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assigned the associations between signals and landmarks for each participant (but we 

counterbalanced the meaning associations across participants) because we would like to 

eliminate any learning effect or bias that may occur on each particular stimulus.   We have 

not gathered much of an interesting insight as to which strategy participants used to learn 

both sets of landmark stimuli.  Only one female participant described the detail of her 

memorisation techniques while others merely indicated that they tried to memorise the 

given associations without any underlying semantics.   

The one participant specified that she used several techniques.  For some patterns, she 

associated vibrations with the location of the landmark mnemonic on the screen. 

Sometimes, she made several connections for an association, e.g. first, linking vibration to 

a familiar natural sound then the sound with a specific (personal) meaning, and then the 

meaning with the landmark on the screen.  Another interesting technique was when she 

made an association of her survey knowledge of the city of Bath with the stimulated 

location on her body.  If the signal and the actual place happened to be in the same or 

similar direction, she felt that she could remember it better.  However, for this particular 

participant, her performance with the single-actuator conditions was very low (lower than 

30% accuracy) and with the dual-actuator conditions was moderately low (approximately 

55-60%); response time was exceptionally slow across all conditions.      

We can conclude that our participants used two strategies: 95% memorised associations 

and 5% sought related mental concepts to form associations.   In a related study, though in 

an auditory design space, Bonebright & Nees (2007) have reported that when it came to 

memorising arbitrary associations,  30% of users tried memorizing, 35% tried to form a 

relationship, 27% tried to think of a story or images that formed associations, and 8% used 

the localised stimuli as cues.  However, in Bonebright & Nees’s (2007) study, the sound 

used was auditory icons62 (Gaver, 1997) which were considered semi-arbitrary whilst the 

vibrations used in our study were completely arbitrary patterns.  Hence, it was difficult for 

our participants to form relationships because there were no symbolic links available; the 

one participant who attempted to form semantic associations failed quite miserably.                 

                                                 

62 Auditory icons use metaphoric mapping to associate sound with information or events, e.g. the sound of 

shattering dishes represent the drop of a virtual object into the virtual recycle bin (Gaver, 1997).  
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Some participants mentioned that if obvious patterns (of the single-actuator signals) or 

symmetric motor pairs (of the dual-actuator signals) matched the most unique landmark in 

the mnemonic set, e.g. the Bath Abbey – the city’s most unique landmark, it was very easy 

to recall.  In this particular case, it seems that signals’ salience relative to landmark 

uniqueness would lead to a better association.  However, this assumption requires further 

investigation.  Provided this limited knowledge, we have yet to determine, if any, a 

rationale that contributes to the ability to make associations, memorise and later recall 

landmarks in the tactile interaction domain.     

There is very little research evidence which can be used to assist the decision on how to 

teach arbitrary association effectively (Edworthy & Hards, 1999).  Nevertheless, it is 

suggested that learnability can be improved if participants develop their own semantics, i.e. 

participants themselves define associations between vibrotactile signals and landmarks 

(Cohen, 1993; Cohen, 1994a; Cohen, 1994b; Edworthy & Hards, 1999; Bonebright & 

Nees, 2007).  This may be possible because a few of our participants suggested specific 

associations between signals and their meanings they preferred.  Another suggestion is to 

improve the quality of imagery, i.e. word labels and pictures (Edworthy & Hards, 1999).  

We would take these recommendations into consideration for further training 

improvement.   

Memorability 

Our experimental study assessed learnability and short-term memorability and we have 

obtained some promising results.  However, our results were based on a very short pause 

and a distraction task which lasted altogether approximately 30 minutes.  It is not possible 

to determine the effects of longer term use.  A longitudinal study is required to address 

such issues.   

Performance  

Our study was carried out under experimental conditions, which were likely to achieve 

different performances than in operational contexts (Sanders & McCormick, 1992).  

Experiments normally take place in a short time span and the experiment design usually 

aims to give participants high exposure to stimuli of interest, e.g. in our study, vibrotactile 

stimuli were provided as a series with very short intervals between them.  On the contrary, 

in operational environments, landmark signals may be generated with a much longer lapse 

between them owing to different areas’ morphology and locations of landmarks on routes.  

However, pedestrians will be able to look around and may perceive some environmental 

cues, which may help to identify landmarks, or even able to see the landmark itself to the 
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extent that the vibrotactile cue becomes a redundant piece of information.  Also it is 

possible that other noises in the environment may lower the vibration perception.  

Therefore, it is unclear whether the results from lab-based studies over- or underestimate 

the performance likely to be achieved in the operational setting (Edworthy & Hards, 1999).  

Participants had an average response time of four seconds per signal across all conditions.  

This value is probably just about satisfactory for the intended use.  Nevertheless, if these 

signals were to be used in outdoor urban environments, performance levels might drop 

since there are several other factors such as different levels of users’ cognitive load and 

levels of noise.  We anticipate that further training might help decrease response time in 

the lab setting, which might in turn reduce response time in applied environments.  Further 

study is necessary to investigate whether extensive training or different training strategies 

(e.g. Edworthy & Hards, 1999) can better the performance and the extent to which external 

factors such as noise might affect the results and system robustness, especially in the field. 

It is also worth noting that the tactile signal is brief and skin perception adapts through 

time so continued stimulation may lead to a decrease or even elimination of the sensory 

experience (Schiffman, 1976).  This may cause some missed signals in use.  One 

participant explicitly indicated that she experienced quick skin adaptation with the single-

actuator conditions because landmark vibrations were sometimes generated on the same 

location as did directional signals.  In real life, pedestrians are bound to split their attention 

between the system and the environment.  Therefore, if the single-actuator technique is 

used and they miss the beginning of the pattern, it will be difficult to guess which one it 

was.   

Distinguishability 

We have compared two classes of tactile stimuli and the results indicated that the dual-

actuator was more difficult to distinguish than the single-actuator patterns.  However, if we 

look at individual signals, there were three specific patterns (signals S5, S2 and S7) that 

achieved very high levels of accuracy performance because of their “evenness” character.  

These three particular signals seem to be salient enough to be able to present other types of 

spatial information if necessary.    

We speculate that this quality of “evenness” may help to improve the distinguishability 

rate of the single-actuator technique.  For example, evenness can be achieved by adding 

more types of note length, e.g. a 1000ms or a 750ms, and having them repeated with gaps 
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within the 2-min second stimulus.  The idea is theoretically possible (Ternes & MacLean, 

2008) but has yet to be investigated.         

However, with the single-actuator technique, frustration was reported to occur when 

direction and landmark signals happened to be presented on the same actuator.  In which 

case, participants reported that it felt like a continual buzz rather than two separated 

stimuli. 

Based on subjective feedback, most participants found it easier to memorise the dual-

actuator patterns because they felt the same regardless of stimulated locations.  In other 

words, they found it easier to focus on locations than on patterns.   

Limitations of the study 

We were aware that vibrotactile signals produce acoustic output (Van Erp, 2002) which 

may have affected vibration perception.  We have discussed the same issue earlier in 

Section 3.3.6 that our observation and analysis of the first two lab studies did not find any 

negative effect given that both vibration signals and acoustic output do not conflict with 

each other.  Hence, in this study we did not have our participants wearing a noise 

cancellation device during the experiment.  Same as in previous lab studies, none of our 

participants reported their focus of attention on sound localisation during the experimental 

session.     

In our previous empirical studies (Chapter 3), we have reported that in some cases small 

body size had a negative effect on signal perception.  In this study, we tried to recruit 

participants with a moderate waist size.  However, two of our participants had rather a 

small waist (less than 70 cm).  After checking detailed data of the two participants, they 

performed equally well as other larger participants.     

4.4.9 Conclusion of the lab-based experiment    

In this section, we reported an empirical study which compared two techniques to represent 

landmark information via the tactile channel in order to address RQ4.   

RQ4: How can we represent spatial information via the chosen device?  

Specifically, which representation technique should be used for landmarks? 

As we hypothesised, participants took a significantly longer time to learn landmark signals 

and their associations compared with directional signals.  With the presence of directional 

signals, performance of landmark identification significantly dropped for the single-
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actuator technique and remained the same with the dual-actuator technique.  With training, 

participants were able to distinguish landmark signals from directional signals and 

recognised over 80% of learned landmarks.  With respect to both techniques’ forgetting 

rates, it appeared that they were equal.  Should the navigation system display only 

landmark information, either technique is equally effective.   

However, results from our study suggested that the dual-actuator technique was better than 

the single-actuator technique in various ways, especially as it afforded better performance 

when presented together with directional signals.  This is crucial to the development of a 

tactile pedestrian navigation system that provides both directional and landmark 

information. 

4.5 Summary 

In this chapter, we have attempted to answer RQ2(landmark usage) and RQ4 (landmark 

representation). The next step was to refine the tactile navigation prototype for use in field 

trials. 

Our results have shown that the dual-actuator approach achieved acceptable performance.  

Through a device capable of presenting the information with a number of actuators, users 

perceived the vibration signals quite well and they were able to recognise the signals’ 

meanings as well as distinguish two types of spatial information.    

Nevertheless, results presented here reported mainly on learnability and distinguishability 

performance of the two types of spatial information in a controlled environment.  Whether 

they can be used together effectively in operational environments and help to improve 

navigation task’s performance requires further investigation.  

We would build on the insights from the lab-based work reported here and in the previous 

chapters to improve signals’ learnability and investigate specific applications’ utility and 

practicality in the field study.  Through these investigations, we improved and evaluated 

the design and addressed user acceptability, and the performance-related benefits and 

challenges of a wearable tactile pedestrian navigation system.  The field evaluation of a 

refined tactile navigation system is reported in the next chapter.   
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If you do not know where you come from, then you don’t know where you are, and if you 

don’t know where you are, then you don’t know where you are going.  And if you don’t 

know where you’re going, you are probably going wrong. 

(Terry Pratchett, 2010)   

Chapter 5 A Field Evaluation of a Tactile Display for 

Pedestrian Navigation 

5.1 Introduction 

The work described in this chapter is the third part in a series of empirical studies that aim 

to display landmarks together with direction signals through the touch sensory channel.  

The series has been divided into three steps: (1) an investigation of how landmarks are 

being used for different navigation purposes in urban canyons and the selection of 

appropriate landmarks – presented in Chapter 4, (2) a tactile representation technique for 

landmarks – also presented in Chapter 4, and (3) an evaluation of a tactile-based navigation 

system that provides various types of spatial information in an urban environment – 

presented in this chapter.     

The focus of this chapter is on the design, development and evaluation of our tactile 

navigation prototype, built upon requirements developed throughout the thesis.    

In this chapter, there are five subsections.  In Section 5.2, we describe the motivation and 

research questions addressed by the studies.  Next, in Section 5.3, we explain the basis of 

the study including underlying theories and relevant literature.  Details of a field evaluation 

including methods, procedures, results and discussion are demonstrated in Section 5.4.  

Finally, Section 5.5 summarises the findings from our empirical field-based evaluations.     

5.2 Motivation and objectives 

This final part in the series of studies is the pinnacle of our research project.  We aim to 

further research tactile pedestrian navigation beyond the current emphasis on directional 

cues by providing multiple types of spatial information necessary for navigation 

completion in real environments.      

Although researchers suggested that, theoretically, the delivery of multiple spatial 

information types via the touch sense is possible and will be highly beneficial for 
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navigation in both normal and extreme situations, Wickens, (1980); Van Erp et al., (2006) 

and Elliott et al., (2010), all reported that the empirical study of hybrid63 systems that 

provide both direction and landmarks is rarely prevalent.       

We have successfully tested the direction/landmark hybrid concept in a laboratory setting 

and reported satisfactory results in Chapter 4.  As only a little research has addressed the 

practicality of such systems, in the next step we aimed to evaluate such a display in real 

contexts because mobility and involvement of real users in the changing environments can 

only be realised in the real-world (Ross & Blasch, 2002).  We were aware that field-based 

evaluation has limitations in that there is limited control over the experiments and data 

collection is difficult (Kjeldskov & Graham, 2003).  Nevertheless, it is a trade-off for 

increased realism that we would achieve through testing the system in the real-world.          

The field-based evaluation manipulated the presence of signals for landmarks at specific 

points on routes.  We also aimed to gather performance-related data regarding practical use 

of the tactile display in urban canyons.  In addition to the report on design, usability and 

user experience issues, we hope to discuss navigation stages of tactile wayfinding in 

comparison with those in visual wayfinding.                       

5.2.1 Research questions  

Throughout Chapters 3 - 4, we have demonstrated that the design of our prototype has 

achieved usability goals64 in three lab settings and one field study.  The next step is to 

incorporate the display of landmarks in the system and put it to test in real settings in order 

to understand the effect of represented tactile signals on users’ cognition, judgment, 

association, navigation behavior and performance.             

As a result, this study addresses RQ4     

RQ4: How can we represent spatial information via the chosen device? 

Specifically,  

RQ4.2 How do we represent a few types of spatial information? 

                                                 

63 Throughout this chapter, the word hybrid refers to a system that provides more than one type of spatial 

tactile information.  

64 Usability goals include effectiveness, efficiency, safety, utility, learnability and memorability (Sharp et al., 

2011). 
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And RQ5  

RQ5: What is the tactile navigation system’s performance?  

RQ5.1 Does the system help with different tactile navigation purposes? 

We have partially addressed RQ5.1 in Chapter 3 by demonstrating that the tactile 

navigation system did help with quest.  In this chapter, we aimed to find out whether it 

helps with exploratory navigation.  Additionally, we address the following usability-related 

RQs. 

RQ5.2 Can tactile landmark representation “increase/help” with 

performance/confidence as in visual pedestrian navigation systems? 

RQ5.3 Is there a problem with the transfer of frames of reference with 

tactile navigation displays? 

For the user experience aspects, the work in this chapter addresses the following RQ: 

RQ5.4 What are user acceptance and perceived usefulness (practicality) of 

the tactile navigation system?   

5.3 Basis for the study  

This section describes underlying theories and concepts, summarises past findings, and 

discusses relevant literature.     

5.3.1 Underlying theories and concepts for this study  

For both studies presented in this chapter, we relied on the same underlying theories 

explained in Chapters 2 and 4 including MRT (Wickens, 1980), Prenav (Van Erp, 2007), 

Choremes (Klippel, 2003), and other guidelines for the design of tactile navigation systems 

(see Chapter 2 Section 2.4.1; Chapter 4 Section 4.4.2).  We used the same training 

approach, following the Dual Coding theory (Paivio, 1986), as we did in Chapter 4.  In this 

subsection, we briefly explain Technology Acceptance Model (TAM) that we used for the 

analysis regarding the system’s practicality in actual situations and environments in which 

the system will ultimately be used.         

Measuring user acceptance 

Amongst a number of theoretical approaches to understanding the psychology of user 

acceptance (see a review in Dillon & Morris, 1996), we have chosen the Technology 
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Acceptance Model (TAM)
65

 proposed by Davis (1989; 1993).  TAM determines user 

acceptance by two factors: perceived usefulness and perceived ease of use.  Perceived 

usefulness refers to the degree to which a user believes that using the system will enhance 

their performance.  Perceived ease of use refers to the degree to which the user believes 

that using the system is effortless.  The original TAM was modified (see Appendix 3) and 

used in our study to predict how pedestrians will likely receive the tactile navigation 

system. 

5.3.2 Relevant literature and design challenges 

As we have described in Chapter 2 (Section 2.4.2) the attempts to represent the second 

type of spatial information in tactile wearable displays focused on the addition of distance 

information (see Raisamo & Myllymaa, 2010; Pielot & Boll, 2010; Pielot et al., 2010c; 

Van Veen et al., 2004).  Although most current assistive navigation technologies provide 

distance-based wayfinding instructions, displaying distance in pedestrian navigation 

systems is criticised to be an inappropriate choice because of the nature of pedestrians’ 

slow moving speed (May et al., 2003), a human’s poor judgment of distance (Ross et al., 

2004), and the current setback of technology advances in measuring precise distance at 

ground level (RIN, 2011).   

None of the reported research has attempted to represent landmarks despite suggestions 

from many studies (i.e. Vinson, 1999; Burnett et al., 2001; Baus et al., 2007) that 

pedestrian navigation systems could achieve better performance with the addition of 

landmarks.     

As a result, we aimed to test our prototype to further research the domain of tactile 

pedestrian navigation.  Outcomes from our and previous lab studies allowed us to predict 

that users would be able to use a hybrid tactile navigation system to aid their wayfinding 

effectively in the actual settings.  Specifically, a field evaluation of the system would 

achieve an acceptable level of navigation performance.   

Nevertheless, evaluating a system in the field may introduce numerous factors which might 

impede navigation performance using a tactile wearable system.  For example, 

                                                 

65 Since our thesis does not mainly focus on the technology acceptance issue, we opted for the original 

version of TAM to get preliminary insights into the acceptance of a unimodal tactile wearable device for 

navigation tasks.  For a summary of TAM development, see Appendix 3.     
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participants’ movement may decrease vibration detection (Karuei et al., 2011) and the 

visual workload and unexpected vibration may slow users down.  Testing our improved 

system in the actual environment is mandatory; however, the system trials must be 

carefully designed and must take into account a human’s limited cognitive capacity.            

5.4 Field evaluation: A comparative study of tactile landmark 

presentation for pedestrian navigation   

5.4.1 Overview 

It is reported that in visual navigation, landmarks are always being used as confirmation 

cues to help increase navigation performance and confidence which in turn construct the 

navigator’s survey knowledge (Pielot & Boll, 2010).  We are interested in finding out 

whether landmarks hold the same value in tactile navigation as in visual navigation.  On 

that account, our field evaluation saw the system trigger a set of landmark signals when a 

navigator was approaching a particular landmark category in one of the experimental 

conditions.   

Notwithstanding a straight signal being used effectively as a confirmation cue (reported in 

Chapter 3), there is no other evidence on the effect of the straight signal.  As a result, we 

are interested in finding out whether the straight signal, given at the exact same location 

where a navigator was approaching a particular landmark category, would yield the same 

effect to the landmark signals.       

In addition to the main objective described above, we have two additional objectives: (1) 

improve landmark signals’ learnability and (2) ensure landmark signals’ memorability 

prior to the actual field comparative study.    Hence, the experiment was divided into two 

stages: training and walking.  In the training stage, we measured learnability and 

memorability.  In the walking stage, we measured navigation performance, level of 

confidence, and system’s perceived usefulness.   

Training stage 

To improve the learnability of landmark signals’ association, we improved mnemonics’ 

quality and provided a visual illustration of stimulated actuators and their associations to 

half of the participants.  To ensure memorability, we made sure that each participant 

achieved 100% accuracy performance in the two training sessions (called T1 and T2, 

scheduled a few days apart) prior to the walking sessions (see Table 5.1).     
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Table 5.1 Training sessions 

Session Direction Destination Landmark 

T1    

T2    

 

Walking stage 

The field experiment examined the usage and the effectiveness of straight signals in 

comparison with landmark signals.  The two experimental conditions would be referred to 

as conditions SS and LM for straight and landmark signals respectively (see Table 5.2).   

Table 5.2 Experimental conditions – walking sessions 

Signal type 

Condition 
Direction 

Destination 

landmark 
Straight signal Landmark 

SS      

LM     

 

5.4.2 Method: participants, equipment and tactile stimuli  

Equipment 

We have modified our original66 TactNav system so that it provides three types of spatial 

information, namely, directions, landmarks and destination cues.  The power system has 

been changed from one 6v Yuasa battery to eight 1.2v-AA Uniross batteries for flexibility; 

a NASA marine compass sensor has been added.  Figure 5.1 demonstrates the new system 

architecture.                 

                                                 

66 The original TactNav provided two types of output: egocentric directions and confirmation cues.  

Positioning functionality was facilitated by a GPS technology  (see Chapter 3 Section 3.4.3 Figure 3.22 for 

the original design).  
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Figure 5.1 The new TactNav system architecture.  A NASA marine compass sensor is a new component while an 

AA battery set is used to replace the 6v battery. 

Participants  

There were 20 participants: 10 male and 10 female, with an average age of 27 (SD=5.61, 

range 19 - 41 years old).  We recruited participants who have their waist size larger than 60 

cm (i.e. 24 inches) so that the size allowed for an inter-actuator distance larger than 4 cm 

(i.e. the two-point threshold for the waist area) which in turn assures point localisation and 

distinguishability.   Participants’ average waist size was 79 cm (SD=12, range 61 - 99 cm).  

On average, they indicated that they have lived in Bath for 2.4 years (SD=1.7, range 0.17 – 

6 years).  All participants had never experienced tactile navigation displays in actual 

environments.  All reported no irregularity with tactile stimulation around their waist at the 

time of the study.  Results from pre-test questionnaires indicated that all participants 

understood the concept of egocentric directions and landmarks and had no difficulties 

identifying them. Each of them received a 10 pounds monetary incentive at the end of the 

experiment.     

Tactile stimuli 

There were three types of spatial signals: direction, landmark and destination signals.  

Simplified versions of the belt illustration are used in this subsection (as seen in Figures 

6.2 – 6.5); some of the actuators have been removed to emphasise the stimulated 

actuator(s).      

Direction stimuli     

The eight egocentric directions represented are the same as in all of our previous studies 

(see Table 4.3 for the mapping between the actuator number and the direction represented 
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and Figure 4.4 and 4.12 for illustration of directions).  During the walking sessions, each 

directional signal was given twice with a two-second gap in both condition SS and LM.   

As described earlier in Section 5.4.1, this particular study aimed to evaluate the effect of 

the straight signal on the ability to recall landmarks on routes.  As a result, for condition 

SS, we assigned two meanings to this straight signal that it signifies a wayfinding 

instruction and a confirmation of a landmark.  This assignment replicated the multiple roles 

of spatial information in the real world.  For example, with visual navigation, landmarks 

can have two roles: identify decision and destination points; or serve as confirmation cues 

(see Section 2.1.3 and Appendix A2.5).                                           

In summary, for each straight signal (Figure 5.2): 

 Indicated both a direction and a confirmation of a landmark in condition SS; 

 Indicated a direction in condition LM.  

We made sure that participants clearly understood a composite meaning of the signal prior 

to the walking session.   

 

Figure 5.2 A straight signal, vibration being generated on the front centre actuator (number 3). 

Landmark stimuli     

We used the dual-actuator technique to generate landmark signals (see Section 4.4.5).  

Namely, vibration patterns were the same for all landmarks but different pairs of actuators 

would represent different landmarks (see an example in Figure 5.3).  Results from the 

experiments reported in Chapter 4 suggested that the horizontal and vertical actuator pairs 

afforded good performance.  These pairs include the 2-4, 1-5, 6-8, 2-8, 3-7 and 4-6 (see the 

reference of actuator number in Figure 4.20).  As we chose to represent seven landmarks, 

we also used the 3-8 pair which was the next best pair according to the experimental results 

(see Table 4.12).  For the set of landmarks, we drew on the same list derived and used in 

Chapter 4.   



196 

 

Figure 5.3 An example of a landmark signal generated on actuator pairs 2-4. 

A destination cue and a set of landmark signals     

During the experiment there were two types of landmarks being displayed by the system, 

on-route and destination landmarks.  Notifications for each on-route and destination 

landmarks were being given as a set of two and three signals respectively.  A two-second 

pause was introduced as a gap that separates one signal type from the next.    

For any on-route landmark, a set of two signals comprised of the landmark signal and its 

location in relation to the wearer’s heading direction was given.  An example of a set of 

on-route landmarks is demonstrated in Figure 5.4.  For this particular example, the signal’s 

meaning is that there is a specific landmark on your left (landmark category varies 

depending on the signal 2-4’s meaning association).                     

 

Figure 5.4 A signal set for an on-route landmark comprises of two signals: (1) the landmark and (2) its location in 

relation to the wearer’s heading. 

For any destination landmark, a set of three signals comprised of a destination notification 

(that a destination has been reached), the landmark signal and its location in relation to the 

wearer’s heading direction.  A destination notification signal was given by simultaneously 

vibrating all eight actuators.  An example of a set of destination landmarks is demonstrated 

in Figure 5.5.   
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Figure 5.5 A signal set for a destination landmark comprises of three signals: (1) a destination notification, (2) a 

landmark, and (3) its direction. In the figure, it means “you have reached the destination” + “there is a specific 

type of landmark” + “on your left”. 

Walking scenarios and signal timing 

In order for participants to navigate to a destination, there were three walking scenarios 

that they would encounter.  Scenarios included (1) reaching a decision point, (2) passing a 

landmark and (3) reaching a destination.  The following subsections demonstrate how 

signals were being delivered in each scenario in both conditions.          

Scenario 1 – Reaching a decision point  

 

Figure 5.6 An example for Scenario 1: Reaching a simple decision point 
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In this example, the navigator will be instructed to turn right at the upcoming decision 

point in both experimental conditions.  Upon approaching67 such a decision point, the 

system generates a directional signal, a right signal two times with a 2-second gap between 

them.   

 

Figure 5.7 An example for Scenario 2: Walking a long segment (top part for condition SS, bottom part for 

condition LM) 

Scenario 2 – Passing a landmark  

Figure 5.7 demonstrates how signals would be displayed when passing a landmark: the top 

part for condition SS and the bottom part for condition LM.  Please note that the different 

types of spatial signals in both conditions were aimed to be used as a confirmation for the 

navigator that they are on the right path by informing them of passing important 

landmarks.  In this example, there are two landmarks along the route, a bus stop and a 

restaurant.  In the actual environment, the route may contain a number of potentially 

important landmarks but only some of them will be used as references during navigation.  

This scenario reflects the reality that only the bus stop (i.e. public transportation) is being 

used.  For condition SS (Figure 5.7 top): upon approaching the bus stop, the system 

generates a straight signal twice with a two-second gap, indicating that the navigator is on 

the correct path because they are approaching a landmark that is located on the planned 

route.     For condition LM (Figure 5.7 bottom): upon approaching the bus stop, the system 

                                                 

67 Approximately 10 - 20 meters pending the navigator’s walking speed. 
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generates (1) a public transportation signal, pauses for two seconds, and (2) a left signal, 

indicating that the navigator is on the correct path because there is a bus stop on their left.   

Scenario 3 – Reaching a destination  

In this scenario, the navigator will be notified with the same set of signals in both 

conditions that they are about to reach a destination.  In this example (Figure 5.8), upon 

approaching the destination, the system generates (1) a destination cue, a two-second 

pause, (2) a tourist attraction signal, a two-second pause, and (3) a right signal, indicating 

that they are reaching their destination, an attraction, which is on their right. 

 

Figure 5.8 An example for scenario 3: Reaching a destination 

5.4.3 Procedures 

Experimental conditions and procedures 

An overview of the experimental conditions is demonstrated earlier in Tables 6.1 (training) 

and 6.2 (walking).  Each participant must pass two training sessions with 100% accuracy 

performance and run both walking conditions.       
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Training stage – measuring learnability and memorability 

Following the same training practice reported in Chapter 4, participants carried out a 4-

phase training68 exercise to learn and memorise signal associations for all signal types, i.e. 

direction, destination and landmarks.  Half of the participants were allowed to look at the 

visual diagram, which illustrated the stimulated actuators with their landmark meaning 

association, for two minutes.  Training stopped when they achieved 100% accuracy 

performance in both training sessions, i.e. T1 and T2.  At the end of each training session, 

participants were asked to rate the level of cognitive workload required.  Landmark 

meaning associations and order of appearance were systematically randomised across 

participants to prevent any bias on any particular pair of actuators or landmark type.   

For the training stage, there was one independent variable: the presence or the absence of a 

visual diagram.  Dependent variables included training effort (including training rounds, 

duration and number of training signals) and cognitive workload requirements (using 

NASA TLX).   

Walking stage – measuring navigation performance, confidence, perceived usefulness and 

the ability to recall routes 

For the walking part, there was one independent variable: the type of cues being either 

straight or landmarks signals.  Dependent variables included navigation performance 

(including navigation duration, accuracy in direction and landmark identification, error and 

breakdown69), level of confidence (subjective scores on a 1-5 likert scale), level of 

perceived usefulness (using TAM), and the ability to recall routes (drawing).  Additionally, 

we collected information on cognitive workload required, user preferences, tactile 

navigation process and other practical issues through questionnaires and interviews 

conducted after the experiment.   

                                                 

68 The 4-phase training exercise comprises of the display, memorise, trial and test phases.  For more 

information, please refer to Section 4.4.6 Procedures / Experimental Procedures / Training  .   

69 According to Winograd & Flores (1986), a computer system is meant to be used in a transparent fashion 

to help users complete their tasks.  Any situation in which something has gone wrong resulting in users 

switching their attention from intended tasks to the system in order to solve problems is referred to as 

breakdown (Winograd & Flores, 1986).  Breakdown includes, for example, failing to notice changes in 

displayed information and users unable to find an undo function.  For this particular study, breakdown refers 

to the following: (1) a number of occasions failing to perceive tactile signals (both directions and landmarks), 

(2) a number of occasions failing to interpret both types of tactile signals, (3) a number of occassions 

reporting confusion at any point on route, (4) a number of occasions hesitating to make  decision at each 

manoeuvre, and (5) a number of occasions hesitating to identify landmarks.   
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Each participant carried out both conditions by navigating two different pre-determined 

routes70 because navigation tasks are sensitive to repetition (Goodman et al., 2004).  Both 

routes were of the same 800-metre length, which required 11 minutes walking71.  Each 

route contained the same number of decision points and the same seven types of landmarks 

(see Appendix 5).  The order of conditions was counterbalanced.  Namely, all participants 

started the walk with route 1; half of the participants walked condition SS while the other 

half walked condition LM with this route.  We have increased the length of all vibration 

signals from 1.2 to 2 seconds to compensate participants’ movement effect on vibration 

perception.      

The system was fitted carefully.  Participants were informed that the system would help 

them navigate to reach an unfamiliar destination.  Before embarking on the journeys, all 

participants demonstrated that they could remember all signal associations correctly.  At 

the starting point, participants were oriented toward an intended heading direction.  Once 

participants started walking, the system compared participants’ current GPS location with 

pre-determined route points and triggered appropriate cues.  Specifically, at decision or 

destination points, the system triggered a set of directional cues or a set of destination 

landmarks respectively.  For landmark cues, upon approaching each pre-defined landmark, 

the system either generated a set of landmark signals in the LM condition or a set of 

straight signals in the SS condition.  Each signal set was presented only once.  When each 

signal set has been generated, participants were required to indicate (as “quickly and 

accurately” as they could) to which direction or landmark they thought it corresponded, by 

speaking out loud or making an actual turn (in case it was a directional signal at a decision 

point).  Landmark stimuli appeared in a different order from that of the training sessions.     

Additionally, participants were encouraged to speak out loud about any relevant 

information such as perceived environments, their understanding of signals, their decisions 

and anything that came to mind during the course of navigation.  Data was gathered using 

both system logs and verbal protocols.  The experimenter walked along and made sure that 

                                                 

70 See Appendix 5 

71 According to an estimation by Google Maps, courtesy of Google Inc.  
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all relevant data of the whole journey was being recorded (using an application 

Audacity72).     

At the end of each route, participants were asked to (1) rate confidence, workload, and 

perceived usefulness scores; (2) complete questionnaires (open-ended questions); and (3) 

draw the route taken.  Once they completed both routes, participants were asked to (1) rate 

preference and attitude; (2) discuss the system’s practicality; and (3) perform an activity-

card arrangement73.   

Prior to the experiment, we measured participants’ normal walking speed which was 4.27 

km/hr on average.  This information will be used for subsequent data analysis in 

comparison with percentage preferred walking speed (PPWS)74 (Goodman et al., 2004).   

In the previous field study reported in Chapter 3, some of our participants suffered from 

GPS signal shortage.  For the experiment designed in this study, we have carefully 

surveyed and chosen the routes as well as modified the system so that it can cope with such 

issues and delivered timely signals at the intended decision points.   

The whole experiment took place over 3 weeks.  The walking part was carried out in 

similar environmental settings across participants, for example being the same time of the 

day, and in good weather conditions.  Some weather variation was acceptable given mild 

weather that did not obstruct navigation. 

The total experimental duration for each participant was one hour, being 15 minutes for 

two separated training sessions and 45 minutes for the walking sessions that included 

navigating two routes and other tasks such as answering questionnaires.       

Hypotheses 

For learnability, in addition to the improvement of image quality75 (Edworthy & Hards, 

1999), we provided a visual illustration of the stimulated actuators and their associations to 

half of the participants.  We hypothesised that:       

                                                 

72 Audacity is an open-source, cross-platform software for recording and editing sounds (Source: 

http://audacity.sourceforge.net/).  At the time of the study (2011), we used Audacity 2.0. 

73 The card-sorting was expected to allow us to understand the tactile pedestrian navigation process.    

74 See Glossary.       

75 By increasing labels’ font size, improving picture quality as well as adjusting their layout 
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H1 – Participants who were given a visual diagram would spend less time and effort to 

achieve the same level of performance than participants who were not given a diagram. 

As it was fundamental that all participants must remember all signal patterns prior to the 

actual field comparative study, we have designed the experiment that they must attend and 

pass two training sessions, T1 and T2, which were scheduled several days apart.  Learning 

with improved mnemonics, we did expect that participants would be able to remember all 

landmark signals very well after passing T1.  On that account, we hypothesised that: 

H2 – Participants would need to make significantly less effort to achieve the same level of 

performance in session T2 than in session T1.  

Our field study compared the two types of spatial information which can be used as 

confirmation cues for landmarks.  During the walking sessions, both types of signals were 

given to participants in two different conditions (Table 5.2) at the exact same location 

where important landmarks are situated.  Although there was no evidence to prove that 

either the straight signal or the landmark signal is more effective than one another, we did 

expect that specific landmark signals would provide users with precise information hence 

increasing navigation performance and confidence, thereby increasing the system’s 

perceived usefulness.  This assumption led to our prediction:  

H3 – Participants would perform significantly better in condition LM than in condition SS.   

H4 – Participants’ confidence76 would be significantly higher in condition LM than in 

condition SS.   

H5 – Participants would perceive the system that provided both direction and landmark 

signals (condition LM) as more useful77  than the system that only provided directional 

information (condition SS).  

As we also aimed to investigate the system’s practicality, there were other measurements 

including route completion time, user preference and level of cognitive effort required 

                                                 

76 The degree to which participants believe that they could rely on the system during the course of 

navigation. 

77 Participants were asked to rate each system’s perceived usefulness score, which is the degree to which 

participants perceive the system as helpful and practical for their navigation. 
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during both training and walking sessions.  We were also eager to learn about pedestrians’ 

navigation process using a tactile navigation system. 

5.4.4 Results 

In this section, we report experimental results from both training and walking stages.     

Learnability  

Data gathered from training was used to analyse signals’ learnability.  Descriptive statistics 

shown in Table 5.3 demonstrate effort required to learn three78 different signal types by all 

participants.  In each training session, participants spent the most effort to learn landmarks 

and the least to learn a destination cue.  These results were consistent with those reported 

in the previous chapter.   

Table 5.3 Average training requirements for different types of signals 

Measures Direction Destination Landmark 

T1 T2 T1 T2 T1 T2 

Number of rounds 4.50 2.56 3.40 2.10 5.00 3.00 

Number of signals 35.20 19.10 3.40 2.10 45.75 23.15 

Time (min:sec) 02:04 01:11 00:40 00:16 03:26 01:25 

Response time79 per signal 00:03 00:02 00:03 00:02 00:04 00:03 

In the previous experiment reported in Chapter 4 on learning landmarks (see category 

Landmark-dual in Figure 4.13), an average participant carried out 6.85 training rounds and 

spent 04:14 minutes trying 95 signals.  By using only the vertical and horizontal actuator 

pairs to represent landmarks in this study, we have seen learning improvement; on average 

participants carried out 5 rounds and spent 03:26 minutes trying 46 signals.      

We then broke down participants into two groups, one with and one without a visual 

diagram.  T1’s results (in Figure 5.9) showed that overall training requirements for 

participants without a visual diagram were higher than those with a diagram.    

Statistically, an independent-samples t-test showed significant differences between the two 

groups of participants in number of rounds, t(18) = -3.12, p < 0.05, and training duration 

t(18) = 7.79, p < 0.05.  However, no significant difference was found in number of training 

signals, t(18) = -2.51, p > 0.05).   

                                                 

78 There were eight directions, one destination and seven landmarks to learn. 

79 Response time refers to the onset of the stimulus to the onset of the response, including movement time.  
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Table 5.4 presents statistical data of training requirements for each training phase by the 

two groups of participants.  An independent-samples t-test indicated that the amount of 

training requirements was significantly affected by the presence of a visual diagram, in 

most cases.  Generally, participants who were given a visual diagram spent less time and 

effort to achieve the same level of performance as participants who were not given a 

diagram.  In other words, a visual diagram helped improve learnability of landmark signal 

associations.  Hence, we accepted H1.   

 

Figure 5.9 Training effort requirements of the two training groups in T1 
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Table 5.4 Independent-samples t-test result for training requirements: * indicates that the result is significantly 

affected by the presence of a visual diagram t(18), p < 0.05. 

Training 

phase 

No of 

rounds 
Duration 

No of 

signals 

Phase 1 3.58 6.87* 3.58 

Phase 2 -0.43* 3.04 1.95* 

Phase 3 1.24* 3.27 1.50* 

Phase 4 2.69* 13.37* 2.25* 

Once participants had learned landmark signal associations in T1, the presence of a visual 

diagram did not seem to affect performance in T2.  An independent-samples t-test found 

no significant difference between the two groups of participants in number of training 

rounds, duration and number of training signals (all p > 0.05).  

At the end of each training session, we asked participants to rate subjective cognitive 

workload required to complete their tasks using a NASA TLX.  Between the two groups of 

participants, significant differences were found on performance (T1: t(18) = -1.47, T2: 

t(18) = -2.09, both p < 0.05) and frustration (T1: t(18) = -2.94, T2: t(18) = -2.71, both p < 

0.05).  Namely, the group that studied a visual diagram felt they performed better and felt 

less frustrated than the group without a diagram.  No significant difference on the other 

four task load measures80 was found (p > 0.05 in each case).  For the detailed TLX scores, 

please see Appendix 6.1.    

For both training sessions, there was no significant difference found in all measures 

between male and female participants (all p > 0.05).   

Memorability  

Results of the three measurements revealed the same pattern for memorability of direction, 

landmark and destination signals.  Specifically, it took a significantly fewer number of 

rounds, shorter duration and fewer number of signals to achieve 100% performance in T2 

than in T1 (all p < 0.002).  Between two training sessions, participants generally spent 

50% less time, 50% fewer number of signals and 40% fewer number of rounds in T2.  

There was no significant difference in response time in all cases (all p > 0.05). 

 

                                                 

80 The other four task load measures are mental demand, physical demand, temporal demand and effort. 
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Figure 5.10 Training effort requirements of the two training sessions 

As we had participants learning landmark signals with improved mnemonics, we expected 

they would spend less time and effort in T2 to achieve the same level of performance as in 

T1.  As shown in Table 5.3 and demonstrated below in Figure 5.10, a paired-samples t-test 

revealed that participants carried out significantly fewer number of rounds (t(19) = 3.56, p 

< 0.002), shorter duration (t(19) = 3.55, p < 0.002), and fewer number of signals (t(19) = 

4.85, p < 0.002) in T2 than in T1.  Hence, we accepted H2.  

For the landmark part, detailed analysis revealed that participants seemed to perform best 

with the farthest vertical (3-7) and horizontal (1-5) pairs than with other pairs.  Initially we 

expected that the 2-8 pair would afford high performance.  In fact, participants made most 

mistakes with signal 2-8 in session T1.  We assumed that this low performance might be 

caused by the use of the 3-8 pair which was not uniquely different from the 2-8 pair.  

However, the error did not occur in T2.     

5 

3 

0

1

2

3

4

5

6

N
u

m
b

er
 o

f 
ro

u
n

d
s 

Training session 

Training rounds 

Session T1

Session T2

T1           T2 

3.26 

1.25 

0

1

2

3

4

Tr
ai

n
in

g 
ti

m
e

 (
m

in
:s

ec
) 

Training session 

Training time 

T1           T2 

46 

23 

0

10

20

30

40

50

N
u

m
b

er
 o

f 
tr

ai
n

in
g 

si
gn

al
s 

Training session 

Training signals 

T1           T2 



208 

For the task load analysis of the two training sessions, a paired-samples t-test revealed that 

the two training sessions required a significant difference level for task loads: mental 

demand (t(19) = 5.55, p < 0.002), temporal demand (t(19) = 3.30, p < 0.05) and effort 

(t(19) = 4.82, p < 0.002).  In other words, participants found it less cognitively demanding 

to achieve the same level of performance in T2 than in T1. There was no significant 

difference on physical demand, frustration and performance (all p > 0.05)81.         

We took an opportunity to compare the subjective workload scores between male and 

female participants in both training sessions.  An independent-samples t-test revealed that a 

significant difference was found on frustration (T1: t(18) = 1.72, T2: t(18) = 1.57, both p < 

0.05).  Namely, male participants reported a significantly higher level of frustration than 

female users.  No significant difference was found on the other five task load measures (p 

> 0.05 in each case)82. 

Navigation performance  

Figure 5.11 demonstrates the means of accuracy, breakdown, error83 and time performance 

of the two walking conditions.  

To analyse navigation performance, we ran a paired-samples t-test of the two walking 

conditions.  On walking duration, participants spent a slightly longer duration to complete 

the route in condition LM than in condition SS.  Nevertheless, there was no significant 

difference between the two conditions (t(19) = 2.03, p > 0.05).  On performance, there was 

no significant difference between the two conditions on accuracy (t(19) = -1.54) and 

breakdown (t(19) = 0.64), both p > 0.05. A significant difference was found on error (t(19) 

= -2.48, p < 0.05).  Specifically, participants made significantly fewer number of errors in 

condition SS than LM.  Based on our interpretation of these results, we concluded that 

participants performed equally well in both conditions.  Hence, we rejected H3.    

 

                                                 

81 For the detailed TLX scores, please see Appendix 6.2. 

82 For the detailed TLX scores, please see Appendix 6.3. 

83 Error refers to incorrect localisation of signals and incorrect identification of landmarks. 
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Figure 5.11 Mean navigation duration, accuracy, error and breakdown: time in mm.ss; accuracy in %; error and 

breakdown in number of occasions. 

Table 5.5 shows additional detailed data including PPWS84, detailed accuracy performance 

(on identification of direction and landmark), overall and detailed and breakdown85.  

We broke down accuracy data into the level of information types (Table 5.5, 2
nd

 and 3
rd

 

rows) and performed further analysis using a paired-samples t-test.  No significant 

difference was found on accuracy performance between the two conditions both on 

direction and landmark identification (all p > 0.05).    

                                                 

84 See Glossary.      

85 Breakdown comprises of four elements: (1) failing to perceive – system generated signals but participants 

reported not sensing them, (2) failing to identify – participants reported sensing signals but chose not to 

identify them, (3) failing to distinguish – participants interpret direction as landmarks and vice versa, and (4) 

hesitating to identify – participants reported sensing signals and took longer than five seconds to identify 

them.  Please note that the five-second threshold was based on the average response time from the two lab 

training sessions (see Table 5.3).   
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Table 5.5 Navigation performance (* indicates significant difference between the two conditions) 

No Measurements Condition SS Condition LM  

1 PPWS (km/hr) 4.17  4.00 

2 Accuracy Landmark (%) 64.29 76.19 

3 Accuracy Direction (%) 97.73 93.18 

4 Breakdown - Overall  

(number of occasions) 

 Failing to perceive 

 Failing to identify 

 Failing to distinguish 

 Hesitating to identify 

3.55 

 

0.10 

2.20 

0.00 

1.25 

3.05 

 

0.25 

0.20 

0.65 

1.95 

5 Breakdown - Landmark 

(number of occasions) 

 Failing to perceive 

 Failing to identify* 

 Failing to distinguish* 

 Hesitating to identify* 

2.80 

 

0.00 

2.20 

0.00 

0.60 

2.40 

 

0.10 

0.20 

0.55 

1.55 

6 Breakdown - Direction 

(number of occasions) 

 Failing to perceive 

 Failing to identify 

 Failing to distinguish 

 Hesitating to identify 

0.73 

 

0.08 

0.00 

0.00 

0.65 

0.66 

 

0.08 

0.00 

0.08 

0.40 

As this experiment emphasised landmark signals’ recognition, we looked further into 

breakdown data.  At the overall level (considering all four types of breakdown incidents 

from the trigger of both direction and landmark signals – Table 5.5 4
th

 row), there was no 

significant difference (as reported earlier)86.  However, when we looked closely at the 

detail of breakdown rate of landmark identification (Table 5.5 5
th

 row), we found 

interesting insights as follows: 

 Participants had a significantly greater number of occasions failing to identify 

landmarks in condition SS than in LM (t(19) = 4.02, p < 0.002); 

 Participants had significantly more problems in distinguishing landmark from 

direction signals in condition LM than in SS (t(19) = -2.46, p < 0.05);  

 Participants showed significantly more sign of hesitation in condition LM than in 

SS (t(19) = -2.83, p < 0.05); 

 No significant difference was found on the ability to perceive landmark signals in 

both conditions (t(19) = -1.45, p > 0.05). 

Based on the above detailed analysis, in the condition where landmark signals were given 

together with direction signals (condition LM), there were higher rates for 

distinguishability and hesitation.  On the other hand, in condition SS where only direction 

signals were given, participants did not have hesitation on landmark identification because 

                                                 

86 In addition, no significant difference was found at the detail of breakdown rate of direction. 
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they simply skipped it.  All four types of breakdown incidents compensate each other.  As 

a result, the overall breakdown rate was not significant.     

We further examined whether there was an effect of a visual diagram on accuracy of 

performance in condition LM.  Using an independent-samples t-test, we found no 

significant difference between the two groups of participants (t(18) = -0.38, p > 0.05).  In 

other words, the diagram made no difference at this stage of the study.  Every participant 

managed to remember all landmarks before the actual walking started and performed 

equally well.  Despite being able to remember all landmarks, during the actual walking 

session they had failed to identify or incorrectly identify landmarks (see Figure 5.12).  We 

inferred that the reduction of vibration detection and landmark identification were affected 

by mobility and environmental dynamics such as visual workload.   

 

Figure 5.12 Side-by-side comparison of means accuracy (%) of training session T2, the test prior to the actual 

walking and condition LM 

We took an opportunity to compare the subjective workload scores between male and 

female participants in both walking conditions.  An independent-samples t-test revealed 

that a significant difference was found on mental (SS: t(18) = 1.12, LM: t(18) = 0.39, both 

p < 0.05) and physical demand (SS: t(18) = 0.78, LM: t(18) = 1.37, both p < 0.05).  

Namely, male participants reported a significantly higher level of mental and physical 

demand than female users.  No significant difference was found on the other four task load 

measures (p > 0.05 in each case)87. 

                                                 

87 For the detailed TLX scores, please see Appendix 6.3. 
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Confidence  

After each walking condition, post-questionnaires were used to gather users’ subjective 

data on the two different types of tactile signals being used for landmark identification.  

These subjective measures included: confidence scores, ease of landmark identification 

and system reliability (see Table 5.6).  Participants gave rating on a 1-5 likert scale, 1 

being low and 5 being high.   

Table 5.6 Subjective mean scores of confidence, signal identification and system reliability (likert scale 1-5, 1 being 

low and 5 being high; *indicates significant difference at p < 0.05 between the two conditions). 

No Measurements Condition SS Condition LM  Statistical 

data, t(19) 

1 Confidence* 4.10 3.45 2.29 

2 Ease of landmark identification 3.15 3.15 0.00 

3 System reliability 3.95 3.80 0.77 

A paired-samples t-test was used to analyse raw data (shown in Table 5.6).  In general, 

participants thought that it was neither easy nor difficult to identify the actual landmarks in 

the environment from both types of tactile signals.  Nonetheless, they felt significantly 

more confident with walking condition SS than LM.  This contradicted our initial 

expectation.  Therefore, we rejected H4.   

Perceived usefulness  

Table 5.7 Subjective mean scores of TAM’s perceived usefulness and perceived ease of use, TAM scale 1-7, 1 being 

strongly agree and 7 being strongly disagree; *indicates significant difference at p < 0.05 between the two 

conditions. 

  Mean scores Statistical 

data (t19) No Measurements Condition SS Condition LM  

1 Perceived usefulness 

  Navigate more quickly* 

  Increase navigation performance*  

  Easier navigation*  

  Useful* 

 

2.25 

2.35 

2.20 

2.15 

 

3.00 

2.95 

2.95 

2.75 

 

-3.68 

-2.11 

-2.88 

-3.04 

2 Perceived ease of use 

  Easier to learn* 

  Easier to become skillful* 

  Clear and understandable 

  Ease of use 

 

2.15 

2.10 

2.35 

2.20 

 

2.55 

2.80 

2.35 

2.40 

 

-2.18 

-2.90 

0.00 

-1.45 

In order to measure users’ likelihood in accepting the tactile navigation system, we asked 

participants to rate the system’s perceived usefulness after each walking condition using 

the modified TAM (see Appendix 3).  Table 5.7 demonstrates means and statistical (a 

paired-samples t-test) values of perceived usefulness and perceived ease of use (see 

Section 5.3.1 for explanation) of the two walking conditions.   
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Condition LM scored significantly lower than condition SS in all of the perceived 

usefulness and two of the perceived ease of use measures.  As these results contradicted 

our hypothesis on perceived usefulness, we rejected H5.   

Tactile navigation process   

 

Figure 5.13 Tactile Navigation Process 

At the end of both journeys, we asked participants to arrange activity cards88 that reflected 

their navigation process.  Participants provided slightly different accounts of their 

navigation process that allowed us to synthesise these data and come up with a preliminary 

version of a tactile navigation process demonstrated in Figure 5.13.   

                                                 

88 There are 12 activity cards: plan route, receive tactile signal, recognise tactile signal, identify meaning, 

make decision to move, move, orientate yourself, check location of self within space, look for other cues, 

make sure you are on the right route, feel confidence in navigation and build a mental image of the area. 
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Other results 

Preference  

11 participants (55%) preferred the system generating straight signals to landmark signals.  

This outcome has not been affected by the order effect.  Namely, participants did not 

indicate their preference based on the order of condition experienced first.  Instead, 

participants chose their preferred system based on their provision of navigation purposes, 

being questing or exploring.   

Difficulty to distinguish signals in the field 

Participants reported a moderately higher level of difficulty to distinguish direction from 

landmark signals in the field (condition LM) than in the lab.  On a 5-point likert scale, 

when 1 is more difficult and 5 is less difficult, mean score of difficulty was 2.55 

(SD=1.10).   

The majority of participants suffered from the movement effect as they reported that the 

sensation seemed to be less strong when they started moving.  These drawbacks led to 

signal ambiguity and a number of errors and breakdowns.  A number of participants 

suggested stronger vibration. 

Effect of physical landmarks on felt vibration  

According to our observation, ‘distance to landmark’ may contribute to the ability to 

identify landmarks with no hesitation in both conditions.  Participants reported a 

moderately high level of effect of physical landmarks on their felt vibration, on a 5-point 

likert scale, when 1 is low and 5 is high, the mean effect was 3.7 (SD=0.66).     

Other practicality issues   

During the experiment, there was one participant who reported one false positive89 incident 

in condition LM.  Another two participants paused during their walk whenever they 

received landmark signals, trying to recall the landmark associations and refused to look 

for the cues in the environment.  However, we took these two incidents as a minor effect of 

having run an experiment in the field and it did not impede the overall results.   

                                                 

89 False positive refers to the occasion when participants reported perceiving signals when none were 

actually generated. 
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5.4.5 Discussion  

The effect of gender on TactNav’s accuracy performance  

We have reported earlier that in the training sessions, there was no significant difference in 

terms of learnability and memorability between two genders.  In this subsection, we would 

like to further exhibit that gender difference has very little or no effect on tactile navigation 

performance.  We ran an independent-samples t-test on performance data of the two 

walking conditions. 

On accuracy performance, there was no significant difference between male and female 

participants in both conditions: SS: t(18) = -1.57, LM: t(18) = -1.77, both p > 0.05.  On 

error, there was no significant difference between male and female participants in both 

conditions, SS: t(18) = 1.00, LM: t(18) = 0.50, both p > 0.05.   

On breakdown, a significant difference was not found between male and female 

participants in condition SS at the overall level (t(18) = 2.33, p > 0.05) and at all detail 

levels, all p > 0.05.  However, in condition LM, a significant difference was found 

between male and female participants at the overall breakdown rate (t(18) = 1.70, p < 

0.05).  Looking at the detailed levels, male participants significantly failed to perceive 

(t(18) = 1.50, p < 0.002) and failed to identify (t(18) = 1.81, p < 0.002) signals on more 

occasions than female participants.  Both genders made equal numbers of failing to 

distinguish signals and hesitation (p > 0.05).   

In summary, it was found that gender has an effect on breakdown but has no effect on 

accuracy performance and error.   

Results from all of our empirical studies reported in this and previous chapters have been 

consistent that men and women can navigate almost equally well using tactile navigation 

displays.  Our results were also congruent with that of Karuei et al.’s (2011).   

The effect of wearable technology on walking speed 

We have reported earlier in the practicality issues subsection that there were some 

participants who spent a considerably long time to identify landmarks at some decision 

points in condition LM.  These patterns actually occurred in short duration across 

participants in such a condition, which we have reported as breakdown – hesitating to 

identify, leading to PPWS slightly slower than their normal walking speed (see PPWS in 

Table 5.5, 1
st
 row).  
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Compared to the normal walking speed (4.27 km/hr), participants walked slower in both 

conditions LM (4.00 km/hr) and SS (4.17 km/hr).  Using a one-way ANOVA, a significant 

difference was found among them, F(2,57) = 3.59, p < 0.05).  Planned contrasts revealed 

that the use of the tactile wearable device decreased walking speed, t(57) = -2.09, p < 0.05 

but that walking with condition LM was equal to walking with condition SS, t(57) = -1.67, 

p > 0.05.  Post-hoc comparison revealed that the main significant difference was between 

normal walking and condition LM’s pace.  Based on these results, we concluded that 

walking with the wearable tactile technology *for the first time* has disrupted normal 

walking especially when users have to recall landmark associations.  

The development of an internal spatial representation   

At the end of each condition, participants were told to recall a recently navigated route and 

were asked to draw the route including all passed landmarks.  Navigated routes were 

designed to have unusual interconnections and turns such that participants were not able to 

memorise them easily. 

Results showed that participants could recall with reasonable accuracy the shape of both 

routes with, on average, four of the seven landmarks in both conditions.  There was no 

obvious difference in terms of quality of drawn routes and the number of recalled 

landmarks across conditions.  Mean number of recalled landmarks across conditions was 

3.67 (SD 2.25).   

Participants’ ability to draw maps of the navigated routes may be explained by the MRT 

theory since they were transforming crossmodal inputs into a reasonably accurate drawing 

of the navigated area.  Specifically, participants visually reported, albeit without thorough 

details, information that had been given by tactile means.   

Based on the quality of drawn routes, we could not conclude that participants were able to 

fully develop a cognitive map of the navigated environments.  This may have been 

influenced by Bath’s complex morphology.  It does not contain regular patterns (e.g. grids) 

and has a number of curved and symmetrical shapes.  It may also have been influenced by 

the fact that TactNav demands low cognitive workload (via mental rotation) which in turn 

can erode spatial skill (Boari et al., 2012). To understand this complex phenomenon, 

further study is required.      



217 

 

Navigation errors 

Direction  

For direction, 25% of the participants made the most mistakes in identifying half right and 

half left.  An observation revealed that some participants failed to turn correctly due to a 

slight change in their heading direction after receiving the first directional signal leading to 

an incorrect move based on the second90 interpretation.       

Tactile interaction is very precise; only a slight difference in current heading angle could 

lead to error in decision making.  Some participants followed the signals so 

straightforwardly that they did not maintain themselves on the pedestrian footpath.  For 

example, there were two participants that after receiving a half left signal at a corner, made 

that 45-degree left turn and continued with that slightly-left heading, cutting across the 

street instead of getting onto the footpath on the side of the road.  Another example was 

when a participant received a straight signal; they just walked 90-degree straight ahead 

into the middle of the road instead of making a slight deviation onto the pavement.  We 

believed that participants would be able to develop strategies to conceptualise directional 

choices given a long-term usage of the system.     

We expect that an intensive in-situ training and signal timing calibration will easily 

eliminate choice hesitation and errors.             

Landmark  

Errors were distributed across landmark categories.  Data gathered revealed that there were 

several patterns of errors.  In condition SS, participants were not able to convincingly 

identify landmarks when several landmarks were cluttered in the same vicinity.  In which 

case, they would call all of those landmarks including irrelevant types.  Another error case 

occurred when participants completely forgot to identify landmarks as they have 

interpreted the straight signals being given at the location of important landmarks simply 

as a directional instruction.  Participants indicated that as long as the signals guided them 

onto the right path leading to a destination, they were not worried about not being able to 

                                                 

90 Please note that each directional instruction was given as a set of two identical signals with a two-second 

gap. 
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identify on-route landmarks.  As landmark identification is crucial to navigation 

completion, we suggest that intensive in-situ training will help improve with this situation.   

For condition LM, participants had widely reported that they experienced difficulty 

distinguishing landmarks from direction signals once they started walking.  This happened 

despite the fact that we have compensated the mobility effect by extending signal duration 

from 1.2 to 2 seconds.  Other problems that may be caused by mobility included not being 

able to recall signal associations and confusing the felt with the other signal.  An increase 

of signal intensity may resolve these practicality matters.  In addition, further study could 

be done on having participants develop their own semantics. 

Cognitive workload and navigation confidence  

Participants were observed being more conscious when walking condition LM than 

condition SS.  The NASA TLX scores directly reflected this occurrence.  For the task load 

analysis of the two walking conditions (see detailed scores in Appendix 6.2), a paired-

samples t-test revealed that the two different types of tactile signals required significant 

difference levels of task load indexes: mental demand (t(19) = -4.33, p < 0.002), 

frustration (t(19) = -2.91, p < 0.05), effort (t(19) = -4.68, p < 0.002), and performance 

(t(19) = -2.59, p < 0.05).  Namely, participants found that condition LM required a higher 

level of mental demand/effort and were more frustrated than with condition SS.  They felt 

that they performed significantly much better in condition SS than in LM.  No significant 

difference was found on physical and temporal demand (all p > 0.05)91.    Subjectively, 

participants found it less cognitively demanding to achieve the same level of performance 

in condition SS than in LM. 

We believed that workload scores reversed variation with subjective confidence scores that 

have been reported earlier, i.e. the less cognitively demanding, the more confidence 

participants felt towards using the system.  Having reported that, both conditions received 

relatively high confidence scores.  Based on our observation, none of the participants 

showed any sign of frustration or uncertainty with our improved system design walking 

both conditions.   

Interestingly, these task loads index and confidence scores had no direct relationship with 

their preferences.  Participants who preferred the system that provided both directional and 

landmark information indicated that although it required them to try hard to recognise 

                                                 

91 For the detailed TLX scores, please see Appendix 6.2. 
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landmarks in LM condition, they thought that long-term use would be more favorable than 

the system that only provided directional information especially when they have to 

navigate unfamiliar areas.  A few participants explicitly discussed the relationship of their 

preferences with the purpose of their journey, stating that the system that provides only 

directional signals is suitable for questing while the system that provides both directional 

and landmark information is beneficial for exploration.   

Wearability and acceptance 

The wearability and aesthetics of the systems are crucial to user acceptance.  Clearly our 

prototype, involving a notebook computer, a controlling board in a backpack and 

protruding wires, allows for little meaningful evaluation of these issues.  We will discuss 

user acceptance in light of the system’s usefulness and users’ attitude.     

The device acceptability could be partially measured using TAM.  According to the 

usefulness scores, it was clear that all participants looked over the unusual appearance of 

the prototype, as none of them explicitly stated any concern about its look neither during 

the course of navigation nor in the questionnaires in which they provided feedback.    

In addition to the TAM scores where all participants perceived the system as being very 

useful and fun for their wayfinding, we asked them to state their attitude towards using the 

system.  In general, participants rated their experience using both systems as very positive 

(4.25 out of 5 on likert scale, 1 – being very negative and 5 – being very positive).   

Based on the two measures, we ideally predict that users are likely to employ the tactile-

based system to help them with navigation tasks provided that it is improved in reliability, 

functionality as well as wearability and aesthetics.    

Transformation among frames of references  

Compared to visual navigation displays, the nature of guidance information provision in 

tactile-based systems is fairly different.  The system provides egocentric guidance 

information without forward field of view (FFOV); guidance information includes 

navigational choices, navigation checking (am I on the right path?) and additional cues 

such as landmarks and destination without overview information on spatial direction 

judgments of the objects. 
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For our tactile navigation system, there exist three frames of references, two fewerfewer 

than those presented in visual systems92.  The three frames include a world, an ego and a 

display frame.  Wearing the system on the body completely eliminates the need to map the 

ego to the display frames because both frames are completely aligned.  As a result, the 

navigation function through the tactile channel involves only two frames, the ego+display 

and the world.  The absence of FFOV and other visual information reduces time delay, 

disorientation, errors, mental workload and navigation ambiguity that usually occur with 

visual-based navigation.  Evidently, tactile-based displays, our system in particular, require 

very little transformation and almost no physical or mental rotation.    

Tactile display or tactile interaction     

Currently TactNav’s wayfinding instructions are triggered by whole body movement.  In 

other word, users cannot directly enter any other forms of input which they might wish to, 

for example, a destination point, a request for rerouting or a request to repeat vibration 

signals.  Lack of obvious means to interact with the system, TactNav could be considered 

merely as a tactile navigation display.  However, if we consider the whole body movement 

as a macro gesture, one may argue that TactNav may as well be considered as an 

interactive system.  Our future work could explore the interaction side of the system in 

more detail.  Specifically, should the system take any other forms of input rather than just 

movement, how would it be like?       

Limitations with TactNav’s evaluation  

A major limitation of this evaluation is not having participants using TactNav to navigate 

unfamiliar areas.  Given the look of TactNav (Figure 5.14), participants’ safety was our 

first priority and the walking must not cause any public disturbance93.  Given its peaceful 

atmosphere, the city of Bath94 was chosen as the venue for the experiments. 

We were aware that having participants walking in their residential town could possibly 

bias results on the ability to recall routes.  To compensate any potential preconception, we 

                                                 

92 Transformation in visual navigation systems occurs among five frames of references: a world, an ego, a 

head, a display and a control frame (see Chapter 2 for explanation). 

93 To prevent any misunderstanding, we informed the authorities about the experiments. 

94 Bath is a relatively small city with a very low rate of crime and public disorder.  The majority of the 

population are students and the elderly.  The general atmosphere is very friendly.   
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designed unusual and slightly complex yet realistic paths for the experiments.  

Additionally, routes were unknown to participants.             

 

Figure 5.14 Participants wearing TactNav. 

It was proved in both the quantitative and qualitative results described earlier that 

participants’ living duration and their knowledge about the space did not have an influence 

on their ability to recall navigated routes (as most could not recall routes in detail 

regardless of their residential duration).  Many of the participants had explicitly pinpointed 

that the routes were complex and that the City of Bath itself contains unstructured (i.e. 

non-grid) layouts which makes it quite difficult to recall.  This led us to believe that 

somehow our results were not affected by route familiarity. 

Nevertheless, we insist that TactNav should be evaluated in unfamiliar areas and in 

different urban settings to confirm its usability and effectiveness.  This is considered as our 

future research direction.   

5.4.6 Conclusion of the field-based evaluation    

We had two main objectives in running this experiment, namely, (1) to improve 

learnability and memorability of landmark signal associations and (2) to investigate the 

effect of tactile landmark signals on navigation performance in real environments. 

Our attempt to improve learnability and memorability has been successful as results 

demonstrated that the presence of a visual diagram significantly helped improve 

learnability and a repeating training session ensured memorability.  Nevertheless, accuracy 
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performance decreased once we took the system to be evaluated in the field.  This may be 

caused by participants’ movement.  With respect to a number of possible environmental 

factors, we had no concrete method to identify them and/or to measure their effect on 

performance.  Further study is required to address this shortcoming.  Nonetheless, we hope 

that the variation of environmental dynamics across conditions and participants would 

reflect results that might occur in real world use. 

We have obtained realistic results and address practicality and user experience95 issues 

from users’ perspective (Kjeldskov & Graham, 2003).  It allowed us not only to test system 

functionalities but also to explore in-situ users’ needs and the effects of contextual issues, 

such as weather conditions and the appearance of actual landmarks, on the usability and 

effectiveness of the system (Goodman et al., 2004). 

On the effect of tactile landmark signals on navigation performance, the results refute all of 

our hypotheses.  The two types of tactile signals used for representing on-route landmarks 

seem to have the same effect on performance and the ability to recall routes.  Specifically, 

participants performed equally well with both types of signals and could, to some extent, 

develop an internal spatial representation of navigated environments.  First-time users felt 

more confident with the system that required less cognitive workload and perceived such a 

system as more useful.  However, these index scores had no influence on participants’ 

preferences because participants chose the preferred system on the basis of the navigation 

purpose for which the system will be used (i.e. questing and exploring).  If the sole purpose 

of having delivered any piece of information is to confirm that the navigator stays on 

course, a simple notification such as a straight signal may be sufficient.  On the other hand, 

if guidance for orientation and a highlighting of interesting spots are needed, the hybrid 

tactile navigation system is preferable.   

Other substantial insights learned from this study are that: 

                                                 

95 Desirable user experience aspects can be described as: satisfying, enjoyable, engaging, pleasurable, 

exciting, entertaining, helpful, motivating, challenging, enhancing sociability, supporting creativity, 

cognitively stimulating, fun, provocative, surprising, rewarding, and emotionally fulfilling.  On the other 

hand, undesirable user experience aspects can be described as: boring, frustrating, making one feel guilty, 

annoying, childish, unpleasant, patronizing, making one feel stupid, cutesy, and gimmicky  (Sharp et al., 

2011). 
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 The tactile-based navigation technique offers an alternative low attention interface 

that can reduce alignment effect96 by eliminating the needs for mental rotation and 

the transfer of different frames of references;  

 Using tactile navigation displays help reduce variance in navigation and 

wayfinding performance normally found between men and women in visual 

navigation. 

5.5 Summary  

In this chapter, we reported a comparative study of two types of tactile signals used to 

represent landmarks in the field in order to address RQ4 and RQ5.   

We have demonstrated through the design and execution of our field evaluation on RQ4.2 

How do we represent a few types of spatial information? 

For RQ5.1 Does the system help with different tactile navigation purposes?, our 

investigation found evidence to support that the system could be used to help with 

exploratory navigation.   

For the following usability-related RQ: RQ5.2 Can tactile landmark representation 

“increase/help” with performance/confidence as in visual pedestrian navigation systems?, 

the study produced no evidence in substantiation of our hypotheses.  Specifically, tactile 

landmark representation does not increase level of performance and confidence.    

In response to RQ5.3 Is there a problem with the transfer of frames of reference with 

tactile navigation displays?, no trace of the issue was found in this or previous field studies 

reported in Chapter 3.  

For the user experience aspects, the work in this chapter addresses RQ5.4 What are user 

acceptance and perceived usefulness (practicality) of the tactile navigation system?, 

qualitative feedback revealed that users have accepted and perceived the system as useful. 

The participation of actual users allowed the studying of complex situated interactions and 

processes as occurred in navigation tasks (Kjeldskov & Graham, 2003; Goodman et al., 

                                                 

96 Alignment effect refers to the difficulty of using maps that do not align with the body heading direction 

(Montello, 2005). 
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2004).  Up to this point, we have successfully fulfilled our goals and provided answers to 

all of the research questions.  The next chapter sees a summary of the thesis including 

outcomes, limitation, contribution as well as suggestions for future work.   
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If we are facing the right direction, all we have to do is keep on walking. 

(Buddhist proverb) 

Chapter 6 Conclusion and Future Work 

This thesis has proposed new insights around the theoretical and practical issues of tactile 

pedestrian navigation displays.  In this final chapter, Section 6.1 summarises the thesis; 

Section 6.2 reflects upon RQs’ outcomes; Section 6.3 addresses limitations of the research 

and provides reflection on tactile communication; and finally Section 6.4 concludes the 

work, provides a brief overview of the research contribution and suggests future research 

directions.       

6.1 Thesis summary  

The goal of this thesis is to address the issues surrounding the use of tactile communication 

in a wearable system for pedestrian navigation tasks in urban spaces.  This research was 

originally motivated by the reported struggles in visual-based navigation displays (e.g. 

Seager & Stanton Fraser, 2007; Millonig & Schechtner, 2006).  It prompted us to identify 

those problems and then search for an alternative communication channel in order to 

eventually develop and evaluate a prototyping system that could effectively be used to 

support wayfinding tasks in ubiquitous environments (Chapter 1).            

Chapter 2 established the context for this research by examining existing knowledge in the 

area of pedestrian navigation in urban environments and the roles of technologies in 

navigation, as well as cataloging related work in the domain of tactile navigation research.  

This examination allowed us to elicit requirements for the design and development of 

tactile navigation displays and provided a set of spatial information types necessary for 

navigation completion, which included direction, landmark, orientation and confirmation 

cues.  Chapter 2 also elaborated the basis of our research programme, including underlying 

theories (i.e. MRT, Prenav and Choremes theories), psychophysics of touch, factors 

affecting tactile perception and characteristics of tactile signals.  Finally, it provided a 

careful examination of the design and usability issues97 requiring to be investigated.   

                                                 

97 See the list of RQs in Section 1.2.2. 
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Chapter 3 addressed an ambiguity surrounding tactile representations of directional 

information.  At the time of this research’s commencement (in 2007), two wearable 

interface layouts, a waist belt and a back array, had each claimed success as directional 

displays in independent trials, with no published evidence on their comparative 

performance.  Therefore, we replicated their original device and signal designs98 and 

directly compared them for a range of tasks, focused exclusively on accuracy and time 

performance.  Both of our comparative experiments were the first of their kind.  Chapter 3 

reported these two novel direct comparison studies of the two most established wearable 

device layouts.  Results informed HCI practitioners and navigation system designers that 

the belt afforded better performance than the array for an interpretation of eight directions 

(according to the Choremes theory that describes primitive turning actions at decision 

points for urban navigation).  The Prenav model can be used to explain these outcomes.  

According to Prenav, it is not enough to simply provide information via a tactile display; it 

is critical that such a display is intuitively comprehended (Van Erp, 2007).  The 

performance data and expert evaluations indicated that the belt’s placement of actuators 

was more intuitive and easier to comprehend than that of the array layout.        

Based on the waist belt prototype, we then developed a tactile-based navigation system 

called TactNav.  As the original tactile belt studies99 reported its effectiveness over a 

visual-based directional display in forested areas, we were interested in investigating both 

systems’ performance in an urban setting.  Consequently, we carried out a field evaluation, 

comparing TactNav with a visual-based navigation system on a mobile device, and 

reported this work in the second half of Chapter 3.  The experiment took place in early 

2008 and was the first study100 that compared the two different sensory-based navigation 

systems in an urban context.  Results from our field evaluation were congruent with those 

of the original studies in demonstrating advantages of the tactile-based over the visual-

based systems.  Additionally, directional signals given by TactNav could be used 

effectively as orientation and confirmation cues.  Our results also revealed insights into 

both systems’ practicality in relation to urban environment characteristics (e.g. the effect of 

city structure and the number of objects within the space on navigation performance).  

                                                 

98 For the original belt design, see Van Erp et al., 2005; for the original array design, see Tan et al., 2003. 

99 See Duistermaat (2005), Van Erp & Duistermaat (2005), and Elliott et al. (2006). 

100 See a similar study in Pielot & Boll (2010a). 
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Previous studies’ (Duistermaat, 2005; Van Erp & Duistermaat, 2005; Elliott et al., 2006) 

and our study’s findings could be used to generalise that tactile-based displays provide 

navigation performance advantages in at least two types of spaces: urban and sparse 

outdoor environments.  Similar to Elliott et al.’s (2010) findings, our findings have 

confirmed MRT and Prenav theories’ predictions that intuitive presentation of directional 

information via the tactile sense can better support navigation performance and reduce 

workload.  Specifically, TactNav was more robust and effective than the visual-based 

system because the placement of actuators around the waist allowed an intuitive 

presentation of eight directions thus allowing automatic behavior in such demanding tasks.                          

Moving away from experimental-based studies, the first half of Chapter 4 focused on the 

behavioural aspects of how pedestrians use landmarks, if any, for different navigation 

purposes.  Prior to our attempt to classify important landmarks, existing lists101 were either 

location-specific (i.e. very small) and did not represent landmarks in different locations; or 

very large that some of the landmarks provided were not necessary at the level of 

pedestrian navigation.  Hence, it was crucial that we clarified the number of landmarks that 

could accommodate the human’s limited cognitive ability and the mobile computer 

system’s restricted display capacity, as well as systematically identifying the important 

ones.  In order to inform system designers, in 2009, we employed a survey research 

method that allowed us to gather a large amount of data at a global scale.  Responses from 

both online and face-to-face respondents produced insights into how people use landmarks 

in different urban areas for different navigation purposes.  It also revealed that landmark 

usage was influenced by specific landscapes of the cities and navigation purposes.  

Specifically, pedestrians used landmarks located near decision points when they commuted 

and quested; they used landmarks located along the routes when they explored.  Section 

4.3.5 provided the sets of contextually prioritised landmarks upon which our lab-based 

experiment was built.  We proposed that the sets would be useful for any sensory-based 

navigation applications.       

Given the sets of landmarks, it was possible to investigate the practical aspects of tactile 

landmark representation reported in the second half of Chapter 4.  Given non-discrete and 

                                                 

101 See the lists of landmarks, published by researchers and used in commercial navigation systems in 

Appendix A2.1. 
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highly diverse sets of landmarks, we decided to follow the abstract representation 

approaches, proposed by Ternes & MacLean (2008) and Loomis & Lederman (1986), as 

opposed to the symbolic technique.  We empirically compared two representation 

techniques using one and two actuators respectively, with and without the presence of 

directional signals; both techniques were assessed on their support for learnability, 

memorability, distinguishability (from directional signals) and accurate performance.  To 

date, the experiment, carried out in 2010, is the only study that has investigated a 

combination of directional and landmark representation.  As the abstract approach required 

users to memorise vibration patterns and their arbitrary associations, we deployed the Dual 

Coding theory’s mnemonics102 during signal training sessions.  Additionally, the 

experiment strictly followed Choremes on the number of directions presented.  Overall 

results provided new knowledge that, for landmark representation in a hybrid system, 

signals should be generated using the dual-actuator technique.  The planning, execution 

and results of this lab-based experiment confirmed the effectiveness of the Choremes and 

the Dual Coding theories.   

Building upon findings established throughout Chapters 3 and 4, TactNav’s functionalities 

were extended to display hybrid spatial information so that it could be evaluated for 

navigation in the real world.  Chapter 5 reported the field based evaluation, carried out in 

2011, of the hybrid system.  We had two main objectives carrying out such a novel study: 

(1) to improve signal learnability and (2) to investigate the effect of tactile landmark 

signals on navigation performance.  For the first objective, we attempted to improve 

landmark signal learnability using the Choremes’ improved mnemonics and an additional 

visual diagram.  The attempt was successful as results demonstrated significant progress in 

signal learnability thus confirmed the Dual Coding’s effectiveness.   

For the second objective, we carried out TactNav’s field evaluation on two conditions, 

with and without103 the presence of landmark signals, known as conditions LM and SS 

respectively.  Quantitative results demonstrated that the presence of tactile landmark 

signals had no effect on navigation performance.  While directional signals in both 

conditions provided wayfinding instructions and orientation cues, both straight (condition 

SS) and landmark (condition LM) signals acted as additional navigation cues, ensuring that 

                                                 

102 Providing a set of images and a label for each vibration stimulus. 

103 In the experimental condition SS, the system generated a straight signal as a confirmation of landmark. 
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users were on the right route passing important (condition SS) or specific (condition LM) 

landmarks.  However, qualitative data revealed that landmark signals could be useful and 

were preferable if a highlight of interesting places was required (i.e. for exploratory 

purpose).    The evaluation was done against the usability and user experience goals 

identified in Chapter 2.  This allowed us to identify practical issues regarding the use of 

TactNav in urban environments including the effect of mobility on signal perception, the 

reduction of an alignment effect104, the absence of gender difference on navigation 

performance, the effect of wearable technology on walking speed, the development of an 

internal spatial representation, and the increased level of cognitive processing when 

landmark signals were presented.  For this latter phenomenon, the display of landmark 

signals that required extra effort to memorise them made the system more difficult to 

understand according to Prenav.  However, overall findings, reported in Chapter 5, 

provided evidence to support our proposal that tactile representation of spatial information 

could be used effectively to aid navigation and wayfinding in urban environments, thus 

supporting the Choremes’, MRT’s and Prenav theories’ predictions.   

6.2 Thesis outcomes 

Regardless of having any assistive tools, navigation tasks require concurrent processes of 

physical movement and decision making involved in determining the desired direction and 

target of travel (Bowman, 1998).  To support the tasks, navigators usually adopt visual 

assistive technologies such as paper- or electronic-maps.    

However, it has been widely agreed among researchers (e.g. Ishikawa et al., 2008; Liben et 

al., 2002; Wickens, 1999; Keckmann & Post, 1993; Huang et al., 2012) that using visual 

tools to aid wayfinding is not easy.  It requires multilevel cognitive processing and near 

perfect synchronisation among at least three frames: the world, the map’s orientation, and 

the navigator’s location and viewpoint (Allen, 1999).  The more sophisticated the maps, 

the less effective they are (see various comparative studies in Ishikawa et al., 2008; Coors 

et al., 2005; Dillemuth, 2005).   

                                                 

104 Alignment effect refers to the difficulty of using maps that do not align with the body heading direction 

(Montello, 2005). 
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Our research program has focused and investigated on how to better support pedestrian 

navigation tasks with a new form of tactile interactive systems.  In the following 

subsections, research outcomes are described in terms of RQs that the thesis addresses. 

RQ1 What information types should the tactile navigation display provide to 

pedestrians? 

Our first RQ was prompted by an incorrect assumption that pedestrian navigation would be 

similar to other types of land navigation and would require the same granularity and 

system functionalities provided by today’s visual-based assistive tools.  In fact, pedestrian 

navigation does not follow the concept of distance-based turn-by-turn instructions 

(currently used in SatNavs mostly for vehicular navigation) because pedestrians do not 

require the same level of granularity instruction105 (Burnett, 1998; Pielot & Boll, 2010; 

Stark et al., 2007).  Furthermore, it was reported that navigation with distance requires 

high cognitive effort (Burnett, 1998; May et al., 2003).     

Researchers (e.g. Bradley & Dunlop, 2005; May et al., 2003) suggested the lists of at least 

eight types of spatial information necessary for land navigation (see Section 2.1.3). These 

lists were reflected in most of the maps and SatNavs; some even contain larger lists.  

Nevertheless, we have learned through a comprehensive review in Chapter 2 that a 

human’s tactile perception and cognition abilities are limited.  As a result, we suggested 

that the list of spatial information provided in the tactile-based assistive systems should be 

minimal.  We revised the list by carefully analysing tasks106 required for pedestrian 

navigation completion and seeking information types that exclusively accommodate those 

tasks.  In summary, the information types that tactile pedestrian navigation systems should 

provide included direction, landmark, orientation, and confirmation cues.   

RQ2 How do pedestrians use landmarks for different navigation purposes? 

                                                 

105 That is because humans possess inherent skills in that we pass lanes, cut across open spaces when 

possible and use one-way-streets in both directions (Stark et al., 2007).  Furthermore, pedestrians prefer less 

complex routes to those routes, which are shorter in distance, but contain a greater number of decision points 

(Weiner et al., 2004).    

106 Including (1) identifying directions to take, (2) identifying/classifying landmarks as points of reference 

and interest, (3) confirming if they are on the right path, (4) orienting themselves, and (5) controlling their 

movement towards intended directions and destinations. 
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RQ2 was prompted by lack of clarification of the comparative importance of different 

landmarks and their usage for three navigation purposes107 in urban settings.  Our empirical 

study reported in Chapter 4 contributed small yet significant new facts to the body of 

knowledge on this matter.  Results from both on-line questionnaires and face-to-face 

interviews allowed us to identify that landmarks have been used differently mostly 

depending on navigation purposes and on their locations in relation to the navigated paths.  

Outcomes for RQ2 have been broken down and described in the following three sub-RQs. 

RQ2.1 Do pedestrians use landmarks differently for the three different navigation purposes 

of commuting, questing and exploring?   

Existing knowledge informed us that landmarks used during the course of navigation are 

located both on-route and off-route (e.g. distant landmarks).  On-route landmarks are 

always being used as references for orientation and confirmation, and occasionally being 

used to disambiguate turning instructions.  Off-route landmarks that are not contiguous to 

the navigated path such as mountain or river are reported to have some orientation value 

(Lovelace et al., 1999). 

Results from our survey study revealed that pedestrians would use different sets of 

landmarks with different frequency of use for different navigation purposes.  A substantial 

finding explained the paradox of landmark’s roles in wayfinding.  For example, navigating 

in the same area, a person may find commonly important landmarks such as religious 

places as having no value for their commuting but may find it crucial to navigation 

completion for a questing purpose.  Additionally, a number of landmarks used were 

significantly more in unfamiliar areas than familiar areas.                      

RQ2.2 When do pedestrians use landmarks during navigation? 

Reponses from our participants revealed that they need to depend on landmarks most when 

they quest or explore the area.  The usage timing of the two purposes was reported to be 

different.  During the quest journey, landmarks located near decision points were 

memorised prior to the commencement of the journey and later recalled to clarify the 

change of direction just “before” the navigator making decision at each manoeuvre.   

                                                 

107 The three navigation purposes are commuting, questing and exploring. 
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On the other hand, during the exploration journey, two usage patterns were found.  

Landmarks distributed along the path were constantly being used to confirm that the 

navigator was on-route and they were used frequently on long segments of the route (cf. 

Allen, 1997).  Landmarks situated near decision points were being used to confirm their 

choice of turns “after” the navigator making decision.            

RQ2.3 What are the most important landmarks for each navigation purpose?   

Synthesising data gathered from both questionnaires and face-to-face interviews, we were 

able to provide the lists of important landmarks for each navigation purpose (Table 4.2).         

RQ3 What is the effective form of tactile displays for pedestrian navigation? and RQ4 

How can we represent spatial information via the chosen device? Specifically, which 

representation technique should be used for each type of spatial information? 

Various forms of tactile directional displays have been proposed; each of them was 

designed to be worn on different body sites such as head, torso and thighs (see Table 2.2).  

In Chapter 3, we argued that the best location for the display of spatial information is the 

torso area, leading to the focus on only two popular device layouts: the back array and the 

waist belt.  We then built the two prototypes following their original designs.   

Results from two lab-based experiments and a field-based evaluation allowed us to 

establish that, for RQ3, the waist belt embedded by eight actuators is an effective form of a 

wearable device, and for RQ4, an absolute-point vibration technique should be used to 

display egocentric directions, confirmation and orientation cues.           

Following the research on landmark usage reported in Chapter 4 Section 4.3, we have 

investigated an appropriate representation technique for landmarks that works effectively 

with direction representation on a waist belt device.  Our attempt to present hybrid spatial 

information was the first of its kind.  Chapter 4 Section 4.4 reported results suggesting that, 

for RQ4, the dual-actuator approach for tactile landmark representation worked effectively 

with the absolute vibration technique for tactile direction representation.   

RQ5 What is the tactile navigation system’s performance?   

RQ5 was framed by the lack of knowledge on usability and user experience as well as 

practicality issues surrounding the use of the tactile navigation displays in the field.  

Outcomes for RQ5 have been broken down and described in the following four sub-RQs. 
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RQ5.1 Does the system help with different navigation purposes? 

The field evaluation reported in Chapters 3 and 5 confirmed that the system could be used 

effectively for quest and exploration. 

RQ5.2 Can tactile landmark representation “increase/help” with performance/confidence 

as in visual pedestrian navigation systems?  

Based on results reported in Chapter 5, we had no substantial evidence to believe that the 

presence of tactile landmark signals helps increase level of performance and confidence. 

We have learned that mobility had an effect on tactile perception of landmark signals 

which in turn impeded users’ performance and confidence.  Nevertheless, we had no 

supporting proof as to how and how much, if any, the changing environments impact these 

outcomes.  Further studies are required to understand these complex phenomena and their 

causes.        

RQ5.3 Is there a problem with the transfer of frames of reference with tactile navigation 

displays? 

Evidently, the interaction techniques deployed in TactNav impose very little or no demand 

for the transfer of frames of reference because they naturally eliminated the needs for 

mental and physical rotation (normally used to align different frames in visual-based 

navigation).     

RQ5.4 What are user acceptance and perceived usefulness (practicality) of the tactile 

navigation system?  

For the final RQ, we were interested in the likelihood of technology adoption.  We 

theorised that TAM could be used as a fundamental determinant to predict and explain the 

use of our proposed technology.  Despite the prototype’s unattractive look, all participants 

stated a very positive attitude towards the system because of their perceived usefulness and 

ease of use.  Provided an improvement in system aesthetics, participants are most likely to 

adopt the hybrid system especially when navigating unfamiliar areas.   

However, in reality, we are aware that users’ individual difference could influence 

acceptance of new technology.  These differences include cognitive style, personality (e.g. 

degree of defensiveness, risk-taking propensity), demographics (e.g. age and education), 

and user-situational variables (e.g. training, experience, and user involvement) (see Alavi 
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& Joachimsthaler, 1992).  Therefore, further research on user acceptance and system 

practicality are required for the prediction of wearable technology adoption.   

6.3 Discussion and reflection 

After addressing all of our original research questions, we are now in a position to discuss 

and reflect on how well we have answered them.  This section starts in subsection 6.3.1 

with a note on the limitations of positioning technology at the time the field studies were 

carried out.  Then we provide a summary of the drawbacks with research methods and 

experimental designs in subsection 6.3.2.  Subsection 6.3.3 reflects on the roles of spatial 

information and subsection 6.3.4 summarises the advantages and disadvantages of tactile 

communication and tactile-based navigation systems.      

6.3.1 Location technology used in this research  

With current advances in GPS technology (as of 2012), data broadcast from a constellation 

of satellites around the Earth provides highly synchronised clocks with trilateration108 

giving 5-20 meters accuracy.  At the time of the research109, positioning coverage in urban 

canyons was not 100% accurate and it could become much worse if the environment 

contained high structures or buildings (Raper et al., 2007; RIN, 2011).  We had no choice 

but to assume that the city of Bath, a location where the field experiments took place, had 

an acceptable level of positioning accuracy given that the cityscape110 allowed satellite 

signal availability. 

Our two field evaluations, carried out in 2008 and 2011 respectively, relied on this 

technology to provide navigation guidance.  We observed that there were much higher 

occurrences of GPS signal disappearance in the first than in the second studies, leading to 

user’s higher level of frustration and poorer time performance.  It seems, therefore, that the 

GPS coverage has improved over time.  Ultimately, we believe that the future of GPS 

                                                 

108 Trilateration is a method for determining the intersections of three sphere surfaces given the centres and 

radii of the three spheres. 

109 The research program took place during 2007 - 2011.   

110 The experimental routes, contains only low-rise buildings. 
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looks bright because in the next decade three worldwide navigation satellite systems111 are 

due to join GPS.  Collectively, they will be called Global Navigation Satellite Systems 

(GNSS); they are expected to give better coverage, especially in urban canyons (RIN, 

2011).  Improving the accuracy of positioning technology is however beyond the scope of 

this thesis.      

6.3.2 Drawbacks with research methods and experimental designs 

Earlier, we have discussed the limitations of each study in the corresponding chapter.  In 

this subsection, we reexamine the limitations across chapters.   

Some may argue that with navigation tasks, field study is the most suitable method for 

evaluation.  We decided to adopt a mixed-methods approach of survey research, lab-based 

studies and field trials throughout the research programme because each was considered 

suitable for the purpose of a given empirical study.  

Lab studies  

To evaluate the choices of device layouts (reported in Chapter 3) and signal designs 

(reported in Chapter 4), we chose lab-based experiments.  Although not entirely realistic, 

lab-based studies allowed us to manipulate experimental variables and collect quantitative 

measurements such as errors and performance time for subsequent data analysis without 

interference from external factors.   

We were aware that some of our lab studies’ experimental design choices could be 

considered as drawbacks.  One may argue that not having our participants wearing a noise 

cancellation device in all three lab studies (reported in Chapters 3 and 4) could impact 

signal recognition performance.  We decided to leave participants’ auditory channel 

receptive to any sound produced by the vibration because stimuli perceived by both 

sensory channels were coherent thereby yielding a positive effect, i.e. sensory 

augmentation (Turchet, 2010; Gallace & Spence, 2008; Klatzky & Lederman, 2005).  

Furthermore, we kept other sounds in the controlled environment to a minimum.      

                                                 

111 The three systems include Russia’s GLONASS (~2012), Europe’s Galileo (~2018) and China’s Compass 

(~2020).   
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We deliberately provided no training on direction signals to participants in the two lab 

studies, reported in Chapter 3, because we aimed to test the two devices’ intuitiveness 

according to the MRT and the Prenav theories.        

The major issue with the lab experiments reported in Chapter 3 may be not isolating the 

three factors (i.e. stimuli patterns, body contact areas and actuator layouts112) which may 

contribute to the belt’s achieving better performance.  As we aimed to directly compare 

each device layout and signal generation on their effectiveness, we had to fully replicate 

the original designs.  Future research could investigate the effects of alternative 

instantiations in each of these dimensions.       

Survey study 

To gather information on how people use landmarks during the course of navigation, we 

chose to conduct a survey (reported in Chapter 4).  The method is considered contextually 

insensitive and it allows no variable manipulation (Kjeldskov & Graham, 2003).  As a 

result, collected data could be incomplete or unreliable because respondents were 

independent of their navigated environments.  Nonetheless, the method allowed us to 

collect descriptive data from large samples at low cost within a short period of time, 

supporting broad generalisation of results (Kjeldskov & Graham, 2003).   

For the study design, online questionnaires were sent out only to highly educated 

respondents who live in modernised societies where there is high penetration of computing 

resources and technological advancements.  This could lead to sampling issues such as 

sample and self-selection biases (see Wright, 2005).  Furthermore, aside from some basic 

demographic data, we could not guarantee respondents’ real characteristics and their level 

of navigation skills because all information was self-reported.   

In order to increase credibility of the survey results, multiple online surveys with the same 

or different types of respondents should be conducted (Wright, 2005) so that we could gain 

reliable outcomes on how people generally use landmarks to aid their navigation in urban 

areas. 

Field studies 

To evaluate the system’s design and to investigate practical issues, we carried out field 

studies, reported in Chapters 3 and 5.  This research method allowed us to gain realistic 

                                                 

112 Saltatory cues on a back array vs absolute cues on a waist belt 
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results and insights into complex situated interactions.  However, it was quite difficult to 

collect data and we had limited control of the experiment and the environments (Kjeldskov 

& Graham, 2003).         

The field study’s disadvantages were realised in the experiment reported in Chapter 3.  

There were situations when the weather conditions made it slightly more difficult to walk 

with participants’ normal effort.  We did not abort the experiment because we hoped that it 

increased the realism of using both types of navigation systems in the real world.  It is 

worth noting that lessons learnt from this study helped us better design the second field 

evaluation, reported in Chapter 5.        

A limitation of this thesis was not having the system evaluated in different spaces.  We 

have discussed and elaborated this point quite thoroughly in Section 5.4.5, suggesting the 

system evaluations in areas unfamiliar to the participants.  It is critical that this should be 

done only if the prototype’s appearance (Figure 5.14) is improved for fear that it could 

compromise participants’ safety given global concerns about terrorism.      

6.3.3 Reflection on roles of spatial information  

In Chapter 2, reviewing related research suggested that our tactile-based navigation system 

should provide four types of information: direction, landmark, orientation cues and 

confirmation cues.  We would like to clarify this point in relation to the roles of spatial 

information in different sensory-based systems.  

There are two important types of spatial information, direction and landmark (Bradley & 

Dunlop, 2005).  We found that their roles in navigation completion are different in visual-

based and tactile-based systems.     

With visual-based navigation, pedestrians use visual directional information as wayfinding 

instructions.  They use landmarks as confirmation and orientation cues because visual 

navigation naturally requires mental orientation and transformation among frames of 

reference (see Section 1.1.2 and Appendix A2.5).  Landmarks are reported to help increase 

navigation confidence and reduce navigation errors (May & Ross, 2005).    

On the other hand, with tactile-based navigation, directional signals can be used as 

wayfinding instructions as well as orientation and confirmation cues.  According to our 

studies’ results, they help increase navigation confidence.  With the absence of the 

intermediate frame of reference (i.e. the display frame), navigating with a tactile-based 
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system required no mental orientation and transformation.  As a result, pedestrians no 

longer need to rely on landmark signals for confirmation and orientation.  Albeit not 

necessary, landmark signals can be used as confirmation cues.  Consequently, their role 

can be reduced to merely a notification of on-route or destination landmarks, if required.          

6.3.4 Reflection on advantages and limitations of tactile communication 

and tactile-based navigation systems  

Advantages of tactile communication and tactile-based navigation systems  

Touch can be used not only to draw attention but also to profoundly express the meaning 

of interactions (Tan & Pentland, 2005).  This is because, in reality, we touch intending to 

perform tasks, communicate messages and connect emotionally and physically to living 

things (Brian et al., 2004).  The touch sensory channel is different from the visual and 

audio channels as it is bi-directional, i.e. it can be used as both input and output to the 

systems.  A major benefit of communication via touch is the large number of skin receptors 

because skin is the largest sensory organ.   

Gregory (1967) suggested that touch constitutes a more primitive sensory modality 

compared to visual and auditory in that it requires minimal cognitive effort and provides 

information of immediate value.   To explain this further, if we observe how the human 

brain processes visual and audio information, we need to transform what we see and hear 

into hypotheses and try to make sense of these external/distant stimuli.  In contrast with 

touch, it occurs when our body is in direct contact with stimuli and the environment.  

However, we are much more accustomed to gathering information through the visual 

modality than via the tactile modality (Gallace & Spence, 2008).   

Touch could be used as a fundamental unisensory mode for communication because tactile 

consciousness is well-differentiated from the consciousness of stimuli presented in other 

sensory modalities (Gallace & Spence, 2008; Van Erp, 2003; Wickens, 1980).  In other 

words, the perception of tactile information is less likely to be affected by perception via 

other modalities unless there is an attempt to facilitate or impair tactile awareness (Gallace 

& Spence, 2008).   

The use of touch interaction in human computer interaction is still at an early stage.    

Researchers (Subramanian et al., 2005; Nesbitt, 2005; Tan et al., 2003) have suggested that 

touch feedback could be used as an alternative to the visual and auditory channels.  It helps 

reduce clutter in either space, allowing for an increased number of simultaneous 
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distinguishable signals to be perceived by the user.  As a result, this touch feedback could 

be invaluable when users’ attention has to be split into several loci.  MacLean (2008a) 

noted that touch is a lightweight communication that is suitable for interaction on the move 

where events and state detection of the environment should be done subconsciously.  

Previous research (e.g. Castle & Dobbins, 2006; Van Erp & Duistermaat, 2005; Elliott et 

al., 2006; Pielot & Boll, 2010a) as well as results from all of our empirical studies suggests 

that tactile information is most efficient for navigation tasks.  On this final point, the 

advantages of tactile navigation systems can be summarised as follows.       

Performance over visual navigation systems 

Existing visual-based navigation systems impose extensive cognitive demands for 

transformations and mental rotations (Wickens, 1999).  Demonstrated throughout the 

thesis, the tactile navigation system imposed low mental workload, allowing users to 

perform their tasks with low stress level and error rates.  The system provided useful 

information in a timely manner and allowed the navigators to achieve their navigation 

goals while simultaneously engaging with other tasks or objects in the environment.        

Performance for gender and individual differences 

Although we did not seek to directly tease out the effect on system performance of 

individual differences in age, gender, navigation experience and spatial ability, results 

gathered throughout the thesis suggested that people of different levels of skills, gender 

and background are likely to perform equally well using TactNav.  

Intuitive interaction   

It requires a number of skills to comprehend map reading (Allen, 1999) and a high level of 

cognitive effort to use visual-based navigation systems (Duistermaat, 2005; Raisamo & 

Myllymaa, 2010; Elliott et al., 2010).   

On the contrary, empirical studies presented in this thesis illustrated that it required very 

little training to learn arbitrary tactile landmark signals.  Importantly, it required no effort 

to learn tactile directional concepts using an absolute-point vibration technique.  Unlike 

with their visual counterparts, information processing efficiency, cognitive ability, working 

memory capability and prior knowledge are not determinants of the comprehension of 

tactile directional instructions.  Overall, interaction with tactile-based systems has been 

shown to be intuitive, not cognitively cumbersome or obtrusive.   
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Limitations of tactile communication and tactile-based navigation systems  

Despite the fact that the touch sense is rich compared to the other senses, there are physical 

limitations.  First, spatial resolution on each part of the body is fairly limited; hence, it 

cannot represent very complex graphical patterns (Kaczmarek & Bach-y-Rita, 1995).  

Secondly, it lacks the ability to provide overview information (Jansson, 2005) and is 

restricted in carrying semantically rich information (Subramanian et al., 2005).  

Additionally, too much skin stimulation leads to fatigue (Schiffman, 1976).  Finally, the 

fact that touch has so many attributes that we can manipulate makes it both potentially 

powerful and quite complicated to design for (Fisher et al., 2004).  

In terms of a personal–public spectrum, touch communication is very personal.  It is 

interaction design and experience design for an individual.  This experience cannot be 

shared unless the design is intended for a group.  Touch is most easily deployed in a 

system for one user (and is even more limited than the small visual-based display of a 

mobile phone screen).   

Other problems include actuator performance, mechanical transmission difficulties, safety, 

absence of software modelling, and understanding of psychophysical aspects of the system 

(Fisher et al., 2004).   

Although this thesis has demonstrated that tactile-based navigation systems are promising, 

many problems still confront the development of effective and practical ones.  For 

instance, we have highlighted in Chapter 5 that mobility has a significant impact on tactile 

perception.  Although increasing signal strength could resolve the issue, we have yet to 

investigate whether signal strength above the recommended frequency (i.e. 200 Hz) would 

be disturbing or quickly lead to fatigue and skin adaptation.  We conclude this subsection 

by noting the major disadvantages of tactile navigation systems based on our empirical 

studies.      

Lack of an overview function  

The major flaw of the tactile navigation display lies in the fact that it cannot provide an 

overview of the routes, which in turn reduces the user’s confidence during the course of 

navigation.  In which case, should any application require an overview of the route or 

setting, multimodality should be considered.   

Limited bandwidth 

We have learned that tactile information cannot be used to communicate large numbers of 

symbols or provide for many fast changes because the bandwidth of the channel is low 
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(Subramanian et al., 2005) and human cognitive capacity is limited (Schiffman, 1976).  In 

our case, the trade-off for wearability has made the matter worse because our tactile 

display allowed small contact areas, i.e. points around the waist.  As a result, the 

information obtained through the display was very restricted.  Furthermore, we learned 

from results reported in Chapter 5 that this limited bandwidth suffers from a mobility effect 

(i.e. vibration perception on the torso area decreased when moving).   

To address these problems, a large amount of research still needs to be done on the 

expansion of tactile bandwidth, learnability and memorability improvement as well as the 

minimisation or management of movement effects.         

6.4 Conclusion and future work  

6.4.1 Conclusion  

The thesis has made a significant contribution to the field of tactile interaction design for 

pedestrian navigation.  Our thesis findings have contributed to an understanding of the 

design, development, usability and user experience issues of tactile navigation displays.  

Prior to our research, much of the work in the field emphasised providing only one type of 

spatial information: direction.  We were compelled to investigate how the research domain 

could be extended.  This research is the first that has taken a step forward into 

demonstrating that displaying tactile landmark signals is possible and effective, given 

carefully designed signal representation techniques for different information types.   

It is worth noting that we do not seek to claim that tactile displays are in general superior to 

visual displays, as each has their particular advantages.  Implications from our studies 

could be summarised that tactile displays provide effective local guidance while visual 

displays offer better overviews of the areas and routes.  Nonetheless, we are aware that 

regardless of tactile displays’ performance advantages for waypoint navigation, visual 

displays, either in the forms of a SatNav or an application embedded in smart phones, 

remain the dominant choice for most mobile users.   

In our work, we have sought to tackle major challenges in developing practical wearable 

tactile-based navigation systems that can transmit useful spatial information to pedestrians.  

The attempt was warranted since it provided practitioners and designers with novel 

understandings and insights regarding the design and development of systems that can 

effectively support navigation in urban environments.  The thesis can be used as a basis or 



242 

suggestions of directions for future research that is relevant to the design of tactile-based 

navigation systems for different types of users performing different tasks in different types 

of space.  For instance, the next generation of tactile systems could effectively allow a 

visually disabled user navigating unfamiliar areas, a hiker traversing elevated terrains, a 

soldier finding targets in outdoor environments, a firefighter navigating a smoke-filled 

building, or a rescuer searching for survivors in demanding conditions.   

Having completed our research programme, we realise that the challenges facing tactile 

interaction design are still great.  Nevertheless, we strongly believe that the HCI 

community and system designers will benefit in numerous ways from tactile capability.  

The progress within the area still requires understanding of a wide range of aspects 

including for example interface and interaction design, human cognitive ability, and 

information representation, alongside technological advancements in GPS coverage and 

hardware components.   

To conclude this thesis, we review its research contributions to the domain of tactile 

displays for pedestrian navigation.  

Research contributions 

Each chapter of the thesis has its own conclusion section and the previous sections in this 

chapter have summarised the chapters and discussed the outcomes and limitations.  Hence, 

those detailed conclusions will not be repeated here.  Instead, this section will outline the 

overall substantial contributions, both theoretical and practical, of this thesis to the body of 

knowledge.   

Addressing the first two RQs, we made a theoretical contribution by developing the list of 

necessary spatial information types for tactile-based systems and the lists of landmarks 

used for different navigation purposes (described in Chapters 2 and 4 accordingly).  They 

could be used to inform HCI practitioners, serving as a basis for the design of tactile 

navigation displays that we have illustrated throughout our practical studies.  Additionally, 

results from all of our empirical studies reported throughout the thesis confirmed the 

underlying theories including the Choremes, Dual Coding, Prenav and MRT theories.    

Addressing RQs 3-5, we made a practical contribution.  The contribution came in the form 

of requirements and suggestions for the development of the system prototypes.  The 

application of these requirements has been demonstrated throughout the development and 

evaluations of TactNav reported in Chapters 3, 4 and 5.  The contribution also included 

heuristics for tactile representation techniques, arbitrary signal training requirements and 
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improvements, the system’s wearability as well as an initial understanding of the impact 

that mobility and the real context of use have on navigation performance.   

6.4.2 Future work 

The use of tactile displays has yet to become common practice compared to the use of 

other traditional senses for communicating information in HCI.  Evidence gathered 

throughout our research programme has shown that our system could be used effectively to 

aid navigation in normal as well as reduced visibility and audibility environments and in 

attention demanding and high visual workload environments.  Nevertheless, the findings 

led to new questions and requirements for system improvement.  These emergent issues are 

considered as our future research directions. 

Learnability and memorability improvement  

It was demonstrated in Chapters 4 and 5 that following the Dual Coding theory113 (Paivio, 

1986), learnability and memorability could be improved.  However, it was apparent that 

the tactile channel’s bandwidth is fairly limited.  Although our underlying system has a 

relatively simple structure, its complexity came from a combination of representing various 

types of tactile spatial information and a number of learned arbitrary associations.   

To learn landmarks, our participants could cope with seven arbitrary associations in the lab 

environment but six in the field.  In reality, there are many more landmark categories to be 

represented.  Therefore, it would be beneficial if the threshold of bandwidth can be 

expanded, not only to cope with more landmarks but also to make the already-learned 

signals resilient to mobility and environmental noise effects.  This may be achieved by 

having users develop their own semantics (Cohen, 1993; Cohen, 1994a, Cohen, 1994b; 

Edworthy & Hards, 1999; Bonebright & Nees, 2007), that is, allowing users themselves to 

define the associations between vibrotactile signals and landmarks. 

User groups 

The system proposed here could potentially be extended and used for wider user groups 

such as pedestrians with severe visual impairment or elderly people.  One of the challenges 

in tactile research includes understanding the effect of aging on tactile perception both 

physically and cognitively.  With an elderly population, they could suffer deterioration in 

                                                 

113 Training with mnemonics, i.e. providing both a label and images 
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various areas such as loss of hearing, loss of visual ability, physical and cognitive 

functions, peripheral sensation and skin detection ability (Goodman et al., 2004).  Visually-

impaired users are often very sensitive to tactile stimuli and require a different set of 

spatial information for navigation (see Table 2.1).   

Therefore, further system design and evaluation for each specific user group will be 

required because they possess different characteristics and skills, and may have different 

opinions on usability and acceptability.   

Aesthetics  

We have acknowledged that the current prototype’s physical design was not the best 

possible realisation of the tactile interface.  With a greater budget and advanced 

technology, the device itself could be made smaller with fewer wires or equipped with 

wireless technology.   

Error reduction and additional system functionalities  

Error reduction 

Based on the results of the experiment reported in Chapter 5, there are three main types of 

navigation errors: (1) participants made an incorrect turn, (2) participants were unable to 

identify landmarks, and (3) participants incorrectly identified landmarks.  Qualitative 

feedback and observation revealed that the first type of errors happened when there was an 

unexpected change of participants’ heading angle during which tactile signals were 

generated.  We expect that extensive and in-situ training should help prevent this type of 

error.    

Both types of errors in landmark identification happened when participants were either 

unable to recall landmark associations, or unable to distinguish direction from landmark 

signals.  The roots of these errors were unclear.  They could be caused by mobility effect, 

tactile clutter114, spatial and temporal masking or all of them combined.  A revision of 

signal design may be required to prevent tactile clutter and spatial and temporal masking.  

Increasing signal strength may help reduce the movement effect.  Within these general 

concerns, there are vast numbers of specific issues requiring investigation, such as how 

                                                 

114 Multiple tactile messages being presented both sequentially and simultaneously (for landmarks) may lead 

to reduced detection and comprehension or a sensory overload situation. 
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strong the signals should be.  Therefore, many studies still need to be carried out to identify 

the actual causes of these errors in order to resolve them effectively.    

Additional system functionalities 

During the TactNav evaluation, we gathered recommendations for improvement of the 

system’s functions.  These functions include providing: 

 An initialisation interface which allows users to input destinations  

 A recovery signal or a re-route function in case of error 

 A confirmation signal after the correct turn has been made 

 A manual control of signal generation   

We foresee that further development of these ideas would be beneficial.     

Long-term use 

Due to resource limitations, our research has been restricted to a system’s evaluation over a 

short period.  Future studies need to address benefits and issues that are related to a long 

period of use such as heat accumulation from vibration or fatigue from wearing the system.  

Tactile navigation model 

In Chapter 5, we derived a preliminary version of a tactile navigation process (Figure 

5.13), portraying the interactive aspects of pedestrians using our tactile navigation system 

in specific urban contexts.  Research in tactile navigation is still in its early stage and the 

work presented here provides a first step in understanding how we interact, decide and act 

when deploying a hybrid touch-based system for navigation tasks.  This process model 

needs to be verified with wider user groups, in various urban settings and situations, 

thereby allowing us to better support pedestrian navigation tasks by tactile-based displays.    
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Glossary 

Amplitude: is a magnitude of the wave (how high it goes on the y axis).  For example, in 

Figure 2.12, the bottom wave has a higher amplitude than the top wave. 

Articulatory suppression: refers to the mask of tactile stimulus by verbal suppression.  

Miles & Borthwick (1996) had participants saying the word “the” continuously and 

counting from 1-3 backwards soon after their body parts had experienced the touch in 

order to see the effect of verbal suppression. 

Attention: refers to the focus of mental resources on information/cognition process salient 

at a given time.  It comes from sensation + memory + thought process.  Attention could be 

controlled or automatic.  After being processed, it leads to actions. 

Chronometer: is an instrument for measuring time, especially one designed to keep 

accurate time in spite of motion or variations in temperature, humidity, and air pressure.  It 

is used in conjunction with astronomical observation to determine longitude (Darling, 

2011).   

Cognition: is what goes on in our heads when we carry out our everyday activities (Sharp 

et al., 2007). Cognition typically involves a range of processes including: attention, 

perception & recognition, remembering, producing & learning language (i.e. reading, 

writing, speaking and listening) as well as problem solving, planning, reasoning and 

decision making (Sharp et al., 2007). 

Crossmodal masking: refers to the mask of a stimulus in one modality by a stimulus 

generated using another modality (see Gescheider & Niblette, 1967). 

Dead reckoning: is a way of calculating the position of a ship or aircraft using only 

information about the direction and distance it has travelled from a known point 

(Beauregard, 2007).  These data were used to estimate a ship’s position and heading (Spera 

& Strom, 2002).  The technique is known today for being extremely inaccurate. 

Detection: refers to the ability to sense that they are being stimulated by some form of 

energy (Kostopoulos et al., 2007). 

Discrimination: means being able to perceive one pattern of stimulation as different from 

another (Kostopoulos et al., 2007). 

Distance: is a numerical description of how far apart objects are (Keay, 1989). 
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Earcons: are abstract, structured synthetic tones that can be used to represent parts of an 

interface.  The sound design manipulates timbre, pitch, register, rhythm, intensity and a 

combination of these attributes.  See Brewster et al., 1999; 2002; 2003. 

Grid reference: is a method of locating a point on a map by a number referring to the lines 

of a grid drawn upon the map and to subdivisions of the space between the lines (Keay, 

1989).  

Hapticons or Haptic icons: are brief computer-generated signals, displayed to a user 

through force or tactile feedback to convey information such as event notification, identity, 

content or state (MacLean & Enriquez, 2003).  Hapticons’ pattern design follows 

Multidemensional Scaling Analysis (MDS)115, achieved by manipulation of signals’ 

frequency, amplitude, waveform and duration (for the design and evaluation of Hapticons 

see in MacLean & Enriquez (2003), Chan et al. (2005), and Ternes & MacLean (2008)). 

Locale navigation: An individual forms a mental representation of the surroundings and is 

able to plan routes between any locations within the area.  This is in fact comparable to the 

construction of a cognitive map.  This strategy is used to plan a path from one to another 

destination within the area (Redish, 1999). 

Map: is a diagrammatic two-dimensional representation of an area of land or sea showing 

the spatial arrangement or distribution of physical features over an area (O’Connor & 

Robertson, 2002).  

Marginal information: refers to all explanatory information given in the margin of a map 

which clarifies, defines, illustrates, and/or supplements the graphic portion of the sheet 

(Keay, 1989). 

Modality fission: refers to the process of splitting semantic meaning from a modality-free 

into different modality streams for presenting back to users via appropriate output 

channels. 

Modality fusion: refers to the process of combining multiple modality input streams into a 

single result which is modality-free but rich in semantic.    

                                                 

115 A technique focusing on differentiality of signals (for more details, see Cox (1988)). 
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Nautical chart: is a graphical representation of a maritime area and adjacent coastal 

regions (Calder, 2002). 

Navigational choice: is a choice to turn in some direction from the current heading. 

Navigation strategies: Humans and animals use several strategies to navigate visually 

(Redish, 1999).  These strategies include random, taxon, praxic, route and locale 

navigation.  

Pedestrian: is a person walking along a road or in a developed area. 

Pedestrian navigation: is a form of land navigation, in particular, navigation on foot.   

Percentage preferred walking speed (PPWS): refers to the extent to which the use of the 

wearable device disrupts normal walking.  PPWS is calculated by dividing distance 

travelled by time.  It is then compared with normal walking speed.  The higher the 

difference between the PPWS and the normal walking speed, the higher the effect of the 

device (Petrie et al., 1998).   

Perception: is a human cognitive process by which we recognise, organise, and make 

sense of stimuli in our environment. 

Praxic navigation: An individual follows a fixed motor program.  For example, a person 

navigates by always starting from the same point of origin in the same orientation to a 

fixed location. In this strategy, an individual may have remembered to turn left at point A 

and then turn right at point B.  This strategy is found to be used in the commute mode of 

navigation (Redish, 1999).  

Quadrant: is an instrument used in astronomy and navigation for taking an angular 

measurement of the altitude of stars, typically consisting of a graduated arc of 90° and a 

sighting mechanism attached to a movable arm (Darling, 2011). 

Random navigation: An individual has no information about the location of the platform 

and is forced to search randomly.  This is comparable to exploratory navigation purpose 

described in the previous subsection.  A traveller might spend a significant amount of time 

exploring the environment.  The drawback of this strategy is that it is highly likely that a 

person can get lost (Redish, 1999).  

Recall: is the process whereby individuals actively search their memories to retrieve a 

particular piece of past event or information. 
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Recognition: is the process of identification of something already known; it involves 

searching our memory and then deciding whether the piece of information matches what 

we have in memory stores (Sharp et al., 2007).  It also refers to the ability to identify 

stimuli as well as to detect a particular pattern of stimulation (Kostopoulos et al., 2007). 

Route navigation: An individual associates directions with visual cues, e.g. turn left at the 

church.  The strategy can possibly entail a sequence of subgoals.  Route navigation can be 

considered as a combination of taxon and praxic sequences (Redish, 1999).       

Scale: The scale of a map is defined as the ratio of a distance on the map to the 

corresponding distance on the ground (Keay, 1989). 

Sextant: is an instrument with a graduated arc of 60 degrees and a sighting mechanism, 

used for measuring the angular distances between objects and for taking altitudes in 

navigation (Darling, 2011). 

Sign: is an entity that signifies another entity (Keay, 1989).  Signs on maps are notices to 

instruct, advise, inform, or warn map users.  For example, a compass sign on a map 

indicates map orientation.  

Subitising: refers to the rapid, accurate, and confident judgments of number performed for 

small numbers of items (Kaufman et al., 1949) while counting is the action of finding the 

number of elements of a finite set of objects. 

Survey knowledge: represents knowledge about interconnections between discrete 

features of locations and routes of the area known by the individual (Goldin & Thorndyke, 

1983). 

Tactons: are a set of abstract interface widgets; are similar to Braille in the same way that 

visual icons are similar to text, or Earcons are similar to synthetic speech.  The design of 

Tactons relied on the encoding strategy using parameters of cutaneous perception where 

each of the tactile parameters (i.e. waveform, frequency, amplitude, and duration) is varied 

to encode information.  For the design and evaluation of Tactons, see Brewster & Brown 

(2004), Brown & Kaaresoja (2006), Brown et al. (2005, 2006a, 2006b), and Hoggan & 

Brewster (2006a, 2006b, 2007).         

Taxon navigation: An individual moves toward visible cues (i.e. landmarks), which leads 

to the arrival point.  It is also known as orienting or beaconing strategy (Redish, 1999).     

http://en.wikipedia.org/wiki/Number
http://en.wikipedia.org/wiki/Finite_set
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User acceptance: is defined as the demonstrable willingness within a user group to 

employ information technology for the tasks it is designed to support (Dillon & Morris, 

1996). 

Voluntary body movement (efferent command): refers to the ability to control 

movement of muscles used in touching (Loomis & Lederman, 1986). 
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Appendix 1 Additional Information for Field Evaluation 

A1.1 Experimental route 

 

Figure A1.1 Experimental route 

A1.2 Summary of turning points 

Table A1.1  A summary of turning points by direction. 

Direction Number of Turns 

Left 5 

Half left 1 

Straight 7 

Half right 1 

Right 4 
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Appendix 2 Landmarks 

A2.1 Landmarks in literature and those currently used in 

assistive navigation systems  

Table A2.1 summarises the nature and the key features of previous landmark research.  

Many early landmark studies were limited to the vehicular navigation domain; all of the 

proposed lists of useful landmarks for pedestrians were limited to specific locations or 

navigation purposes.   

Table A2.1 Summary of the list of useful landmark studies (partially taken from Burnett, 1998) 

Authors Studied location Nature of study List of landmarks 

Davis & 

Schmandt 

(1989) 

Boston, USA 

Evaluation of speech-

only route guidance 

system (vehicular 

navigation) 

Traffic lights, stop signs, bridges, 

petrol stations 

Alm (1990) 
Linköping, 

Sweden 

Route descriptions 

given by locals 

(vehicular navigation) 

Traffic lights, traffic and place name 

signs, shops, petrol station, bridges 

Akamatsu et 

al. (1994) 
Tokyo, Japan 

Verbal protocols given 

when using navigation 

systems (vehicular 

navigation) 

Building, street name signs, 

crossroad signs, place name signs, 

traffic signs 

Green et al. 

(1995) 
Michigan, USA 

Evaluations of a 

simulated route 

guidance system 

(vehicular navigation) 

Traffic lights, stop signs, bridges 

Burnett 

(1998) 
Derby, UK 

Driver’s information 

requirements for route 

guidance systems 

(vehicular navigation) 

Traffic lights, pelican crossing, 

bridge over road, hump-backed 

bridge, petrol station, monument, 

superstore, street name signs, railway 

station, church  

(Top 10 landmarks, for the complete 

list please see Burnett, 1998) 

May et al. 

(2001) 

Loughborough, 

UK 

Evaluations of a route 

instruction system 

(vehicular navigation) 

Bridge, church, car park, garage, 

MacDonalds, Sainsburys116 

supermarket, pedestrian lights, post 

                                                 

116 Researchers noted that MacDonalds and Sainsburys supermarket were coded as separate items due to the 

frequency of their use, and the non-use of other similar objects 
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office, petrol station, public house  

May et al. 

(2003) 

Loughborough, 

UK 

Pedestrians’ verbal 

identification of 

landmarks on 

memorised and 

walked-through routes 

(pedestrian navigation) 

Shops, pubs, supermarket, traffic 

lights, parks, war memorial, pelican 

crossings, car parks, shopping center, 

restaurants, shopping precinct, town 

hall 

Baus et al. 

(2007) 

The University of 

Saarbrücken, 

Germany 

Audio (non-speech) 

perceptible landmarks 

in mobile navigation 

systems (pedestrian 

navigation) 

Café and restaurant, traffic lights, 

fountain, river, shopping mall 

Grabler et al. 

(2008) 

San Francisco, 

USA 

Automatic map 

generation for tourists 

in their exploratory 

journey (pedestrian 

navigation) 

Attractions, restaurants, shopping 

places 

In addition to the abovementioned literature, we pursued landmark categories being 

provided in commercial navigation applications such as those used in Nokia Maps™, 

Garmin nüvi
®
, and Microsoft AutoRoute

®
.  Landmarks in these commercial systems are 

generally known as points of interest (POI) and aimed at both vehicular and pedestrian 

guidance.  A summary of these landmarks is provided in Table A2.2.   

Table A2.2 Summary of the list of landmarks in commercial applications 

Applications  Manufacturer List of landmarks 

Nokia Maps™ 

2.0 
Nokia (2007) 

Airports, amusement parks, at the water (ocean and sea), 

attractions, bars and pubs, bridges, camping areas, car rentals, 

ATM, casinos, cinemas, educational institutes, convention 

centers, ferries, financial services, first aid, golf courses, 

hospital, hotels, internet/Wi-Fi, libraries, shopping malls, 

supermarkets, monuments & memorials, museums & galleries, 

parking, party & clubbing, petrol stations, police, post office, 

bus/tram/boat stations, railway stations, religious places, 

restaurants, river, sports facilities, taxis, theatres, toilets, traffic 

lights, tourist information  

(over 40+ categories and growing, custom category not 

allowed) 

Garmin nüvi
®

 Garmin 

Bowling, caravan and camping, castles, church, cinemas, DIY-

car services, educational institutes, English heritage, football 

fields, government offices, horse racing, hotels, karting, live 

music, misc leisure, mountains, museums, National trust sites, 

racing, paintball, parking, petrol stations, play area, prisons, Red 

cross, restaurants, sailing, shopping malls, ski and snowboard, 

sport centers, studios, supermarkets, swimming pools, theme 
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parks, Underground/train/bus stations,Wi-fi, youth hostels, zoo 

(custom category allowed) 

Microsoft 

AutoRoute
®  

Microsoft 

(2007) 

Airports (major), airports (minor), amusement parks, ATM, 

attractions, bank, bars and pubs, border crossings, bridges, bus 

stations, camping areas, car rentals, casinos, champion markets, 

church, cinemas, city/town halls, civic/community center, 

convention/business centre, DIY-car services, educational 

institutes, English heritage, entertainment, ferry terminals, golf 

courses, grocery stores, hospitals, hotels (with specific chains, 

e.g. Travellodge, PremierInn), IKEA, monuments, museums, 

libraries, National trust, parking, party & clubbing, petrol 

stations, pharmacies, police, post offices, restaurants, shopping 

malls (with specific chains, e.g. Debenhams), sports facilities, 

river, supermarkets (with specific chain store, e.g. Tesco, 

Morrisons), tourist information, train station, traffic lights, UK 

accident black spots, UNESCO World Heritage Sites, Wi-Fi 

 

(over 60+ categories and growing, custom category not 

allowed) 

Researchers (Safelin et al., 2005; Tscheligi & Safelin, 2006) informed that different 

participants called the same place widely differently (with the exception of bigger chains 

like Starbucks or Tesco).  With regard to such a phenomenon, prior to our main empirical 

study, we ran several pilot interviewing sessions in an attempt to regroup and classify these 

landmarks, e.g. to have a higher level of abstraction or to have fine detail landmarks.  

Feedback from these sessions confirmed the current level of abstraction as appropriate.  

For example, using higher level abstractions, e.g. grouping monument, museum, memorial 

and gallery into a tourist attraction category, would be less useful for navigation since 

tourist attraction is often too generic to make identification easy on the ground.  On the 

other hand, providing finer detail, e.g. identifying each individual landmark as specifically 

as possible, would make the set of landmarks unmanageably large.  This is a particular 

problem when moving towards our ultimate goal of tactile representation of landmarks, 

given the challenges of tactilely representing a large set of distinguishable semantics.  To 

mitigate the forced choice nature of the resulting questionnaire, we provided free text areas 

where participants could report landmarks that were not included in our set. 

Our final list that would be used in the questionnaire study included the following 

landmarks (in alphabetical order):     

1. Airports  

2. Amusement parks 

3. At the water (ocean and sea)  

4. Attractions (tourist attractions)  
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5. Bars and Pubs  

6. Bridges 

7. Camping areas 

8. Car rentals 

9. Cash dispensers (ATM) 

10. Casinos 

11. Cinemas 

12. Educational institutes 

13. Fairs & Conventions 

14. Ferries 

15. Financial services (Banks)  

16. First aid 

17. Golf courses  

18. Government facilities 

19. Hospital healthcare 

20. Hotels 

21. Internet/Wi-Fi  

22. Libraries 

23. Malls and Markets (shopping centre, supermarket) 

24. Monuments & Memorials 

25. Mountains  

26. Music & Culture venues 

27. Museums & Galleries 

28. Natural barriers (any object that prevents you from moving forward, e.g. roads.) 

29. Parking 

30. Party & Clubbing 

31. Pedestrian lights 

32. Petrol stations 

33. Police 

34. Post office 

35. Public transports (bus/tram/boat stations) 

36. Railway stations 

37. Recreation grounds 

38. Religious places (church/cathedral/etc) 
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39. Restaurants 

40. River 

41. Sports facilities 

42. Stadiums (sports) 

43. Taxis 

44. Theatres 

45. Toilets 

46. Travel agencies 

47. Traffic lights 

48. Tourist information 

49. Tunnels 

50. Other landmarks 

A2.2 Descriptive analysis of landmark’s importance and usage 

Before each participant answered questionnaires or interviewing questions according to 

specific navigation purposes, we asked them to rate the importance of having landmark 

information in the case that they had to travel in familiar and unfamiliar areas.  Table A2.3 

demonstrates such subjective importance scores of all 160 respondents.   

A paired-samples t-test showed significant difference that on average, pedestrians valued 

that the presence of landmarks was more important to their navigation success when 

traveling in unfamiliar areas (M = 0.99, SD = 0.08) than in familiar areas (M = 0.48, SD = 

0.50), t(159) = -13.09, p < 0.002.   

Table A2.4 shows overall percentages of landmark use for different navigation purposes 

from both the 100 online surveys and the 60 face-to-face interviews.  There was a large 

difference in the percentage of reported landmark use for commuting between the online 

and face-to-face participants (52% vs 5%).   Qualitative information gathered from the 

online questionnaires and interviews explained this difference.  Commuters (from online) 

in large, homogeneous cities, especially those with grid layouts, tend to rely on landmarks 

as navigation cues because different streets look very similar and good landmarks support 

their orientation and wayfinding decisions.  In contrast, our face-to-face interviews were 

conducted in a relatively old but small city with short routes and diverse interconnected 

passageways and architectures.  In this context, orientation and wayfinding was easy for 

regular commuters, who have developed a cognitive map of the place and therefore did not 

rely on prominent landmarks.     
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 Table A2.3 Subjective level of importance of landmarks when navigating in familiar and unfamiliar areas (scores 

n of 100) 

Familiar Areas Unfamiliar Areas 

Online 

respondents 

Interview 

respondents 

Online 

respondents 

Interview 

respondents 

57 32 100 98 

Table A2.4 Overall Percentage (%) of Landmark Use 

Navigation 

Purpose 
Familiar Area Unfamiliar Area 

 Online Interview Online Interview 

Commute 52 5 - - 

Quest - - 75 95 

Explore - - 62 90 

For online respondents, a one-way repeated-measure ANOVA with navigation purpose as 

the independent variable was used to analyse the results.  It was revealed that navigation 

purposes had a significant effect on the level of landmark usage, F(1.96, 193.72) = 6.34, p 

<  0.05).  Post hoc Bonferroni pairwise comparison found a significant difference in the 

level of landmark usage between commute and quest journeys (p < 0.05) but did not find a 

significant effect between the other pairs.   

For face-to-face participants, an ANOVA with navigation purpose as an independent 

variable was calculated.  Results showed that there was a significant effect of navigation 

purposes on the level of landmark use, F(2, 57) = 78.82, p < 0.05).  Post hoc pairwise 

comparisons showed that pedestrians significantly relied on landmarks during questing and 

exploration journeys more than during commuting in each case (p < 0.002). 

Results from online participants  

Of the 52 online participants who reported using landmarks to aid commuting, 48 (92%) 

used only landmarks in the physical spaces through which they were navigating while the 

other four stated that they used landmarks both in the physical spaces and on public map 

displays.  Their qualitative responses explained that the areas in which these 4 pedestrians 

commuted are large transportation hubs, such as a main train station and an airport, and 

mega department stores where the interior components and structures look alike.  They are 
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crowded places and pedestrians needed an orientation aid to maintain their pace.  This was 

achieved by glancing at the public maps provided on display stands along their routes. 

Of the 75 online participants who reported using landmarks during a questing journey, 36 

(48%) used landmarks only in the physical spaces, whilst the other 39 (52%) matched 

landmarks in maps and the physical spaces to aid their navigation. 

Of the 62 online participants who reported using landmarks during an exploring journey, 

15 (24%) reported using landmarks only in physical spaces whilst the other 47 (76%) used 

landmarks both in the physical spaces and on maps. 

As the results are not normally distributed, we ran non-parametric statistics.  We ran 

Friedman’s ANOVA for our 100 within participants.  For the overall percentage of 

landmark use, Friedman’s ANOVA found a significant difference in the number of 

landmarks used (both physical and in maps) across the 3 navigational purposes (2(2) = 

12.03, p = 0.002).  Wilcoxon tests were used to follow up this finding.  A Bonferroni 

correction was applied and so all effects are reported at a 0.0167 level of significance.  

There were no significant differences in the number of landmarks (both physical and in 

maps) used between quest and explore (T = 315, r =  -0.17) and between commute and 

explore (T = 891, r =  -0.18).  However, participants used significantly more landmarks 

(both physical and in maps) when questing (T = 943.5, r =  -0.34) than when commuting. 

Although overall results demonstrated that there was little difference in landmark use for 

different navigation purposes from online participants (see Appendix 2 Table A2.4), the 

detailed data show that the number and frequency of landmarks used are very different for 

different navigation purposes.  For example, commuters might use landmarks only once or 

twice during the whole journey whilst pedestrians who quested or explored referred to a 

variety of landmarks frequently throughout their journeys.  Prior to the study, we predicted 

that pedestrians would depend most on landmarks during their exploration trip; however, 

our results indicated that they used landmarks most whilst questing.  The qualitative data 

revealed the reason for this to be that many explorers preferred ‘getting lost in space’ to 

truly appreciate the exploratory experience. 

Results from face-to-face participants  

The face-to-face interviews yielded the following results.  There was only one commuter, 

who stated that he always looks at one particular physical landmark during his (frequent) 

performance of this commuting journey.   
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Of the 19 people who used landmarks during questing, 6 (31.5%) used landmarks in the 

physical spaces, whilst the other 13 (68.5%) matched landmarks on maps and in the 

physical spaces to aid their navigation.   

Of the 18 “explorers”, 1 (5.5%) depended on landmarks in physical space whilst the other 

17 (94.5%) matched physical landmarks to landmarks on maps. 

As our results are not normally distributed, we ran non-parametric statistics.  In contrast to 

our online participants, participants across the 3 navigation purposes from our interview 

sessions are independent groups.  Hence, we used the Kruskal-Wallis Test.   A Kruskal-

Wallis test showed that the number of landmarks used by the face-to-face interviewees was 

significantly affected by navigation purpose, H(2) =43.33, p < 0.002.  Mann-Whitney tests 

were used to follow up this finding.  A Bonferroni correction was applied and so all effects 

are reported at a 0.0167 level of significance.  There were no significant differences in the 

number of landmarks used between questing and exploring (U = 190, r = -0.09).  

However, participants used significantly more landmarks when questing (U = 20, r = -

0.88) and when exploring (U = 30, r = -0.84) than when commuting. 

A2.3 Detailed results  

Tables A2.5 and A2.6 show the online questionnaires’ results; Table A2.6 presents a list of 

most common landmarks that pedestrians (subjectively) considered very important in 

general, rather than important for the particular journeys described in Table A2.5.  Table 

A2.7 presents results of the interview sessions.   

Table A2.6 corroborates the finding in Table A2.5 that Mall & Market is very important as 

a navigation cue because it appears consistently across all three navigation purposes.  The 

category ‘Well-known shops/business’ emerges in the commuting and the questing 

purposes because pedestrians referred to landmarks by their brands, e.g. McDonald’s was 

one of the most frequently used landmarks.  Similarly, the category ‘Other unique 

landmark’ appeared fourth in the explore column because pedestrians did not refer to some 

symbolic landmarks of the cities as tourist attractions but rather by their unique names, e.g. 

the Eiffel Tower (see Section 2.1.3 for an explanation).  
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Table A2.5 Top Ranked Landmarks in Cities Worldwide with Their Frequency (F) and Importance (I) Scores 

(from Online Questionnaires) 

Purpose 
Top Landmarks  

F 

Scores 

I 

Scores 

Commute Mall and Market 

Traffic light 

Public transport 

Bridge 

Financial service 

32 

32 

31 

31 

29 

96 

91 

87 

73 

74 

Quest Mall and Market 

Bridge  

Railway stations  

Tourist attraction 

Religious place 

Traffic light  

Restaurant  

40 

38 

31 

31 

32 

33 

33 

113 

110 

91 

89 

85 

83 

81 

Explore Tourist attraction  

Hotels  

Mall and Market  

Bridge  

Monument and Memorial  

Religious place  

Public transport 

41 

30 

32 

33 

28 

29 

25 

131 

96 

93 

83 

89 

81 

73 
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Table A2.6 Most Important Landmarks with Their Ranking (R) Scores (from Online Questionnaires) 

Purpose Top Landmarks  R Scores 

Commute Well-known shops / business  

Mall and Market 

Traffic light 

Public transport 

ATM 

Educational institute 

Bridge 

111 

107 

99 

82 

75 

53 

48 

Quest Mall and Market 

Well-known shops / business  

Bridge  

Tourist attraction  

Hotels 

Religious place 

Restaurant 

147 

134 

103 

97 

86 

75 

67 

Explore Tourist attraction 

Hotels  

Mall and Market 

Other unique landmarks 

Monument and Memorial  

Railway station 

Religious place  

145 

87 

83 

74 

66 

62 

52 

 

Table A2.7 shows similar rankings of landmarks in a single city from the face-to-face 

interviews.  Journey specific frequency, journey specific importance and general 

importance rankings were calculated in the same way as for the online questionnaire 

results presented in Tables A2.5 and A2.6. (Since the results from the face-to-face 

interviews were less diverse than the results from the online questionnaires, it is possible to 

present the face-to-face interview results in a single table.) 
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Table A2.7 Top Ranked Landmarks in the city of Bath with Their Frequency (F), Importance (I), and Ranking 

(R) Scores (from Interviews) 

Purpose Top Landmarks  F  I R 

Commute Monument and Memorial 1 2 7 

Quest Mall and Market 

Public transport 

River  

Religious place  

Bar and Pub 

Railway Station 

Monument and Memorial 

8 

7 

7 

7 

7 

5 

5 

25 

23 

22 

20 

15 

18 

15 

42 

32 

36 

35 

31 

30 

15 

Explore Tourist attraction 

Railway station  

Museum and Gallery 

Monument and Memorial 

River 

Public transport  

Religious place 

18 

16 

17 

16 

17 

13 

14 

64 

58 

52 

50 

44 

47 

38 

114 

66 

76 

44 

22 

60 

27 

A2.4 Low-ranked landmarks  

We have got our results based on urban space in 43 cities across the globe from both online 

and face-to-face respondents.  There were a considerable number of landmark categories 

which had rarely or never been used to aid our respondents’ navigation.  Table A2.8 lists 

low-ranked and not-chosen landmarks from the online questionnaires and face-to-face 

interviews.  We could see quite clearly from the table that the city where we conducted the 

face-to-face interviews offers much fewer landmarks compared to other larger cities. 

Our collection of landmarks contains 50 categories for participants to choose for their 

different navigation purposes in different locations.  As we mentioned at the beginning, we 

derived the list from research and commercial applications designed for both vehicular 

drivers and pedestrians.  We left those landmark categories seemed to be designed for 

vehicles in our list for a number of reasons.  We were aware that there was a chance that 

some of those generic landmark categories may not exist or be close to walking areas in 

some cities.  However, we acknowledge that in different parts of the world, the design of 

cities and ‘pedestrian space’ could be varied.  Although it is broadly assumed that 

component parts and design properties of pedestrian environments are widely replicated to 
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contain similar structures and facilities (Zacharias, 2001), it is possible that some areas are 

large enough to contain broader landmark categories in their walking space.  We may look 

at the difference between walking spaces in cities in Europe and in the U.S.A.  Since 1970, 

a few cities in Europe, for example Stockholm and Copenhagen, have been redesigned to 

be full pedestrianisation (complete removal of noncommercial vehicular access), walking 

routes usually starting from the railway station (Zacharias, 2001).  Zacharias (2001) 

summarised that the development of the walking environments in European cities 

encompass whole districts with public institutions and resident use together with the 

shopping street.  There have been attempts to mimic the same success but on a larger scale 

in numerous areas in the U.S.A., given the country’s nature and morphology.  As a result, 

the much larger pedestrian areas in the United States contain more possible landmark 

categories within spaces (Zacharias, 2001).        

The difference in space design in different parts of the world may help explain the 

phenomenon we observed in Table A2.8.  The city of Bath, where the face-to-face 

interviews took place is a small-size, old city where most of the buildings look the same 

(as it is registered as a world heritage site; every building has to follow the council 

regulations on building design.).  The city does not have, for example, a big sports stadium, 

an airport or an amusement park.  Many landmark categories served as basic amenity and 

facilities that travellers may need during their course of navigation but not depend on as 

crucial navigation cues.        

On the other hand, results from online respondents showed that all 50 categories had been 

used, though some with low frequency.  This confirms that different walking spaces 

elsewhere must contain a number of, if not all, landmark categories provided in our 

collection.  There was a similar pattern as in the face-to-face results on the low usage of 

public facilities such as toilet or Wi-fi as navigation cues.   

For both face-to-face and online respondents, landmarks that lack good characteristics (e.g. 

recreational ground, travel agency) were not chosen or were rarely being used as 

navigation cues.                 
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Table A2.8 Side-by-Side comparison of low-ranked landmarks (in descending order of scores) 

Purpose Low-ranked landmarks from  

Online questionnaires 

Not-chosen landmarks  

From face-to-face interview 

Commute Mountains 

Airports 

Fairs & Conventions 

Amusement Parks 

Ferries 

Sports facilities 

Stadiums (sports) 

First Aid 

Recreation grounds 

Theatres 

Taxis 

Toilets 

Car rentals 

Internet/Wi-Fi 

Party and Clubbing 

Music and Culture venues 

Travel agencies 

Golf courses 

Casinos 

All except Monument 

Quest 

Libraries 

Mountains 

Stadiums (sports) 

Car rentals 

Fairs & Conventions 

Theatres 

Toilets 

Ferries 

Recreation grounds 

Internet/Wi-Fi 

Amusement Parks 

Sports facilities 

Taxis 

First Aid 

Casinos 

Golf courses 

Travel agencies 

Petrol stations 

Pedestrian lights 

Music and Culture venues 

Museums & Galleries 

Internet/Wi-Fi 

Taxis 

Cash dispensers (ATM) 

Traffic lights 

Financial Services (Banks) 

Camping areas  

Tunnels 

Travel agencies 

Tourist information 

Toilets 

Theatres 

Stadiums (sports) 

Sports facilities 

Post office 

Police 

Party and Clubbing 

Libraries 

Hospital healthcare 

Government facilities 

Golf courses 
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First Aid 

Ferries 

Fairs & Conventions 

Cinemas 

Casinos 

Car rentals 

At the water (ocean and sea) 

Amusement Parks 

Airports 

Explore Bars and Pubs 

Pedestrian lights 

Government facilities 

Petrol stations 

Ferries 

Post office 

Fairs & Conventions 

Cash dispensers (ATM) 

Hospital healthcare 

Mountains 

Parking 

Police 

Theatres 

Car rentals 

Music and Culture venues 

Taxis 

Toilets 

Amusement Parks 

Financial Services (Banks) 

Internet/Wi-Fi 

Recreation grounds 

Tunnels 

Cinemas 

Sports facilities 

Stadiums (sports) 

Libraries 

Party and Clubbing 

Casinos 

Golf courses 

Travel agencies 

First Aid 

Airports 

Amusement Parks 

At the water (ocean and sea) 

Camping areas 

Car rentals 

Cash dispensers (ATM) 

Casinos 

Cinemas 

Fairs & Conventions 

Ferries 

Financial Services (Banks) 

First Aid 

Golf courses 

Government facilities 

Hospital healthcare 

Internet/Wi-Fi 

Libraries 

Mountains 

Natural barriers (any object 

that prevents you from moving 

forward, e.g. fences.  Then you 

might have to deviate to cross 

that barrier and continue your 

journey.) 

Parking 

Party and Clubbing 

Petrol stations 

Police 

Post office 

Recreation grounds 

Sports facilities 

Stadiums (sports) 

Taxis 

Theatres 

Travel agencies 

Tunnels 
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Appendix 3 The Modified Technology Acceptance Model 

(TAM) 

A3.1 The modified TAM 

Technology Acceptance Model (TAM) incorporates two multi-item measurement scales: 

usefulness (U) – the degree to which a user believes that using the system will enhance 

their performance and ease of use (EOU) – the degree to which the user believes that using 

the system will be free from effort (See the original scales in Davis, 1989).   

We have modified the original scales so that wordings were suitable for the characteristics 

of the tasks in our experiment.  The refined scales of U and EOU are listed below.      

1. Perceived usefulness  
        Strongly           Neutral       Strongly 

              Agree        Disagree 

The system enables me to navigate more quickly 1 2 3 4 5 6 7 

The system improves my navigation performance 1 2 3 4 5 6 7 

The system makes it easier to navigate 1 2 3 4 5 6 7 

Overall, I find that the system is useful for navigation 1 2 3 4 5 6 7 

 

2. Perceived ease of use  

            
        Strongly           Neutral       Strongly 

              Agree        Disagree 

Learning to use the system is easy 1 2 3 4 5 6 7 

It does not take a lot of effort to become skillful at 

using the system 

1 2 3 4 5 6 7 

Interaction with the system is clear & understandable 1 2 3 4 5 6 7 

Overall, I find that the system is easy to use  1 2 3 4 5 6 7 
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A3.2 TAM Development 

At the time of this study, TAM (Davis, 1989; 1993) has been continuously expanded to 

include more factors in order to address the constantly changing IT environments.  

Extended work include TAM2 (Vankatesh, 2000; Vankatesh & Davis, 2000), The Unified 

Theory of Acceptance and Use of Technology (UTAUT) (Vankatesh et al., 2003), and 

TAM3 (Vankatesh & Bala, 2008).  These extended versions of TAM are criticised to be 

overly sophisticated (Bagozzi, 2007).  For example, the UTAUT presents the model with 

49 independent variables (Vankatesh et al., 2003).   
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Appendix 4 NASA Task Load Index (NASA-TLX) 

A4.1 The modified TLX 

NASA-TLX117 was originally based on the assumption that “workload is a hypothetical 

construct that represents the cost incurred by a human operator to achieve a particular level 

of performance” (Geddie et al., 2001).  The TLX is a multidimensional rating technique 

comprising of three groups of workload characteristics: task, behavioral and individual.  

Characteristics of the task comprises of mental, physical, and temporal demands.  

Behavioral characteristics include performance and effort.  Individual characteristic is 

frustration.  Each of the subscales of NASA-TLX consists of 20 five-point steps from 0-

100; the endpoints have verbal descriptors, e.g. Low/High and Good/Poor (Hart & 

Staveland, 1988).        

In our study, we discarded the TLX’s weighting procedure as it was reported to be 

ineffective by Nygren (1991) and Moroney et al. (1992).  We used the paper version of the 

NASA-TLX measures because it was reported to incur less workload than the computer-

based version (Noyes & Bruneau, 2007). 

We modified the original TLX’s questions so that wordings were suitable for measuring 

workload aspects of a wearable device being used for navigation tasks.  The subscales and 

endpoint descriptors remain the same as the original TLX.  The six questions that appeared 

in our questionnaires are as follows: 

Mental demand: How mentally demanding was the task? 

Physical demand: How physically demanding was the task? 

Temporal demand: How hurried or rushed was the pace of the task? 

Performance: How successful were you at accomplishing what you were asked to do? 

Effort: How hard did you have to work to accomplish your level of performance? 

Frustration: How insecure, discouraged, irritated, stressed, and annoyed were you? 

                                                 

117 See Hart & Staveland, 1988. 
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Appendix 5 Additional Information for Chapter 5 

A5.1 A list of landmarks 

The landmark list contained seven types: Bath abbey, restaurant, public transportation, 

monument and memorial, mall and market, bridge and tourist attractions. 

A5.2 Summary of turning points 

Table A5.1  A summary of turning points by direction. 

Direction 
Number of Turns 

Route 1 Route 2 

Left 3 3 

Half left 1 1 

Straight 2 2 

Half right 1 1 

Right 4 4 

A5.3 Experimental route 1 

 

Figure A5.1 Experimental route 1 
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A5.4 Experimental route 2 

 

Figure A5.2 Experimental route 2 

 

 

  



271 

 

Appendix 6 NASA TLX for Chapter 5 

A6.1 Training T1’s NASA TLX scores of two groups of 

participants  

Table A6.1  T1’s NASA TLX mean scores of two groups of participants (* indicates significant difference). 

Index 
Participants  

With diagram Without diagram 

Mental demand 46.00 63.00 

Physical demand 12.00 19.00 

Temporal demand 30.50 33.00 

Performance*  10.50 21.50 

Effort 46.00 56.50 

Frustration* 9.50 39.00 

 

A6.2 NASA TLX scores of all sessions: two training and two 

walking conditions  

Table A6.2  NASA TLX mean scores of all experimental sessions (* indicates significant difference between two 

training conditions, ^ indicates significant difference between two walking conditions ). 

Index 
Training Walking 

T1 T2 SS LM 

Mental demand*^ 54.50 32.50 33.00 50.25 

Physical demand 15.50 12.50 22.00 23.00 

Temporal demand* 31.75 22.00 26.50 33.50 

Performance ^ 16.00 14.25 27.00 39.25 

Effort*^ 51.25 30.00 30.50 47.75 

Frustration^ 24.25 16.25 20.50 31.00 
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Figure A6.1 Cognitive workload requirements of two walking conditions: SS and LM.  
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A6.3 NASA TLX scores of male and female participants in two 

training sessions 

Table A6.3 NASA TLX mean scores of male and female participants in two training sessions (* indicates 

significant difference). 

Index 
Training 1 Training 2 

Male Female Male Female 

Mental demand 60.00 49.00 42.00 23.00 

Physical demand 15.50 15.50 15.00 10.00 

Temporal demand 26.50 37.00 21.00 23.00 

Performance  12.50 19.50 13.50 15.00 

Effort 57.50 45.00 38.50 21.50 

Frustration* 34.00 14.50 23.50 9.00 

A6.4 NASA TLX scores of male and female participants in two 

walking conditions 

Table A6.4  NASA TLX mean scores of male and female participants in two walking conditions (* indicates 

significant difference). 

Index 
Condition SS Condition LM 

Male Female Male Female 

Mental demand* 39.00 27.00 52.50 48.00 

Physical demand* 25.50 18.50 28.50 17.50 

Temporal demand 32.50 20.50 40.00 27.00 

Performance  22.50 31.50 38.50 40.00 

Effort 28.50 32.50 47.50 48.00 

Frustration 27.00 17.00 36.00 26.00 
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Appendix 7 Department of Computer Science 13-Point 

Ethics Check List 

This document describes the 13 issues that need to be considered carefully before students 

or staff involve other people (“participants”) for the collection of information as part of 

their project or research. 

 

1. Have you prepared a briefing script for volunteers? 
 You must explain to people what they will be required to do, the kind of data 

 you will be collecting from them and how it will be used. 

  

2. Will the participants be using any non-standard hardware?  

 Participants should not be exposed to any risks associated with the use of non-

 standard equipment:  anything other than pen and paper or typical interaction 

 with PCs on desks is considered non-standard. 

 

3. Is there any intentional deception of the participants?   
 Withholding information or misleading participants is unacceptable if 

 participants are likely to object or show unease when debriefed. 
 

4. How will participants voluntarily give consent?                        
If the results of the evaluation are likely to be used beyond the term of the  project 

(for example, the software is to be deployed, or the data is to be published), then 

signed consent is necessary.  A separate consent form should be signed by each 

participant.     
 

5. Will the participants be exposed to any risks greater than those 

 encountered in their normal work life?  

 Investigators have a responsibility to protect participants from physical and 

 mental harm during the investigation.  The risk of harm must be no greater 

 than in ordinary life. 

 

6. Are you offering any incentive to the participants?  
The payment of participants must not be used to induce them to risk harm  beyond 

that which they risk without payment in their normal lifestyle. 
 

7. Are any of your participants under the age of 16?              
  Parental consent is required for participants under the age of 16. 
 

8. Do any of your participants have an impairment that will limit  their 

understanding or communication?   
 Additional consent is required for participants with impairments. 
 

9. Are you in a position of authority or influence over any of your 

 participants?                                                                                
  A position of authority or influence over any participant must not be allowed 

 to pressurise participants to take part in, or remain in, any experiment. 
 



275 

 

10. Will the participants be informed that they could withdraw at any 

 time? 
All participants have the right to withdraw at any time during the  investigation.  

They should be told this in the introductory script. 
                                                                                  

11.  Will the participants be informed of your contact details?        
 All participants must be able to contact the investigator after the investigation.  

 They should be given the details of the Unit Lecturer or Supervisor as part of 

 the debriefing. 
 

12. Will participants be de-briefed?                                                
 The student must provide the participants with sufficient information in the 

 debriefing to enable them to understand the nature of the investigation. 
 

13. Will the data collected from the participants be stored in an 

 anonymous form?                                                                        
 All participant data (hard copy and soft copy) should be stored securely, and 

 in anonymous form. 
                                                
 

 

 

 

NAME: _________________________________________________________ 
 

 

SUPERVISOR (IF APPLICABLE): __________________________________ 

 

 

SECOND READER (IF APPLICABLE): ______________________________ 

 

 

PROJECT TITLE: _________________________________________________ 

 

 

DATE: ___________________________________________________________ 
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Appendix 8 An Example of a Modified 13-point Ethics 

Checklist 

UNIVERSITY OF BATH,  

Department of Computer Science 

 

13-POINT ETHICS CHECK LIST 

 

This document describes the 13 issues that need to be considered carefully before students 

or staff involve other people (“participants”) for the collection of information as part of 

their project or research. 

 

1. Have you prepared a briefing script for volunteers? 
 Yes, a briefing script will be prepared (see attachment 1). 

   

2. Will the participants be using any non-standard hardware?  

Yes, participants will be using a non-standard hardware (see picture 1 in attachment 

2).   

This hardware will generate vibration sensation on the participant’s skin. 

There are two types of risks which can occur and they are:  

-  Skin Irritation – if the participants feel uncomfortable being stimulated on 

specific area of their bodies. 

-  Experience of over voltage – if any of motors (which generate vibration) is 

broken.  Please note that this condition is not hazardous.  

 

To prevent these risks, I have performed the followings: 

- Avoid having participants wearing the prototype on sensitive areas such as face. 

In addition, participants are able to stop the experiment at any time. 

- The prototype has been carefully built and tested by a senior technician, 

Mr.Vijay Rajput, from Mechanical Engineering Department.  In addition to a 

certified safety warranty from motors’ manufacturer (Solarbotics Inc.), Mr. 

Rajput and I had measured voltage and current produced from each motor in a 

circuit.  Each of the motors has produced a current as low as 28 mA at 3V 

voltage on average which is under safety threshold
118

, called safety extra-low 

voltage range.  If the control voltage switch in the prototype’s circuit fails to 

function, the maximum amount of current is 120 mA at 12V voltage.  This 

means worst case is not hazardous.     

Note: Hazardous condition is when voltage is over 42.4V and current is greater 

than 120 mA
1
.   

 

3. Is there any intentional deception of the participants?   
 No, there is not.  
 

4. How will participants voluntarily give consent?                        
There is a consent form which includes the detail of experiments and how their data 

will be used.     

                                                 

118 http://fringe.davesource.com/Fringe/Information/Hazardous_Voltage_Primer/ 
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5. Will the participants be exposed to any risks greater than those 

 encountered in their normal work life?  

There will by physical risks (please refer to explanation in question 2.).  This risk is 

considered lower than those encountered in their normal work life.  Example of a 

comparable condition in participants’ normal life is when the participant uses any 

electronic equipment and plugs it into a wall outlet which has voltage at 240V.  

 

6. Are you offering any incentive to the participants?  
 Yes, there will be a 5 pound monetary incentive. 
 

7. Are any of your participants under the age of 16?              
  No. 
 

8. Do any of your participants have an impairment that will limit their 

understanding or communication?   
 No. 
 

9. Are you in a position of authority or influence over any of your 

 participants?                                                                                
  No, I am not. 
 

10. Will the participants be informed that they could withdraw at any 

 time? 
 Yes.  This is written in both a consent form and an instruction form. 
                                                                                  

11.  Will the participants be informed of your contact details?        
 Yes.  This information is given in a consent form 
 

12. Will participants be de-briefed?                                                
 Yes, there is an instruction. 
 

13. Will the data collected from the participants be stored in an 

 anonymous form?                                                                        
Participants will be photographed and video recorded.  Each photograph and video 

recording will be kept with a numerical identifier for each participant.  Video data 

will be kept in a secure location.  This data will not be distributed or disclosed to 

the members of the public. 
                                                

NAME:  Mayuree Srikulwong 

 

SUPERVISOR (IF APPLICABLE): Dr Eamonn O’Neill 

SECOND READER (IF APPLICABLE): ______________________________ 

 

PROJECT TITLE: Synthetic Tactile Feedback at the Human-Computer 

Interfaces  

DATE:  December 14
th

, 2007  
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Appendix 9 Examples of Ethics Documents 

A9.1 An informed consent to participate 

INFORMED CONSENT TO PARTICIPATE IN 

Evaluation of a tactile pedestrian navigation system 
 

About this study 

 

Miss Mayuree Srikulwong in the Department of Computer Science at the University of 

Bath is conducting an evaluation of the tactile pedestrian navigation system.. 

 

You are being asked to take part in this study by wearing a waist belt and learn the 

meaning of vibrotactile signals in order to navigate the city on foot. All data is recorded 

for analysis purposes only. 

 

The total time of the experiment is 1 hour 5 minutes.  The aims of the study will be 

explained to you fully during a debriefing after completion of the questionnaire.  At this 

point you can ask any questions you may have.  We will provide you with details of the 

outcome of the study once the research has been completed, if you wish. 

 

Discomfort and risks 

 

This experiment is considered ‘minimal risk’; the activities you will be asked to participate 

in are of no greater risk than those vibrotactile signals (e.g. in mobile phone) encountered 

in everyday life.   

 

Confidentiality 

 

Your responses will be stored anonymously to protect your privacy.  

 

Your participation 

 

If you agree to voluntarily participate in this evaluation as described, and for any relevant 

responses to be used in publications anonymously, please indicate your agreement by 

writing your name, e-mail address, then sign and date below.  You will receive 10 pounds 

incentive in return at the end of study.  Thank you for your participation in this research. 

 

Contact information   ms244@cs.bath.ac.uk 

 

Your Name: …………………………………………………… 

 

Signature: …………………………………………………… 

 

E-Mail: …………………………………………………… 

 

Date:  …………………………………………………… 

 

Participant 

Number: 
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A9.2 An overview of the experiment 

 

This experiment:  

 

- Compare 2 different ways of providing confirmation information (that you are on 

the right path) in a tactile navigation system  

 

You will have to: 

 

Wear a waist belt prototype and learn the meaning of vibrotactile signals in order to 

navigate the city on foot: by 

- Attending 2 training sessions in a lab environment, each session lasts 5-10 minutes. 

- Walking 2 different routes 

o For each route, vibration signals for confirmation that you are on the right 

path will be provided differently, one as a straight ahead signal, another as 

a landmark signal. 

o In each route, there are 7 landmarks to be discovered. 

o Each route takes roughly 10 minutes. 

- Spending total time of 60 minutes (this includes pause time, time for training and 

post-study questionnaires) 

 

Your objective  

 

- Navigate the routes in order to reach a destination.  You will be told which type of 

landmarks you will be passing and what the final destination is.  At each 

approaching landmark, you will be asked to say out loud the type of landmark.  

These landmarks help confirm that you are on the right route. 

 

Your benefit 

 

- Incentive 10 pounds 
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A9.3 Instructions of Chapter 5 condition SS 

Experiment 5.2 

Condition SS Instructions (Directions + Straight ahead signals) 

Summary of condition 1:   

 Getting direction signals from the system as wayfinding instructions 

 Getting straight signals as confirmation cues 

 Getting destination landmark signals from the system  

 Locating a destination landmarks that you plan to visit  

 Trying to notice other landmarks along the route that may help you with your 

navigation  

 

Your objective of this journey is to arrive a destination. 

 

We would like you to imagine yourself being a tourist with a plan to visit a landmark in 

Bath (which you will be told what the landmark is).  The system will help you navigate 

from point A leading to the destination.  However, on the route, 

you will pass other six landmarks which may help with your 

navigation and wayfinding.  Please try to locate them.  This route is 

less than 800 metres long.  (You will be given the list of these 

seven landmarks before the experiment begins.)   

 

Before the experiment starts, you will be asked to wear a prototype which generates 

vibrating sensation (i.e. vibration as felt in mobile phones).  You will be asked to carry a 

backpack, which contains a switchboard.   

 

When the experiment starts, the system will calculate your GPS location and generate 

vibration feedbacks on your waist corresponding to directions, in which you should turn.  

Vibration is generated 2 times for each turning point, with 3 seconds pause between them.  

When you are approaching an intended landmark, the system will generate a destination 

cue which is a set of three signals: the cue, the direction of the landmark and the type of 

the landmark.  You will also receive straight signals when you pass significant buildings.  

We would like to encourage you to speak out loud whenever you feel any sensation on 

your body and tell the experimenter your decision to turn to any direction.    If you don’t 

feel any stimuli nor are sure which direction you should turn, please inform the 

experimenter.   

 

We would like you to try your best to locate and identify all 

intended landmarks.            

If you don’t receive any vibration at any junction, please 

stop for 2-3 seconds because GPS signal might take time to 

resolve its fixed location.  Then please continue to navigate 

as normal. 

If you have a question or problem at any point of the 

experiment, do ask.  You can abort this experiment at any 

time if you feel uncomfortable.  The evaluator will carry a laptop and walk with you as if 

she were your friend.  At the end of this route, you will be asked to fill in a questionnaire 

and interviewed. 

Front 

The Belt 
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Appendix 10 Codes of practice and procedures  

For all studies involving participants, we explained the implications of the experiments 

clearly, obtained their consent and provided considerable amount of incentives.  We made 

clear with participants that our research did not seek sensitive information that may upset 

or embarrass them.  Nevertheless, all data collected remain confidential and being used 

only for academic purpose.    

For all the signals given by the system, their strength was well within the threshold 

recommended by fellow researchers.  We were aware that the prototype may be 

misunderstood with a harmful device.  As a result, participants were carefully chosen so 

that they would not possess a stereotypical look of a terrorist and be mistaken by authority.  

More importantly, we made sure that the risk of walking in the city with the prototype was 

minimal as we have informed Bath police prior to each walking session. 

In order to ensure that we have implemented ethics procedures, we have implemented and 

followed an experimenter’s task list (see an example below). 

My Instructions 

Make sure that the device and all actuators work. Check all types of signals: 

direction, landmark, orientation (together with the use of compass), and destination 

      Before start until Training  

1. Greet a participant and thank them for participation 

2. Ask the participant to take off their outer layer of clothing 

3. Give them the overview of the experiment  

4. Explain the experiment in general that they have to wear the device and 

complete 2 sessions of lab-training and complete 2 routes for 2 walking-

conditions.  The experiment will take 60 minutes in total.   

5. Have the participants sign the consent form 

6. Have the participant fill the pre-study questionnaire  

7. Fit the device onto their body, make sure that the device fits perfectly 

8. Check the checklist for randomisation and make sure each participant is run 

according to plan 

a. Write down their corresponding participant number and follow this 

number throughout every session of the same participant  

b. Make sure that they are learning from the system or given the visual 

demonstration of landmark signals from the random chart 
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This thesis symbolises a triumph over tasks both physically and mentally exhausting, 

achieved by overcoming an unknown yet great fear through perseverance, determination 

and resilience. 
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