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Abstract
Institutions (also called normative frameworks) provide an effective mechanism to govern

agents in open intelligent systems. An institution specifies a set of norms, with respect to

specific normative objectives, that regulate agents’ behaviours in terms of permissions,

empowerments and obligations. However, in most real circumstances, several institutions

probably have to cooperate to govern the same entities simultaneously, which is referred as

cooperating institutions in this dissertation. Depending on how individual institutions are

connected with each other, three different ways of forming a cooperating institution are

addressed: coordinated institutions, interacting institutions and merged institutions. The

dissertation firstly presents a formal and computational model for all three types of

combination. Furthermore, when agent behaviour is regulated by a cooperating institution,

consisting of a set of independently-designed institutions, normative conflicts are likely to

arise, as each individual institution has its own objective. For instance, a certain action may be

permitted (or obliged) by a norm from one institution while being prohibited by a norm from

another institution. A blunt solution is to ignore or delete the conflicting norm(s) from one or

the other institution. A further contribution of this dissertation is however the development of

a formally justified fine-grained approach operating on parts of norms that is able to:

(i) detect normative conflicts automatically for all the three variants of cooperating

institutions, and (ii) resolve these conflicts by automatically constructing a minimal revision

of the conflicting norms through inductive learning. In this work, we start with formalising

three types of cooperating institution by means of an institutional action language (InstAL ),

which can be automatically translated into logic programs under Answer Set semantics.

Based on that, we then put forward an automatic procedure that can identify the normative

conflicts that may arise, and transform them into negative examples to feed our conflict

resolution system implemented by Inductive Logic Programming, through which the

conflict-free cooperating institution can be derived by revision of the norms belonging to

specific identified institutions. We further demonstrate the proposed conflicts detection and

resolution approach in several case studies from the domain of multi-agent systems and legal

systems.
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Chapter 1
Introduction

1.1 Motivation

The past decades have seen an increase in the development and application of more and more

intelligent systems to accomplish sophisticated tasks, where a group of intelligent agents have

to interact and behave in dynamic and complex environment. While in the pursuit of high

efficiency and performance of those intelligent systems, researchers are also working on

mechanisms that enable these intelligent agents to make correct decisions, in contrast to blind

pursuit of goals, to shape their behaviour to be more intelligent and more comparable with

human behaviour. Here, the definition of correct behaviour is not only evaluated by the

accomplishment of a delegated task, or the efficiency of achieving a goal, but also by the

expectation of the whole society and cooperation with other members.

To achieve correct behaviour of agents, the literature suggests many effective approaches

based on game theory [Parsons and Wooldridge, 2002], social choice [Elster and Hylland,

1989] and other efficient agent planning algorithms and mechanisms. In particular, this

dissertation follows the approach of designing normative frameworks to regulate multi-agent

systems. The factors below constitute the motivations of the approach:

• Context: to consider if the decision still fits the current context and environment. A

static environment is very rare nowadays and hence how the decision-making needs to

be adaptable to the changing environment is a crucial problem to complex intelligent

systems.

• Resource: to consider whether the required resources to perform an action are available,

whether the existing resources are sufficient, or whether the required resources have to

be shared with other agents.

• Society: to consider if the decision is also beneficial for the whole society, and whether

the decision interferes other agents’ routines. As in most cases, agents have to inhabit

a common environment with limited shared resources, and moreover it is often required
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Chapter 1. Introduction

that agents have to cooperate to accomplish some complex tasks. Therefore, it is of great

importance for agents to be concerned about not only its own interests, but also effects

on the wider society when they are making decisions.

Consequently, a subset of multi-agent systems are derived – named as normative multi-

agent systems, in which norms are explicitly represented. Here norms are proposed as a means

to represent correct behaviour in terms of the factors above and hence correct behaviour can

be interpreted by normative behaviour enforced by specified norms. Such a notion is borrowed

originally from sociology [Therborn, 2002], where a norm is defined as a prescriptive or a

proscriptive statement telling us what the right and wrong actions are. Therefore, behaviour

that conforms to or is based on norms is termed as normative action. Normative action is

considered as a kind of deontological action, in contrast with teleological action, by being

consequence-oriented. It is believed that normative behaviour is able to make artificial agents

exhibit more intelligent and human-like behaviour, in order to facilitate collaboration between

agents and human or other agents [Boella et al., 2006]. Ideally, norms are expected to be

created, changed and maintained by agents whilst they interact with environment and other

agents. However, such idealisation is rather challenging to achieve in practice, in particular

when (i) we expect agents to make decision in timely fashion, and also adapt their behaviour to

the changing environment; (ii) an individual agent normally can access only partial information

of the whole environment and other agents; (iii) an individual agent is often driven by only its

own interests.

In such context, we tend to look for an external centralised entity which has a global view

to be able to sense the changes of the environment and effects of all agents’ behaviour such

that the entity can provide the guidance for correct behaviour for the sake of the whole system.

In order to find such an entity, people started to seek solution from the real highly-developed

human society: a person can be viewed as an intelligent agent and the whole human society

could be viewed as a multi-agent system. Human behaviour is not completely free, but is

constrained by social norms. Informally, this can be manifested by queuing before boarding

a bus and shaking hands when greeting people. Officially, they may appear as a law that

specifies murder is illegal. Inspired by norms in human society, researchers proposed the notion

of normative multi-agent systems [Boella et al., 2006] in order to facilitate the coordination,

cooperation and interaction among agents. One way of implementing normative multi-agent

systems is to design an electronic institution [Esteva et al., 2001] or a normative framework

for the systems by specifying a set of normative rules that guides the interactions between

agents. Norms can be violated at the agent’s own discretion, but corresponding award and

sanction would follow to enforce the norms. The enforcement of norms [Balke, 2011] is outside

the scope of this dissertation. Each institution consists of a set of norms based on its own

normative objectives. For example, the largest institution in reality is a legal system in human

society. A norm is a description of expected behaviour(s) under certain circumstances in terms

of permissions, prohibitions, empowerment and obligations (see for example [Cliffe et al.,

2



Chapter 1. Introduction

2007a,b, Noriega, 1997, Vázquez-Salceda, 2003]). From an overall perspective of the whole

system, institutions can perceive the changes of context, the condition of resource and actions

performed by agents, to produce the updated norms to guide agents to adapt their behaviour.

Institutions, acting as governor of the whole system, are concerned with enforcing the benefits

and interests of the whole society rather than any individual agent.

1.2 Normative Conflicts in Cooperating Institutions

Having discussed the motivation of establishing institutions, we now look at an increasing

need for a group of institutions working together to govern a system. For example, virtual

organisations (VOs) [O’Leary et al., 1997] can employ various institutions to cover different

aspects of regulating the behaviour of the participating actors in order to achieve the VO’s

goals. Within a virtual organisation, more than one institution might be involved in the

regulation of actors’ behavior. Each institution specifies a set of norms covering a specific

aspect of the problem domain with a governance scope defining its remit. Together, they

govern the participants and reflect the objectives of the organisation. However, existing

research has largely focused on the modelling of either single institutions or multiple

interacting institutions all of which have been designed by the same designers for a particular

system. To the best of our knowledge, however, there is no other work addressing the issues

of modelling the cooperation of independently-designed institutions.

We define a cooperating institution as the combination of the norms of several institutions

such that their combined norms are consistent from the point view of the agent that is

subjected to them. This could be achieved in a variety of ways. Here in this work, we focus on

three ways of combining different institutions to form cooperating institutions:

(i) coordinated institutions: combining individual institution together to perform sharing

governance, but the states of each institution remain independent; (ii) interacting institutions:

allowing for interacting between individual institutions; (iii) merged institutions: merging

norms from originally independent individual institutions together to form a new merged

institution. Each of the above combinations will be examined in detail in subsequent chapters.

One problem when combining different institutions is that each is – not surprisingly –

designed for its own purpose, rather than some common or shared objective. This can result in

situations where the norms of the individual institutions are inconsistent when they brought to

bear simultaneously, giving rise to problems for the participants governed by the joint system.

For example, it is unacceptable for a participant to have the permission or obligation to perform

a certain action in one institution, while it is not permitted in another at the same time. This is

why it is important to be able to detect and resolve these kind of conflicts at the design stage of

the combination, before any agent gets to interact with the system.

As explained earlier, normative conflicts may arise when different independently-designed

institutions co-govern the same entity. A case study about digital civil rights in Europe reflects

3
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such issue. The Irish Data Protection Authority (ODPC) has recently ruled that the Irish

subsidiaries of Facebook and Apple are not breaking EU laws by sharing data with NSA1.

Such ruling has raised great controversy in the public. The main subjects involved in this

issue are: Facebook Ireland, EU privacy law and US surveillance law. The data sharing of

Facebook Ireland has triggered a legal/normative conflict between EU privacy law and US

surveillance law. On the one hand, EU privacy law states that sharing data with another

country is legal only if adequate protection is provided. On the other hand, US surveillance

law requests the US companies to cooperate when collecting data for the purpose of

surveillance. As a subsidiary company of Facebook, Facebook Ireland is very likely to be

placed in a dilemma, explained in the article [Irish Times, 2013]:

“In order to avoid taxes US companies have spun a network of subsidiaries.

At the same time these “tax avoidance strategies” lead to a situation where the

companies have to abide by US and EU laws. This can get tricky when they have

to adhere to EU privacy laws and US surveillance laws... ”.

The discussion about this ruling is outside the scope of this work, but this case itself fits

the characteristics of an interacting institution and exhibit normative conflicts between the

two legal systems. Thus, this case will be adopted in subsequent chapters to demonstrate

the modelling and conflict analysis of interacting institutions.

Another possible origin of normative conflicts might be the changes of norms in one

institution. Once changed, the new institution might be in conflict with other existing

unchanged institutions. The previous ways of acting might no longer be applicable or correct

in such new setting, possibly resulting in unintended violation behaviour. A case study about

recent changes in UK immigration legislation reveals this issue. Changes to student visa

regulations were announced on March 22nd, 2011 by the then UK Home Secretary2. As part

of these changes, the regulations concerning the permitted working hours (during studies) for

international students were reduced3. However, the reduction of international student working

hours might result in conflicts with existing procedures such as those for university

studentships. Thus, the case study concerns the tensions between on the one hand, the

regulations associated with the visa of an international student studying at a university, the

limitations on how much work said visa-holder is permitted to undertake and on the other

hand, the regulations associated with the studentship awarded to the student, in particular the

minimum number of teaching hours that the student must deliver.
1http://www.irishtimes.com/news/technology/apple-facebook-not-breaking\

-eu-law-by-giving-data-to-us-1.1474841
http://www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-data

2The changes we are concerned with in this case in particular concern §57–62 of UK Immigration Law (as of
February 2011).

3A detailed list of these changes with the respective legal texts as well as a statement of intent can be
found on the UK Home Office website under http://www.ukba.homeoffice.gov.uk/sitecontent/
documents/news/sop4.pdf.
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When these conflicts occur, the identification of what caused the conflicts and what

changes are needed to address them, can be a difficult and error-prone manual process.

Corapi et al. have shown how Inductive Logic Programming (ILP)can support the elaboration

of institutional specifications in [Corapi et al., 2011], by learning possible changes that make

a partial institution specification consistently compliant with a given set of use-cases. This

idea is the key to the approach set out in this work, in which we present the formal model and

a corresponding computational mechanism to detect institutional conflicts automatically and

then demonstrate how to use ILP to produce norm change suggestions ensuring a conflict-free

cooperating institution. We take the basic ILP mechanism set out in [Corapi et al., 2011]

along with the formal institutional model InstAL and its translation to ASP and extend it to

handle several institutions – instead of just one – and to synthesise the examples for the

learning process automatically – instead of manually – following conflict detection. In

consequence, institutional conflicts can be resolved amongst a set of conflicting institutions by

revising the rules of the lower precedence institution using the ILP revision mechanism.

1.3 Main Contributions and Structure

This dissertation presents the following main contributions to the field of normative multi-agent

systems:

• Three ways of combining individual institutions: coordinated institutions, interacting
institutions and merged institutions .

• Automatic detection and resolution of normative conflicts in all three types of

cooperating institutions.

The whole dissertation consists of seven chapters which are organised as follows. Detailed

nomenclature and acronyms tables can be found on page 160 for the ease of reference.

Chapter 1: Introduction to the dissertation addressing motivation and giving an overview of

the work presented.

Chapter 2: We start by presenting background and related work on normative conflicts in

different domains such as multi-agent systems, legal systems, deontic logic, belief

revision and policy management. In particular, conflicts addressed in the MAS

community are further divided into: conflicts between norms, conflicts between

mental states of agents and conflicts between norms and intentions.

Chapter 3: We explain the two main underpinning technologies of this work: InstAL and

Inductive Logic Programming. We adopt an event-driven modelling approach

InstAL [Cliffe et al., 2007a] for single institutions and explain our view on

institution. Alternative modelling approaches from literature are also discussed
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from both organisational perspective and institutional perspective. Besides, the

fundamental concepts of theory revision by means of Inductive Logic

Programming [Corapi, 2011] are also provided in this chapter. The applications

of using InstAL to establish a governing institution have been demonstrated in

[Lee et al., 2013b], [Lee et al., 2013a] and [Lee et al., 2013c], in which an

institution with a set of interaction norms is represented explicitly to encourage

polite behaviours of virtual agents.

Chapter 4: The first type of cooperating institutions – coordinated institution – is the focus

of this chapter. Coordinated institutions provide a primitive way of combining

individual institutions to form co-governance but preserve the autonomy of each

institution. An illustrative case study about overlapped territories is provided to

demonstrate the formal and computational modelling of a coordinated institution.

Moreover, automatic detection and resolution of normative conflicts in

coordinated institutions are presented.

The following publications contributed towards this chapter. Precisely, a

overview of all three types of cooperating institutions is presented in [Li, 2013].

The detailed model of coordinated institutions is firstly discussed in [Li et al.,

2012], in which the coordinated institutions are referred as composite institutions

and demonstrated with a case study about a social-technical system. An

alternative way of detecting conflicts in coordinated institutions is discussed in

[Li et al., 2014] and [Li et al., 2013d] with particular emphasis on the role of

governance scopes of institutions. Later on, the prototype of coordinated

institutions has been applied to model composite legal systems with potential

legal conflicts, which are then analysed by using the proposed conflict detection

mechanism in [Li et al., 2013c], and conflict resolution mechanism in [Li et al.,

2013b]. This chapter and the presented case study also constitute a journal

submission which is currently under review at the time of writing.

Chapter 5: This chapter discusses the second type of combination: interacting institutions,

which allow for interactions between institutions by means of cross-institutional

rules specified in bridge institutions. Such interacting structure of cooperating

institutions is demonstrated by a case study on digital privacy protection. The

notion of bridge institutions is firstly discussed in [Li et al., 2013a] in the context

of interacting legal systems.

Chapter 6: Last but not least, we focus on the third type of combination – merged institutions

in this chapter, including modelling and conflict analysis. In contrast with the

previous two types of combination, merged institutions result in a completely new

institution. Automatic detection and resolution of normative conflicts in merged

institutions are also discussed in this chapter.

6



Chapter 1. Introduction

Chapter 7: The dissertation concludes with further research directions and open issues.

The appendix gives details of the implementations of the programs that support the work

presented in this dissertation.

1.4 List of Related Publications

In this section, we list all the relevant publications mentioned in the preceding section, which

contributed towards this dissertation:

[Li et al., 2013a] T. Li, T. Balke, M. De Vos, J. Padget, and K. Satoh, Legal conflict detection in

interacting legal systems, in Proceedings of The International Conference on Legal Knowledge

and Information Systems (JURIX 2013), pp.107-116, 2013, IOS Press.

[Li et al., 2013d] T. Li, J. Jiang, H. Aldewereld, M. De Vos, V. Dignum and J. Padget,

Contextualized Institutions in Virtual Organizations, in Proceedings of the 25th Benelux

Conference on Artificial Intelligence, 2013, Delft University of Technology (TU Delft).

[Lee et al., 2013c] J. Lee, T. Li and J. Padget, Towards Polite Virtual Agents using Social

Reasoning Techniques, Computer Animation and Virtual Worlds, 24. 3 – 4(2013): pp.335 –

343.

[Lee et al., 2013b] J. Lee, T. Li, M. De Vos and J. Padget, Using Social Institutions to Guide

Virtual Agent Behaviour, in Proceedings of The International Workshop on Cognitive Agents

for Virtual Environments (CAVE 2013), 2013.

[Li et al., 2014] T. Li, J. Jiang, H. Aldewereld, M. De Vos, V. Dignum and J. Padget,

Contextualized Institutions in Virtual Organizations, in Proceedings of The 15th International

Workshop on Coordination, Organizations, Institutions, and Norms in Agent Systems IX

(COIN 2013), Lecture Notes in Computer Science, pp. 136–154, Springer International

Publishing.

[Li, 2013] T. Li, Normative Conflict Detection And Resolution In Cooperating Institutions, in

Proceedings of The 23rd international joint conference on Artificial Intelligence (IJCAI 2013),

AAAI Press, 2013, pp. 3231 – 3232.

[Li et al., 2013b] T. Li, T. Balke, M. De Vos, J. Padget, and K. Satoh, A Model-Based

Approach To The Automatic Revision Of Secondary Legislation. In Proceedings of the

Fourteenth International Conference on Artificial Intelligence and Law (ICAIL 2013), 2013,

pp. 202–206.

[Lee et al., 2013a] J. Lee, T. Li, M. De Vos and J. Padget, Governing Intelligent Virtual Agent

Behaviour with Norms, in Proceedings of The 12th International Joint Conference on
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Autonomous Agents and Multiagent Systems, (AAMAS 2013), 2013, pp. 1205–1206.

[Li et al., 2013c] T. Li, T. Balke, M. De Vos, K. Satoh and J. Padget, Detecting Conflicts in

Legal Systems, New Frontiers in Artificial Intelligence, Springer, 2013, pp. 174–189.

[Li et al., 2012] T. Li, T. Balke, M. De Vos, K. Satoh and J. Padget, Conflict Detection in

Composite Institutions, in Proceedings of International Workshop on Agent-based Modeling

for Policy Engineering (AMPLE 2012), 2012, pp. 66–76.

In addition, portions of the work described in this dissertation are included in the following

under-review journal submission:

T. Li, T. Balke, M. D. Vos, J. Padget, and K. Satoh. Automatic detection and resolution of nor-

mative conflicts in coordinated institutions. Journal of Autonomous Agents and Multi-Agent

Systems (Submitted), 2014.
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The issue of conflicts in various forms has been a topic of research in the multi-agent

community for several decades. Broadly speaking, the existing research can be categorised by

its emphasis on: (i) conflicts between norms [Garcı́a-Camino et al., 2007, Kollingbaum et al.,

2006, van Riemsdijk et al., 2013, Vasconcelos et al., 2009], which is like the work presented

here, (ii) conflicts between intentions and goals [Shapiro et al., 2012], and (iii) conflicts

between mental states of agents [Broersen et al., 2001a]. Details of each type of conflicts

above in multi-agent community are discussed in detail in Section 2.1

We also explore this topic in the context of other research domains:

1. Conflicts in the context of deontic logic, discussed in Section 2.2.

2. Conflicts between laws in legal studies [Dung and Sartor, 2011], where legal conflicts

arise when legal cases are governed by different laws (e.g. laws from different countries).

Details about this are presented in Section 2.3.

3. Policy conflicts in role-based distributed system management[Lupu and Sloman, 1999].

Details about this are presented in Section 2.4.

4. Knowledge conflicts in belief revision [Alchourrón et al., 1985], where newly-acquired

knowledge conflicts with existing knowledge. Details about this are presented in Section

2.5.

Regardless of the various representations and causes of conflicts, Giannikis and

Daskalopulu ([Giannikis and Daskalopulu, 2011]) propose six general types of primitive

conflict patterns as shown in Table 2.1. The authors adopt simplified formalisations from

deontic logic Meyer and Wieringa [1993] to represent obligations, permissions and

prohibitions as operators over either actions or states. The general form of a normative

proposition is NN(agent1,role1,action agent2,role2) to express that agent1 acting as role1 is

under the normative relation to perform action towards the other agent agent2 with role2.

Here NN is a normative operator, which could be Obligation, Power, Prohibition or

9
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Pattern Type Conflict
A NN(agent1, role1, action, agent2, role2) vs.

¬ NN(agent1, role11,action, agent2, role22)
B1 Prohibition(agent1, role1, action, agent2, role2) vs.

Permission(agent1, role11, action, agent2, role22)
B2 Prohibition (agent1, role1, action, agent2, role2) vs.

Obligation(agent1, role11, action, agent2, role22)
C Obligation(agent1, role1, action, agent2, role2) vs.

Obligation(agent1, role11, action, agent2, role22)
D Power(agent1, role1, action, agent2, role2) vs.

Prohibition(agent1,role11, action, agent2, role22)
E Obligation(agent1, role1, action1, agent2, role2) vs.

Obligation(agent1, role11, action2, agent22, role22)
F1 Obligation(agent1, role1, action, agent2, role2) vs.

Permission(agent1, role11, action, agent2, role22)
F2 Obligation(agent1, role1, action, agent2, role2) vs.

Power(agent1,role11, action, agent2, role22)

Table 2.1: Six primitive patterns of conflicts [Giannikis and Daskalopulu, 2011]

Permission. The six types of primitive conflicts in Table 2.1 can be broadly categorised into

two groups:

1. Conflicts resulting from contrary deontic positions of different norms, such as the weak

and strong conflicts 1 addressed in this dissertation. They name and summarise four of

them as:

A : between NN and ¬NN in general

B : between prohibition and permission/obligation

D : between power and prohibition

F : between obligation and ¬permission or ¬power

2. Conflicts resulting from relations, in particular those that are either mutually exclusive

or contradictory between actions governed by different norms; for example in the case

where two contrary actions are obliged by different norms, or the event e and its negation

¬e are both obliged (resulting in a situation which it is impossible to perform either

without violation). Type C and E constitute this group:

C : between obligations of contradictory actions

E : between obligations of mutually exclusive actions
1weak conflicts are identified by contrary values of a normative fluent, while a strong conflicts indicates an

event is obliged, but not permitted at the same time. Details will be given in Section 4.3
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Although we do not directly align our work here with these six types of conflicts, we believe

that our conflict detection and resolution mechanism is of sufficient flexibility and generality

to be applied to cover all the varieties identified. In the present work, we demonstrate our

approach to detect conflicts of the type A and B in particular and it can also be applied to

detect the other two types of conflicts in the first group as categorised above (e.g. type D

between power and prohibition and type F between obligation and ¬permission or ¬power).

Furthermore, the two types C and E in the second group can be addressed by an extension of

the current mechanism, the details of which appear in Section 7.1.

2.1 Conflicts in Multi-agent Systems

2.1.1 Conflicts between Norms

Vasconcelos et al. [2009] provide a precise definition of conflicts and inconsistencies

(similar with the weak and strong conflicts in this dissertation) between norms in multi-agent

community. Conflicts are identified using a formally described static analysis, and first-order

unification is used to establish a set of overlapping substitution values for the variables

appearing in a pair of conflicting norms. Therefore, conflicts can be avoided by preventing the

substitution of the same value into two specific, contrary norms. In summary, the work

presents: (i) a formal mechanism for conflict detection and resolution, (ii) adoption and

removal of norms to facilitate norm management, (iii) a new type of conflict – indirect

conflicts are introduced – and (iv) formalisation of authority to examine conflicts caused by

delegation tasks.

In [Vasconcelos et al., 2009], a norm ω is represented by a tuple 〈ν, td, ta, te〉, with ν being

one of:

• an obligation: Oα:ρ ϕ ◦ Γ,

• a permission: Pα:ρ ϕ ◦ Γ or

• a prohibition: Fα:ρ ϕ ◦ Γ

Each norm applicable to agents α with role ρ is obliged, permitted or forbidden to bring about

ϕ subject to certain constraints Γ = (γ0, . . . , γn). td, ta and te indicate the time when the

norm ν was introduced, when ν was activated and when ν was terminated, respectively. The

constraints γ0, . . . , γn denote the limited range of values the respective variables of Γ could be

substituted. With the help of constraints, the influence scope of norms can be refined. Giving

an actual example of ϕ ◦ Γ as move(X,Y ) ◦ {20 ≤ X ≤ 50, 15 ≤ Y ≤ 35}, the variable

X and Y can only be substituted for the values within the specified ranges. Consequently, two

norms ω, ω′ are conflicting under a certain substitution σ, iff:

• ω = 〈Fα:ρ ϕ ◦ Γ, td, ta, te〉, ω′ =
〈
Pα′:ρ′ ϕ ◦ Γ′, t′d, t

′
a, t
′
e

〉
, or
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• ω = 〈Fα:ρ ϕ ◦ Γ, td, ta, te〉 , ω′ =
〈
Oα′:ρ′ ϕ ◦ Γ′, t′d, t

′
a, t
′
e

〉
or

• ω = 〈Pα:ρ ϕ ◦ Γ, td, ta, te〉, ω′ =
〈
Fα′:ρ′ ϕ ◦ Γ′, t′d, t

′
a, t
′
e

〉
, or

• ω = 〈Oα:ρ ϕ ◦ Γ, td, ta, te〉 , ω′ =
〈
Fα′:ρ′ ϕ ◦ Γ′, t′d, t

′
a, t
′
e

〉
which satisfy the following conditions:

(1) unify(〈α, ρ, ϕ〉, 〈α′, ρ′, ϕ′〉, σ): the substitution σ unifies 〈α, ρ, ϕ〉 and 〈α′, ρ′, ϕ′〉

(2) satify(Γ ∪ Γ′) · σ: the specified constraints Γ ∪ Γ′ are satisfied, and

(3) overlap(ta, te, t′a, t
′
e): active time periods of the two norms overlap.

From the definition above, conflicts are identified between a prohibition and an obligation

(termed as conflicts), or between a prohibition and a permission (termed as inconsistency) if

(1) there is a substitution σ that can unify both norms ω and ω′. Here first-order unification

[Fitting, 1996] is adopted and the condition unify(〈α, ρ, ϕ〉, 〈α′, ρ′, ϕ′〉, σ) holds iff 〈α, ρ, ϕ〉·
σ = 〈α′, ρ′, ϕ′〉 · σ. The substitution technique plays an important role in determining the set

of actions that are under the application scope of a norm such that conflicting scopes of norms

can be detected. (2) when applying the substitutions, the specified constraints Γ ∪ Γ′ for both

norms are satisfied. (3) the active period of both norms overlap, ta ≤ t′a ≤ te or t′a ≤ ta ≤ t′e,

i.e. there is a certain time period in which both norms are active.

The definition of norm conflicts in this work is similar to the identification of conflict

traces (see Def.9 on page 72) presented in this dissertation. Both definitions emphasise on

contrary normative positions, simultaneousness and overlapped influence scope of a pair of

conflicts. However, the normative conflicts focused in this dissertation are identified formally

and operationally from conflicting states of institutions derived by a particular course of

actions.

Afterwards, Vasconcelos et al. [2009] proposed to resolve conflicts by specifying the values

that should be avoided in the associated constraints such that the influence scope overlaps

between a pair of conflicting norms are removed. Such mechanism is termed as curtailment of

norms, which is denoted as curtail(ω, ω′,Ω), where

• ω = 〈Xα:ρ ϕ ◦ {γ0, . . . , γn}, td, ta, te〉 and

• ω′ =
〈
X ′α′:ρ′ ϕ

′ ◦ {γ′0, . . . , γ′m}, t′d, t′a, t′e
〉

X and X ′ is either O, F or P and Ω is empty or finite set of curtailed norms ω with respect to

ω′, which corresponds to either of the following cases:

(1) if there is no conflict between ω and ω′ under the substitution σ, then Ω = {ω}, i.e. the

curtailed norm is still the norm itself.

(2) if there is any conflict between ω and ω′ under the substitution σ, then Ω = {ωc0, . . . , ωcm},
where ωcj = 〈Xα:ρ ϕ ◦ ({γ0, . . . , γn} ∪ {¬(γ′j · σ)}), td, ta, te〉, 0 ≤ j ≤ m.
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The conflicts are resolved by curtailing the influence scope of norm ω by excluding any

overlapping values its variable could have with the counterpart norm ω′. The resulting

constraints for ω therefore includes the negated constrains of ω′. Consequently, the constraints

associated with each norm ensures conflict-free with other norms under certain substitutions.

Based on the resolution mechanism above, the work in [Vasconcelos et al., 2009] also

addressed how to adopt a new norm while preserving conflict-freedom with other existing

norms, and how to remove a norm while restore the curtailment that are not necessary any

more.

Another type of conflicts is also introduced in [Vasconcelos et al., 2009] – indirect conflicts,

indicting conflicts caused by “count-as” relationships among actions. For instance, if ϕ counts

as a set of sub-actions (ϕ′1 ∧ · · · ∧ ϕ′n), the conflict detection and resolution mechanism have

to be performed for all the derived actions. When any conflict found in this case, an indirect

conflict is identified and denoted as conflict?(∆, ω, ω′, σ) iff:

(1) if there is any conflict between ω and ω′ under the substitution σ, or

(2) ω = 〈Xα:ρ ϕ ◦ Γ, td, ta, te〉, and ϕ′ → (ϕ′1 ∧ · · · ∧ ϕ′m) ∈ ∆ such that unify(ϕ,ϕ′, σ′)

and ∨mi=1conflict
?(∆, 〈Xα:ρ ϕ

′
i ◦ Γ, td, ta, te〉 · σ′, ω′, σ).

The recursive definition above checks if norms ω and ω′ are conflicting indirectly. The set ∆

specifies a set of “count-as” relationships between actions. By following the chain of actions

relations, any conflicts found toward any derived actions brings indirect conflicts between ω

and ω′. The norm curtailment result therefore is a chain of substitutions following the recursion

calls.

Their definition of norm conflicts was firstly presented in [Kollingbaum et al., 2006], in

which from the perspective of the agents, rather than the normative system designer, norm

conflicts between agents and norm issuers are resolved through the use of negotiation. The

proposed conflict resolution mechanism was also introduced in [Vasconcelos et al., 2007], but

did not address norms with arbitrary constraints. Another related work in [Kollingbaum et al.,

2008a] extends the mechanism to cater for representing norms with arbitrary constraints, and

introduces indirect conflicts and the algorithm for norm adoption. Norm removal mechanism

can also be found in another related work in [Kollingbaum et al., 2008b].

To sum up, the conflicts addressed in [Vasconcelos et al., 2009] are between stand-alone

norms only, even though it is suggested that those conflicting norms could be derived from

different organisations. However, we believe that while some normative conflicts may be

apparent from inspection, many are dynamic phenomena that can only be analysed in the

context of the whole systems. That is why we generate coordinated traces describing different

scenarios as the input to conflict detection. The resolution mechanism put forward in

[Vasconcelos et al., 2009] is accordingly a norm-to-norm solution, in that it prevents the

substitution of the same value into two specific, contrary norms. In brief, when a co-existing

permission and prohibition refer to the same action perm(action(a,B)) and
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proh(action(A,B)), then the variable A may not be substituted with a, which is annotated in

the latter norm, to avoid conflicts between them.

Besides, the indirect conflicts defined in [Vasconcelos et al., 2009], caused by “count-

as” relations between actions, are not issues for the mechanism presented in this dissertation.

Because of the institution model, we can define and examine the whole event chain and the

corresponding states model by means of the dynamic generation and consequence relations

(cf. 3.1.1), in particular, the generation relations are exactly implemented for the count-as

relations between events.

In conclusion, we identify conflicts along with the state evolution of the whole institution in

accordance with temporal event traces. Our resolution strategy is naturally more dynamic and

accurate in that our approach is able to find the underlying causes for the conflicts, by exploring

not only the the conflict itself, but also the interrelations between norms. Besides, to our

best knowledge, there is no concrete implementation published to support the formal approach

in [Vasconcelos et al., 2009] above, but we also put forward computational mechanism and

concrete implementation to detect and resolve conflicts automatically.

Garcı́a-Camino et al. [2007] put forward an algorithm to derive a maximal conflict-free

normative position set for a compound activity, where the normative position with lower

precedence, in terms of the three classical orderings [Ross, 1959] (i.e. lex posterior, lex

specialis and lex superior), is ignored.

A normative position in this work is denoted by a formula δ(a, s, t) and δ ∈ {per, prh, obl}
indicates a deontic label, s is an salience constant and t is a specific time-stamp. The formula

can be read as a normative position specifies that at time t, with priority s, action a is permitted,

prohibited or obliged to perform. Based on that, conflicts between two normative positions

np = δ(a, s, t) and np′ = δ′(a′, s′, t′) can be identified when:

(1) {δ} ∪ {δ′} = {per, prh}, a = a′; or

(2) {δ} ∪ {δ′} = {obl, prh}, a = a′.

With the help of pre-defined salience parameter associated with each normative position, a

normative position np = δ(a, s, t) is considered more salient than another np′ = δ′(a′, s′, t′)

if s > s′. By doing that, a total ordering among all normative positions can be established.

The research work in [Garcı́a-Camino et al., 2007] is conducted in the context of so-

called Compound Activities, which are defined as compositions of sub-activities. The scope

of a normative position covers the activity in which it is enabled and all the sub-activities

associated with that activity. Therefore, the normative position associated with each activity

is propagated to its sub-activities. Each activity is viewed as a state transition process, whose

states are updated by the performance of actions. As part of the states, normative positions

can also be updated accordingly. Consequently, the conflicts between normative positions are

either:

14



Chapter 2. Related Work

• between normative positions resulted in a particular activity state via transition function,

or

• between normative positions inherited from other activity states.

Having formally defined the transition function of an activity, a set of normative positions

Ω generated at a particular state can be obtained. Any conflict occurs in Ω can be avoided

by means of the sequential use of the established ordering to decide which normative position

should be ignored. Finally, a conflict-free set of Ω is derived.

Garcı́a-Camino et al. [2007] describes a resolution mechanism, where the norm with

lower precedence, in terms of the three classical orderings, is ignored. The work depends on

the assumption that each norm has been pre-assigned with quantitative and normalised values

for time, salience and specificity in order to establish a precedence ordering. The resolution

mechanism is straightforward, but we believe that the existence of such normalised

comparable values assigned for each norm in terms of time, salience and speciality is not

realistic in general because it enforces a global, static ordering that is difficult to maintain,

requires arbitrary assignment of values based on incomplete knowledge and cannot (by

definition) take account of future norm additions. In contrast, our approach uses institutional

structure to make allowance for normative coupling (in the software engineering sense of

coupling) and permits the specification of a relative precedence order between institutions on

a per-revision-task basis. The precedence ordering among institutions is adopted in our

finer-grain approach to select which institutions should be revised to be consistent with others

in order to resolve the conflicts, rather than to choose which norms could be ignored

completely. Furthermore, although a computational mechanism (i.e. algorithm) is presented

in [Garcı́a-Camino et al., 2007] to resolve norm conflicts, a concrete implementation is not

described or evaluated. The introduction of compound activities lift the conflict resolution

mechanism to a higher level, rather than a norm-to-norm solution. However, there is no

operational counterpart to support the modelling and reasoning of the compound activities,

which makes difficult to obtain and examine the full states of a compound activity.

da Silva and Zahn [2014] consider conflicts detection in terms of application domain.

Specifically the relationships between entities and between actions are taken into account in

identifying conflicts. In this work, each norm is formally defined over Context, Entity, Action

and Condition:

• Context: specifies the application scope (e.g. an organisation or an environment) of a

norm.

• Entity: identifies whose behaviours are governed by a norm.

• Action: indicate which actions are regulated by a norm.

• Condition: activation conditions of a norm.
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By defining norms in terms of the elements above, the authors can detect conflicts between

norms that regulate different, but related actions, and between norms that govern the behaviour

of different, but related entities. Here the related actions are:

(i) composition relationship: an action is formed by other actions.

(ii) refinement relationship: an action refines another action.

(iii) dependency relationship: an action can be performed after the performance of another

action.

(iv) orthogonal relationship: two actions can not be performed at the same time.

Formal discussion about how these relationships affect the conflict detection is provided in

[da Silva and Zahn, 2014]. Besides, five types of entities relationship are also mentioned:

(i) Inhabit: an entity has to comply with the norms applied in the environment in which the

entity inhabits. (ii) Play: an entity has to comply with the norms applied to the role the entity

is playing. (iii) Playin: an entity has to comply norms when it operates in certain environment

and plays a certain role. (iv) Ownership: norms applied to a certain environment are applicable

to all roles defined in such environment. (v) Hierarchy: norms in an environment can be

propagate to all the sub-environments.

The idea of specific definition of the application domain of a norm is similar with our

previous work in [Li et al., 2014], in which we define governance scope by means of contextual

dimensions in order to constrain the influence of an institution. Also, similar nature of the

action relationships can be found in the notion of indirect conflicts defined in [Vasconcelos

et al., 2009] and compound activities in [Garcı́a-Camino et al., 2007].

King et al. [2014] presents a novel approach to check norm coherence based on a

compositional semantic framework established by norm nets [Jiang et al., 2013]. The

motivation is to build up the normative systems by using a structured and compositional

means such that if any part of the system is changed, there is no need to re-check the

coherence of the whole system entirely.

The paper [King et al., 2014] first gives the definition of a normative trace nt as a finite

sequence of alternating elements of specific form: [l0, (a, ϕ)1, l1, . . . , (a, ϕ)n, ln], where li ∈
{cnd, c, v}, (a, ϕ) ∈ (A× ACT ) and (a, ϕ)j 6= (a, ϕ)k, for 0 ≤ i ≤ n, 1 ≤ j < k ≤ n. The

set of (A × ACT ) is a finite set of agent/action pairs and hence a normative trace is formed

by a particular order to such pairs. Each occurrence of such pairs result in a possible legal

state: completely compliant (cnd), temporally compliant (c) and violation (v). Consequently, a

normative trace is a sequence of agent/action pairs, each of which is followed by its legal state.

In addition, three types of connective relation is defined between norms:

• AND: both norms are required to comply with.
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• OR: either of the norms are required to comply with.

• OE: ideally the primary norm should be achieved, otherwise the other norm has to be

achieved.

By means of the three connective relation, a norm net NN is given in BNF(Backus Normal

Form) grammar as: NN ::= n|AND(NN,NN)|OR(NN,NN)|OE(NN,NN).

Under the context of a norm net NN , the authors consider the generation of all possible

normative traces for a norm net. That is, each normative trace for NN is formed by

composition of normative traces of each norm by means of the connectives defined above.

The composition rules are also provided in the work to decide the legal state of each

agent/action pair in the composite trace. For instance, given two normative traces

[c, (p1, eat), v, (p1, think), v] and [c, (p1, work), cnd, (p1, rest), cnd]. According to the OR

relation, six possible composite traces can be obtained:

[c, (p1, eat), v, (p1, think), v, (p1, work), cnd, (p1, rest), cnd]

[c, (p1, eat), v, (p1, work), cnd, (p1, think), cnd, (p1, rest), cnd]

[c, (p1, eat), v, (p1, work), cnd, (p1, rest), cnd, (p1, think), cnd]

[c, (p1, work), cnd, (p1, eat), cnd, (p1, think), cnd, (p1, rest), cnd]

[c, (p1, work), cnd, (p1, eat), v, (p1, rest), cnd, (p1, think), cnd]

[c, (p1, work), cnd, (p1, rest), cnd, (p1, eat), cnd, (p1, think), cnd]

By means of the generated composite traces, the legal state and coherence of the norm net

can be analysed. Furthermore, the authors discuss three important properties which should

be examined in composite traces: (i) Minimality: the occurrence of overlapping agent/action

pairs can be reduced to only once, (ii) Compatibility: only compute interleaving for compatible

traces, and (iii) Maximality: only the maximal traces are combined and ignore the traces which

can be subsumed by the combined traces.

The idea outlined in this work is rather novel and effective in checking the coherence of

composite systems. However, it is possible for conflicts to arise when composing different

traces together and how to decide the composite state when combining conflicting states is

still an open issue in this work. The idea of composite traces in this work has some elements

in common with the notion of merged institutions presented in this dissertation, because

eventually we also obtain the resulting merged state model of a merged institution in response

to any given event traces. With regard to possible conflicts, we actually detect and resolve

conflicts already by modelling the set of institutions as coordinated institution or interacting

institutions, before the set of institutions is merged to be one.

Meneguzzi and Luck [2009] mention another possibility for conflicts between norms to

occur. The work is mainly about how norms can be involved in practical reasoning of agents
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Figure 2-1: Overview of norms processing in [Meneguzzi and Luck, 2009]

in order to constrain their behaviours. During such process, agents need to check if a

newly-adopted norm is not conflicting with other norms that are already adopted. Therefore, a

practical process to verify the consistency of norms after accepting a new norm is designed in

the system, as shown in Figure 2-1. The verification of norm consistency is not discussed in

this work, but we believe our approach presented in this dissertation is able to integrate in the

system to achieve conflict detection and even resolution by revising existing norms with

regard to the newly adopted norms, or the other way around, depending on the precedence

ordering established over the conflicting norms.

From the literature, very few approaches can be found addressing normative conflict

resolution. Most existing work provide a blunt solution by deleting or ignoring one of the

conflicting norms, as presented in Oren et al. [2008] and in Gaertner and Toni [2008], based

on argumentation theory. The paper [Oren et al., 2008] studies when agents are facing a pair

of conflicting norms, they have to choose to drop one permanently in order to maximise their

compliance with the other applicable norms, i.e. to minimise the number of norms they have

to drop. The main technique underpinning such proposal is argumentation theory based

heuristics. The authors firstly represent a set of norms by means of a graph with each node

being a norm and edge being conflicts, as shown in the leftmost subfigure of Figure 2-2. In

addition, two strategies are applied to prune the conflicts: (i) social context preference:

removes the conflict edges from a lower priority norm to a higher priority norm, in order to

obtain the middle diagram in Figure 2-2, and (ii) priorities over norm types: certain type of

norms are preferred to another, e.g. obligation norms are preferred to prohibition norms,

resulting the rightmost diagram in Figure 2-2.

In addition to the two strategies of pruning the conflicts, the authors propose three different

heuristics to decide which norms to drop:

• Random Drop Heuristic: simplest solution by randomly dropping a norm in a conflicting

pair.
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Figure 2-2: Pruning result of a normative conflict graph [Oren et al., 2008]

• Maximal Conflict-free Set Heuristic: adopted from argumentation theory, this approach

derives the maximal set of consistent norms by viewing each norm as an argument and

each conflict as an attack.

• Preferred Extension Based Heuristic: continued with the second approach, the maximal

admissible set (termed as preferred extension) is selected, in which all included

arguments can defend each other from attack by the other outside arguments.

The final evaluation, conducted by comparing the number of norms the agent is able to comply

with, proves that the third heuristic performed better than the random drop heuristic, but worse

than the second.

Another conflict resolution approach based on argumentation is proposed by Gaertner and

Toni [2008], where a specific form of argumentation – assumption-based argumentation

[Dung et al., 2006] – is adopted in particular in this work. Norms are viewed as bridge rules to

relate mental attitudes (i.e. belief, desires and intensions in traditional BDI agents [Parsons

et al., 1998, Rao et al., 1995]). In this work, norms are considered as deductive arguments

from assumptions based on an underlying deductive system, while the conflicts become

attacks against the contrary assumptions supporting those conflicting norms. The authors

further propose three different orderings over norms or other mental attributions of agents:

total ordering, partial ordering and dynamic ordering.

The conflicts addressed in both works ([Gaertner and Toni, 2008] and [Parsons et al.,

1998])above are assumed to known as a priori and static. That is why neither of the work

discuss how the conflicts are detected and identified. However, we argue that normative

conflicts should be examined along with the evolution of a whole normative system, rather

than comparison of contrary deontic positions at a single time instant. In this dissertation,

conflicts are treated as dynamic phenomenon subject to different contexts, rather than static

properties. In this dissertation, we also adopt a graph-based representation to depict the

relations between conflicts, similar to conflict graph presented in [Oren et al., 2008]. In our

work, each node represents a whole institution, rather than a single norm, and hence the

direction of edges are decided by the preference order amongst institutions, rather than norms.

We believe that the specified total ordering amongst a set of institutions is more feasible in

practice than a total ordering amongst a set of single norms. The purpose of our conflict

graphs is to determine the interdependence between conflicts in order to obtain the maximal
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independent conflict set (cf. Section 4.5.1), while the conflict graph in Oren et al. [2008] is

merely used for representation of conflicts and their attacking relations.

2.1.2 Conflicts between Mental States of Agents

Another trend of research on conflicts in the domain of multi-agent systems addresses

conflicting mental states of agents. One of the pioneering work can be found in Broersen et al.

[2001b]. The authors study conflicts amongst four elements– Belief, Obligation, Intension

and DesiresBroersen et al. [2001b] – of an agent architecture BOID. It is claimed that

conflicts amongst those four classes of elements can be resolved by the architecture’s control

loop, or by a separate selection precess according to some preference ordering. Such ordering

varies towards different types of agents. For example, for selfish agents, desires override

obligations, whilst obligations can override desires for social agents. In terms of the four

different elements, the authors outline all fifteen types of possible conflicts that may occur

amongst them, which are further grouped into internal conflicts – conflicts arise within a

single type of elements, and external conflicts – conflicts arise across different types of

elements. The authors argue that the process of conflict resolution is an order of overruling

amongst the four elements, and in this work beliefs, as an informational attitude, are

considered with highest priority to overrule the other three motivational attitudes [Thomason,

2000]. As for the ordering over the three motivational attitudes are decided by the type of

agents:

• Realistic Agents: any orderings that put the beliefs at the front can be adopted by realistic

agents, e.g. BOID, BODI, BDIO, BDOI, BIOD and BIDO2.

• Simple-minded or Stable Agents: which considers intentions can overrule the others such

as BIDO and BIOD.

• Selfish Agents: naturally desires are the most important driven element and hence the

orderings should be BDIO and BDOI.

• Social Agents: in contrast with selfish agents, social agents use obligations to overrule

desires, which results in BIOD, BOID and BODI.

Finally, the authors introduced an important component in the BOID architecture – feedback

loop, by which a new set of beliefs, intentions, obligations and desires can be generated by

the previous set of the four attributes, and how the ordering can be applied to resolve conflicts

during such loop.

Next, we look at one of the state-of-the-art contributions on this research topic. Shapiro

et al. [2012] investigate the conflicts issue between intentions. An agent may have more than

one goal to achieve at the same time, which might result in a set of inconsistent intentions. In
2The authors adopt a shorthand way to represent the priority ordering amongst the four elements, e.g., BOID

denotes a ordering from most important to least important: Belief, Obligation, Intention and Desire.
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addition to simply deleting one of the conflicting intentions, the authors also propose a way

of finding alternative (consistent) intentions to achieve the same goals eventually. Both of the

approaches and their corresponding semantics are presented in this work [Shapiro et al., 2012]:

• Revision by Dropping Intentions: by means of dropping some intentions in an

inconsistent intention set, a conflict-free intention set can be obtained.

• Revision by Modification: there are normally more than one plan to achieve a particular

goal, and hence if the current intention set is not compatible, then such approach can find

alternative intentions to modify the set to be conflict-free.

In both approaches, the authors consider three important principles to define their semantics:

(i) environmental tolerance: an intention set that can be applicable in more environments is

preferred, (ii) maximal cardinality: this principle implies to keep as many higher-priority

goals as possible, and (iii) minimal modification: keep the modification as little as possible.

When different precedences among the three principles are applied, various modification

results might be derived.

The same issue is addressed by intentions reconsideration in Marosin and van der Torre

[2014]. The paper provides a mechanism to reconsider intentions based on reasons and

assumptions. The authors firstly point out that earlier work [Cohen and Levesque, 1990, Rao

and Georgeff, 1993] on intention reconsideration only focusses on when an intention may be

reconsidered without investigating the relation between different intentions. Here “reasons” to

an intention cover motivating attributes which can generate the intention, such as goals,

norms, action and even other intentions, while “assumptions” imply the beliefs associated

with a commitment to a goal, such as the context under which this commitment is applied and

the role that supports to achieve this commitment. Afterwards, the authors claim that

intentions may be reconsidered when the reasons are invalid, or when the associated

assumptions are violated. A formal model and algorithms for intention reconsideration based

on assumptions and reasons are provided in the work.

2.1.3 Conflicts between Norm and Intention

van Riemsdijk et al. [2013] propose a generic execution mechanism that allows agents to

adapt their behaviour to be norm compliant at design time. Norms specify the ideal behaviour

patterns of agents, which is very likely to be conflicting with agents internal plan. Therefore,

the authors also address another origin for normative conflict, where conflicts arise between

agent-internal decision-making and external norms. The basic idea of this approach is to build

a normative agent semantics on top of an abstract agent semantics, which disables the

execution of actions that are prohibited by norms, and enables the actions that are obliged by

norms. Normative conflicts in this work are simple mentioned as one of the undesirable

situations. The proposed approach is able to identify conflict situations in advance so that the

agent can potentially avoid running into those situations. The approach is based on temporal
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logic rules comprising of present time rules (i.e. describing the current state) and step rules

(i.e. determining the next-step state) only, and therefore the detection of undesirable situations

can only be one-step ahead. In contrast with this work, our mechanism is built upon a

complete institutional model in response to a sequence of event traces, and hence we are able

to detect conflicting situation happening at any time during a finite duration trace.

Furthermore, we provide both a formal analysis and an automatic computational conflict

detection and resolution mechanism.

Another interesting work conducted by da Silva Figueiredo and da Silva [2014] address

conflicts between agents’ value and norms. Values [Dechesne et al., 2013, van der Weide et al.,

2010] of agents are defined as concepts with regard to desirable states or behaviours, which

help to make decision and execute plans.

2.2 Conflicts in Deontic Logic

One of the pioneering works on addressing deontic conflicts and inconsistencies can be found

in Elhag et al. [2000]. The authors firstly point that the previous studies on conflicts and

inconsistencies in deontic logic have focused on the deontic operators and their relation to

each other, as the deontic square depicted in Figure 2-3. The letter p represent the actions or

O(p) F(p)

P(~p)P(p)

Figure 2-3: Deontic Square [Elhag et al., 2000]

conditions subscribed in a norm and ∼ p is the complementary of p. O, P and F indicate the

normative position obligation, permission and prohibition of a norm respectively. The

two-way arrows in Figure 2-3 imply that both pointing norms can not be true at the same time.

For example, O(p) and F(p) indicate that a conflict arises between the obligation and

prohibition on p. The authors further argue that the current approach is unsatisfactory and

restricted to detect conflicts by means of incompatibilities of deontic operations of norms, and

hence we should take the so-call world knowledge into account when identifying conflicts.

Such world knowledge, as described informally in the paper, includes information about

interrelations between actions, agent intensions and spatial relations involved in norms. The

work presented in Elhag et al. [2000] analyses the role of world knowledge in detecting

conflicts and inconsistences. Despite of the informality of the analysis present in this work, it

provides some promising research directions on this topic.

Turning to the state-of-the-art work on detecting conflicts in the domain of deontic logic,

Beirlaen et al. [2013] point out the deficiency of standard deontic logic in dealing with

conflicts. Therefore, the authors propose an alterative inconsistency-adaptive deontic logic to
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in particular address the conflicts between permissions and obligations at a single time instant.

However, Tosatto et al. [2014] argue that the approach is not applicable to detect deontic

conflicts between obligations at a single time instant, which instead should be examined under

dynamic settings. Tosatto et al. [2014] present an alternative semantics, rather than the

classical deontic logic, to represent obligations such that conflicts between obligations can be

detected in dynamic settings. The work firstly distinguish three different types of obligations:

• standard obligations Os, as modelled in classic deontic logic, are evaluated in a single

state.

• achievement obligations Oa requires a trigger time instant and deadline time instant

such that this type of obligations should be evaluated across a certain time interval and

to check if the required conditions are achieved within such time interval.

• maintenance obligations Om specifies certain conditions have to be satisfy for a whole

period of time since the obligation is activated.

The authors claim that the classical deontic logic is insufficient to represent the achievement

obligations and maintained obligations, because both of them need to be evaluated in a dynamic

setting, i.e.within a trace of states along with a sequence of time instants. Based on this,

conflicts between different types of obligations can be identified when two complementary

obligations coexist at the same time interval. However, the standard deontic logic is restrictive

on measuring such situations. The work defines a notion of dynamic conflicts as: given a set

of obligations, if it is impossible to find a trace that is compliant with all obligations in the

set, then such situation is identified as dynamic conflict. Furthermore, the work proposes two

necessary conditions to detect dynamic conflicts between the different types of conflicts:

(1) the fulfilment conditions of the two obligations have to be complementary.

(2) the activation time of the two obligations intersect.

To sum up, from the literature, we can see that conflicts have also received attentions in

the community of deontic logic. The definitions of deontic conflicts and inconsistencies seem

to be agreed on the contrary normative positions, as outlined by the types A, B, D and F in

table 2.1. The work in Tosatto et al. [2014] also mentioned conflicts occurring between

obligations due to the exclusive relations of actions, which follows the type C and E in the

table. The issues on detecting conflicts between obligations pointed in Tosatto et al. [2014]

are however not issues in the work present in this dissertation. The obligations, as explained

in Section 3.1, are modelled by a comprehensive semantics, in which each obligation is

associated with an event obliged to bring about, deadline event and violations event.

Combined with the generation and consequence relations in our institutional model,

obligations are reasoned about and analysed in a dynamic setting. More importantly, the

counterpart operational model of an institution provides an actual implementation to enable
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automatic reasoning with obtaining the corresponding state model such that the conflict

detection is a completely automatic process. Furthermore, as we provide the model for

cooperating institutions, we can even support obligations with later-binding behavioural

governance, where the enforcement of an obligation – which only makes sense when

combined with another institution – such as the one that issues the obligation. Finally, we

notice that there is very little work to be found on conflict resolution in deontic logic in the

existing literature, which makes another significant contribution of this dissertation.

2.3 Legal Conflicts

One of the most influential studies about legal inconsistencies and conflicts can be found in

Ross [1959]. An inconsistency between two norms is identified when incompatible legal effects

are attached to the same factual conditions. According to their influence scope, three different

types of inconsistencies are given:

• Total-total inconsistency: there is no such circumstances in which both norms can be

applied without mutual conflicts. Such inconsistency is also named as absolute

incompatibility.

• Total-partial inconsistency: norm a can be applied in specific circumstances without

conflicting with the norm b, while there is no circumstance for b to be applied without

conflicting with a. In other words, the influence scope of one norms is completely inside

the scope of the other. Concrete forms of such situation can be observed between a

general and a particular rule.

• Partial-partial inconsistency: the scope of both norms intersect and hence there are

specific contexts where both norms can be applied without conflicts.

With regard to the relationship between different statutes, inconsistencies can be resolved by

three classic strategies:

(1) lex posterior: the most recent norm takes the precedence.

(2) lex superior: the norm from the source with higher power and competence takes the

precedence.

(3) lex specialis: more specific norm takes the precedence.

These three classic strategies are applied widely in the legal community to establish the

precedence order to resolve legal conflicts and inconsistencies.

Extensive work on formal analysis of normative conflicts can be found in the legal

community. For example, Sartor [1992] presents a comprehensive formal analysis of norm

conflicts in the legal domain and identifies the main causes of norm conflict as legal
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dynamics, exceptions and semantic uncertainty. The author compares two formal approaches

based on the preferred set and belief change to resolve legal conflicts with regard to a

preference ordering among legal systems. However, the generalisation of this work beyond

the legal domain is not considered and, furthermore, its focus is only on a formalised analysis,

without any corresponding implementation.

Based on a case from private international law, Dung and Sartor [2011] present a logic-

based approach for modelling coordination between different legal systems. Each legal system

is treated as an independent module for handling relevant queries. However, the approach is

example-specific and also lacks a computational model. In contrast, our scheme is general-

purpose in representing norms and provides reasoning. Our computational translation from

institutional specifications to answer set programs also enables automatic analysis of conflicts

in response to events.

2.4 Policy Conflicts in Role-based Systems

Normative conflicts are also important issues to address in distributed systems in that a number

of entities and objects coexisting and interacting with each other under changing environment.

Multiple human administrators are involved in specifying policies for a system, which is also

very likely to give rise to policy conflicts. Lupu and Sloman [1999] address such issue . In the

context of distributed systems, policies have been applied to regulate management behaviour.

In particular, the authors discuss two types of policies:

• Authorisation policies: specifying permission and prohibition that are associated with a

set of target entities.

• Obligation policies: specifying obligations and duties that are associated with a set of

target entities.

Conflicts may arise between the two sets of policies. For example, an activity is enforced by

an obligation policy, but forbidden by an authorisation policy. An activity could be permitted

by one authorisation policy, but prohibited by another authorisation policy.

The paper proposed conflict detection and resolution by establishing various precedence

orders between conflicting policies to facilitate coexistence of them.

A policy has three basic elements:

(1) Subject: to which the policies apply.

(2) Target: on which the actions are to be performed.

(3) Domains: defined in term of subjects and targets. Domains provide flexible reference

systems to group objects, like file systems. A domain may have sub-domains and parent

domains, which renders a hierarchy structure of domains. Domains may overlap with
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Figure 2-4: Overlapping Domains and Domain Hierarchy [Lupu and Sloman, 1999]

each other. As shown in Figure 2-4, domain E is sub-domain of both B and C, which are

overlapping.

Policies are categorised and organised in terms of roles. Thus, policies for a new person

can be assigned according to the roles the person is playing, rather than specifically assigning

a set of policies and duties. Therefore, a role is associated with a set of policies with specific

domain. Person can be assigned to or removed from a role without changing policies.

Modality Conflicts can be detected when: (i) positive obligation vs. negative obligation:

two obligation policies require the same subject to perform and not to perform the same actions

on the same target. (ii) positive permission vs. negative permission: two authorisation policies

permit and forbid the same subject to perform the same actions on the same target. (iii) positive

obligation vs. negative permission: an action is obliged but forbidden to perform. The authors

then propose to resolve conflicts among policies based on specificity of policies. A so-called

domain nesting based precedence is established. A sub-domain is designed for exceptional

cases of its parent domain, and hence can be considered more close to the objects of the sub-

domain.

The idea of the domain of a norm presented in this work is similar with value range a

variable could have in a norm in [Vasconcelos et al., 2009], and the influence scope discussed

in [Ross, 1959]. The conflict resolution is resolved by one of the classic strategies lex specialis,

where more specific norm takes the precedence.

Giannikis and Daskalopulu address policy conflicts in electronic contracts in ([Giannikis

and Daskalopulu, 2011]). As mentioned in the beginning of this chapter, six primitive types of

conflict patterns are given in Table 2.1 on page 10 and the conflicts discussed in literature could

be mapped as instances of those six primitive patterns. Furthermore, the authors propose a way

to represent electronic contracts by means of default logic [Reiter, 1980], in order to achieve

conflict detection, predication and resolution.
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2.5 Knowledge Conflicts in Belief Revision

Belief revision is a research subject studying belief conflicts. Specifically, it aims to derive

conflict-free belief base when new information is acquired. The solution in traditional belief

revision is to apply a contraction operation in order to construct a subset of the existing

knowledge base that does not imply the new information.

From the literature, the most influential approach for belief revision is the AGM framework

[Alchourrón et al., 1985], which is a well developed formal approach based on a logic theory

of abduction. There are three types of operators introduced in the AGM:

(1) Belief Expansion K+
α : to acquire a new belief α into existing belief base K.

(2) Belief Contraction K−α : to remove a belief α from the existing belief base K.

(3) Belief Revision K∗α: to acquire a new belief α into existing belief baseK, and remove any

existing belief that is not consistent with α.

Furthermore, the AGM framework also specifies a set of rationality postulates that each

operator above should satisfy. The expansion operator is applied to integrate a new consistent

belief α into the existing belief base K, which should satisfy rationality postulates: closure,

success, inclusion, vacuity, monotonicity and minimality. In contrast, the contraction

operation can temporarily disable a doubtful belief in a proposition, and has to satisfy

rationality postulates: closure, success, inclusion, vacuity, recovery, extensionality,

intersection and conjunction. Combining the operator expansion and contraction, we can

perform belief revision. This operator is of great importance in the AGM framework in that it

can be used to incorporate an inconsistent new belief into the existing knowledge base.

In this dissertation, we adopt the technique Inductive Logic Programming (ILP) to facilitate

conflict resolution. The usage of ILP for norm revision can be viewed as a form of belief

revision, as discussed by Pagnucco and Rajaratnam [2005]. However, ILP is able to provide

more fine-grained results than the traditional belief-revision paradigm, as described in detail

in Pagnucco and Rajaratnam [2005]. Specifically, the conflict that arises in traditional belief

revision is between existing knowledge K and newly-acquired knowledge p, when the corpus

of knowledge expands. The solution in traditional belief revision is to apply a contraction

operation in order to construct a subset of K that does not imply p. In contrast, the essential

advantage of ILP is abductive expansion when dealing with new knowledge: ILP attempts

to uncover the underlying explanation, in addition to the new knowledge itself. Therefore,

by employing ILP in our norm resolution system, we are able to find the explanation for the

occurrence of conflicts, and based on which norm revision is produced, to prevent not just the

same conflict happening again but also resolving all conflicts of the same nature.
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2.6 Summary

In this chapter, we look at the literature addressing the issue of conflicts in the domain of multi-

agent systems, deontic logic, legal study, role-based management systems and belief revision.

Despite of the various forms and definitions, we conclude that there are four necessary factors

to identify a conflict:

(i) Exclusive modality and actions: in addition to the apparent conflicts towards deontic

positions (e.g. permission vs. prohibition and obligation vs. prohibition), normative

conflicts are also expected to consider the norms that enforce mutually exclusive actions.

For example, the conflicts between obligations, labelled as type E in the table 2.1 in

[Giannikis and Daskalopulu, 2011]. Similar idea is addressed in the work [Tosatto et al.,

2014] when the authors discuss alternative deontic logic to address obligation conflicts

in particular. [Lupu and Sloman, 1999] also mentioned the exclusive actions are both

enforced by obligation policies.

(ii) Simultaneity: it is widely acknowledged from the literature that potential conflicting

norms have to be active at the same time to characterise conflicts.

(iii) Overlapping scope of influence: this requirement has been referred by various names

and forms, such as domain of a policy in [Lupu and Sloman, 1999], influence scope of a

norm in [Ross, 1959] and [Vasconcelos et al., 2009] and governance scope in [Li et al.,

2014]. One important necessary condition to detect conflicts is that the influence scope

of norms are overlapping, i.e. both are addressing the same subjects and actions.

(iv) Interrelations between actions: a few literature emphasises that conflict detection has

to take relations between actions into account, rather than static comparison of a pair of

norms. For example, indirect conflicts addressed in [Vasconcelos et al., 2009], compound

activities in [Garcı́a-Camino et al., 2007] and world knowledge in [Elhag et al., 2000].

Returning to the conflict detection in our work, we consider all the four factors above in our

detection procedure. One of the basic building blocks of our modelling language is fluent,

which is used to capture institutional states that evolve over time as a result of the occurrence

of external events. Fluents could be either normative properties (i.e. permission, power and

obligation) or domain specific states. Such fluents are either true (if present) or considered false

(if absent) at a given time instant. Therefore, conflicts can be identified by specifying certain

patterns and constraints on fluents, e.g. a fluent holding contrary values in two institutions.

Our computational mechanism supports conflict detection along with the state transition of

institutions, and so conflicts are analysed at each given time instant. The computational model

is obtained by applying the dynamic rules (i.e. generation rules and consequence rules) which

capture the relations between events and update institutional state accordingly. In this way,

normative conflicts can be detected more accurately and comprehensively.
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With regard to the mechanism to resolving conflicts, most work to date ignore, delete or

overwrite one of the conflicting norms with lower precedence. Such precedence is typically

established in terms of the three classic strategies. Some work also considered to build such

precedence by using other strategies, such as building priorities over norms in terms of norm

types [Oren et al., 2008], e.g. obligations are more important than prohibitions. It is also

possible to obtain the order depending on the type of the reasoning subject. For example, in

Broersen et al. [2001b], the type of an agent decides how the agent ranks the norms: selfish

agents are likely to prefer desires than obligations, whilst social agents treat obligations the

most important rules to comply with. Another novel conflict resolution approach is proposed

in Shapiro et al. [2012] to solve the conflicts within a set of intentions agents are committed to

achieve. The approach can find alternative intentions to modify the current set to be conflict-

free. Precedence order also plays important role in our research. However, we build our work

on the specification of a relative precedence order between institutions on a per-revision-task

basis. Instead of using the precedence to choose which norms to be ignored, the precedence

ordering among institutions is adopted in our finer-grain approach to select which institutions

should be revised to be consistent with others in order to resolve the conflicts.

One of our aims is to provide a general conflict detection and resolution mechanism that

can be applied in different situations of a similar nature. For example, our mechanism has

been successfully applied in the legal domain [Li et al., 2013b,c] to assist in finding and

resolving legal conflicts. We modelled each legal system as an institution and a legal case as

an event trace. When different jurisdictions are involved in establishing a ruling in a legal case

(e.g. international trade cases), it is of interest for individuals, companies or legislators,

whether there are disparities among the laws of these jurisdictions and how they may

differently determine the consequences. We modelled each of the constituent legal systems as

individual institutions, which are then brought together as a coordinated legal system for the

purpose of identifying conflicts. Having done so, the resolution mechanism produces revision

proposals for the inferior law(s) to be consistent with superior laws [Li et al., 2013b], which

would in principle seem useful for legislators and legal departments. Besides, we also applied

our mechanism to detect policy conflicts arising from socio-technical systems [Li et al.,

2012], where there is a need to combine institutions from different perspectives (such as

social and technical in this case), and it is very likely to give rise to conflicts. In the work

presented in [Li et al., 2012], we adopted a simple example about virtual community to

demonstrate how conflicts can be detected at the design stage in composing institutions. We

emphasise that the mechanism of conflict detection and resolution present here is a general

approach that can be applied to many different domains.

Most work to date on norm conflict depend upon detection through the comparison of

specific rules. This we consider inadequate because we believe that conflicts are a dynamic

phenomenon that can only properly be identified by continuously examining the changes

across the whole normative framework, by means of event traces. Thus, it becomes possible
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to identify scenarios arising from sequences of events in which a conflict can occur.

Furthermore, from our reading, all the work discussed above focus on formal and conceptual

contributions, and none of them provides a concrete implementation for conflict detection and

resolution, let alone automatically. With regard to the mechanism of conflict resolution,

existing work largely aims to avoid conflicts by curtailing influence scope of a norm (of a

conflicting pair) in specific circumstances, rather than resolving them by revising the

normative specification on a broader level: for example, Vasconcelos et al. [2009] identifies

an “undesirable values” set with which to annotate each norm in order to prevent the

occurrence of conflicts while Garcı́a-Camino et al. [2007] removes the conflicting norms with

lower precedence. In contrast, our approach:

• addresses not only the formal and computational analysis of conflict detection and

resolution, but also its concrete implementation,

• describes a broader class of conflicts (as the notion of fluents is defined in a general

form, as introduced in 3.1.1), at the level of the whole cooperating institution (because

conflicts are detected along with the evaluation of whole system, as discussed in 4.3),

• detects conflicts that emerge as a consequence of a sequence of events, and

• resolves conflicts by means of a fine-grained approach that constructs minimal revisions

to norms via inductive learning.

———————————————-
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To provide the background to the work presented here, this chapter focuses on the two main

underpinning techniques adopted in this dissertation: institutional modelling tool

InstAL [Cliffe et al., 2007a] and a description of theory revision via Inductive Logic

Programming [Corapi, 2011].

We start by explaining our view of institutions and an existing event-driven modelling

approach InstAL for a single institution in Section 3.1. In particular, to keep the presentation

self-contained, we provide the detailed formal model of a single institution in Section 3.1.1,

and the corresponding computational model under answer set semantics in Section 3.1.2. An

institutional modelling language to fill up the gap between formalisation and computational

program is reviewed in 3.1.3. The InstAL approach provides a fundamental base for the work

presented in this dissertation, and we further develop the approach to cater for combining a set

of institutions. We also look at alternative modelling approaches from literature in Section 3.2

and explain the reasons of using InstAL in this work.

Afterwards, we present in brief the principle of theory revision by using Inductive Logic

Programming in Section 3.3, originally introduced in [Corapi, 2011]. Following this method

of theory revision, in later chapters we design the conflict resolution system for cooperating

institutions based on automatic norm revision.

3.1 Institutions

Institutions provide a powerful approach for governing open systems by providing guidelines

for the behaviour of the individual components without regimenting them [Grossi et al., 2007].

Modelling institutions has been studied at length in the literature (see [Noriega, 1997, North,

1994, Ostrom, 1990, Vázquez-Salceda, 2003] for example). Using a formal language with

a computational translation to specify the rules of an institution gives the system designer a

means to verify and validate the compliance of the system with respect to desirable behaviours

or properties [Artikis et al., 2003, Cliffe et al., 2007a].
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The literature contains a number of systems and methods to model institutions (e.g.

[Dignum, 2003b, Esteva, 2003, Hübner et al., 2007] to cite but a few). Details about these

approaches and other main contributions can be found in the later separate section 3.2. We

follow the approach presented by Cliffe et al. [Cliffe, 2007, Cliffe et al., 2007a], which uses

an event-driven model (also known as InstAL ), where the events derive from the actions of

the participants/users of the system. The institution is used by the participants to determine

the most appropriate course of action based on the normative information available. The

approach is centered around observable events, participants’ actions and changes in the

environment, that are interpreted in a given institutional context. The advantage of this

framework is that the formal model can be translated to a corresponding AnsProlog

program [Gelfond and Lifschitz, 1991] – a logic program under the answer set semantics –

allowing for reasoning about and verification and validation of the institution and its norms.

In summary, InstAL provides an event-driven modelling method to dynamically update

specified normative rules to guide agents’ behaviours, depending on the brute facts happening

in the environment and actions performed by agents. More importantly, the computational

counterpart under answer set semantics enables automatic verification and validation of

institutional models, even when incomplete knowledge of environment is provided. Due to

the declarative and natural-language-like features, InstAL also offers a convenient way to

specify an institution without concerning about mathematical and technical details.

To make the dissertation self-contained, in the following sections we first discuss the single

institution model introduced by [Cliffe, 2007], based on which we make necessary adaptations

to the existing formal model for combining a set of institutions, such as to be tolerant with

unknown events and include an extra argument to identify institution in the computational

model. Details will be given in the following sections.

3.1.1 Formal Model

The purpose of institutions is to govern open systems by providing guidelines for behaviour

subject to various circumstances. Therefore, we first need to represent the fundamental

elements, namely (i) the behaviour of the actors, which we capture through sequences of

events, (ii) the circumstances brought about by those actions, which we characterise through

collections of domain fluents and (iii) the behavioural guidelines, which we express through

collections of normative fluents. We now discuss each of these elements in detail.

The observable events (Eex) used by Cliffe et al. are external to the institution (and

therefore also referred to as exogenous events). They capture the notion of events in the

physical world. Besides these observable events, Cliffe et al. introduce institutional events

(Einst) that are events generated by the institution, but which only have meaning in the

institutional context. To give an example of this: an observable event in the physical world

would be “shooting” someone. The corresponding institutional event would be the

interpretation of this physical action as murder in the institutional context. Institutional events
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are partitioned into institutional actions (Eact) that denote changes in the institutional state,

and violation events (Eviol) that signal the occurrence of violations.

E = Eex ∪ Einst
Einst = Eact ∪ Eviol

The notion of conventional generation (by Searle [Searle, 1995]) is used to generate

institutional events from the occurrence of an exogenous event. Using the so-called

“counts-as” statements, events in one context count as events in another context. So, using the

physical world as the first context and the institution as the second, observed events

“generate” institutional events [Jones and Sergot, 1996]. This can be further extended to

institutional events generating other institutional events.

G : X × E → 2Einst

Violations may arise either from explicit generation (i.e. from the occurrence of a non-

permitted event), or from an unfulfilled obligation. An institutional state is characterised by

a set of institutional facts or fluents (F) that evolve over time as a result of the occurrence

of exogenous events which are interpreted in the institutional context. The notion of fluents

is originated from situation calculus [McCarthy and Hayes, 1968], in which fluents indicate

both the proposittions to describle states, and functions to update states. However, in InstAL ,

fluents are only referred to propositions relating to institutional states. Such fluents are either

true (if present) or considered false (if absent) at a given time instant. Cliffe et al. identify

normative fluents that denote normative properties of the state such as (i) permission (P) –

which events may occur without causing a violation, (ii) power (W) – the capacity to influence

the institutional state [Jones and Sergot, 1996], (iii) obligations (O) – a particular event must

happen before some other event (e.g. a timeout) otherwise a specific violation is generated –

and (iv) domain fluents (D) that correspond to properties specific to the domain modelled in

the normative framework.

F = W ∪P ∪O ∪D

C = X × E → 2F × 2F

Permissions on events imply that the occurrences of events are desirable within the

context of the institution, leading to no violation. Conversely, another important regulatory

function is prohibition, which defines a particular event or state is not acceptable to occur or

hold, and hence violations will follow if the forbidden event occurs or the state matches.
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Some works in literature model both permissions and prohibitions explicitly [Vasconcelos

et al., 2009, Vázquez-Salceda et al., 2004]. In this dissertation, however, for the sake of

simplicity, we limit ourselves to model prohibitions implicitly by the absence of permissions.

Therefore, when the permission of an event is absent at a particular point of time, the event is

prohibited to occur at the point.

Having all the basic elements in place, we then need a way to specify their dynamic

aspects. To be able to provide accurate guidelines for agents, institutions need to be aware of

the changing environment (i.e. the external events that happen), and also be able to interpret

them internally. That is why we firstly need to map external events to the institutional events

by the generation function. More specifically, the generation relation (G), which implements

counts-as by specifying how the occurrence of one (exogenous or institutional) event

generates another (institutional) event, subject to the empowerment of the actor and the

conditions on the state. Subsequently, in response to the occurrence of an (institutional) event,

normative guidelines for agents’ behaviours are updated in the institutional current state,

which is captured by the consequence function. Formally, the consequence relation (C)

specifies the initiation and termination of fluents, subject to the occurrence of some event

under certain conditions on the institutional state.

Definition 1 (Institution) An institution is characterised by a tuple I = 〈E ,F ,G, C,∆〉,
where

1. E = Eex ∪ Einst with Einst = Eact ∪ Eviol, is a set of events.

2. F =W ∪P ∪O ∪D, is a set of fluents .

3. G : X × E → 2Einst , is the generation relation.

4. C : X × E → 2F × 2F is the consequence relation, and C(φ, e) = (C↑(φ, e), C↓(φ, e)):

(i) C↑(φ, e) initiates fluents

(ii) C↓(φ, e) terminates fluents

5. ∆ ⊆ F , is the initial state of an institution.

6. X = 2F∪¬F , express a state formula.

Institutional states are characterised by a set of fluents, and hence the set of possible states

is Σ = 2F . To express conditions on the state, we use state formulae. The set of all state

formulae is X = 2F∪¬F . The sequence of states transition always starts from a given initial

state ∆ ∈ Σ and a sequence of institutional states can be obtained 〈S0, S1, . . . , Sn〉, Si ∈
Σ, 0 6 i 6 n. By convention, we use subscripts to indicate the time instants. For instance, S3

is the institutional state at time 3. When we introduce cooperating institutions in later sections,

we use superscripts to identify different institutions in a combination, then Si3 denotes the state

of institution i at time 3.
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Each state is characterised by a set of fluents holding true at the given time. We define the

operator |= to express a state satisfies a fluent f ∈ F , denoted S |= f , if f ∈ S. Likewise,

S |= ¬f when f /∈ S. Therefore, a state expression φ ∈ X contains a set of fluents and negated

fluents, and S |= φ iff ∀f ∈ φ · S |= {f}. Formally, we give the definition of satisfaction of a

state expression:

Definition 2 (State Expressions) An institutional state S satisfies an expression φ, denoted
S |= φ, such that:

S |= φ⇐


φ = {} ∨
φ = {f}, f ∈ S ∨
φ = {¬f}, f /∈ S ∨
∀f ∈ φ · S |= {f}

The semantics of an institution is defined over a sequence, called a trace, of observed events

Eex: 〈e0, e1, . . . , en〉, ei ∈ Eex, 0 6 i 6 n. Starting from the initial state (∆), each exogenous

event brings about a state change, through initiation and termination of fluents. However, it

might be the case that some exogenous events are not meaningful to a given institution and the

model needs to be tolerant of them. In the later sections, this feature plays an important role

when we combine institutions. In such circumstance, an institution has to be able to process

(and discard) events that are pertinent to other institutions but unknown to itself. Therefore, we

preface our discussion of the generation relation G, by introducing the universal set of all events

UE , to allow the model later to account for unknown events (by individual institutions). The

set UE comprises all even ts that could occur in the context, either known or unknown for an

institution. The set of events that are not recognised by an institution I is denoted E = UE \ E .

Generation Function: Based on the transitive closure of G with respect to a given exogenous
event, the generation function GR determines all the generated events. Based on this, the
generation function GR : Σ× 2UE → 2E is defined as:

GR(S,E) =


e ∈ E

∣∣∣∣∣∣∣∣∣∣∣∣

e ∈ E ∩ E ∨
∃ e′ ∈ E ∩ E , φ ∈ X , e ∈ G(φ, e′) · e ∈ Eact ∧ S |= pow(e) ∧ S |= φ ∨
∃ e′ ∈ E ∩ E , φ ∈ X , e ∈ G(φ, e′) · e ∈ Eviol ∧ S |= φ ∨
∃ e′ ∈ E ∩ E · e = viol(e′), S |= ¬perm(e′) ∨
∃ e′ ∈ E , d ∈ E · S |= obl(e′, d, e)


The first condition preserves all the occurred events that are known to I. The second and

third conditions apply the G relation to generate the corresponding institutional actions and

violations. All violations of non-permitted events and non-fulfilled obligations are also added

to the resulting set by the last two conditions. If none of the events in E are recognised by

I, then the function produces the empty set ∅. It is important to point out the difference

between the generation relation G and generation function GR. G only accounts for part of the

output of GR by reflecting the so-called “counts-as” principle to interpret only the recognised
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external events into institutional events subject to certain context. In addition, the generation

function GR is also responsible for generating other related events, including violation events

for non-permitted events and unsatisfied obligations.

Starting from a recognised external event eex in a given state S, the application of

GR(S, eex) generates a set of new events. Subsequent applications of the function include the

events already generated by previous iterations, and therefore the GR(S, {eex}) increases

monotonically. Because the set of events specified in an institution is finite, there will be at

least one fixpoint of the function after several iterations, which is denoted GRω(S, {eex}). It

is this event eex, as well as all following generated events whose consequences then determine

the new state in the next step.

Consequence Function: The application of C to the set of events arising from

GRω(S, {eex}) identifies all fluents that need to be initiated and terminated with respect to

the current state, so determining the next state. Thus, we define C in terms of two operators:

one that computes the additions INIT : 2F × Eex → F and the other the deletions

TERM : 2F × Eex → F with respect to the current state, as follows:

INIT(S, eex) = { p ∈ F | ∃ e ∈ GRω(S, {eex}), φ ∈ X · p ∈ C↑(φ, e), S |= φ }

TERM(S, eex) =

 p ∈ F

∣∣∣∣∣∣∣
∃ e ∈ GRω(S, {eex}), φ ∈ X · p ∈ C↓(φ, e), S |= φ ∨
p = obl(e, d, v) ∧ p ∈ S ∧ e ∈ GRω(S, {eex}) ∨
p = obl(e′, d, v) ∧ p ∈ S ∧ d ∈ GRω(S, {eex}) ∨


By combining the two above functions together, we can derive an overall transition function

TR : Σ× Eex → Σ:

TR(S, eex) =

{
p ∈ F

∣∣∣∣∣ p ∈ S \ TERM(S, eex) ∨
p ∈ INIT(S, eex)} ∨

}

To reason about the change of an institution over a period of time, we use event traces, an

sequence of observed events known to the institution. Given an event trace, we can now obtain

a sequence of states that constitutes the model of the institutional framework for that trace by

means of the transition function TR.

Example of a Single Institution: Formal Model

An intuitive case study is adopted to illustrate how institutions are modelled. The case study

is formed by three individual institutions: Realm, Lord and Castle, which have individual

interests but overlapping territories. Differently, in particular contrary commands, are very

36



Chapter 3. Underpinning Work

likely to lead normative conflicts. For example, the Castle announces that all males older than

16 years old are obliged to serve in an army, whilst the Realm and Lord state that the only

son in a family can be exempt from this obligation. This example will be used throughout this

chapter to illustrate the modelling of the single institutions and afterwards the formation of a

coordinated institution, based on which normative conflicts will be analysed and resolved.

In this section, we pick one institution Lord from the example and give a formal

representation of it in Figure 3-1. We list a set of exogenous events Eex to capture the physical

actions which might happen in the external world such as the event register(P) indicates P

is now a registered citizen, and goToWar(Castle) denotes the castle joins in a war. These

exogenous events are in turn interpreted by a set of institutional actions Eact . We follow the

convention of first-order logic to represent the atoms in the example. Variables (or types) are

started with capitalised letters. Events and fluents are captured by predicates with lowercase

identifiers. The qualification of variables is achieved via domain specifications, which will be

discussed in Section 3.1.3. By convention, we use the prefix “int” to distinguish institutional

actions from the others. In addition, a set of permissions P and power fluentsW are defined

for the events. An obligation is also given in the set O to express that a person P is obliged to

serve in an army before certain deadlines, otherwise a violation event illegal is triggered.

Having defined the basic elements, we then list a set of generation rules in G(X , E) and

consequence rules in C↑(X , E) and C↓(X , E), to specify the dynamic part of the model.

Finally initial states ∆ are set out to start the state transition of the model.

3.1.2 Translation into Answer Set Programs

The formal model of an institution I can be translated to an equivalent answer set programs

PI [Gelfond and Lifschitz, 1991], producing computational model of an institution.

ASP is a declarative programming paradigm using logic programs under the answer set

semantics. Like all declarative paradigms it has the advantage of describing the constraints and

the solutions rather than the writing of an algorithm to find solutions to a problem. A variety

of programming languages for ASP exist. We use AnsProlog [Baral, 2003] for institutions.

There are several efficient solvers forAnsProlog , of which CLINGO [Gebser et al., 2011] and

DLV [Eiter et al., 1999] are currently the most widely used ones.

The basic components of AnsProlog are atoms, which are elements that can be assigned

either true or false. ASP adopts negation as failure to compute the negation of an atom, i.e.

not a is true if there is no evidence to prove a in the current program. Literals are atoms

a or negated atoms not a. Thus, not a is true if there is no evidence supporting the truth

of a. We use only negation as failure of AnsProlog , which is different from the classical

negation ¬a (i.e. a needs to be proved to be false). Therefore, in AnsProlog , the absence

of a derives not a. Atoms and literals are used to create rules of the general form: a ←
b1, ..., bm, not c1, ...,not cn, where a, bi and cj are atoms. Intuitively, this means if all atoms

bi are known/true and no atom cj is known/true, then a must be known/true. We refer to a
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Formal Model of the Institution Lord

Eex = {register(P), serveInArmy(P), goToWar(Castle), deadline,

releaseSolePolicy(P), demandToFight(Castle)}
Eact = {intReleaseSolePolicy(P), intRegister(P),

intDemandToFight(Castle), intServeInArmy(P).}
Eviol = {viol(illegal(P))}
D = {onlySon(P), ageOlder(P, Age), gender(P, Gender), attacked(Castle)}
W = {pow(intReleaseSolePolicy(P)), pow(intRegister(P))}
P = {perm(releaseSolePolicy(P)),perm(deadline),perm(serveInArmy(P)),

perm(intRegister(P)),perm(register(P)),perm(goToWar(Castle)),

perm(intReleaseSolePolicy(P)),perm(demandToFight(Castle))}
O = {obl(serveInArmy(P), deadline, illegal(P))}

G(X , E) : 〈∅, demandToFight(Castle)〉 → {intDemandToFight(Castle)}
〈∅, releaseSolePolicy(P)〉 → {intReleaseSolePolicy(P)}
〈∅, serveInArmy(P)〉 → {intServeInArmy(P)}
〈∅, register(P)〉 → {intRegister(P)}

C↑(X , E) : 〈{attacked(Castle)}, intDemandToFight(Castle)〉 →
perm(goToWar(Castle))

C↓(X , E) : 〈{onlySon(P)}, intReleaseSolePolicy(P)〉 →
{perm(serveInArmy(P)), obl(serveInArmy(P), deadline, illegal(P))}

∆ = {perm(serveInArmy(P)), perm(demandToFight(Castle)),

perm(deadline), attacked(eastCastle),

perm(releaseSolePolicy(P)), pow(register(P)),

pow(intDemandToFight(Castle)),pow(intRegister(P)),

perm(intRegister(P)),perm(intDemandToFight(Castle)),

perm(intReleaseSolePolicy(P)),pow(intReleaseSolePolicy(P)),

ageOlder(tom, sixteen), gender(tom, male), onlySon(tom)

ageOlder(bob, sixteen), gender(bob, male)}

Figure 3-1: Formal Model of the Institution Lord

as the head and b1, ..., bm,not c1, ...,not cn as the body of the rule. A rule with an empty

body is called a fact and a rule with an empty head is called a constraint, indicating that no

solution should be able to satisfy the body. A (normal) program is a conjunction of rules and

is denoted by a set of rules. The semantics of AnsProlog is defined in terms of answer sets,

i.e. assignments of true and false to all atoms in the program that satisfy the rules in a minimal

and consistent fashion. A program may have zero or more answer sets, each corresponding to

a solution.

To make it easier for the programmer, atoms can be predicated using variables. Before the

answer sets can be computed, these variable symbols need to be replaced by values in a

process called grounding. Both CLINGO and DLV provide a grounding phase. The mapped
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computational model PI of an institution I consists of three parts: (i) the institution

component Pinst, including static rules, i.e. declarations of events and fluents, handling

inertia of fluents and generation of violation events, and dynamic rules i.e. generation and

consequence rules, which are specific to each institution (ii) the trace component Ptrace,

which is responsible for generating all possible event traces and (iii) the time component

Ptime, which defines certain temporal range to constraint the trace and state transition.

The main atoms used are:

1. holdsat(F, Inst, I) to denote that the fluent F is true in the institutional model of Inst

at time instant I,

2. occurred(E, Inst, I) and

3. observed(E, Inst, I) to denote the occurred and observed event E for institution Inst

at time I,

4. fluent(F, Inst) to denote a fluent of an institution.

5. ifluent(F, Inst) for inertial fluents,

6. evtype to denote the type of an event, while

7. initiated(F, Inst, I) and

8. terminated(F, Inst, I) denote a fluent F is initiated/terminated at time I,

9. event(e) denotes an event,

10. instant(i) a time instant, and

11. final(i) the last time instant.

We note that Cliffe’s original model [Cliffe, 2007, Cliffe et al., 2007a] used the same set of

atoms, but without the institution argument Inst. We have added the institution identification

Inst, to cater for the later construction of combined institutions, where there is more than one

institution and it is necessary to be able to distinguish events and fluents according to their

institutions.

Institution Component Pinst: Given a formal model of a single institution, Cliffe then

translate the model to an ASP program according to Figure 3-2 and 3-3. For all exogenous

(∀ex ∈ Eex), institutional (∀ie ∈ Einst) and violation events ∀ve ∈ Eviol, line 1 to 12 map them

into ASP atoms, in which evtype differs at the third argument according to different types

(i.e. ex, inst or viol) of the event, permissions of performing an exogenous and institutional

event are captured by perm(ex; ie, In), and declared as inertial fluents ifluent and fluent.

The power fluents (pow(In, ie)) are only needed for institutional events, as shown on line 8.

Violation events corresponding to each exogenous and institutional event are also generated
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∀ex ∈ Eex, ∀ie ∈ Eact , ∀ve ∈ Eviol
1 evtype(ex, In, ex) :- inst(In).
2 evtype(ie, In, inst) :- inst(In).
3 evtype(ve, In, viol) :- inst(In).
4 event(ex;ie;ve).
5 evinst(ex;ie;ve, In) :- inst(In).
6 ifluent(perm(ex;ie), In) :- inst(In).
7 fluent(perm(ex;ie), In) :- inst(In).
8 ifluent(pow(In, ie), In) :- inst(In).
9 fluent(pow(In, ie), In) :- inst(In).

10 event(viol(ex;ie)).
11 evtype(viol(ex;ie), In, viol) :- inst(In).
12 evinst(viol(ex;ie), In) :- inst(In).

∀f ∈ D
13 ifluent(f, In) :- inst(In).
14 fluent(f, In) :- inst(In).

∀obl(e, d, v) ∈ O
15 oblfluent(obl(e,d,v), In) :- inst(In).
16 ifluent(obl(e,d,v), In) :- inst(In).
17 terminated(obl(e,d,v), In, I) :- occurred(e,In,I),
18 holdsat(obl(e,d,v),In,I), inst(In), instant(I).
19 terminated(obl(e,d,v), In, I) :- occurred(d,In,I),
20 holdsat(obl(e,d,v),In,I), inst(In), instant(I).
21 occurred(v, In, I) :- occurred(d, In, I),
22 holdsat(obl(e,d,v), In, I),inst(In), instant(I).

Figure 3-2: Rules in the institution component Pinst

as line 10 to 12. Line 13 to 14 give the translation of all domain fluents ∀f ∈ D. A set of

rules (line 15–22) are designed to handle obligation fluents, which are specifically generated

for each obligation defined in the set O. Obligation fluents are firstly encoded by the atom

oblfluent, which is followed by a set of grounded rules: when the obliged event e occurs

before the deadline event d, the obligation is satisfied and thus terminated. However, when

the deadline event is due, the unsatisfied obligations are still terminated but the associated

violation event v is triggered. A concrete example is given in lines 19-30 in Figure 3-5 on

page 43. Semicolons in AnsProlog are for pooling alternative terms to be used within an

atom. Thus, for instance event(ex; ie; ve) at line 4 in Figure 3-3 abbreviates event(ex),

event(ie) and event(ve).

Furthermore, line 23 to 43 in Figure 3-3 provides the framework-specific translation rules.

The set of all state formulae X denotes all possible states characterised by a set of fluents f

and their negation not f . For a given expression φ ∈ X , we use the term EX(φ, I) to denote

the translation of φ into a set of ASP literals of the form (not) holdsat(f, In, I), denoting

that some fluent f (does not hold) holds at time I, while the initial state of the normative

framework is encoded as simple facts (holdsat(f, inst, i0)), where i0 is the name of the
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C↑(φ, e) = P ⇔ ∀p ∈ P ·
23 initiated(p,In,I) :- occurred(e,In,I),EX(φ, I),instant(I),inst(In).

C↓(φ, e) = P ⇔ ∀p ∈ P ·
24 initiated(p,In,I) :- occurred(e,In,I),EX(φ, I),instant(I),inst(In).

G(φ, e) = E ⇔ g ∈ E,
25 occurred(g,In,I):- occurred(e,In,I),holdsat(pow(p),In, I), EX(φ, I),
26 instant(I), inst(In).

p ∈ ∆

27 holdsat(p, In, i0) :- instant(i0), inst(In), start(i0).

28 holdsat(P,In,J) :- holdsat(P,In,I),not terminated(P,In,I),
29 ifluent(P,I,In), inst(In), instant(I),
30 next(I,J), instant(J).
31 holdsat(P,In,J) :- initiated(P,In,I), next(I,J), ifluent(P,In),
32 inst(In),instant(I), instant(J).
33 holdsat(P,In,J) :- initiated(P,In,I), next(I,J), oblfluent(P,In),
34 inst(In),instant(I),instant(J).
35
36 occurred(E,In,I) :- evtype(E,In,ex), observed(E,In,I),
37 instant(I), inst(In).
38 occurred(null,In,I) :- not evtype(E,In,ex), observed(E,In,I),
39 instant(I), inst(In).
40 occurred(viol(E),In,I) :-occurred(E,In,I), evtype(E,In,ex),
41 not holdsat(perm(E),In,I), event(E),
42 holdsat(live(In),In,I),instant(I),
43 evinst(E,In,X),event(viol(E)).

Figure 3-3: (Continued) Rules in the institution component Pinst

first time instant instant(i0). The static rules in an institution component (Figure 3-3) deal

with inertia of the fluents (lines 28 to 34), the generation of violation events of non-permitted

actions (lines 40 to 43), and generation of null events for unknown events (line 38) while known

events occur once observed (line 36).

1 {observed(E,In,I)}:- evtype(E,In,ex), instant(I), not final(I),
2 inst(In).
3 :- observed(E,In,I),observed(F,In,I),instant(I),
4 evtype(E,In,ex),evtype(F,In,ex),inst(In),E!=F.
5 obs(I,In) :- observed(E,In,I), evtype(E,In,ex), instant(I).
6 :- not obs(I,In), not final(I), instant(I), inst(In).

Figure 3-4: Trace Component Ptrace

The Trace Component Ptrace: (Figure 3-4) is responsible for generating all possible

event traces for an institution, while guaranteeing there is only a single observed event at every
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time instant. The choice rule {observed(E, In, I)} is used in (1) to allow for the generation

of exogenous events for each for each non-final time instant. A choice rule is used to express

that when the body of a rule is applied, any subset of the head part is applicable and can

be chosen. Here the choice rule indicates that any exogenous event can be chosen or not to

occur at a non-final time instant. The first constraint (4) guarantees that at each time instant,

there is only one event observed by the institution In, while the the second constraint (6)

guarantees at least one event observed at each non-final time instant. It is also worth pointing

out that only traces containing known events are interesting for an institution. That is why we

use evtype(E, In, ex) to ensure that the events used to form the traces are recognised by the

institution.

Thirdly, we define the Time Component Ptime which defines the predicates and facts for

time instances: instant(I), next(I, J) and final(I). We want to examine how states change

in accordance with time and the events that happen at specific times. By specifying a finite set

of time facts, we can constrain the verification to a certain temporal range. The combination

of these three components renders the program to produce the computational model of an

institution, which enables the computation of a set of answer sets that represent all possible

event traces for an institution. Each answer set represents a trace derived from a sequence

of observed exogenous events observed(E, Inst, I) known to the institution, as well as its

corresponding models.

Example of a Single Institution: Formal Model to ASP programs

Continuing with the example used in Section 3.1.2, the formal model of Lord can be

translated into a corresponding ASP program. In this section, we continue with the Lord

institution formally modelled in Section 3.1.2, to demonstrate how an institution is modelled

computationally by using ASP.

In Figure 3-5 and 3-6, we start with the text-based description, and provide corresponding

formal model and core ASP programs for it. We demonstrate how generation and consequence

rules can be encoded in ASP. Selective rules are translated to ASP in the figures. The complete

ASP programs for Lord can be found in appendices A.3 on page 170. Details about the ASP

atoms used in the example are introduced in Section 3.1.2. In particular, an obligation fluent

is translated into ASP rules as listed in lines 15-30 of Figure 3-5. The obligation fluent is

firstly encoded as obligation fluent oblfluent and an inertial fluent ifluent, which is then

followed by a set of grounded rules: when the obliged event serveInArmy occurs before the

deadline, the obligation is terminated. When the deadline event occurs, the unsatisfied

obligations are still terminated but associated violation event illegal is triggered.

3.1.3 Institution Action Language InstAL

From Figure 3-5 and 3-6, we can notice that it is rather impractical and error-prone to translate

a formal model into computational model manually. Therefore, in order to fill the gap between
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Lord Institution
Firstly, the name of the institution Lord is declared, and the four types of parameters, which are involved in the
example, are declared as ASP facts:

1 inst(lord).
2 person(Person). age(Age). gender(Gender). castle(Castle).

Next, with regard to the actions appearing in the scenario, a set of events including exogenous, institutional and
violation events, is defined to encode them:
Eex = {register(Person), serveInArmy(Person), goToWar(Castle),deadline,

demandToFight(Castle), releaseSolePolicy(Person)}
Eact = {intReleaseSoleSurvivorPolicy, intDemandToFight(Castle), intRegister(Person)}
Eviol = {viol(illegal(Person))}

The corresponding ASP representations are produced for each defined event. Taking goToWar for example:
3 event(goToWar(Castle0)) :- castle(Castle0).
4 evtype(goToWar(Castle0),lord,ex) :- castle(Castle0).
5 evinst(goToWar(Castle0),lord) :- castle(Castle0).
6 ifluent(perm(goToWar(Castle0)), lord) :- castle(Castle0).
7 fluent(perm(goToWar(Castle0)), lord) :- castle(Castle0).
8 event(viol(goToWar(Castle0))) :- castle(Castle0).
9 evtype(viol(goToWar(Castle0)), lord, viol) :- castle(Castle0).

10 evinst(viol(goToWar(Castle0)),lord) :- castle(Castle0).

To describe properties of the institution, domain fluents are defined in both formal and computational ways:

D = {onlySon(Person), ageOlder(Person, Age), gender(Person, Gender), attacked(Castle)}

Each domain fluent is encoded as inertial fluent by ifluent and fluent, and two examples are given below:

11 ifluent(ageOlder(Person0,Age1),lord) :- person(Person0),age(Age1).
12 fluent(ageOlder(Person0,Age1),lord) :- person(Person0),age(Age1).
13 ifluent(attacked(Castle0),lord) :- castle(Castle0).
14 fluent(attacked(Castle0),lord) :- castle(Castle0).

There is a obligation defined to specify a person is required to serve in an army before certain deadline, otherwise
the illegal event is triggered:

O = {obl(serveInArmy(Person), deadline, illegal(Person))}

15 oblfluent(obl(serveInArmy(Person),deadline,illegal(Person)), lord) :-
16 person(Person),inst(lord).
17 ifluent(obl(serveInArmy(Person),deadline,illegal(Person)), lord) :-
18 person(Person),inst(lord).

A set of rules of handling obligations is also encoded and grounded for the obligation:

19 terminated(obl(serveInArmy(Person),deadline,illegal(Person)),lord,I) :-
20 occurred(serveInArmy(Person),lord,I),
21 holdsat(obl(serveInArmy(Person),deadline,illegal(Person)),lord,I),
22 person(Person),inst(lord).
23 terminated(obl(serveInArmy(Person),deadline,illegal(Person)),lord,I) :-
24 occurred(deadline,lord,I),
25 holdsat(obl(serveInArmy(Person),deadline,illegal(Person)),lord,I),
26 person(Person),inst(lord).
27 occurred(illegal(Person),lord,I) :-
28 occurred(deadline,lord,I),
29 holdsat(obl(serveInArmy(Person),deadline,illegal(Person)),lord,I),
30 person(Person),inst(lord).

Figure 3-5: Formal modelling and corresponding ASP program of the Lord institution
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Generation rules are formalised to reflect the mapping between exogenous and institutional events:

G(X , E) : 〈∅, demandToFight(Castle)〉 → {intDemandToFight(Castle)}
〈∅, releaseSoleSurvivorPolicy(Person)〉 →

{intReleaseSoleSurvivorPolicy(Person)}
〈∅, register(Person)〉 → {intRegister(Person)}

which are then translated into ASP rules. For example, the exogenous event register(Person) is mapped
to the institutional event intRegister(Person) indicating the Person is now a citizen. This kind of event
generation also requires certain empowerments to be in place :

31 occurred(intRegister(Person),lord,I) :-
32 occurred(register(Person),lord,I),
33 holdsat(pow(lord,intRegister(Person)),lord,I),
34 person(Person), inst(lord), instant(I).

Consequence rules are defined to change the states of the institution by the occurrence of events:

C↑(X , E) : 〈{attacked(Castle)}, intDemandToFight(Castle)〉 → perm(goToWar(Castle))

C↓(X , E) : 〈{onlySon(Person)}, intReleaseSoleSurvivorPolicy(Person)〉 →
{perm(serveInArmy(Person)),

obl(serveInArmy(Person), deadline, illegal(Person))}

The Lord states that all males older than 16 years old are obliged to serve in an army:

35 initiated(obl(serveInArmy(P),deadline,illegal(P)),lord,I) :-
36 occurred(intRegister(P),lord,I),holdsat(live(lord),lord,I),inst(lord),
37 holdsat(ageOlder(P,sixteen),lord,I),holdsat(gender(P,male),lord,I),
38 person(P), inst(lord), instant(I).

However, the Lord institution can also announce that if the citizen is the only son in his family, then he can be
exempt from this obligation, i.e. such obligation is terminated under such circumstances:

39 terminated(obl(serveInArmy(P),deadline,illegal(P)),lord,I) :-
40 occurred(intReleaseSolePolicy(P),lord,I),holdsat(onlySon(P),lord,I),
41 holdsat(live(lord),lord,I),inst(lord),person(P),inst(lord),instant(I).

Besides, the Lord institution specifies that when a castle is demanded to fight in a war, it is permitted to go
only if the castle itself is under attacked:

42 initiated(perm(goToWar(C)),lord,I) :-
43 occurred(intDemandToFight(C),lord,I),holdsat(live(lord),lord,I),
44 holdsat(attacked(C),lord,I),castle(C),inst(lord), instant(I).

Finally, the initial state is given to start. In addition to necessary permissions and powers, some domain fluents
is also initiated at the beginning. e.g. the east castle is under attack and Tom is the only son in his family:

∆ = {perm(serveInArmy(P)), perm(demandToFight(C)), perm(deadline),pow(register(P)),

perm(releaseSoleSurvivorPolicy(P)), pow(intDemandToFight(C)),pow(intRegister(P)),

perm(intDemandToFight(C)), perm(intRegister(P)), gender(tom, male),

pow(intReleaseSoleSurvivorPolicy(P)), attacked(eastCastle),

ageOlder(tom, sixteen), ageOlder(bob, sixteen), gender(bob, male), onlySon(tom)

perm(intReleaseSoleSurvivorPolicy(P))}

Those initial states are holding true since the beginning and translated as ASP rules below:
45 holdsat(attacked(eastCastle),lord,I) :- inst(lord), start(I).

Figure 3-6: (Continued) Formal modelling and corresponding ASP program of the Lord institution
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formalisation and executable programs of an institution, a declarative domain-specific language

InstAL is proposed by Cliffe [Cliffe, 2007]. The language InstAL provides a set of statements

with a natural-language-like syntax to specify an institution, which is then translated to ASP

programs automatically. Therefore, InstAL enables verification of properties of institutional

specifications in support of the design process. It has been successfully applied to model

institutions in a variety of domains: (i) modelling and analysing legal systems. [De Vos

et al., 2011, Li et al., 2013c] (ii) providing social reasoning for agent-based simulation. [Balke

et al., 2011, 2012] . (iii) guiding the behaviours of agents in virtual environment [Lee et al.,

2013a,b,c]. Due to the declarative features, InstAL offers a convenient way for designers to

specify an institution without concern for mathematical and technical details. A complete

InstAL program consists of two parts: an institution specification and a domain specification.

In the following parts of this section, we present selective InstAL specification with vertical

lines to complement with their preceding text, and present ASP programs in grey boxes.

Institution Specification

Institution specification is further comprised of static part and dynamic part. The former

mainly includes name of the addressing institution, types variables involved in the statements

and events and fluents defined over the types. Having defined essential components of an

institution, the dynamic part describes the generation rules by mapping an event to another,

and consequence rules changing fluents by occurred events. An initial state formed by some

fluents is also given in the dynamic part to start.

Institution Name The first statement has to be the name of the addressing institution. For

instance, the institution lord in the example used in this chapter. The declared name , such as

lord here, is later used to instantiate the default type Institution.

institution lord;

Type Declarations Types reveal the main subjects and entities of an institution specification.

Each institution specifies a set of types to be the parameters of a fluent or an event atom. As

the example below, three types of parameters are defined. The actual values to each type are

given in the domain specification according to the actual subjects in the applications of the

institution.

type Person;

type Age;

type Gender;

There is also a set of default types that does not need to be explicitly specified. These

types cover the essential components of an institution and are domain-independent:

(i) Event: the set of all events an institution defines, including exogenous, institutional and
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violation events. (ii) IFluent: the set of all inertial fluents an institution defines, covers

permission, power, obligation and domain fluents. (iii) Fluent: the union set of all inertial

fluents IFluent and obligation fluents. (iv) Institution: a specific type is also defined to

address an institution, which is normally used to indicate which institution an event or a fluent

belongs to. It is a necessary type to distinguish different institutions when modelling

cooperating institutions. (v) Instant: a set of temporal instants. The actual value range is

given in time component Ptime to specify a finite set of time facts such that the state transition

of an institution is constrained to a certain temporal range.

Event Declarations Each event involved in the institution is declared with specific category

(i.e. exogenous, institution or violation), unique name and zero or more type parameters. In

the example below, a person serves in an army is captured by an exogenous event

serveInArmy(Person) with one parameter Person, which “counts as” an institutional

event intServeInArmyPerson(Person) that brings about changes to the institutional

states. A violation action performed by a person is expressed by illegal(Person). We

adopt the convention throughout the dissertation of adding the prefix “int” to an event name to

indicate an institutional event.

exogenous event serveInArmy(Person);

inst event intServeInArmyPerson);

violation event illegal(Person);

Fluent Declarations Fluents characterise the state of an institution and can be changed by

events over time. A fluent declaration starts with the type of the fluent, and a unique name

followed by a set of involved parameters. Only three types of fluents need to be declared

explicitly here: (i) domain fluents: the set of all domain fluents addressing the properties of

context, declared by the keyword fluent. (ii) obligation fluents: the set of all obligation

fluents an institution defines, following the format obl(E, D, V) where E, D and V can be

either a fluent or an event. Two sample declarations are given below for each of two

aforementioned types of fluents: The domain fluent gender(Person, Gender) indicates a

person’s gender. The obligation fluent states a person is obliged to server in an army before

certain deadline, otherwise the violation event illegal(Person) is triggered.

fluent gender(Person, Gender);

obligation fluent obl(serveInArmy(Person), deadline, illegal(Person));

Apart from the two types of fluents above, the power and permission fluents are implicitly

defined for events:

perm(serveInArmy(Person));

perm(intServeInArmy(Person));

pow(intServeInArmy(Person));
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Once an institutional event is defined, the associated permission and power to performing

the event are automatically produced. However, for each defined exogenous event, only the

associated permission is produced because it is assumed that all exogenous events are

empowered.

Generation Rules With regards to the “counts-as” generation relation (as mentioned in

Section 3.1.1), a generation rule maps an exogenous event to an institutional events subject to

some conditions. For example, the institutional event intRegister(Person) is generated

by the exogenous event register(Person) of registering a person as a citizen:

serveInArmy(Person) generates intServeInArmy(Person);

register(Person) generates intRegister(Person);

Consequence Rules An institutional event can initiate or terminate a set of fluents subject

to a condition which is formed by a certain combination of fluents. After registering a person

intRegister(Person), the obligation and permission of serving in an army are assigned to

the person if the person is a male older than 16 years male.

intRegister(Person) initiates

obl(serveInArmy(Person), deadline, illegal(Person)),

perm(serveInArmy(Person)),

if ageOlder(Person, sixteen), gender(Person, male);

Another example is that when a Castle is demanded to fight, the permission of joining in the

war is only given when the Castle itself is under attack.

intDemandToFight(Castle) initiates perm(goToWar(Castle))

if attacked(Castle);

The termination of a fluent is expressed in a similar way. When an institution announces a

new policy that the only son in a family can be exempted from the obligation of serving in an

army, the obligation of the son serving in an army is terminated:

intReleaseSolePolicy(Person) terminates

obl(serveInArmy(Person), deadline, illegal(Person)),

perm(serveInArmy(Person))

if onlySon(Person);

Initial States To start the state transition, a set of fluents needs to be initiated such as the

permissions of some exogenous events, permissions and powers of some institutional events,

as well as some domain fluents describing the initial state of the institution.

initially perm(releaseSolePolicy(Person));

initially perm(intReleaseSolePolicy(Person));

initially perm(intDemandToFight(Castle));
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initially pow(intReleaseSolePolicy(Person));

initially pow(intDemandToFight(Castle));

In the example, we have two actual subjects for the variable Person: tom and bob. Both of

them are male older than 16, but tom is specified as the only son in his family onlySon(tom).

Therefore, different policies are applied to them.

initially ageOlder(tom,sixteen);

initially gender(tom,male);

initially ageOlder(bob,sixteen);

initially gender(bob,male);

initially onlySon(tom);

Besides, we also have actual subjects eastCastle and westCastle to instantiate the

variable Castle, and the eastCastle is under attacked.

initially attacked(eastCastle);

Domain Specification

Having introduced the institution specification, we continue to discuss the other component of

an InstAL program – domain specification, which essentially defines a set of actual values that

can be used to instantiate the type variables. In regard of the three types defined in the earlier

example, we have the following domain specification:

Person: tom bob

Age: sixteen

Gender: male female

Castle: eastCastle westCastle

The domain specification is defined externally in separate files. From the example, for

each given type, a set of literal values is specified. In the case of Person, tom and bob

are used to ground this variable. We follow the convention of AnsProlog , the names of

variables and types start with capital letters, while grounding values use lowercase letters. The

corresponding ASP translation of these domain specifications are a set of atoms having the

type as the predicates. The variable P appears in the InstAL rule below as the parameter of the

event intReleaseSolePolicy, serveInArmy, illegal and the fluent onlySon.

intReleaseSolePolicy(P) terminates

obl(serveInArmy(P), deadline, illegal(P))

if onlySon(P);

With regard to the previous event and fluent declarations, we can identify that the type of

the variable P is Person. Therefore, when the rule is translated to ASP programs, the type

predicate person(P) is appended to describe P.
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1 terminated(

2 obl(serveInArmy(Person),deadline,illegal(Person)),lord,I) :-

3 occurred(intReleaseSolePolicy(Person),lord,I),

4 holdsat(live(lord),lord,I),inst(lord),

5 holdsat(onlySon(Person),lord,I),

6 person(Person),

7 inst(lord), instant(I).

Furthermore, given the type of P is Person, we can retrieve the actual values that can be

used to instantiate P to be either person(tom) or person(bob) with the help of the domain

specification. While the rule is computed later, it is necessary to explore all possible

assignments of variables. Consequently, the rule above is expanded into a set of grounding

rules with different value assignments:

1 terminated(obl(serveInArmy(tom),deadline,illegal(tom)),lord,I) :-

2 occurred(intReleaseSolePolicy(tom),lord,I),

3 holdsat(live(lord),lord,I),inst(lord),

4 holdsat(onlySon(tom),lord,I),

5 person(tom),

6 inst(lord), instant(I).

7
8 terminated(obl(serveInArmy(bob),deadline,illegal(bob)),lord,I) :-

9 occurred(intReleaseSolePolicy(bob),lord,I),

10 holdsat(live(lord),lord,I),inst(lord),

11 holdsat(onlySon(bob),lord,I),

12 person(bob),

13 inst(lord), instant(I).

Such type grounding mechanism also contributes to the norm revision procedure for

conflict resolution in Section 4.4 on page 76. While deriving a revised norm, it is possible to

introduce new ASP literals containing new variables. Therefore, there is a need to be able to

find out the types of the new variables.

3.1.4 Summary of Institutional Modelling and Reasoning

A flow diagram is given in Figure 3-7 to illustrate the whole process of institutional modelling

and reasoning:

1. When an institution specification and its associated domain specification are given, the

translator is able to produce the corresponding ASP program of the institution component

Pinst.

2. Together with the time component Ptime and a query event trace, the ASP solver

computes answer sets in accordance with the given trace. Each produced answer set
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contains a possible state transition driven by the given trace.

3. In the absence of a given event trace, the ASP solver instead produces all possible traces

as well as their corresponding state transition models. In such cases, a number of answer

sets are computed and all possible models of an institution can be obtained.

Institution 
Specification

InstAL to ASP
Translator

(Step 1.)

Domain 
Specification

ASP Institution 
Programs

Answer Set
Solver

(Step 2.& 3.)

Time Program &
Trace Program

Query Event Trace
Program

Institution Model
(Answer Sets)

Figure 3-7: Overview of the InstAL modelling and reasoning

The original implementation of the translator from InstAL to ASP was written in Perl

[Cliffe, 2007] and the reasoning achieved using the first answer set programming system

SMODELS [Simons et al., 2002] in conjunction with the LPARSE grounder (part of

SMODELS). In the research reported in this dissertation, we implemented a new version of the

translator (named as PyInstAL ) written in Python [Python, 2009]. Python is a light-weighted

programming langauge which is particularly suitable for script processing and manipulation.

Compared with the original translator, PyInstAL offers several improvements and extensions

as below:

• the ASP reasoning is provided by CLINGO [Gebser et al., 2011] to offer more efficient

grounding process.

• the new translator is able to translate a list of institutions from a cooperating institution

together at once. To be able to distinguish state change among institutions, the unique

institution names are added as an extra parameter of key predicates that are in charge

of the state transition, such as occurred, observed, initiated, terminated and

holdsat.
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• PyInstAL is also designed to be able to handle unknown events, and synchronise the state

transition amongst a set of institutions.

• the new translator can also handle a special type of institution – bridge institution (see

Section 5.1 on page 105)– where it needs to process cross-institution rules and cross-

institution powers.

3.2 Related Work on Modelling of Normative Frameworks

An important line of research in multi-agent community is designing normative frameworks

to regulate agents’ behaviour. Such frameworks may specify the organisational structure,

interaction protocols and normative rules for a MAS system, which are often independent

from individual agents. Multi-agent systems provide complex environments in which a set of

intelligent agents have to cooperate (if working as a team) or coordinate (if being

self-interested or even competitive positions) with each other. Autonomous agents are capable

of making their own decisions and may sometimes have to share the common resources with

others inhibiting in the same environment. Therefore, a norm-governed mechanism is

required for regulating agents’ behaviours and the enforced norms are participating in the

course of decision-making.

There are two main research branches in modelling normative multi-agent systems

[Alechina et al., 2013]: the first one aims to construct an organisational structure, with a set of

high-level norms and objectives specified to indicate declaratively what the organisation is

expected to achieve. OperA/OperettA [Vázquez-Salceda et al., 2004] andMOISE+[Hübner

et al., 2002, Hubner et al., 2007] are two instances of this branch, which will be detailed in

Section 3.2.1. The other branch of research follows the inspiration of human institutions and

adopts a bottom-up approach that defines norms at the level of concrete agents and actions,

and some of them also address how norms evolve with the changes in open environment.

Examples of the latter branch, ISLANDER [Esteva et al., 2002], OCeAN [Fornara and

Colombetti, 2009] and InstAL [Cliffe et al., 2007a], which are discussed in Section 3.2.2.

3.2.1 Organisational Modelling of Normative Frameworks

OperA

An organisational model OperA is introduced in Dignum’s PhD dissertation [Dignum, 2003a]

to represent and regulate complex structures independently from the actors within an

organisation [Vázquez-Salceda et al., 2004]. With the emergence of large-scale and complex

distributed systems, a formal organisational framework is needed to design and manage these

kinds of structures. It has been proven that such models are also of importance to multi-agent

systems[Dignum, 2009]. Individual agents are unlikely to consider society’s goals when

pursuing their own individual goals and desires. Therefore, there is a need for mechanisms,
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independent from participating agents, that specify and enforce society’s goals. In contrast

with ISLANDER (discussed shortly in Section 3.2.2), the autonomy of an agent in OperA is

preserved in that an agent can choose to violate norms.

OperA

REA SCENE

Goals
Beliefs
(norms)

Social Model Interaction Model

Role

Role Role

Script

Script Script

Script

Organisational Model

Social Structure Normative Structure

Communication Structure Normative Structure

Social Contracts

Interaction Contracts

AGENT

Figure 3-8: OperA Architecture [Dignum, 2003a]

As shown in Figure 3-8, OperA framework consists of three parts: Organisational Model,
Social Model and Interaction Model:

Organisational Model As the core part of the OperA framework, it specifies the overall

design and objectives of the organisation with regards to an organisation’s interests. The

organisation model further comprises the following structures addressing various aspects of

an organisation:

• Social structure: all available roles of agents in an organisation and dependencies

between these roles.

• Interaction structure: Similar to the ISLANDER formalism (to be discussed in Section

3.2.2), behaviour patterns associated with different roles are specified in this structure

in terms of scenes, landmarks and landmark patterns. Scenes are different stages of

organisations. Each scene has specific landmark patterns which are formed by a set of

ordered landmarks. Organisational goals are expressed by landmarks. A landmark is an

expected organisational state to achieve in a scene by means of interactions.

• Communication structure: specifies content and language for agents’ communication.
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• Normative structure: norms are represented by deontic logic with temporal and

conditional arguments. Two levels of norms are defined: abstract and concrete norms.

Abstract norms, specifying values of a whole society, can be iteratively mapped to

concrete norms by “count-as” function in [Dignum, 2009].

Social Model: The social model in OperA maps the role of agents to the contract associated

with the role. The contract includes the permissions and obligations subject to different scenes.

Interaction Model: A set of contracts associated with different roles are defined in this

model. The contracts only the final objectives are specified explicitly without any protocols

about how to achieve them, which leaves fully autonomous for actors.

A graphical analysis tool (OperettA) [Aldewereld and Dignum, 2011] has been developed

to create and analyse organisation based on the OperA framework. The main components are

shown in Figure 3-9. This tool provides a means to model complex organisations as XML data,

making it possible to integrate with individual behaviours. It has multiple hierarchical views of

social structure, role definition and interaction structure, as well as syntax checking and model

validation.

OperA Meta-Model
(net.sf.ictalive.operetta)

Validation Framework
(net.sf.ictalive.operetta.check)

Ontology Management
(net.sf.ictalive.operetta.ontology)

Model Tracker
(net.sf.ictalive.operetta.modeltracker)

Model Accessors
(net.sf.ictalive.operetta.edit)

Organisational 
Model

OperettA Editor
(net.sf.ictalive.operetta.edit)

Social Diagram Editor
(net.sf.ictalive.operetta.diagram.ss)

Interaction Diagram Editor
(net.sf.ictalive.operetta.diagram.is)

Partial State Description Editor
(net.sf.ictalive.operetta.psdeditor)

Uses MM 
definitions

Provides editing functionality to 
Organisational Model

Create/manage 
OM

Builds reorganisation scripts

Imports/Exports 
ontology

Verifies model

Defines 
structure

Figure 3-9: OperettA Architecture [Aldewereld and Dignum, 2011]

The OperA framework is effective at defining high-level norms (i.e. expected states) of an

organisation in a declarative way, rather than explicitly specifying concrete norms to achieve

the states. The framework offers a comprehensive methodology in designing organisational

structures and objectives. Moreover, OperA allows the organisational design to be

independent from the agents who act within the organisation. Therefore, there is no need to

have the knowledge of the participating agents when designing the organisational models.

Agents are also given sufficient autonomy to act. OperA provides a formal semantics to aid
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the design and refinement of conceptual models, and enable formal analysis. The framework

describes the expected observable states of agents and environment. Agents are regulated by

social norms according to the assigned roles and structure of organisations. However, the

framework does not address explicitly the relations between agents, i.e. how an action

performed by an agent enacting a particular role would effect the other agents and

environment. Furthermore, the organisational model can only be established at the design

stage, while the interaction and social model are actually established later through actual

interactions among agents.

MOISE+

Another classic organisation-based framework MOISE+[Hübner et al., 2002, Hubner et al.,

2007] is introduced to build an organisational model by three explicit dimensions of an

organisation:

• Structural aspect: identifies the relationship between agents, in terms of roles, groups

and links.

• Functional aspect: specifies how high-level global goals can be decomposed into

concrete plans, which are then assigned as missions to relevant agents. Such

mechanism is achieved by social scheme.

• Deontic aspect: describes permissions and obligations of a role when performing a

mission.

Figure 3-10: Soccer team structure usingMOISE+ [Hubner et al., 2007]

A RoboCup example is modelled in Figure 3-10 with structural and functional aspects.

An agent can participate in an organisational entity defined by MOISE+, and enacts a role,

which corresponds to a set of organisational constraints. A middleware S-MOISE+ [Hubner

et al., 2007] has been developed to enforce organisation constraints. Only actions that are

not violating these constraints can be executed when agents request. Therefore, agents are
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regimented in MOISE+, like ISLANDER, in that autonomous actions, which might violate

those constraints, are not possible. There is no mathematical model provided for MOISE+,

and hence it is difficult to analyse and verify formal properties of this framework.

3.2.2 Institutional Modelling of Normative Frameworks

ISLANDER

ISLANDER [Esteva et al., 2002] is an early and very influential tool to graphically specify

agent mediated electronic institutions [Noriega, 1997]. A running environment AMELI [Esteva

et al., 2004] has also been developed to support the execution of the institutional specifications,

and a simulation tool SIMDEL [Arcos et al., 2005] is provided to verify the specification.

An electronic institution formalism offers a dialogical framework for institutions, which

consists of four fundamental elements:

• Dialogical framework offers a common ontology to facilitate communication of

heterogeneous agents and representation of external world. A set of roles is specified

and each role corresponds to certain patterns of behaviours for agents.

• Scenes describe particular dialogical activities. Each scene has well-defined

communication protocols established between different roles, rather than specific

agents.

• Performative structure is a network of multiple scenes. Transition rules define the path

from a scene to another depending on different roles agents are playing in scenes.

• Norms indicate which actions under certain scenes are permitted or obliged to perform

at any given time.

In ISLANDER, all the behaviours of agents are assumed to be based on dialogue (i.e.

message exchange) and multiple dialogical activities form the interactions between agents in

an institution. Each scene normally consists of a set of possible interactions and protocols

associated with these interactions. The introduction of role enables better management of

agents. The protocols are specific to each role and scene. Once a role is assigned to an agent,

all the related protocols are made available to the agent as well. An entity named the Governor

is proposed to constrain agents to perform the behaviour specified in their roles explicitly.

Furthermore, an execution platform (AMELI) has been defined to mediate interactions

between agents and enforce norms. The infrastructure is composed of three layers, as shown

in Figure 3-11:

• External agent layer: a group of participating agents.

• Social layer: implementation and enforcement of institution.

• Communication layer: a reliable communication channel.
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Figure 3-11: Architecture of AMELI [Esteva et al., 2004]

According to the structure of AMELI, each external agent is connected with an internal

governor and the external agents only exchange messages with their governors. Governor

agents are situated in the public layer, whilst a group of internal agents (e.g. institution

managers, transition managers and scene managers) lie in a private layer. To perform an

action within a certain scene, an external agent needs to request to its associated governor,

who will then query the corresponding scene manager for the validation of such a request.

Whether approved or not, the governor will inform the agent about the result after receiving

the feedback from the scene manager. If the request is approved, the scene manager also

updates the execution information of the scene. Agents can also request to move to another

scene, but only reachable target scenes evaluated by transition managers can be approved.

The purpose of AMELI is to enable the computational realisation of electronic institutions,

while ISLANDER provides a graphical formalism for them. It can be observed that in the

infrastructure of ISLANDER, it is not possible for external agents to deviate from the behaviour

enforced by the specification of scenes and roles. Performing invalid actions can be rejected

by governors, and no further mechanism is needed to handle violations. The autonomy of

agents is heavily limited. We consider such framework as state-based, because norms are

issued and updated according to specific states which are characterised by the roles an agent

is playing and the scenes an agent participate. Besides, the formalisation of ISLANDER has

limited expressiveness in representing and updating norms. Norms are defined over conditional

obligations only. As all the activities are based on dialogue in ISLANDER, there is no precise

way to represent non-dialogical activities, that are not related to interactions between agents,

but may also be able to change the environment and agents’ states.

OCeAN/MANET

A meta-model, Ontology Commitment Authorisations Norms (OCeAN) [Fornara and

Colombetti, 2009] has been proposed to specify artificial institutions, which are composed by
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two parts: (i) meta-model, which is common to all instances of an institutional specification,

containing basic concepts such as commitment, institutional power and roles.

(ii) domain-dependent component, which is specific for different institutions in question,

including operational norms and concepts defined in the domain of the institutions.

The meta-model (OCeAN) adopts the semantics under Discrete Event Calculus [Mueller,

2010] – a variant of event calculus with integer time instants – to reason about events, fluents

and axioms. The OCeAN model consists of the following basic elements:

• ontology is designed to specify communication language and interaction regulations.

• events and actions that may occur in the context of an institution, as well as their

preconditions and post-effects.

• roles an agent can play and associated rules.

• agent communication language (ACL) facilitates interactions between agents.

• institutional powers are defined to authorise the performance of actions.

• norms are specified in terms of obligations, prohibitions and permissions.

Furthermore, a multi-agent normative environment (MANET) [Tampitsikas et al., 2012] has

been provided to situate an artificial institution.

We can observe that there are a few concepts defined in OCeAN that are very similar to

InstAL , such as events, fluents and powers. However, the meta-model OCeAN caters for

interaction-oriented structure to build dynamic interaction systems, whilst InstAL focuses on

the regulative aspects with emphasis on normative modelling and reasoning. Therefore, the

agent communication language plays an important role in constituting of a model OCeAN. In

addition, from the formalism of OCeAN, the set of norms and powers assigned to an agent is

decided by the role in which the agent enacts. In contrast, InstAL provides a more concise

event-driven modelling method to dynamically update normative rules for each agent,

depending on the brute facts happening in the environment and actions performed by agents.

More importantly, the computational counterpart under answer set semantics enables

automatic verification and validation of institutional models, even when incomplete

knowledge of environment is provided. Due to the declarative and natural-language-like

features, InstAL also offers a convenient way to specify an institution without concern for

mathematical and technical details.

From the literature, we can see that organisation-based and institution-based approaches

offer different directions in modelling normative frameworks. The former caters for

macro-level design of the whole system by specifying detailed organisational structures,

interaction protocols and high-level social norms. The latter one, however, supports micro

control and regulation on the level of actions and agents. Furthermore, the institution-based

approaches can be further divided into event-driven (e.g. InstAL ) and state-driven (e.g.
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ISLANDER) approaches. The InstAL can capture the consequences of events, either

performed by agents or occurred in environment, through which normative states can be

updated. That is, InstAL can address questions such as after the occurrence of a particular

course of events, what actions are permitted and obliged to perform by an agent. For the

state-based approaches, we found that norms are typically assigned according to the role an

agent plays or bound to particular interactions/scenes. The objective of the work presented

here is to analyse normative conflicts in a collection of institutions. In particular, we provide a

way to identify under which circumstances (represented by a sequence of events), conflicts

may arise. Therefore, we adopt InstAL to be the underpinning formalism to model

institutions. In addition, the event sequences leading to conflicts are used later as negative

examples to guide the ILP-based resolution system CI-RES to produce revisions for existing

institutional specification. CI-RES generalises the context in which conflicts arise from the

concrete event sequences, and so conflicts can be resolved by revising the rules leading to

those conflicting contexts.

3.3 Theory Revision through Inductive Logic Programming

Inductive Logic Programming (ILP) [Muggleton, 1995] is a machine learning technique used

to obtain logic theories by means of generalising (positive and negative) examples with respect

to a prior background theory. The space of possible solutions, i.e the revised theories, is desired

to be as small as possible, so the possible solutions need to be well-defined and accurate. This

is achieved by a so-called “language bias”. Only theories satisfying this bias can be learned.

Mode declarations [Muggleton, 1995] are one way of specifying this language bias. Mode

declarations determine which atoms are allowed in the head and body of the rules of the theory.

In this work we are interested in the revision of norms of one or more institutions in light

of conflicts between them. We want to support the synthesis of new rules and the deletion or

revision of existing ones by means of examples. An example in this context is a series of

exogenous events that lead to one or more conflicts between the institutions we wish to

combine. Precise definitions are given in later sections. The task then is not learning a new

theory, but rather revising an existing one. It is considered preferable [Corapi et al., 2011] that

a revised theory should be as similar to the original one as possible. This suits the purpose of

resolving conflicts while maintaining, as much as possible, the aims and objectives of the

institution being revised. One measure of minimality, similar to [Wogulis and Pazzani, 1993],

can be defined in terms of the number of revision operations. Revision operations are:

(i) deleting a rule (i.e. removing an existing rule), (ii) adding a rule (i.e. forming a new rule),

and (iii) adding or deleting body elements (i.e. revising an existing rule). We define a cost

function cost(T, T ′) to determine the cost of revising theory T to T ′.

Definition 3 (Theory Revision [Corapi et al., 2011]) A Theory Revision Task is

characterised by a tuple 〈P,B, T,M〉 where P is a set of conjunctions of literals, called
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properties, B is a normal logic program, called the background theory, M is a set of mode

declarations and T is a normal program, called a revisable theory. The theory T ′, called the

revised theory, is a solution to the task 〈P,B, T,M〉 with cost cost(T, T ′), iff (i) T ′ ⊆ RM ,

whereRM is all the rules compatible with M (refer to Def. 11 on page 78) (ii) P is true in all

the answer sets of B ∪ T ′, (iii) cost(T, T ′) is minimal w.r.t. all other revisions satisfying

conditions (i) and (ii).

From the definition above, the component P is the expected properties that the revised

theory T ′ should have, which in our research is the absence of certain conflicts resulting from

the given example. A complete institution specification is divided into: (i) the fixed parts – i.e.

declaration of events and fluents, plus the base and time components, all of which constitute

the background theoryB, and (ii) revisable parts – i.e. the rules with regard to the consequence

and generation functions, constituting the revisable theory T . The mode declarations M plays

the role of the meta-information on T ′, identifying the structure and content of each rule in

T ′. Details will be provided in Section 4.4 on page 76. Consequently, based on the mode

declaration M , a set of candidate changes to T can be derived, from which the solution T ′ can

be constructed, satisfying the properties P with minimal difference from the original theory T .

The work presented in [Corapi et al., 2009] demonstrated that non-monotonic inductive

logic programming can be used to revise an existing theory by rewriting the revisable rules

using abducibles. An abducible is inferred when a revision is found for the rule that would

support the derivation of the desired properties. This technique was then applied in [Corapi

et al., 2011] to revise a single institution in the design-phase, where the example is formed of

exogenous events and negative/positive properties, representing the system’s requirements.

In the research reported in this dissertation, we propose to use this mechanism to resolve

conflicts between institution using automatically generated examples. As mentioned earlier,

examples are the event traces producing conflicts (i.e. conflict traces). In a later section 4.2.2

on page 65, we describe how to generate all possible event traces in the context of a given

cooperating institution, and also how we identify conflict traces among them. As mentioned

earlier in Section 7.1, our revision mechanism is based on an established precedence over

institutions. Within a set of institutions, the one with the lowest precedence needs to be revised,

so all possible alternatives to its existing norms are explored for revision, while the superior

institutions are taken as part of the base theory, which is retained unchanged. In Section 4.4 on

page 76 we describe this process in detail.
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4.1 Overview of Combining Institutions

Based on the existing model of a single institution, we now address the issue of how

institutions can be combined in this chapter. In the real-world, we might encounter a situation

in which an individual is regulated by more than one institution. What is worth noticing is that

these institutions can relate to one-another in different ways. They can for example work

independently, interactively or as one unit. Different combinations require different ways of

modelling the combination. In Figure 4-1, A′, B′, C ′ and A′ ∪ B′ are the states of the

(different combinations of the) institutions A, B and C and the dashed and solid lines indicate

the triggering events performed by the agents and the consequent state changes brought about

by them respectively.

We distinguish three different ways of combining institutions:

(a) Coordinated Institutions: In this combination all individual institutions remain

independent (i.e. no interaction or mutual impact between each other). However, they are

clustered as an entity, so agents can interact with them as a whole. Therefore agents do

not need to be aware of how events are distributed and handled by each institution. This

type of combination reflects the kind of issue addressed by private international

law [Dung and Sartor, 2011], in which a legal entity has to abide by laws from different

countries. This type of combination is shown in Figure 4-1(a).

(b) Interacting Institutions: In this case, institutions are still independent but become

inter-dependent, because interaction between them is an essential property of the

combination. The participating institutions may influence each other either by generating

events for another or modifying the state of another, as shown in Figure 4-1(b).

(c) Merged Institutions: In contrast to the previous two combination types, in which the

individual institutions retain their autonomy, here the objective is to form a new conflict-
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Figure 4-1: Three views of composition. (a): Coordinated Institutions. (b): Interacting Institutions.
(c): Merged Institutions.

free institution by merging the individuals. A typical example is the merger of companies.

The schematic diagram is shown in Figure 4-1(c).

In the following sections of this chapter, we focus on the first type of combination –

coordinated institutions. Formal modelling and computational implementation of coordinated

institutions are given in Section 4.2. Based on the models, we then discuss automatic conflict

detection for a coordinated institution in Section 4.3, as well as resolving conflicts in Section

4.4 and 4.5. The other two types of combinations will be explained in Chapter 5 and 6.

4.2 Modelling of Coordinated Institutions

As discussed earlier, independent institutions may operate concomitantly to govern the

behaviours of agents. In such situations, it would, for example, be possible that an agent is

obliged to perform an action according to one institution, while the action is prohibited by

others. While it might be inevitable in the real-world, in a multi-agent system some of those

conflicts should be preventable in advance, because the developers can know to which

institutions the system shall be subject at design time.

From the agent’s perspective, it may be simpler and preferable for them to be able to

interact with these individual institutions collectively as one single entity. In this way,

individual agents do not have to concern themselves with the questions of how external events

are distributed and processed by individual institutions, which institution addresses which

normative objective, and even less whether these institutions might obstruct one other.

From an institutional perspective too, there are potential benefits because the institution

may typically be designed to enable the achievement of certain goals, in relative ignorance of

the function and presence or absence of other institutions – that is, fully decoupled, in the

software engineering sense – but then subject to aggregation only at run-time. It is in this way

that institutions provide a highly flexible form of late-binding behavioural governance, but
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equally, it is inevitable that such institutions, designed independently, may exhibit conflicting

norms – the precise definition of which follows shortly – and we contend it is desirable to

establish a formal procedure for the consistent elimination of such conflicts before agents

interact with the combined set of institutions.

We use the term “coordinated institution” to refer to this unified entity that governs the

behaviour of its participants. It is not an institution in its own right, but the participants can

interact with it as if it were.

Definition 4 (Coordinated Institution) A set of independent institutions {I1, . . . , In} is

treated as a whole to form a coordinated institution C. Each independent institution is

characterised by a tuple I = 〈E ,F ,G, C,∆〉 (cf. Definition 1). The institutions in C do not

share state, nor are they able to interact with each other. A strict total precedence relation �C
is defined over the set of participating institutions {I1, . . . , In}. A coordinated institution can

be formally denoted by a tuple C = 〈{I1, . . . , In}, �C〉

Therefore, the events and fluents of a coordinated institution are formed by the union of all

the events and fluents from the participating individual institutions. We adopt the convention

throughout this dissertation that the superscripts identify the institutions while the subscripts

are for the time instants. For instance, Si0 denotes the state of institution i at time 0.

Definition 5 (Composite Elements) Given a coordinated institution C comprising a set of

institutions {I1, . . . , In}, the events Ec and fluents Fc of the C is defined as below:

Ec =
n⋃
i=1

E i = E1 ∪ E2 . . . ∪ En

Ecex =

n⋃
i=1

E iex = E1
ex ∪ E2

ex . . . ∪ Enex

Ecinst =
n⋃
i=1

E iinst = E1
inst ∪ E2

inst . . . ∪ Eninst

Fc =
n⋃
i=1

F i = F1 ∪ F2 . . . ∪ Fn

The state of a coordinated institution Sc is defined by a tuple of the states of all individual

institutions: Sc = 〈S1, . . . , Sn〉 and all possible states of the coordinated institution is Σc.

In the following sections, we discuss the modelling of a coordinated institution by

extending the model of a single institution as discussed in Section 3.1 on page 31. Intuitively,

we can almost just put the ASP program of each institution PI with I ∈ C together in order to

obtain that for the coordinated institution PC . However, since now the individual institutions

have to be observable as a unified entity, the traces we use for reasoning and verification must
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be derived from the combination rather than individuals. Also, the model we examine should

be a coordinated model rather than an individual one, which is obtained by the application of

composite relations. Therefore, the next section starts with the definition and derivation of

such composite relations and composite traces. Subsequently, the separation of traces for each

individual institutions is addressed in order to obtain the coordinated models.

4.2.1 Formal Modelling of Coordinated Institutions

The ultimate goal of modelling the coordinated institutions is to allow all participating

institutions to react simultaneously to a common given event trace according to their own

transition functions, which gives rise to separated state transitions for each institution. While

the individual transition remains independent, we need to represent an overall transition

operator TRc for a coordinate institution. With regard to the generation function (GRi),

consequence function (INITi and TERMi) and transition function (TRi) defined for a single

institution Ii in Section 3.1.1 on page 32, we can derive those composite functions for a

coordinated institution C.

Definition 6 (Composite Relations) Given a coordinated institution C comprising a set of

institutions {I1, . . . , In}, the composite generation function GRc : Σc × 2U
c
E → 2E

c
:

GRc(S
c, E) =

n⋃
i=1

GRi(S i, E)

The composite consequence function INITc : 2F
c × Ecex → 〈2F

1
, . . . 2F

n〉 and TERMc :

2F
c × Ecex → 〈2F

1
, . . . 2F

n〉:

INITc(S
c, eex) =

n⋃
i=1

INITi(S i, eex)

TERMc(S
c, eex) =

n⋃
i=1

TERMi(S i, eex)

Consequently, the composite transition function TRc : Σc × Ecex → Σc can be derived as:

TRc(S
c, eex) =

{
p ∈ Fc

∣∣∣∣∣ p ∈ (Si \ TERMc(S
c, eex))

p ∈ INITc(S
c, eex)

}

From the definition above, while a set of events E occur at certain state S c, the composite

generation function GRc is applied to produce events for the whole coordinated institution,

which is actually achieved by calling individual generation functions GRi(S i, E). Therefore,

the GRc(S
c, E) includes all generated events for each participating institution. The composite

consequence function is formed in a similar way, where INITc(S
c, eex) and TERMc(S

c, eex)

determine the set of fluents to be initiated or terminated for the whole coordinated institutions

63



Chapter 4. Coordinated Institutions

given an external event eex occurs at certain states Sc. Finally, the composite transition function

TRc is able to derive the next state of a coordinated institution subject to INITc and TERMc.

To be able to analyse coordinated institutions – a set of institutions as a whole, rather than

an individual institution – the external world we consider should be described by exogenous

events defined by all the participating institutions. To this end, the event traces must comprise

the observable events derived from all the individual institutions. We introduce the notion

of a composite trace to describe this particular kind of trace. It is worth noting that each

event occurring in a composite trace shall be recognised by at least one of the participating

institutions.

Definition 7 (Composite Trace) Given a coordinated institution C comprising a set of

institutions {I1, . . . , In}, a composite trace tr is a sequence 〈e0, . . . em〉 such that

∀ei, 0 ≤ i ≤ m : ∃1 ≤ j ≤ n : ei ∈ Ejex. TC defines a set of such composite traces of C.

Therefore, given a composite trace, the individual trace can be separated out for each

individual institution, by means of which the state transitions of each individual institution are

driven separately according to the individual transition function TR, presented in Section

3.1.1 on page 32. It is possible that an event in the trace is not recognised by an institution,

leading the GR function to produce no new events, and so the next state is identical to the

current one. Consequently, a sequence of states is formed to give rise to the corresponding

model of each institution, which taken together render the coordinated model of a coordinated

institution.

Definition 8 (Coordinated Model) Given a composite trace tr = 〈e0, e1, . . . em〉 for a

coordinated institution C comprising a set of institutions {I1, . . . , In}, the corresponding

coordinated state modelMc is a set of modelsMi with 1 ≤ i ≤ n such thatMi is the state

transition model corresponding to the individual trace of each institution Ii in tr: Mc =

〈M1,M2, . . . ,Mn〉, where

• Mi = 〈Si0, Si1, . . . , Sim〉,

• Sit+1 = TRc(S
i
t , et)

• The superscript i ∈ [1, n] identifies an individual institution and subscript t ∈ [0,m]

indicates the time instance aligned with the given event trace.

A composite trace tr with certain length is able to drive the state transition of a coordinated

institution C accordingly. The next state Sit+1 of C is obtained by applying the composite

transition function TRc to the current state Sit . Such sequence of states renders the coordinated

modelMc of C.
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4.2.2 Modelling Coordinated Institutions Using Answer Set Programs

In Section 3.1.2 on page 37, Cliffe [Cliffe, 2007] proposed to represent an individual trace for

a single individual institution by using a sequence of ASP atoms observed(E, Inst, I). To

distinguish from that, we adopt a different fact compObserved(E, I) to represent a composite

trace for a coordinated institution. It gives us the computational representation of a composite

traces Ptr in ASP and so a set of such traces is represented by PTC . Furthermore, we also

adapt the trace program Ptrace in 3.1.2, originally designed for a single institution by Cliffe

[Cliffe, 2007], to cater to coordinated institutions. As explained in the preceding section, a

composite trace firstly needs to be separated into a set of individual traces, by which the state

of each institution evolves accordingly. The trace program Ptrace below serves this purpose.

Furthermore, Ptrace also needs to compute all possible composite traces a C could have, while

guaranteeing that there is only one event commonly observed by the group of institutions at a

time instant, thus the constraints associated with observed are now applied to compObserved,

compared with the previous Ptrace:

Trace Component Ptrace

This part of the program captures all external events by compObserved to explore all possible
patterns of composite traces:

1 {compObserved(E, J)}:- evtype(E,In,ex),instant(J),
2 not final(J), inst(In).

The next constraint ensures that there is only one event commonly observed/occurred at each
time instant:

1 :- compObserved(E,J),compObserved(F,J),
2 instant(J),evtype(E,InX,ex),evtype(F,InY,ex),
3 E!=F,inst(InX;InY).

The next constraint ensures that there is always an event commonly observed/occurred at non-
final time instant:

4 obs(I):- compObserved(E,I), evtype(E,In,ex),
5 instant(I),inst(In).
6 :- not obs(I), not final(I), instant(I), inst(In).

The last rule separates the individual observed traces (represented by observed) for each
institution:

7 observed(E,In,I) :- compObserved(E,I), inst(In), instant(I).

Figure 4-2: Trace Component for Coordinated Institutions

A composite trace is represented by a set of compObserved(E, I) atoms, which is then

separated into a set of individual traces. That is also why there is no need to have institution

identification in the compObserved atom. An individual trace is a set of

observed(E, InstX, I), denoting the event E is observed by the institution InstX at time I.
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As expressed by the trace program Ptrace, all commonly observed events

compObserved(E, I) are observed by each participating institutions observed(E, InstX, I)

in order to form the separate traces.

The time component is unchanged from the original Cliffe’s work [Cliffe, 2007] that is

presented in Section 3.1.2. In this case, the time component limits the commonly observed

trace compObserved(E, I) of a coordinated institution to a finite length by means of defined

set of time facts instant(I).

In contrast with the original InstAL model [Cliffe, 2007], it should be noticed that we add

the institution as an extra argument to the occurred, initiated, terminated and holdsat

atoms to indicate which institution they belong to. While modelling a set of institutions, we

do need to consider that they can share the same fluents. If we add all the ASP programs of

institutions together, the states of each institution would start to mingle, which is not what we

want in coordinated institutions. While, as we will see later, this would indicate conflicts,

erasing them is not necessarily the solution. The same can be said for events if they are known

by more than one institution. They might have different triggering conditions and the

combination of the AnsProlog rules should not interfere with this. To avoid these

complications, we add an extra argument to those key atoms which control the state

transitions.

To be able to obtain the computational model of a coordinated institution (denoted PC),

we combine (i) the trace program Ptrace, (ii) the time component, (iii) the base component

and (iv) the ASP modelling specific to each individual institution, to compute answer sets

corresponding to all composite traces and their associated combined models. Individual

composite traces and models can be obtained by selecting those atoms that pertain to the

institution of interest. When the four component listed above are augmented with a specific

complete composite trace1, it produces one single answer set containing the trace and its

corresponding coordinated model.

Figure 4-3 summarises the overview of the procedures of modelling a coordinated

institution. Compared with processing a single institution shown in Figure 3-7 on page 50, a

similar mechanism is adopted to translate a set of InstAL specification to a corresponding set

of ASP programs by the same translator, but in such case of a coordinated institution, the set

of all participating institutions are translated altogether and the corresponding ASP programs

of each are produced. The input domain specification is used to qualify variables and details

are given in Section 3.1.3. By means of the answer set solver, the computational model of a

coordinated institution is computed by the set of individual program of each institution,

together with the time component and trace program Ptrace, in response to the given query

composite trace (encoded by Ptr).

In order for institutions to work together in cooperating fashion, they need to be
1Completeness of a trace is defined to mean that there is always an event observed at each time instant in the

trace, and thus the answer set solver does not need to compute all possibilities for the time instants at which no
event is given in the trace.
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Figure 4-3: the overview process of modelling a coordinated institution

semantically aligned, i.e. a concept must have the same representation across the different

institutions. This can be achieved by means of a common ontology [Gangemi et al., 2003,

Valente and Breuker, 1994]. In our research we assume that the institutions within a

cooperating institution will share the same ontology to achieve semantic alignment. For

instance, to represent the obligation of serving in an army, the same literal

obl(serveInArmy(Person),

deadline, illegal(Person)) is employed to represent the same institutional fact across all

the participating institutions in a combination.

The formalisation presented here improves on our previous work on conflict detection and

institutional combination [Li et al., 2013c], in that: (i) we have removed the introduction

of null events from both formal and computational representation by revising the generation

function to tolerate unknown events; this behaviour is now generated automatically as part of

the base component, and (ii) the renaming mechanism that was devised in order to address the

issue of distinguishing shared events and fluents is no longer needed because we now embed

the institution label as an extra argument in atoms.

4.2.3 Example of a Coordinated Institution

In this section, we show how to build a model of a coordinated institution by using an example

in which three institutions Castle, Lord and Realm are brought together. Despite the different

individual objectives, these three institutions may overlap in terms of governing context and

targets, which provides potential for normative conflicts. For example, with regard to the

obligation of serving in an army, Castle specifies a policy that all males older than 16 years
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Castle
initiated(obl(serveInArmy(Person), deadline, illegal(Person)), castle, I):-

occurred(intRegister(Person), castle, I), holdsat(live(castle), castle, I),
holdsat(ageOlder(Person, sixteen), castle, I), holdsat(gender(Person, male), castle, I),
person(Person), inst(castle), instant(I).

Lord
initiated(perm(goToWar(Castle)), lord, I):-

occurred(intAttacked(Castle), lord, I), holdsat(live(lord), lord, I),
castle(Castle), instant(I), inst(lord).

terminated(obl(serveInArmy(Person), deadline, illegal(Person)), lord, I):-
occurred(intReleaseSoleSurvivorPolicy, lord, I), holdsat(live(lord), lord, I),
holdsat(onlySon(Person), lord, I), person(Person), instant(I), inst(lord).

Realm
initiated(perm(goToWar(Castle)), realm, I):-

occurred(intDemandToFight(Castle), realm, I), holdsat(live(realm), realm, I),
castle(Castle), instant(I), inst(realm).

terminated(obl(serveInArmy(Person), deadline, illegal(Person)), realm, I):-
occurred(intReleaseSoleSurvivorPolicy, realm, I), holdsat(live(realm), realm, I),
holdsat(onlySon(Person), realm, I), person(Person), instant(I), inst(realm).

Figure 4-4: Partial Answer Set Programs of the Institutions: Castle, Lord and Realm

of age are obliged to serve in an army. However, Lord and Realm recently announced an

Exemption Policy that essentially states that the only son in a family is exempted from military

service. Besides, Realm and Lord disagree on when the bannermen are permitted (obliged) to

go to war. The Realm king announces that the bannermen (i.e. the Castle in our example) have

to follow the command of the king to fight, while the Lord of the Castle, who is a peace lover

rules that a castle has no permission or obligation to fight in a war unless under attack.

We first model the three institutions individually by means of the modelling method

presented in Section 3.1 on page 31 to obtain the formal and computational models for each.

Figure 4-4 lists the most significant differences between the ASP models of the three

institutions for comparison. The obligation obl(serveInArmy(Person),

deadline, illegal(Person)) is initiated for all qualified citizens in Castle, but

terminated in respect of only sons in both Realm and Lord by the occurrence of event,

encoded as intReleaseSoleSurvivorPolicy. The permission to go to a war

perm(goToWar(Castle)), lord, I) is initiated by the event intDemandToFight(Castle) in

Realm or intAttacked(Castle) in Lord.

These three institutions are then combined to form a coordinated institution C and its

corresponding ASP translation PC = PCastle ∪ PLord ∪ PRealm.

Now the three institutions act as a whole. To draw a scenario in this context, two composite

trace tr1 are provided as below:

1 tr1 = 〈 register(bob), register(tom), releaseSolePolicy(bob),

2 releaseSolePolicy(tom)〉
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Two citizens bob and tom are registered, which is then followed by the application of the

exemption policy. We also defined initial fluents for bob and tom to indicate that both of them

are male and older than 16: ageOlder(tom; bob, sixteen), gender(tom; bob, male). More

interestingly, tom is the only son of his family: onlySon(tom), but bob is not.

Another composite trace tr2 can be defined to describe the scenario related to fighting in a

war:

1 tr2 = 〈 demandToFight(eastCastle), demandToFight(westCastle)

2 goToWar(eastCastle), goToWar(westCastle)〉

The trace describes a scenario where there are two castles westCastle and eastCastle

ruled by both the Realm king and the Lord. Both westCastle and eastCastle are demanded

to fight for the king but only eastCastle is under attacked.

Figures 4-5 and 4-6 present the corresponding state changes according to the two traces.

Simplified notations are used in those figures for the purpose of presentation. The events

observed at particular time instants appear above the arrows between two successive states,

indicated by the format “Event : Inst”. For instant, “register(bob) : castle” abbreviates

the complete ASP atom observed(register(bob), castle), 0), which indicates an event

register(bob) is observed by the institution Castle. All fluents hold true at particular states

are listed in square boxes under each corresponding state, and present in simplified way. For

instance, “onlySon(tom) : castle” abbreviates holdsat(onlySon(bob), castle), 0). Such

simplified notations are adopted in all the state transition figures of this dissertation.

The most interesting states are shadowed in light blue. The trace tr1 reveals a disagreement

between Castle and the other two at state S3 in Figure 4-5, with regard to the obligation to

serve in an army: the obligation is subject to an exemption (marked by strikethrough) for tom

following the announcement of the exemption policy by Lord and Realm. The second trace

exposes another inconsistency between Realm and Lord in Figure 4-6 with regard to when

the bannermen of a Castle are permitted to go to war. We can observe that the permission

for eastCastle is intiated at state S1 by both Lord and Realm, but the same permission

for westCastle is given by Realm only at state S2. The permission for westCastle is not

initiated in Lord since it is not under attack. In the following section, we present a scheme for

automatic conflict detection and show how it can find conflicts in the case study.

4.3 Automatic Conflict Detection in Coordinated Institutions

As noted in the introduction, institutions are typically designed to fulfil their individual

normative goals. Therefore, forming coordinated institutions is likely to cause conflicts

between the norms of the individual institutions and can give rise to problems for agents when

they interact with a coordinated institution. Consequently it is important to detect conflicts

between individual institutions when creating a coordinated one.

In this section, we discuss our approach to detecting conflicts in coordinated institutions.
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Figure 4-5: Computational model with the trace tr1
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Figure 4-6: Computational model with the trace tr2
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We begin with a precise definition of normative conflicts in coordinated institutions and the

concept of conflict traces.

4.3.1 Normative Conflicts and Conflict Traces

We identify a conflicting situation as one in which a fluent is known by at least two member

institutions of the coordinated institution, and which appears positive in one and negative in

the other at the same time. We further distinguish two types of conflicts: weak and strong. We

define a weak conflict to be when a fluent holds contrary values in two member institutions

simultaneously. For instance, a weak conflict is found between the presence (permitted) and

absence (prohibited) of the same permission. We refer to this conflict as a “weak” conflict,

because agents have the chance to avoid a violation by not performing the action. As mentioned

in Section 3.1.1, in this dissertation we limit ourselves to model prohibitions implicitly by the

absence of permissions. We further define strong conflict to be when an action is obliged in one

institution but not permitted in another at the same time. In this case, an agent has a dilemma:

they must violate one of the two norms.

Definition 9 (Conflict Trace) Given a coordinated institution C, let Mi = 〈Si0, . . . Sit〉 and

Mj = 〈Sj0, . . . S
j
t 〉 represent the computational models of Ii, Ij ∈ C in response to a

composite trace tr. tr is a weak conflict trace iff:

D9.1: ∃f ∈ (F i ∩ F j) such that

D9.2: ∃k, 0 ≤ k ≤ t such that

D9.3: Sik |= f and Sjk |= ¬f (cf. Def.2)

or strong conflict trace iff:

D9.4: ∃e ∈ E i ∪ Ej

D9.5: ∃p ∈ P i , p = perm(e) such that

D9.6: ∃o ∈ Oj , o = obl(e, d, v) such that

D9.7: ∃k, 0 ≤ k ≤ t such that

D9.8: Sjk |= p and Sik |= ¬p (cf. Def.2)

A weak conflict is denoted by a tuple c = 〈Ii, Ij , k, f〉, while strong conflict is captured by

c′ = 〈Ii, Ij , k, e〉. All such conflicts derived by the conflict trace tr is denoted by: Ψ(tr).

From the definition above, the conflict traces can be determined by comparing the state

models of any pair of institutionsMi andMj driven by the trace tr. At any given time k, if

there is a fluent f known by both institutions f ∈ (F i ∩ F j), the fluent is holding true at the

state of one institution Sik |= f but false at the other Sjk |= ¬f , then a weak conflict trace is

detected against the fluent f . Such conflict trace can be further identified as a strong conflict

trace if the conflict is between an obligation o ∈ Oj and a permission p ∈ P i concerning same

event e ∈ E i ∪ Ej .
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4.3.2 Automatic Conflict Detection

Given a mathematical formalisation for conflicts, we can now discuss a computational

mechanism for their automatic detection in coordinated institutions. As mentioned in

Section 3.1.2, we use AnsProlog for the implementation of the computational model of

institutions. Naturally, we use the same tool for determining conflict traces and detecting

conflicts.

In the following sections, we start by considering the computational means to identify

conflict traces, which is followed by conflict detection at two different levels: from the

perspective of individual agents and from the perspective of system designers. Due to their

different interests and objectives, these two levels differ in detection procedures: (i) for

individual agents, it is less interesting to know how individual institutions differ in general,

but they rather want to be aware of normative conflicts resulting from particular courses of

actions they might take when interacting with an coordinated institution, in order possibly to

change their behaviour in response to the conflicts (ii) in contrast, for system designers the

primary question is whether the institutions encapsulated in a coordinated institution could

harmonise with each other in general (rather than for specific traces), i.e. whether the

coordinated institutions are conflict-free.

Finding Conflicts

We proposed the detection program Pdetect, shown in Figure 4-7, to find the conflicts along

with the evolution of the whole institutional states of a coordinated institution.

As discussed in Section 3.1.2, ASP adopts negation as failure to compute the negation of

an atom, i.e. not f is true if there is no evidence to prove f in the current program. Therefore,

in the conflict detection program Pdetect implemented by AnsProlog , not holdsat(F, Y, I)

is true if holdsat(F, Y, I) is absent at the current model. That is, the fluent F holds true at the

state of institution X, but false at the state of institution Y. To identify conflicts, we introduce

two conflict predicates, one of arity 0 and one of arity 4. The former is used when we are

only interested in the occurrence of any conflicts. The constraint : −not conflict. ensures

the generation of those answer sets in which at least one conflict occurs. In other words, if no

answer sets are generated, there are no conflicts arising in general or from a given trace tr. As

defined in Definition 9, a conflict is formally represented by a tuple with four elements, which

can directly aligned to the four arguments in the ASP representation conflict/4 of conflicts

respectively. The conflict/4 predicate provides more detail about the conflict: (i) the first

two parameters identify the two institutions, indicating that a fluent is positive in one and

and negative in another of two institutions, (ii) the third argument identifies when the conflict

occurs, and (iii) the fourth argument is the fluent itself. For strong conflict detection, we

further target the fluent to be an obligation fluent oblfluent(obl(E, D, V)). Furthermore, we

also introduce the predicates weakConflict and strongConflict to denote the two types of
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The conflict detection program Pdetect:

1 %% ------- Weak Conflicts ------- %%
2 conflict(X,Y,I,F) :- holdsat(F,X,I), not holdsat(F,Y,I),
3 ifluent(F,X), ifluent(F,Y), instant(I),
4 inst(X;Y).
5
6 weakConflict(X,Y,I,F) :- conflict(X,Y,I,F), instant(I), inst(X;Y),
7 ifluent(F,X), ifluent(F,Y).

1 %% ------- Strong Conflicts ------- %%
2 conflict(X,Y,I,E) :- holdsat(obl(E,D,V),X,I),
3 not holdsat(perm(E),Y,I),
4 oblfluent(obl(E,D,V), X),ifluent(perm(E), Y),
5 inst(X;Y),instant(I).
6
7 strongConflict(X,Y,I,E) :- conflict(X,Y,I,E),
8 oblfluent(obl(E,D,V), X),
9 ifluent(perm(E), Y),

10 instant(I), inst(X;Y).

1 %% ------- Conflict Selection ------- %%
2 conflict :- conflict(X,Y,I,F).
3 :- not conflict.

Figure 4-7: The conflict detection program Pdetect in ASP

conflicts respectively.

User-led Conflict Analysis When an agent interacts with the coordinated institution, very

often the most interesting question is whether a particular course of action that the agent

chooses to perform might lead to a conflict or not. In terms of our institutional framework,

this can be translated to the question of whether the particular trace containing these actions

in a particular order leads to any conflict in the coordinated institution, i.e. whether it is a

conflict trace or not.

Given a coordinated institution C, we can determine whether a composite trace tr is a

conflict trace or not by running the program comprising of the following components: PC ∪
Pdetect ∪ Ptime ∪ Ptrace ∪ Ptr. When augmenting the computational model of a coordinated

institution (comprising of institution specific program PC , trace component Ptrace (cf. Figure

4-2) and time componentPtime (cf. Section3.1.2) with the detection programPdetect (presented

in Figure 4-7), and the query trace Ptr (introduced in Section 4.2.2), at most one answer set

is produced, with the conflict atom appearing if the trace is a conflict trace. Otherwise, the

program will not admit any answer set due to the constraint on conflict selection.
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Full Diagnosis of Potential Conflicts To test if a coordinated institution is conflict-free or

not, we use the conflict detection program Pdetect to test all possible composite traces a

coordinated institution C may encounter.

Ideally, the designer should consider all traces and for arbitrary durations in order to

determine whether a C is conflict-free. However, that would be computationally expensive.

Therefore, one has to instead determine that a given coordinated institution is conflict-free up

to L, where L denotes a number of time instants.

Definition 10 (Conflict-free Coordinated Institutions Up To L) A coordinated institution is

conflict-free up to L iff it does not admit any conflict traces up to length L.

Computationally, we are at this point interested in the occurrence of answer sets

representing conflict traces only, i.e. composite traces and their models that produce conflicts.

If no answer set is generated by the detection program, the coordinated institution C is

conflict-free. Prior to that, we need to adapt the trace component program Ptrace from 4.2.2 to

generate all the composite traces within the context of a given C. To constrain the length, the

time component is defined to allow the construction of traces up to length L.

In summary, by the union of the programs PC ∪Ptime ∪Ptrace with the detection program

Pdetect, any answer set produced indicates a conflict trace and we can deduce that C is conflict-

free up to a certain trace length L if no answer set is produced.

Furthermore, for the sake of computational efficiency, there is no need to test each possible

trace one after another, but instead all the traces of interest can be tested at once. To achieve

that, we need to refine the time component Ptime by assigning each trace an unique time instant

identifier. Examples appear in the case study section.

4.3.3 Example: Conflict Detection

Now, we demonstrate the application of the detection procedure to the example used

throughout this chapter. As mentioned in Section 4.2.3, two provided composite traces may

lead to conflicts between the three institutions when operating as a coordinated institution. We

align distinct time traces for the two composite traces: a time trace

instant(tr1 0, ..., tr1 3) with the event trace tr1 and instant(tr2 0, ..., tr2 3) with tr2.

In this example, we use time traces of length 4 because the two composite traces are of length

3 and we need to include the whole trace within the scope of the analysis. The length of traces

can be as long as is needed to align the given event traces.

Next, we analyse both traces with the detection program and obtain the conflict facts

depicted in Figure 4-8.

According to the time instant identification, the conflicts (1) to (4) are caused by the trace

tr1, while trace tr2 gives rise to the conflict (5). The first four conflict facts capture three

weak conflicts between the institutions Castle and Lord and between Castle and Realm,

respectively, regarding the permission of tom to serve in the army. Those conflicts occur at time
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1 conflict(castle,realm,tr1_3,perm(serveInArmy(tom)))
2 conflict(castle,lord,tr1_3,perm(serveInArmy(tom)))
3 conflict(castle,realm,tr1_3,serveInArmy(tom))
4 conflict(castle,lord,tr1_3,serveInArmy(tom))
5 conflict(realm,lord,tr2_3,perm(goToWar(westCastle)))
6
7 weakConflict(castle,realm,tr1_3,perm(serveInArmy(tom)))
8 weakConflict(castle,lord,tr1_3,perm(serveInArmy(tom)))
9 weakConflict(realm,lord,tr2_3,perm(goToWar(westCastle)))

10
11 strongConflict(castle,realm,tr1_3,serveInArmy(tom))
12 strongConflict(castle,lord,tr1_3,serveInArmy(tom))

Figure 4-8: The conflict detection result of the example

tr1 3, which is immediately after the occurrence of the event releaseExemptionPolicy. As

the only son of his family and a male of 16 years old, tom is permitted and obliged to serve

in an army by the institution castle, but exempted by the institutions realm and lord. The

last set of two strong conflicts (11) to (12) are strong conflicts arising from the presence of

an obligation for the event serveInArmy(tom) in the institution Lord and Realm, but the

permission of the event is absent in Castle. The last conflict (5) comes from the trace tr2,

indicated by the time instant tr2 3, where the conflict indicates the disagreement between

Lord and Realm about the permission for westCastle to fight. The conflict only occurs for

westCastle, because the peace-loving Lord does not allow it to fight (since it is not being

attacked), whilst the Realm king demands it to fight for him.

4.4 Automatic Conflict Resolution in Coordinated Institutions

This section comes in three parts. We begin (Section 4.4.1) with a high-level intuitive

description of our approach to conflict resolution. This is followed (Section 4.4.2) by a formal

definition which builds on the mathematical definition of conflict set out in Section 4.3. The

next – and most substantive – step is to turn conflict resolution into an automatic

computational process, which we describe in Section 4.5.

4.4.1 Conflict Resolution: an Informal Outline

Given the capacity to detect conflicts automatically, we can now address the problem of their

resolution. The conflict detection program finds a set of conflicts Ψ(TC), captured by the

ASP atom conflict. In the case of two institutions, we resolve conflicts by revising one to

be compatible with the other. As defined in Definition 4, there is a precedence amongst the

participating institutions of a coordinated institution. For example, given a conflict between

institution Ix and Iy and assuming Ix has higher precedence than Iy, the resolution is to revise

the Iy to be consistent with Ix, that is, what were previously conflict traces, will no longer

76



Chapter 4. Coordinated Institutions

result in conflict. In order to derive such a solution, we first need to compute all the possible

changes we could make to Iy. We provide structural and content specifications (called mode

declarations (see Section 3.3)) of the rules to be constructed, which determine the learning

space for the alternatives to the norms currently specified in an institution. Consequently,

solutions can be learnt by means of inductive logic programming (ILP).

ILP, discussed in Section 3.3, is a symbolic machine learning technique which is capable

of generating revisions to an existing theory in order to satisfy some specified properties.

These properties are typically expressed by positive and negative examples that correspond to

desirable and undesirable properties, respectively. The solutions to an ILP learning task

preserve the desirable properties while eliminating undesirable properties. Those properties

are defined according to the context and domain of the learning task. In our case, the conflict

traces and their associated conflicts are encoded as negative examples to express our learning

objective, which is removing the undesirable properties, i.e. conflicting values over a fluent.

All the solutions produced by ILP are guaranteed to resolve the conflict. However, in

practice, the process can produce several solutions. Therefore, we need additional criteria to

guide the revision process in order to derive the best solutions. One such criterion is that

the revised institution be as close as possible to the original, to take account of convenience

of human inspection on one hand, and to minimise the cost of grounding and computational

complexity, on the other. More discussion about complexity analysis can be found in Section

4.5.5. We define a cost function to measure the differences between two institutions. With the

help of such cost function, we can select the solutions with the minimum required changes and

thus achieve a revised institution with the minimum differences to the original.

Thus far, we have discussed how an ILP-based conflict resolution system derives an optimal

solution for a single conflict between two institutions. However, it is possible to resolve several

conflicts in a single learning cycle as long as they are not dependent. An intuitive explanation

of dependent conflicts is that, when resolving conflicts simultaneously, we need to take into

account the interplay between the institutions. Consider three institutions Ix, Iy and Iz , with

Ix being in conflict with Iy and Iy being in conflict with Iz . If we want to revise Ix in light of

institution Iy, we cannot at the same time revise Iy because of its conflict with Iz . The formal

definition of dependent conflicts is given in Section 4.5.1. Given a set of conflicts Ψ(TC), our

ultimate goal is to resolve all of them with the least number of learning cycles. Therefore, for

each learning cycle, we need to first obtain a maximal subset ψ̂(TC) of Ψ(TC) containing all

the independent conflicts, and then produce the solution to resolve them. Consequently, we

obtain the maximal independent subset from the remaining conflicts to be the subjects of the

next round of learning cycle and so on. This procedure iterates until all conflicts in the given

set Ψ(TC) are resolved, thus concluding the conflict resolution process.
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4.4.2 Conflict Resolution: Formal Aspects

Before we present the formal definition of conflict resolution, we first need to define what we

mean by compatibility (see also Def. 3) between mode declarations and literals, because it

establishes the idea of how a rule should be restructured (addition or deletion of body literals)

or structured (new rule), through the use of a set of mode declarations. It is important that any

rule resulting from the revision process must be structurally consistent with the existing rules

specified in the institution. That is to say, the resulting rules have to be either a generation rule

or consequence rule. In the former case, the head literal must be an institutional event, and an

event must appear as body literals, while in the latter the head literal must be a fluent and an

event must appear as body literals. A mode declaration is defined over a particular event or

fluent of an institution, and a precise definition is given in Section 4.5.1. A literal can appear in

either the head or the body of a rule, subject to the constraints expressed in either a head mode

declaration or a body mode declaration.

We first define literal compatibility, where a literal is any term that might be a constituent of

a logic program. Consequently, we define rule compatibility in terms of literal compatibility.

Thus given a set of literals compatible with M , a set of compatible rules can be formed to

derive a constrained search spaceRM for the learning task.

Definition 11 (Literal Compatibility) Given a mode declarations m, a literal l is compatible

with the mode declaration m iff (i) l has the predicate defined in m, and (ii) l has all the

variables specified inm. A set of head mode declarations is denotedMh, defining a set of head

literals, while a set of body mode declarations is denoted M b, defining a set of body literals.

Definition 12 (Rule Compatibility) Given a rule r formed by a head literal h and several

body literals bi: h ← b0, . . . , bn, the rule r is compatible with the mode declarations M iff:

(i) there is a head mode declarationmh ∈Mh compatible with h, and (ii) for each body literal

bi, i ∈ [0, n], there is always a body mode declaration mb ∈ M b compatible with it. A set of

such compatible rules with M is captured byRM , where M = Mh ∪M b.

Now we can formalise the notion of a conflict resolution task (for ILP), building on the

earlier definitions of coordinated institution, conflict trace and rule compatibility. We then

embed this in an iterative process that leads to the resolution of all conflicts, whether dependent

or not, across a coordinated institution.

Definition 13 (Conflict Resolution) The conflict resolution task is denoted as a tuple 〈C, TC ,
M, cost〉 where C is a coordinated institution comprising several individual institutions

over which there is a precedence relation �C . TC is a set of conflict traces leading to a set of

conflicts Ψ(TC). M is a set of mode declarations specifically constructed for the institutions

in C such that ∀I ∈ C · I ⊆ RM . The cost function cost computes a measure of the difference

between two coordinated institutions. A revised coordinated institution C ′ solution to the task

can be:
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D13.1: atomic, iff (i) ∃ c ∈ Ψ(TC) ·C ′ ∪TC 6|= c, that is C ′ does not admit the conflict c, and

(ii) the revision for C ′ is minimal: argmin{cost(C,C ′) : C ′ ⊆ RM}2.

D13.2: partial, if it is an atomic solution for more than one conflicts in Ψ(TC) and is minimal.

D13.3: complete, if it is an atomic solution for all the conflicts in Ψ(TC) and is minimal.

Therefore, an atomic solution resolves at least one conflict of the target conflict set Ψ(TC),

while a partial solution, comprising of multiple atomic solutions, guarantees the removal of

more than one conflict. A partial solution could be a complete solution if it resolves all conflicts

in the set Ψ(TC). However, as observed in the preceding section, dependent conflicts cannot

be resolved in the same learning cycle, therefore achieving a complete solution is likely to

require more than one iteration of the process. Each iteration then produces an atomic or

partial solution to the task.

We now rephrase each iteration of the learning cycle as a theory revision task 〈Ω, B, T,M〉
(ref. Section 3.3) such that the solution of the revision results in a maximal partial solution

C ′ by means of the following steps. Based on the definition of conflict resolution task, the

following steps determine each component of the task:

1. Compute ψ̂(TC): the maximal set of independent conflicts (details will be discussed in

Section 4.5.1).

2. Determine Ω = {¬c | c ∈ ψ̂(TC)}; these are the conflicts that should not be present in

the partial revision C ′.

3. Collect T = {Ix | c = 〈Ix, Iy, k, f〉 ∈ ψ̂(TC) ∨ c = 〈Iy, Ix, k, f〉 ∈ ψ̂(TC) s.t.

Iy �C Ix}; these are the institutions in C that should be revised.

4. Collect B = {I | I ∈ C, I /∈ T}; the base theory is the set of institutions in C that are

not marked for revision.

5. Construct M = {MI | I ∈ T}; the mode declarations are derived from the institutions

that are marked for revision (details will follow in Section 4.5.2 ).

6. Optimise T ′: select the solution T ′ with the minimum number of changes.

7. Construct C ′: C ′ is then formed by the base theory and the revised theory: C ′ = {C \
T} ∪ T ′. If any conflict remains, the process repeats from 1, otherwise terminates as all

conflicts have been resolved .

The expected properties Ω for each iteration are those that resolve the conflicts in the

target set. According to the conflicts and the precedence order over the institutions in C, the

institutions are partitioned into two groups: the base theory B, which is unchanged over a

learning cycle, and the revisable theory T , which are marked for revision. The mode
2We use the notation argmin{f(x) : x ∈ A} to denote the argument for which f(x) is the minimum ∀x ∈ A

and likewise argmax for the maximum.
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declaration M then establish the learning space for the revisable theory. The solution

produced revises each institution in T , giving T ′ which in combination with B no longer

gives rise to any of the conflicts in ψ̂(TC). The final optimisation step guarantees that the T ′

with the minimum difference from T is selected to form the solution. As defined in Def. 13,

the optimisation is guaranteed by the cost function, which computes the differences between

two coordinated institutions in terms of the operations needed to revise one to the other. The

operations are either (i) the addition of a new literal to the body part or (ii) the removal of an

existing literal from the body part of a rule. By assigning a unit cost to each operation, the

total cost between two coordinated institutions is the number of operations needed. If there is

any need to weight operations differently, the cost associated with each operation can be

customised in the corresponding revision tuples which are introduced in Def. 19. The steps

above constitute one iteration of the learning cycle, which is repeated until all conflicts in the

set Ψ(TC) are resolved. This process terminates because no new conflicts are introduced

during the process and the total number of unresolved conflicts is reduced in each cycle.

4.5 Conflict Resolution: a Computational Approach

The most computationally challenging part of the resolution task is to produce all the

alternatives to a given theory, from which the best solution is selected according to the cost

criterion. The technique we adopt is inductive learning, as proposed by Corapi et al [Corapi,

2011, Corapi et al., 2011] that uses an answer set programming based inductive logic

programming algorithm ASPAL (see Section 3.3). Corapi et al propose a revision mechanism

for a single institution, driven by manually prepared examples that describe the situation to be

accommodated. Each example comprises a series of exogenous events and associated positive

and negative properties, characterised by certain institutional states. Building upon the ASPAL

algorithm, we implement a conflict-resolution system CI-RES in AnsProlog, which is

compatible with the computational models of institutions also specified in this work. The

extensions in CI-RES over ASPAL are: (i) the capacity to revise multiple institutions (i.e.

coordinated institutions), rather than one, (ii) automatically generated examples, derived from

the automatic conflict detection process, for conflict resolution, rather than hand-written ones.

As explained in the preceding section, in order to derive the complete solution, several

iterations of the learning cycle might be needed, because each iteration can resolve a set of

independent conflicts. Each iteration produces a maximal partial solution according to the

remaining unresolved conflicts. The complete solution is eventually able to resolve all conflicts

associated with the provided traces. In the following parts of this section, the implementation

of the whole procedure is examined in detail. Figure 4-9 shows the main parts of CI-RES, as

well as the structure of the rest of this section. The whole procedure starts with finding the set

of conflicts – the maximal independent conflict set ψ̂(TC) – the elements of which can all be

resolved in a maximal partial solution (see Section 4.5.1), which will be used as the (negative)
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example in a learning cycle of our conflict resolution system. Subject to the precedence order

over institutions, the maximal independent conflict set ψ̂(TC) labels each institution as either

a background institution – which constitutes the reference and is unchanged by the process –

or revisable institutions – which are revised to be consistent with the reference. The revisable

institutions are then converted to revisable form (Section 4.5.2) to obtain all possible revisions

by means of mode declaration (Section 4.5.1). We can then obtain all solutions that remove the

conflicts by applying the answer set solver (Section 4.5.2) to: (i) the background institutions,

(ii) the example and (iii) the revisable institutions. Because conflicts are identified by finding

any fluent holding contrary values in a pair of institutions, the solution fixes them by providing

a consistent value for this fluent across the institutions involved. Therefore, the revision will

not introduce new conflicts and all the conflicts have either occurred before resolution or are

resolved. Finally, the optimal solution is selected, based on the cost function. At the end of

each iteration, as the solution guarantees the resolution of some conflicts so the number of

conflicts reduces, we need to check whether the complete solution to the whole set of conflicts

is found or not. With the help of the conflict detection mechanism introduced in Section 4.3.2,

the ASP atom conflict of arity 0 can be used to indicate if there is still any conflict remaining.

If yes, a new iteration starts.

As suggested in the definition of conflict resolution (Def. 13), we can resolve conflicts

derived from not just one trace tr, but several, as represented by the set TC . However, to be able

to distinguish the state changes driven by different individual traces, we need to align distinct

time instants with the different traces in TC . We start with a description on how to resolve

conflicts in a single trace, for the sake of detailing the procedures of the whole mechanism. In

Section 4.5.4 we then extend it to multiple traces.

4.5.1 Obtaining the Maximal Independent Conflicts Set

In this work, we assume that there is a precedence order �C amongst the member institutions

of a C, which must be a strict total order. Such ordering is expected to be: (i) total, such that

any two institutions are comparable, i.e. either Ix � Iy or Iy � Ix (ii) transitive, such that

Ix � Iy and Iy � Iz ⇒ Ix � Iz , and (iii) irreflexive, such that the ordering relation is not

related to any institution itself, i.e. it cannot be that Ix � Ix. A strict total order is also known

as a strict linear order, in that all the elements can be put in line, subject to the ordering and

hence the ordering is acyclic.

Given an ordering �C over institutions in a C, a conflict c1 = 〈Ix, Iy,m, f〉 between Ix

and Iy and a conflict c2 = 〈Iy, Iz, n, e〉 between Iy and Iz cannot be resolved within one run

because c1 requires Iy to be revised whilst c2 requires it to stay fixed as background theory.

We call these dependent conflicts and define them as follows:

Definition 14 (Dependent Conflicts) Let c1 be a conflict between institutions Ix and Iy and

c2 a conflict between institutions Iy, Iz . Then c1 and c2 are dependent iff Iy � Ix and

Iz � Iy.
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Conflict Detection

(Section 4.5.1)

END

Ψ(TC)

complete solution

YES

NO

Obtain Max Set ψ̂(TC)

(Section 4.5.1)
Construct Mode Declaration

(Section 4.5.2)
Derivation of Revisions

(Section 4.5.2)
Abduction and Optimisation

is found?
to Ψ(TC)

START

Figure 4-9: Main parts of CI-RES and structure of Section 4.5
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1 c1=conflict(instX,instY,t1,f1)
2 c2=conflict(instY,instZ,t2,f2)
3 c3=conflict(instX,instZ,t3,f3)
4 c4=conflict(instZ,instY,t4,f4)
5 c5=conflict(instY,instX,t5,f5)

Ix

Iy

Iz

c1 c2

c3

c4c5

Figure 4-10: Example of a visualisation of dependent conflicts as a graph

To maximise the rate of convergence of the conflict resolution process, we aim to resolve

as many conflicts as possible in each cycle. This aim is constrained however by the need

to take account of the conflict dependencies. Subsequently, given a set of conflicts Ψ(tr)

associated with a conflict trace tr, we use ΓΨ(tr) to denote the set of all subsets of Ψ(tr)

containing only independent conflicts, and ψ̂(tr) to denote a maximal set among them, such

that ψ̂(tr) ∈ ΓΨ(tr),with ΓΨ(tr) ⊆ 2Ψ(tr). More details about the computation of this set is

given later in this section. The resolution of the conflicts in a maximal independent conflict set

ψ̂(tr) is a maximal partial solution.

In order to obtain ΓΨ(tr), that is the possible combinations of conflicts that are independent,

we utilise the notion of conflict graph to visualise the conflicts between institutions.

Definition 15 (Conflict Graph) Given a strict total order �C over the set of institutions in a

coordinated institution C = {I1, . . . , In}, the set of conflicts Ψ(tr) can be represented by a

directed graph G = (V,E) subject to the following conditions:

D15.1: ∀I ∈ C · I ∈ V ,

D15.2: ∀c = 〈Ix, Ix, k, f〉 ∈ Ψ(tr) ·

{
〈Ix, c, Iy〉 ∈ E if Ix �C Iy

〈Iy, c, Ix〉 ∈ E otherwise.

The in degree and out degree of a vertex v ∈ V are denoted by d+
G(v) and d−G(v), indicating

the number of edges leaving and entering the vertex v, respectively.

For example, consider a coordinated institution with three component institutions with the

set of conflicts shown in Figure 4-10. This gives rise to the adjacent conflict graph, where

the institution precedence ordering Ix � Iy � Iz establishes the directions of each edge.

Dependent conflict pairs are thus (c1, c2), (c1, c4), (c5, c2) and (c5, c4), while the independent

conflict sets are subsets of any size of {c1, c2, c3, c4, c5} that do not contain any of these conflict

pairs. Following Def. 15, we can now define an independent conflict set as a set of subgraphs

of G whose vertices are either sources or sinks:

Definition 16 (Independent Conflict Sets ΓΨ) Given a conflict graph G = (V,E), the

independent conflict sets ΓΨ include a set of independent conflict sets, which can be defined

as: ΓΨ = {S ⊆ E | ∀〈Ii, c, Ij〉 ∈ S| (d+
G(Ii) × d−G(Ii) = 0) ∨ (d+

G(Ij) × d−G(Ij) = 0)} ,

thereby guaranteeing that in each independent conflict sets all vertices only have either
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entering or exiting edges and hence the maximal independent conflict set

ψ̂ = argmax{|ψ| : ψ ∈ ΓΨ}

Here we use ΓΨ and ψ̂ by omitting the trace parameter tr from ΓΨ(tr) and ψ̂(tr) because

the derivation is not associated with any particular trace, but is a general method to obtain the

maximal independent set from a set of arbitrary conflicts regardless of whether they arise from

one or more traces.

Therefore, the independent conflict sets ΓΨ in Figure 4-10 are: {c1, c3, c5}, {c2, c3, c4},
{c2, c4} and {c1, c5}. In order to derive the maximal partial solution, we select the independent

conflict set with maximum cardinality3 as the input to the resolution task. In the Figure 4-10,

the maximal independent conflict sets ψ̂ are: {c1, c5, c3} and {c2, c3, c4}.
To automate the process discussed above, we implement the following ASP program Pψ̂

to produce all possible independent conflict sets ΓΨ. Lines 1–2 define the precedence order

over institutions using the literal preferred(InX, InY) and guarantees the order is transitive

and antisymmetric. Afterwards, all the raw conflict literals conflict/4 are ordered by a new

literal orderedConflict(X, Y, I, F), in which the first two institution variables are arranged

in accordance with the precedence order between them (lines 4–7). For each conflict between

two institutions, the one with lower precedence is added to the revisable theory set revSet/1

while the other is kept unchanged as part of the base theory baseSet/1, as expressed in

lines 9–10. Consequently, we obtain the literal inSet/1 from lines 13–17. Each answer set

produced represents an independent conflict set, containing a number of atoms inSet/1

indicating the conflicts contained in this set. Therefore, the answer set with greatest number

of atoms inSet/1 is the maximal independent set ψ̂. An optimisation statement (line 19) is

employed to find the maximal set.

The program for obtaining the maximal independent set Pψ̂:

1 preferred(X,Z) :- preferred(X,Y), preferred(X,Z).

2 :- preferred(X,Y), preferred(Y,X).

3
4 orderedConflict(X,Y,I,F) :- conflict(X,Y,I,F), preferred(X, Y).

5 orderedConflict(Y,X,I,F) :- conflict(X,Y,I,F), preferred(Y, X).

6 orderedConflict(X,Y,I,F) :- conflict(Y,X,I,F), preferred(X, Y).

7 orderedConflict(X,Y,I,F) :- conflict(Y,X,I,F), preferred(Y, X).

8
9 baseSet(X) :- orderedConflict(X,Y,I,F).

10 revSet(Y) :- orderedConflict(X,Y,I,F).

11
12 {inSet(orderedConflict(X,Y,I,F))}

13 :- orderedConflict(Y,X,I,F).

14 :- inSet(orderedConflict(X, Y, I, F)),

3In the case of a tie, one set may be chosen at random; this does not affect the termination properties, since the
point of using the maximal independent conflict set is to remove as many conflicts as possible at each iteration of
the algorithm.
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15 inSet(orderedConflict(Y, N, I1, F1)).

16 :- inSet(orderedConflict(X, Y, I, F)),

17 inSet(orderedConflict(M, X, I1, F1)).

18
19 #maximize [inSet(orderedConflict(X, Y, I, F)) = 1].

When a set of conflicts of the form conflict(X, Y, I, F), is combined with the program Pψ̂
presented above, the solver finds a maximal independent conflict set ψ̂. Using the ASP solver

CLINGO, the program Pψ̂ generates the answer set representing all conflicts included in the set

ψ̂. Each conflict appears in the answer set as a fact inSet(orderedConflict(X, Y, I, F)). The

facts baseSet(X) and revSet(Y) also identify which institutions should be labelled as base

or revisable theory, respectively. Consequently, a maximal partial solution can be constructed

that resolves the conflicts specified in ψ̂.

Mode Declarations and Revision Tuples

We previously have described the purpose of mode declarations in the revision process but to

realise a computational solution, we need a representation. That is the purpose of this section

and as such, it is just a technical explanation of the means to synthesise the revisions of the

rules of a given institution (set of norms). The revision of a rule takes one of two forms:

(i) specialisation: in which a literal is added to the body, thus adding a constraint or

(ii) generalisation: in which a literal is removed from the body, thus removing a constraint.

Such a process characterises an abductive learning strategy: abducibles are added to or

removed from the body of knowledge. In order to guide this process, we use mode

declarations that constrain the search space and lead to the construction of revision tuples ρ

that describe specific rule revisions. In the following part of this section, we begin by

introducing a mathematical specification of mode declarations and follow it with the notion of

a revision tuple, which specifies each specific revision operation defined in such space. One or

more revision tuples comprise the final solution to the learning task in the later sections.

We firstly need to define a search space that encompasses all the possible literals that

could appear in either the head or the body parts of rules. Mode declarations serve for such

purpose, by which the rules can be constructed or restructured. Since conflicts are related to

the institutional states, the revisions are only concerned with those rules in the institutional

program that have an affect on the state, namely the rules comprising the generation G and

consequence relations C. Due to the well-defined shapes of G and C rules, as set out in

Section 3.1.1, mode declarations reflect those shapes to collect literals which could possibly

appear in either head or body parts of the rules we aim to revise. More importantly, mode

declarations also assign unique labels to those literals. By so doing, each literal can be

referred to by the label, rather than the complete form, in the revision tuples, therefore

minimising the grounding costs of the AnsProlog program.

For example, a typical generation rule has an institutional event, e.g.
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intRegister(Person), in the head, and an exogenous (or institutional) event

register(Person) and possibly some other fluents in the body, such as a power fluent

pow(castle, intRegister(Person)). An example is given below:

1 occurred(intRegister(Person), castle, I) :-

2 occurred(register(Person),castle, I),

3 holdsat(pow(castle,intRegister(Person)),castle, I),

4 person(Person), inst(castle), instant(I).

Therefore, for a G-rule, a mode declaration must include all the (possible) institutional events

for the head part and all the possible exogenous and institutional events and fluents for the

body part. For a C-rule, the head is typically one of an initiation or termination of a

permission P , empowerment W or obligation O, e.g. perm(serveInArmy(Person)), while

the body is normally an institutional (or exogenous) event intRegister(Person), possibly

accompanied by some other fluents, such as domain fluents gender(Person, male) and

ageOlder(Person, sixteen):

1 initiated(perm(serveInArmy(Person)),castle,I) :-

2 occurred(intRegister(Person),castle,I),

3 holdsat(gender(Person,male),castle,I),

4 holdsat(ageOlder(Person,sixteen),castle,I),

5 person(Person), inst(castle), instant(I).

From the examples above, we can observe that the G-rule and C-rule each have a particular

structure with specific kinds of literals in head and body parts. Therefore, in aiming to produce

revised rules of a consistent structure, the mode declarations have to be able to capture the

information necessary to constrain the structure. Precisely, we define head mode declarations

collecting all the possible head literals of an institution, which includes all the institutional

events and normative fluents. Likewise, the body mode declarations cover all exogenous and

institutional events, and all fluents.

Definition 17 (Mode Declaration) Given an institution I = 〈E ,F ,G, C,∆〉, a set of mode

declarations M is constructed, and hence the set of all compatible rules RM can be

established. M comprises the head mode declarations Mh
i and body mode declarations M b

i ,

where id is the unique label of the mode declaration and i identifies the institution. pre(e)

and pre(f) denote the predicate associated with the event e or fluent f , while var(e) and

var(f) denote the associated variables list for each, respectively.

The head mode declaration, Mh
i , identifies all the possible head parts of rules in I:

Mh
i =

 h

∣∣∣∣∣∣∣∣∣∣
∀e ∈ Einst · h = 〈id, i, pre(e), var(e)〉
∀f ∈ P · h = 〈id, i, pre(f), var(f)〉
∀f ∈ W · h = 〈id, i, pre(f), var(f)〉
∀f ∈ O · h = 〈id, i, pre(f), var(f)〉


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and the body mode declarations, M b
i , identifies all the possible body parts of rules:

M b
i =

 b

∣∣∣∣∣∣∣
∀e ∈ Eex · b = 〈id, i, pre(e), var(e)〉
∀e ∈ Einst · b = 〈id, i, pre(e), var(e)〉
∀f ∈ F · b = 〈id, i, pre(f), var(f)〉


Given the definition of mode declaration, we can generate the headMh

i and bodyM b
i mode

declarations for the events and fluents used given in the earlier examples as below:

Mh
i =

{
〈hIE 1, castle, intRegister, 〈Person〉〉
〈hINIT 1, castle, serveInArmy, 〈Person〉〉

}

M b
i =


〈bXE 1, castle, register, 〈Person〉〉
〈bW 1, castle, intRegister, 〈Person〉〉
〈bHO 1, castle, ageOlder, 〈Person, Age〉〉
〈bHO 1, castle, gender, 〈Person, Gender〉〉


Having defined the search space for rule construction, we now need to address each kind of

revision operation that can result in new rules. we operationalise this through the introduction

of revision tuples, which serve to denote each particular revision operation of the search space.

In practical terms, a revision tuple is a data structure that stores detailed information about

a revision operation. The key to forming revision tuples is to be able to generate revision

tuples for all possible revisions that could be applied to the rules of an institution. A deletion

operation is quite simple, because all we need to know is which part of which rule should be

removed. Addition is more complicated, because we need to consider not only which literal

to add, but also the relation between existing variables and those carried by the new literal.

Before formalising the definition of revision tuples, we first examine the binding relationships

between variables.

We adopt the notation h!id and h!var to refer to the unique identifier and variable list of

the mode declaration h. Based on the mode declaration sets, we then construct revision tuples

to prescribe possible revision operations in respect of each individual rule. However, knowing

what literals could possibly appear in the head and body part is not enough to explore all

possible patterns of a rule. We still need to look at the relations between variables (of the same

type) that occur in the literals.

When variables of the same type appear in both head and body, the binding relation

between them has to be taken into account. Even if the exact same set of predicates are used

to form the rules, different binding relations between variables may result in different

(patterns of) rules. For example, consider the following initiation rule, expressed in ASP:

1 initiated(head(P0, P1),I) :-

2 occurred(event(P0),I), holdsat(body(P1),I), instant(I),
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3 person(P0), person(P1).

The variables P0 and P1 are both of type person/1 and appear in the head literal. If the

revision proposes to add a new body literal newbodyliteral(P3) to this rule, with argument

P3, also of type person/1, i.e. person(P3), we then need to decide how P3 affects the head,

depending on the different possible binding relations between P0, P1 and P3, namely whether:

1. P3 is bound to P0 as P3 = P0

2. P3 is bound to P1 as P3 = P1

3. P3 is bound to both P1 and P1 as P3 = P0 = P1, or

4. P3 is not bound to any existing variables in the head.

Consequently, the four different cases give rise to four different forms for the revised rule,

which after adding the new body literal are:

1 initiated(head(P0, P1),I) :-

2 occurred(event(P0),I), holdsat(body(P1),I), instant(I),

3 person(P0), person(P1),

4 newbodyliteral(P3), person(P3), P3 = P0.

5
6 initiated(head(P0, P1),I) :-

7 occurred(event(P0),I), holdsat(body(P1),I), instant(I),

8 person(P0), person(P1),

9 newbodyliteral(P3), person(P3), P3 = P1.

10
11 initiated(head(P0, P1),I) :-

12 occurred(event(P0),I), holdsat(body(P1),I), instant(I),

13 person(P0), person(P1),

14 newbodyliteral(P3), person(P3), P3 = P0, P3 = P1.

15
16 initiated(head(P0, P1),I) :-

17 occurred(event(P0),I), holdsat(body(P1),I), instant(I),

18 person(P0), person(P1),

19 newbodyliteral(P3), person(P3).

In view of this, we need a way to explore all possible consistency-preserving patterns when

adding a new body literal to an existing rule in terms of the binding relations. We first collect

all the variables of the same type from the head and the new body literal. It is possible that all

the variables of the same type have a binding relation that can be captured by, e.g. P3 = P0.

When forming the new rules, each possible combination of the collected equality relations is

applied to refine the final rule structure.

To operationalise this, we encode the equality relations in a more convenient form, rather

than storing them explicitly, where we collect the relevant indices of the variables only. This
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representation, called a bound variable tuple, is defined over a pair of head and body (positive)

literal, where each element of the tuple corresponds to a body variable and collects the indices

of head variables whose type is the same as the body variable. The bound variable tuple

facilitates the subsequent process of forming the different rule patterns.

Continuing with the above example, the variable list of the head is h!var = 〈P0, P1〉 and

the indices of P0 and P1 are 0 and 1 respectively. The variable list of the proposed new body

literal is b!var = 〈P3〉 with 0 being the index of P3. The three variables are all of the same

type person/1, by our earlier assumption. Therefore, the bound variable tuple is a tuple of

tuples, which in this case is: 〈〈0, 1〉〉, where the indices of the outer tuple correspond to the ith

variable in the new body literal (in this case, the 0th variable, namely P3) and the indices of the

inner tuple show that P3 can be bound to the head variables with indices 0 and/or 1, namely P0

and P1.

The bound variable tuple is defined with the help of the type relation that indicates the

type of a variable: type(V ), which can be derived from the domain fluent declaration in the

institutional model. For example, the InstAL specification may contain a type declaration

type Person. This type may then be used in the model through the mechanism of a domain

fluent to express a type constraint by person(X), from which we can infer that X is of type

person/1.

Definition 18 Given a head mode declaration h and its associated variable list

h!var = 〈H1, ...,Hm〉, and a body mode declaration b and its associated variable list

b!var = 〈B1, ..., Bn〉, the bound variable tuple Ξhb for h and b is a n-tuple Ξhb =

〈LB1 , ..., LBn〉 where LBi = 〈j|1 ≤ j ≤ m, type(Bi) = type(Hj)〉. Each LBi of indexes of

head variables whose types are the same as the body variable Bi. Thus, the number of all

possible patterns formed by h and b is 2
∑n

1 |LBi
|.

Therefore, the nth element of Ξhb is a tuple of indexes of head variables whose types are

the same as the nth variable of the new body literal. The bound variable tuple Ξhb for a head

literal and a body literal is the key to the generation of all possible patterns of rules. All the

different patterns of a rule can be formed from Ξhb , and the number of all possible patterns is:

2
∑n

1 |LBi | where n =
∣∣Ξhb ∣∣ = |b!var|.

To confirm intuition of how this mechanism works, we illustrate this with a slightly more

complicated example, in which we consider the case of two types of variables. Suppose we

have h!var = 〈P1, P2, Q1〉 and b!var = 〈P3, Q2〉, such that P1, P2 and P3 are of one type and

Q1 and Q2 are of another. The corresponding Ξhb is then 〈〈0, 1〉, 〈2〉〉 in which the first inner

tuple is a collection of head variable indexes for P3 and the second for Q2. The ASP

translation of the variable bound tuple Ξhb is straightforward and have a general form:

link((0, ..., x)...(0, ..., y)). Therefore, 〈〈0, 1〉, 〈2〉〉 is encoded as link((0, 1), (2)) in ASP.

This representation of the bound variable tuple is used below in the formalisation of revision

tuples.
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Thus far now, we have looked at how to specify the possible patterns of a new rule after

revision. The next step is to describe the actual revision operations that result in the different

patterns. We introduce the notion of a revision tuple to serve this purpose, which essentially

encapsulates the details of a revision operation, such as (i) which rule of which institution is

proposed to be change, (ii) it is addressing an addition or deletion operation, (iii) which part

of the rule needs to be changed, (iv) how the variables are bound to one another in the cases

of addition operation, and (v) the associated cost. The bound variable tuple is an essential

component of a revision tuple ρ because it expresses the binding relationships between the

new body literal and the existing head literal. Now, we formally define the notion of a revision

tuple.

Definition 19 (Revision Tuple) A revision tuple ρ is the representation of a collection of

revision operations in respect of a particular rule: ρ = 〈I, RId,Θ, Cost〉, where I is the

institution to which the rule belongs and RId is the unique identifier of the rule in the

institution. Θ denotes the structure of the revised rule. Cost is the metric associated with

each revision operation. By default, Cost is 1 unit. There are two types of Θ, indicating

addition and deletion operations, respectively:

1. Θ = 〈h!id, b!id, form, Ξhb 〉, where h ∈ Mh
i , b ∈ M b

i and Ξhb is the bound variable

tuple. The element form denotes whether the body literal b appears in the positive or

negative form, i.e. either b or not b. A revision tuple ρ with such Θ implies an addition

operation which extends the rule with a new body literal bi in terms of Ξhb .

2. Θ = 〈h!id, bodyIndex〉 where h ∈ Mh
i and bodyIndex is the index of an existing

body. A revision tuple ρ with such Θ implies a deletion operation which removes the

body literal bbodyIndex from the rule.

The translation from the formal definition of revision tuple to ASP facts is straightforward.

Corresponding to the above definition, respectively:

1. Addition operations are encoded as

rev(Inst, RId, add((Hid, Bid, pos; neg, link((0, ..., N)...(0, ..., M)), Cost)

in which link((0, ..., N)...(0, ..., M)) is the bound variable tuple.

2. Deletion operations are encoded as

rev(Inst, RId, del((Hid, Bid)), Cost).

in which Inst, RId, Hid and Bid are the identification of institutions, rule, head literal

and body literal to be deleted respectively. The Cost defaults to 1 for removing a body

literal from a rule.
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1 initiated(perm(serveInArmy(Person)),castle, I) :-
2 occurred(intRegister(Person),castle, I),
3 holdsat(ageOlder(Person,sixteen),castle, I),
4 holdsat(live(castle),castle, I),
5 holdsat(gender(Person,male),castle, I),
6 person(Person), inst(castle), instant(I).

1 rev(castle, 2, del(hINIT_2, 1), 1).
2 rev(castle, 2, del(hINIT_2, 2), 1).
3 rev(castle, 2, del(hINIT_2, 3), 1).
4 rev(castle, 2, del(hINIT_2, 4), 1).
5 rev(castle, 2, add((hINIT_2, bHO_1, pos, link(0))), 1).
6 rev(castle, 2, add((hINIT_2, bHO_1, neg, link(0))), 1).
7 rev(castle, 2, add((hINIT_2, bHO_2, pos, link(0))), 1).
8 rev(castle, 2, add((hINIT_2, bHO_2, neg, link(0))), 1).
9 rev(castle, 2, add((hINIT_2, bHO_3, pos, link(0))), 1).

10 rev(castle, 2, add((hINIT_2, bHO_3, neg, link(0))), 1).
11 rev(castle, 2, add((hINIT_2, e, e, l)), 0).

Figure 4-11: Consequence rule example and the possible revisions generated

The revision tuples express all the possible revisions of the current institution model. We

employAnsProlog to implement the whole procedure and the translation from revision tuples

to corresponding ASP facts is demonstrated by the example of a consequence rule that initiates

the permission for serving in an army (see Figure 4-11).

The rule is accompanied by the set of revision tuples generated to describe all the possible

revisions to that rule. Each of the first four rev facts proposes a deletion operation on the

first four existing body literalsof the rule (with a rule identification number 2) respectively.

The last three literals are excluded from the learning process because such literals are merely

used for grounding variables and have no effect on institutional state transitions. The revision

tuples 5–10 correspond to operations that append new body literals to rule 2 where the mode

declaration id bHO 1, bHO 2 and bHO 3 denote the body to add. The argument with value pos

or neg indicates the two forms of the body b, i.e. either holdsat(b, I) or not holdsat(b, I).

Finally, if no revision is needed for rule 2, then the revision tuple on line 11 will be produced.

The algorithms (one for deletion one for addition) for the generation of all revision tuples

for a given institution program PI are discussed in the next section. We generate the revision

tuples, such as those shown in Figure 4-11, automatically from a syntactic analysis of the

InstAL specification following algorithms 1 and 2 presented in the next section (4.5.2).

4.5.2 Derivation of the Revision

To facilitate the inductive learning process, we need to apply certain syntactic transformations

to the answer set program PI of institutions I ∈ T in order to obtain the two revisable

programs, which are the bases for learning deletion and addition operations, respectively. The

two algorithms presented in this section detail these transformations. Before going into
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details, we give a conceptual explanation of these transformations.

Intuitively, when given an existing institution model, which leads to certain identified

conflicts, our aim is to find out which rules, or more precisely which parts of some rules, need

to be revised in order to remove those conflicts. The revisions typically involve deletion of

existing body atoms, or addition of new body atoms. Therefore, we need to adapt the existing

institution model to be ready for searching for possible operations in order to remove

conflicts. The following adaptations are designed for such purpose: we first use the try/3

predicate to label each body atom of the existing rules. Next, in the first algorithm 1, we

prepared for possible deletion operations. Each try/3 literal is extended by a pair of

use-delete rules, from which we can construct two variants of the institution model: one with

the atom referenced in the try/3 literal while the other without the referenced atom. The two

variants will be then examined in the later conflict resolution process (the final stage outlined

in Figure 4-12) to see in which the conflict would disappear in the resulting answer sets. If the

variant without the atom succeeds, it implies a deletion operation is needed. The relevant

revision tuples are also generated as part of this process and are used to capture the required

operations. In addition to seeking for delete existing atoms, algorithm 2 prepares for any

possibilities for adding new body atoms. We use the predicate extension/2 to label each head

atom of the rules, and extend the extension/2 rules with other valid literals to derive different

variants. If any of those variants in the later conflict resolution process remove the conflict,

then an addition operation is required. Having adapted the institutional models for seeking to

possible deletion and addition operations, the final conflict resolution process produces the

solutions containing required revision operations.

Algorithm 1 shows how PI is converted into the revisable model P̃ dI in order to learn the

deletion tuples and set the stage for learning new rules. The algorithm explores all possible

literals that can appear in the head parts of rules (line 2). For the heads that already exist,

the extension/2 facts are produced for each head and gathered in the set Ext (lines 4–6).

extension/2 facts prepare for learning the possible extensions of the body of each rule in the

next stage. Then, we generate try/3 literals for each existing body literal (lines 7–11). The

try facts are collected in the set Try. These try literals correspond to each existing body

literal, which is then combined with a pair of corresponding use and del literals in order to

decide if this body literal is to be kept or removed. Afterwards, the existing rule is rewritten

using the generated try/3 and extension/2. Apart from the head literals already existing in

the rules, there are also other literals that are defined in an institution and can be a head literal.

Those head literals are also captured by the head mode declarations. For those we also generate

extension/2 facts, which are then appended to the rule sets (lines 13–17).

A pair of use and del facts are produced for each try literal, indicating the associated

body part is to be kept or removed (lines 20–25). For removing a body literal, the corresponding

revision tuple is also generated and collected in the abducible set Abd. The set Use and Del

collect all the use and del statements generated.
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Algorithm 1 Producing Revisable Model for Learning Deletion tuples PI → P̃ dI

Input: an ASP program PI of an institution I = 〈E ,F ,G, C,∆〉, RId Mh and M b;
Output: Revisable model for deletion P̃ d

I ; Ext; Abd ; Try
1: Initialise:
Ext = ∅, Abd = ∅, Use = ∅, Del = ∅, Try = ∅
r = null, r′ = null
k = 0, i = 0

2: for all h ∈Mh do . for each possible head
3: if h is an existing head of r ∈ G ∪ C then
4: k ← number of body literals
5: ext← extension(RId, h).
6: Ext← Ext ∪ ext . collects ext literal
7: for i← 1, k do . for each body literal of a rule
8: bi ← the i-th body literal
9: ti ← try(RId, i, bi)

10: Try ← Try ∪ ti . collects each try literal
11: end for
12: r ← h :- t1, ...tk, ext . updates the rule r by try & ext
13: else . for other possible new heads
14: ext← extension(RId, h).
15: Ext← Ext ∪ ext
16: r′ ← h :- ext
17: G ∪ C ← G ∪ C ∪ r′ . adds possible new rules
18: end if
19: end for
20: for all t ∈ Try do . for each collected try literal
21: use← t :- bi. . bi is enclosed in t and use for keeping bi
22: del← t :- not bi, rev(I, RId,〈h!id, i〉, Cost) . del for discarding bi ;forms the revision tuple
23: Use← Use ∪ {use}
24: Del← Del ∪ {del}
25: Abd← Abd ∪ {rev(I, RId, 〈h!id, i〉 , Cost)} . collects all tuples for deletion
26: end for
27: P̃ d

I ← PI ∪ Use ∪Del

Having collected the extension/2 literals for all possible heads in the set Ext,

Algorithm 2 is applied to add new body literals to each head. All the exogenous and

institutional events, and all fluents, are considered since all of them can possibly appear on the

body part (line 3). However, we exclude the body literals that already exist in the rule, and

such bodies are collected in the set Try with {b | try(RId, i, b) ∈ Try}. By doing so, we

can avoid the situation that one literal is required to be added and removed in the same

revision. When the bound set of a body and the corresponding head is not empty, the process

continues to explore all the bound patterns between them (line 5). The new body literal is

either an event (lines 6–11) or a fluent (lines 14–16). In either case, the rules are structured in

both positive and negative forms. Finally the revision tuples rev/4 are also produced to

denote the associated addition operations, which are all collected in the abducible set Abd.

By means of these syntactic transformations, each institution I ∈ T is converted into

its revisable forms P̃ dI and P̃ aI . More importantly, all possible revision operations for I are
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Algorithm 2 Producing Revisable Model for Learning Addition tuples PI → P̃ aI

Input: an ASP program PI of an institution I = 〈E ,F ,G, C,∆〉; Mh;M b;Ext;Abd; Try
Output: Revisable model for addition P̃ a

I , Abd
1: Initialise:

Γh
b = ∅
pos = null, neg = null

2: for all ext = extension(RId, h) ∈ Ext do . for each ext
3: for all b ∈ (Eex ∪ Einst ∪ F) \ {b|try(RId, i, b) ∈ Try} do . explore bodies excl. existing
4: Γh

b ← bound set between h and b
5: if Γh

b 6= ∅ then . if no bounding relation
6: for all l ∈ Γh

b do . for each bounding pattern
7: if b ∈ Eex ∪ Einst then . if b is an event
8: pos← extension(RId, h):-
9: occurred(b, In, I), rev(I, RId, 〈h!id, b!id, pos, l〉, Cost).

10: neg ← extension(RId, h):-
11: not occurred(b, In, I), rev(I, RId,〈h!id, b!id, neg, l〉, Cost).
12: else . if b is a fluent
13: pos← extension(RId, h):-
14: holdsat(b, In, I), rev(I, RId, 〈h!id, b!id, pos, l〉 , D).
15: neg ← extension(RId, h):-
16: not holdsat(b, In, I), rev(I, RId,〈h!id, b!id, neg, l〉 , D).
17: end if
18: Ext← Ext ∪ {pos} ∪ {neg}
19: Abd← Abd∪ {rev(I, RId, 〈h!id, b!id, pos, l〉 , D)}
20: Abd← Abd∪ {rev(I, RId,〈h!id, b!id, neg, l〉 , D)}
21: end for
22: end if
23: end for
24: end for
25: P̃ a

I ← PI ∪ Ext

explored, with the corresponding revision tuples collected in the set Abd. Now we move to the

abductive stage to learn solutions using Abd.

Abduction and Optimisation

Both inductive and abductive learning take example as inputs, from which inductive learning

aims to learn a rule to generalise the example, while abductive learning seeks

explanations/causes for the example. In the CI-RES system, we achieve inductive learning by

abductive learning, through learning revision tuples for rules that invalidate the example. We

first synthesise the example from the composite traces that result in conflicts. We call these

example:

Definition 20 (Example) An example U = 〈TC ,Ψ(TC)〉, associated with a conflict

resolution task 〈C,�C , TC ,M, cost(C,C ′)〉, is defined by one or more conflict traces TC and

the resulting conflict set Ψ(TC).
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Given an input example and the revisable models P̃ dI and P̃ aI of the revisable institutions

PI ∈ T , we are ready for the next stage: abductive learning. The solutions are obtained from

the revision tuple set Abd, which satisfies the expected properties, i.e. absence of the conflicts

in the given example. With the other components forming the background theory, we can learn

all possible solutions H as a set of answer sets by means of an answer set solver. Each solution

actually suggests the revision operations (represented as revision tuple facts) needed to satisfy

the expected properties Ω = {¬c | ψ̂(TC) that the conflicts in the set ψ̂(TC) no longer occur.

Therefore, the property Ω is true in all answer sets produced by:

B ∪ P̃ dI ∪ P̃ aI ∪ Pdetect ∪ Ptrace ∪ PTC ∪ Ptime ∪Abd ∪H

B is the base theory containing the unchanged institutions, together with the revisable

institutions in revisable forms P̃ dI ∪ P̃ aI . The other components of the union are derived from

the conflict detection process. Together with H , the union satisfies the property Ω. CI-RES

uses the CLINGO [Gebser et al., 2011] answer set solver. Each generated answer set

represents a solution to the problem, i.e. a set of revision tuples denoting alternative

suggestions to revise the original coordinated institution C to C ′ which does not give rise to

conflicts when presented with the same traces TC .

As stated in the definition of conflict resolution task, we are only interested in the revision

with the minimum cost between C and C ′. Each produced solution comprises a set of revision

operations and in the absence of any reason to treat them differently, we associate a unit cost

with each revision operation, either addition or deletion. Therefore, the total difference in cost

between C and C ′ is the number of revision operations stated in a solution. In order to find

the solution resulting in the minimum cost, we take advantage of the aggregate statement

provided by CLINGO [Gebser et al., 2007], specifying a lower and an upper bound by which

the weighted literals can be constrained. Therefore, we append the ASP rule

: −not [rev( , , , Cost) = Cost]Max to each revisable theory. We apply an incremental

strategy for the variable Max, for example, if no solution can be found when Max = 1, then we

continue with Max = 2 and so on until a solution is found.

As the cost Max increases, the computation time increases accordingly, but the cost is

bounded because as we show in the later section 4.5.5, the whole search space of rules is

finite, so the number of possible operations is therefore bounded. Thus, there is a maximum

cost Max, which may imply deletion of all the existing rules, in which case, all the dynamic

rules driving the state evolution of institutions are removed and hence no fluents can ever be

initiated, meaning they are all false and hence no conflict is possible. Although this extreme

solution to conflict resolution is not desirable, it at least guarantees that we can always

terminate with a solution. The learning algorithm also terminates because it is impossible for

the same literal to be removed and added in the same cycle. This is because the deletion

operation is only considered for existing body literals, while the addition operation takes all

possible literals into account excluding the existing ones, as presented in the Algorithm 2.
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Figure 4-12 summarises the main procedure of CI-RES. For a given coordinated institution

C, the complete detection program PD (PD = Pdetect ∪Ptime ∪Pinst ∪Ptrace) discovers a set

of conflicts Ψ(TC) caused by one or more conflict traces TC , from which:

1. A maximal independent conflict set ψ̂(TC) ⊂ Ψ(TC) is derived to be the target for a

complete computational cycle of our conflict resolution system. (Section 4.5.1)

2. The conflicts in ψ̂(TC) partition all participating institutions into base institutionsB, that

are kept unchanged, and revisable institutions T , that are converted to revisable forms

P̃ dI and P̃ aI by means of the two algorithms mentioned above. (Section 4.5.2)

3. Subsequently, the system computes all candidate revisions to the revisable institutions,

collected in the set Abd in order to satisfy the property of removing the target conflicts

while using the base institutions B and the conflict trace associated with the target

conflicts PTC ∪ ψ̂(TC) as background knowledge. (Section 4.5.2)

4. Finally, the candidate revision H with minimum difference (in terms of cost) from the

original institutions is adopted to revise the revisable institutions. (Section 4.5.2)

We now illustrate how all these steps operate in practice using the working example introduced

in Section 4.3.3.

4.5.3 Conflict Resolution with One Conflict Trace

Continuing with the example used to demonstrate conflict detection in Section 4.3.3, we can

now see how those conflicts in Figure. 4-8 can be resolved. In Section 4.3.3, we detected

five conflicts from the two conflict traces tr1 and tr2, as listed in the grey box of Figure 4-

13 Given the five conflicts detected from the two conflict traces tr1 and tr2, we can draw the

corresponding conflict graph as shown in Figure 4-13.

A complete solution to tr1: In the following, we first demonstrate conflict resolution for

a single trace tr1. The trace tr1 leads to a set of conflicts Ψ(tr1) = {c1, c2, c3, c4}. With

regard to Def. 16, none of the conflicts are dependent and hence a complete solution to the set

Ψ(tr1) can be obtained by one iteration. All the above conflicts arise between either Realm

and Castle, or Lord and Castle. In the precedence order, Castle is placed lower thanRealm

and Lord. Consequently, to resolve all the conflicts in one run of CI-RES, PCastle is labelled

as revisable theory, whilst the other institutions PRealm and PLord are used as base theory. One

of the revision suggestions with the least cost is learned as the following set of revisions:

1 rev(castle, 1, add((hOCC1, e, e, l)),0).

2 rev(castle, 2, add((hINIT2, bHO2, neg, link(0))), 1).

3 rev(castle, 3, add((hINIT3, bHO1, neg, link(0))), 1).
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PD ∪ PC ∪ PTC

Conflict Detection

T

Algorithm 1

Ext

Algorithm 2

Conflict Resolution

PD

B

PTC ∪ ψ̂(TC)

Abd

H

P̃ dI
P̃ aI

START

END

Abd

Figure 4-12: Procedure Flow of CI-RES. Note: PD = Pdetect ∪ Ptime ∪ Ptrace
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1 c1 =conflict(castle,realm,tr1_3,perm(serveInArmy(tom)))
2 c2 =conflict(castle,lord,tr1_3,perm(serveInArmy(tom)))
3 c3 =conflict(castle,realm,tr1_3,obl(serveInArmy(tom),deadline,illegal(tom)))
4 c4 =conflict(castle,lord,tr1_3,obl(serveInArmy(tom),deadline,illegal(tom)))
5 c5 =conflict(realm,lord,tr2_3,perm(goToWar(westCastle)))

realm

lord

castle

c2

c1

c3

c4c5

Figure 4-13: Conflict dependence graph for the case study

The first tuple suggests no change is needed to rule 1 of PCastle. The next two tuples

express the addition of a new body literal not holdsat(onlySon(Person)) to the existing

rules 2 and 3. Consequently, to resolve all the conflicts in Ψ(tr1), rules 2 and 3 of PCastle
should be revised as in Figure 4-14.

1 initiated(perm(serveInArmy(Person)), castle, I) :-
2 occurred(intRegister(Person),castle, I),
3 holdsat(live(castle), castle, I),
4 holdsat(ageOlder(Person,sixteen),castle, I),
5 holdsat(gender(Person,male),castle, I),
6 not holdsat(onlySon(Person), castle, I),
7 person(Person), inst(castle), instant(I).

1 initiated(obl(serveInArmy(Person),deadline,illegal(Person)),castle,
2 I) :-
3 occurred(intRegister(Person),castle, I),
4 holdsat(live(castle), castle, I),
5 holdsat(ageOlder(Person,sixteen),castle, I),
6 holdsat(gender(Person,male),castle, I),
7 not holdsat(onlySon(Person), castle, I),
8 person(Person), inst(castle), instant(I).

Figure 4-14: Resolution Result to Conflicts derived by tr1

The revised rules specify that the military service policy is only applicable for male citizens

who are older than 16 years and who are not the only son of the family. Currently we only use

cost as the criterion to guide the system in finding solutions. It is possible that there might be

more than one solution derived at the same minimal cost. Therefore, one promising direction

of future work is seeking more criteria to select the most appropriate solution or constrain the

search process further.
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Having demonstrated how conflicts can be resolved based on a single trace, we then extend

our mechanism to resolve conflicts across traces in the next section, followed by an illustrative

example from the case study in Section 4.3.3.

4.5.4 Conflict Resolution with Multiple Conflict Traces

In the previous section, we described a complete computation cycle of CI-RES resulting in a

maximal partial solution, which could also be a complete solution if there are no dependent

conflicts. Each computation cycle aims to resolve conflicts in a maximal independent conflict

set ψ̂, and the process iterates with the remaining conflicts until all conflicts have been resolved.

In the section, we show that the approach can also resolve conflicts across multiple conflict

traces, because the conflicts resolved in each computation cycle need not be restricted to just

one trace: Firstly, the method for obtaining maximal independent conflicts set is not limited to

a single trace because it is a general way to obtain the maximal independent coverage from a set

of arbitrary conflicts, regardless of origin. Therefore, the process can be made more efficient

if we extend the method to derive ψ̂ from conflicts caused by a set of traces TC if the conflicts

are independent. Furthermore, since we align distinct time instants in the different traces, the

state changes associated with each trace can be differentiated and the resulting state changes do

not interfere during the conflict detection and resolution processes. Consequently, the conflict

resolution mechanism can be extended to handle multiple traces. An example is given below.

Conflict resolution across traces tr1 and tr2: According to the conflict graph in Figure 4-

13, two iterations are needed to reach a complete solution to resolving all the five conflicts. A

possible allocation of the conflicts resulting in two independent conflict set is {c1, c3, c5} and

{c2, c4}. Such allocation does not yield the maximal independent conflict set in each iteration,

but it fits the demonstration purpose that conflicts derived from multiple traces can be resolved

in one iteration without interference. This implies that these conflicts in the set can be resolved

together within one computation cycle of CI-RES even though they are caused by two different

traces tr1 and tr2. In order to distinguish the two traces, as well as the corresponding state

changes, we adopt a mechanism very similar to the one used in conflict detection across traces.

We assign a unique time instant for each event trace so that all traces can drive their state

transitions separately. In the first iteration, by treating both PCastle and PLord as revisable

theory and keeping PRealm fixed, a revision suggestion for PCastle and PLord can be produced:

1 rev(castle, 1, add((hOCC_1, e, e, l)),0).

2 rev(castle, 2, add((hINIT_2, bHO_2, neg, link(0))),1).

3 rev(lord, 3, del(hINIT_3, 3), 1).

The first two revision tuples also suggest no modifications to rule 1 and add a new body

literal not holdsat(onlySon(Person)) to the existing rule 2, while the third proposes

removing the constraint of being attacked holdsat(attacked(Castle), I) – which is the
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third body literal – from rule 3 of institution PLord. Therefore the rule is revised to be:

1 initiated(perm(goToWar(Castle)), lord, I) :-

2 occurred(intDemandToFight(Castle), lord, I),

3 holdsat(live(lord), lord, I),

4 holdsat(attacked(Castle),I),

5 castle(Castle), inst(lord), instant(I).

Now, regardless of whether it is being attacked, the Castle is permitted to fight if there is a

demand from higher authorities. By applying these revisions, the conflicts {c1, c3, c5} under

the scenarios described by tr1 and tr2 would no longer arise. The second iteration then targets

the conflict set {c2, c4} and produced the same solution as in Section 4.5.3. Therefore, by

applying the revisions shown in Figure 4-14, the remaining two conflicts are resolved. Up to

here, we reach a complete solution to the whole conflict set {c1, c2, c3, c4, c5} derived by two

different traces.

4.5.5 Evaluation and Complexity

In this chapter, we reported a novel and fine-grained conflict resolution approach implemented

by inductive logic programming. Normative conflicts are transformed into negative examples

to feed the conflict resolution system, through which the conflict-free coordinated institution

can be derived by revision of the norms belonging to specific identified institutions. The

approach offers the following properties: (i) correctness: the produced solutions guarantee

the removal of target conflicts. (ii) completeness: due to the nature of ASP, all possible

solutions to a resolution task are generated. (iii) minimum: with the help of the cost function,

the selected solutions have the minimal differences with the original specifications.

ILP has been widely used in classification and inductive learning tasks. For classification

tasks, ILP aims to learn a general hypothesis H to explain as many training example as

possible, where noisy example are likely to be included. The evaluation of H is then based on

the accuracy of the hypotheses. When the goal of ILP tasks is to learn solutions to satisfy

certain properties (e.g. absence of conflicts in our case) with the combination of a base theory,

the evaluation focuses on the complexity of obtaining these solutions [Corapi, 2011]. The

usage of ILP in this work is aligned with the latter kind of application and so we evaluate our

mechanism in terms of complexity.

The problem we address in this work is similar to norm synthesis, as both problems are

attempting to obtain a set of norms/rules satisfying certain properties and constraints. The norm

synthesis problem is demonstrated to be NP-complete problem in [Shoham and Tennenholtz,

1995].

In the following part of this section, we look at what factors have an effect on the

complexity and computation time of our mechanism. For most ASP solvers, the initial

grounding phrase consumes a significant amount of the total computation time and hence the

size of the search space is a very important factor. As formalised in Def. 17, the search space
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RM is defined by the mode declaration M , according to which a set of candidate rules can be

constructed. Therefore we measure the size of the search space |RM | by the number of

candidate rules. Since each rule is either a G rule or a C rule, |RM | is the sum of their total

number: |RM | = |G| + |C|. By exploring all possible patterns of rules in RM , the upper

bound of the number of candidate rules is determined by the upper bounds for |G| and |C|.
The following factors contribute to the number of different generation rules |G| an

institution could have: (i) only institutional events can appear in the head of a generation rule

and hence we need to consider the number of such events |Einst|, (ii) the body is normally

formed from an external event or an institutional events, so the number of both types of events

are included |Eex + Einst|, (iii) The depth d of the body part is a measure of literals in the

body part. The body is also followed by d − 1 fluents either in positive or negative form,

which gives us (2 × |F|)d−1 possibilities, (iv) finally we also need to consider the different

variants of a rule due to the binding relations between variables of the same type (cf. Def. 18).

Likewise, for consequence rules, except instead of having institutional events in the head,

there is typically a fluent, either initiated or terminated, and hence we consider the number of

such fluents in both cases 2× |F|.
For generate rule set G:

|G| 6
∣∣∣Mh
G

∣∣∣× ∣∣∣M b
G

∣∣∣× 2|
∑n

1 LBi |

6 |Einst| × |Eex + Einst| × (2× |F|)d−1 × 2m×n

For consequence rule set C:

|C| 6
∣∣∣Mh
C

∣∣∣× ∣∣∣M b
C

∣∣∣× 2|
∑n

1 LBi |

6(2× |F|)× |Eex + Einst| × (2× |F|)d−1 × 2m×n

In both cases the upper bound for 2|
∑n

1 LBi | is:

2|
∑n

1 LBi | 6 2m×n,m = |h!var| , n = |b!var|

In the case of generate rules, the head literal is an institutional event, while the body part

with depth d is formed by one event, either exogenous or institution, and several fluents in

either positive or negative forms. On the other hand, the consequence rules have fluents in

the head, either initiated or terminated, and also have one event and d − 1 fluents in the body.

In addition, we also need to explore all possible binding relations between variables of the

same type appearing in head and body (cf. Def. 18). The worst case is that all variables are

of the same type, so each body variable can possibly be bound to each of the head variables,

which gives us 2m×n cases, where m and n are the number of variables in the head and body,

respectively.

From the formulae above, we can observe that the dominating factors affecting the size of
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search space are the depth of rules and the number of variables. It also justifies the optimisation

mechanism of Section 4.5.2, in which we select the solution with the minimum cost, because

that yields rules with the least additional depth at each cycle.

4.5.6 Summary of conflict resolution

We now conclude Section 4.5 and reiterate the main points covered. We have explored in

detail the mechanism of conflict resolution. We first discuss how to convert the conflict

resolution task to a prototypical ILP learning task that views conflict-free as the expected

property, detected conflicts as learning (negative) example and revisions as the final learning

result. To improve the efficiency of the approach, we have designed it to deal with as many

conflicts as possible in one cycle of the method. Moreover, we established that the conflicts

can come from multiple conflict traces. The whole procedure is implemented and automated

using ASP and the final optimal solutions with minimum cost are the suggested revisions to

the least important institutions such that the revised coordinated institution will no longer

bring about the conflicts in the learning example.
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An important assumption made in coordinated institutions is that the analysed institutions do

not interact with each other. This is an assumption which does not always hold in reality

because interactions between institutions are likely. From the institutional perspective, there

are potential benefits of addressing the interactions among institutions, because an individual

institution may simply provide a function – such as the enforcement of an obligation – which

only makes sense when combined with another institution – such as the one that issues the

obligation. It is for such reason that we propose the concept of interacting institutions.

Furthermore, allowing for interactions of institutions might pose more challenges to detect

and resolve normative conflicts, because under such context we need to consider a new type

of conflciting situtions where a pair of institutions might bring contrary effects to the state of a

third commonly-connecting institution via interacting rules, and such conflicts are named as

derived conflicts which will be detailed in Section 5.2 on page 119.

Inspired by Cliffe et al.’s [Cliffe et al., 2007b] concept of multi-institutions, we put

forward an alternative formulation, in which we separate out the cross-institutional rules into

a bridge institution, rather than embedding them in the individual institutions, to define

interacting institutions. This approach, we believe, allows for greater flexibility and offers the

possibility of re-use. That is, the autonomy and independence of each individual institution is

well retained such that each institution can either join in an interacting structure or stand alone

on itself. We also note that we account for naming overlap between the institutions, which is

assumed not to occur in [Cliffe et al., 2007b].

In this type of composition, some event in one institution can trigger the occurrence of an

event or can alter the state of another institution. To this end, we introduce two new sets of

rules: cross-institution generation rules and cross-institution consequence rules. The former

generates events in other institutions, while the latter alters the state of different institutions.

These are specified in a so-called bridge institution, which connects a set of individual

institutions 〈I1, . . . , In〉 to make them be oblivious to their interaction partners. Bridge

institutions maintain the reusability and flexibility of individual institutions, which therefore
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Environment

ObsEva0 ObsEva1 ObsEva2 ObsEva3

Institution a

S0 S1

InstActa0
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InstActa1
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InstActb0
S2

InstActb1

Bridge Institution

ObsEvb0 ObsEvb1 Generation Rules

Consequence Rules

Cross-Institution
Generations Rules

Cross-Institution
Consequence Rules

Figure 5-1: Cross-Institution Generation and Consequence Functions

can still either stand alone or be combined with any other interacting institutions. Figure 5-1

provides a schematic example of an interacting institution. The exogenous event ObsEva0 and

ObsEva2 generate actions InstActa0 and InstActa1 for institution a, respectively, which then

bring about events ObsEvb0 and ObsEvb1 for institution b via cross-institution generation

rules, in order to eventually trigger the corresponding institutional actions InstActb0 and

InstActb1 for institution b. In short, we can observe that with the help of cross-institution

generation rules, an institution can generate events for another institution. For example, the

data sharing activity of Facebook can be interpreted as unauthorised data exporting by the EU

privacy law if there is no adequate protection provided by the NSA . Moreover, institution b

can change the state of a by means of cross-institutional consequence rules, as denoted by

dashed blue arrows in Figure 5-1. An example of this is that EU privacy law can terminate

the permission of Facebook’s data sharing activity.

To translate events from one institution to another and to change the state of another, it

needs to be authorised. Therefore, there are three new sets of empowerment fluents: Wg,Wi

andWt, allowing the generation of events gpow(s, e, d), the initiation of fluents ipow(s, f, d)

and the termination of fluents tpow(s, f, d) respectively, with s the source institution and d the

destination of event e or fluent f , taking into account that the destination institution needs to

recognise the event or the fluent. Together these new empowerment fluents are denoted as Fx.

They can be derived automatically from the individual institutions.

Interactions between institutions introduce more possibilities for normative conflict to

occur. In this case, we need to be able to detect not only the conflicts that directly arise

between institutions, but also those indirectly caused by the external sources due to the
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cross-institution rules. For example, EU privacy law can externally terminates Facebook’s

permission of sharing user data with NSA, which is against the internal decision of Facebook

in that NSA is a trusted party for Facebook. The same mechanism of conflict resolution might

still be applicable in such new circumstance, except we need to consider the position of a

bridge institution in the precedence.

In the following parts of this section, we start by the definition of interacting institutions

where detailed formal modelling and computational implementation are given in Section 5.1.1

and 5.1.2. Afterwards, we continue with conflict detection and resolution in such new

combination of institutions in Section 5.2 on page 119 and 5.3 on page 130 respectively. An

example on European digital privacy will be used to illustrate the modelling and conflict

analysis of interacting institutions in Section 5.1.4 on page 114.

5.1 Modelling of Interacting Institutions

5.1.1 Formal Model of Interacting Institutions

Interacting institutions suggest an interacting structure among a set of institutions. In contrast

to coordinated combination where all institutions operate individually, interacting institution

suggests that an institution can be influenced or governed by another .

The set of all events that could occur within an interacting institution Cm is denoted as

Em, comprising the events of each individual institutions. The set of fluents is also formed by

the fluents defined in each individual institution, but appended with a new set Fx containing

the cross powers fluents. There are three new sets of powers Wg, Wi and Wt defined to

authorise cross-institution rules, the union of which is denoted as Fx. The initial state of

those new cross powers fluents is given in δx. The state of an interacting institution Cm is

a tuple containing a state for each participating institution. The initial state ∆m is the tuple

containing the initial state ∆i of each Ii in Cm and the initial state δx of Fx. State conditions

are also expressed as a tuple rather than an individual set with each element a state condition

of the individual institutions and the bridge institution. The set of all these state conditions

is denoted as Xm. As a consequence, an interacting institution Cm is denoted by a tuple

Cm = 〈{I1, . . . , In}, �Cm , Fx, Gx, Cx, δx〉. Details of the formal model can be found in

Figure 5-2.

To facilitate modelling such structure, we need to introduce two new sets of rules:

cross-institution generation rules and cross-institution consequence rules to the existing

single institution model, as well as a new set of power fluents Fx which grant the power for

external institutions to influence an institution. The semantics of an interacting institution

follows the same pattern as the coordinated institutions. After the occurrence of the

exogenous event, all participating individual institutions compute the resulting institutional

events - if the event is not recognised the result is an empty set. To assure a state change –

guaranteeing the synchronised state transitions for all institutions involved, an exogenous null
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Cm = 〈〈I1, . . . , In〉, �Cm , Fx, Gx, Cx, δx〉:

1. Ii = 〈E i,F i,Gi, Ci,∆i〉

2. Em =
⋃n
i=1 E i

3. Fx =Wg ∪Wi ∪Wt :

a. Wg = {p | p = gpow(s, e, d), e ∈ Ed, d ∈ 1, . . . , n, s ∈ 1, . . . , n}
b. Wi = {p | p = ipow(s, e, d), e ∈ Fd, d ∈ 1, . . . , n, s ∈ 1, . . . , n}
c. Wt = {p | p = tpow(s, e, d), e ∈ Fd, d ∈ 1, . . . , n, s ∈ 1, . . . , n}

4. Fm =
⋃n
i=1 F i ∪ Fx

5. Gx : Xm × Em → 〈2E1 , . . . , 2En , 2Em〉

6. Cx : Xm× Em → 〈2F1
, . . . , 2F

n
, 2F

m〉 ×〈2E1 , . . . , 2Fn
, 2F

m〉

7. δx ∈ 2F
x

8. ∆m = 〈∆1, . . . ,∆n, δ
x〉

9. Xm = 〈2F1∪¬F1
, . . . , 2F

n∪¬Fn
, 2F

m∪¬Fm〉

10. φm = 〈φ1, φ2, . . . , φn〉

Figure 5-2: Formal model of Interacting Institution Cm

event is introduced for each institution. For each institutional event generated by the

individual institutions, the cross-institution generation function will see if a rule exists for the

event, that the state matches the conditions and that the interacting institution has the power to

generate the associated events. For each individual institution, these cross-institution

generated events are added to the generated events to see if more events need to be generated.

This process continues until a fixpoint is reached for all institutions involved. Once

established, the corresponding fluents are initiated and terminated. For the cross-institution

consequence relation, these fluents are only considered if the interacting institution has the

power to alter the fluent(s). Next, we give more details about the cross-institution generation

rules and cross-institution consequence rules.

To enable the interaction between institutions, an institutional action of a (source)

institution can bring about an exogenous event to be observed by another (destination)

institution, which in turn generates the corresponding institutional action for the destination

institution. As shown in Figure 5-1 on page 104, the institutional actions InstActa0 and

InstActa1 of A generate the exogenous events ObsEvb0 and ObsEvb1 of B, respectively. The

Cross-institution generation relation Gx is proposed to name this relation, as denoted by

dashed black lines in the figure. For example, non-consensual data sharing with NSA of

Facebook is interpreted as data exporting to a party outside EU for EU privacy law.
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Definition 21 Cross-Institution Generation Relation Gx: Given an interacting institution

Cm, Gx is responsible for bridging event generation across individual institutions.

Gx : Xm × Em → 〈2E1 , . . . , 2En , 2Em〉, ∀Ii ∈ I.

Therefore, the set Gx(φm, e) includes all events generated by the event e across all the

institutions subject to a state matching φm. Based on the current state, as expressed by the

state conditions, a recognised event of one individual institution will trigger one or more

events in one or more institutions. We define Sm as a state of Cm, which is a tuple of the

states of all participating institutions: Sm = 〈S1, S2, . . . , Sn〉. The state of one particular

individual institution is indicated by Si. All possible states of Cm is captured by

Σm = 〈Σ1,Σ2, . . . ,Σn〉. The state formula is also extended for the context of an interacting

institution to be φm. Each state formula φm consists of the state formula for each participating

institutions φi ∈ φm. Besides, we also use UmE to capture all events that might occur under the

context of an interacting institutions, including the ones that are recognised by none of the

individual institutions. The generation operator of each institution Ii in an interacting

institution can be updated to GRx
i : Σm × 2U

m
E → 2E

i
as below:

GRix(Sm, E) =
e ∈ E i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e ∈ E ∩ E i,
∃ e′ ∈ E ∩ E i, e ∈ Gx(φi, e′) · e ∈ E iact ∧ Si |= pow(e) ∧ Si |= φi ∨
∃ e′ ∈ E ∩ E i, e ∈ Gx(φi, e′) · e ∈ E iviol ∧ Si |= φi ∨
∃ e′ ∈ E ∩ E i · e = viol(e′), Si |= ¬perm(e′) ∨
∃ e′ ∈ E i, d ∈ E · Si |= obl(e′, d, e) ∨
∃ e′ ∈ E ∩ Ej , Ii 6= Ij , e ∈ Gx(φm, e′) · Sm |=gpow(j, e, i) ∧ Sm |= φm


The first condition conserves the already occurred events that can be recognised by Ii.

The second and third condition include the institutional events and violation events generated

internally. Besides, violations are also generated for the violation events and non-satisfied

obligations when a deadline is due, as expressed by the fourth and fifth conditions. Finally,

subject to the presence of the required power gpow, the last condition includes the events

generated by other institutions that can be recognised by Ii.
Given a set of events and a certain state of an interacting institution, the operator

GRix(Sm, E) produces a set of events for the participating individual institution Ii. The

operator can be applied iteratively until it reaches a fixed point GRω,ix (Sm, {e}) which

includes all the events generated for Ii.
An institution can be influenced by another institution by means of initiating or terminating

its fluents. As illustrated in Figure 5-1 on page 104, the institutional action InstActb1 changes

its own state, after which the change can also have impact on the states of the institution A by

applying cross-institution consequence rules Cx (i.e., C↑(Sm, e) and C↓(Sm, e) ), indicated by
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blue dashed lines.

Definition 22 Cross-Institution Consequence Relation Cx: Given an interacting institution

Cm, Cx bridges the consequence relation across individual institutions and Cx : Xm × Em →
〈2F1 , . . . , 2Fn , 2F

m〉 × 〈2F1 , . . . , 2Fn , 2F
m〉, ∀Ii ∈ I.

Therefore, Cx(φm, e)↑ and Cx(φm, e)↓ indicate all the fluents of the institution Ii that are

initiated and terminated respectively. Based on the current state, as expressed by a state

condition and the occurrence an event in one of institutions, the cross-consequence relation

determines which fluents need to be initiated or terminated in all the participating institutions.

The consequence operator for interacting institution is formed by the initiation operator

INITx and termination operator TERMx. Having introduced the cross-institution consequence

relations Cix, both operators are adapted. The initiation operator for an institution Ii ∈ Cm is

denoted as INITx
i : Σm × 2E

m → 2F
i

defined as below:

INITx
i(Sm, eex) ={

f ∈ F i

∣∣∣∣∣ ∃ e ∈ GRω,i
x (Sm, {eex}) · f ∈ Cx(φi, e)↑, Si |= φi ∨

∃ e ∈ Ej , Ii 6= Ij · f ∈ Cx(φm, e)↑, Sm |= φm ∧ Sm |=ipow(j, f, i) ∨

}

The first condition includes all fluents initiated by its own initiation relation while the

second condition also encloses the fluents initiated by the other institutions. Likewise, the

termination operator TERMx
i : Σm × 2E

m → 2F
i

is defined as below:

TERMx
i(Sm, eex) = f ∈ F i

∣∣∣∣∣∣∣∣∣
∃ e ∈ GRω,i

x (Sm, {eex}) · f ∈ Cx(φi, e)↓, Si |= φi ∨
f = obl(e, d, v) ∈ F i ∧ f ∈ Si ∨
f = obl(e′, e, v) ∈ F i ∧ f ∈ Si ∨
∃ e ∈ GRω,j

x (Sm, {eex}) · f ∈ Cx(φm, e)↓, Ii 6= Ij , Sm |= φm ∧ Sm |=tpow(j, f, i) ∨


The first condition includes the fluents of Ii initiated internally by the institution itself. The

second and third condition terminate the obligations that have been fulfilled or whose deadline

is due. The final condition includes the fluents of Ii terminated by other institutions subject to

the presence of power tpow.

By combining these two functions together, we can derive an overall transition function

TRx
i : Σm × Emex → Σm, which determines the next state of an institution Ii:

TRx
i(Sm, eex) =

{
p ∈ F

∣∣∣∣∣ p ∈ Sm \ TERMx
i(Sm, eex) ∨

p ∈ INITx
i(Sm, eex)} ∨

}

The aforementioned two new cross-institution relations Gx and Cx are defined to facilitate

the interaction among institutions. However, those cross-institution rules are only needed
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when individual institutions are required to form a combination. It is rather sensible to situate

those rules in a separated repository. Moreover, from the perspective of design and modelling,

it is an impractical and tedious procedure to embed these cross-institution rules inside each

participating institution, ensuring the interactions with other external institutions, because:

• the autonomy and independence of each individual institution is expected to be preserved

such that an individual institution can either join in an interacting setting or operate on

itself.

• it is unlikely for designers to have the knowledge about which other institutions an

institution will combine with in the future when designers model the institution.

• if all these cross-institution rules can be collected in a separate component independent

from all the participating institutions, it would be very beneficial for further management

and maintenance.

• such separate entity is not bound to any fixed set of institutions and hence has higher

flexibility and reusability.

Therefore, we introduce a specific type of artifact institutions bridge institutions, to the

model of interacting institution Cm, as shown by the red dashed lines in Figure 5-1 on page

104. A bridge institution is a new component containing all the cross-institution rules. A

bridge institution is able to recognise all the linking events and fluents which are involved in

those cross-institution rules. The existence of a bridge institution enables individual

institutions to form an interacting combination without sacrificing their own autonomies. A

bridge institution and a set of individual institutions are able to render an interacting

institution. All related cross-institution rules and powers that authorise these rules and

specified in bridge institutions. Shortly, we will extend the language InstAL to represent the

new components in a bridge institution in Section 5.1.3 on page 110.

Having introduced each component of forming an interacting institution, we now give the

formal definition of an interacting institution:

Definition 23 Interacting Institution Cm: A set of institutions {I1, . . . , In} forms an

interacting institution Cm = 〈{I1, . . . , In}, �Cm , Fx, Gx, Cx, δx〉. A strict total

precedence relation �Cm is defined over the set of participating institutions {I1, . . . , In}.

5.1.2 Modelling Interacting Institutions Using Answer Set Programs

As with coordinated institutions, the semantics is expressed in terms of composite traces, a

sequence of exogenous events from participating institutions. This results in a sequence of

states of the interacting institution, which is called an interacting model. From this we obtain

the corresponding models for the individual institutions.
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Gx(Sm, e) = E ⇔ ∃g ∈ E,Sm |= Xm

occurred(g, InstD, T)←
occurred(e, InstS, T), holdsat(gpow(InstS, g, InstD), bridge, I),

inst(InstS), inst(InstD), inst(bridge), EX(Xm, T ), instant(T).

Cx(Sm, e)↑ = P ⇔ ∃p ∈ P, Sm |= Xm

xinitiated(p, D, T)←
occurred(e, S, T), holdsat(ipow(S, p, D), bridge, T),

inst(InstS), inst(InstD), inst(bridge), EX(Xm, T ), instant(T).

Cx(Sm, e)↓ = P ⇔ ∃p ∈ P, Sm |= Xm

xterminated(p, D, T)←
occurred(e, S, T), holdsat(tpow(S, p, D), bridge, T),

inst(InstS), inst(InstD), inst(bridge), EX(Xm, T ), instant(T).

Figure 5-3: Translation of cross-institution rules in a Bridge Institution

The translation to AnsProlog is relatively straightforward. The composite traces and their

associated models can be obtained as the answer sets of the program. The individual

institutional models can be retrieved by only selecting fluents from a specific institution using

the extra Inst argument of holdsat(F, Inst, I).

The corresponding ASP translation of an interacting institution is similar to the coordinated

institutions, but we need to provide a way to implement the cross-institution rules and cross-

institution powers. Table 5-3 gives an overview of translating those rules. The format of

these rules is very similar with internal generation and consequence rules, but in this case we

need to include necessary powers to authorise the application. The Gx(Sm, e) rules can be

applied when the necessary empowerment gpow(s, e, d) is applied. Likewise, ipow(s, f, d)

and tpow(s, f, d) are needed to allow Id to initiate or terminate the fluent f of Is. These

power fluents have corresponding ASP representations such as gpow(InstS, e, InstD) and

ipow(InstS, f, InstD). We also design different atoms xinitiated and xtermianted to

represent cross-institutional rules specifically. More details of the bridge institution and its

rules are discussed in the next section 5.1.3.

5.1.3 InstAL Representation for Interacting Institutions

Each participating institution of an interacting institution can still be represented by following

ordinary single institutions in Section 3.1.3. However, the bridge institutions need special

treatment because the syntax of cross-institutional rules are rather different from internal rules.

In the following part of this section, we concrete on introducing InstAL representation of a

bridge institution.
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Cross-institution Generation Powers and Rules As introduced in Def.21 on page 107,

cross-institution generation rules bridge event generation across individual institutions such

that an institutional event of one institution can trigger an exogenous event of another. To

empower these rules, the cross-institution fluents gpow are also required to be defined. The

example InstAL modelling language for defining the cross-institution generation rules and

powers are given below:

cross fluent gpow(Inst, iename1(TypeA, TypeB), Inst);

A cross-institution generation power gpow is defined with the first and third parameter

denoting the source and destination institution respectively. The Inst in the gpow declares

the type of the parameter. The second parameter is the event which is generated. Therefore,

the gpow declaration can be read as the source institution brings an event ename1(TypeA,

TypeB) for the destination institution. Four examples of defining cross-institution generation

powers can be found in line 21-24 in Figure 5-9 on page 122 . The ASP rules below describe

the same declaration, but in the form of ASP:

1 fluent(gpow(Inst0, iename1(TypeA, TypeB), Inst1), bridge) :-

2 inst(Inst0; Inst1; bridge), event(iename1(TypeA, TypeB)),

3 evinst(iename1(TypeA,TypeB),Inst1),typea(TypeA),typeb(TypeB),

4 evtype(iename1(TypeA,TypeB),Inst1),ex).

5 ifluent(gpow(Inst0, iename1(TypeA, TypeB), Inst1), bridge) :-

6 inst(Inst0; Inst1; bridge), event(iename1(TypeA, TypeB)),

7 evinst(iename1(TypeA,TypeB),Inst1),typea(TypeA),typeb(TypeB),

8 evtype(iename1(TypeA,TypeB),Inst1),ex).

The cross-institution powers belong to the bridge institution. The evinst atom ensures

the event ename1 is an event of institution Inst1, while the evtype confirms the type of the

event is exogenous ex. Based on the power defined above, we could have a cross-institution

generation rule as below in InstAL :

ievent(TypeA, TypeB) xgenerates ename1(TypeA, TypeB)

if fname1(TypeA), not fname2(TypeB);

The rule defines that an institutional event ievent generates an event ename1 when certain

condition is matched, which is characterised by the presence of the fluent fname1 and absence

of the fluent fname2. Two actual examples of defining cross-institution generation rules can

be found in line 31-38 in Figure 5-9. The corresponding ASP representation is given below:

1 occurred(iename1(TypeA, TypeB),Inst1,I) :-

2 occurred(ename(TypeA, TypeB),Inst0,I),

3 holdsat(gpow(Inst0, iename1(TypeA, TypeB), Inst1),bridge,I),

4 holdsat(fname1(TypeA), Inst1, I),

5 not holdsat(fname2(TypeB), Inst1, I), instant(I)

6 inst(Inst0;Inst1;bridge), typea(TypeA),typeb(TypeB).
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Cross-institution Consequence Powers and Rules By means of cross-institution

consequence rules, institutions are able to influence each other, as explained in Def.22 on

page 108. The occurrence of an event can initiate or terminate the fluents of different

institution. Again, a set of cross-institution consequence powers is defined to empower those

rules. The InstAL language helps to define them as below:

cross fluent ipow(Inst, fname1(TypeA, TypeB), Inst);

cross fluent tpow(Inst, fname2(TypeA, TypeB), Inst);

The atom ipow and tpow express the initiation and termination power respectively. The two

declarations define the two powers authorising two cross-institution rule: one initiates the

fluent fname1 and the other terminates fname2. The InstAL declarations of powers are then

translated into ASP representation as below:

1 fluent(ipow(Inst0,fname1(TypeA, TypeB),Inst1), bridge) :-

2 fluent(fname1(TypeA, TypeB), Inst1).

3 inst(Inst0;Inst1;bridge), typea(TypeA),typeb(TypeB).

4 ifluent(ipow(Inst0,fname1(TypeA, TypeB),Inst1), bridge) :-

5 fluent(fname1(TypeA, TypeB), Inst1).

6 inst(Inst0;Inst1;bridge), typea(TypeA),typeb(TypeB).

7
8 fluent(tpow(Inst0,fname2(TypeA, TypeB),Inst1), bridge) :-

9 fluent(fname1(TypeA, TypeB), Inst1).

10 inst(Inst0;Inst1;bridge), typea(TypeA),typeb(TypeB).

11 ifluent(tpow(Inst0,fname2(TypeA, TypeB),Inst1), bridge) :-

12 fluent(fname1(TypeA, TypeB), Inst1).

13 inst(Inst0;Inst1;bridge), typea(TypeA),typeb(TypeB).

The fluent atom guarantees the fluent fname1 belongs to the destination institution Inst1.

Examples are given in line 25-28 in Figure 5-9 on page 122. Consequently, these powers

authorise the two cross-institution consequence rules:

iename2(TypeA) xinitiates fname1(TypeA, TypeB)

if fname3(TypeB);

iename3(TypeA) xterminates fname2(TypeA, TypeB)

if not fname4(TypeB);

It is worth noting that the keywords for cross-institution consequence rules are xinitiates

and xtermiantes, which are different from the ones of single institution model. Actual

examples are line 39-46 in Figure 5-9 on page 122. These InstAL rules are then translated into

ASP:

1 xinitiated(Inst0,fname1(TypeA, TypeB)),Inst1,I) :-

2 occurred(iename2(TypeA,Inst0,I),

3 holdsat(ipow(Inst0, fname1(TypeA, TypeB), Inst1), bridge, I),

4 holdsat(live(bridge),bridge,I), inst(Inst0;Inst1;bridge),
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5 holdsat(fname3(TypeB),Inst0,I),

6 typea(TypeA),typeb(TypeB), instant(I).

7
8 xterminated(Inst0,fname2(TypeA, TypeB)),Inst1,I) :-

9 occurred(iename3(TypeA,Inst0,I),

10 holdsat(ipow(Inst0, fname2(TypeA, TypeB), Inst1), bridge, I),

11 holdsat(live(bridge),bridge,I), inst(Inst0;Inst1;bridge),

12 not holdsat(fname4(TypeA),Inst0,I),

13 typea(TypeA),typeb(TypeB), instant(I).

Initiation of Cross-institution Powers The initial state of a bridge institution consists of the

instantiation of cross-institution power fluents. These fluents establish a relationship between

two institutions in regard of an event or a fluent. Here we need to give specific value to ground

the Inst parameters:

initially gpow(instA, iename1(TypeA, TypeB), instB);

initially ipow(instA,fname1(TypeA, TypeB),instB);

initially tpow(instC,fname2(TypeA, TypeB),instB);

The actual value instA, instB and instC are assigned to instantiate the institution

parameters. Line 47-54 in Figure 5-9 on page 122 show actual examples of these rules. The

corresponding ASP translations are rather straightforward:

1 holdsat(gpow(instA, iename1(TypeA, TypeB), instB),bridge,I) :-

2 inst(instA;instB;bridge),

3 typea(TypeA),typeb(TypeB), start(I).

4 holdsat(ipow(instA,fname1(TypeA, TypeB),instB),bridge,I) :-

5 inst(instA;instB;bridge),

6 typea(TypeA),typeb(TypeB), start(I).

7 holdsat(tpow(instC,fname2(TypeA, TypeB),instB),bridge,I) :-

8 inst(instC;instB;bridge),

9 typea(TypeA),typeb(TypeB), start(I).

These power fluents are activated since the beginning time instant start(I). So far we

introduced the role that a bridge institution plays in an interacting institution and the

InstAL and ASP modelling of such special institution.

In order to automate the modelling process of bridge institutions, the translator

PyInstAL – as mentioned in Section 3.1.4 on page 49– is extended to take bridge institutions

into account while translating InstAL models to ASP programs. The global data flow diagram

for interacting institutions is shown in Figure 5-4. The bridge institution and its computational

counterpart are highlighted with red outlines. As shown in the figure, the ASP programs of

the bridge institution participates in the reasoning process, assisting other institutions to

produce interacting model of state transitions.
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Figure 5-4: the global data flow of modelling an interacting institution

5.1.4 Example: Modelling Interacting Institutions

In this section, we use the case study about data sharing of Facebook, as outlined in the

introduction 1.2 on page 3. Facebook Ireland shares data with NSA, as Facebook believes that

NSA is a trusted party. However, such activity triggers a normative conflict between EU

privacy law and US surveillance law. EU law approves such data sharing request only when

adequate protection can be provided, whilst US law states that all US companies have the

obligation to sharing data for the purpose of surveillance. As a subsidiary company of

Facebook, Facebook Ireland is placed in a dilemma. Next, we use an interacting institution

Cm to model such scenario formed by the three institutions 〈Ifb, Ieu, Ius〉.

Facebook Institution: we provide the formal model of Facebook in Figure 5-5 on page

116. All events and fluents are defined in corresponding sets. A set of cross-institutional

generation and consequence rules are given in Gx(X fb, Efb) and Cx(X fb, Efb)↑. By applying

Gx and Cx, a tuple of sets 〈2E1 , . . . , 2En , 2Em〉 is derived, in which each set 2E
i

containing the

generated events for each individual institution and the last set 2E
m

for events generated

across institutions. To keep each institution independent, the model only includes the results

by applying the generation and consequence rules internally. Therefore, Gx(X fb, Efb) only

interprets events recognised by Facebook into institutional events of Facebook internally. For

example, the event share generates intShare for Facebook, but produces empty event sets ∅
for the other two institutions EU and US in the same combination and for the across events.

Likewise, Cx(X fb, Efb)↑ only processes the events of Facebook and updates the state of

Facebook only. For instance, under the certain state matching a party is trusted

trusted(Party), the event intShareRequest initiates the permission and power of sharing

data. Applying the function Gx and Cx across institutions will be defined in a bridge
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institution later. The initial states ∆ gives permission for sharing request and defines NSA as

a trusted party for Facebook. The InstAL representation of Facebook institution can be found

in the appendix section B.1 on page 177.

EU Privacy Law Institution: the formal model of EU Privacy Law is given in Figure 5-6

on page 117. Similar with the Facebook model, we keep the autonomy and independence of

the EU model, and apply the Gx and Cx internally to obtain generated events and updated

states for EU only. We formalise all the applicable generation and consequence rules within

the EU model. For instance, the event intDataExportRequest initiates the permission of

sharing data if the data can be protected by the request party protected(Data, Party). A

specific scenario, described by a composite trace, will be given later to analyse the state

transition and conflicts, and in particular we will look at the sharing activity performed

between Facebook and NSA. Here in the initial states, there is no evidence to support that the

data can be protected well by NSA, which makes EU disagree with Facebook against the

sharing activity. The InstAL representation of EU institution is presented in the appendix

section B.3 on page 180 for further reference.

US Surveillance Law Institution: we present the formal model of US Law in Figure 5-

7. A set of obligation fluents is given to capture that the event share and dataCollect

may be required to perform before certain deadline, otherwise violation event is issued to

signal such noncompliance behaviour. These obligations can be activated by the request event

intDataCollectRequest when the requesting data is of interests for surveillance and the

requesting party is a security department. We initiates NSA as a recognised security department

securityDep(nsa) and Bob’s data are interesting to collect interested(bob, bobdata) in

the staring state ∆. The corresponding InstAL model of US institution is listed in the appendix

section B.2 on page 179.

Bridge Institution: in Figure 5-9 on page 122, we illustrate how to obtain the InstAL model

of a bridge institution from text. Bridge institutions do not have any event of fluent of their

own, except a set of cross-institutional powers fluents, because bridge institutions serve for

linking events and fluents from different institutions. Therefore, Figure 5-9 also lists a set of

cross-institutional generation rules and consequence rules to generate events and update states

externally. We include the ASP translation of the bridge InstAL model in the appendix section

B.4 on page 181.

Figure 5-8 on page 120 draws the three institutions involved in this case: EU Privacy

Law, US surveillance Law and Facebook Ireland. The event of requesting for data sharing

intShareRequest is observed by Facebook, which is in turn recognised as data exporting

request dataExportRequest by the EU law, and as data collecting request

dataCollectRequest by the US law subject to the presence of the required powers gpow.
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Formal Model of the Institution Facebook

Eex = {shareRequest(User, Data, Party), approveRequest(User, Data, Party),

deadline, approve(User, Data, Party), share(User, Data, Party)}
Eact = {intShare(User, Data, Party), intShareRequest(User, Data, Party),

intApproveRequest(User, Data, Party), intApprove(User, Data, Party).}
Eviol = {viol(noncompliance(User))}
D = {trusted(Party), consented(User, Data, Party), protected(Party)}
W = {pow(intShare(User, Data, Party)),pow(intApprove(User, Data, Party)),

pow(intApproveRequest(User, Data, Party)),

pow(intShareRequest(User, Data, Party)).}
P = {perm(shareRequest(User, Data, Party)), perm(deadline),

perm(share(User, Data, Party)), perm(approveRequest(User, Data, Party)),

perm(approve(User, Data, Party)),perm(intShare(User, Data, Party)),

perm(intApprove(User, Data, Party)),

perm(intShareRequest(User, Data, Party)),

perm(intApproveRequest(User, Data, Party)).}
O = {obl(share(User, Data, Party), deadline, noncompliance(User))}

Gx(X fb, Efb) : 〈∅, share(User, Data, Party)〉 → 〈{intShare(User, Data, Party)}, ∅, ∅, ∅〉
〈∅, approveRequest(User, Data, Party)〉 →

〈{intApproveRequest(User, Data, Party)}, ∅, ∅, ∅〉
〈∅, shareRequest(User, Data, Party)〉 →

〈{intShareRequest(User, Data, Party)}, ∅, ∅, ∅〉
〈∅, approve(User, Data, Party)〉 → 〈{intApprove(User, Data, Party)}, ∅, ∅, ∅〉

Cx(X fb, Efb)↑ : 〈∅, intShareRequest(User, Data, Party)〉 →
〈{perm(approveRequest(User, Data, Party)),

perm(intApproveRequest(User, Data, Party)),

pow(intApproveRequest(User, Data, Party))}, ∅, ∅, ∅〉.
〈∅, intApproveRequest(User, Data, Party)〉 →

〈{perm(approve(User, Data, Party)),

perm(intApprove(User, Data, Party)),

pow(intApprove(User, Data, Party))}, ∅, ∅, ∅〉
〈∅, intApprove(User, Data, Party)〉 → 〈{perm(share(User, Data, Party)),

perm(intShare(User, Data, Party)),

pow(intShare(User, Data, Party))}, ∅, ∅, ∅〉.
〈{trusted(Party)}, intShareRequest(User, Data, Party)〉 →

〈{perm(share(User, Data, Party)), perm(intShare(User, Data, Party)),

pow(intShare(User, Data, Party))}, ∅, ∅, ∅〉.
〈∅, intApprove(User, Data, Party)〉 → 〈{consented(User, Data, Party)}, ∅, ∅, ∅〉.

∆ = {perm(shareRequest(User, Data, Party)),pow(shareRequest(User, Data, Party)),

perm(intShareRequest(User, Data, Party)),

deadline, trusted(nsa), }

Figure 5-5: Formal Model Ifb of the Institution Facebook

Those interactions are captured by the cross-institution generation rules as represented by

InstAL in line 31-34 of Figure 5-9 on page 122. Their corresponding ASP translations can
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Formal Model of the Institution EU Privacy Law

Eex = {dataExportRequest(User, Data, Party), dataExport(User, Data, Party),

share(User, Data, Party)}
Eact = {intDataExportRequest(User, Data, Party), intShare(User, Data, Party),

intApproveRequest(User, Data, Party), intApprove(User, Data, Party),

intShare(User, Data, Party)}.
D = {interested(User, Data), protected(Party)}
W = {pow(intDataExport(User, Data, Party)), pow(intShare(User, Data, Party)),

pow(intDataExportRequest(User, Data, Party)).}
P = {perm(dataExportRequest(User, Data, Party)),

perm(dataExport(User, Data, Party)), perm(share(User, Data, Party)),

perm(intDataExportRequest(User, Data, Party)),

perm(intDataExport(User, Data, Party)),

perm(intShare(User, Data, Party)).}
Gx(X eu, Eeu) : 〈∅, share(User, Data, Party)〉 → 〈∅, {intShare(User, Data, Party)}, ∅, ∅〉

〈∅, dataExportRequest(User, Data, Party)〉 →
〈∅, {intDataExportRequest(User, Data, Party)}, ∅, ∅〉

〈∅, dataExport(User, Data, Party)〉 →
〈∅, {intDataExport(User, Data, Party)}, ∅, ∅〉

Cx(X eu, Eeu)↑ : 〈{protected(Data, Party)}, intDataExportRequest(User, Data, Party)〉 →
〈∅, {perm(share(User, Data, Party)),

perm(intShare(User, Data, Party)),

pow(intShare(User, Data, Party))}, ∅, ∅〉.
∆ = {perm(dataExportRequest(User, Data, Party)), interested(bob, bob data),

perm(intDataExportRequest(User, Data, Party)),

pow(intDataExportRequest(User, Data, Party)).}

Figure 5-6: Formal Model Ieu of the Institution EU

also be found in the Bridge Institution box above the Facebook institution in Figure 5-8.

Following the occurrences of these events, a sequence of state changes happens. As

autonomous entities, the EU institution and the US institution firstly make their own

decisions:

• the EU approves data sharing perm(share(User, Data, Party), eu, I) only if adequate

protection can be provided holdsat(protected(D, P), eu, I).

• However, the US institution permits and even obliges the data sharing given that the

data and user are of surveillance’s interests holdsat(interested(U, D), us, I) and the

requesting party is a recognised security department holdsat(securityDep(D), us, I).

With the help of the cross-institution consequence rules, their decisions can also influence the

state of the Facebook institution. As listed in line 39-46 of Figure 5-9:

• the EU terminates the permission for Facebook to share data subject to certain

conditions.
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Formal Model of the Institution US Surveillance Law

Eex = {dataCollectRequest(User, Data, Party), dataCollect(User, Data, Party),

deadline, share(User, Data, Party)}
Eact = {intDataCollectRequest(User, Data, Party), intShare(User, Data, Party),

intDataCollect(User, Data, Party)}.
Eviol = {viol(noncompliance(User))}
D = {interested(User, Data), securityDep(Party), protected(Party)}
W = {pow(intDataCollect(User, Data, Party)), pow(intShare(User, Data, Party)),

pow(intDataCollectRequest(User, Data, Party)).}
P = {perm(dataCollectRequest(User, Data, Party)),

perm(dataCollect(User, Data, Party)), perm(share(User, Data, Party)),

perm(intDataCollectRequest(User, Data, Party)),

perm(intDataCollect(User, Data, Party)),

perm(intShare(User, Data, Party)).}
O = {obl(dataCollect(User, Data, Party), deadline, noncompliance(User)),

obl(share(User, Data, Party), deadline, noncompliance(User))}
Gx(X us, Eus) : 〈∅, share(User, Data, Party)〉 → 〈∅, ∅, {intShare(User, Data, Party)}, ∅〉

〈∅, dataCollectRequest(User, Data, Party)〉 →
〈∅, ∅, {intDataCollectRequest(User, Data, Party)}, ∅〉

〈∅, dataCollect(User, Data, Party)〉 →
〈∅, ∅, {intDataCollect(User, Data, Party)}, ∅〉

Cx(X us, Eus)↑ : 〈{interested(User, Data), securityDep(Party)},
intDataCollectRequest(User, Data, Party)〉 →

〈∅, ∅, {perm(share(User, Data, Party)),

perm(intShare(User, Data, Party)),

pow(intShare(User, Data, Party)),

obl(share(User, Data, Party), deadline, noncompliance(User))}, ∅〉.
〈{interested(User, Data), securityDep(Party)},
intDataCollectRequest(User, Data, Party)〉 →

〈∅, ∅, {perm(dataCollect(User, Data, Party)),

perm(intDataCollect(User, Data, Party)),

pow(intDataCollect(User, Data, Party)),

obl(dataCollect(User, Data, Party), deadline, noncompliance(User))},
∅〉.

∆ = {perm(dataCollectRequest(User, Data, Party)),

perm(intDataCollectRequest(User, Data, Party)),

pow(intDataCollectRequest(User, Data, Party)),

perm(deadline), securityDep(nsa), interested(bob, bob data).}

Figure 5-7: Formal Model Ius of the Institution EU

• But the US initiates the permission and obligation for Facebook to share data subject to

certain conditions.

These cross-institution consequence rules are also translated into ASP programs as included

in the Bridge Institution box beneath the Facebook of Figure 5-8. To authorise those cross-
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institution consequence rules, the associated initiation power ipow and termination power tpow

are also needed to be true at the time when the rules are applied.

As we can see, the conflicts between those two laws arise and in Section 5.2 on page

119, we will continue with the discussion of conflict detection in an interacting institution.

Normative conflicts are also issues worthy addressing in interacting institutions. Although each

participating institution now has a way to interplay with one another, their objectives remain

independent. Therefore, while combining a set of independent institutions together, it is very

likely to result in normative conflicts. Furthermore, the way that each institution can influence

one another in an interacting setting also increases the difficulty of detecting and resolving

normative conflict, because in this case fluents of an institution could also be changed by other

interacting institutions externally.

In the setting of interacting institutions, the state of an institution might be updated by not

only its internal rules, but also by cross-institutional rules from other external institutions.

That is, the cross-institutional rules introduce another source to change the state of an

institution. Therefore, it would be possible that normative conflicts arise when an action is

permitted (or obliged) by an institution internally, but not permitted simultaneously by

another empowered institution. Normative conflicts in interacting institutions now become

problematic potentially for not only the regulated agents, but also for institutions that can be

influenced by other institutions. It is therefore necessary to find the conflicts before a set of

institutions combining to be an interacting one such that the formed interacting institutions

could be conflict-free. Fortunately the conflict detection and resolution mechanism for

coordinated institutions are still applicable for interacting institutions. However, we have to

consider additional effects brought about by the bridge institutions and their cross-institution

rules. In the following sections, we start with the conflict detection in section 5.2 where

extended definitions of weak and strong conflicts are introduced, followed by the automatic

detection mechanism and an illustrative example. Afterwards, in Section 5.3, we introduce

how conflicts in an interacting institution can be resolved automatically.

5.2 Conflict Detection in Interacting Institutions

5.2.1 Normative Conflicts in Interacting Institutions

In Section 4.3 on page 69, we introduce the notion of weak conflicts where a fluent holds true

in one institution, but simultaneously false in another institution in the same combination, and

strong conflicts can be further identified if an obligation fluent enforcing an event holds true in

one institution, whilst the permission of the same event is false simultaneously in another

institution. Such conflicts leave the agents in a dilemma (assuming the agents are norm aware)

because there is no way to comply with both institutions at the same time. When it comes to

interacting institutions, the structure offers a way that an institution can be influenced or

regulated by other institutions, thus it is possible that an institution receives contrary
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Figure 5-8: an example of an interacting institution
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Bridge Institution

The name of such special institution is bridge:

1 institution bridge;

Fours types of parameters are declared with a special one type Inst:

2 type Data;
3 type User;
4 type Party;
5 type Inst;

The set of exogenous events which are used in cross-institution generation rules is declared:

6 exogenous event shareRequest(User, Data, Party);
7 exogenous event share(User, Data, Party);
8 exogenous event dataExportRequest(User, Data, Party);
9 exogenous event dataCollectRequest(User, Data, Party);

10 exogenous event deadline;
11 exogenous event dataExport(User, Data, Party);
12 exogenous event dataCollect(User, Data, Party);

The set of institutional events which are used in cross-institution generation rules is declared:

13 inst event intShare(User, Data, Party);
14 inst event intShareRequest(User, Data, Party);
15 inst event intDataExportRequest(User, Data, Party);
16 inst event intDataCollectRequest(User, Data, Party);

The set of violations events which are used in cross-institution generation rules is declared:

17 violation event noncompliance(User);

The set of domain fluents which are used as conditions in cross-institution consequence rules
is declared:

18 fluent protected(Data, Party);
19 fluent interested(User,Data);
20 fluent securityDep(Party);
21 fluent trusted(Party);

The set of powers that authorises cross-institution rules is declared:

22 cross fluent gpow(Inst,dataExportRequest(User,Data,Party),Inst);
23 cross fluent gpow(Inst,dataCollectRequest(User,Data,Party),Inst);
24 cross fluent gpow(Inst,dataExport(User,Data,Party),Inst);
25 cross fluent gpow(Inst,dataCollect(User,Data,Party),Inst);
26 cross fluent tpow(Inst,perm(share(User,Data,Party)),Inst);
27 cross fluent ipow(Inst,perm(share(User,Data,Party)),Inst);
28 cross fluent ipow(Inst,obl(share(User,Data,Party),deadline,
29 noncompliance(User)),Inst);

Figure 5-9: Example bridge institution in InstAL

121



Chapter 5. Interacting Institutions

The set of obligations that are involved in cross-institution consequence rules is declared:

30 obligation fluent obl(share(User, Data, Party), deadline,
31 noncompliance(User));

The set of cross-institution generations rules is declared. The event intShareRequest is
recognised as data export request by the EU law and as data collecting request by the US law.
Similarly, the event intShare is counted as data exporting in the EU and date collecting in the
US:

32 intShareRequest(User, Data, Party) xgenerates
33 dataExportRequest(User, Data, Party);
34 intShareRequest(User, Data, Party) xgenerates
35 dataCollectRequest(User, Data, Party);
36 intShare(User, Data, Party) xgenerates
37 dataExport(User, Data, Party);
38 intShare(User, Data, Party) xgenerates
39 dataCollect(User, Data, Party);

The set of cross-institution generations rules is declared. The EU terminates the permission
of sharing data if there is no adequate protection provided, while the US law approves such
sharing if the subject and the data are of surveillance’s interests and the requesting party is
some security deportment:

40 intDataExportRequest(User,Data,Party) xterminates
41 perm(share(User, Data, Party))
42 if not protected(Data, Party);
43 intDataCollectRequest(User,Data,Party) xinitiates
44 perm(share(User, Data, Party)),
45 obl(share(User, Data, Party), deadline,
46 noncompliance(User))
47 if interested(User, Data), securityDep(Party);

The set of initial states including the instantiation to the cross powers by assigning actual values
to the institution parameters:

48 initially gpow(fb, dataExportRequest(User, Data, Party), eu);
49 initially gpow(fb, dataCollectRequest(User, Data, Party) , us);
50 initially gpow(fb, dataExport(User, Data, Party), eu);
51 initially gpow(fb, dataCollect(User, Data, Party) , us);
52 initially tpow(eu, perm(share(User, Data, Party)), fb);
53 initially ipow(us, perm(share(User, Data, Party)), fb);
54 initially ipow(us, obl(share(User, Data, Party), deadline,
55 noncompliance(User)), fb);

And a set of initial domain fluents:

56 initially securityDep(nsa);
57 initially trusted(nsa);
58 initially interested(bob, bob_data);

Figure 5-9: (Continued) Example bridge institution in InstAL
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normative guidelines from other superior empowered institutions. When a pair of institutions

both have the power to change a fluent for the third institution, conflicts arise if one of the

institutions initiates the fluent while the other terminates the fluent at the same time.

Moreover, normative conflicts might also arise when an institution initiates a fluent internally,

which is simultaneously terminated by another external institution via cross-institution rules,

and vice versa. To distinguish with the conflicts in coordinated institutions, we identify these

situations as derived (weak and strong) conflicts.

We can identify normative conflicts for interacting institutions in the following three

different situations, corresponding to the three respective diagrams in Figure 5-10:

(a) Suppose that a pair of institutions are connecting with each other in terms of

cross-institutional rules. When a fluent of an institution is terminated by its own internal

rules, but simultaneously initiated by cross-consequence rules, a derived normative

conflict is identified. As shown in (a) of Figure 5-10, the institution InstA has the power

to initiate f of InstC. A conflict can be found between InstA and InstC when InstA

initiates f (indicated by red arrow), which is actually terminated by InstC (indicated by

blue fonts) internally.

(b) Likewise, conflicts may occur when there is one institution in the combination terminates

a fluent of another institution, which is however required to be initiated internally. For

example, in Figure 5-10(b), a derived conflict can be found between InstB and InstC

because InstB terminates f (indicated by red arrow), while InstC does not agree

(indicated by red font) at the same time.

(c) Finally, derived normative conflicts can also be found when two external institutions

initiate and terminate the same fluent simultaneously, given the two institutions both have

the power to do that. InstA initiates f , while InstB terminates f in Figure 5-10(c).

InstA InstB

InstC

ipow(f)

x-in
it(f)

InstA InstB

term(f)

(a) (b) (c)

InstC

ipow(f)

x-
te

rm
(f

)

init(f)

tpow(f) tpow(f)

InstA InstB

InstC

ipow(f)

x-
te

rm
(f

)

tpow(f)

x-in
it(f)

Figure 5-10: Three types of derived conflicts in interacting institutions: (a) internal termination and
external initiation; (b) internal initiation and external termination; (c) external initiation and external
termination

Next, we present the formal definition of composite trace and derived conflict traces for
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interacting institutions by adapting the the definition of conflict trace for coordinated

institutions (cf. Def. 9 on page 72):

Definition 24 (Composite Trace for Interacting Institutions) Given an interacting

institution Cm comprising a set of institutions {I1, . . . , In}, a composite trace tr is a

sequence 〈e1, . . . em〉 such that ∀ei, 1 ≤ i ≤ m : ∃1 ≤ j ≤ n : ei ∈ Ejex. TCm defines a set of

such composite traces of Cm, denoted as TCm = {tr}.

A composite trace drives the state transition of an interacting institution, resulting in a

corresponding state model, from which we can examine potential normative conflicts such that

we can determine if the composite trace is a conflict trace or not. According to the previous

analysis, normative conflicts for interacting institutions arise when a fluent is initiated and

terminated at the same time, either internally or externally. However, it is impossible to detect

by using our previous approach of finding a fluent holding true in the state of one institution

but false in another, because in this case conflicts can be reflected at the state of one institution

only (e.g.InstC in Figure 5-10) and the fluent is always terminated. Therefore, we have to

adapt our detection strategy by looking at the set of fluents that is initiated and terminated at

any time instant, to find out if there is any fluent occurring in both sets. Next, we can derive a

formal definition for conflict traces of interacting institutions:

Definition 25 (Derived Conflict Trace ) Given an interacting institution Cm, let

Mm = 〈Sm0 , . . . Smt 〉 represent the state transition model of the Cm in response to a

composite trace tr and tr = 〈e0, . . . , et〉. The trace tr is a derived weak conflict trace iff:

• ∃k, 0 ≤ k ≤ t ,

• Ii ∈ Cm, such that

• f ∈ INITx
i(Smk , ek), and

• f ∈ TERMx
i(Smk , ek).

or a derived strong conflict trace iff:

• ∃k, 0 ≤ k ≤ t ,

• Ii ∈ Cm, such that

• ∃e, d, v ∈ E i ,

• ∃p ∈ P i, p = perm(e), p ∈ TERMx
i(Smk , ek), and

• ∃o ∈ Oi, o = obl(e, d, v), o ∈ INITx
i(Smk , ek).

To detect derived weak conflicts in interacting institutions, instead of finding conflicts from

the resulting states, we actually investigate one step ahead to look at which fluents are initiated

and terminated at the same time. Furthermore, if a permission of an event is terminated, but

the obligation for the same event is initiated at the same time, then a strong derived conflict is

identified.
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5.2.2 Automatic Detection Mechanism

We explored conflict detection for coordinated institutions in Section 4.3 on page 69, in which

some key notions and programs defined for the conflict detection mechanism are also

applicable in interacting institutions. Here we briefly outline them to keep this chapter

self-contained.

We started by discussing detecting conflicts towards a given case and then extend the

mechanism to detect all possible conflicts within an interacting institution in general.

Provided with an example (represented by a sequence of exogenous events) for an established

interacting institution Cm, the state transition of each individual institution is encoded

separately, resulting in a corresponding sequence of states. The examples we provided for

conflict analysis are called as composite traces (denoted by tr), which are formed by

exogenous events of all component institutions encapsulated in a Cm, tr = 〈e1, . . . em〉 such

that ∀ei, 1 ≤ i ≤ m : ∃1 ≤ j ≤ n : ei ∈ Ejex. The ASP translation for the trace Ptr is a timed

sequence of the atom compObserved(E, I) with I the time instant when eventE happens.

The example is therefore a sequence of events describing the physical actions that occurred

in a specific scenario. A given composite trace tr actually produces an individual trace for

each institution (represented by ASP atom observed(E, Inst, I)) subject to the events one

institution can or cannot recognise. However, not every event in a composite trace can be

recognised by all the individual institutions. At any given time instant, the institutions that

can recognise the observed event updates their states to progress, while the others that cannot

recognise the event preserve their states to the next time instant. This part is implemented by

the trace program Ptrace.

Having obtained the state transition model corresponding to the given trace, normative

conflicts can be found by comparing the states of any pair of institutions. In the setting of

interacting institutions, not only can internal rules of an institution initiate/terminate fluents,

cross-institutional rules can also update the fluents. For any fluent that is initiated and

terminated at the same time, a weak conflict is obtained. If an obligation of an event is

initiated, but simultaneously the permission of the event is terminated, we then find a strong

conflict. Here we do not consider the state model of the bridge institutions because it is an

artefact component for implementing interacting institutions, where all specified events and

fluents actually originate from the other connecting institutions. From the Def. 25 of conflict

traces in interacting institutions, we adapt the existing detection program for interacting

institutions as P ′detect listed in Figure 5-11.

Derived weak conflicts derivedWeakConflict can be identified in three circumstances,

with each corresponding to one of three scenarios in Figure 5-10. The first circumstance is

encoded on lines 1-6 in Figure 5-11, where a fluent F of institution InB fluent(F, InB) is

terminated at time I by its own consequence rule terminated(F, InB, I), but also initiated

by institution InA via cross-institutional rules xinitiated(InA, F, InB, I) at the same time.

Likewise, lines 8-13 express another way to find derived weak conflicts when a fluent is
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The derived conflict detection program P ′detect:
1 derivedWeakConflict(InA, InB, I, F) :-
2 fluent(F, InB),
3 holdsat(ipow(InA, F, InB), bridge, I),
4 xinitiated(InA, F, InB, I),
5 terminated(F, InB, I),
6 inst(InA;InB;bridge), instant(I).
7
8 derivedWeakConflict(InB, InA, I, F) :-
9 fluent(F, InB),

10 holdsat(tpow(InA, F, InB), bridge, I),
11 xterminated(InA, F, InB, I),
12 initiated(F, InB, I),
13 inst(InA;InB;bridge), instant(I).
14
15 derivedWeakConflict(InA, InB, I, F) :-
16 fluent(F, InC),
17 holdsat(ipow(InA, F, InC), bridge, I),
18 holdsat(tpow(InB, F, InC), bridge, I),
19 xterminated(InB, F, InC, I),
20 xinitiated(InA, F, InC, I),
21 inst(InA;InB;InC;bridge), instant(I).
22
23 derivedStrongConflict(InB, InA, I, E) :-
24 oblfluent(obl(E,D,V), InB),
25 holdsat(tpow(InA, perm(E), InB), bridge, I),
26 xterminated(InA, perm(E), InB, I),
27 initiated(obl(E,D,V), InB, I),
28 inst(InA;InB;bridge;In), instant(I).
29
30 derivedStrongConflict(InB, InA, I, E) :-
31 oblfluent(obl(E,D,V), InC),
32 holdsat(tpow(InA, perm(E), InC), bridge, I),
33 holdsat(ipow(InB, obl(E,D,V), InC), bridge, I),
34 xterminated(InA, perm(E), InC, I),
35 xinitiated(InB, obl(E,D,V), InC, I),
36 inst(InA;InB;bridge;InC), instant(I).

Figure 5-11: Adapted detection program for derived conflicts

initiated internally initiated(F, InB, I), but terminated by external institution

xterminated(InA, F, InB, I). The third case is when a fluent is simultaneously terminated

and initiated by external institutions, captured by lines 15-21.

Derived strong conflicts are between obligations and prohibitions. Lines 23-28 capture an

obligation for an event E is initiated internally initiated(obl(E, D, V), InB, I), but the

permission of performing the event is terminated by another institution

xterminated(InA, perm(E), InB, I). Besides, strong conflicts can also be found when an

event is obliged by an external institution, but not permitted by another external institution, as

expressed on lines 30-36.
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Without a given trace, the trace program Ptrace generates all possible composite traces up

to certain length for an established interacting institution. As discussed in Section 4.3.2 on

page 73, it is not feasible to examine traces with infinite length and instead we aim to derive

conflict-free interacting institutions up to certain finite length. Such finite length is guaranteed

by a specified time program Ptime, which is represented by a limited number of ASP facts

of the form instant. The time program therefore helps the trace program to constrain the

produced traces within certain length.

In summary, the automatic conflict detection for interacting institutions is achieved in the

same way as coordinated institutions: (i) User-led conflict analysis: by combining the required

component programs, PCm ∪ Pdetect ∪ Ptime ∪ Ptrace with the given trace Ptr, both weak and

strong conflicts admitted by the trace can be obtained. (ii) Full diagnosis of potential conflicts:

in the absence of a given trace, PCm ∪ Pdetect ∪ Ptime ∪ Ptrace is able to find out all potential

conflicts of the Cm in all possible trances up to certain length.

5.2.3 Example: Conflict Detection in Interacting Institutions

In this section, we continue to use the example discussed in Section 5.1.4 on page 114 to

demonstrate finding conflicts of an interacting institution in practice. The case is about a

dispute with regard to digital data privacy among three institutions Facebook Ireland, EU

privacy law and US surveillance law. There are different and even contrary norms specified in

these institutions:

• Facebook Ireland: the data sharing is permitted if the requesting party is a trusted

organisation, or if the data owner approves the request.

• US Surveillance Law: the data sharing activities of Facebook can be counted as data

collecting activities, and therefore such activities are permitted and obliged if the users

and their data are concerned with surveillance purpose and the requesting party is a

recognised security department.

• EU Privacy Law: the data sharing activities of Facebook can be treated as data exporting

without consent, and hence not permitted unless it is proved that the requesting party is

able to provide adequate protection on the data.

We provide the composite trace tr to examine the conflicts and so as to determine whether

the trace is a conflict trace or not. The trace tr is encoded by the corresponding ASP program

Ptr as below:

1 compObserved(shareRequest(bob, bob_data, nsa),0).

2 compObserved(shareRequest(alice, alice_data, nsa),1).

3 compObserved(approveRequest(bob, bob_data, nsa),2).

4 compObserved(approveRequest(alice, alice_data, nsa),3).

5 compObserved(approve(alice, alice_data, nsa),4).
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6 compObserved(share(bob,bob_data,nsa), 5).

7 compObserved(share(alice,alice_data,nsa), 6).

The trace describes a specific scenario: firstly, Facebook receives sharing data request

shareRequest from NSA about user Bob and Alice and their data. Afterwards, Facebook

asks for permissions of such sharing approveRequest from Bob and Alice, and subsequently

only Alice approves approve(alice, alice data, nsa). However, Facebook still shares both

Alice and Bob’s data as requested by NSA share.

Figure 5-12 gives the corresponding state transition of the trace above: each circle stands

for a state at certain time instant and the frames beneath those circles include the fluents holding

true at the state. All newly-added fluents, which are initiated at the previous time instant, are

highlighted in bold font, while the fluents that are terminated at the previous time instant are

struck through. The lines between circles indicate the transition from one state to the next,

and the occurred events that lead to the transitions appear above the lines. Both events and

fluents are represented by ASP atoms followed by colons and the institutions in which they are

defined.

Starting with the initial state S0, a set of domain fluents are given to indicate the initial

setting of the case, such as NSA is a trusted organisation for Facebook and a security

department for US law. Bob and his data are of interest for surveillance. From the line

between S0 to S1, when Facebook receives the data sharing request of Bob from the NSA, the

events dataExportRequest and dataCollectRequest are generated for EU and US

respectively. The resulting state S1 therefore comprises the obligation and permission to share

Bob’s data from the perspective of US, as well as the permission from Facebook because the

NSA is trusted. However, the permission from EU law is absent at the same state because

there is no evidence showing that adequate protection can be provided by the NSA.

Consequently, normative conflicts arise between US and EU towards the permission of

sharing data, and also between EU and Facebook. Facebook shares Bob’s data at time 5,

which then triggers a violation event viol(share(bob, bob data, nsa)) for the institution

EU.

By running the testing trace in our conflict detection system, the following weak conflicts

with regard to the permission of sharing Bob’s data can be obtained as follows:

1 weakConflict(us,eu,6,perm(share(bob,bob_data,nsa)))

2 weakConflict(us,eu,5,perm(share(bob,bob_data,nsa)))

3 weakConflict(us,eu,4,perm(share(bob,bob_data,nsa)))

4 weakConflict(us,eu,3,perm(share(bob,bob_data,nsa)))

5 weakConflict(us,eu,2,perm(share(bob,bob_data,nsa)))

6 weakConflict(us,eu,1,perm(share(bob,bob_data,nsa)))

7
8 weakConflict(fb,eu,6,perm(share(bob,bob_data,nsa)))

9 weakConflict(fb,eu,5,perm(share(bob,bob_data,nsa)))

10 weakConflict(fb,eu,4,perm(share(bob,bob_data,nsa)))
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Figure 5-12: State Transition with the trace tr
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11 weakConflict(fb,eu,3,perm(share(bob,bob_data,nsa)))

12 weakConflict(fb,eu,2,perm(share(bob,bob_data,nsa)))

13 weakConflict(fb,eu,1,perm(share(bob,bob_data,nsa)))

It can be noticed that these weak conflicts happen between fb and eu, or between us and eu.

Also these conflicts arise at time 1 and last until the end. Furthermore, a set of strong conflicts

can be detected as below:

1 strongConflict(us,eu,5,share(bob,bob_data,nsa))

2 strongConflict(us,eu,4,share(bob,bob_data,nsa))

3 strongConflict(us,eu,3,share(bob,bob_data,nsa))

4 strongConflict(us,eu,2,share(bob,bob_data,nsa))

5 strongConflict(us,eu,1,share(bob,bob_data,nsa))

There strong conflicts signal the situations when the data sharing activity is obliged by

one institution, but not permitted by another. The strong conflicts disappear at the last time

instant 6, because the occurrence of event share terminates the obligation by which the event

is subscribed. Finally, a set of derived weak conflicts arise between US and EU, and between

FB and EU with regard to the permission of sharing data. The last derived strong conflict is

found between the initiated obligation from US and the terminated permission from EU with

regard to the event of sharing share:

1 derivedWeakConflict(fb,eu,0,perm(share(bob,bob_data,nsa)))

2 derivedWeakConflict(us,eu,0,perm(share(bob,bob_data,nsa)))

3
4 derivedStrongConflict(us,eu,0,share(bob,bob_data,nsa))

5.3 Conflict Resolution in Interacting Institutions

Continuing from conflict detection, we now discuss how the detected conflicts can be resolved

in the setting of interacting institutions. Fortunately the resolution system CI-RES used for

coordinated institutions is mostly applicable for interacting institutions, but the introduction

of interacting rules and bridge institution brings new challenges to conflict resolution. In

particular, derived weak and strong conflicts in interacting institutions are identified in

different ways from coordinated institutions, which is very likely to involve the

cross-institution rules into revision and hence we need to decide the precedence of the bridge

institutions in a combination, discussed in a separate section 5.3.1. Moreover, the syntax of

cross-institutional rules specified in bridge institutions are different from ordinary institutions,

so adapted mode declarations are specifically designed for bridge institutions in Section 5.3.2.

Finally, we apply the conflict resolution mechanism to the Facebook case study in Section

5.3.3.

First of all, we formally define a conflict resolution task in interacting institutions:
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Definition 26 (Conflict Resolution for Interacting Institutions) The conflict resolution task

for an interacting institutions is denoted as a tuple 〈Cm, TC ,M, cost〉 where Cm is an

interacting institution comprising several individual institutions over which there is a defined

precedence �Cm . TC is a set of conflict traces leading to a set of conflicts Ψ(TC). M is a set

of mode declarations specifically constructed for the institutions in Cm such that

∀I ∈ Cm · I ⊆ RM . The cost function cost(Cm, C ′m) computes a measure of the difference

between two interacting institutions. A revised interacting institution C ′m being a solution to

the task can be:

D26.1: atomic, (i) iff ∃ c ∈ Ψ(TC) · C ′m ∪ TC 6|= c, that is C ′m does not admit the conflict c,

and (ii) the revision for C ′m is minimal: argmin{cost(Cm, C ′m) : C ′m ⊆ RM}
D26.2: partial, if it is an atomic solution for some conflicts in Ψ(TC) and is minimal.

D26.3: complete, if it is an atomic solution for all the conflicts in Ψ(TC) and is minimal.

The procedure for conflict resolution in interacting institutions is the same as coordinated

institutions. To derive a complete solution to a set of conflicts Ψ(TC), we might need to

iteratively perform the following processes until all conflicts are removed. Similarly, each

iteration can be encoded as a theory revision problem 〈P,B, T,M〉: (i) from the remaining

unresolved conflicts, we first find the maximal independent conflict set ψ̂(TC) by means of

approach presented in Section 4.5.1 on page 81. (ii) the conflict set ψ̂(TC) then divide all

participating institutions into base institutions B, which keeps unchanged, and revisable

institutions T which are labelled to be changed. (iii) syntactical transformation (cf. Section

4.5.2 on page 91) is applied to all rules in revisable institutions T to obtain the revisable

forms. (iv) a set of candidate revisions H with minimal cost can be produced as answer sets

by the combination of target conflicts, conflict traces, base institutions and conflict detection

program. Finally, the complete solution can be reached. However, the second step needs

additional handling in interacting institutions, because we need to determine if the bridge

institutions should be assigned to base institution or revisable institutions, which will be

discussed in the next section.

5.3.1 Precedence of Bridge Institution

As defined in the Definition 27, a precedence �Cm is established over a set of participating

institutions. Such order plays a crucial role in partitioning institutions into base B and

revisable parts T . Now in the case of interacting institutions, one natural question would be

how to arrange an bridge institution into this precedence order. Because of the occurrences of

derived conflicts, cross-institutional rules specified in bridge institutions are very likely to

participate in the revision process. However, bridge institutions are not actual institutions, but

a group of connection rules between different actual institutions. It is therefore not practical to

decide the precedence of a bridge institution as a whole. Furthermore, we can notice that each

cross-institutional rule is actually reflecting the influence of a source institution to a

destination institution. As a result, the precedence of the source institution can be used to
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decide the precedence of such an influence, i.e. the cross-institutional rule. Having said that,

we can determine the precedence of each cross-institutional rule in a bridge institution such

that rules in a bridge institution can be grouped into base theory B or revisable theory T .

Definition 27 (Precedence of Cross-institutional Rules) Given an interacting institution

Cm formed of a set of institutions {I1, . . . , In} and a precedence over the set of institutions

�Cm , a cross-institution rule r represents either

• a cross-institutional generation rule r: X s × Es → Ed, or

• a cross-institutional consequence rule r: X s × Es → Fd,
where Is, Id ∈ Cm are source and destination institutions respectively. In an arbitrary

computational cycle of a conflict resolution task 〈P,B, T,M〉, such rule r is labelled as

• base theory r ∈ B, iff Is ∈ B or

• revisable theory r ∈ T , iff Is ∈ T

Once the order over a set of institutions is confirmed, the precedence of rules in the bridge

institutions can be set. The definition determines the precedence of a bridge institution in an

interacting institution: rather than having a certain precedence for the bridge institution as a

whole, we can now break the institutions into separate rules and decide the precedence for

each rule and allocate them into B or T . As each institution in a Cm can only be either base

or revisable theory, it is impossible for a rule in a bridge institution being both base theory and

revisable theory.

5.3.2 Mode Declarations for Bridge Institutions

Next, we construct the mode declaration for institutions that labelled as revisable theory.

When it comes to a bridge institution, part of its rules might be labelled as revisable theory, as

discussed in the last section. However, the syntax of cross-institutional rules specified in

bridge institutions do not follow the rules in ordinary institutions. Therefore, we need to adapt

the existing definition (cf. Def. 17) of mode declarations for bridge institutions.

Definition 28 (Mode Declaration for Bridge Institutions) Given a bridge institution Ib

designed to an interacting institution Cm = 〈{I1, . . . , In}, �Cm , Fx, Gx, Cx, δx〉. The set

of exogenous events of Cm is Emex =
⋃n
i=1 E iex. The set of institutional events of Cm is

Eminst =
⋃n
i=1 E iinst. The set of fluents of Cm is Fm =

⋃n
i=1F i ∪ Fx. A set of mode

declarations M is constructed for the bridge institution Ib, and hence the set of all

compatible rulesRM can be obtained.

The head mode declaration, Mh, identifies all the possible head literals of rules in Ib:

Mh =

 h

∣∣∣∣∣∣∣
∀e ∈ Emex · h = 〈id, i, pre(e), var(e)〉
∀e ∈ Eminst · h = 〈id, i, pre(e), var(e)〉
∀f ∈ Fm · h = 〈id, i, pre(f), var(f)〉


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and the body mode declarations, M b, identifies all the possible body literals of rules:

M b =

 b

∣∣∣∣∣∣∣
∀e ∈ Emex · b = 〈id, i, pre(e), var(e)〉
∀e ∈ Eminst · b = 〈id, i, pre(e), var(e)〉
∀f ∈ Fm · b = 〈id, i, pre(f), var(f)〉


In contrast with individual generation rules, cross-institutional generation rules may have

exogenous events on the side of head part such that exogenous events for another institutions

can be generated to build the connections between institutions. The cross-institutional

consequence rules follow the same grammar as individual consequence rules, but

cross-institutional powers (denoted as Fx) are taken into account for bridge institutions.

5.3.3 Case study: Conflict Resolution in Interacting Institutions

As presented in Section 5.2.3, a set of weak, strong and derived conflicts are detected toward

a given composite trace tr in the case study about digital privacy. Now we can resolve those

conflicts via CI-RES. The institution Facebook is obviously less significant than the other two

institutions US Law and EU Law, and also most of the conflicts arise between EU and US

and thus different priorities between them derives different solutions. We explore both cases

where:

• Solution A: US law is assumed to be more important than EU law (US � EU ) such

that EU has to adapt its rules to be consistent with US, and Facebook has to adapt its

rules to be consistent with US as well, or

• Solution B: EU law is assumed to be more important than US law (EU � US) such

that US has to adapt its rules to be consistent with EU, and Facebook has to adapt its

rules to be consistent with EU as well.

Solution A In the former case, the US institution is kept unchanged as background theory

while EU is revised to remove conflicts. The following revised ASP program gives a complete

solution with minimum cost as an answer set. In the EU specification, an initiation rule reads

EU initiates the permission of sharing data if the requested data and user are of interests even in

the absence of adequate protection for the data. Meanwhile, a cross-institutional rule of bridge

institution is also revised as required by adding a new body condition. This rule of the bridge

institution is a cross-institutional rule, which now ensures that EU does not terminate the data

sharing activity of Facebook when the data are interesting for surveillance purpose. We use

white font to highlight the literals being added, and strike out the literals being removed.

1 EU Privacy Law:

2 initiated(perm(share(User,Data,Party)),eu,I) :-

3 occurred(intDataExportRequest(User,Data,Party),eu,I),

4 holdsat(live(eu),eu,I), inst(eu),

5 holdsat(protected(Data,Party),us,I),
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6 holdsat(interested(User,Data),us,I),

7 party(Party), data(Data), user(User),

8 inst(eu), instant(I).

9
10 Bridge Institution:

11 xterminated(perm(share(User,Data,Party)),fb,I) :-

12 occurred(intDataExportRequest(User,Data,Party),eu,I),

13 holdsat(ipow(eu, perm(share(User,Data,Party)), fb),bridge, I),

14 holdsat(live(bridge),bridge,I),

15 not holdsat(protected(Data,Party),us,I),

16 not holdsat(interested(User,Data),us,I),

17 party(Party), data(Data), user(User),

18 inst(fb;eu), inst(bridge), instant(I).

Solution B In this case, EU is assumed to be more important than US, which results that

US and those cross-institutional rules whose source institutions are US are revised. The ASP

program below illustrates a complete solution derived from an answer set produced by CI-

RES. For example, an initiation rule of Facebook becomes that Facebook has to agree with

EU in approving the data sharing only when the data can be properly protected. Necessary

changes are also made to relevant rules in both US and bridge institutions to specialise those

rules by adding one more condition protected. By doing that, now EU, US and Facebook

are consistent in granting the permission of sharing data only when they can be protected.

1 Facebook:

2 initiated(perm(share(User,Data,Party)),fb,I) :-

3 occurred(intShareRequest(User,Data,Party),fb,I),

4 holdsat(live(fb),fb,I), inst(fb),

5 holdsat(trusted(Party),fb,I),

6 holdsat(protected(Data,Party),fb,I),

7 party(Party), data(Data), user(User),

8 inst(fb), instant(I).

9
10 Bridge Institution:

11 xinitiated(perm(share(User,Data,Party)),fb,I) :-

12 occurred(intDataCollectRequest(User,Data,Party),us,I),

13 holdsat(ipow(us, perm(share(User,Data,Party)), fb), bridge, I),

14 holdsat(live(bridge),bridge,I), inst(bridge),

15 holdsat(interested(User,Data),us,I),

16 holdsat(protected(Data,Party),fb,I),

17 party(Party),data(Data), user(User),

18 inst(bridge),inst(fb;us), instant(I).

19 xinitiated(obl(share(User,Data,Party),deadline,noncompliance(User)),

20 fb,I) :-
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21 occurred(intDataCollectRequest(User,Data,Party),us,I),

22 holdsat(ipow(us, obl(share(User,Data,Party),deadline,

23 noncompliance(User)),fb), bridge, I),

24 holdsat(live(bridge),bridge,I), inst(bridge),

25 holdsat(interested(User,Data),us,I),

26 holdsat(protected(Data,Party),fb,I),

27 party(Party),data(Data), user(User), inst(fb;us), instant(I).

28
29 US Surveillance Law:

30 initiated(perm(share(User,Data,Party)),us,I) :-

31 occurred(intDataCollectRequest(User,Data,Party),us,I),

32 holdsat(live(us),us,I), inst(us),

33 holdsat(interested(User,Data),us,I),

34 holdsat(protected(Data,Party),us,I),

35 party(Party), data(Data), user(User),

36 inst(us), instant(I).

37 initiated(obl(share(User,Data,Party),deadline,noncompliance(User)),

38 us,I) :-

39 occurred(intDataCollectRequest(User,Data,Party),us,I),

40 holdsat(live(us),us,I), inst(us),

41 holdsat(interested(User,Data),us,I),

42 holdsat(protected(Data,Party),us,I),

43 party(Party), data(Data), user(User),

44 inst(us), instant(I).

In this chapter, we have focused on the second type of cooperating institutions –

interacting institutions, which offered a way for participating individual institutions to interact

with each other. An event of one institution can trigger an event for another; a state change of

one institution can influence the state of another. A new component – a bridge institution –

was introduced to the model for specifying all the cross-institutional rules. In Section 5.1, we

gave the formalisation of an interacting institution, as well as its corresponding

InstAL representation 5.1.3 and ASP translation in Section 5.1.2. Moreover, we discussed

potential conflicts that may arise in such new type of cooperating institution. In particular, we

discovered a new type of conflicts – derived conflicts, which indicated the inconsistencies

between internal and external state updates. We therefore adapted the existing conflict

detection and resolution mechanism to cater to such new type of conflicts in Section 5.2 and

5.3. A real world example was adopted throughout this chapter to demonstrate the modelling

of an interacting institution in Section 5.1.4, conflict detection in Section 5.2.3 and resolution

in Section 5.3.3.
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6.1 Modelling of Merged Institutions

Having discussed the first two ways of combining institutions – coordinated institutions in

Chapter 4 and interacting institutions in Chapter 5, we move on to the third way of forming

cooperating institutions – merged institutions, as shown in Figure 4-1(c) on page 61. In

contrast with the previous two combinations in which participating individual institutions

remain independent with their own autonomy, merged institutions are completely new

institutions derived from the individual institutions. As a result, the norms of previously

individual institutions are transformed to form a new coherent institution. The notion of

merged institutions can be applied to formalise various scenarios. For example, in merging of

companies, norms from individual companies need to be combined into a coherent whole.

Similar topics of merging knowledge/belief base are addressed in the community of belief

revision. It aims at combining potentially conflicting pieces of information from different

sources with equal reliability. The challenge is that there is no specific precedence over the

information sources, and hence the traditional non-prioritised belief revision is not adequate

to resolve conflicts [Konieczny, 2000]. Researchers then seek solutions from the social

aspect. Konieczny and Pino Pérez consider the link between belief merging and social choice

theory and propose an approach based on voting [Konieczny and Pérez, 2011]. In this chapter,

we aim to merge potentially conflicting individual institutions into one conflict-free new

institution. Before the merging is performed, conflicts are examined and resolved by

combining the individual institutions to be either a coordinated institution or an interacting

institution, and follow the conflict detection and resolution mechanism presented in Chapter 4

and 5.

Here, we first present the definition of merged institutions, followed by the discussion on

how to model merged institutions formally and computationally in the rest of section 6.1.

Afterwards, we give several abstract examples in section 6.2 to demonstrate various

circumstances – with regard to normative conflicts and interactions – we may encounter when
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individual institutions are merged to be one.

6.1.1 Formalisation of Merged Institutions

Given a set of independent institutions, a merged institution based on them can be formed by

merging all the norms specified in the set of institutions. By doing this, the state transitions

of the individual institutions are not the matters of concern any more, instead we only need to

examine the resulting merged institutions as a whole.

When it comes to how to formalise a merged institution based on the existing member

institutions, one may suggest that we can simply use the union of each component in individual

institutions to be the component in the resulting merged institution. However, it turns out that

there are still some issues we need to consider in order to yield the formal model of a merged

institution:

• normative conflicts: naturally we expect the resulting merged institutions to be

conflict-free. Nevertheless, when combining several individual institutions, normative

conflicts may arise among them, which can be by modelling individual institutions as

coordinated institutions or interacting institutions, depending on the occurrences of any

cross-institutional rule. Therefore, we firstly model the set of individual institutions as

coordinated institutions or interacting institutions firstly in order to detect and resolve

conflicts among them by means of the approaches proposed in Chapter 4 and 5, after

which we can derive conflict-free merged institutions.

• cross-institutional rules: when there is any interplay between individual institutions,

forming merged institutions based on them needs special treatments:

(i) cross-institutional rules have to be rewritten as generation and consequence rules of

a single institution, because a merged institution is a single institution, meaning those

rules are now internal. (ii) to be able to derive conflict-free merged institutions,

individual institutions are formalised as an interacting institution for conflict detection

and resolution, in which derived conflicts (cf. Section 5.2 on page 119) have to be

considered in addition to weak and strong conflicts.

Figure 6-1 summarises the formal model of a merged institution from two individual

institutions Ii and Ij as shown in Figure 6-1(a)(b). We can observe from the figure how to

form a merged institution from two established institutions Ii = 〈E i,F i,Gi, Ci,∆i〉 and

Ij = 〈Ej ,F j ,Gj , Cj ,∆j〉. Based on that, we can extend and generalise the approach further

to form merged institutions from an arbitrary number of individual institutions.

As discussed earlier, normative conflict is an important issue to address and hence we

proposed the following definitions, which are used in the formal model of merged institutions.

Definition 29 (Conflict-free Institutions) A pair of institutions Ii and Ij , is conflict-free up

to L iff no conflict traces can be detected between them up to length L, and we denote such a
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relation as Ii 	L Ij . Furthermore, if there is no conflict traces amongst a set of institutions

{I1, . . . , In}, then we define the set of institutions as conflict-free up to L, denoted by

	L{I1, . . . , In} such that ∀Ii, Ij ∈ {I1, . . . , In}, Ii 	L Ij . Conversely, �L{I1, . . . , In}
is used to indicate there is at least one conflict trace amongst institutions {I1, . . . , In}.

The definition above helps us to divide the case of merging two institutions in Figure 6-1

into two different subcases depending on whether Ii and Ij are conflict-free (Ii 	L Ij) or in

conflict (Ii �L Ij ):

(i) For the former subcase, the merged generation Gg and consequence relation Cg would

directly be either the composite relations (cf. Def. 6 on page 63) when there is no

interaction between institutions, or the cross-institutional relations (cf. Def. 21 on page

107 and Def. 22 on page 108) when there is any interaction between institutions.

(ii) While in the latter subcase, the resulting merged relations would be formed by the revised

relations produced by the conflict resolution system. We use tildes to label the relations

that have been revised due to conflict resolutions. Taking the case in Figure 6-1 as an

exmaple, it is assumed that Ii � Ij and thus the institution Ij is revised to be consistent

with Ii. Consequently, the resulting merged relations comprise the original relations of Ii

and revised relations of Ij , resulting in either the revised composite relations G̃j(φij , e),

C̃↑(φj , e)j and C̃↓(φj , e)j in the absence of interacting, or the revised cross-institutional

relations G̃x(φij , e), C̃x(φij , e)↑ and C̃x(φij , e)↓ otherwise.

Based on the example of merging two institutions in Figure 6-1, we can further extend the

model to merge an arbitrary number of institutions {I1, . . . , In} in general. The following

parts of this section discuss how we obtain each component of the merged institution tuple

Cg = 〈Eg,Fg,Gg, Cg,∆g〉. Here, we first give the definition of merged institutions, and each

component will be detailed in subsequent sections:

Definition 30 (Merged Institution) A set of independent institutions {I1, . . . , In} is merged

to form a single merged institutionCg. A strict total precedence relation�Cg is defined over the

set of participating institutions {I1, . . . , In}. A tuple to formally represent a merged institution

is Cg = 〈Eg,Fg,Gg, Cg,∆g〉.
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Formal Model for Two Single Institutions Ii and Ij :

Ii = 〈Ei,F i,Gi, Ci,∆i〉, where

1. Ei = Eiex ∪ Eiinst where
Eiinst = Eiact ∪ Eiviol

2. F i =Wi ∪ Pi ∪ Oi ∪ Di

3. Gi : X i × Ei → 2Ei
inst

4. Ci : X i × Ei → 2Fi

× 2Fi

where
Ci(φ, e) = (C↑(φi, e)i, C↓(φ, e)i) where

(i) C↑(φ, e)i initiates fluents

(ii) C↓(φ, e)i terminates fluents

5. State Formula: X i = 2Fi∪¬Fi

(a)

Ij = 〈Ej ,Fj ,Gj , Cj ,∆j〉, where

1. Ej = Ejex ∪ Ejinst where
Ejinst = Ejact ∪ E

j
viol

2. Fj =Wj ∪ Pj ∪ Oj ∪ Dj

3. Gj : X j × Ej → 2Ej
inst

4. Cj : X j × Ej → 2Fj

× 2Fj

where
Cj(φ, e) = (C↑(φj , e)j , C↓(φ, e)j) where

(i) C↑(φ, e)j initiates fluents

(ii) C↓(φ, e)j terminates fluents

5. State Formula: X j = 2Fj∪¬Fj

(b)

Formal Model of Merging Ii and Ij:

Cg = 〈Eg,Fg,Gg, Cg,∆g〉, where

1. Eg = E i ∪ Ej

2. Fg = F i ∪ F j

3. State Formula: X g = 2F
g∪¬Fg

, φg = φi ∪ φj

4. Gg : X g × Eg → 2E
g
inst ,

Cg : X g × Eg → 2F
g × 2F

g
with Cg(φg, e) = (C↑(φg, e)g, C↓(φg, e)g) in which

• if there is no cross-institutional rule between Ii and Ij :

(i)


Gg(φg, e) = Gi(φi, e) ∪ Gj(φj , e)
C↑(φg, e)g = C↑(φi, e)i ∪ C↑(φj , e)j
C↓(φg, e)g = C↓(φi, e)i ∪ C↓(φj , e)j

, if Ii 	L Ij

(ii)


Gg(φg, e) = Gi(φg, e) ∪ G̃j(φg, e)
C↑(φg, e)g = C↑(φi, e)i ∪ C̃↑(φj , e)j
C↓(φg, e)g = C↓(φi, e)i ∪ C̃↓(φj , e)j

, if Ii �L Ij , Ii � Ij ,

• if there is any cross-institutional rule between Ii and Ij :

(i)


Gg(φg, e) = Gx(φg, e),
C↑(φg, e)g = Cx(φg, e)↑,
C↓(φg, e)g = Cx(φg, e)↓,

, if Ii 	L Ij

(ii)


Gg(φg, e) = G̃x(φg, e),

C↑(φg, e)g = C̃x(φg, e)↑,

C↓(φg, e)g = C̃x(φg, e)↓,

, if Ii �L Ij , Ii � Ij ,

Figure 6-1: Formal Model of a Merge Institution from Two individual institutions.
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6.1.2 Basic Components

Given a set of institutions {I1, . . . , In} forming a merged institution Cg. The events Eg and

fluents Fg of the Cg is defined as below:

Eg =
n⋃
i=1

E i

Egex =
n⋃
i=1

E iex

Eginst =
n⋃
i=1

E iinst

Fg =
n⋃
i=1

F i

X g =2F
g∪¬Fg

The basic components (such as events and fluents) of a merged institution are unions of

corresponding components of each individual institutions from which Cg is formed.

The generation and consequence relations of a Cg are more complicated because, as

discussed before, we have to consider various cases in term of normative conflicts and

interactions between institutions. Fortunately, we have already established models for

coordinated institutions and interacting institutions in previous chapters. Therefore,

depending on the presence of interaction rules, the problem of forming a merged institution

from a set of individual institution is convertible into the merging of a coordinated institution

or an interacting institution into a single coherent institution.

6.1.3 Merged Generation Relations

The generation relation of a merged institution is given as Gg : X g × Eg → 2E
g
inst , where

X g = 2F
g∪¬Fg

, and there are four different cases to compute the relation:

• if 	L{I1, . . . , In} and no cross-institutional rule exists, the merged institution Cg is

achieved by merging a conflict-free coordinated institution, in which Gg can be directly

obtained from the composite relation (cf. Def. 6 on page 63 ):

Gg(φg, e) =

n⋃
i=1

Gi(φi, e)

• if 	L{I1, . . . , In} and cross-institutional rules do exist, the merged institution Cg is

achieved by merging a conflict-free interacting institution, in which Gg can be formalised
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by the cross-institutional generation relation (cf. Def. 21 on page 107):

Gg(φg, e) = Gx(φg, e)

• if �L{I1, . . . , In} and no cross-institutional rule exists, the merged institution Cg is

derived by merging a conflicting coordinated institution. Therefore, we first compute

the corresponding conflict-free coordinated institution via the conflict resolution system

CI-RES and hence Gg can be formalised by the revised composite relation:

Gg(φg, e) =
k−1⋃
i=1

Gi(φi, e) ∪
n⋃
i=k

G̃i(φi, e)

where the institutions {I1, . . . , Ik−1} are unchanged, but {Ik, . . . , In} are revised to

remove conflicts such that the new set of institutions is conflict-free

	L{I1, . . . , Ik−1, Ĩk, . . . , Ĩn}. Here k is used to indicate how institutions are divided

into unchanged background institutions and revisable institutions. Details about how to

determine these can be found in Section 4.5.

• if �L{I1, . . . , In} and cross-institutional rules do exist, the merged institution Cg is

acquired by merging a conflicting interacting institution. Therefore, we first derive the

corresponding conflict-free interacting institution via CI-RES and hence Gg can be

formalised by the revised cross-institution generation relation:

Gg(φg, e) = G̃x(φg, e)

6.1.4 Merged Consequence Relations

The consequence relation of a merged institution is defined as Cg : X g × Eg → 2F
g × 2F

g

with Cg(φg, e) = (C↑(φg, e)g, C↓(φg, e)g). Similarly, we need to formalise Cg in four different

cases with regard to the presence of normative conflicts and interacting rules:

• if 	L{I1, . . . , In} and no cross-institutional rule exists, Cg can be represented by the

composite relation as below:

C↑(φg, e)g =
n⋃
i=1

C↑(φi, e)i

C↓(φg, e)g =
n⋃
i=1

C↓(φi, e)i

• if	L{I1, . . . , In} and cross-institutional rules exist, Cg can be formalised by the cross-
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institutional consequence relation (cf. Def. 22 on page 108):

C↑(φg, e)g = Cx(φg, e)↑

C↓(φg, e)g = Cx(φg, e)↓

• if �L{I1, . . . , In} and no cross-institutional rule exists, Cg can be the revised

composite relation:

C↑(φg, e)g =
k−1⋃
i=1

C↑(φi, e)i ∪
n⋃
i=k

C̃↑(φi, e)i

C↓(φg, e)g =
k−1⋃
i=1

C↓(φi, e)i ∪
n⋃
i=k

C̃↓(φi, e)i

where {I1, . . . , Ik−1} are unchanged, but {Ik, . . . , In} are revised to remove conflicts

such that the new set of institutions is conflict-free 	L{I1, . . . , Ik−1, Ĩk, . . . , Ĩn}.

• if�L{I1, . . . , In} and cross-institutional rules exist, Cg can be obtained by the revised

cross-institution generation relation:

C↑(φg, e)g = C̃x(φg, e)↑

C↓(φg, e)g = C̃x(φg, e)↓

In conclusion, when we consider merging a set of institutions into a single institution,

we first need to combine the set of institutions as either of the first two types of cooperating

institutions, based on which normative conflicts can be detected and resolved if any exists.

In the next section, we give two abstract examples to demonstrate the translation of merged

institutions to answer set programs in the two different circumstances.

6.2 Merged Institutions in Practice

In this section, we give two abstract examples in practice to illustrate how to merge a set of

institutions in cases with interaction or without interaction. Please note that both examples

present in this section are already conflict-free, because conflicts have to be firstly resolved

by following either coordinated model or interacting model, as discussed in Chapter 4 and 5.

Therefore, the two examples here only concern the aspect of interacting rules.

6.2.1 An Example of a Merged Institution from Non-interacting institutions

In this example, we define three individual institutions instI, instJ and instK, among which

there is no cross-institutional rules or bridge institution. Detailed InstAL specifications of each
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institution can be found in appendix C on page 195. We present the InstAL specification of the

resulting merged institution InstIJK in Figure 6-2.

Merged Institution instIJK

1 institution instIJK;
2
3 type TypeA;
4 type TypeB;
5
6 exogenous event exevent1(TypeA); % inst_I
7 exogenous event exevent2(TypeB); % inst_I
8 exogenous event exevent3(TypeB); % inst_J,K
9 exogenous event exevent4(TypeA); % inst_J

10 exogenous event exevent5(TypeB); % inst_K
11
12 inst event intevent1(TypeA); % inst_I
13 inst event intevent3(TypeB); % inst_J
14 inst event intevent4(TypeA); % inst_K
15
16 fluent dfluent1(TypeA, TypeB); % inst_I
17 fluent dfluent3(TypeA, TypeB); % inst_J
18 fluent dfluent4(TypeA, TypeB); % inst_K
19
20 exevent1(TypeA) generates intevent1(TypeA); % inst_I
21 exevent3(TypeB) generates intevent3(TypeB); % inst_J
22 exevent3(TypeB) generates intevent4(TypeA); % inst_K
23
24 intevent1(TypeA) initiates perm(exevent2(TypeB)) % inst_I
25 if dfluent1(TypeA, TypeB);
26 intevent3(TypeB) initiates perm(exevent4(TypeA)) % inst_J
27 if dfluent3(TypeA, TypeB);
28 intevent4(TypeA) initiates perm(exevent5(TypeB)) % inst_K
29 if dfluent4(TypeA, TypeB);
30
31 initially perm(exevent1(TypeA)),perm(intevent1(TypeA)),% inst_I
32 pow(intevent1(TypeA)),dfluent1(a1, b1);
33 initially perm(exevent3(TypeB)),perm(intevent3(TypeB)),% inst_J
34 pow(intevent3(TypeB));
35 initially perm(exevent3(TypeB)),perm(intevent4(TypeB)),% inst_K
36 pow(intevent4(TypeB)),dfluent4(a1, b1);

Figure 6-2: Merged institution formed by a coordinated institution without interacting rules

We indicate the origin institution of each event, fluent and rule by comments “% inst x”.

For example, the exogenous event exevent3 is known by both institution instJ and instK.

Line 21 and 22 are two generation rules from instJ and instK respectively and both rules

generate corresponding events by the occurrence of event exevent3.

Next, we can examine the state change of the merged institution in Figure 6-4 on page 146,

compared with the state of the coordinated institution formed by the same set of institutions in
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Figure 6-3 on page 145.

Figure 6-3 shows the state transition of the coordinated institution formed by instI, instJ

and instK, which is produced by a given event trace:

1 compObserved(exevent1(a1),0).

2 compObserved(exevent1(a2),1).

3 compObserved(exevent2(b1),2).

4 compObserved(exevent3(b2),3).

5 compObserved(exevent4(a2),4).

Afterwards, we merged the three individual institutions together to be a new single

institution instIJK. In this case, the merged institution becomes a single institution and

hence we have to adapt the event trace to be suitable for single institutions:

1 observed(exevent1(a1), instIJK, 0).

2 observed(exevent1(a2), instIJK, 1).

3 observed(exevent2(b1), instIJK, 2).

4 observed(exevent3(b2), instIJK, 3).

5 observed(exevent4(a2), instIJK, 4).

The corresponding state transition of the merged institution can be found in Figure 6-4.

By comparing the occurred events above the arrows in both figures, exevent3 is observed

twice in coordinated model, but only once in merged model. That is because the event is known

by both institution instJ and instK and in the case of coordinated model, both individual

institutions remain independent to responese to the given trace, while in the case of merged

institution, there is only one institution and thus the event is recognised only once.

We can also observe that all the fluents that are previously positive in individual institutions

are all adopted as positive in the merged institution.
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Figure 6-3: State Transition of a Coordinated Institution formed by instI, instJ and instK
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Figure 6-4: State Transition of a Merged Institution formed by instI, instJ and instK
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6.2.2 An Example of a Merged Institution from an Interacting Institution

Here is another example illustrating how to merge a set of institutions that interact with each

other. We need to pay extra attention to adapt cross-institutional rules for the single merged

institution: the cross-institutional rules specified in bridge institutions must be converted into

ordinary generation and consequence rules for a single institution. The merging of

cross-institutional consequence rules are relatively straightforward, while it is more

complicated to incorporate cross-institutional generation rules. We first consider

cross-institutional consequence rules.

The role of cross-institutional consequence rules is to propagate the effect of an institutional

event to another institution, i.e. the occurrence of an institutional event can change the states

of another institution. Therefore, when converting cross-institutional consequence rules to

internal consequence rules, it is rather straightforward, as in merged institutions, states of all

individual institutions are also considered as one and hence such cross-institutional effects now

become internal effects.

We use the same set of institutions instI, instJ and instK as the example in Section

6.2.1, but we add a bridge institution with cross-institutional rules to enable interacting among

the three institutions. Detailed InstAL specification of the bridge institution can be found in the

appendices C.4 on page 197. Next we discuss how we merge the cross-institutional rules into

the resulting merged institutions.

For instance, we have two cross-institutional consequence rules in the bridge institution,

which are then adopted by the single merged institution.

Bridge Institution: two cross-institutional consequence rules are defined in InstAL and

AnsProlog as below:

intevent1(TypeA) xinitiates perm(exevent4(TypeA));

intevent3(TypeB) xterminates perm(exevent2(TypeB));

1 xinitiated(perm(exevent4(TypeA)),instJ,I) :-

2 occurred(intevent1(TypeA),instI,I),

3 holdsat(ipow(instI, perm(exevent4(TypeA)), instJ), bridge, I),

4 holdsat(live(bridge),bridge,I), inst(bridge),

5 inst(instJ;instI), typea(TypeA), instant(I).

6 xterminated(perm(exevent2(TypeB)),instI,I) :-

7 occurred(intevent3(TypeB),instJ,I),

8 holdsat(tpow(instJ, perm(exevent2(TypeB)), instI), bridge, I),

9 holdsat(live(bridge),bridge,I), inst(bridge),

10 inst(instI;instJ), typeb(TypeB), instant(I).

Merged Institution: the two cross-institutional consequence rules above are converted into

consequence rules for the single merged institution:
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intevent1(TypeA) initiates perm(exevent4(TypeA));

intevent3(TypeB) terminates perm(exevent2(TypeB));

1 initiated(perm(exevent4(TypeA)),instIJK,I) :-

2 occurred(intevent1(TypeA),instIJK,I),

3 holdsat(live(instIJK),instIJK,I), inst(instIJK),

4 typea(TypeA),inst(instIJK), instant(I).

5 terminated(perm(exevent2(TypeB)),instIJK,I) :-

6 occurred(intevent3(TypeB),instIJK,I),

7 holdsat(live(instIJK),instIJK,I),inst(instIJK),

8 typeb(TypeB),inst(instIJK), instant(I).

It can be found that the effects of both rules above are now only applied to the merged

institution instIJK.

When it comes to transfer cross-institutional generations rules in bridge institution to

internal generation rules of the merged institution, the process gets more complicated. We

define the generates relation to map an external event to an institutional event, while

cross-institutional generation relation works the other way around (i.e. an institutional event

of one institution generates an external event for another ), as those rules are designed to

bridge event generation across different institutions. As shown in Figure 6-5, the occurrence

of ExEvti1 triggers not only the event InstActi1 for institution I but also the event InstActj4
for institution J via cross-institutional rules. The event ExEvtj4 is generated by

cross-institutional rules to bridge such event generations between the two institutions. As now

all the institutions are merged to be one, such generation can be achieved directly, as indicated

by the red arrows in the figure.

In the example here, we have a cross-institutional rule specifies that the event intevent1

of instI generates the event exevent4 for instJ, which is then used to generate the

institutional event intevent4 by the institution InstJ.

intevent1(TypeA) xgenerates exevent4(TypeA); % from bridge inst

exevent4(TypeA) generates intevent4(TypeA); % from InstJ

Now we need to merge the rules above to derive a generation rule for the merged

institution. Let us imagine that the two generation rules above render an event generation

trace with intevent1(TypeA) as the starting event and the intevent4(TypeA) as the ending

event of the trace. Based on that, we can merge the two rules into a single rule by keeping

only the starting and ending event:

intevent1(TypeA) generates intevent4(TypeA); % from instIJK

Up to here, we have discussed how to combine cross-institutional consequence and

generation rules into a merged institution. To continue with the example, we can derived the

complete merged institution in Figure 6-6 on page 150 formed by the three institutions instI,
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Environment

ExEvti0 ExEvti1 ExEvti2 ExEvti3

Institution I

S0 S1

InstActi0
S2

InstActi1

Institution J

S0 S1

InstActj0
S2

InstActj4

Bridge Institution

ExEvtj0 ExEvtj4 Generation Rules

Consequence Rules

Cross-Institution
Generations Rules

Merged Institution
Generation Rules

Figure 6-5: Merging Cross-institutional Generation Rules

instJ, instK and the bridge institution (cf. C.4 on page 197). Again we label the institution

where the events, fluents and rules are originally from. In particular, line 25 is a generation

rule derived from a cross-institutional generation rule of the bridge institution and line 33–34

are rules converted from cross-institutional consequence rules. It can also be found that the

cross-institutional fluents are absent from the states of the merged institution because those

powers are not needed any more .

With the help of the translator, we can obtain the computational model of the merged

institution. By feeding the model with the same event trace used in last section 6.2, we can

have the corresponding state transitions as shown in Figure 6-8 on page 152. For the sake of

comparison, we also give the state transition of the interacting institution formed by the same

set of institutions and the bridge institution in Figure 6-7.

One of the most interesting findings from the state transition figures is that the event

exevent4 is missing from the occurred events set of the merged model from state S0 to S1.

That is because in the merged institution, the previous cross-institutional generation rule is

achieved by a internal generation rule directly (cf. line 25 in Figure 6-6), and hence there is no

need to generate the event exevent4 to bridge the event generation any more.
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Merged Institution instIJK with Bridge Institution

1 institution instIJK;
2
3 type TypeA;
4 type TypeB;
5
6 exogenous event exevent1(TypeA); % inst I
7 exogenous event exevent2(TypeB); % inst I
8 exogenous event exevent3(TypeB); % inst J
9 exogenous event exevent4(TypeA); % inst J

10 exogenous event exevent5(TypeB); % inst K
11
12 inst event intevent1(TypeA); % inst I
13 inst event intevent3(TypeB); % inst J
14 inst event intevent4(TypeA); % inst K, J
15
16 fluent dfluent1(TypeA, TypeB); % inst I
17 fluent dfluent3(TypeA, TypeB); % inst J
18 fluent dfluent4(TypeA, TypeB); % inst K
19
20 exevent1(TypeA) generates intevent1(TypeA); % inst I
21 exevent3(TypeB) generates intevent3(TypeB); % inst J
22 exevent3(TypeB) generates intevent4(TypeA); % inst K
23 exevent4(TypeA) generates intevent4(TypeA); % inst J
24
25 intevent1(TypeA) generates intevent4(TypeA); % bridge
26 intevent1(TypeA) initiates perm(exevent2(TypeB)) % inst I
27 if dfluent1(TypeA, TypeB);
28 intevent3(TypeB) initiates perm(exevent4(TypeA)) % inst J
29 if dfluent3(TypeA, TypeB);
30 intevent4(TypeA) initiates perm(exevent5(TypeB)) % inst K
31 if dfluent4(TypeA, TypeB);
32
33 intevent1(TypeA) initiates perm(exevent4(TypeA)); % bridge
34 intevent3(TypeB) terminates perm(exevent2(TypeB)); % bridge
35
36 initially perm(exevent1(TypeA)), % inst I
37 perm(intevent1(TypeA)),
38 pow(intevent1(TypeA));
39 initially dfluent1(a1, b1); % inst I
40 initially perm(exevent3(TypeB)), % inst J
41 perm(intevent3(TypeB)),
42 pow(intevent3(TypeB));
43 initially perm(exevent3(TypeB)), % inst K
44 perm(intevent4(TypeB)),
45 pow(intevent4(TypeB));
46 initially dfluent4(a1, b1); % inst K

Figure 6-6: Merged Institution formed by an Interacting institution
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Figure 6-7: State Transition of an Interacting Institution formed by instI, instJ, instK and
bridge institutions
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Figure 6-8: State Transition of a Merged Institution formed by instI, instJ, instK and bridge

institutions
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Chapter 7
Conclusions, Discussion and Future
Work

7.1 Summary and Conclusions

Norms have been studied as an effective mechanism to regulate agents’ behaviour and

interactions in terms of permissions, prohibitions and obligations. With regard to specific

normative objectives, a group of norms together forms an institution. With the rapid

development of complex systems, a set of institutions is required to co-govern. Such kind of

combination of individual institutions is termed as cooperating institutions in this dissertation,

in which three different ways of combination are addressed:

(i) coordinated institutions: the state of each combined individual institution remains

independent, but their combination interacts with agents and external environment as a

whole. Such combination provides a basic way of combining institutions, which can be

applied to render a co-governance context enforced by a set of independent institutions,

enabling mutual comparison of states in order to spot undesirable states (e.g. normative

conflicts) due to combinations.

(ii) interacting institutions: based on coordinated institutions, an enhanced model allowing

for interactions between institutions is introduced. Interactions make it possible that an

institution can be influenced by another, which also leads to additional possibilities for

normative conflicts. This model facilities a hierarchical structure among institutions such

that the state of an institution can be driven by events from another institution, and the

state of an institution can also be updated by another institution.

(iii) merged institutions: in contrast with the previous two types of combination, this model

produces a completely new institution by merging norms of all participating individual

institutions, giving rise to a conflict-free merged institution.
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The combination of institutions is a potential source of normative conflicts as the

individual institution is typically designed independently and with specific objectives in mind.

Agents governed by such cooperating institutions might for example encounter the situation

that some action is prohibited by one institution, but simultaneously permitted or obliged by

another; or maybe worse that they are entitled to do something in one institution but not in

another. To address this issue, we first combine the formalisation and hence answer set

models of single institutions to construct the three different types of cooperating institutions.

Modelling the first type of combination is achieved by constructing the composite transition

function to compute state transition model of a coordinated institution. The challenging part is

to make each institution model be tolerant of unknown events and respond to recognised

events accordingly. More importantly, the model needs to be able to distinguish the state

transition of each participating institution from one other, because their state transitions are

expected to remain independent without interference. Therefore, we adapt the existing event

generation function and add institution identification as an extra parameter to distinguish the

state updates of each institution. The interacting institutions bring more challenges as now we

need a means to represent the links among institutions. We propose the notion of

cross-institutional rules and bridge institutions, which can bring the event generation and state

updates across multiple institutions.

Subsequently, we introduce an approach that is able to determine whether a coordinated

or interacting institution is conflict-free or not. We identify a weak conflict when a fluent

in general holds true at the state of an institution, but meanwhile holds false at the state of

another institution in the same combination. Furthermore, we can have strong conflicts when

an action is obliged by one institution, but not permitted by another institution at the same

time. Under such circumstances, agents will definitely violate norms, regardless of whether

they choose to perform the action or not, thus we name such circumstances as strong conflicts.

When it comes to the interacting models of cooperating institutions, conflicts might arise when

a fluent is internally initiated, but terminated externally by another empowered institutions via

cross-institutional rules. Therefore, we further address derived weak and strong conflicts for

interacting institutions.

If conflicts are present, the system identifies so-called conflict traces. These conflict traces

can then be used as negative examples for the inductive learning system (CI-RES) to resolve

them. By converting the conflict resolution problem to a theory revision problem, we are able

to use inductive logic programming to implement the conflict resolution system, producing

automatically the minimal revisions necessary to make the coordinated or interacting institution

conflict-free.

Finally, merged institutions are formed by coherent coordinated institutions or coherent

interacting institutions, depending on the presence of interacting rules. The idea is to integrate

norms from a set of institutions together to form a new institution. To guarantee conflict-free

merge institutions, the set of individual institutions have to be firstly modelled as coordinated

154



Chapter 7. Conclusions, Discussion and Future Work

or interacting models, and then go through the conflict detection and resolution procedures to

derive a completely new conflict-free institution.

7.2 Discussion and Further Development

With respect to future work, we foresee several interesting lines of improvement for the work

presented in this dissertation:

1. The inductive learning system may generate multiple answer sets, but not all of them

constitute sensible revisions: for those cases, we need to be able to capture additional

criteria that express what is sensible with greater precision as further constraints on the

answer sets. One solution would be to use a quantitative ranking mechanism for

relevant literals as outlined in [Athakravi et al., 2012]. We can also consider other

qualitative evaluation criteria for selecting solutions. Currently we only consider the

cost of modification and choose the one with least cost, expecting minimising the

unexpected effects of modification. However, it might not be adequate by using

quantitative value to evaluate qualitative concepts. We can instead compare the state

model derived by the revised institutional specification with the original state model.

Ideally we expect all the states remain the same except the absence of conflicting states,

but it is unlikely to happen and so in fact we can choose the one resulting the state

model as close as the original state model.

2. The precedence order among institutions within a coordinated institution can be

established by the three classical strategies for resolving conflicts in law: hierarchy,

chronology and speciality – more details can be found in [Sartor, 1992]. The approach

presented in this dissertation is independent of the type of ordering chosen, as long as a

total order is established. Currently this total order is defined at institutional level. In

the future, we intend to explore the extension of the mechanism with a finer-grained

precedence ordering between norms rather than the whole institutions, which we

believe should improve the system’s flexibility and applicability. One way to do that,

borrowed from [Broersen et al., 2001a], is to consider building ordering over the types

of norms. For example, obligations are more preferred than permissions, if an

institution encourages more social agents.

3. As discussed in the evaluation section 4.5.5 on page 100, the size of the search space

of possible revisions has the most significant impact on the computational complexity

of conflict resolution. Therefore, we need to adopt some heuristics to prune the search

space or guide the learning process to be more efficient. One possible way to do that is to

establish a tree-based structure in terms of the activation sequence over generation and

consequence rules. An example is given in Figure 7-1, where a set of generation rules

r3, r4, r5 and r6, and a set of consequence rules r1 and r2 are defined. Generation rules
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S2

consequence r1 consequence r2

generation r3 generation r4 generation r5

ie5 ie2 ie4

Level 0

Level 1

generation r6

ie1 ie3

Level 2

Level 3

S3S1

e1

e2

Figure 7-1: Tree-based heuristics for guiding CI-RES

are triggered by an event, and produce another event, while consequence rules accept

events to update states. As a result, we can render a tree-based structure among these

rules. At the level 0, a set of resulting states can be obtained as roots. If it is known that

the state S2 is a conflicting state, derived by a conflict trace 〈e1, ie1, ie2〉 highlighted in

red in Figure 7-1. To resolve the conflicts, we can start by finding necessary revisions to

the rules at the lowest level (e.g. consequence r1 at level 1). If no solution is found, we

then look at rules at higher levels. Such tree-based heuristics offers us a map to find the

rule or rules leading to conflicts. The learning process would result in effective solutions

more efficiently by navigating with such maps.

Furthermore, based on the work presented here, we also consider promising extensions and

lines of further development:

1. Extension of Normative Conflicts As noted in the preceding section, there remain

types of conflicts that we did not discussed here. Our focus has been on weak conflicts

(fluent versus not fluent) and strong conflicts (prohibition versus obligation), but we

believe our mechanism can be extended to cover other types, because the fluents in our

model can readily denote various other deontic positions: permission, obligation and

power, while the essential notion (of our approach) is the detection of contrary values of

fluents regardless of deontic position. Furthermore, we can also extend our mechanism

to cover the second group of conflicts identified by [Giannikis and Daskalopulu,

2011] (as discussed in Table 2.1), which are caused by the mutually exclusive relations

of two actions described in a given pair of norms. To do so, we would need to add the

relations between actions as constraints to expand further the identification of conflicts.
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Such constraints could be, for example, a set of facts exclusive(e1, e2) defined to

denote the exclusive relation between two events and that the obligations arising from

any two exclusive events will conflict with each other. The fluents defined in our model

can be not only deontic qualifiers, but also domain fluents D – properties specific to the

institution (e.g. attacked(eastCastle)). The mechanism we have described can

equally be employed to detect inconsistencies with respect to these fluents between

different institutions.

2. Generalisation of Normative Conflicts Normative conflicts can be considered as a

particular type of undesirable state of a system, and we interpreted them as a fluent

holding contrary values in a pair of institutions. We can foresee using the same conflict

detection and resolution mechanism to address other undesirable states, by giving

explicit interpretations of such undesirable states. For example, undesirable states could

be vulnerable states of an access control system [Pieters et al., 2013]. In this case, we

can automatically identify the policy oversights and security threats in existing systems,

and moveover produce necessary changes to existing policies to fix them. Another

example could be the undesirable behaviour or ineffective behaviour discussed in [van

Riemsdijk et al., 2013]. By describing the pattern of undesirable behaviour in terms of

the institutional language, we can use the occurrence of undesirable behaviour as

negative example in our ILP-based learning system, to produce refined rules which can

prevent these behaviours from happening.

3. Application Domains of Cooperating Institutions Cooperating institutions are rather

an abstract notion, which may have various concrete forms in different domains. In

reality, there is an increasing demand for the co-existence of regulatory systems. For

instance, socio-technical systems require a technical control system to take social and

human factors into account. Another example could be when an established

organisation needs to merge rules from other aspects (e.g. legal regulations, cultural

conventions, context adaptation, etc.) into its own routine polices. It is important to be

able to determine that the combined policies have the desired effect and are not affected

by potential policy conflicts that might result in unexpected changes in the handling of

the polices. Besides, as we already demonstrate in [Li et al., 2013a,b,c], the notion of

cooperating institutions can be applied in the domain of legal study to address the

co-governance of laws and the conflict of laws.

4. Further Development Directions The conflict detection and resolution approach

discussed in this dissertation aims to off-line verification and refinement of institutional

specifications. We would like to see how we can extend the approach to on-line

reasoning and learning. In the context of a running system, an entity (e.g. institution

manager) can be implemented to monitor the states of a system and detect undesirable

states one (or more) step ahead by predicting all possible state transition after
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performing different actions. The necessary mechanisms could be deployed to either

prevent actors from performing actions leading to undesirable states, or to resolve

undesirable states by revising existing rules/norms automatically.
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Symbols: Institutional Modelling

Symbol Description

e Event e ∈ E
E Set of Known Event

Eact Institutional Actions

Einst Institutional Event Eviol ∪ Eact
Eex Exogenous Event/Observable Event

Eviol Violation Event

E Set of Unknown Events

f a Fluent f ∈ F
F Set of Fluents P ∪W ∪O ∪D
P Set of Permissions Fluents

W Set of Powers Fluents

O Set of Obligations Fluents

D Set of Domain Fluents

I or Ii Institution with Unique Identification i 〈E ,F ,G, C,∆〉
∆ Initial States ∆ ∈ F
UE Universal Set of Events E ∪ E
G(φ, e) Generation Relation

C↑(φ, e)/C↓(φ, e) Consequence Relation

Σ Set of States

S or Sit a State of an Institution Ii at Time t S ∈ Σ

X Set of State Formulae 2F∪¬F

φ a State Formula φ ∈ X
GR Generation Operator

GR(S,E) Generation Function

GRω(S, {eex}) Fixpoint of the Generation Function

INIT Initiation Operator

TERM Termination Operator

INIT(S, eex) Initiation Function

TERM(S, eex) Termination Function

TR Transition Operator

TR(Si, eex) Transition Function

PI Computational Program(Model) of the

Institution I
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Symbol Description
Pinst Institution Component Program

Ptrace Trace Component Program

Ptime Time Component Program
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Symbols: Coordinated Institutions

Symbol Description

C a Coordinated Institution 〈{I1, . . . , In}, �C〉
�C a Precedence over a C

Ec Composite Events
⋃n
i=1 E i

Ecex Composite Exogenous Events
⋃n
i=1 E iex

Ecinst Composite Fluents
⋃n
i=1 E iinst

Fc Composite Fluents
⋃n
i=1F i

Σc Set of States

Sc or Sct a State of an Coordinated

Institution at Time t

Sc ∈ Σc

GRc Composite Generation

Operator

Σc × 2U
c
E → 2E

c

GRc(S
c, E) Composite Generation

Function

⋃n
i=1GR

i(S i, E)

INITc Composite Initiation Operator

TERMc Composite Termination

Operator

INITc(S
c, eex) Composite Initiation Function

⋃n
i=1 INIT(i, S i)eex

TERMc(S
c, eex)Composite Termination

Function

⋃n
i=1 TERM(i, S i)eex

TRc Composite Transition

Operator

Σc × Ecex → Σc

TRc(S
c, eex) Composite Transition

Function

PC Computational Program of the

C
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Symbols: Interacting Institutions

Symbol Description

Cm an Interacting Institution 〈{I1, . . . , In},�Cm

,Fx,Gx, Cx, δx〉
�Cm A Precedence over a Cm
Em Events of a Cm

⋃n
i=1 E i

Fx Cross-institution Powers Wg ∪Wi ∪Wt

Fm Fluents of a Cm
⋃n
i=1 F i ∪ Fx

Sx State of the Fx

Sm State of a Cm 〈S1, . . . , Sn, Sx〉
Xm State Formulae of a Cm {2F1∪¬F1

, . . . , 2F
n∪¬Fn}

Σm Set of States of a Cm Sm ∈ Σm

UmE All events might occur under the context

of a Cm
Gx Cross-Institution Generation Relation Xm × Em →

〈2E1 , . . . , 2En , 2Em〉
GRx

i Cross-Institution Generation Operator Σm × 2U
m
E → 2E

i

GRix(Sm, E) Cross-Institution Generation Function

GRω,ix (Sm, {e}) Fixed Point of Cross-Institution

Generation Function

Cx Cross-Institution Consequence Relation Xm × Em →
〈2F1 , . . . , 2Fn , 2F

m〉 ×
〈2F1 , . . . , 2Fn , 2F

m〉
Cx(φm, e)↑ Cross-Institution Initiation Relation

Cx(φm, e)↓ Cross-Institution Termination Relation

INITx
i Cross-Institution Initiation Operator Σm × 2E

m → 2F
i

INITx
i(Sm, eex) Cross-Institution Initiation Function

TERMx
i Cross-Institution Initiation Operator Σm × 2E

m → 2F
i

TERMx
i(Sm, eex)Cross-Institution Initiation Function

TRx
i Transition Operator of a Cm Σm × Emex → Σm

TRx
i(Sm, eex) Transition Function of a Cm
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Symbols: Merged Institutions

Symbol Description

Cg a Merged Institution 〈Eg,Fg,Gg, Cg,∆g〉
Ii 	L Ij Ii and Ii are conflict-free up to L

	L{I1, . . . , In} a Set of Institutions is conflict-free up

to L

Ii �L Ij Ii and Ii are not conflict-free up to L

�L{I1, . . . , In} a Set of Institutions is not conflict-free

up to L

Eg Events of a Cg
⋃n
i=1 E i

Egex Exogenous Events of a Cg
⋃n
i=1 E iex

Eginst Institutional Events of a Cg
⋃n
i=1 E iinst

Fg Fluents of a Cg
⋃n
i=1F i

X g Set of State Formulae of a Cg 2F
g∪¬Fg

φg a State Formula of a Cg φg ∈ X g

Gg/ Gg(φg, e) Generation Relation for a Cg X g × Eg → 2E
g
inst

G̃i(φi, e) Revised Generation Relation

G̃x(φg, e) Revised Cross-institution Generation

Relation

Cg Consequence Relation for a Cg Cg : X g × Eg → 2F
g × 2F

g

Cg(φg, e) Consequence Relation for a Cg (C↑(φg, e)g, C↓(φg, e)g)
C̃↑(φi, e)i

C̃↓(φi, e)i
Revised Consequence Relation

C̃x(φg, e)↑

C̃x(φg, e)↓
Revised Cross-institution Consequence

Relation
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Symbols: Conflict Detection

Symbol Description

Pdetect Conflict Detection Program

PD Complete Detection Program Pdetect ∪ Ptime ∪ Pinst ∪ Ptrace
PI Program of an Institution

tr Composite Trace

TC Set of Composite traces tr ∈ TC
Ptr Program of a composite trace

Mi State Transition Model of an Institution 〈Si0, . . . Sit〉
L Fixed Length of Time Instant

Ψ(tr) Set of Conflicts from a Trace tr

Ψ(TC) Set of Conflicts from a Set of Traces TC
Ii 	L Ij Ii and Ii are conflict-free up to L

	L{I1, . . . , In} a Set of Institutions is conflict-free up

to L

Ii �L Ij Ii and Ii are not conflict-free up to L

�L{I1, . . . , In} a Set of Institutions is not conflict-free

up to L
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Symbols: Conflict Resolution

Symbol Description

T Original Theory

T ′ Revised Theory

Ω Properties to Satisfy

B Base Theory/Background Theory

M Mode Declarations ∀I ∈ C · I ⊆ 2M

Mh
G Head(Mode) Declarations for Generation Rules

M b
G Body(Mode) Declarations for Generation Rules

Mh
C Head(Mode) Declarations for Consequence

Rules

M b
C Body(Mode) Declarations for Consequence

Rules

H Solution

RM Set of Rules Compatible with M

cost(T, T ′) Cost Function

C ′ Revised Coordinated Institution

ΓΨ(tr) Set of Non-interlinked Sets of Conflicts – caused

by one trace

ΓΨ(tr) ⊆ 2Ψ(tr)

ψ̂(tr) the Maximal Set of Non-interlinked Conflicts –

caused by one trace

ψ̂(tr) ∈ ΓΨ(tr)

ΓΨ(TC) Set of Non-interlinked Sets of Conflicts – caused

by set of traces

ΓΨ(TC) ⊆ 2Ψ(TC)

ψ̂(TC) the Maximal Set of Non-interlinked Conflicts –

caused by set of traces

ψ̂(TC) ∈ ΓΨ(TC)

ΓΨ Non-interlinked Sets of Conflicts in General

ψ̂ the Maximal Set of Non-interlinked Conflicts in

General

ψ̂ ∈ ΓΨ

�C Precedence over a Coordinated Institution C

G Conflict Graph 〈V,E〉
V Set of Vertices

E Set of Edges

d+
G(v) In Degree of a Vertex

d−G(v) Out Degree of a Vertex

Pψ̂ Program for Obtaining ψ̂

Mh
i Set of Head Mode Declarations

M b
i Set of Body Mode Declarations
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Symbol Description
ΠM Search Space of Revisions 2M

id(e) Unique ID of an Event/ a Fluent

V (e) Variable List of an Event/a Fluent

Ξhb Bound Variable Tuple

Bi the ith Body Variable

LBi Set of Indexes – an Element in Ξhb LBi ∈ Ξhb
form Form of a Literal – Positive or Negative

ρ Revision Tuple 〈I, RId,Θ, Cost〉
RId Unique Identifier of a Rule

Θ Structure Tuple of a Revised Rule

P̃ dI Revisable Model of an Institution for Deletion

P̃ aI Revisable Model of an Institution for Addition

Try Set of Facts try/3

Ext Set of Facts extension/2

Abd Set of Facts rev/4

Acronyms

Acronym Description

ASP Answer Set Programming

ASPAL ASP Abductive Learning

CI-RES Cooperating Institution – Conflict Resolution System

ILP Inductive Logic Programming

InstAL Institutional Action Language
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Appendix A
Example of Single Institution

In this chapter, we present the details of the example demonstrating the modelling of a single

institution, which is discussed in 3.1.2. The Section A.1 gives the InstAL specification of the

institution Lord and the explanation to the InstAL code can be found in Section 3.1.3, which

is followed by the associated domain specifications in Section A.2. Finally, the corresponding

ASP program is produced and present in A.3. The key ASP rules appeared in the example are

introduced in 3.1.2.

A.1 the InstAL Specification for Institution Lord

institution lord;

type Person;

type Age;

type Gender;

type Castle;

exogenous event register(Person);

exogenous event serveInArmy(Person);

exogenous event deadline;

exogenous event releaseSolePolicy(Person);

exogenous event goToWar(Castle);

exogenous event demandToFight(Castle);

inst event intReleaseSolePolicy(Person);

inst event intDemandToFight(Castle);

inst event intRegister(Person);

inst event intServeInArmy(Person);

violation event illegal(Person);
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fluent onlySon(Person);

fluent ageOlder(Person, Age);

fluent gender(Person, Gender);

fluent attacked(Castle);

obligation fluent obl(serveInArmy(Person), deadline, illegal(Person));

register(Person) generates intRegister(Person);

demandToFight(Castle) generates intDemandToFight(Castle);

serveInArmy(Person) generates intServeInArmy(Person);

releaseSolePolicy(Person) generates intReleaseSolePolicy(Person);

intRegister(Person) initiates

obl(serveInArmy(Person), deadline, illegal(Person)),

perm(serveInArmy(Person))

if ageOlder(Person, sixteen), gender(Person, male);

intDemandToFight(Castle) initiates perm(goToWar(Castle))

if attacked(Castle);

intReleaseSolePolicy(Person) terminates

obl(serveInArmy(Person), deadline, illegal(Person)),

perm(serveInArmy(Person))

if onlySon(Person);

initially perm(register(Person)),

pow(intRegister(Person)),

perm(intRegister(Person));

initially perm(deadline);

initially perm(releaseSolePolicy(Person)),

perm(intReleaseSolePolicy(Person)),

pow(intReleaseSolePolicy(Person));

initially perm(demandToFight(Castle)),

perm(intDemandToFight(Castle)),

pow(intDemandToFight(Castle));

initially attacked(eastCastle);

initially onlySon(tom);

initially ageOlder(tom,sixteen);

initially gender(tom,male);
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initially ageOlder(bob,sixteen);

initially gender(bob,male);

A.2 the Domain Specification for Institution Lord

Person: tom bob

Age: sixteen

Gender: male female

Castle: eastCastle westCastle

A.3 the ASP program for Institution Lord

1 %

2 % Domain declarations for lord

3 %

4 person(tom).

5 person(bob).

6 age(sixteen).

7 gender(male).

8 gender(female).

9 castle(eastCastle).

10 castle(westCastle).

11 %

12 % ------------------------PART 1-----------------------

13 % Standard prelude for lord

14 %

15 % instant ordering

16 % fluent rules

17 holdsat(P,In,J):- holdsat(P,In,I),not terminated(P,In,I),

18 next(I,J),fluent(P, In),instant(I),instant(J), inst(In).

19 holdsat(P,In,J):- initiated(P,In,I),next(I,J),

20 ifluent(P, In),instant(I),instant(J), inst(In).

21 holdsat(P,In,J):- initiated(P,In,I),next(I,J),

22 oblfluent(P, In),instant(I),instant(J), inst(In).

23 holdsat(P,In,J):- initiated(P,In,I),next(I,J),

24 nifluent(P, In),instant(I),instant(J), inst(In).

25 % all observed events occur

26 occurred(E,In,I):- evtype(E,In,ex),observed(E,In,I),

27 instant(I), inst(In).

28 % produces null for unknown events

29 occurred(null,In,I) :- not evtype(E,In,ex), observed(E,In,I),

30 instant(I), inst(In).

31 % produces gap warning for unknown events

32 unknown(E, In, I) :- not evtype(E,In,ex), observed(E,In,I),

33 instant(I), inst(In).

34 warninggap(In, I) :- unknown(E,In,I), inst(In), instant(I).

35 % a violation occurs for each non-permitted action

36 occurred(viol(E),In,I):-

37 occurred(E,In,I),

38 evtype(E,In,ex),

39 not holdsat(perm(E),In,I),

40 holdsat(live(In),In,I),evinst(E,In),
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41 event(E),instant(I),event(viol(E)),inst(In).

42 occurred(viol(E),In,I):-

43 occurred(E,In,I),

44 evtype(E,In,inst),

45 not holdsat(perm(E),In,I),

46 event(E),instant(I),event(viol(E)), inst(In).

47 true.

48 %

49 % Rules for Institution lord

50 %

51 ifluent(live(lord), lord).

52 fluent(live(lord), lord).

53 inst(lord).

54 %

55 % Constraints for obserable events depending on mode option

56 %

57 %% mode COMPOSITE is chosen:

58 {compObserved(E, J)}:- evtype(E,In,ex),instant(J),

59 not final(J), inst(In).

60 :-compObserved(E,J),compObserved(F,J),instant(J),evtype(E,InX,ex),

61 evtype(F,InY,ex), E!=F,inst(InX;InY).

62 obs(I):- compObserved(E,I),evtype(E,In,ex),instant(I),inst(In).

63 :- not obs(I), not final(I), instant(I), inst(In).

64 observed(E,In,I) :- compObserved(E,I), inst(In), instant(I).

65 %

66 % The following types were declared:

67 %

68 % Person

69 % Age

70 % Castle

71 % Gender

72 %

73 % Exogenous events

74 % Event: goToWar (type: ex)

75 event(goToWar(Castle0)) :- castle(Castle0).

76 evtype(goToWar(Castle0),lord,ex) :- castle(Castle0).

77 evinst(goToWar(Castle0),lord) :- castle(Castle0).

78 ifluent(perm(goToWar(Castle0)), lord) :- castle(Castle0).

79 fluent(perm(goToWar(Castle0)), lord) :- castle(Castle0).

80 event(viol(goToWar(Castle0))) :- castle(Castle0).

81 evtype(viol(goToWar(Castle0)), lord, viol) :- castle(Castle0).

82 evinst(viol(goToWar(Castle0)),lord) :- castle(Castle0).

83 % Event: releaseSolePolicy (type: ex)

84 event(releaseSolePolicy(Person0)) :- person(Person0).

85 evtype(releaseSolePolicy(Person0),lord,ex) :- person(Person0).

86 evinst(releaseSolePolicy(Person0),lord) :- person(Person0).

87 ifluent(perm(releaseSolePolicy(Person0)), lord) :- person(Person0).

88 fluent(perm(releaseSolePolicy(Person0)), lord) :- person(Person0).

89 event(viol(releaseSolePolicy(Person0))) :- person(Person0).

90 evtype(viol(releaseSolePolicy(Person0)), lord, viol) :- person(Person0).

91 evinst(viol(releaseSolePolicy(Person0)),lord):-person(Person0).

92 % Event: demandToFight (type: ex)

93 event(demandToFight(Castle0)) :- castle(Castle0).

94 evtype(demandToFight(Castle0),lord,ex) :- castle(Castle0).

95 evinst(demandToFight(Castle0),lord) :- castle(Castle0).

96 ifluent(perm(demandToFight(Castle0)), lord) :- castle(Castle0).
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97 fluent(perm(demandToFight(Castle0)), lord) :- castle(Castle0).

98 event(viol(demandToFight(Castle0))) :- castle(Castle0).

99 evtype(viol(demandToFight(Castle0)), lord, viol) :- castle(Castle0).

100 evinst(viol(demandToFight(Castle0)),lord) :- castle(Castle0).

101 % Event: register (type: ex)

102 event(register(Person0)) :- person(Person0).

103 evtype(register(Person0),lord,ex) :- person(Person0).

104 evinst(register(Person0),lord) :- person(Person0).

105 ifluent(perm(register(Person0)), lord) :- person(Person0).

106 fluent(perm(register(Person0)), lord) :- person(Person0).

107 event(viol(register(Person0))) :- person(Person0).

108 evtype(viol(register(Person0)), lord, viol) :- person(Person0).

109 evinst(viol(register(Person0)),lord) :- person(Person0).

110 % Event: serveInArmy (type: ex)

111 event(serveInArmy(Person0)) :- person(Person0).

112 evtype(serveInArmy(Person0),lord,ex) :- person(Person0).

113 evinst(serveInArmy(Person0),lord) :- person(Person0).

114 ifluent(perm(serveInArmy(Person0)), lord) :- person(Person0).

115 fluent(perm(serveInArmy(Person0)), lord) :- person(Person0).

116 event(viol(serveInArmy(Person0))) :- person(Person0).

117 evtype(viol(serveInArmy(Person0)), lord, viol) :- person(Person0).

118 evinst(viol(serveInArmy(Person0)),lord) :- person(Person0).

119 % Event: deadline (type: ex)

120 event(deadline) :- true.

121 evtype(deadline,lord,ex) :- true.

122 evinst(deadline,lord) :- true.

123 ifluent(perm(deadline), lord) :- true.

124 fluent(perm(deadline), lord) :- true.

125 event(viol(deadline)) :- true.

126 evtype(viol(deadline), lord, viol) :- true.

127 evinst(viol(deadline),lord) :- true.

128 %

129 % null event for unknown events

130 % Event: null (type: ex)

131 event(null).

132 evtype(null,lord,ex).

133 evinst(null,lord).

134 ifluent(perm(null), lord).

135 fluent(perm(null), lord).

136 event(viol(null)).

137 evtype(viol(null),lord,viol).

138 evinst(viol(null),lord).

139 % Institutional events

140 % Event: intRegister (type: in)

141 event(intRegister(Person0)) :- person(Person0).

142 evtype(intRegister(Person0),lord,inst) :- person(Person0).

143 evinst(intRegister(Person0),lord) :- person(Person0).

144 ifluent(pow(lord,intRegister(Person0)),lord) :- person(Person0).

145 ifluent(perm(intRegister(Person0)),lord) :- person(Person0).

146 fluent(pow(lord,intRegister(Person0)),lord) :- person(Person0).

147 fluent(perm(intRegister(Person0)),lord) :- person(Person0).

148 event(viol(intRegister(Person0))) :- person(Person0).

149 evtype(viol(intRegister(Person0)),lord,viol) :- person(Person0).

150 evinst(viol(intRegister(Person0)),lord) :- person(Person0).

151 % Event: intDemandToFight (type: in)

152 event(intDemandToFight(Castle0)) :- castle(Castle0).
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153 evtype(intDemandToFight(Castle0),lord,inst) :- castle(Castle0).

154 evinst(intDemandToFight(Castle0),lord) :- castle(Castle0).

155 ifluent(pow(lord,intDemandToFight(Castle0)),lord) :- castle(Castle0).

156 ifluent(perm(intDemandToFight(Castle0)),lord) :- castle(Castle0).

157 fluent(pow(lord,intDemandToFight(Castle0)),lord) :- castle(Castle0).

158 fluent(perm(intDemandToFight(Castle0)),lord) :- castle(Castle0).

159 event(viol(intDemandToFight(Castle0))) :- castle(Castle0).

160 evtype(viol(intDemandToFight(Castle0)),lord,viol) :- castle(Castle0).

161 evinst(viol(intDemandToFight(Castle0)),lord) :- castle(Castle0).

162 % Event: intReleaseSolePolicy (type: in)

163 event(intReleaseSolePolicy(Person0)) :- person(Person0).

164 evtype(intReleaseSolePolicy(Person0),lord,inst) :- person(Person0).

165 evinst(intReleaseSolePolicy(Person0),lord) :- person(Person0).

166 ifluent(pow(lord,intReleaseSolePolicy(Person0)),lord) :- person(Person0).

167 ifluent(perm(intReleaseSolePolicy(Person0)),lord) :- person(Person0).

168 fluent(pow(lord,intReleaseSolePolicy(Person0)),lord) :- person(Person0).

169 fluent(perm(intReleaseSolePolicy(Person0)),lord) :- person(Person0).

170 event(viol(intReleaseSolePolicy(Person0))) :- person(Person0).

171 evtype(viol(intReleaseSolePolicy(Person0)),lord,viol) :- person(Person0).

172 evinst(viol(intReleaseSolePolicy(Person0)),lord) :- person(Person0).

173 %

174 % Violation events

175 %

176 % Event: illegal (type: in)

177 event(illegal(Person0)) :- person(Person0).

178 evtype(illegal(Person0),lord,viol) :- person(Person0).

179 evinst(illegal(Person0),lord) :- person(Person0).

180 %

181 % inertial fluents

182 %

183 ifluent(ageOlder(Person0,Age1),lord) :-person(Person0),age(Age1).

184 fluent(ageOlder(Person0,Age1),lord) :-person(Person0),age(Age1).

185
186 ifluent(attacked(Castle0),lord) :- castle(Castle0).

187 fluent(attacked(Castle0),lord) :- castle(Castle0).

188
189 ifluent(onlySon(Person0),lord) :- person(Person0).

190 fluent(onlySon(Person0),lord) :- person(Person0).

191
192 ifluent(gender(Person0,Gender1),lord) :-

193 person(Person0),gender(Gender1).

194 fluent(gender(Person0,Gender1),lord) :-

195 person(Person0),gender(Gender1).

196 %

197 % obligation fluents

198 %

199 oblfluent(obl(serveInArmy(Person0),deadline,illegal(Person1)), lord) :-

200 event(serveInArmy(Person0)),

201 event(deadline),

202 event(illegal(Person1)), person(Person0),true,

203 person(Person1),inst(lord).

204 fluent(obl(serveInArmy(Person0),deadline,illegal(Person1)), lord) :-

205 event(serveInArmy(Person0)),

206 event(deadline),

207 event(illegal(Person1)), person(Person0),true,

208 person(Person1),inst(lord).
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209 terminated(obl(serveInArmy(Person0),deadline,illegal(Person1)), lord,I) :-

210 event(serveInArmy(Person0)),

211 occurred(serveInArmy(Person0),lord,I),

212 event(deadline),inst(lord),

213 holdsat(obl(serveInArmy(Person0),deadline,illegal(Person1)), lord,I),

214 event(illegal(Person1)), person(Person0),true,person(Person1).

215 terminated(obl(serveInArmy(Person0),deadline,illegal(Person1)), lord,I) :-

216 event(serveInArmy(Person0)),

217 event(deadline), occurred(deadline,lord,I),inst(lord),

218 holdsat(obl(serveInArmy(Person0),deadline,illegal(Person1)),lord,I),

219 event(illegal(Person1)), person(Person0),true,person(Person1).

220 occurred(illegal(Person1),lord,I) :-

221 event(serveInArmy(Person0)), inst(lord),

222 event(deadline), occurred(deadline,lord,I),

223 holdsat(obl(serveInArmy(Person0),deadline,illegal(Person1)),lord,I),

224 event(illegal(Person1)), person(Person0),true,person(Person1).

225 %

226 % ------------------------PART 2------------------------

227 % generate rules

228 %

229 % Translation of releaseSolePolicy(Person) generates intReleaseSolePolicy(Person)

230 % if [] in

231 occurred(intReleaseSolePolicy(Person),lord,I) :-

232 occurred(releaseSolePolicy(Person),lord,I),

233 holdsat(pow(lord,intReleaseSolePolicy(Person)),lord,I),

234 person(Person),inst(lord), instant(I).

235 %

236 % Translation of demandToFight(Castle) generates intDemandToFight(Castle) if [] in

237 occurred(intDemandToFight(Castle),lord,I) :-

238 occurred(demandToFight(Castle),lord,I),

239 holdsat(pow(lord,intDemandToFight(Castle)),lord,I),

240 castle(Castle),inst(lord), instant(I).

241 %

242 % Translation of register(Person) generates intRegister(Person) if [] in

243 occurred(intRegister(Person),lord,I) :-

244 occurred(register(Person),lord,I),

245 holdsat(pow(lord,intRegister(Person)),lord,I),

246 person(Person),inst(lord), instant(I).

247 %

248 % initiate rules

249 %

250 % Translation of intDemandToFight(Castle) initiates

251 % [’perm’, [’goToWar’, [’Castle’]]] if [’attacked’, [’Castle’]]

252 %

253 initiated(perm(goToWar(Castle)),lord,I) :-

254 occurred(intDemandToFight(Castle),lord,I),

255 holdsat(live(lord),lord,I), inst(lord),

256 holdsat(attacked(Castle),lord,I),

257 castle(Castle),

258 inst(lord), instant(I).

259 %

260 % Translation of intRegister(Person) initiates [’perm’, [’serveInArmy’, [’Person’]]]

261 % if [’and’, [’ageOlder’, [’Person’, ’sixteen’]],

262 % [’gender’, [’Person’, ’male’]]]

263 %

264 initiated(perm(serveInArmy(Person)),lord,I) :-
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265 occurred(intRegister(Person),lord,I),

266 holdsat(live(lord),lord,I), inst(lord),

267 holdsat(ageOlder(Person,sixteen),lord,I),

268 holdsat(gender(Person,male),lord,I),

269 person(Person),

270 inst(lord), instant(I).

271 %

272 % Translation of intRegister(Person) initiates [’obl’, [[’serveInArmy’, [’Person’]],

273 % [’deadline’, []], [’illegal’, [’Person’]]]]

274 % if [’and’, [’ageOlder’, [’Person’, ’sixteen’]],

275 % [’gender’, [’Person’, ’male’]]]

276 %

277 initiated(obl(serveInArmy(Person),deadline,illegal(Person)),

278 lord,I) :-

279 occurred(intRegister(Person),lord,I),

280 holdsat(live(lord),lord,I), inst(lord),

281 holdsat(ageOlder(Person,sixteen),lord,I),

282 holdsat(gender(Person,male),lord,I),

283 person(Person),

284 inst(lord), instant(I).

285 %

286 % terminate rules

287 %

288 % Translation of intReleaseSolePolicy(Person) terminates [’perm’, [’serveInArmy’,

289 % [’Person’]]] if [’onlySon’, [’Person’]]

290 %

291 terminated(perm(serveInArmy(Person)),lord,I) :-

292 occurred(intReleaseSolePolicy(Person),lord,I),

293 holdsat(live(lord),lord,I),inst(lord),

294 holdsat(onlySon(Person),lord,I),

295 person(Person),

296 inst(lord), instant(I).

297 %

298 % Translation of intReleaseSolePolicy(Person) terminates

299 %

[’obl’, [[’serveInArmy’, [’Person’]], [’deadline’, []], [’illegal’,

300 % [’Person’]]]] if [’onlySon’, [’Person’]]

301 %

302 terminated(obl(serveInArmy(Person),deadline,illegal(Person)), lord,I) :-

303 occurred(intReleaseSolePolicy(Person),lord,I),

304 holdsat(live(lord),lord,I),inst(lord),

305 holdsat(onlySon(Person),lord,I),

306 person(Person),

307 inst(lord), instant(I).

308 %

309 % --------------------------PART 3-----------------------

310 % initially

311 %

312 % no creation event

313 holdsat(live(lord),lord,I) :- start(I), inst(lord).

314 holdsat(perm(null),lord,I) :- start(I), inst(lord).

315 % initially: attacked(eastCastle)

316 holdsat(attacked(eastCastle),lord,I) :-

317 inst(lord), start(I).

318 % initially: perm(register(Person))

319 holdsat(perm(register(Person)),lord,I) :-
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320 person(Person),

321 inst(lord), start(I).

322 % initially: pow(lord,intRegister(Person))

323 holdsat(pow(lord,intRegister(Person)),lord,I) :-

324 person(Person),

325 inst(lord), start(I).

326 % initially: perm(intRegister(Person))

327 holdsat(perm(intRegister(Person)),lord,I) :-

328 person(Person),

329 inst(lord), start(I).

330 % initially: perm(deadline)

331 holdsat(perm(deadline),lord,I) :-

332 inst(lord), start(I).

333 % initially: perm(releaseSolePolicy(Person))

334 holdsat(perm(releaseSolePolicy(Person)),lord,I) :-

335 person(Person),

336 inst(lord), start(I).

337 % initially: perm(demandToFight(Castle))

338 holdsat(perm(demandToFight(Castle)),lord,I) :-

339 castle(Castle),

340 inst(lord), start(I).

341 % initially: perm(intReleaseSolePolicy(Person))

342 holdsat(perm(intReleaseSolePolicy(Person)),lord,I) :-

343 person(Person),

344 inst(lord), start(I).

345 % initially: perm(intDemandToFight(Castle))

346 holdsat(perm(intDemandToFight(Castle)),lord,I) :-

347 castle(Castle),

348 inst(lord), start(I).

349 % initially: pow(lord,intReleaseSolePolicy(Person))

350 holdsat(pow(lord,intReleaseSolePolicy(Person)),lord,I) :-

351 person(Person),

352 inst(lord), start(I).

353 % initially: pow(lord,intDemandToFight(Castle))

354 holdsat(pow(lord,intDemandToFight(Castle)),lord,I) :-

355 castle(Castle),

356 inst(lord), start(I).

357 % initially: onlySon(tom)

358 holdsat(onlySon(tom),lord,I) :-

359 inst(lord), start(I).

360 % initially: ageOlder(tom,sixteen)

361 holdsat(ageOlder(tom,sixteen),lord,I) :-

362 inst(lord), start(I).

363 % initially: gender(tom,male)

364 holdsat(gender(tom,male),lord,I) :-

365 inst(lord), start(I).

366 % initially: ageOlder(bob,sixteen)

367 holdsat(ageOlder(bob,sixteen),lord,I) :-

368 inst(lord), start(I).

369 % initially: gender(bob,male)

370 holdsat(gender(bob,male),lord,I) :-

371 inst(lord), start(I).

372 %

373 % End of file
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In this chapter, we present the InstAL specifications of the institution Facebook, US

Surveillance Law and EU Privacy Law, which are the main subjects in the case study of

interacting institutions. In the Chapter 5, we use the case study about digital privacy rights to

demonstrate modelling an interacting institution, and detecting and resolving normative

conflicts in an interacting institution. The detailed description of the case study can be found

in Section 5.1.4 as well as the InstAL specification of the bridge institution. Here we present

the InstAL specification for the other three institutions in subsequent sections and the ASP

program for the bridge institution B.4 for further reference.

B.1 the InstAL Specification for Institution Facebook

institution fb;

type Data;

type User;

type Party;

exogenous event shareRequest(User, Data, Party);

exogenous event approveRequest(User,Data,Party);

exogenous event approve(User, Data, Party);

exogenous event share(User, Data, Party);

exogenous event deadline;

inst event intShare(User, Data, Party);

inst event intApproveRequest(User,Data,Party);

inst event intShareRequest(User, Data, Party);

inst event intApprove(User, Data, Party);

violation event noncompliance(User);
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fluent trusted(Party);

fluent consented(User,Data, Party);

fluent protected(Data, Party);

obligation fluent obl(share(User, Data, Party), deadline,

noncompliance(User));

share(User, Data, Party) generates intShare(User, Data, Party);

approveRequest(User,Data,Party) generates

intApproveRequest(User,Data,Party);

shareRequest(User, Data, Party) generates

intShareRequest(User, Data, Party);

approve(User, Data, Party) generates

intApprove(User, Data, Party);

intShareRequest(User, Data, Party) initiates

perm(approveRequest(User, Data, Party)),

perm(intApproveRequest(User, Data, Party)),

pow(intApproveRequest(User, Data, Party));

intApproveRequest(User, Data, Party) initiates

perm(approve(User, Data, Party)),

perm(intApprove(User, Data, Party)),

pow(intApprove(User, Data, Party));

intApprove(User, Data, Party) initiates

perm(share(User, Data, Party)),

perm(intShare(User, Data, Party)),

pow(intShare(User, Data, Party));

intShareRequest(User, Data, Party) initiates

perm(share(User, Data, Party)),

perm(intShare(User, Data, Party)),

pow(intShare(User, Data, Party))

if trusted(Party);

intApprove(User,Data,Party) initiates consented(User,Data,Party);

initially perm(shareRequest(User, Data, Party)),

perm(intShareRequest(User, Data, Party)),

pow(intShareRequest(User, Data, Party));

initially perm(deadline);
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initially trusted(nsa);

B.2 the InstAL Specification for Institution US Surveillance Law

institution us;

type Data;

type User;

type Party;

exogenous event dataCollectRequest(User, Data, Party);

exogenous event dataCollect(User, Data, Party);

exogenous event deadline;

exogenous event share(User, Data, Party);

inst event intDataCollectRequest(User, Data, Party);

inst event intDataCollect(User, Data, Party);

inst event intShare(User, Data, Party);

violation event noncompliance(User);

fluent interested(User, Data);

fluent securityDep(Party);

fluent protected(Data, Party);

obligation fluent obl(dataCollect(User, Data, Party), deadline,

noncompliance(User));

obligation fluent obl(share(User, Data, Party), deadline,

noncompliance(User));

dataCollectRequest(User, Data, Party) generates

intDataCollectRequest(User, Data, Party);

dataCollect(User, Data, Party) generates

intDataCollect(User, Data, Party);

share(User,Data,Party) generates intShare(User,Data,Party);

intDataCollectRequest(User, Data, Party) initiates

perm(dataCollect(User, Data, Party)),

obl(dataCollect(User, Data, Party), deadline,

noncompliance(User))

if interested(User, Data), securityDep(Party);

intDataCollectRequest(User, Data, Party) initiates

perm(share(User, Data, Party)),
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obl(share(User, Data, Party), deadline,

noncompliance(User))

if interested(User, Data), securityDep(Party);

intDataCollectRequest(User, Data, Party) initiates

perm(intShare(User, Data, Party)),

perm(intDataCollect(User, Data, Party)),

pow(intDataCollect(User, Data, Party)),

pow(intShare(User, Data, Party))

if interested(User, Data), securityDep(Party);

initially perm(dataCollectRequest(User, Data, Party)),

perm(intDataCollectRequest(User, Data, Party)),

pow(intDataCollectRequest(User, Data, Party));

initially perm(deadline);

initially securityDep(nsa);

initially interested(bob, bob_data);

B.3 the InstAL Specification for Institution EU Privacy Law

institution eu;

type Data;

type User;

type Party;

exogenous event dataExportRequest(User, Data, Party);

exogenous event dataExport(User, Data, Party);

exogenous event share(User, Data, Party);

inst event intDataExportRequest(User, Data, Party);

inst event intDataExport(User, Data, Party);

inst event intShare(User, Data, Party);

fluent protected(Data, Party);

fluent interested(User, Data);

dataExportRequest(User, Data, Party) generates

intDataExportRequest(User, Data, Party);

dataExport(User,Data,Party) generates

intDataExport(User,Data,Party);

share(User,Data,Party) generates intShare(User,Data,Party);
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intDataExportRequest(User,Data,Party) initiates

perm(dataExport(User, Data, Party)),

perm(intDataExport(User, Data, Party)),

pow(intDataExport(User, Data, Party))

if protected(Data, Party);

intDataExportRequest(User,Data,Party) initiates

perm(share(User, Data, Party)),

perm(intShare(User, Data, Party)),

pow(intShare(User, Data, Party))

if protected(Data, Party);

initially perm(dataExportRequest(User, Data, Party)),

perm(intDataExportRequest(User, Data, Party)),

pow(intDataExportRequest(User, Data, Party));

initially interested(bob, bob_data);

B.4 the ASP program for the Bridge Institution

1 %

2 % Domain declarations for bridge

3 %

4 inst(fb).

5 inst(us).

6 inst(eu).

7 inst(bridge).

8 data(alice_data).

9 data(bob_data).

10 user(alice).

11 user(bob).

12 party(nsa).

13 %

14 % -------------------------------PART 1-------------------------------

15 %

16 % Standard prelude for bridge

17 %

18 % fluent rules

19 holdsat(P,In,J):- holdsat(P,In,I),not terminated(P,In,I),

20 not xterminated(InS,P,In,I),

21 next(I,J),fluent(P, In),instant(I),instant(J), inst(In;InS).

22 holdsat(P,In,J):- initiated(P,In,I),next(I,J),

23 ifluent(P, In),instant(I),instant(J), inst(In).

24 holdsat(P,In,J):- initiated(P,In,I),next(I,J),

25 oblfluent(P, In),instant(I),instant(J), inst(In).

26 holdsat(P,In,J):- initiated(P,In,I),next(I,J),

27 nifluent(P, In),instant(I),instant(J), inst(In).

28 holdsat(P,In,J):- xinitiated(InS,P,In,I),next(I,J),

29 ifluent(P, In),instant(I),instant(J), inst(InS;In).
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30 holdsat(P,In,J):- xinitiated(InS,P,In,I),next(I,J),

31 oblfluent(P, In),instant(I),instant(J), inst(InS;In).

32 holdsat(P,In,J):- xinitiated(InS,P,In,I),next(I,J),

33 nifluent(P, In),instant(I),instant(J), inst(InS;In).

34 true.

35 %

36 % Rules for Institution bridge

37 %

38 ifluent(live(bridge), bridge).

39 fluent(live(bridge), bridge).

40 inst(bridge).

41 %

42 % The following types were declared:

43 %

44 % Party

45 % Data

46 % User

47 % Inst

48 %

49 % Exogenous events

50 % Event: dataExportRequest (type: ex) of institution eu

51 event(dataExportRequest(User0,Data1,Party2)) :-

52 user(User0),data(Data1),party(Party2).

53 evtype(dataExportRequest(User0,Data1,Party2),eu,ex) :-

54 user(User0),data(Data1),party(Party2).

55 evinst(dataExportRequest(User0,Data1,Party2),eu) :-

56 user(User0),data(Data1),party(Party2).

57 ifluent(perm(dataExportRequest(User0,Data1,Party2)), eu) :-

58 user(User0),data(Data1),party(Party2).

59 fluent(perm(dataExportRequest(User0,Data1,Party2)), eu) :-

60 user(User0),data(Data1),party(Party2).

61 event(viol(dataExportRequest(User0,Data1,Party2))) :-

62 user(User0),data(Data1),party(Party2).

63 evtype(viol(dataExportRequest(User0,Data1,Party2)), eu, viol) :-

64 user(User0),data(Data1),party(Party2).

65 evinst(viol(dataExportRequest(User0,Data1,Party2)),eu) :-

66 user(User0),data(Data1),party(Party2).

67 % Event: dataExport (type: ex) of institution eu

68 event(dataExport(User0,Data1,Party2)) :-

69 user(User0),data(Data1),party(Party2).

70 evtype(dataExport(User0,Data1,Party2),eu,ex) :-

71 user(User0),data(Data1),party(Party2).

72 evinst(dataExport(User0,Data1,Party2),eu) :-

73 user(User0),data(Data1),party(Party2).

74 ifluent(perm(dataExport(User0,Data1,Party2)), eu) :-

75 user(User0),data(Data1),party(Party2).

76 fluent(perm(dataExport(User0,Data1,Party2)), eu) :-

77 user(User0),data(Data1),party(Party2).

78 event(viol(dataExport(User0,Data1,Party2))) :-

79 user(User0),data(Data1),party(Party2).

80 evtype(viol(dataExport(User0,Data1,Party2)), eu, viol) :-

81 user(User0),data(Data1),party(Party2).

82 evinst(viol(dataExport(User0,Data1,Party2)),eu) :-

83 user(User0),data(Data1),party(Party2).

84 % Event: dataCollect (type: ex) of institution us

85 event(dataCollect(User0,Data1,Party2)) :-
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86 user(User0),data(Data1),party(Party2).

87 evtype(dataCollect(User0,Data1,Party2),us,ex) :-

88 user(User0),data(Data1),party(Party2).

89 evinst(dataCollect(User0,Data1,Party2),us) :-

90 user(User0),data(Data1),party(Party2).

91 ifluent(perm(dataCollect(User0,Data1,Party2)), us) :-

92 user(User0),data(Data1),party(Party2).

93 fluent(perm(dataCollect(User0,Data1,Party2)), us) :-

94 user(User0),data(Data1),party(Party2).

95 event(viol(dataCollect(User0,Data1,Party2))) :-

96 user(User0),data(Data1),party(Party2).

97 evtype(viol(dataCollect(User0,Data1,Party2)), us, viol) :-

98 user(User0),data(Data1),party(Party2).

99 evinst(viol(dataCollect(User0,Data1,Party2)),us) :-

100 user(User0),data(Data1),party(Party2).

101 % Event: share (type: ex) of institution eu

102 event(share(User0,Data1,Party2)) :-

103 user(User0),data(Data1),party(Party2).

104 evtype(share(User0,Data1,Party2),eu,ex) :-

105 user(User0),data(Data1),party(Party2).

106 evinst(share(User0,Data1,Party2),eu) :-

107 user(User0),data(Data1),party(Party2).

108 ifluent(perm(share(User0,Data1,Party2)), eu) :-

109 user(User0),data(Data1),party(Party2).

110 fluent(perm(share(User0,Data1,Party2)), eu) :-

111 user(User0),data(Data1),party(Party2).

112 event(viol(share(User0,Data1,Party2))) :-

113 user(User0),data(Data1),party(Party2).

114 evtype(viol(share(User0,Data1,Party2)), eu, viol) :-

115 user(User0),data(Data1),party(Party2).

116 evinst(viol(share(User0,Data1,Party2)),eu) :-

117 user(User0),data(Data1),party(Party2).

118 % Event: share (type: ex) of institution fb

119 event(share(User0,Data1,Party2)) :-

120 user(User0),data(Data1),party(Party2).

121 evtype(share(User0,Data1,Party2),fb,ex) :-

122 user(User0),data(Data1),party(Party2).

123 evinst(share(User0,Data1,Party2),fb) :-

124 user(User0),data(Data1),party(Party2).

125 ifluent(perm(share(User0,Data1,Party2)), fb) :-

126 user(User0),data(Data1),party(Party2).

127 fluent(perm(share(User0,Data1,Party2)), fb) :-

128 user(User0),data(Data1),party(Party2).

129 event(viol(share(User0,Data1,Party2))) :-

130 user(User0),data(Data1),party(Party2).

131 evtype(viol(share(User0,Data1,Party2)), fb, viol) :-

132 user(User0),data(Data1),party(Party2).

133 evinst(viol(share(User0,Data1,Party2)),fb) :-

134 user(User0),data(Data1),party(Party2).

135 % Event: share (type: ex) of institution us

136 event(share(User0,Data1,Party2)) :-

137 user(User0),data(Data1),party(Party2).

138 evtype(share(User0,Data1,Party2),us,ex) :-

139 user(User0),data(Data1),party(Party2).

140 evinst(share(User0,Data1,Party2),us) :-

141 user(User0),data(Data1),party(Party2).
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142 ifluent(perm(share(User0,Data1,Party2)), us) :-

143 user(User0),data(Data1),party(Party2).

144 fluent(perm(share(User0,Data1,Party2)), us) :-

145 user(User0),data(Data1),party(Party2).

146 event(viol(share(User0,Data1,Party2))) :-

147 user(User0),data(Data1),party(Party2).

148 evtype(viol(share(User0,Data1,Party2)), us, viol) :-

149 user(User0),data(Data1),party(Party2).

150 evinst(viol(share(User0,Data1,Party2)),us) :-

151 user(User0),data(Data1),party(Party2).

152 % Event: shareRequest (type: ex) of institution fb

153 event(shareRequest(User0,Data1,Party2)) :-

154 user(User0),data(Data1),party(Party2).

155 evtype(shareRequest(User0,Data1,Party2),fb,ex) :-

156 user(User0),data(Data1),party(Party2).

157 evinst(shareRequest(User0,Data1,Party2),fb) :-

158 user(User0),data(Data1),party(Party2).

159 ifluent(perm(shareRequest(User0,Data1,Party2)), fb) :-

160 user(User0),data(Data1),party(Party2).

161 fluent(perm(shareRequest(User0,Data1,Party2)), fb) :-

162 user(User0),data(Data1),party(Party2).

163 event(viol(shareRequest(User0,Data1,Party2))) :-

164 user(User0),data(Data1),party(Party2).

165 evtype(viol(shareRequest(User0,Data1,Party2)), fb, viol) :-

166 user(User0),data(Data1),party(Party2).

167 evinst(viol(shareRequest(User0,Data1,Party2)),fb) :-

168 user(User0),data(Data1),party(Party2).

169 % Event: deadline (type: ex) of institution fb

170 event(deadline) :- true.

171 evtype(deadline,fb,ex) :- true.

172 evinst(deadline,fb) :- true.

173 ifluent(perm(deadline), fb) :- true.

174 fluent(perm(deadline), fb) :- true.

175 event(viol(deadline)) :- true.

176 evtype(viol(deadline), fb, viol) :- true.

177 evinst(viol(deadline),fb) :- true.

178 % Event: deadline (type: ex) of institution us

179 event(deadline) :- true.

180 evtype(deadline,us,ex) :- true.

181 evinst(deadline,us) :- true.

182 ifluent(perm(deadline), us) :- true.

183 fluent(perm(deadline), us) :- true.

184 event(viol(deadline)) :- true.

185 evtype(viol(deadline), us, viol) :- true.

186 evinst(viol(deadline),us) :- true.

187 % Event: dataCollectRequest (type: ex) of institution us

188 event(dataCollectRequest(User0,Data1,Party2)) :-

189 user(User0),data(Data1),party(Party2).

190 evtype(dataCollectRequest(User0,Data1,Party2),us,ex) :-

191 user(User0),data(Data1),party(Party2).

192 evinst(dataCollectRequest(User0,Data1,Party2),us) :-

193 user(User0),data(Data1),party(Party2).

194 ifluent(perm(dataCollectRequest(User0,Data1,Party2)), us) :-

195 user(User0),data(Data1),party(Party2).

196 fluent(perm(dataCollectRequest(User0,Data1,Party2)), us) :-

197 user(User0),data(Data1),party(Party2).
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198 event(viol(dataCollectRequest(User0,Data1,Party2))) :-

199 user(User0),data(Data1),party(Party2).

200 evtype(viol(dataCollectRequest(User0,Data1,Party2)), us, viol) :-

201 user(User0),data(Data1),party(Party2).

202 evinst(viol(dataCollectRequest(User0,Data1,Party2)),us) :-

203 user(User0),data(Data1),party(Party2).

204 %

205 % null event for unknown events

206 % Event: null (type: ex)

207 event(null).

208 evtype(null,bridge,ex).

209 evinst(null,bridge).

210 ifluent(perm(null), bridge).

211 fluent(perm(null), bridge).

212 event(viol(null)).

213 evtype(viol(null),bridge,viol).

214 evinst(viol(null),bridge).

215 % Institutional events

216 % Event: intShareRequest (type: in) of institution fb

217 event(intShareRequest(User0,Data1,Party2)) :-

218 user(User0),data(Data1),party(Party2).

219 evtype(intShareRequest(User0,Data1,Party2),fb,inst) :-

220 user(User0),data(Data1),party(Party2).

221 evinst(intShareRequest(User0,Data1,Party2),fb) :-

222 user(User0),data(Data1),party(Party2).

223 ifluent(pow(fb,intShareRequest(User0,Data1,Party2)),fb) :-

224 user(User0),data(Data1),party(Party2).

225 ifluent(perm(intShareRequest(User0,Data1,Party2)),fb) :-

226 user(User0),data(Data1),party(Party2).

227 fluent(pow(fb,intShareRequest(User0,Data1,Party2)),fb) :-

228 user(User0),data(Data1),party(Party2).

229 fluent(perm(intShareRequest(User0,Data1,Party2)),fb) :-

230 user(User0),data(Data1),party(Party2).

231 event(viol(intShareRequest(User0,Data1,Party2))) :-

232 user(User0),data(Data1),party(Party2).

233 evtype(viol(intShareRequest(User0,Data1,Party2)),fb,viol) :-

234 user(User0),data(Data1),party(Party2).

235 evinst(viol(intShareRequest(User0,Data1,Party2)),fb) :-

236 user(User0),data(Data1),party(Party2).

237 % Event: intDataExportRequest (type: in) of institution eu

238 event(intDataExportRequest(User0,Data1,Party2)) :-

239 user(User0),data(Data1),party(Party2).

240 evtype(intDataExportRequest(User0,Data1,Party2),eu,inst) :-

241 user(User0),data(Data1),party(Party2).

242 evinst(intDataExportRequest(User0,Data1,Party2),eu) :-

243 user(User0),data(Data1),party(Party2).

244 ifluent(pow(eu,intDataExportRequest(User0,Data1,Party2)),eu) :-

245 user(User0),data(Data1),party(Party2).

246 ifluent(perm(intDataExportRequest(User0,Data1,Party2)),eu) :-

247 user(User0),data(Data1),party(Party2).

248 fluent(pow(eu,intDataExportRequest(User0,Data1,Party2)),eu) :-

249 user(User0),data(Data1),party(Party2).

250 fluent(perm(intDataExportRequest(User0,Data1,Party2)),eu) :-

251 user(User0),data(Data1),party(Party2).

252 event(viol(intDataExportRequest(User0,Data1,Party2))) :-

253 user(User0),data(Data1),party(Party2).
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254 evtype(viol(intDataExportRequest(User0,Data1,Party2)),eu,viol) :-

255 user(User0),data(Data1),party(Party2).

256 evinst(viol(intDataExportRequest(User0,Data1,Party2)),eu) :-

257 user(User0),data(Data1),party(Party2).

258 % Event: intDataCollectRequest (type: in) of institution us

259 event(intDataCollectRequest(User0,Data1,Party2)) :-

260 user(User0),data(Data1),party(Party2).

261 evtype(intDataCollectRequest(User0,Data1,Party2),us,inst) :-

262 user(User0),data(Data1),party(Party2).

263 evinst(intDataCollectRequest(User0,Data1,Party2),us) :-

264 user(User0),data(Data1),party(Party2).

265 ifluent(pow(us,intDataCollectRequest(User0,Data1,Party2)),us) :-

266 user(User0),data(Data1),party(Party2).

267 ifluent(perm(intDataCollectRequest(User0,Data1,Party2)),us) :-

268 user(User0),data(Data1),party(Party2).

269 fluent(pow(us,intDataCollectRequest(User0,Data1,Party2)),us) :-

270 user(User0),data(Data1),party(Party2).

271 fluent(perm(intDataCollectRequest(User0,Data1,Party2)),us) :-

272 user(User0),data(Data1),party(Party2).

273 event(viol(intDataCollectRequest(User0,Data1,Party2))) :-

274 user(User0),data(Data1),party(Party2).

275 evtype(viol(intDataCollectRequest(User0,Data1,Party2)),us,viol) :-

276 user(User0),data(Data1),party(Party2).

277 evinst(viol(intDataCollectRequest(User0,Data1,Party2)),us) :-

278 user(User0),data(Data1),party(Party2).

279 % Event: intShare (type: in) of institution eu

280 event(intShare(User0,Data1,Party2)) :-

281 user(User0),data(Data1),party(Party2).

282 evtype(intShare(User0,Data1,Party2),eu,inst) :-

283 user(User0),data(Data1),party(Party2).

284 evinst(intShare(User0,Data1,Party2),eu) :-

285 user(User0),data(Data1),party(Party2).

286 ifluent(pow(eu,intShare(User0,Data1,Party2)),eu) :-

287 user(User0),data(Data1),party(Party2).

288 ifluent(perm(intShare(User0,Data1,Party2)),eu) :-

289 user(User0),data(Data1),party(Party2).

290 fluent(pow(eu,intShare(User0,Data1,Party2)),eu) :-

291 user(User0),data(Data1),party(Party2).

292 fluent(perm(intShare(User0,Data1,Party2)),eu) :-

293 user(User0),data(Data1),party(Party2).

294 event(viol(intShare(User0,Data1,Party2))) :-

295 user(User0),data(Data1),party(Party2).

296 evtype(viol(intShare(User0,Data1,Party2)),eu,viol) :-

297 user(User0),data(Data1),party(Party2).

298 evinst(viol(intShare(User0,Data1,Party2)),eu) :-

299 user(User0),data(Data1),party(Party2).

300 % Event: intShare (type: in) of institution fb

301 event(intShare(User0,Data1,Party2)) :-

302 user(User0),data(Data1),party(Party2).

303 evtype(intShare(User0,Data1,Party2),fb,inst) :-

304 user(User0),data(Data1),party(Party2).

305 evinst(intShare(User0,Data1,Party2),fb) :-

306 user(User0),data(Data1),party(Party2).

307 ifluent(pow(fb,intShare(User0,Data1,Party2)),fb) :-

308 user(User0),data(Data1),party(Party2).

309 ifluent(perm(intShare(User0,Data1,Party2)),fb) :-
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310 user(User0),data(Data1),party(Party2).

311 fluent(pow(fb,intShare(User0,Data1,Party2)),fb) :-

312 user(User0),data(Data1),party(Party2).

313 fluent(perm(intShare(User0,Data1,Party2)),fb) :-

314 user(User0),data(Data1),party(Party2).

315 event(viol(intShare(User0,Data1,Party2))) :-

316 user(User0),data(Data1),party(Party2).

317 evtype(viol(intShare(User0,Data1,Party2)),fb,viol) :-

318 user(User0),data(Data1),party(Party2).

319 evinst(viol(intShare(User0,Data1,Party2)),fb) :-

320 user(User0),data(Data1),party(Party2).

321 % Event: intShare (type: in) of institution us

322 event(intShare(User0,Data1,Party2)) :-

323 user(User0),data(Data1),party(Party2).

324 evtype(intShare(User0,Data1,Party2),us,inst) :-

325 user(User0),data(Data1),party(Party2).

326 evinst(intShare(User0,Data1,Party2),us) :-

327 user(User0),data(Data1),party(Party2).

328 ifluent(pow(us,intShare(User0,Data1,Party2)),us) :-

329 user(User0),data(Data1),party(Party2).

330 ifluent(perm(intShare(User0,Data1,Party2)),us) :-

331 user(User0),data(Data1),party(Party2).

332 fluent(pow(us,intShare(User0,Data1,Party2)),us) :-

333 user(User0),data(Data1),party(Party2).

334 fluent(perm(intShare(User0,Data1,Party2)),us) :-

335 user(User0),data(Data1),party(Party2).

336 event(viol(intShare(User0,Data1,Party2))) :-

337 user(User0),data(Data1),party(Party2).

338 evtype(viol(intShare(User0,Data1,Party2)),us,viol) :-

339 user(User0),data(Data1),party(Party2).

340 evinst(viol(intShare(User0,Data1,Party2)),us) :-

341 user(User0),data(Data1),party(Party2).

342 %

343 % Violation events of institution {inst}

344 %

345 % Event: noncompliance (type: in)

346 event(noncompliance(User0)) :- user(User0).

347 evtype(noncompliance(User0),fb,viol) :- user(User0).

348 evinst(noncompliance(User0),fb) :- user(User0).

349 % Event: noncompliance (type: in)

350 event(noncompliance(User0)) :- user(User0).

351 evtype(noncompliance(User0),us,viol) :- user(User0).

352 evinst(noncompliance(User0),us) :- user(User0).

353 %

354 % inertial fluents

355 %

356 ifluent(securityDep(Party0),us) :-

357 party(Party0).

358 fluent(securityDep(Party0),us) :-

359 party(Party0).

360
361 ifluent(protected(Data0,Party1),eu) :-

362 data(Data0),party(Party1).

363 fluent(protected(Data0,Party1),eu) :-

364 data(Data0),party(Party1).

365
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366 ifluent(protected(Data0,Party1),fb) :-

367 data(Data0),party(Party1).

368 fluent(protected(Data0,Party1),fb) :-

369 data(Data0),party(Party1).

370
371 ifluent(protected(Data0,Party1),us) :-

372 data(Data0),party(Party1).

373 fluent(protected(Data0,Party1),us) :-

374 data(Data0),party(Party1).

375
376 ifluent(interested(User0,Data1),eu) :-

377 user(User0),data(Data1).

378 fluent(interested(User0,Data1),eu) :-

379 user(User0),data(Data1).

380
381 ifluent(interested(User0,Data1),us) :-

382 user(User0),data(Data1).

383 fluent(interested(User0,Data1),us) :-

384 user(User0),data(Data1).

385
386 ifluent(trusted(Party0),fb) :-

387 party(Party0).

388 fluent(trusted(Party0),fb) :-

389 party(Party0).

390 %

391 % Translation of the obligation fluent obl(share(User0,Data1,Party2),

392 % deadline,noncompliance(User3)) of us:

393 %

394 oblfluent(obl(share(User0,Data1,Party2),deadline,noncompliance(User3)), us) :-

395 event(share(User0,Data1,Party2)),

396 event(deadline),

397 event(noncompliance(User3)), user(User0),data(Data1),party(Party2),

398 true,user(User3),inst(us).

399 fluent(obl(share(User0,Data1,Party2),deadline,noncompliance(User3)), us) :-

400 event(share(User0,Data1,Party2)),

401 event(deadline),

402 event(noncompliance(User3)), user(User0),data(Data1),party(Party2),

403 true,user(User3),inst(us).

404 terminated(obl(share(User0,Data1,Party2),deadline,noncompliance(User3)),us,I) :-

405 event(share(User0,Data1,Party2)), occurred(share(User0,Data1,Party2),us,I),

406 event(deadline),

407 holdsat(obl(share(User0,Data1,Party2),deadline,noncompliance(User3)),us,I),

408 event(noncompliance(User3)), user(User0),data(Data1),party(Party2),

409 true,user(User3),inst(us).

410 terminated(obl(share(User0,Data1,Party2),deadline,noncompliance(User3)),us,I) :-

411 event(share(User0,Data1,Party2)),

412 event(deadline), occurred(deadline,us,I),

413 holdsat(obl(share(User0,Data1,Party2),deadline,noncompliance(User3)),us,I),

414 event(noncompliance(User3)), user(User0),data(Data1),party(Party2),

415 true,user(User3),inst(us).

416 occurred(noncompliance(User3),us,I) :-

417 event(share(User0,Data1,Party2)),

418 event(deadline), occurred(deadline,us,I),

419 holdsat(obl(share(User0,Data1,Party2),deadline,noncompliance(User3)),us,I),

420 event(noncompliance(User3)), user(User0),data(Data1),party(Party2),

421 true,user(User3),inst(us).
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422 %

423 % cross fluents

424 %

425 fluent(gpow(I0,dataCollect(User0,Data1,Party2),I1), bridge) :-

426 inst(I0; I1; bridge),

427 event(dataCollect(User0,Data1,Party2)),

428 evinst(dataCollect(User0,Data1,Party2), I1),

429 evtype(dataCollect(User0,Data1,Party2), I1, ex), user(User0),data(Data1)

430 party(Party2).

431 ifluent(gpow(I0,dataCollect(User0,Data1,Party2),I1), bridge) :-

432 inst(I0; I1; bridge),

433 event(dataCollect(User0,Data1,Party2)),

434 evinst(dataCollect(User0,Data1,Party2), I1),

435 evtype(dataCollect(User0,Data1,Party2), I1, ex), user(User0),data(Data1),

436 party(Party2).

437 fluent(gpow(I0,dataExport(User0,Data1,Party2),I1), bridge) :-

438 inst(I0; I1; bridge),

439 event(dataExport(User0,Data1,Party2)),

440 evinst(dataExport(User0,Data1,Party2), I1),

441 evtype(dataExport(User0,Data1,Party2), I1, ex), user(User0),data(Data1),

442 party(Party2).

443 ifluent(gpow(I0,dataExport(User0,Data1,Party2),I1), bridge) :-

444 inst(I0; I1; bridge),

445 event(dataExport(User0,Data1,Party2)),

446 evinst(dataExport(User0,Data1,Party2), I1),

447 evtype(dataExport(User0,Data1,Party2), I1, ex), user(User0),data(Data1),

448 party(Party2).

449 fluent(gpow(I0,dataCollectRequest(User0,Data1,Party2),I1), bridge) :-

450 inst(I0; I1; bridge),

451 event(dataCollectRequest(User0,Data1,Party2)),

452 evinst(dataCollectRequest(User0,Data1,Party2), I1),

453 evtype(dataCollectRequest(User0,Data1,Party2), I1, ex), user(User0),data(Data1),

454 party(Party2).

455 ifluent(gpow(I0,dataCollectRequest(User0,Data1,Party2),I1), bridge) :-

456 inst(I0; I1; bridge),

457 event(dataCollectRequest(User0,Data1,Party2)),

458 evinst(dataCollectRequest(User0,Data1,Party2), I1),

459 evtype(dataCollectRequest(User0,Data1,Party2), I1, ex), user(User0),data(Data1),

460 party(Party2).

461 fluent(gpow(I0,dataExportRequest(User0,Data1,Party2),I1), bridge) :-

462 inst(I0; I1; bridge),

463 event(dataExportRequest(User0,Data1,Party2)),

464 evinst(dataExportRequest(User0,Data1,Party2), I1),

465 evtype(dataExportRequest(User0,Data1,Party2), I1, ex), user(User0),data(Data1),

466 party(Party2).

467 ifluent(gpow(I0,dataExportRequest(User0,Data1,Party2),I1), bridge) :-

468 inst(I0; I1; bridge),

469 event(dataExportRequest(User0,Data1,Party2)),

470 evinst(dataExportRequest(User0,Data1,Party2), I1),

471 evtype(dataExportRequest(User0,Data1,Party2), I1, ex), user(User0),data(Data1),

472 party(Party2).

473 fluent(ipow(I0,obl(share(User,Data,Party),deadline,noncompliance(User)),I1), bridge)

474 :-

475 inst(I0; I1; bridge),

476 party(Party), data(Data), user(User),

477 fluent(obl(share(User,Data,Party),deadline,noncompliance(User)), I1).
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478 ifluent(ipow(I0,obl(share(User,Data,Party),deadline,noncompliance(User)),I1), bridge)

479 :-

480 inst(I0; I1; bridge),

481 party(Party), data(Data), user(User),

482 fluent(obl(share(User,Data,Party),deadline,noncompliance(User)), I1).

483 fluent(ipow(I0,perm(share(User,Data,Party)),I1), bridge) :-

484 inst(I0; I1; bridge),

485 party(Party), data(Data), user(User),

486 fluent(perm(share(User,Data,Party)), I1).

487 ifluent(ipow(I0,perm(share(User,Data,Party)),I1), bridge) :-

488 inst(I0; I1; bridge),

489 party(Party), data(Data), user(User),

490 fluent(perm(share(User,Data,Party)), I1).

491 fluent(tpow(I0,perm(share(User,Data,Party)),I1), bridge) :-

492 inst(I0; I1; bridge),

493 party(Party), data(Data), user(User),

494 fluent(perm(share(User,Data,Party)), I1).

495 ifluent(tpow(I0,perm(share(User,Data,Party)),I1), bridge) :-

496 inst(I0; I1; bridge),

497 party(Party), data(Data), user(User),

498 fluent(perm(share(User,Data,Party)), I1).

499 %

500 % -------------------------------PART 2-------------------------------

501 %

502 %

503 % cross generate rules

504 %

505 %

506 % Translation of intShare(User,Data,Party) of eu

507 % xgenerates dataCollect(User,Data,Party) of us if [] in

508 occurred(dataCollect(User,Data,Party),us,I) :-

509 occurred(intShare(User,Data,Party),eu,I),

510 holdsat(gpow(eu,dataCollect(User,Data,Party),us),bridge,I),

511 inst(us;eu),

512 party(Party),

513 data(Data),

514 user(User),

515 inst(bridge), instant(I).

516 %

517 % Translation of intShare(User,Data,Party) of fb

518 % xgenerates dataCollect(User,Data,Party) of us if [] in

519 occurred(dataCollect(User,Data,Party),us,I) :-

520 occurred(intShare(User,Data,Party),fb,I),

521 holdsat(gpow(fb,dataCollect(User,Data,Party),us),bridge,I),

522 inst(us;fb),

523 party(Party),

524 data(Data),

525 user(User),

526 inst(bridge), instant(I).

527 %

528 % Translation of intShare(User,Data,Party) of fb

529 % xgenerates dataExport(User,Data,Party) of eu if [] in

530 occurred(dataExport(User,Data,Party),eu,I) :-

531 occurred(intShare(User,Data,Party),fb,I),

532 holdsat(gpow(fb,dataExport(User,Data,Party),eu),bridge,I),

533 inst(eu;fb),
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534 party(Party),

535 data(Data),

536 user(User),

537 inst(bridge), instant(I).

538 %

539 % Translation of intShare(User,Data,Party) of us

540 % xgenerates dataExport(User,Data,Party) of eu if [] in

541 occurred(dataExport(User,Data,Party),eu,I) :-

542 occurred(intShare(User,Data,Party),us,I),

543 holdsat(gpow(us,dataExport(User,Data,Party),eu),bridge,I),

544 inst(eu;us),

545 party(Party),

546 data(Data),

547 user(User),

548 inst(bridge), instant(I).

549 %

550 % Translation of intShareRequest(User,Data,Party) of fb

551 % xgenerates dataCollectRequest(User,Data,Party) of us if [] in

552 occurred(dataCollectRequest(User,Data,Party),us,I) :-

553 occurred(intShareRequest(User,Data,Party),fb,I),

554 holdsat(gpow(fb,dataCollectRequest(User,Data,Party),us),bridge,I),

555 inst(us;fb),

556 party(Party),

557 data(Data),

558 user(User),

559 inst(bridge), instant(I).

560 %

561 % Translation of intShareRequest(User,Data,Party) of fb

562 % xgenerates dataExportRequest(User,Data,Party) of eu if [] in

563 occurred(dataExportRequest(User,Data,Party),eu,I) :-

564 occurred(intShareRequest(User,Data,Party),fb,I),

565 holdsat(gpow(fb,dataExportRequest(User,Data,Party),eu),bridge,I),

566 inst(eu;fb),

567 party(Party),

568 data(Data),

569 user(User),

570 inst(bridge), instant(I).

571 %

572 % cross initiation rules

573 %

574 %

575 % Translation of intDataCollectRequest(User,Data,Party) of us xinitiates

576 % [’perm’, [’share’, [’User’, ’Data’, ’Party’]]]

577 % of eu if [’and’, [’interested’, [’User’, ’Data’]], [’securityDep’, [’Party’]]]

578 %

579 xinitiated(us, perm(share(User,Data,Party)),eu,I) :-

580 occurred(intDataCollectRequest(User,Data,Party),us,I),

581 holdsat(ipow(us, perm(share(User,Data,Party)), eu), bridge, I),

582 holdsat(live(bridge),bridge,I), inst(bridge),

583 inst(eu;us),

584 holdsat(interested(User,Data),us,I),

585 holdsat(securityDep(Party),us,I),

586 party(Party),

587 data(Data),

588 user(User),

589 inst(bridge), instant(I).
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590 %

591 % Translation of intDataCollectRequest(User,Data,Party) of us xinitiates

592 % [’perm’, [’share’, [’User’, ’Data’, ’Party’]]]

593 % of fb if [’and’, [’interested’, [’User’, ’Data’]], [’securityDep’, [’Party’]]]

594 %

595 xinitiated(us, perm(share(User,Data,Party)),fb,I) :-

596 occurred(intDataCollectRequest(User,Data,Party),us,I),

597 holdsat(ipow(us, perm(share(User,Data,Party)), fb), bridge, I),

598 holdsat(live(bridge),bridge,I), inst(bridge),

599 inst(fb;us),

600 holdsat(interested(User,Data),us,I),

601 holdsat(securityDep(Party),us,I),

602 party(Party),

603 data(Data),

604 user(User),

605 inst(bridge), instant(I).

606
607 %

608 % Translation of intDataCollectRequest(User,Data,Party) of us xinitiates

609 % [’obl’, [[’share’, [’User’, ’Data’, ’Party’]], [’deadline’, []], [’noncompliance’,

610 % [’User’]]]] of fb if [’and’, [’interested’, [’User’, ’Data’]], [’securityDep’,

611 %[’Party’]]]

612 %

613 xinitiated(us, obl(share(User,Data,Party),deadline,noncompliance(User)),fb,I) :-

614 occurred(intDataCollectRequest(User,Data,Party),us,I),

615 holdsat(ipow(us, obl(share(User,Data,Party),deadline,noncompliance(User)), fb),

616 bridge, I),

617 holdsat(live(bridge),bridge,I), inst(bridge),

618 inst(fb;us),

619 holdsat(interested(User,Data),us,I),

620 holdsat(securityDep(Party),us,I),

621 party(Party),

622 data(Data),

623 user(User),

624 inst(bridge), instant(I).

625 %

626 % cross termination rules

627 %

628 %

629 % Translation of intDataExportRequest(User,Data,Party) of eu xterminates

630 % [’perm’, [’share’, [’User’, ’Data’, ’Party’]]]

631 % of fb if [’not’, [’protected’, [’Data’, ’Party’]]]

632 %

633 xterminated(eu, perm(share(User,Data,Party)), fb, I) :-

634 occurred(intDataExportRequest(User,Data,Party),eu,I),

635 holdsat(tpow(eu, perm(share(User,Data,Party)), fb), bridge, I),

636 holdsat(live(bridge),bridge,I), inst(bridge),

637 inst(fb;eu),

638 not

639 holdsat(protected(Data,Party),eu,I),

640 party(Party),

641 data(Data),

642 user(User),

643 inst(bridge), instant(I).

644 %

645 % Translation of intDataExportRequest(User,Data,Party) of eu xterminates
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646 % [’perm’, [’share’, [’User’, ’Data’, ’Party’]]]

647 % of us if [’not’, [’protected’, [’Data’, ’Party’]]]

648 %

649 xterminated(eu, perm(share(User,Data,Party)), us, I) :-

650 occurred(intDataExportRequest(User,Data,Party),eu,I),

651 holdsat(tpow(eu, perm(share(User,Data,Party)), us), bridge, I),

652 holdsat(live(bridge),bridge,I), inst(bridge),

653 inst(us;eu),

654 not

655 holdsat(protected(Data,Party),eu,I),

656 party(Party),

657 data(Data),

658 user(User),

659 inst(bridge), instant(I).

660 %

661 % -------------------------------PART 3-------------------------------

662 %

663 % initially

664 %

665 % no creation event

666 holdsat(live(bridge),bridge,I) :- start(I), inst(bridge).

667 holdsat(perm(null),bridge,I) :- start(I), inst(bridge).

668 % initially: gpow(fb,dataExportRequest(User,Data,Party),eu)

669 holdsat(gpow(fb,dataExportRequest(User,Data,Party),eu),bridge,I) :-

670 party(Party),

671 data(Data),

672 user(User),

673 inst(eu; fb),

674 inst(bridge), start(I).

675 % initially: gpow(fb,dataCollectRequest(User,Data,Party),us)

676 holdsat(gpow(fb,dataCollectRequest(User,Data,Party),us),bridge,I) :-

677 party(Party),

678 data(Data),

679 user(User),

680 inst(us; fb),

681 inst(bridge), start(I).

682 % initially: gpow(fb,dataExport(User,Data,Party),eu)

683 holdsat(gpow(fb,dataExport(User,Data,Party),eu),bridge,I) :-

684 party(Party),

685 data(Data),

686 user(User),

687 inst(eu; fb),

688 inst(bridge), start(I).

689 % initially: gpow(fb,dataCollect(User,Data,Party),us)

690 holdsat(gpow(fb,dataCollect(User,Data,Party),us),bridge,I) :-

691 party(Party),

692 data(Data),

693 user(User),

694 inst(us; fb),

695 inst(bridge), start(I).

696 % initially: tpow(eu,perm(share(User,Data,Party)),fb)

697 holdsat(tpow(eu,perm(share(User,Data,Party)),fb),bridge,I) :-

698 party(Party),

699 data(Data),

700 user(User),

701 inst(fb; eu),
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702 inst(bridge), start(I).

703 % initially: ipow(us,perm(share(User,Data,Party)),fb)

704 holdsat(ipow(us,perm(share(User,Data,Party)),fb),bridge,I) :-

705 party(Party),

706 data(Data),

707 user(User),

708 inst(fb; us),

709 inst(bridge), start(I).

710 % initially: ipow(us,obl(share(User,Data,Party),deadline,noncompliance(User)),fb)

711 holdsat(ipow(us,obl(share(User,Data,Party),deadline,noncompliance(User)),fb),

712 bridge,I) :-

713 party(Party),

714 data(Data),

715 user(User),

716 inst(fb; us),

717 inst(bridge), start(I).

718 % initially: securityDep(nsa)

719 holdsat(securityDep(nsa),bridge,I) :-

720 inst(bridge), start(I).

721 % initially: trusted(nsa)

722 holdsat(trusted(nsa),bridge,I) :-

723 inst(bridge), start(I).

724 % initially: interested(bob,bob_data)

725 holdsat(interested(bob,bob_data),bridge,I) :-

726 inst(bridge), start(I).

727 %

728 % End of file
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Abstract Examples of Merged
Institutions

In this chapter, we list the InstAL specification of the three abstract institutions instI, instI

and instI in the following sections respectively. These three institutions are used to

demonstrate how to form a merged institution the Section 6.2 in the case of absence and

presence of interactions among institutions. In the later case, a bridge institution with a set of

cross-institutional rules is also specified in Section C.4.

C.1 the InstAL Specification for Institution InstI

institution instI;

type TypeA;

type TypeB;

exogenous event exevent1(TypeA);

exogenous event exevent2(TypeB);

inst event intevent1(TypeA);

fluent dfluent1(TypeA, TypeB);

exevent1(TypeA) generates intevent1(TypeA);

intevent1(TypeA) initiates perm(exevent2(TypeB))

if dfluent1(TypeA, TypeB);

initially perm(exevent1(TypeA)),

perm(intevent1(TypeA)),

pow(intevent1(TypeA));
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initially dfluent1(a1, b1);

C.2 the InstAL Specification for Institution InstJ

institution instI;

type TypeA;

type TypeB;

exogenous event exevent1(TypeA);

exogenous event exevent2(TypeB);

inst event intevent1(TypeA);

fluent dfluent1(TypeA, TypeB);

exevent1(TypeA) generates intevent1(TypeA);

intevent1(TypeA) initiates perm(exevent2(TypeB))

if dfluent1(TypeA, TypeB);

initially perm(exevent1(TypeA)),

perm(intevent1(TypeA)),

pow(intevent1(TypeA));

initially dfluent1(a1, b1);

C.3 the InstAL Specification for Institution InstK

institution instI;

type TypeA;

type TypeB;

exogenous event exevent1(TypeA);

exogenous event exevent2(TypeB);

inst event intevent1(TypeA);

fluent dfluent1(TypeA, TypeB);

exevent1(TypeA) generates intevent1(TypeA);

intevent1(TypeA) initiates perm(exevent2(TypeB))

if dfluent1(TypeA, TypeB);
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initially perm(exevent1(TypeA)),

perm(intevent1(TypeA)),

pow(intevent1(TypeA));

initially dfluent1(a1, b1);

C.4 the InstAL Specification for the Bridge Institution

institution bridge;

type TypeA;

type TypeB;

type Inst;

exogenous event exevent1(TypeA); % inst I

exogenous event exevent2(TypeB); % inst I

exogenous event exevent3(TypeB); % inst J , K

exogenous event exevent4(TypeA); % inst J

exogenous event exevent5(TypeB); % inst K

inst event intevent1(TypeA); % inst I

inst event intevent3(TypeB); % inst J

inst event intevent4(TypeA); % inst K

cross fluent gpow(Inst, exevent4(TypeA), Inst);

cross fluent ipow(Inst, perm(exevent4(TypeA)), Inst);

cross fluent tpow(Inst, perm(exevent2(TypeB)), Inst);

fluent dfluent1(TypeA, TypeB); % inst I

fluent dfluent3(TypeA, TypeB); % inst J

fluent dfluent4(TypeA, TypeB); % inst K

intevent1(TypeA) xgenerates exevent4(TypeA);

intevent1(TypeA) xinitiates perm(exevent4(TypeA));

intevent3(TypeB) xterminates perm(exevent2(TypeB));

initially gpow(instI, exevent4(TypeA), instJ);

initially ipow(instI, perm(exevent4(TypeA)), instJ);

initially tpow(instK, perm(exevent2(TypeB)), instI);
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