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Abstract 

 

Overreliance on energy from fossil fuels is unsustainable because of their regional depletion 

and associated environmental impacts.  The British industrial sector accounts for around one 

fifth of final energy demand and one third of carbon emissions nationally.  This thesis attempts 

to quantify the potential for industrial energy efficiency from the current baseline, by adopting 

thermodynamic and economic perspectives.   

 

The methodology involves a top-down analysis of energy trends within the manufacturing 

sector to determine the baseline against which changes are measured, leading to bottom-up case 

studies which explicitly consider the detailed mechanisms affecting energy demand.  Top-down 

analysis highlights the diversity between industrial sectors, for which a sectoral classification 

based on process homogeneity is proposed.  It also enables the long term, systemic potential for 

efficiency improvements to be estimated and identifies the barriers to uptake. 

 

Bottom-up case studies are better suited to identifying the sectoral potential in the short to 

medium term.  Firstly, the technical potential for heat recovery from industrial sectors is 

quantified by recourse to thermodynamic quality and spatial considerations.  Secondly, an 

energy and exergy analysis of a glass furnace enables a distinction between avoidable and 

unavoidable losses, leading to the identification of economic savings.  Thirdly, a process 

integration study at a pulp and paper mill based on a pinch analysis and optimisation of a heat 

exchanger network highlights economic efficiency improvements.  

 

This thesis demonstrates that realising the full industrial energy efficiency potential requires 

improvements to public policy intended to overcome market-related barriers, especially the EU 

Emissions Trading Scheme and the Carbon Trust, with additional scope for a mandatory 

efficiency standard relating to motors.  Energy efficiency has to part of a company’s overall 

strategy to be effective.  Future work should focus on heterogeneous sectors and the broader 

effects on industrial energy efficiency of globalisation and the shift towards services. 
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The affluent earth was not only pressed for the crops and the food 

that it owed; men also found their way to its very bowels, 

and the wealth which the god had hidden away in the home of the ghosts 

by the Styx was mined and dug out, as a further incitement to wickedness. 

 

       Ovid, Metamorphoses, 1.137:140 
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1 Introduction 

1.1 Background to sustainable development 

Over the past few decades a general awareness has emerged that many of humankind’s 

activities are unsustainable.  Although this realisation came to the fore mainly in the 1960s and 

1970s, such ideas are not new.  In the 18th Century Malthus (1970) and the classical economists 

believed that it was impossible to improve human welfare in the long term, and Jevons (1866) 

famously predicted the imminent exhaustion of Britain’s indigenous coal reserves.  More recent 

concerns about the sustainability of human activities were especially provoked by publications 

such as Hardin’s (1968) Tragedy of the Commons, which discussed the implications of a rapidly 

increasing population with access to the same finite resources (Appendix A2.1).  Several years 

later The Limits to Growth study was carried out, which predicted that a business-as-usual 

scenario would be confronted by physical and ecological limits within a century (Meadows et 

al., 1974).  In 1983 the World Commission on Environment and Development (WCED) was 

established to formulate a Global Agenda for Change (Frears & Hicks, 2008a).  The WCED’s 

(1987) activities culminated in the publication of Our Common Future, also known as the 

Brundtland Report, which attempted to address the apparently conflicting objectives of 

ensuring economic growth whilst protecting the environment.  Although most concepts of 

sustainable development are multifaceted, one widely recognised aspect is that of inter- and 

intra-generational equity adopted in the Brundtland report (ibid.).  Most if not all concepts of 

sustainable development or sustainability incorporate a consideration of the varied interactions 

between economic activity and the physical, ecological, environmental and social systems in 

which it occurs.   

 

1.2 Energy and the environment 

The relationship between energy (use) and the environment plays a central role in concerns 

about sustainability.  Energy has underpinned human development historically and has been 

particularly crucial in the rapid industrialisation during the past few centuries (Smil, 2003).  

Technological innovation has been inextricably linked with the evolution of energy systems, 

which is clear from the large number of General Purpose Technologies (GPTs, chapter 2) that 

are energy technologies, such as the steam engine, the internal combustion engine, and 

electricity generation (Lipsey et al., 2005).  

 

Around 90% of the primary energy used today, and indeed since the beginning of the 20th 

century (Nakicenovic et al., 1998), is harnessed from non-renewable fossil fuels1 that are being 

exhausted at a rate far faster than they were formed (IEA, 2008).  This problem is compounded 

by the fact that these fuels are unevenly distributed around the world, which has consequences 

                                                           
1 Non-renewable within this thesis refers to the timescale upon which these fuels are formed being far greater than the 
human timescales involved in consuming them.  Renewable resources are therefore those energy flows that, apart from 
geothermal energy, are directly or indirectly derived from current or recent flows of solar and gravitational energy 
(IEA, 2004a). 
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in terms of energy access and security.  Furthermore, the exothermic reaction of combusting 

these hydrocarbon fuels in air (or oxygen) releases carbon dioxide (hereafter CO2) as well as 

other polluting oxides (nitrous, sulphur etc.).  CO2 is a so called greenhouse gas (GHG) because 

it contributes to the greenhouse effect, in which incident solar irradiation is trapped within the 

atmosphere, leading to a temperature increase (Boyle, 2002).   

 

It is widely held by scientists and climatologists that the greenhouse effect is being exacerbated 

by human activity.  The Intergovernmental Panel on Climate Change (IPCC, 2009) was 

established in 1988 in recognition of this belief.  In 1992, the United Nations Conference on 

Environment and Development in Rio de Janeiro established the United Nations Framework 

Convention on Climate Change (UNFCCC, United Nations, 1992), and in 1997 the Kyoto 

Summit amended this Framework and developed the Kyoto Protocol (United Nations, 1998).  

The IPCC (2001, 2007) since found that the global average surface temperature increased over 

the 20th Century by about 0.6°C and since the late 1950s by 0.1°C per decade.  Over the latter 

timescale snow cover and ice extent has decreased, and the global average sea level has risen.  

Significantly, the IPCC (2001) detected a “discernable human influence” on global climate and 

identified a causal link between rising anthropogenic GHG (mainly CO2) emissions and global 

surface temperature increases.   

 

1.3 Climate change policies and targets 

The Kyoto Protocol commits the UK to reduce emissions of a basket of six GHGs by 12.5% by 

2008 to 2012, based on 1990 levels.  The government’s national target for abatement of CO2 

emissions is a 20% reduction on 1990 levels by 2010.  The Kyoto target has been met and 

exceeded, but without additional measures over and above current climate change policy, the 

latter target will narrowly be missed in 2010 (DEFRA, 2006c, p.26, para. 17).    

  

The Royal Commission on Environmental Pollution (RCEP, 2000) suggested that the UK should 

in fact strive for a reduction in CO2 emissions of some 60% (on 1997 levels) by around 2050, 

corresponding to an upper limit for the concentration of CO2 in the atmosphere of 550ppm.  

More recently Stern (2007) found that the economic cost of unchecked climate change exceeds 

the cost of mitigation, and concluded that the stabilisation target for GHGs should be in the 

range 450-550ppm of CO2e2.  Although Stern’s study (ibid.) was rather controversial because of 

the extreme values employed for key input variables such as the social discount rate (Appendix 

A1.5), the lower end of this range is widely believed to correspond to a temperature rise of 2°C 

by 2100 (IPCC, 2007), and was therefore employed by Bows et al. (2006, p.9) in their modelling 

of decarbonisation scenarios.  They concluded that the UK should in fact aspire to a 90% 

reduction in CO2 emissions by 2050, corresponding to a 70% cut by 2030.  These and the 

recommendations of the Climate Change Committee (CCC, 2008), that the UK should aim at an 

80% cut, culminated in the Climate Change Act (HM Government, 2008).  The Act legally 

                                                           
2 CO2e is carbon dioxide equivalent, which is obtained by multiplying the Global Warming Potential (GWP) of a 
greenhouse gas by its mass (Choudrie et al., 2008). 
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commits the government to this 80% cut and became law in 2008, but there has been some 

speculation about the consequences and culpability if this target is not met (The Economist, 

2008a).  In addition, the precise role of each sector of the economy in meeting this target has not 

yet been defined, although the CCC (2008) made some recommendations. 

 

The fact that over 90% of CO2 emissions are associated with energy conversion and use 

(DEFRA, 2006a) means that any strategy aimed at meeting this 80% target should necessarily be 

focussed on energy.  In order to develop a strategy that incorporates the whole energy system, 

including supply and demand sides, it is useful to have a framework within which to work.  

The House of Commons Environmental Audit Committee (1999, para.24) defined an energy 

hierarchy3 to act as a framework for energy policy, which ranks the approaches to 

decarbonising energy use according to their relative sustainability and the ease with which they 

can be achieved: 

 

1. Energy demand management and end-use efficiency; 

2. Energy supply from renewables; 

3. Combined heat and power (CHP) and fossil fuels; and 

4. Nuclear power. 

 

The primary area where attention needs to be focussed is therefore on reducing demand and 

improving efficiency at the point of use.   

 

1.4 Aims, challenges and scope 

This thesis is concerned specifically with the industrial sector.  This sector has significantly 

reduced its energy demand over the past few decades, mainly due to improvements in energy 

efficiency, and to a lesser extent structural changes and output effects (DTI, 2002b, p.32, cf. 

chapter 4 in this thesis).  It also plays a key role in the economy due to the linkages it has with 

other sectors, both within the UK and internationally.  Many of its outputs are intermediate 

products for other sectors, and all of them find use in other parts of the economy, such as within 

the domestic and transport sectors.  In addition, Britain has a long history of international pre-

eminence in manufacturing which began with the first Industrial Revolution.   

 

The general aim of this thesis is to quantify the extent to which it is technically and 

economically possible to improve industrial energy efficiency4 from the current baseline.  

Economical in this context means conforming to the economic criteria that firms typically apply 

to energy efficiency projects.  Technical indicates potential that is physically possible with 

current technology, but is not (necessarily) economical.  The current baseline refers to the status 

                                                           
3 Others have proposed similar energy hierarchies, such as the IET (2007).  The main difference is whether demand 
reduction and energy efficiency are grouped under the same heading.  In the IET framework they are distinct, whereas 
in the hierarchy adopted here they are two facets of the same point: addressing current demand.   
4 Throughout this thesis the terms efficiency and productivity are used synonymously. 
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quo at the time when this research was carried out5.  The aim may be developed further to claim 

that it is possible to improve energy efficiency through three main means, namely behaviour, 

technology and policy.  There is evidence that strong drivers exist for firms to undertake energy 

efficiency measures.  The harder drivers are environmental legislation and energy costs, but 

there are also softer drivers in the form of corporate social responsibility (CSR) and other 

intangibles.  Evidence also suggests that barriers to energy efficiency exist, which prevent the 

theoretical potential being realised in practice. 

 

Hence the general aim of this thesis is to quantify the potential improvement in industrial 

energy efficiency, both now and in the future, whilst taking into account these technical and 

economic barriers.  This general aim requires an understanding, from an interdisciplinary 

perspective, of the current and historical energy productivity of British industry, and an 

assessment of the potential for improvement from the current status quo.  Implicit within this 

interdisciplinary approach is the combination of insights from the fields of thermodynamics 

and economics.  The emphasis is therefore placed on the feasibility and usefulness of combining 

approaches from different disciplines, as well as on using these approaches to analyse the 

industrial sector.  One facet of this research is to qualitatively explore and assess the ways in 

which perspectives from thermodynamics and economics can provide superior insights into the 

performance of industrial systems, compared to a situation in which these approaches were 

used in isolation.  Another facet involves quantitatively determining the potential for energy 

saving in industry and understanding the reasons why opportunities are not being realised.   

 

The research supporting this thesis has substantially affected the latter’s objectives.  In 

particular, macroeconomic analysis of the industrial sector as presented in chapter 5 is of 

limited use in determining the improvement potential for individual sectors and sites.  This sort 

of top-down approach is better suited to analysing industrial performance retrospectively and 

understanding the reasons for (or decomposing) changes in energy demand, as well as 

identifying the systemic possibilities for energy efficiency improvement in these sectors in the 

long term.  It is not able to identify the precise means through which this might be realised, 

however.  Instead bottom-up studies, which take into account the heterogeneous nature of 

sectors, are required.  These micro – or in some cases meso6 – level studies are able to account 

for process-specific determinants of energy use that are overlooked from a macroeconomic 

perspective.  In other words, studies based on this detailed approach enable an understanding 

of the mechanisms that actually determine energy use, rather than just the effect they have as 

manifested in the overall energy demand. 

 

The selection of specific sectors to study in such detail is itself part of the research problem, as it 

is largely dictated by data availability.  As discussed in chapter 3, there has been a paucity of 

attention devoted to industrial energy analysis in the past few decades.  In conjunction with 

                                                           
5 The manufacturing sector’s output has been and is being significantly affected by the global financial crisis following 
the credit crunch of 2007 (The Economist, 2009b).  The baseline for this thesis is taken as the status quo in 2005/2006, and 
no account has therefore been taken of these recent events. 
6 That is, neither at the macro (economy or sector) level, nor at the individual process level, but in between, where 
whole industrial plants/sites are the functional unit. 
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widespread concerns about commercial confidentiality, this firstly means that current industrial 

data is difficult to obtain and, secondly, that companies in general are reluctant to engage in 

studies with academia.  This is compounded by the fact that most energy-intensive industries 

have their energy use professionally managed because it represents a significant proportion of 

their operating costs (chapter 5).  The consequence is that the focus of specific bottom-up 

studies is dictated by the willingness of trade associations and/or companies to cooperate and 

the availability of relevant data.     

 

The scope of this thesis is as follows.  Firstly, the research is confined to all energy 

transformation processes occurring within the manufacturing sector in the UK7.  The 

manufacturing sector in this context includes all activities classified under Section D of the 

Standard Industrial Classification (SIC), but excludes electricity generation activities in 

centralised power plant (ONS, 2003).  Secondly, the scope is limited to identifying the potential 

for energy efficiency improvements, and is not concerned with implementing them.  The 

methodological scope of this thesis is confined to the fields of economics and thermodynamics, 

and therefore excludes some of the subtle contextual factors which some have argued are 

crucial in effecting a decarbonisation of the economy (Reason, 2008).  This thesis attempts to 

reach an appropriate compromise between such extremely anthropocentric approaches that 

focus on cultural, social and political issues and purely technical ones.  

 

1.5 Objectives 

Having outlined the general aims of this thesis, attention is now drawn to the specific objectives 

below, through which the aims will be achieved.   

 

(i) To discuss relevant approaches emanating from the fields of thermodynamics and 

economics, and to highlight the problems with the neoclassical concept of production 

(chapter 2) 

(ii) To review applications of thermodynamic and economic techniques to industrial energy 

systems (chapter 3). 

(iii) To define energy efficiency, discuss its measurement and associated problems, and to 

identify the means of increasing efficiency (chapter 4). 

(iv) To identify drivers for and barriers to increased energy efficiency, including theoretical 

frameworks and empirical evidence (chapters 4 and 5). 

(v) To analyse the industrial sector from a macroeconomic perspective, using a variety of 

interdisciplinary tools, in order to determine and understand current and historical 

energy trends (chapter 5).  

(vi) To estimate the long term potential for energy efficiency improvement through systemic 

optimisation (chapter 5). 

                                                           
7 The terms “manufacturing” and “industry” are used interchangeable in this thesis, except where the usage of the latter 
is intended to refer to a business activity such as “the telecommunications industry”. 
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(vii) To apply relevant methodologies to industrial energy systems in order to determine the 

short term technical and/or economic energy efficiency improvement potential (chapters 

6, 7, 8). 

(viii) To discuss the results of these detailed studies and the suitability of combining their 

respective methods in the wider context of the preceding chapters (chapter 9). 

(ix) To discuss the limitations of this research (chapter 9).  

(x) To draw conclusions and highlight areas for future work by relating the discussion in 

chapter 9 to the original aims and objectives outlined here (chapter 10). 
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2 Thermoeconomic background 
Drawing on the introduction to economics and thermodynamics given in Appendix A2, this 

chapter serves two main purposes, relating to objective (i) in the previous chapter.  The first is 

to discuss relevant interdisciplinary applications of economics and thermodynamics, and assess 

their ability to provide a better understanding of energy systems in general.  The second is to 

discuss the interrelation between technological change, energy efficiency and economic growth, 

and to highlight some of the problems associated with understanding this relationship.  These 

two related aspects are dealt with in turn below.  

 

2.1 Some thermoeconomic insights 

This section explores some of the attempts at integrating economics and thermodynamics in 

order to overcome some of the limitations of the neoclassical view.  To begin with, a brief 

critique of the neoclassical economic framework is presented, which builds on the background 

discussion in Appendix A2.1 and prefaces the remainder of this chapter.  This is followed by an 

overview of ecological economics, which can be seen as one attempt to overcome the 

restrictions of neoclassicism and incorporate more satisfactory environmental and welfare 

considerations.  This leads into discussions of the application to economics of conservation 

principles and the Entropy Law8, followed by an assessment of alternative theories of value.   

   

2.1.1 Critique of neoclassical economics 

The obsession with growth is a major problem with the neoclassical paradigm.  It is well known 

that human welfare and happiness are dependent upon more complex factors than wealth 

(Appendix A2.1.1).  Although these two measures generally increase with income, there is a 

limit of about $10,000 above which the happiness/income correlation ceases to apply (Common 

& Stagl, 2005, p.198).  Once people have enough to meet their basic needs, the marginal 

increases in welfare and happiness to be gained from additional wealth are minimal.  

Notwithstanding this strong criticism, some economists believe that growth can in fact solve the 

environmental and distributive problems not satisfactorily addressed by the conventional 

model.  Their theory is known as the Environmental Kuznets Curve (EKC), because it is based 

on the Kuznets curve relating inequality to income per capita.  In this case, the curve relates 

environmental quality to income per capita, and the hypothesis is that environmental 

degradation will level off and then decrease again as a country develops.  The basis for this is 

that, as economies become more services focussed, the energy- and carbon-intensity of the 

economy decreases, in addition to the population having more wealth on average to spend on 

improving environmental quality (ibid., p.247).   

 

                                                           
8 The terms Entropy Law and Second Law are used synonymously within this thesis to refer to the Second Law of 
Thermodynamics. 
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Whilst this occurs on a national scale, a developed, post-industrial economy still consumes 

goods and services that have relatively large amounts of carbon and energy embodied in them.  

The embodied CO2 in imports to the UK is actually increasing the nation’s overall consumption-

related emissions, whereas the indigenous emissions show a different picture (Wiedmann et al., 

2008).  This theory is therefore flawed because it does not account for one country’s 

development leading to a redistribution of emissions globally but not actually reducing them.  

Furthermore, the theory presupposes that all countries will eventually develop into service (or 

information) based economies which do not have any heavy industry.  Manufacturing output 

must be superfluous in such a scenario, or be produced in Otherlands, the hypothetical country 

which van Gool (1997) showed to have low overall exergy efficiencies (chapter 3). 

 

The second argument, of higher affluence resulting in increased expenditure on improving the 

environment, holds little more weight than the first one.  It is predicated on the assumption that 

environmental degradation is a reversible process.  In many cases this is not the case, so 

regardless of how much is invested in attempting to restore the environment the changes 

cannot be reversed.  The assumption of reversibility in energy conversion processes also 

contravenes the Second Law of Thermodynamics; all material and energy transformation 

processes involve unavoidable irreversibilities.  Pasche (2002) has also analytically shown that 

long-run sustainability is not concomitant with a positive growth rate.  Hence the EKC 

hypothesis does not make a satisfactory case for adhering to the high growth course that has 

been followed in the recent past. 

 

Other criticism has been made against neoclassical economics at a fundamental level.  For 

example, what basis does it have in reality and how can it justify the complex models that it 

employs based on such tenuous assumptions?  Wiener (1964, cited in Daly, 1992, p.4) takes this 

to the extreme when he bemoans the way in which economists “dress up their rather imprecise 

ideas in the language of the infinitesimal calculus….a sham and a waste of time”.  It is a 

scathing indictment, but the essence of it carries some weight: economics has long looked to 

mathematics for precision where in fact it is concerned with imprecise and abstract phenomena.  

The above point also relates to fundamental misnomers in economics; the language employed 

does not reflect the physical process to which it relates (Daly, 1992).  So, for example: growth 

itself implies reaching maturity; consumption implies reaching satiety; and production actually 

refers to transformation.  In none of these examples does the actual phenomenon live up to its 

economic namesake.     

 

2.1.2 Ecological economics (EE) 

The shortcomings with the neoclassical model discussed above are some of the main drivers 

behind the development of ecological economics (EE).  In contrast to Environmental and 

Natural Resource Economics (ERE) ecological economics (EE) has evolved from an explicit 

consideration of the principles of physical science, in particular ecology.  ERE can be considered 

as an extreme interpretation of the neoclassical paradigm and is essentially a branch of welfare 

economics, with the two objectives of valuing and managing environmental assets that are 
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otherwise externalities (Cropper & Oates, 1992).  EE on the other hand has evolved from a 

coalescence of ecology with economics, but also contains elements of thermodynamics, ethics 

and other social sciences, and is therefore broader and more encompassing in it’s coverage than 

ERE.  It is not involved purely in attempting to correct for market failures, rather has a 

completely different framework and therefore embraces such diverse topics as green 

accounting, sustainability and environmental Kuznets curves (Ma & Stern, 2004).  EE is 

considered a transdisciplinary field in the sense that it embraces areas studied by the sciences of 

ecology and economics, yet transcends them to offer another related but different perspective 

(Common & Stagl, 2005, pp.4-5).  EE began to emerge in the late 1980s, based largely on the 

ideas of the economists Daly (1992) and Georgescu-Roegen, and the ecologist Odum (1970), as 

well as others.  There have also been significant contributions from earlier writers such as 

Soddy, Lotka and one of the chief exponents of utilitarianism, John Stuart Mill (van den Bergh, 

2000, p.2).  All of these writers had strong interests outside their own field and were in some 

way dissatisfied with elements of their own discipline.   

 

For Daly this was in the form of a general frustration with the neoclassical model and its 

emphasis on growth as the underpinning factor in improving human welfare.  Instead of the 

obsession with “more is best” he favours a situation in which “enough is best”, within what he 

calls a Steady-State Economics framework (Daly, 1992).  He further criticises mainstream 

economics as in the face of ecological scarcity it simply demands more ingenious technological 

“fixes” – that is, higher productivity, achieving more with less.  The second main ground for his 

criticism is that what is provided (the output) by the economic machine is not what is required 

by the consumers who use it – what he calls existential scarcity.  In other words, the activity of 

the system is misplaced because it does not, in fact, improve peoples’ wellbeing, rather 

persuades them to purchase what they do not need.  Daly argues that we need to concentrate on 

moral growth and qualitative improvements rather than quantitative growth.  He stresses the 

relatively short time-period over which long-run growth has occurred, when considered in the 

context of the history of mankind, suggesting that growth is in fact the aberration and stability 

the norm (ibid., p.18).  Indeed, Smith himself referred to what later became known as the 

“stationary state” by Mill and others, although he did not explain the transition from growth to 

maturity in The Wealth of Nations (Deane, 1978, p.36).  

 

Odum was chiefly concerned with applying the ecological “systems” concepts to other areas, 

including economics and energy systems.  His best-known work was probably his book 

Environment, Power and Society (Odum, 1970), especially as it is regarded by many as providing 

much of the stimulus for the development of energy analysis (IFIAS, 1974, pp.11-12).  He also 

made what is thought to be one of the first valuations of an environmental resource when his 

work in the Gulf of Mexico provoked him to attempt to quantify the human impacts on 

metabolism in the area (Kangas, 2004).  This provided the foundation for the application of 

valuation methods to the environment in both ERE and EE.  One of Odum’s main contributions 

to EE is his concept of the pulsing paradigm, which refers to the way in which ecosystems 

undergo pulsing behaviour, when production and consumption rapidly increase, before falling 

off again.  Such spurts can be caused by external events or shocks such as storms or may be 
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internally mediated as in the case of predator-prey cycles.  Odum et al. (1995) postulated from 

these phenomena that such pulses occur at all scales within the earth’s ecosystems, and that the 

steady-state condition is the exception rather than the rule.  This analogy between natural and 

economic science is one of many in the field of EE and, if a valid one, implies that the solution to 

the insatiable appetite for growth might be a reduction in production and consumption within 

the economic system or a “prosperous way down” (ibid.).  Odum’s other legacy for the field of 

EE is the concept of EMERGY, or embodied energy, which is the total solar energy embodied in 

a product or service, traced back to the sun.  This is discussed in more detail in Appendix 

A2.2.2.4.       

 

EE is therefore more aligned with classical economics than the neoclassical school, at least in the 

sense of emphasising the importance of land and its productive power.  It emphasises the 

importance of the individual, society and sustainability instead of the pure satisfaction of 

consumer needs in order to maximise utility.  The Malthusian classicists were ostensibly wrong 

in their prediction that the long term prospects for improving the welfare of humankind were 

quite poor, which is seen as one of the main reasons for the demise of the tradition in the latter 

half of the nineteenth century (Common & Stagl, 2005, p.3).  Their assertion has arguably been 

borne out by experience, though, given the very large global inequalities in wealth distribution 

and human wellbeing that now exist.  The basis on which such a conclusion was based, 

however, is as sound now as it was then: the arithmetically rising production capacity is 

incompatible with a geometrically increasing population, which implies a finite carrying 

capacity for the planet.  The precise capacity is flexible to some degree because of the role that 

technological progress can play in improving productivity (section 2.2), but ultimately it is still 

finite.   

 

2.1.3 The Entropy Law, conservation principles and metaphors 

Several practitioners have drawn parallels between the fields of physics – especially 

thermodynamics – and economics.  Georgesgu-Roegen (1971) contended that the economic 

process – that is, the transformation of natural resources into forms of capital for consumption 

and then, ultimately, into waste – obeys the Second Law of Thermodynamics.  Mirowski (1989) 

argued that the field concept of value in neoclassical economics owes itself mostly to the 

conservation laws (in particular of energy and matter) emanating from the physical sciences, 

and energy can therefore be seen as analogous to utility or value.  There are clearly close 

synergies between these two ideas, and this section therefore explores them together.   

 

To say that the physical processes involved in the economy obey the Entropy Law is to state the 

obvious because all physical systems must do so.  The novelty lies in applying the Second Law 

of Thermodynamics to the whole economic “machine” rather than just its physical components.  

The economy not only employs low entropy/high exergy material and energy inputs, and 

produces high entropy/low exergy outputs, but can also be understood by analogy to physical 

systems in the way it processes information, value and other abstract entities.  The application 

of the Second Law to the economic process explicitly acknowledges the finite resources and 
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limited assimilative capacity of the environment discussed in section 2.2.  Georgescu-Roegen 

therefore attempted to integrate thermodynamic limits into the neoclassical model.  Mirowski 

(1988, p.821) suggests that he has been misunderstood by economists as an advocate of the 

energy theory of value, mainly because of their lack of understanding of the diverse areas 

which he touches.  In fact Georgescu-Roegen strongly rejects the energy theory of value and the 

aligned energetics and neo-energetics schools (ibid.). 

 

The crux of Georgescu-Roegen’s (1971) argument is that the analogy between neoclassical 

economics and classical mechanics is crucial if the true nature of the economic process is to be 

understood.  He has generally been keen to point out the nature of the economic process, in 

particular the fact that the economic system is not an isolated one.  Another criticism 

Georgescu-Roegen (1971, p.322) levelled against the economic science is that it is not, strictly 

speaking, a theoretical science, because it suffers, as all human creations do, from the 

subjectivity of the institutional context.  That is, the theoretical framework of economics evolved 

in a relatively wealthy, industrialised context, which is one reason why it does not apply out of 

this context.  He cites examples of non-capitalist settings where the standard model does not 

apply, such as a monk who actually maximises his personal utility by eschewing the riches and 

frivolities of a capitalist society. 

 

At the extreme, Georgescu-Roegen (1971) wanted to formulate a Fourth Law of 

Thermodynamics, which would govern the conservation of matter.  He hypothesised that 

matter too, as well as energy, could be irreversibly degraded, and therefore required a property 

which reflected this “quality” content.  But material dispersion occurs mainly due to processing 

activities that lead to scrap generation.  It is in fact energy, and not matter, that ultimately 

provides the resource constraints for production (Ayres, 1999; Cleveland & Ruth, 1997).  The 

economic machine requires pure commodities (e.g. fuels, minerals, metals), which invariably 

occur in nature combined with other materials.  To obtain pure forms of these materials, it is 

necessary to invest energy and capital resources.  As materials move through the economy, 

their purity generally increases along with the amount of capital that has been “invested” in this 

purification process – the “embodied” capital.  Hence what Georgescu-Roegen interpreted as a 

degradation of materials is essentially a concentration process, in which the desired material is 

extracted from its naturally occurring form.  There is a significant difference between this 

process and one in which materials tend to degrade because of some kind of diffusion gradient.  

It is therefore hard to reconcile this concept with the physical principles which underpin 

economic resource conversion processes.  There does not seem to be scope for a Fourth Law to 

reflect the quality of matter because this is effectively equivalent to its (chemical) exergy.     

 

Mirowski’s (1989) central argument is that when the field of neoclassical economics was 

developed it adopted wholesale some of the key principles from the natural sciences, especially 

conservation principles.  Moreover, it adopted these principles without a proper understanding 

of what they meant or the reasoning upon which they were based, mainly out of a desire to give 

economics more credibility and an unshakeable foundation in the laws of nature.  The fact that 

the context from which conservation principles were taken was not understood is not so 
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important, but the fact that it was not tailored to the field to which it was applied is crucial.  

Had this been the case, argues Mirowski (ibid., p.398), then a whole trench of neoclassical 

economic theory would have been more easily comprehended in the conceptual framework of 

this metaphor.  The principle seems to have been adopted out of some extrinsic appeal rather 

than because it was intrinsically applicable to the economic system.  The consequence is that if it 

had been applied with a better understanding, the outcome would have been much more 

useful.  Mirowski (1989, pp.197-202) identifies four paradoxes associated with this blinkered 

adoption of scientific principles: 

 

1. Scientific tools were adopted as legitimacy for economic research, as methods were 

borrowed without being properly understood, with little apparent discussion of their 

appropriateness to economics – instead the consensus was taken for granted.   

2. Conflation of the Kantian concepts of mind and world, essentially manifested in the 

mistaking of a subjective experience of the world (the mind) with what the world 

actually is.  This is also known as confusing the map for the territory, originally 

identified by Koryzbski (1995).  

3. Re-evaluation of the relationship between mathematics and the physical world, 

especially in the context of our ability to take measurements. 

4. Shift in the notion on theory and the way it develops.  Theoretical development in the 

physical sciences moved away from attempts at complete closure and began to 

recognise the usefulness of imperfect models of reality simply as a tool in their own 

right. 

 

Granted that neoclassical economics inherited its field theory of value9 (or utility) from physics, 

what are the implications for the neoclassical model?  Mirowski does not purport to be 

proposing alternatives; instead he attempts to highlight what the key questions are (op. cit., 

p.401).  The implications for neoclassical economics seem to be that field concept of value is 

inadequate for several reasons.  In particular, the notion of utility or value as some kind of field 

concept that is conserved has no basis in reality because of the way the metaphor migrated 

across disciplines.  Furthermore, the neoclassical model does not go any way towards 

explaining production, because goods and services are produced in reality, and not utility, 

value or energy (Gordon, 1991).  The crux of the problem, which well reflects the paradoxes 

quoted above, is the failure of the neoclassical school to adopt the cornerstone of all physical 

conservation principles, that of the conservation of energy, the First Law of Thermodynamics.  

Utility or value is not conserved, in fact quite the contrary: it is created by the economic system 

and might be considered as the actual purpose of the system as whole – it is certainly the 

purpose of individual economic agents within the model, whether individuals or firms.  This 

leads to the question of how better the analogy might be adopted or developed from physics, in 

                                                           
9 The field theory of value or utility asserts that these phenomena in economics are metaphorically concordant with 
energy as understood from a physical perspective (Mirowski, 1989, ch.5).  The utility field is therefore a 
multidimensional space, whereby the number of dimensions relates to the number of commodities, and in which agents 
attempt to maximise their utility by optimising their consmption of available commodities. 
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a more holistic manner, in order to preserve its integrity.  Hence attention is now drawn to 

alternative theories of value which might stand to overcome some of these inconsistencies. 

 

2.1.4 Alternative theories of value 

The predecessor to the neoclassical field theory of value – i.e. the classical view – was a 

substance theory, which treated value as an intrinsic part of a commodity like land or materials, 

rather than an abstract, continuous entity as in the neoclassical view (Deane, 1978, p.116).  This 

has its roots in the land theory of value advocated by the Physiocrats, and later in the 

dichotomous framework of Adam Smith.  The latter included the two concepts of value as 

embodied labour and as labour commanded by trading something in the marketplace, which 

Smith was not able to reconcile with one another (Patterson, 1998).  These concepts persisted for 

some time until the Utilitarians equated the value of goods with the pleasure derived from 

consuming them, thus developing the concept of utility and diminishing marginal utility10.       

 

One problem with the substance theory is that value or utility does not exist by itself; it is only 

when the economic system extracts, processes and distributes something that it even begins to 

have a value.  Hence why, in enabling and driving the industrialisation and rapid economic 

growth of the last few centuries, private property rights have been essential.  Without private 

property there is neither an incentive for the individual or firm to improve anything nor a basis 

upon which to start increasing value.  It is only with private ownership that economic value can 

be said to exist, because without property the whole concept of and necessity for trade 

disappears.  The substance theory of value is therefore limited because it does not reflect the 

abstract nature of value as something that only exists in the presence of goods or services and a 

market (demand) for them.  This theory fails to recognise the complex nature of value, which is 

often associated with intangibles such as brand loyalty and cannot easily be decomposed into 

its constituent elements.  It is also affected by such abstract notions as the endowment effect, 

whereby consumers place different values on goods or services depending upon whether or not 

they own them (The Economist, 2008b).    

 

One alternative to the substance theory is the social theory of value, which refuses to be 

constrained by any invariant or conservation principle based on natural or scientific laws.   

There is no way of formalising such a theory in reality, because in attempting to reflect the 

abstract and ethereal nature of value as a concept it abstains from being constrained by the 

physical world.  That is not to say that this theory eschews all forms of invariants, instead that it 

locates them in social institutions such as those concerned with accounting conventions,  

property rights and even money itself (Mirowski, 1989, p.400).  The intricacies of such a theory 

are beyond the scope here though.   

 

Another concept that does deserve closer attention is the energy theory of value.  The idea that 

energy might in some way be related to the concept of value has a substantial history, dating 
                                                           
10 Strictly speaking, the predecessors to the utilitarianist theory of value also exhibited diminishing marginal returns, 
but this does not seem to have been explicitly formulated before Mill, Walras and Jevons (Patterson, 1998). 
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from the mid-nineteenth century.  Mirowski (1988) traces the development of the theory from 

its early beginnings, although arguably the true formulation of a parallel between energy and 

value was not reached until the 1920s when Lotka (1922) attempted to reveal the biophysical 

foundations of economics.  He essentially proposed that there are two key implications of 

biological evolution for energy systems: firstly, that evolution tends towards a maximum 

energy throughput if energy supplies are abundant and, secondly, that where energy supply is 

short, evolution will favour systems that are more efficient.  The implication is that the 

economic system should react in the same way.  Around this time Soddy (1961, cited in 

Mirowski, 1988) was one of the strongest advocates of an energy theory of value, but his limited 

mathematical abilities (which he himself admitted) and unsophisticated monetary theorising 

(he was a chemist by background) meant that he was barely credited for this insight in his 

lifetime. 

 

In the 1930s the Technocracy movement paid renewed attention to energy use, perhaps partly 

due to the crash of 1929 and the ensuing Great Depression.  Mirowski (1988, p.815) refers to an 

American survey of industrial energy consumption that was carried out in units of energy 

rather than money, because dollars were a “rubber yardstick”.  This and the following assertion 

that mechanisation disrupted the economy, leading to widespread unemployment, can be 

related to Kümmel et al.’s (2002) complaint that the productive power of energy is overlooked 

in neoclassical economics, as it is not given the proper weighing in production functions.  

Whereas the latter relates specifically to multi-factor productivity measurements (MFP, section 

5.2.3.3), the problem of fluctuations in monetary value are part of a more general problem in 

relating economic measurements value to the underlying physical quantities concerned (further 

discussed in section 4.2).   

 

The energy theory of value did not become any more than a straightforward analogy until the 

1970s, when mainly engineers attempted to quantify precisely the nature of the relationship 

between energy and value.  These theories were still not successful, mainly because of the way 

in which they treated energy as an embodied value substance, and due to the reliance on input-

output matrices that themselves are in economic units.  The associated analysis invokes circular 

reasoning along the lines that the energy content can be inferred from the cost, which in turn 

depends on the energy content (Söllner, 1997, p.185).  In essence, though, the concept remained 

the same, i.e. that the true value of a good or service should reflect its embodied energy content. 

 

The proposition that energy can be used as a proxy for economic value is based on the 

supposition that these two variables are closely related to one another – that is, that the energy 

content of goods and services is directly proportional to their value.  Furthermore the ratio of 

energy content to prices has to be constant in all instances – except when the economic value is 

itself deemed to be inaccurate.  Supposing there is some relation between energy content and 

value seems to be quite reasonable, especially within the industrial sector where the energy 

content (embodied energy) of goods increases as they pass through the system in the same way 

that their value increases (Roberts, 1982).  However, this does not necessarily occur in the same 

proportion at each stage and this analogy cannot easily be transferred to the financial services 
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sector, where value is often added through borrowing and investment activities that neither 

make a tangible difference to the capital being processed nor embody additional energy in it.  

Hence the energy theory of value, whilst having some intrinsic logical appeal, appears to break 

down upon closer scrutiny.  It also suffers from the same problem as substance theory rejected 

above, in that value only exists, or begins to exist, when energy is harnessed.  That is, the 

inherent value of materials in the ground is not reflected until they are extracted and the energy 

within them is employed.  One crucial implication of this is that the only way value can be 

created is within the energy industry, because this is the sector which transforms primary into 

secondary energy. 

 

Problems are also encountered in attempting to develop the energy theory of value into an 

applicable framework which could improve or even replace the neoclassical concept.  Energy 

and materials are flow inputs to the production process, and capital and labour are stock inputs.  

Söllner (1997) contends that whereas the former become embodied in the good or service, the 

latter present difficulties in terms of how they should be treated.  For example, how should the 

value of labour as a production input be accounted for, and should the energy value relate to 

the actual manpower required directly, or does it also need to consider the indirect, nutritional 

energy content of the food consumed?  These questions essentially relate to the issue of 

boundary conditions, such that at the extreme one draws a very wide boundary and traces a 

solar energy as far back as the sun (i.e. EMERGY, see Appendix A2.2.2.4).   

 

There is no simple solution to this conundrum, but one possibility would be to consider labour, 

too as a flow rather than as stock.  As an input to production labour is effectively a power, i.e. a 

rate of energy conversion.  If labour were considered as a flow input then this problem might be 

partially overcome, whereby the value of labour (energy) becomes embodied in the good or 

service being produced.  The question of how to account for the capital inputs to production is 

even more difficult to address.  If an energy theory of value were extant, capital transformations 

would be in units of energy, but there would still be a large, heterogeneous capital stock already 

in existence and measured in economic units of money.  This presents the further problem of 

converting this economic value to energy value by using the appropriate conversion factors.  

Such factors would have to be determined based upon the embodied energy of the material, the 

year of production (i.e. the energy mix), and other intangible factors, such as the fact that this 

capital stock exists and does not require manufacture.   

 

Patterson (1998) also notes the difficulties associated with incorporating physical mass flows 

into any energy theory of value because their value lies not in their energy content, rather in 

their physical and chemical properties as materials.  Whilst distinguishing between two types of 

energy theories of value, namely one in which energy is the sole proxy for value versus one in 

which the embodied energy in products serves as an indicator of the value of goods, he notes 

that both are faced by this mass flow problem and therefore impossible to establish other than 

axiomatically.  Nevertheless, this need not write the energy theory of value off in its entirety.  

There is much to be gained from better understanding how energy (and other factors) affects 

value.  
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Dissatisfaction with the energy theory of value has led some practitioners also to invoke the 

Second Law of Thermodynamics, and to reflect upon the relationships between negentropy 

(order) and value.  Negentropy can be equated with structure or information, and the economic 

system itself is partly concerned with adding information or structure.  Hence why Roberts 

(1982, p.172) has explored the relationship between information and value, arguing that there 

are useful generalisations to be made about very broad classes of economic activity.  Indeed, it 

could be argued that information or structure in goods and services is what makes up for the 

residual component of value not accounted for by the embodied energy. 

 

Another argument frequently cited against an energy theory of value is that it takes no account 

of the difference in quality between different fuels, but the different price of fuels per unit of 

energy content itself arguably reflects this difference in quality.  Along with the considerations 

of entropy generation and irreversibility discussed above, this issue of energy quality has led 

some to suggest an exergy theory of value (e.g. Dincer, 2002, p.143; Gaggioli, 1983), which 

explicitly reflects the quality of energy streams.  This concept suffers from the same 

shortcomings as the energy theory of value, however, in that it does not, indeed cannot, reflect 

the non-physical, abstract and intangible qualities which are currently associated with the 

monetary value system.  Although Lozano & Valero (1993) previously claimed that “there is no 

doubt that the origin of every cost lies in the irreversibilities of the process”, Valero (2006, p.179) 

recently summed up his discussion of exergy accounting thus: 

 

“The thermodynamic equivalence of irreversibilities has no counterpart with its money 

value nor the value itself.  I prefer to burn natural gas for heating purposes than the same 

amount of exergy in Picasso’s paintings.  The source of value of a Picasso painting is not 

related to the irreversibilities involved in creating it.” 

 

The value inequality between the fuel and the painting is of course a subjective one, but the 

Picasso painting could easily be replaced by something of significant value to the individual in 

order to make the same point.  The apparent contradiction between the two statements of 

Lozano & Valero (1993) and Valero (2006, p.179) is resolved, however, if the equivalence 

between the exergy cost and the economic cost is rejected.  There is no doubt that physical 

process have irreversible exergy “costs” associated with them, and that these are often related 

to economic costs, but the conflation of these two concepts can lead to a misunderstanding.  

Whilst some practitioners explicitly advocate an exergy theory of value, others are interested in 

quantifying the economic cost of the exergy destructions and losses – the distinction should be 

maintained.   

 

The energy and exergy theories of value have had limited application because of their only 

partial ability to reflect the true value that individuals and society place on goods and services.  

Whilst there are general correlations between the energy (and exergy) content of goods or 

services and economic value, such relationships break down upon closer inspection.  This 

informal relationship can offer a better understanding of the contribution of (embodied) energy 



Chapter 2 – Thermoeconomic background 
 

- 17 - 

towards value, but does not seem able to reflect the other, mainly intangible, aspects of value.  

The fact remains that energy is not satisfactorily represented within the neoclassical framework 

(section 2.2.2), but it appears that specifically energy and exergy theories of value are not able to 

ameliorate this.  The discussion thus far has focussed on the theoretical implications of 

alternative value theories, and has therefore overlooked the logistical complexity which would 

surround any attempt at changing the reigning value system, but this should also be a 

consideration in any pragmatic evaluation.   

        

2.2 Economic growth, technological change and energy efficiency 

The roles of technological change and energy efficiency in economic growth are the subject of 

much continued debate.  Much work in the past few decades has attempted to delineate this 

complex relationship and thus better understand the role that energy plays in production.  This 

section highlights the main problems in this regard and discusses some of the potential 

solutions. 

 

2.2.1 Accounting for technological change 

The neoclassical general and partial equilibrium model outlined in Appendix A2.1 does not 

incorporate an explicit theory of technology and its associated progress (von Tunzelmann, 1995, 

p.72).  Instead, it focuses on the substitution between capital and labour, the two inputs for 

production, and the way in which the production function can be optimised within 

technological constraints.  Technological change is implicitly accounted for through 

modifications to the production function (shifts onto different production frontiers) over time.  

Solow (1957) famously decomposed changes in output over time into contributions from 

quantitative and qualitative changes in factor inputs (capital and labour) and technical change, 

defining the latter as being any change which resulted in a shift in the production function11.  

Essentially, the technical change was incorporated into Equation A1 in Appendix A2.1.2 by 

treating the empirical constant Q0 as a time dependent function Q(t).  Technical change is not 

necessarily an improvement in productivity, but merely reflects the fact that the production 

process changes over time due to developments in technology and modifications to the 

technology mix.   

 

In analysing the contribution of technical change to productivity growth, Solow (ibid.) explicitly 

accounted for differences in technology across periods, which had previously been overlooked.  

Rather than simply apportioning economic growth to increases in the capital- and labour-

intensity of manufacturing, a fraction of growth could be related to this technical change, he 

argued.  He demonstrated, with data for the American economy (excluding agriculture) over 

the period 1909 to 1949, that the doubling of gross output over this period was mostly due to 

technical change and only in small part (12.5%) due to increased capital input.  He showed that 

it was possible to distinguish between shifts along the same production function and shifts of 

                                                           
11 The terms technical change and technological change are employed synonymously within this thesis. 
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the entire function itself.  This decomposition led to the development of multi-factor 

productivity accounting (see section 5.2.3.3).   

 

There remains some ambiguity surrounding the Solow residual, however, because although it 

supposedly accounts for technical change, it does not explain it.  It measures something 

associated with technical change, but precisely what is unclear.  Lipsey and Carlaw (2004) 

suggest three mutually excusive definitions of the Solow residual from the economics literature: 

technological change; only the “free lunches” associated with technological change; and at best 

our ignorance and at worst nothing we can identify.  The main reason for this ambiguity is the 

expenses associated with technological innovation over and above the R&D costs.  These also 

include costs associated with installation, acquisition of tacit knowledge and learning by doing 

– together defined as development costs, and including the costs associated with undertaking 

risk by investing under uncertainty, otherwise known as the costs of entrepreneurship.  The 

“free lunches” that are measured by TFP according to the second definition are spill-over effects 

associated with investing in uncertainty.  That is, they are only realised if the risk-taking pays 

off and is economically worthwhile.    

 

According to the second definition above, TFP measures only the productivity benefits 

associated with technological change, but not these additional development costs.  By this 

rationale, zero TFP does not imply zero technological change, but that the marginal returns on 

investment in R&D of new technologies are the same as those for investing in existing 

technologies.  In this case, whilst the TFP would indicate otherwise, there has still been 

technological change.  The difficulty thus presents itself of how to measure the change, and to 

this end Lipsey et al. (2005) suggest that it cannot be inferred from any current margin.  Instead, 

it would be manifested in the difference between the time path of GDP if technology had 

remained constant and its actual path, which in practice might be measured by reference to 

some business as usual (BAU) scenario.  Quantifying this counterfactual is clearly not 

straightforward though. 

 

Hence the neoclassical view of technological change is that it corresponds to changes in 

productivity which cannot be explained by – or are not due to – modifications in the relative 

combination of factor inputs, in particular labour and capital.  The earlier economic growth 

models required a large proportion of productivity change to be attributed to this residual, 

which in Solow’s (1957) case was of the order of 90%.  In an attempt to reduce the proportion of 

growth that had to be attributed to the residual, economists adopted models with further 

explanatory factors covering such things as changes in quality of input factors and in the 

employment mix.  But these new models still did not ultimately explain the underlying process 

of technological change, rather lumped the effect of such changes into increasingly abstracted 

factors, which still went no further towards an explanation than the original Solow residual 

(Fagerberg et al., 1994).   

 

The common theme running through the neoclassical growth models is the concept of 

technological change as something which occurs exogenously to the economic system and 
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which is therefore by definition elusive and implicit.  Many have seen the exogenous treatment 

of technology’s contribution to growth as a key problem and one of the main reasons for its 

intractable nature.  Several attempts have therefore been made to incorporate an endogenous 

theory of technological progress into economic growth models, in what was essentially a 

reversion to Schumpeterian principles, including the idea that innovation by private firms 

ultimately drives the growth process.  Whilst scientific advances represented an exogenous 

source of technological change within these models, it could also occur endogenously through 

inducements such as high prices of factor inputs.  Such considerations have resulted in the 

development of endogenous growth theory in the last few decades, based largely on the work 

of Lucas and Romer (Winnett, 2007).  A further limitation of the neoclassical perspective on 

technological change is its failure to consider such empirical processes as learning by doing and 

learning by using.  These are notions which have been borrowed from the science of psychology 

and introduced into economics, chiefly by Arrow (1962, cited in von Tunzelmann, 1995, p.73).  

The inclusion of such experiential variables in the body of work concerned with production and 

economic growth has meant that productivity improvements due to advancements along a 

learning curve can at least be qualitatively, if not quantitatively, encapsulated. 

 

2.2.2 Accounting for energy’s role in production 

Both neoclassical and endogenous growth models place very little emphasis on energy as a 

factor of production – and therefore growth – because, compared to labour and capital, energy 

typically accounts for a relatively small share of total production costs.  The popular Cobb-

Douglas function (according to Equation A1 in Appendix A2.1.2), for example, does not 

explicitly account for energy inputs, which are implicitly included in capital and labour inputs.  

This has led many practitioners, in particular ecological economists, to develop models which 

reject the assumption that the productivity of each factor input is proportional to the share of 

that input in the value of output.  Instead, the productivity of each input is estimated directly 

from generalised production functions, known as KLEMS functions because of their explicit 

consideration of capital (K), labour (L), energy (E), materials (M) and services (S), which are 

able to reproduce historical trends very well without attributing any part of growth to 

technological change.  These models differ from those of the neoclassical school in one or both 

of two main respects.  Firstly, they attempt to account for the differences in thermodynamic 

quality (exergy) between energy carriers and, secondly, they consider the various productive 

powers (output elasticities of production) of these energy carriers (Sorrell, 2009). 

 

For example, Ayres and Warr (2005) demonstrated that an exergy-augmented production 

function can accurately reproduce productivity growth in the USA over the period 1900 to 1970, 

and Warr et al. (2008) employed a similar approach to the UK over the period 1900 to 2000.  In 

both of these cases the authors conclude that physical work plays an important role in the 

production process, alongside labour and capital.  Whereas an energy-augmented production 

function still requires the invocation of a residual factor, exergy-augmented production 

functions seem able to accurately replicate long term economic growth without recourse to 

residuals of TFP.  The shortcoming of a production function based on labour, capital and 
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exergy seems to be that it cannot accurately account for technological progress which is not 

heavily dependent on exergy flows.  The crucial example of this is the ICT revolution which, 

although drastically increasing quality of life (or output), has not until recently led to large 

productivity increases (Ayres & Warr, 2005).  Where value creation is augmented by quality 

changes rather than absolute changes in output, exergy as a production factor is limited in its 

explanatory powers.  Nevertheless, these studies seem to indicate that improvements in 

thermodynamic conversion efficiency and quality of energy over time provide a suitable proxy 

for quantifying productivity increases without recourse to exogenous technological change.     

 

Other production functions such as the LINEX and energy-augmented Cobb-Douglas have 

been used to empirically measure the differences in productive powers between energy carriers 

(Warr et al., 2008,  Hall et al., 2001, Beaudreau, 2005).  The LINEX function is so called because 

it depends linearly on energy and exponentially on capital, labour and energy.  It is more 

precise in reproducing historical trends because of its time-dependent marginal productivities, 

which correspond to the dynamic substitution of factors under technological change (Hall et al., 

2001).  As well as allowing technical change to be explicitly observed through changes in the 

production function itself, the LINEX also allows the production factors of the respective inputs 

to be determined at each time-step in the dataset.  The energy-augmented Cobb-Douglas 

function separates out energy as another input to production and thus recognises the 

importance of energy as a resource input, but still retains the constant elasticities of substitution 

and technology for all time periods of the Cobb-Douglas.   

 

Beaudreau (2005) used an electricity-augmented Cobb-Douglas function to reconstruct 

economic growth in the USA, Germany and Japan, finding that the output elasticity of 

electricity was around 0.50 for all three countries, with capital and labour output elasticities 

lower than in previous studies.  Kümmel et al. (2007, 2002) employed the LINEX function to 

accurately reconstruct empirical economic growth data for the same three countries, similarly 

concluding that the productive power of energy was around 0.50 in all three cases.  The authors 

note that energy is given a production weighting (in energy augmented Cobb-Douglas 

functions, say) of about 5%, which does not account for the disproportionate output reductions 

in the USA as a result of the 1970s energy shocks – estimated at 1%, whereas the expected 

change due to the cost-share weighting of energy input should have been just 0.25% (Kümmel, 

2007, p.2).  Both Beaudreau’s (2005) and Kummel et al.’s (2007, 2002) studies reproduced 

economic growth trends with very small residuals, implying that the productive power of 

energy plays an important role in technological change.  Such studies suggest that the marginal 

productivity of energy inputs is around an order of magnitude larger than their cost share of 

the inputs (Hall et al., 2001). 

   

These novel attempts to understand the mechanisms behind economic growth do not provide a 

panacea, however, because the empirical evidence is limited and has been somewhat 

contradictory.  Berndt & Wood (1975) found that energy is only a minor factor of production, 

but this could be due to the time period studied (i.e. 1947 to 1971), which was before the oil 

price hikes and the resulting focus on energy efficiency.  The LINEX function also exhibits some 
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strange characteristics, such as its increasing marginal returns and variable marginal 

productivities (Sorrell, 2009).  Hence caution needs to be exercised when interpreting these 

results.   

 

2.2.3 Further problems with the production function 

There are some more general problems with neoclassical (Cobb-Douglas) production functions, 

such as their assumption of constant output elasticities and failure to consider different 

technology combinations.  Fisher (1971) demonstrated, by employing fictitious economies with 

only one output, that the Cobb-Douglas only happens to be a good fit to empirical data because 

in most cases labour’s share of production appears to be roughly constant.  This implies that the 

Cobb-Douglas produces the correct results, but for the wrong reasons: “an aggregate Cobb-

Douglas production function…does well in wage prediction not because wages are truly 

generated by it but because the behavior of labor’s share just happens to approximate the 

stylized fact generated by such a function…” (ibid., p.306).  Aggregate production functions in 

general and the Cobb-Douglas in particular appear only to be applicable as long as labour’s 

share of capital remains roughly constant.  The apparently coincidental applicability of the 

Cobb-Douglas must be related to its lack of theoretical foundations at the micro level; there is 

no reason why it should apply in practice, aside from the fact that it is mathematically 

convenient and produces empirically accurate results.   

 

Another crucial aspect of the neoclassical production function is that production factors are 

considered substitutable for one another, within limits implied by the essentiality condition.  

Output can only be produced when one or more resource inputs are non-zero.  If output cannot 

be produced without a specific input then strict essentiality is said to apply to that input.  In this 

case, regardless of the increase in non-essential inputs, production is not possible unless the 

essential input becomes non-zero.  Essentiality is clearly a close depiction of reality, because 

inputs are inevitably required to produce goods and services, and in some cases these inputs 

are essential – energy is always required, for example.  It is still theoretically possible though, to 

produce a constant level of output (of products and/or services) by substituting inputs, 

provided the elasticity of substitution of the production factors is sufficiently high.  The 

substitutability aspect of the production function is less indicative of reality, though, because 

the implication is that natural resources can be substituted by a suitable amount of capital in 

another form, something which Ayres (1998, p.204) has criticised because it directly fails to 

acknowledge – actually contradicts – the First and Second Laws of Thermodynamics.  He 

suggests that one solution to this problem would be the dematerialisation of the economy, such 

that in the future no, or very few, virgin materials are used.  Certainly this aspiration to “close 

the loop” of material flows through the economy is a central tenet of many definitions of 

sustainable development, but it would not in itself correct the problem with the production 

function.  Treating energy as a substitutable input for labour and capital fails to recognise the 

crucial role that it plays, and does not reflect the reality in which energy is irreversibly used and 

dissipated.  Rather, it defeats the object of having two factor inputs if they are substitutable; one 

might as well just have one.  Furthermore, the distinction between flow and stock resources is 
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overlooked here, yet their dimensionality is different (Daly, 1992, p.108).  The fund is ultimately 

used to process the flow, and this distinction might be better reflected in the model. 

 

A related failure of neoclassical production functions is their failure to account for the finite 

resources employed as natural capital.  Söllner (1997) highlights the omission of natural limits 

to economic growth as well as important interdependencies.  The conventional schematic of the 

economy has capital inputs “appearing” from and waste streams “disappearing” into whatever 

ether surrounds the economic system (Figure A1 in Appendix A2.1.1).  This ether is in fact the 

global ecosystem, which acts as source and sink, respectively, for all inputs to and outputs from 

economic processes, as shown in Figure 2-1.  The conventional assumption was that resource 

scarcity is reflected by prices, which are determined based on the demand for them in a given 

time and place (Munby, 1976).  Inefficient and imperfect markets mean that this is not always 

the case, however, such that a more explicit consideration of finite resources is required by the 

production function.   

 

If the standard production function is modified to consider fixed and non-renewable resources 

(land and fossil fuels respectively), the consequence is a race between technological progress 

and the growth drag associated with these resources (Jones, 2002, ch.9).  This growth drag has 

two components.  Firstly, increasing population puts pressure on the finite stock of natural 

resources which, due to the diminishing returns associated with these fixed factors, results in a 

per-capita growth rate that is proportional to the population growth rate.  Secondly, the rate at 

which non-renewable resources are used slows growth at a rate proportional to their share in 

production.  Hence positive levels of per-capita economic growth require technological progress 

to offset these diminishing returns.  At the margin, with zero technological change, per-capita 

growth decreases in proportion to population growth.  At the other extreme, with high levels of 

technological change, it is theoretically possible for the share of non-renewable resources in 

production to approach zero.  In fact, this is what the empirical evidence suggests occurred 

throughout the twentieth century (ibid.), which partly explains why the relative price of energy 

has decreased.    

 

The problem with the definition of the economic system – more specifically, the context within 

which the system operates – has received significant attention in the literature.  In particular, 

Georgescu-Roegen criticised Solow’s and Stiglitz’s work on economic growth, emphasising the 

lack of natural resource inputs (and their finite nature) to the Cobb-Douglas production 

function.  Solow is alleged to have said, during a lecture series on the subject, that “the world 

can, in effect, get along without natural resources…” (Daly, 1999a, p.77).  His argument was 

essentially that, because of the substitutability of the inputs to the production function, one can 

make up for a lack of resources with other, equivalent inputs.  He cites evidence for the 

substitutability between exhaustible and renewable or reproducible resources, but seems to 

overlook the central issue, namely the finite nature of natural resources.  Some twenty years 

after this criticism Solow responded, but did not directly address the issues raised, nor did he 

attempt to answer the questions posed, and didn’t mention Georgescu-Roegen (Daly, 1999b).  In 

addressing five questions centred around the debate and raised by Daly (1999a, note 5), Solow 
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gave some brief peripheral answers but did not concede any problems with the neoclassical 

model. 

 

 
Figure 2-1 – Revised concept of the economic system (after Daly, 1999c) 

 

2.2.4 The S-E framework and GPTs 

As well as modifications to the production function discussed above, these fundamental flaws 

in the neoclassical framework have led to more drastic attempts at reform.  One novel approach 

is that of the Structuralist-Evolutionary (S-E) model, which focuses on the uncertainty facing a 

firm when making decisions about optimisation of factor inputs, and also the time variable 

which is absent from most neoclassical formulations of the production function – but which also 

plays a crucial role in a firm’s strategic decisions.  The most crucial consequence of the firm’s 

uncertainty, perhaps, affects the certitude with which it can know where the isoquants within 

factor space lie (Lipsey et al., 2005, pp.50-54).  The act of shifting within factor space itself has 

uncertain costs and time associated with it, because devoting resources to a shift in production 

has opportunity costs that are not reflected by the standard model.   

 

The crucial point is that the nature of factor space and the isoquants within it are affected by the 

firm’s decisions.  As well as having an inherent amount of uncertainty at any time, the process 

of changing production configurations itself affects the factor space in such a way that it is not 

acceptable to view such a change as simply moving along an isoquant (Amendola et al., 2005).  

In the neoclassical production function the firm can choose any point in factor space, and can 

move between points without incurring any costs.  By contrast, with the S-E production 
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function, the firm only knows its past trajectory for certain and, whilst it has estimates and 

wishes for its future trajectory, the future path is uncertain.  In fact the best information 

available about future technological changes to the firm is often in the form of historical trends 

in a relevant parameter – a pertinent example of which is Moore’s (1965) law, which suggests 

the doubling of microprocessor speeds approximately every two years.  In addition, any 

changes that the S-E firm makes to its production configuration will incur costs that are not 

considered by the neoclassical function.   

 

The S-E framework is distinct from the neoclassical one in the way that it attempts to get inside 

the black box of technological change, which in neoclassical terms is only observable by the 

results it produces.  Instead, the S-E framework further develops the models of endogenous 

technological change discussed above, by incorporating risk and uncertainty, and often dealing 

explicitly with the relevant economic, political and social structures.  Whereas general 

equilibrium models are often based on assumptions about perfect information and foresight, 

the S-E framework considers uncertainty to be a central element in innovation, with innovation 

seen as a process of “groping into the unknown” (Lipsey et al., 2005).  The high level of risk 

associated with investment in R&D can be understood by considering that the failure rate for 

such projects can be as high as 90% (Twiss, 1986).  Finally, the path-dependency and context-

specificity of innovations are also crucial aspects of the S-E model, reflecting its attempt to grasp 

the “lumpy”, heterogeneous nature of reality, rather than the smooth, homogeneous world of 

general equilibrium.  Clearly the alternative S-E formulation of the production function 

represents a more accurate depiction of reality, but it does suffer from immaturity and an 

apparent lack of empirical testing.   

 

A central part of the S-E framework is concept of General Purpose Technologies (GPTs), which 

can generally be defined as widely applied technologies which have caused (or stand to cause) 

the nature of the economic system to be drastically altered.  The concept of GPTs reflects the 

universality of certain technological systems (such as energy systems) and the way in which 

developments (improvements) in such technologies can and do have far reaching impacts on a 

systemic scale, rather than just affecting individual products or processes.  The theoretical 

framework within which GPTs are best understood and modelled remains a relatively open 

area of debate (Helpman, 1998).  Lipsey et al. (2005, pp.97-99) define four characteristics of a 

GPT: 

  

1. They improve in interrelated ways with time; 

2. They have a range of uses, through a proportion of the economy; 

3. They have a variety of discrete uses; and 

4. They result in spillovers, which are effects in other areas resulting in indirect 

improvements.  

 

There are many examples of GPTs, and their far reaching effects on their economies are well 

known.  One particularly relevant GPT in the present case is electricity, which will serve well as 
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an example to illustrate the above characteristics12.  Firstly, the thermodynamic efficiency of 

electricity generation and distribution greatly increased over the first few decades of the 

twentieth century, such that the price of a unit of delivered electricity has commensurately 

decreased over this time.  Secondly, even if one only considers its application as a power source 

for lighting systems, the pervasive use through all sectors of the economy is clear.  Thirdly, 

although electricity was originally used mainly for lighting applications, it is a very versatile 

energy carrier, which can be used for motive power applications as well as heating and lighting.  

Fourthly, the spillovers from electricity have arguably been as far reaching as this GPT itself, 

whereby the obvious example is the ICT revolution, for which electricity has been the power 

source.  The consequence of GPTs for economic growth and productivity is that, because of 

their fundamental effects on the economy, these technologies can be used to understand the 

residual of technological change – especially over periods when this is large.   

 

Another important consequence of the S-E framework is its rejection of the productivity 

paradox – that is, the notion that productivity growth must result from technological change 

(Lipsey, 2002).  Growth economists expect to see such a productivity change when a GPT is 

introduced, but a GPT is very rarely, if ever, recognised at the time of its introduction to the 

market, as it takes time for it to have a transforming effect.  Bresnahan and Trajtenberg (1995), 

who seem to have first used the term GPT, recognise this inability to spot an emerging GPT as a 

problem, particularly because it stands to restrict its impact.  Productivity changes do not 

necessarily imply the presence of a GPT or, vice versa; the presence of a GPT does not imply a 

productivity change – and certainly not at that time.  Higher rates of technological progress do 

not necessarily enhance the uptake of new technologies (Van Soest & Bulte, 2001).  Diffusion is 

slowed by the fixed costs of the newer technology, so that as long as the full cost of developing 

and operating with the new technology is greater than the running costs of using existing 

technologies (whose capital costs are largely sunk), then the new technology will not be 

adopted.  The rate of diffusion is often heavily dependent on exogenous shocks to the system, 

such as the oil price hikes in the 1970s that led to rapid increases in energy efficiency (IEA, 

2004b). 

 

2.2.5 Technological diffusion 

The analysis of technological diffusion attempts to determine the relationship between the 

innovation and uptake of new technologies, and make qualitative and quantitative enquiries 

into the reasons for varying rates of diffusion between firms, products/services and 

geographical/economic regions.  Theoretical attempts to model diffusion have roots in epidemic 

theories, which were originally concerned with the spread of diseases.  Schumpeter first applied 

these theories directly to the field of economics, and was also responsible for the Schumpeterian 

                                                           
12 Electricity was discovered much earlier than it was widely exploited as an energy carrier.  The key enabling 
innovation for the electricity revolution was the dynamo, but the discussion that follows focuses on electricity as the 
GPT rather than the dynamo itself.  It could be argued that electricity is in fact the result of a combination of enabling 
GPTs, but the focus here is on an illustrative example. 
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trilogy of technological change, which distinguishes between three aspects of change 

(Stoneman, 1995, pp.2-3): 

 

1. Invention – generation of ideas; 

2. Innovation – application of ideas; and 

3. Diffusion – commercialisation of products/services. 

 

Non-linearity is a crucial characteristic of this scheme, whereby at each stage selections are 

made, such that only a fraction of the ideas are ultimately applied, and even fewer come to 

market.  Also, there is a continuous feedback mechanism, whereby revenue streams from new 

products are reinvested in further R&D activity.  The anticipated returns from the diffusion of 

new innovations are a major driving force behind its development in the first place.  In many 

cases the innovation process leading to successful products or services has involved the 

application of a technology outside the field for which it was intended, which runs contrary to 

the traditional and widely accepted idea of a demand-driven process, where technology evolves 

to meet a demand.  An example is petroleum, which was first introduced as a medicinal agent 

and lubricant in the early 19th century (Duffy, 1983).  The degree to which a company or sector is 

active in technological development can be measured by the amount of investment in R&D in 

relation to its output.  On this measure, the pharmaceuticals sector is the most dynamic sector in 

the UK, closely followed by aerospace and ICT (ONS, 2008b).    

 

Empirical evidence suggests that market penetration of a technology over time follows an 

approximately sigmoidal, exponential distribution (Stoneman, 1995, p.269).  The diffusion 

period, measured as the time between first use and use by 95% of the potential market13, can 

vary widely between technologies and areas, but it typically lies in the range 5-50 years (ibid., 

p.6).  Langley (1984a) found that an innovation requires on average 18 years to achieve 50% 

penetration of its potential market (with a variance from six to thirty years), and that diffusion 

tends to be faster if the innovating industry is concentrated in a small number of firms or 

establishments.  The most simple models of diffusion rest on the assumption that the only 

determinant of technology uptake is information about it: if economic agents are aware of (the 

availability of) a new technology, and it is relevant to their needs (they are within the potential 

market), then they will adopt it.  Information about technology spreads between agents at a rate 

proportional to the remaining number of potential users.  Thus the empirically observed 

exponential curve is obtained, with asymptotes at zero and maximum (i.e. 100%) diffusion.  The 

assumption that new technology is adopted purely because it is known about is clearly 

somewhat dubious, and this is the main criticism of these simple models of diffusion.  The lack 

of response to innovation is not always due to ignorance on the part of the firm though (Duffy, 

1983, p.362).  More often, firms apply strict economic project-appraisal criteria, and conclude 

that the investment is not economically feasible, or encounter some other barrier (see section 

5.5).  In an attempt to overcome this limitation, epidemic models have been developed to 

                                                           
13 There does not seem to be a formal definition of the potential market.  It is a notional construct corresponding to the 
estimated number of firms or individuals which could make use of (or gain utility from) a product or service.  
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incorporate uncertainty with respect to technologies.  The uncertainty is assumed to reduce 

over time as a result of learning from experience, but such models are also limited in their 

accuracy due mainly to their static nature.  

 

More complex, dynamic models incorporate supply side (as well as demand side) factors.  

Rather than being based on quite passive economic agents, who await the arrival of some new 

information and act accordingly, these models tend to incorporate more proactive agents who 

actively engage in the activity of information seeking, which has basic rules and costs associated 

with it.  These supply-demand interaction models can also produce the observed diffusion 

profiles already observed and documented.  In addition, these models are more capable of 

defining a welfare-optimal diffusion path, which is not possible if the supply side is not 

incorporated (Stoneman, 1995, p.278).  There are further benefits from extending the model’s 

scope in this way, including a treatment of technology which improves over time and a 

consideration of product variety as endogenous rather than predefined.   

 

A large area of interest with these diffusion models is in attempting to make forecasts about 

future technological change and emerging GPTs.  However, as mentioned above there is great 

uncertainty associated with making predictions about the future based on present trends, and a 

GPT is almost always unrecognisable whilst still nascent.  Twiss (1986) acknowledges these 

uncertainties but considers it possible to detect trends towards future innovation and the 

environment into which innovations will be launched.  Technological forecasting rests on the 

fundamental assumption that technological progress is not random, rather follows some kind of 

trend, and can therefore be determined by plotting temporal developments in some relevant 

parameter.  This parameter is typically related to functional, technical or economic 

performance.  Clearly, this assumption is open to criticism; the ex ante identification of the 

current situation on an idealised sigmoid is neither immediately obvious nor necessarily 

possible.  Depending on this location on the s-curve, the future trends might well differ – only 

the middle portion of the curve is linear – and this approach overlooks the impact of exogenous 

shocks.  As a first order estimate of likely future technological developments within a field, 

however, past trends often represent the best information available.  

 

Before a technology stands to make a significant impact in the marketplace, there are several 

key stages of its development, which progressively increase its potential for market penetration.  

FES (2005) identify five of these phases as shown in Figure 2-2, and suggest that the middle part 

of the innovation chain is not as well supported as it could be.  In fact the FES investigation 

highlighted the apparent existence of a significant policy gap in the centre of the innovation 

chain for developing technologies (ibid.).  The result of this is that many technologies in the UK 

are not satisfactorily developed – if at all – beyond the pure R&D stage, through prototyping, 

demonstration and on to commercial manufacture.  Whilst these technologies might have a 

large potential for application, this lack in funding means that they are either abandoned at the 

R&D stage or insufficiently developed before the commercial stage.  In both cases the 

technologies stand little chance of becoming highly adopted.  This lack of support in the 

innovation chain was recognised by the establishment of the Environmental Innovations 
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Advisory Group (EIAG, see section 4.3.3.1 on manufacturing strategy) to address these 

weaknesses.  The latter seem greatest at the demonstration and scaling-up to market stages, 

such that many opportunities are exploited overseas rather than in the UK (DTI, 2006a).   

 

The lack of support for demonstration and prototyping activities is identified as an opportunity 

to expand the scope of the Carbon Trust’s Technology Acceleration Scheme (Future Energy 

Solutions, 2005).  In addition, demonstration schemes are largely funded by R&D grants, but 

because of the large cost of such projects, the funding bodies can be reluctant to make capital 

available.  Industrial sponsors should step in at this stage, to reserve R&D funds for work which 

itself involves pure research.  The government’s Energy Efficiency Innovation Review (EEIR), 

for which the FES study was undertaken, acknowledged the need for an holistic, systems-based 

and coordinated policy framework in order to increase the rate of energy efficiency technology 

innovation and commercialisation.  This framework needs to (HM Treasury et al., 2005, pp.21-

22): 

 

1. Increase the rate of deployment of existing technologies and measures by providing a 

long-term, stable signal to the market; 

2. Incentivise product improvement and applied, commercially-driven research with 

significant private investments; 

3. Develop the necessary skills at all levels to ensure the steps from the design through 

installation to operation are not compromised. 

 

 
Figure 2-2 – Stages of invention, innovation and diffusion 

policy (Future Energy Solutions, 2005, p.51) 
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2.3 Summary and conclusions 

A review of some thermoeconomic insights found many instances of ideas being “borrowed” 

between thermodynamics and economics.  In most cases the borrowing has been by the latter 

from the former.  In general, the most successful approaches have involved the actual 

integration of two (or more) disciplines, such as is the case for the transdisciplinary field of 

ecological economics.  The problem with borrowing ideas is that they are so often taken out of 

context and therefore misunderstood or misapplied.  On the other hand, in many of the cases 

discussed above, whilst there has been no real paradigm shift, it is exactly this application of 

ideas out of context that has enabled a different understanding of an existing problem.  The 

many problems with the neoclassical paradigm can be understood from a thermodynamic 

perspective.  Apart from to suggest that the model should better reflect natural and physical 

constraints, though, these insights do not lead directly to a solution.  

 

For example, conservation principles were only adopted by analogy by neoclassical economics, 

but the role of conservation of energy in particular and thermodynamics in general was 

overlooked.  The application of conservation principles to value or utility were not valid, 

however, as these quantities are abstract ones which are not necessarily conserved.  Geogescu-

Roegen made an analogy between the entropy law and the economic process, which is useful as 

a way of thinking about, and understanding, the economic process, and provoked the field of 

thermoeconomics.  Alternative theories of value have been unable to account for the 

relationship between energy, which is conserved, and value, which is often not.  The energy 

and exergy theories of value break down upon closer inspection because abstract constituents of 

value are not affected by either of these two physical parameters.  Nevertheless, these measures 

do have a role to play in understanding the nature of value, especially for energy intensive 

materials whose economic value increases in significant proportion to the amount of energy or 

exergy embodied in them.  

 

The contextualisation of the economic system as a self-sufficient entity is flawed, and does not 

account for the unidirectional nature of time for the system.  This is manifested in the standard 

(Cobb-Douglas) production function’s failure to account for the non-substitutability between 

energy and other inputs, as well and the finiteness of natural resources and the assimilative 

capacity of the environment to absorb wastes.  The constant returns to scale implied by output 

elasticities that sum to unity means that production can never take place without at least some 

of all the inputs.  The asymptotic nature of the function means that the quantity of each input 

can become infinitesimally small, however, which does not reflect reality where a minimum 

amount of energy or materials is required, for example.  With output elasticities summing to 

less than one the isoquants are shifted in factor space and the asymptote is at some minimum 

value.  The latter is arguably a better reflection of reality, in which efficiency gains and 

substitution are only possible up to a point, such as the thermodynamic SEC of a process, which 

could not be achieved (or bettered) without contravening the laws of thermodynamics.  

Modification of the standard production function to account for non-renewable resources 

implies a race between technological progress and growth drag due to the finite nature of these 
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resources.  At the limit, technological change can offset this growth drag, but only within limits 

defined by the output elasticities.   The output elasticities of production given to energy are an 

order of magnitude lower than empirical evidence suggests they should be for several 

industrial economies.  The role of improvements in the exergy content of energy flows in 

economic growth also appears to be significant, but is overlooked by standard models of 

production.  Both of these oversights have been accounted for by non-standard production 

functions that have relatively small residuals and therefore do not recourse to technical change, 

but the evidence is limited and contradictory in some cases. 

 

Furthermore, the production function fails to explicitly account for technical change in 

improving the efficiency of production processes.  Attempts to incorporate technical change 

into production functions are able to account for but not explain it: what it actually is remains 

ambiguous.  The fact that the residual in many MFP measurements is very large has resulted in 

alternative models of economic growth in which technology features more fundamentally.  

These include endogenous growth models and the Structuralist-Evolutionary (S-E) framework 

which rejects neoclassical foundations.  It is built around the central concept of GPTs and the 

way in which they underpin long-term growth.  Empirical evidence suggests that diffusion of 

technologies follows an approximately sigmoidal path, from R&D through to fully commercial 

stages.  Whilst the technological development chain in the UK has a strong science base in 

universities, there appears to be a lack of application of this knowledge through demonstration 

and pre-commercial stages to commercial deployment (IPTS et al., 1998).  This lack of 

application has been identified as being due to a lack of funding and would therefore benefit 

from additional support.   
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3 Applications of industrial energy analysis 
This chapter reviews applications of thermodynamic techniques to industrial energy systems 

and thus places this research in context.  As stated in the Introduction, the data availability has 

been a limiting factor that has necessitated a focus on specific sectors.  In each case a review of 

the literature is presented as an introduction to chapters 6 to 8 inclusive.  Hence the purpose of 

this chapter is not to make the case for studying specific sectors, rather to review the application 

of relevant methodologies to industry in general.  The emphasis is thereby on studies relating to 

the UK, except where similarities in the process or methodology make other work relevant.  The 

background and assumptions for the methods discussed can be found in Appendix A2.2, where 

the distinction between statistical energy analysis (SEA) and process analysis (PA) is made. 

   

3.1 Energy analysis 

3.1.1 Statistical energy analysis (SEA) 

There has been a paucity of Statistical energy analysis (SEA) focussing on the industrial sector 

in the past few decades, which seems in part due to the privatisation of the government’s 

Energy Technology Support Unit (ETSU).  Under the auspices of the then Departments of 

Industry and Energy14 industrial energy analysis was carried out by the Energy Efficiency 

Office and ETSU.  In the 1970s and 1980s several detailed studies of industry were undertaken. 

 

The most extensive study of the industrial sector was indubitably Langley’s (1984a, 1984b) 

survey of energy use and energy efficiency potential estimations out to 2000.  This project 

covered the entire manufacturing sector (excluding refineries) and examined individual sectors 

in significant detail.  The basic approach was to determine the SEC of each sector in the base 

year, 1980, along with the best practice SEC (which may or may not be the most efficient site in 

the sector, depending upon other technical constraints on production).  Past trends in the SECs 

were analysed to explain how reductions were made due to specific technological 

developments, such as continuous casting of steel and the dry process for cement manufacture.  

These trends were extrapolated where potential was deemed to remain for further 

improvements, and the scope for completely new technologies was accounted for through 

estimated rates of development and market uptake.   

 

Whilst the study (ibid.) did not provide a full set of energy demand projections, it did estimate 

the future SEC trend in each sector based on the likely developments in capacity, technology 

and plans for investment; the key findings of the work are summarised in chapter 4.  The 

estimated developments in SEC failed to account for the drastic improvements in energy 

efficiency made by industry in the past three decades or so, such that they overestimated the 

industrial energy consumption out to 2000.  This illustrates the sensitivity of such broad studies 

to their specific assumptions.  In this case, Langley’s (1984a) assumption of an annual 1.5% GDP 
                                                           
14 Both since conglomerated into the Department for Trade and Industry (DTI), and renamed the Department for 
Business Enterprise and Regulatory Reform (BERR) in 2007. 
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growth rate from 1980 to 2000 failed to account for the recessions of the 1980s and 1990s, when 

GDP growth and UK manufacturing output growth both slumped drastically, becoming 

negative for several periods (OEF, 2001). 

 

Two other significant bodies of work focussing on the industrial sector around this time were 

the Industrial Energy Thrift Scheme (IETS) and the Energy Audit Series (EAS).  The IETS was a 

comprehensive study of all manufacturing sectors carried out between 1978 and 1984, which 

produced data on energy consumption, processes employed and facilities.  The EAS was a 

similar initiative but less comprehensive, focussing instead on specific industrial sectors and 

with the objective of auditing individual sites.  The common theme in these two programmes is 

that they collected data from industrial plant, through site audits, and thereby benchmarked 

whole sectors.  This enabled firms to compare their performance and thus better understand 

their position in the sector as a whole.  It also allowed actual SECs to be determined, and the 

difference between these and the theoretical minimum to be explained, and relevant energy 

saving opportunities recognised.  For a large number of industrial sectors these two projects, 

the IETS and the EAS, represented significant data resources during the 1980s.  Almost thirty 

years later the industrial landscape has changed somewhat and this data is no longer accurate 

(chapter 5). 

 

The DTI’s Energy Papers also paid substantial attention to the industrial sector:  

 

• Energy Savings for Some Large Firms (DTI, 1974), which includes case studies of 

qualitative improvements in energy efficiency, past and present, especially in large 

petrochemicals companies;  

• Energy Conservation R,D&D (DTI, 1978), which outlines an energy strategy for the UK 

during the approximate period 1980 to 2000, with the appendices focusing on industrial 

conservation prospects and some generic technologies for process improvement;  

• Energy Conservation Investments in Industry – An Appraisal of the Opportunities and 

Barriers (Armitage Norton Consultants, 1982), which attempted to identify existing 

conservation measures, the potential for further measures to be implemented, and the 

barriers to uptake.   

 

In addition, Energy Paper 64 examined industrial energy markets in detail, breaking down 

industrial energy use into four digit SIC sectors and fuels (DTI, 1994).  All of these Energy 

Papers are applications of, or incorporate to some extent, SEA.  They are based on or include 

macroeconomic data on industrial energy use, which has either been inferred from national 

accounts or captured in tailored surveys.  Most of these studies employ the IETS and/or EAS 

data to some extent, which in some cases provides the quantitative aspect of an otherwise 

qualitative survey.   

 

It is probably fair to say that public-funded, government-led studies of the type discussed are 

no longer as common as they once were.  Most of this work was carried out before the mid 

1990s, when ETSU was privatised, mainly becoming Future Energy Solutions (FES) and later 
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renamed AEA Energy and Environment.  The Carbon Trust’s remit includes some of ETSU’s 

former activities, such as the publication of Energy Consumption Guides (ECGs) and Best 

Practice Guides (PBG) relating to specific sectors.  Many of these publications are now dated 

though, and the Carbon Trust’s work is mainly focussed on individual firms rather than whole 

sectors (section 4.3.3.3).  This lack of attention to industry is no doubt also due to the relative 

decline of heavier industries in the UK.  Hence why Dorling et al. (1989) criticised the 

government’s laissez faire approach to industry and the general low priority given to efficiency.  

By analysing the energy use in a large manufacturing plant with an annual fuel bill around 

£10million they identified significant energy saving opportunities.  They found that the 

ventilation load was much greater than the fabric load, so that halving the number of air 

changes per hour would reduce the total rate of heat loss more than would be achieved by 

implementing a comprehensive set of insulation modifications.  Another useful conclusion was 

that industry in general is a sector where large energy savings can be made relatively easily, 

because energy use in industry is controlled by fewer people than in other sectors.  The 

population of industry, in terms of functional units, is much smaller than the domestic sector, 

for example 15.  The counterargument is that industry is not as homogeneous as the domestic 

sector, so that such a broad brush approach is not appropriate.  

 

Lucas (1979) has argued that the statistics compiled at the level of the firm for the paper 

industry were not being used as the basis for analysis.  He makes the distinction between six 

different types of SEA depending on the respective definition of the system (country, site or 

machine) and the choice between inter-temporal or inter-spatial analyses.  He also highlights 

the general problems associated with obtaining accurate and current data, which is largely due 

to academics not having any locus standi within industry and closely relates to the findings of 

this research as mentioned in the Introduction.  International differences in performance in the 

paper sector can be explained through different industrial structures, but economies of scale in 

production did not seem to be exploited in all countries (op. cit.). 

   

Broader work has been carried out by Ray and Morel (1982), who related energy use to output 

in the UK from 1900 to 1980, in order to reveal the extent of energy efficiency measures.  Based 

on surveys of large energy managers in industry, local government services and financial 

managers in large firms, they identified energy efficiency measures since 1973 (i.e. the first oil 

price hike) and the likely evolution of these measures into the future.  The potentially biased 

nature of the sample was highlighted by the authors: because only firms with energy managers 

were contacted, they are clearly already putting resources into some form of energy 

management.  Their focus was on the traditionally heavy industries, such as chemicals, iron 

and steel, and paper.  Based on the sample they identified general shifts away from coal and oil 

towards gas and an increased use of electricity in industry (cf. section 5.2).  These trends were 

typical of industry at this time, although the survey underestimated their scale.  This is mainly 

thought to be because of atypical nature of the sample, which was heavily biased towards 

                                                           
15 The BRE (2002) refers to 1.7 million non-domestic (i.e. industrial, commercial and public) properties in England and 
Wales, of which details of the floor area and building type are known for 1.3 million.  This is compared with around 25 
million domestic buildings in 2005 (Utley & Shorrock, 2006).   
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larger, energy-intensive firms.  At the time of the survey, the authors concluded, firms had only 

just begun to invest significant amounts of capital in energy efficiency projects; up to then the 

measures had been mainly concerned with housekeeping and fuel switching. 

 

More recently, applications of SEA to UK industry seem to be sparse.  Farla (2000, esp. ch.2) has 

developed some physical energy efficiency indicators to track changes in productivity at the 

sector level in the Netherlands.  The main advantages of physical indicators over economic 

ones are their consistency in aggregation and their independence from price fluctuations, but 

they are often constrained by data availability (see section 4.2).  Ramirez (2005) employed 

similar indicators in her study of the Dutch food and drink sector and broader analyses of the 

dairy (Ramirez et al., 2006a) and meat (Ramirez et al., 2006b) sectors in four European countries 

(France, Germany, the Netherlands and the UK).  The UK Dairy industry is atypical within the 

four studied because of the high proportion of liquid milk and fresh milk products used (over 

50%, compared to 19% in France, 28% in Germany, and 16% in the Netherlands), but it is 

difficult to gain an indication of the absolute magnitude of the sector in the UK from this study 

because most of the data has been normalised.  According to both uncorrected and corrected 

efficiency indicators the UK has experienced the largest increase in productivity across these 

countries over the period 1990 to 2000.  For the uncorrected and corrected indicators the UK 

underwent an average annual change of -3.1% and -3.8% respectively (in terms of primary 

energy consumption).  The low energy intensity of this sector in the UK, compared with those 

of the other European countries, is due to the small amount of processing activities which occur 

within it.  The fact that the two indicators are very similar for the UK illustrates the small 

variation in product mix over this period.  Two factors have caused the reduction in these 

indicators for the UK: the concentration (or rationalisation) process, and fuel switching to 

natural gas (Ramirez et al., 2006a).  Across the EU, dairy production is generally concentrated 

within a few large companies.  This is typical of the food and drink sector, which has 

experienced significant rationalisation in the past few decades.  For example, in the period from 

1985 to 2000, the number of dairies in the UK reduced from 336 to 102, whilst average output 

per dairy increased from 45 to 105 thousand tonnes of milk (ibid.). 

 

The UK meat industry has also undergone a significant rationalisation, from 835 bovine and 703 

porcine slaughterhouses in 1987 to 395 and 308 respectively in 1997 (Ramirez et al., 2006b).  In 

the period from 1990 to 2001 the PEC of the Meat industry in the UK has grown at around 2.9% 

p.a., with a significant fuel shift away from solid fuels towards natural gas during this time.  For 

all four countries, there was an increase in the energy efficiency indicator over the period 

studied.  In the UK, this increase was around 14% over the period from 1990 to 2001.  The 

authors (ibid.) suggest that the main reasons for increases in energy consumption within this 

sector were a general trend towards more energy-intensive poultry and pork slaughtering 

(instead of cattle), and the tendency to produce more processed cuts of meat (for example, 

vacuum packed, fully trimmed products, and pre-cooked, ready to eat products).  The latter, 

ceteris paribus, naturally increases the energy demand of the sector, but should also logically 

imply a corresponding reduction in the energy demand of the commercial and residential 

sectors. 
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Ramirez et al. (2006b, pp.1711-1712) cite three main reasons for the analytical focus on energy-

intensive sectors of the manufacturing sector in general: significant reductions in energy 

consumption can be achieved by focussing on a few energy-intensive sectors; detailed 

information on energy use is available for these sectors; and the energy-intensive sectors tend to 

have a limited diversity in terms of products, technologies and processes.  The latter point is 

developed further in the context of characterising industrial sectors in section 5.2.2.  

Notwithstanding this focus, Ramirez et al. (ibid.) conclude that it is methodologically practical 

to develop energy-intensity indicators for heterogeneous non-energy-intensive sectors.  

However, data availability is a major limiting factor within these sectors, in light of which a 

more active cooperation with industry in this area has been recommended. 

 

Having reviewed some pertinent applications of SEA to UK industry, attention is now turned 

to the main data sources currently amenable to SEA, in order to assess their suitability for such 

an analysis.  The main data sources are the Digest of UK Energy Statistics (DUKES, BERR, 2007) 

and the Energy Consumption UK publication (ECUK, DTI, 2002b16).  DUKES includes 

industrial energy use by broad two digit SIC sectors, and other related data such as the capacity 

and output of CHP units by sector.  ECUK is more detailed, but at the expense of lower 

accuracy because of the way the data is based on the Annual Business Inquiry (ABI, ONS, 

2008a) and then scaled up to correspond to DUKES (which is based on fuel suppliers’ receipts).  

ECUK therefore relates industrial energy use by main fuel types at the four digit SIC level, but 

also contains data on energy consumption by end use.   

 

There are therefore gaps in the national statistics themselves, upon which any SEA of the 

industrial sector would naturally be based (i.e. without recourse to proprietary data).  The main 

areas which are lacking relate to the end uses of energy in industry, the breakdown between 

electricity used for heat and power respectively, and the temperatures at which industrial 

energy is used.  The end-use data published in ECUK (DTI, 2004a) is also based on survey data, 

so suffers from the problem of inaccuracy cited above.  Furthermore, although the data is 

broken down by end-use category, it does not distinguish between the fuel (or electricity) 

which is used to meet these demands17, and it is not clear precisely how the categories are 

defined.  For example, the distinction between, and precise definition of the end uses Low 

Temperature Process and High Temperature Process is not even known by the BERR staff who 

publish this data (Knight, J., Energy Markets Units, BERR, pers. comm., May 2007 and 

September 2008).  The data seems to be supplied to BERR by AEA, with limited transparency 

regarding its compilation.  

 

Related to the lack of data on end-use data is the problem in determining precisely how 

electricity is used.  The breakdown of energy use by fuels for individual industrial sectors is 

given in DUKES and ECUK, but it is not possible to infer from this exactly what the electricity 

                                                           
16 The corresponding tables are updated annually, one year in retrospect. 
17 This was true for all years until the time of writing.  The most recent ECUK data includes the contribution of different 
fuels to these end uses for the first time (BERR, 2008e).  
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is used for.  Some of the end uses detailed in ECUK can reasonably be assumed to be electricity 

uses, such as Motors, but others such as Space Heating and Drying/Separation are much less 

clear.  There is a strong incentive, from thermodynamic and economic perspectives, to better 

understand the split between electricity used for heat and that used for power applications.  

This is because of the thermodynamic and implicit economic inefficiency associated with 

generating electricity in a centralised power plant with around 2/3 losses overall, only to then 

use the electricity for heat18.  

 

The final area where data is sparse relates to the temperatures at which energy is used.  This 

can be said about the economy in general, as well as for industry in particular.  Apart from the 

two end uses mentioned above relating to industrial processes, there is scant data available 

about the temperature at which energy is used in industry.  It seems that neither BERR, which 

administers and publishes the national energy statistics, nor AEA, which provides this end use 

data, has temperature demand profiles for the industrial sector (Haydock, H., AEA Energy and 

Environment, pers. corr., May 2007).  From a thermodynamic point of view it is desirable to 

understand this because it is the temperature in relation to the environment or dead state which 

determines the exergy of an energy flow.   

 

In summary, the application of SEA to UK industry in the past few decades has been quite 

limited.  There was a lot of activity in this area in the 1970s and 1980s, but interest seems to 

have dwindled since this time, due in part to the privatisation of ETSU and also no doubt due 

to the relative decline of heavy industry in the UK.  Since this time, SEA studies which have 

included the UK within their scope have done so on a broader, European, or at least cross-

country level.  There is therefore significant scope for applying SEA to the industrial sector.  In 

addition, there are four main areas in which the data relating to industrial energy use could be 

improved in the UK: highly disaggregated energy use by sector and/or site; data relating to 

end-uses of energy; the distinction between electricity used for power and heat; and the 

temperature at which energy used (a so-called temperature demand profile). 

 

3.1.2 Process analysis (PA) 

Many applications of process analysis (PA) have been made to industry in the last three 

decades or so.  The early studies by Chapman (1975), Chapman and Mortimer (1974) and 

Chapman et al. (1974) focussed on evaluating the energy implications for certain policies, in this 

case a new family of nuclear reactors for electricity generation.  The method has also been 

widely applied to individual industrial sectors and processes, such that a detailed review of its 

application to all industrial sectors is beyond the scope here.  Instead, as stated in the 

introduction to this chapter, specific literature reviews are given in the relevant chapters (7-9).  

Here the emphasis is on teasing out the common threads from the application of PA to diverse 

industrial sectors and processes.    

 
                                                           
18 This is only the case with the current centralised electricity generating plant, and overlooks the potential (future) 
impact of large scale CHP and/or decentralised electricity generation upon the overall grid efficiency. 
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Applications of PA to industry are as varied as the industrial sector itself.  Studies have, 

however, tended to focus on the energy-intensive industries, including iron and steel, 

chemicals, refineries, and petrochemicals, as well as non-metallic minerals and pulp and paper.  

The scope of these studies has varied from the very broad, covering a whole sector, to the 

narrow focus upon one type of process in a specific subsector.  The scope obviously dictates the 

level of detail for any given analysis, so a broad approach is not usually able to provide insights 

into specific process plant, and detailed ones suffer from the inability to consider 

macroeconomic trends.   

 

PA has been applied to global or national sectors, with little emphasis on the UK specifically.  

Taking the iron and steel sector as an example, attempts to analyse energy use in the sector 

have been focussed on the Basic Oxygen Furnace (BOF) route because it accounts for the vast 

majority of global capacity and therefore energy consumption in the sector (IEA, 2007).  

Nevertheless Worrell et al. (2001) examined the potential energy and carbon savings within the 

US primary and secondary iron and steel sectors, by combining PA with costing of the 

individual energy flows, and a capital  cost estimation of the suggested savings.  Many of their 

recommended savings have simple payback periods smaller than a year and very large (i.e. 

greater than 200%) internal rates of return (Appendix A2.1.3).  Many of the technologies are 

applicable to the UK sector but it is not clear to what extent, due to the different size and 

structures of the two sectors.  Worrell (1994, ch.3) has also done a PA of a specific integrated 

steel plant in the Netherlands, which involves a very similar approach to the US study 

mentioned above.   

 

In addition, several broad studies of the US iron and steel sector have been carried out under 

the auspices of the US Department of Energy’s (DOE) Industrial Technologies Program (ITP).  

These include an analysis of the theoretical minimum energy requirement for producing steel 

(Fruehan et al., 2000) and an assessment of the marginal opportunities for energy savings in the 

sector (Stubbles, 2000).  Other studies have focussed on benchmarking the industry by 

analysing current trends and estimating the potential for specific technologies to improve 

energy efficiency (US DOE ITP, 2009).  There is therefore a lot of activity under the DOE’s ITP 

concerned with understanding the iron and steel sector in the US, which involves both 

applying PA to current and historical data and speculation about the likely evolution of future 

trends.  The lack of such government-funded programmes for the UK might be attributed to the 

relative size of the sector: US steel production is approximately ten times larger than that of the 

UK, with around 20 integrated steelworks operating 40 blast furnaces in total (Energetics, 2000) 

compared to 3 and 7 respectively in the UK (chapter 6).   

 

For the UK Michaelis and Jackson (2000a, 2000b) have done a similarly broad study, which 

focussed on the macroeconomic mass and energy flows through the sector, in order to chart the 

trends over the period 1954 to 1994, and attempt to make tentative projections out to 2019.  

They employed material flow analysis (MFA), a type of PA that applies a mass balance across 

the system of interest.  The authors conclude that the exergy demand in the Iron and Steel 

sector will probably continue to decrease by 15-74% of 1994 levels by 2019. 
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There seems to be a lack of process-specific studies focussed on the UK but, contrary to national 

or industry-wide surveys, studies of individual process plant are highly transferrable.  Hence 

an analysis of a blast furnace or basic oxygen furnace (BOF) anywhere in Western Europe is 

applicable, to some extent at least, to any other similar unit within the same region.  For 

example, Ziebik et al. (2008) have shown that there are energy and carbon saving opportunities 

through employing the COREX process19, along with CO2 removal and a CHP unit.  Ziebik and 

Stanek (2006) have performed a system analysis of the complex relationships between 

operating parameters within an integrated steelworks based on energy and exergy 

considerations, concluding that such an approach is crucial if the true saving potential in these 

plants is to be realised.  Rasul et al. (2007) have also modelled the blast furnace operation based 

on data from an Indian plant and shown that there are potential energy savings through an 

increase in the hot blast temperature, reducing the coke ash level and increasing the sinter 

volume in the charge.  Hence none of these studies focus on the UK specifically, but clearly 

have insights which are relevant to the UK sector.   

 

For other industrial sectors a similar trend emerges.  Worrell has published extensively about 

applications of PA to industrial sectors.  For example Worrell et al. (1994a) examined the energy 

consumption trends by key industrial sectors across the EU, by focussing on processes each 

responsible for over 1% of the 1988 primary energy consumption in this region.  These included 

oil refining, paper manufacture, ammonia synthesis, cement and steel production, which 

together accounted for about 18% of total EU PEC in 1988.  The study therefore included these 

processes in the UK, where they accounted for around half of the industrial PEC.  Worrell et al. 

(1994b) and Worrell and Blok (1994) also used a similar approach to study the energy saving 

potentials in the plastics and nitrogen fertiliser sectors in the Netherlands.  These two studies 

derive SEC measures for these two sectors, but it is clearly specific to the Netherlands at this 

particular time.   

   

Some trends emerge despite this relatively small and selective survey.  Firstly, there have been 

very few published applications of PA that have focussed on UK plant in the past few decades.  

Secondly, most firms in energy-intensive industries have in house teams or consultants who 

focus on optimising their energy and production systems, which explains why the results of 

such studies are not always to be found in the open literature.  These sectors do not engage 

with academia unless there is a specific need on their part (Eglinton, D., ExxonMobil, and Stace, 

G., Dairy UK, pers. corr., March 2006).  Most of the studies reviewed above have focussed on 

specific systems (either global, regional or national) in specific time periods.  Whilst there is a 

certain degree of transferability associated with process- or technology-specific analysis, this 

depends on the degree of similarity between systems.   

 

                                                           
19 This process eliminates the need for coking and sintering because coal and lumped iron ore can be used directly 
(Siemens VAI, 2007). 
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3.2 Exergy analysis 

One of the earliest macroscopic applications of the exergy method was performed by Reistad 

(1975) for the United States in 1970.  He calculated the First and Second Law efficiencies of a 

range of energy conversion devices, including generators, motors, boilers, engines and heaters.  

Some appliances have approximately equal efficiencies based on First and Second Laws, 

because they mostly have energy inputs and outputs that are available.  Large differences 

between the two efficiencies were noted for, in particular, large steam boilers, gas and oil 

furnaces, electric and gas hot water heaters, which is due to the low availability of the output 

energy streams (the large temperature difference between the supply and demand exergies).   

 

The largest exergy loss for a coal-fired electricity generation plant occurs in the steam generator 

as a result of the irreversible combustion at high temperatures (ibid.), which was more recently 

confirmed by Hammond and Stapleton (2001) in their study of the UK energy system.  The 

energy losses are largest in the condenser, however.  If the availability losses in the steam 

generator can be reduced, there will be a commensurate reduction of the energy losses in the 

condenser.  Thus the irreversibilities in the steam generator are a major cause of restricted 

exergy efficiencies in steam-electric power plants (Reistad 1975).   

 

Reistad goes on to analyse the availability flow through the US economy.  Although he 

acknowledges the difficulty of determining an overall efficiency for the industrial sector, 

because of the many different uses of energy and the requirement of knowing the temperature 

and amount of heat used for heating applications, he arrives at an effectiveness for the sector of 

36%.  Although energy flow charts (Sankey diagrams) for the economy demonstrate that 

around half of the input energy is wasted, available energy flow diagrams (Grassmann 

diagrams) paint a much bleaker picture.  In this case, they indicate that over 75% of the 

supplied available energy is not effectively utilised.  Furthermore, these availability diagrams 

show what Reistad (1975) has called the true thermodynamic performance of the energy 

system, although this point is debatable because the exergy efficiency is always constrained by 

large exergy destructions wherever combustion processes occur.  The exergy destruction is due 

to the irreversible, entropy-generating nature of combustion, and results from the chemical 

reaction itself and the internal mixing/heat transfer process (Bejan et al., 1996).  The distinction 

between avoidable and unavoidable destructions and the means of ameliorating the latter are 

discussed in chapter 9.  

 

Wall (1987, 1990) has also applied exergy analysis to whole economies, in Sweden in 1980 and 

Japan in 1985 respectively.  In both of these studies Wall extended the exergy concept out from 

the relatively closed heat and power technology field to cover all energy and material 

conversions in society.  For Sweden in 1980 the exergy flows through society were determined 

with inaccuracies of 5% for electricity and 20% for heat flow to houses and other premises 

(Wall, 1987).  The total exergy conversion is 2539PJ with a net output of 500PJ, indicating an 

exergetic efficiency for the whole system of around 20%.  The greatest exergy losses in the 

system occur in the conversion of various energy sources into heat at room temperature (space 
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heating).  By estimating the exergy content of space heating energy at around 5% (based on a 

harmonically varying ambient temperature variation), Wall suggests that the physical demand 

for exergy for space heating is 19PJ, much less than the total exergy supply of 500PJ.  By looking 

at the exergy flow through nuclear fuel to electricity to heat, he also calculates the overall 

exergetic efficiency (using a Light Water Reactor, LWR) to be 1.6%.  Thus the scope for 

increases in the exergetic efficiency of energy conversion processes appears to be significant, 

and to this end Wall advocates an exergetic resource accounting framework. 

   

The study of Japanese exergy flows in 1985 is very similar, with a total exergy conversion of 

18EJ and a net output of 3.8EJ, indicating a slightly higher exergetic efficiency in this case of 

21% (Wall, 1990).  The exergetic efficiency for space heating in the Japanese society (ambient 

temperature difference of 10°C) was calculated to be lower than that for the Swedish one, at 3%.  

In this case, too, Wall therefore advocates the use of resource budgeting, along with building 

technology to decrease the demand for space heating. 

 

In relation to these two studies, Ayres (1998) has argued that due to the convention employed 

by Wall in these studies, the exergetic efficiencies estimated are very liberal.  Ayres believes 

that, if the final exergy conversion processes – from primary into useful exergy – were also 

taken into account, then the exergetic efficiencies would be just a few percent.  This does, 

however, approximately correspond to the values quoted above for final use of exergy in space 

heating applications.  Regardless of whether or not these overall exergy efficiencies are liberal, 

though, they are generally much lower than the corresponding energy efficiencies, which in all 

cases is due to the low exergetic efficiencies of irreversible combustion and heat transfer 

mechanisms.  Low overall exergy efficiencies do not necessarily imply a large scope for 

improvement, because in all cases a large temperature difference is required in order for heat 

transfer to occur.  Hence both energy and exergy efficiencies should be considered. 

 

Alvarado and Iribarne (1990) applied exergy analysis to determine the minimum theoretical 

energy requirements (TERs) of the production processes for copper, wood pulp and steel in 

Chile in 1986.  The actual SECs for these three processes were calculated to be 25.6, 23.7 and 

24.2 GJ/t respectively, compared to TERs of -90.6, -12.6 and 6.2 GJ/t.  Thus there is a theoretical 

potential to make the first two processes self-sufficient in energy terms, as well as to improve 

the efficiency of the third one.  For copper this is increasingly being facilitated through 

sulphuric acid co-production (the latter is highly exothermic).  Pulp and paper production can 

deliver an energy surplus if the most energy efficient techniques are employed (Regestad, 1987, 

cited in Alvarado & Iribarne, 1990).  Regarding steel, the estimated minimum is in close 

agreement with, but seems lower than other studies (e.g. Fruehan et al., 2000).  The theoretical 

potential for making processes self sufficient should be considered with some care, however, 

because there are often technical, economic or other reasons why this is not possible in practice 

(section 4.4). 

 

Others have applied exergy analysis with a higher resolution in the industrial sector.  Most 

notably, Rosen (1992) carried out an energy and exergy analysis for four main sectors of the 
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Canadian economy – residential-commercial, industrial, transportation, and utility – in 1986.  

The five industrial sectors with the highest energy intensity have been identified, and a 

representative process from each examined.  Together these five industries accounted for 

approximately half of the energy use in 1986.  The study focuses on process heating and 

mechanical processes which together accounted for 81% of the industrial energy consumption 

in this year.  Processes were categorised into low, medium and high temperature, whereby the 

respective temperature bands were Tp < 394K, 394K < Tp < 672K and Tp > 672K.  Rosen (op. cit.) 

concludes that the largest differences between energy and exergy efficiencies in the Canadian 

economy are due to heating processes, where high quality energy streams are applied to meet 

low quality demands.  In particular, the industrial sector’s relatively high exergetic efficiency 

(compared to the residential-commercial and transportation sectors) is due to the high 

temperatures employed for many industrial processes (i.e. above 672K), which utilises much 

more of the fuel’s (chemical) exergetic content.  The five sectors selected have overall energy 

and exergy efficiencies in the range 62-82% and 32-52% respectively.  Interestingly, the sectors 

with higher energy efficiencies do not have higher exergy efficiencies.  Rosen and Dincer (1997) 

applied a similar methodology to Turkey in 1993, where the three most significant industries 

were identified as iron and steel, cement, and chemicals/petrochemicals, together accounting 

for approximately 60% of total industrial energy use.  They reached similar conclusions relating 

to the energy and exergy efficiencies for these sectors. 

 

The general conclusion for the industrial sector from these two studies seems to be that there is 

a large improvement potential because of the low exergy efficiencies.  However, as already 

noted there are irreversibilities associated with the combustion process which are not well 

understood and which cannot be avoided.  In this regard, Caton (2000) applied Second Law 

Analysis to the combustion process within an internal combustion engine.  His treatment is 

purely analytical, and obtains the fraction of the fuel’s availability destroyed due to the 

irreversible processes as a function of temperature, pressure and equivalence ratio for octane-

air mixtures.  The implication of his analysis for internal combustion processes is that 

combustion should be conducted at higher temperature in order to minimise the destruction of 

the fuel’s available energy.  There are other considerations associated with higher temperature 

combustion, though, including higher temperature exhaust gases and therefore higher thermal 

availability, as well as higher concentrations of nitrous oxides in the exhaust.  Further, he 

showed that the exergy losses in this idealised combustion process were 5-25%.   

 

Hammond and Stapleton (2001) recently applied the exergy concept to the UK energy system.  

This study covered a period of over thirty years, from 1965 onwards, and employed a sectoral 

approach, in which the supply side was examined in terms of the main energy sources, and the 

demand side separated into four energy end-use sectors: domestic, services, industrial and 

transport.  Sector weighted exergy efficiencies of these sectors were obtained.  This study 

contrasts with previous ones of OECD countries already discussed (Reistad, 1975; Wall, 1987; 

Wall, 1990; Rosen, 1992; Rosen & Dincer, 1997) in its dynamic nature – rather than taking a 

“snapshot” in time, it treats a period of about thirty years.   
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The exergetic efficiencies obtained for electricity generation plant compare well with those 

reported by Reistad (1975).  Energy and exergy efficiencies of coal-fired steam electricity 

generation in the UK are given as 35% and 34% respectively (Hammond & Stapleton, 2001); for 

the US, Reistad reports values of 41% and 39% respectively.  The main reason for the 

discrepancy is the higher operating temperatures typically adopted in US power plants 

(Szargut et al., 1988).  Thus a large potential for improvement of the exergetic efficiency of 

electricity generation in the UK was identified.  The only ways in which this might be achieved, 

though, in the absence of large scale hydroelectric powers schemes, is by restricting the use of 

electricity to power applications and increasing the uptake of CHP plant.  

 

In a similar manner to Rosen (1992) and Rosen and Dincer (1997), for the industrial sector end 

use processes were grouped into four broad categories, namely low temperature (Tp < 394K), 

medium temperature (Tp = 394-692K), high temperature (Tp > 692K) and mechanical drives, 

and energy end use was divided into electricity and fuel.  The First and Second Law efficiencies 

evaluated are thus overestimates because they are end-use values, and therefore do not account 

for losses associated with power generation.  The result is that exergy losses in industry (as a 

proportion of the energy input) are somewhat smaller than those in the electricity generation 

and domestic sectors.  Exergy and energy efficiencies for the sector in the mid 1990s are 

reported as 46% and 69% respectively, which again suggests a significant scope for 

improvement of the former, but with the caveat given above that combustion processes are 

inherently problematic to improve (Hammond & Stapleton, 2001).   

 

Hammond and Stapleton conclude that, in agreement with Reistad, the main exergy losses in a 

power plant are associated with the combustion processes and the heat exchangers.  Hence 

improvements made at that end of the thermodynamic cycle will inevitably have the knock-on 

effect of increasing the First Law efficiencies.  Further, they suggest that an understanding of 

the thermodynamics at play is more important than whether or not these improvements are 

actually feasible in practice.  That is, one does not necessarily have to implement an exergy 

analysis in order to fully understand the concept.  They cite early work by Chapman (1976), 

which noted the wastefulness associated with using nuclear-generated electricity for heating 

applications, rather than for power applications.  There is clearly a benefit to practitioners in 

understanding the concept of exergy without doing detailed calculations.  The main limitation 

of this study’s coverage of the industrial sector, though, is in the rather crude end-use 

categories employed. 

 

Exergy analysis has been widely applied to individual energy conversion systems and process 

plant, as well as to macro-level energy systems as large as national economies.  It’s usefulness 

in highlighting what is considered by many as the “real thermodynamic efficiency” has been 

highlighted by many studies (e.g. Reistad, 1975).  However, Hammond and Winnett (2005, 

p.20) have argued against what is effectively an “exergy theory of value”, suggesting that this 

may or may not be the most important factor in a given system.  Instead they advocate the 

application of exergy analysis alongside other, more conventional, First Law techniques.  Ayres 

(1998) also agrees that it is necessary to consider First and Second law analyses, in order to have 
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an overall indication of the efficiency of a system.  The reason this is so important is that the 

improvement potential suggested by exergy analysis alone is often much higher than what 

might realistically be achieved in practice.  Alone, exergy analysis does not reveal the whole 

picture.   

 

3.3 Summary and conclusions 

Applications of SEA to industry in the past few decades have been limited, which appears to be 

due to lack of interest from public funding bodies and the relative decline of heavier industries.  

In particular, since the privatisation of ETSU in the 1990s there have been very few extensive 

studies of industry as a whole.  Some studies have included British industries alongside others 

in cross-country comparisons, which offer some insights into specific sectors.  There are four 

main areas in which the data relating to industrial energy use could be improved in the UK: 

highly disaggregated energy use by sector and/or site; data relating to end-uses of energy; the 

distinction between electricity used for power and heat; and the temperature at which energy 

used (a so-called temperature demand profile). 

 

A comprehensive literature review of PA applied to the British industrial sector has not been 

employed here because of the large variation in processes and types of studies.  Instead, an 

attempt has been made to tease out the emerging trends in PA by resorting to appropriate 

examples.  It seems that few applications of PA have been made in recent times to specifically 

UK-based plant.  There are two possible reasons for this.  The first is that, because PA applies to 

a specific unit operation or technology, the results are often transferable between sites and even 

countries.  The second reason for the apparent lack is that energy is professionally managed by 

energy-intensive industries.  Any studies relating to energy efficiency would not necessarily be 

published in academic journals unless the work was the result of collaboration between 

industry and academia.  Work carried out in house or on a consultancy basis for industrial 

firms is usually subject to commercial confidentiality.  Initial studies carried out as part of this 

research suggest that this is in fact the case for many sectors.   

 

The review of applications of exergy analysis concluded that the method has been widely 

applied to both individual process plant and macro-level energy systems.  The latter studies 

have been useful in highlighting the very low exergy efficiencies of whole energy systems, but 

have been somewhat crude in their treatment of end-use categories.  Here also, there has been a 

lack of meso-level studies.  The application of exergy analysis to individual processes has been 

partly constrained by the availability of data on the chemical exergy content of non-standard 

substances.  For example, the method has been widely applied to combustion and electricity 

generation plant, but has only recently found application to specific industrial plants.  
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4 Energy efficiency: definition, measurement and change 

This chapter presents the theoretical framework upon which subsequent chapters build.  It 

begins by discussing the definition of energy efficiency, which is necessary if it is to be 

measured.  Attention is subsequently drawn to the measurement of energy efficiency, before 

examining the ways in which this can be increased for industry, through the tripartite approach 

of behaviour, technology and policy.  This leads quite logically into a discussion of the drivers 

for and barriers to the adoption of these measures, along with a consideration of the rebound 

effect.   

 

4.1 Definition of energy efficiency 

The term energy efficiency is often used without being defined, and when it is, the meaning of the 

term is very much dependent upon the context.  Patterson (1996, p.386) notes that, although 

energy efficiency has an important place on the public agenda of many countries, surprisingly 

little attention has been given to defining and measuring the term.  In the physical sciences 

(especially engineering) the word efficiency is used to refer the useful work obtained from a 

process or machine when related to the total energy input.  It is therefore an indication of the 

performance of the device in energy terms, which suggests that the term energy efficiency is a 

tautology.  Nevertheless, the main reason for the ambiguity is that the term is applied to system 

boundaries with a broad range of sizes and scopes (European Commission, 2006d, p.27).  A 

distinction can be made between the use of the term to refer to general behaviour or practice, 

compared with its use to refer to a quantitative measure of performance.  Here attention is 

exclusively focussed on the latter.   

 

Energy efficiency relates the output from a system to the energy input to it.  The different ways 

in which output is measured has to be reflected by any energy efficiency measures, however, 

and leads to several accuracy-related issues discussed in the following section.  In general, any 

definition of the term energy efficiency has to consider several important factors, including: the 

energy system scale; the system boundary; the type of energy; the method of determination (i.e. 

measured or estimated); the nature of related indicators; the temporal characteristic (static or 

dynamic) and the baseline (best theoretical, best practice or inter-population benchmarking).  

Fawkes and Jacques (1987, p.14) suggest energy efficiency measures also need to consider the 

level of production plant occupacity to which the figures relate, the history of trends in these 

figures and the age-characteristics of the site.  The plant occupacity (or load factor) and age of 

plant both have direct consequences for energy efficiency. 

 

Based on consideration of the above factors, various definitions of energy efficiency have been 

suggested.  The commonality lies in relating input to output, but there is still a degree of 

variation and thus ambiguity (European Commission, 2006d, pp.27-28):  
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i. The ratio between output of performance, service, goods and energy, and an input 

of energy; 

ii. To obtain an unchanged output value at a reduced energy consumption level; 

iii. To obtain an increased output value with unchanged energy consumption; 

iv. The amount of energy consumption per unit of product/output; 

v. The amount of energy consumed per unit of feedstock; 

vi. Energy consumption per unit of product (excluding feedstocks); 

 

In industry the most commonly employed concept is the fourth definition above, or energy 

consumption per unit of output (ibid.).  If output is measured in physical units, this is referred 

to as the specific energy consumption (SEC) or energy intensity factor.  If output is measured in 

economic units, then this parameter is known as energy intensity, which is the reciprocal of 

energy productivity in the economic sense (section 5.2.3).  As stated in the Introduction, energy 

productivity and energy efficiency are taken to be synonymous in this thesis, both being the 

reciprocal of the SEC or energy intensity.  

 

This definition of energy efficiency is deceptively simple, however, because it does not 

explicitly define the system boundary and conventions.  Of particular relevance are the 

conventions for dealing with feedstock energy, the efficiency of electricity generation and the 

use of lower or higher heating values (sometimes referred to as net and gross calorific values 

respectively).  These assumptions are defined depending on the specific system of interest later 

in this thesis, so a general specification cannot be given here.      

 

Having established the definition of energy efficiency for industry, it is well worth returning to 

the point above relating to a baseline.  The energy efficiency of a system alone is not sufficient 

for an effective evaluation, rather it must be compared to a baseline so as to put it into context.  

Baselines therefore offer some reference datum with which to compare.  The comparison can be 

inter-system (e.g. firm, industry, country), inter-temporal (i.e. the same system at different 

times) or with some theoretically-defined parameter (e.g. theoretical minimum energy 

requirements).  It is also important that, for the sake of comparisons, system boundaries remain 

the same.  Related to this is the fact that the best possible efficiency for a site is not always the 

sum of the best efficiencies of the components.  This is especially the case for highly integrated 

process plant (e.g. chemicals), in which experience has shown that overall site efficiency is 

optimised by operating individual plant sub-optimally.  If the baseline is in the form of a best 

practice or best available technology energy efficiency, this is usually taken to be either the best 

energy efficiency achieved within the system(s) studied or the best that could be achieved if 

current technology were adopted respectively.   

 

Thus systems with different attributes cannot effectively be compared without any differences 

being accounted for beforehand.  If a suitable correction is not possible then it stands that there 

can be no fair comparison of the multiple systems.  Indeed, this can often be the case, such that 

energy efficiency studies can only be used within a limited, system-specific context.  The data 

relating to the UK Climate Change Agreements (CCAs), for example, relates to a dynamic 
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population so that the aggregate results from different periods cannot be compared without 

considering this (Stace, G., Dairy UK, pers. corr., March 2006).   

 

4.2 Interdisciplinary efficiency measures 

Having defined the concept of energy efficiency as applied to industry, attention is now drawn 

to interdisciplinary measures of productivity.  Inputs to and outputs from an economic system 

are almost universally measured in monetary units.  Flows into and out of a physical 

(thermodynamic) system are typically measured in physical units of mass, volume, energy (or 

their time-derivatives).  The consideration of energy systems of various sizes presents the 

problem of choosing appropriate units to measure energy efficiency, especially where the flows 

through the system can be measured in economic and physical units.  Hence a variety of 

interdisciplinary measures have evolved to measure productivity, which Patterson (1996) has 

categorised into three broad types, namely  thermodynamic, output-based and economic: 

 

1. Thermodynamic – the pure efficiency of a specific process (dimensionless: J/J); 

2. Output based: 

a. Physical-thermodynamic – e.g. SEC, SER, unit energy consumption etc. 

(GJ/tonne); 

b. Economic-thermodynamic – common for more aggregated systems – energy 

intensity or productivity (PJ/£ of GVA or GDP); and  

3. Economic – purely economic efficiency indicators based on market prices for energy 

inputs and outputs (usually dimensionless: £/£). 

 

Patterson’s taxonomy originally included four separate indicator types, but the intermediate 

ones have been grouped together here for reasons that should become apparent.  The 

classification is based, on the one hand upon bottom-up process analysis, and on the other hand 

on top-down macroeconomic analysis.  The first, purely thermodynamic type of indicator 

indicates the theoretical efficiency of a system, usually based on highly detailed and 

disaggregated data.  The third, purely economic indicator is obtained from more highly 

aggregated data.  The two intermediate indicators within his taxonomy represent varying 

degrees of integration between bottom-up and top-down approaches.  The data requirements 

for the various types of indicator are heavily dependent upon the level of aggregation.  Thus, to 

determine different indicators for the same energy system, the purely thermodynamic 

indicators require much more data relative to the purely economic ones.  This is mainly because 

of the high levels of detail and disaggregation associated with the bottom-up process-specific 

data, as shown in Figure 4-1. 

 

The choice of physical or economic indicator depends heavily upon the data availability and the 

specific application; there are advantages and disadvantages of both.  Physical outputs 

correspond directly to a quantity of good being produced; economic value only indirectly 

corresponds to the actual output in physical terms (alternative value theories were discussed in 

section 2.1.4).  According to neoclassical economics, the price of a good or service is determined 
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by the interaction of supply and demand at one moment in time (assuming markets are 

efficient, in the absence of oligolopies).  However, for the simple reason that the value (price) of 

goods tends to fluctuate, the price does not correspond to the underlying physical quantity.  

 

 
Figure 4-1 – The energy efficiency indicator pyramid (adapted from Farla, 2000, p.8) 

 

In fact one of the main disadvantages of value-based economic indicators, compared to physical 

ones, is that sudden price hikes may lead to changes in the financial ouput, whereas the 

production in physical terms is not affected (Farla, 2000, p.9).  Value-based indicators of energy 

efficiency measure not only the desired effects of the implemented energy efficiency measures, 

but also other, external effects.  In addition, value based indicators of activity do not reflect the 

relevance of the product or activity mix to energy intensity within a sector.  Knowledge about 

the mix of products or activities may therefore be especially valuable for a comparison of 

energy intensities between sectors with a rapidly changing output mix. 

 

Freeman et al. (1997) critically examined the differences in output as measured by three 

different value-based indicators.  They analysed value of production, value of shipments and 

value added, as well as volume of production, for several key US industries during the period 

1978 to 1992.  They found large discrepancies between the outputs reported by the different 

measures, concluding that, out of the three value-based measures, value of production 

appeared to be the most robust, reliable indicator.  This is because this measure seemed to 

match the growth rate of volume of output more closely that the other measures, and it 

appeared less likely to exaggerate year-to-year changes in efficiency.  The main problems with 

value-based measures were identified as (ibid.): 
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• Measurement errors in price indices, due to: 

o Multiple prices: short and long run, shipment, order, list and transaction prices – 

which price indices do not account for; 

o Multiple goods within one industry with one price index: structural shifts within 

an industry can lead to changes in value output with volume output remaining 

constant; 

o Changes in data underlying price deflators: when a major change in product 

definition or industry price index occurs; 

o Quality changes: e.g. PCs, for which the average speed has increased sharply, 

whilst prices have reduced; and 

o Shipments and material deflators: it is highly unlikely that average prices of 

materials and products will change at the same rate.  

 

• SIC related, due to: 

o Errors in industrial specialisation and coverage: the degree to which value-based 

measures reflect the production of other goods and fail to reflect all production 

of a particular good; there is a direct correlation between specialisation and 

coverage ratios and the ratio of correlation between value and volume 

indicators; and  

o Industrial redefinitions: result in values of industrial output that are not directly 

comparable over time.  

 

Physical volume indices are also far from perfect, especially in the industrial context.  Non-

homogeneity of products means that it is often impractical to aggregate the output from a 

sector.  More significantly, this means that output cannot properly be measured in physical 

terms.  In fact, often the only way to measure output in non-homogenous sub-sectors is by 

value of output.  For example, the microelectronics industry produces a vast array of outputs, 

for which a specific physical unit of output is not appropriate. 

 

Patterson (1996, p.383) also highlights the problem of overlooking energy quality with efficiency 

indicators.  This problem might be overcome by employing exergy analysis alongside energy 

analysis.  Patterson emphasises the importance of distinguishing between different sources and 

end uses of energy, all of varying quality.  He also cites examples of significant discrepancies 

between results based on First and Second Law analyses respectively, suggesting that the 

problem is more accute at the micro-level because all energy inputs and outputs are typically 

different.  For this reason, he warns against employing thermodynamic indicators in macro-

level analysis, unless this problem can ameliorated or eliminated.    

 

The SIC related problems noted above for value-based indicators are also applicable, to a 

certain extent, to physical indicators.  The assignment of a plant to an industrial sector within 

the SIC framework is largely based upon the sector in which the majority of the plant’s output 

is classified.  Whether or not this output is measured in physical or economic terms has little 

impact on associated errors when, for example, the main product accounts for little over 50% of 
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the output.  Freeman et al. (1997, p.712) cite the example of the chlor-alkali industry, in which 

many firms produce chlorine for their own use.  Also, chlorine is actually not their main 

product and much production of chlorine actually takes place outside the SIC of the industry.      

 

In view of these apparent inadequacies with the conventional SIC, Beyene and Moman (2006) 

suggested an alternative, process-based classification of industrial activity.  They note how the 

SIC as it stands gives no indication of the energy intensity of a firm, instead grouping together 

seemingly non-homogenous processes based on the end product that they produce.  Beyene 

and Moman’s study involved determining the thermal/electricity (T/E) ratio and energy 

intensity (measured in energy consumption per unit of sales, kWh/$1000) for 270 plants.  Across 

eighteen major two-digit SIC codes they identified 27 major processes with a clear, strong 

correspondence between the T/E ratio and energy intensities of these different processes.  Any 

major inconsistencies or anomalies from this trend could be explained, and were mainly due to 

variations within the details of the process, whereby, for example, metal and plastic injection 

had been merged into one process.   

 

As a result of their analysis, Beyene and Moman recommend defining a core group of processes, 

with sub-level being added later as necessary.  They argue that a correspondence between SIC 

and energy profile is important because major policies, funding opportunities and utility 

activities all depend on this relationship.  Such a process-oriented classification scheme has the 

potential to better identify and target industrial sectors for energy efficiency measures, by 

providing a more intuitive basis upon which to apply various energy analyses.         

 

Another classification of industrial sectors is according to their degree of homogeneity.  

Homeogeneous sectors perform the same process at all sites and typically produce just on 

product, with only a small amount of variation between sites.  Furthermore, homogeneous 

sectors are generally associated with primary processing operations and are therefore energy 

intensive.  Heterogenous sectors produce a variety of products through diverse processes, and 

therefore need to be considered on an individual site basis.  Upon further disaggregation 

heterogeneous sectors contain homogenous sub-sectors, but in some cases this is only at very 

high levels of dissagregation (i.e. below the site).  This classification provides the means of 

modelling industrial sectors/sites in chapter 6.  

 

In light of the inherent problems associated with value-based indicators of energy efficiency, 

but the inability to aggregate physical indicators, Farla (2000) has developed a physical 

indicator that is consistent in aggregation.  He has defined a physical production index from the 

output of a given product, which is weighted by the SEC (either the actual value in the base 

year, or a best practice value) of that product.  The weighting factors are kept constant in all 

years in order to chart the frozen energy intensity development of the sector.  By then relating 

the frozen to the actual development of the energy intensity over time, the physical indicator of 

efficiency is obtained.  Farla has suggested that at least 90% of an industry’s energy 

consumption should be covered by the products included in the analysis, in order that the 

accuracy can remain at a reasonable level (ibid., p.48).  The results showed large disagreements 
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between physical and economic indicators of efficiency (as applied to the Netherlands in this 

case), with year to year fluctuations (i.e. systematic errors) being smaller for the physical than 

the value indicators.  He also noted the much larger data requirement for the physical 

indicators. 

 

Value based indicators are typically favoured on a highly aggregated (e.g. macroeconomic) 

scale because the data is widely available in the form of national and sectoral outputs measured 

in GDP and GVA respectively.  These data are recorded and published as part of a country’s 

national accounts, so are current and accurate.  They have the further advantage that they can 

be easily aggregated, because of their common economic units.  Physical indicators are less 

readily aggregated due to their often incongruous units.  Ramirez et al. (2006b) have questioned 

the suitability of economic-based energy efficiency indicators for measuring changes in 

technical efficiency, because output measured in GVA or GDP takes no account of physical 

output fluctuations.  The choice of indicator is very important and has been shown to strongly 

affect the outcome of analyses (Freeman et al., 1997; Farla, 2000).  In the energy debate it seems 

to be accepted that, wherever possible, energy efficiency indicators should be based on physical 

measures of output (Ramirez, 2005, p. 119).  In general, though, the decision of which indicator 

to employ is dictated by the data availability, such that economic-based indicators are more 

widespread.  

 

4.3 Methods of energy efficiency improvement 

Having defined energy efficiency and discussed the ways in which it can be measured, 

attention is now drawn to the means through which energy efficiency can be increased.  As also 

mentioned above, it is crucial to fully understand current consumption trends before 

attempting to reduce them, because a baseline is required from which to start.  In general there 

are three types of approach to addressing energy efficiency, regardless of the context: 

 

1. Behavioural measures, which involve changing practice (e.g. through better 

management and control), but using existing resources and little or no capital cost;  

2. Technological measures, associated with some level of investment in new appliances or 

upgrades; technology may be bought off the shelf or developed by the firm itself 

through its R&D activities.  Technology measures may be subdivided into (Langley, 

1984a, pp. iv-v): 

a. Additional equipment measures solely aimed at increasing efficiency; 

b. Replacement equipment measures, which incur indirect efficiency gains; and 

c. New process technology involving radical redesign and/or innovation.   

3. Policy-related measures, many of which are intended to bring about behavioural 

and/or technological change.  The focus here is on legislation as an indicator of public 

policy. 

 

This taxonomy is useful not only because it separates out the different methods, but also 

because it highlights the complementary bottom-up and top-down approaches that can be used 
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by firms and governments respectively.  Firms (and individuals) can change their behaviour in 

order to affect their energy efficiency, but drivers or incentives are required for such change.  

On the other hand, governments are able to put policy measures into place which provide 

incentives for individual firms.  The intermediate area of this taxonomy that focuses on 

technological measures is a crucial one, for it is technological change that has enabled the 

industrial to drastically improve its energy efficiency over the past few decades (as discussed in 

section 5.1).  According to the neoclassical economic perspective, it is technological change that 

enables increases in efficiency over and above those achieved through substitutions between 

and additions to factor inputs.  Not all technological measures are aimed at improving energy 

efficiency, however.  Often upgrading technology to the current state of the art can result in 

increased efficiency (category 2.b above), simply because newer technologies tend to be more 

efficient (von Weizsäcker et al., 1997, Worrell et al., 2003), but the long lifetimes of much process 

plant can result in technological lock-in which precludes retrofitting measures to improve 

efficiency.  Each of the three main approaches identified above will now be addressed in turn. 

 

4.3.1 Behaviour 

According to the energy hierarchy presented in section 1.3, behavioural measures, otherwise 

known as good housekeeping, should be implemented before any other measures involving 

capital investment, because of the relative ease with which they can be affected and their 

relatively low associated capital cost.  Behavioural measures of energy efficiency are associated 

with energy management, which is concerned with better measurement and control of energy 

systems.  This involves focussing more attention on understanding how and where energy is 

used within a plant, and therefore being more suitably informed to make savings.  The lack of 

awareness about onsite energy use makes this an area in which there remains significant 

unrealised potential (section 5.5).  Furthermore, the attention given by industrialists to this 

activity is ultimately limited by the time and capital costs which are inevitably associated with 

planning and establishing the suitable system of measurement (Langley, 1984a, p.43).   

 

There are varying degrees of energy management system; mineral oil refineries have highly 

complex, integrated procedure because energy costs can account for up to half of the operating 

costs, whereas an SME might simply have electricity and gas meters where these utilities are 

supplied to the site.  As well as energy costs, there are many other factors affecting the scope of 

the energy management system, including, inter alia, whether the firm has a standard in place, if 

the company/sector is involved in long-term agreements, and whether senior management 

places a large importance on such activities.  The first stage in setting up an energy 

management system is to carry out a full site audit, which involves recording the largest 

energy-consuming activities onsite, collecting relevant data and identifying any associated legal 

requirements.  In most cases, at least high-level data should be available for long periods, in 

order to account for annual demand profiles due to changes in external temperatures and levels 

of production.  If this information is not available then the relevant metering and/or logging 

equipment will need to be installed. 

 



 

- 52 - 

The above information and data can be used to determine the baseline energy consumption, 

against which any improvements can be measured.  The appropriate energy efficiency 

indicators can be developed in order to track changes in productivity over time, and the areas 

identified on which to focus attention.  Successful energy management systems all rely on the 

human dimension (European Commission, 2006d), so an energy or environmental manager 

with clearly defined roles and staff training may be required.  Once the management system is 

established, there is a large variety of tools available in the form of software (such as the E-MAT 

Energy Manager’s Tool developed under the European Commission’s SAVE Programme), 

checklists, calculation methods, templates for data collection, and online tools for benchmarking 

and monitoring activities in an international context.  These can all be used by a company to 

assist in carrying out the six main steps in effectively implementing a monitoring system, 

namely metering, targeting, analysing, accountability (i.e. apportioning responsibility), energy 

teams and action (ibid.).   

 

The Eco-Management and Audit Scheme (EMAS) also allows voluntary participation by public 

and private organisations and provides them with guidance on establishing an environmental 

management system (European Commission, 2006, p.10 , p.25).  For non energy-intensive 

industry, SMEs and in the public sector, there is thought to be a potential energy saving of 30% 

through cross-cutting technologies such as lighting, boilers and motors, which could be realised 

through an effective energy management system.  New energy efficiency management schemes 

are also being developed under the European Commission’s (2006a) Action Plan for Energy 

Efficiency.  These will be developed along the same lines as the successful GreenLight, 

EuroDEEM and Motor Challenge projects, with priority given to standardised energy audits, 

guidelines on promoting energy-efficient products, best practice and benchmark guidebooks 

and education for energy managers.   

 

There are several standards relating to environmental management, of which the most 

developed and detailed are the SIGMA guidelines.  These guidelines include a set of guiding 

principles aimed at ensuring good management of the five types of capital (see Appendix 

A2.1.1) and accountability to stakeholders, a management framework based on a similar 

structure to the ISO14001 standard, and a toolkit of guidance and illustrative materials in order 

to help implement their guidelines (Frears & Hicks, 2008b).  The Carbon Trust (2008b) also 

operates a scheme called the Carbon Standard (formerly the Energy Efficiency Accreditation 

Scheme), which formally recognises improvements in energy efficiency.  Three aspects of 

company performance are considered for the accreditation process, including its energy 

management system, the amount of money being invested in energy efficiency projects and the 

improvements that can be demonstrated and proven.  

 

Notwithstanding these standards, the field of energy management is a diverse and disparate 

one.  Not all companies have a formal management system in place, and those that do differ 

widely in there practices.  Hamblin (1996) confirms the heterogeneous approach to energy 

management, which is affected by, but cannot be generalised across, the sector in which a 

company operates.  The literature on energy management reflects this diversity, being 
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dominated by country- or sector-specific analyses, some mainly qualitative and containing 

rather anecdotal evidence.  For example, Hepbasli & Ozalp (2003) present the details of energy 

management activities in Turkey, concluding that universities and the private sector should be 

aware of the importance of the subject.  Christoffersen et al. (2006) carried out a telephone 

survey of 300 firms in Denmark, concluding that less that 15% of firms in the sample undertake 

any kind of energy management.  In addition, Jochem and Gruber (2007) report the success of 

local learning networks for industrial firms in Germany and Switzerland, whereby the 

transaction costs of energy efficiency measures and the implementation times required have 

been reduced through sharing experience and expertise.  The efficiency measures identified 

were all highly profitable and the authors recommend the adoption of similar schemes in other 

countries. 

 

In an empirical study of nine non energy-intensive SMEs in Germany and Denmark, Togeby et 

al. (1997) highlight six organisational factors describing the way in which firms work with 

energy efficiency.  They suggest that energy efficiency is not an instantaneous event, rather a 

long-term process of social and technical change, which calls for a strategic orientation and a 

systematic approach within the companies.  They also associate the companies that undertake 

energy efficiency activities with a certain degree of awareness about the future benefits of these 

activities, something which other companies perhaps lack.  These benefits are over and above 

the purely financial savings, and include better relations with the authorities, for example.  The 

six key organisational factors are (ibid.): 

 

(i) internal know-how in relation to technical aspects of energy efficiency; 

(ii) the degree of decentralisation  of energy efficiency activities; 

(iii) the dependence of activities on key actors within the processes; 

(iv) the importance of technical and economic arguments; 

(v) the embeddedness of energy activities in similar activities concerning the 

environment; and 

(vi) the importance of external impulses and the integration of external support.    

 

It seems that a successful energy management system is as much to do with the overall 

company culture as it is with the specific approaches taken to reduce energy demand.  The 

structure of the company and the involvement of staff are key factors in making any such 

system effective.  These and the other factors above are highly firm- and sector-specific, such 

that there is no cross-cutting approach to energy management apart from the general steps 

outlined above.  It is not clear exactly why the fraction of firms undertaking energy 

management is so low.  There are several possible reasons for this, such as barriers to energy 

efficiency, for which the theoretical framework and empirical evidence is presented in sections 

4.4 and 5.5 respecively.  Shipley and Elliot (2006) argue that (for the USA) this is certainly not 

because all of the “low hanging fruit” has been picked.   
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4.3.2 Technology 

Whilst the energy efficiency measures outlined above are intended to minimise the energy 

consumption onsite through improved management, the next stage according to the energy 

hierarchy cited in section 1.3 is to employ technology to do this.  There is a plethora of 

technological options available to industrial energy users, but in general the principle of using 

technology to increase energy efficiency involves upgrading existing equipment (2.a. above), 

replacing existing equipment (2.b.), or installing/developing completely new 

technology/processes (2.c.).   

 

Several systems are prevalent throughout the industrial sector and therefore offer the potential 

for a crosscutting approach to energy efficiency improvements.  Whilst the efficiency of 

individual components might be relatively high, that of whole systems is often relatively low.  

Optimising on a systems level has the potential to achieve large improvements in energy 

efficiency, perhaps an order of magnitude greater than through optimising individual 

components (Williams, 2007).  Shipley and Elliot (2006) note that, although twenty years ago a 

large improvement in energy efficiency could be realised by installing a new boiler, for 

example, current energy efficiency enterprises need to be focussed on whole systems.  The 

following discussion is primarily focussed on systemic technologies to improve energy 

efficiency.  Although some examples of specific technologies are given, it is not intended to be 

comprehensive. 

 

4.3.2.1 Combustion systems 

Combustion processes occur in most industries, either to raise steam in a boiler (either to use 

directly or generate electricity through a turbine) or to use the heat directly as in a furnace.  

Hence a large emphasis of technological energy efficiency measures is placed on reducing the 

heat losses from combustion, and there are three main ways of doing this (European 

Commission, 2006d): 

 

(i) Reduce the temperature of the flue gases, e.g. by preheating the combustion air and/or 

materials or by cleaning the heat transfer surfaces. 

(ii) Reduce the mass flow rate of the flue gases, which can only be achieved by reducing the 

amount of excess air. 

(iii) Reduce the heat losses through the superstructure walls with insulation. 

 

There are constraints placed on all three of these approaches to reducing heat losses.  Firstly, the 

temperature of the flue gases has a lower limit because low temperature heat does not have 

many useful applications unless udgraded with a heat pump.  Another consideration is the acid 

dew point, at which the condensation of sulphuric acid and water occurs, which is in the regoin 

110°C to 170°C.  In order to preserve the integrity of metallic surfaces from corrosion, the 

exhaust temperature is therefore kept around 30°C above this value. 
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Reducing the mass flow rate of the flue gases by removing excess air from the combustion 

process is limited by the stoichiometric ratio of combustion, which is required for complete 

combustion of the hydrocarbon fuel.  This ratio is determined by the specific hydrocarbon in 

use, and can be calculated based on the molecular weights of the fuel and air.  In addition, some 

(e.g. 1-2%) excess air is always desirable in order to avoid explosive environments.  Combustion 

with pure oxygen, known as oxyfuel firing, completely eliminates the heat transfer to the 

nitrogen in the air which would normally be combusted.  The oxygen must be produced, 

however, so although this technique reduces the direct energy requirements, it is no more 

efficient in primary energy terms (Ross & Tincher, 2004). 

 

The heat losses through the walls can be reduced with insulation, but this tends to be installed 

when the furnace or boiler is commissioned.  However, refractory materials used for insulation 

tend to deteriorate with time, so it may require replacing at a later date.  Replacing or 

upgrading insulation therefore requires a suitable window of opportunity during plant 

downtime.  There are also some trade-offs associated with attempting to achieve these three 

objectives together for one system.  For example, preheating the combustion air (with recovered 

heat from the flue gases) to increase the flame temperature results in the formation of more 

oxides of nitrogen, NOx.  The “scrubbers” that remove these oxides only work in a certain 

temperature range.  Hence the installation of heat recovery and related equipment can be 

complicated by conflicting objectives which can make such projects seem uneconomical, 

especially in the case of retrofitting. 

 

An area which seems to be particularly promising for improving the energy efficiency of 

combustion systems is that of high temperature air combustion technology (HiTAC).  The main 

feature of this technology is a novel combustion mode with a homogenous flame temperature, 

enabling the fuel to burn completely at low oxygen levels, which has achieved 35% higher 

energy efficiency to conventional jet burners (European Commission, 2006d).  The technology 

also has lower specific CO2 and NOx emissions than conventional ones.  Combustion takes place 

throughout the furnace (or vessel) with no visible flames, with more uniform radiative heat 

transfer and no CO detected in exhaust gases (Weber et al., 2005).  In addition to these benefits, 

the required equipment size is smaller due to the better heat transfer, and oxygen deficient 

combustion produces higher First and Second Law efficiencies (Rafidi et al., 2008).  One factor 

currently limiting HiTAC’s penetration seems to be its high capital cost.  

 

4.3.2.2 Steam systems  

Steam systems have a widespread application in industry for transporting heat, because of 

steam’s non-toxic nature, stability, low costs and high heat capacity.  The overall potential for 

improvement in steam systems in UK manufacturing is estimated at around 10% (IEA, 2007, 

p.235).  The steam system itself may further be broken down into three main components, 

namely the prime mover, the distribution system and the end use.  The prime mover in a steam 

system will have an efficiency of 65% to 85% depending on the fuel type and particular 

configuration.  For a steam system with a boiler efficiency of 80%, the overall efficiency of the 
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system is around 55% because 10% of the energy is lost in conversion and another 15% in 

distribution (Energetics & E3M, 2004, p.63).  In general the best method of improving the overall 

efficiency of a steam systems is by using a CHP system (IEA, 2007, p.229).  However, there are 

often reasons why this is not feasible, such as a lack of demand for electricity and economic 

barriers such as the uncompetitive and unstable price, known as the spark-spread, received for 

selling excess electricity back to the grid.  CHP as a generic technology is discussed below.  

 

Some of the main approaches to improving the energy efficiency of steam systems include 

(European Commission, 2006d, p.117): using economisers to preheat the feed water, which can 

increase efficiency by 4%; preventing formation and removing scale deposits on heat transfer 

surfaces; minimising boiler blowdown (i.e. removal of suspended and dissolved solids); 

recovering heat from blowdown; collecting and recovering flash steam and/or condensate; 

controlling and maintaining steam traps; insulating pipes; and reducing steam leakage.  In 

addition to these specific measures, there are generic means to ensuring the efficient operation 

of distribution systems, including regular maintenance and better monitoring and control of 

system operation.  Poorly maintained, fouled systems operate with an efficiency much lower 

than the 50-60% of well-maintained ones.  Improved design and development of boiler plant 

therefore provides continuing opportunities for energy saving (Kreith, 1997).  

 

4.3.2.3 Motor systems 

Motor systems collectively include fans, drives and compressed air systems, which are 

ubiquitous in some industrial sectors.  It is estimated that motor systems account for up to 70% 

of global (Williams, 2007) and European (ISR - UC, 2008) manufacturing electricity demand.  

The European Commission’s SAVE Programme (European Commission, 2009) produced 

estimates for the total annual electricity savings for the UK manufacturing sector of the order of 

86PJ or 24TWh (de Keulenaer et al., 2004), with the majority of this saving coming from 

optimisation of the overall system.   

 

The chemicals, pulp and paper, food and drink, and iron and steel sectors all use a lot of 

electricity in motor systems.  In the UK these five sectors account for approximately 85% all 

electricity use in motors systems (DEFRA, 2008b).  The end uses of motor systems vary a great 

deal by sector.  For example, the chemicals sector employs pumping systems accounting for 

over half of its motor systems’ energy use, whereas for the food and drink sector this same 

proportion is accounted for by compressor systems.   

 

The main reason for low motor systems efficiency is oversizing at the design and specification 

stage (Williams, 2007), becuase engineers tend to err on the side of caution with liberal safety 

factors when sizing individual components.  For pumping applications, the power consumption 

of the motor varies with the cube of the rotational speed, but the flow varies linearly, hence 

small changes in motor speed can yield significant results (IEA, 2007, p.220).  Depending upon 

the variability of the (pump, fan or compressor) load being met, a variable speed drive (VSD) 

might be appropriate.  General approaches to optimising these motor systems include matching 
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the motor power rating to the load and using better control methods to respond to variations in 

loads.  

 

For pumping applications, ways to optimise include maximising the cross sectional area of the 

pipe and reducing the power of the pump, as well as minimising changes in cross sectional area 

and direction by designing equipment around the pipes and not vice versa (Williams, 2007).  

These measures all serve to reduce the parasitic power load due to friction along the length of 

the pipes.  Compressed air and fan systems can be optimised in similar ways, e.g. by locating 

and reducing leakages, and reconfiguring the piping to reduce the pressure loss through the 

system, as well as by reducing overall demand by finding alternative means to perform the 

same task.   

 

4.3.2.4 Heat recovery and transport systems 

Heat recovery and transport systems are widely applicable in industry because of the 

prevalence of heat.  It is estimated that 70% of French industrial energy demand is for heat 

generation in some form, and furthermore, that 85% of the energy efficiency improvement 

potential is related to heat generation (EDF, 2007).  The French and British industrial sectors 

have similar structures; the latter is larger overall, but France has larger iron and steel and food 

and drink sectors (Ministère de L'Économie de L'Industrie et de L'Emploi, 2005).  By focussing 

on the major causes of energy waste in industry, one is better able to address technology to 

specific problems.  Gyftopoulos and Widmer (1982, p.298) note one such cause as “the rejection 

of a [heat] stream at either high temperature or high pressure or both to the atmosphere”.  Some 

of the main technologies associated with recovering and transporting heat are thus described 

below (Hatsopoulos et al., 1978). 

 

(i) Heat exchangers can be used to recover waste heat from hot (exhaust) gases and transfer 

some of this energy to the boiler feedwater, for example.  They can be employed in most 

situations where hot and cold streams coexist, along with cooling and heating demands.  

Regenerators and recuperators can be used to recover heat from industrial furnaces, 

whereby the heat of the exhaust gases is either periodically (regenerators) or continuously 

(recuperators) transferred to the pre-combustion air.  These devices can increase the furnace 

energy efficiency by 30% or more (European Commission, 2006d).  Regenerators and heat 

wheels transfer heat from a hot stream to a material before being further transferred to a 

colder stream.  A regenerator is stationary with respect to moving streams, whereas a heat 

wheel rotates between ducts containing hot and cold streams.  Low temperature waste heat 

has applications for space heating, preheating boiler feedwater and water for washing 

processes.  At medium and high pressures, an expander may be used to extract mechanical 

work from the waste streams.  Furthermore, high temperature waste heat recovery is 

constrained by the requirements of materials to withstand such high temperatures 

(typically 1000 to 1400°C), as well as the often vitriolic and acidic nature of the exhaust 

gases.  As with CHP, the application of heat recovery is largely constrained by the 

immediate demand for the recovered heat.    
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(ii) Heat pumps are simple thermodynamic machines in which low temperature heat from a 

source is transferred to a higher temperature sink, using mechanical or high temperature 

heat energy.  In industry there are a number of possible applications, wherever it is 

desirable to pump low exergy waste heat into a higher temperature environment.  Kolbusz 

(1976) cites the examples of waste heat recovery and drying by dehumidification.  

Alongside several other specific applications, Lazzarin (1995) also suggests cooling and 

compression.  Where the temperature of a waste stream is too low to be useful (i.e. 30-40°C), 

a heat pump can be employed to raise the temperature to around 80°C (Langley, 1984a, 

p.44).   

 

(iii) Heat pipes enable the transfer of heat over significant distance with a very low heat loss 

(entropy increase), and without the need for mechanical pumping.  These may be used in 

combination with CHP systems in order to transport the heat to district heating schemes or 

adjacent industrial facilities.   

 

4.3.2.5 Cogeneration or combined heat and power (CHP) 

Cogeneration or Combined Heat and Power (CHP) can achieve very high overall efficiencies (in 

excess of 80%) by utilising the heat which would otherwise be wasted in centralised electricity 

generation.  Its applicability depends chiefly on the heat to power ratio of the load; various 

prime movers (e.g. steam turbines, diesel engines, gas turbines) are suitable for operating at 

different ratios (Enviros Consulting, 2006a).  This technology depends, critically, on there being 

a use for both outputs – this is often the limiting factor for consideration – as well as the 

economics of spark-spread (section 4.4). 

 

Trigeneration or Combined Cooling, Heat and Power (CCHP) exploits the same principle as 

CHP, with the addition of a cooling demand.  This technology is particularly applicable where 

there are significant heating, cooling and electricity demands, such as in airports.  The 

combined generation of streams to meet this demands can result in very high efficiencies. 

 

4.3.2.6 Process modifications 

Switching from batch to continuous processing can increase energy efficiency.  Energy 

requirements for continuous processing methods are lower because cooling and reheating of 

materials between stages is reduced, throughput is faster, equipment is smaller, and waste heat 

can more easily be recycled (Langley, 1984a, p.46).  Continuous processing is not always 

applicable, however, in particular for short production runs of (one-off) products, and where 

quality can only be assured by a batch-wise method. 

 

Process intensification can be achieved through a technique known as micro-process 

engineering, the field of chemical engineering concerned with carrying out reactions in small 

vessels in order to exploit the high heat and mass transfer properties due to the large surface 
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area to volume ratio, which can achieve more energy efficient processes.  The UK has been at 

the forefront of the development of this approach, which results in compact and efficient 

designs (Hessel, 2005).  Only a few examples of its successful commercial application exist, 

including heat exchangers, reactors and separation plant, which is why the Carbon Trust (2002) 

regards this approach as high risk. 

 

4.3.2.7 Lifecycle approaches to dematerialisation 

The industrial sector is unique in the sense that the products it manufactures have impacts in all 

other sectors where they are used.  Decisions made at the design stage affect the energy use and 

carbon emissions associated with the product’s whole lifecycle.  When looked at from this 

perspective, the industrial sector can play a crucial role, not only in improving the energy 

efficiency of processes, but by considering the whole impact of its products over the entire 

lifecycle, from “cradle to grave”.  Dematerialisation and lightweighting of products is estimated 

to be capable of saving 1MtC per year in the UK by 2050 (Future Energy Solutions, 2005).  Some 

of the methods involving this holistic approach are listed below. 

 

(i) Recycling can reduce the primary energy input required to process materials because the 

chemical processes have already been carried out, although this is not universally the case 

as some recycling processes are themselves energy-intensive.  In addition, reliance on 

primary material resources and the requirements for their extraction and processing, can be 

greatly reduced. 

 

(ii) Dematerialisation (or Factor X improvements) has the potential to yield improvements in 

resource productivity, thus resulting in significant increases in industrial material and 

energy efficiency.  Von Weizsäcker et al. (1997) have proposed factor four improvements, 

i.e. a doubling of economic welfare combined with a halving of resource use, whilst 

Klostermann and Tukker (1998) document several case studies which have attempted to 

achieve this.  Others have gone further, by suggesting up to factor ten improvements, so 

called 10XE, or Factor Ten Engineering (Rocky Mountain Institute, 2007).  Large per capita 

differences in material use between countries with the same levels of well-being suggest 

that there is significant scope to reduce this in some countries (IEA, 2007, ch. 10). 

 

(iii) Re-use of products, including through product recovery, and extending product lifetimes 

at the design stage, can also reduce their resource and energy requirement on a lifecycle 

basis, and can prevent them from being disposed of prematurely.  Design for recycling and 

design for dissambly are two areas that are aimed at facilitating reuse and/or recycling at 

the end of a product’s use phase.  

 

(iv) Alternative materials, which are less energy and carbon intensive, can in some cases be 

used instead of conventional ones to perform the same function.     However, this is not 

always possible, particular for materials such as cement, which is so versatile and 

universally employed in construction.   
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(v) Service providers have more control and incentive to reduce energy consumption in the 

use phase of their products or services than if they were just manufacturing the product.  

There is more incentive for energy efficiency when, for example, an energy company is 

running a process rather than selling the energy for the firm to run the process itself.  This 

has been manifested in the proliferation of Energy Service Companies (ESCOs) in recent 

times. 

 

4.3.3 Policy 

Policy is the third aspect of the tripartite approach to energy efficiency.  It has the potential to 

change behaviour through legal requirements (legislation).  The focus here is on legislation as 

an indicator of public policy.  Although there may be a gap between legislation and its 

implementation, it is considered to be the most suitable indicator in this case.  This section 

therefore discusses the policy framework and implications for the manufacturing sector, with a 

particular focus on legislation relating to energy, both at a national and European level.  It is not 

intended to be exhaustive, rather should provide an overview.  The Integrated Pollution 

Prevention and Control (IPPC, European Commission, 2008a) requires industrial firms to obtain 

licences for energy- and emission-related activities.  It is not discussed here in detail because it 

does not concern energy efficiency specifically and its broad scope precludes a critical 

assessment of its effectiveness.  The latter also applies to the European Packaging Waste 

Directive (European Commission, 2005b) and its implementation in the UK through the 

Producer Responsibility Obligations (Packaging Waste) Regulations 2007 (as amended) and the 

Packaging (Essential Requirements) Regulations 2003 (BERR, 2009). 

 

4.3.3.1 Manufacturing strategy 

Despite the dwindling contribution of the manufacturing sector to the overall economy, in 

specialist areas such as pharmaceuticals and electronics the UK possesses significant expertise 

and a strong track record in innovation (IPTS et al., 1998).  The government recognised this and 

other strengths, whilst also acknowledging key weaknesses, in its Manufacturing Strategy of 

2002 (DTI, 2002c).  This document sets out the government’s strategy for the manufacturing 

sector, by identifying the short and long term challenges facing the sector as a whole.  It 

identified seven pillars, which are all critical to the long term success of the sector (DTI, 2002c): 

Macroeconomic Stability; Investment; Science and Innovation; Best Practice; Skills and 

Education; Modern Infrastructure; and the Right Market Framework.  These pillars need not all 

be discussed at length here, but the third and fourth ones are of particular relevance because 

they encompass sustainable development and adoption of best practice (technology) 

respectively.  

 

The Science and Innovation pillar is concerned with raising UK manufacturing’s innovation 

performance by drawing on the solid science base, especially by fostering better links between 

industry and universities.  There are two strands to this theme, involving knowledge transfer 
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activities and sustainable development.  The latter is focussed on raising productivity levels in 

the sector, recognising that “not enough businesses are making this investment” (DTI, 2002c, 

para.3.15).  The Strategy further stresses that the regulation-based approach is alone insufficient 

to deliver the changes needed, and that technological innovation is the only means through 

which the manufacturing sector can achieve these productivity increases.  Knowledge transfer 

is delivered through the advice schemes such as Envirowise and Biowise respectively.   

 

The Best Practice pillar is concerned with increasing competitiveness by adopting world-class 

practices.  It aims to improve the least productive parts of an industry, which can be more than 

five times less productive than the most efficient ones (Haskell & Barnes, 2000, cited in DTI, 

2002c), and thus bring the whole sector up to a high standard.  The main activities under this 

pillar are the government-industry best practice fora, such as the SMMT20 Industry Forum 

which was established in 1994.  Since then the Forum has achieved significant productivity and 

competitiveness improvements.  The success in this area led to the concept being replicated in 

other manufacturing sectors, including aerospace, chemicals, ceramics, textiles, metals and 

clothing.  In addition, the Manufacturing Advisory Service (MAS) was set up to give free 

advice, and identify problems and opportunities for SMEs, which are considered to require 

most assistance as they don’t always have resources to devote themselves (HM Treasury et al., 

2005).  Furthermore, Innovation and Growth Teams (IGTs) have been established to convene 

key stakeholders and develop suitable policy, for specific sectors including automotive, 

chemicals, aerospace, and environmental goods and services.    

 

In 2004 this Manufacturing Strategy framework was reviewed and the government identified 

the need for performance indicators against which to quantitatively and qualitatively asses 

progress under the seven pillars (DTI, 2004b).  The sector’s spend on innovation-related 

activities increased over the decade from 2002, but as a fraction of GDP this was lower than in 

Germany and the USA.  This review did not directly address the sustainable development 

aspect of the Science and Innovation pillar, however, apart from in highlighting the 

establishment of the Chemistry Leadership Council.  The latter was set up in response to the 

Chemicals IGT’s (CIGT, 2002) report to focus on innovation and science priorities, future skills 

needs, sustainable development and industry reputation.  It is not clear how effective these 

IGTs have been in putting into practice any of their recommendations.  For example, the 

website for the Chemicals IGT have not been updated in over four years and attempts to contact 

the authors were unsuccessful.  The true effect of the CIGT on the sector is yet to be seen.  

 

The Manufacturing Strategy was again reviewed in 2008 (BERR, 2008g).  The MAS has been 

successful in helping business following its advice to save over £500million through the 

adoption of lean manufacturing techniques.  The move to a low carbon economy has gained 

prominence in the four intervening years since the previous review, and large opportunities 

have been identified for manufacturing in terms of exploiting markets in environmental 

technologies and processes, and benefitting from the comparative advantage associated with 

                                                           
20 The Society of Motor Manufacturers and Traders is the trade association for the automotive sector in the UK. 
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developments in clean technologies (Ernst & Young, 2008).  There is little focus on industrial 

processes and/or energy systems specifically though; instead, three areas of the Strategy are to 

focus on nuclear energy, renewable energy, and low carbon vehicles.  However, an Integrated 

Low Carbon Industrial Strategy, which should bring together diverse areas of government 

activity concerned with manufacturing, is planned for 2009.  A competition for the UK’s best 

cluster according to certain criteria has also been announced.  Finally, the role of the Technology 

Strategy Board (TSB) in stimulating technological advances is an ongoing element of the 

Strategy.  It has already invested in a portfolio worth over £1billion in collaborative business-

business and business-academia partnership projects.  Its main role is to add value by focussing 

on the economic benefit to the UK, however, and it neither develops energy technologies as the 

Energy Technologies Institute (ETI) does, nor achieves carbon savings as the Carbon Trust 

putatively does.         

 

4.3.3.2 The EU Emissions Trading Scheme (EU ETS) 

The EU ETS is cap and trade policy, which attempts to reduce the amount of CO2 emitted by 

industrial firms within the EU by creating a market for this gas.  Phase I ran from 2005 to 2007, 

Phase II runs from 2008 to 2012, and Phase III commences in 2013.  The EU ETS applies to 

energy activities with a thermal rating over 20MWth and the sectors manufacturing metals, 

ceramics and non-metallic mineral products (European Commission, 2003c), but excludes 

ammonia and soda ash production at the time of writing.  There are current proposals for the 

revised Emissions Trading Directive to include, inter alia, ammonia, soda ash and sodium 

bicarbonate production in Phase III (House of Lords European Union Committee, 2008, p.22, 

para 120).   

 

Companies operating under the EU ETS are given an emissions allocation which is determined 

for each Member State based on their National Allocation Plan (NAP).  Under the present 

framework, the permits are mainly given away or “grandfathered” at the start of the trading 

periods, after which point trading on the open market is supposed to overcome deficits and 

surpluses.  Further details about the NAP are given in chapter 6 where it has been used as a 

data source for modelling industrial heat loads.  A case study of the cement sector is also 

presented in chapter 5, which relates to its performance in relation to the Scheme.    

 

The extent to which real emissions reductions were achieved during Phase I of the EU ETS is 

questionable (Convery et al., 2008).  The main problem seems to be the grandfathering 

methodology, which means that the companies are in fact not paying for their (allocated) level 

of emissions.  A better alternative would be to auction the permits at the beginning of the 

trading period, which has occurred to some extent during Phase II and is being considered 

further for Phase III (DEFRA, 2008a).  The Directive (European Commission, 2003c) sets a cap of 

10% on the fraction of permits that can be auctioned in Phase II.  The UK has auctioned 7% of 

permits in this period, but for sectors where competitiveness is not at risk the Scheme would 

benefit from higher levels of auctioning up to and including 100% (House of Commons 

Environmental Audit Committee, 2007, para.40).  The Carbon Trust (2008c) found that, for a 
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central carbon price of €20/tCO2 out to 2020, competitiveness was most sensitive in those carbon 

intensive sectors that are unable pass the carbon price on to their customers, in particular lime, 

cement, and to a lesser degree iron and steel.  The aluminium sector would also be indirectly 

exposed to pass-through costs from the electricity sector if it entered the Scheme, due to the 

largely inelastic nature of electricity prices.  There are clearly uncertainties surrounding the 

carbon price out into the future, and the exposure of individual sectors will depend on this 

price.  

 

The overallocation of permits during Phase I was largely a result of liberal estimates of 

projected emissions by governments, which meant their NAPs were too generous, as was 

particularly severe in Germany (Gilbert et al., 2004).  The frequency of information disclosure 

was also too infrequent (Lewis, 2006), resulting in the market’s ignorance regarding the 

oversupply of permits until April 2006, during which time it was trading on a false premise.  

Ultimately this led to an excess of permits in the marketplace which caused the carbon price to 

plummet during the second quarter of 2006.  These problems have led to consideration of a 

benchmarking approach to emissions allocation, which is potentially more accurate than 

grandfathering because it accounts for changes in output (Entec UK Ltd. & NERA Economic 

Consulting, 2005).  Benchmarks were developed for all sectors in Phase II (ibid.); for two 

carbon-intensive sectors most sensitive to the international competition, iron and steel and 

cement, these becnchmarks were further developed for Phase III (Entec UK Ltd., 2008).  One 

main problem with the benchmarking approach is the heterogeneity betweens sectors, which 

means that a broad approach is generally not applicable (section 5.2.2), and benchmarks differ 

by sector (ibid.).  

 

A related problem concerns the fraction of emissions reductions expected to be met by Kyoto 

credits, such as those obtained through CDM and JI21 projects in developing countries.  During 

Phase II around two thirds of the emissions reduction (from BAU) is expected to be as a result 

of such transfers (House of Commons Environmental Audit Committee, 2007, p.30).  This 

fraction of emissions reductions is therefore likely to be outside the EU and in the form of 

carbon dioxide equivalent.   The Linking Directive also makes it ”theoretically possible the EU 

ETS might not be responsible for any emissions reductions within the UK at all” (House of 

Commons Environmental Audit Committee, 2007, para.69).   

 

Finally, there is the obvious problem of the EU ETS’s restriction to EU Member States, and the 

associated risk of carbon leakage, which is the strategic relocation of a company’s 

manufacturing capacity outside the trading region to avoid the carbon cost.  There does not 

appear to be evidence that this has yet occurred, but the case study of the cement sector in 

chapter 5  suggests that it is a distinct possibility with a high enough carbon price.  The sectors 

identified above as having competetiveness issues are also at risk of carbon leakage, and it 

                                                           
21 The European Commission’s (2004a) Linking Directive amends the Emissions Trading Directive (European 
Commission, 2003c) to enable Member States to allow operators to use credits obtained through Kyoto mechanisms 
(certified emission reductions and emission reduction units) such as the Carbon Development Mechanism (CDM) and 
Joint Implementation (JI) to comply with their obligations under the EU ETS. 
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seems that a sectoral deal to ameliorate this is most likely in the cement sector (House of Lords 

European Union Committee, 2008, para 120).  The conclusion seems to be that the EU ETS is not 

currently working in its intended roles, i.e. of creating a market for and ultimately reducing CO2 

emissions from industry, and that if it did there would be a risk of carbon leakage for some 

sectors.  The latter problem could be overcome by a multilateral as opposed to unilateral 

trading scheme, or by some form of carbon tax on imported goods.    

  

4.3.3.3 Domestic policy: the Climate Change Programme 

The Climate Change Programme was updated in 2006 in order to maintain progress towards 

Kyoto targets (of 12.5% reductions in a basket of six GHGs by 2008-2012 on 1990 levels) and to 

facilitate convergence towards domestic targets of reducing CO2 to 20% below 1990 levels by 

2010.  It includes the Climate Change Levy (CCL), a tax on energy use applied to industry, with 

a dispensation of 80% available to certain energy-intensive industries in the form of the Climate 

Change Agreements (CCAs), in return for undertaking energy saving measures towards 

predefined goals.  Its introduction in 2001 was accompanied by a 0.3% cut in employers’ 

national insurance contributions, intended to offset any apparent increase in taxation on the 

business sector as a whole.   

 

It has been estimated that full carbon savings from the CCL in 2020 will be of the order of 

3.7MtC; measures introduced in the Climate Change Programme are estimated to save around 

4.9MtC in the business sector22 by 2010 (DEFRA, 2006c).  The largest reduction in carbon dioxide 

emissions in the whole business sector was achieved in 2006 as a result of the CCL (DEFRA, 

2006b).  It has already achieved cumulative savings of over 16MtC and, compared with a 

situation where the package were not in place, is expected to result in annual savings of 3.7MtCe 

by 2010, with an associated reduction in overall unit costs for businesses of 0.13% by 2010 (HM 

Treasury, 2006).  Whilst the announcement effect of the CCL led attention to be focused on 

energy use in industry after 1999, the results from 2007 suggest than the Levy is no longer such 

a key driver of energy efficiency (National Audit Office, 2007).   

 

The CCAs seem to have been very effective in incentivising energy efficiency, with estimated 

annual carbon savings by 2010 estimated at 1.9MtC (ibid.).  There is evidence of an “awareness 

effect”, which stimulated energy savings and explains some sectors’ achievements above and 

beyond the (admittedly rather weak) targets (Barker et al., 2007).  The overall (net) effect of the 

CCA/CCL package resulted in environmental benefits over a situation in which a flat rate tax 

was imposed with no rebate, and no CCAs (Ekins & Etheridge, 2006).  Extrapolating these 

findings for voluntary and negotiated agreements in general suggests that such a policy 

measure is an effective means of incentivising energy efficiency in industry.  Initially, a high 

enough tax is required to do this, followed by a suitable offer of a rebate on this tax for suitable 

measures, and culminating in negotiations with sectors to set targets.  The latter may indeed be 

                                                           
22 Business here includes industry and commercial sector; no further disaggregation is available. 
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weak if, as it seems, the majority of the energy efficiency measures are undertaken due to 

increased awareness about them. 

 

The Carbon Trust was created by the government in 2001 as a private company, in order to 

offer an integrated support programme for the uptake of low and zero carbon technologies.  It 

is especially focussed on organisations within the public and commercial sectors, and offers 

support in various forms, including (The Carbon Trust, 2008a): 

 

• Energy audits, which may be free for companies with energy bills in excess of £50,000 

per annum;   

• An enhanced capital allowance (ECA) scheme to provide an incentive for companies to 

invest in low carbon technologies;   

• Interest free loans; 

• Expert advice on a consultancy basis;   

• The Carbon Trust Standard (previously the Energy Efficiency Accreditation Scheme) 

provides certification for businesses that commit to measuring, managing and reducing 

their carbon emissions;   

• Applied research, with funding up to £250,000 available for relevant projects, and field 

trials of market-ready technologies and solutions.   

 

Particularly relevant to the latter point is the recent advanced metering field trial, which 

identified average annual cost savings of £1,000 (and 8.5tCO2) through advanced metering in 

SMEs, if the barrier of insufficient financial incentives for energy suppliers can be overcome 

(The Carbon Trust, 2007).  At the time of writing two field trials are underway in the field of 

industrial energy efficiency, focussing on plastic bottle production and asphalt manufacturing, 

and due for completion around 2010 (Staunton, G., The Carbon Trust, pers. corr., June 2008). 

 

The House of Commons Committee of Public Accounts (2008) assessed the performance of the 

Carbon Trust, finding that although it is due to meet its target of annual reductions of 4.4MtCO2 

by 2010, this is not a particularly challenging goal against the total reduction of 118MtCO2 

required by the Climate Change Programme (i.e. 20% reduction on 1990 emissions of 

592MtCO2).  Overall, businesses and public sector organisations adopted less than 40% of the 

Trust’s recommended savings in the financial year of 2006-2007, and the main barrier to 

adoption was identified as cost.  This was particularly the case for smaller businesses (SMEs) 

with limited access to capital.  Managers often failed to see the commercial benefits of adopting 

energy efficiency projects and there was a lack of time to take up and/or install the device or 

project.   

 

Amongst the recommendations for the Carbon Trust are that it should collate more data on the 

typical energy use and costs in key sectors, in order to provide a more convincing case for the 

potential savings.  This lack of data for specific industrial sectors is very pertinent to the present 

work, as there is a general paucity of data relating to manufacturing sectors, which is 

disaggregated and accurate enough to understand energy use and carbon emissions at the 
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sector level and below.  The Carbon Trust is also urged to promote the Energy Efficiency 

Accreditation Scheme (rebranded as the Carbon Trust Standard) on the grounds that it stands 

to increase share values and company competitiveness in the long term.  Furthermore, there 

seems to be a limitation on the scope of the Carbon Trust’s activities because of the restrictions 

surrounding EU rules on State Aid.  It would seem logical to target those sectors or individual 

businesses which are energy or carbon intensive, but the State Aid rules restrict the extent to 

which this is possible because it has the potential to distort competition.  A related problem is 

that the Trust’s fund managers stand to make considerable returns from investments in nascent 

low carbon technologies, something which needs to be reviewed regularly if experienced staff 

and investor confidence are to be retained.  The State Aid problem meant that the Carbon Trust 

was not able to target the two-thirds of businesses with energy bills greater than £500,000 per 

year, which collectively produced around one third of all UK CO2 emissions (House of 

Commons Committee of Public Accounts, 2008, p.8).  There appears to be a public policy gap 

here: either the remit of the Carbon Trust should be modified to allow it to focus energy-

intensive companies, or another organisation should be established to do this whilst not being 

subject to the same constraints surrounding State Aid.   

 

The government’s Cogeneration Directive sets a 10GWe target for good quality combined heat 

and power (GQCHP) by 2010 (DEFRA, 2004).  It is the national implementation of the European 

Directive on promotion of Cogeneration (European Commission, 2004b).  This is highly 

relevant to industry because it is one of the main users of this technology: 93% of (electrical) 

CHP capacity is concentrated in the industrial sector (BERR, 2007, p.151).  The uptake of CHP 

has been and remains slow, however, due mainly to economic barriers such as the spark spread 

and the large recent increases in gas prices, which is the fuel used for over 60% of industrial 

installations (Cambridge Econometrics, 2003).  The installed electrical capacity of GQCHP was 

5.4GWe in 2005 (DEFRA, 2007a) and in 2007 the figure was 5.5GWe (BERR, 2008a).  It is 

therefore unlikely that the 10GWe target will be met, as confirmed by revised estimates from 

Cambridge Econometrics (2003).  The latter suggest that 8.1GWe of GQCHP generation capacity 

will be installed by 2010, with a range of estimates from 7.7GWe – 9.4GWe.       

 

4.3.3.4 Waste-related policy 

The European Directive on Waste Electrical and Electronic Equipment (WEEE, European 

Commission, 2003b) came into effect in August 2005, and aims to reduce the amount of WEEE 

sent to landfill or for incineration by forcing manufacturers to arrange for the safe and clean 

disposal of their products at the end of their useful lives.  The European Directive on the 

Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment 

(RoHS, European Commission, 2003a) has been effective since July 2006.  It aims to reduce the 

amount of heavy metals, amongst other harmful substances, that is contained in the waste that 

does eventually end up being landfilled or incinerated.  The scope of the WEEE and RoHS 

Directives is therefore limited to companies manufacturing electrical and electronic equipment.   
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The main impact of the RoHS for electronics manufacturers has been to affect a shift towards 

lead-free manufacture, involving the replacement of tin-lead alloys with lead-free alternatives 

(Goosey, Professor M., IeMRC Industrial Director, University of Loughborough, pers. corr., 

November 2008).  These alternative alloys have higher melting points, which initially caused 

concerns that the legislation would actually increase the energy consumption of the process.  

Developments in the energy efficiency of process technology have meant that these concerns 

proved largely unfounded, however (op. cit.).  Another key concern relates to the issue of “tin 

whiskers”, which spontaneously grow from the solder and can cause short circuits, as wells as 

less ductile joints and higher strain due to higher differential temperature coefficients required.  

Finally, ensuring compliance along global supply chains seems to be very difficult, time 

consuming, and therefore costly.     

 

The main problem with the WEEE has been the way in which the Directive (European 

Commission, 2003b) has been implemented differently in each of the Member States leading to 

an administrative burden (EurActiv, 2007).  Secondly, in many countries WEEE is collected en 

masse from civic amenity sites or household collections (ibid.).  As the waste is not sorted, the 

manufacturers contribute to a collective scheme with the fees determined by the company’s 

market share.  Importantly, this dilutes the incentive for design for recycling because the benefit 

is shared with competitors. 

 

Two domestic programmes relevant to industry are the Waste and Resources Action Plan 

(WRAP) and the National Industrial Symbiosis Programme (NISP).  WRAP was created as part 

of the Waste Strategy in 2000.  It is mainly funded by DEFRA, under the Waste Implementation 

Programme and Business Resource Efficiency and Waste programme (Brown, M., WRAP, pers. 

comm., Sept. 2008).  It is a not-for-profit company which aims to help individuals, businesses 

and local authorities to reduce waste and increase recycling rates.  Within the manufacturing 

sector, WRAP is working alongside local authorities and reprocessors to enable continued 

collection of plastic bottles (WRAP, 2008c).  In addition, it is working with thirteen Material 

Recycling Facilities (MRFs) in a range of trials, including sorting high quality paper and glass 

on a full scale.   

 

There are several WRAP project areas that are particularly relevant to the manufacturing sector, 

including activities in the container glass sector as discussed in chapter 7.  In addition, WRAP 

(2008a, AEA Technology & WRAP, 2006) carried out an LCA of plasterboard (gypsum) and 

reviewed the rate of recycled paper usage in UK paper mills (WRAP, 2002).  WRAP’s business 

plan for the period 2008-2011 involves focussing on eight key work streams within the 

manufacturing sector: container glass, recovered paper fibre, plastic bottles, mixed plastics, 

waste protocols, MRFs, electrical products and industrial products (WRAP, 2008d). The total 

budget for the Programme is of the order of £60million per annum for the period 2008-2009, of 

which around £5million is dedicated to the manufacturing sector directly (with indirect funding 

streams to the sector through related activities such as materials recycling and organics).  

WRAP is thus addressing many of the waste-related and environmental issues of diverse 

manufacturing sectors.  In so doing it is providing a clearer understanding market trends and 
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barriers to change in these areas and thus enabling policy to be more effectively directed 

towards specific materials.    

 

The National Industrial Symbiosis Programme (NISP) was established in 2005 in order to create 

commercial opportunities to exploit industrial resources, such as materials, energy, and water.  

NISP is also mainly funded through DEFRA’s Business Resource Efficiency and Waste (BREW) 

Programme, and membership is free to companies, with the organisation being administrated 

on a local basis through twelve regional offices.  Since its creation in 2005, NISP has helped to 

reduce carbon emissions by 4.4MtCO2, mainly by diverting wastes streams into other industries 

(NISP, 2007).  Related to NISP is the Landfill Tax, which requires manufacturers to pay for 

sending waste to landfill.  It has been instrumental in encouraging manufacturing companies to 

reduce waste relating to their processes (O’Hare, J., Dept. of Mechanical Engineering, 

University of Bath, pers. corr., March 2009).    

 

4.3.3.5 Minimum-efficiency standards 

There are several policies requiring energy technologies to adhere to minimum efficiency 

standards that are relevant to industry.  The Directive on Energy End-Use Efficiency (European 

Commission, 2006b) is the basis of the Action Plan for Energy Efficiency, which details the 

measures necessary to achieve a 20% improvement in energy efficiency by 2020 across Europe 

(European Commission, 2006a).  The Action Plan (ibid., pp.20-25) implements and amends the 

existing Energy End-Use and Energy Services Directive, by issuing a mandate for a European 

norm (EN) for energy audits, proposing more detailed metering and billing requirements and 

possibly establishing a centre to identify and improve emerging and existing technologies.  It 

also proposes developing minimum efficiency requirements for new electricity, heating and 

cooling capacity lower than 20MW, and considering, if necessary, such requirements for larger 

units.  

 

The Directive on Energy End-Use Efficiency also requires Member States to implement national 

Action Plans in order to meet their national target of a 20% improvement in energy efficiency 

by 2020.  The UK’s Action Plan only addresses those industrial sectors not covered by the EU 

ETS (DEFRA, 2007f); the EU ETS remains the government’s main policy for targeting energy-

intensive industries.  Hence the scope of the UK’s Action Plan is mostly irrelevant here, except 

for the introduction of the Carbon Reduction Commitment (CRC), a cap and trade emissions 

trading scheme covering commercial and public sectors (i.e. those outside the EU ETS).  The 

CRC is estimated to deliver 1.2MtC savings by 2020 (ibid., p.48).  The non-energy intensive 

industrial sector is also involved in voluntary agreements within the SME sector, of which a 

quarter is accounted for by manufacturing businesses.  The precise format and content of these 

agreements is still being determined at the time of writing. 

 

Another relevant policy resulting from the European Action Plan is the Directive (European 

Commission, 2005a) on Eco-Design of Energy-using Products (EuPs), which applies to 

manufacturers of electronic and electrical products.  In order to retain their CE marking, and the 
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right to sell their products within the EU, the manufacturers have to comply with specific 

EcoDesign criteria over the whole lifecycle, in particular relating to energy use.  Whilst these 

criteria only apply during the use stage of the product’s life, there are implications for the 

manufacturers because they must redesign the products with this in mind.  The manufacturing 

sector is therefore affected in one of two possible ways.  Firstly if products are used within the 

sector itself, such as boilers or motors, then these devices are covered by the Directive during 

their use phase.  Secondly, the manufacturing sector is directly responsible for the energy 

consuming characteristics of products employed in other sectors, all of which are covered by 

the Directive.  The Directive does not stipulate specific requirements for individual products, 

however, but establishes conditions for setting such requirements and enables them to be 

improved quickly and efficiently through Implementing Measures. 

 

The main impact of the EuP for manufacturing sectors is on motor systems.  These systems are 

mostly used to drive pumps, fans and compressors, which account for 32%, 22% and 8% of 

electricity use by motors in commercial and industrial applications (DEFRA, 2008b).  Other 

applications include refrigeration, air conditioning and materials handling.  The efficiency 

standards developed through Implementing Measures are voluntary, however, and relatively 

low in the EU compared to mandatory schemes elsewhere (IEA, 2007, p.223).  In the UK the 

Market Transformation Programme (MTP) is responsible for developing evidence for the EuP 

Directive.  The MTP (2007) found that such voluntary incentive measures have lead to market 

penetrations of efficient motors between 10% and 20% in general across Europe, and 17% in the 

UK.  The only way to increase the market penetration further is through mandatory minimum 

standards, as has been very successful in the USA.  Hence why the United Nations Industrial 

Development Organisation (UNIDO) advocates an energy management (ISO) standard along 

the lines of ISO14001, which integrates energy efficiency into management systems (Williams, 

2007). 

 

Finally, in comparison to domestic hot water and central heating boilers, industrial boilers 

suffer from an absence of regulation in the UK (Future Energy Solutions, 2005).  Their 

widespread use in industry to raise process water and steam means that they account for a 

large proportion of the energy consumption, estimated to be around 50% of the total (DTI, 

2002b).  However, this lack of regulation has contributed the continued use of old, inefficient 

boilers, which are often kept running for much longer than their design life because their 

limited maintenance cost are low compared with their replacement cost.   

 

4.4 Drivers and barriers to energy efficiency 

Having examined the means through which energy efficiency can be achieved, attention is now 

turned to the reasons why the above measures are not always effective in practice.  The 

discrepancy between the cost-effective potential for energy saving and the actual level of uptake 

has been referred to as the energy efficiency gap (Jaffe & Stavins, 1994) and the energy 

efficiency paradox (DeCanio, 1993, 1998; Van Soest & Bulte, 2001).  There is much evidence for 

the presence of this gap in general (ibid.) and in the United States in particular (Shipley & Elliot, 
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2006).  The existence of this gap or lack of uptake is attributed to barriers that exist, and 

therefore prevent the realisation of this theoretical cost-effective potential.  Whilst the presence 

of the energy efficiency gap is widely acknowledged, its quantification is not straightforward.  

In particular it depends on exactly which costs and benefits are associated with a project; if 

these are properly accounted for, Van Soest and Bullte (2001) suggest that the gap is smaller in 

practice than in theory, and that in some cases it may in fact be rational not to invest in an 

energy efficient technology which appears profitable from an NPV point of view.  This is 

because of the inherent uncertainty associated with future technological progress and the (at 

least partly) irreversible nature of investment.  Although firms forego a short-term energy (and 

cost) saving, in the long-term they stand to reap the cost benefits of even better (more efficient) 

technology.  Furthermore, an unknown proportion of the gap seems to be affected by a 

perception bias: public opinion indicates that the fiscal and regulatory incentives in industry are 

not strong enough to support a more rapid uptake of energy efficient technologies and 

practices, but it is not been possible to prove this (Future Energy Solutions, 2005, p.80).  In some 

cases even economists’ own unwillingness to accept the evidence of shortcomings in the 

economic theories itself can become a barrier (DeCanio, 1998). 

 

There are various definitions of energy efficiency or energy saving potential.  Jaffe and Stavins 

(1994) make a distinction between the theoretical (hypothetical) maximum, the technical, and 

the economical potential (Figure 4-2).  The former is what might be achieved according to 

theory, for example the theoretical SEC of a process, but that is never attainable in practice.  The 

technical potential is that part of the theoretical potential that can be achieved with (current) 

technology, i.e. is practically feasible.  The economic potential is that proportion of what is 

technically feasible that is currently economical at market prices.  The market trend potential is 

what would be expected under a given set of energy policies, energy prices etc., and therefore 

reflects market imperfections and social obstacles (Jochem, 2000, p.183).  The extent to which the 

latter two can be overcome will determine the size of the market trend potential.  Finally, the 

welfare potential reflects the additional savings when externalities are taken into consideration.  

These potentials are graphically represented in Figure 4-2.  The relative size of these potentials 

depends very much on the specific circumstances, in particular the existing government policy.  

The baseline in Figure 4-2 invariably already incorporates some policy measures towards 

energy efficiency, such that the potentials as shown are merely indicative, and do not indicate 

quantitative estimates.   

 

4.4.1 Theoretical framework of barriers to energy efficiency 

A broad theoretical framework therefore has to include economic, behavioural and 

organisational types, whereby many barriers exhibit aspects of several or all of these.  For 

economic-related barriers it is useful to distinguish between market barriers and market 

failures (Jaffe & Stavins, 1994).  The former refers to disincentives to the adoption of apparently 

cost effective technology, whereas the latter are a special case of market barriers in which the 

market has somehow failed to operate efficiently, and in which economists see a case for public 

policy intervention (Sorrell et al., 2000).  The distinction between these two types of economic 
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barrier is not clear however, because in practice markets are neither perfect nor efficient.  The 

neoclassical concept of a market failure is predicated on the assumption that markets are fully 

integrated and efficient.  The fact that they are not leads some market failures to be classified as 

market barriers, which is supported by empirical evidence that markets for energy related 

technologies are not free from structural imperfections (Sanstad & Howarth, 1994).  The 

implication is that hidden costs, for example, should be considered market failures because 

they always exist. 

 

 
Figure 4-2 – Different definitions of energy efficiency potential  

(adapted from Enquête Commission, 1991, cited in Jochem, 2000, p.183) 

 

Economic market barriers include (Sorrell et al., 2004):  

 

• Heterogeneity of the area of application, which is particularly salient in non-energy-

intensive sectors of industry (such as food, textiles and machinery); one particular 

technology is therefore not always applicable across the board; 

• Hidden costs, which are often overlooked in an appraisal of the project; these include the 

cost of downtime for installation and maintenance of equipment; 

• Access to capital, which, if lacking, can be the limiting factor behind neglecting potential 

projects; the question of who should fund the project within an organisation often 

arises – the answer is sometimes elusive; and 

• Risk, which is manifested in the strict investment criteria such as short payback periods 

demanded for projects. 

 

Economic barriers classed as market failures are (Sorrell et al., 2004): 
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• Imperfect information, which might be in the form of a lack of information about 

technologies or techniques, or a presence of incomplete information, which could be 

outdated or inaccurate; this market failure includes: 

• Adverse selection, whereby purchasers select products or services (often purely) 

based on price, without fully appreciating either the true energy efficiency 

savings gained, or the relative merits of the technology compared to the 

alternatives;  

• Moral hazard, where agents are presented with an opportunity to cheat after 

signing a contract; 

• Split incentives, where the economic benefits from an energy efficiency investment 

are not realised by the investor; 

• Imperfect competition, such as where monopolistic or oligopolistic firms are able to 

exploit their large market shares; 

• Incomplete markets, such as when markets are not fully integrated, and the agents 

trading within them only represent a subset of the market population, which can 

contravene the condition of Pareto optimality defined in Appendix A2.1; 

• Principal-agent relationships, which are common in large companies where there is a 

hierarchical structure, and are characterised by information asymmetry. 

 

Whilst these economic barriers are important, they are all concerned with markets, but many 

obstacles to realising energy efficiency improvements lay outside markets.  Eyre (1997) suggests 

that this framework fails to explain the origins and underlying structure of the barriers and how 

they might change in the long term – instead, it only confirms the inadequacy of the model as 

discussed in chapter 2.  He argues for a more holistic consideration of the psychological, social 

and institutional aspects of energy use.  The latter barriers are incorporated into the above 

framework, however, through recourse to the fields of organisational theory and psychology 

(Sorrell et al., 2004).  Insights from these two fields have enabled a better understanding of the 

nature of bounded rationality, for example.  Hence the neoclassical assumptions of utility 

maximisation by agents in possession of complete and perfect information, within complete 

markets, are all relaxed within this framework because of their imprecise depiction of real-

world behaviour. 

 

4.4.2 The rebound effect 

The rebound effect is the mechanism through which improvements in energy efficiency lead to 

increases in energy consumption.  It was first posited in relation to coal consumption by Jevons 

(1866), who argued that more economical use of this fuel would in fact result in an increase, 

rather than a reduction, in its consumption.  The effect is therefore also known as Jevons’ 

Paradox.  A positive rebound is defined as an increase in energy demand due to increased 

energy efficiency, and is usually expressed as a percentage of the expected energy savings 

(Sorrell, 2009).  The overall or economy-wide rebound consists of direct and indirect effects.  

The former was first identified by Khazzoom (1980), and relates to the increased uptake of an 

energy service as a result of improved energy efficiency.  The ubiquitous example is of the 
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motorist who exploits the improved energy efficiency of his or her vehicle to drive further.  

Indirect rebound effects are more complex because they encompass all the ways in which 

apparent savings result in increased energy demand, often involving complex cross-sector 

linkages (Herring, 1999, 2006; Greening et al., 2000; 4CMR, 2006).  For the industrial sector, an 

example of an indirect rebound effect is increased production resulting from improved 

efficiency.     

 

In general, arguments in support of the rebound effect do not include quantitative estimates; 

what theoretical and empirical evidence there is contains a number of weaknesses and 

inconsistencies (Sorrell 2009).  The emphasis of investigations for the rebound effect has – by 

and large – been in the domestic and transport sectors (Greening et al., 2000).  The findings 

seem to indicate that the effect is largest in these sectors, but it is unclear whether it is actually 

much smaller in industry because of a lack of empirical data for this sector.  What little evidence 

there is for industry suggests that the effect is small.  However, there is little conformity 

amongst even these few studies, such that the scope and magnitude of the effect for industry is 

not yet fully understood.  Furthermore, the measurements all come from short-term studies, 

which cannot account for changes in the firm’s technologies, for example.  Also, most studies 

have been at the level of the firm, such that industry size is inevitably neglected.  In the short-

run, the industrial rebound effect has been estimated as low to moderate, lying somewhere in 

the range 0-30% (ibid.; Bentzen, 2004).  In the long-run, estimates are much less insightful, 

giving a wide range of estimates: the levels of direct take back depend on their ability to 

substitute fuel for other factor inputs.  The available evidence does suggest, however, that in the 

majority of cases technical efficiency gains result in fuel savings, which are only slightly eroded 

by increases in demand.  In the broader context, however, the importance of energy/exergy as a 

driver for economic growth (section 2.2) means that increases in energy or exergy efficiencies 

could be manifested as increases in growth rather than reductions in energy demand (Sorrell 

2009).     

 

4.5 Summary and conclusions 

Energy efficiency in this context is defined as the energy use per unit (or mass) of product 

produced (the SEC).  Interdisciplinary indicators have been widely used to analyse industrial 

performance from a macroeconomic perspective, but their accuracy is limited by inconsistencies 

in aggregation, problems in selecting the appropriate price index, and modifications to the SIC 

and/or product specialisation resulting in measurement errors.  Such indicators are useful for 

identifying broad trends but the way in which the data are published means that such 

macroeconomic measures are by definition retrospective rather than actual.   

 

There are three main approaches to increasing energy efficiency, including behaviour, 

technology, and policy.  The potential for all three of these measures is limited in practice by 

market failures and market barriers, which can be addressed by public policy measures, as well 

as organistational and behavioural barriers, which cannot.  Only if these barriers can be 

overcome will the full potential be realised or even approached.  Behaviour is essentially 
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concerned with energy management, which appears to be varied in its application; not all firms 

undertake it, and the evidence of its application is somewhat anecdotal.  It is certain that, to be 

effective, energy management has to be embedded in a company’s culture, though, rather than 

simply being a tool which can be employed.  Technology offers large potentials for improving 

energy efficiency, both in terms of systemic optimisation and specific technologies with niche 

applications.  Within the former, combustion, motor, steam and heat recovery/transport systems 

are ubiquitously applied in industry and are therefore areas on which to focus attention.   

 

There are various areas of public policy relating to energy use in the manufacturing sector.  The 

Manufacturing Strategy places very little emphasis on energy and sustainability related issues; 

energy efficiency is addressed indirectly through attempts to improve productivity, but the 

long term sustainability of the sector is not well considered.  The Innovation and Growth Teams 

(IGTs) are partly meant to address this, and the automotive team appears to have made some 

significant impacts on the sector, but the results of the other teams remain to be seen.  There is a 

risk that these teams convene on a one-off basis to discuss the issues and the report becomes 

their main (and only) output. 

 

The EU ETS is supposed to achieve carbon reductions in the energy-intensive industries but 

there are concerns, for several reasons, that it is not achieving any – or that the majority are 

occurring outside the EU.  Auctioning more (or all) of the permits, expanding the Scheme to 

cover other sectors such as aluminium, and addressing the fraction of the emissions reduction 

in each period that can be met from Kyoto transfers should help this problem.  In the broader 

context, though, the Scheme needs to be linked with other international trading schemes if 

carbon leakage is to be avoided, especially within sectors vulnerable to the carbon price such as 

cement and iron and steel.  

 

The CCL and CCA package seems to be effective in delivering energy efficiency improvements.  

Two other key areas of the Climate Change Programme, the Carbon Trust and the 10GWe 

target for GQCHP by 2010, appear to have weaknesses.  The Carbon Trust is not achieving 

many of the potential savings identified because of barriers to energy efficiency and its ability to 

focus on energy- and carbon-intensive firms is constrained by European State Aid laws.  The 

CHP target will almost certainly not be met by 2010, due mainly to a lack of uptake of CHP 

because of poor economics (or a perception of this). 

   

In the area of waste-related policy WRAP is very active in many manufacturing sectors, and is 

identifying the potential for improvements through, for example, recycling and lightweighting, 

as well as the reasons why this might not be technically or economically feasible.  NISP is 

realising some of the potential savings in these areas.  Minimum efficiency policies seem to be 

quite comprehensive in coverage, but there remains scope for a mandatory minimum efficiency 

standard for motors, and there seems to be a lack of efficiency-related legislation for industrial 

boilers and furnaces/ovens. 
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5 Macroeconomic analysis of the manufacturing sector23  

The purpose of this chapter is to present the UK manufacturing sector in context, by analysing 

the role that it plays in the economy as a whole as well as in providing goods to trade 

internationally.  To begin with the sector is analysed in terms of output, growth rates, and 

energy and carbon trends.  Attention is then drawn to productivity metrics, in particular 

energy, labour and multi-factor productivity (MFP).  Subsequently the patterns of international 

trade in goods from the manufacturing sector are explored, followed by a case study of the 

European cement sector’s energy efficiency and related activities in the context of the EU ETS.  

The empirical evidence for barriers and drivers to energy efficiency in industry is then 

discussed, within the theoretical framework presented in the previous chapter.  Finally, a 

summary of energy demand projections for the industrial sector is given. 

 

5.1 Background to British manufacturing 

Britain was the first nation to undergo an industrial revolution based on steam, which occurred 

in the late 18th and early 19th Centuries and fundamentally affected the country’s economic 

structure.  This unprecedented development later spread around the world, in particular to 

Germany and the USA, which have arguably been two of Britain’s largest industrial 

competitors ever since.  The Industrial Revolution lasted from around 1780 to 1830, although 

there has been some dispute about the precise period over which it occurred.  It was largely 

enabled by the strong population growth in the latter half of the 18th Century, which resulted in 

an increased mobility of the labour force, and higher output from the agricultural sector.  These 

changes, coupled with efficiency improvements in agriculture, provided the labour force that 

would drive the Revolution.  In addition, there were crucial external factors which brought 

about this fundamental change, including foreign trade and entrepreneurship (More, 1997).  

The latter was particularly relevant when one considers that the steam engine had been around 

for well over half a century.  Only when James Watt invented the condenser in 1765, thereby 

improving the efficiency of the machine and the con-rod mechanism for transforming rotation 

into linear motion, was steam’s widespread adoption as a prime mover economically facilitated 

(Lyle, 1947).   

 

Changes within specific industries can broadly be classified as stepwise or revolutionary.  These 

generally occurred within mass-market consumer goods industries and specialised producer (or 

intermediate) goods industries, respectively.  Whereas many consumer goods sectors grew in 

size without drastically adapting their processes, several producer goods industries underwent 

significant technological innovation in order to grow.  Indeed, such innovation was necessary to 

enable their development.  This was particularly the case in the iron industry, which had 

previously used charcoal from sustainable coppices as its main fuel.  When demand exceeded 

                                                           
23 Some of the material in this chapter was presented at the International Conference of the Society for Sustainability and 
Environmental Engineering, November 2007, Perth, Australia.  The case study of the cement sector in section 5.4 was 
published in Carbon Finance, a trade magazine.  These publications are both attached in appendix A1. 
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supply for this fuel, and the price of charcoal therefore rose, an alternative was found in coal – 

in the form of coke.  Such fundamental innovations were not generally widespread, however, 

and in the majority of industries there were steady improvements.  The specialisation that was 

particularly prevalent in consumer goods led to the growth of an independent services sector, 

as ancillary operations associated with, but not absolutely necessary for, the manufacture of 

these goods became largely independent.  Hence it was through specialisation, and the 

associated Smithian division of labour, that the services (tertiary) sector evolved as an adjunct to 

the manufacturing (secondary) sector, in a similar way to how the secondary sector itself 

evolved from the agricultural (primary) sector.   

 

5.2 British manufacturing in a national context 

The purpose of this section is to analyse some of the macroeconomic trends within the 

manufacturing sector by employing different metrics, and thus provide an understanding of the 

national context in which the sector operates.    

 

5.2.1 Introduction 

According to BERR’s DUKES (2008a, p.14) the industrial sector accounted for around 19% of 

final user energy demand, or 1,309PJ of 6,891PJ in 200724.  This does not include oil refining or 

production of coke, which are instead counted within the energy supply sector.  If the energy 

use as coke and petroleum products within industry are included, this figure for 2005 increases 

to around 1,650PJ (DTI, 2007b, cf. Figure 5-4).  The CO2 emissions from the sector on an end-

user basis accounted for 28% or 42.4MtC out of a total of 151.1MtC in 2005 (DEFRA, 2007b).  

These emissions figures are determined on an end-user basis, so that emissions resulting from 

the energy processing sectors (namely electricity generation and petroleum refining) are 

allocated downstream to the point at which the energy is used.  

 

According to the Office for National Statistics (ONS, 2006c), the industrial sector accounted for 

about 13% of GDP in 2004, or 14% of total GVA (whereby the difference is due to the sum of 

taxes minus subsidies), as shown in Figure 5-1.  This share fell below 20% for the first time in 

1999 and has been declining since then (ONS, 2006c, p.23).  The remainder of GDP is generated 

mainly by service-related activities, which account for over 65% of the total and represent the 

fastest growing part of the economy.  In fact the largest difference in contributions to GVA over 

the period 1992 to 2004 was accounted for by a decline in the manufacturing sector and a 

growth in services.  Together these two sectors accounted for almost half of total change in 

GVA between these two years, but their relative contributions went from being almost equal in 

1992, to a situation in 2004 where the service sector’s contribution was well over double that of 

manufacturing (ONS, 2006c, p.23).  The decline of manufacturing GVA has been led by 

clothing-related industries and heavy industries such as iron and steel.  This has been due to 

                                                           
24 DUKES includes the construction sector in industry, so these totals are slightly different from those included in 
figures and discussed elsewhere in this thesis. 
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many factors, but mainly because of fierce competition from emerging markets that have 

opened up as a result of globalisation.  Toll processing and trade liberalisation have also 

increased the degree to which the UK has to, and to a large extent is unable to, compete with 

cheaper imports (ONS, 2006c, p.24). 
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Figure 5-1 – GVA in for three economic sectors and national GDP 1992-2004 

Source: ONS (2006a) 

 
The shift towards service activities across the whole economy has been accompanied by a 

blurring of the distinction between secondary and tertiary activities within the manufacturing 

sector itself.  Many manufacturers have positioned themselves as service providers rather than 

merely sellers of a product (DTI, 2000).  Examples include aero-engine manufacturers such as 

Rolls-Royce, automotive companies, and so-called energy service companies (ESCOs), all of 

which provide the hardware and the associated maintenance necessary over the lifetime of the 

product.  The proportion of Rolls-Royce’s revenue from aftermarket (servicing) activities has 

increased from around 20% in 1981 to almost 60% in 2007 (The Economist, 2009a).  Ford offers 

car servicing support, both in terms of financing/leasing and maintenance, which is an 

indication of the changing nature of innovation (Howells, 2000).  This blurring of the boundary 

between services and manufacturing activities means the true role of these and other companies 

is misrepresented when they are classed as purely manufacturing in the national statistics 

(Figure 5-1).  For companies like Rolls-Royce, in which service activities account for a large 

proportion of output, the relative reduction in manufacturing’s contribution to GDP can be 

understood as being partly due to a delineation of the concept of what constitutes a 

manufacturing sector.  The sector can no longer be considered as a workshop that simply makes 

products.   

 

In a longer term context, the manufacturing sector is the only one in the UK that has 

experienced a significant fall of roughly 40% in final energy demand since the first oil price 

shock of 1973/74 (BERR, 2008b).  This was in spite of an increase in the monetary value of 
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output of over 40% in real terms during this period (Engineering Council, 1998).  The 

consequent aggregate reduction in energy intensity (TJ/£million of gross value added, GVA) 

masks different underlying causes: 

• Energy efficiency: The majority of the change in industrial energy intensity is due to 

improvements in energy efficiency (DTI, 2002b, p.32).  It has been estimated that 

around 80% of the fall in industrial energy consumption between 1965 and 1995 was 

due to this factor (Engineering Council, 1998, p.429).   

• Structural and output effects: The relative size of the industrial sector has shrunk with 

a move away from heavy industries.  These two effects have been relatively small 

within the UK (DTI, 2002b, pp.33-34, Howarth et al., 1991, Greening et al., 1997). 

• Fuel switching:  Coal use in UK industry has declined steadily since the early 1960s in 

favour of cleaner fuel (Hammond, 1998).   

 

This point is worthy of further attention, hence the evolution of the fuel split for the industrial 

sector is shown in Figure 5-2.  As well as the shift away from coal to gas (the so-called “dash for 

gas”) in the 1980s, there has been a steadily increasing market share of electricity use in 

industry over the past few decades.  There was a sudden drop in industrial consumption of 

petroleum related products after the oil price hikes in the 1970s.  In 2006 the fuel split is 

dominated by natural gas, electricity and petroleum products, which account for 37%, 22% and 

32% of the total respectively (BERR, 2008b).  The remainder is mainly accounted for by solid 

fuels, heat and renewable fuels.  
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Figure 5-2 – Industrial final energy use by fuel 1970-2007 

Source: BERR (2008b)25 

                                                           
25 The apparent sudden reduction in coke and breeze use from 1995 to 1996 is due to a change in methodology, whereby 
coke manufacture and use in blast furnaces ceased to be recorded in industrial statistics and began to be included 
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5.2.2 Characterising individual industries 

The manufacturing sector consists of several different industries producing a large variety of 

products.  In order to understand the causal effects driving the higher level trends, one has to 

examine what is occurring below the surface.  This section examines individual industries from 

a top-down perspective by discussing their output, energy consumption, carbon emissions, 

resource productivity, and other related issues.   

 

5.2.2.1 Output and growth rates 

Output in GVA terms from industries at the two-digit SIC level is shown in Figure 5-3, which 

also includes the construction sector for reference.  Although outside the scope of this research 

it is interesting to note the large contribution to GVA that the construction sector makes.  The 

large growth in this sector is important because it has stimulated increased demand for the 

materials and products which it requires, namely steel, aluminium, cement, ceramics and glass.  

In general a small number of sectors account for the majority of the demand for these materials.  

For example, over 70% of aluminium demand in the UK is in the construction, packaging and 

transport sectors, whilst around 60% of steel demand is from the construction, transport and 

engineering sectors  (Dahlström et al., 2007).  According to British Glass (2004), around 90% of 

glass manufactured in the UK is destined for the food and drink sector as packaging (container 

glass) and the construction and automotive sectors as glazing (flat glass).  Cement and bricks 

both have their primary demand in the Construction sector.    

  

After construction, the sectors with the highest absolute value added are food and drink and 

pulp and paper, both with output in GVA exceeding £20billion in 2004 (in current basic prices).  

These are closely followed by electronics, basic metals, chemicals, transport equipment, and 

engineering.  Together these seven sectors accounted for almost 80% of manufacturing GVA in 

2004 (excluding construction). 

 

Over the period shown (i.e. 1992-2004), the food and drink and pulp and paper sectors 

experienced the strongest growth in GVA, with an annual increase in output of around 

£0.4billion.  The food and beverage sector is highly diverse, containing a large number of 

different activities, such that it is difficult to make general assertions about its growth, other 

than to say that it is a mature industry that caters mainly for a domestic market (apart from 

exceptions such as Scotch whisky).  Its growth is therefore relatively steady and stable.  The 

pulp and paper sector is also mature, with growth particularly strong in packaging, driven by 

increasing demand from the food and drink sector.  It is exposed to significant international 

competition with imports accounting for over 60% of domestic consumption by tonnage (OEF & 

The Carbon Consortium, 2006).  Growth is therefore mainly driven by domestic demand for 

                                                                                                                                                                          
within energy transformation and supply.  The actual coke use in the iron and steel sector was around 120PJ in 2007, 
compared to 157PJ in 1995 (BERR, 2008a, Table 2.4).   
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paper and board products, which peaked at 12.9Mt in 2000 and was around 12.3Mt in 2005 

(CPI, 2007).    

 

The chemicals sector has an above-average growth rate for the manufacturing sector, and is 

roughly in line with GDP growth of 2.8% p.a. (CIA, 2006).  The majority of the sector’s outputs 

are intermediate, so are employed within other sectors of the economy.  The demand for 

chemicals is therefore largely dictated by domestic and overseas trends within these other 

sectors.  In addition, the UK produces an extraordinarily large proportion (60%) of high value 

added speciality chemicals in comparison to other countries, such as the USA (44%) and 

Germany (40%) (Enviros Consulting, 2002).   
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Figure 5-3 – GVA by industrial sector including construction for reference, 1992-2004  

Source: ONS (2006a) 

 

Growth in the chemicals sector has slowed in recent years.  The dominance of the 

pharmaceuticals within this sector, which accounts for around 40% of output, is one of the main 

determinants of overall growth.  This abatement in growth is expected to continue within 

pharmaceuticals for several reasons, including the increasing costs associated with bringing 

new drugs to market, the expiration of patents on branded drugs and the associated ubiquity of 

generic products, and the trend towards manufacturing overseas (OEF & The Carbon 

Consortium, 2006).    

 

The relative decline of manufacturing GVA has been led by a similar trend in the textiles and 

iron and steel sectors.  The former has undergone a steady decline for the past few decades, in 

the face of fierce competition from lower wage economies and the relocation of capacity into 

these emerging markets.  UK production from this sector has fallen at an average annual rate of 

4.75% since 1990 (op. cit.).  The output from the iron and steel industry plunged in 1997 and 
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reached a low point in 2002, as the sector struggled to come to grips with the weak sterling and 

low prices, which led to the bankruptcy of ASW and Co-Steel (ibid.).  However, the demand for 

steel is cyclical with a period of the order of five years (Dangerfield & Roberts, 2000), so it is 

unclear precisely how much of this reduction in total output, from 18.3Mt to 11.5Mt between 

1997 and 2002 (EEF, 2007), was actually due to these factors alone.  The UK imports different 

steel products to those which it exports, such that it cannot always remain competitive in export 

markets because the price of UK steel is typically higher than those in the rest of Europe (CRU 

Strategies, 2004).  There is therefore a certain degree of vulnerability to foreign exchange rates, 

which the weakening of the pound against the euro in recent years has ameliorated.     

 

There has also been a relatively strong downturn in the electronics sector, which is still 

recovering from the so-called “dotcom bust”, when UK output slumped as a result of a sudden 

drop in demand and much of the production capacity relocated overseas (OEF & The Carbon 

Consortium, 2006).  The lowest output was recorded in 2002, since which time the sector has 

recovered somewhat, but it still remains at about 40% below the peak reached in 2000.   

 

Overall, manufacturing GVA has risen from £0.12trillion in 1992 to £0.15 trillion in 2004, which 

correspond to a reduction from about 21% to 14% respectively of total GVA over this period 

(ONS, 2006a).  Hence growth within the manufacturing sector remains steady, but is still 

consistently behind that of the economy as a whole.  Neglecting the recent downturn since 2007, 

GDP growth has remained steady at around 3% per annum (ONS, 2007d, p.18), whereas growth 

in manufacturing GVA has been near zero over the period 1996 to 2004 (cf. Figure 5-1 and 

Figure 5-3).  Over the longer term, from 1970 to 1999, manufacturing output as a proportion of 

GDP fell from 32% in 1970 to 19% in 1999 (DTI, 2002c, p.11).  The relative reduction in output 

over the past decade or so can therefore be seen as part of a longer term trend. 

 

5.2.2.2 Energy and carbon trends 

The final user energy consumption by industrial subsectors is shown for the period 1990 to 2005 

in Figure 5-4.  It shows the consistent reduction in total energy demand for the sector as a whole 

over this period (clearer in the long term in Figure 5-2).  Total industrial energy consumption 

decreased from around 1750PJ to 1650PJ over this period, a reduction of about 6%.  The largest 

energy consuming sectors are basic metals (85% of which is iron and steel), chemicals, food and 

drink, pulp, paper and publishing, and non-metallic minerals, which together accounted for 

over half (57%, or 869PJ) of the total industrial energy consumption in 2005.   

 

Much of the reduction in energy demand occurred within the iron and steel sector.  This sector 

has reduced its energy consumption from 440PJ in 1990 to 260PJ in 2005, a change of some 41%.  

In addition to the reduction in domestic output mentioned above, there has also been an 

increase in the end-use energy efficiency and an improvement in the yield from the steelmaking 

process from 71% in 1975 to 91% in 1995 (UKACE, 2000).  The reduction in output resulted from 

severe operational difficulties, major structural changes and falls in activity due to an adverse 

business climate (DEFRA, 2003).   
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Figure 5-4 – Industrial energy consumption by sector 1990-2005 

Source: DTI (2007b) 

 

As well as the carbon dioxide liberated through the combustion of fossil fuels (so called 

combustion emissions), several industries release this gas directly through chemical reactions.  

Hence these emissions are termed process emissions, and are liberated through such processes 

as calcination or decarbonation, when a base compound such as calcium carbonate (CaCO3) is 

thermally broken down such as occurs in lime and cement kilns, and glass furnaces.  Other 

sources of process emissions include the decomposition of carbon anodes used in the 

electrolysis of bauxite solution to produce aluminium, and in the Haber process for 

manufacturing ammonia.  The most significant industrial sources of these process emissions are 

summarised below (Choudrie et al., 2008): 

 

• Cement kilns in the cement sector, from the decarbonation of calcium carbonate; 

• Lime kilns, from the decarbonation of calcium carbonate and magnesium carbonate:  

o In the merchant facilities producing lime to sell privately; 

o In the iron and steel sector, where in-house lime kilns produce lime and 

dolomite for use as slag formers and as fluxing agents in the basic oxygen 

furnace; 

o In the sugar sector, but the carbon dioxide is reabsorbed as it forms chalk when 

bubbled through the melter liquor; 

• Glass furnaces, in which calcium carbonate and soda ash (sodium carbonate) 

decompose to release CO2; 

• Ceramics kilns, whereby certain types of clay with high levels of carbonaceous material 

(e.g. Lower Oxford Clay) release large amounts of CO2; there is a large variation (one 

order of magnitude) in the emissions factors for various raw materials (Enviros 

Consulting, 2006c); 
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• Ammonia production through the Haber process – CO2 is a by-product which may be 

used to further produce methanol or acetic acid; 

• Integrated iron and steel works – the main source of process-related CO2 emissions is 

in the uncontrolled release of blast furnace gas and basic oxygen furnace gas (Choudrie 

et al., 2008, pp.116-118); controlled emissions are typically recycled and used as fuel; 

• Electric Arc Furnaces (EAF) for secondary steel manufacture – CO2 emissions result 

from the breakdown of the graphite electrodes in the furnace; 

• Aluminium production, whereby the UK employs solely the pre-baked anode route (as 

opposed to the Soderberg process, with anode paste), and the anodes are burned off 

during the electrolysis; 

• Fermentation processes in the food and drink industry, including bread production 

and alcoholic fermentation; there appears to be lack of information relating to this 

source and it is thought to be minor (Reason, S., Energy Manager, Food and Drink 

Federation, pers. corr., March 2009). 

 

Hence analysis of emissions from industrial sectors should consider both combustion and 

process emissions.  Whilst DEFRA (2006a) records emissions by IPCC source category for the 

purposes of national greenhouse gas reporting, it does not record the combustion emissions 

from individual sectors, except iron and steel.  Hence Figure 5-5 shows the sectoral combustion 

emissions, which have been estimated based on the energy data in Figure 5-4 and the 

corresponding emissions factors for fuels fossil fuels and electricity (Choudrie et al., 2008).  

Figure 5-5 also shows the process emissions, and it is clear that these made up only a small 

proportion (10%) of total industrial emissions in 2005.  The remainder of industrial emissions 

result from the use of energy from fossil fuels. 

 

The rankings of individual sectors in terms of total carbon emissions is similar to that in terms 

of energy discussed above.  The largest carbon emitter is the iron and steel sector, which 

accounted for 17% or around 7MtC.  This is closely followed by the chemicals, food and drink, 

pulp and paper, and rubber and plastic sectors, which account for 15%, 9%, 8% and 7% 

respectively.  These five sectors together account for almost 60% of total industrial emissions.   

 

Having looked at individual sectors in terms of total energy consumption and carbon 

emissions, it is desirable to go into a little more detail in order to characterise these sectors more 

precisely.  In order to do this, attention is now drawn to the different end uses of energy within 

these sectors.  The first point of note is that there is a large variation between the end-uses of 

energy in individual sectors.  Generally speaking, subsectors that carry out processes in the 

early stages of a product’s manufacturing lifecycle, so called primary processing, are energy 

intensive operations, many of which occur at high temperatures.  In contrast, operations that 

occur towards the end of a product’s manufacturing life tend to be less energy intensive, 

because they are dominated by the assembly of prefabricated components rather than their 

manufacture per se.  As materials and products progress through the manufacturing sector, 

therefore, the amount of energy and carbon that is embodied in them increases, but the rate at 

which this increases is high at first and then less so (Roberts, 1982).    
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Figure 5-6 shows industrial energy demand by end uses.  All of these end uses are met with a 

proportion of electricity which varies from around a quarter to a third.  If this fraction was 

converted into it’s primary equivalent, it would be approximately three times larger based on 

the current electricity generation and transmission efficiency of 35% overall (BERR, 2008a).  

There are end uses for which electricity is necessary, such as motors and lighting, but it is also 

being used for low and high temperature processes, which from a thermodynamic perspective 

is clearly inefficient; electricity is a versatile energy carrier which could be better used for 

providing motive power.  There are industrial applications where electricity is desirable 

because of its versatile nature, such as EAFs and in high temperature furnaces, but in other 

cases its use is unfavourable.  In order to address this thermodynamic inefficiency the overall 

efficiency of the generation and transmission grid could be improved by exploiting higher 

proportions of renewable energy resources, but this is constrained by the intermittency and 

disperse nature of these energy sources.  Another option would be to focus on the efficiency of 

generation, thereby utilising some of the heat, equivalent to around 60% of the primary energy 

input (DTI, 2005), which is exhausted to the environment in conventional centralised 

generators.  Sweden has one of the best track records in this area, with 50% of the heat market 

being accounted for by district heating schemes (Euroheat and Power, 2005a).   
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Figure 5-5 – Industrial combustion and process emissions in 2005 (total 39.3MtC)  

Source: estimated from DTI (2007b) and DEFRA (2006a) 

 

The majority of high temperature processes occur within a few industries, namely basic metals 

and non-metallic minerals.  Furthermore, around 70-80% of these sectors’ energy use is 

accounted for by high temperature processes.  Strictly speaking this definition of high 

temperature is not satisfactory because above 300°C is not high temperature.  The problem is 

that the data is not measured with enough resolution, so it is not possible to break the energy 

use by temperature down any more precisely.  These industries have processes which occur at 
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around 1500°C, but are not distinguished from other sectors carrying out processes at only 

moderately high temperatures.  This is a clear limitation of this dataset, and one which is 

discussed further elsewhere.  Ideally, data would be available for industrial energy use in 100°C 

temperature bands up to around 2000°C. 

 

The chemicals and food and drink sectors are the ones with the most diverse end uses.  The 

former employs all the end uses shown in Figure 5-6, with low temperature processes, 

drying/separation and motors accounting for the majority of energy use.  The food and drink 

sector employs around 60-70% low temperature processes, with small proportions of energy 

being used in other end uses.  Similarly the pulp and paper sector employs energy almost 

exclusively for low temperature processes and drying separation in roughly equal proportions.  

Finally, the rubber and plastics sector mainly uses low temperature processes in a similar 

proportion to the food and drink sector.     
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Figure 5-6 – Industrial energy consumption by end use 2006 (selected sectors) 

Source: BERR (2008j), excluding SIC 23 and 37, renewables and heat sold 

 

The electricity use in motor systems for different applications, including fans, compressors and 

pumps, is shown in Figure 5-7, based on the UK Motor Market Study conducted by BSRIA for 

MTP.  The sectors using most energy in these systems are the energy-intensive ones, especially 

chemicals and metal products (engineering).  According to this data, energy use in motor 

systems across sectors is due to a diverse range of uses, but it is possible to extract some broad 

trends.  The chemicals sector uses around 70% of motor systems energy in process fans and 

pumps, and other applications such as materials handling and specialist machines (DEFRA, 

2008b).  Also in the iron and steel and engineering sectors, a large proportion of energy is used 

for other uses such as materials handling.  The engineering sector also uses significant amounts 

of energy in motor systems associated with compressed air and fans.  The food and drink sector 
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seems to use almost half of its motor systems energy in compressed air systems for 

refrigeration. 

  

The general conclusions to be drawn about energy and carbon trends in industrial sectors are 

that, whilst relatively few sectors together account for the majority of energy consumption and 

carbon emissions, there is much diversity between these sectors in terms of end uses of energy.  

Energy intensive sectors tend to have larger overall energy demands than non energy intensive 

ones – this is not by definition the case, because it depends on the different structure and 

absolute size of the respective sectors.  Furthermore, energy-intensive sectors typically use more 

high-temperature energy that non energy-intensive ones.  The additional distinction can be 

made between those sectors carrying out primary processing operations (involving substantial 

material transformation) and those dominated by assembly activities.  The latter tend to have 

end uses of energy that, as well as being smaller overall, consist of larger proportions of energy 

for space heating.  This is due to the nature of this type of manufacturing, which involves 

assembling mainly prefabricated parts rather than making them (or the material) from scratch.  

A classification of industrial sectors according to the degree of process homogeneity is therefore 

a useful means of accounting for this diversity.    
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Figure 5-7 – Electricity use in industrial motor systems by sector and system type 

Source: Gainsford, C., MTP Helpline, pers. corr., September 2008 

 

5.2.3 Productivity  

The preceding section focussed on aggregated or absolute measures on individual sectors, 

namely energy consumption and carbon emissions, neither of which gives any indication of 

how well this energy is used in production.  This section discusses various productivity metrics 

for the industrial sector.  Three indicators will be discussed, namely energy productivity, labour 

productivity and multi-factor productivity (MFP).  Capital productivity is another, similar, 
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metric but it will not be discussed at length here because there are substantial problems with 

determining the value of capital in various forms, and this measure is therefore not widely 

included in national statistics.  In summary, these metrics are defined as follows:  

 

• Energy productivity, which is the output in GVA per unit of energy input, or the 

inverse of energy intensity (i.e. energy inputs per unit of GVA output); 

• Labour productivity, which is the output in GVA per unit of labour, whereby the latter 

is typically measured in hours worked, number of employees or number of filled jobs; 

• Multi-Factor Productivity (MFP), which is that productivity which is not accounted for 

by changes in the quality or quantity labour and/or capital inputs, and is generally 

thought to be closely related to technological change (ONS, 2007b). 

 

This section discusses these three productivity measures and applies them to industrial sectors, 

beginning with energy productivity, then labour productivity, and finally multi-factor 

productivity (MFP).     

 

5.2.3.1 Energy productivity 

Measures of energy productivity for various economic sectors are not included in the national 

accounts produced by the Office for National Statistics, except where energy is considered as 

one factor in multi-factor productivity accounts such as the international EU-KLEMS 

programme (section 5.2.3.3).  The following discussion is based on energy productivity metrics 

developed for industrial sectors based on their respective GVA output according to the Blue 

Book (ONS, 2007d) and energy consumption according to ECUK (DTI, 2007b).  The energy data 

in ECUK has been summed across all primary fuel and electricity categories and aggregated to 

the two digit SIC level in order to achieve correspondence between the two datasets.  The 

reason for not maintaining higher levels of disaggregation in the output and energy data is the 

inherent inaccuracies associated with ECUK.  Energy productivity for manufacturing sectors 

alongside that for the economy overall is shown in Figure 5-8, which is plotted on semi-log axes 

because of the large variation in energy productivity across the manufacturing sector; over one 

order of magnitude separates the sectors at extremes of the energy productivity range. 

 

The general trend across all sectors is of increasing energy productivity, which reflects 

improvements in the end-use efficiency with which energy is used, due largely to better 

technology and/or improved processes.  However, this is not the sole reason for the observed 

changes; in many cases the underlying causes are very much sector specific, so it is not possible 

to make general assertions applicable to the whole of industry.  Whereas some sectors exhibit 

consistent or smoothly transitional energy productivities, others appear somewhat “peaky”, 

which illustrates a limitation in both the scope and resolution of this dataset: the relatively short 

time period to which it relates does not facilitate the recognition of very long term trends, and 

the annual data points can overlook shorter term trends that occur between record years.  The 

compilation of the ECUK dataset from the ONS Annual Business Inquiry involves scaling up a 
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representative survey of industries to the corresponding total (from DUKES), such that it is 

subject to a certain degree of noise.   
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Figure 5-8 – Energy productivity for key industrial sectors 1992-2003 

Source: Derived from DTI (2007b) and ONS (2006a) 

 

The sectors with the lowest energy productivity are by definition the energy intensive sectors, 

especially basic metals, non-metallic minerals, pulp and paper, and chemicals.  The apparently 

sudden change in energy productivity for the basic metals sector in 1996 reflects a change in the 

methodology for recording coke manufacture than an actual change.  The way in which GVA 

data for the coke, nuclear fuel and oil refining industry (i.e. SIC 23) is aggregated means it is not 

possible to determine the energy productivity of coke production alone, even though it belongs 

almost exclusively to the basic metals sector.  The energy productivity of SIC 23 alone is very 

low indeed, hence is not shown in Figure 5-8 because it would distort the ordinate scaling.  This 

is probably largely due to the significant amounts of feedstock energy used within this sector.  

All of the outputs from the sector are fuels, so not all the energy input is actually used within 

the sector, rather it is embodied in the fuels.  In this case it can be misleading to look at the 

energy productivity alone.  The coke manufacture aspect of SIC 23 should be included in the 

basic metals sector, however.    

 

The sectors with the highest energy productivity are generally those which carry out high 

value-added operations at the end of a product’s manufacturing lifecycle, such as electronics, 

motor vehicles and metal structures.  Two of the curves in Figure 5-8 rise to a peak in 1998 

before tailing off again, namely motor vehicles and metal structures, but the reason(s) for this 

are not clear.  The downturn in the electronics sector alluded to above is also evident in the 

reduction in energy productivity after 2000.  
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The chemicals sector has exhibited steadily increasing energy productivity from £56million/GJ 

in 1992 to £60million/GJ in 2003.  This is despite a significant increase in the volume of output 

from £12.7billion to £16.1billion over this period.  The sector is further characterised by high 

levels of R&D investment, which facilitates constant innovation in the form of new products 

and processes.  Pharmaceuticals has both the highest absolute R&D investment of all industrial 

sectors and the highest largest increase in the past two decades, accounting for £3.3billion or 

25% of the total in 2005 (ONS, 2008b).  The chemicals sector as a whole (including 

pharmaceuticals) spent almost £4.0billion or 30% of the total in 2005 (ibid.).  It is diverse in 

terms of the range of products manufactured and the nature of the processes employed, often 

employing highly complex, functionally adjacent and integrated plants, which exploit one 

another’s resources in terms of (waste or exported) heat and materials.  Hence it is the largest 

user of traded heat in the industrial sector, accounting for almost half of the total heat sold in 

2007 (BERR, 2008a, p.27).  The diversity of the sector is further indicated by the ubiquity of its 

products throughout society and the fact that a large proportion are intermediate products, 

serving to illustrate its continually important role within the economy.              

 

The food and drink sector has also undergone significant improvements in energy productivity, 

from £92million/GJ in 1990 to £126million/GJ in 2003 and in spite of an increase in output from 

£16.3billion to £20.6billion.  One reason for these effects is a significant rationalisation, which is 

exemplified by the brewing sector.  The number of breweries has fallen from a peak of around 

150 in 1980 to just 60 in 2004, which was accompanied by a disproportionate reduction in 

output from 65 to around 58 million hectolitres (Tighe & BBPA, 2005).  Notwithstanding a 

change in product mix towards lager (which has a more energy intensive production process 

than ale, due to longer storage periods) and a shift towards smaller packaging units, this 

rationalisation has facilitated a corresponding reduction in specific energy consumption from 

over 250 to around 160 MJ/hl. 

 

Another trend within the food and drink sector has been towards producing more highly 

processed food, such as ready-meals for preparation in the home, or snack foods for 

consumption “on the go”.  There has also been increased emphasis on freshness or quality as 

well as on health or nutritional value (Langley, 1984b).  Particularly for food which is sold in 

supermarkets, there are stringent requirements placed on the physical characteristics of the 

product, which has been a driving force behind developments in processing techniques within 

this sector.  The recent growth in health foods has evinced itself in the appearance of a niche 

market for special products with low salt, sugar or fat content, for example, which has grown 

with increasing public awareness (or perception) of the benefits and risks associated with 

nutrition.  Also, one of the key drivers within the food and drink industry is currently 

legislation relating to the consumer and the environment (European Commission, 2006f).  

Within the meat sector this has contributed significantly to the shift towards poultry 

production, because of the difficulties and costs associated with conforming to porcine-related 

legislation. 
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Most industrial sectors have increased their energy productivity over the period 1992 to 2003, 

which in most cases is due to improvements in energy efficiency because output has actually 

increased over this time.  The manufacturing sector has a lower energy productivity than the 

economy overall because of the typically energy intensive processes that occur in many sectors.  

The measures of energy productivity developed here are useful for comparing sectors with one 

another over time periods.  It is also possible to broadly classify industrial sectors according to 

their energy productivity relative to other sectors and the whole economy.  Sectors with lower 

energy productivity than the final energy ratio for the economy are generally energy-intensive; 

sectors producing high value-added goods, such as engineering and motor vehicles, are non 

energy-intensive.   

 

5.2.3.2 Labour productivity 

The manufacturing sector’s declining share of output (in GVA terms) since the early 1990s has 

already been alluded to above.  In fact this trend has been evident since the beginning of the 

previous decade, when the service sector’s share of output overtook that of manufacturing for 

the first time (ONS, 2007b, p.88).  Inspection of the labour productivity data for these two 

sectors reveals another picture entirely, however.  Aside from a trough in the mid 1990s, the 

manufacturing sector’s annual growth in productivity remained at around 4%, compared to less 

than 2% for the services sector and around 2% for the economy as a whole.  In fact the general 

trend since WWII has been for the labour productivity of the whole economy to fluctuate 

around the 2% annual growth mark – that is, generally mirroring GDP growth (ONS, 2007b, 

p.87).  The main reason for this large productivity growth within the manufacturing sector, 

though, is the rapid reduction in employment within the sector.  The labour productivity 

improvements achieved within the manufacturing sector after 1980 are associated with labour 

shedding rather than output growth.  Between 1978 and 2006 the proportion of the workforce 

employed in manufacturing fell from 29% to 11% (ONS, 2007a), corresponding to an actual 

reduction from 6.9 million to just under 3.0 million workers, whilst over roughly the same 

period the value of goods they produce increased by 35% (DTI, 2002c, p.11).  There has been a 

similar trend across Europe, with multinational companies in pharmaceuticals, aerospace and 

electronics sectors shedding jobs (IPTS et al., 1998). 

 

Growth in labour productivity in the past few decades has been strongest in the chemicals and 

engineering sectors, and to a lesser extent within the iron and steel and food and drink sectors.  

For the chemicals sector the growth in productivity was largely due to a rationalisation of the 

industry following the recession of the 1970s and a shift from basic towards speciality 

chemicals.  The latter was evinced in the rapid growth within the pharmaceuticals sector, which 

retained over 10% of total world pharmaceutical exports for the latter half of the twentieth 

century (Broadberry, 2004, p.76).  The food and drink sector has exhibited particular strength in 

a handful of industries, especially Scotch whisky and brewing.  Whilst the former has been very 

successful due to a diverse range of products, the latter has ostensibly suffered from its failed 

attempt to adopt standardisation measures aimed at realising economies of scale (ibid., p.81).  
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This ultimately led to the establishment of the Campaign for Real Ale (CAMRA), a consumer 

group emphasising the merits traditionally brewed beers.   

 

Productivity growth in the iron and steel sector was largely due organisation changes and a 

rationalisation of the industry, but technological improvements also played an enabling role.  

The major technological changes in the post-war period have been the shift away from open 

hearth and Bessemer production towards basic oxygen and electric arc furnaces for primary 

and secondary steel respectively.  The proliferation of continuous casting from the 1970s 

onwards led to large energy efficiency improvements, as this method effectively replaced three 

process stages in the conventional means of production by turning a batch process into a 

continuous one (de Beer, 1998).  It also drastically reduced the minimum economic scale of 

production and therefore enabled the growth of so-called mini-mills.  The eventual privatisation 

of the industry in 1988, after several periods in both private and public hands already, allowed 

a turnaround in productivity performance as the gap with Germany was closed in the late 

1980s.     

 

In comparison to other industrialised countries, especially Germany and the USA, Britain has 

long been a laggard in terms of labour productivity.  There is a particularly marked 

productivity gap between Britain and the USA, which is used by the government as a gauge of 

the long term prosperity of Britain and progress towards improving welfare (Kitson, 2004).  The 

magnitude of the gap is very sensitive to the method of measurement used.  In terms of output 

per worker, HM Treasury’s favoured measure, the gap is around 45%, but in units of output per 

hour, the gap is 25% (EEF, 2001).  Another important difference between the two countries is the 

structure of their manufacturing sectors.  The USA’s sector is much larger, having a significant 

domestic market demand for its goods, and the economy much more closed.  The UK, by 

contrast, has an economy more open to international trade and therefore less resistant to 

fluctuations in international markets.  The USA’s performance in the ICT sector has been much 

better historically than the UK’s, which has contributed in part to the gap.    

 

Another reason for the gap is that the UK’s manufacturing sector has suffered from a shortage 

in investment in recent decades.  Two reasons for this are the volatility of the sterling exchange 

rate and the risk-averse nature of managers in the UK industry.  Manufacturing investment 

growth in the UK over the past thirty years or so has been close to zero.  Firms on both sides of 

the Atlantic highlight three main barriers to investment within the sector as the lack of demand 

for their products, uncertainty over future demand and the exchange rate between the dollar 

and sterling (ibid.).  

 

The degree to which the USA and the UK have taken up lean manufacturing is another reason 

for the gap in productivity.  There are barriers in the UK to an improved uptake of this 

approach, including attitudes to change within the firm, a lack of understanding of lean 

manufacturing, shortage of the right skills, and other cultural issues.  There was a polarisation 

in the survey results between firms which had adopted lean manufacturing throughout the 

whole organisation and those which had not adopted it at all (EEF, 2001, p.29).  The USA has 
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adopted this approach much more extensively, something that has its roots in the nation’s 

manufacturing model.  America adopted a model of mass production because of land 

abundance, which meant an abundant complimentarity between human and physical capital.  

Hence the American model evolved, due to a lack of skilled workers, to be homogonous and 

capital-intensive (Broadberry, 1997).  The European model, on the other hand, is virtually the 

opposite of this because it is labour intensive, and employs rather less physical capital.  

Whereas the UK has a focus on specialised production through skilled workers and tailored 

manufacturing lines, the USA is very much concerned with mass production methods.  In fact 

Broadberry (1997, p.318) argues that one of the best examples of Britain’s shortcoming here lies 

in its failure to mass produce British motor vehicles.  

 

Around 21% of the manufacturing productivity gap with the USA is due to differences in the 

amounts of physical capital available for each worker, with the remainder being due to 

differences in skills levels and the efficiency of how different factor inputs are employed, i.e. 

TFP (O'Mahoney & de Boer, 2002, p.33).  The differences in physical capital and skill levels of 

the workers are inherent aspects of the production systems in these two countries.  Hence why 

differences in skills account for around much more of the gap with Germany, where vocational 

training is common (DTI, 2002c).  The large proportion of the gap with the USA that is due to 

TFP reflects the different production methods employed in the UK and USA, and suggests that 

it might not be a fair basis for comparison.  Perhaps productivity levels as seen in the USA are 

only achievable with mass-production, in which case it is invalid to compare the two systems, 

or at least that proportion of the gap which is due to the means of production. 

 

In summary, manufacturing labour productivity has grown at a rate almost double that for the 

economy as a whole over the past two decades or so.  This is mainly due to a reduction in 

employment in manufacturing, rather than an increase in output.  There are several niche 

sectors that have fared particularly well in terms of productivity over this time, namely 

pharmaceuticals, Scotch whisky and aerospace.  There is also a significant gap in labour 

productivity between the manufacturing sector in Britain and that in the USA, Germany and 

France.  This gap is largely to do with the methods of production employed and the capital 

available, but also includes factors such as the skills levels of the workforce.  The extent of the 

gap differs depending upon how it is measured, in particular whether it is normalised onto the 

hours worked as well as the number of workers.  Britain attempted to adopt American style 

mass-production methods after WWII, but this was unsuccessful because it undermined the 

skills of craft workers and removed control of the production process from the shopfloor.  

Coupled with this was the problem of finding markets for large numbers of standardised 

goods, whilst Britain was also turning away from Commonwealth markets towards continental 

Europe.  By the 1980s British manufacturing had all but abandoned American style mass 

production techniques in favour of customisation and skilled shop floor labour, which went 

some way towards closing the productivity gap with other countries. 

 



Chapter 5 – Macroeconomic analysis of manufacturing  

- 93 - 

5.2.3.3 Multi-factor productivity 

Multi-factor productivity (MFP) or total-factor productivity (TFP) decomposes changes in 

productivity into contributions from labour, capital and a residual that is attributed to 

technological change.  The latter is a moot point that has been much debated in the economics 

literature, and was discussed further in section 2.2.  Nevertheless, there is a general consensus 

that, at least to some extent, technological change embodies advances made through R&D as 

well as the contribution of intermediate inputs such as materials, energy and services.  

Investment in other intangible assets is also included in this residual, since their contribution 

cannot be explicitly measured, along with a proportion of improvements in the factor inputs 

and an error associated with the decomposition process itself (ONS, 2007b, p.91). 

 

The decomposition of productivity into these three components is based on the original 

analysis by Solow (1957), from which the residual takes its name.  A standard production 

function is a generalisation of the Cobb-Douglas as given in Equation A1 (Appendix A2.1.2).  

This general equation can be used to derive Equation 5-1, in which αK and αL are the income 

shares of capital and labour respectively.  The procedure for calculating the income share of 

labour is to sum the compensation of employees plus compensation associated with the self-

employed, and the income share of capital is simply one minus the income share of labour – i.e. 

constant returns to scale are assumed.  The MFP change is then calculated by integrating 

Equation 5-1 between two time periods. 

       

 

0K L
ΔQ(t) ΔK(t) ΔL(t)

=α +α +Q (t)
Q(t) K(t) L(t)

 5-1 

 

   

MFP data for the UK economy is administrated and published annually by ONS (2007b), but 

limitations on the quality-adjusted labour input (QALI) mean that the analysis can only be 

carried out for the whole economy and at the level of six broad sectors, one of which is 

manufacturing.  Whilst these series are subject to some uncertainties in terms of the output 

measures used, particularly in the services sector, they are the most comprehensive ones 

produced nationally. 

 

In the immediate post-war period labour and total factor productivity increased rapidly within 

the manufacturing sector.  During the period 1951-1973 output, labour productivity and MFP 

grew at 4.4%, 4.3% and 2.9% per annum respectively (Broadberry, 2004, p.59).  This trend 

slowed significantly in the 1970s, which reflected the overall slowdown in the economy as a 

whole, largely due to the oil price hikes of 1973 and 1979.  After the 1970s, output and 

productivity growth by both labour and MFP measures accelerated again in the manufacturing 

sector, but this time because of reductions in employment rather than increasing output.   

 

Over the period 1997 to 2005 the strongest (unadjusted labour) MFP growth was in the 

manufacturing sector, which grew at 2.3% per annum compared to 0.8% for the economy as a 
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whole (Table 5-1).  When the adjustment is made for labour quality, the same trend is seen to a 

lesser degree, as manufacturing productivity grew by 1.8% per annum compared to 0.7% across 

the whole economy.  As well as confirming the assertion made above about labour shedding 

being the root of labour productivity increases, Table 5-1 also shows that the output growth in 

spite of this was only possible because of MFP growth.  In other words, output growth was only 

possible because the efficiency of production (i.e. how factor inputs are employed) improved 

significantly and thus offset the reductions in labour input.  

 

The data in Table 5-1 is limited in both scope and resolution for individual sectors.  The EU 

KLEMS (2007) data provides more insightful data on MFP, covering the period 1980-2005, and 

broken down by two digit SIC sectors.  Hence Figure 5-9 shows the contributions to GVA 

growth for manufacturing sectors over the period from 1980 to 2005.  The Figure clearly shows 

the reductions in labour contributions to output in all manufacturing sectors, which is 

particularly prevalent in the textiles sector.  This sector is the only one in which the reduction in 

labour hours worked over this period is not compensated for by changes in the other factors of 

production, resulting in a drop in output.  

 

 

Sector Output 

growth 

Capital 

input 

Labour 

input  

MFP growth  Labour 

input 

(adjusted) 

MFP growth 

(adjusted L) 

Manuf. 0.3 0.3 -2.4 2.3 -1.8 1.8 

Whole 

Economy 
2.9 1.1 1.0 0.8 1.1 0.7 

Table 5-1 – Decomposition of output growth, average % growth p.a. 1997-2005 

Source: ONS (2007b, p.93) 

 

Figure 5-9 also clearly shows the large contribution that MFP has made towards overall output 

growth in the manufacturing sector compared to the market economy.  This is particularly 

noteworthy in the energy intensive sectors, including chemicals, basic metals, non-metallic 

minerals and electrical machinery, whereby improvements in energy efficiency have enabled 

the large reduction in overall energy intensity discussed in section 5.2.1.  Overall the electrical 

equipment sector has had the largest overall growth over this period (Figure 5-9).  This is 

mainly due to the rapid developments in ICT in recent times, which has resulted in growing 

demand for electrical and electronic hardware. 

 

The periods of heavy labour shedding have generally coincided with the recessions of the early 

1980s and 1990s (OEF, 2001).  For the manufacturing sector annual reductions in labour hours 

worked reached over 6% annually, but were generally less than 4% for the market economy.  In 

the period after 2000 annual reductions in labour from manufacturing were quite steady at 3%, 

whereas the market economy has had only very small reductions in labour.  If the quality 

(composition) of the labour is taken into account its contribution to the market economy has 

actually increased.     
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Figure 5-9 – MFP, labour and capital contributions to average annual GVA change (%), 1980 to 2005 

Source: EU KLEMS (2007)  

 

MFP is useful in this context because it allows underlying contributors to growth for these 

sectors to be determined.  More subtle trends can be overlooked by looking at such long periods 

as in Figure 5-9, but it is beyond the scope here to look at time series for each and every 

industry.  As it is, this snapshot data presents a broad picture of the trends that have occurred 

in the past few decades.  Notwithstanding its shortcomings, MFP is a useful indicator of the 

contribution that different factors make to overall sector and economy growth.  From this 

macroeconomic perspective the fact that the precise nature of the MFP is unexplained does not 

affect the conclusions that can be drawn from the above analysis, namely that across the 

manufacturing sector – and in some sectors more than others – MFP that has enabled continued 

output growth despite declining levels of employment.  It does, however, limit what useful 

conclusions can be drawn about the specific nature of MFP change in the manufacturing sector.  

It is ostensibly impossible to distinguish between improvements made with existing 

technology, and those that have resulted from innovation, for example, which would be 

desirable in order to understand the role that new technology has actually played in the 

process.  Having looked specifically at industrial sectors in a UK context, attention is now 

drawn to the international context, with a particular emphasis on trade flows. 

 

5.3 British manufacturing in an international context 

Globalisation has played a crucial role in the development of the UK’s manufacturing sector, in 

general over the past two centuries and in particular during the past few decades.  The result is 

that most if not all industries now operate in global markets, with a large number being 

dominated by foreign ownership, and significant trade flows both within and outside the 

European Union.  In addition, many manufacturing firms have relocated in emerging markets 

abroad in order to take advantage of cheaper labour and capital inputs.  Focussing solely on the 
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manufacturing sector’s contribution to GVA output overlooks its importance in terms of 

international trade.  In fact manufacturing accounts for around two thirds of UK exports by 

value (DTI, 2000, p.5).  This subsection therefore places the UK’s manufacturing sector in an 

international context by analysing its key trade flows and contribution to the overall balance of 

trade.   

     

With the long term trend away from heavy manufacturing there has been an associated move 

away from the UK being a net exporter to becoming a net importer of goods.  The trade balance 

in goods has been consistently negative since 1992, when it was about £13billion, increasing to 

£60billion in 2004 (ONS, 2006c, pp.50-53).  In services alone there has been a trade surplus over 

this period, which has increased from £6billion to £26billion.  Hence the trade deficit in goods 

and services overall increased during this period from £7billion to £35billion.  This overall trade 

deficit reduced up to 1997, when growth in net trade of services exceed that for goods, after 

which time the overall surplus increased rapidly, due mostly to the underlying growth in the 

trade deficit for goods. 

 

There are several reasons underlying this growing trade deficit, including weak global demand 

for UK exports over this period and a weakening of sterling (in particular against the dollar and 

the euro).  The low demand for UK exports has been exacerbated by several shocks around the 

global economy, including the Asian crisis of 1997 and the recession on the USA in 2001.  Weak 

demand for UK manufacturing exports is illustrated by the fact that the large trade deficit in 

goods and services in 2004 was mostly due to the trade deficit in the manufacturing sector.  In 

this year the net trade in goods and services from manufacturing was £67billion (i.e. imports) 

versus £42billion (i.e. exports) from the services sector (ONS, 2006c, p.78).  Hence the difference 

of £25billion accounts for the majority of the trade deficit in goods and services, of £35billion, in 

that same year.         

 

Over the period 1994 to 2004 there has been a consistently higher level of trade in goods and 

services with the EU than with countries outside of the EU.  This is also the case for trade in 

goods alone, whereby from 1998 to 2007 around 60% of exported goods from the manufacturing 

sector have consistently been destined for countries within Europe.  The main destinations for 

exported goods are the USA and EU countries (esp. Germany and France), and the main 

sources of imports are EU countries, the USA and China (ONS, 2007c, p.133).  During this 

timeframe the total exports from manufacturing have increased from around £150billion to 

£200billion.  Imports have shown a very similar trend, with around 60% being sourced from 

within the EU, and their total value increasing from about £170billion to £270billion over this 

period.  However, this obscures underlying shifts in trade balances between individual sectors, 

which can only be revealed through closer inspection. 

 

A useful method of analysing international trade, rather than looking at absolute values of trade 

flows, is to employ import penetrations and export shares (ONS, 2006c).  The import 

penetration is defined as the fraction of total demand which is met by imports.  Similarly, the 

export share are defined as the percentage of total supply that is provided by exports.  These 
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measures give an indication of the significance of international trade in relation to a sector’s 

total output, as well as the demand for output from this sector.  They enable a normalised 

comparison of multiple sectors because distortions due to the absolute size of sectors are 

removed.  At the extreme, an export share of 100% means that all supply is exported.  

Conversely, an import penetration of 100% means that all demand is met by imports.   

 

The export share of the manufacturing sector as a whole has changed little since 1990, during 

which time it has remained at around 45% (ONS, 2007c).  The import penetration of 

manufacturing as a whole has increased, however, from below 50% in 1992 to more than 60% in 

2004.  The proportion of these imports from EU and non-EU countries is almost exactly the 

same as for the exports.  The growing import penetration of the sector as a whole reflects a 

general trend of declining output in specific industries in face of fierce competition from 

abroad, where many have relocated in order to take advantage of a cheap and abundant labour 

force.   

      

The largest increases in import penetrations over the period 1992 to 2004 have been in the 

tobacco, clothing, textiles, leather, basic metals, automotive, office machinery and radio and TV 

equipment sectors.  Overall the sectors with the highest import penetrations in 2004 were 

leather, clothing, office machinery and radio and TV equipment, which were all at over 80%.  

Sectors with very low import penetrations include printing and publishing (around 10%), and 

non-metallic minerals and fabricated metal products (both in the region 25-30%).  One of the 

reasons for this is that it is uneconomical to transport these relatively low value materials over 

large distances.  In terms of export shares, basic metals has increased from about 50% in 1992 to 

almost 75% in 2004, whilst chemicals has steadily increased from 65% in 1992 to a peak of 75% 

in 2003, before dropping off to about 73% in 2004, the last year for which data is available.  

These two sectors had the highest export shares in 2004.  Electrical machinery has also 

undergone a steady increase in exports, from 45% in 1992 to 55% in 2004.  The export shares of 

several sectors appear to have been fairly constant over this time period.  For example, the food 

and drink and pulp and paper sectors have an export share of around 25%, and the automotive 

sector is steady at 50%.  Other sectors have experienced downturns in their export shares over 

this period, including, most notably, office machinery, tobacco and fabricated metal products.  

There has been much change in the tobacco sector as consumption has decreased, largely due to 

sharply increasing prices in the UK and increasing awareness about the health implications 

leading to a reduction in demand.  As for many other sectors, manufacturing capacity has 

relocated overseas to lower wage economies, in some cases nearer to the market for their 

products.  The textiles, clothing and leather sectors have also shifted a lot of capacity abroad 

into cheaper labour markets.  This trend is one that is common in developed economies, and it 

has been exacerbated by the Multi-Fibre Agreement (MFA), which had previously limited 

imports from developing economies (OEF & The Carbon Consortium, 2006, p.34).   

 

In absolute terms, the imports for the automotive sector are the largest in the whole 

manufacturing sector, having risen from £23.5billion in 1998 to £39.3billion in 2007.  The vast 

majority (over 80%) of these imports come from countries within the EU.  Automotive exports 
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are the second largest absolute exports across manufacturing, and they rose from £16.4billion in 

1998 to £24.2billion in 2007.  Similarly, over two thirds of exports are consistently destined for 

markets within the EU.  The consequence of these changes has been a large increase in the 

sector’s trade deficit: in 2004 apparent consumption was more than double domestic 

production.  The sector has benefitted from inward investment from Japan, Europe and the US 

(e.g. Honda and BMW in Swindon, Nissan in Sunderland).   However, this has partly been 

offset by several plant closures, such as Ford in Dagenham, Vauxhall in Luton and Rover in 

Birmingham (OEF & The Carbon Consortium, 2006, p.32).  The rising import penetration can be 

attributed to the weakness of sterling against the euro, and increasingly fierce competition from 

emerging economies in east Europe and Asia.   

 

In basic metals the UK tends to export higher value bar products and fabricated products, 

whilst importing lower value flat ones (CRU Strategies, 2004).  With import penetrations and 

export shares at over 70%, the sector is clearly heavily dependent on international trade.  The 

surge in exports from this sector in recent years is probably due to a return to full production 

after job cuts and down time for maintenance in past years.  The sector’s international 

competitiveness has improved in recent years due to restructuring.  Hence imports to the sector 

have almost doubled from £7.9billion to £15.3billion from 1998 to 2007, whilst the proportions 

from inside and outside the EU have remained at about half the total.  Over the same period, 

exports from the sector have more than doubled from about £6.4 billion to £15.0billion.  About 

sixty percent of these exports consistently went to destinations inside the EU.   

 

The chemicals sector has the second largest absolute imports after the automotive sector, and 

the largest absolute exports.  Similar to basic metals, the chemicals sector tends to export mainly 

higher value speciality chemicals (sold on the basis of performance) and consumer products 

(sold on the basis of brand), whilst importing basic commodity chemicals.  It is also one of the 

few manufacturing sectors to consistently have a trade surplus.  The sector’s import penetration 

has increased from below 50% to over 60% between 1992 and 2004 whilst the export share has 

also increased from 65% to about 75%.  Around 70% of imports are sourced from within the EU 

and about 60% of exports are destined for markets within the EU.  It is difficult to draw detailed 

conclusions about the sector as a whole because of its sheer size and diversity, but it is clear that 

pharmaceuticals is one of the most important sectors.  Many pharmaceuticals companies have 

relocated manufacturing capacity overseas, which will contribute to the growing import 

penetration and potentially also reduce the sector’s export share as less output is available for 

export.  Another complicating factor in analysing trade flows within the chemicals sector is that 

a large proportion of the demand for its products comes from other sectors of the economy (i.e. 

intermediate products).  Hence the use of its products is often obscured by further 

transformation processes, such as fertiliser in the agricultural sector or bleaching chemicals for 

the pulp and paper sector, rather than in end uses.    

 

In summary, the UK has a large trade deficit in goods, which is mainly due to the relative 

decline of the manufacturing sector and domestic demand for manufactured goods therefore 

being met from abroad.  Consistently higher levels of trade are undertaken with countries 
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inside rather than outside the EU: approximately 60% of imports and exports come from or are 

destined for countries within the EU.  The distribution of UK exports has changed little over the 

past decade or so, but UK manufacturers are increasingly identifying emerging economies as 

growth opportunities for the future (BDO Stoy Hayward, 2007).  The key growth areas in China 

are metals, chemicals and electronics – also fields in which the UK possesses significant 

expertise.   

 

Since the early 1990s the export share of manufacturing as a whole has remained steady at 

about 45%, whilst the import penetration has risen from 50% to 60%.  The highest levels of trade 

occur within the automotive, electronics, chemicals (especially pharmaceuticals) and basic 

metals sectors, which are all high value added sectors.  Lower levels of international trade occur 

within lower value added sectors such as non-metallic minerals because it is not economical to 

transport these products and they are usually manufactured close to demand (IPTS et al., 1998).  

Several industrial sectors export higher value added goods and import more standard/basic 

ones, which demonstrates the UK expertise in a few key sectors.  

 

5.4 Case study: energy efficiency in the European cement sector26 

Having examined the international context in which industry operates, this section presents a 

case study of the European cement industry, based on in-depth interviews carried out in early 

2007 with senior representatives from five of the world’s largest cement manufacturers, namely 

Lafarge, Holcim, Heidelberg, Cemex, Italcementi, and Cembureau, the trade association for the 

European cement sector.  Lafarge is the largest cement company by turnover, with Holcim and 

Cemex in close competition for second and third position.  Heidelberg and Italcementi are both 

significantly smaller companies, which is shown along with details of the individuals 

interviewed in Table 5-2.  The positions of the interviewees are all very senior within the 

companies (most sit on the executive board) and were established between 1999 and 2007.  The 

companies’ annual reports and environmental reports were also used as a primary data source. 

 

The overall objective of the study was to gain an insight into the European cement sector’s 

strategy to improve energy efficiency and reduce carbon emissions in the context of the EU ETS.  

The methodology involved grouping responses from the interview transcripts under broad 

headings, working iteratively towards a summary matrix summarising the positions of the 

firms and their respective activities.  Whilst the interviews were inevitably subjective to a 

certain degree, the views expressed therein by the respondents were taken to be closely aligned 

with those of the firm.  The exception was when the speaker explicitly indicated that he is 

speaking in a personal rather than professional capacity.  Direct quotations have therefore only 

been made when the view of the firm is being expressed.   

 

Like most sectors, during Phase I of the EU ETS the cement sector had an overallocation of 

emissions permits.  There was an uneven distribution across Europe, however, with a generous 

                                                           
26 This case study was published in Carbon Finance magazine, November 2007, as shown in Appendix A1.4. 
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permit allocation in Eastern Europe but a very stringent one in the West.  The majority of the 

firms manage their emissions allocations centrally, which means taking an overall balance 

across Europe.  Allocations can also be transferred in space (between plants and countries) and 

time (between trading periods).  The company representatives seem to think the method of 

allocation is flawed because it is based on previous performance, so heavily polluting plants are 

rewarded and efficient ones are penalised.  Nevertheless, Cembureau concedes that Phase I was 

“business as usual” for the sector, with no evidence of plant closures due to the Scheme – 

although some have reduced output.     

 

Firm Total 

turnover 

(€m) 

European 

turnover 

(€m) 

Total cement 

output  

(Mt) 

Name  Position  

Lafarge 
17000 6967 123 Vincent Mages 

VP, Climate Change 

Initiatives 

Cemex 
12986 5845 98 

Bruno 

Vanderborght 

VP, Climate Change 

Protection 

Holcim 
11876 5489 113 

Rob van der 

Meer 
Director, EU Public Affairs 

Heidelberg 7803 4230 75 Luis Trevino Director, Energy and CO2 

Italcementi 
5000 3612 56 Xavier Blutel 

Group VP, Environmental 

Affairs 

Cembureau - - - Claude Lorea Technical Director 

Table 5-2 – Production (2005) and interviewee data for European cement sector case study 

Source: Published company sustainability and annual reports 

 

In terms of environmental strategy outside the EU ETS, all firms have set voluntary specific 

emissions targets for 2010.  Figure 5-10 shows the targets and progress towards them for an 

average across the five firms.  Lafarge was the first to set a target, in 2001, and is the only firm to 

have targets relating to both net and gross emissions (whereby the difference is accounted for 

by alternative fuels considered to be carbon neutral).  On average the firms do not appear likely 

to meet all of their targets.  In real terms the best performers have been Lafarge and Holcim, 

though, who have both reduced their specific emissions from 0.75tCO2/t cement in 1990 to 

around 0.65tCO2/t in 2005.  Italcementi is the only company to have increased its CO2 emissions 

intensity over the past ten years, and Cemex also looks unlikely to meet its target of 0.60tCO2/t 

by 2015. 

 

Energy efficiency is very expensive to improve in the cement sector.  New plants are always the 

most efficient and improvements to existing plants are limited to within a few percent of the 

design efficiency.  Hence the two main means of reducing the environmental impact of cement 

are through alternative materials and alternative fuels.  The former involves reducing the 

amount of clinker in the finished cement, known as clinker factor reduction or material 

substitution.  There are two main alternatives to clinker in cement, blast furnace slag and 

pulverised fuel ash (PFA) or fly ash.  Alternative fuels include organic waste, animal feed and 

biomass, and result in emissions savings because these fuels are considered carbon neutral over 
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their lifecycle.  Material substitution is by far the most efficient means to reduce cement 

emissions.  Around 60% of emissions in cement manufacture are process emissions, with the 

remainder being combustion related.  Material substitution affects both of these sources, but 

fuel substitution only affects the fuel-related emissions; it has no effect on the process-related 

emissions. 
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Figure 5-10 – Reported specific net emissions based on the mean value over five companies 

Source: Published company sustainability and annual reports27  

 

Companies vary in the degree to which they are pursuing these two routes.  The market leader 

for material substitution is Holcim, with around 16% alternative materials being used in its 

cement in 2006, whilst most other companies are using approximately 10%.  Heidelberg is the 

market leader in use of alternative fuels with around 16% of its total fuel input in 2006 

reportedly coming from sources such as biomass, tyres and plastics.  These methods of reducing 

emissions are limited though, as material substitution cannot exceed about 75% for slag and 

25% for fly ash.  Although this figures seem far from their present values, companies reported 

market constraints on obtaining these materials.  Quality is the limiting factor for fly ash: it is 

often contaminated and requires further processing before it can be used in cement.  Italcementi 

also report that many of its customers are willing to pay more for a higher clinker content, 

which acts as a limit to its material substitution rate.  Slag, on the other hand, appears to be 

limited in supply: only those companies with long term contracts have a guaranteed supply.  

Interviewees were reticent on this matter, but Lafarge has certainly secured long term contracts 

with steel manufacturers and Holcim owns and operates slag granulation plants at a couple of 

steel companies, such as Arcelor in France and Salzgitter in Germany.  

 

In the long term the industry’s ability to use these alternative fuels and materials will depend 

on their availability.  The interviewees estimated an average carbon price during Phase II of 

€25/tCO2, perhaps even reaching €35/tCO2.  The mid-point of these two values, €30/tCO2, 

                                                           
27 Average in 2004 based on four companies. 
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corresponds to a price increase in the finished cement of about 30%.  Lafarge suggests that 

customers will not accept such price increases because of the elastic nature of demand for 

cement.  This has led to speculation that the sector will relocate production capacity outside 

Europe, but many of the firms say this is not their intention.  Most cement is currently sold 

within a 250km radius of where it is manufactured because it is not economical to transport it 

over land, but at a carbon price of about €30/tCO2 this becomes economically feasible.  If cement 

was imported from developing countries such as China and India, the overall emissions would 

increase because of those resulting from transport.  The EU ETS might therefore make an import 

tax or quota necessary for imported cement, which would not necessarily reduce overall 

emissions, but would address the competitiveness issue. 

   

A less radical scenario might be that European plants do not close, but no additional capacity is 

built either.  Another obvious solution is to change the way the EU ETS operates for the 

European cement industry.  Cemebureau, along with most of the firms, favours a worldwide 

benchmarking approach instead of grandfathering.  Benchmarking rewards efficient operation, 

and is therefore seen as more equitable means of distributing permits.  Any new scheme should 

also be global in scope, by either including the OECD and major developing countries or 

protecting countries in the lead on CO2 reduction from competitive distortions.  In the long term 

it is not technically possible to significantly reduce emissions from cement manufacture with 

current technologies.  For drastic emissions reductions, new technologies such as Carbon 

Capture and Storage (CCS) and power-intensive cements will be required. 

 

5.5 Empirical evidence of drivers for and barriers to efficiency in 

industry 

The theoretical framework in which barriers can be understood was presented in section 4.4.1.  

This section discusses empirical evidence for the existence of these these barriers, and drivers, 

from the literature and primary sources encountered whilst carrying out this research.  

 

The two main drivers behind the adoption of energy efficiency measures in industry are costs 

and legislation (Levine et al., 1995; Future Energy Solutions, 2005; Williams, 2007).  It is 

desirable to reduce energy costs but legally imperative to conform to legislation.  Energy costs 

are heavily sector-specific and may account for up to around 50% of the overall operating costs 

in refineries (European Commission, 2006d).  Over the last few decades, however, the fraction 

of energy costs as a share of production costs has reduced significantly (DTI, 1994; Worrell, 

2004).  Clearly energy costs are much higher for energy-intensive sectors, and have been 

emphasised by recent large increases in natural gas prices, which is the main fuel of the 

industrial sector (BERR, 2008i).  Legislation, some of which was discussed in section 4.3.3, can 

affect many aspects of a firm’s activities.  Conforming to legislation incurs costs, either directly, 

for purchasing tradable emissions permits and/or technology, and indirectly through the 

associated administrative burden.  The latter is particularly significant for SMEs, which do not 

always have the necessary resources available (HM Treasury et al., 2005).  Additional drivers 
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do exist, including competitiveness within the marketplace, associated intangible benefits (such 

as corporate social responsibility, CSR) and fiscal support from third parties such as the Carbon 

Trust but these are usually secondary in industry (The Carbon Trust, 2005b).   

 

In their study of energy conservation potential for the UK, Ray and Morel (1982) identified the 

three most important barriers to undertaking energy conservation measures as low profitability, 

lack of investment and management attitudes.  The first two points are clearly economic in 

nature and are closely related, because if projects are considered to have low profitability then 

there will not be a high level of investment in them.  The criteria for profitability were defined 

as a payback period of 2-3 years, equivalent to a rate of return of 25% or more, which is 

approximately the same as the investment criteria employed in industry today (Eichhammer, 

2004).  Compared to the general cost of capital and return on investment in the economy as a 

whole, this profitability is very stringent.  It can therefore be argued that the investment criteria 

themselves are a barrier, as they preclude cost-effective energy efficiency measures.  In other 

words, the energy efficiency gap (section 4.4) between what is theoretically economical and 

what is actually taken up (market trend potential, cf. Figure 4-2) is larger than widely 

recognised.  Nevertheless, industry does employ such investment criteria, and whilst the 

possibility of a notionally wider efficiency gap is acknowledged, it lies beyond the scope of this 

thesis to quantify it.     

 

The importance of management attitudes should not be understated.  As discussed in section 

4.3.1, energy management systems depend to a large degree on managerial and organisational 

factors.  A company’s management structure and overall strategy clearly have an impact on its 

evaluation of and perspective on energy efficiency projects.  If energy efficiency is a central 

aspect of its strategy then it becomes embodied in important company decisions, just as 

competitiveness and profitability are.  In fact Cooremans (2007) hypothesises that the lack of 

strategic focus on energy efficiency is precisely the reason for its lack of uptake, which is 

confirmed by preliminary empirical results.  She also emphasises the cultural aspects of energy 

use, such as its centralised provision, invisibility in both supply and use, and commoditisation, 

which result in its importance being somewhat overlooked.  The cyclical and groping nature of 

decision-making can be understood as just one stage in a complex individual, organisational 

and contextual processs – a concept which cannot be reconciled with the linear, rational one of 

utility-maximising neoclassical agents (ibid., cf. Appendix A2.1.1).  Furthermore, 

organisational-behaviour analyses of energy conservation emphasise the importance of power 

and incentive distribution in decision making, and highlight the need to focus on institutional 

issues (Cebon, 1992). 

 

It seems that the majority of barriers are, in fact, of this non-technical nature (ISR - UC, 2008), 

relating rather to the human capital that is responsible for industrial energy systems rather than 

the practical realisation of savings through behaviour, technology or policy.  It is probably for 

this reason that the evidence for barriers to energy efficiency is highly diverse with only a few 

common threads.  Fawkes and Jacques (1987) found that the lack of uptake of energy-efficient 

technologies has no single or common feature in the dairy and beverage industries.  This 
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finding was confirmed for the non energy-intensive sector in Sweden by Rohdin and 

Thollander (2006), who concluded that cost and risk associated with disruptions to production, 

hassle and inconvenience were some of the main barriers.  Some of the initial correspondence 

with trade associations and companies carried out for this research also supported this 

emphasis on the human elements (Bainbridge, A., MEUC, pers. corr., April 2006).   

 

Ray and Morel (1982) also identified evidence for the split incentive problem in their study.  

Energy managers often do not have the authority to commission projects relating to energy 

conservation, so need to obtain approval from management beforehand.  In other words, the 

decision makers within the firm are not those people who understand the potential benefits of 

the project, although they are the ones likely to benefit directly if and when it proves to be a 

profitable investment.  Overcoming this problem relies largely on the energy managers’ ability 

to persuade management that the project is worthwhile.  In many cases the projects will be 

competing for finance from other areas of the firm, such as marketing and production, which 

might be given precedence.   

 

A form of the split incentive problem was also encountered during this research.  Stakeholders 

with a vested interest in understanding energy demand (e.g. trade associations) did not have 

the necessary information to do so, and those with the information (e.g. companies) did not 

always have the resources required to do so – which is particularly the case in SMEs (HM 

Treasury et al., 2005).  Even within a company itself, the relevant information on energy use if 

often not available.  Furthermore, it is crucial to contact the correct person within an 

organisation, but on making initial enquiries this is not always possible.  It is no coincidence 

that those cases in which the enquiry could be directed at a specific person were the most 

fruitful ones in terms of developing industry-acadmia relationships.  

 

Worrell et al. (2003) suggest that the assessment of energy projects should be based on the 

evaluation of all the resulting energy and non-energy (or productivity) benefits.  Some common 

non-energy benefits include cost reductions due to reduced material use, less waste and lower 

water consumption, and lower emissions of air pollutants.  Although it might be quite 

straightforward to identify these impacts, their quantification can prove problematic, especially 

in the case of new technologies, with which there is typically little experience.  The authors 

themselves admit this difficulty, especially when the benefit is not directly linked to 

productivity, in which case assumptions are needed to translate the benefit into a comparable 

cost figure.  Further, the values of quantified productivity benefits often come from a published 

case study or a limited number of observations, such that the accuracy of the figure is 

questionable.  The crucial point, though, is that there are real non-energy benefits to be gained 

from energy efficiency and Pye & McKane (2000) suggest that these are often greater than the 

energy benfits. 

 

As part of their study of emerging energy efficient technologies carried out for the Energy 

Efficiency Innovation Review (EEIR), FES examined the drivers and barriers specific to 

industrial energy efficiency.  As their findings are based on one of the most recent and 
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comprehensive studies of energy efficiency in industry, relating specifically to the UK, they 

deserve to be quoted at length (Future Energy Solutions, 2005, pp.53-57).  The barriers have 

been identified as (ibid.): 

 

• Focus on production: many companies are highly focused on production and do not 

give any priority and, as a result, time, to energy efficiency activities; 

 

• Availability of capital: most companies have limited capital for new projects and look 

for short payback periods; 

 

• Low risk approach: naturally, companies want to minimise risk, and this applies when 

it comes to the reliability of process plant and the quality of product.  New 

equipment/design carries with it an unknown quantity in terms of reliability, and hence 

is viewed as a risk.  The potential rewards have to be very high to make the perceived 

risk worthwhile; 

 

• Lack of staff/de-skilling of work force: there is a trend towards reducing the numbers 

of professional staff employed within UK companies.  Those that are left have 

increasing workloads and tend to be less qualified.  This has the result that staff have 

little time to support/develop new projects and may not have the technical know-how; 

 

• Off-shoring: importing of skills and hardware results in UK-based staff lacking skills 

and knowledge of their process plant/machinery, making it harder to fix or maintain 

products let alone upgrade them to improve efficiency;   

 

• Fragmentation of the UK science base: many universities are reducing their facilities 

and resources necessary for R&D activities.  This reduces the pool of ‘experts’ in the 

field, and makes carrying out R&D projects more difficult.  The lack of test/pilot 

facilities exacerbates the difficulty of testing and evaluation; 

 

• Windows of opportunity: Many ideas require radical changes to sites and with plant 

‘update time’ being as low as four days per year in order to maximise production, there 

is little opportunity to work on improvements.  This is particularly the case in the 

process industries where downtime is expensive (ISR - UC, 2008).  It also seems to be a 

particular problem in SMEs (HM Treasury et al., 2005). 

 

Clearly the empirical evidence suggests a large diversity of barriers, many of which can be 

understood within the theoretical framework of Sorrell et al. (2004).  The complex and 

multifaceted nature of many of the barriers means that they are often not straightforward to 

address, because they affect multiple layers of management and areas of business activities.  

Whilst exploring the reasons for all barriers working in the same, negative direction (i.e. 

towards lower efficiency), Eyre (1998) highlights this complexity and suggests four common 

themes to many barriers.  One of the themes is centralisation, which means that decisions about 
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energy use are made centrally, with a systematic bias towards to the supply side.  Instead, he 

argues, regulation should address the demand side as much as the supply side because there 

are strong economic arguments for doing so (ibid.).  Centralisation is manifested within 

industry as split-incentive and principle-agent barriers defined in section 4.4.1, whereby the 

management structure of a firm itself acts as a barrier.  Another theme is commoditisation, 

which relates to the way in which energy is traded as a commodity despite the diversity 

amongst energy systems.  This commoditisation hinders the development of efficient markets in 

energy efficiency because it treats public goods such as social inclusion and energy security as 

secondary issues (op. cit.), but it seems to be less applicable to industry specifically.  The third 

theme is the complexity of the purchasing process for energy services, whereby energy 

institutions have developed to promote network growth and security of supply rather than 

efficiency.  The fourth theme is the dichotomy between producer and consumer, whereby 

expenditure at the point of consumption is not perceived as a productive investment.  These 

cross-cutting insights into the nature of many barriers certainly bolster the argument that 

regulation should equally be focussed on the demand side, but some are less relevant to 

industry specifically.    

 

Sandberg (2004) and Eyre (1997) suggests that the complexity of energy systems can itself be 

seen as a barrier – what Eyre (1997) calls the “meta-barrier”.  Whilst firms recognise the need for 

“a more comprehensive view of energy efficiency in investment decisions”, they do not devote 

the necessary resources to such activities, often because they are not considered to be core 

business activities.  Sandberg (2004) identifies this lack of resources as being the primary driver 

behind the development of energy cooperation between companies, such as for district heating 

schemes and ESCOs.  It is also the stimulus behind what he argues is a requirement for 

decision-making support in industrial companies.  Energy efficiency is not seen as an end in 

itself, but a means through which to achieve economic and environmental benefits.  Certainly, 

as identified in section 4.4.1, these are the main reasons for firms undertaking energy efficiency 

activities. 

 

Whilst many studies have found evidence for barriers, some have concluded that, in fact, most 

energy-efficiency projects are actually implemented if they are cost effective.  The DTI Energy 

Paper 50 contains extensive empirical evidence for drivers and barriers, resulting from 

industrial surveys of around 274 companies in the early 1980s (Armitage Norton Consultants, 

1982).  The general conclusion of this study was that, in most cases, the cost-effective potential 

energy savings had been realised.  However, lack of information about suitable energy-efficient 

technologies was also highlighted as a prevalent barrier.  In many cases, the trade associations 

contacted as part of this research did not have the relevant energy data relating to their 

members, or they were not willing to disclose it for reasons of commercial confidentiality.   

 

FES (2005, p.80) also suggest that potential is in fact being taken up, contrary to public 

perception, and that the real issue is whether the rate of uptake can be increased.  This is 

supported by evidence that several sectors have indeed made significant energy efficiency 

improvements in recent decades.  In particular, the brewing industry is one of the most efficient 
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in the world and has reduced its SEC in delivered energy terms by around 50% since the 1970s 

(Tighe, A., BBPA, pers. corr., April 2006).   

 

Perhaps the most significant market barriers are those of hidden costs and access to capital, 

which have been often cited in the literature as reasons given (e.g. in energy audits) for not 

undertaking energy efficiency measures.  Of the market failures, imperfect information appears 

to be by far the strongest barrier, as well as one which might benefit from a public policy 

intervention.  These two barriers – i.e. those of hidden costs and access to capital – were 

similarly recognised in the British Government’s Energy Review in 2006 (DTI, 2006b).  The 

information often relates to specific technologies too (Armitage Norton Consultants, 1982).  

Jaffe and Stavins (1994) and Sorrell (2004) also highlight some market failures associated with 

the public good of information, in particular its non-rival non-excludable properties, which 

means that it cannot be supplied by a private market and contributes to its imperfection.  

 

Finally, a more general barrier is the limited perspective taken when assessing different energy 

efficiency options, as this is often done on a technology rather than system basis.  This is 

illustrated by the fact that, because operational budgets are typically separated from capital 

budgets in companies, energy use – often the largest single lifecycle cost for such systems – is 

not considered at the time of purchase (IEA, 2007, p.231).  With this in mind, the following 

section presents empirical evidence for the potential for energy efficiency improvements 

through systemic improvements.   

 

5.6 Systemic potential for improving industrial energy efficiency 

This section attempts to gauge the technological potential for improving energy efficiency in the 

industrial sector based on published estimates and widely accepted scopes for systemic 

improvements.  It begins with a discussion of the systemic potential across key energy systems 

and through lifecycle approaches such as recycling and fuel substitution, before identifying the 

scope for individual industrial sectors.  Similarly, within each of these areas, the focus is at first 

on general or global opportunities, before focussing on Europe and the UK in particular. 

 

Attention is firstly drawn to the broad industrial systems highlighted in section 4.3.2.  Most of 

these estimates are based on those of the IEA (2007) unless otherwise stated.  The IEA’s Energy 

Technology Perspectives (ETP) has estimated the reductions in industrial carbon emissions 

achievable by 2050.  Around half of the necessary total global reduction of MtCO2 is due to 

energy efficiency measures, including large contributions from motor and steam system 

optimisations, as well as better heat recovery and use for power generation (Gielen & Taylor, 

2007).  For motor systems it is estimated that the global improvement potential is some 20% of 

the current baseline, based on the opportunities for system optimisation outlined above (IEA, 

2007).  The estimated potential for motor systems in the UK is also 20%, corresponding to 

50PJ/yr of electricity or around 12% of industrial electricity use in 2006 (BERR, 2008a).  The 

Motor Challenge project estimated that the potential for motor systems in the UK is in fact 

around 86PJ/yr (de Keulenaer et al., 2004).  For steam systems, the global potential energy 
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efficiency improvement is estimated at 10%, which in for the UK similarly corresponds to 

50PJ/yr.   

 

For various reasons, including the reliability of data, the large differences between systems and 

the variability in operation, there does not appear to be a consensus on the global CHP 

potential.  For Europe a figure of 75GW remaining (heat) potential within the industrial sector 

has been suggested by the Chapnet CHP project (Minett, 2004, cited in IEA, 2007, p.244), but 

this should be treated with caution.  Cambridge Econometrics (2003) suggest that the majority 

of CHP growth will be in the chemicals and other industry/power generation sectors.  Although 

the government’s target will almost certainly not be met by 2010, DEFRA (2007a) estimates that 

the additional economical potential for low to medium temperature industry in 2010 will be 

5.4GWe, rising to 6.8GWe in 2015.  There is also an estimated 1.4GWe potential in high 

temperatures industries by 2010, especially refineries and LNG terminals.  Pöyry (2008) have 

identified around 13.9GWe (+/- 2.5GWe) of additional technical potential for large scale CCGT 

CHP opportunities in locations where the demand is accounted for by a cluster of industrial 

premises.  One of the sites identified, Seal Sands in Teeside, has been earmarked and planning 

permission awarded for the development of a 1.0GWe CHP unit (Professional Engineering, 

2008).    

 

The opportunities for recycling in industry are quite significant on a global scale, but barriers 

such as the reduced material quality (paper can only be recycled six times, for example), which 

results in more material being required to perform the same function, must be taken into 

account.  Often the market for a recycled product does not exist, so there is no basis for 

comparison in energy or carbon terms, such as is the case for plastic lumber.  Notwithstanding 

these barriers, the technical potential for recycling of all materials available is estimated to 

represent a saving in global industrial energy use of 2-4% (IEA, 2007).  The largest parts of this 

potential are from municipal solid waste (MSW) and packaging materials.  This potential is not 

yet economical for various reasons, mainly because of the costs associated with recovery 

operations, which might change if the carbon price rises drastically.  In addition, there is an 

additional driver in the lack of land available for landfill, which is currently the main incentive 

for increased recycling rather than concerns about energy or carbon emissions.  There is also an 

imbalance in the distribution of this recycling potential: the majority is located in non-OECD 

countries.  Europe as a whole already has a relatively high material recovery and recycling rate 

of around 30%, such that further marginal improvements are much more difficult than in 

countries with much lower rates (ibid.). 

 

An alternative to recycling of waste materials is to use them as a fuel.  This is particularly 

attractive with MSW and plastics (excluding PVC), which can be processed into fuels with a 

relatively high calorific value and used to displace fossil fuels in boilers and kilns.  The 

estimated global industrial energy saving potential from incineration of these materials is of the 

order of 2-3%, depending upon the specific combustion technology, especially whether or not 

CHP is used.  Incinerators in the UK have a very low (16.5%) efficiency, because they are used 

solely to generate electricity (op. cit.).   
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Having examined some of the systemic potential for industrial energy efficiency improvements, 

attention is now drawn to the opportunities that exist for individual industrial sectors.  Table 

5-3 shows some estimated global and European improvement potentials based on various 

sources.  There is a large variation in the estimated savings for each sector due to the different 

time scales, geographical scopes and assumptions employed, as well as whether the potential is 

defined as being theoretical, technical or economical.  However, there still seems to be a general 

consensus that for most sectors there is the potential for at least a 10% improvement in energy 

efficiency, and in some cases much more.  

 

Given the broad nature of the global and European estimates of energy savings given in Table 

5-3 , these estimates should be kept in context.  It would be unreasonable to impose such 

estimates onto UK industry because it is atypical in nature and because this broad potential 

cannot be realised equally between individual countries.  Indeed, the distribution of the savings 

will depend to a large extent on the policy measures introduced or already in place in these 

regions as well as the stage of technological development at which industries find themselves.  

For example, the largest potential for energy efficiency improvements in the cement industry 

are thought to exist in regions where technology is not state of the art, such as China and the 

Former Soviet Union (Price & Worrell, 2006).  

 

The potential for energy efficiency improvements in UK industry was assessed by Langley 

(1984a, 1984b, 1987) and his team at ETSU in 1980, in one of the most extensive studies of UK 

industry in recent decades.  The study employed a highly disaggregated technological approach 

in order to determine the overall technical and economic potential for energy savings in each 

major process of the UK manufacturing industry by 2000.  Further, it attempted to estimate the 

likely uptake of these measures in this period as well as comparing the findings to the energy 

projections of 1982 (Department of Energy, 1982, cited in Langley, 1984a, p.69).  The headline 

conclusions of the study were that (Langley, 1984a): 

 

• The estimated energy saving potential through energy efficiency measures by 2000 was 

estimated to be 21-25% of the consumption which would otherwise occur. 

• These techno-economic estimates are within the technical potential of 29% identified by 

Energy Paper 32 (DTI, 1978). 

• In both high and low growth scenarios, additional equipment make the largest 

contribution and together with management measures account for over half the 

potential savings.  

• Due to the large amount of process energy used in the energy-intensive sectors, the 

overall improvement in energy efficiency is greatest here; 

• Nearly two orders of magnitude separate the subsectors with the largest and smallest 

energy intensities. 

 

With the benefit of hindsight it is clear that Langley’s (ibid.) projections were too high.  Even 

the low growth scenario was overoptimistic, as it failed to anticipate the extent of energy 
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efficiency and structural change in industry (section 5.2.1).  The implication for the estimates in 

Table 5-3 should be treated with caution because of the uncertainty surrounding such data.     

 

Source IEA 

(2007) 

Jochem 

(2000)28 

Eichhammer 

(2004)29 

Other 

Scope Global European European Savings Soure 

Base year 
2004 1995-

1997 

2000   

Target year  2020    

 

Sector      

Food and drink  >15 6-12   

Iron and steel 
11-18 

(tech.) 
13-20 15 11-20 

US economical potential 

(Worrell et al., 2001) 

Aluminium 15  21   

Chemicals 25-32 >10 8-27 30-5030 

Global petrochemical industry, 

theoretical potential  

(Neelis et al., 2006) 

Refineries   7-10 25-32 10-20 
US economical potential 

(Worrell & Galitsky, 2005) 

Pulp and paper 33-37 50 21-24 75-9031 (De Beer et al., 1998) 

Cement  8-1532 13 17 
Western Europe, technical 

potential (Price & Worrell, 2006) 

Glass  15-25 13   

CHP in industry  10-20    

Table 5-3 – Global and European final energy saving potentials (%) for various industrial sectors  

 

A related study carried out by AEA Technology (2002) examined the first three of the scenarios 

from the IAG (2002) energy projections, with the  objective of identifying the technical 

possibilities and costs for the abatement of these emissions.  Estimates of future energy demand 

and carbon dioxide emissions were developed using the IEA’s MARKAL model, a bottom-up, 

technology based model that identifies the least cost combinations of technological processes 

and improvement options that satisfy specified levels of demand for goods and services under 

given constraints (DTI et al., 2005).  The key results for industry were as follows (AEA 

Technology, 2002): 

  

• A diversity of technology options for reducing CO2 emissions were identified;  

                                                           
28 From Table 6.4, which is based on a number of different sources, as follows: food and drink (Jochem & Bradke, 1996); 
iron and steel (ibid., Ameling & et al., 1998); chemicals (Patel, 1999, Brewer & Lopez, 1998); refineries (Anon, 1998); pulp 
and paper (de Beer, 1998); construction materials (no source given); glass (European Commission, 1997); CHP in 
industry (European Commission, 1997, European Commission, 1999). 
29 Savings in primary energy terms. 
30 These percentages are based on the total energy loss identified as a proportion of the total final energy use, and 
therefore relate to theoretical potential.   
31 This is the potential to reduce the SEC of heat.  The SEC of electricity may stay the same or increase slightly. 
32 Actually this figure is for construction materials in general. 
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• Energy efficiency technologies and measures must play a central role in attaining 

emissions abatement targets.   

• Innovation and technical progress are seen to be the major drivers behind the 

transition to a low carbon economy; 

• Large productivity improvements could be achieved largely through automation; 

• Further structural change away from heavy industries could lead to a continued 

reduction in energy intensity; and    

• Natural gas is considered to be attractive as a fuel of the future, both economically and 

in terms of its associated low CO2 emissions. 

 

Finally, five specific technologies were highlighted by the Carbon Trust (2002) as a having high 

technology and low carbon impact potential for decarbonising and increasing the energy 

efficiency of the industrial sector, namely: combustion technologies, especially in the high 

temperature industries; improved applications for and new materials; better process control 

and automation; process intensification; and membrane separation technologies.  Another study 

undertaken in support of the Energy Efficiency Innovation Review (EEIR) analysed the 

potential of 23 specific technology applications, out of an original 125 possibilities, to offer 

significant carbon savings and value to the UK economy by 2050 (Future Energy Solutions, 

2005).  Of four cross-cutting themes concluded to have measurable potential with the assistance 

of government intervention, two are particularly relevant to industry, namely boilers and steam 

systems and dematerialisation/lightweighting of products.  The former includes an array of six 

measures, namely: 

 

• Radical boiler redesign to exploit advanced burner designs (ibid. p.22);  

• Low-cost adaptive and robust model-based boiler monitoring and control systems 

(ibid. p50); 

• Novel approaches  to steam boiler system design (ibid. p.77);  

• Low-cost intelligent modelling of steam systems (ibid. p.84);  

• Second stage waste heat recovery from high temperature processes (ibid. p.162); and  

• Innovative approaches to enhance recovery and use of waste heat from steam 

condensate and hot boiler flue gases (ibid, p.179).   

 

Together, these six measures offer potential annual carbon savings of the order of 3MtC/yr by 

2050; likewise the dematerialisation and lightweighting of products is estimated to be capable of 

saving 1MtC/yr.  However, there are significant barriers to adapting the current boiler stock 

within the UK, which include the lack of performance-related legislation for industrial boilers, 

and the large installed base of industrial boilers, which, combined with the low rate of 

installation of new plant, means that the penetration rate is relatively low.  Again, these 

estimates should be treated with some care, as they could only be realised with the elimination 

of market barriers. 

 

A similar technology-based model was developed of UK industrial energy-saving potential, in 

order to inform climate change policy debate, in particular as part of a consultation package on 
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the 2nd phase of the EU ETS (Future Energy Solutions & The Carbon Consortium, 2005).  The 

bottom up technology model ENUSIM was employed in order to generate CO2 cost abatement 

curves for 2005, 2008 and 2010, based on information on energy consumption and available 

energy efficient technologies.  The headline results from the study are shown in Table 5-4.  The 

limitations of the study mean that technology penetration and hidden costs are not accounted 

for, so these results should similarly be treated with care.  Nevertheless, the results suggest 

significant economical potential energy savings in the paper, glass, brick and chemicals sectors, 

and much more if barriers could be reduced or eliminated. 

 

Industrial Sector Technology (all 

fuel use if blank) 

Total 2010 

Emissions 

excl. savings 

(ktCO2) 

Cost 

Effective 

Savings 

(%) 

Technically 

Possible 

Savings (%) 

Cement - 6,284 0.7 0.9 

Lime - 540 0.3 0.3 

Paper - 5,799 3.0 7.0 

Glass - 1,716 7.0 10.0 

Brick Making - 1,300 2.0 3.0 

Ceramics - 200 5.0 8.0 

Chemicals33 - 11,241 11.0 17.0 

Chemicals CHP 11,241 1.0 1.0 

Paper and board - 3,210 3.0 5.0 

Paper and board Biomass boilers 3,210 2.0 35.0 

Paper and board CHP 3,210 2.0 2.0 

Vehicles 

manufacturing 
- 628 0.0 12.0 

Table 5-4 – Potential emissions savings for energy-intensive industry 

by 2010 (Future Energy Solutions & The Carbon Consortium, 2005) 

 

5.7 Energy demand projections for the industrial sector 

Having discussed the potential for energy efficiency improvement by sector and technology, 

this section presents a brief summary of published energy demand projections for the industrial 

sector.  Figure 5-11 shows the historical energy demand along with projections from various 

studies for the industrial sector.  Especially noteworthy is the large deviation from the Lewis 

(1979) projections, which failed to anticipate the massive restructuring, rationalisation and 

energy efficiency improvements in the sector, leading to an energy demand in 2005 which is 

approximately half of the projected value.  This illustrates the weakness with long-term 

econometric models, which are rarely if ever able to account for the possibility of low-

probability, high impact exogenous shocks to the system and the associated consequences. 

 

                                                           
33 The technology for this sector was not updated, only the overall energy balance, hence this is a liberal estimate of 
remaining potential (Future Energy Solutions & The Carbon Consortium, 2005) 
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There are a range of projections in the long term out to 2050.  Over this period industrial energy 

demand is expected to remain of the same order of magnitude, and certainly not undergo the 

large changes as have occurred over the past four decades (although this might be due to the 

inherent oversight of such models noted above).  The shorter term forecasts are less 

conservative, predicting a significant increase in industrial energy demand over the period to 

2030.  However, comparison to the historical trend shows that they have not been accurate over 

the last few years for which data is available – especially the DTI (1995).  The central scenario of 

the latest government energy projections (DTI, 2006c) suggests an industrial energy demand in 

2050 that is only slightly higher than today. 

 

The extreme case involves a projected industrial energy demand of about 2000PJ in 2030, but 

this data is from the European Commission’s (2003d, 2006c) study covering all – then – current 

EU Member States.  The results are therefore not highly accurate on a national basis, and even 

less so on a sub-national (i.e. industrial) scale.  The energy demand projections from these two 

studies do not correspond as closely as other results to the historical data.  This is partly as a 

result of the study’s highly aggregated nature, and also a question of classification, i.e. how the 

national energy demand is broken down into sectors – on a national scale these projections are 

in line with historical trends. 
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Figure 5-11 – Delivered industrial energy demand projections from various studies 

Source: DTI( 2007a), AEA Technology (2002), DTI (1995),  DTI (2002a),  DTI (2006c),  IAG (2002), 

Europeam Commission (2003d; 2006c), LEWIS (1979) 

 

5.8 Summary and conclusions 

The manufacturing sector has played an important role in the British economy ever since the 

first Industrial Revolution, by producing materials and products with domestic and overseas 

applications, hence providing valuable goods with which to undertake international trade.  In 
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the latter half of the twentieth century in general, and the last quarter in particular, the British 

economy has shifted its focus away from manufacturing activities towards services.  This shift 

has been observed in many industrialised nations, with empirical evidence from various 

developed countries (Perkins et al., 2006, pp.686-687), although it is by no means a necessary 

and sufficient stage of development.  Furthermore, this trend is occurring within the 

manufacturing sector itself, as many manufacturing companies adapt into service providers.   

 

The proportion of manufacturing GVA output recorded in national statistics therefore 

overlooks these service-related activities as they are not classified within the manufacturing 

sector.  Nevertheless, the sector accounts for higher proportions of energy demand and carbon 

emissions than output.  The sector has reduced its energy demand over the past few decades, 

mainly due to improvements in energy efficiency after the oil price hikes in the 1970s.  The main 

source of carbon emissions in industry is energy use; less than 10% of total emissions are 

process related.  Large reductions in employment have resulted in improved labour 

productivity and technological innovation has enabled overall growth in TFP in most sectors, 

because it has more than offset the labour shedding.   

 

The industrial sector is very diverse in terms of manufacturing processes, ranging from highly 

energy-intensive steel production and petrochemicals processing to low energy-intensity 

electronics fabrication.  Attempts to characterise sectors have been made based on energy end 

uses, energy productivities, and overall energy demand.  Whilst relatively few energy intensive 

industrial sectors account for a large proportion of the sector’s total energy use, these sectors 

are characterised by a great degree of diversity.  Hence a classification based upon the degree of 

process homogeneity has been proposed, within which the food and drink and chemicals 

sectors are the most heterogeneous sectors.   

 

International trade is very important for the manufacturing sector, which in general exports 

high value goods and imports lower value ones.  The UK has a large trade deficit in goods, due 

largely to the relative decline of the industrial sector in the past few decades, but the distinction 

between goods and services has become blurred as noted above.  Consistently higher levels of 

trade are undertaken with countries inside rather than outside the EU: approximately 60% of 

imports and exports come from or are destined for countries within the EU.  Since the early 

1990s the export share of manufacturing as a whole has remained steady at about 45%, whilst 

the import penetration has risen from 50% to 60%.  The highest levels of trade occur within the 

automotive, electronics, chemicals (especially pharmaceuticals) and basic metals sectors, which 

are all high value added sectors.  Lower levels of international trade occur within lower value 

added sectors such as non-metallic minerals because it is not economical to transport these 

products and they are usually manufactured close to demand (IPTS et al., 1998).   

 

The European cement sector was not strongly affected by the EU ETS in Phase I, but there are 

concerns that a higher carbon price in Phases II and III will lead to carbon leakage, whereby 

production capacity is relocated outside Europe.  This would directly contradict the intention of 

the EU ETS by increasing overall carbon emissions due to the additional transport required.  
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The solution to this threat seems to be a multi-lateral international emissions trading scheme or 

carbon taxes and/or import quotas on imported cement (or clinker) from regions outside 

Europe.  The methods being employed by the sector to reduce specific emissions, namely 

material and fuel substitution, have limited potential to improve energy efficiency in the long 

term.  Instead, new technological developments will be required to achieve drastic reductions 

in carbon emissions by the sector, including Carbon Capture and Storage (CCS) and higher-

power cements. 

  

There is evidence of diverse barriers to energy efficiency in industry.  The most significant 

market barriers seem to be hidden costs and access to capital.  Imperfect information seems to 

be the strongest market failure.  There is significant systemic potential for increasing industrial 

energy efficiency if specific barriers can be eliminated.  The potential is highest in ubiquitous 

energy systems such as steam, motors and CHP, as well as in key sectors such as, for example, 

iron and steel, chemicals, pulp and paper, and food and drink. 
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6 Spatial modelling of industrial heat loads and technical 

recovery potentials 

This chapter presents a spatial analysis of industrial heat loads and technical recovery potentials 

in the UK, which also incorporates qualitiative exergy considerations.  The main data source is 

the EU ETS NAP, supplemented by capacity/output and SEC data for some sectors.  The 

chapter begins with an introduction, which places the work in context and reviews previous 

studies.  The aims and objectives are then defined, before presenting the general methodology 

as well as that for specific sectors.  The results are then presented and discussed and the 

suggestions for future work are given.  Finally, the chapter closes with conclusions and 

recommendations.  

 

6.1 Introduction 

The market for heat in the UK is currently not well understood, which represents a specific case 

of ignorance about end uses of energy at the microeconomic level.  Whilst energy markets for 

primary fuels and electricity are well developed and regulated, those associated with heat 

appear nascent and disorganized.  This is largely due to only a small proportion of the economy 

actually trading heat as a commodity – specifically the process industries.  Another reason for 

this fragmented approach to energy supply is the privatised nature of the electricity and fuel 

markets, which are currently oriented towards delivering products (i.e. electricity, gas) rather 

than providing a service (such as lighting, heating).   

 

Against the framework laid out in the Energy White Paper (DTI, 2007c), The Heat Call for 

Evidence (BERR, 2008f) set out to analyse the current market for heat use in the UK and better 

understand the policy options for reducing the carbon footprint of heat use.  The generation of 

heat, mainly from gas and electricity, accounts for just under half of the UK’s CO2 emissions 

(BERR, 2008f, p.12).  The domestic sector represents the largest heat demand in the UK, with 

about 54% of the final energy demand for heat, followed by industry, which accounts for 30% 

(ibid., p.13).  However, the CO2 emissions associated with these two sectors are of the order of 

40% each of the total for the UK (ibid.).  This is largely because industry uses more carbon-

intensive fuels and electricity for process heating, and emits process emissions, whereas the 

main fuel for heat generation in homes is natural gas (Shorrock & Utley, 2003).   

 

The Heat Call for Evidence incorporated two specific studies which attempted to quantify the 

industrial market for heat.  The Carbon Trust established Connective Energy as a subsidiary in 

July 2006, in order to concentrate on delivering heat-related solutions.  Their estimated market 

potential for surplus heat from industrial processes in the UK is some 144PJ (40TWh), but this 

could not be substantiated because of commercial confidentiality (Albrow, K., Connective 

Energy, pers. corr., June 2008).  Secondly, the government’s Office of Climate Change (OCC), 

whilst acknowledging the scarcity of available data relating to heat use, employed an estimate 

of 65PJ (18TWh) in its determination of a marginal carbon abatement cost curve (BERR, 2008f, 
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p.62 and Appendix 2).  This figure is clearly more conservative, but is also subject to a degree of 

uncertainty.  In the absence of a better estimate at the time of writing, a reasonable indication 

for the actual market potential would be somewhere between these two extremes, perhaps at 

around 108PJ (30TWh).   

  

Euroheat and Power, the international organisation for district heating, cooling and CHP, 

undertook an extensive study of the European market for heating and cooling, called 

EUROHEATCOOL (Work Package 1 deals with heating: Werner, 2006; Euroheat and Power, 

2005b).  The main data source for OECD countries was the IEA’s database of international 

energy balances.  Heat use in industrial processes was modelled across the target area of 32 

countries, using experience from the German industry as a framework for apportioning heat 

use between different processes and sectors.  Whilst this overlooks the complexity and country-

specific nature of the industrial sector, a study of this scope is only intended to be indicative.  

Three different temperature bands have been used to classify industrial processes, namely low 

temperature (below 100°C), medium temperature (100°C to 400°C) and high temperature 

(above 400°C).  The effective power to heat ratio for the industrial sector in the UK34  was found 

to be around 6% overall, which compares well with other countries for which data was 

available, such as Spain and Finland with values of 12% and 13% respectively (Werner, 2006, 

p.21)  Another conclusion for the industrial sector was that high temperature heat demands 

dominate with a 43% share, whilst medium and low temperature demands accounted for 27% 

and 30% respectively (ibid., p.47).   

 

The problem of quantifying heat demand and waste or surplus heat is exacerbated by the fact 

that the latter is not recorded in international energy statistics such as the IEA Energy Balances.  

Work Package 4 of the EcoHeatCool project found that surplus heat from industrial processes is 

used for district heating in Sweden above all, and to some extent in other Scandinavian 

countries (Werner, 2006, p.29).  Elsewhere there appears to negligible use of surplus industrial 

heat in district heating schemes, but this might reflect a lack of data rather than the true 

situation.  Major barriers for the exploitation of the available surplus heat include the 

inflexibility in being contractually bound to supply heat and the large distances between supply 

and demand (ibid.).  Nevertheless, it is technically possible to transport heat over distances up 

to around 40km, whereby the economics depends on, inter alia, the power and length of the 

network (Werner, Professor S., Energy Technology, Halmstad University, pers. corr., November 

2008). 

 

The present study attempts to model industrial heat demands throughout the UK, based largely 

on the site-specific data contained in the EU ETS NAP.  Emphasis is placed on developing a 

methodology for modelling industrial heat loads through recourse to detailed assumptions and 

specific knowledge about individual subsectors, and the results are therefore intended to be 

                                                           
34 That is, the ratio between the industrial CHP electricity generated and the net heat generated from fuels.  This is 
indicative of the overall power-to-heat ratio for the industrial sector and reflects the penetration of CHP.  If all heat and 
power within the sector was generated from CHP, this ratio could in theory approach values in excess of 100% as 
currently achieved by gas-fired combined cycles, but in practice this is constrained by the ability of CHP to supply high 
temperature processes. 
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indicative.  Whilst other studies of this nature have already been done, they have largely been 

carried out by private companies and are therefore constrained by concerns about commercial 

confidentiality.  AEA Energy and Environment also produced an industrial heat map for BERR 

in the context of the Heat Call for Evidence, but the methodology is not well documented (DTI, 

2006, p.10, Annex A) and this map did not consider temperature of recovery potential (AEA 

Energy and Environment, 2009).   

 

6.2 Aims, objectives and scope 

The overall aim of this study was to better understand industrial energy, especially heat, usage 

on a site level. As discussed above, there has been little work carried out in this area, and much 

of what has been done is subject to commercial confidentiality.  Top-down analysis of the 

industrial sector has led the author to the conclusion that this approach is limited in terms of 

resolution and accuracy, and that a site-specific approach is favoured for identifying the 

improvement potential on the ground.  One of the largest constraints to adopting an holistic 

bottom-up approach to modelling heat loads is the paucity of data on this highly disaggregated 

level.  Hence the focus here is on providing an initial picture of the current status, and also on 

developing a methodology that can be used with the data available.  As well as investigating 

the use of heat for industrial processes at individual sites, two other aims of this work are to 

consider both the temperature (distribution) of heat use and losses, and the spatial distribution 

of these loads.   

 

The general objective is therefore to provide an overview of heat demand and losses within the 

industrial sector in the UK.  With this in mind, the specific objectives of this work are to: 

 

• Categorise low, medium and high grade industrial heat users; 

• Quantify heat use and wastage at different temperatures; 

• Quantify opportunities for heat recovery based on commercial technology (the technical 

potential), both on and offsite; 

 

In general this study is intended to be indicative of the trends in heat use across industry, rather 

than a precise representation of individual processes.  The model is constrained to the site level; 

apart from sectors for which the capacity-based methodology has been employed, sites are 

considered to be black boxes, in which processing activities occur according to the sector 

specifications (Table 6-3, and Table A3 in Appendix A3.1).  This means that, for example, the 

kinetics involved in chemical reactions is not considered.  The focus is on the technical potential 

for heat recovery from the industrial sector, according to the definition given in section 4.4.  The 

scope is as defined in section 1.4, with the exception of mineral oil refineries because these are 

considered to be too complex for inclusion within this study.  The scope has also been limited 

by the data sources employed to the energy-intensive sectors, as detailed below.   
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6.3 Methodology 

6.3.1 General assumptions 

Diurnal or annual temporal variations in heat load have been neglected.  The heat loads are 

instead assumed to be in steady state over the year, corresponding to the load factor and 

efficiency employed for the sector.  The emissions allocation from the NAP that has been 

employed is the site’s “relevant emissions” field, which is the average emissions over the period 

2000-2003 minus the lowest year.  Where a site’s emissions changed significantly over this 

period Allocation Methodology Rules are applied, more details of which can be found in the 

Phase II NAP (DEFRA, 2007d, ch.3).  Five sites in the pulp and paper sector have been excluded 

from this study because there is a lack of data on emissions for this reason. 

  

This study assumes that there is a use on or off site for the recovered heat, which has not been 

explicitly specified for individual sites but is instead assumed to exist in the immediate vicinity.  

The basis for this assumption is that it is technically possible to transport heat over significant 

distances, as stated in the Introduction, the constraint being largely economic.  The lack of a use 

for recovered heat is therefore taken to be a largely economic phenomenon, which could be 

alleviated or mitigated with market-based policy.  Finally, the sectors as referred to in this study 

are actually a subset of the whole sectors in reality.  Although reference is made to whole 

sectors, the meaning here is intended to be that proportion of the sector covered by this 

analysis.  The difference between this coverage and the whole sector will be examined later.   

 

6.3.2 General methodology 

In order to determine the energy use for each site based on the CO2 emissions, a stepwise 

procedure has been employed as follows.  Information and assumptions about individual 

subsectors allowed parameters such as the fuel split, load factor, and combustion efficiencies to 

be estimated, which were then used as key input parameters in determining site-level heat 

loads.  Generally speaking, the approach was the same for all sectors, except for aluminium, 

iron and steel, chemicals, and lime, for which a specific methodology was adopted due either to 

their heterogeneous nature and/or because parts thereof are not included in the NAP.  For these 

four sectors the method employed involved using data relating to production capacities for 

individual sites and products, in conjunction with specific energy consumptions (SECs) for 

these processes.  SEC data was mostly obtained from the relevant sector BREFs and EU ETS 

Benchmarking studies (details below).  By employing appropriate load factors the energy and 

heat load for each site could then be estimated.  This methodology is detailed more specifically 

in sections 6.3.4, 6.3.7, 6.3.10 and 6.3.11 respectively.  Details of the classification on sectors 

within this framework are shown in Table 6-1, along with a qualitative indication of the 

accuracy of representation for that sector.  The general procedure for homogenous sectors is 

shown in Figure 6-1.  With the exception of the chemicals sector, all process industries have 

been modelled in sufficient detail to enable a high degree of confidence about the results.  The 

lower accuracy levels in Table 6-1 are generally correlated with the heterogeneous sectors.  The 

remainder of this section outlines the general methodology employed.   
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 Fair Good Excellent 

Homogeneous Other sectors35 Ceramics (bricks) 

Pulp and paper 

Aluminium 

Cement  

CHP 

Glass  

Lime 

Heterogeneous  Chemicals  

Food and drink 

Iron and steel 

 

Table 6-1 – Classification of sectors as homogeneous or heterogeneous  

and qualitative indication of the accuracy of representation  

 

Sectors within the EU ETS were broken down into more detailed, homogeneous ones as far as 

possible. The actual sector categories were determined based on the size of the sector as a whole 

and the degree to which the sites within it could confidently be grouped together.  The sector 

was then defined based on background knowledge and relevant sources.  The first step was to 

estimate the split between process emissions and combustion emissions for the sector (only in 

the case where the process emissions are actually covered by the EU ETS).  This enabled the 

purely combustion-related emissions to be determined.  The next step was to calculate an 

overall emissions factor, KT, for the subsector based on Equation 6-1.  

 
N

x x
x=1

T N

x
x=1

C K

K =

C

∑

∑
 6-1 

 

Cx is the fraction of fuel x used in the sector, Kx is its emission factor, and there are N different 

fuels excluding electricity.  Emissions factors were taken from the UK Greenhouse Gas 

Inventory (Choudrie et al., 2008).  For grid-electricity, the emissions factor is assumed to be zero 

because the emissions associated with electricity generation are accounted for in the power 

station under the Large Electricity Providers (LEPs) sector.  The exception to this is 

autogenerated electricity, which is produced onsite through a generator or CHP unit.  The 

detailed methodology for the treatment of CHP is presented in section 6.3.3.  The emissions 

factors used for various primary fuels and electricity are shown in Table 6-2.  Neither biomass 

nor waste fuels are accounted for in this analysis.  The use of the former is not allocated any 

emissions within the NAP (DEFRA, 2007d), and hence that part of the heat load met by biomass 

is neglected.  Emissions from waste fuels are included in the NAP, however (European 

Commission, 2003c), but specific emissions factors for waste have not been included here.  

Instead, that fraction of heat load that is met by waste materials is allocated to other fuels in the 

sector fuel splits.  This is justified because the emissions factors for waste materials are close to 

                                                           
35 Strictly speaking other sectors are heterogeneous, but they have been lumped together and treated as boilers and 
steam systems in this case, and hence are considered to be homogeneous.  These sectors count for a very small 
proportion of the overall energy demand, as shown in the Results section.  
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those for the fuels that they displace (Choudrie et al., 2008), and also because wastes account for 

less than 1% of the overall industrial fuel split (BERR, 2008b).  

 

Natural 

gas 

Gas 

oil 

Fuel 

oil 

Coal 

(iron 

and 

steel) 

Coal 

(cement) 

Coal 

(other) 

Coke Coke 

oven 

gas 

Other Grid 

electricity 

13.99 19.08 20.21 22.76 27.28 22.11 27.15 11.07 22.00 0.00 

Table 6-2 – Emissions factors in tC/TJ for primary fuels used in the model 

Source: Choudrie et al. (2008) 

 

Fuel splits have been obtained from trade associations and the literature, where appropriate.  In 

the case that this has not been possible, the fuel splits have been taken from DUKES or ECUK 

tables.  The precise source of this information for each sector is given in Table A3 in Appendix 

A3.1.  Based on these emissions factors and fuel splits for each sector, the total site fuel 

consumption 
FTE  is determined through 

 

F

T c
T

T

C ×f
E =

K
 6-2 

 

where CT is the total emissions allocated to the site and fc is the combustion emissions fraction.  

Equation 8-2 therefore determines the total energy consumption due to fuels, 
FTE , at a 

particular site.  In order to include the electricity use, it is then necessary to manipulate this total 

according to 

 

FT
T

el

E
E =

1-f
 6-3 

 

where fel is the fraction of electricity use within the subsector.  ET, which is the total site energy 

use including electricity, can then be multiplied by the respective fuel split factors for the 

subsector in order to yield approximate fuel uses for the site.  The combustion efficiency reflects 

the fact that not all of the primary fuel use is converted to heat.  Load factors have been taken 

from the benchmarking studies carried out for Phase II of the EU ETS (Entec UK Ltd. & NERA 

Economic Consulting, 2005).  Otherwise, the default values for the boiler combustion efficiency 

and load factor are estimated as 80% and 80% respectively.  In general furnaces and kilns are 

assumed to have a combustion efficiency of 90% because they tend to be more effective at direct 

heat transfer applications.   These factors are used to determine the heat load, Q& , in MWth from 

the total site fuel use according to 

 

FT CE η
Q=

t LF

⋅

⋅
& , 6-4 
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where t is the number of seconds in a year, and ηC and LF are the efficiency of conversion from 

fuel to heat and the load factor respectively.  For some sectors the latter two parameters have 

the same value, and therefore cancel each other out, in which case the heat load is simply the 

rate of fuel use over the year.  The exceptions to the methodology are aluminium and secondary 

iron and steel produced through EAFs, for which the site electricity use also contributes to the 

heat load.   

 

In order to estimate the amount of waste heat for each site, and therefore obtain an indication of 

potential for heat recovery, the best available estimates for the fraction of the total input energy 

that is contained in the exhaust gases have been used.  In general a conservative approach has 

been adopted, whereby this fraction is set somewhat below published values.  This is in order to 

reflect the constraints on heat recovery, including the impossibility of recovering all waste heat.  

In addition, two values for this fraction have been employed, to reflect the uncertainty in 

making these estimations and thus to provide a range of estimates for the heat recovery 

potential.  Typically half of the sensible heat in an exhaust stream might be technically 

recoverable.  The range of heat recovery fractions employed for each sector has attempted to 

reflect this by having its median value at 50% of the heat content in the exhaust.  For example, if 

the exhaust fraction is known to be 30% of the total heat input, half of this or 15% should be 

technically recoverable, so the range of heat recovery fractions is set at 10-20%. 

 

Where published data is not readily available for the exhaust fraction or it is not clear what 

process is occurring at a particular site, the range for the exhaust fraction has been estimated to 

be 5%-10%.  This is intended to be representative of the exhaust fraction of even the most 

efficient boiler systems, and therefore reflects the marginal improvements widely considered to 

be possible with boilers and steam systems across the board in industry (IEA, 2007).  Strictly 

speaking this range does not correspond to heat recovery per se, but instead relates to a more 

general improvement potential for the whole system.  The assumed temperature demand 

profiles, exhaust temperatures and sources for this data are presented in Table 6-3.   

 

The temperature demand profile is based on an estimation of the fraction of the heat that used 

for each sector within five temperature bands, namely below 100°C, 100-500°C, 500-1000°C, 

1000-1500°C and above 1500°C.  The basis for these estimates is background studies of 

industries and relevant literature such as the BREFs (EC JRC IPTS, 2008).  A weighted 

thermodynamic quality or Carnot factor, Θ, was derived for each of these temperature bands 

based on Equation A20 of Appendix A2.2.3, where Ta and Tp are the ambient and process 

temperature respectively (Bejan et al., 1996).  Tp was assumed to be the mid-point of each 

temperature band and Ta was taken as 0°C.  Finally, multiplying the Carnot factor for each 

temperature demand by the proportion of heat use in each band yields the weighted overall 

Carnot factors shown in Table 6-3. 

 

In general the feedstock energy that becomes embodied in products has not been considered as 

part of the energy consumption or heat load of a specific site.  The fact that this embodied 

energy might be recovered later in – or at the end of – a material’s or product’s life is clearly 
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significant, but feedstock energy use cannot be reduced through energy-efficiency measures 

(IEA, 2007).  Hence the focus here is on the process energy or specific energy consumption, SEC, 

as opposed to the gross energy requirement, GER (Boustead & Hancock, 1979).  In some cases, 

such as the production of ethylene and ammonia, the feedstock energy is large, and accounts for 

over half of the GER of the process, in which case it would be inaccurate to include this energy 

as part of the heat load. 

 

EU ETS site level CO2 

Allocation (MtC)

Process 

emissions 

(MtC)

Subsectors data:

- Processes

- Fuel split

- Efficiency

- Load factor

- Temp. profile

- CHP H:P ratio

Combustion 

emissions 

(MtC)

Total heat load (MWth)

Total site fuel and 

electricity use (MJ)

Allocate to detailed 

subsectors

Add grid electricity, CHP heat and electricity

Calculate site emissions factor

Non-CHP 

emissions 

(MtC)

CHP 

emissions 

(MtC)

Obtain H:P ratio from 

DUKES or CHPA

Total site fuel 

use (MJ)

Calculate heat load as sum of 

CHP and fuel contributions

 
Figure 6-1 – Schematic of NAP-based methodology 

 

Furthermore, the heat obtained from exothermic reactions (i.e. other than the combustion of 

fuels) has not been considered in this analysis.  Examples include the production of nitric and 

sulphuric acids (European Commission, 2004c) and most polymerisation reactions (European 
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Commission, 2005d).  In such cases there may even be a net heat yield from the reaction, 

whereby the heat is typically used elsewhere in the plant, which will be characterised by a high 

degree of energy integration.  The justification for excluding exothermic reactions is that the net 

heat yield is small in comparison to the heat demand of energy-intensive processes considered 

here.  Order of magnitude calculations suggest that the total energy yield from nitric and 

sulphuric acid production in the UK is of the order of 3PJ/yr, which is an order of magnitude 

smaller than the energy use consumption due to ethylene production for example36. 

 

6.3.3 CHP 

The treatment and coverage of CHP within the NAP is not trivial, especially where installations 

have emissions relating to CHP plant as well as to other onsite activities.  In considering CHP, 

some general procedural rules were therefore followed in order to ensure consistency and to 

facilitate the straightforward classification of installations.  In brief, these were as follows: 

 

1. If the vast majority (i.e. above 80%) of emissions allocated to a site are for the CHP unit, 

then the site is classified as wholly CHP. 

2. If a smaller fraction of the site’s emissions are allocated to the CHP unit, but the unit is 

classed as “partially qualified” then it is assumed that the rest of the emissions 

correspond to the non-qualified portion of the CHP, and the site is classified as wholly 

CHP. 

3. If the site has CHP and Host Sector emission allocations, and the CHP unit is “fully 

qualified”, then the site is classified within the host sector with the CHP augmenting 

heat and electricity supply onsite.  This enables other onsite activities to be accounted 

for.  

 

In all three cases the CHP unit’s power rating and/or heat to power ratio has been obtained 

from Smith (2006), National Grid (2008) and DUKES (BERR, 2008c).  In the latter two cases 

above the heat from the CHP unit augments the heat supplied onsite by other means, i.e. 

process heat and/or boiler systems.  The electricity generated onsite displaces grid electricity.  In 

the case that the amount of generated electricity exceeds the demand for electricity the excess is 

assumed to be exported to the grid.  In practice this may then be used at another site, but this 

has not been accounted for in the model because of the way in which grid electricity has an 

emissions factor of zero.   

 

Where the heat generated (from both CHP and other sources) is greater than the demand, heat 

exports to nearby users are not considered.  Similarly for CHP units in isolation (according to 

the first point above), the location of the heat demand is assumed to be the same as that of the 

supply, so transport over small distances in the vicinity is neglected.  Hence the heat use on any 

one site may be overestimated by the amount that would in practice be exported, but overall the 

heat use would be the same.  Furthermore, because there are no regional or national heat 
                                                           
36 This figure is based on production capacities of 850kt/yr and 800kt/yr and net total energy production of 1.6GJ/t and 
2.5GJ/t (based on double absorption plant) for nitric and sulphuric acid respectively (European Commission, 2004c). 
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networks in the UK heat is not transported large distances (Sustainable Development 

Commission, 2008), the geographical location at which this heat is actually used will not be 

significantly different to where it is generated, and the error association with this assumption 

will be small.  The sector total heat loads will not be affected by this assumption. 

 

Sector Weighted 

Carnot 

factor, Θ 

Exhaust 

temp. 

(°C) 

Low 

exhaust 

fraction 

High 

exhaust 

fraction 

Source 

CHP 0.39 150 0.00 0.00 

Boilers and steam 

systems 
0.33 150 0.05 0.10 

Reilly, E., UPM Caledonian 

paper mill, pers. comm., Feb-

Dec 2008; 

Bowers, J., E.On Engineering, 

pers. comm., December 2008 

Aluminium 
0.69 100 0.05 0.10 

European Commission, 2001c; 

NineSigma, 2007 

Cement 
0.80 150 0.10 0.20 

Rushworth, J., Lafarge, pers. 

comm., March 2008 

Ceramics_bricks 
0.80 150 0.05 0.10 

Beardsworth, D., Ceramfed, 

pers. comm., June 2008 

Chemicals_ 

ammonia 
0.69 350 0.05 0.10 

Energetics & E3M, 2004; 

Rafiqul et al., 2005 

Chemicals_ 

carbon black 
0.78 125 0.05 0.10 

USEPA, 1995 

Chemicals_ 

general 
0.47 150 0.05 0.10 

As boilers and steam systems 

Chemicals_ steam 

cracker 
0.69 100-500 0.05 0.10 

Enviros Consulting, 2006b 

Food and 

drink_breweries 
0.27 150 0.05 0.10 

Brown et al., 1985 

Food and 

drink_distilleries 
0.33 80 0.05 0.10 

Brown et al., 1985 

Food and 

drink_maltings 
0.27 40 0.05 0.10 

US DOE ITP, 2006 

Food and 

drink_sugar beet 
0.27 200 0.05 0.10 

Brown et al., 1985 

Food and 

drink_sugar cane 
0.27 150 0.05 0.10 

Brown et al., 1985 

Glass_flat 
0.74 550 0.10 0.20 

Hartley, A, British Glass, pers. 

comm.; Quirk et al., 1994 

Glass_container 0.75 550 0.10 0.20 Ibid. 

Glass_other 0.73 550 0.10 0.20 Ibid. 

Lime 0.78 150 0.10 0.15 Assumed same as cement 

Gypsum 0.39 100-500 0.05 0.10 Brown et al., 1985 

Mineral/rock wool 0.73 550 0.10 0.20 Assumed same as glass 

Table 6-3 – Carnot factors, exhaust temperatures and heat recovery potentials for different sectors  
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In terms of heat recovery, CHP is already an efficient means of meeting heat and electricity 

demands, which generally has overall efficiencies in excess of 80% (Hammond, 2004).  Hence 

for heat demands met by CHP units the assumption is that there is no technically feasible 

potential for heat recovery, or in other words that the exhaust fraction is zero. 

 

6.3.4 Aluminium 

The aluminium subsector within the Phase II NAP only covers electricity generation activities.  

This includes the 420MW coal-fired power station at Lynemouth, which is owned and operated 

by Alcan, providing electricity to its Lynemouth smelter.  Hence the three aluminium smelters 

in the UK have been included as additional sites to those in the NAP.  These are the two Alcan 

smelters at Lynemouth and Lochaber, and the Anglesey Aluminium smelter at Holyhead.  The 

operational data for these sites has been gathered from relevant company publications, the 

BREF document for the sector (European Commission, 2001c), and the trade association ALFED 

(Siddle, T., ALFED, pers. corr., July-December 2008).  These details are presented in Table 6-4 

below. 

 

The focus in this work has been on primary aluminium smelters.  Although other 

manufacturing activities associated with aluminium do occur in the UK, e.g. packaging in 

Bristol and engineering metals in Slough (ALCAN, 2007), the smelting is by far the most energy 

intensive process.  Hence secondary aluminium production, with an approximate capacity of 

260kt/yr (European Commission, 2008, p.14), is neglected in this analysis.  This is justified 

because of the much smaller energy requirement for secondary aluminium (less than 5% of that 

required for primary production, ibid.).  Aluminium smelting within the UK only uses the pre-

baked anodes route rather than the Soderberg route which uses anode paste.  Out of 

approximately 170kt of carbon products produced in the UK in 1998, approximately 148kt were 

carbon anodes, which was mostly if not all coming from three manufacturers (European 

Commission, 2001c, p.57).  Although only the process of smelting itself has been considered 

here, the energy used to manufacture the anodes is considered in the total energy intensity 

figure in Table 6-4.  The electrical intensity figure of 14.6MWh/t is the electrical energy required 

for electrolysis, whereas the total energy figure of 21MWh/t includes the energy required to 

bake the anodes.   

 

Aluminium manufacture involves the electrolysis of alumina (aluminium oxide), obtained from 

bauxite, whilst dissolved in a bath of sodium aluminium fluoride (cryolite) at a temperature of 

around 1000°C (European Commission, 2001c).  The main energy use on site is in the form of 

electricity for the electrolysis, but there are also other significant on-site energy demands for 

ancillary activities such as casting (ibid.).  The exhaust gases from the process are drawn off the 

reduction cells, filtered to conform to environmental legislation and then released to the 

atmosphere at a temperature of around 100°C (NineSigma, 2007).  Overall around half of the 

input energy is lost as heat, and 30% of this is in the enthalpy of the off-gas (ibid.).  The main 
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technical constraint on the recovery of the sensible heat in these gases is the fouling of heat 

transfer surfaces. 

 

The estimated heat recovery potential for the sector has been determined based on this 

assumption that 15% of the final energy input is lost in the exhaust gas at 100°C.  It has been 

confirmed by the trade association, Alfed, that this off-gas is indeed released to the atmosphere 

at this temperature after being filtered (Siddle, T., Alfed, pers. corr., January 2009).  Hence the 

exhaust fraction range has been set at 5-10%.    

 

Plant Capacity 

(kt/yr) 

Effective 

capacity 95% 

utilisation (kt/yr) 

Electrical 

intensity 

(MWh/t) 

Total energy 

intensity 

(MWh/t) 

Lynemouth 178 169 14.9 21 

Lochaber 43 41 14.9 21 

Holyhead 140 133 14.9 21 

Total 361 343 - - 

Table 6-4 – Aluminium smelters in the UK and salient operational information 

 

6.3.5 Cement 

The cement subsector is fully included within the EU ETS; the stipulation for inclusion in the 

scheme is a kiln production capacity of 500t/day of clinker or above.  For Phase II this coverage 

includes 15 sites.  Combustion emissions typically account for 40% of the total CO2 emissions 

from cement manufacture (Herson & Mckenna, 2007, section 5.4), although it can be as low as 

33% (European Commission, 2007).  The latter figure has been employed here to avoid 

overestimating the heat loads. 

 

Four routes are currently employed in the UK for the manufacture of cement, namely wet, semi-

wet, semi-dry and dry.  The recent tendency has been towards the dry process because it is less 

energy intensive, but the process employed depends largely on the nature of the raw materials.  

The process employed in a specific region depends on the nature of the locally available raw 

materials, as the relatively low value of these materials makes it uneconomical to transport 

them over large distances.  About 55% of industry capacity is based on the dry process, with 

another 30% from the wet process.  The remainder is either semi-dry or semi-wet. 

 

The common process of cement manufacture involves calcining of calcium carbonate (from 

limestone) at a temperature of around 1000°C to produce calcium oxide.  The clinkering process 

then occurs at around 1500°C, when the calcium oxide reacts with silica, alumina and iron oxide 

to form the silicates, aluminates and ferrites of calcium which comprise clinker (European 

Commission, 2007).  The clinker is then ground and blended with gypsum and other additives 

to produce saleable cement.  In principle the wet and dry processes are the same, but the degree 

of moisture content in the wet materials can necessitate additional technology such as chains 

within the kiln to break up lumps, as well as additional energy input.   
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Most cement plants have some kind of preheater and/or calciner for the raw materials, which 

use heat from the back end of the kiln.  A preheater simply raises the temperature of the raw 

materials prior to them entering the kiln, whereas a precalciner actually starts and carries out 

the majority of the calcination process before the kiln.  As a rule of thumb, the energy demand 

split between the preheater and the kiln is about 60% to 40% (Rushworth, J., Lafarge, pers. corr., 

March 2008).  State of the art precalciners, which use multi-stage cyclones to transfer heat to the 

raw meal, result in an energy demand split of 80% to 20%.  This is the most efficient technology, 

and can result in fuel SECs as low as 3GJ/t, compared to around 4GJ/t for the dry process with 

preheater and up to 6GJ/t for the wet process (European Commission, 2007). 

 

From the kiln the clinker passes into a cooler, which serves to cool the clinker and stop the 

chemical reactions, and to recover as much sensible heat as possible.  All coolers operate by 

passing cooler air over the clinker, which is then recirculated into the process (Environment 

Agency, 2001).  Hence there are usually two exhausts from a cement plant: from the precalciner 

or preheater at a temperature of around 200-300°C and from the cooler at around 300-400°C 

(Khurana et al., 2002; Engin & Ari, 2005).  These two exhaust streams together account for 25-

35% of the total heat input, with the majority lost through the preheater/precalciner stack (ibid.).  

In some cases the useful heat in either or both of these streams may already be utilised, but it is 

not clear precisely to what extent.  Based on evidence which suggests final exhaust 

temperatures in an efficient plant can be as low as 150°C but can be up to 300°C in older plants 

(Rushworth, J., Lafarge, pers. comm., March 2008), this lower figure was employed as the 

exhaust temperature in the model.  Given that the exhausts represent around 35% of the total 

energy input overall (Khurana et al., 2002), the range for the exhaust heat as a fraction of the 

total heat input was taken as 10% to 20%. 

 

6.3.6 Ceramics 

The ceramics subsector is covered by the EU ETS, including installations producing ceramic 

articles with a production capacity of over 75t/d and/or with a kiln capacity exceeding 4m2 and 

with a setting density per kiln exceeding 300kg/m3.  The energy requirement and emissions 

from brick manufacture are heavily dependent upon the raw material, brick type and kiln 

configuration employed (clearly the three are interrelated because of the technological 

requirements of different materials).  The lack of data relating to the type of output being 

produced at each site, which the trade association is not willing to disclose, has necessitated a 

generic approach to this sector.   

 

The vast majority of ceramics installations covered by the scheme, which total 77 in Phase II, are 

brick manufacturers (Beardsworth, D., Ceramfed, pers. comm., June 2008).  All ceramics 

installations included in the Scheme are therefore treated as brick manufacturing sites, which 

are assumed to be using tunnel kilns, the state of the art for large scale brick manufacture.  The 

energy content of certain raw materials (Oxford Clays) used in the manufacture of fletton bricks 

has been neglected in this analysis.  This is justified because, of 112 ceramics installations 
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included in Phase I of the EU ETS, only 2 were producing fletton bricks.  The fletton-producing 

sites therefore accounted for 0.26MtCO2 out of a total for the sector of 1.79MtCO2 (i.e. 15%) in 

Phase I (Enviros Consulting, 2006c).  This does not affect the overall accuracy of the estimated 

heat loads for the ceramics sector (the same heat is required to cure these bricks), but instead 

means the determined fuel splits overlook the contribution of organic materials from Oxford 

Clays in meeting this demand.   

 

The tunnel kiln has three main zones along its length with a corresponding temperature profile: 

the preheat, firing and cooling zones (European Commission, 2006e).  The temperature within 

the firing zone typically reaches around 1000°C, although this can be higher for roof tiles and 

facing bricks, and a uniform temperature profile is required across the wares.  As the bricks are 

drawn through the kiln on cars, air is drawn through the kiln in the opposite direction.  Most 

manufacturers take waste heat from the kiln and pass it to the dryer, but around 35-40% of the 

total heat input is exhausted up the chimney at a temperature of around 150°C (Beardsworth, 

D., op. cit.).  For this work, in order to reflect the technical constraints on heat recovery as well 

as the fact that not all sensible heat can be recovered, limits of 10% and 20% have been selected 

for the fraction of waste heat.  An approximate combustion emissions fraction for brick 

manufacture given is around 50% (Entec UK Ltd. & NERA Economic Consulting, 2005) and this 

is the value is employed here.     

 

6.3.7 Chemicals 

The chemicals sector is only covered by the EU ETS in terms of its thermal operations, and then 

only for installations rated at 20MWth and over.  The sector is highly diverse, with 19 separate 

subsectors having very different market drivers and priorities (CIGT, 2002).  In total, there are 

around 3500 companies, represented by some 20 trade associations.  This diversity means that it 

has not been possible to model the sector’s activities accurately.  Instead the approach for the 

chemicals sector was dipartite: energy-intensive processes have been modelled based on rated 

capacities/outputs and process-specific SECs, with the remainder of the sites being included as a 

generic sector, in which fuel use is assumed to be mainly in boilers for raising process steam.  It 

is not necessary to discuss the latter in detail here, other than to mention that it is modelled 

according to the general approach described in section 6.3.13.  The sites covered within the NAP 

which are discussed as production sites for the key chemicals in this section have been removed 

from the NAP in order to avoid double counting of energy use.   

 

The remainder of this section describes the key processes involved in the manufacture of 

several key chemicals, and the methodology employed to estimate heat loads and recovery 

potentials.  As outlined above this work attempts to identify the technical potential for process 

improvement.  Some studies have attempted to estimate the theoretical potential for improving 

these processes and thus reducing the SEC, but care needs to be taken in interpreting their 

results (as the authors themselves acknowledge) because of the practical constraints associated 

with realising this.  In particular, Neelis et al. (2005, 2006) have analysed several key processes 

within the chemicals and refining industries, with a focus on the excess energy use due to non-



 

- 130 - 

selectivity (i.e. the efficiency with which the raw materials combine/react) and due to excess 

energy (heat).  For many processes the excess final energy use identified is very large (i.e. over 

50GJ/t), and for the processes described below it is also significant.  The same is true for the 

energy saving potential identified by JVP International (2004), who carried out an exergy 

analysis on key chemical processes in the US industry to identify the theoretical improvement 

potential.  Such studies have been useful in identifying where the most potential lies in theory, 

and therefore where further work should focus, but their estimated savings have not been 

employed here because they do not relate to the technical potential.    

 

6.3.7.1 Ammonia 

Ammonia is the source of nearly all synthetic nitrogen fertilisers produced in the world.  It is 

manufactured by combining nitrogen and hydrogen in the Haber (or Haber-Bosch) process.  

Globally over 80% of ammonia is produced through the steam reforming of hydrocarbon 

feedstocks (natural gas, naptha, LPG, refinery gas).  Roughly the same proportion of ammonia 

is used to manufacture nitrogen-based synthetic fertilisers (European Commission, 2004c, p.3).  

This is therefore the focus of attention here.  Production of ammonia in the UK was around 

1.0Mt in 2005 (UNSD, 2005), with nameplate capacities of individual companies and sites as 

detailed in Table 6-5. 

 

The production route in the UK is exclusively through the steam reforming of hydrocarbon 

feedstocks, as opposed to through partial oxidation or water electrolysis.  The synthesis of 

ammonia, in which nitrogen and hydrogen are reacted over an iron catalyst, is actually 

exothermic.  The energy-intensive part of ammonia production is in the manufacture of 

hydrogen, which typically occurs in a two-stage reforming process at temperatures up to 

around 1000°C.   

 

Company/site Postcode Feedstock Capacity (kt/yr) 

Kemira/growhow, Billingham TS23 1XT Natural gas 550 

Kemira/growhow, Ince CH2 4LB Natural gas 350 

Terra Nitrogen, Severnside BS10 7SJ Natural gas 300 

Kemira/growhow, Hull HU12 8DS H2-rich feedstock 270 

TOTAL   1470 

Table 6-5 – UK ammonia production capacity by site 

Source: European Commission (2004c) and Chemical Week (2006a) 

  

There is a large degree of energy integration in modern ammonia plants, and much of the 

exhaust heat from the reformers and  ammonia synthesis plants is recovered (European 

Commission, 2004c).  The SEC range for ammonia production through steam reforming of 

hydrogen excluding feedstock is around 8-9GJ/t, and including feedstock this figure is 35-38GJ/t 

(ibid., IEA, 2007), although Worrell et al. (2000) give a range of 28-40GJ/t for the US industry.  

Notwithstanding this high degree of energy integration, it is estimated that 10% of waste heat 

from the reformers is recoverable (Energetics & E3M, 2004).  Using a scenario approach Rafiqul 
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et al. (2005) conclude that a SEC reductions of around 10% on 1995 figures are achievable across 

the board in the EU, with uncertainties relating to, inter alia, the carbon price, investment plans, 

and future developments in policy.  Furthermore, autothermal reforming is an integrated 

process route for the synthesis of ammonia, which has the potential for primary energy savings 

of around 20% in the chemicals sector with a payback period of less than four years (Martin et 

al., 2000, pp.80-82).  A value of 10% is therefore employed as an upper limit for the technical 

potential, with the lower estimate at 5%.  The temperature of the exhaust from the secondary 

reformer after heat has been recovered in a waste heat boiler is around 350°C (European 

Commission, 2004c). 

 

6.3.7.2 Chlorine 

Chlorine and sodium hydroxide are both used extensively within the chemicals industry, 

chlorine mainly to produce chlorinated compounds (e.g. vinyl chloride) and sodium hydroxide 

to produce various organic and inorganic chemical compounds with a variety of applications 

(including soaps and detergents).  The two are manufactured through the electrolysis of brine 

(sodium chloride solution), which is carried out in three types of cell: mercury, membrane and 

diaphragm.  Only the first two of these technologies are employed in the UK, with the vast 

majority of UK capacity employing the most efficient of the three, membrane technology37.  The 

adjusted total energy use for mercury and membrane cells is around 12-13GJ/t (European 

Commission, 2001f).  The membrane process is more efficient because it uses less electricity, 

some of which is substituted for steam.  Hence the mercury process consumes around 12GJ/t of 

electricity, whereas the membrane process uses around 10GJ/t of electricity and 2GJ/t steam 

(IEA, 2007, pp.76-77).  The technologies are not directly comparable, however, because they 

produce sodium hydroxide in different concentrations.  The mercury cell produces sodium 

hydroxide at 50% concentration, but the diaphragm and membrane cells produce 

concentrations of 12% and 30% respectively, which then needs to be concentrated (ibid.).   

 

Although energy (electricity) intensive, the electrolysis does not take place at high 

temperatures.  The temperature within the cells is around 70°C and 85°C for the mercury and 

membrane processes respectively (Brown et al., 1985).  Hence the scope for heat recovery per se 

is limited or non-existent, but improvements in overall efficiency can be made by optimising the 

way in which heat and electricity are generated and supplied to this and adjacent processes.  

The large Ineos Chlor manufacturing site at Runcorn already has a CHP unit, which is rated at 

57MWe (National Grid, 2008).  With the sector average heat to power ratio of 2.07 (BERR, 2008c), 

this corresponds to a rated heat output of around 120MWth.  In fact the heat output might be 

significantly lower than this because the unit is probably power- rather than heat-led given that 

the main load is electrical.  Based on the capacity rating for this site in Table 6-6, along with an 

adjusted total SEC of 10.7GJ/t (European Commission, 2001f) the total energy consumption is 

around 7.8PJ per year, the majority of which is electricity.  Assuming that the CHP unit 

produces its rated electrical output on average, it produces around 2PJ of electricity per year.  

                                                           
37 The Ineos Chlor site at Runcorn is currently switching over from the mercury to the membrane process, which is due 
to be complete by the end of the decade (European Commission, 2003f).   
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Depending upon how and where the heat from this unit is used, there may be scope to increase 

the capacity of CHP on this site.  However, because of the uncertainty surrounding the heat use 

for chlorine production and associated process at the sites in the vicinity, it was decided to 

model chlorine production based on this CHP unit alone, which is included in the NAP.  Hence 

there are system-level savings possible for chlorine production of around 10% (Energetics & 

E3M, 2004), which have not been considered here because they do not rate directly to heat use.  

 

Process Company/site Postcode Capacity (kt/yr)

Membrane Ineos Chlor, Runcorn WA7 4JE 767

Mercury Albion chemicals, Sandbach CW11 3PZ 90

Mercury Rhodia, Staveley S43 2PB 29

TOTAL   886

Table 6-6 – UK chlorine and sodium hydroxide production capacity 

Source: European Commission (2001f) 

 

6.3.7.3 Ethylene 

Ethylene is the main raw material for the petrochemicals industry.  It is manufactured through 

thermal or catalytic cracking of hydrocarbon feedstocks.  Ethylene manufacture in the UK is 

carried out at four sites, where hydrocarbon feedstocks are thermally cracked (Table 6-7).  There 

is no ethylene production in the UK by catalytic cracking.  The basic process involves 

preheating the hydrocarbon feedstocks to around 650°C in the preheater section before mixing 

with steam and cracking at around 850°C (Worrell et al., 2000).  The gas mixture is then rapidly 

quenched to 400°C to stop the reaction, producing high pressure steam, before water is injected 

to further lower the temperature.  The liquid is then extracted as the gaseous fraction is fed to a 

fractional distillation column. 

 

Process Company/site Postcode 
Capacity (kt/yr 

ethylene) 

Steam cracker - ethane feedstock ExxonMobil, Mossmoran KY4 8EP 830

Steam cracker - naptha feedstock ExxonMobil, Fawley SO45 3NP 126

Steam cracker - naptha feedstock Ineos, Grangemouth FK3 9XH 1020

Steam cracker - naptha feedstock Huntsman, Wilton TS10 4YA 865

TOTAL   2841

Table 6-7 – UK ethylene production capacity through steam crackers 

Source: European Commission (2003e) Enviros Consulting (2006b) and APPE (2006)  

 

The SEC for steam cracking of ethane feedstocks is around 15-25GJ/t excluding feedstock energy 

and for naptha feedstocks it is about 25-40GJ/t (IEA, 2007, p.66).  Steam crackers require large 

amounts of energy at a high temperature to promote disassociation of the chemical feedstock, 

but also employ cryogenic separation  processes to purify and separate the products (European 

Commission, 2003e).  Hence crackers have a large degree of energy integration, which is 

typically achieved by recovering as much as possible of the heat from the front end to use as 

work for separation.  The complexity of steam crackers and the proprietary nature of the 
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technology means that one temperature for the exhaust was not obtainable.  It was therefore 

assumed that the exhaust temperature lies in the range 100-500°C.  The estimated heat recovery 

from steam crackers is around 10% (Energetics & E3M, 2004, IEA, 2007).  Hence this is 

employed as an upper limit to the technical potential with 5% as the lower bound. 

 

6.3.7.4 Other major chemicals 

The three chemicals ammonia, chlorine and ethylene together account for 60-90PJ/yr of energy 

consumption if the SEC ranges and capacities along with appropriate load factors described 

above are employed.  This amounts to around 23-34% of total chemicals sector energy 

consumption in 2006 (BERR, 2007).  These are the most energy intensive processes within the 

chemicals sector.  Other processes have been included in the model, however, which are less 

energy intensive but nevertheless significant.  Specifically, these are titanium dioxide and soda 

ash production, for which the salient data on production capacities is summarised in Table 6-8.  

Together the five chemicals covered within this section account for about 80-110PJ of final 

energy consumption, or 31-42% of the chemical sector’s total energy consumption in 2006 (op. 

cit.).  In addition, methanol is also an energy-intensive chemical to produce (IEA, 2007), but it is 

not made anywhere in the UK (Choudrie et al., 2008). 

 

Product/ 

Chemical 

Process Company Postcode Cap. 

(kt/yr) 

Proc. 

temp. 

(°C) 

Exhaust 

temp. 

(°C) 

Soda Ash Solvay  Brunner Mond, Northwich CW8 4EE 1100 300 150 

Total soda ash 1100   

Titanium dioxide Sulphate  Huntsman, Grimsby DN31 2SW 40 800 200 

Titanium dioxide Chloride  Huntsman, Hartlepool TS25 2DD 150 1200 250 

Titanium dioxide Chloride  
Millenium Chemicals, 

Stallingborough 
DN40 2PR 150 1200 250 

Total titanium dioxide 340   

Table 6-8 – UK soda ash and titanium dioxide production capacity 

Source: Chemical Week (2006b, 2007), European Commission (2005c), Brown et al. (1985) 

 

The total energy SEC for titanium dioxide production is 17-29GJ/t for the chloride process and 

24-45GJ/t for the sulphate method (European Commission, 2005c).  For soda ash production 

through the Solvay process the total energy SEC is around 7.5-10.8GJ/t (ibid.).  The potential for 

heat recovery from these processes is thought to be 5-10% (Energetics & E3M, 2004).  Given the 

limited information available about the production processes for titanium dioxide and soda ash 

(the Solvay process), however, they have been included in the model based on the respective 

sites in the NAP.  Three of the sites are CHP units and the other one (Huntsman, Grimsby in 

Table 6-8) is included within the general chemicals sector.  Hence only the latter includes a 

potential heat recovery, which overlooks the potential at the three other sites.  Substantial data 

was collated relating to polymer production, but because this is incomplete and difficulties 
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were encountered in determining process routes, polymer production is modelled based on the 

NAP allocations.  Production data for polymers is summarised in Table A2  in Appendix A3.1.  

 

6.3.8 Food and drink 

The food and drink sector is only covered by the EU ETS in terms of thermal energy activities.  

Process emissions within the sector do result from the fermentation process in bread 

manufacture as well as alcoholic drinks manufacture, but these are excluded from the Scheme.  

In addition, CO2 is released from carbonated drinks.  As this CO2 is often sourced as a waste 

product from other industrial processes such as methanol production, it is not included in the 

Scheme (even though there is no methanol production in the UK, see above). 

 

The food and drink sector has been broken down into homogeneous subsectors as far as 

possible, including breweries, maltings, distilleries, and sugar manufacturing plants – through 

both the beet and cane routes.  Nevertheless, along with the chemicals sector, food and drink is 

one of the most heterogeneous sectors in terms of energy activities.  A precise breakdown into 

independent sectors has therefore not been possible and the results are therefore expected to be 

less robust than for other sectors.     

 

British Sugar also operates six onsite lime kilns, but the CO2 emission from these kilns are 

reabsorbed during the sugar-making process, so they are not given an emissions allocation 

(Entec UK Ltd., 2006d).  These six lime kilns are all shaft kilns, so are included in the 

Lime_MFSK sector in Table A3 in Appendix A3.1.  Details of the lime sector process and 

assumptions can be found in section 6.3.11 

 

Specification of the remaining food and drink sectors can be found in Table A3 in Appendix 

A3.1.  The temperature demand profile and assumed heat recovery potentials, along with 

sources for this data, are shown in Table 6-3.  Where it has not been possible to determine the 

specific activities, or where a large variety of activities occur, the installations have been 

allocated to the generic boiler and steam systems sector.  Within this sector, the main energy 

activities are assumed to be boilers for raising steam, with the fuel split and temperature 

profiles taken as the average for the whole food and drink sector.   

 

6.3.9 Glass 

All large scale glass manufacturing plants with a capacity over 20t/day are included within the 

EU ETS.  This generally covers all large-scale producers of glass but excludes artisans and 

manufacturers of speciality glass products.  In Phase II there are 26 installations, which includes 

three separate CHP units serving flat glass plants (hence 23 glass furnaces).  For the present 

model, the sector has been further subdivided into four subsectors for flat glass, container glass, 

other glass and CHP.  The main difference between these subsectors is in the specification of the 

furnace efficiencies and fuel splits (Table 6-3 and Table A3 in Appendix A3.1).   
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Details of the production process, SECs, and temperatures involved in glass manufacture are 

presented in chapter 7.  The exhaust gases in the stack are at a temperature of around 550°C and 

this represents around 30% of the total heat input.  Hence a range for the fraction of heat lost in 

the exhaust of 10-20% has been adopted.  The process emissions fraction is quite accurately 

known to be 30% for a cullet fraction of 30%, which is typical for the UK industry at present 

(WRAP, 2008b).     

 

6.3.10 Iron and steel 

Iron and steel plants producing primary or secondary steel at a rate of more than 2.5 tonnes per 

hour are included in the EU ETS.  Proprietary coke ovens within the iron and steel industry are 

included within the iron and steel sector allocation in the Phase II NAP.  This coverage includes 

14 sites in Phase II, three of which are large integrated steelworks, seven are electric arc furnaces 

(EAFs) producing secondary steel, and four are other processing (coating, tin plating and strip 

mills) facilities owned and operated by Corus.   

 

As for some of the chemicals sector and other sectors with activities not covered by the NAP 

(e.g. British Sugar’s lime kilns), the iron and steel sector has been modelled based on the 

production capacities and SECs for individual process units.  Data on production capacities has 

been gathered from a variety of public and private sources, including publicly available Corus 

documents relating to their business activities (e.g. Dryden, 2004).  This has been cross-checked 

with confidential sources (e.g. AEA Technology, 2004) and confirmed by the trade association 

(Stace, G., UKSteel, pers. comm., January 2009) and Corus (Lewis, B., Corus, pers. comm., 

January 2009).  Capacity data for integrated iron and steel works is difficult to define because 

capacities are often “constrained by market constraints and the product mix” (ibid.), as well as 

being interdependent between all units at the works.  Hence the results for this sector need to be 

considered in light of this.  SEC data has been mostly obtained from the sector’s BREF and 

benchmarking documents (European Commission, 2001e, 2008c; Entec UK Ltd., 2006b, 2006c) as 

well as other relevant studies (e.g. Energetics, 2000).  The adopted values for these SEC 

parameters are shown in Table 6-10 below.  The potential for heat recovery is based on 

commercial technologies according to data in the literature (e.g. Worrell et al., 2001, de Beer et 

al., 1996, IEA, 2007).  The remainder of this section gives a detailed overview of the iron and 

steel sector’s activities and the methodology used to model them and estimate heat recovery 

potential. 

 

Steel production in the UK is concentrated in the blast furnace/basic oxygen furnace route (for 

primary steel) and electric arc furnace route (for secondary steel).  Although there are other 

methods of steel production, such as that based on direct-reduction iron (DRI), these do not 

occur in the UK and are therefore not considered here (IISI, 2007).  There are three integrated 

iron and steel works currently in operation in the UK, at Teeside, Scunthorpe and Port Talbot 

respectively.  Details of these sites along with the production capacities used in this study are 

presented in Table 6-9.  From these capacities the heat loads are estimated from the primary fuel 

use (i.e. electricity is not used for heating except in the EAF).  The load factor for integrated 
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works was taken as 90%, by relating stated capacity to output in 2006 (EEF, 2007).  For EAFs, 

this figure was 80% based on published utilisation rates (Entec UK Ltd., 2006c).  The use of 2006 

figures for this sector is justified by the fact that output in this year was very close to the 

average over the period 2000-2003 minus the lowest year (EEF, 2007).  The production of 

primary steel through integrated steelworks involves several key processes, but the crux of any 

integrated plant is the blast furnace, which is by far the largest energy consumer (European 

Commission, 2008c).  The roles of the individual units in the plant are described below.  The 

SECs and fuel splits for these operations are given in Table 6-10.  

 

Coke ovens produce coke from coal, for use in the blast furnace as a reducing agent and fuel.  

Within the oven coal is heated for several hours or days to produce coke through pyrolysis.  The 

coal is loaded into the oven and heated by burning gas through flues in the walls.  The vast 

majority of coke production is in slot ovens, which evolved to collect the by-products and 

manufacture coke oven gas (IEA, 2007).  Due to the large amount of feedstock energy input to 

coke ovens as coal, the net SEC is relatively low at around 3-5GJ/t.  The temperature required 

within the coke ovens is around 1100°C.  Aside from the structural (radiant and convective) 

losses, there are three main enthalpy releases from coke ovens (Bisio & Rubatto, 2000, Ertem & 

Ízdabak, 2005): 

 

• The incandescent coke at 1100°C accounting for 43-60% of the thermal energy output;  

• The coke oven gas (COG) at 650-800°C accounting for 20-30%; and  

• The waste combustion gas at around 200°C after some heat has already been recovered, 

representing 10-18% of the thermal energy output.  

 

The incandescent coke is quenched in order to prevent burn-off and achieve high mechanical 

stability.  Wet-quenching with water is the most ubiquitous process, in which water is sprayed 

onto the coke under quenching towers which recover some of the steam generated.  Coke Dry 

Quenching (CDQ) is more efficient because much of the sensible heat of the coke is recovered 

by a counter-flowing inert gas, which is used to raise steam and/or electricity (European 

Commission, 2008c, p.193).  Dry quenching is practiced very little within the EU (i.e. less than 

5% share of works), and it is not in use within the UK because of the very high economic cost 

and associated long payback period (Lewis, B., op. cit.).   

 

The high enthalpy content of the COG is also barely used today (Bisio & Rubatto, 2000).  In 

practice the exhaust temperature must remain above 400-450°C to prevent tar formation on heat 

transfer surfaces, but this still presents the potential to recover about 30% of the enthalpy from 

the COG.  The primary use for this recovered heat is to preheat the fuel gas mixture.  This is not 

considered in the present analysis because it is a relatively small fraction of the wasted heat, 

and it is not clear precisely what heat is already being recovered from the COG at the three 

integrated plants in the UK.  

 

It seems that the sensible heat of the waste gas has only been recovered in a small number of 

cases, but it is not clear what the potential for this is.  Given the low temperature and small 
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proportion of the overall energy balance that this gas represents, it is also neglected in the 

present case.  The main potential for heat recovery in coke ovens is therefore assumed to be by 

employing CDQ technology, as detailed in Table 6-12 below.     

 

Site 

No. 

of 

BFs 

Total BF 

capacity 

(Mt/yr) 

Total sinter 

capacity 

(Mt/yr) 

Total coke 

capacity 

(Mt/yr) 

Total liquid 

steel capacity 

(Mt/yr) 

Capacity 

as cast 

(Mt/yr) 

Port Talbot 2 4.37 4.75 0.97 4.90 4.70 

Scunthorpe 4 4.10 5.10 1.46 4.70 4.46 

Teeside 1 3.25 4.20 1.88 3.70 3.77 

TOTALS 7 11.72 14.05 4.31 13.30 12.93 

Table 6-9 – Production capacities for Corus’s three UK integrated steelworks 

Source: Various public and confidential sources, including Lewis (2009, op. cit.) 

 

 

  Fuel split (fraction of total) 

Operation 

SEC 

(GJ/t) 

COG/ BFG/ 

natural gas 

Solid 

fuel 

Electricity  Steam Other 

Coke ovens 2.95 0.93  0.02 0.05  

Sinter strands 1.64 0.08 0.85 0.07   

Blast furnace 14.70  0.75# 0.01 0.24*  

Basic oxygen furnace 1.44 0.19  0.39 0.42  

Continuous casting 0.31   1.00   

Slab mill 2.87   0.36  0.64 

Hot rolling 2.43   0.35  0.65 

Cold rolling 1.69   0.56  0.44 

Pickling 1.27   0.67  0.33 

EAF furnace 2.50   0.75  0.25 

Table 6-10 – SECs and approximate fuel splits for unit operations in the iron and steel sector 

Source: European Commission (2008c), Energetics (2000), Entec UK Ltd., (2006b) 

*Actually blasts of hot air; #66% coke and 9% coal 

 

Sinter plants produce the fine powder of iron ore for injection into the blast furnace.  

Pelletisation is another method of preparing the iron ore, but this is not employed in the UK 

(AEA Technology, 2004).  The technology employed throughout Western Europe is down-draft 

sintering on continuous travelling grates (European Commission, 2008c).  The process involves 

heating the blended raw materials (including fine ores, additives, recycled materials from 

downstream operations, etc.) on a travelling grate to temperatures in the region of 1400°C.  

Cooling occurs at the end of the grate and may be integrated or, more common, separate to the 

strand (ibid.).  Separate coolers layer the calcined sinter up to about 1m thickness in a large 

rotating structure and cool with large volumes of air, which are forced upwards through the 

layer.  Some heat content of the air may then be recovered in a waste heat boiler, or used to 

preheat the raw materials.  The assumption for this study is that the heat from the sinter cooler 

is not presently recovered, and that this presents a technical opportunity for heat recovery.  This 

assumption has been confirmed by the trade association (Lewis, B., op. cit.). 
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The blast furnace (BF) is the vessel within which iron ore is reduced by coke at high 

temperatures to yield pig iron.  The furnace is a tall structure with a temperature profile along 

its vertical height.  It is charged from the top with burden, including sinter, coke, flux agents 

(lime), and blast furnace gas (BFG) is drawn off for use as an on-site fuel.  A hot air blast 

(enriched with reducing agents) is blown in through tubes known as tuyères lower down in the 

belly of the furnace (European Commission, 2008c).  This reacts with the reducing agents to 

form mainly carbon monoxide, which in turn reacts with the iron oxide to form iron.  Molten 

iron and slag are tapped off from the hearth at the base of the furnace. 

 

The temperature within the blast furnace ranges from 1500°C at the top to in excess of 2000°C in 

the belly, and the molten iron leaves the furnace at around 1500° (ibid.).  Overall, blast furnaces 

are very efficient with losses representing less than 10% of the energy input (IEA, 2007, p.116).  

Areas for potential heat recovery include the BFG, the molten iron and the slag.  The latter is 

ruled out here because the technology is only at the prototype stage and development has been 

halted since the 1980s (Bisio, 1997).  The sensible heat of the molten iron cannot feasibly be 

utilised as the molten metal is transferred directly to the basic oxygen furnace.  Any heat 

recovered from this stream would have to be transferred back into the metal before the BOF.  

Hence the only technical heat recovery potential for blast furnace streams is assumed to be the 

BFG.  It is estimated that, using a top pressure recovery turbine, primary energy savings of 

0.3GJ/tcs can be achieved (Worrell et al., 2001).  This value has been confirmed by Corus, albeit 

with the caveat that the low temperature of the BFG, at 150°C, means that less than fifty percent 

of the sensible heat content could feasibly be recovered (Lewis, B., op. cit.). 

 

The basic oxygen furnace (BOF) converts pig iron into steel by adding oxygen to remove the 

carbon, as well as small amounts of silicon, manganese and phosphorous (European 

Commission, 2008c).  Molten iron and steel scrap are charged into the furnace and pure oxygen 

is blown in through a liquid-cooled lance.   The most common technology is the Linz-Donowitz 

(LD) converter, which is a pear-shaped vessel into which the lance is lowered (ibid.).  The 

temperature inside the furnace is around 1700°C, and after secondary metallurgical processes 

(such as homogenising), the molten steel is transferred to a casting ladle at around 1600-1800°C.  

The gases produced during oxygen blowing (BOS gas) exit the furnace at the same temperature 

as the molten steel, and are therefore a suitable target for heat recovery.  A potential method for 

doing this is by using a heat recovery boiler to raise steam (Worrell et al., 2001), as shown in 

Table 6-12. 

 

Continuous casting is the state of the art method for casting steel.  It is a continuous process 

that replaced its predecessor, batch-wise casting in moulds before reheating for rolling.  The 

molten steel falls from the casting ladle or tundish at first under gravity and then supported by 

rollers from the casting ladle, gradually reaching the horizontal (European Commission, 2008c).  

Thus a continuous strand of material is formed, which is then cut with a torch cutter.  The main 

potential for heat recovery at this stage is from the solidified steel when it is at a temperature of 

around 800°C, with a radiant heat recovery boiler. 
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The final stages in integrated steelworks are collectively referred to as finishing operations.  The 

first of these is invariably milling, whereby the steel is formed into blooms, bars or billets, 

depending on the final form of the steel required.  Relatively speaking the milling process (and 

other finishing operations) are less energy-intensive than previous ones detailed above.  

However, the steel still needs to be reheated up to around 900°C in order to be malleable 

enough to roll.  Near net shape casting eliminates this preheating stage by rolling the steel 

directly, but this technology is not yet widely employed, partly due to concerns about effects on 

product quality (Worrell et al., 2004).  Hence the heat recovery opportunity from this operation 

is to capture some of the sensible heat contained in the steel after rolling.  The technology for 

doing this is water spraying (de Beer et al., 1998), but in some cases this is not feasible due to 

product quality requirements.  This has been accounted for by reducing the enthalpy that can 

be realistically recovered from this stream.  The assumption here is that this is possible in the 

majority of cases, and that the potential heat recovery is around 0.3-0.6GJ/tcs (Table 6-12). 

 

Secondary steel is produced through electric arc furnaces (EAFs) in the UK, which are also 

included in the model for this sector.  Details of the furnaces and the capacities used are given 

in Table 6-11.  Within the furnace, which is charged with scrap before being electrically heated 

in a batch-wise process, the temperatures reach around 1600°C.  The off-gas is typically used to 

preheat the scrap before melting.  Recent improvements in SECs for EAFs mean that on average 

this value is already close to its theoretical minimum (Stubbles, 2000).  Further opportunities for 

savings involve substituting primary fuel for electricity in order to achieve primary energy 

savings.  There is also the possibility of recovering some of the sensible heat from the molten 

steel as it is tapped off from the furnace.  Hence the exhaust gases from EAFs are not considered 

a likely candidate for heat recovery, and the only potential for this study is assumed to be 

through utilise some of the heat in the steel in the continuous casting and rolling stages, as 

described above. 

 

Operator Location Capacity (kt/yr) 

Celsa UK Cardiff 1200 

Thamesteel Sheerness 720 

Outokumpu Sheffield 540 

Corus UK Ltd Rotherham 1250 

Forgemasters Sheffield 130 

Total EAF route  3840 

Table 6-11 – EAF steel capacity in the UK  

Source: Entec UK Ltd. (2006c) and Stace, G. (2009, op. cit.) 

 

The heat recovery potentials for each of the above production units have been estimated from 

data on the sensible heat of various solid and gaseous streams, based on a typical integrated 

iron and steel plant which is used as a reference case (de Beer et al., 1998).  The sensible heat 

values in these streams are presented in Table 6-12, whereby these values have been used as the 

upper estimate for heat recovery potential, with a lower estimate at half of these values.  



 

- 140 - 

Exceptions to this are where evidence from Corus suggests reasons why this is not technically 

feasible (Lewis, B., op cit.).  Although obviously not exactly the same configuration as UK 

plants, the reference plant has similar production capacities.  The fact that sensible heat content 

data is normalised per tonne of rolled steel should make its application reasonable in this case.  

 

Process/unit Process 

Temp. 

(°C) 

Exhaust 

temp. 

(°C) 

Recoverable 

heat in exhaust 

(GJ/trs) 

Exhaust 

stream 

(gas/solid) 

Technology for 

heat recovery 

   LOW HIGH   

Coke ovens 1100 1100 0.12 0.24 Hot coke (s) Dry quenching 

Sintering 1350 350 0.49 0.97 

Cooler and 

exhaust gas (g) 

Advanced 

sintering 

Blast furnace 1500 150 0.16 0.31 BF gas (g) 

Top-pressure 

recovery turbine 

w/ dry cleaning 

Basic oxygen 

furnace 1600 1600 0.10 0.20 BOF gas (g) 

Gas recovery/ 

boiler 

Continuous 

casting 980 800 0.25 0.5 Cast slabs (s)  

Radiant heat 

boilers 

Hot rolling 900 900 0.31 0.62 Steel (s) 

Water spraying; 

heat pumps 

TOTAL   1.43 2.84   

Table 6-12 – Recoverable heat in exhausts of various steelmaking processes 

Source:  de Beer (1998) and Lewis, B. (2009, op. cit.) 

 

6.3.11 Lime 

The lime sector is covered by the EU ETS insofar as kilns with a production capacity above 50 

tonnes per day are eligible.  In the NAP for Phase II nine installations are included in the Lime 

sector.  Due to the onsite lime kilns owned and operated by British sugar, but not included in 

their allocations, this sector has been modelled based on the NAP allocations along with 

supplemented data on these kilns (Entec UK Ltd., 2006d).  Details for these kilns are presented 

in Table 6-13. 

 

The lime sector has been further broken down according to the particular type of technology 

employed at a given site.  This includes long rotary kilns (LRKs), parallel flow regenerative 

kilns (PFRKs) and mixed feed shaft kilns (MFSKs).  All British Sugar’s kilns fall within the latter 

category.  Although the type of technology employed has implications for the SEC, the process 

is essentially the same.  Lime production involves calcining calcium and/or magnesium 

carbonates in the temperature range of 900-1500°C but sometimes higher (European 

Commission, 2007).  The reaction forms the respective oxide (i.e. CaO or MgO) and liberates 

carbon dioxide.  Given the similarity of the process to that of cement manufacture, the 

assumptions are the same as for the cement sector, as described above.   
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Site Postcode Operational 

kilns 

Operational 

capacity* (kt/yr) 

Energy consumption# 

(PJ/yr) 

Allscott TF6 5EH 1 30 0.14 

Bury St Edmunds IP32 7BB 2 105 0.50 

Cantley NR13 3ST 1 38 0.18 

Newark NG24 1DL 1 241 1.13 

Wissington PE33 9QG 1 159 0.75 

York YO26 6XF 2 90 0.42 

TOTAL  8 663 3.12 

Table 6-13 – British Sugar’s lime kiln capacities and estimated energy consumption 

*Based on 85% load factor; #Assuming an SEC of 4.7GJ/t 

Source: Entec UK Ltd. (2006d) and Environment Agency (2001) 

 

6.3.12 Pulp and paper 

The EU ETS coverage for pulp and paper covers all pulping of timber or other fibrous materials 

and the production facilities for paper and board with capacities exceeding 20 tonnes per day.  

In total 64 installations are included in the Phase II NAP, with 19 of these being mainly or 

wholly CHP units.  The remainder of the sites produce paper and tissues of various qualities, 

with the energy intensity of production being roughly proportional to the paper quality. 

 

For the present study the pulp and paper sector has been divided in two, by separating the 

solely CHP installations.  For non-CHP related installations the heat load is assumed to be 

derived from boilers and steam systems, and the generic methodology defined above is 

therefore applied.  There are no process emissions from pulp and paper production, therefore 

the combustion emissions fraction is taken as unity.  The scope for improvements in energy 

efficiency within this sector is estimated to be significant with future technologies, and with 

new drying methods the net specific heat consumption of paper production could be reduced 

almost to zero (De Beer et al., 1998).  With current technology, however, the scope for 

improvement through heat recovery is estimated at around 10%, through improvements in 

drum and Yankee dryers (Energetics & E3M, 2004).  There are several suggested measures for 

improving overall efficiency and recovering wasted heat that, considering their applicability to 

the industry as a whole and the savings they each stand to achieve, could together achieve 

around 10%.  Hence, as for several other sectors, then potential range for heat recovery is set at 

5-10% for pulp and paper. 

      

6.3.13 Other sectors  

Other sectors are grouped within the NAP according to Table 6-14.  These sectors have been 

further broken down and grouped into the relevant sectors.  Further details are given about the 

assumed fuel splits and data sources in Table A3 in Appendix A3.1.  Otherwise the 

methodology has been the same as for other (homogenous) sectors as described above. 
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NAP Sector Included Sectors 

Others A Gypsum, mineral wool, rock wool 

Others B Aerospace, vehicles, semi-conductors, woodboard 

Others C Munitions, textiles, tyres tobacco, other non-metallic minerals 

Table 6-14 – Classification of other sectors in the NAP 

 

6.4 Results  

This section provides an overview of the pertinent results of this study.  Discussion of the 

implication of the results and relating them to the initial objectives is contained in the following 

section.  The high and low estimates for recovery potential relate to the ranges detailed in the 

methodology section.  Where the mid-point of this range has been used as an indication it is 

referred to as the average heat recovery potential.  

 

6.4.1 Heat loads and estimated recovery potentials 

The annual energy use for heat by individual sectors, alongside the lower and higher estimated 

heat recovery potentials, is shown in Figure 6-2.  The largest heat user is the iron and steel 

sector with a demand around 213PJ, with the chemicals sector being the second-largest at 167PJ.  

Other significant users of heat include the food and drink, pulp and paper, cement, glass and 

aluminium sectors. 

 

The total estimated heat recovery potential for the industrial sector lies in the region of 36-71PJ 

(10-20TWh).  The largest heat recovery potential is estimated to be in the iron and steel, 

chemicals, cement and glass sectors.  Together these sectors account for about 80% of the 

estimated savings through heat recovery, with the iron and steel sector accounting for almost 

half of the total.   

 

6.4.2 Qualitative and spatial considerations 

The energy demand for heat is plotted for different industrial sectors against the temperature at 

which this heat is used in Figure 6-3.  This chart is a histogram with bins of unequal width 

corresponding to the temperature bands detailed in the methodology section.  Clearly the iron 

and steel sector accounts for the vast majority of the heat demand above 1500°C, with a very 

small proportion being taken by the chemicals sector’s carbon black manufacturing.  It is also 

noteworthy that the highest temperature band has the highest total heat demand – around 

175PJ are used within this bin. 

 

For the temperature band from 1000°C to 1500°C the split of users is more balanced.  The iron 

and steel sector still has a significant heat demand at these temperatures, alongside the non-

metallic minerals sector, which includes cement, lime, glass and ceramics.  The medium 

temperature band, from 500°C to 1000°C, is dominated by the chemicals sector, with smaller 

demands from the iron and steel and aluminium sectors.  Whereas the iron and steel sector has 
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its heat demand spread over the three highest temperature bands, that for the chemicals sector 

broaches the three lower temperature bands.  The two temperature ranges below 100°C are 

therefore dominated by heat use in the chemicals, food and drink, and pulp and paper sectors, 

with smaller demands within other sectors.  

 

Broadly speaking there are two peaks of heat demand, within the low temperature 100°C to 

500°C band and within the highest temperature band above 1500°C.  These peaks are 

emphasised if the heat demand by sector is plotted against the Carnot factor, as shown in Figure 

6-4.  Due to the non-linear nature of the quality function, which is proportional to the difference 

between the process and ambient temperatures, the heat demand at lower temperatures has 

been stretched along the x-axis.  For the same reason the peak at much higher temperatures has 

been compressed in the same direction.     
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Figure 6-2 – Energy use for heat (heat load) and estimated recovery potentials for industrial sectors  

 

Electricity is shown as the peak with a thermodynamic quality of unity in Figure 6-4 because of 

its versatility in meeting heat and power demands.  In theory much (or all) of the energy used at 

higher qualities can be reused at lower qualities, or cascaded down the quality scale.  Hence the 

heat used almost exclusively in the iron and steel sector with a thermodynamic quality above 

0.85 could be used to supply some of those demands at lower temperatures.  The same can also 

be said of the peak from 0.27 to 0.65.  However, in practice the feasibility of heat cascading is 

limited by the temporal and spatial coincidence of the heat source(s) and sink(s).  The temporal 

demand profile of industrial heat loads is not considered here because it lies beyond the 

objectives outlined in section 6.2.  The spatial distribution of these heat loads is of interest, 

though, because this was one the objectives.  Hence the spatial distribution of heat loads and 
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estimated (average) recovery potential is shown plotted against the weighted thermodynamic 

quality factor in Figure 6-6. 
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Figure 6-3 – Heat demand against temperature for industrial sectors 

 

 

It is clear from Figure 6-6 that the majority of the high temperature recovery potential is at the 

three integrated iron and steelworks.  Although there are other industrial heat demands in the 

vicinity of these works, the number and variety of these heat loads is smaller than in other areas 

of the UK.  There seems to be a significant concentration of industrial heat loads within the area 

enclosed by a triangle with corners approximately located at Birmingham, Manchester and 

Leeds.  The density of heat loads is particularly high in the region around Chester, and the large 

variation in colour in this area suggests that there might be technical potential for heat recovery 

and/or sharing between sites.   

 

Another general trend in Figure 6-6 seems to be that the total heat load, and indeed the recovery 

potential, is concentrated in a small number of sites.  Comparison with Figure 6-2 verifies that 

this is indeed the case, with iron and steel and chemicals being the key sectors.  Hence there is a 

“background” of relatively small heat loads, with only marginal recovery potential, upon which 

the larger ones are superimposed.  This can be seen more clearly in Figure A7 in Appendix 

A3.1, which shows all heat loads above 100MW along with the range of estimated heat recovery 

estimates.  It is clear from this chart that the heat recovery potential is not just proportional to 

the heat load, as shown by the many sites with smaller heat loads and a substantial potential.  

The sites with no recovery potential are CHP units (cf. section 6.3.3).  The highest heat loads are 

at the three integrated iron and steel works, followed by three steam crackers, two aluminium 

smelters and then mainly chemicals, food and drink, pulp and paper, cement and glass sites.  

These 26 sites account for 60% of the total estimated heat load.  
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Although around half of the heat recovery potential is estimated to be in the iron and steel 

sector, not all of this is at high temperatures.  In fact the majority of heat recovery is estimated to 

be within the temperature band from 100°C to 500°C, as shown in Figure 6-5. 
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Figure 6-4 – Heat demand against thermodynamic quality for industrial sectors 

 

6.4.3 Contextualisation of results 

In order to appreciate how well this model corresponds to national statistics, the results have 

been compared to the ECUK dataset (DTI, 2007b), the most highly disaggregated data available 

on industrial energy use in the UK.  Although offering higher resolution than DUKES, ECUK 

suffers from lower accuracy (section 3.1).  The estimated total energy use for each industrial 

sector is shown alongside the respective ECUK totals in Table 6-15.  These totals are the average 

values from 2000 to 2003 minus the lowest year (cf. section 6.3.1), except for iron and steel 

where the ECUK figure corresponds to 2005 because more recent production capacities were 

used. 

 

Also shown in Table 6-15 are the sector totals in primary energy terms from the model against 

the second period (Target Period 2, TP2) results of the Climate Change Agreements (CCAs), 

which ran from 2002-2004.  The conversion to primary equivalents within the model has been 

carried out by multiplying electricity use by 2.6, which is the reciprocal of the overall grid 

efficiency of 38% used by DEFRA (2007c) in converting electricity into primary energy terms.  

The CCA results could not be summed for “other industry” sectors because of differences in 

coverage and problems with allocation of activities.   

 

Most sectors show a good agreement with the ECUK data.  This is especially the case with 

energy-intensive sectors because the primary dataset, the EU ETS NAP, is focussed on energy 

intensive activities.  Hence the coverage of other industry, which includes inter alia the non 
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energy-intensive sectors textiles and wood products, is very poor.  In a few specific cases the 

correspondence with ECUK is weaker.  The primary energy results, however, show a very good 

correspondence with the CCA results from TP2.  These comparisons, and reasons for these 

discrepancies will be discussed in more detail in section 6.5. 

 

6.5 Discussion 

The fact that the majority of industrial heat demand is accounted for by a small number of 

sectors is not surprising, for the same sectors are widely understood to be the most energy-

intensive ones.  By definition, excluding feedstock energy which is not considered here, fuels 

are used to generate heat, hence there is a direct correlation between fuel consumption and heat 

use in these sectors.  Hence the sectors with the highest heat loads are those carrying out 

primary (material) processing operations.  Perhaps more surprising is that the heat recovery 

potential is not in all cases directly proportional to the total heat load for the sector.  Although 

the largest heat loads present the largest potentials for recovery, some of the sectors with 

relatively low total heat loads seem to have a significant potential for improvement.  Overall the 

heat recovery potential for individual sectors seems very small in comparison to their total heat 

load.  But close inspection of Figure 6-2 reveals that the recovery potential within the iron and 

steel sector is roughly equal to the total heat demand in some other sectors. 
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Figure 6-5 – Low (left) and high (right) heat recovery potential by sector against temperature 

 

The number of installations covered in each sector is worthy of attention because this greatly 

affects the scope for realising the heat recovery potential identified in this study.  Clearly the 

largest potential, in the iron and steel sector, is focussed at the three large integrated works and 

to a lesser extent at the seven EAFs.  This sector has the highest geographical concentration of 

both heat loads and estimated savings of all the sectors studied (Figure 6-6).  For other sectors, 

though this “density” of the heat use and savings is less obvious, hence these figures are 
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detailed in Figure 6-7, which omits the iron and steel sector as it has very large potentials per 

site – in the range 1.8-3.6PJ/yr.  The total industry bars in Figure 6-7 include the iron and steel 

sector.   

 

Sector Final energy use (PJ) 
% 

share 

Primary energy 

use (PJ) 

% 

share 

 
This 

model  

ECUK 

average 2000 

to 2003 minus 

lowest 

 
This 

model 

CCA 

TP2 

2004 

 

Aluminium 26 29 89 56 63 89 

Cement 44 17 258 53 56 95 

Ceramics 19 12 160 24 23 104 

Chemicals 203 271 75 230 279 82 

Food and drink 83 163* 51 104 127 82 

Glass (incl. rockwool) 29 26 110 31 38 82 

Iron and steel 251 222∆ 113 294 308 95 

Lime 16 2# 703 17 10$ 170 

Pulp and paper 78 106^ 74 98 98 100 

Other industry 39 450 12 49 N/A - 

TOTAL INDUSTRY  

(SIC 15-37 excl. 23.2) 
788 1300  61  944 ~1200 79 

Table 6-15 – Industrial sectors’ total energy use – comparison of results with ECUK and CCA 

*Includes tobacco; #11PJ from 1996-1999; $Excludes in-house production; ^Includes publishing; ∆2005 

data to reflect recent production capacities used;   

 

Compared to the industry average, that is for all sites included within this study, the 

aluminium, cement, lime and glass sectors all present above average concentrations of 

estimated recovery potential at a small number of sites.  The concentration for the chemicals 

sector is in fact biased by the non-homogeneity of the sector, which resulted in many sites being 

lumped together as boilers and steam systems (section 6.3.7).  Certainly the two sectors to 

concentrate on primarily, apart from iron and steel, would be aluminium and cement.  

 

Comparison of the sector level results with those published in ECUK has been carried out by 

way of comparison, and the correspondence is good for most sectors (Table 6-15).  There are a 

few sectors for which the estimated total energy use from this model exceeds that in ECUK.  In 

general the reason for this is probably the inaccuracy of the ECUK data, which is based on 

survey data from the Annual Business Inquiry (ONS, 2008a), which is then scaled up to roughly 

correspond with DUKES.  A similar procedure has been employed to compare the model’s 

results with CCA TP2 results for the sectors, which in most cases shows good agreement.  The 

CCA for the iron and steel sector includes some downstream processing activities that are not 

covered by the model.  In general such activities only account for a small fraction of the total 

energy consumption because it is the primary steel production itself that is very energy 

intensive (European Commission, 2008c).  Hence the comparison of the results for this sector 

with the CCA is a reasonable one in this case.   
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Figure 6-6 – Distribution of industrial heat loads (empty circle) and recovery potentials (solid circle) 

against thermodynamic quality parameter (colour), for the UK and the area around Chester (inset) 

 

The sectors with the largest differences to ECUK in Table 6-15 are the non-metallic minerals 

sectors, which are also the only sectors modelled based purely on the NAP with process 

emissions.  Whilst too much emphasis should not be placed on the ECUK data, this does raise 

some uncertainty relating to the combustion emissions fractions underpinning the results from 

these sectors.  The factors employed for the cement, lime and glass sectors are considered to be 

reasonably accurate because they are based on previous detailed studies of these sectors 

(section 5.4 and Appendix A3.1).  In addition, the primary energy results for these three sectors 

are all in close agreement with the CCA results from TP2.  The reason for the discrepancy for 

the lime sector is that the CCA only covers merchant facilities and some in-house facilities, 
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whereas the model has included all lime production.  Most notably, the lime sector CCA does 

not cover in-house lime production for British Sugar and Corus (DEFRA, 2001b).   
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Figure 6-7 – Average estimated heat recovery potentials per site for all sectors except iron and steel   

 

The combustion emissions factor employed for the ceramics sector, however, has a higher 

degree of uncertainty associated with it.  This can be seen from the fact that the model 

overestimates the sector’s energy consumption in both delivered and primary terms relative to 

ECUK and CCA results respectively.  This uncertainty is mainly due to ignorance about the 

types of bricks being manufactured at a particular site.  As outlined in section 6.3.6, the process 

emissions from brick manufacture are heavily dependent on the raw material, type of brick, and 

kiln type etc.  Whilst the latter is known to be quite consistent across the industry (Beardsworth, 

D., op. cit.), the other variables are not.  The benchmarking study for the ceramics sector 

(Enviros Consulting, 2006c) suggested a combustion emissions fraction of around 60-73%, 

depending on the type of brick being produced.  This is significantly higher than the 50% 

employed here, and would have resulted in a total final energy consumption for the sector of 

up to 27PJ.  The implication is that the 19PJ end-use energy figure from this model for the 

ceramics sector could in fact be an underestimate.  It is more likely, in fact, that the model has 

slightly overestimated the total energy consumption of this sector, because the CCA data 

corresponds to five sectors in total, only two of which are covered by the model (i.e. fletton and 

non-fletton bricks). 

 

The discrepancies with the ECUK data, along with the fact that it is not a highly accurate 

source, mean that it does not provide a fair basis against which to assess the outputs from the 

current model.  Instead it serves as an indication of the order of magnitude check on the results, 

to check whether they are roughly similar.  Certain sectors are also covered by DUKES, so can 

be compared directly.  These include food and drink, chemicals, pulp and paper (and 

publishing), as well as iron and steel, but the latter excludes activities associated with coke 

production and use in the blast furnace.  On a more disaggregated level DUKES cannot serve as 
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a cross-check, especially for the non-metallic minerals sectors, which are all grouped into “other 

industries”.  

 

The only sectors about which there is a significant, unexplained discrepancy according to the 

comparison with the CCA data are the other industry sectors – in other words the non energy-

intensive sectors.  The poor coverage of these sectors is due to the non-energy intensive nature 

of their activities, which means they are not covered (or only to a limited extent) by the EU ETS.  

Some of them do have CCAs, including the automotive, aerospace, metal forming, textiles, 

leather and wood products sectors, which could be used to determine company locations and 

production information.  However, extrapolating the correlation above, that the energy-

intensive sectors have the largest overall heat loads, these small non energy-intensive sectors 

probably do not have significant heat demands.  

 

The total estimated potential for heat recovery from industrial processes, of 36-71PJ (10-20TWh), 

is in good agreement with the only other studies of this potential known to exist (see section 

6.1).  The estimated potential in this study is at the lower end of the range between these 

figures, which was from 65PJ (18TWh) to 144PJ (40TWh).  This is probably due to the 

conservative approach employed in estimating the technical potential in this study, and also 

because of its restricted coverage of certain sectors.  Details are not available relating to the 

breakdown of potential savings by sector for these two studies, mainly because of their 

commercially sensitive nature, such that a detailed comparison of the results is not possible.           

 

The temperature demand profile for the sectors studied suggests that there is significant scope 

for heat cascading of energy down to lower qualities.  This appears especially to be the case at 

high temperatures for the iron and steel sector, and at medium temperatures (100-500°C) from 

various sectors.  In theory this recovered energy could be used to meet heat demands at lower 

temperatures, but in practice this is limited by temporal and spatial constraints.  The former 

have not been considered in this study, but the latter have.  Indeed, the high temperature heat is 

used almost exclusively in the three integrated iron and steel works, so the heat would have to 

be used at or in the vicinity of these plants.  The heat used at medium temperatures is more 

evenly distributed throughout the UK, along with the loads at lower temperatures which might 

be partly met by it (Figure 6-6).   

 

It might be the case that the best use for recovered heat is onsite, in which case these spatial 

considerations are less significant.  There are clearly other heat loads that have not been 

included in Figure 6-6.  Perhaps most significant of these are the heat loads associated with 

buildings for space heating, which are often met in the Scandinavian countries by district 

heating schemes using heat recovered from industrial processes (Werner, 2006).  Where a 

demand does not exist onsite for recovered industrial waste heat, there are currently barriers in 

place to it being used elsewhere, including other industrial sites and non-industrial buildings.  

The most significant of these is the lack of infrastructure for transporting heat (i.e. heat 

networks).  If these were extant then industrial heat users would not necessarily have to find a 

use or user for recovered heat; instead it could be fed into district or regional heat networks for 
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use, as appropriate, for space heating.  However, this sort of arrangement relies on companies 

being bound by contracts for supplying heat, which is not always an attractive option for firms 

focussed on maintaining production.  There would also be some degree of variation in the 

quantity and quality of heat that it is possible to supply to the network.  As this variation would 

not necessarily match the demand profile, some kind of correction would be necessary.        

 

6.6 Critique of methodology  

Having discussed the results in general and compared them to other sources, this section 

assesses the methodology employed with a particular focus on the weakest and/or most 

sensitive aspects.  The outputs from the model are very sensitive to a few input variables, in 

particular the total emissions allocation, the combustion emissions fraction, the fuel split, the 

SEC and the capacity/output employed.  Other parameters such as the load factors and 

efficiencies do have an effect on the results, but this is marginal in comparison to these other 

variables.  As mentioned above, these two variables cancel out in Equation 6-4 for some sectors; 

even where they do not, their overall effect is small.   

 

Clearly the total emissions allocation is beyond the scope of this work; any errors resulting from 

this parameter must be due to errors in the allocation procedure.  The assumption on 

employing the NAP is that the data is accurate.  Due to the allocation being based on an average 

of three years, it potentially overlooks changes in production that have occurred since then.  

The advantage of using an average value is that it reduces the chance of employing anomalous 

data from one year in particular.   

 

The combustion emissions fraction is an important variable in the model, but it only has values 

other than unity for sectors producing non-metallic minerals, as discussed above.  The 

site/sector’s total energy use is linearly proportional to this parameter according to Equation 

8-2.  It will therefore not be further discussed here.  Another parameter in Equation 8-2 is the 

sector’s overall emissions factor, to which the site total energy use is inversely proportional.  

The emissions factors vary from 11tC/TJ for coke oven gas to around 27tC/TJ for coal use in the 

cement sector (Table 6-2).  The overall emissions factor is dependent upon the fuel split 

employed for the sectors, which in turn are taken from a variety of sources (Table A3 in 

Appendix A3.1).  Where alternative data was not available these fuel splits have been taken 

from ECUK, which in light of the preceding discussion is an unreliable source.  In most cases 

these figures have been checked with the trade association, but for the few sectors where they 

have not there is an uncertainty introduced by using this data.        

 

The SEC-based methodology applied mainly for the chemicals, iron and steel, lime and 

aluminium sectors is also sensitive to a few key variables.  In this case it is the particular SEC 

and capacity employed.  In many cases the BREF documents contain many separate process 

routes for the same product.  If it is not clear exactly which route is being employed at a 

particular site, uncertainties are introduced by assuming one particular route or taking an 
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averaged SEC value.  The capacity employed is less variable; when used in conjunction with an 

appropriate load factor it should give a good indication of the actual output from a given site. 

 

Another crucial element of the methodology, which affects both the NAP-based and SEC-based 

approaches, is the way in which the thermodynamic considerations were integrated into the 

model.  Firstly, where the SEC-based approach was used to estimate heat loads and savings 

there was inevitably some ambiguity about the fraction of the SEC that was required as heat.  In 

general, therefore, it was assumed that the fuel use for a given process accounts for the heat 

fraction, and in most cases it is possible to obtain purely fuel-based SEC values.  The problem 

with this approach is that it overlooks the use of electricity for heating.  It is not that this energy 

use is excluded from the model; it is accounted for, but the heat demand is assumed to be met 

by combusting fuels rather than with electricity.  The distinction between electricity used for 

heat and power is therefore ambiguous within the model although the total final energy is the 

same as it would be otherwise.  As mentioned above, there is very little data on the split 

between electricity use for heat and power in industry, which was reflected in the development 

of this model.   

 

Another salient aspect of the thermodynamic methodology is the way in which the temperature 

demand profiles for sectors were determined.  Data on industrial energy use by temperature is 

also very scarce and the only public source is the ECUK end-use breakdown.  As well as being 

unreliable, as discussed above, this source only distinguishes between low temperature and 

high temperature processes, whereby the boundary between the two is around 250-300°C 

(Knight, J, Energy Markets Units, BERR, pers. corr., May 2007).  The approach in this study was 

therefore to estimate the fraction of energy (heat) used in each of five temperature bands, as 

detailed in Table 6-3.  This estimation was based on background knowledge of the processes 

occurring within individual sectors, obtained from previous work in the area and supporting 

literature such as the BREF documents.  It is not intended to be highly accurate, but instead 

reflects the approximate distribution of energy use by temperature in these sectors.  In the 

absence of any available data this was considered to be the most suitable means of 

incorporating thermodynamic quality aspects into the model.  Furthermore, the Carnot factors 

have only been used qualitatively and do not quantitatively affect absolute heat loads or 

recovery potentials.  Instead they are intended to offer an insight into the quality of the heat 

demands determined.  

 

Finally, there are a few other areas that deserve attention here, because the results have 

provoked questions surrounding the underpinning methodology.  The potential for heat 

recovery at low temperatures has probably been underestimated.  This is because the exhaust 

temperatures from boilers and steam systems were lumped together at 150°C (Table 6-3), which 

represents an average over the range 50-300°C, say.  The fact that the lower temperature band 

employed was 0-100°C means that the lower end of this averaged range is included in the 

higher temperature band at 100-500°C.  Hence some of the heat recovery potential identified 

within the latter band is probably in the lower (former) band.  This does not affect the total 

potential identified, however.   
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Similarly the estimated heat recovery potential (but not the total heat load) has probably been 

underestimated for some sectors, especially, food and drink, pulp and paper, and chemicals.  

This is due to the fact that a large proportion of these sectors are modelled simply as boilers and 

steam systems, with only marginal potential for improvement.  In actual fact the savings for the 

pulp and paper sector through systems level integration have been estimated to be around 30% 

(IEA, 2007), and in the long term the heat savings are up to 90% (De Beer et al., 1998).  For 

chemicals the systemic potential is estimated at greater than 10% (Jochem, 2000).  This could 

only be more suitably reflected in the model if the sectors were further broken down, the SEC 

based methodology was improved (e.g. for chlorine) and the savings were determined on a site 

(as opposed to sector) level.   

 

6.7 Suggested improvements and areas for future work 

The preceding section has identified some limitations with the methodology employed.  These 

are clearly areas where the modelling technique could be improved, but it lies beyond the scope 

of this study to do this.  This section therefore provides some suggestions for where attention 

could be focussed to improve the robustness of the existing methodology.  There are ways in 

which the existing model could be improved and potential avenues of enquiry which the results 

have shown might be worthwhile exploring.  

 

In terms of improving the existing methodology, clearly the points highlighted in the preceding 

section could be addressed.  Firstly, the combustion emissions factors, in particular for the non-

metallic minerals sectors, could be improved based on more detailed calculations.  Especially 

for the ceramics sector, more accurate data relating to split between process and combustion 

emissions should be sought.  In order to do this the brick sector should ideally be broken down 

into further sectors, each manufacturing different types of bricks, and each site allocated to the 

relevant sector.  The crucial problem here is determining what type of bricks are manufactured 

at each site.  High-level data on output by brick type and material is available in BERR’s (2008h) 

Monthly Statistics of Building Materials, but one category of material (sand-lime) is suppressed 

and lumped with clay, ostensibly for commercial confidentiality reasons.  It also breaks down 

output of these materials by region, which might be used in conjunction with site level data to 

determine a regional average output split, which would probably be more accurate than the 

present industry average that is employed.  Some site-level data can be gleaned from company 

websites and annual reports relating to the type of bricks produced at each site, but this is by no 

means comprehensive. 

 

Several other improvements to the methodology could be made.  Many of these are aimed at 

improving the accuracy and resolution of the results.  Given that the initial objective was to gain 

an overview of heat use in industry, they are beyond the scope of this work, but in adopting the 

methodology for other similar applications they should be considered: 
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• Update the dataset upon which it is based, perhaps by using the Phase III NAP when it 

is published in the next few years.  The same applies to the SEC-based approach, 

whereby the individual product capacities should be checked with the trade associated 

and updated as appropriate. 

• Seek clarification of the temperature-demand profile for individual sectors, which 

would involve cross checking with other sources. 

• Clarify the specification of exhaust temperatures, especially from boilers and steam 

systems.  Particular focus should be placed on exhausts below 100°C, which might have 

been lumped together in the average exhaust temperature used of 150°C. 

• Consider the temporal aspect of heat loads and this might affect the estimated 

potential for recovery.  The most important considerations are probably the diurnal and 

annual variations in load, as well as any downtime for maintenance. 

• Improve the coverage of non energy-intensive sectors, which due to the nature of the 

primary data source have been largely excluded from this work. 

• Clarify the fuel split for specific sectors where this is based on ECUK data. 

• Consider the economic constraints on heat recovery, and therefore the fraction of the 

identified technical potential that is currently economic.  Another question is what 

carbon price would be necessary in order to incentivise some of the heat recovery that is 

currently uneconomical. 

• Select specific technologies for specific sites/sectors and thereby identify exactly how 

these savings would be realised in practice. 

• Clarify the distinction between electricity use for power and heating, which is 

necessary if the use of heat in industry is to be understood from a thermodynamic 

perspective, in the context of an evolving energy supply system. 

• Improve the capacity-based methodology, to better account for specific process routes 

(where this is ambiguous) and to reflect more accurately the integration of several 

process on any one site (e.g. for the chlorine sector). 

     

In terms of developing and/or applying this methodology elsewhere, it might be instructive to 

use a similar approach to model industrial sectors in other countries based on the same data 

source (i.e. the NAP for that country).  Alternatively, a similar approach could be applied to 

other sectors in the UK, in order to fill in some of the gaps in understanding the spatial 

distribution of heat loads in Figure 6-6.  It would be particularly relevant to consider the heat 

demand for space heating of buildings, in the domestic, commercial and public sectors as these 

together account for the largest (although most disperse) proportion of overall heat use (BERR, 

2008d).  Certainly for the industrial sector, the distinction between energy (or heat) use for 

processes and space heating is somewhat of a grey one (Brown, 2005; BRE, 2002), which could 

perhaps be clarified by such an extension to this work. 

 

6.8 Conclusions and recommendations 

The heat demand and technical recovery potential based on commercial technology has been 

estimated for the industrial sector, with an emphasis on energy-intensive industries.  Around 
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60% of industry has been covered in terms of energy use, and 90% of energy-intensive sectors.  

The total annual heat use for these sectors was estimated at 650PJ, with technically feasible 

annual savings in the region of 36-71PJ (10-20TWh).  This is in agreement with the only extant 

estimates for heat recovery from industrial processes, which are 65PJ (18TWh) and 144PJ 

(40TWh) respectively.   

 

The largest heat loads are in the iron and steel, chemicals and food and drink sectors.  The 

greatest potential for heat recovery is in the iron and steel, chemicals, aluminium and non-

metallic minerals sectors, and lies mainly in the 100°C to 500°C temperature range.  Heat 

recovery at higher temperatures is feasible only in the iron and steel sector.  Although the 

largest proportion (around 50%) of the estimated recovery potential is in the iron and steel 

sector, the potential in other sectors is typically not proportional to the total heat load.  The 

density of the heat loads (i.e. normalised by the number of sites) also differs greatly between 

sectors.  The consequence is that there are several sectors apart from iron and steel with only 

moderate total heat loads, where savings could be realised by targeting a small number of sites.  

Most notable are the aluminium and cement sectors, where average savings of 0.6PJ/site and 

0.3PJ/site are technically possible (the figure for iron and steel is 2.7PJ/site). 

 

The iron and steel sector is by far the greatest user of high temperature heat at over 500°C.  At 

medium and lower temperatures the demand for heat exists in many sectors, with the greatest 

diversity in the temperature band 100-500°C.  There is technical potential to reuse some of the 

high temperature heat at lower temperatures, but in practice this will be constrained by the 

extent of heat sinks in the vicinity and the temporal variation in loads.  The latter has not been 

considered in this study. 

 

The coverage of sector activities shows a very good correlation with published data on overall 

energy use from the Climate Change Agreements.  There remains some uncertainty 

surrounding the specification of the combustion emissions fraction for the ceramics sector, 

however, which has resulted in a slight over-estimated of the sector’s total energy use.  The 

estimated heat recovery potential for some sectors has probably been underestimated, 

especially for the pulp and paper, food and drink, and chemicals sectors.  This is due to the 

approach used to estimate savings from boilers and steam systems, whereby the savings 

through heat recovery and system optimisation were set in the range 5-10%.  In fact the 

systemic potential for these sectors in the medium to long term is much higher than this.  There 

is also some remaining uncertainty surrounding the potential for heat recovery at temperatures 

below 100°C, due to the way in which boiler exhaust temperatures were averaged to 150°C, 

which meant that exhausts at lower temperatures were lumped into the higher temperature 

band at 100-500°C.  Suggestions have been made for where future work should focus, such as 

obtaining better data for the ceramics sector and considering heterogeneous sectors in greater 

detail. 

 

This study provides some answers to questions raised in the Heat Call for Evidence (BERR, 

2008f), in particular those concerning the amount of surplus heat exhausted to the environment 
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by industry, and reasons why this is necessary (Q.19).  It also helps to suggest areas where the 

government should collate data on industrial heat use and waste (Q.24).  By modelling sectors 

based on emissions allocations and capacities/outputs this study has highlighted the 

weaknesses of the ECUK dataset relating to industrial energy use.  It has thereby shown that 

reliable industrial energy statistics at high levels of disaggregation can be developed in this 

way.  Notwithstanding the limitations of its methodology, this study has provided a good 

indication of industrial heat use and technical recovery potential in the UK.  
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7 Energy and exergy analysis of a glass furnace38 

This chapter presents an energy and exergy analysis of a cross-fired regenerative glass furnace, 

based on a model developed to reflect the state of the art in the industry.  The analysis is 

intended to give an insight into the exergy flows through a typical British furnace and to enable 

CO2 emissions to be accurately estimated in different operating regimes.  The chapter begins 

with a short introduction to the sector and glass manufacture, before reviewing the literature on 

thermodynamic analyses of glass furnaces.  The metholodology is then presented in detail 

followed by results and discussion sections.  The chapter closes with conclusions and 

recommendations.  

 

7.1 Introduction 

7.1.1 Background to the glass sector and glass manufacture 

Glass manufacture is a very energy-intensive activity that requires significant fossil fuel inputs 

at a high capital cost, and produces significant quantities of combustion and process related 

CO2 emissions.  The combustion and process emissions of CO2 for the sector were around 

1.9MtC in 2003 (DEFRA, 2007e) and in the region of 2.3MtC in 2007 respectively (DEFRA, 

2007d).  In 2005 the UK glass sector accounted for some 22PJ (1.5%) of total industrial delivered 

energy use (DTI, 2007b), although the heat modelling reported in chapter 6 suggests a figure 

substantially higher than this.  This energy is mainly used in the production of container and 

flat glass, which account for approximately 61% and 27% of total production by mass in 2004 

(British Glass, 2004).  The fuel split for the sector as a whole is around 80% natural gas, 14% 

electricity, 4% heavy fuel oil, and 2% gas oil (Entec UK Ltd. & NERA Economic Consulting, 

2005).     

 

Container glass is mainly used for packaging in the food and drink sector, whereas flat glass 

has its main applications as glazing in the construction and automotive industries.  These three 

sectors together account for around 90% of demand for glass manufactured in the UK (British 

Glass, 2004).  In 2002, domestic output of container and flat glass was 1.70Mt and 0.70Mt 

respectively (ibid.).  These values stood at 2.3Mt and 1.0Mt respectively in 2007 (Hartley, 2007b).  

The estimated total capacity for the sector is shown in Table 7-1.  The level of international trade 

within the sector is relatively low because of the low cost of the raw materials, which means 

glass is manufactured close to the demand for it.  Hence the import penetration of all glass 

products in the UK remained steady at around 20% over the period 1992 to 2004, and their 

export share has similarly been quite constant at 14% during this time (ONS, 2006c)39.   

 

                                                           
38 This study was presented by the author at the 4th European Conference on the Economics and Management of Energy 
in Industry, in Porto, Portugal, November 2007.  The presented paper is attached in Appendix A1.3.  
39 These two terms were defined in section 5.3: import penetration refers to the fraction of total demand which is met by 
imports, and export share is defines as the percentage of total supply that comes from exports.  
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The industry is generally concentrated in and around Yorkshire, mainly because of the 

abundance of sandstone and limestone deposits in the vicinity (BGS, 2006), and also because 

coal was conventionally used as the main fuel and is profuse in the region.  Approximately 

1.9Mt of the UK’s 3.8Mt of total annual production capacity is situated in this region (Table 7-1).  

Soda-lime glass is the most common type of industrially manufactured glass (European 

Commission, 2008b).  The main raw materials in this type of glass are Silica (SiO2, from sand) 

and calcium oxide (CaO, from limestone, which contains calcium carbonate, CaCO3), 

accounting for 72% and 11% respectively by mass (British Glass, 2004, p.10).  The remainder is 

13% sodium oxide (Na2O, from soda ash) alongside 4% other minor ingredients, which depend 

on the specific application for the glass. 

 

Company Location Furnaces Average 

furnace 

capacity 

(t/day) 

Total 

annual 

capacity 

(kt/yr)40 

Rockware Knottingley, Leeds 3 220 240 

Rockware Wheatley, Doncaster 3 350 380 

Rockware Portland, Irvine 2 300 220 

Rockware Barnsley 3 270 300 

Allied Glass Leeds (2 sites) 3 240 260 

O-I Manufacturing Alloa, Sterling 4 250 370 

O-I Manufacturing Harlow, Essex 2 250 180 

Beatson Clark Rotherham 2 160 120 

Quinn Glass Elton, Cheshire 2 380 280 

Quinn Glass Derrylin, Co. Fermanagh 2 550 400 

Stolze Knottingley, Leeds 1 120 40 

Total Container  28 3100 2800 

Pilkington St Helens 3 680 500 

Guardian Goole, East Riding 1 620 230 

Saint Gobain Selby 1 600 220 

Total Flat  5 1900 950 

Total  33 5000 3800 

Table 7-1 – UK glass sector production capacity (Hartley, A., British Glass, pers. corr., March 2009) 

 

The furnace typically accounts for 75% of the energy used in a glass manufacturing plant 

(European Commission, 2001b) and all of the process-related, as well as 90% of the combustion-

related, CO2 emissions (Enviros Consulting, 2006d).  It has therefore been, and continues to be, 

the focus of many efforts to increase the energy efficiency of manufacture.  The state of the art 

for both types of glass manufacture is cross-fired or end-fired regenerative furnaces, with 

roughly 50% of UK capacity met by each type (Hartley, 2007b).  Hot combustion and batch 

gases pass through a regenerator, where much of their heat content is recovered when the 

direction of the flow is reversed periodically (typically every twenty minutes) as the pre-

                                                           
40 That is, at 100% utilisation.  A more practical utilisation factor of 85% makes the total capacity around 3200kt/yr. 
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combustion air is then preheated (Figure 7-1).  Furnaces operate continuously in campaigns of 

ten to twelve years for container glass and up to fifteen for flat glass.   

 

7.1.2 Theoretical and actual energy requirements 

Analytical thermodynamic approaches have enabled the theoretical minimum energy 

requirements for glass melting to be determined, which is known to consist of three main 

components (Kröger, 1953; Beerkens et al., 2004).  These are the enthalpy of the glass at a high 

temperature, the enthalpy of the exhaust (batch) gases and the heat of reaction required to  

drive the chemical reaction.  Typical values for these three components are depicted in Table 

7-2, the values of which are based on using only raw materials.  There is an energy and carbon 

saving resulting from using cullet (recycled glass), because the heat of reaction is not required 

and no batch gases are produced.  The theoretical energy requirement for a batch consisting of 

100% cullet is therefore 0.6-1.2GJ/t less than that for wholly raw materials (Table 7-2). 

 

 
Figure 7-1 – Cross-fired regenerative furnace (Office of Industrial Technologies, 2002) 

 

    Source 
Hartley 

(2004) 

Beerkens et al. 

(2004) 

European 

Commission 

(2001b, p.73) 

Temperature of glass (°C) 1300 1400 1500 

 Theoretical SEC (GJ/t) 

1. Enthalpy of glass  1.58 1.75 1.89 

2. Heat of reaction 0.56 0.52 0.49 

3. Enthalpy of batch gases 0.61 0.10 0.30 

Total 2.75 2.37 2.68 

Table 7-2 – Theoretical energy requirements for glass melting (0% cullet) 

 



 

- 160 - 

In practice the specific energy consumption of glass furnaces depends on a number of factors, 

including: 

 

• Furnace type – end-fired furnaces are more efficient than cross-fired ones; container 

furnaces have a higher thermal efficiency than flat ones; typical SECs for container and 

flat furnaces are 5.4GJ/t and 7.2GJ/t respectively (Hartley, 2007a); 

• Furnace size – an economy of scale is associated with larger furnaces mainly due to the 

3/2 power relationship between contained volume and surface area; 

• Specific pull rate - Beerkens et al. (2004) have shown that above specific pull rates of 

approximately 3t/m2d there are only very small gains in energy efficiency.  With a 50% 

cullet fraction, based on an international survey of 131 furnaces, the optimum SEC 

corresponding to this specific pull rate was found to be around 4GJ/t; 

• Furnace age – Trier (1987) suggests that the energy consumption of regenerative 

furnaces may increase by 1.5 to 4% per year, as well as a seasonal variation; 

• Electric boost – creates convection currents which stir the molten glass and can be used 

to increase furnace capacity, but is inefficient in thermodynamic terms as well as 

economically expensive;  

• Oxygen firing – reduces direct pollution and direct energy consumption, but proves to 

be no more efficient in primary energy terms (Ross & Tincher, 2004, p.15); 

• Combustion conditions – non-stoichiometric fuel to air ratios can result in incomplete 

combustion, meaning less energy is released by the reaction; 

• Residence time – along with the required production rate this determines the furnace 

volume, which largely dictates energy requirements (Beerkens, 2004); 

• Moisture content – water in the batch adds to the energy requirements of the furnace, 

as it has to be evaporated before melting can occur; 

• Cullet fraction – melting cullet does not require reaction energy nor does it produce 

batch gases (see above).  At constant load, a cullet increase of 10% reduces energy 

consumption by approximately 2% (Beerkens et al., 2004).  

• Pack or yield ratio of the product – the lower this ratio the less of the glass from the 

furnace ends up in the product and thus the more energy is wasted.  A typical yield 

ratio for the UK industry is about 85% (AEA Technology, 2004, p.18). 

 

As well as the factors listed above there are several others that the furnace operator has to 

adjust in order to maintain the integrity of the product and the effective operation of the 

furnace.  Furnaces are required to operate within a range of pull rates due to fluctuations in 

demand for glass.  Higher pull rates than the design condition can theoretically be achieved 

with a greater heat input, but with a compromise of sub-optimal efficiency.  The practical 

consequence is a limit of economically reasonable operation beyond which the marginal 

increase in quality glass yield for an additional energy input is negligible.  There is a tripartite 

compromise between the production efficiency (in terms of the pull rate), environmental 

sustainability (in terms of energy efficiency) and glass quality (Conradt, 2007).    
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Glass manufacture is also largely governed by kinetics, of which heat transfer is only the first 

process, so residence times must facilitate the complete dissolution of the batch materials, as 

well as the refining and homogenizing of the melt (Martlew, 2002, Anon, 2007).  A compromise 

is inevitably reached between the high temperatures required for these processes and the lower 

temperatures at which the glass can be worked once it has passed through the refiner and 

forehearth (Figure 7-1).  This temperature difference often results in a large heat loss, 

particularly in flat glass furnaces, which have longer refining ends because of the higher quality 

requirement (Hartley, 2007c).  In addition, a temperature difference is required for heat transfer 

to occur and heat is lost through walls and openings.  These mechanisms all require extra 

energy, which leaves the system in the flue gases and as structural heat losses (Beerkens 2004).   

 

Hence there is a significant difference between the theoretical minimum energy requirements 

and those achieved in practice.  Typical SECs for glass furnaces are around double the 

theoretical minimum, with a large variation across the industry (Ercole, 2004, The Carbon Trust, 

2005a, cf. Table 7-2).  The sector’s CCA target for 2010 in primary energy terms is 12.6GJ per 

tonne of packed ware (DEFRA, 2001a).  Assuming the fuel split quoted above and the 

conversion factor of 0.38 for primary energy from electricity (ibid.), this corresponds to around 

10.5GJ/t in final energy terms.  Even if this is multiplied by 0.75 to consider just the furnace, the 

figure of 7.9GJ/t is still much higher than the SECs quoted above for the reasons discussed.  The 

desire to quantify these losses in thermodynamic terms, and to understand the economic 

potential to reduce them, is the motivation behind this study.  Hence attention is now drawn to 

applications of relevant methodologies in the literature.  

 

7.2 Contextual background 

7.2.1 Thermodynamic analysis of glass furnaces 

Several analytical attempts have been made to understand the relationships between various 

furnace operational parameters and energy consumption (e.g. Kröger, 1953; Cooper, 1980; 

Conradt, 2000b).  These have involved constructing heat or power balances across the furnace in 

order to develop theoretical governing equations that can be tested with empirical data.  

Conradt (2000b, 2000a) has done this by reference to three crucial temperature levels within the 

furnace: the adiabatic temperature of combustion, and the exit temperatures of the melt and the 

exhaust gases.  He yields a relationship between the pull rate and overall energy demand, and 

shows that there is an optimal pull rate in terms of energy efficiency for a given furnace.  At 

lower pull rates than this the wall losses from the furnace dominate, and at higher ones 

efficiency is lower because the heat transfer between the combustion space and the glass bath is 

limited.  

 

Significant resources have been devoted to benchmarking furnaces.  Glass furnaces cannot 

directly be compared from a thermodynamic perspective because of differences in the key 

operating parameters.  Adjustments therefore need to be made for, inter alia, the cullet fraction 

and the age of the furnace (Beerkens et al., 2004).  In the USA several extensive benchmarking 
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studies have been carried out in recent years, including a detailed industry profile (Office of 

Industrial Technologies, 2002), and a comprehensive techno-economic assessment of the current 

state of the art within the field (Gas Technology Institute, 2006).  The Carbon Trust (2005a) has 

recently taken the lead in the UK, with a detailed survey of the container glass sector, covering 

29 of the sector’s 31 operational furnaces in 2003.  It concluded that the container glass industry 

has halved its SEC over the last twenty years, as well as reducing container weight significantly, 

which together have reduced the energy consumption per product by around 60-70%.  A 

relationship between the furnace pull rate based on this survey was developed, whereby the 

total furnace energy demand is linearly proportional to the pull rate, plus a constant known as 

the furnace holding heat (see section 7.3.3.1).   

 

Sardeshpande et al. (2007) developed a parametric model of an end-fired regenerative furnace 

(with a reference pull rate of 100t/d), validated against actual furnace data from the Indian 

industry.  Energy and mass conservation equations were applied across control volumes within 

the furnace, namely the combustion space, the molten glass bath, and both sides of the 

regenerator.  Heat losses have been estimated based on empirical coefficients and relations, as 

appropriate, from various sources.  A user-friendly Graphical User Interface (GUI) has been 

created to facilitate model configuration and data entry.  The model demonstrates that, in 

accordance with operational furnaces, the largest heat losses are in the flues gases (23% of the 

heat input) and through the walls and openings (15%).  It is proposed that the model be used 

for estimating the energy performance of a given furnace at the design stage, thereby 

optimising the design for energy efficiency and  applied to existing plant in order to identify 

opportunities for energy saving. 

 

Most if not all of these benchmarking studies highlight the importance of reliable and accurate 

data, and how the availability of such data ultimately determines the degree of success of the 

study.  In particular, proprietary reasons often inhibit the disclosure of commercially sensitive 

information to third parties, which is especially the case in the UK, where a small number of 

firms dominate the industry.  These studies also show that there is no absolute consensus on the 

relationship between the pull rate and the overall energy consumption of furnaces.  Whilst it 

appears to be linear in some cases (The Carbon Trust, 2005a), in others this is not to clear, which 

has led to much debate in the past on the dependency of these variables (Anon, 2007).      

 

7.2.2 Exergy analysis of glass furnaces 

The application of exergy analysis to glass furnaces seems to be somewhat esoteric.  Wall’s 

(1992) comprehensive – albeit now somewhat dated – bibliography of exergy analysis cites only 

two studies specific to the glass sector.  Additional literature searches have revealed only one 

other pertinent study (Kozlov et al., 1985).  A summary of the findings from the relevant 

literature is presented in Table 7-3. 

 

De Lucia et al. (1990) presented an exergy balance of a small end-fired glass furnace producing 

high-quality, artisanal glass.  They investigated the effects on this exergy balance of varying the 
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levels of oxygen enrichment in the furnace in the region of 20-30%.  The combustion process 

was found to account for approximately 25% of the total exergy destruction in the furnace, and 

was also rather insensitive to the level of oxygen enrichment employed.  The overall conclusion 

is that oxygen enrichment (or so called oxy-firing) can be used to increase the overall exergetic 

efficiency of the furnace.  Heat transfer to the glass batch is proportional to the level of oxygen 

enrichment, because this increases the adiabatic flame temperature.  In addition, the exergy loss 

to the stack decreases with oxygen enrichment because of the lower mass flow rates through the 

system (less air, if any, is required for combustion).   

 

Source Furnace type Pull rate 

(t/d) 

Melting 

area (m2) 

Fuel Energy 

Efficiency 

Exergy 

Efficiency 

De Lucia et 

al. (1990)1 

End-fired 

regenerative 
3.5 - 

Natural gas 
- 10.5 

Sun and Xie 

(1991) 

End-fired 

regenerative 
290 22 

Heavy fuel 

oil 
35.6 21.5 

Kozlov et 

al. (1985) 

Regenerative2 
120 148 

Furnace oil 
19.0 16.2 

Table 7-3 – Exergy studies of glass furnaces  

(123.5% oxygen enrichment, producing high quality glass; 2furnace type not reported) 

 

Similarly, Sun and Xie’s (1991) study concludes that the majority of the exergy is lost through 

irreversible processes – especially combustion.  They suggest that the reduction of these internal 

irreversible processes is the key to energy conservation.  Whereas external losses such as 

leakage and heat dissipation that can be ameliorated through corrective measures, the true 

thermodynamic losses are more difficult to address – especially because they are due to the 

destruction of chemical exergy.  The large combustion exergy destruction can be reduced by 

increasing the adiabatic combustion temperature, reducing excess air, preheating (fuel and 

combustion air), and using pressurised burners.   The energy balance suggests a large energy 

loss to the atmosphere up the flue, but the exergy analysis suggests that this energy is of a 

relatively low quality.   

 

Kozlov et al. (1985) analysed two industrial glass furnaces, one producing containers of “semi-

white glass” at a rate of 120t/d and running on furnace oil, with a melting area of 148m2 

excluding the conditioning end (Table 7-3).  The precise furnace configuration in this case is not 

clear, but is ostensibly an end-fired or cross-fired regenerative furnace.  The results highlight 

large differences between the energy and exergy contents of the determined losses, in particular 

the exhaust stream and the losses through the furnace lining.  The largest exergy destruction, as 

for the other two studies mentioned above, results from the combustion process itself (which 

accounts for around 21% of the total exergy input).  Other significant losses occur due to the 

heat exchange process itself and through the furnace walls, whereby the latter is much larger in 

energy than in exergy terms (i.e. 15% and 7% of the total input respectively).  The authors also 

conclude that the use of energy balances alone can lead to serious errors when attempting to 

reduce the specific fuel consumption of glass furnaces (ibid.). 
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There only seem to have been a few applications of exergy analysis to glass furnaces in past, one 

of which was to a very small furnace producing very high quality gas (De Lucia & Manfrida, 

1990).  This is not representative of the sector in the UK.  The other two studies in Table 7-3 do 

provide some general insights, but are also based on furnaces which are non-typical of UK plant 

and are now somewhat dated.  The present study is therefore aimed at providing an analysis 

based on typical UK plant and to consider developments in the industry since previous studies.  

This study is also intended to present a useful tool for calculating emissions and benchmarking 

furnaces in the context of the EU ETS. 

   

7.3 Furnace model and data sources 

7.3.1 Introduction  

A simplified thermodynamic model of a cross-fired regenerative container furnace has been set 

up, which is normalised to the production of one tonne of glass.  A necessary simplification for 

the case of the present study was to consider a two-dimensional slice through the furnace, as 

shown in Figure 7-2.  The implication of this is that the third dimension is still included in the 

analysis but the temperature profile in this direction is assumed to be constant.  It was not 

feasible to develop a three dimensional model which also considers the temperature profile and 

heat/mass transfer along the length of the furnace, because of the inherent complexities 

associated in modelling such phenomena (Sardeshpande et al., 2007).  Whilst this is clearly a 

significant simplification, it is a necessary one to make this analysis feasible according to the 

scope in section 1.4.  It should thereby be possible to gain an approximate insight into the 

energy and exergy demands without the large resource requirements associated with 

sophisticated computational modelling.  The temperatures employed are therefore indicative of 

averaged values across certain regions rather than precise measurements.   

 

7.3.2 Model specification and assumptions 

Based on this cross-section through the furnace (Figure 7-2), the model has been developed as 

depicted in Figure 7-3.  This schematic shows the control volumes across which principles of 

mass and energy conservation are applied, namely the combustion space, the glass bath, the 

two regenerators, the exhaust to stack, and the stack itself.  One important difference between 

this model and the cross-section through the furnace is that there is a large ingress of air below 

the regenerators (at point five).  This is accounted for in the model based on the change in mass 

flow rates between points five and six.  In addition, the model considers the operation of the 

furnace in the steady state, such that the periodical reversal of the flow control valve is 

neglected.  In this way the regenerators are treated as simple heat exchangers in which the hot 

exhaust side gases transfer heat directly to the cold pre-combustion air.  The system boundary is 

taken to be sufficiently close to the furnace superstructure such that the ambient temperature 

outside the boundary is 25°C, and the glass is assumed to cross the boundary in the molten 

state, at or very near its temperature in the furnace itself.  This overlooks the thermodynamic 

and mass flows occurring as the glass is cooled and formed outside the furnace, but has been 
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necessary in order to keep the scope of analysis feasible and has been successfully employed 

elsewhere (Sardeshpande et al., 2007).     

 

Temperatures, pressures and mass flow rates are known (or have been estimated) at the salient 

points shown in Figure 7-3 and are detailed in Table 7-4.  These temperatures have been 

empirically obtained and are documented in a patent for NOx reduction in a flat glass furnace 

(Quirk et al., 1994).  For the sake of the present analysis there is little difference between the 

temperature distribution around the two-dimensional slice through a float furnace and a 

container furnace – the main differences between the two are the longer residence times 

required and the open working end in the flat glass furnace.  Hence this model could equally 

apply or be applied to a container or flat glass furnace.  The pressure around the system is 

assumed to be atmospheric pressure, except at the base of the stack where natural convection 

creates a negative pressure of about 7.5kPa relative to the atmosphere (Hartley, 2007c).  Apart 

from this, the pressure within the furnace is maintained slightly positive in order to prevent (or 

reduce) air ingress.  This pressure difference is very small though, at around 10Pa, so is 

considered negligible in the present case.   

 

Position Description 
Temperature 

(°C) 

Pressure 

(kPa) 

Approximate 

velocity (m/s) 

0 Ambient environmental state 25 101.3 ~ 0.0 

1 Preheated air before combustion 1250 101.3 2.4 

2 Combustion products 1650 101.3 2.0 

3 Molten glass (at flux line) 1400 101.3 0.0 

4 Exhaust gases above regenerator 1350 101.3 3.8 

5 Exhaust gases below regenerator 650 101.3 17.2 

6 Exhaust gases at base of stack 550 93.8 15.2 

Table 7-4 – Environmental conditions at salient points within the furnace (reference case) 

 

7.3.3 Model structure and procedure 

The model consists of one main Excel spreadsheet, which has separate tabs for each of the main 

modules.  The relevant temperature and pressure data have already been described above.  The 

other key input variables are the furnace operating parameters, through which the specific 

furnace configuration is specified.  These include the pull rate and cullet fraction being 

employed for a given setup – 300t/d and 0.5 respectively in the reference case, which is 

representative of the UK sector (Hartley, 2007c) – as well as the moisture content of the batch 

(4% by mass), and the degree of batch preheating (none in the reference case).  Based on these 

inputs, the SEC and batch composition for this configuration is calculated in the relevant 

modules.  The remainder of this section describes the operation of the individual modules in 

detail.  
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Figure 7-2 – Cross-section through a cross-fired regenerative furnace  

Source: Adapted from Quirk et al. (1994) 

 

 

 
Figure 7-3 – Schematic of furnace model showing salient points and flows 
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7.3.3.1 SEC module 

There is certainly a strong dependency between the SEC and the pull rate, but it is not clear 

whether this takes a linear, logarithmic, power law or other form.  The Carbon Trust (2005a) 

found that a linear relationship provided a good fit to the 29 furnaces surveyed in 2003, and as 

these container furnaces were solely within the UK industry, this relation has also been 

employed here along with some modfications.  The SEC also exhibits a weak dependence on 

other parameters such as the cullet fraction, the moisture content, and the degree of batch 

preheat (i.e. the temperature of the batch), because of the energy penalties associated with these 

variables.  Hence in the present case the SEC function takes the form 

 

F
SEC=( +k)(1-0.2c)+B-P

L
 7-1 

 

where F and L are the furnace holding heat and load, respectively, and k is an empirical 

constant.  In addition, c is the cullet fraction, B is the batch moisture correction, and P is the 

batch preheat correction.  The empirical constants F and k are taken from the Carbon Trust’s 

(2005a, p.6) survey of the container glass industry, with values of 352.8GJ/d and 4.4GJ/t 

respectively.  Hence the cullet fraction effects a linear reduction in the SEC, based on the 

assumption that an additional 1% of cullet addition to the batch results in a reduction in the 

furnace SEC of 0.2% (Beerkens et al., 2004, p.49).  Additional batch moisture (i.e., over and 

above the 4% in the reference case) requires 3.6GJ/t of energy to raise it to an exit temperature of 

around 550°C (Hartley, 2004, p.3).  The batch preheat correction simply subtracts the enthalpy 

of the batch materials (over and above their enthalpy at ambient conditions) from the SEC 

function, because this heat is not required from the fuel. 

 

7.3.3.2 Batch module 

The batch composition is representative of a typical batch currently used to manufacture soda-

lime container glass in the UK (Noble, B., British Glass, pers. corr., July 2007).  The composition 

in the reference case is shown in Table 7-5, whereby the moisture content in these raw materials 

is assumed to be 4% by mass overall. 

 

The cullet fraction is one of the key variables in the model.  Based on this value, the other raw 

material inputs are adjusted in order to manufacture exactly one tonne of glass.  Cullet is 

assumed to have the same composition as the finished glass, and also has a moisture content in 

the reference case of 4%.  As well as the energy requirement, the cullet content also affects the 

total batch weight, because the decarbonisation reactions only occur with primary raw 

materials.  In other words, with the batch composition according to Table 7-5 and no cullet, 1.2t 

of raw material is required to produce 1t of glass; but 1t of cullet produces 1t of glass41.  The 

variation in batch mass with cullet fraction has been taken to be linear.   

                                                           
41 Strictly speaking, cullet contains slight impurities such as organic matter, but the assumption is that the vast majority 
of these will be removed prior to entering the furnace.  Even if this is not the case, the proportion by mass of impurities 
in the cullet can reasonably be assumed to be much less than 20% (i.e. the additional mass required if no cullet is used).  
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Raw 

material 

Sand Soda 

Ash 

Limestone Saltcake Nepheline 

Syenite 

Calumite TOTAL (t) 

Batch % 0.60 0.19 0.14 0.01 0.02 0.04 1.00 
        

Formula SiO2 Na2CO3 CaCO3 Na2SO4 - -  

SiO2 0.3329  0.0002  0.0082 0.0079 0.3492 

Al2O3 0.0059    0.0035 0.0028 0.0122 

CaO 0.0001  0.0480  0.0002 0.0087 0.0570 

MgO 0.0002  0.0001   0.0019 0.0022 

K2O 0.0042    0.0013 0.0001 0.0056 

Na2O 0.0005 0.0680  0.0016 0.0011 0.0001 0.0713 

Fe2O3 0.0008     0.0001 0.0008 

Other      0.0004 0.0004 

CO2  0.0483 0.0378    0.0862 

SO2    0.0016  0.0003 0.0020 

H2O 0.0189      0.0189 

TOTAL (t) 0.3636 0.1164 0.0861 0.0036 0.0145 0.0218 0.6061 

Table 7-5 – Batch composition by mass in the reference case (t)42 

 

Name Formula Mass (t) Fraction, % 

Silicon Dioxide 

(Silica) 
SiO2 0.349 69.78 

Sodium Oxide Na2O 0.071 14.25 

Potassium Oxide K2O 0.005 1.11 

Calcium Oxide CaO 0.057 11.39 

Magnesium Oxide MgO 0.002 0.43 

Aluminium Oxide Al2O3 0.012 2.44 

Iron (iii) Oxide Fe2O3 0.000 0.16 

Sulphur Trioxide SO3 0.001 0.32 

Other - 0.000 0.07 

 TOTAL 0.500 100.00 

Table 7-6 – Basic glass and cullet composition (inconsistencies due to rounding) 

 

7.3.3.3 Geometry module 

The majority of the geometric data has been taken from Trier & Lowenstein (1987), whereby the 

exact furnace geometry is determined based on the input parameters for the specific case – in 

particular the type of furnace.  The type of furnace being modelled (container or flat glass) 

dictates the specific pull rate, which is defined as the mass of glass produced per square metre 

of melting area per day (t/m2d).  The current state of the art for specific pull rates in container 

and flat furnaces is for 2.6t/m2d and 2.0t/m2d respectively (Scully, P., Eurofusion, personal 

communication, September 2007, cf. Trier & Loewenstein, 1987).  For container furnaces electric 

boosting and oxy-firing can increase this value to around 3.5t/m2d, but these practices are not 

                                                           
42 Four significant figures are shown in this table because of the trace amounts of some of the compounds, which could 
not be quantified at lower levels of precision.  This is not representative of the overall precision of this study.     
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typically employed in float furnaces because the quality requirements on the glass are much 

higher, and the pull rate therefore tends to be constrained by this.  The melting area is therefore 

determined based on the furnace load and specific pull rate possible by this kind of furnace.  

The length to width ratio for container and flat glass furnaces is selected as two and three 

respectively, whilst the number of pairs of firing ports is four or six respectively.  From these 

parameters, and modelling the furnace itself as a cuboidal space with an arch (melter crown, cf. 

Figure 7-1) radius equal to the melter width, it is possible to calculate the necessary geometry in 

order to estimate structural losses (Table 7-7).  The regenerator geometry is estimated in a 

similar manner.   

 

Width (m) 7.6 Average wall thickness (m) 0.5 

Length (m) 15.2 Regenerator width (m) 1.5 

Height to base of arch (m) 2.7 Regenerator length (m) 15.2 

Height to arch top (m) 2.9 Regenerator height (m) 4.4 

Depth of glass (m) 1.2 Regenerator wall thickness (m) 0.3 

No. of pairs of firing ports 4 Checker packing ratio 0.5 

Port diameter (m) 0.8 Doghouse exposed area (m2) 0.5 

Table 7-7 – Furnace geometry (reference case) 

 

Structural heat losses are estimated as follows.  Conductive losses are calculated with Fourier’s 

law in one dimension,  

 

dQ dt
=-λA

dt dx
 7-2 

 

where dQ/dt is the rate of heat flow through the wall, λ is the thermal conductivity, t is the 

temperature and x is the perpendicular distance through the wall (Eastop & McConkey, 1993, 

ch. 16).  The thermal conductivity of the refractory materials is based on published empirical 

rates of heat transfer through well-insulated refractory walls, as shown in Table 7-8.   

 

Radiant losses are estimated from the Stefan-Boltzmann law for a non-black body,  

 

4dE
=εσT

dt
 7-3 

 

where E is the energy emitted, ε is the emissivity of the body, and σ is the Stefan-Boltzmann 

constant, with a value of 5.67 x 10-8 W/m2K4 (ibid.)  All external furnace surfaces were assumed 

to be grey bodies with surface emissivities of 0.8, except the feeder, where the value taken was 

1.0 because this is open to the surroundings (Gray & Müller, 1974).    

 

Convection losses from the cold side of the superstructure are estimated through the empirical 

relationship used by Sardeshpande (2007, p.9): 
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( )
5

4
c,wall conv

dQ
=A ×S × ΔT

dt
 7-4 

 

where Ac,wall is the area of the surface, Sconv is an empirical constant that depends on the type and 

orientation of the surface, and ΔT is the temperature difference between the cold-side wall 

temperature and the ambient air (Table 7-8).  The ambient air velocity over the furnace is 

relatively small (Table 7-4) so that natural (buoyancy-driven) convection is assumed to be the 

dominant mechanism.  Forced convection is therefore neglected.          

 

Structural 

element 

Heat 

transfer 

coefficient, 

U (W/m2K) 

ΔT across 

wall (K) 

Wall 

thickness 

(m) 

Thermal 

conductivity, 

λ (W/mK) 

Sconv 

(W/m2K5/4) 

Bottom of 

tank 

1.0 1250 0.5 0.52 1.29 

Walls of tank 

– glass 

2.3 1250 0.4 0.93 1.99 

Walls of tank 

– combustion 

2.1 1380 0.4 0.83 1.99 

Crown 1.7 1380 0.6 1.04 2.49 

Regenerators 2.3 1250 0.4 0.93 1.99 

Source Trier and 

Loewenstein 

(1987) 

Estimated 

from Quirk 

(1994) 

Trier and 

Loewenstein 

(1987) 

Calculated 

from Equation 

7-2 

Sardeshpande 

(2007) 

Table 7-8 – Heat transfer and convective coefficients used for the furnace structure 

 

7.3.3.4 Thermodynamic module 

The thermodynamic module carries out the heat and mass balance across the control volumes 

and generates the relevant outputs.  The SEC delivered from the SEC module determines the 

amount of fuel (natural gas and/or electricity) required to produce one tonne of glass.  Natural 

gas is assumed to wholly consist of methane, which although not the case at extraction is almost 

entirely the case upon delivery (BERR, 2007, p.208).  The net calorific value of methane 

employed is 50.0GJ/t on a mass basis (BSI, 2007).   

 

The enthalpy of batch, fuel and ambient air is then calculated using their specific heats.  For 

standard substances in the environment, specific heats have been determined from published 

thermodynamic tables (Rogers & Mayhew, 2000); for the constituents of the batch, the 

relationships developed by Sharp and Ginther (1951, refined by Moore & Sharp, 1958) have 

been used at moderate temperatures, and those determined more recently by Richet et al. (1997) 

across the glass transition temperature and up to around 1400°C.  In the former case, for some 

of the minor constituents, together accounting for less than 0.1% of the total batch mass (i.e. 

“other” in Table 7-6), the empirical constants were assumed to be the same as for silicon 

dioxide, the main batch constituent by mass.   
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Exergy is calculated based on Equation A17 in Appendix A2.2.3, in which the first two terms 

together constitute the physical exergy components.  The summation term in this equation 

corresponds to the chemical exergy component, and the final two terms are (gravitational) 

potential and kinetic exergy, respectively.  The physical exergy can be calculated for common 

substances based on their enthalpy and entropy at various temperatures, the empirical data for 

which is tabulated (Rogers & Mayhew, 2000).  For the constituents of the glass batch, however, 

data concerning entropy variation with temperature is not widely available.  Hence the entropy 

of the raw materials (and cullet) is estimated based on a method proposed by Kotas (1985, 

pp.173-174), which assumes a linear temperature change up to the glass transition temperature 

and above it.  In this way, the entropy is inferred from the enthalpy change divided by the 

average temperature, as shown schematically in Figure 7-4.  At the glass transition temperature, 

Tg, the entropy change is equal to the enthalpy of reaction divided by the glass transition 

temperature.  Hence 

 

g t1 t t1 1 g 1

r
g t2 t1

g

g 2 t2 2 t2 g 2

T<T : S -S = 2(H -H ) (T +T )

HT=T : S -S = T

T>T : S -S = 2(H -H ) (T +T )

 7-5 

 

where the subscripts 1 and 2 denote the lower and upper temperatures of the glass during 

heating respectively.  Subscripts “t1” and “t2” refer to the entropy states of the glass in the glass 

and liquid phases respectively at the glass transition temperature Tg, which is assumed to be 

850K (Richet et al., 1997).   

 

 
Figure 7-4 – Schematic of T-s diagram for glass melting (after Kotas, 1985, p.173) 

 

The chemical exergies of the fuel and raw material have been calculated based on the 

environmental model of Szargut (1988, cited in Bejan et al., 1996), in which T0 = 298.15K and p0 = 

1 atm.  This reference temperature might seem rather high for the UK, where the winter design 

temperature is typically -1°C (Hammond, 2007a), but the system boundary is drawn close to the 

furnace as stated above and the ambient temperature is therefore around 25°C.  Finally, 
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variations in gravitational potential are neglected within the furnace.  The kinetic energy and 

exergy is estimated based on the required mass flow rates of fuel, air and raw materials, and of 

the resulting products, which includes a consideration of the large air ingress below the 

regenerators (Figure 7-3).   

 

7.3.3.5 Calculation of mass, energy and exergy flows 

Based on the above modules the model calculates the mass, energy and exergy flows into and 

out of the control volumes.  Firstly, the SEC is determined based on equation 7-1 for the current 

input parameters.  Based on this SEC, the correct mass of natural gas along with the 

stoichiometric ratio of oxygen (as contained in air at STP) is calculated, whilst taking into 

account the amount of electric boost being used.  The raw material inputs are simultaneously 

determined based on the cullet fraction and batch composition calculated in a separate sheet.  

The fuel is then assumed to completely and adiabatically combust, reaching an average 

localised temperature of 1650°C (Table 7-4), and transferring this heat to the molten glass at a 

lower temperature.  In this combustion process all of the chemical exergy is assumed to be 

converted into thermo-mechanical exergy.  Exergy efficiencies, losses and destruction are 

calculated according to Equations A16 to A21 in Appendix A2.2.3. 

 

In the melting process the batch gases liberated cross the system boundary of the glass bath and 

mix with the post-combustion gases.  The temperature at the top of the regenerators determines 

the amount of heat transfer to the glass bath from the post-combustion gases, whilst the total 

enthalpy of the molten glass and post-combustion gases must sum to the total enthalpy of the 

combusted fuel and the raw materials at STP.  That is, that fraction of the enthalpy contained in 

the hot gases that is not transferred to the glass bath remains in the exhaust gases and enters the 

regenerators.  This methodology of balancing the flows across each control volume is similarly 

applied to the other spaces shown in Table 7-4, in order to build up the balance for the whole 

furnace.  Total inputs and outputs are then compared by way of cross-checking the overall 

balance. 

 

7.4 Results and discussion 

7.4.1 Reference case 

The reference case for the furnace operates at a pull rate of 300t/d and with 50% cullet in the 

batch.  The batch moisture content is 4% and no batch preheating is employed.  The energy and 

exergy balances across the key control volumes and for the whole system are shown in Table 

7-9, in which positive and negative values represent flows into and out of the system 

respectively.  Some of this data is graphically represented in Figure 7-5, which shows Sankey 

and Grassmann diagrams for the reference case.  They depict the energy (enthalpy) and exergy 

respectively, of the flow streams through the furnace.   
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 Energy (MJ) Exergy (MJ) 

Furnace   

Fuel 5107 5180 

Batch materials 252 584 

Preheated air 2710 1259 

Glass -2393 -1237 

Combustion/heat transfer destruction 0 -2800 

Structural loss -1018 -637 

Exhaust -4658 -2349 

Furnace efficiency 0.30 0.18 

Regenerator   

Hot gases 4658 2349 

Recovered (preheating) 2710 1259 

Structural loss -169 -138 

Exhaust -1779 -952 

Regenerator efficiency 0.58 0.54 

Exhaust   

Inlet gases 1779 952 

Structural loss -306 -11 

Exhaust -1473 -941 

Overall balance   

Total in 5359 5763 

Glass out  -2393 -1237 

Recovered (preheat) 2710 1259 

Total set free 8069 7023 

All losses -1492 -3586 

Exhaust -1473 -941 

Overall efficiency 0.45 0.22 

Table 7-9 – Energy and exergy balances for one tonne of glass (reference case) 

 

Overall, the whole furnace including regenerators has energy and exergy efficiencies of 45% 

and 22% respectively, which compares well with other studies.  To avoid double-counting, 

these efficiencies do not include the energy or exergy content of the batch and exhaust gases 

liberated during the decarbonisation and combustion processes respectively, as this is 

accounted for in the heat recovered by the regenerators.  The main reason for the large 

difference in these efficiencies is the large exergy destruction which occurs when the fuel is 

combusted and the chemical exergy is converted into thermo-mechanical exergy.  These 

combustion and heat transfer processes are thermodynamically irreversible and together 

represent around 54% of the total exergy input.  This fraction is in agreement with de Lucia 

(1990) and Kozlov (1985), who both found it to be in the region of 50%.  These exergy 

destructions are necessary in order for the energy in the fuel to be made available as heat.  The 

scope for improvements to the combustion process is limited by the theoretical minimum 

exergy destruction required for such a combustion process.  In most cases the majority of the 

exergy destruction associated with combustion and heat transfer is unavoidable (Bejan et al., 

1996, p.160).  Although the detailed mechanisms involved in combustion are not well 
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understood, the majority of the exergy destruction is thought to be due to internal heat 

conduction, so future research should be focussed in this area (Hammond, 2007a, Som & Datta, 

2008).   

 

Apart from the large difference in efficiencies due to combustion, there are also variations 

between the energy and exergy content of most other flows within the system.  The main exergy 

losses, aside from the combustion process, are structural in nature.  High temperature energy is 

inevitably lost through the walls of, and openings in, the superstructure.  In exergy terms these 

losses account for around 14% of the total input to the system, yet in energetic terms they 

amount to double this figure, 28%.  Although the losses are significant in both respects, the 

quality – and usefulness – of this leaked energy is lower than suggested by the energy analysis 

alone.  The greatest proportion of the structural losses occurs through the walls of the furnace 

and regenerators, and through the crown, as shown in Table 7-10. 

 

The second main energy and exergy loss is the exhaust from the system.  The exhaust stream 

accounts for 27% of the energy and 16% of the exergy input to the system.  These gases are at 

temperatures in excess of 500°C and therefore represent a more concentrated exergy stream 

than the structural ones, which occur throughout the superstructure.   The gases have a velocity 

of around 15m/s in the stack itself (Table 7-4).  Their energy content is thus around 1.5GJ per 

tonne of glass produced, which in the reference case amounts to 450GJ per day.  The cost of 

wasting this heat, assuming £5/GJ for natural gas (BERR, 2008i) and perfect stoichiometric 

combustion and heat transfer, is therefore in the region of £2250 per day or £800,000 per annum.  

The nature of the assumptions makes this is a conservative estimate. 

 

  
Figure 7-5 – Sankey (l) and Grassmann (r) diagrams of the reference case in MJ (300t/d, 50% cullet) 
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  Conductive Radiative Convective TOTAL 

 Energy  Exergy Energy Exergy Energy Exergy  Energy Exergy 

Bottom of tank 43.2 42.4 36.4 10.8 17.9 5.3 97.5 58.5 

Walls of tank 45.7 44.9 17.3 5.1 13.1 3.9 76.0 53.8 

Walls 

combustion  
61.4 60.4 77.3 34.9 41.5 18.8 180.2 114.0 

Crown  83.5 82.3 124.9 56.3 84.0 37.9 292.4 176.5 

Regenerators 168.8 137.9 49.8 10.0 42.0 8.4 260.7 156.3 

Doghouse leaks  96.4 81.5  96.4 81.5 

Leakage - holes  89.3 75.5  89.3 75.5 

Leakage - surface 30.5 30.1 37.8 17.1 25.4 11.5 93.8 58.6 

TOTAL 433.1 397.9 529.2 291.1 224.0 85.7 1186.4 774.7 

Table 7-10 – Structural energy and exergy losses from the furnace, excluding exhaust duct (MJ/t) 

 

7.4.2 Parametric modelling and comparisons with other studies  

The input parameters for the reference case have been varied in order to test the sensitivity of 

the model and to investigate the ways in which changes in these variables can improve the 

overall efficiencies.  This also enables a fair comparison with the results of other studies, which 

analyse furnaces operating under different regimes.  

 

Exergy related parameters tend to be sensitive to changes in the dead state, because the concept 

of exergy is itself based on the potential with reference to this state (Appendix A2.2.3 and 

section 3.2).  If the dead state temperature is varied from the 25°C specified in the baseline case, 

the exergy related parameters are affected but those relating to energy are not.  With a dead 

state temperature of 15°C, for example, the exergy efficiency increases by around 3%, but the 

energy efficiency stays the same.  This is as would be expected for such an analysis, and should 

be borne in mind when comparing different studies. 

 

The temperatures at all points around the system have been systematically varied above and 

below the baseline values in Table 7-4 by several hundred degrees.  This was in order to test the 

sensitivity of the model to these changes, to ensure that the responses are of the type expected 

(in magnitude and sign) and to investigate the ways in which the overall energy and exergy 

efficiencies might be increased.  In general the responses were as expected, for example 

increasing the temperature of the combustion products leads to higher efficiencies overall and 

also reduces the combustion-related exergy destruction.  An increase of 150°C results in firing 

efficiencies in energy and exergy terms of 50% and 32% respectively.  Similarly, reducing the 

temperature of the exhaust upon exiting the system tends to improve the overall efficiencies.   

 

The variation in the furnace CO2 (process and combustion) emissions and SEC with the cullet 

fraction is shown in Figure 7-6.  Both of these parameters are inversely proportional to the cullet 

fraction in the batch, because the decarbonisation reaction is not necessary when manufacturing 



 

- 176 - 

glass from cullet (i.e. recycling).  For this reason, the impact of the cullet fraction is strongest on 

the process-related emissions rather than those resulting from the combustion of the fossil fuel.  

Similarly, the SEC exhibits a weaker dependency on the cullet fraction because the majority of 

its value is accounted for by the enthalpy of the glass (cf. Table 7-2), which is independent of 

cullet content.   

 

Significant reductions in the SEC and CO2 emissions are possible if the cullet fraction is 

increased to a value approaching unity.  However, there are barriers in the UK to increasing the 

overall cullet fraction used in glass manufacture, which have limited the industry average in the 

past (further discussed in section 7.4.4).  In theory, if 100% cullet is used the energy and exergy 

efficiencies of the furnace become 50% and 24% respectively (compared to 45% and 22% in the 

reference case).  This corresponds to an SEC of 4.5GJ/t and CO2 emissions of 0.25tCO2/t glass.   
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Figure 7-6 – CO2 emissions and SEC variation with cullet fraction 

 

The variation of the SEC and CO2 emissions with the pull rate is shown in Figure 7-7.  Both 

parameters exhibit a similar, asymptotically reducing trend with increasing pull rates.  Hence 

furnace loads in excess of, say, 700t/d, do not economically yield further efficiency or emissions 

gains because of decreasing returns to scale and the physical limit on furnace size and specific 

pull rate.  The SEC curves with different cullet fractions are offset by a constant amount, so that 

optimising the efficiency of the furnace involves moving towards the origin of Figure 7-7. 

 

The efficiencies of the overall system and the furnace also exhibit a similar, but reversed, 

asymptotic relationship (Figure A8 in Appendix A3.2).  The energy and exergy efficiencies 

increase up to a pull rate of 700t/d, at which point these values are around 50% and 24% 

respectively.  However, the regenerator efficiencies decrease slightly at higher furnace loads, 

which is probably due to the fact that their rate of heat transfer is necessarily less at higher rates 

of throughput.  Much of the heat from the exhaust and batch gases is recovered in the 
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regenerators and transferred to the inlet air, which is preheated to 1250°C in the reference case.  

The regenerators operate optimally at lower pull rates because of the lower velocities of the 

gases at these regimes, which allow more time for heat transfer to, and from, the checkers in the 

regenerators. 

 

With an output of 120t/d of glass, and the same (i.e. 50%) cullet fraction as in the reference case, 

the current model has energy and exergy efficiencies of 32% and 16% respectively.  The exergy 

efficiency corresponds almost exactly with the study of Kozlov et al. (1985), although the energy 

efficiency is significantly higher.  The latter is because of the large difference in specific pull 

rates between the two studies.  The present study has a melting area of 46m2 under this regime, 

whereas Kozlov et al.’s (1985) furnace has one of 148m2 (i.e. specific pull rates of 2.6t/m2d and 

0.8t/m2d respectively).  The exergy efficiency of the model exhibits only a weak variation due to 

fluctuations in underlying parameters, because the large combustion-related exergy destruction 

is always incurred.   
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Figure 7-7 – SEC and CO2 emissions against pull rate 

 

The case is similar when comparing the present model to the analysis of Sun and Xie (1991).  

With a pull rate of 290t/d this model has overall energy and exergy efficiencies of 43% and 21% 

respectively.  The reason for the difference in the energy efficiency is again due to the difference 

in melting areas (i.e., specific pull rates).  Sun and Xie (1991) quote 22m2 as their melting area, 

which seems to be erroneous because it implies a specific pull rate of 13.2t/m2d when the 

current state of the art is a maximum of 3.6t/m2d with electric boost and/or oxy-firing (see 

section 7.3.3.3).   

 

A fair comparison with the work of de Lucia et al. (1990) is not feasible with the current model 

because of the very small furnace which they have studied, producing just 3.5 tonnes of glass 

per day.  When configured to produce 50t/d of glass this model has energy and exergy 

efficiencies of 22% and 11% respectively, which is again very close to that of 10.5% quoted in 
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Table 7-3.  However, because of the small furnace size and the oxygen-enrichment employed, 

care should be taken when comparing these figures.  

 

7.4.3 Investment appraisal of a waste heat recovery boiler 

The magnitude of the energy and exergy losses suggests that the areas where attention should 

be focussed are the combustion itself, and then the structural losses and those due to the high 

temperature exhaust gases.  Although the exergy destruction associated with combustion 

cannot be avoided, the efficiency of the heat transfer process itself could be improved and 

thereby reduce this destruction.  A precise quantification of the minimum theoretical exergy 

destruction in this particular combustion process is beyond the scope of this work, so the focus 

here is on qualitative methods to improve this.  More efficient heat transfer could be achieved 

with a more uniform flame distribution within the furnace, a higher temperature difference 

between then flame and batch and a higher preheat temperature for the pre-combustion air, all 

of which are possible with HiTAC technology (section 4.3.2.1).  However, such technology, as 

well as being limited by the high capital cost, is constrained because it can only be installed 

during furnace downtime, such as when the furnace is being rebuilt, every 10-15 years.  The 

same applies to the second significant area of interest, namely the structural energy and exergy 

losses from the furnace, as well as there being a structural limit to the thickness of the insulation 

that can be used (Hartley, 2007c).  However, this is not to disregard potential savings through 

improved furnace insulation; spray-on insulation has previously been successfully applied to a 

depth of 50mm, resulting in a reduction in the outer surface temperature of 40°C (Lax and 

Shaw, 1998).  Measures such as increased furnace insulation and control are proven methods of 

improving energy efficiency, which both result in payback periods of less than two years 

(Enviros March & Glass Technology Services, 2000).   

 

The savings through these measures are relatively small in comparison to longer term 

opportunities such as building furnaces to best practice guidelines and recovering some of the 

waste heat (ibid.).  Indeed, the exhaust gases at around 550°C represent a significant energetic, 

exergetic and economic loss in this energy system, amounting to a power of around 5.5MW in 

the reference case.  At present this medium temperature mixture of gases is exhausted into the 

environment at an estimated cost to the furnace operator of over £2000 per day.  According to 

the present analysis, the composition of these exhaust gases is mainly carbon dioxide, nitrogen 

and water, but this is based on the assumption of complete combustion.  In practice this is not 

the case as the exhaust gases also contain NOx and possibly smaller quantities of SOx.  In 

addition, there may be organic matter in the exhaust from the cullet and/or raw materials.  The 

consequence of this is that the unclean nature of these gases is likely to result in fouling and 

corrosion of any equipment which is used to recover their energy content, which is a major 

consideration in terms of evaluating the alternatives.   

  

Korobitsyn (2002) suggests that an air bottoming cycle (ABC) is a suitable means of recovering 

some of the waste heat from glass furnaces, resulting in payback periods of 3-4 years.  His 

analysis neglects to account for fouling of heat transfer surfaces though, so should probably be 
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treated with caution.  Enviros March & Glass Technology Services (2000) also highlight the 

successful application of steam and power generation from exhaust gases.  Rozendaal (2007) 

reports that the problem of fouling has been overcome in a flat glass plant in Holland, where a 

heat recovery boiler with an inline cleaning systems has been installed.  This system obviates 

the need to stop and manually clean the boiler, meaning that the integrity and therefore heat 

transfer coefficient of the heat transfer surfaces can be maintained.  Automatic pipe cleaners are 

moved into position and inserted into the boiler tubes at regular intervals, as determined by the 

detection system.  The recovered steam can be used for heating purposes, preheating feed 

streams and generating electrical power.  Indirect preheating in this manner is especially 

favourable compared to direct methods, because it does not involve dust emissions.  The case 

study plant where the system was installed had an exhaust gas temperature in the range 600-

650°C with a flow rate of 65,000Nm3/h, and the boiler has thermal and (potential) electrical 

capacities of 8.9MW and 2.1MWe respectively.  The potential for heat recovery is largely 

dictated by the degree to which the recovered heat can be used; without an application for this 

energy then recovering it is pointless. 

 

An investement appraisal has therefore been carried out of installing such a boiler on the 

furnace studied.  The typical capital cost of this heat recovery system is US$650,000, which 

depends on the specific application (ibid.).  At the time of writing the $/£ exchange rate is 1.57, 

but this figure is declining steadily after peaking at over 2.00 during the summer of 2008 

(HMRC, 2008).  This yields a capital cost for the heat recovery boiler in the region of £414,000.  

As Rozendaal (2007) is not explicit about whether this figure is the installed cost, an additional 

10% or £41,400 is assumed for installation, along with an annual maintenance cost 

corresponding to 2.5% of the total capital expenditure or £10,350.  The benefits of the project are 

in the cost savings associated with foregoing natural gas consumption.  The power of the 

exhaust gases is around 5.5MW and the cost of natural gas to large industrial users was 4.81£/GJ 

in 2007 according to BERR’s (2008i) Quarterly Energy Prices publication.   

 

It is also assumed that the heat generated steam in the boiler, which is either used for 

preheating raw materials or passed through a turbine to generate compressed air or electricity.  

In the case of using the steam directly, the benefit comes from the offset primary fuel (natural 

gas), but in the case of generating compressed air or electricity the benefit lies in the offset cost 

of electricity.  The price of electricity, at around three times the price of primary fuels, reflects 

the efficiency of generation, so that in primary energy terms the cost per unit of energy is 

approximately the same.   Hence this analysis assumes that the recovered heat offsets natural 

gas, because the cost benefits associated with electricity generation would be similar.  The 

estimated costs and benefits are shown in Table 7-11 based on a discount rate of 5% and 

assuming a ten year lifetime for the boiler.  The results show that the discounted payback 

period (DPP) is around 14 months, the net present value (NPV) is £2.7 million, and the internal 

rate of return (IRR) is 88%, which were all determined according to Equation A2 in Appendix 

A2.1.3.  The latter has been determined for completeness, but the problems with employing the 

IRR as discussed in Appendix A2.1.3 should be borne in mind. 
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These underlying assumptions were varied in order to test the sensitivity of the NPV and DPP 

to them.  If the discount rate is doubled to 10%, the DPP remains extends to around 16 months 

and the NPV reduces to £2.0million.  Similarly, increasing the capital and maintenance costs of 

the project result in a smaller NPV at the end of the ten years, but the annual maintenance cost 

must be increased by a factor of ten before the DPP exceeds three years.  Clearly the project is 

also heavily dependent upon the price of natural gas; increases in this price increase its 

economic feasibility whereas a fall in the price makes it less attractive.  With a gas price of 

6£/GJ, ceterus paribus, the DPP is reduced to one year; the price has to reduce to around 3£/GJ 

before the DPP becomes three years.  In addition, the pricing of the heat lost based on the 

natural gas price is not strictly correct, because in fact more gas would be required than the 

amount corresponding to the heat content of the exhaust, due to incomplete combustion 

resulting in not all the gas being converted to heat.  These two factors, along with the liberal 

estimates of the installation and maintenance costs, probably conspire to make the economic 

project criteria presented in Table 7-11 conservative ones.  The DDP would probably be shorter 

and the NPV larger if these factors were taken into account. 

 

COSTS  BENEFITS  

Item Amount Item Amount 

Capital cost of equipment (£) 414,000 Power of exhaust gases (MW) 5.52 

Installation cost (£) 41,400 Cost of natural gas (£/GJ)  4.81 

Maintenance cost (£/yr)  10,350 Cost of exhaust (£/yr) 838,000 

Lifetime of boiler (yrs) 10 Efficiency of heat recovery boiler 0.50 

  Estimated cost saving (£/yr) 419,000 

    

  NPV at 5% DR (£million) 2.7 

  DPP (yrs) 1.2 

  IRR (%) 88 

Table 7-11 – Investment appraisal of proposed heat recovery boiler, 5% discount rate and 10 year life 

 

7.4.4 Lifecycle/systemic potential 

One obvious method for improving the thermodynamic efficiencies of furnaces in general, and 

hence to reduce energy costs, is to increase the amount of cullet used in the batch.  This can be 

achieved through closed-loop recycling, whereby glass containers are collected and re-melted in 

the furnace.  This route has been shown to be environmentally favourable in comparison to 

either incineration or landfill (WRAP, 2006b).  Such an approach also reduces the amount of 

raw material used in production and provides valuable public and stakeholder involvement in 

the industry (British Glass, 2007).   

 

The benefits of open-loop recycling, in which the glass undergoes a change in properties or use 

before being reused, are less clear-cut.  Two examples are using glass to replace aggregates in 

roads and as filtration media.  In some cases the energy required to collect and recycle the glass 

exceeds that required to manufacture the raw materials which they replace (Enviros Consulting, 

2003).  In general, though, open-loop recycling is preferable “if both raw material extraction is 
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avoided and some kind of process improvement is achieved by using cullet, whereas landfilling 

is more favourable if the cullet only replaced the raw material” (WRAP, 2006b, p.111).    

 

The EU’s Packaging and Packaging Waste Directive (European Commission, 2005b) requires 

the UK to recycle 60% of all glass packaging by 2008, but the current closed-loop rate for the 

container industry is around 33%, and the open-loop rate is some 51% (Hartley, 2007c).  The 

closed-loop recycling rate for the flat glass industry is lower than for containers, due to the 

stricter quality requirements, and currently lies in the range 20-30% (WRAP, 2008b).  In order to 

reach the target, recycling infrastructure would need to expand by around 160,000 tonnes per 

year – equivalent to doubling annual household collections from around 27kg in 2003/2004 to 

50kg in 2008 (David Davis Associates, 2005).  The whole glass sector would need to recycle 

1.63Mt by 2008, of which the container glass sector could probably accept around 0.8Mt, with 

the remainder being used in other markets (op. cit.).   

 

The recycling rate has grown significantly in the past, but this trend has slowed recently, so 

there is now doubt that the above target will be met (British Glass, 2007).  The actual mass of 

cullet recycled through container furnaces dropped from around 750kt in 2006 to less than 700kt 

in 2008, hence DEFRA’s recent announcement that this target will be pushed back to 2010, when 

total recovered glass might need to reach 1.8Mt (WRAP, 2008b).  Furthermore, recent increases 

in the open-loop recycling rate have only resulted from moderate additions to re-melting in 

furnaces – much of the improvement has been due to growth in the aggregates market for cullet 

(ibid.).   

 

The three main barriers in the UK to increasing glass recycling rates are (British Glass, 2007): 

 

1. Supply – the UK is a net importer of glass packaging, mainly in the form of full wine 

bottles, whilst other European countries are mainly exporters;  

2. Demand – the UK produces mainly clear glass whereas other EU countries produce 

mainly green glass; 

3. Collection infrastructure – this is significantly different to other EU countries, relying 

heavily on kerbside collections.   

 

Many councils currently base their targets for glass recycling solely on tonnages without 

differentiating by colour, because it is less complex and more economical to do this.  In 

addition, the waste stream is often contaminated – for example with organic matter.  Container 

furnaces can accept a certain amount of this contamination but often there is too much present 

(Hartley, 2007c); there is a shortage of high quality, colour-separated cullet, which is crucial for 

flat glass production and favourable for containers.   

 

Improved collection infrastructure could certainly increase the amount of useful cullet available 

for recycling in the container sector.  For drastic improvements in the recycling rate, however, 

some international trade in cullet might be necessary, which would obviously have 

environmental implications associated with the transport.  Furthermore, there is very little 
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incentive, from an economical perspective, for the manufacturers themselves to invest in 

improving the recycling infrastructure whilst the raw materials for production remain relatively 

inexpensive.  Recent upward increases in the prices of raw materials and natural gas, however, 

along with a peak in the price of soda ash, have all conspired to make cullet a more 

economically attractive alternative and has put pressure manufacturers to address the 

bottlenecked supply chain (WRAP, 2008b).    

 

Given this mismatch between supply and demand in the glass recycling stream, a recent study 

(WRAP, 2006a) set out to investigate the potential for using coloured glass in the manufacture 

of clear containers.  The study approached this problem from opposite perspectives, by 

attempting to determine how clear a glass can be made through the use of decolourants, and 

how clear it actually needs to be for the customer.  The findings were encouraging: considerable 

quantities of amber cullet can be incorporated into the batch for flint glass to produce a 

satisfactory product through the addition of decolourising agents.  It seems that the constraints 

placed on colour integrity by the manufacturers are not reflected by customers, such that a 

certain degree of colour is acceptable, whilst still retaining the “perceived purity” so valued by 

manufacturers.  A failsafe method for quickly and effectively testing the degree of colour 

contamination of a cullet batch was also developed and applied, and a user-friendly Excel 

programme was developed in order to calculate the required amounts of decolourising agents.    

 

Whilst the present study has focussed solely on the furnace, the weight of a single container 

obviously has an indirect effect upon the energy consumption of the furnace.  By using less 

glass to manufacture the same component one can effect downstream, demand-side energy 

savings, because the energy requirement of an one functional unit is reduced.  Energy savings 

associated with this so-called lightweighting have been made in the glass industry since 1980, 

during which time the technology associated with it has continued to develop (The Carbon 

Trust, 2005a).  Over the period 1996 to 2002 the average weight of a glass container produced by 

the sector has reduced from 292g to 273g (op. cit.)  The recent Container Lite project 

demonstrated the scope for weight changes, and also found that consumers are less sensitive to 

weight changes than expected (WRAP, 2007c).  A case study carried out with the Co-op 

identified the potential to save 46kt of glass waste just by lightweighting the supermarket’s own 

brand whiskey bottles (WRAP, 2007b).  In addition, Grolsch reduced the unit weight of its 

300ml beer bottles by over 20%, resulting in glass savings of 4kt per year, demonstrating that 

lighter packaging can be cost-effective, practical and commercially appealing (WRAP, 2007a).   

 

7.4.5 Critique of methodology  

This section discusses the limitations of the methodology.  The main limitation of the 

methodology lies in the consideration of just two dimensions.  Whilst there is clearly not a 

uniform temperature profile along the third dimension, this assumption enabled an analysis to 

be carried out with only a fraction of the resources that are needed for a much more detailed 3D 

study.  The results obtained are still similar to those optained by more detailed studies in three 

dimensions (Sardeshpande et al., 2007).  The overall objective of this study was to gain an 
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insight into the energy and exergy flows within a typical furnace in the UK glass sector, and this 

has been satisfactorily met based on the applied methodology.  Other related limitations include 

the assumptions of steady state operation, which overlooked the time evolution of the glass and 

the changing flow around the furnace.  The assumption of perfect adiabatic heat transfer 

between the combustion products and the glass bath is not a true representation of reality, but 

is a reasonable simplification in the present case.  The same also applies to the assumption of 

complete combustion and stoichiometric fuel-to-air ratios in the furnace.  The investment 

appraisal is based on just one source for economic data relating to the waste-heat recovery 

boiler, but such data is notoriously difficult to obtain as mentioned throughout this thesis.  The 

investment appraisal is clearly sensitive to the input values employed, many of which were 

varied and discussed above.  The exchange rate is a crucial parameter in these calculations; the 

analysis should be repeated following significant fluctuations in the exchange rate (say above 

10%).  The results are only intended to be indicative, however, and should not be used as the 

basis for an investment.  A more detailed, site-specfic investment appraisal would be be 

recommended if this project is being considered.      

 

The usefulness of the exergy method could also be questioned in this case, because it leads to 

the same conclusions as the energy analysis.  However, the low exergy efficiency resulting from 

the large combustion-related exergy destruction is both advantageous and disadvantageous.  It 

shows where attention should and should not be focussed, but could also suggest a large scope 

for improvement which in reality is constrained by this exergy destruction.  The smaller but still 

significant exergy content of the exhaust stream led to a focus on this area over the structural 

losses because it represents a higher energy flux.  

 

Finally, this study has not considered heat recovery from the molten glass once it leaves the 

system.  Some unsuccessful attempts have been made to extract heat from the glass in the 

forehearths (Figure 7-1) using heat exchangers (Hartley, A., British Glass, pers. corr., March 

2009).  It would also be theoretically possible to extract some of the heat during container 

forming, but this is complicated by the high rate of heat extraction required to ensure structural 

integrity and the necessity for constant access to the machinery (ibid.).  This study has also 

overlooked the potential for technologies which are not yet commercial.  For example, Bauer et 

al. (2003) have analysed the potential for thermophotovoltaics to generate electricity by being 

installed in the furnace superstructure.  Although the author’s identify substantial potential, 

most of this involves substantial disruption to the existing process and therefore requires 

medium to long term R&D to become viable.  Such novel applications are therefore also 

considered to be beyond the present scope. 

 

7.5 Conclusions and recommendations 

A general model of an industrial glass furnace has been developed, which enables energy and 

exergy balances to be performed over a range of furnace loads, batch recipes, cullet contents 

and temperature regimes.  The model shows a good correspondence with published data and a 

sensitivity study has shown that its behaviour is within the expected theoretical limits.  Whilst 
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the energy analysis suggests a large energy loss in the waste gases, the exergy analysis indicates 

a large exergy destruction due to combustion but highlights the structural and exhaust losses as 

other significant areas where attention should be focussed.  The model can also be used to 

accurately predict the CO2 emissions from the furnace under different operating regimes and 

batch compositions, which could be especially valuable in the context of benchmarking furnaces 

for the EU ETS. 

  

Based on these results an investment appraisal has been performed to assess the economic 

feasibility of installing a waste heat recovery boiler, which would utilise some of the heat 

content in the exhaust to preheat the batch or fuels, or could generate electricity to meet 

ancillary needs on or off site.  The investment appraisal is predicated on the assumption that 

one of these uses for the recovered heat exists; it does not apply if this is not the case.  If one of 

these uses does exist, heat recovery is a highly attractive opportunity with a discounted 

payback period of fourteen months and a net present value of £2.7million (IRR of 88%).  These 

figures are somewhat sensitive to the underlying assumptions, such that higher or lower gas 

prices would make the project more or less attractive, respectively.  Nevertheless, the 

recommendation that follows from this analysis is that such a heat recovery boiler is a very 

suitable economic means through which to increase the energy efficiency of the sector.  The 

energy saving for this particular furnace running at 300t/d is 239GJ/d (i.e. 0.80GJ/t glass 

produced), which is based on a boiler efficiency of 50%.  If such heat recovery boilers were 

rolled out across the sector as a whole, and every furnace has a use for the recovered heat, then 

the total saving potential might be ten times this figure, based on the total operational capacity 

of the sector and a utilisation factor of 85% (Table 7-1 and footnote 40). 

  

In theory there is much scope for improving the systemic energy efficiency of the glass sector in 

the UK by increasing the recycling rate, but this is limited in practice by barriers such as the 

colour and quality mismatch between the domestic supply of and demand for cullet.  Whether 

these barriers can be overcome will depend on many factors, including the price of the raw 

materials (especially sand and soda ash) and fuels (mainly natural gas), as well as the 

development of the carbon price within the EU ETS and the changing market environment.  

Lightweighting of containers also stands to offer further energy efficiency improvements. 
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8 Process integration in a pulp and paper mill43 

This chapter presents a process integration study, involving pinch analysis and economic 

optimisation, of an integrated mechanical pulp and paper mill.  The chapter begins with an 

introduction to the sector and its activities and a short review of relevant literature.  An 

overview of the mill’s operations is then presented, followed by mass and energy balances of 

the energy systems.  The results of this section are then used to carry out the pinch analysis and 

economic optimisation.  The chapter closes with conclusions and recommendations. 

 

8.1 Introduction 

The pulp and paper sector produces various grades of paper, tissue and board products.  The 

sector’s production capacity is concentrated in a small number of companies and mills, which 

produce high volume, low value output.  A small number of manufacturers therefore account 

for most of the bulk grade44 production capacity and high quality products such as tissues are 

produced in relatively small quantities (Bateman, B., CPI, pers. corr., July 2007).  Energy costs 

are the third highest cost for the sector, accounting for approximately 8% of the turnover 

(European Commission, 2001d).  The sector used around 75PJ of energy in 2005 (DTI, 2007b) 

and the sector’s emissions allocation under the EU ETS was around 1MtCO2 during Phase II of 

the Scheme (DEFRA, 2007d).  Key statistics for the sector are presented in Table 8-1.   

 

Papermaking companies 49 

Paper and board mills* 68 

Papermaking employees (1000) 12.6 

Paper making turnover (£billion) 3.5 

Consumption of paper and board (Mt) 12.3 

Production of paper and board (Mt) 5.6 

Imports of paper and board (Mt) 7.8 

Exports of paper and board (Mt) 1.0 

Recovered paper usage (Mt) 4.2 

Table 8-1 – Key indicators for the pulp and paper sector in 2006  

Source: CPI (2007); *7 mills ceased operation during this year 

 

The pulp and paper sector is one of the only industries that actually generates energy as a by-

product – i.e. black liquor from chemical pulping is used as a fuel – and could therefore 

drastically reduce its SEC (De Beer et al., 1998) and even become a net exporter of energy in the 

long term (Gielen & Tam, 2006).  As is the case for most other industrial sectors, large 

improvements in overall energy intensity have been achieved through energy efficiency 

measures over the past few decades.  On average, the UK sector has reduced its primary SEC by 

                                                           
43 This chapter is based on the Masters Thesis “Process Integration at a Pulp and Paper Mill: A Case Study of 
Caledonian Paper Mill” carried out by Morten Styrg of the Technical University of Denmark between February and July 
2008.  The project was undertaken in the Department of Mechanical Engineering at the University of Bath under the 
supervision of the present author. 
44 Bulk grade is the term given to the lower quality paper products produced in large volumes, such as for newspapers. 
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1.6% per year over the period 1973-1991 (Farla et al., 1997).  This annual change may be an 

underestimate because it does not account for indirect efficiency improvements through new 

CHP plants.   

 

The fundamentals of pinch analysis are presented in Appendix A2.2.2.3.  Pinch analysis has 

previously been used to identify significant potential for efficiency improvements in the hot and 

warm water system in paper mills (Nordman, 2005; Bengtsson et al., 2002; Nordman & 

Berntsson, 2006, 2009a, 2009b; Natural Resources Canada, 2002).  These systems have therefore 

been the focus of attention for optimisation and heat recovery.  Nordman and Berntsson 

developed (2009a) and applied (2009b) an advanced pinch analysis methodology for retrofit 

situations.  It employs four different composite curves above and below the pinch point, which 

relate more detailed information about the actual and theoretical temperature and enthalpy 

difference of the respective streams.  Due to the fact that the advanced curves only give a 

qualitative indication of the cost-effective heat recovery potential, however, they are best used 

as a screening tool to identify targets and show the order in which they should be addressed.  

Bengtsson et al. (2002) employed another method of advanced pinch analysis, including new 

composite curves and the so-called matrix method.  The latter represents an attempt to improve 

the optimisation procedure by accounting for other parameters in addition to the area of the 

heat exchanger network (HEN).  These include the physical distance between streams, types of 

heat exchangers, heat transfer coefficients and fouling.  The matrix method seems more suited 

to complex problems, however, so was not fully exploited in this case (ibid.).    

 

Wising et al. (2005) applied pinch analysis to a pulp and paper mill, concluding that reducing 

the overall water consumption in the mill increases the quantity and temperature of excess heat.  

This excess heat can also be used for evaporation in the process, thus reducing live steam 

demand by up to 1.5GJ/t.  Furthermore, the authors found that by removing pinch rule 

violations in the mill, water consumption becomes less of an important factor.  The 

economically best solution is probably a combination of reducing water consumption, removing 

pinch violations and using some of the excess heat for evaporation (ibid.).  Clearly pinch 

analysis in general is a useful method in identifying the potential for efficiency improvements 

in pulp and paper mills.   

 

UPM’s Caledonian Paper Mill (hereafter the mill) in Irvine, Scotland, is one of the largest mills 

in the UK.  It is the only producer of Light Weight Coated (LWC) paper in the UK, with a 

capacity of 280kt/yr, and one of two large scale integrated mechanical pulp and paper mills in 

the UK, the other being Iggesund at Workington (Morgan, D., CPI, pers. corr., August 2008).  

Pulp is produced in electrically-driven mechanical grinders, where fibres are extracted from 

logs and heat is dissipated due to friction, much of which is removed by water.  Heat recovery 

from the shower water and humid air exhaust from the paper machine is used to supply the 

process heat demand and reduce the overall steam consumption.  The pulping temperature and 

bleaching process have recently been modified in the mill, and there is a desire to understand 

the effect(s) of these changes on the HEN and losses in the effluent system.  The focus of this 

study is in the hot and warm water systems at the mill, which are already integrated to a large 
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degree.  An Opportunities Assessment was carried out at the mill in 2007 (NIFES Consulting 

Group, 2007), which concluded that one key area to focus attention should be the grinders (i.e. 

the Pressurised Ground Wood pulping machines, PGW, section 8.4.1).  It also identified the 

already high efficiency of the steam system, which had a condensate return efficiency of 83%. 

 

8.2 Aim and objectives 

The overall aim of this case study was to determine the potential for thermodynamic efficiency 

improvements at Caledonian Paper Mill based on process integration techniques and to carry 

out an economic assessment of any proposed changes.  With this general aim in mind, the 

specific objectives required to meet this aim are to: 

    

• Provide an overview of the process in the mill, and specify how production constraints 

affect the energy consumption (section 8.4);  

• Estimate energy and mass balance in the system with a focus on the utility, hot and 

warm water, and heat recovery systems in the paper machine (section 8.5); 

• Estimate the overall potential for heat recovery through a pinch analysis, and suggest 

possible ways to utilise this excess heat (section 8.6);  

• Calculate the cost-effectiveness of modifying the HEN to balance the heat demand and 

recovery for the process and thus reduce overall heat demand (section 8.7); 

• Determine the sensitivity of the results to key variables and suggest improvements to 

the methodology (sections 8.7.3 and 8.7.4).      

 

8.3 Applied software  

The energy system simulator Dynamic Network Analysis (DNA, Elmegaard, 1999) was used to 

model the heat recovery system.  The basic idea is to structure an energy system network based 

on components that are connected through branches by nodes.  The software contains a 

catalogue of pre-defined components such as heat exchangers, pumps, boilers, turbines, and 

valves.  DNA solves the energy and mass balances by applying the First and Second Law of 

Thermodynamics to a control volume around the components and using the nodes as boundary 

conditions.  The interrelationship between components will determine the total number of 

additional conditions that are required from user input.  DNA also requires initial estimates for 

output variables that are independent of the initial conditions and are not given by the 

component constraints.  The most common fluid and solid properties are defined in DNA; it is 

possible to create new fluids and solids by defining the composition from a number of available 

compounds.  The system is solved via a numerical iteration method, whereby the value of the 

additional and initial conditions determines whether the system converges.  When a physically 

meaningful solution is obtained, the mass flow, temperature, pressure, enthalpy, entropy and 

specific volume are calculated for each node.  A complete description of DNA is given by 

Elmegaard (1999).  The economic optimisation was performed via algebraic equations that 

describe the technical and economic behaviour of the suggested HEN.  The free parameters in 

the models are used to optimise the payback period and the equations were solved 
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simultaneously in Engineering Equation Solver (EES).  EES was also used to find the relative 

humidity of air based on the results from DNA. 

 

8.4 Overview of the mill’s operations 

Although chemical pulping is the most common method globally and in Europe, the UK is an 

exception with only one chemical pulping mill at Ahlstrom Chirnside in Radcliffe, near 

Manchester (Morgan, D., ibid.).  At Caledonian the pulp from mechanical pulping (83%) is used 

together with imported chemical pulp (17%) to produce paper.  The mechanical pulp is 

produced from virgin fibres, i.e. no recycled paper is used.  Light Weight Coated (LWC) paper 

has a weight of 51-70g/m2 and is used in magazines, catalogues and newspaper supplements.  

The production capacity is 280kt/yr of paper, which corresponds to approximately 5% of the 

total UK production in 2006 according to Table 8-1.  An overview of the pulp and paper process 

is presented in Appendix A3.3.1.  A new biomass fired CHP plant is currently under 

construction and is expected to be in operation in 2009. 

 

8.4.1 Mechanical pulping and temperature considerations 

Wood fibres are extracted from softwood logs in a mechanical pulping process.  The logs are de-

barked and cut to a length of around 1.5m before being pressed against a rotating stone in the 

grinders (Figure 8-1), which causes local vibration and heating of the timber.  Extraction of 

fibres is enhanced due to overpressure of approximately 2.3bar in the grinders (four in total).  

The process is called Pressurized Ground Wood (PGW) pulping, and results in a higher 

production rate than normal mechanical pulping (Reilly, 2003).  Hot shower water is added to 

process the fibres and clean the grinding stones, which acts as a cooling medium, but must be 

warm enough to prevent thermal shock to the stone.  The electricity used to drive the grinding 

stone is transformed into heat through friction, and mostly removed by the shower water.  The 

pulp is then lead through different screening and refining stages, before being bleached and 

stored. 

 

The choice of grinding temperature is a trade-off between pulp quality, energy consumption 

and chemical consumption.  Due to the grinding overpressure, water and grinder pit 

temperatures up to 95°C and 125°C respectively are possible.  However, these two temperatures 

have previously been changed to 75°C and 100°C respectively.  The lower grinding temperature 

reduces the long fibre content and thus the pulp strength, which is important to prevent paper 

breaks in the paper machine and to improve final product quality.  A reduction in strength 

means a higher freeness value45 and better draining ability, which leads to a lower SEC for the 

refining process (European Commission, 2001d).  The optical properties are also improved at 

lower temperature because the pulp is lighter, which reduces the demand for chemical 

bleaching.  A higher temperature could increase the production rate (as fibres loosen faster), but 

                                                           
45 Freeness relates to the ability of the pulp to drain and lose water, and is measured in millilitres Canadian Standard 
Freeness, mlCSF (European Commission, 2001d, p.182). 
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this is more sensitive to the condition of the grinding stone, timber quality and grinding 

pressure (Reilly, 2003).   

 

 
Figure 8-1 – Mechanical grinder (UPM, 2004)  

 

When the pressure is released after the grinding process it causes water to evaporate, which 

increases the moisture content in the grinding exhaust air.  Heat was previously recovered from 

the humid air in a condenser and used to heat water.  After the pulping temperature was 

reduced, UPM decided to refrain from heat recovery of the evaporated vapour due to the 

commensurate reduction in the exhaust air temperature.  According to the European 

Commission (2001d), around 20% of the energy demand is recoverable as steam from PGW 

pulping.  The determination of a suitable grinding temperature is thus very complex, involving 

trade-offs between, inter alia, pulp quality, energy consumption and chemical consumption.  

The volume and temperature of the effluent is also affected by the grinding temperature.            

 

8.4.2 Paper production 

The stock is prepared in up to five cleaning stages, before it approaches the machine screening 

and paper machine itself.  The machine can be broken down into roughly five sections, as 

shown in Figure 8-2.  The head box introduces a suspension of fibres to the wire and distributes 

the fibres uniformly across the wire belt.  The wire section drains the paper web to 18% 

consistency, and the press section increases the strength of the web and removes even more 

water by pressing to a consistency of 50%.  The dryer section evaporates the water in the web to 

a consistency of approximately 91%, and is usually one of the largest energy consumers within 

a paper machine (Sivill et al., 2005).  The paper is then coated to attain a smooth surface for 

printing and treated with chemicals to achieve the required brightness.  The coated paper is 

then dried with hot air to a final consistency of approximately 95%.  The paper is passed 

through a series of hard and soft rolls, known as supercalandering, which make the surface of 

the coated paper smooth and glossy, before it is finally reeled up and stored until being cut 

down to specific customer sizes and wrapped.  The paper machine is 8m wide and runs at 
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1400m/min, which determines the production rate as well as the length of the drying section 

due to limitations in heat transfer and thus evaporation rate.   

 

In the dryer section the web is pressed against hot drying cylinders, which allow heat 

conduction to occur.  The contact time and pressure determine the heat transfer rate.  The inside 

of the cylinder drum is simultaneously heated with steam, and the heat transfer is affected by 

the temperature and mass flow of steam, as well as the effectiveness of steam condensate 

removal.  The paper is simultaneously cooled due to evaporation of water and heated due to 

convective heat transfer from the surrounding air.  The air needs to be circulated and externally 

heated to avoid vapour saturation (US DOE ITP, 2005).   

 

 
Figure 8-2 – Schematic overview of a paper machine (European Commission, 2001d) 

 

When paper is lost during the papermaking process – known as broke – it is reintegrated into 

the process to conserve fibres within the system.  The broke needs to be treated before it is 

mixed with virgin fibres.  Broke is generated during normal operation due to winding of the 

paper sheet, but also because of paper breaks.  The amount of broke differs but 29% is reported 

in the mill with 40% and 60% of wet and coated broke, respectively (Luumi, R., Process 

Development Engineer, UPM, pers. corr., March 2008).  The energy wastage due to broke is 

significant because the same mass flow is passing through the process more than once.  

Generation of coated broke in particular should therefore be minimized since drying of the web 

is the most energy demanding process.  Increased paper strength will reduce the frequency of 

paper breaks, which is possible by improving the press section (or increasing grinding 

temperature as previously mentioned).  A rule of thumb is that a 1% improvement in press 

consistency corresponds to a 4% improvement in drying efficiency (European Commission, 

2001d).   
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8.5 Energy and mass balance of the mill 

In this section an energy and mass balance is presented for three systems, namely the utility 

system, the warm and hot water system, and the heat recovery system in the paper machine.  It 

is necessary to carry out an energy and mass balance in order to provide the data for the pinch 

analysis.  

  

8.5.1 Utility system 

8.5.1.1 Steam  

The steam system in the mill is shown in Figure 8-3 and the annual average steam consumption 

is shown in Table 8-2.  The small deviation in mass balance (i.e. 13.07kg/s vs. 12.26kg/s) is 

probably caused by steam reforming in the thermocompressor.   

 

 
Figure 8-3 – The mill’s 5 and 10 bar steam system  

 

The paper machine press section steam box also requires direct steam injection to improve 

moisture profiling, but it is negligible compared to the heat effect used to dry the paper sheet in 

the drying section (Reilly, E., Environmental Superintendant, UPM, pers. corr., March 2008).  In 

addition, direct steam injection is possible in the hot filtrate tank to maintain the required 

temperature, but the consumption is currently not measured.  It is assumed to be negligible and 

therefore disregarded in this analysis.  The specific steam consumption over 2007 varied over 

the range 4-9GJ/t LWC overall and more consistently 4-5GJ/t base46 in the drying section of the 

paper machine (Reilly, E., op cit.). 

 

 

 

                                                           
46 Paper prior to coating and rolling is referred to as base. 
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Steam from main boiler  13.08 

• Steam to 10 bar system 0.28  

• Steam to Accumulator 12.80  

   

Steam to Feed Water Tank  0.54 

Steam to mill (5 bar)  12.26 

• Steam to paper machine  10.12 

o Steam to drying  8.60  

o Steam to wire pit 1.15  

o Steam to wet end hood 0.17  

o Steam to dry end hood 0.20  

• Steam to coater  0.85 

• Steam to supercalanders  0.89 

• Steam to Aqua Heat Recovery (AHR)  1.20 

o Steam to mill heating water 0.60  

o Steam to warm water tank 0.60  

   

Main Condensation return flow  10.90 

Table 8-2 – Annual average steam consumption in the mill (kg/s) 

   

8.5.1.2 Electricity  

The annual electricity consumption in 2007 is given in Table 8-3.  Assuming a load factor for the 

whole plant of 90% (Entec UK Ltd., 2006f), this corresponds to an average power demand of 

41MW.  The grinders account for around 1/3 of the total electricity consumption.  The specific 

electricity consumption of the grinders was consistently 4.0-5.0GJ/t pulp, and the total electrical 

SEC of the mill was 4.3-6.5GJ/t LWC in 2007.  

 

8.5.1.3 Fuel  

The fuel consumption by source is shown in Table 8-4.  The current boiler house consists of a 

coal and biomass fired boiler and a natural gas fired auxiliary boiler (Figure 8-3).  The new CHP 

plant will eliminate approximately 81ktCO2 from non-renewable energy sources along with 2/3 

of the grid electricity consumption and is estimated to use more than 350kt/yr of biomass.  The 

thermal heat to the boiler is 99.5MW.   

 

PGW pulping and refining (grinders ~70 %) 553.3 

Kraft pulp refining, stock preparation, paper machine 353.5 

Finishing, paper machine 31.0 

Utility (compressors ~39%) 65.9 

Coating  69.1 

Lighting and cranes 77.0 

Other 13.0 

Total 1,156.0 

Table 8-3 – Electricity consumption in 2007 at Caledonian Paper Mill (TJ/yr) 
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 Coater natural 

gas 

Boiler 

natural gas 

Coal Bark Total 

TJ 180.2 101.2 803.5 327.6 1,412.5 

ktCO2 9.3 5.2 75.7 36.0 126.2 

Table 8-4 – Energy consumption and CO2 emissions by source in 2007 

 

8.5.2 Warm and hot water system 

An overview of the water and effluent system is given in Appendix A3.3.3.  The mill has a 

number of loops in which water is circulated.  If limits in tank capacities are exceeded, or mass 

flow is required elsewhere in the pulp production, water is cascaded through the system in the 

following order: 

 

Mill Water Tank >> Clean Filtrate Tank >> Cloudy Filtrate Tank >> Hot Filtrate Tank or Effluent. 

 

Mill water is only added to the cloudy filtrate tank if the process needs cooling (Luumi, R., op. 

cit.).  The volume of effluent is a measure of the losses from the system, but is also necessary 

due to contamination with wood solubles and bleaching chemicals.  Fresh water is added 

continuously to the mill water tank at a flow rate of approximately 100l/s.  The mill water is 

used as sealing water in the grinders, to cool machinery in the paper mill and is filtered 

afterwards to remove oil.  Approximately 60l/s is heated and used as warm water in the coating 

and wire section, whilst the remaining water is re-circulated. 

  

Hot filtrate water is drained from the stock at approximately 85-90°C in the pressure thickener 

after the grinders.  The pressure thickener is a large slowly rotating wire mesh drum used to 

increase the consistency of pulp from approximately 1.5% to 40% (Luumi, R., op. cit.).  The hot 

filtrate water is then lead to the hot filtrate tank, where the average temperature is 75°C (Figure 

8-4).  The water in the tank is used as shower water in the grinders (approximately 210kg/s) and 

as hot streams in three heat exchangers, namely the warm water HEX, the wire pit HEX and the 

white water HEX.  The circulation of hot filtrate water takes place within the hot loop, the 

purpose of which is to recover heat for the process and minimize the use of steam heating.  

 

The mass flow rate through the heat exchangers varies with the operation of the paper machine 

and grinders.  Average measurements of mass flow rates and temperature have therefore been 

used to estimate the heat transfer in the heat exchangers, as shown in Table 8-5 (average values 

in bold).  The mass flow rate of the hot stream in wire pit HEX is estimated from a measured 

total flow of 210kg/s in the three heat exchangers.  The hot filtrate tank is a heat and mass 

storage, with the capacity being used to balance variations in consumption and supply of heat 

and mass flow in the hot loop.  The temperature of hot filtrate water from the pressure 

thickener is estimated from an energy balance by placing a control volume around the hot 

filtrate tank and assuming steady state conditions.  Hence from Table 8-5 the balance is as 

shown below. 
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Figure 8-4 – Existing heat exchanger network for hot filtrate water 
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It is therefore reasonable to assume 87°C as the inlet temperature of the hot filtrate water when 

losses in tanks and heat exchangers are taken into account.  The overall heat transfer in the hot 

loop is thus approximately 10.5MW based on the above energy balance, which is confirmed by 

instantaneous measurements from the grinders (shown in Appendix A3.3.2).  The latter shows 

that the heat transfer to the shower water at a flow rate of 187kg/s is 9.3MW.  If the heat transfer 

increases proportional to the mass flow of shower water (i.e. proportional to pulping rate), 

which is a reasonable assumption if the specific electricity consumption in the grinders is 

independent of the mass flow rate of logs, this corresponds to 10.4 MW heat transfer to the 

shower water at a flow rate of 210kg/s.  This is clearly very close to the calculated value of 

10.5MW.  

 

The total heat demand of the wire pit is estimated to be 5MW (Horner, G., Utilities Supervisor, 

UPM, pers. corr., March 2008), and the remaining heat transfer is provided as direct steam 

injection.  The need for extra stream is probably caused by the longer periods of unbalance in 

supply and demand in the hot and warm system.  According to Table 8-2 the average steam 

consumption in the wire pit is 1.2kg/s, which when added to the value in Table 8-5 gives a total 

heat transfer of 1.2kg/s · 2.1MJ/kg + 3.6MW ≈ 6MW47.  This corresponds to an average additional 

steam requirement of approximately 1MW or 0.47kg/s.  

 

                                                           
47 The heat transfer due to condensation of 5 bar steam is equal to the difference in enthalpy between the vapour and 
liquid phases, which is approximately h’’-h’ = 2.1MJ/kg (Rogers & Mayhew, 2000). 
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Warm Water HEX  Tin (°C) Tout (°C) m& (kg/s) Q& (MW) 

Hot stream 77 65 90  

Cold stream  18 36 60 4.51 

White Water HEX 

Hot stream 77 71 70  

Cold stream  50 60 45 1.88 

Wire Pit HEX 

Hot stream 77 60 *50 3.55 

Cold stream  50 60 85  

Table 8-5 – Heat transferred in the White Water HEX, Warm Water HEX and Wire Pit HEX 

*Estimated from measured total flow of 210kg/s through three heat exchangers 

 

The heat supply from all three tanks lasts a maximum of twenty minutes at a flow rate of 

210kg/s if the grinding process is shut down.  Due to restrictions on the allowable tank level and 

temperature requirement, the period before steam is injected is much shorter than this.  The 

steam injection to the wire pit is constantly fluctuating along with the changing supply and 

demand for heat in the process.  An increase in tank capacities would reduce the need for direct 

steam injection, but a calculation of the optimal tank capacity would require duration curves of 

the heat flow, which are not available.  It is therefore assumed that the steam consumption in 

the wire pit consists of 0.47kg/s from direct steam injection and 0.68kg/s from the wire pit HEX.  

     

Due to the recent increase in heat exchanger area and investment in a new heat exchanger, the 

original data on heat exchanger area is no longer valid, but the overall heat transfer coefficient 

is assumed to be unchanged.  Based on this and the measurements in Table 8-5, the minimum 

installed heat transfer area has been calculated as shown in Table 8-6. 

 

 U (kW/m2K) ∆T (°C)

 

A (m2) 

Source Assumed 

unchanged 

Equation 8-9 Equation 8-10 

White Water HEX 1.6 18.7 63 

Warm Water HEX 1.6 43.9 64 

Wire Pit HEX 3.0 13.2  90 

Table 8-6 – Estimation of heat transfer area in hot and warm water system 

 

The effluent caused by the cloudy filtrate overflow is at approximately 85°C, and the volume is 

estimated at 2000-3000m3/day (23–35kg/s).  The effluent caused by clean filtrate overflow in 

chemical pulp preparation is at approximately 47°C and the volume is estimated to 1700m3/day 

(20kg/s).  The volume flow of effluent is determined by the degree of pulp bleaching.  Increased 

bleaching will cause an increase in cloudy filtrate overflow, but a reduction in clean filtrate 

overflow since this is used as shower water in the bleaching process.  Bleaching of pulp is 

performed to approximately 80% of the manufactured pulp, which makes it worthwhile to 

consider heat recovery from the cloudy filtrate overflow.  In the following analysis it is assumed 

that 25kg/s of cloudy filtrate effluent is available at 85°C.  
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8.5.3 Heat recovery system in paper machine  

The purpose of this section is to describe the existing heat recovery system in the mill and 

estimate the humidity ratio of the air for various operating conditions based on measurements.  

The humidity ratio is subsequently used to calculate the heat recovery potential as a function of 

the outlet temperature of this air.  

 

8.5.3.1 Estimation of the average humidity ratio 

A common design for a heat recovery system in a paper dryer is presented in Figure 8-5, which 

is similar to the overall layout found in Caledonian mill.  The temperature and flow values 

based on average measurements for the mill are shown in Figure 8-6, whereby the mass flow of 

hood supply air is estimated from an investigation at a Finnish paper mill in 2001 (Sivill et al., 

2005).  In general, the humidity ratio of the exhaust air in the dry end of the drying section is 

slightly lower than that in the wet end (Reilly, E., pers. corr., op. cit.).    

 

 
Figure 8-5 – Modern heat recovery system of paper machine dryer section (Sivill et al., 2005) 

 

The evaporated water is transported from the paper sheet to the air in the paper machine 

drying section and the exhaust air from wet and dry ends of the drying section preheats the 

inlet air (i.e. mezzanine air from paper machine hall) in two air-to-air plate heat exchangers 

(Figure 8-6).  The inlet air is then heated with indirect steam heating, to reach the required 

temperature before entering the paper machine.  The exhaust air from the wet and dry ends is 

then mixed and lead into two series of connected cross-flow heat recovery banks, where the mill 

heating water and warm water to the paper machine is heated in this order.  Each heating bank 

consists of six units connected in parallel, each with four passes.  The Aqua Heat Recovery 

(AHR) unit appears to be completely un-documented, i.e. construction details such as tube 
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finned area, total heat transfer area, tube diameter and length, are all unknown to UPM.  After 

the heating banks the exhaust air is ejected through the roof ventilation (Figure 8-6). 

 

The mill heating water circulates in a loop as shown in Figure 8-7.  It is cooled in several heat 

sinks located around the mill, and afterwards led back to the AHR unit, where a valve controls 

the flow through the heating banks and by-pass respectively, depending on the return 

temperature.  The flow through the first heating bank in the AHR unit is therefore not 

necessarily constant.  The two streams are then mixed again and direct steam injection will be 

used if the temperature is lower than a chosen limit.  A pump raises the pressure and restarts 

the loop.  

 

Temperature and flow data is continuously collected from the heat recovery system in the 

paper machine via the mill monitoring system.  Measurements of humidity in the exhaust air 

are also available but they do not seem accurate due to a lack of equipment calibration.  

However, an approximate value for the water content in the exhaust air can be estimated by 

calculating the evaporation rate of water.  The paper grade varies between 51-70g/m2, but up to 

30% of this weight is added in the coater section.  The paper grade after the drying section is 

therefore in the range 36-62g/m2, and the average value is known to be approximately 43g/m2 

with 9% moisture (Reilly, E., pers. corr., op. cit.).  The paper sheet is 8m wide, moving at a speed 

of 1400m/min (23m/s) in the paper machine, and enters the drying section with a 50% moisture 

content.  Assuming conservation of stock through the drying section gives the average 

evaporation rate of water according to Equation 8-1. 
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Figure 8-6 – Heat recovery system in the paper machine 
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The inlet mezzanine air to the dryer is assumed to have a humidity ratio of wair,in = 0.02 

kgwater/kgair (approximately 50% relative humidity), and the total exhaust air flow from the 

machine is approximately 56kgair/s (Figure 8-6), giving a humidity ratio according to Equation 

8-2. 
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A similar calculation was carried out for the lightest and heaviest paper grades, of 36g/m2 and 

62g/m2 respectively, to find the evaporation rate of water, humidity ratio, dew point and 

relative humidity, whilst assuming constant mass flow of humid air at 56kg/s and hood exhaust 

temperature of 78°C (Figure 8-6).  The results are shown in Table 8-7.  

 

The temperature of the hood exhaust air is 78°C, so the dew point and relative humidity are 

approximately 58°C and 42%, respectively.  It is important not to have an excessively high dew 

point to avoid condensation in the hood, which will cause formation of droplets that can 

destroy the paper sheet and cause a paper break.  The inlet mass flow of mezzanine air needs to 

be adjusted depending on the paper grade in order to maintain the same dew point and relative 

humidity in the drying section.  This is done manually at the mill and the humidity ratio is 

therefore expected to be proportional to the paper grade.    

 

 
Figure 8-7 – Mill Heating Water loop (Corner, G., Utilities Supervisor, UPM, pers. corr., March 2008)  

 

Paper 

grade 

(g/m2) 

waterm&
  

(kg/s) 

exhaustair,w
 

(kgwater/kgair) 

Dew point 

(°C) 

Relative 

humidity 

(%) 

36  5.51 0.12 56 37 

43  6.58 0.14 58 42 

62  9.49 0.19 64 54 

Table 8-7 – Evaporation rate of water, humidity ratio, dew point and  

relative humidity for light, average and heavy paper grades  
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The potential heat recovery at a given mass flow and air humidity ratio depends on the outlet 

temperature of the humid air.  When it is used as a hot fluid in a condensing heat exchanger, the 

heat exchange will occur both as sensible and latent heat transfer (Kakac & Liu, 2002).  When 

the boundary layer of the humid air near the wall becomes fully saturated, condensation will 

occur and the heat flux will be much higher than for sensible heat transfer alone.  When the 

water content in the humid air decreases due to condensation, the dew point will also be 

reduced, and condensation will therefore continue as long as the temperature of the heat 

exchanger wall is below the dew point.  

 

Measurements of the temperatures in the heating banks at discrete intervals over a period of 75 

minutes have been recorded and are detailed in Appendix A3.3.4.  The heat transfer in the 

heating bank can be calculated according to Equation 8-3 below, as shown in Table 8-8.  The 

highest outlet temperature of the warm water heating bank is found in the measurements at 

15:00, which corresponds to the lowest steam consumption.  However, the heat transferred in 

the AHR unit is lowest at the same time, while the roof ventilation temperature is highest.  The 

same is true for the measurements at 14:45 and 15:15.  
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Time 
MillwaterQ&

 
(MW) 

WarmwaterQ&   

(MW) 

totalQ&
 

(MW) 

Troof ventilation  

(°C) 

14:00 2.11 3.38 5.50 47.7 

14:30 2.07 3.01 5.08 47.3 

14:45 1.79 4.15 5.94 45.5 

15:00 2.07 2.71 4.77 47.8 

15:15 1.81 4.18 5.99 45.5 

Table 8-8 – Calculated heat transfer to mill heating water and warm water,  

and measured temperature of roof ventilation 

 

The total heat recovery as a function of outlet temperature for a mass flow of 56kgair/s was 

calculated using the DNS model for three humidity ratios, which approximately correspond to 

light, average and heavy paper grades (Table 8-7).  The heat transfer to preheat the inlet air is 

constant at approximately 200kW and 400kW for wet and dry ends respectively.  These values 

must be added to the heat recovery in the AHR to find the total heat recovery from the humid 

air.  Results from the DNA simulation model and the calculated total heat recovery in Table 8-8 

are therefore plotted in Figure 8-8.  

 

It can be seen that the total heat recovery potential depends significantly on the humidity ratio 

and outlet temperature of the air.  The more cooling of the humid air occurs, the more latent 

and sensible heat transfer occurs.  This trend is confirmed by the measurements in Appendix 

A3.3.4.  Reducing the inlet temperature of the mill heating water and warm water increases the 

amount of heat that is transferred.  This means that the inlet temperature of the cold fluid 
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should be as cold as possible to achieve the maximum heat transfer.  Minor variations in the 

hood exhaust temperature only influence the sensible heat transfer and thus have only a small 

influence on the overall heat recovery potential.  The heat demand of the mill heating water is 

estimated to be less than 5MW in winter conditions (Luumi, R. op. cit.).  Measurements indicate 

that the mill heating water has inlet and outlet temperatures of 30°C and 45°C respectively, 

along with a mass flow rate of 75kg/s (ibid.).  The resulting heat transfer to this water is 4.7MW.   
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Figure 8-8 – Heat recovery in AHR as a function of outlet air temperature for various humidity ratios 

 

Although the measurements plotted in Figure 8-8 provide some validation of the estimated 

humidity ratios, they do appear to be slightly higher than what would be expected from the 

average paper grade (WE = 140g/kg, DE = 130g/kg).  The paper grade at which the 

measurements were taken is unknown, however, but can reasonably be assumed to be constant 

due to the relatively small time step between measurements.   

 

8.5.3.2 Estimation of the overall heat transfer coefficient 

The purpose of this section is to determine how the dimensioning of the existing heat recovery 

system influences the quantity of heat recovered.  Based on the data for the heat recovery 

potential from the humid air in the hood exhaust shown in Figure 8-8, it is possible to estimate 

an overall heat transfer coefficient for the condensing heat exchanger as a function of the outlet 

air temperature.  A cross-flow heat exchanger design with water in tubes and humid air outside 

has therefore been used to determine the total heat transfer area for various logarithmic mean 

temperature differences.  The overall heat transfer coefficient and flow measurements are then 

used to estimate the existing heat transfer area in the AHR unit.   

 

The overall heat transfer coefficient, U, is determined by the thermal resistance of the pipes, and 

hot and cold fluid in the heat exchangers.  In the case of condensation of humid air, the thermal 
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resistance of the hot fluid particularly affects the heat transfer.  Determination of the heat 

transfer coefficient of humid air is difficult since moisture content, specific heat value and 

thermal conductivity vary strongly during condensation of water vapour in the air.  However, 

the following approximation has been suggested (Söderman & Pettersson, 2003),  

 

chcond h
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1

1
U

+
⋅
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8-4 

 

where fcond is the specific condensation factor and hh and hc are the heat transfer coefficients of 

dry air (hot fluid) and water (cold fluid) respectively.  The specific condensation factor is unity 

if no condensation is taking place, and 10-20 near the saturation point.  The condensation factor 

relates the total heat transfer from the moist air, totalQ& , to the sensible heat transfer from the dry 

air, d.a.Q& , and is defined according to Equation 8-5 (Söderman & Pettersson, 2003, Söderman & 

Heikkilä, 2001).    
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The instantaneous value of fcond depends on, inter alia, the difference in moisture content, 

temperature and specific heat capacity between the humid air and the surface where 

condensation occurs.  This is a result of condensation occurring in the boundary layer at the 

wall.  It is necessary to use iteration to obtain the instantaneous value of fcond, since the surface 

temperature and specific condensation factor are dependent variables.  This analysis is therefore 

based on an average value over the heat transfer temperature interval.  The heat transfer from 

the dry air is defined according to Equation 8-6, where wi is the humidity ratio of the inlet 

humid air to the AHR, wi = 0.14 after mixing of wet and dry exhaust air has occurred.   

 

d.a. d.a. p,d.a. i o i total p,d.a. i oQ m c (T T ) (1 w ) m c (T T )= ⋅ ⋅ − = − ⋅ ⋅ ⋅ −& & &  8-6 

 

The specific heat value for dry air is set at cp,d.a. = 1.006kJ/kgK (Rogers & Mayhew, 2000).  totalQ&  
is plotted in Figure 8-8 for a humidity ratio of 140gwater/kgair and 130gwater/kgair for wet and dry 

ends, respectively, and a mass flow of air of 56kg/s.  The specific condensation factor under 

these conditions is shown plotted against the outlet temperature of humid air in Figure 8-9.  

This data can be used to calculate the heat recovery potential from the nth fraction of humid air 

according to Equation 8-7, where )(TQ on,total
& is a sixth order polynomial fitted to the results.  
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The overall heat transfer coefficient under clean conditions based on the outside radius of tubes 

can now be estimated.  Taking individual heat transfer coefficients into account and neglecting 

fouling effects, Kakac & Liu (2002, p.41) suggest the following relationship, 
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where λ is thermal conductivity of the tubes.  Assuming countercurrent flow conditions gives a 

logarithmic mean temperature difference ∆Tlm,cf according to Equation 8-9 (ibid., p. 45). 

 

 
Figure 8-9 – Specific condensation factor for average humidity ratio  

against the outlet temperature of humid air 
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8.5.3.3 Estimation of the existing heat transfer area 

The total heat transfer area can then be determined from Equation 8-10 (ibid., p.48), 

 

FΔTU
Q

A
cflm,o

total
o

⋅⋅
=  8-10 

 

where F is a correction factor for cross-flow heat exchangers, which takes into account the 

degree to which the flow is not, in fact, countercurrent.  The heat transfer coefficient on the cold 

side is determined as shown in Appendix A3.3.5, but in general the thermal resistance on the 

cold side and in the tubes is almost negligible (h ≈ 3000 W/mK) compared to the thermal 

resistance of the hot side (hh ≈ 50 W/mK) (Kakac & Liu, 2002).  The resulting overall heat 

transfer coefficient for the existing heating banks can therefore be determined from Equation 

8-11. 



Chapter 8 – Process integration in a pulp and paper mill 
 

- 203 - 

 

cond2o f
Km

W
48U ⋅

⋅
≈  8-11 

 

The heat transfer coefficient according to Equation 8-11 can now be used to estimate the existing 

heat transfer area in the AHR unit based on the measurements shown in Appendix A3.3.4.  The 

first step is to determine a value for the humidity ratio that leads to the same heat recovery as 

seen in the measurements.  Figure A14 in Appendix A3.3.5 shows the heat recovery at different 

air temperatures for humidity fractions in the wet and dry air that correspond well with the 

measurements.  In this case the humidity ratio is set at 150gwater/kgair and 135gwater/kgair for wet 

and dry end exhaust air respectively.  Hence the minimum installed heat transfer area can be 

estimated and the results are presented in Table 8-9.   

 

Mill Water Warm Water Variable Unit Source 

14:00 14:30 15:00 15:15 14:00 14:30 15:00 15:15 

MillWaterQ&  MW Table 8-8 2.11 2.07 2.07 1.81 3.38 3.01 2.71 4.18 

d.a.Q&  MW Equation 8-6 0.70 0.69 0.70 0.69 0.35 0.31 0.29 0.41 

condf  - Equation 8-5 3.00 2.98 2.96 2.63 9.80 9.71 9.44 10.27 

cflm,ΔT  °C Equation 8-9 17.2 17.3 16.7 16.5 10.1 9.3 8.6 14.1 

oA  m2 Equation 8-10 855 837 873 870 713 694 693 601 

Table 8-9 – Calculated minimum installed area in mill heating water HEX based on four measurements 

for estimated specific condensation factor and logarithmic mean temperature 

 

The heat transfer area should be the same for both measurements, provided the assumption that 

the two banks have the same area is valid.  However, the average difference between the 

calculated heat transfer areas for the two heating banks is approximately 15%.  This suggests 

that the areas are, in fact, not the same.  Although the method used to estimate the heat transfer 

coefficient during condensation (Equation 8-5) is rather approximate, an error of this size would 

not be expected.  Hence, on the basis of these results it is concluded that the heating banks are 

of different sizes, around 850m2 and 700m2 respectively.  Nevertheless, the analysis that follows 

employs a total installed heat transfer area of 1400m2, such that resulting estimates are of a 

conservative nature.  

 

8.6 Pinch Analysis 

8.6.1 Thermal data 

The thermal data for the pinch analysis is based on the results of the energy and mass balance in 

the mill.  Two of the hot streams do not have predefined target temperatures, namely the humid 

air and the effluent, as indicated by an asterisk in Table 8-10.  The total heat recovery potential 

is actually dependent on the outlet temperature of these streams, which are therefore called 

loose streams.  The non-linear specific heat capacity of the humid air means that the large 
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temperature interval of 20-79°C has been broken down into ten smaller intervals of 

approximately five degrees.  The calculation of the specific heat capacity over these small 

ranges and a diagrammatic representation of the streams in Table 8-10 are shown in Appendix 

A3.3.6.   

 

8.6.2 Problem Table Algorithm 

The result of the Problem Table Algorithm for ∆Tmin=0 is shown in Table 8-11.  The minimum 

requirement for external cooling and heating is 12.54MW and 0.25MW respectively, when the 

outlet temperature of the loose hot streams is 20°C.  The pinch point temperature is 87°C and 

the Composite Curve for ∆Tmin=0 is shown in Figure 8-10.     

 

No. Stream Tavailible 

(°C) 

Ttarget 

(°C) 

Mass 

flow 

(kg/s) 

Specific 

heat 

capacity 

(kJ/(kgK) 

Heat 

capacity 

flowrate 

(kW/°C) 

Heat 

content, 

Q (MW) 

Hot streams 

1-10 Humid air 78 *20 56 f(w,T)   

11 Hot Filtrate 87 75 210 4.18 877.8 10.5 

12 Effluent 85 *20 25 4.18 104.5  

Cold streams 

13 Warm water 18 50 60 4.18 250.8 8.0 

14 Mill heating water 30 45 75 4.18 313.5 4.7 

15 Air preheat D.E. 37 99 13 1.00 13.0 0.8 

16 Air preheat W.E. 42 99 8 1.00 8.0 0.5 

17 Wire Pit 50 60 120 4.18 501.6 5.0 

18 White Water 50 60 45 4.18 188.1 1.9 

Table 8-10 – Thermal data used in pinch analysis (* indicates loose streams) 

 

The pinch point is located almost at the highest core process temperature, which should make it 

easy not to transfer heat across the pinch point.  This is obeyed in the existing HEN, but heaters 

are placed below the pinch point, which violates the pinch rules.  The (steam) heaters are used 

to heat up water at approximately 50°C, but the pinch analysis shows there should be no need 

for external heating below the pinch point.  The potential reduction in steam demand according 

to Table 8-2 is therefore 2.58kg/s as shown below. 
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The minimum amount of external cooling is significantly influenced by the outlet temperature 

of the loose streams.  In practice it is only the hot filtrate water that needs cooling because it is 

possible to vent the humid air at high temperature and release the effluent to the surroundings 
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after mixing with low temperature effluent.  The Grand Composite Curves in Figure 8-11 show 

the cooling demand for various outlet temperatures of the loose streams.      

 

 

     Sequential 

Balance 

Max Table 

Interval 

number 

Temp. 

int. (°C) 

∆Qcool 

(MW) 

∆Qheat 

(MW) 

Di 

(MW) 

i1,iQ −
&  

(MW) 

1ii,Q +
&  

(MW) 

i1,iQ −
&  

(MW) 

1ii,Q +
&

 
(MW) 

1 99-87 0.00 0.25 0.25 0.00 -0.25 0.25 0.00 

2 87-85 1.76 0.04 -1.71 -0.25 1.46 0.00 1.71 

3 85-78 6.88 0.15 -6.73 1.46 8.19 1.71 8.44 

4 78-75 3.16 0.06 -3.09 8.19 11.28 8.44 11.54 

5 75-69 1.00 0.12 -0.88 11.28 12.16 11.54 12.41 

6 69-60 1.51 0.19 -1.32 12.16 13.48 12.41 13.73 

7 60-55 0.82 2.61 1.79 13.48 11.69 13.73 11.94 

8 55-50 2.18 2.61 0.43 11.69 11.26 11.94 11.51 

9 50-45 3.45 1.36 -2.09 11.26 13.35 11.51 13.60 

10 45-42 1.70 1.76 0.05 13.35 13.29 13.60 13.54 

11 42-40 1.13 1.16 0.02 13.29 13.27 13.54 13.52 

12 40-37 1.43 1.73 0.31 13.27 12.97 13.52 13.22 

13 37-35 0.95 1.13 0.18 12.97 12.79 13.22 13.04 

14 35-30 2.03 2.82 0.80 12.79 11.99 13.04 12.25 

15 30-25 1.76 1.25 -0.50 11.99 12.50 12.25 12.75 

16 25-20 1.55 1.25 -0.29 12.50 12.79 12.75 13.04 

17 20-18 0 0.50 0.50 12.79 12.29 13.04 12.54 

Table 8-11 – Sequential Balance and Max Table for the pinch analysis 
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Figure 8-10 – Composite Curves for ∆Tmin=0 and outlet temperature of loose streams of 20 ⁰C 
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Figure 8-11 – Grand Composite Curves for different outlet temperatures of the loose streams 

 

The overall heat consumption in the process is the sum of the cold streams in Table 8-10, or 

20.9MW.  Cooling of hot filtrate water supplies 10.5MW and air-preheating and steam heating 

supplies 1.3MW (Figure 8-6).  The remaining heat supply in the process is thus 9.1MW, which 

has to be supplied by heat recovery from the humid air exhaust and effluent, but the potential 

heat recovery from the loose streams is much higher than this.  The actual heat transfer from the 

loose streams (especially the humid air) depends on the existence of a demand at lower 

temperatures, which is indeed the case as the heating demand below 50°C from the warm water 

and mill heating water is 12.7MW in total (i.e. 60% of the total heating demand).  Hence if heat 

recovery at a low temperature (less than 50°C) is increased, excess heat will be released at a 

higher temperature, i.e. the cold composite curve is shifted to the left due to a smaller 

temperature difference.  Excess heat at a high temperature (available at 87°C) could have a 

useful thermodynamic and/or economical value to other processes in the energy system.  In 

other words, cooling demand is treated as excess heat by increasing heat recovery at low 

temperature (Nordman, 2005).  

        

Heat from the core process should be utilised to fulfil the most economically feasible demand.  

It might be the most cost-effective solution to meet the heat demand in the core process via heat 

recovery and thereby decrease or remove the need for live steam heating.  The required 

retrofitting of the HEN might not be worthwhile due to high investment costs.  Hence the 

following section presents an economic analysis of the possible improvements to the HEN. 

 

QH,min 

Tpinch 

QC,min 
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8.7 Economic analysis  

This section presents an economic analysis of optimising the installed HEN, in order to recover 

heat to the core process (and thereby reduce the net steam demand).  The objective is to obtain 

an indication of the feasibility of suggested modifications rather than to obtain precise costs, 

and costs are based on off-the-shelf rather than custom-built equipment.  Broadly speaking 

there are five categories of cost estimations for projects, ranging from the order of magnitude to 

the detailed estimate (Kharbanda & Stallworthy, 1988).  Whilst the former is associated with a 

high degree of uncertainty, the latter is able to obtain estimates within about 5% of the actual 

project cost.  However, the cost of implementing these methods is proportional to their 

associated accuracy, which implies a trade-off between the two.  In this section the first two 

methods have been employed, known as order of magnitude and study estimates respectively 

(Gerrard, 2000).  They are able to estimate the project cost to within about 30%, so the results 

should be treated as indicative and further studies would be required before any measures 

should be implemented.  

 

8.7.1 Technical assumptions  

The economic analysis is based on the results from the preceding pinch analysis of the existing 

HEN and the thermodynamic analysis of the CHP plant in Appendix A3.3.8.  The key 

assumptions are: 

 

• An average humidity ratio of 0.138kgwater/kgair (section 8.5.3.1); 

• The overall heat transfer coefficient is estimated based on Equation 8-11;  

• The specific condensation factor is estimated from Figure 8-9; 

• The minimum installed heat transfer area in the hot and warm water systems is 

calculated in Table 8-9; 

• The pinch analysis shows that:  

o the process has a potential of excess heat if heat is recovered at low temperature 

according to the GCC in Figure 8-11; 

o the theoretical maximum reduction in steam consumption is 2.58kg/s; 

• The total steam consumption is estimated at 12.80kg/s according to Table 8-2. 

• The electricity from the CHP plant is approximately 26MW, which is less than the 

electricity demand of approximately 41MW.  Reduced steam consumption will 

therefore increase electricity production and vice versa according to Figure A19 in 

Appendix A3.3.8. 

 

8.7.2 Economic assumptions  

The Lang factor for the project is assumed to be three (Brennan, 1998).  If an existing heat 

exchanger can be used but needs extra heat transfer area, the required area is the difference 

between the two.  All costs are estimated in sterling based on the exchange rate of US$2 = €1.43 

= £1.00.  Correlations of cost as a function of area depend on the type of heat exchanger 
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employed (Taal et al., 2003).  The cost of water-to-water heat exchangers is based on the “six-

tenth” method with an exponent of 0.8 (i.e. mid-point of 0.6-1.0) and the capital cost is £62,500 

based on a manufacturer’s price for an effluent heat exchanger (NIFES Consulting Group, 2007).  

The cost of air-to-water heat exchangers is based on the empirical relationship given by 

Söderman and Pettersson (2003).   

 

To secure a reliable supply of hot filtrate water at 87°C it could be necessary to install a new 

tank.  The volume is chosen to be 100 m3, which is the same as the existing hot filtrate tank at 

75°C.  The capital cost is estimated based on a relation given by Sinnott (1996, ch.6.6) and the 

Lang factor is assumed to be two for the tank based on the cost breakdown prepared for the 

Carbon Trust (NIFES Consulting Group, 2007). 

 

The cost of grid electricity is approximately £50/MWh and biomass for the CHP plant costs 

around £15/tonne (Reilly, E., op. cit.).  Production of electricity from biomass in the UK receives 

a subsidy from a pool fund created by the main electricity producers, who are obliged by the 

Renewables Obligation to produce a share of their output by renewable means.  Electricity 

generated from biomass therefore receives a subsidy equal to the current price of Renewable 

Obligation Certificates (ROCs), which is currently around £34/MWh (OFGEM, 2008).  This 

means that the relative difference (opportunity cost) between consuming or extracting 1MWh 

steam from the CHP unit is around £80/MWh, which will be referred to as the total electricity 

price.  Onsite electricity generation from CHP units is also eligible for Levy Exemption 

Certificates (LECs), which mean that the Climate Change Levy does not apply to that electricity, 

but relative value of these certificates is small at around £5/MWh (OFGEM, 2007).  Other 

relevant economic assumptions are shown in Table 8-12. 

 

Annual projection rate, % 2 

Availability of CHP plant, % 95 

HEN annual maintenance (% of total project cost) 5 

Discount rate, % 5 

Table 8-12 – Economic assumptions 

 

8.7.3 Optimisation of the HEN 

The design of the existing HEN needs to be taken into consideration when excess heat is 

released in the process.  It is possible to reach the required outlet temperature of both mill 

heating water and warm water if heating banks in the AHR are connected in parallel.  The 

humid air can in theory supply the entire heat demand of the two streams, which is shown in 

Figure 8-12 for a mass flow of humid air of 33kg/s in the warm water HEX and 23kg/s in the 

heating water HEX.  The slope of the composite is determined by the heat capacity flow rate.  A 

reduction in the mass flow rate of humid air in the mill heating water HEX will cause the hot 

composite to cross the cold composite and the maximum heat transfer to reduce.  The economic 

effectiveness of the HEX depends on how much heat is recovered from the humid air, i.e. the 

outlet temperature, and the cost of the required additional heat transfer area.  
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The basic approach to optimise the HEN is to balance the heat demand and recovery in the core 

process.  A control volume is placed around each heat exchanger and the energy balance 

established by simultaneous solution of the equations by Engineering Equation Solver (EES).  

There are three free parameters in the system: the mass flow rate of the humid air to the warm 

water HEX, oWW,HA,m& (whereby the mass flow rate to the heating water HEX is determined by 

conservation); the mass flow rate of the effluent, effluentm& ; and the temperature difference across 

the wire pit and white water HEXs, HEXΔT (cf. Figure 8-4).  Based on the optimisation procedure 

these three variables are set at 24kg/s (i.e. 32kg/s in heating water HEX), 25kg/s and 15°C 

respectively.  The proposed HEN resulting from this optimisation is shown below in Figure 

8-13.  The reduction in steam consumption is 1.88kg/s, corresponding to a 15% reduction due to 

heat recovery from effluent and a higher outlet temperature of warm water in the AHR.  A heat 

balance of the hot filtrate water system and AHR shows the heat recovery from the humid air is 

4.38MW.  The outlet temperature of effluent must be 40°C in order to balance the heat demand 

of the mill heating water. 

 

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8 9

T
 (

°C
)

Q (MW)

Hot composite, Warm Water CHX

Cold composite, Warm Water CHX

Hot Composite, Mill Heating Water CHX

Cold composite, Mill Heating Water CHX

 
Figure 8-12 – Hot and cold composite curves for the warm water HEX for maximum heat recovery48  

 

The discounted payback period is very short, at approximately five months, and the investment 

cost of the project is small.  This shows that it is a very attractive investment to reduce steam 

consumption, because the equivalent increase in electricity production is economically valuable.  

The increase in electricity production in the CHP plant is 0.9MW, which corresponds to an 

increase in the electrical energy efficiency of approximately 3% (summer conditions).  

 

The heat recovery in the warm water HEX requires part of the humid air or warm water to be 

bypassed in order to ensure the cooling of the hot filtrate water in this HEX.  However, the 

                                                           
48 The inlet temperature of the hot composite is in reality 69°C but the dew-point temperature at approximately 55°C is 
used to estimate the required heat transfer area, as this gives a more realistic mean temperature difference for the 
average heat transfer. 
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system is less dependent on direct steam injection because the heat recovery in this HEX can be 

adjusted, according to changes in the supply and demand of heat in the hot and warm water 

system due to the existing installed heat transfer area in the AHR.  The mass flow rate of hot 

filtrate water in the warm water HEX can be reduced by approximately 35kg/s (1.8MW) before 

the heat recovery from the humid air is insufficient to meet the heat demand, given the 

assumed area of 1400m2.  The change in mass flow of hot filtrate water could be caused by 

increased heat demand in mill water HEX or wire pit HEX in periods with low tank level. 

 

 
Figure 8-13 – Schematic of modified HEN 

 

Investment costs (£million) -0.23 

Mill heating water HEX -0.15 

Tank project -0.08 

 

Revenue  (£million/yr) 0.59 

Reduced electricity cost 0.59 

Maintenance of HEX -0.00 

  

Discounted payback period (years) 0.40 

Simple payback period (years) 0.39 

 

Additional required heat transfer area (m2) 136 

Mill heating water HEX 136 

Warm water HEX 0  

(existing 959) 

Table 8-13 – Key economic criteria for proposed HEN  

 

The relative impact of the simulation parameters on the calculated payback period is shown in 

Figure 8-14.  The total electricity cost has the highest negative influence on the payback period, 

and a 40% reduction in this parameter (approximately equal to a situation without subsidised 

biomass to produce electricity) leads to a 60% increase in the payback period.  The cost per heat 
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transfer area is more important with regards to the payback period than the cost of a new tank.  

The discount rate is almost insignificant because the revenue is high relative to the investment 

cost.  Clearly the payback period is very sensitive to the reference cost of the heat exchanger, 

which in turn is heavily influenced by the exchange rate. 

 

If the assumed average humidity ratio of the humid air (WE = 140g/kg, DE = 130g/kg, dew-point 

55°C) is replaced with the lowest humidity ratio (WE = 120g/kg, DE = 110g/kg, dew-point 50°C), 

the payback period is not noticeably increased.  The outlet temperature of the humid air 

decreases by approximately 3.6°C and the inlet temperature of the humid air (dew-point 

temperature) decreases by about 5°C.  Overall, this requires a heat transfer area of around 

1355m2, which is still less than the existing heat transfer area.   
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Figure 8-14 – Sensitivity of payback period to key parameters for ∆THEX = 15°C and mHA,WW = 24kg/s 

 

In the case that it is not possible to use the effluent at 85°C it is still possible to balance the heat 

supply and demand in the core process.  This requires a modified HEN, which increases the 

heat recovery from the humid air.  The payback period for this HEN is around 1.65 years and 

the heat recovery from the humid air is approximately 9MW.  However, the additional required 

heat transfer area is significantly increased if the lowest humidity ratio of humid air is used 

instead of the average humidity ratio.  The investment cost in the project more than doubles, 

and the resulting payback period is 4.2 years.  It is therefore important to obtain a good estimate 

of the average humidity ratio of the humid air if additional heat recovery is required.  
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8.7.4 Critique of the methodology and suggestion for future work 

The main limitation of the methodology is the few measurements upon which the 

determination of the existing heat transfer area is based.  The fact that no data exists for the 

heating banks meant that estimates had to be made of both the heat transfer area and the overall 

heat transfer coefficient.  These estimates are subject to a degree of uncertainty, which could be 

reduced by obtaining more accurate data as proposed below.  The approximate method used to 

determine the overall heat transfer coefficient in the condensing heat exchanger is clearly 

influenced by the approximate determinion the specific condensation factor.  However, the 

estimate is used to determine both the existing heat transfer area and the required heat transfer 

area, which means that the systematic error is probably the same in both cases and a 

comparison of the existing and required areas is reasonable.  The accuracy of the heat transfer 

coefficient in the condensing heat exchanger is constrained by the limited data and 

documentation of AHR, which makes it impossible to make a better estimate without additional 

data.   

 

The heat recovery from the humid air is dependent on the humidity ratio, and it would be 

desirable to have more accurate measurements within the heating banks to support this 

analysis, especially if the heat recovery is increased in AHR.  Furthermore, the construction of 

AHR unit should be investigated to perform a more convincing determination of the overall 

heat transfer coefficient.  The staff at Caledonian Mill have not been able to address these issues 

yet due to the large workload associated with the new CHP plant.  They are keen to develop 

this study in the future, however, when more accurate data could be sought.   

 

Examples of process constraints were highlighted in section 8.4 that could lead to improved 

efficiency.  The pressing section should be investigated, because reducing the moisture content 

of the paper after the pressing section would result in steam savings, which have been proven 

to have a high value due to increased electricity production.  Furthermore, the strength of the 

paper is influenced by the pressing, so reducing the moisture content in this section could lead 

to less broke production and thus less recirculation of feedstock in the system.  

 

8.8 Conclusions and recommendations  

A pinch analysis of the warm and hot water system in Caledonian Paper Mill has been carried 

out based on measured and estimated data.  The average humidity ratio in the dry and wet 

ends of the dryer section of the paper machine was estimated based on measurements and 

conservation principles, along with some relatively minor simplifying assumptions.  The 

estimated average humidity ratio determined with a DNA model is in good agreement with the 

several measurements.   

 

The complete lack of information relating to the heating banks in the Aqua Heat Recovery 

(AHR) system meant that their overall heat transfer coefficient and heat transfer area had to be 

estimated using further assumptions.  The overall heat transfer coefficient was estimated based 

on the assumption that the thermal resistance of the cold side of the heat exchanger is negligible 



Chapter 8 – Process integration in a pulp and paper mill 
 

- 213 - 

compared to that of the hot side.  A condensation factor enables account to be taken of the 

mechanisms of sensible and latent heat transfer respectively.  The overall heat transfer area of 

the existing heat exchangers was estimated based on two measurements, with a deviation 

between the two of 15%.  The latter is probably due to the assumption that the two heating 

banks are identical being incorrect. 

 

Based on these results a pinch analysis and economic optimisation of the heat exchanger 

network (HEN) were carried out, which has shown potential for cost-effective improvements in 

the overall efficiency.  It is economically feasible to increase heat recovery from the pulp and 

paper process in order to balance the heat demand and thereby reduce the steam consumption 

by approximately 1.9kg/s or 15%, increasing electricity production by approximately 0.9MW.  

The recommended changes in the HEN based on the shortest payback period are to heat 

exchange the effluent from cloudy filtrate overflow with mill heating water and supply the 

required heat demand of warm water in the condensing heat exchanger.  The existing installed 

heat transfer area in the hot and warm water system and AHR is sufficient for the heat recovery 

as long as: 

 

• The temperature difference between hot outlet and cold inlet temperature in the white 

water HEX and wire pit HEX is approximately  15°C or higher; 

• The inlet temperature of hot filtrate water to the HEXs is as high as possible (87°C); 

• The inlet temperature of the warm water to AHR is as low as possible (18°C).      

 

The pinch analysis has shown that the latter two criteria are currently not fulfilled because 

warm water is currently heated before the AHR and the valuable heat content of the effluent is 

not exploited.  The proposed changes require a new heat exchanger for heat recovery of 

effluent, with a heat transfer area of 136m2, and a new hot filtrate water tank.  The total 

investment cost is estimated to be approximately £0.23million, and the reduced annual running 

cost due to increased electricity production is estimated at £0.59million.  The discounted 

payback period is thus approximately five months.  The proposed changes are intended to be 

implemented during scheduled maintenance of the paper machine in order to minimize the 

production loss.    
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9 Discussion  

The results from the three preceding chapters were discussed therein.  This chapter is concerned 

with drawing out generalisations from these results, as well as discussing and comparing the 

respective methodology employed in each case.   

 

9.1 Introduction 

The overall aim of this thesis has been to determine the extent to which it is possible to improve 

energy efficiency in industry, by employing techniques and insights from thermodynamics and 

economics.  The scope of this thesis as outlined in section 1.4 includes all manufacturing sectors.  

Hence the objectives as outlined in section 1.5 were to assess what improvements in energy 

efficiency are possible across all of these sectors.  However, the research process has highlighted 

obstacles to carrying out such a cross-cutting analysis of industry as a whole (as summarised in 

section 1.4).  One of these obstacles is the lack of willingness – or indeed requirement – of 

industrial firms to partake in studies of this nature.  Energy accounts for up to 50% of operating 

costs in industry (DTI, 1994, European Commission, 2006d, Eichhammer, 2004), which means 

that in most cases its use is professionally managed.  Combined with the fact that corporate 

studies relating to energy are subject to commercial confidentiality, this means that the data is 

not widely available to carry out detailed analyses of all sectors.  Another obstacle to a broad 

analysis covering all of industry is the associated compromise between detail and scope.  The 

data requirement increases at higher levels of disaggregation, whilst the coverage of the study is 

commensurately reduced (as discussed in chapter 4 and shown in Figure 4-1).  This thesis has 

therefore employed various levels of disaggregation, in order to reach a compromise between 

coverage and detail.  In chapter 5 industry was analysed from a macroeconomic perspective 

using a variety of indicators from thermodynamics and economics.  Chapter 6 subsequently 

employed thermodynamic (physical) methods to analyse heat use of whole sectors at the site or 

meso-level.  Finally, chapters 7 and 8 related detailed microeconomic case studies of individual 

industrial plants using thermodynamic and economic techniques.   

 

9.2 Generalisation of the results 

Chapter 5 demonstrated that macroeconomic studies are useful in retrospectively identifying 

the reasons for underlying trends.  Such top-down approaches are also able to estimate the 

systemic or sectoral potential for energy efficiency improvement through technological change 

in the long term, based on assumptions about future technological developments and market 

penetration rates.  These estimates are inevitably associated with a degree of uncertainty about 

the future, though, just as energy projections in the 1970s failed to foresee the massive 

reductions in energy intensity of the manufacturing sector since then (cf. Figure 5-11).  

Macroeconomic analysis is therefore limited in terms of understanding the mechanisms that 

actually cause industrial energy demand.  Whilst it is possible to decompose changes in 

demand into contributions from output, intensity and structural effects, the absolute demand at 
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any time is not very conducive to estimating saving potential.  This problem is similar to the 

one concerning TFP and its measurement discussed in chapter 2: it is possible to measure with 

reasonable accuracy changes in TFP over a given period, but this measurement does not 

actually explain the phenomena of technological change.  Furthermore, macroeconomic analysis 

of energy demand alone does not reflect the changes in output and product mix that can be 

understood through decomposition methods.  Hence why productivity measures are widely 

employed and were developed for industrial sectors in section 5.2.3, because they normalise the 

output onto some form of input.  Energy productivity reflects the efficiency of the production 

process, but in this case is still constrained by the issues surrounding the determination of 

suitable price indices discussed in section 4.2.  The consequence is that the output in GVA terms 

does not directly correspond to the physical output from these sectors.  This is the only way in 

which output can be aggregated though; if physical measures are used this is often not possible 

– the problem of “adding apples and pears”.  To develop more accurate energy intensity 

measures the level of disaggregation could be increased and physical measures employed.  This 

would be possible with production databases such as PRODCOM (ONS, 2006b) or the UNSD’s 

(2005) Industrial Commodities Database, but is constrained by the lack of energy data at the 

four-digit SIC level and below (the main source being ECUK, which has clear limitations as 

identified in section 3.1.1 and further discussed in chapter 6).  Even if the data were available 

and accurate at such levels of detail, energy intensity measures are also constrained by 

boundary conditions that are not always directly comparable between industrial systems 

(Tanaka, 2008).  The importance of boundary conditions will be discussed in section 9.3. 

 

It is perhaps not surprising that the majority of industrial sectors have lower energy 

productivities than the economy as a whole, but the fact that some industries have much higher 

energy productivities is less obvious.  The sectors to which this applies are electronics, motor 

vehicles and textiles.  These are known to be non energy-intensive sectors, but this is not the 

sole reason for high energy productivities.  Rather, the energy productivity is exaggerated 

because these sectors have relatively low energy demands and high value-added products.  This 

can be seen clearly by comparing these three sectors to the chemicals sector in Figure 5-8, which 

also produces high value products but has lower energy productivity due to its significantly 

higher overall energy demand.  In general all energy productivities in Figure 5-8 are increasing 

over time, reflecting the role of technological development (TFP), which has contributed most to 

the overall productivity growth in the industrial sector over the period 1981 to 2005 (cf. Figure 

5-9, p.95) by more than offsetting the large reductions in the labour force.   

 

Globalisation has also played – and is playing – an important role in the manufacturing sector.  

Although it has been one of the reasons why heavy industries have declined quite rapidly in the 

past few decades it has presented many opportunities for manufacturing.  The fierce 

competition in the form of cheaper labour markets is especially strong from China in industries 

where the UK was traditionally strong, including metals, chemicals and electronics (BDO Stoy 

Hayward, 2007).  Whilst a rapidly increasing volume of imports are sourced from China, it is 

also the destination of many manufacturing exports and has been the destination of many 

British firms which have seized the opportunity to relocate into cheaper labour markets.  The 
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global effect on industrial energy efficiency of the rapid growth in manufacturing in developing 

economies such as China is probably negative, though.  Industry in developing countries is 

known to be less efficient and it is here that much of the potential for systemic improvement lies 

(IEA, 2007, cf. section 5.6).  The probable effect on UK industry of relocation overseas is a 

reduction in energy demand, but this is not necessarily an improvement in energy efficiency 

because output has been commensurately reduced.  If the emissions associated with the 

manufacture of imports are accounted for, the UK’s CO2 emissions have in fact increased in 

recent years (Wiedmann et al., 2008), which contradicts national statistics on emissions.  It has 

been beyond the scope of this thesis to further quantify this affect for the manufacturing sector 

though. 

 

Globalisation also means that many industrial sectors are dominated by foreign ownership.  

This is now the case for the whole primary iron and steel sector as the Anglo-Dutch Corus is 

now a subsidiary of the Indian Tata Steel, the vast majority of the automotive industry, and 

much of the chemicals industry.  British defence companies such as BAE Systems and QinetiQ 

remain strong; in the case of the former this is largely due to a significant proportion of public 

funding from the government (The Economist, 2009a).  Energy efficiency should be easier to 

achieve in a manufacturing sector dominated by multinationals than one in which national 

companies prevail, because such large organisations are better able to implement horizontal 

measures in several countries at once.  The right incentives are required, however – in particular 

a high enough carbon price or fuel taxes – if energy efficiency is to be incentivised.  The 

disadvantage of global operations for energy efficiency is the flexibility it allows in shifting 

production between countries, which was shown to be one of the threats to the efficacy of the 

EU ETS in chapter 5.  The implication of this globalised manufacturing sector for the results of 

thesis will be explored in section 9.4 below. 

 

Another emerging macroeconomic trend is the gap that seems to exist in the innovation chain 

between early prototype and fully commercial stages.  This is particularly relevant to the 

manufacturing sector because it is one of the sectors most engaged in R&D activities aimed at 

technological development.  FES (2005) identified this gap for energy technologies in UK and 

concluded that many technologies are not sufficiently developed beyond the R&D stage.  The 

Environmental Innovations Advisory Group (EIAG) was established to address this and other 

issues relating to the innovation chain for environmental and energy-related technologies (DTI, 

2006a).  This problem is not just confined to the UK, however.  A similar trend across the EU has 

been referred to as the European Paradox (IPTS et al., 1998).  Europe in general has a strong 

scientific research base in universities and research institutes – which the DTI’s (2002c) 

Manufacturing Strategy also recognised for the UK – but the results of such research are not 

being turned into technologies.  The UK has a relatively low return on scientific investment, as 

measured by patents divided by business R&D expenditure.  Furthermore, there seems to be a 

lack of qualified graduates in certain areas and a weak link between industry and academia in 

some cases.  The latter problem was encountered in the research supporting this thesis, the 

focus of which was largely dictated by the willingness of companies and trade associations to 

engage, and the availability of data.  One way of strengthening the link between industry and 
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academia would be to shift the criteria of success away from outputs such as technical papers 

onto applied measures such as patents, patent citations and industry-targeted publications 

(DTI, 2000).  Another way would be to ensure applied research involves industrial and 

academic stakeholders as much as is feasible.   

   

Chapter 5 demonstrated that few industries are fully integrated, gypsum being one of the few 

(Entec UK Ltd., 2006a).  In many cases demand is driven by a small number of other economic 

sectors, including manufacturing itself.  Where these are manufacturing sectors, the goods are 

classed as intermediate, as they are subsequently processed further.  In fact, most of the energy 

intensive sectors in industry produce intermediate goods.  It is debatable whether or not 

construction is classed as a manufacturing sector; within this thesis it is not.  Nevertheless, 

much of the demand for products such as cement, glass, steel, aluminium and lime comes from 

the construction sector.  Similarly, much demand for steel, glass and aluminium comes from the 

automotive sector.  The exception is perhaps the chemicals sector, because it produces a large 

number of intermediate products that are mostly processed further within the sector.  The 

consequence of manufacturing output being used and often processed further in other sectors 

of the economy, is that this output has significant implications for the life-cycle energy and 

environmental impact of the use that it finally finds.  This means that decisions made at the 

design stage (in the manufacturing sector) have implications throughout the product lifecycle 

until, and even after, disposal.  This will be discussed in section 9.4 below. 

 

The characterisation of sectors discussed in section 5.2.2 is a useful means of understanding 

their energy-related activities.  The categorisation of sectors according the SIC (ONS, 2003), 

which is based on the type of products produced, is intended mainly for the organisation of 

economic production statistics.  For this task it is well designed, but for the present purposes a 

classification by output has several disadvantages.  Firstly, and most importantly, such a 

classification overlooks the type of processes (activities) being carried out by each sector.  By 

grouping similar products (materials) together one fails to distinguish between alternative 

production routes for the same product, as well as between primary and secondary processing 

methods (such as integrated iron and steelworks versus EAFs) with vastly different energy 

requirements.  Secondly, this categorisation does not consider the provenance of goods or the 

way in which they are processed through the economy.  For example, there is the well-known 

problem of double-counting, whereby intermediate goods are accounted for both in the primary 

processing sector and the intermediate sector which carries out further processing (Boustead & 

Hancock, 1979; Herendeen, 1973; Slesser, 1978; Spreng, 1988).  This is particularly important for 

secondary products; in the context of input-output tables Bullard and Herendeen (1975) cite the 

example of an aluminium industry producing castings as its secondary product.  The castings 

are transferred to the secondary products sector as a sale, but the input is not transferred.  This 

effectively means that the cost of the output has been counted twice, but the energy input has 

only been counted once.  It could be argued that industrial classifications are not required to 

differentiate between process routes because input-output tables serve this purpose adequately, 

but similar problems also relate to these tables.  If an industrial classification is to reflect the 

types of processes occurring, which is necessary in order to understand the energy demand of 
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individual sectors, then it needs to consider the stage at which that process occurs in the 

manufacturing life of the product.  

 

A particularly useful classification of industrial sectors for energy analysis is according to the 

homogeneity of the processes performed within them.  This method was proposed in chapter 5 

and used in chapter 6 to dictate the type of modelling approach employed (cf. Table 6-1).  In 

sectors that can be reasonably considered homogeneous the processes are the same or very 

similar at all sites.  Furthermore, the process within the site is also homogenous: one main 

product is produced by each site in the sector.  This simplifies analysis because it is possible to 

model a whole sector based on one site which is then scaled up, whereby a differentiation 

between technology and/or process types is required as in the case of cement and lime.  If the 

geographical distribution of the production capacity at individual sites is not required, and the 

national production capacity (or output) is known then reasonable estimates of the energy 

demand by these processes can be obtained through such an approach.  This method would 

ideally be based on the sector’s total production capacity (or output) and energy demand, 

which could then be used to derive an energy intensity or SEC for the process.  In the case 

where the total energy consumption is unknown at such a level of disaggregation, as was the 

case in chapter 6 for many sectors, the output/capacity data can be used alongside technology- 

or process-specific SECs from the literature, to obtain a reasonable estimate of the total energy 

use of the process. 

 

This SEC-based approach was mainly employed for heterogeneous sectors – that is, those that 

carry out many different processes.  The two main heterogeneous sectors of interest are food 

and drink and chemicals, but this definition only applies according to the current classification.  

That is, the processes occurring within three and even four digit SIC codes cannot reasonably 

considered as homogeneous.  An obvious way around this problem would be to disaggregate 

these two sectors further, until the processes can be considered homogeneous.  Even at the four-

digit SIC level of disaggregation, however, some of the sectors cannot be considered 

homogeneous.  An example is SIC 15.83, which is sugar manufacture.  This sector includes 

sugar manufacture from sugar beet as carried out by British Sugar at several locations and from 

sugar cane as carried out by Tate and Lyle at its London Thames refinery.  For the purposes of 

energy analysis the SIC classification clearly has limitations.  Several alternative classifications 

have been proposed as discussed in section 4.2, including a process-based one (Beyene & 

Moman, 2006).  If the chemicals and food and drink sectors are to be disaggregated into 

homogeneous sub-sectors, then an approach based on individual processes and capacity data 

similar to that employed in chapter 6 should be made (section 10.3 on future work).  

 

The limitations of macroeconomic analysis discussed above mean that more highly 

disaggregated approaches are required that take into account the specific processes occurring in 

each sector at the meso- and micro-economic level.  If overall demand is to be reduced, one has 

to concentrate on the manufacturing processes themselves, which dictate this demand.  Chapter 

6 showed that the energy intensive sectors are those with the highest heat demands, which is 

not surprising given that fuels by definition are used to generate heat.  The iron and steel sector 
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is the largest user of heat and also the sector with the highest estimated technical potential for 

heat recovery.  Apart from this sector, though, it is not generally the case that the heat recovery 

potential is proportional to the heat load.  In fact sectors with modest overall heat loads have 

significant heat recovery potential, which if normalised upon the number of sites suggests that 

the aluminium and cement sectors should be the primary focus.  In these sectors much of the 

proportion of heat that can technically be recovered by targeting one notional site is higher than 

in all other sectors apart from iron and steel. 

 

The technical heat recovery potentials identified in chapter 6 will in practice be constrained by 

economics, which is certainly the case for many of the technologies employed for the iron and 

steel sector (Lewis, B., Corus, pers. corr., January 2009).  If these measures are not cost-effective 

according to the criteria employed by industry, then they will not be taken unless some policy 

makes it necessary (or makes them economical).  The study was only intended to indicate the 

technical potential, however, and determination of the economic potential was considered 

beyond the scope.  It is difficult to generalise about the fraction of the technical potential that is 

currently economically feasible without more detailed studies.  As an order of magnitude 

estimate, it would probably be reasonable to assume that the economic potential is around half 

of the technical potential.   

 

The detailed case studies in chapters 7 and 8 both identified cost-effective savings for the sectors 

concerned.  The former is based on a typical glass container furnace, and the homogeneous 

nature of the sector means that the identified savings could reasonably be extrapolated across 

the whole sector.  Assuming there is a use on or off site for the recovered heat, heat recovery 

boilers could be installed at all similar furnaces, including flat glass ones.  Given that the total 

glass capacity in the UK is around 5,000t/d, and the furnace capacity used in the baseline 

analysis was 300t/d, the total savings across the sector could be estimated at ten times those 

resulting from one furnace.  Taking the data from Table 7-11, this corresponds to a power 

saving of around 30MW, which at a load factor of 85% corresponds to around 1PJ per year 

(around 5% of the sector’s total energy use).   

 

The pinch analysis and economic optimisation of the HEN in Caledonian paper mill is more 

difficult to generalise because of the specific nature of the HEN and the fact that Caledonian is 

the largest integrated pulp and paper mill in the UK.  The cost savings resulting from reduced 

steam consumption, which in turn leads to a higher electricity output from the CHP unit, are 

partly due to the Renewable Obligation Certificates (ROCs) received for the electricity and 

partly because of the offset cost of buying electricity from the grid.  Nevertheless, the estimated 

savings based on the optimisation of the HEN are significant, with a discounted payback period 

of five months.  It is not possible to quantitatively extrapolate such savings out across the 

industry because of the reasons mentioned above.  Considering that Caledonian was already a 

very efficient mill, however, it seems reasonable to assume that equivalent or greater savings 

exist elsewhere.  This is supported by the very large systemic savings potential identified in 

Table 5-3 for the sector.   
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Another interesting finding from the case study at Caledonian paper mill was that the company 

had a lack of data relating to their energy system.  The mill was built in 1989 by UPM, yet a 

significant amount of data required for the analysis in chapter 8 was not available (and 

therefore had to be estimated).  This is especially the case for the two banks of heat exchangers 

for the AHR system.  Not only was no online data available about actual operation of these heat 

exchangers, but UPM was not able to provide any data relating to the design and construction 

of the heating banks.  The implication is that energy efficiency was not the important 

management issue that it is today, and therefore the information relating to the heat exchangers 

was regarded as superfluous at some stage.  This illustrates the way in which energy efficiency 

is an entrenched management issue that is concerned with all aspects of a company’s 

operations.  Again, it is difficult to extrapolate such insights across the whole sector or even 

other industries, as they are somewhat anecdotal.  Nevertheless, evidence does indicate that 

lack of real-time data about energy systems is a real barrier to energy efficiency, as discussed in 

section 5.5 and confirmed by some other instances (e.g. Howe, S., Head Brewer, Sharp’s 

Brewery, pers. corr., December 2008).  

 

The two detailed case studies quantified the potential for economic energy efficiency 

improvement in two specific cases.  The meso-level analysis quantifies the technical potential 

for energy efficiency improvement in the majority of industrial sectors.  Hence these three 

studies together meet the original aim of this thesis, which has been to determine the economic 

and technical potential energy efficiency improvements across industry.  However, uncertainty 

remains about the degree to which it is technically and economically possibly to improve 

energy efficiency across the whole industrial sector – especially those sectors not analysed in 

detail here.  It has not been possible to quantify this precisely, for the reasons outlined above.  In 

order to quantify the improvement potential for a sector, detailed (i.e. meso- or micro-level) 

studies are required that consider the processes themselves and economic constraints on 

potential improvements.  It was beyond the feasibility and scope of this thesis to carry out such 

detailed studies for all industrial sectors.  This and related points will be taken up in the 

following sections that discuss the methodologies and areas for further work.  

 

9.3 Discussion of the methodologies 

This section discusses the advantages and disadvantages of the respective methodologies 

employed in this thesis, whilst bearing in mind that the choice of methodology is largely 

dependent on the energy system.  Pinch analysis is specifically intended for optimising heat 

exchanger networks (HENs) and would therefore not be very useful – or even applicable – in 

analysing a glass furnace, for example.  On the other hand energy and exergy analysis are 

generic techniques that can be (and have been) widely applied to diverse energy systems.   

 

The meso-level analysis in chapter 6 employed several related methodologies.  The level of 

aggregation and the data sources employed mean that the methodology is effectively a hybrid 

between process analysis (PA) and statistical energy analysis (SEA) – the unclear distinction 

between the two is discussed in Appendix A2.2.2.  Site level emissions data was employed 
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alongside process-specific SECs and capacities/outputs to quantitatively determine site level 

energy use.  In addition exergy considerations were used to qualitatively asses the temperature 

levels at which this energy (heat) is used and wasted.  The quantitative methodology based on 

CO2 emissions allocations is a robust, reliable method for determining the site-level energy use.  

Provided the emissions data is initially accurate, then the main inaccuracies in determining the 

energy use are introduced by the combustion emissions factor.  Some uncertainty remains in 

determining this value for specific sectors, namely non-metallic minerals, but this did not lead 

to significant errors overall compared to the data from the Climate Change Agreements.  

Relatively minor uncertainties are also introduced by the use of fuel splits for different sectors 

and the emissions factors for the fuels. 

 

The SEC-based methodology is clearly less accurate, but this was only employed for a small 

number of sectors (or parts thereof).  Uncertainties surround the choice of a suitable SEC value 

in some cases, especially where the process route or technology type is unknown.  Published 

output data should be reliable, but rated capacities are obviously less so, especially if used 

alongside load factors (which in some cases have to be assumed).  The errors introduced by 

these uncertainties might not be insignificant because the sectors (or parts thereof) modelled 

based on this approach account for approaching half of the total energy use in the model.  

However, the model’s results have been compared to two other data sources (Table 6-15), with 

a good agreement in one case and an excellent one in the other.  It is therefore very unlikely that 

significant errors have resulted from this approach. 

 

The thermodynamic quality aspects of this methodology are certainly less accurate, but they are 

only intended to be qualitative and do not affect the absolute value of the quantitative results.  

In the absence of relevant data on industrial energy use by temperature, the temperature 

demand profile was estimated across broad temperature bands.  Related to this is the way that 

electricity used for heat was overlooked, meaning that this heat demand was assumed to be met 

by fuels directly.  The heat recovery potential at temperatures below 100°C has probably been 

underestimated because of the way in which exhaust temperatures from boilers and steam 

systems were lumped together at 150°C.  This does not mean that the total heat recovery 

potential has been underestimated, rather that its distribution across temperature bands is 

imprecise.  Finally, the estimated heat recovery potential has probably been underestimated in 

some sectors, especially food and drink, pulp and paper and chemicals.    

 

Ideally the quantitative aspect of the heat modelling in chapter 6 would have been based on one 

data source, namely emissions allocations or SEC/capacity data.  The non-homogenous nature 

of the chemicals sector in particular meant that it was not feasible to model the whole sector 

based on a cross-cutting approach.  Such an approach was initially attempted, whereby the 

chemicals sector was broken down into several sub-sectors that could be considered roughly 

homogenous.  The problem encountered was that even these sub-sectors could not reasonably 

be considered homogenous, because although producing similar products they were not all 

carrying out the same process.  Furthermore, many sites produce more than one product, and 

therefore employ several distinct processes.  The only way in which these sites could be broken 
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down into homogeneous sub-units would disaggregate below the factory fence, by analysing 

individual processes.  This is effectively what was achieved with the SEC/capacity-based 

methodology, but it only considered the main products of a given site (in terms of energy 

demand).   

 

This meso-level analysis demonstrated that it is possible to model industrial energy use at the 

site level based chiefly on emission allocation data, with especially heterogeneous sectors 

supplemented based on and SEC/capacity based methodology.  In most cases this analysis was 

more accurate compared to the CCA TP2 results than the national statistics in this area, namely 

ECUK.  Langley (1984a) also found that his data was not in exact agreement with the national 

statistics on energy use in industry.  The implication is that an industrial energy database that is 

derived from the EU ETS has the potential to improve the accuracy of national statistics on 

industrial energy use for energy-intensive sectors.  The caveat is that the chemicals and food 

and drink sectors were less well reflected because of the difficulty in accounting for their 

heterogeneous nature.  Development of such a methodology to augment national statistics 

would therefore have to account for this and take measures to remedy it.  This or a similar 

methodology could be applied relatively easily to any other energy system or nation that has an 

emissions database relating to the EU ETS or similar emissions trading scheme.   

 

By applying exergy analysis to the glass furnace in chapter 7 it was possible to understand the 

thermodynamic quality of the energy losses and to differentiate between exergy losses and 

destructions.  The former occur when exergy crosses the system boundary (defined as a box 

drawn closely around the furnace superstructure in this case), whereas the latter are associated 

with irreversible processes occurring within the system.  In the case of the glass furnace, the 

main exergy destructions inside the furnace are due to the combustion of the fuel and heat 

transfer between the combustion products and the raw materials/molten glass.  These two 

processes could themselves be improved, but quantifying the degree to which this is possible 

was beyond the scope here.  In fact the chemical reaction of combustion is very efficient at 

around 95%; the majority of exergy destruction in combustion is associated with internal heat 

conduction within the process (Dunbar & Lior, 1994).  There is a trade-off associated with 

maximising the flame temperature whilst minimising the temperature gradient in the 

combustor (Som & Datta, 2008).  Also, the type of combustion system could itself be addressed, 

but unfortunately there is no other currently feasible method of meeting the exergy demand of 

this process (heat at 1500°C) than burning fuels49. 

 

The exergy analysis of the glass furnace therefore highlighted the areas where attention should 

be focussed to improve the existing system, namely the exergy losses through the walls 

(structural), and in the exhaust and molten glass respectively.  According to both the energy 

and exergy analyses the largest loss from the system is the enthalpy of the molten glass, 

followed by the enthalpy in the exhaust and finally the structural losses.  That is, the energy 

                                                           
49 In theory the demand could be met with electricity – in fact electric “boost” is used in some furnaces – but this is also 
based, indirectly, on combustion.  The current low generation and distribution efficiency of the electricity network do 
not make electrical heating thermodynamically attractive. 
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analysis led to the same conclusions in this case, and would have done without a consideration 

of exergy.  Hence why the focus was on the exhaust here, although improved insulation has 

also been shown to result in significant savings (Lax and Shaw, 1998).  Heat recovery from the 

molten glass was not considered feasible due to technical constraints discussed in chapter 7. 

 

Even though it considers the exergy destructions in the process, the exergy analysis leads to the 

same conclusions as the energy analysis.  There are advantages and disadvantages to the 

consideration of exergy destructions.  The advantage is that it enables the identification of the 

areas on which to focus attention and shows which areas (namely combustion and heat 

transfer) present little if any potential for improvement.  The disadvantage of this is that, 

wherever the energy system being studied involves combustion of fuels as so many currently 

do, there is inevitably a large exergy destruction.  The exergy destruction is the “penalty” paid 

for harnessing the exergy content of the fuel (that is, the chemical exergy) and being able to use 

it.  There are avoidable and unavoidable parts of this exergy destruction, so that by reducing the 

former, the size of this “penalty” can be reduced.  An example of an avoidable exergy 

destruction is the one resulting from non-optimal combustion conditions, such as non-

stoichiometric fuel to air ratios.  However, the majority of the exergy destructions associated 

with combustion are unavoidable, and are an inevitable consequence of employing such 

combustion equipment (Bejan et al., 1996, p.160).   

 

The consideration of these largely unavoidable exergy destructions is an important aspect of 

exergy analysis because it suggests where attention should be focussed, by excluding from 

consideration certain aspects of the system.  However, it means that the overall exergy 

efficiencies of a wide range of energy systems involving combustion are very low, especially in 

comparison to the energy efficiency.  This has been demonstrated by a diverse range of 

applications of exergy analysis as discussed in section 3.2.  On face value this low exergy 

efficiency might seem to suggest a large improvement potential, but in many in cases it is a 

direct and inevitable consequence of combustion.  Hence employing lumped energy and exergy 

efficiencies to indicate the thermodynamic improvement potential should be done with care if 

misguided interpretations are to be avoided.   

 

According to the analysis in chapter 7, the exergy destruction due to combustion and heat 

transfer accounts for almost half of the total exergy input to the process.  The exergy efficiency 

could probably not exceed 50% even in a technically optimal case, and could by no means 

approach the energy efficiency.  Even with the suggested heat recovery boiler installed in the 

glass plant, the exergy efficiency only increases to around 30%.  The exergy efficiency of a 

system should therefore not be interpreted as an indication of the improvement potential.  Van 

Gool’s (1992) concept of the improvement potential (Equation A21 in Appendix A2.2.3) is a 

useful indication of the thermodynamic potential, but it can never be achieved in practice.  The 

improvement potential for a system with low exergy efficiencies (large relative potentials) and 

large irreversibilities is large overall.  In many cases, however, the main reason for this 

apparently large overall potential is combustion.  The exergy efficiency should therefore be 

employed alongside the energy efficiency in order to gain an insight into the suitability of the 
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specific energy system in the meeting the energy service demand.  A good example of this being 

the case is in Bilgen’s (2000) study of several CHP systems.  He found the energy efficiency to be 

very sensitive to the heat to power ratio, but the exergy efficiency is only very weakly 

dependent.  Exergy analysis alone would not have revealed the whole picture in this case.  

 

Another issue with exergy analysis is that the exergy parameter itself relates to the potential to 

perform work and not heat.  Although the Carnot factor according to Equation A20 in 

Appendix A2.2.3 is dependent on the temperature, it actually determines the capacity of a 

thermal reservoir to perform work.  The application of exergy analysis to heating systems 

therefore results in low exergy efficiencies partly because these systems are generally not 

efficient at performing work.  Reistad (1975) cites the exergy efficiency of a large electric motor 

as over 90%, which is due to the fact that both exergy inputs (electricity) and outputs (work and 

heat) have high exergy contents.  Combustion systems that do not convert the high quality 

chemical exergy input into work therefore typically have lower exergy efficiencies, such as 

around 50% for large steam boilers and around 25% for internal combustion (petrol) engines 

(ibid.).    

 

Pinch analysis is a very useful method for the optimisation of Heat Exchanger Networks 

(HENs), as demonstrated in chapter 8.  In this particular case the pinch rules were unable to 

enhance the heat recovery because the pinch point is located at a high temperature and no 

streams are crossing the pinch point, which reflects the already efficient nature of the paper 

plant studied (NIFES Consulting Group, 2007).  Nevertheless, the economic optimisation of the 

HEN was able to identify potential savings because heating is employed below the pinch point.  

The graphical representation of the HEN via hot and cold composite curves and the Grand 

Composite Curve is a useful tool in order to understand the network, but it is generally not easy 

to optimise the system based on these diagrams.  Exergy analysis could have been used in this 

instance, but the exergy content of warm water at less than a 100°C is very low.  Furthermore 

this exergy content is virtually useless and the real exergy losses are caused by steam generation 

and consumption in the process.  If steam extraction at two different pressure levels was 

examined, exergy would be a more useful measure to compare the lost potential to perform 

work.  The main way in which the pinch analysis methodology could be improved would be to 

obtain more accurate data upon which it is based, as determined in section 8.5.3.  

 

The general applicability of exergy analysis is both a strength and a weakness.  It is a strength 

because the method can be applied to any energy system, but this generality has also been cited 

as one of the main reasons for its lack of application in recent years (Tsatsaronis, 1999).  Pinch 

analysis, however, is specifically applicable to HENs.  It cannot accurately be applied to other 

systems, including HENs incorporating heat pumps and threshold problems (Wall & Gong, 

1996).  The latter refers to the limiting case when the external heat input or output disappears, 

and the energy need is not affected by the horizontal position of the composite curves.  In 

exergy terms the position of the curves is important, though, because heat released at a high 

temperature is more valuable than that released at a low temperature.  Furthermore, pinch 

analysis can only deal with heat transfer processes – it does not consider pressure or 
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composition changes that are common in energy systems.  Several practitioners have compared 

the two methods by applying them to a proposed nitric acid plant to be integrated into an 

existing plant (Gaggioli et al., 1991 and Linnhoff & Alanis, 1991, cited in Wall & Gong, 1996).  

The energy (and cost) savings identified with the exergy analysis were much larger than with 

the pinch analysis, which seems to demonstrate that exergy analysis is generally much more 

powerful, as in this case it identified opportunities that pinch analysis could not.  In an attempt 

to retain the advantages of these two methods yet overcome the disadvantages, others have 

attempted to combine them.  Feng and Zhu (1997) have retained the visually appealing 

representation of composite curves with a quantitative consideration of exergy, by employing a 

quality-enthalpy diagram along similar lines as van Gool (1992).  The exergy composite curves 

further distinguish between avoidable and unavoidable losses (destructions), thus enabling a 

simple visual identification of the areas where attention should be focussed.  This method has 

been further developed by Anantharaman et al. (2006) to analyse process units with multiple 

inputs and outputs (as opposed to just one of each).  This revised approach is useful for giving a 

general feeling and understanding of the system as a whole, but does not give any explicit 

recommendations about integrating process units and overlooks the fact that not all process 

units involving energy level changes can be used for energy integration.  Another obvious 

disadvantage of energy-level composite curves is the additional data requirement; data relating 

to the chemical exergies of non-standard substances is not universally available.   

 

For all applications of thermodynamic techniques to analyse energy systems, the stipulation of 

the system boundary is crucial.  Particularly for industrial energy systems, very different results 

are obtained through the adoption of different system boundaries (Tanaka, 2008).  This means 

that the results from different studies are not directly comparable and that there is no common 

benchmark for comparison.  Energy and exergy analyses are likewise sensitive to the system 

boundary conditions, so these need to be defined with the objectives in mind.  For example, by 

drawing the system boundary closely around the glass furnace, the exhaust stream could be 

considered as a loss from the system as the molten glass also leave the system with a significant 

exergy content.  Similarly the system boundary meant that the temperature around the furnace 

could reasonably be considered to be at 25°C, which was used as the reference temperature.  A 

wider system boundary would have meant setting a lower reference temperature and would 

have resulted in the exergy loss from the molten glass perhaps becoming a destruction when it 

occurs inside the system.  In this case the interest was in the furnace itself though, and a wider 

system boundary would have complicated matters by having to account for fuel injection and 

mixing that were considered beyond the scope.  Perhaps more pertinent is the fact that the 

ultimate purpose of the furnace is to produce molten glass; high temperatures are required for 

the chemical reactions and melting, and the glass is required in the molten phase in order to be 

worked, after which it must be cooled rapidly.  When studying industrial energy systems it is 

therefore logical to determine the system boundary such that the output from the unit operation 

is also an output from the system (i.e. in the same form). 

 

In summary, the methodology employed depends very much on the specific energy system.  

One single methodology does not stand out as being particularly useful for all purposes, rather 
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the choice of method needs to be made based on the specific characteristics of the energy 

system.  In general pinch analysis is useful for optimising HENs.  Energy and exergy analysis 

are useful for all energy systems if used together, but care needs to be exercised when 

interpreting low exergy efficiencies.  Meso-level analyses based on CO2 or other emissions 

allocations are generally robust overall indicators of energy use.  For heterogeneous sectors, a 

SEC/capacity based approach is favoured because of its ability to reflect inter- and intra-site 

differences in processes. 

 

9.4 Limitations of the results 

Some of the limitations of the results have already been mentioned.  The first of these is the 

effects that globalisation has had (and is having) on the manufacturing sector.  The profusion of 

foreign ownership by large multinational companies means that in many industries British 

manufacturing represent only a small proportion of the company’s whole portfolio.  The 

consequence for the present work is that, by focussing on the UK, only one part of a much 

larger picture is considered.  Furthermore, by attempting to optimise the smaller system one 

overlooks changes in the larger one.  Companies shift their production capacity around 

according to global trends such as fluctuations in market forces, e.g. there is evidence that some 

cement manufacturers will shift production capacity outside of the EU if the carbon price within 

the EU ETS becomes high enough to make this economical (section 5.4).  Another reason why 

this focus on one nation’s activities is a limitation is that these companies are often not based in 

the UK.  Hence many decisions relating to production activities in the UK are made abroad; the 

arm of the company in the UK is not necessarily in a position to influence decisions that apply 

to the company as a whole.  This limitation does not directly affect the main findings of this 

thesis, but it does define the broader context in which they should be understood.  It also 

presents an important driver for the direction of future work in this area, which should not 

necessarily confine its scope to national boundaries.     

 

The second main limitation also relates to the scope of the work, but in time rather space.  The 

importance of the industrial sector in meeting demands in many other economic sectors was 

highlighted in chapter 5.  As well as making the industrial sector a crucial one, this also gives 

the sector much control over the environmental impact of products over their lifecycle.  

Decisions made at the design stage affect the energy demand of products in use as well as the 

ways in which they can be disposed of at the end of life.  Indeed, this is what energy labelling 

schemes and policies concerning the energy demand of products during the use phase are 

attempting to address (section 4.3.3.5).  Hence the limitation in this research is that it only 

considers the industrial processes that actually create these products, and not the wider context, 

such as the whole supply chain or lifecycle.  In the process of carrying out this research the 

feasibility of a lifecycle assessment (LCA) was investigated, and the conclusion was reached 

that it would not be possible to maintain such a broad scope whilst also considering the impacts 

of specific products over the lifecycle.  LCAs tend to be highly specific studies that attempt to 

answer specific research questions.   They therefore have large resource requirements and are 

associated with a trade-off between scope and level of detail as discussed above.  To incorporate 
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an LCA to the level of detail required would therefore not have been possible given the research 

constraints of this thesis.  For the future, though, it is important that the implications (especially 

for the use phase) of industrial energy systems are considered, and that the relationship 

between process or embodied energy and energy in use is better understood.   

 

A further limitation is that energy is only one factor of production.  By concentrating on energy 

one is arguably overlooking other considerations, which might require a system to operate sub-

optimally in thermodynamic terms.  In the broader context, whilst energy is currently playing a 

crucial role in making human activities unsustainable, it is only one aspect that needs to be 

considered in achieving sustainability.  As outlined in section 1.1, one of the common themes in 

the many definitions of sustainable development is the complexity of the interactions that need 

to be considered, in particular those associated with social, environmental and economic 

systems.  The implication for this thesis is that the industrial sector should be assessed from a 

sustainability- rather than just an energy-perspective.  Once again, the focus of the work was 

defined in the scope in chapter 1, and it would not have been feasible to carry out such a broad 

study given the resource constraints.    

 

Notwithstanding these limitations this thesis has met its aim through the application of several 

detailed cases studies, including macroeconomic analyses of whole industrial sectors, a meso-

level analysis of heat use in most sectors, an energy and exergy analysis of a glass furnace, and a 

process integration study of a pulp and paper mill.  These studies have quantified technical 

and/or economic potential for energy efficiency improvements in these energy systems as well 

as suggesting where further work should focus.  This chapter has generalised some of the 

results of this thesis, discussed the respective methodologies employed and highlighted the 

limitations of the results.  Attention is now turned to the final chapter of this thesis, which 

contains conclusions and recommendations for future work. 
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10 Conclusions and recommendations for future work 

This chapter contains the conclusions of this thesis, a statement of the contribution to 

knowledge and an assessment of the areas in which future work should be focussed.   

 

10.1 Conclusions 

The conclusions are related back to the original objectives defined in section 1.5 of the 

Introduction and are presented under subheadings of these objectives below. 

 

10.1.1 To discuss relevant approaches emanating from the fields of 

thermodynamics and economics, and to highlight the problems with 

the neoclassical concept of production. 

The discussion of interdisciplinary approaches in chapter 2 found many instances of techniques 

and insights being “borrowed” between thermodynamics and economics.  In most cases the 

borrowing has been by the latter from the former.  In general, the most successful of such 

approaches have involved the actual integration of two (or more) disciplines, such as is the case 

for the transdisciplinary field of ecological economics.  The problem with simply borrowing 

ideas is that they are liable to be taken out of context and therefore misunderstood or 

misapplied.  In many of the cases discussed, whilst there has been no real paradigm shift, it is 

exactly this application of ideas out of context that has enabled a different understanding of an 

existing problem.  The many problems of the neoclassical paradigm can be better understood 

from a thermodynamic perspective.  Apart from to suggest that the model should better reflect 

natural and physical constraints, though, these insights do not lead directly to a solution.  There 

appears to be a weak relationship between energy (and exergy) and value that is not strong 

enough to form the basis of a theory of value, at least not without a formal and quantitative 

investigation of this relationship.  

 

The discussion of economic growth, technological change and energy efficiency in chapter 2 

highlighted the way in which these concepts are closely related, and the ambiguity surrounding 

the relationship between them.  The standard neoclassical production model is inadequate 

because it fails to account for the essentiality of energy and other inputs, and finite nature of 

natural resources.  If the latter are incorporated into the production function, there is an implied 

growth drag which can only be ameliorated by technological change – within limits defined by 

the output elasticities of the respective inputs.  It also appears that the output elasticities given 

to energy and exergy in production functions is generally too low, showing that these inputs 

make significant contributions to economic growth – but the evidence is limited and 

contradictory in some cases.  Furthermore, technological change remains mostly elusive in 

models of production; it can be accounted for but not understood.  The S-E framework is a 

promising alternative, but it also suffers from a lack of empirical testing.   
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10.1.2 To review applications of thermodynamic and economic techniques to 

industrial energy systems. 

The literature review in chapter 3 found a lack of applications of statistical energy analysis 

(SEA) to industrial sectors in the past few decades.  This seems mainly due to the privatisation 

of ETSU in the 1990s (and the associated reduction in public funding for these activities) and the 

concomitant decline of heavy industries.  An exhaustive review of applications of process 

analysis (PA) to British industries was not carried out because of the large variation in processes 

across sectors and the resulting number and diversity of studies.  The fact that PA has been so 

widely applied is a testament to the useful insights it can provide into energy systems.  The 

transferability of PA studies between sectors and countries carrying out the same processes 

means that they need not necessarily be sector-specific.  In addition, the issue of commercial 

confidentiality was identified as preventing company- and site-specific analyses from being 

published.  In general there seems to be a lack of application of PA to the site level; mostly 

studies have focussed on the unit operation scale, which can be interpreted partly as an 

uncertainty in the distinction between PA and SEA.  The same trend emerges from applications 

of exergy analysis: it has been applied to macro and micro systems but not in between, which 

might be in part due to the availability of data at these two extremes.  Exergy analysis has also 

been widely applied to industrial energy systems, and has provided useful insights, but it 

should not be used in isolation.  Chapter 3 also highlighted the lack of data relating to industrial 

energy use in four specific areas, namely: highly disaggregated energy use by sector; data 

relating to end uses of energy; the distinction between electricity used for power and heat; and 

the temperatures at which energy is used (a so-called temperature demand profile). 

 

10.1.3 To define energy efficiency, discuss its measurement and associated 

problems, and to identify the means of increasing efficiency. 

The wealth of definitions and application-specific nature of the term “energy efficiency” was 

discussed in section 4.1.  The definition adopted for this thesis was the amount of 

product/output per unit of energy consumption, which is equivalent to economic productivity 

and is the reciprocal of the specific energy consumption (SEC) or energy intensity.  Section 4.2 

discussed the interdisciplinary ways in which energy efficiency can be measured.  There are 

essentially two means of measuring output, through economic and physical measures 

respectively.  Physical indicators are generally preferable because they overcome problems 

associated with price fluctuations.  In practice the choice of indicator is constrained by data 

availability, however, as well as the disadvantage that physical measures cannot always be 

aggregated.  Section 4.3 identified the main ways in which energy efficiency can be increased, 

namely through behaviour, technology and policy.  The former are mainly concerned with 

energy management – implementing systems to better manage the existing infrastructure.  A 

successful energy management system relies as much on a company’s organisation and culture 

as on technical measures.  There is anecdotal evidence of its application, which suggests that it 

is not universally employed.  Technology is the next stage on the energy hierarchy (section 1.3), 

and includes widely employed energy systems such as steam, combustion and motors, as well 
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as process-specific technologies.  A wide variety of energy technologies are available; only the 

ones associated with ubiquitous industrial systems were identified in chapter 4.  The third way 

of achieving energy efficiency is through public policy measures.  The policies especially 

relevant to energy use in industry were reviewed in section 4.3.3, which concluded that the CCL 

and CCA package are effective, but that other policies are ineffective.  In particular, only a small 

proportion of the savings identified by the Carbon Trust are being realised, the EU ETS does not 

appear to have achieved emissions reductions within Europe, and the government’s 10GWe 

target for GQCHP by 2010 will almost certainly not be met.  

 

10.1.4 To identify drivers for and barriers to increased energy efficiency, 

including theoretical frameworks and empirical evidence. 

The theoretical framework for drivers and barriers was presented in section 4.4.1 and empirical 

evidence for these drivers and barriers was discussed in section 5.5.  The theoretical framework 

assists in understanding the complex nature of barriers to energy efficiency uptake in industry.  

It classifies barriers into economic market barriers, economic market failures, organisational and 

behavioural barriers, whilst recognising that many barriers fall into multiple categories.  The 

distinction between the first two types of barrier is somewhat ambiguous, however, because 

real markets are neither perfect nor efficient.  The empirical evidence suggests that the most 

significant market barriers are those of hidden costs and access to capital, which have been 

often cited in the literature as reasons given (e.g. in energy audits) for not undertaking energy 

efficiency measures.  Of the market failures, imperfect information appears to be by far the 

strongest barrier, as well as one which might benefit from a public policy intervention.  There is 

significant systemic potential for increasing industrial energy efficiency if these barriers can be 

eliminated.  The potential is highest in ubiquitous energy systems such as steam, motors and 

CHP, as well as in key sectors such as, for example, iron and steel, chemicals, pulp and paper, 

and food and drink.  There is very little evidence for the rebound effect in industry; the 

available evidence suggests that the effect is small in this sector.   

 

10.1.5 To analyse the industrial sector from a macroeconomic perspective, 

using a variety of interdisciplinary tools, in order to determine and 

understand current and historical energy trends.  

The macroeconomic analysis of the industrial sector in chapter 5 determined the baseline 

against which changes in energy efficiency are measured.  The sector’s shift towards services 

activities was highlighted as both a continuation of a broader trend that has occurred since 

industrialisation began and as reason for the misrepresentation of the sector’s performance in 

national statistics.  The sector as a whole has demonstrated drastic reductions in energy 

demand through energy efficiency in the last few decades, largely motivated by the oil price 

hikes in the 1970s.  Significant improvements in productivity were made at the same time, 

whereby technological developments have more than offset the large reduction in employment 

in manufacturing.  Analysis of the energy and carbon trends in individual sectors reveals a 
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large diversity across industry.  In general the vast majority of carbon emissions from industry 

are combustion emissions, but the fraction of process emissions varies by sector.  Attempts to 

characterise sectors were made based on energy end uses, energy productivities, and overall 

energy demand.  A classification of sectors based on the degree of process homogeneity was 

proposed, within which the food and drink and chemicals sectors are the most diverse.   

 

International trade is very important for the British manufacturing sector, which in general 

exports high value goods and imports lower value ones.  Consistently higher levels of trade are 

undertaken with countries inside rather than outside the EU.  The highest levels of trade occur 

within the automotive, electronics, chemicals (especially pharmaceuticals) and basic metals 

sectors, which are all high value added sectors.  In the international context, many sectors are 

dominated by foreign ownership, which is especially the case for the iron and steel and 

automotive sectors.  A case study of the European cement sector suggests that the EU ETS is not 

functioning as desired and that, ironically, if it becomes more effective, there is a threat of 

carbon leakage outside Europe.  Solutions to this problem include a multilateral international 

emissions-trading scheme and/or carbon taxes or import quotas on cement imported from 

outside Europe.  The potential for short term energy efficiency improvement in the cement 

sector is marginal.  In the long term new technological developments will be required to 

achieve drastic reductions in carbon emissions by the sector, including Carbon Capture and 

Storage (CCS) and higher-power cements. 

 

10.1.6 To estimate the long term potential for energy efficiency 

improvement through systemic optimisation. 

Chapter 5 also estimated the potential for long term improvements in industrial sectors, mainly 

by focussing on the ubiquitous technological systems discussed in section 4.3.2.  Motor and 

steam systems are estimated to have energy efficiency improvement potentials of 20% and 10% 

respectively.  The scope for improving combustion systems in the long term is unknown, 

mainly because these systems are so diverse.  There is little consensus about the potential for 

CHP in industry, although DEFRA (2007a) suggested an additional economical potential for low 

to medium temperature industry in 2010 of 5.4GWe, rising to 6.8GWe in 2015.  There is also an 

estimated 1.4GWe potential in high temperatures industries by 2010, especially refineries and 

LNG terminals (ibid.).  The scope for long term, systemic energy efficiency improvements is 

largest in the basic metals, chemicals, pulp and paper, food and drink, and non-metallic 

minerals sectors.     

 

10.1.7 To apply relevant methodologies to industrial energy systems in order 

to determine the short term technical and/or economic energy 

efficiency improvement potential 

Three industrial energy systems were analysed using relevant methodologies in chapters 6, 7 

and 8.  Chapter 6 relates to a meso-level, spatial analysis of heat demand and technical recovery 
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potential at industrial sites, which also incorporated a qualitative consideration of the 

thermodynamic quality of the heat.  The technical heat recovery potential based on commercial 

technology was estimated for the industrial sector, with an emphasis on energy-intensive 

industries.  Around 60% of industry has been covered in terms of energy use, and 90% of 

energy-intensive sectors.  The total annual heat load for these sectors was estimated at 650PJ, 

with technically feasible annual savings in the region of 36-71PJ (10-20TWh).  This is in 

agreement with the lower of the only two extant estimates for heat recovery from industrial 

processes, which are 65PJ (18TWh) and 144PJ (40TWh) respectively.   

 

Chapter 7 presents a general model of an industrial glass furnace, which enables energy and 

exergy balances to be performed over a range of furnace loads, batch recipes, cullet contents 

and temperature regimes.  The model shows a good correspondence with published data and a 

sensitivity study has shown that its behaviour is within the expected theoretical limits.  A waste 

heat recovery boiler is recommended and an investment appraisal suggests that this is an 

economically feasible investment with a discounted payback period of fourteen months and a 

net present value of £2.7million (IRR of 88%).  A heat recovery boiler is a very suitable economic 

means through which to increase the energy efficiency of the sector.  The energy saving for this 

particular furnace running at 300t/d is 239GJ/d (i.e. 0.80GJ/t glass produced), which is based on 

a boiler efficiency of 50%.  If such heat recovery boilers were rolled out across the sector as a 

whole, and every furnace has a use for the recovered heat, then the total saving potential might 

be ten times this figure, based on the total operational capacity of the sector and a utilisation 

factor of 85% (Table 7-1 and footnote 40).  In theory large scope for improving the systemic 

energy and carbon efficiency of the glass sector is possible through increasing the recycling rate, 

but this is limited in practice by barriers such as the colour and quality mismatch between the 

domestic supply and demand for cullet.  Whether these barriers can be overcome will depend 

on many factors, including the price of the raw materials (especially sand and soda ash) and 

fuels (mainly natural gas), as well as the development of the carbon price within the EU ETS 

and the changing market environment.   

 

Chapter 8 reports a process integration study of a pulp and paper mill.  A pinch analysis was 

carried out in conjunction with an economic optimisation of the heat exchanger network (HEN) 

in the paper machine.  It was concluded that excess heat from the grinders could be recovered 

and recycled into the process (paper machine), thus replacing direct steam injection.  Steam 

consumption in the process can be reduced by 1.9kg/s or 15%, leading to an increased electricity 

production from the CHP plant of 0.9MW.  The recommended changes in the HEN based on the 

shortest payback period are to heat exchange the effluent from cloudy filtrate overflow with 

mill heating water and supply the required heat demand of warm water in the condensing heat 

exchanger.  The proposed changes require a new heat exchanger for heat recovery of effluent 

and a new hot filtrate water tank.  The total investment cost is estimated at approximately 

£0.23million, and the reduced annual running cost due to increased electricity production is 

estimated at £0.59million.  The discounted payback period is approximately five months.  This 

potential cannot be extrapolated across the pulp and paper sector because the plant studied is 

one of the few integrated mechanical pulp and paper mills in the UK.  However, the fact that 
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this potential was identified in an already very efficient plant suggests that the same or 

additional potential probably exists elsewhere in the sector.   

 

10.1.8 To discuss the results of these detailed studies and the suitability of 

combining their respective methods in the wider context of the 

preceding chapters. 

The discussion in chapter 9 highlighted several ways in which the results from this research can 

be generalised.  The characterisation of industrial sectors leads to the conclusion that, as far as 

possible, sectors should be disaggregated until they can reasonably be considered 

homogeneous.  This greatly facilitates energy analysis, because the unit of analysis is common 

in all cases and can be applied to other industrial systems.  Furthermore, it was suggested that 

the SIC is perhaps not the most suitable classification for the purposes of energy analysis, and 

that a more suitable one could be defined to better facilitate this. 

 

The discussion of the methodologies in section 9.3 found that the methodology employed 

depends very much on the specific energy system.  One single methodology does not stand out 

as being particularly useful for all purposes; rather the choice of method needs to be made 

based on the specific characteristics of the energy system.  In general pinch analysis is useful for 

optimising HENs.  Energy and exergy analysis are useful if used in conjunction for all energy 

systems, but care needs to be exercised when interpreting low exergy efficiencies.  Meso-level 

analyses based on CO2 (or other) emissions allocations are generally robust in determining 

energy use and could easily be applied to other energy systems, such as sectors or countries.  

For heterogeneous sectors, a SEC/capacity based approach is favoured because of its ability to 

reflect inter- and intra-site differences in processes. 

 

10.1.9 To discuss the limitations of this research.  

The limitations of this research were discussed in section 9.4.  They mainly relate to the scope of 

the work in space and time.  The global nature of the manufacturing sector, where foreign 

ownership is common, means that national boundaries are not necessarily the best way of 

defining the limits of the system in space.  Also, the large impact of decisions made at the 

design stage on the environmental performance of products is a strong motivation to consider 

products over their complete lifecycle.  The relationship between embodied or process energy 

and energy demand during use therefore needs to be better understood.  Finally, there is a 

weakness is focussing on energy as the sole parameter upon which to optimise a system.  

Although a single definition of sustainable development has not been consensually adopted, 

one common thread in many definitions is the consideration of multiple facets, in particular 

social, environmental and economic.  In addition, there are often reasons why a system is 

required to operate in a thermodynamically sub-optimal way.  The industrial sector therefore 

also needs to be assessed from an holistic sustainability perspective rather than just based on 

energy considerations. 
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10.2 Statement of contribution to knowledge 

This section outlines the contribution to knowledge of this thesis, in each case by highlighting 

the contribution and explaining its original aspect. 

 

I. The review in chapter 2 merges diverse areas of thermoeconomics by clarifying and 

summarising the shortcomings of the neoclassical paradigm as well as ways in which 

they might be overcome.  

II. The review in chapter 3 identifies the areas where industrial energy analysis needs to 

focus, in particular relating to developing more accurate data; 

III. The interdisciplinary macro-economic analysis of the industrial sector employs various 

indicators to bring previous studies up to date.  It’s novel aspects include: 

i. The determination of energy productivity indicators by sector, which are not 

available in national statistics and have not previously been published; 

ii. The estimation of carbon emissions (combustion and process) by sector, which 

are not available in national statistics; 

iii. The characterisation of industrial sectors using various metrics and the 

proposition of a classification based on the degree of process homogeneity;  

iv. The case study of cement sector in the context of the EU ETS, which provides 

primary evidence that the EU ETS has been ineffective in emissions reductions;  

v. The collation of empirical evidence for barriers and drivers to energy efficiency; 

vi. The development of a meso-level database drawn from various sources, 

including data on companies, production capacities,  and locations for all 

sectors, which was not previously available; 

IV. The analysis in chapter 6 quantifies the heat use and technical recovery potential for 

industrial sectors, whilst considering the spatial distribution and thermodynamic 

quality of the heat, which had not previously been done in such detail; 

V. Chapter 7 quantifies the energy and exergy flows in a British glass furnace and 

provides a useful benchmarking tool in the context of the EU ETS; such an analysis had 

not previously been published; 

VI. Chapter 8 applies pinch analysis and economic optimisation to a specific British pulp 

and paper mill, identifying economical savings and demonstrating the suitability of the 

method in this application; the scope for improvements in the warm and hot water 

system at the mill were previously unknown; 

VII. Generalisation of the above three studies to provide an indication of the energy 

efficiency improvement potential at other sites and/or in other sectors. 
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10.3 Recommendations for future work 

Based on the discussion above, several potential areas have been identified, where future work 

relating to industrial energy efficiency should be focussed.    

 

• Relating to chapter 6: 

o Quantify the economical fraction of the technical heat recovery potential; 

o Refine the temperature profile and clarify the specific exhaust temperatures; 

o Develop the SEC-based methodology to cover all rather than a fraction of 

heterogeneous sectors; these sectors could also be disaggregated into 

homogeneous sub-sectors and data collated or production capacities; 

o Include the Environment Agency’s Pollution Inventory dataset, which includes 

all industrial sites (as opposed to those over 20MWth in the EU ETS); 

• Those sectors that have not been studied in detail should be analysed and the potential 

for economic energy efficiency improvements quantified, with a particular focus on the 

chemicals and food and drink sectors because of their heterogeneous nature; 

• Several aspects of the database could be developed, including the relationship between 

R&D spend and GVA per sector, and more disaggregated energy productivities; 

• Investigate the split between electricity used for industrial heat and power applications; 

• Investigate the relationships between embodied energy and/or carbon and the position 

in a product’s manufacturing lifecycle (Roberts, 1982), and between process energy and 

energy in use of products – that is, what effect(s) changes to the manufacturing process 

have on the energy in use, and vice versa; 

• Quantify the effect that the blurring of the distinction between manufacturing and 

services activities is having on national output statistics; and 

• Adopt more holistic approaches, which include a broader geographical scope, a 

consideration of product lifecycles and multifaceted sustainability criteria. 

 

10.4 Closing statement 

This thesis has quantified the technical and economic potential for industrial energy efficiency 

improvement in several sectors, which can be intra- and inter-sectorally generalised to a degree.  

It has also demonstrated the distinction between long term, systemic improvements through 

widely employed technologies and short to medium term, sector- or process-specific measures, 

and the need to employ bottom-up studies to identify the latter.  In order to realise either type 

of potential, public policy is required to overcome market-related barriers.  In particular, the EU 

ETS and the Carbon Trust could be improved, and the there is additional scope for mandatory 

efficiency standards relating to motors and industrial boilers.  Organisational and behavioural 

barriers mean that energy efficiency also has to be an integral part of a company’s strategy in 

order to be effectively achieved, but overcoming these types of barriers rely mainly on firms 

themselves rather than external policies.  Future work should focus on heterogeneous sectors 

such as chemicals and food and drink, as well as the broader implications of globalisation and 

the trend towards service activities on British manufacturing. 
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