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Abstract

Over the course of this thesis we will build and develop a model for the dynamics of an
environmentally transmitted disease such as cholera. We will also develop methods to
analyse and understand that model. The dynamics of a disease in a heterogeneous de-
veloping world city have not yet been fully explored, particularly when those dynamics
are a�ected by a natural disaster. Yet, natural disasters such as �oods alter infras-
tructure and population characteristics in a manner that a�ects disease transmission.
Therefore, we shall address this omission from the literature. We will also develop a
novel model analysis framework for `systems epidemiology' where we combine systems
biology techniques with epidemiological modelling.
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Chapter 1

Introduction

1.1 The problem

A natural disaster is a disruption of the human ecology which exceeds the community's

capacity to adjust so that external help is needed.

Nathalie Floret et al. [45]

Natural disasters can have a number of causes and rami�cations. From climatic events
to geophysical hazards, natural disasters have drastic impacts on human populations
around the world. However, it is not only the event itself which causes devastation
but the consequent epidemics that a disaster can facilitate. As we see in �gure 1.1, all
injuries account for only 9% of deaths globally whereas communicable diseases account
for 11% [138]. Of those disease-related deaths, the majority are a result of diarrhoeal
diseases, shown in �gure 1.2.

Figure 1.1: The three causes of death in 2015 as projected by the World Health Organ-
isation [138].

Therefore, we will examine the e�ect of natural disasters on diarrhoeal or environ-
mentally transmitted diseases. Section 1.2 details how natural disasters can facilitate
environmental transmission. Section 1.3 describes one of the most prominent envi-
ronmentally transmitted diseases: cholera. Cholera is responsible for 1.5% to 7.8% of
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Figure 1.2: The percentages of global deaths due to communicable diseases in 2015 as
projected by the World Health Organisation [138].

diarrhoeal-related deaths [140], most recently as a result of the dramatic epidemic in
Haiti, which was, in turn, facilitated by the preceding earthquake.

We will now examine natural disasters and their e�ects.

1.2 Natural disasters and environmentaly transmitted dis-

eases

Environmentally transmitted diseases such as cholera can be strongly a�ected by the
conditions of the habitat and host population. We will mention works where the sea-
sonality is included when modelling the transmission of cholera [30]. This is because
factors such as temperature and rainfall are known to a�ect environmentally transmit-
ted disease spread throughout the year. When the variation in environmental factors
is more extreme, we would also expect a greater change in disease transmission. It
is for this reason that we examine the e�ect of natural disasters on environmentally
transmitted diseases.

We will focus on climactic natural disasters such as �ooding as they have a strong
e�ect on environmental disease transmission. However, they also have consequences
in common with other disasters such as population displacement and infrastructure
damage. For example, in the two weeks following the Indian Ocean tsunami, 85% of
children under �ve in the Aceh district experienced diarrhoea [23]. Therefore, insight
gained into the e�ect of climactic disasters may be useful for other events.

Floods are the most common type of natural disaster [4, 96]. They account for
more than half of natural disasters between 2001 and 2010 [38]. Flooding can increase
the risk of environmental transmission [127, 33, 139, 4]. This additional risk is partly
as a result of contamination of drinking water and food by �ood waters [139, 111].
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However, population displacement can also contribute to disease transmission when
temporary shelters are overcrowded and lack su�cient sanitation or potable water.
Indeed, the combined e�ects of diarrhoeal diseases, malnutrition, measles and acute
respiratory infections account for 60-95 % of reported deaths in displaced populations
[97]. Flooding may also have secondary e�ects. In some cases water puri�cation and
sewage treatment are disrupted when power supplies are lost due to �oods disturbing
the infrastructure and utilities of a population [96, 139].

The e�ects of natural disasters in general are more pronounced in less economi-
cally developed countries [4, 136, 123]. For instance, 70% of all �ood-related deaths
occur in India and Bangladesh [96]. The factors that can contribute to the increased
severity of the e�ects of natural disasters and ensuing epidemics are a higher number
of pre-existing diseases, an insu�cient level of immunisation in the population, higher
population density or less e�ective utilities and infrastructure [97]. An example of these
factors in�uencing the severity of an epidemic following a natural disaster can be seen in
Haiti. The infrastructure was already vulnerable before it was weakened by the violent
earthquake [85]. Then, once the population was disrupted and utilities were stretched
and damaged, the outbreak of cholera was devastating, claiming 8700 lives by 2014 [85].

In the future, severe weather events are likely to continue and have the potential to
worsen with climate change [4, 22]. As a result of this, and for reasons such as changed
habitable regions, the impact of water-borne diseases are also likely to be exacerbated.
Health developments and mathematical modelling can be used to formulate and assess
strategies to cope with diseases in the light of a changing climate. WASH (water, san-
itation and hygiene infrastructures) procedures, although controversial, have already
bene�ted many individuals. For instance, in Haiti, cholera incidence in displaced pop-
ulation camps has been surprisingly low due to intervention measures [44]. However,
research into optimal control strategies is still needed for diseases in�uenced by extreme
weather events as, for all the success stories such as the camps in Haiti, there are still
many situations, including that of the rest of Haiti, that could be improved with better
resource management and deployment.

1.3 Cholera

Cholera is a gastrointestinal disease whose etiological agent is Vibrio cholerae [30]. The
bacteria colonize the small intestine and produce an enterotoxin which stimulates water
and electrolyte secretion by intestinal endothelial cells [60]. It leads to �uid loss and
profuse diarrhoea which, if left untreated, can be fatal in hours. There are more than 200
serogroups with 01 and 0139 most commonly epidemic. The World Health Organisation
(WHO) estimates that there are approximately �ve million cases of cholera each year,
leading to 120,000 deaths [140]. Epidemics of cholera, and other diarrhoeal diseases,
often follow �ooding and other natural disasters when drinking water is contaminated
and sewage management is disrupted. It is mostly developing countries that are a�ected
[22, 71, 132, 136, 139, 33, 4, 96].

Cholera is transmitted environmentally and is commonly water-borne, although it
can also be transmitted through contaminated seafood and directly through faecal-oral
routes. V. cholerae is also a natural part of the aquatic environment and can colonize
some shell�sh [92]. Susceptible individuals may be infected by ingestion of contaminated
food or water. Once infected, they produce bacteria which can be in a short-lived hyper
infectious (HI) state and the cycle continues [60].

There are a number of interventions for cholera from preventative measures such as
sanitation to reactive controls such as vaccination. In many cases, cholera can be treated
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by oral rehydration salts, ORS [44]. These can be rice-based and contain supplements
for zinc and vitamin A. There was found to be a 23% fall in mortality due to cholera
when zinc supplements were provided and, as vitamin A de�ciency is a common result
of cholera leading to eye lesions, it is bene�cial to combine treatments in this form.
However, the storage of ORS can a�ect its e�cacy and needs careful monitoring [44].

When cholera cases are moderate to severe, individuals may need intravenous rehy-
dration �uids, antibiotics or reactive vaccination. Antibiotics such as doxycycline and
tetracycline reduce the duration of infection and the amount of bacteria shed [113, 6, 44].
They can, in extreme cases, cut shedding by half. However, there are concerns about
antibiotic-resistant strains of cholera. In Haiti, from �ve commonly used antibiotics:
doxycycline, azithromycin, nalixic acid, sul�soxozole and ciprofoxacin, only two antibi-
otics are e�ective, doxycycline and azithromycin. Therefore, there are limitations on
antibiotic use. The WHO suggests antibiotics should generally be reserved for severe
cases.

The most commonly discussed medical intervention for cholera is vaccination. There
are two main types of cholera vaccine, Dukoral and Shanchol [92, 47, 44, 5, 137]. Dukoral
was developed in Sweden and licensed for over 60 countries at $6 a dose [44]. It is
based on heat killed whole cells of V.cholerae 01 and a bacterial toxin subunit. It is
administered in two doses, one week apart. The immunity given by Dukoral lasts up
to two years and its e�ectiveness wanes over this period. It works by stimulating the
production of antibacterial and antitoxin antibodies in the host. Shanchol works in
similar manner to Dukoral but does not include bacterial toxin and retails at less than
$2. It allows for a higher retention of immunity over time but is initially less e�ective
than Dukoral. Both vaccines confer herd immunity including the protection of children
too young to be vaccinated. As such, the WHO suggests vaccination should be used,
in conjunction with other measures, in cholera endemic areas.

Lastly we consider the treatment of the environment to reduce cholera transmission.
Cholera is a disease related to poverty and is generally not seen in more economically
developed countries [127]. As such, adequate sanitation and water treatment are ex-
tremely e�ective measures against cholera spread. In less economically developed coun-
tries, particularly after natural disasters, WASH procedures are the �rst step in cholera
control [47, 127]. These include point-of use water treatment and hygiene promotion.
Measures within households can reduce diarrhoeal outbreaks by 30-50% and even just
e�ective hand-washing can reduce risk by up to 47% [22, 44]. Other methods employed
within households are those of cloth �ltration, solar disinfection and chlorination. Sari
cloth �ltration was found to reduce cholera incidence by up to 48% [127]. Whereas solar
disinfection, where a transparent container is exposed to sunlight in order for the UV to
kill unwanted microbes, reduces the odds of cholera infection in children by up to 88%.
The chlorination of wells and vessels of water can be problematic. Well chlorination
can fail to reduce the contamination to su�ciently safe levels and within vessels there
is always the issue of recontamination. The choice of container can reduce this issue
with narrow necked containers such as sorai limiting the possibility of recontamination.
One study compared just chlorination with use of a sorai initially �lled with decontam-
inated water and found a reduction in cholera incidence of 75 % for the sorai compared
to 58% for chlorination [35]. A �nal consideration for intervention is education. How-
ever, this is an ine�ective measure if there are not the resources available. For instance,
in Haiti there were extreme shortages of soap therefore the promotion of hand-washing
was redundant [44].

Several mathematical modelling studies have examined the e�ects of these control
measures on cholera epidemics, we shall examine some of them now.
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1.4 Environmental transmission modelling to date, cholera

as an example.

We have conducted a literature review for cholera models or maps. The genealogy of the
works examined are shown in �gure 1.3 and are by no means a complete collection. In
order for the review to be tractable we have omitted discrete time models and models of
other environmentally transmitted diseases. Some excluded works are those of Pascual,
Koelle and Chao [106, 105, 77, 28]. We shall now elaborate on the developments in the
works shown in �gure 1.3.
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In 1854 there was a dramatic outbreak of cholera in London. The epidemic started in
late August and claimed around 600 lives. Dr. John Snow, a medical doctor who was 41
at the time, conjectured that the disease was spread by water. This was a controversial
theory as the belief at the time was that cholera was spread by `bad air' [104]. However,
Snow persevered with his theory, using death registry data and personally visiting the
homes of 658 cholera victims to build up evidence [1]. He used his collected information
to draw the Broad Street map of cholera victims, shown in �gure 1.4. This map and
Snow's theory were enough to convince the authorities to remove the handle from the
Broad Street pump which Snow posited was the source of the epidemic. After this point,
the epidemic declined although some argue that the epidemic had already peaked by
this point [25, 1].

Snow conjectured that cholera was water-borne and caused by small `organised
matter' [25]. Unfortunately he never heard Fillipo Pacini's description of the V. cholerae
bacillus in 1854. Nor did he hear of germ theory as he died just �ve years after the
London outbreak. Now, he is hailed as one of the �rst individuals to suggest cholera is
water-borne and to employ spatial mapping to �nd control strategies.

Figure 1.4: John Snow's map of cholera victims in London, 1854 [90]. The black squares
indicate numbers of victims at each address.

Possibly, the �rst use of di�erential equations to model cholera was by Capasso and
Paveri-Fontana [26]. They used two di�erential equations, one to describe the bacterial
population in the sea, x1, and one to describe the human infected population, x2. The
equations are as shown in (1.1):

d

dt
x1 =

(
f − 1

lb

)
x1 + a12x2,

d

dt
x2 = Nβpf(x1)−

x2
lh
. (1.1)
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Here, lh denotes the duration of infection in the human population, lb denotes the
lifespan of the bacteria in the environment and f denotes the fertility rate of the bacteria.
Parameter a12 is de�ned as a growth rate due to the infected hosts, we would now call
this a shed rate. The humans are infected through eating contaminated seafood and
p denotes the probability that a human will eat a `raw snack'. The human population
size is given by N and parameter β is the probability that an individual is not immune
to cholera and can therefore be infected with probability f(x1). In order to characterise
f(x1), Capasso and Paveri-Fontana de�ned g(x1) = Nβpf(x1) and de�ned the model
as a Cauchy problem. This allowed them to show the model has a unique solution and
assign g(x1) such that the force of infection is an increasing function of x1 and saturates
to Npβ. However, they then rede�ned the force of infection as a21x1, a linear term with
a21 a infection rate.

Capasso and Paveri-Fontana de�ned a parameter, θ, as the transmission terms over
the duration of infection. We would now call θ the basic reproduction number, R0. They
used this term to divide their phase space analysis between the disease free and endemic
equilibria and found that θ was a threshold for stability of the endemic equilibrium.

Lastly, Capasso and Paveri-Fontana compared their mathematical model with the
data from the Bari epidemic of 1973. They did this by assuming that only a fraction of
their modelled population exhibited symptoms and de�ned a hospitalisation rate based
on this fraction. They found that their modelled hospitalised numbers re�ected those
from the epidemic and suggested that the intervention strategies used, sewage chlorina-
tion and regulation of mussel consumption, were e�ective. Finally, they suggested that
the construction of the sewage plant could annihilate the disease entirely.

Thus, in 1973, not only did Capasso and Paveri-Fontana design one of the �rst dif-
ferential equation models of cholera but they also compared it to data, suggested control
strategies, evaluated those controls already implemented and derived a term amounting
to the basic reproduction number. Another notable achievement in this paper was the
inclusion of asymptomatic infection which we found was not revisited in cholera models
until the work of King et. al in 2008 and that of Pascual [105].

The most commonly cited cholera model is the work of Codeço. She extended the model
of Capasso and Paveri-Fontana by including the susceptible class in order to study long-
term dynamics. She also altered the force of infection term [30]. The model of Codeço
was not only a generalisation of the work of Capasso, but also far more accessible and
thus more widely cited, see �gure 1.3. The model itself is shown in equations (1.2)
where S, I and B represent the number of susceptible individuals, infected individuals
and concentration of V. cholerae in the aquatic reservoir respectively. The infected
individuals account for all infections, symptomatic and asymptomatic, although Codeço
states that only 1-30% of V. cholerae infections become severe.

dS

dt
= n(H − s)− aλ(B)S,

dI

dt
= −aλ(B)S − rI, (1.2)

dB

dt
= B(nb−mb) + eI.

The human birth and death rates are denoted by n and the total human population
size, H. Susceptible individuals are exposed to the contaminated environment at rate
a and are infected with probability λ(B), shown in (1.3). Infected individuals recover
at rate r and contribute bacteria at rate e. Lastly, nb −mb represents the net growth
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of V. cholerae in the aquatic environment. The force of infection is represented by a
logistic dose response curve:

λ(B) =
B

K +B
, (1.3)

where K is the concentration of V. cholerae in the environment that yields a 50%
chance of catching cholera. This means that the probability of infection given contact
saturates as the concentration of bacteria in the environment becomes very large.

Codeço used this model to examine the conditions for cholera-free populations as
well as situations where cholera is epidemic or endemic. In the cholera-free population,
all individuals were assumed to be susceptible and there are no bacteria in the envi-
ronment. She found that the disease, if introduced, would only become an outbreak
if the number of susceptible individuals was above a critical threshold. This thresh-
old was proportional to the shed rate, half-saturation constant, recovery rate and net
growth rate of the bacteria. This means if the sanitation is good the critical number of
susceptible individuals would have to be larger to allow an epidemic. She also derived
the critical shed rate for an epidemic to occur which depends on the critical susceptible
number. This allowed Codeço to suggest prevention measures for cholera outbreaks.
These included: minimising water contamination and consumption of contaminated
sources and the dilution of cholera diarrhoea to render the dose ine�ective.

In the case of the population with epidemic cholera, the number of susceptible
individuals is assumed to be higher than the critical outbreak threshold. Codeço derived
an expression for R0 and simulated an epidemic in this situation. The epidemic declined
when the susceptible pool size fell below the critical threshold.

The �nal case was where cholera was endemic in the population. The size of the sus-
ceptible population was once again above the critical threshold but the growth rate was
also larger. Therefore, cholera returned successively to the population. Codeço derived
terms for the endemic population sizes and the equilibrium number of infected individu-
als in the population as a fraction of the surplus population. Codeço conducted stability
analyses and found the endemic equilibrium to be stable for small perturbations.

Codeço also examined seasonal variation through the contact rate, shed rate and
net growth rate of the bacteria. This is because cholera epidemics in endemic regions
are often associated with climactic events. She conducted simulations with each rate
in turn a sinusoidal function of time. When the contact rate varied, periodic dynamics
were seen with an annual peak. When the shed and net bacterial growth rates varied,
there also occurred an annual cholera peak.

Codeço's model, whilst simple, was a step forward in understanding outbreak thresh-
olds and the seasonality of cholera. It paved the way for many of the more complicated
models to come with its easily adaptable framework.

Following the model of Codeço; Hartley, Morris and Smith used novel laboratory �nd-
ings to adapt their model by the inclusion of a hyper infectious, HI, state for the bacteria
[60]. It was found that passage of V. cholerae 01 Inaba El Tor through the human host
increases the infectivity of the bacteria. However, this increase in infectivity was short-
lived; around �ve hours after shedding, V. cholerae return to their usual state. Hartley
et al. used this HI state to explain the quick transmission seen between humans in
cholera outbreaks. The model of Hartley et al. was an extension of Codeço's where the
bacterial compartment was divided in two to account for the di�erent states of infectiv-
ity. This meant that susceptible individuals were either infected as a result of coming
into contact with `normal' bacteria or with those recently shed, in which case the prob-
ability of infection was higher. They derived an expression for R0 and compared the
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relative contribution of the two types of bacteria. They found, for their parameter set,
that the HI bacteria were around �ve times more important than the `normal' bacteria.

Hartley et al. also used simulations initiated from disease-free steady state to exam-
ine the e�ect of HI bacteria. They found the epidemic occurred sooner and had a higher
peak when bacteria had a HI state. They also examined the situation where the HI
and non-HI bacteria made equal contributions to R0 i.e. there was proportionally less
contact with the HI bacteria than non-HI. They found the epidemic still peaked sooner
when bacteria had an HI state and supposed that the HI state drove fast dynamics.

In the model by Hartley et al. the HI state was in�uential for two reasons: those
bacteria recently shed are closer to humans and therefore more in�uential and the HI
state is such a signi�cant competitive advantage over other bacteria that they are more
epidemiologically signi�cant. The competitive advantage was a result of adaptation to
the host, HI state bacteria were better at surviving within, and being shed by, the host.
They do mention the reliance of the model results to the parameter set, particularly
the contact rates with HI and non-HI bacteria which are di�cult to estimate. However,
the inclusion of HI bacteria will still a�ect dynamics to some extent.

Where Hartley et al. focussed on the bacterial states, Bertuzzo et al. examined the
e�ect of river networks [15]. They included the river networks as they are corridors for
bacteria to move between populations of hosts.

Bertuzzo et al. de�ned an environmental matrix which contained information about
a directed graph representing the river network. Nodes on the graph represented human
communities and each had a direction based on the �ow. They used an adapted form
of Codeço's model for each node and included deaths due to cholera. They used the
work of Pascual et al., omitted from �gure 1.3 as they focused on time-series models, to
inform the evolution of the volume of water hosting the bacteria [106]. This scaled the
shed rate at each node by the local water volume which was proportional to the node
host population size for large populations. For smaller populations, the water volume
was kept at a constant value. They modelled the spread of V. cholerae as a biased
random walk process and derived a term for `node vulnerability'.

Bertuzzo et al. applied their model to a case-study of the 2000 epidemic in KwaZulu
province, South Africa. They used data on the river network and settlements to set-up
their model. They found the most a�ected nodes were those of intermediate size. They
theorised that this was because larger settlements are more developed and have better
sanitation. Bertuzzo et al. also included seasonality through the net growth of the
bacteria in the aquatic environment.

The model developed by Bertuzzo did well at approximating the two outbreaks in
KwaZulu province, as well as the spatial spread. However, it may be improved with
the inclusion of HI bacteria or seasonality in epidemiological parameters. Yet, it was
the �rst model to accurately examine the e�ect of spatial factors on cholera spread.
This model is used extensively in the works following. Namely those of Bertuzzo et al.,
Righetto et al., Rinaldo et al., Gatto et al. and Mari et al.. We shall examine these
works as they appear chronologically.

Another step forward in cholera modelling was the inclusion of asymptomatic infection
by King et al. [75]. They also included the loss of immunity and compared their results
to 50 years of mortality data from 26 districts in Bengal. However, they did not include
an environmental reservoir explicitly. The inclusion of waning immunity was motivated
by the work of Koelle et al. which was omitted from �gure 1.3 as they used discrete time
models [77]. King et al. �tted their model to data in each of the districts. They found
that immunity waned on a scale of weeks to months rather than years and that the
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ratio of asymptomatic to symptomatic cases was far higher than previously thought.
They also suggested that the reservoir of bacteria was responsible for comparatively
few cases. The rami�cations of these results are that there may be a higher level of
immunity in a population with endemic cholera but that immunity is short-lived and
less a�ected by the bacterial reservoir than previously suggested.

King et al. examined three models. Their inclusion of asymptomatic infection was a
new and important step in matching modelling outcomes with reported cases in cholera
endemic regions.

From 2009 onwards, we begin seeing the earlier works combined and reused to quantify
and qualify intervention strategies and predict future epidemics. Before examining
them in more detail, we summarise the similarities and di�erences between the models
in table 1.1.

Table 1.1: Summary of characteristics for models published from 2009 onwards that are
featured in �gure 1.3.

First author Year Model characteristics Reference

Bertuzzo 2009 Spatial with bacteria movement [16]

Miller-Neilan 2010 HI bacteria [93]
Waning immunity
Interventions
-Rehydration
-Antibiotics
-Vaccination
-Sanitation

Righetto 2010 Partial di�erential equations [112]
Spatial with bacteria and human disper-
sal

Tien 2010 Direct and environmental transmission [129]

Tuite 2011 Haiti [131]
Direct and environmental transmission
Spatial with human movement
Interventions
-Clean water
-Vaccination

Bertuzzo 2011 Haiti [17]
Spatial with bacterial movement
Interventions
-Clean water
-Vaccination
-Sanitation

Mari 2011 Haiti [86]
Spatial with bacterial movement and
human movement through gravity
model
Asymptomatic infection

Mukandavire 2011 Zimbabwe [91]
Direct and environmental transmission

Mwasa 2011 Waning immunity [92]
Interventions
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-Education
-Antibiotics
-Vaccination
-Quarantine

Andrews 2011 Asymptomatic infection [6]
Waning immunity
HI bacteria
Interventions
-Antibiotics
-Clean water
-Vaccination

Rinaldo 2012 Spatial with bacteria and human move-
ment

[113]

Asymptomatic infection
Waning immunity
Two aquatic reservoirs

Gatto 2012 Spatial with bacteria and human move-
ment organised by disease state

[51]

Asymptomatic infection
Waning immunity

Shuai 2013 Star shaped network of patches [122]
Bacterial movement
Intervention
-Vaccination

Eisenberg 2013 Spatial with human and bacterial move-
ment

[41]

Waning immunity
Direct and environmental transmission
Interventions
-Vaccination
-Clean water

Ochoche 2013 Intervention [99]
-water treatment

Njagarah 2013 Spatial with human migration [95]

Shuai 2014 Spatial with shared water source [121]
Interventions
-Water treatment
-Isolation
-Vaccination
-Clean water
-Sanitation

Mari 2015 Model comparison [85]

Table 1.1 summarises the model characteristics of the works from 2009 to date shown
in �gure 1.3. We shall now discuss them in further detail.

Bertuzzo et al. revisited their spatial model in 2009 to examine the e�ect of network
topology on cholera travelling waves. They examined four network types, one and two
dimensional lattices, Peano's network and an optimal channel network (OCN). The
travelling wave varied across the di�erent network structures. Bertuzzo et al. derived
analytical expressions for the wave speed for the two lattices and computed the speed
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numerically for the more complicated networks. They found that cholera spread more
slowly on the more realistic Peano and OC networks. When bias was included, similar
to a �ow on a river, they found two waves emanating from a single infected node,
each with a di�erent velocity. They also noted the necessity to compare local epidemic
time-scales for those of spreading to qualify the usefulness of spatial models.

This work was purely an exploration of the network topologies. However it does
attempt to quantify the usefulness of spatially structured models.

Miller Neilan et al. used the work of Codeço, Hartley and King to develop a model of
cholera including asymptomatic cases and HI bacteria [93]. Their aim was to �nd op-
timal intervention strategies including rehydration, antibiotic prescription, vaccination
and sanitation. First, they conducted a sensitivity analysis using Latin Hypercube Sam-
pling. They checked the monotonicity of epidemic characteristics such as the epidemic
peak, asymptomatic epidemic size and total epidemic size with the model parameters.
In all cases they found a monotonic relationship and could therefore use partial rank
correlation coe�cients (PRCC) to quantify the relationship between input and output,
see chapter two for PRCC method. They conducted this analysis before and after
the addition of intervention to the model and found that the ratio of symptomatic to
asymptomatic cases, contact rates and shed rates were the most in�uential parame-
ters. When intervention measures were added, they found vaccination was the most
in�uential control.

Miller Neilan et al. applied costs to infection and control with model parameters
from Bogra and Calcutta in order to use Pontryagin's Maximum Principle to �nd the
optimal strategies over time. They found that di�erent strategies were required for
each of the communities and that a combination of control measures is more successful
than just one. Finally they emphasised the importance of combining prevention and
treatment to minimise a cholera outbreak.

This paper was an extensive examination of intervention strategies in a homoge-
neous population. The mechanisms are the focus here and as such we can gain valuable
insights into e�ective methods of control. However, including a spatial aspect would
allow more complicated strategies and we could ask about the best strategy over space
as well as time.

Righetto et al. focussed their attention on cholera movement down a linear stream
through PDEs for which they found travelling wave solutions [112]. They worked with
the model used in Bertuzzo et. al 2008 and 2009 and examined how the inclusion of
human di�usion changed the model dynamics. They found that if a small number of
infected individuals were placed at a node two travelling waves occurred, one forward
or progressive, and one backward or regressive. They compared their work directly to
that of Bertuzzo et al. in 2008 with the parameters as those from KwaZulu province.

This is a notable addition to the bacterial transport model from Bertuzzo et al.
in 2008 where human movement is directly accounted for. However, modelling human
movement through di�usion over such a large area cannot be expected to replicate the
commuting and gravity-based movement one would expect to �nd between settlements.

The main development produced by Tien and Earn was the speci�c inclusion of two
transmission routes, direct and environmental [129]. They added a water compartment
to a SIR model to model the concentration of bacteria in the environment. However,
they did not have a saturating force of infection due to the bacteria, rather they included
a mass action term: bWWS where bW is the contact rate with the water. They compared
the thresholds, R0, between the SIWR model and that of an SIR model and examined
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the stability of the disease free and endemic equilibria. They found that the multiple
transmission routes vary in importance as the bacterial lifespan and contact with the
environment change. However, they discuss the necessity for the aquatic compartment
when modelling water-borne infections.

Tien and Earn do not include the dose-response term for contact with the contami-
nated environment. Therefore their model implies that the probability of infection given
contact with the aquatic reservoir is linear with respect to the bacterial concentration.
This serves their purpose of comparison with an SIR model well. However, it may be a
simpli�cation that loses some of the interesting dynamics with respect to the bacterial
concentration.

In October 2010, cholera was reported in the Artibonite region of Haiti after an absence
of 100 years [28, 85, 131]. It came nine months after a catastrophic earthquake which
damaged the already poor infrastructures for healthcare, water and sanitation, see
section 1.2 for a discussion of disasters and disease spread. As of December 2014,
the epidemic had claimed 8700 lives and there have been 72000 cases [85]. It spawned
a number of cholera research papers, as did the 2008/09 Zimbabwean cholera outbreak
which, by Aug 2008, had 98585 cases and 4287 deaths [91]. The global cholera cases
until 2013 are shown in �gure 1.5.

Figure 1.5: WHO graph of cholera cases over time [142].

One of the �rst papers to focus on Haiti was that of Tuite et al. [131]. Tuite et al.
worked with Tien and Earn in extending their model to the 10 Haitian departments
through the use of a metapopulation model. Their aim was to assess three vaccination
strategies: equal distribution between the departments, distribution proportional to the
population size and an `optimal' simulated distribution. Their model included human
movement but no bacterial transport and no dose-response curve for environmental
transmission. They found the best strategy was the simulated distribution but, due to
the limited number of doses available and the time it takes to distribute vaccine, the
bene�ts of vaccination were modest. However, they also found to arrive at the same
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bene�t through clean water provision, 1.7 to 2 times as many people would need to
receive water than vaccine.

The model in Tuite et al. covers the entirety of Haiti and is divided into ten patches.
Yet, there is no examination of the bacterial transport in the water between patches.
The only movement is through contact of hosts with the environment of other patches.
However there is also no shedding of individuals in other patches despite this contact.
Therefore the dynamics of the bacteria in the environment are almost overlooked in
this model. This may a�ect how well the clean water provision is assumed to work and
skew the optimal strategy toward vaccination.

Bertuzzo et al. returned to spatial modelling of cholera epidemics in light of the epidemic
in Haiti [17]. Their aim was to predict the spatial evolution and e�ects of intervention
on the outbreak. They divided Haiti into more than 500 communities and used the
model de�ned in their previous works on the higher resolution model. Once again, only
bacteria moved with a probability based on the distance between nodes and the local
community sizes. They compared vaccination and preventative measures such as clean
water provision and sanitation. They found all to be very e�ective at limiting future
cholera cases. However, vaccination, if applied early and in large enough doses, could
have a more immediate e�ect on the epidemic.

In a similar manner as with Tuite, we question whether there would be a loss of in-
formation when the movement of one of the populations in the model is omitted. Here,
Bertuzzo et al. omit all human movement in a model that covers the entirety of Haiti.
Whilst the bacterial movements are well de�ned, it is unclear whether the omission of
human movement has a�ected the optimal strategies.

Mari et al. adapt the model used by Bertuzzo et al. by including human movement.
They examine cholera in the KwaZulu province of South Africa and assume humans
gravitate towards larger settlements [86]. In this case, infected individuals shed bacteria
at home and asymptomatic infected individuals shed at home and at other nodes they
visit. They simulated the cholera dynamics in KwaZulu province and found their model
predicted the spatial and temporal dynamics well. They also conducted a sensitivity
analysis on the model outcomes and found most variance when the parameters quanti-
fying availability of clean water and toilet facilities were altered. Mari et. al considered
the model without human movement and found the cholera was then limited to the
hydrological catchment it originated from. As such, models with human movement un-
derestimate the spatial spread of cholera. Finally, they included intervention measures
such as sanitation and access to clean water. They found that targeting large communi-
ties with interventions was not as e�ective as either a spatially homogeneous approach
or focussing on the communities with the worst sanitation. They emphasised the impor-
tance of the correlation between population distribution and hygiene conditions when
planning optimal control strategies.

The model of Mari et al. accounts for both human and bacterial movement. As
such, it predicts the dynamics well in KwaZulu province and gives a good insight into
possible intervention bene�ts.

Mukandavire et al. focussed on the 2008/09 cholera outbreak in Zimbabwe in their work
[91]. They incorporated both direct and environmental transmission routes which they
termed fast and slow transmission respectively. They �tted their model to each of the
ten districts of Zimbabwe separately and estimated the basic reproductive numbers for
each population and divided it by direct or environmental transmission. They found R0

to range between 1.11 and 2.72 for the di�erent districts. In the majority of situations,

19



most of this value was produced by the direct transmission even without the authors
including a HI bacterial state. They used these reproduction numbers to estimate the
vaccination coverage threshold for each district.

The work by Mukandavire et al. focussed on each district separately without includ-
ing interaction or movement between each area. As such, we may consider this a work
of ten homogeneous populations. The aim was estimate reproduction numbers and it
would be interesting to see if spatial coupling between districts a�ected those estimates.

The subject of intervention strategies had been discussed by previous works shown in
�gure 1.3. However, Mwasa and Tchuenche were the �rst to include education as a con-
trol strategy [92]. They added new compartments to the SIRSB model for vaccinated,
educated, quarantined and treated individuals in a homogeneous population. The ed-
ucated individuals were assumed to have better hygiene, report their infection more
readily and cooperate with quarantine. The immunity of vaccinated individuals was
assumed to wear o� over time and they assumed that the system was initially disease
free. They examined the stability of the disease free equilibrium and looked at the e�ect
of each intervention on the basic reproduction number. They also conducted sensitivity
analyses and simulations including seasonal variation in the contact and shed rates.
They found education, vaccination and treatment all reduced R0 and adopting inter-
ventions concurrently signi�cantly a�ected the e�ective reproduction number. They
emphasised the bene�ts of good preventative measures and suggested that treatment
and education may be most e�ective in an outbreak.

The work of Mwasa and Tchuenche examines some of the e�ects of sociological dif-
ferences in the population as well comparing a range of intervention strategies. It is a
very theoretical work which may a�ect the robustness of the results in prediction. How-
ever, it does throw up questions about education which have been otherwise overlooked.

Andrews and Basu used the work of Codeço, King, Hartley and Miller-Neilan to quantify
the e�ect of intervention in Haiti [6]. They simulated the e�ects of clean water projects,
vaccination and expanded antibiotic use on future cholera case numbers. Currently
antibiotics are only suggested for severe cases accounting for less than 10% of cases;
Andrews and Basu considered extending this to half of the moderate cases. They found
provision of clean water to be the most e�ective measure as it would avert 105000 cases.
However, all three interventions used together could avert 170000 cases so a combined
strategy is optimal in their case.

Andrews and Basu examined projections of cases for Haiti in the general population.
The lack of spatial structure may a�ect the timespans involved as the whole population
is not homogeneously mixed. However, the bene�ts of extending antibiotic use for mod-
erate cases could be a very important consideration for future policy and intervention
strategies.

In the work of Rinaldo et al. they compared four studies of the Haitian cholera epidemic,
Bertuzzo, Andrews, Tuite and Chao. They also include waning immunity and the e�ect
of rainfall in their �nal model [113]. They noted that Andrews and Basu overestimated
the cases in the epidemic which Rinaldo at el. attribute to lack of inter-departmental
movement in their model. Rinaldo et al. also suppose that Tuite et al. would overesti-
mate the number of cholera cases in the long run as they omit asymptomatic cases in
their model. Rinaldo et al. adapt the model from [17] to account for loss of immunity
and assume that rainfall may a�ect contamination rates and/ or washout of defecation
sites. They tested four models, two of which divided the environmental reservoir into
that for the sewage system and that for drinking water, and �tted those for the data
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of Haiti. They found the best ranked model, through AIC, and used that to model the
data from Haiti and stress the importance of mathematical modelling in general.

Rinaldo et al. comment on four di�erent cholera models with respect to Haiti.
They arrive at the conclusion that spatially structured models such as those developed
by Bertuzzo et al. are most e�ective. However, the explanation behind this could be
that they, Rinaldo, Bertuzzo and Mari et al. understand the scope for spatial modelling
to a greater extent as it is their chosen method.

Gatto et al. utilise the model of Rinaldo et al. once more to show that local reproduction
number thresholds need not be greater than one in order for an outbreak to occur [51].
The aim was to determine onset conditions for a cholera outbreak in Haiti and KwaZulu
province, South Africa. They linked outbreak patterns to the dominant eigenvector of a
reproduction matrix, the dominant eigenvalue of which was the generalized reproduction
number. These patterns were con�rmed through an examination of the case-studies of
Haiti and KwaZulu province. They found that even if local reproduction numbers were
less than one in all communities, the disease may spread and human mobility may
favour disease onset.

The model in Gatto et al. was tried and tested in the case studies of Haiti and
KwaZulu province. Humans move under a gravity model and bacteria �ow along Peano
networks. This level of detail pays dividends when compared to outbreak data. How-
ever there may be other considerations for disease onset.

In contrast to the previous works, Shuai, Tien and van den Driessche focused on a very
speci�c formation of patches, a star [122]. They included bacterial transport between
the central hub and peripheral patches or `leaves'. They also derived type reproduction
numbers which are local reproductive numbers for each patch. Shuai et al. wished to
know whether one should vaccinate the hub or the leaf. They found that one should
vaccinate the hub if most transmission occured there. However, when most transmission
occurs in the leaves, one should vaccinate depending on the amount of bacterial �ow
between the hub and leaves.

The work of Shuai et. al was a theoretical exercise on the e�ect of bottlenecks in
networks. The omission of human movement is notable here as the settlement is com-
paratively small which may a�ect the vaccination strategies.

Eisenberg worked with the authors of the previous paper to look at intervention strate-
gies in a cholera model with direct and indirect transmission, temporary immunity and
both water and human movement [41]. The human movement was modelled as migra-
tion using a similar format to the bacterial movement. However, infected individuals
only shed bacteria in the patch they were currently visiting, they had no `home' patches.
The authors examined the stability of the disease free and endemic equilibria and de-
rived expressions for the type or target reproduction numbers. These could then be
used to derive thresholds for vaccination and clean water provision.

This is once again a theoretical work. However, the type and target reproduction
numbers are valuable thresholds for control strategies that may be estimated for more
complicated models in the manner employed in this work.

Ochoche looked exclusively at the e�ect of water treatment on the dynamics of the
model developed by Codeço [99]. He examined the stability of the disease free and
endemic steady states and conducted simulations to view the e�ect of water treatment.

The main focus of the paper is the stability of the model steady states. The model
itself is a simple extension of Codeço's to include water treatment which is measured in
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its e�ectiveness by simulation. The results could perhaps have been predicted by other
works mentioned here.

Njagarah and Nyabadza used similar techniques to Ochoche to examine their two patch
metapopulation model [95]. However they also conducted a sensitivity analysis and
looked at the synchrony between the two populations. They found that if the disease
went extinct in one patch, it was reintroduced by contact from the disease endemic
patch. They also found the epidemics to be more severe in the patch with worse
sanitation.

The work of Njagarah and Nyabadza should be examined as it gives a summary of
spatial cholera model behaviour. However the results con�rm already held suspicions
about the e�ect of sanitation and coupling.

Shuai and van den Driessche revisited their star model with the assumption that
the central hub was only a shared water source and had no residual human population
[121]. They assumed the host population was heterogeneous over the various patches
and there was no loss of immunity. Shuai and Driessche examined the global stability of
the equilibria and derived terms for the target reproduction numbers, the reproduction
numbers for each patch in the presence of di�erent control measures. These could then
be used as thresholds for disease extinction.

The techniques used here could be extended to �nd local thresholds for di�erent in-
terventions strategies. However, in its current format, the results are purely theoretical.

The last reference included in �gure 1.3 discusses mechanistic models for the Haitian
cholera epidemic [85]. They compare a number of models through the AIC and assess
their predictive capabilities for the Haitian cholera epidemic. These models included
many of the elements we have discussed from previous works such as spatial segregation
with human and bacterial moments, asymptomatic infection, temporary immunity and
rainfall. They found that all models considered had predictive capabilities. However,
when the spatial coupling was omitted, the predictions were less e�ective. They �nish
by stressing the importance of mathematical modelling for outbreaks and, in particular,
the inclusion of spatial coupling.

1.4.0.1 Summary

Over time there have been a number of additions to the basic cholera model designed
by Capasso, shown in �gure 1.6. Codeço included the dynamics of the susceptible
class. This began the focus on modelling the disease spread in the human population as
opposed to two separate populations of bacteria and hosts. The Codeço model was then
used as a base for the majority of later work. The newly discovered hyper infectious
bacterial state prompted Hartley et al. to adapt the model by dividing the bacterial
class by infectivity. This changed the emphasis in the model to controlling the freshly
shed bacteria and was included in many of the works later on. Bertuzzo et al. ignored
HI bacteria, instead focussing on the role of waterways and pathogen movement. They
examined the e�ect of the waterway topology on the travelling wave of cholera and later
included a gravity model for human movement. Lastly, in our �gure 1.6, King included
asymptomatic infection. It was just becoming apparent that there may be a high ratio
of asymptomatic to symptomatic infected which not only a�ects the case numbers but
also the population level immunity.

We stopped our �gure 1.6 at King for two reasons. Many of the works that came
later included some or all of the elements shown in �gure 1.6. Also, many of the works
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following included a variety of intervention measures which were di�cult to generalise
diagrammatically. Interventions examined have been vaccination, antibiotics, clean wa-
ter provision, sanitation, quarantine and education. There have been di�ering opinions
as to which of these is the most e�ective. However there is a general consensus that a
mix between preventative and reactive strategies are generally better.

(a) Capasso (b) Codeço (c) Hartley

(d) Bertuzzo (e) King

Figure 1.6: Key model diagrams from the works listed in �gure 1.3. The variables
S, I and B denote the susceptible, infected and bacterial populations respectively. Sub-
scriptsH and L denote high and low infectivity, subscripts i and j denote patch numbers
and subscripts A and S denote asymptomatic and symptomatic infection.

1.5 Our contribution

There are many aspects of cholera transmission that have been examined in math-
ematical modelling. However, whilst the e�ects of the Haitian earthquake have been
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mentioned, the e�ect of natural disasters on cholera epidemics in developing world cities
has been overlooked. We shall develop a framework to �ll this gap over the course of
the thesis.

Figure 1.7 shows diagrams of the model development throughout the thesis. We
work towards a complex, heterogeneous model of a developing world city and the cholera
dynamics therein when the city is struck by a natural disaster. However, we must �rst
develop the model and understand its baseline behaviour. As such, Chapter Two is an
examination of Codeço's model in a homogeneous population. We begin by conducting
a sensitivity analysis and simulations of the model in one patch. This will demonstrate
the basic disease behaviour. Then, we divide our population in two spatially. We have
seen a number of spatial models, most commonly over an entire region or country and
the bacterial movement therein. However, we wish to examine a city, therefore the main
spreading mechanism spatially is human movement. We will consider separate patches
each with their own aquatic reservoir such as a well or borehole. The disease is then
moved from one patch to another by human commuter movement. Where migration
may be most likely on a country scale, commuting from a home neighbourhood to work
and back is more reasonable within a city. Given this movement framework we will
conduct further simulations and sensitivity analyses to understand our simple city.

Chapter Three sees us introduce a control measure, treatment of infected individuals.
We assume that infected individuals can commute as the majority of cholera cases are
not severe [60]. Therefore, the infected individuals may move toward treatment and we
assume they do this at an increased rate. We adjust the commuting terms and examine
the e�ects when a treatment facility is only available in one patch. The treatment
itself is akin to antibiotics that can be easily transported. Treated individuals have
a shorter infectious period and, as a result, shed for a proportionally shorter time.
We use a number of classical epidemiological analysis methods at this stage including
a bifurcation analysis. This is extended when we add a further condition in Chapter
Three B that treatment is limited and the treatment rate falls as the number of infected
individuals rises. The new dynamics resulting from this condition prompt a more in-
depth bifurcation analysis accompanied by a Poincarè section to classify any oscillatory
behaviour.

The eventual aim is to model a heterogeneous population approximating a develop-
ing world city. As such, we need to extend our model from two to higher numbers of
patches. Chapter Four details this extension in terms of the coupled di�erential equa-
tions, de�nes three di�erent patch arrangements and examines the di�erence in disease
dynamics for these three arrangements. We examine the three structures through sim-
ulation, the basic reproduction number and an ecological concept: the impact. The
impact quanti�es the e�ect on each system variable of a perturbation. Therefore, we
may use it to measure the e�ect of a natural disaster on each system element. In this
way we may see if the city structure renders the population more resilient to a natural
disaster.

In Chapter Five we build on our patch structures with respect to the structure
of a developing world city and ask where, in a heterogeneous population, should we
place facilities o�ering treatment and water decontamination. We approach this ques-
tion initially through simulation and assess distributions of facilities by the allowed
epidemic size given a natural disaster. We will �nd optimal distributions by exhaus-
tive search which is time consuming computationally. However, in Chapter Six, we
address the same question of optimal facility deployments with a variety of assessment
criteria. These methods are not only less computationally expensive than simulation
but may also indicate optimal facility distributions without exhaustive search. These
methods will include aspects introduced throughout the thesis and some new such as
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the decomposition of the impact: the sensitivity and in�uence.
Chapter Six is an assessment of methodologies and we build on this in Chapter

Seven. Systems Biology is a growing �eld and one which we shall borrow techniques
from throughout this thesis. In Chapter Seven we investigate its techniques and methods
in an in-depth manner to see if Systems Biology could facilitate a new direction for
epidemiological modelling. There are many attractive ideas in Systems Biology such
as the decomposition of models into nested layers and the examination of steady state
reaction pathways through the system. We assess and explain these ideas using a simple
epidemiological example. Lastly, we summarise our �ndings and the manner in which
they will advance our knowledge in Chapter Eight.

1.5.1 Summary

Our objective is to understand the e�ect of natural disasters on environmentally trans-
mitted disease transmission and develop analysis methods to facilitate this objective.
Over the course of this thesis we will build and develop our model of an environmentally
transmitted disease such as cholera. We will also develop the methods used to analyse
and understand that model. The dynamics of a disease in a heterogeneous develop-
ing world city have not yet been fully explored, particularly when those dynamics are
a�ected by a natural disaster. Yet, we have seen that natural disasters alter infras-
tructure and population characteristics in a manner that a�ects disease transmission.
Therefore, we shall address this omission from the literature. We will also develop a
novel framework for systems epidemiology- the combination of systems biology tech-
niques and disease modelling.
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Chapter 2

Deriving the environmentally

transmitted disease model

2.1 Introduction

Diarrhoeal diseases such as cholera are the second largest cause of ill health in children
under the age of �ve years [141]. We will �rst consider the dynamics of these envi-
ronmentally transmitted diseases in a population that is homogeneous. We will then
examine the disease behaviour in a population that is spatially segregated into two
patches. These patches will be linked by the commuter movement of host individuals
which we will model in two ways. We examine which model features or parameters are
most in�uential and measure the direction of that in�uence. This will lay the ground-
work for more complicated models later in the thesis.

2.2 Model description

Environmentally transmitted diseases require an external reservoir of bacteria to prop-
agate. This work shall adapt the models for environmentally transmitted diseases used
by Codeço [30] for a heterogeneous metapopulation. However, we shall initially consider
the host population homogeneous and well mixed.

2.2.1 Homogeneous, one patch model

The simple model we use is adapted from the Susceptible- Infected- Recovered compart-
mental model mentioned by Keeling and Rohani [74] to include the bacterial reservoir.
The disease interactions are shown in �gure 2.1.

As shown in �gure 2.1, the bacterial class a�ects the host individual's transition
from susceptible to infected. This is because susceptible individuals become infected
through contact with the contaminated environmental reservoir. There is a saturating
probability that, given contact with the reservoir, infection will occur. This probability
is dependant on the concentration of bacteria in the environment. Note also that
infected individuals contribute to the bacterial reservoir. This contribution is termed
shedding and increases the concentration of bacteria in the environment. This completes
the cycle of faecal-oral transmission.

We may formalise the interactions shown in �gure 2.1 with ordinary di�erential
equations. Equations (2.1) describe the change over time of the susceptible, infected,
recovered and bacterial compartment sizes [30]. We assume the system is at demo-
graphic equilibrium and that the population is closed, therefore µN = µ(S + I + R).
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Figure 2.1: Epidemiological interactions in the one patch environmentally trans-
mitted disease model. Disks represent di�erent disease status groups within the
patch, S= Susceptible individuals, I=Infected individuals, R=Recovered individuals
and B=Concentration of Bacteria.

We also assume that individuals are born susceptible. Infected host individuals may
recover at rate γ and contribute bacteria at rate η. The rate they become infected is
governed by the force of infection. This depends on the contact rate with the contami-
nated environment, β, and the probability of infection. This probability is a saturating
term dependant on the concentration of bacteria in the environment and half saturation
constant, κ such that when B = κ the probability of infection given contact is 1

2 . Lastly,
the bacteria degrade in the environment at rate θ. All the parameters are explained
further in table A.1.

Ṡ = µN − βS B

κ+B
− µS,

İ = βS
B

κ+B
− γI − µI, (2.1)

Ṙ = γI − µR,
Ḃ = −θB + ηI.

2.2.2 Heterogeneous, two patch model

We wish to examine a more realistic population. In a city we would not necessarily
expect di�erent areas of population to have the same characteristics. As such, we divide
our population spatially into two patches, we choose two to keep the model as simple as
possible. The patches are linked by human commuter movement. There is no movement
of bacteria in order to focus on the impact of human movement. Also, we assume that
the metapopulation forms a city rather than separate settlements. As such, there would
be little �ow of bacteria. The model is based on the same compartmental system as
before with the metapopulation divided by the infectious status of the individuals within
it. These disease state compartments are further divided by the current location of the
individual, either at home or away. Figure 2.2 shows a summary of these divisions for
arbitrary patch p in the metapopulation.

We can express the change in each compartment over time using a system of ordinary
di�erential equations similar to the one patch model. We retain the assumptions from
the one patch model and further include the movement and current location of host
individuals. Equations (2.2) show that individuals of patch p leave at rate φp and
return at rate τp. Therefore, individuals of state X who reside in patch p but are
currently visiting patch q are denoted Xpq. See table A.1 for further de�nitions.
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Figure 2.2: Divisions for patch p in a two patch environmentally transmitted disease
model. Disks represent di�erent status compartments within the patch e.g. Sp= Sus-
ceptible individuals residing in patch p. However, each compartment is divided by
current location i.e. Xpp=Susceptible individuals that reside in patch p currently at
home and Xpq=Susceptible individuals that reside in patch p currently away in patch
q.

Susceptible =


Ẋpp = µHpp − βpXpp

Bp
κp +Bp

− φpXpp + τpXpq − µXpp,

Ẋpq = µHpq − βpXpq
Bq

κq +Bq
+ φpXpp − τpXpq − µXpq,

Infected =


Ẏpp = βpXpp

Bp
κp +Bp

− γpYpp − φpYpp + τpYpq − µYpp,

Ẏpq = βpXpq
Bq

κq +Bq
− γqYpq + φpYpp − τpYpq − µYpq,

(2.2)

Recovered =

{
Żpp = γpYpp − φpZpp + τpZpq − µZpp,
Żpq = γqYpq + φpZpp − τpZpq − µZpq,

Total Hosts =

{
Ḣpp = µHpp − φpHpp + τpHpq − µHpp,

Ḣpq = µHpq + φpHpp − τpHpq − µHpq,

Bacteria =
{
Ḃp = −θpBp + ηp(Ypp + Yqp)

These equations, and the corresponding equations for the other patch, q, describe
all the interactions present including the commuter movement. However, using the
quasi-equilibrium method described by Keeling, Rohani and Sattenspiel & Dietz we
may simplify the above equations with the assumption that commuter movement is
fast relative to the disease dynamics and so equilibrates quickly [73, 72, 118]

As the system is at demographic equilibrium, the change in the total number of individ-
uals in each patch is zero i.e. Ṅp = Ḣpp + Ḣpq = 0. Using this and the fast movement
assumption we have the following relation for the number of individuals from patch p
who are at home:
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Ḣpp = µHpp − φpHpp + τpHpq − µHpp,

= −φpHpp + τpHpq,

= 0

⇒ Hpp =
τp
φp
Hpq. (2.3)

As Np = Hpp + Hpq we may use equation (2.3) to express the number of individuals
residing in patch p who are currently in patch p in terms of the total population size,
Np, and the movement terms, τp and φp,

Hpp = Np −Hpq =
τp

τp + φp
Np = σpNp. (2.4)

The parameter σp denotes the average proportion of time an individual from patch p
spends at home. We may use the above method on each of the disease classes to write
the number of individuals in each state in terms of the total number of individuals in
that state. For example, Sp = Xpp + Xpq therefore Xpp = σpSp. Therefore, we may
write the equations for the commuter model, given the assumptions above, in terms of
the total numbers of individuals in each disease state, shown in equations 2.5.

Ṡp = µNp − βpSpσp
Bp

κp +Bp
− βqSp(1− σp)

Bq
κq +Bq

− µSp,

İp = βpSpσp
Bp

κp +Bp
+ βqSp(1− σp)

Bq
κq +Bq

− Ip(γp + µ), (2.5)

Ṙp = γpIp − µRp,
Ḃp = −θpBp + ηp(σpIp + (1− σq)Iq).

Now that we have derived our models, we shall explain the analysis methods employed
to understand them.

2.3 Analysis

We wish to understand the dynamics of an environmentally transmitted disease in a
population in one and then two patches. We are interested in which parameters are the
most in�uential and the manner in which they a�ect key system elements such as the
growth of an epidemic. The response of the system to a perturbation is also important
as we wish to measure the e�ect of a natural disaster on the disease spread in later
chapters. We �rst de�ne some key system outputs that will be used throughout the
thesis. These will be used our measures of system behaviour.

2.3.1 Model outputs

To measure the epidemiological behaviour of our model, we must de�ne some charac-
teristics or outputs that will be informative. We are interested in the growth, duration
and severity of an epidemic. Therefore, we must de�ne methods to capture this infor-
mation. We start with the basic reproduction number which is a measure of the initial
epidemic growth.
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2.3.1.1 The basic reproduction number and part reproduction numbers

The basic reproductive number, R0, denotes the expected number of infections caused
by one infected individual in a totally susceptible population in one generation [37].
The basic reproductive number can also act as a measure of the risk of an epidemic; if
R0 < 1 there can be no epidemic. When R0 > 1 one infected individual may infect more
than one susceptible individual and the disease can remain endemic in the population
[24].

We may be interested in which infectious class contributes most to the reproductive
number and to assess this we must divide R0 into its constituent parts. R0 is the
lead eigenvalue of the next generation matrix, NGM, linearised about the disease free
equilibrium. The method to calculate R0 is described by Diekmann et al., He�ernan
et al. and (more speci�cally for metapopulations) by Arino and Van den Driessche
[9, 10, 36, 37, 62]. The NGM is found by multiplying the transmission matrix, T , by
the inverse of the transition matrix, Σ. These matrices consist of the transmission and
transition terms of the system Jacobian at disease free equilibrium. Thus,

NGM = T Σ−1.

The ijth element of the NGM represents the expected number of new infections of
type i due to one infection of type j and R0 can be seen as a weighted average of all
the infections caused by each type. We may be interested in the contribution of each
infectious class to R0 and we calculate this contribution through decomposition. We
decompose R0 using the next generation matrix columns and the corresponding lead
eigenvector. The linear algebra of this decomposition, for an n×n matrix M with lead
eigenvalue λ and corresponding eigenvector v, can be explained as follows. We have
that,

Mv = λv, (2.6)

and we may consider this equation in terms of its matrix elements as M =
( m11 ... m1n

... ... ...
mn1 ... mnn

)
and v =

( v1
...
vn

)
. Then, (2.6) gives,

m11v1 + . . .+m1nvn = λv1,

m21v2 + . . .+m2nvn = λv2,

. . .

mn1v1 + . . .+mnnvn = λvn.

(2.7)

Equations (2.7) may then be summed to give the following,

∑
i

mi1v1 + . . .+
∑
j

mjnvn = λ
∑
k

vk

and thus,

∑
imi1v1 + . . .+

∑
jmjnvn∑

k vk
= λ.

In our case, the matrix is the NGM and the lead eigenvalue is R0. As such, we may
decompose R0 into components, Ri0, formed from the sums of the column elements of
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the next generation matrix and the eigenvector elements, i.e.

R0 =
∑
i

Ri0,

where

Ri0 =

∑
jmjivi∑
k vk

.

The interpretation of the part reproduction numbers, Ri0, is the relative contribution of
each type i to the basic reproduction number. That is, the extent to which each class
of the system adds to the number of infections caused by one `typical' individual in one
generation.

We now use a simple example, shown in italic, on R0 to illustrate the algorithm
steps.

1. Find the next generation matrix.

In our one patch model

NGM =

(
0 Nβ

θκ
η

γ+µ 0

)
.

2. Find the lead eigenvalue, R0.

Our one patch model has

R0 =

√
ηβN

κθ(γ + µ)
.

3. Find the corresponding eigenvector, v.

In our situation

v = (

√
βN

θκ
,

√
η

γ + µ
)T

4. Find the sum of the elements in each matrix column.

The part reproduction numbers for the one patch model are then given by the sums

of the next generation matrix columns,
Nβ

θκ
and

η

γ + µ
.

5. Then, the ith part reproduction number, Ri0, is calculated as the sum of the ith

column elements, Ci multiplied by the ith eigenvector element, vi divided by the
sum of the eigenvector elements.

Thus, we arrive at our part reproduction numbers:
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R1
0 =

(
Nβ

θκ

)1.5

(
Nβ

θκ

)0.5

+

(
η

γ + µ

)0.5

R2
0 =

(
η

γ + µ

)1.5

(
Nβ

θκ

)0.5

+

(
η

γ + µ

)0.5

2.3.1.2 Resilience

We wish to measure not only the growth rate of an epidemic but its duration. As such,
we examine the resilience at disease free and endemic equilibrium. This measures the
time taken for the system to return to a stable equilibrium following a perturbation
from that equilibrium [94]. The system is linearised about the disease free or endemic
equilibria and the Jacobian matrix for the infectious classes is examined. The resilience
is the negated lead eigenvalue of this reduced Jacobian at equilibrium. It is an asymp-
totic property and thus ignores any transient �uctuations, shown in �gure 2.3. A larger
resilience means that perturbations decay more quickly.

In the one patch model, the Jacobian for the infectious classes, J , is given by,

J =

(
−(γ + µ) βS∗κ

(κ+B∗)2

η −θ

)
,

Here S∗ and B∗ denote the equilibrium values of the susceptible and bacterial popula-
tions respectively. The resilience is then given by

resilience =
1

2

(
(γ + µ+ θ)−

√
(γ + µ+ θ)2 − 4

(
θ(γ + µ)− ηβS∗κ

(κ+B∗)2

))
.

The resilience can also be interpreted as the negative intrinsic growth rate, r. This
describes the initial growth of the epidemic over time rather than over each generation
like R0. Therefore, when it is negative, it describes the rate of return to equilibrium.

2.3.1.3 Reactivity

As the resilience is an asymptotic property, we examine the reactivity to capture the
transient system behaviour. This can be considered a measure of the severity of an
epidemic. The reactivity is the `maximal instantaneous rate' at which perturbations
can be ampli�ed [94]. When the system is perturbed from a stable equilibrium, it
may initially move away from the equilibrium. The reactivity measures this movement,
shown in �gure 2.3. It is calculated as the lead eigenvalue of the Hermitian part of the
Jacobian for the infectious classes at equilibrium.

In the one patch model, the Hermitian matrix, H, is given by,

H =
1

2

(
−2(γ + µ) βS∗κ+η(κ+B∗)2

(κ+B∗)2

βS∗κ+η(κ+B∗)2

(κ+B∗)2 −2θ

)
.

The reactivity is then given by,

33



reactivity =
1

2

(
− (γ + µ+ θ)

+

√
(γ + µ+ θ)2 − 4

(
θ(γ + µ)−

(
η(κ+B∗)2 + βS∗κ

2(κ+B∗)2

))2
)
.

Figure 2.3: The trajectory of a system, grey following a perturbation, star, and the
relative measures of the resilience and reactivity.

2.3.2 Analysis Techniques

We have established which outputs of the model we are going to measure and why.
Now we describe how we assess and understand these characteristics. One of our foci
is how the input parameters a�ect the behaviour of the system. Therefore we detail an
e�cient technique for sampling our parameter space which we can use in two sensitivity
analyses. These analyses will indicate which parameters are in�uential. Finally, we
outline a method of simulation which will give us insight into the model behaviour over
time.

2.3.2.1 Latin hypercube sampling, LHS

The parameters given in table A.1 each take a range of values. As such, we have a
large, multi-dimensional parameter space to explore in order to understand the range
of system behaviour. This would be impossible to complete fully; therefore, we use an
e�cient sampling technique to capture many of the possible combinations of parameter
values. This is termed Latin Hypercube Sampling or LHS and it allows an unbiased
estimate of the average model output [89]. The steps are as follows with a simple
example:

1. De�ne a range and probability distribution for each parameter. In our model, we
chose a uniform distribution for each to avoid under sampling.

In our example, take two parameters, ρ1 and ρ2. Let them be uniformly distributed
with ρ1 ∈ [0, 1] and ρ2 ∈ [0, 10].

2. Calculate the minimum number of samples required, M . In this work we take
5000 samples to thoroughly represent the parameter space.

For example, let us take three.
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3. Divide the range of each of the K parameters into M equally probable intervals.

In our example we assumed the parameters were uniformly distributed. There-
fore, we may just divide the range into three equally wide sections. For ρ1 the
sections are [0,0.33], [0.33, 0.66] and [0.66,1] and for ρ2 the sections are [0,3.33],
[3.33,6.66] and [6.66,1].

4. Sample each interval of the parameter space once.

For instance, for the �rst parameter, ρ1, our samples are [0.20, 0.45, 0.97]. For
our second parameter, ρ2 our samples are [0.01,5.50,6.67]

5. Generate the Latin Hypercube Sample table by permuting the sample vectors to
give a vector of lengthM of possible values for each parameter. Use these vectors
to form a K ×M matrix where each row is a complete parameter set.

Our �rst parameter vector becomes [0.97,0.20,0.45] and our second, [0.01,6.67,5.50].
Therefore, our LHS matrix is0.97 0.01

0.20 6.67
0.45 5.50

.
2.3.2.2 Partial rank correlation coe�cient, PRCC

The partial rank correlation coe�cient, or PRCC, uses the parameter sets generated by
the Latin Hypercube Sample. It measures the change in a system output, such as R0,
given a change in system input or parameter. This will indicate how the input param-
eters can change the system behaviour. The PRCC also quanti�es the magnitude of
in�uence of an input on output which will give us a clear indication of which parameters
are most important. The calculation requires that the relationship between input and
output is monotonic. The steps of the calculation and simple example are as follows
[21, 53, 58, 66, 67, 87, 117].

1. Calculate the output (e.g. R0) for each of the M parameter sets generated by the
LHS.

Let us take the parameters as ρ1 ∈ [0, 1], ρ2 ∈ [0, 10] and ρ3 ∈ [0, 1] and the LHS
matrix as

LHS =


0.37 1.5 0.7
0.98 7.77 0.15
0.55 6.24 0.32
0.20 4.59 0.82

 .

If our output, ω, takes the form ω = ρ1
(ρ2+ρ3)

then the output values for each
parameter set are
[0.1682, 0.1237, 0.0838, 0.0370]T .

2. Next, rank each element in the parameter sets and output according to their
magnitude starting with the smallest element equal to one. This will give a
vector that preserves the relative order of the values. This allows us to compare
parameters that span di�erent ranges [66].

Our new, ranked sample matrix is

LHSr =


2 1 3
4 4 1
3 3 2
1 2 4

 .
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Our output, ω has the ranked vector [4, 3, 2, 1]T .

3. Calculate a linear regression model for the inputs and output. This gives an
approximate mean value of a variable for a given parameter set. Formally, the
regression of output on input is the mean of the output for a given value of the
input [31].

We now focus on one of our example parameters in its ranked form, ρr2 and the
ranked form of the output, ωr. We calculate the linear regression model, ρ̄2 using
the following equation ρ̄2 = Xρ2((XT

ρ2Xρ2)−1(XT
ρ2ρ

r
2)) where Xρ2 is the LHSr

matrix with ρ2 column set to ones. This gives us a value of ρ̄2 of [4, 8, 6, 2]T and
a value of ω̄ of [4, 3, 2, 1]T .

4. Calculate the residuals. The residual is the di�erence between the actual param-
eter value and the mean or expected value (the linear regression model for that
parameter).

The residual for ρ2 is [−3,−4,−3, 0]T and for ω is [10, 5, 6, 9]T .

5. Calculate the PRCC for each parameter using: PRCC =
(input residual).(output residual)

((input residual)2(output residual)2)
1
2

.

The PRCC for ρ2 is
[−3,−4,−3, 0].[10, 5, 6, 9]

(([−3,−4,−3, 0])2([10, 5, 6, 9])2)
1
2

= −0.66.

6. Produce a table of the Partial Rank Correlation Coe�cients for each parameter.
The PRCCs fall between -1 and 1 and coe�cients with absolute value greater
that 0.5 are considered signi�cant. The magnitude of the PRCC also indicates a
stronger correlation.

Therefore, our value of -0.66 is considered signi�cant and indicates as ρ2 increases,
ω decreases.

2.3.2.3 Elasticity analysis

To complement, and add information to, the PRCC analysis, we will conduct an elastic-
ity analysis of R0. The elasticity measures the proportional change in the output given
a small change in the input at one point in the parameter space. Therefore, whilst the
PRCC classi�es the relationship between input and output with one number or correla-
tion coe�cient, the elasticity classi�es it at each point in the parameter space. This can
be less clear to interpret. However, the elasticity is a more �exible analysis technique
as it does not require monotonicity. We use it here to reinforce our PRCC �ndings and
to show the range of in�uence that an input has on an output. The elasticity using the
following steps [11, 27, 34, 83, 88].

1. Generate a Latin Hypercube Sample.

We shall use the same sample as with the PRCC.

2. Calculate the output symbolically and �nd the partial derivative with respect to
each parameter, ρ.

The partial derivative of output, ω, with respect to parameter, ρ2, is given by
∂ω
∂ρ = −ρ1

(ρ2+ρ3)2
.
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3. The elasticity for parameter ρ is given by Eρ = ρ
output

∂output
∂ρ . This is evaluated

at each parameter set in the sample. The scaling, ρ
output

, allows us to compare
parameters of di�erent orders of magnitude.

Thus, for each parameter set in our sample the elasticity of ω with respect to ρ2
is
[−0.6818,−0.9811,−0.9512,−0.8484]. This indicates ρ2 has a strong negative cor-
relation with ω.

2.3.2.4 Simulation

We use simulation to examine the e�ect of parameter changes on the size, duration and
peak of an epidemic. In the one patch model, we focus on the e�ect of a perturbation
in each parameter value. This will give an insight into the sensitivity of the epidemic
characteristics to the system parameters. When we examine the two patch model we
focus solely on the e�ect of the coupling parameters, σi. This will suggest how the
coupling a�ects the progress of the epidemic through the segregated population. The
simulation will add to our sensitivity analyses by showing the behaviour away from
equilibrium over time. The simulations are run as follows:

1. Begin with a disease free system. We shall start with a parameter set, speci�ed
in table A.2. In the one patch model, we vary β so we take an initial value in our
β range. In the two patch model, we vary σ1 and so we take an initial value in
the σ1 range. We take 100 equally spaced values for β between 0 and 10 and for
σ1 between 0 and 1.

2. Using MATLAB's ode45 we simulate the epidemic. This is not a sti� solver;
however, as we consider the commuter approximation with no fast movement
terms, this should be su�cient. We introduce infected individuals in the initial
conditions such that there are N/1000 such individuals in the population. In the
two patch model, N1/1000 infected individuals are introduced into patch one only.
The simulation is run for 500 days.

3. We then measure the epidemic characteristics.

• The peak of the epidemic is de�ned as the maximum number of infected
individuals at any point in time.

• The duration is de�ned as the length of time until the number of infected
individuals has returned to near equilibrium level i.e. within 1 of the equi-
librium value.

• The size is de�ned as the total number of infections over the course of the
epidemic. This is measured through an extra compartment in the model,
similar to the infected class but without loss due to death or recovery.

4. We return to step 2 with the next value of β or σ1.

5. In the one patch model, we revisit step 2 and use a parameter set with one of
the values perturbed to twice their value. We repeat this for each in�uential
parameter.

6. In the one patch model we evaluate R0 at each value of β and perturbed parameter
value. The duration, size and peak of the epidemic over the varying values of β
or σ1 are then plotted against R0 or σ1.
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We have established the key system elements and the tools that we shall employ to
examine them. We will now see the results for the one patch system and discuss the
implications.

2.4 Results

Our aim is to �nd the most in�uential system parameters and the manner in which they
a�ect the spread of an environmentally transmitted disease through a population. We
start with a completely homogeneous host population and one environmental reservoir.
This will give us insight into the underlying behaviour of the disease before we examine
the e�ect of spatial segregation through the two patch model.

2.4.1 One patch model results

Here we examine the situation where there is one well mixed host population. We start
with the PRCC values for each of the model parameters. These will indicate which
parameters most in�uence the model outputs: R0, part R

i
0, resilience and reactivity.

2.4.1.1 Partial rank correlation coe�cients

We compare the relation between the input parameters and outputs. Recall that a
signi�cant coe�cient value has magnitude greater than one half.

Output θ η γ µ N β κ

R0 -0.5931 0.5978 -0.5997 0.0033 0.6039 0.6020 -0.6073

Part RI0 -0.3003 0.8229 -0.8223 0.0080 0.3632 0.3706 -0.2824

Part RB0 -0.6619 0.4126 -0.3714 -0.0055 0.6663 0.6689 -0.6562

Resilience (DFE) 0.7845 -0.4686 0.5636 -0.0090 -0.4588 -0.4604 0.2907

Resilience (EE) 0.7875 -0.2611 0.7218 0.0055 -0.2477 -0.2489 0.4871

Reactivity (DFE) -0.6750 0.3168 -0.5675 -0.0017 0.5690 0.5661 -0.4453

Reactivity (EE) -0.6428 0.3795 -0.6328 0.0081 0.1191 0.1269 -0.3721

Table 2.1: Partial rank correlation coe�cients for one patch model. Parameters take
values in the ranges shown in table A.1. The sets are divided into those that give R0 < 1
and those that give R0 > 1 to de�ne the disease free (DFE) and endemic equilibrium
(EE) groups. Cell shading indicates a signi�cant PRCC value with grey, positive, and
black, negative.

Table 2.1 shows PRCCs describing the level of in�uence of each parameter on the
model outputs. If we �rst consider the basic reproduction number and part reproduction
numbers we notice some important trends. There are three parameters that signi�cantly
positively a�ect R0 and three that signi�cantly negatively a�ect R0. If we increased
θ, γ or κ we would expect a notable decrease in R0. This is because the duration of
infection would be diminished if the bacteria degradation rate, θ, or the recovery rate,
γ, were increased and the probability of infection given contact with the environment
would be reduced if κ was increased. Conversely, we would expect R0 to increase if η,
N or β were increased. This is because more bacteria would enter the environment if
the shed rate, η, increased and there would be more individuals to potentially shed if
the population size, N , increased. Similarly, an increase in the contact rate, β, leads to
increased interaction with the bacteria in the environment.

The part reproduction numbers are cumulatively a�ected in the same ways as the
system R0. However, the infected class reproduction number is notably related to
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the shed rate, η, and recovery rate, γ, as these dictate the amount an individual can
contribute to the bacteria and for how long. The bacterial class reproduction number
is more a�ected by the bacterial degradation rate, θ, population size, N , contact rate,
β and half-saturation constant, κ. This is because these parameters govern how long
bacteria can contaminate the environment, how many individuals they can interact
with, the amount of interaction and the probability of infection given interaction. This
all modi�es the contribution of the bacterial class to the system R0.

The resilience and reactivity are divided in their behaviour by the stability of the
equilibria. This was done by testing each parameter set and assigning it as above the
epidemic threshold, where R0 > 1 and r > 0, or below. There were an equal number
of parameter sets either side of the threshold. This calculation method is di�erent to
R0 as the basic reproduction number is calculated assuming the entire population is
disease free regardless of whether the disease free equilibrium is stable. We note that
the signs of the resilience coe�cients are opposite to those for the reactivity. This is
because the resilience is an inverse i.e. as it increases the intrinsic growth rate decreases
or becomes more negative. Generally, the parameters that raise the resilience and lower
the reactivity when increased, also raise R0. Similarly, those that negatively a�ect the
resilience and positively a�ect the reactivity positively a�ect R0. However, at endemic
equilibrium the parameters have less in�uence on the reactivity in general. This is as
there is a reduction in the potential maximal ampli�cation of a perturbation when the
susceptible population is depleted. In general, the most important parameters for the
resilience and reactivity are the degradation rate, θ, and recovery rate, γ, which govern
generation time.

2.4.1.2 Elasticity Analysis

The elasticity results for the basic reproduction number follow. These not only highlight
which parameters are in�uential but also the extent to which they vary in e�ect.

Figure 2.4: Box plot of elasticity values for the one patch model. The output is R0 and
the inputs are the system parameters in the ranges speci�ed in table A.1

Here we see a con�rmation of the results of the PRCC analysis. The parameters θ, γ and
κ all negatively a�ect R0 whereas η, N and β all positively a�ect it. The death rate µ
has little or no e�ect over its entire range. We see there is little variation in the e�ect of
each parameter over the parameter space. This is unsurprising as R0 involves a square
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root term. Therefore, if a =
√
b then the elasticity is de�ned as

b

a

∂a

∂b
=
∂ log a

∂ log b
= 0.5.

Thus, in all cases except µ, where there is no variation as µ is so small, the elasticity
should be fairly unvarying.

2.4.1.3 Simulation

Lastly, we examine the disease dynamics away from equilibrium. The system is initially
disease free and we introduce N/1000 infected individuals. We simulate an epidemic,
we repeat for a range of contact values, β, and measure its size, peak and duration. We
then repeat the whole procedure with a perturbation to one parameter at a time. As
we may see from the elasticity analysis, β and R0 are proportional. Therefore, we may
evaluate R0 at each value of β, and perturbed parameter value, and plot this as our
abscissa. Figure 2.5 shows this information for the epidemic size with respect to R0

evaluated at each value of β.

Figure 2.5: Relation between R0 and epidemic size. Contact rate, β, varied between 0
and 10 and all other parameters were held at the values in table A.2 when not perturbed.
The system was initially disease free with N/1000 infected individuals introduced.

We start by examining the total epidemic size. The baseline behaviour shows a posi-
tive, saturating correlation between the epidemic size and R0. Therefore, as the basic
reproduction number increases, the number of infections over the course of the epidemic
also increases. Figure 2.5 shows that the perturbed parameter values do little to alter
the relation between R0 and epidemic size. Therefore, the epidemic size depends on the
total R0 and not the particular parameter values that it consists of. This is because
the epidemic size accounts for the duration of infection and the growth rate of the epi-
demic. The duration categorizes how long an infectious individual remains infectious.
Whereas, the growth rate of the epidemic is governed by how quickly infectious indi-
viduals may spread that infection. The basic reproduction number also accounts for
both of these aspects. It is a per-generation growth rate and so is formed from both the
force and duration of infection. Therefore, these measures comprise of the same disease
characteristics and we may expect them to be strongly correlated.

The relation between epidemic duration and R0 does alter given perturbations to
some of the parameters. In general, the duration is longest when R0 is near one and
decreases as R0 increases. This is because the force of infection, altered by the contact
rate β, becomes stronger and depletes the susceptible population more quickly. Once
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Figure 2.6: Relation between R0 and epidemic duration. Contact rate, β, varied be-
tween 0 and 10 and all other parameters were held at the values in table A.2 when
not perturbed. The system was initially disease free with N/1000 infected individuals
introduced.

Figure 2.7: Relation between R0 and epidemic peak. Contact rate, β, varied between 0
and 10 and all other parameters were held at the values in table A.2 when not perturbed.
The system was initially disease free with N/1000 infected individuals introduced.
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the susceptible population has been su�ciently depleted, the disease begins to die out.
As we perturb the parameters we also alter R0. For instance, when we increase the
recovery rate, γ, we will lower R0. Therefore, for the same R0 as the unperturbed case,
we must have a proportionally higher value of β. This means that the graph of the
duration appears to be shifted to the left. In contrast, increasing η increases R0 and
so the graph of the duration is shifted to the right. Thus, the change in the duration
graphs is directly related to the change in R0. The artefact when R0 < 1 is as the
duration must be zero when there is no possibility of an epidemic.

Finally, we examine the relation between epidemic peak, R0 and the key parameters.
As R0 increases, so does the epidemic peak. However, it is higher for the same value of
R0 when θ is doubled and lower for the same R0 when γ is doubled. When θ increases,
R0 decreases. Thus, to achieve the same R0 we must have a proportionally higher β
value. Therefore, there is a higher number of infections. However, when γ increases,
R0 decreases also. But, γ will check the increase in infected individuals caused by a
proportionally higher value of β by their removing them to the recovered class. The
net e�ect of this is that the epidemic peak is lower for the same value of R0.

2.4.2 Two patch model results

The one patch model results will still be informative when the host population is het-
erogeneous. However, there is further information we wish to extract now that the
population is segregated. Namely, the e�ect on system outputs such as R0, of the cou-
pling between the patches. We also measure the e�ect of the inputs when they can take
di�erent values in each patch.

In the following section some of the key parameters, such as β, N and η can take
di�erent values in each patch. This is as it is unlikely that both populations will be
of equal size or have equal levels of sanitation. We shall keep θ, κ, γ and µ the same
for both populations. These are characteristics of the bacteria and hosts themselves
and are less likely to vary spatially. This will give us insight into how the variation
a�ects the parameter in�uence and will lay the foundation for heterogeneities later in
the thesis.

2.4.2.1 Partial rank correlation coe�cient

We examine the PRCCs for the parameters in the two patch model. As previously
mentioned, some parameters will take di�erent values in each patch and some will not.
As such, there are 12 parameters to assess. The correlation coe�cients for each of
these parameters when compared to the R0, resilience, reactivity and part reproduction
numbers are shown in table 2.2.

Let us �rst discuss the results for the basic reproduction number. Table 2.2 shows
that the signi�cant parameters from the one patch model, θ, η, γ, N , β and κ, are still
signi�cant here. However, when the parameters take di�erent values in each patch their
PRCC appears to be split. For example, the PRCC for each of the population sizes,
N1 and N2, is around 0.358, not signi�cant in each separate patch, but the combined
population size is in�uential. This is almost as the total range of variation is reduced
by the split into the variation of each patch population size.

We now examine the part reproductive numbers. As before, the parameters that
most in�uence R0 also in�uence the part R0. However, the parameters are divided
by whether they most a�ect the infected individuals or bacteria and which patch they
apply in. For instance, RIi0 are most positively a�ected by the population sizes of patch
i. The coupling parameters appear to only a�ect RBi0 . We see that as individuals of
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patch i spend more time at home, and those of patch j spend more time visiting, the
contribution of bacterial class of patch i increases. This is a result of a �xed bacterial
reservoir. Host individuals must move towards it for it to become in�uential.

Lastly, we examine the resilience and reactivity. The correlations between the pa-
rameters and these outputs remain the same as in the one patch model but vary in
magnitude. Generally, there are no `signi�cant' correlations at endemic equilibrium.
This is partly due to the split parameters and partly as a result of the depleted suscep-
tible population which limits the capacity of the system to react.

2.4.2.2 Elasticity of R0

We now examine the elasticity of R0 with respect to each of the parameters. We shall
see to what extent the parameters vary in their e�ect and con�rm the results of the
PRCC.

Figure 2.8: Box plot of elasticity values for the two patch model. The output is R0 and
the inputs are the system parameters taking values in the ranges speci�ed in table A.1.

The results of the elasticity analysis con�rm those from the PRCC. However, the
range of variation can be informative. We see that the parameters that take the same
value in both patches do not have varying elasticity values. In contrast, the parameters
that take di�erent values in each patch have a variety of elasticity values. The varia-
tion is due to the location in the multi-dimensional parameter space. Speci�cally, the
position in the coupling parameter dimensions a�ects the elasticity of the `split' param-
eters. This is because the coupling parameters control the interaction with each patch;
if no-one visits a patch, the local parameters will not be signi�cant. The elasticities of
the coupling parameters themselves vary widely around zero. Therefore, they can have
both negative and positive e�ects on R0. This means the relation between the coupling
parameters in the range speci�ed in table A.1 and R0 is not monotonic. Therefore, the
PRCC results for these parameters are misleading as a condition for the calculation
fails.

2.4.2.3 Simulation

We use simulations to examine the dynamics of the system over time. We have already
examined the relationship between R0, the perturbed parameters and the epidemic
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characteristics. We now look at how the coupling between the two patches a�ects those
characteristics. First, we look at the change in the decomposition of R0 with respect to
the proportion of time an individual resident of patch one stays at home, σ1.

Figure 2.9: Relationship between coupling parameter, σ1, and R0. The basic reproduc-
tion is decomposed into its constituent parts. The parameters were held at the values
shown in table A.2 except for σ1 which varied between 0 and 1 and σ2 which was held
at 1. Here, the shade indicate the di�erent patch class contributions: from darkest to
lightest, I1, B1, I2 and B2.

The proportion of time that an individual from patch two stays in their home patch
is held at 1 which means they do not visit patch one at all. In contrast, we vary the
proportion of time an individual from patch one stays at home between 0 and 1. We
see that as the individuals from patch one spend more time at home, the bacterial
class of patch one becomes more important and the infected class of patch one less so.
In contrast, the bacterial class of patch two becomes less important and the infected
class of patch two stays approximately the same. Overall, we see a slight decline in the
contribution of the patch two classes compared to the classes of patch one. Thus, the
component of R0 in patch two declines compared to patch one as σ1 approaches one.
This leads to a local R0 in each patch which varies as σ1 does.

Now that we have established the change in R0 for this parameter set, we will
examine the e�ect on the epidemic size of the varying coupling.

Figure 2.10 shows that when σ1 is close to zero, the epidemic size in both patches is
the same. This is because all individuals stay in patch two almost all of the time and so
the population is essentially homogeneous. When σ1 is close to one, the epidemic size in
patch two falls to zero. This is because all individuals remain in the `home' patch and
there is no transmission between populations. When σ1 is not close to zero or one, an
epidemic occurs in both patches. In this case, the infected individuals of patch one can
contaminate the environment of patch two, initialising an epidemic there even without
the movement of patch two individuals. The more time that patch one individuals
spend at home, the less chance there is of individuals taking disease to the environment
of patch two. We see a larger epidemic size in patch two. This is as individuals of patch
one are free to travel to, and contaminate the environment of, patch two. However,
individuals of patch two are `trapped' in their home environment. Therefore, residents
of patch one are `exporting' their risk of infection to patch two. This, in turn, lowers the
risk in patch one as there is proportionally less contamination there. This is con�rmed
in the decomposition of R0. The larger contribution of the bacteria patch two suggests
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Figure 2.10: Epidemic size over coupling parameter σ1. The parameters were held at
the values shown in table A.2 except for σ1 which varied between 0 and 1 and σ2 which
was held at 1. The system was initially disease free with N1/1000 infected individuals
introduced to patch one only.

the local force of infection is higher. We now examine the epidemic duration.

Figure 2.11: Epidemic duration over coupling parameter σ1. The parameters were held
at the values shown in table A.2 except for σ1 which varied between 0 and 1 and σ2 which
was held at 1. The system is initially disease free with N1/1000 infected individuals
introduced to patch one only.

We look at the relation between epidemic duration and the coupling between the
patches and see that as σ1 increases, so does the duration, until σ1 is close to 1. The
duration and R0 are negatively correlated and, from �gure 2.9 we see that R0 and σ1
are positively correlated for this parameter set. Therefore, we may expect an increase
in duration as σ1 increases. We also see that the duration in both patches is the same
until σ1 is close to 1. This is because the coupling allows individuals to reintroduce
the disease to the other patch should it die out. As such, with any level of coupling we
would not expect the disease to persist in one patch and not the other.

Lastly, we examine how the epidemic peak is a�ected by σ1. The relation between
epidemic peak and proportion of time spent at home is very similar to that of epidemic

46



size. It is linked to the reduction in R0 as σ1 increases, shown in �gure 2.9. We saw
from the one patch model simulations that as R0 increases, so does the epidemic peak.
Therefore, as the increase in σ1 essentially separates the two populations, R0 decreases
and thus the epidemic peak decreases.

Figure 2.12: Epidemic peak over coupling parameter σ1. The parameters were held at
the values shown in table A.2 except for σ1 which varied between 0 and 1 and σ2 which
was held at 1. The system is initially disease free with N1/1000 infected individuals
introduced to patch one only.

2.5 Conclusion

2.5.1 Summary

Our aim was to develop and examine a model for an environmentally transmitted dis-
ease. We started with a homogeneous population of hosts which we then divided spa-
tially. Once the two populations were segregated, we retained coupling through the
commuter movement of hosts or individuals. Finally, we simpli�ed this coupling in
terms of the average proportion of time an individual from a patch would spend at
home over the course of a day. This was made possible by assumptions on the speed of
the disease dynamics in comparison to the speed of the host movement.

Once our models were derived we de�ned some key system outputs to describe
the model behaviour. To analyse these outputs, we outlined methods to establish
the most in�uential parameters. These were the elasticity and partial rank correlation
coe�cients. Both analyses categorized the parameters as in�uential or not; however, the
elasticity denoted the in�uence of that parameter at each point of the parameter space
whereas the PRCC gave the average in�uence over the parameter space. In order to
fully represent the parameter space, we employed an e�cient sampling technique called
Latin Hypercube Sampling which saved computational time without omitting areas of
the parameter space.The sensitivity methods over the parameter samples both gave us
insight into the in�uence of the system parameters; however, the elasticity which does
not require monotonic relationships between input and output, was a more accurate
tool than the PRCC particularly for the coupling parameters, σi. Finally, we �xed
most of the parameters at reasonable values in order to simulate the model behaviour
away from equilibrium. This a�orded a view of the e�ect of parameter perturbation on
the characteristics of an epidemic.
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2.5.2 Conclusions

We start with the insights gained from the one patch model. We established the key
model parameters and the direction of their in�uence on model characteristics such as
R0. The key parameters were the degradation rate, shed rate, recovery rate, population
size, contact rate, and half-saturation constant. These were all highlighted in the R0

elasticity and PRCC values. However, there were model characteristics that depended
di�erently on the key parameters. The part reproduction numbers split the parame-
ters into those that a�ected the contribution of the infected and those that a�ected
the bacterial classes. The resilience switched the direction of the in�uence of the key
parameters, as itself acts in a di�erent direction to R0, and both the resilience and reac-
tivity were less a�ected by the population size, contact rate or half-saturation constant.
Thus, we may say that the bacterial degradation rate and rate of recovery are vital
factors in the growth of epidemic, longevity of the epidemic and the way the system
responds to a perturbation. This was con�rmed through simulation. The perturbations
of the degradation and recovery rates caused the largest changes in epidemic peak and
duration over R0. The simulation results with respect to duration also agreed with
the PRCC analysis of the resilience which predicted that the degradation and recovery
rates are most in�uential.

The two patch model analysis gives us insight into the e�ect of spatial segregation.
The parameters that take a di�erent value in each patch still a�ect the model outputs
in the same way. However, the magnitude of that e�ect is divided between the two
patches. For instance, the shed rates for each patch positively a�ect R0 but to a lesser
extent than a shed rate applied to both patches. The sensitivity analyses also indicated
the signi�cance of the coupling parameters. The elasticity shows that, whilst they
have low PRCCs, the coupling parameters can have dramatic e�ects. The coupling
parameters also a�ect the in�uence of the parameters that can take di�erent values
in each patch and the epidemic characteristics. Through simulation, we were able to
see how the patch coupling can limit the transmission of disease. This is partly as the
�xed bacterial reservoirs require individuals to move towards them for them to have an
impact on the system dynamics. Thus, whilst the coupling parameters may have a low
PRCC value, they `activate' the e�ects of the heterogeneous parameters.

Thus, we �nd the parameters controlling the force of infection can be extremely
in�uential in the model. We also found that the coupling can dominate the e�ect of
localised parameters.

2.5.3 Future considerations

We aimed to develop and understand a basic model of an environmentally transmitted
disease. We succeeded in �nding key system parameters through a variety of methods.
The elasticity, calculated using parameter sets from a Latin Hypercube Sample, portrays
the behaviour across the parameter space. However, with so many values to consider,
it can be less clear to interpret. The PRCC, in contrast, is very clear to interpret.
However, it fails whenever the relation between input and output is not monotonic.
This is seen for the coupling parameters, σi which have a PRCC near zero as they have
both positive and negative in�uence. A way to avoid this issue is to bound σi ∈ [0.5, 1].
The simulations were insightful as they showed both the variability in the e�ect of the
coupling parameters and the alteration in disease spread due to the spatial segregation.
However, simulation of a larger system may be time consuming for future models and
we may need to rely further on the analysis of reproduction numbers, resilience and
reactivity of the system.
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With the understanding acquired in this chapter, we can now extend the model to
examine the e�ect of control on disease spread. We know that the recovery rate and
degradation rate are in�uential, therefore these may serve as good targets for control
measures. These measures would need to limit an epidemic caused by the introduction
of infected individuals or a perturbation. Therefore, it may be of interest to examine
the endemic equilibrium behaviour as well as that at disease free steady state. Lastly,
we are interested in the e�ect of a natural disaster so we may wish to measure the
e�ect of a perturbation on the system elements. Therefore, we need to introduce new
techniques to identify weaknesses in the system to perturbations.
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Chapter 3a

Introducing treatment with

population response

3a.1 Introduction

The allocation of control facilities can substantially a�ect the dynamics of an infectious
disease. We examine how the tendency of infected individuals to seek treatment alters
the spread of an environmentally transmitted disease through a two patch metapopu-
lation. The patches are coupled through the movement of host individuals and there is
an environmental reservoir of bacteria in each patch. One patch contains a treatment
facility and treatment is through a course of medicine such as antibiotics rather than
hospitalisation. As such, once infected individuals collect the medicine, they become
`treated' and are free to continue moving between patches. Until an infected individual
has collected their course of medicine, or until they are recovered, they alter their be-
haviour to seek treatment. Therefore, we must account for two stages of infectiousness:
infected and `treated'.

We adapt the two patch model considered in Chapter Two to accommodate an
additional treated class. We reconsider the patch coupling terms in light of the tendency
of infected individuals to move toward treatment. Then we de�ne some new outputs
and analysis methods, and recap some old, with which we can understand this new
model. We start by providing some context for behavioural change in models.

3a.1.1 Literature review: behavioural change in epidemic models

The e�ect of behavioural change on disease dynamics is a relatively recent consideration
in epidemic models [48]. Yet, behavioural change can have various e�ects on disease
spread. From self-isolation to voluntary vaccination, the decisions and actions of peo-
ple can lead to complicated disease dynamics. One good example of this in e�ect is
the Derbyshire village of Eyam where residents voluntarily quarantined themselves to
prevent the spread of bubonic plague [120].

The aim of most behavioural adaptation models has been to include voluntary be-
haviour change in response to disease prevalence [50]. This change is assumed to a�ect
the disease state, e.g. through vaccination, or the infection and recovery rates, e.g.
through seeking treatment earlier. There has also been a focus on game theory to
understand individual actions.

Mainly, the focus of these models has been on how the awareness or fear of the disease
a�ects behaviour. Funk, Gilad and Jansen examined the e�ect of disease awareness on
the spread of a SIR disease [49]. They de�ned two basic reproduction numbers, one
for disease awareness and one for the pathogen, both of which were spread through
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human-human contact. They found that awareness can a�ect the disease invasion as the
disease is less likely to establish when people become more aware. They also found that
awareness, assuming it a�ects the infectiousness and susceptibility of aware individuals,
decelerates the spread of a disease.

Kiss et al. also examined the spread of disease information [76]. They looked
at a SIRS model for sexually transmitted infections and incorporated an additional
treated class. Individuals were considered to be `responsive' or `non-responsive'. The
di�erence was that responsive individuals sought treatment earlier or would reduce their
probability of infection. Therefore, there were competing dynamics between the spread
of disease and the spread of information causing responsiveness. Kiss et al. focused their
analysis on the stability of equilibria for the model and hypothesised a Hopf bifurcation
may be found in future work.

Lastly, Epstein et al. examined the e�ect of fear, rather than awareness, on disease
spread [43]. They de�ned basic reproduction numbers for the disease and for fear. They
assumed individuals with fear adapted their behaviour by hiding or �eeing and found
that even a small proportion of individuals �eeing exacerbated the epidemic. They also
stated the need for behavioural adaptation in disease models.

Therefore, we incorporate a simple form of behavioural adaptation in our model.
Like Kiss et al. we assume that individuals seek treatment. However, unlike the works
above, we examine an environmentally transmitted disease and only adapt the move-
ment of infected individuals.

3a.2 Model

The following model is an adapted form of Codeço's to include a treatment compartment
[30]. It has the same basic form as the two patch model in the previous chapter but
with some adjustments. We include an additional compartment for treated individuals
and therefore additional interactions, shown in �gure 3a.1. There are some further
assumptions on the movement on infected individuals which will be examined in detail.

Figure 3a.1: Epidemiological interactions in one patch of the metapopulation. Disks
represent di�erent disease status groups within the patch, S= Susceptible individ-
uals, I=Infected individuals, T=Treated individuals, R=Recovered individuals and
B=Concentration of Bacteria.

Figure 3a.1 shows that the interactions of the basic model remain from the previous
chapter. However, there is an additional compartment and interactions, shown in red.
These denote the treated individuals, transition from infected to treated, recovery of
treated individuals and shedding by treated individuals into the environment.
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3a.2.1 Edge weightings and proportions of exposure

We will de�ne new terms which express a proportion of exposure to the environment
of each patch for each individual. We will de�ne the coupling between patches along
edges. The edges are paths between the two patches and they will have two directions,
inward and outward with respect to the patch of interest. The proportion of exposure an
individual experiences will depend on these edges and any weightings applied to them.
When an individual is infected, the edge weightings will be scaled to re�ect the location
of a treatment facility. The scaling will increase the weighting on an edge towards
a treatment facility and decrease the weighting on the edge away from a treatment
facility. In the following equations for patch p, treatment is only available in patch
q. As such, an infected individual must �rst visit patch q in order to become treated.
There is the treatment rate denoted by ξ. This it the rate that individuals change from
being infected to treated per day, given access to a treatment facility. Once treated,
individuals recover at an increased rate, αγ where α is larger than one. There are
equivalent equations for patch q where an infected individual must stay at home in
order to become treated.

Susceptible =


Ẋpp = µHpp − βpXpp

Bp
κp +Bp

− φXpp + τXpq − µXpp,

Ẋpq = µHpq − βpXpq
Bq

κq +Bq
+ φXpp − τXpq − µXpq,

Infected =


Ẏpp = βpXpp

Bp
κp +Bp

− γpYpp − φχ2Ypp + τχ1Ypq − µYpp,

Ẏpq = βpXpq
Bq

κq +Bq
− γqYpq − ξYpq + φχ2Ypp − τχ1Ypq − µYpq,

(3a.1)

Treated =

{
Ẇpp = −αγpWpp − φWpp + τWpq − µWpp,

Ẇpq = ξYpq − αγqWpq + φWpp − τWpq − µWpq,

Recovered =

{
Żpp = αγpWpp + γpYpp − φZpp + τZpq − µZpp,
Żpq = αγqWpq + γqYpq + φZpp − τZpq − µZpq,

Bacteria =
{
Ḃp = −θpBp + ηp(Ypp + Yqp +Wpp +Wqp)

We will now de�ne proportions of exposure to the environment in each patch, this
follows the method detailed in Chapter Two. To explain the edge weightings and expo-
sure further, let us �rst calculate the proportion of exposure an uninfected individual
experiences at home. If we consider the susceptible class and assume the system is at
demographic equilibrium and the movement is fast enough to reach quasi-equilibrium,
we have the following

Ẋpp = µHpp − βpXpp
Bp

κ+Bp
− φXpp + τXpq − µXpp

= −βpXpp
Bp

κ+Bp
+ µ(Hpp −Xpp).

This results in the following
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0 = −φXpp + τXpq

Xpp =
τ

φ
Xpq

Xpp = σNp

Where σ =
τ

φ+ τ
is the exposure an uninfected individual experiences in their home

patch, as in Chapter Two, see table A.3.

Let us now calculate the proportion of exposure an infected individual of patch p
experiences at home when the treatment facility is located in patch q. The weighting on
the edge towards the treatment facility is scaled up whereas the weighting away from
the treatment facility is scaled down. Thus, as we consider an infected individual from
patch p, the weighting on the outward edge is χ2φ and the weighting on the inward
edge is χ1τ . Thus,

Ẏpp = βpXpp
Bp

κ+Bp
− γpYpp − φχ2Ypp + τχ1Ypq − µYpp

= βpXpp
Bp

κ+Bp
− γpYpp − µYpp

=⇒ Ypp =
τχ1

φχ2
Ypq

=
τχ1

τχ1 + φχ2
Ip

i.e. the weighting on the inward edge over the sum of the inward and outward edge
weightings. However, we may simplify this in terms of the exposure that an uninfected
individual experiences in their home patch,

χ1σ

χ1σ + χ2(1− σ)
.

Therefore, we may write the equations for the individuals of patches p and q in terms
of the exposure they experience in each location. Only individuals that are exposed to
the patch with a treatment facility can become treated. As such, the proportion of
exposure to the treatment facility is the proportion of exposure in patch q. Further
parameter de�nitions can be found in table A.3.

p



Ṡp = µNp − βSp
(
σ

Bp
κ+Bp

+ (1− σ)
Bq

κ+Bq

)
− µSp,

İp = βSp

(
σ

Bp
κ+Bp

+ (1− σ)
Bq

κ+Bq

)
−
(
γ + ξ

(
χ2(1− σ)

χ1(1− σ) + χ2σ

)
+ µ

)
Ip,

Ṫp = ξ

(
χ2(1− σ)

χ1(1− σ) + χ2σ

)
Ip − (αγ + µ)Tp,

Ṙp = αγTp + γIp − µRp,

Ḃp = −θpBp + ηp

((
χ1(1− σ)

χ2σ + χ1(1− σ)

)
Iq + (1− σ)Tq + σTp

+

(
χ1σ

χ1σ + χ2(1− σ)

)
Ip

)
.

53



q



Ṡq = µNq − βSq
(
σ

Bq
κ+Bq

+ (1− σ)
Bp

κ+Bp

)
− µSq,

İq = βSq

(
σ

Bq
κ+Bq

+ (1− σ)
Bp

κ+Bp

)
−
(
γ + ξ

(
χ2σ

χ2σ + χ1(1− σ)

)
+ µ

)
Iq,

Ṫq = ξ

(
χ2σ

χ2σ + χ1(1− σ)

)
Iq − αγTq − µTq,

Ṙq = αγTq + γIq − µRq,

Ḃq = −θqBq + ηq

((
χ2σ

χ2σ + χ1(1− σ)

)
Iq + σTq + (1− σ)Tp

+

(
χ2(1− σ)

χ1σ + χ2(1− σ)

)
Ip

)
.

3a.3 Analysis

We have de�ned the model and new interactions for the treated class. We will now
de�ne the model outputs of interest and the methods we shall use to analyse them.

3a.3.1 Model outputs

We describe some model outputs to measure the dynamics of the disease in the pop-
ulation. These outputs measure the initial growth of the epidemic, through R0 and
the intrinsic growth rate; the contributions of each infectious class, through the part
reproductive numbers; and the behaviour away from disease free equilibrium, through
the endemic equilibrium value. As such, if we understand how they are altered by the
system parameters such as the treatment rate, we will have some understanding of the
system behaviour in general.

3a.3.1.1 Basic reproduction number, R0

The basic reproduction number, R0, is the expected number of secondary infections over
one generation arising from one infected individual in an entirely susceptible population.
Recall, from Chapter Two, we calculate the value ofR0 using the next generation matrix,
NGM. This was found by multiplying the transmission matrix, T , consisting of the new
infection terms, by the inverse of the transition matrix, Σ, consisting of the removal
terms [8, 10, 37, 36, 62]. However, in this chapter we have a further consideration
when calculating the NGM. Treated individuals must �rst be infected before they
can contribute bacteria and propagate the disease. So the treated compartment can
be considered a consequence of the infected compartment. Using this assumption,
we may transform the next generation matrix over the `large domain', NGMLD, to
that over `small domain', NGMSD. The small domain consists only of the primary
states at infection, therefore the treated compartment does not feature explicitly but
rather as a result of the infected class. The method is to take the NGMLD and pre
and post multiply it by a unit vector where the elements corresponding to the treated
compartment are set to zero, see below
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

1
...
1
0
...
0
1
...
1



T

NGMLD



1
...
1
0
...
0
1
...
1


= NGMSD

The NGMSD has the same spectral radius as the NGMLD and takes the following
form in our model,

NGMSD =

[
O A
B O

]
.

Here, the O's represent 2× 2 zero matrices and A and B are shown below,

A =
β

κθ

[
σNp (1− σ)Np

(1− σ)Nq σNq

]
,

B1,1 =
ηp χ1σ

σχ1(γ + µ) + (1− σ)χ2(γ + ξ + µ)

+
ηpξχ2σ(1− σ)

(σχ1(γ + µ) + (1− σ)χ2(γ + ξ + µ))(αγ + µ)
,

B1,2 =
ηpχ1(1− σ)

σχ2(γ + ξ + µ) + (1− σ)χ1(γ + µ)

+
ηpξ χ2σ(1− σ)

(σχ2(γ + ξ + µ) + (1− σ)χ1(γ + µ))(αγ + µ)
,

B2,1 =
ηqχ2(1− σ)

σχ1(γ + µ) + (1− σ)χ2(γ + ξ + µ)

+
ηqξχ2(1− σ)2

(σχ1(γ + µ) + (1− σ)χ2(γ + ξ + µ))(αγ + µ)
,

B2,2 =
ηqχ2σ

σχ2(γ + ξ + µ) + (1− σ)χ1(γ + µ)

+
ηqξ χ2σ

2

(σχ2(γ + ξ + µ) + (1− σ)χ1(γ + µ))(αγ + µ)
.

Thus, we may calculate R0 from this matrix as it is the lead eigenvalue.

3a.3.1.2 Part reproductive numbers

R0 as a whole is very informative. However, it can be useful to see where in the
population is most in�uential with respect to the basic reproduction number. We
detailed a method to decompose R0 into its constituent parts in Chapter Two. The
NGM is utilised as well as the lead eigenvector. The ijth element of the NGM denotes
the number of infections of type i produced by an infected individual of type j. As such,
the sum of the jth column of the NGM gives the total infections in all classes caused by
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an infected individual of type j. However, as the lead eigenvalue, R0, gives the number
of new infections in the population, the lead eigenvector denotes the stable distribution
of infected classes during the exponential growth phase of the epidemic. Therefore, to
arrive at the contribution of the jth infectious class to R0, we must multiply the jth

column sum by the jth element of the normalised lead eigenvector. In this context,
normalisation leads to the eigenvector elements summing to one; the eigenvector thus
gives the proportion of infections in each infectious state. The column sums, Ci for our
model are as follows:

CIp = B1,1 + B2,1,
CIq = B1,2 + B2,2,
CBp = A1,1 +A2,1,

CBq = A1,2 +A2,2.

The lead eigenvector is omitted due to its length.

3a.3.1.3 Intrinsic growth rate

Whereas R0 denotes the per generation growth rate, the intrinsic growth rate is the
coe�cient of epidemic growth over time. It is calculated as the lead eigenvalue of the
system Jacobian at equilibrium or the eigenvalue with largest real part. As the intrinsic
growth rate, r, can be positive and negative, the largest implies the `most positive'. In
the previous chapter, we discussed the resilience or return time to equilibrium. The
resilience is the intrinsic growth rate with inverse sign. Therefore, if the disease free
equilibrium is stable, the intrinsic growth rate is negative and the resilience is positive
as the system will return to disease free equilibrium once perturbed. The threshold of
r = 0 corresponds to R0 = 1 and we consider parameter sets producing both positive
and negative r. The system Jacobian at disease free equilibrium is shown below.



−(γ + ξ

(
χ2(1 − σ)

χ2(1 − σ) + χ1σ

)
+ µ) 0 0 0 β

κ
σNp

β
κ
(1 − σ)Np

0 −(γ + ξ

(
χ2σ

χ1(1 − σ) + χ2σ

)
+ µ) 0 0 β

κ
(1 − σ)Nq

β
κ
σNq

ξ

(
χ2(1 − σ)

χ2(1 − σ) + χ1σ

)
0 −(αγ + µ) 0 0 0

0 ξ

(
χ2σ

χ1(1 − σ) + χ2σ

)
0 −(αγ + µ) 0 0

ηp

(
χ1σ

χ2(1 − σ) + χ1σ

)
ηp

(
χ1(1 − σ)

χ1(1 − σ) + χ2σ

)
σηp (1 − σ)ηp −θ 0

ηq

(
χ2(1 − σ)

χ2(1 − σ) + χ1σ

)
ηq

(
χ2σ

χ1(1 − σ) + χ2σ

)
(1 − σ)ηq σηq 0 −θ



3a.3.1.4 Endemic equilibrium value

Lastly, we examine the size of the infected compartments at endemic equilibrium. This
is calculated through simulation. Given a parameter set where R0 > 1 or r > 0, the
perturbed system will not return to disease free equilibrium. Therefore, we simulate
the behaviour of the system over a long time period, 600 years, until it has reached
equilibrium. The sizes of the infected compartments are then averaged over a reasonable
time span, 10 years, to arrive at the endemic equilibrium value. This is used in the
bifurcation analysis.

3a.3.2 Analysis techniques

We recap some of the methods of the previous chapter and explain some new methods.
We wish to categorise the sensitivity of the system to parameter change through the
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PRCC, Fourier Amplitude Sensitivity Test, elasticities and Multi-Parametric Sensitivity
Analysis, and the behaviour away from disease free steady state through the bifurcation
analysis.

We examine the parameters over the ranges speci�ed in table A.3 and state the
values with the relevant �gures when they are �xed. We focus on the proportion of
exposure, σ, rather than edge weightings, τ and φ. We shall examine R0 and r both
as one entity and split by their behaviour either side of the epidemic threshold. This
will be conducted by classifying parameter sets as producing R0 or r above or below
the threshold.

3a.3.2.1 Latin Hypercube Sampling, LHS

We commence with a recap of our parameter sampling technique. Latin Hypercube
Sampling is an e�cient way of representing the parameter space. In Chapter Two we
described the method which we shall brie�y restate here. Each parameter is assigned
a probability distribution; in our work all parameters are assumed to be uniformly
distributed. The parameter range is then split into equally probably intervals which are
each sampled once. The vector of samples is then randomly permuted and the matrix
of permuted vectors becomes the LHS matrix.

3a.3.2.2 Elasticity and �nite di�erence approximation

The elasticity analysis uses the LHS matrix to quantify the sensitivity of an output
across the parameter space. The elasticity of an output, ω, to parameter, ρ, is given
by: Eωρ = ρ

ω
∂ω
∂ρ evaluated at each point in parameter space.

A �nite di�erence approximation facilitates the elasticity calculation. As the model
becomes more complex, the symbolic calculation of matrix eigenvalues and partial
derivatives becomes prohibitively time-consuming. As such, we approximate the partial
derivatives in the following way [148].

∂ω

∂ρ
≈ ω(ρ+ ∆ρ)− ω(ρ)

∆ρ

Here, ∆ρ is the small perturbation amount of parameter ρ, ∆ρ << 1%. This approxi-
mation speeds the calculation.

3a.3.2.3 Partial Rank Correlation Coe�cient, PRCC

The elasticity is evaluated at each point in the parameter space. However it is useful
to understand the relation between input and output throughout. The PRCC denotes
the level of association between output and input whilst omitting the e�ect of other
inputs. The steps of the calculation are detailed in full in Chapter Two. We use the
parameter sets from the LHS to calculate the output for a range of values. The values
of the outputs and inputs are then used to derive expected values of each input and
output given a certain parameter set. The expected value is compared to the actual
value to give a residual. Finally, the PRCC is found using the following formula,

PRCC =
residual in output.residual in input

((residual in output)2(residual in input)2)0.5
.

The analysis requires a monotonic relationship between output and input. Once calcu-
lated, the coe�cients fall into the range [-1,1] where a result is considered signi�cant if it
has magnitude greater than 0.5. The magnitude itself denotes the degree of association
between input and output.
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3a.3.2.4 Fourier Amplitude Sensitivity Test, FAST

We examine two sensitivity analyses already, the elasticity and PRCC. However the
FAST can produce a slightly di�erent viewpoint. We do not need the monotonicity
that PRCC requires yet we arrive at a single value that holds across the parameter
space rather than the local result shown by the elasticity. The FAST examines the
output uncertainty with relationship to the inputs. A unique frequency is introduced
to the inputs and is tested for in the outputs [42, 87, 116, 143, 148]. The method does
not require monotonicity in the relationship between input and output which makes it
more versatile than the PRCC. The steps are illustrated by a simple example of a an
SIR model with equations as (3a.2),

ṡ = µN − βsi− µs,
i̇ = βsi− γi− µi, (3a.2)

ṙ = γi− µr.

1. The uncertainties for each parameter are de�ned. This is the range within which
the parameter is estimated to fall.

In our example, the three parameters are

x1 = β ∈ [0, 2],

x2 = γ ∈ [0, 1],

x3 = µ ∈ [0, 0.1].

2. The number of samples, M , is decided. This is usually an odd number and
follows the formula M = 2pmaxωmax + 1 where pmax is the maximum multiple of
the characteristic frequency, ωi, less than

M−1
2 or the `maximum harmonic order'.

The parameter ωmax is the maximum characteristic frequency for all parameters
[116]. In the work by Xu and Gertner, an alternative for the number of samples
as M > 80× (number of parameters)[143].

Using the latter and using the nearest odd number, our number of samples is 241.

3. A characteristic frequency must be chosen for each parameter by the user. These
are best chosen between 10 and 100 and should not be multiples of one another
[143].

For instance, we choose the frequencies to be ω1 = 13, ω2 = 17, ω3 = 23.

4. The characteristic frequencies allow random samples to be taken for each param-
eter. These follow the formula of xi = F−1i (12 + 1

π sin−1 sin(ωiv)) [116, 143]. Here,
F−1i is the inverse cumulative frequency distribution for the ith parameter and v
is the common variable of the search function.

As previously stated, all parameters are assumed to be uniformly distributed, there-
fore F−1i (p) = a+ p(b− a) where a and b are the lower and upper bounds for the
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range respectively. Thus our parameters are:

x1 = 1 +
2

π
sin−1 sin(13v),

x2 =
1

2
+

1

π
sin−1 sin(17v),

x3 =
1

20
+

1

10π
sin−1 sin(23v).

5. Now the output can be calculated as a function of v.

We focus on the basic reproduction number, thus,

R0 =
β

γ + µ
,

=
1 + 2

π sin−1 sin(13v)
1
2 + 1

π sin−1 sin(17v) + 1
20 + 1

10π sin−1 sin(23v)
,

=
20π + 40 sin−1 sin(13v)

11π + 20 sin−1 sin(17v) + 2 sin−1 sin(23v)
,

= f(v).

.

6. We then take M samples of our search function variable, v, where the jth sample
takes the form vj = −π+ π

M + 2π
M (j−1). These samples are then used to decompose

the output into a Fourier spectrum which will de�ne the output variance. Thus
if a parameter is important to the output, the signal of that parameter will be
identi�ed.

In our example, the variance takes the form

ˆvar(R0)
(i) =

M−1
2∑
k

Ω
(i)
k ,

=

M−1
2∑
k

(A
(i)2

k +B
(i)2

k ),

where the Fourier coe�cients along the search curve for xi are

A
(i)2

k =
2

M

M∑
j

f(vj) cos(vjk),

B
(i)2

k =
2

M

M∑
j

f(vj) sin(vjk).
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7. The variance of a parameter i, Wi, can be singled out as

Wi =

pmax∑
p

Ω(i)
pω.

8. Finally, the individual variance, Ci, is divided by the total variance to de�ne the
measure of uncertainty for the ith parameter,

Ci =
Wi

ˆvar(output)
.

Thus, the results are as follows:

Tβ = 0.1648,

Tγ = 0.4520,

Tµ = 0.0428.

Which implies that γ is the most in�uential parameter. This was implemented
using an altered version of the MATLAB program mentioned by Per- Anders Ek-
ström [42].

One issue with the calculation of FAST sensitivities is the computational expense.
However, it will not be an issue at this stage.

3a.3.2.5 Multi-Parametric Sensitivity Analysis, MPSA

Whilst we examine the general input-output relationship with the PRCC and FAST, it
is insightful to see where in the parameter space is most in�uential. The MPSA gives
a value for the sensitivity but also illustrates visually where most change takes place.
The method steps are as follows, illustrated by the example from the FAST analysis
[29, 107, 148, 149].

1. The LHS is taken and the output is evaluated for each parameter set.

We will �x µ = 0.0005 and vary β and γ as shown in table 3a.1.

2. The user de�nes a threshold that splits the output values into `acceptable' and
`unacceptable' categories.

We shall use the epidemic threshold, R0 = 1.

3. The corresponding parameter sets are ordered ready to construct

frequency graphs.

Our ordered parameter sets and acceptability are shown in table 3a.1.

4. We construct frequency and cumulative frequency graphs of the acceptable and
unacceptable output values for each parameter. These are normalised so we may
compare the curves for acceptable and unacceptable frequency.

Using the table above, we construct the following frequency and cumulative fre-
quency graphs for β and γ.

60



β γ R0 Acceptable

0.5 0.2 2.49 ×
0.4 1.25 ×
0.6 0.83 X

1 0.2 4.99 ×
0.4 2.50 ×
0.6 1.67 ×

1.5 0.2 7.48 ×
0.4 3.75 ×
0.6 2.50 ×

Table 3a.1: Table of input parameters, γ and β, and output R0 with acceptability.
Acceptable is de�ned as being below the threshold R0 = 1.

Figure 3a.2: Graphs of frequencies and cumulative frequencies of acceptable, black, and
unacceptable, red, outputs. These are normalised, with µ �xed at 0.0005.
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5. Finally, the sensitivity is calculated using the Kolmogorov�Smirnov test [148],

KS = sup
x
|Fa(x)− Fu(x)|.

Here, Fa(x) & Fu(x) denote the normalised cumulative frequency functions for the
acceptable and unacceptable outputs respectively. This calculates the maximum
vertical distance between the acceptable and unacceptable cumulative frequency
curves. The area in the parameter space where the KS statistic is maximised
indicates the area of most in�uence.

Therefore for β the K-S statistic is 0.75 and for γ, 0.66. This suggests that β is
more in�uential for this particular value of µ. The graphs also suggest that β is
most in�uential at the bottom of its range and γ most in�uential in the middle of
its range.

Note that the MPSA does not suggest the direction of in�uence of an input on an
output, only the magnitude. The threshold is also user de�ned and could a�ect the
results. In our work, the threshold is de�ned as the mean value of the output.

3a.3.2.6 Bifurcation analysis

We have examined the in�uence of the parameters in the system in many ways. Now,
we wish to understand how the system changes as R0 crosses the epidemic threshold.
Bifurcation analysis is a method for analysing steady states and oscillations and it charts
time-varying changes in the state of the system in a multidimensional space [64, 147].

We conduct a bifurcation analysis for the simple example used in the FAST and
MPSA. Figure 3a.3 shows an example of a bifurcation diagram over β. The transcrit-
ical bifurcation, where stability switches from the disease free to endemic equilibrium,
corresponds to R0 = 1 after which the size of the infected population at equilibrium
approaches µN

γ+µ .

Figure 3a.3: Example bifurcation diagram for simple example. The grey circle repre-
sents a transcritical bifurcation.

3a.4 Results

Our aim was to understand the new model, particularly the e�ect of control on disease
dynamics. We start with the sensitivity analyses: the elasticity, PRCC, FAST and
MPSA before examining the equilibrium behaviour through the bifurcation analysis.
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We sample the parameter space using the Latin Hypercube method to arrive at the
following.

3a.4.1 Elasticities

We use the elasticity to examine the relation between input and output at each point
in the parameter space. We focus on R0, the part reproduction numbers and r to
understand the disease behaviour in the initial growth phase of the epidemic. In this
analysis, we do not split the parameter sets about the epidemic threshold. This is as
every elasticity value is displayed individually.

We approximate the partial derivative in the elasticity calculation using the �nite
di�erence approximation. This allows a quick computation of the relationship between
input and output at each point in the parameter set in the LHS matrix. There are 1000
samples taken in the following analyses and we start with R0.

3a.4.1.1 Basic reproduction number, R0

The elasticities for each parameter are shown in �gure 3a.4. There were four parameters
found to be particularly signi�cant in Chapter Two, θ, β, γ and κ. These are also
signi�cant here although the in�uence of the recovery rate varies based on the value
of the treated recovery scaling factor, α. In general, the parameters that vary over
the two patches are more in�uential in the patch with a treatment facility, patch q.
This is as infected individuals have proportionately more exposure to the environment
of patch q. The exposure an individual experiences in their home patch, σ, has a
varying but generally positive in�uence on R0. As an individual is exposed more to the
environment of their home patch, there is less opportunity for cross contamination of
patches. However, for the majority of the range of σ, cross-contamination is possible.
The treatment rate, ξ, generally has a negative e�ect on R0. This is because, as the
treatment rate increases, individuals are more likely to be in the treated class where
they recover more quickly. However, there are parameter sets where ξ has a positive
in�uence on R0. This occurs when the local shed rate in the patch without a treatment
facility, ηp, and the weight scaling towards treatment, χ2, are at the top of their ranges.
This scenario is illustrated in �gure 3a.5.

The situation is that an infected individual of patch p is strongly attracted to treat-
ment and so the majority of their exposure is to the environment of patch q. Once they
become treated, there is no edge scaling and they revert to experiencing most exposure
to their home patch environment where the shed rate is high. Thus, increasing the
treatment rate means infected residents of patch p return home more quickly and, even
though they are treated, cause signi�cant contamination there because the local shed
rate is so high.

To con�rm this theory, we examine the decomposition of R0 through the part re-
production numbers. Figure 3a.6a shows a reference parameter set where we see the
contribution of the bacteria in patch p is relatively stable over ξ. However, in �gure
3a.6b where the scaling towards treatment is higher, as ξ increases, so does the contri-
bution of the bacteria in patch p. Thus, there is a greater e�ect from the bacteria in the
environment of patch p when individuals are `released' by treatment to face exposure
in the patch without a treatment facility.
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Figure 3a.4: Elasticities of R0 calculated using the �nite di�erence approximation.
Parameters took the values shown in table A.3.

Figure 3a.5: Scenario where treatment rate has a positive in�uence on R0. Arrow
line width denotes larger rates and the red cross denotes the placement of a treatment
facility.

(a) Reference with low χ2 (b) Positive elasticity with high χ2

Figure 3a.6: Composition of R0 in terms of the part reproduction numbers over treat-
ment rate ξ. Parameters were chosen in the area of parameter space where the elasticity
of R0 with respect to ξ was positive for �gure (b). Part reproduction numbers, from

dark to light, are R
Ip
0 , R

Bp
0 , R

Iq
0 and R

Bq
0 . Parameters were θ = 0.2, ηp = 0.05, ηq =

0.1, β = 6, Np = 4 × 106, Nq = 8 × 105, τ = 7, χ1 = 0.9, γ = 0.8, α = 1.01, κ = 3 × 106

and µ = 3× 10−5. Weight scaling χ2 is 1.1 in 3a.6a and 4 in 3a.6b.
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3a.4.1.2 Part reproduction numbers

The elasticities of the part reproduction numbers, shown in �gure 3a.7, see some of the
in�uences that were seen for R0. The bacteria degradation rate, θ, recovery rate, γ,
half-saturation constant, κ, and contact rate, β, all have strong in�uences. However,
we can obtain further information about each patch and each infectious class. The in-
fected class contribution from each patch depends strongly on that patch shed rate and,
positively, on that patch population size. The contribution is also strongly negatively
a�ected by the population size of the other patch. The direction of this e�ect is due
to the distributions of infections; if proportionately more infections occur in one patch,
then there must be proportionately fewer in the other. The bacterial class contributions
depend on all parameters of interest to a greater extent than the infected class contribu-
tions. Particularly the bacteria degradation rate, θ, contact rate, β, and half-saturation
constant, κ.

The di�erence between the two patches is particularly highlighted by this analysis.
Generally, the parameters in patch q have a stronger in�uence. We also see a change in
the direction of in�uence of the scaling parameters, χ1 and χ2, in patch p and q; as χ2

increases and χ1 decreases, infected individuals experience more exposure in patch q and
less in patch p. This is particularly important for the static bacteria classes. However,
there is a further parameter of interest for the bacteria classes. The treatment rate, ξ,
has a negative in�uence on the contribution of bacteria in patch q. However, ξ has a
positive in�uence on the contribution of the bacteria in patch p. This is for the reason
mentioned in the previous section. As the treatment rate increases, individuals move
from the infected class where edge weightings are scaled, to the treated class where they
are not. As such, shedding individuals experience more exposure in patch p, increasing
the importance of the bacterial reservoir there. Lastly, there is a large variation in
the a�ect of σ. This is because its e�ect is directly related to the values of the local
parameters. If it is skewed toward a patch where the local parameter values are high,
it will have a larger e�ect.
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3a.4.1.3 Intrinsic growth rate

The R0 and part reproduction numbers examine the growth rate per generation. We are
interested in how that growth rate di�ers when measured over time. The key in�uential
parameters for intrinsic growth rate, r, are similar to those for R0, shown in �gure 3a.8.
The di�erence is in the variability of their e�ect. Parameters with only one elasticity
value across the sample set with respect to R0, take a range of elasticity values with
respect to r. This is as we are examining and comparing parameters of di�erent scales
without the discrete division a�orded by a per generation approach.

Figure 3a.8: Elasticities of the intrinsic growth rate r calculated using a �nite di�erence
approximation. Parameters take values in the ranges speci�ed in table A.3.

3a.4.2 Partial Rank Correlation Coe�cient, PRCC

The PRCC generalises the relation between input and output across the parameter
space. Therefore, we may not see how di�erent areas within the parameter space change
the in�uence of input on output. As such, we divide our parameter space into sets that
give a value of R0 or r above their epidemic thresholds and sets that produce values
below the thresholds. This will allow us to see if there are di�erent correlations either
side of R0 = 1 and r = 0.

We �rst examine the basic reproduction number, R0. Either side of the epidemic
threshold θ, γ and κ are signi�cant. This is reminiscent of the elasticity results. How-
ever, β, which also had a notable elasticity, is only signi�cant when R0 < 1. This
suggests it has a strong in�uence in that area of parameter space and is a key compo-
nent in the stability of the disease free equilibrium.

Similarly, the shed rate in the patch containing a treatment facility is signi�cant
when R0 < 1. In contrast, the shed rate in patch p, without a treatment facility, is
not signi�cant. Thus, the rate of contribution to the bacterial reservoir in the patch
with a treatment facility is an important factor in the stability of the disease free
steady state. We know that the parameters of patch q are generally more in�uential as
infected individuals are proportionately more exposed to the environment there. Once
the disease has established, β and ηq no longer in�uence to the same extent.

The intrinsic growth rate, r, is also split around the epidemic threshold. When
r > 0, there are three parameters of interest, β, γ and κ. The contact rate β and
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half-saturation constant, κ, dictate the force of infection whereas the recovery rate, γ,
in�uences the duration of infection. The duration appears to be less signi�cant here as
the PRCC of θ, the degradation rate, is just below the notable threshold and the PRCC
of γ is just above. This is because r is the growth over time rather than per generation.
When r < 0, only θ and γ are signi�cant. These dictate the duration of infection and
as r is the resilience with inverse sign, γ and θ are instrumental in the time taken by
the system to return to disease free equilibrium.
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3a.4.3 Fourier Amplitude Sensitivity Test, FAST

We sample the entire parameter space without dividing it by the epidemic threshold.
Thus, as we compare these results to the PRCC and MPSA, we compare the behaviour
of the parameters throughout the sample space with that either side of the epidemic
threshold.

Output θ ηp ηq β ξ Np Nq

R0 0.0371 0.0013 0.0029 0.0111 0.0014 0.0026 0.0020

r 0.0754 0.0036 0.0216 0.0516 0.0065 0.0075 0.0121

σ χ1 χ2 γ α κ µ

R0 0.0015 0.0005 0.0023 0.0238 0.0026 0.0359 0.0006

r 0.0082 0.0025 0.0004 0.0493 0.0014 0.2381 0.0001

Table 3a.3: FAST sensitivities for R0 and r. Signi�cant values are highlighted in black.
Parameters take values in the ranges shown in table A.3.

In both cases of R0 and r, there are four parameters of interest. The level of
uncertainty contributed to R0 and r, is higher than that of other parameters for θ, β, γ
and κ . These have found to be key parameters in other analyses as they in�uence the
force and duration of infection. There are two further parameters of interest for r, Nq

and ηq. Thus, the population size and shed rate in the patch with the treatment facility
are signi�cant in the growth of the epidemic over time. The parameters in patch q are
generally more in�uential as there is proportionally more exposure experienced there
by infected individuals.

3a.4.4 Multi-parametric sensitivity analysis, MPSA

The MPSA allows us to examine not only the parameter in�uence but where in the
parameter range is most in�uential. We start with the basic reproduction number
above and below the epidemic threshold, shown in �gures 3a.9 and 3a.10.

Figure 3a.9: Graphs of MPSA with a threshold of the average value of R0 over the 1000
parameter samples from table A.3 where R0 > 1. Values in red denote a KS statistic
greater than 0.1.

Both sides of the epidemic threshold, θ, γ and κ are in�uential. The most signi�cant
part of the ranges of θ and κ appears to be the middle. This is also the case with β when
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R0 < 1 which, like the PRCC results, is the only area where it is signi�cant. Similarly,
ηq is signi�cant when R0 < 1 only. However, in contrast to the PRCC results, Np and
Nq are both notable when R0 < 1. However, both have PRCC values just below the
threshold of signi�cance but MPSA values just above the corresponding signi�cance
threshold. As such, the results from the PRCC and MPSA appear complimentary for
R0.

Figure 3a.10: Graphs of MPSA with a threshold of the average value of R0 over the
1000 parameter samples from table A.3 where R0 < 1. Values in red denote a KS
statistic greater than 0.1.

The MPSA results for the intrinsic growth rate appear more interesting. When r is
positive, β and κ are signi�cant. Contact rate, β, appears most in�uential in the
middle of its range. However, κ, is far more in�uential in the lower part of its range.
This suggests there is most change in r when κ ∈ [0, 5e7]. This is because κ controls the
probability of infection given contact with bacteria. Thus, it is most in�uential when
the disease is already established. In contrast to the PRCC results, γ is not signi�cant
when r > 0. This is not due to the choice of signi�cance threshold as the MPSA value
for γ is so low. However, it may be due to the acceptability threshold. A threshold
in an area of many small �uctuations will lead to a di�erent MPSA result than if the
threshold fell below or above the �uctuations.

When r < 0 , θ, β and γ are in�uential. The lower end of the ranges of θ and γ
is most in�uential. Whereas, the e�ect appears constant over the range of β. We also
note that β is signi�cant here which is not the case for the PRCC results. This is due
to the threshold of signi�cance. The MPSA value is just `signi�cant' but the PRCC
values is only just `insigni�cant'. Therefore, the MPSA compliments the PRCC results
once again.
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Figure 3a.11: Graphs of MPSA with a threshold of the average value of positive r over
the 1000 parameter samples from table A.3. Values in red denote a KS statistic greater
than 0.1.

Figure 3a.12: Graphs of MPSA with a threshold of the average value of negative r over
the 1000 parameter samples from table A.3. Values in red denote a KS statistic greater
than 0.1.
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3a.4.5 Bifurcation

We examine the endemic equilibrium values in both patches over the contact rate, β.
In �gure 3a.13 we chart the stable equilibrium values of the infected classes for each
patch.

Figure 3a.13: Bifurcation analysis of the infected classes of patch p, black, and q, red
over discrete values of β. Other parameters were θ = 0.8, ηp = 0.4989, ηq = 0.3024, β =
0.88, ξ = 0.4988, Np = 1e7, Nq = 1e7, τ = 6.4982, χ1 = 0.6351χ2 = 4.7882, γ = 0.2, α =
4.2816, κ = 1e7, µ = 6.27e− 5.

The bifurcation point corresponds to R0 = 1. Before this point, the disease free
equilibrium is stable and the size of the infected compartments are zero. After the
transcritical bifurcation, the endemic equilibrium is stable and the infected compart-
ment sizes increase as the contact rate increases. We see that the infected population
is generally smaller in the patch with a treatment facility than in the patch without.

3a.5 Conclusion

3a.5.1 Summary

We aimed to �nd the e�ect of control on the dynamics of an environmentally transmitted
disease through a metapopulation. We �rst outlined the model with treatment available
in one patch. This involved revised exposure weightings for infected individuals as they
were assumed to seek treatment. Once the model was derived, the outputs of the
model were de�ned along with some analyses to examine them. These focussed on
the sensitivity of the outputs to the model parameters. We used the elasticity and
PRCC once more to compare the results of the new model to those of the model in
chapter two. Furthermore we utilised the FAST and MPSA to examine the progress of
uncertainty from input to output and highlight the areas of the parameter space which
were particularly important. Finally, we examined the transition from disease free to
endemic equilibrium stability using a bifurcation analysis.

3a.5.2 Findings

We used four methods of measuring the sensitivity of the model outputs to the input
parameters. Generally, we found four parameters were in�uential. The degradation
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rate, recovery rate, half-saturation constant and contact rate were all key in�uencing
factors to the disease dynamics. These parameters control the generation time and are
fundamental to the force of infection and so we may expect signi�cant change in the
disease dynamics given a change in these parameters. However, the analyses highlighted
further parameters and behaviours of interest. The parameters from the patch with a
treatment facility were generally found to be more in�uential. This is because infected
individuals are proportionally more exposed to the environment surrounding a treat-
ment facility. The variation in exposure experienced by infected individuals also led to
some interesting e�ects of the treatment rate. We saw that in some situations the basic
reproduction number actually increased when the treatment rate rose. This was in the
situation where the weighting towards a treatment facility was signi�cantly higher than
the weighting away and where the shed rate in the patch without a treatment facility
was high. As such, infected individuals experience almost all of the exposure to the
patch with a treatment facility. However, once they were treated, the exposure to each
patch returned to normal and so the exposure in the patch without a treatment facil-
ity increased. This also increased the importance of the bacteria in the patch without
a treatment facility as individuals were free to contribute bacteria there. Therefore,
the behavioural change in response to treatment provision motivates some negative
outcomes as well as positive.

We conducted a bifurcation analysis. This allowed us to see how the transition from
stable disease free equilibrium to stable endemic equilibrium occurs. We saw that there
was a branch-point at R0 = 1. After this point, the disease free equilibrium was no
longer stable and the endemic prevalence steadily increased. One key aspect of this was
that the endemic prevalence was lower in the patch with a treatment facility. Therefore,
even with coupling between patches and proportionally more exposure in the patch with
the treatment facility, there is still a marked bene�t from the treatment facility to local
residents. These dynamics hold for one parameter set. If another parameter set was
chosen we would see a di�erent value of the contact rate for the transcritical bifurcation.
We would also see di�ering endemic prevalences. However, the behaviour would remain
largely the same.

Our methods were quite di�erent to those used in the works mentioned in the
literature review. We also examined a di�erent behavioural adaptation as it was in
response to control rather than disease prevalence. We found that the scaling of the edge
weightings were not in�uential for R0 or r. However, there were situations where the
changed behaviour of infected individuals can lead to surprising e�ects of the treatment
rate. We noted that the variation in behaviour of the infected individuals with respect
to treatment can mean their exposure is dominated by the environment of patch q.
This leads a much higher contribution of bacteria there, until individuals are treated.
In comparison with the works reviewed, we found that the behavioural change can both
decelerate and accelerate disease spread. The deceleration is due to encouraging infected
individuals to become treated and recover faster. The acceleration is through the e�ect
of treatment rate in section 3a.4.1.1. However, we did not �nd a great dependence of
the basic reproduction number on behavioural adaptation.

3a.5.3 Assessment of the methods

We used a wide variety of methods- particularly to measure the sensitivity. Each had
their bene�ts and areas of speciality. The elasticity approximated the input/ output
relationship at every point in the parameter space. Also, with the �nite di�erence
approximation, it was computationally quick. However, the varying values can lead to
busy presentation. In contrast, the PRCC gave one value for the relationship between
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input and output. This was easy to interpret even when we divided the parameter space
around the epidemic threshold. However, the need for monotonicity, especially with the
new complicated movement terms, limited the usefulness of PRCC. The FAST is not
hampered by the requirement of monotonicity. It measures the spread of uncertainty
from input to output and uses that as a measure of the sensitivity. A problem with the
FAST is that there can be instances where a parameter, through poor estimation, may
contribute a disproportionate amount of uncertainty, leading to a misleading sensitivity
result. This is partly because the parameters are assumed to be strictly independent
[143]. However, it can also fail when the parameter estimation includes infeasible or
extreme values, causing extreme values of the output. For instance, if the order of
magnitude was too large, the contribution of uncertainty would be disproportionate
compared to the e�ect. The method also does not indicate the direction of in�uence of
input on output, a valuable piece of information. This is a defect shared by the MPSA.
Although the bene�t of the MPSA is that it highlights important areas of the parameter
space. Thus, we could see that the di�erent intervals of the parameter range were more
in�uential either side of the epidemic threshold. However, it is unclear whether this is
a result of the in�uence of the parameter of whether the epidemic threshold divided the
range in this way. Another area of possible error related to the MPSA was the user-
de�ned threshold of acceptability. It may be necessary to check a variety of thresholds
to ensure the results are robust.

In conclusion, the elasticity, despite having many values to examine, was compu-
tationally quick, did not require monotonicity or a user-de�ned threshold and would
not be unduly a�ected by uncertainty in parameter estimation. As such, it may be a
good method to utilise in further work. However, we have not yet identi�ed methods
of analysis with regard to perturbation.

This is not to say that the methods employed in this chapter were not useful. If we
wished to build a comprehensive picture of the sensitivity of this model we could gain
insight from each analysis method if we asked the right questions. If we wanted to see
the range of possible e�ects of a parameter on an output, we could use the elasticity
analysis to see how much the in�uence varied. In that in�uence, we could use the MPSA
to highlight areas of greatest importance which would be particularly useful if we were
unsure whether to examine all of a large range of a parameter. To get an idea of the
overall average e�ect of a parameter on an output we could employ the FAST. However,
if we knew the parameters to be correlated and have a monotonic relationship on the
output, we could utilise the PRCC instead. Therefore, depending on the relationship
between the parameters and the output or the parameters and themselves, we can build
a detailed picture of the behaviour.

3a.5.4 Future considerations

We focused once more on highlighting the sensitivity to key system parameters. How-
ever, the implementation of treatment here does not take into account the limitations
of treatment. In a real situation, there would not be unlimited capacity for treatment
and there would be situations where an in�ux of infected individuals could overwhelm
services. We examine this situation in the next part of this chapter.
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Chapter 3b

Limiting the treatment capacity

3b.1 Introduction

In Chapter Three part A we examined the e�ect of one treatment facility in a metapop-
ulation. However, we assumed that the treatment facility had unlimited capacity. In
real life, a medical facility would need to cope with changing demand for medicines and
supplies which may be overwhelming at times. As such, we now assume that the rate
of treatment depends on the number of infected individuals and a �xed capacity.

We wish to understand how this capacity for treatment a�ects disease dynamics.
Therefore, we will see how key system outputs, the epidemic size and endemic equi-
librium value, vary with limited treatment provision. We focus on aspects away from
disease free steady state as the analysis of the �xed treatment rate model will hold
when the number of infected individuals is low. We start with a brief literature review
of saturating treatment models.

3b.2 Brief literature review on saturating treatment terms

The idea of varying treatment rates was �rst addressed by Wang and Ruan in a simple
SIR model [135]. In this instance, the treatment term was a step function dependent
on the infected class. When there were no infected individuals, the treatment term
was zero. Otherwise, there was a constant removal of infected individuals, shown in
equation (3b.1).

Ṡ = A− dS − λSI
İ = λSI − (d+ γ)I − h(I) (3b.1)

Ṙ = γI + h(I)− dR

h(I) =

{
r I > 0

0 I = 0

The model assumed that the population was closed with all individuals born susceptible
at constant rate A. Individuals died at rate d and recovered naturally at rate γ. Finally,
λ denoted the force of infection and h(I), the number of individuals treated. Wang and
Ruan conducted their analysis analytically. They de�ned R0 explicitly which gives a
threshold for the existence of one endemic equilibrium when R0 = 1 and derived another
threshold, R0 = (H = λr

d(d+γ)), for the existence of two endemic equilibria. This led
to a bifurcation analysis. They found, and derived expressions for, a saddle-node, sub-
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critical Hopf and homoclinic bifurcation. Thus, with a simple step function for the
removal of infected individuals, a wide array of behaviour was discovered.

The concept of a varying removal rate of infected individuals was revisited by Wang
in 2006 [134]. The model in equations (3b.1) was retained. However, the number
of individuals treated, h(I), depended linearly on the number of infected individuals
until a critical number, I0, was reached, see equations (3b.2). The aim of the paper
was to examine bistability surrounding a backward bifurcation. Analysis was once again
conducted analytically to establish thresholds for stability of the disease free equilibrium
and no Hopf bifurcation was found.

h(I) =

{
rI 0 ≤ I ≤ I0
k = rI0 I > I0

(3b.2)

In later work, Cui, Mu and Wan examined a SIS model [32]. They de�ned a treat-
ment rate with nonlinear dependence on the number of infected individuals, shown in
equations (3b.3). The treatment rate was zero when there were no infected individuals
and approached a maximum, c, as the number of infected individuals increased. When
I = b, the rate was half its maximum.

h(I) =
cI

(b+ I)
(3b.3)

They found a backward bifurcation, and an area of bistability, and de�ned the idea of
treatment capacity. However, they found no oscillatory dynamics.

This nonlinear treatment rate was examined repeatedly over the following years.
Zhang and Liu found that, as the impact of the treatment rate increased, R0 = 1
was no longer a strict threshold for disease invasion [144]. This is because a backward
bifurcation formed and they de�ned a new threshold for disease persistence, Rc, as the
turning point of the backward bifurcation. Zhang and Suo further categorised these
thresholds in a SIS model and Wan & Cui examined them in a SIR model to classify
the stability and existence of endemic equilibria [133, 145].

Finally, Li and Cui added an additional nonlinear incidence term to their model
in 2013 [82]. This, along with a constant removal rate of infected individuals rather
than a nonlinear treatment rate, led to complicated dynamics. They derived criteria
for the existence of a Hopf bifurcation and analysed the Lyapunov exponents for it.
The Lyapunov exponents give the rate of exponential divergence from perturbed initial
conditions. When the �rst Lyapunov exponent is negative, the limit cycles emanating
from a Hopf bifurcation are stable and the bifurcation is termed `supercritical'. Other-
wise, and in the case of Li and Cui's work, the limit cycles are unstable and the Hopf
bifurcation is termed `subcritical'.

3b.2.1 Summary

The works mentioned focussed on SIR and SIS models in their simplest forms. In most
cases, R0 and the endemic equilibria could be written explicitly allowing analysis of
their existence and stability to be conducted analytically. When the treatment rate
saturated, bistability was found in certain situations. This was between R0 = 1, where
there was a backwards transcritical bifurcation, and Rc which denoted the turning point
of the bifurcation. When there was both a nonlinear incidence rate and step function for
the removal of infected individuals, a Hopf bifurcation was found. This meant that the
model exhibited oscillatory behaviour as the number of infected individuals �uctuated,
a�ecting both the force of infection and the removal of infected individuals.

77



In the following model we shall also examine the issue of varying removal of in-
fected individuals through treatment. However, there are some di�erences with the
aforementioned works. We focus on an environmentally transmitted disease. As such,
we examine a nonlinear force of infection that is dependent on the bacteria in the envi-
ronment. We also assume that the treatment rate decreases as the number of infected
individuals increases. This is to approximate the demands on a medical facility of an
in�ux of infected individuals. Our treatment rate pro�le is shown in �gure 3b.1. We
shall elaborate on the assumptions and form of our treatment rate now.

3b.3 Model

We wish to examine the e�ect of limited treatment capacity on the dynamics of an
environmentally transmitted disease. This limited capacity will a�ect the rate at which
infected individuals enter the treated class. This is de�ned as the treatment rate whose
form is based on the following assumptions.

• The treatment rate is at its potential maximum when there are no infected individ-
uals. Thus, when there is no demand, the facility should operate at its maximum
potential.

• There is a capacity that the treatment rate depends on.

• The treatment rate should not immediately fall when the infected population
increases, rather there should be a plateau. This is as we assume that the facility
can cope with a certain level of demand before it begins to be stretched.

• Similarly, the rate should plateau once more after it has fallen. We assume that
even when working at full capacity, the facility is still able to supply some medical
aid.

Given these constraints, we choose the following function which contains the preferred
characteristics,

ξ(I) = ξ∗
(

1

1 + (I/Υ)2

)
. (3b.4)

Treatment rate, ξ, is a function of the number of infected individuals with access to
treatment. The new parameter, Υ, is related to the capacity of the treatment facility.
The capacity can be unlimited which leads to the parameter ξ∗ reaching its maximum
treatment rate. In Figure 3b.1 the pro�le of the treatment rate as the number of infected
individuals increases is shown.

The model is then as de�ned in Chapter Three part A including the new saturating
treatment term. The treatment facility is placed in patch q. Therefore the proportion

of infected individuals exposed to the treatment facility is I =

(
χ2(1− σ)

χ1σ + χ2(1− σ)

)
Ip +(

χ2σ

χ2σ + χ1(1− σ)

)
Iq.
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Figure 3b.1: The treatment rate as a function of the number of infected individuals with
access to a treatment facility. Here Υ was chosen as 2000 and ξ∗ as 1 for illustration.

p



Ṡp = µNp − βSp
(
σ

Bp
κ+Bp

+ (1− σ)
Bq

κ+Bq

)
− µSp,

İp = βSp

(
σ

Bp
κ+Bp

+ (1− σ)
Bq

κ+Bq

)
−
(
γ + ξ(I)

(
χ2(1− σ)

χ1(1− σ) + χ2σ

)
+ µ

)
Ip,

Ṫp = ξ(I)

(
χ2(1− σ)

χ1(1− σ) + χ2σ

)
Ip − (αγ + µ)Tp,

Ṙp = αγTp + γIp − µRp,

Ḃp = −θpBp + ηp

((
χ1(1− σ)

χ2σ + χ1(1− σ)

)
Iq + (1− σ)Tq + σTp

+

(
χ1σ

χ1σ + χ2(1− σ)

)
Ip

)
.

q



Ṡq = µNq − βSq
(
σ

Bq
κ+Bq

+ (1− σ)
Bp

κ+Bp

)
− µSq,

İq = βSq

(
σ

Bq
κ+Bq

+ (1− σ)
Bp

κ+Bp

)
−
(
γ + ξ(I)

(
χ2σ

χ2σ + χ1(1− σ)

)
+ µ

)
Iq,

Ṫq = ξ(I)

(
χ2σ

χ2σ + χ1(1− σ)

)
Iq − αγTq − µTq,

Ṙq = αγTq + γIq − µRq,

Ḃq = −θqBq + ηq

((
χ2σ

χ2σ + χ1(1− σ)

)
Iq + σTq + (1− σ)Tp

+

(
χ2(1− σ)

χ1σ + χ2(1− σ)

)
Ip

)
.

All parameters are as de�ned in table A.3 except for the saturating treatment terms,
shown in table A.5.

3b.4 Analysis

When the system is disease free, the treatment rate is at its maximum and the model
is the same as the constant treatment rate case. Therefore, we examine model charac-
teristics or outputs away from disease free equilibrium. We shall de�ne the calculation
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to �nd the epidemic size and endemic equilibrium and then de�ne analysis methods to
understand them.

3b.4.1 Model outputs

We focus on the transient behaviour away from disease free equilibrium through the
epidemic size, and the long-term behaviour through the endemic equilibrium. The
epidemic size is calculated using an additional compartment in the model consisting
of the force of infection. This counts the new infections without loss due to recovery
or death. We start at disease free equilibrium, introduce a small number of infected
individuals, N/1000, and count the number of infections over the following 100 days.
We choose a �xed time period as the epidemic is likely to have ended in this period
and the number of infections over the time period will be proportional or equal to the
number over the course of the epidemic. This also circumvents the issue of whether the
disease free equilibrium is stable for the parameter set, in which case the epidemic size
is zero.

The endemic equilibrium is calculated using simulation as detailed in the previous
chapter. However, it is also calculated algebraically in MATLAB and through the
program MATCONT, explained in Section 3b.4.3.

3b.4.2 Analysis methods

We conduct an elasticity analysis on the epidemic size to establish the dependence of the
short term behaviour on the new saturating treatment term. This is calculated using
the �nite di�erence approximation to speed the computation of the partial derivative.
It therefore takes the following form,

Eepidemic size =
input

epidemic size(input)

epidemic size(input +∆input)

∆input
.

For a full explanation of elasticity, see Chapter Two, and for a full explanation of the
�nite di�erence method see Chapter Three part A.

3b.4.3 Bifurcation analysis

We conducted a simple bifurcation analysis in Chapter Three part A. However, consid-
ering the �ndings of previous works on varying treatment rates, we may expect more
complicated dynamics here. Bifurcation analysis examines the value and stability of
the system equilibria. We will use MATLAB and MATCONT to plot the disease free
and endemic equilibria with respect to the contact rate, β. We shall use the eigenval-
ues of the system Jacobian linearised about the equilibrium to classify the equilibrium
stability [74]. When the eigenvalues have negative real part, the equilibrium is stable.
MATCONT works within MATLAB as a continuation and bifurcation toolbox [55]. It
can not only examine the stability of equilibria but also classify bifurcations and �nd
limit cycles and periodic behaviour.

As mentioned previously, we may expect some more complicated dynamics in our
model. As such we shall employ another tool to analyse the system behaviour. When
the system exhibits oscillatory behaviour, a Poincaré section may be used to classify
it as periodic, quasi-periodic or chaotic. It is known as the surface of section and is
the image of the hyperplane chosen when calculating a Poincaré map [103]. The map
replaces a N dimensional autonomous system with a (N-1) dimensional discrete time
system [128].

The section is calculated using the following steps:
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• A (N-1) dimensional hyperplane transverse to the system �ow is chosen. For
instance, this can be done by �xing one of the system variables, X, at a constant
value, K.

• The system behaviour is simulated and the trajectory is calculated.

• We concentrate on the variable, X. As the system oscillates, X will take a range
of values and we note when X = K as this is when the system trajectory intersects
the hyperplane. We can consider ourselves sampling the trajectory at this point
[103]. Also, as we do not distinguish which direction the trajectory approaches
the hyperplane, this is de�ned as a `two-sided' Poincaré map.

• If the solutions are periodic, X will return repeatedly to value K after time T in
the same position in state space.

• In this situation, T is the minimum period of the limit cycle and our Poincaré
section takes the form of �gure 3b.2.

Figure 3b.2: Trajectory and Poincaré map with periodic behaviour.

It could also take the form in �gure 3b.3 for a period-2 orbit.

Figure 3b.3: Trajectory and Poincaré map with period-2 behaviour.

The trajectory in �gure 3b.3 has period 2T. The Poincaré section for an N-periodic
orbit has N points.

• When the system is quasi-periodic, the position in state space when X = K varies
slightly. However, the system is still `well-behaved' and does repeat to form a �xed
shape, a closed curve, shown in �gure 3b.4.

• Lastly, there is the situation where the system exhibits chaotic behaviour and
what can be seen on the Poincaré section is the `attractor', a complex and �ne-
structured pattern.
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Figure 3b.4: Trajectory and Poincaré map with quasi-periodic behaviour. The trajec-
tories follow the surface of the torus

Given a limit cycle of the underlying �ow, di�erent choices of hyperplane can lead to
closed orbits of di�erent orders or periods [103]. In our work, we chose our hyperplane
as Bp = mean(Bp) where mean(Bp) is calculated as the mean size of the bacterial
class in patch p over the timespan. The timespan we used was 3000 years. However,
we �rst simulated the system to equilibrium using a timespan of 300 years, the mean
was then calculated after this point. This is as the system acts as a damped oscillator
and we wish to ignore the initial �uctuations. We then examined at which points the
system trajectory intersected the hyperplane, or when Bp = mean(Bp). These points
are plotted on the Sp−Sq plane as this o�ered the clearest view. We used code adapted
from [54] using theory from [103, 126].

3b.5 Results

We start with the short-term e�ects of limited treatment capacity by examining the
epidemic size and its relation to R0 and the system parameters.

3b.5.1 Elasticity of the epidemic Size

In �gure 3b.5 we examine the relationship between the epidemic size in patches p and
q and the system parameters. We see that the capacity does not a�ect the epidemic
size in either patch. This suggests that the short-term behaviour is una�ected by the
saturating treatment term. To understand this a little better, we examine the relations
between R0 and the epidemic size in both patches.

As we see from �gure 3b.6, R0 is strongly correlated with the epidemic size. Thus,
the epidemic size is almost completely determined by the initial growth rate of the
epidemic. Therefore, as the ξ(I) = ξ∗ at disease free equilibrium, we see no dependence
on the capacity, Υ. However, there is a slight variation in the spread of values when Υ
is much smaller, 100.5 as opposed to 104, but not the relation with R0.

We will now examine whether the capacity for treatment has any long-term e�ects
through the bifurcation analysis.

82



(a) Patch p

(b) Patch q

Figure 3b.5: Elasticities of the epidemic size in either patch with respect to the system
parameters. The parameters took values in ranges speci�ed in tables A.3 and A.5.
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Figure 3b.6: Graph of (normalized) epidemic size for di�erent parameter sets shown in
tables A.3 and A.5 over the R0 with varying treatment.

3b.5.2 Bifurcation Analysis

In the following bifurcation analysis, we choose the parameters to be the same as in
chapter 3 part A. The capacity, Υ is set at a value close to the endemic size of the
infected population, 104, in either patch to test the system under strained conditions.

Figure 3b.7: Bifurcation analysis of the infected class of patch p with respect to contact
rate, β. We focus on the interval with bifurcation points and the parameters take values
shown in table A.4.

In �gure 3b.7 we see a transcritical or branch-point bifurcation at β = 0.87 where
the disease free equilibrium loses stability. This is also the case in patch q. After this
point, the endemic prevalence increases. However, most interestingly, we see a Hopf
bifurcation point when β = 1.007. This is a point where the behaviour of the system
becomes oscillatory. We use MATCONT further to expand the limit cycles emanating
from this point, shown in �gure 3b.8.

MATCONT suggests the limit cycles are present for β < 1.007 and then turn [55].
The turn is shown in �gure 3b.10. However, for the limit cycles shown in �gure 3b.8
we examined the Floquet multipliers to ascertain their stability. Floquet multipliers
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Figure 3b.8: Bifurcation analysis of the infected class of patch p with respect to contact
rate, β. We focus on the limit cycles with bifurcation points and the parameters take
values shown in table A.4.

are a generalisation of the eigenvalues at an equilibrium point. We linearise the system
around a �xed point using the Jacobian to establish the stability of an equilibrium
point. When we examine a periodic solution, the system in linearised around a �xed
point of the Poincaré map which corresponds to a periodic solution. The `Jacobian'
in this setting yields the Floquet multipliers as eigenvalues. When the multipliers
have modulus less than unity, the periodic solution is stable [103]. These can also be
calculated in MATCONT and we found the multipliers in this case to be greater than
unity, thus the periodic solution shown is unstable.

Also, for the limit cycles shown in �gure 3b.8 we may plot how the period of the
oscillation changes from the Hopf bifurcation to the turn, shown in �gure 3b.9.

Figure 3b.9: Period of limit cycles from Hopf bifurcation point to turn.

We noted an artefact at the turn of the limit cycles, see �gures 3b.9 and 3b.8. At
this point, MATCONT fails to �nd a solution. We therefore use a di�erent method
to plot the behaviour of the system. Figure 3b.10 was constructed using a range of
methods. The stable and unstable equilibria were calculated by solving the system
algebraically in MATLAB. This solution was then substituted into the system Jacobian
so that the eigenvalues may be calculated to assess stability. If all the eigenvalues had
negative real part, the equilibrium was stable and plotted in black [24]. Otherwise, the
solution was plotted in magenta. The system was then simulated over a long timespan to
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calculate the extrema of the oscillations. At each value of β, the system was simulated to
equilibrium and then simulated for a further 100 years. The maximum and minimum
values over this time were then plotted with dotted lines and the method repeated.
Finally, the unstable limit cycles were interpreted from the MATCONT plot.

Figure 3b.10: Bifurcation diagram showing transitions in stability and maximum and
minimum values of oscillations. The parameters took values in the ranges speci�ed in
table A.4.

In �gure 3b.10 we see the transition from stable equilibria, black, to unstable, ma-
genta. This occurs, for the disease free equilibrium, at β = 0.8777. Between β = 0.8777
and β = 0.92 we see a stable endemic equilibria only. Then, there is stable oscilla-
tory behaviour from β = 0.92 with the endemic equilibrium also remaining stable until
β = 1.007 where there is a subcritical Hopf bifurcation. Therefore, the system exhibits
a form of bistability.

In �gure 3b.11, we compare the time series when the endemic equilibrium and
oscillations are stable. The two behaviours are shown for the same value of β but
di�erent initial conditions. The question now is whether the oscillations are periodic,
quasi-periodic or chaotic. We will now examine the Poincaré section.

3b.5.2.1 Poincaré section

We use the Poincaré section to classify the oscillatory behaviour as periodic, quasi-
periodic or chaotic.

Figure 3b.12 shows a pair of points for each of the �ve values of β. This suggests
a period-2 system as the trajectory intersects the hyperplane at two distinct points.
Thus, it would appear that after the fold, there is a region of periodic oscillation.
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(a) Equilibrium

(b) Oscillation

Figure 3b.11: Time series for the prevalence in patch p. The parameters are set as per
table A.4 with β = 0.92. The system is without treatment, red, and with treatment,
black.
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Figure 3b.12: Poincaré section cut about the mean of the bacterial class in patch p with
varying values of contact rate, β. This was computed in MATLAB using a program
inspired by D. Gonze and using theory from [54, 103, 126]. The parameters are as
shown in table A.4 and β = [0.941, 0.981, 1.021, 1.061, 1.101] from black to grey.

3b.6 Conclusion

3b.6.1 Summary

Our aim was to examine the e�ect of a limited capacity for treatment on the dynamics
of an environmentally transmitted disease. We �rst de�ned the relationship between
treatment rate and medical capacity. This was a decreasing function of the number
of infected individuals with access to the treatment facility. When there are no in-
fected individuals- the potential rate is at its maximum. This rate remains relatively
unchanged for a small number of infected individuals. However, when the number of
infected individuals increases, the rate of treatment decreases as the medical facility
approaches its capacity.

Once the form of the treatment rate function was established, we detailed some
analysis methods. The model is the same as the constant treatment rate case when
the system is close to disease free equilibrium. As such, we focused on the model
dynamics away from the disease free steady state. We started with the epidemic size
and its relation to the capacity for treatment and other system parameters. Then we
conducted a bifurcation analysis with respect to the contact rate with the contaminated
environment. This included not only the stability of the equilibria of the model but also
the oscillatory dynamics. We used MATCONT and MATLAB to examine the extent
of the oscillations and a Poincaré section to classify their type.

3b.6.2 Conclusions

The variable treatment rate gave many new dynamics to the system. However, the
epidemic size depended only on the basic reproduction number, a property that holds
near the disease free equilibrium. As such, the treatment rate is at its maximum and
the capacity does not come into e�ect.

The long-term behaviour was a�ected by the capacity for treatment. We found a
transcritical bifurcation when the contact rate was 0.87 contacts per day that led to
the disease free equilibrium losing stability. After this point there was a stable endemic
equilibrium until the contact rate was 1.007 contacts per day. At this point, the limited
treatment capacity took e�ect. There was a Hopf bifurcation with unstable limit cycles
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emanating backwards until a fold whereupon the oscillatory dynamics became stable.
This is consistent with a subcritical Hopf bifurcation. Thus, when the contact rate
is between 0.92 and 1.007 contacts per day there is a stable endemic equilibrium and
stable oscillations.

The biological interpretation of these dynamics is that, once the disease is estab-
lished, there are two ways the system can behave. If there are a small number of infected
individuals, the medical facility will have enough capacity and will not be overwhelmed.
This means that the system will remain at stable equilibrium and the treatment rate
will remain in region 1 in �gure 3b.13. However, when there is a larger in�ux of infected
individuals before the treatment has time to to take e�ect, the treatment facility may
be overwhelmed. In this case, the treatment rate moves into region 2 of �gure 3b.13
and reduces dramatically. This leads to large epidemics which exhaust themselves. The
treatment allows the susceptible population to grow to a larger extent than would oth-
erwise be the case. Therefore, we see larger epidemics than would be the case without
any treatment.

Figure 3b.13: Regions of treatment rate for stable equilibrium and stable oscillatory
behaviour.

We conducted a literature review of models involving variable removal rates of in-
fected individuals. We found the works fell into two categories, those with a Hopf bifur-
cation and oscillatory behaviour and those with a backward bifurcation and bistability.
The Hopf bifurcation arose when there was a constant removal of infected individuals
and a nonlinear incidence rate. Whereas, the backward bifurcation was a result of a
nonlinear or saturating treatment rate. We included a treatment rate of di�erent satu-
rating form to the aforementioned works. However, we found oscillatory behaviour and
no backward bifurcation.

3b.6.3 Future considerations

We wished to understand how the limited capacity of a treatment facility a�ected
the disease dynamics. We found oscillatory behaviour symbolising a regime of large
epidemics in the long term. In the short term, we found little dependence of the epidemic
size on capacity. However, our epidemic was initialised from disease free equilibrium
which may a�ect the behaviour.

We did establish the long-term dynamics in detail for the parameter set of interest
through a variety of bifurcation techniques. The bespoke MATLAB program for the
oscillation and steady state calculation perhaps yielded the best graphical result. How-
ever, the unstable limit cycles and their characteristic or Floquet multipliers were only
discovered through the use of the toolbox MATCONT. Finally, the Poincaré section
was informative. However, the choice of plane to present the results did a�ect how
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clear they were to interpret. That is, the choice of a di�erent hyperplane a�ected how
dispersed the points were.

We asked how the limited capacity of a treatment facility altered the dynamics of
an infectious disease. When considering a larger population, across a city, we may
be interested in multiple treatment facilities. Thus the question ceases to involve the
e�ect of internal capacity but rather the external capacity for treatment facilities in
the patches. We move to ask, given a limited number of control facilities, how is
best to deploy them? There are a number of things to establish before we answer
this question. Firstly, how would our model extend to a higher number of patches to
simulate the real level of diversity you would expect to �nd in a city? Also, how would
those patches be structured within a city? We mentioned epidemic size initiated from
endemic equilibrium. This situation would arise from a system perturbation which
links back to our thesis-wide question: how would a perturbation such as a natural
disease a�ect disease dynamics? Thus, we need to establish our model over N patches
and examine not only the steady state operation but also the perturbed, exceptional
behaviour. At this point we will have a more substantial answer to the question of
optimal disease control provision in a city a�ected by a natural disaster.
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Chapter 4

Spatially structured populations

and the impact of a natural disaster

4.1 Introduction

We have examined the dynamics of an environmentally transmitted disease in a two
patch population in the presence of a control measure. Now we wish to investigate
the dynamics over an increasingly spatially segregated population. This is in order to
model disease spread over a spatially complex population structure. In this chapter we
de�ne our model over M ∈ N patches. We will also explain the computational tools
used when de�ning higher dimensional models.

Where there are more than two patches present, there is also more than one possible
arrangement of patches. As such, we examine how the arrangement a�ects key system
outputs such as R0. We also investigate the change in these system outputs as the
population becomes increasingly spatially segregated. Finally, we introduce a method
to quantify the e�ect of a perturbation to the system. This perturbation will be in the
form of a natural disaster at disease free or endemic equilibrium. Speci�cally, a �ood,
see the Introduction for a review on natural disaster e�ects.

4.2 Model formulation

Our model takes the same form in each patch as with the previous chapters. However,
we must now accommodate any number of patches and any form of coupling, or link
structure, between those patches. Coupled patches are joined by two directed edges
and if there is an edge from patch i to j there is an edge from patch j to i. We �rst
consider the equations in their most general form, indexed for patch i.

Ṡi = µNi −FiSi − µSi
İi = FiSi − (γ +Hi + µ)Ii

Ṫi = HiIi − (αγ + µ)Ti

Ṙi = αγTi + γIi − µRi
Ḃi = Gi − θBi

(4.1)

Here we de�ne some terms symbolising the force of infection in patch i, Fi; the treatment
rate in patch i, Hi; and the rate of contribution to the bacterial reservoir in patch i,
Gi. These will be examined further after we have de�ned some new parameters to ease
notation, table A.6, and clari�ed the exposure weightings for M patches.
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In order to de�ne the force of infection etc., we must de�ne the exposure experienced
by an individual of patch i when there are more than two patches in various arrange-
ments. In the previous chapter, we introduced the concept of scaled edge weightings for
infected individuals. These were a result of the infected individuals seeking treatment.
As such, infected individuals are proportionally more exposed to the environment of a
patch with a treatment facility. We retain this assumption and the scaled edge weight-
ings in this chapter. However, the expression for the proportion of exposure experienced
by an individual is complicated by the varying number of treatment facilities and al-
tered patch arrangement. For example, in �gure 4.1, four patches are connected in a
cycle. The infected individuals in patch one and three will seek treatment in patches
two and four respectively. As such, the edges from one or three to two or four are scaled.
However, the edges between one and three or two and four are not scaled because each
patch pair has the same number of treatment facilities. Additionally, there are no edges
between patches one and four or two and three and we assume individuals may only
travel through one patch. Thus, it is impossible for individuals of patches one or two
to be exposed to the environment of patches four or three respectively; and vice versa.

Figure 4.1: Cycle arrangement of four patches with two treatment facilities denoted
by a cross. The arrows denote edges with the arrow width proportional to the scaling
applied to that edge.

As the exposure experienced by any individual depends on the patch arrangement,
we must track which patch is coupled to which and, for the infected individuals, where
the treatment facilities are. We introduce the matrix Pij to denote the distribution of
exposure experienced by a resident of patch i away from home in patch j. This takes
two values; zero when the patches i and j are not connected and 1

Ci
when patches i and

j are connected and patch i is connected to Ci patches in total. As such, the exposure
of uninfected individuals is divided equally between all connected patches.

Thus, we may now de�ne the force of infection in patch i,

Fi = βiσ
Bi

κ+Bi
+
∑
j

βj(1− σ)Pij
Bj

κ+Bj
. (4.2)

The distribution of exposure experienced by an infected individual also depends on how
many treatment facilities are accessible. We introduce ci to track the proportion of
patches connected to patch i containing treatment facilities. Using this parameter, we
may state the proportion of edges that are scaled up, ci, or down, 1−ci, for patch i. We
de�ne Xij as the edge weight scaling between patches i and j. We also de�ne Xii as a
weighting for patch i, described in table A.6. Thus, we may de�ne the new proportion
of exposure experienced by an infected individual of patch i at home,
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σIii =
Xiiσ

Xiiσ + (1− σ)(ciχ2 + (1− ci)χ1)
. (4.3)

The proportion of exposure an infected individual of patch i experiences in patch j is
given by,

σIij =
Xij(1− σ)Pij

Xiiσ + (1− σ)(ciχ2 + (1− ci)χ1)
. (4.4)

The treatment rate experienced by an infected individual of patch i depends on the
location of treatment facilities. This information is contained within the vector, ξ,
where the ith element is zero if there is no treatment facility in patch i. We assume
that the treatment rate is independent of the number of infected individuals. Therefore
we de�ne the rate of treatment experienced by infected individuals of patch i as

Hi = σIiiξi +
∑
j 6=i

σIijξj . (4.5)

Finally, we may de�ne the shedding of bacteria to the environment of patch i as,

Gi = η(σIiiIi +
∑
j 6=i

σIjiIj + σTi + (1− σ)
∑
j

PjiTj). (4.6)

4.2.1 The model in MATLAB

We now have a high-dimensional model with many customization options. As such,
we would not wish to write each new arrangement at each step. We de�ne a function
to use MATLAB to build the equations given a few speci�cations such as the number of
patches, location of treatment facilities etc.. The steps are as follows:

1. We �rst de�ne a contact matrix. This denotes which patches are connected to
which and how many patches there are. For instance, in a �ve patch system where
the patches are in a line or path, the contact matrix will take the following form,

A =


0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

 .

Therefore, patch one is connected to patch two only; patch two is connected to
patches one and three and so on.

2. Use the contact matrix to de�ne proportion matrix, Pij . For each row i of the
contact matrix, A, we count the number of ones to give Ci, the number of patches
connected to patch i. Then we assume that the exposure is equally divided be-
tween all connected patches. Thus, our proportion matrix when �ve patches are
connected in a path is,

P =


0 1 0 0 0

0.5 0 0.5 0 0
0 0.5 0 0.5 0
0 0 0.5 0 0.5
0 0 0 1 0

 .
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3. We decide where the treatment facilities are by de�ning the vector ξ. For instance,
if there is one treatment facility in patch one and the rate of treatment is 1 then,
ξ = [1, 0, 0, 0, 0].

4. Once we have the contact matrix and the treatment rate vector, we may calculate
our edge scaling matrix, Xij . Therefore, in our example,

X =


χ2 χ1 0 0 0
χ2 χ1 χ1 0 0
0 χ1 χ1 χ1 0
0 0 χ1 χ1 χ1

0 0 0 χ1 χ1

 .

We do not scale the edges between two patches with the same number of treatment
facilities. However, in order for the exposure weighting σIij to take the appropriate
form when all or no patches have treatment facilities, we appear to scale edges
between two patches without treatment facilities by χ1 and edges between two
patches with treatment facilities by χ2. For instance, if there are no treatment
facilities anywhere, σIij will take the following form,

σIij =
Xij(1− σ)Pij

Xiiσ + (1− σ)(ciχ2 + (1− ci)χ1)
,

=
χ1(1− σ)Pij

χ1σ + (1− σ)(0χ2 + (1− 0)χ1)
,

=
χ1(1− σ)Pij

χ1σ + (1− σ)χ1
,

= (1− σ)Pij .

Similarly, when we consider the proportion of exposure an infected individual of
patch i experiences at home if all patches are without treatment facilities, we
have,

σIii =
Xiiσ

Xiiσ + (1− σ)(ciχ2 + (1− ci)χ1)
,

=
χ1σ

χ1σ + (1− σ)(0χ2 + (1− 0)χ1)
,

= σ.

5. We may now construct the equations. We de�ne a function with inputs X,P, ξ
and our parameter values to build our equations.

We begin by initialising some key parameters Ci, ci and the number of
patches, M . Then we may de�ne the proportion of exposure an infected indi-
vidual experiences in each patch, σIij . We may now build the equations for each
disease class.

Lastly, we de�ne our equation vector as the function output.

6. Once we have a function for constructing the equations we may use the MATLAB
command matlabFunction to create a �le of the equations ready for simulation
and other uses.

94



There are many bene�ts to this approach. The equations are only written once by
hand which leaves less room for error. We also immediately have the equations in a form
that can be used in MATLAB. This means we can make the most of other MATLAB
commands such as Jacobian.

4.3 Analysis

We wish to examine the e�ect of increasing spatial segregation on disease dynamics.
As such, we retain the same total population size, 5 × 107, and increase the number
of patches or change the patch arrangement. In e�ect, we are changing the spatial
boundaries for our population. Therefore we will also change the reservoir volume
accordingly to preserve the volume of reservoir per person. This will be accounted for
in the shed rate which will increase in each patch as the number of patches increases.
This does not mean that individuals are contributing more bacteria but rather that the
volume of the reservoir to which they contribute is getting smaller. This is in order
to examine only the e�ect of spatial segregation on the disease dynamics. Our total
population size is increased from previous chapters as we assume a larger settlement or
city, this only scales the results.

We measure the di�erence that segregation and structure make to key system char-
acteristics. These include R0, the epidemic size and, a new measure, the impact. The
impact quanti�es the e�ect experienced by each system element when perturbed. This
will indicate how the system is a�ected by a natural disaster.

4.3.1 Methods

We will explain the calculation of the system characteristics, R0, the epidemic size and
impact. However, we must �rst state the arrangements of patches to be examined.

4.3.1.1 Spatial arrangements of patches

We will compare three arrangements of patches. One will be a complete network where
every patch is coupled with every other, see �gure 4.2 (a). The second arrangement will
be a cycle where all patches are coupled with two others, see �gure 4.2 (b). Finally, our
third arrangement will be a star. In this case, there is always a central patch coupled
to all others but there is no coupling between peripheral patches, see �gure 4.2 (c).

(a) Complete (b) Cycle (c) Star

Figure 4.2: Three spatial arrangements of �ve patches with patch numbering.

These three arrangements di�er in the degree or number of connections of the patches
within them. They also di�er in whether the degree is equal between all patches.
However, each arrangement is fairly simple to iteratively add patches to. The patch
numbering indicates how this may be done for �ve patches. We assume that each
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patch is homogeneous and only the structure and number of patches change. Finally,
we construct contact matrices for the complete, cycle and star arrangements over �ve
patches as the following,

A1 =


0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

 , A2 =


0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 0 1

 , A3 =


0 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

 .

4.3.1.2 R0 calculation

We calculate R0 using the next generation method from previous chapters. However,
we may now automate the process. We do this by exploiting a useful feature of the
Jacobian matrices for epidemiological models of this form. Figure 4.3 shows the general
structure of the Jacobian for the infectious classes. We can see that there is no element
of the Jacobian that contains both a transmission and transition term.

Figure 4.3: Form of Jacobian for infectious classes for an environmentally transmitted
disease model with treatment. The red lines denote entries relating to transition terms
such as death, treatment and recovery. The blue blocks denote transmission terms such
as infection and shedding. The white space represents zeros.

As such, we may construct the transmission and transition matrices by selecting the
relevant diagonals and blocks from the Jacobian. The pseudo code for this is as follows:

transition=-jacobian;

transition(2*M+1:end,1:2*M)=zeros(M,2*M);

transition(1:M,2*M+1:end)=zeros(M,M);

transmission=zeros(3*M)

transmission(2*M+1:end,1:2*M)=jacobian(2*M+1:end,1:2*M);

transmission(1:M,2*M+1:end)=jacobian(1:NP,2*M+1:end);

We may then calculate our next generation matrix of large domain as T Σ−1 where
transmission is denoted by T and transition by Σ. Finally, R0 is given by the largest
eigenvalue of this matrix.

4.3.1.3 Epidemic size

We examine the transient system behaviour through the epidemic size. This will give
us insight into the progress of the disease through the di�erent patch structures. The
calculation steps are as follows:
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1. We start in a similar manner as the previous chapters, at disease free equilibrium
with N/1000 infected individuals introduced. These introduced individuals are
equally distributed across all patches.

2. We simulate the epidemic for one day and then for a further 100 days.

3. In the second time period we monitor the value of each infected class using the
event function. If the number of infected individuals reaches the number initially
introduced, we stop the simulation, see �gure 4.4.

4. Once we have reached the end of the time period, or the end of the epidemic, we
count the number of infections. This is done with an extra compartment in the
model consisting only of the transmission terms for the infected class.

Figure 4.4: Calculation of epidemic size. In blue, the number of infected individuals;
in black dashed, the cumulative number of infections and in red dashed, the point at
which the number of infected individuals has returned to the initial conditions where
we consider the epidemic concluded.

4.3.1.4 Impact

We discussed, in the last chapter, investigating the e�ect of a perturbation on the disease
dynamics. We therefore examine the impact experienced by the infected classes in each
patch. The impact assesses the e�ects of a perturbation on each system component
at equilibrium. It is de�ned as the change in a state variable per unit change in the
perturbation [98]. Therefore the impact can be seen as the `sensitivity' of each state
variable to the perturbation.

We detail a method adapted from [12] which is built on the methodologies of [98]
using a simple example. This example will be of a directly transmitted disease in a
homogeneous population with no recovery i.e. a simple SI model. This has the form
of the following non-dimensional equations with S and I as state variables for the
susceptible and infected classes. The parameters µ and β represent the death rate and
contact rate respectively.
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Ṡ = µ− βSI − µS
İ = βSI − µI

The algorithm to �nd the impact on each state variable, S and I, is as follows.

1. Find the system Jacobian, J , at equilibrium.

Our Jacobian is of the following form, J =

(
−βI∗ − µ −βS∗
βI∗ βS∗ − µ

)
. We shall

assume the system is at endemic equilibrium thus, S∗ = µ
β and I∗ = 1 − µ

β .

Therefore, J =

(
−β −µ
β − µ 0

)
.

2. The perturbation vector, K, is then calculated. This denotes the change in each
system state variable when the system is perturbed.

In our example, we shall examine the e�ect of a perturbation to the contact rate,
β. To calculate K, we must determine the e�ect of a change in β on each system
element. This is done by �nding the partial derivative of J with respect to β, ∂J∂β .
Then, the matrix of partial derivatives is multiplied by 1 to arrive at K, where
the ith element of K is the cumulative e�ect of the perturbation on the ith system

variable. Thus, as ∂J
∂β =

(
−1 0
1 0

)
, K =

(
−1
1

)
.

3. Find the inverse of the Jacobian, J −1.

Our example has Jacobian inverse

(
0 1

β−µ
−1/µ − β

µ(β−µ)

)
.

4. Finally, the vector of impacts, where the ith element of the impact is the change
in system variable i due to a unit change in the perturbation, is given by −J −1K.

Therefore, our impact vector is

(
1

µ−β
1

β−µ

)
.

In our simple example, the impact on the susceptible class is 1
µ−β and the impact on

the infected class is 1
β−µ . This suggests that a positive perturbation to the contact rate

always causes a decrease in the number of susceptible and an increase in the number of
infected individuals. This is as I∗ = 1− µ

β is only feasible when β > µ.
In our model, the �ood is calculated as a positive perturbation to two of the system

parameters, the contact rate, β, and shed rate η. However, the calculation of K is
similar to the simple example above. In our case, we must calculate two matrices of
partial derivatives, ∂J

∂β and ∂J
∂η which are summed. The steps are then the same as

above; the matrix of summed partial derivatives is multiplied by 1 to arrive at K,
where the ith element of K is the cumulative e�ect on state variable i due to the �ood.
Therefore, we may examine the e�ects of a perturbation to every system variable at
both disease free and endemic equilibrium.

4.4 Results

We investigate the di�erence in the values of R0, the epidemic size and sum of infectious
class impacts for di�erent arrangements of patches. Our parameter values are taken

98



from a Latin Hypercube with 100 samples, except for the impact and epidemic size,
for which we took 1000-5000 samples to ensure we had a su�cient number for each
equilibrium. The parameter ranges can be found in tables A.1, A.3 and A.7.

4.4.1 The e�ect of patch arrangement and number on R0

We commence with the di�erence in the range of R0 for the three arrangements of
�ve patches. In �gure 4.5, we can see that R0 is generally highest when the patches
are in a star arrangement. When the patch arrangement is complete or a cycle, R0

is practically the same. This is due to the number of individuals sharing the same
reservoir. When the structure is complete, the proportion of population with access
to a reservoir is proportional to the local shed rate. In contrast, all individuals in the
star arrangement can access the central reservoir but not the peripheral ones. As such
there is a `hotspot' for bacterial build-up in the centre which is also the patch with
most human tra�c. The cycle arrangement leads to individuals having access to three
patches at any one time. As such, the bacteria may build up but, as the three patches
will over lap for an individual of patch i compared to an individual of patch i + 1 the
system is indistinguishable from that of the complete structure.

Figure 4.5: R0 for di�erent arrangements of �ve patches. There is no treatment and
parameters vary over the ranges shown in tables A.6, A.7 and A.3. The horizontal bar
denotes the mean value and vertical denotes values between the 25th and 75th quartile.

In �gure 4.6 we examine the relationship between R0 and the number of patches.
Recall that as the number of patches is increased, the spatial segregation of the popu-
lation and reservoir is also increased. As such, the shed rate increases and the relative
population size of each patch falls. The net e�ect of these changes for the complete and
cycle arrangements is almost zero; the value of R0 fractionally increases as the number
of patches rises. However, when the patches are arranged in a star, there is a variation.
We see that as the number of patches increases, so does R0. This is because of the
central patch and its reservoir. The entire population always has access to the central
patch reservoir. However, its volume reduces as the number of patches increases. As
such, the shed rate increases as it is related to the reservoir volume. Thus, the number
of infections rise in the patch with most human tra�c.
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Figure 4.6: R0 with respect to the number of patches. There is no treatment and
parameters vary over the ranges shown in tables A.6, A.7 and A.3. The horizontal bar
denotes the mean value and vertical denotes values between the 25th and 75th quartile.
The colours denote patch arrangement with black, complete; blue, cycle and orange,
star.

4.4.2 The e�ect of patch arrangement and number on epidemic size

We examine the behaviour away from disease free equilibrium through the epidemic
size. We take parameter values from a larger Latin Hypercube Sample, 1000 values,
than that used for the R0 analysis. This is because we remove the results where the
epidemic size is very small. Then, the system is simulated from disease free equilibrium
as a small number of infected individuals are introduced.

Figure 4.7: Epidemic size for di�erent arrangements of �ve patches. There is no treat-
ment and parameters vary over the ranges shown in tables A.6, A.7 and A.3. The
horizontal bar denotes the mean value and vertical denotes values between the 25th
and 75th quartile.

The epidemic size ranges from near zero to the total population size in �gure 4.7.
Generally, R0 > 1 and could be up to 20 in our parameter space, leading to a large
initial growth rate and ensuing epidemic. We see that the epidemic is larger when the
patches are in a star arrangement. This is because the entire population may be exposed
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to the environment of the centre patch, making it a hotspot for infection. In contrast,
all patches in the complete or cycle network have the same proportion of individuals
exposed to their environment. Therefore, there are no hotspots and the shed rate of
each patch is proportional to the number of individuals that have access to it.

Figure 4.8: Epidemic size with respect to the number of patches. There is no treatment
and parameters vary over the ranges shown in tables A.6, A.7 and A.3. The horizontal
bar denotes the mean value and vertical denotes values between the 25th and 75th
quartile. The colours denote patch arrangement with black, complete; blue, cycle and
orange, star.

In �gure 4.8, the epidemic size once again follows the trends seen for R0 with little
change when the patches are in a cycle or complete network. However, when the
patches are in a star arrangement, the size of the epidemic increases as the number of
patches increases. This is because epidemic size, when measured from the disease free
equilibrium, is correlated with R0.

We now examine the impact at endemic and disease free equilibrium.

4.4.3 The e�ect of patch arrangement and number on impact

In the impact analysis we examine the system at disease free and endemic equilibrium.
Therefore, we investigate the sensitivity of the infected classes to a perturbation when
the disease is endemic or the system is disease free. This will give us insight into
which arrangements are most vulnerable to a perturbation and when. We shall also see
whether a segregated population is more or less resilient to a perturbation. To conduct
the following analyses, we increased the number of parameter samples to 5000 to ensure
there are a su�cient number of samples rendering the disease free equilibrium stable.

We see in �gure 4.9 that the sum of the infected class impacts varies between equi-
libria, but the impact is always positive. Therefore as the contact and shed rates are
perturbed, the infected classes increase in size. This is most notable at disease free
equilibrium when the �ve patches are in a star arrangement. This is because the per-
turbation can be ampli�ed most e�ectively when there is a central hub. That is, the
perturbation in shed and contact rates facilitates an increase in the number of infected
individuals which is aided by a central bacterial reservoir. The entire population may
come into contact with the environment of the centre patch which acts as a conduit for
disease transmission, this is particularly the case when the main transmission parame-
ters are perturbed.
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(a) DFE

(b) EE

Figure 4.9: Impact at disease free equilibrium (a) and endemic equilibrium (b) for
di�erent arrangements of �ve patches. There is no treatment and parameters vary over
the ranges shown in tables A.6, A.7 and A.3. The horizontal bar denotes the mean
value and vertical denotes values between the 25th and 75th quartile.
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When the endemic equilibrium is stable, the impact has smaller magnitude. This
is because the capacity of the system, related to the size of the susceptible class, is
reduced. Therefore, it is not possible to have a large increase in the number of infected
individuals as there are fewer susceptible individuals to be infected. Between the three
arrangements, we see that the magnitude of the impact in the star arrangement is the
smallest on average. This is because the endemic proportion of the population which
is susceptible is smallest in this arrangement and therefore it has the smallest capacity
to react to a perturbation, see �gure 4.10.

Figure 4.10: Proportion of population over �ve patches that is susceptible at endemic
equilibrium. There is no treatment and parameters vary over the ranges shown in tables
A.6, A.7 and A.1. The horizontal bar denotes the mean value and vertical denotes values
between the 25th and 75th quartile.

We now examine the impact as the number of patches increases, see �gures 4.11
and 4.12. There are di�erent trends seen at each equilibrium. When the disease free
equilibrium is stable the impact increases as the number of patches rises. This is seen for
all arrangements because the shed rate into each patch reservoir increases. Therefore,
whilst the number of individuals living in each patch falls, the production of bacteria
can be ampli�ed to a greater extent. The ampli�cation is a result of the proportional
perturbation of the shed rate; a larger initial shed rate leads to a larger actual di�erence
when perturbed. This is particularly the case when the patches are in a star arrangement
because of the central reservoir.

When the endemic equilibrium is stable the impact decreases as the number of
patches increases. This is because the proportion of the population that is susceptible
falls as the number of patches increases. As such, there is less capacity for the infected
population to respond to a perturbation because the resource of infection, the suscep-
tible individuals, is depleted. This is shown in �gure 4.13, as the number of patches
increases there is a small rise in R0 leading to a smaller proportion of the population
left susceptible at endemic equilibrium.
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Figure 4.11: Impact at disease free equilibrium with respect to the number of patches.
There is no treatment and parameters vary over the ranges shown in tables A.6, A.7 and
A.3. The horizontal bar denotes the mean value and vertical denotes values between the
25th and 75th quartile. The colours denote patch arrangement with black, complete;
blue, cycle and orange, star.

Figure 4.12: Impact at endemic equilibrium, right, with respect to the number of
patches. There is no treatment and parameters vary over the ranges shown in ta-
bles A.6, A.7 and A.3. The horizontal bar denotes the mean value and vertical denotes
values between the 25th and 75th quartile.The colours denote patch arrangement with
black, complete; blue, cycle and orange, star.
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Figure 4.13: Size of susceptible population at endemic equilibrium with respect to the
number of patches. There is no treatment and parameters vary over the ranges shown in
tables A.6, A.7 and A.3. The horizontal bar denotes the mean value and vertical denotes
values between the 25th and 75th quartile. The colours denote patch arrangement with
black, complete; blue, cycle and orange, star.

4.5 Conclusion

4.5.1 Summary

We wished to understand how increasing the segregation and arrangement of our popu-
lation a�ected the disease dynamics. We examined how the e�ect of a natural disaster
was altered by these aspects. The �rst thing to establish was how our model worked
over M patches in di�erent arrangements. To do this, we introduced some additional
parameters to ease notation and de�ned the exposure weightings in the new, higher-
dimensional case. We then detailed a method of equation generation in MATLAB that
simpli�ed the process and left less room for error. Finally, we de�ned our methods for
calculating R0, the epidemic size and the impact of a perturbation or natural disaster
for di�erent numbers of patches and arrangements.

4.5.2 Findings

There was minimal correlation between each of R0 and the epidemic size with the
number of patches when the patches are in the complete or cycle arrangement. This
is because the proportion of the population with access to a patch reservoir is always
proportional to the shed rate. In the complete arrangement, N/M individuals have
access to a patch reservoir at any point. The local shed rate in this case isM× the shed
rate in an unsegregated population. As such, when a new patch is added, the population
`attention' is further divided but the local shed rate is increased proportionally in every
patch. This is also the case in the cycle arrangement. When a new patch is added,
the number of individuals with access to a particular reservoir reduces but the shed
rate to that reservoir increases as its volume decreases. In contrast, when the patches
are arranged in a star, there is a correlation between R0 and epidemic size and the
number of patches. We noted that as the number of patches rises, the R0 and epidemic
size also increased for the star arrangement. This is because of the degree of the
central patch. The entire population may be exposed to the environment of the central
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patch; therefore, as the reservoir there reduces in size, increasing the shed rate, the
concentration of the bacteria in the patch with the most human exposure increases.
This causes more infections, increasing R0 and the epidemic size.

Finally we considered the e�ect of a natural disaster through the impact. This was
a new analysis method which identi�ed the infected classes that would be most a�ected
in the event of a perturbation. The results depended strongly on which equilibrium is
stable. The capacity of the infected class to react to a perturbation is partly dictated
by the size of the susceptible class. As such, the magnitude of the impact at disease free
equilibrium is far larger than that at endemic equilibrium. We see that, at disease free
equilibrium, the largest impact is experienced by the infected classes when the patches
are in a star arrangement. The magnitude also increases as the number of patches
increases. This is because the increasing shed rate may amplify the contribution of
bacteria, causing more infections. For example, the proportional change in shed rate
may be 1%; however, if the unperturbed shed rate is twice as large, the actual change
is also twice as large. As such, when we scale the shed rate as the number of patches
increases, we alter the actual size of the perturbation. However, we may consider the
size of a perturbation caused by a �ood to be proportional to the conditions of the
unperturbed system.

When the endemic equilibrium is stable, the impact is proportional to the susceptible
proportion of the population. This is lowest when the patches are in a star arrangement,
therefore the capacity to react is lowest when the patches are arranged in a star. The
capacity also falls as the number of patches increases leading to a more resilient system
as it is segregated. Therefore, the capacity and ability for the system to react to a
perturbation are intrinsically linked.

Therefore, we see that the arrangement of patches can strongly a�ect the disease
dynamics. This is particularly the case when the patch degree is heterogeneous, i.e.
there are patches with more connections than others. In our examination we considered
three arrangements, one of which had a central patch with far more connections than
the other patches. This central patch was a conduit for disease transmission allowing
individuals to shed into, and be exposed to, a central bacterial reservoir. This not
only led to increased infections but also ampli�ed the e�ect of a perturbation when
the system was disease free. We also learnt that the division of the reservoirs, and the
ensuing e�ect on the shed rate, was instrumental in amplifying the e�ect of a natural
disaster. We see a larger e�ect of a perturbation when a reservoir has a smaller volume
and the system is initially disease free. Therefore the spatial segregation of the bacterial
reservoir is as important as the segregation of the human population. However, the state
of the system at the point of perturbation is also extremely important as the size of the
susceptible population can in�uence the e�ect of a natural disaster.

4.5.3 Future considerations

We found some interesting e�ects of the spatial segregation of a population. However,
we have not examined which arrangement of patches most resembles the structure of a
city. To approximate the dynamics of an environmentally transmitted disease within a
population we must consider the average or most likely arrangement of sub-populations
We may also consider those sub-populations to be heterogeneous as well as the overall
structure. Our parameters in this chapter cover a large sample space. This led to range
of R0 values some of which were very large and could be considered extreme. In the
above work, we simply compare the output values over the whole space. However, when
we examine a arrangement that resembles the structure of a city we should consider a
narrowed parameter space or more reasonable set. This will allow us to start examining
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optimal control strategies and facility placements.
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Chapter 5

Optimal resource deployment in the

wake of a natural disaster

5.1 The Problem

So far we have developed a environmentally transmitted disease model in a spatially
structured population. We have examined the e�ect of treatment both when it is
dependant and independent of demand and seen that the behavioural change of infected
individuals can have varying e�ects on the e�cacy of that treatment. In the preceding
chapter we extended our model to higher numbers of patches and investigated the e�ect
of di�erent patch arrangements on key model aspects such as the basic reproduction
number, epidemic size and impact. We will now build on the insights gained previously
in order to approximate the disease dynamics in a developing world city and to �nd an
optimal control strategy.

We consider how best to use limited resources to control an environmentally trans-
mitted disease outbreak in a heterogeneous developing world city. The control measures
to be examined are no longer limited to treatment of humans, but will also include
treatment of the environmental reservoir. The outbreak will be instigated by a natural
disaster such as a �ood and we ask where, in a spatially structured population, is it
best to locate control facilities. We assess the placements through the bene�ts to the
community, namely the reduction in epidemic size and duration.

Our work begins with an examination of city structure. From there, we de�ne
the �ood in model terms and detail the method of simulation. Finally, the optimal
arrangements of control facilities in the presence of one or two control facility types are
discussed.

5.2 The structure of a developing world city in model terms

To determine the optimum control facility placement, we must assess the population
structure before the disease dynamics can be examined. We �rst discuss the pertinence
of a developing world city. Then we de�ne the characteristics of such a city.

Conditions related to poverty, such as poor sanitation, are considered a `pre-requisite'
for cholera spread. Also, diarrhoeal disease epidemics following natural disasters are
more common in the developing world than the developed [22, 71, 123, 132, 136]. The
developing world cities of interest are those that have, or could potentially have epi-
demic or endemic cholera. These are mainly African and Asian cities as they have had
cholera epidemics most recently [140]. However, the Latin American city structure will
also be considered as it is generally taken as a model for all developing world cities.
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Furthermore, there is a possibility that the cholera outbreak in Haiti could lead to new
epidemics in South America.

City structures vary depending on the level of social development and location. The
pre-industrial city was hypothesised by Sjoberg to have concentric rings dictated by
social status (1960 mentioned in [110]). The elite classes are found at the centre and
there is a social gradient toward the edge. The population density follows a similar
gradient, from low density, high-cost housing in the centre to high-density, low-cost
housing on the periphery.

It was hypothesised by the UN in 1973 that cities in Africa follow the pattern of
the pre-industrial city with a few variations (mentioned in [110]). The model they
developed is shown in �gure 5.1 and is usually representative of cities with one to two
million residents. There is an indigenous core which is high density and external, low-
density areas where the elite classes reside. There are transitional areas with medium
density residences and areas of shanty towns. However, the shanty towns are a result
of large in�uxes of individuals hoping to �nd work in the industrial areas.

Figure 5.1: Diagram of African city (UN 1973 mentioned in [110] page 120 onwards).
Black: core commercial or residential; dark grey: indigenous or high-density residential;
light grey: elite or low density residential; white: medium density residential; blue: high
density shanty towns and villages; red: industrial.

This structure still has the concentric rings found in the pre-industrial model but
with a di�erent gradient, additional shanty towns and areas of industry. It should also
be noted that the population density is high in the centre and periphery with a band
of low density in between. However the centre, whilst having a high amount of human
tra�c, has few residents as it is a commercial area.

In the case of the Asian cities, there is usually an original port as the source of the
city. Generally, there is a port extension and the whole city has a colonial in�uence
which a�ects the structure. A model put forward by Brunn and Williams is shown
in �gure 5.2 [110]. The structure is partly determined by spatial heterogeneity, in
particular the presence of the sea. In contrast, the pre-industrial and African cities,
shown in �gure 5.1, were assumed to lie in a �at, featureless plain. There is an emphasis
on the purpose, rather than the population density, of each area. However, we re-
interpret the models in terms of population density to allow comparison with the African
city model.

The port and port extension are areas of commercial activity and have a high amount
of tra�c but few residents. This is similar to the core commercial area in the African
city. The native town is a high density residential area with limited services such as
sanitation and water supply. European and mixed residential sectors are intermediate
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Figure 5.2: Diagram of Asian city (Brunn and Williams 1983 mentioned in [110] page
120 onwards). Black: original port; red: port extension; dark grey: native town; light
grey: European town; white: open space; dark red: fort; light blue: mixed residence;
dark blue: new wealthy residences.

density areas with an intermediate level of services. The wealthy residential area is
equivalent to the elite residential area in the African city model. It has a low density
and is well-serviced. The port and green space have few or no residents.

We mentioned earlier that the Asian city model lies in a heterogeneous landscape.
However, the areas of low-density and high-density, with their attached levels of services,
are represented in the other city structure models. The link between population density
and services will therefore be incorporated in the �nal model choice in Section 5.2.1.

The Latin American city structure is most commonly used to represent the `typical'
developing world city, shown in �gure 5.3. The model was developed by Gri�n and
Ford (1980, mentioned by [110] page 120 onwards) and has many similarities with
the previous three structures, �gures 5.2 and 5.1 and the pre-industrial city. There is
a central core (central business district (CBD)), which is desirable and well-serviced.
This has the same high level of tra�c as in the structures mentioned previously in the
previous structures. Around the centre there is a middle income sector surrounded by
a transition area which leads to lower class, higher-density housing at the edge of the
city with few or no services. These high-density areas are shanty towns or squatter
settlements linked to rapid expansion of the city, similar to that seen in the African city
model. Disrupting the concentric ring structure is a road or spine from the CBD to the
edge. This is �anked by elite housing placed close to the transport links and improved
services that the road development brings.

The models shown all have a central hub from which the other sections are grown.
This is referred to as mono-centric. Not all cities have this form. As the city grows,
new areas of importance develop, such as a university district or retail park, and most
settlements progress toward being poly-centric.

The concept of mono centricity was examined by Alain Bertaud. Adapted diagrams
of a mono-centric and poly-centric city are shown in �gure 5.4 [14]. These illustrate
the di�erences produced in the human movement throughout a city due to its mono or
poly-centricity.

We now formulate the model for a city in terms of epidemiological characteristics.
This model is based on the population density structures described above and the idea
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Figure 5.3: Diagram of Latin American city (Gri�n and Ford 1980 mentioned in [110]
page 120 onwards). Black: CBD and spine; light grey: elite residential; dark grey:
middle income area with medium density residential; blue: transition area from medium
to high density residential; red: squatter settlements of high density housing and very
few services.

Figure 5.4: Diagrams of mono-centric (left) and poly-centric (right) cities adapted from
the work of Alain Bertaud [14]. Black: attractive centres such as the CBD; grey: general
residential areas; arrows: possible population movements.
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of mono and poly-centric settlements explained by Bertaud.

5.2.1 Model population structure

We will focus on the epidemiological dynamics in the population of a mono-centric city.
In abstract terms, this means there is a central patch with other, peripheral, patches
connected by human movement (shown in �gure 5.5). The central patch is attractive
to the surrounding patches. Therefore, we may consider additional weighting terms
for the human movement from the peripheral patches towards the centre patch. The
peripheral patches have varying degrees of services provided, with population density
and services correlated in all patches.

This structure is linked to the structures seen in �gure 5.1 and 5.3. Both are mono-
centric structures which capture the behaviour in a developing city. The evolution to
poly-centric comes as a result of redevelopment of areas of the city rather than virgin
city growth. Therefore a mono-centric structure is representative of the cities we wish
to model. The areas of our mono-centric city have the characteristics of sectors of the
African and Latin-American city models. There will be patches with high population
density and limited services such as sanitation and more elite areas that are well serviced
and sparsely populated. The centre will be reasonably well-serviced in line with the
CBD of the Latin American city model. It will also see a high amount of tra�c but not
sustain a high number of residents.

There are of course shortcomings of this mono-centric structure. It can be argued
that every settlement has multiple areas of interest and so would be more accurately
portrayed by a poly-centric structure. The lack of interaction between the peripheral
patches in the following model, shown in �gure 5.5, is also an exaggeration of the human
movements likely to occur in real life.

Figure 5.5: Diagram of a developing world city structured into patches. The outer
patches are the periphery. These represent the residential areas away from the CBD
that vary in population density. There is one central patch which represents the CBD or
commercial hub of the city. There are �ve patches in total. The links between patches
indicate human movement routes.

We examine the disease dynamics through the population structure shown in �gure
5.5. The �gure shows all patches have di�ering characteristics. In sections 5.2.2 and
5.2.3 heterogeneities such as variation in population density and the rate of contact
with the environmental reservoir will be investigated.

5.2.2 Heterogeneous population densities

We wish to examine how variation in population density within the city structure af-
fects the disease dynamics. The aim is to approximate the distributions of population
density seen in the city structure models in �gure 5.1 and 5.3. These distributions
included sectors of high and low population density with large areas of transitional or
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medium density. We seek a distribution in our model that retains the high level of
mean population densities but includes some extreme values. However we also wish to
keep the heterogeneity as general as possible so that any trends found as a result of
the variation in population densities are applicable for other, similar distributions. For
example, suppose it is found that high density patches are important when the patch
densities are linearly decreasing. Then this is likely to be the case when there is one
high-density patch and a number of equally low density patches as the relative densities
determine priority. Therefore we need a set of densities where the values are clustered
around a mean value but there are also patches with higher and lower densities to
drive interesting behaviour at the extrema. Thus a set of population densities that are
normally distributed seems appropriate.

The algorithm to calculate the individual patch densities in MATLAB is as follows.
This will be accompanied by a simple example for four patches. Our algorithm aims
to create a list of population densities that are all equally likely and whose values are
normally distributed. The central patch is always patch one.

1. De�ne the number of patches (M) and total population size, N .

We commence with, M = 4 and N = 5 × 107. However, the population size is
directly linked to the reservoir volume, if we scaled the population size and reservoir
volume accordingly there would be little or no di�erence in the model behaviour
and results.

2. Calculate the mean population density as the total size divided by the number of
patches.

For our example, the mean is N̄ = 5× 107/4 = 1.25× 107.

3. Choose the standard deviation of the population densities, sd. This will dictate
how much the densities vary over the peripheral patches. It will also de�ne the
proportion of the normal distribution that will be lost with truncation.

The distribution is truncated at zero and 2N̄ . Thus, the variance gives the pro-
portion of values in the distribution that lie between zero and 2N̄ . For instance,
as 99.8% of values lie within three standard deviations of the mean we may choose
a standard deviation equal to N̄/3. The truncation, as it is symmetric, does not
a�ect the mean [78].

The value for sd we shall use is 4.1667× 106 which is approximately N̄/3.

4. The number of peripheral patches is always M − 1 therefore divide the truncated
distribution into M − 1 equally likely intervals.

The interval endpoints are calculated using MATLAB's normcdf function, F (:, :),
which gives the probability of sampling a point less than or equal to the value of

interest i.e. F (x|µ, sd) = 1
sd
√
2π

∫ x
−∞ exp(−(t−µ)

2

2sd2
)dt where µ is the mean, sd the

standard deviation and x, the value of interest. Here, the probabilities will lie
between F (0|N̄ , sd) and F (2N̄ |N̄ , sd) as the distribution is truncated.

Our example intervals will each have cumulative probabilities given by:

(normcdf(2 × N̄ , N̄ , sd) − normcdf(0, N̄ , sd))/(M − 1) = (0.9986 − 0.0014)/3 =
0.3324.

Therefore our interval bounds are the following,

normcdf(0, N̄ , sd), interval probabilities× [1 : (M − 1)],normcdf(2× N̄ , N̄ , sd)]

= [0.0014, 0.3338, 0.6662, 0.9986].
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5. Next, average over the probability intervals to �nd an appropriate mean point on
the population density distribution. It is necessary to average the probabilities
rather than the densities themselves to preserve the normally distributed values
over each interval.

In our simple case, the midpoints of the probability intervals are as follows:

midpoints = [0.1676, 0.5, 0.8324].

6. Finally, use the midpoints of the probability intervals to �nd the equally likely
points in the normal distribution. These points will become the population den-
sities in the periphery. We invert the probabilities using MATLAB's norminv which
�nds the corresponding value of the normal cumulative density function for each
probability, see �gure 5.6.

Thus, N(i) =norminv(midpoints(i), N̄ , sd) and N = [8.4846e6, 1.25e7, 1.6515e7]
on the periphery. The centre is kept at the mean population density, N̄ .

Figure 5.6: Diagram of normal cumulative density function. MATLAB's norminv takes
a probability value and �nds the corresponding population density.

The above algorithm generalises to any number of peripheral patches. It also pro-
duces a distribution of population densities for four peripheral patches as shown in �gure
5.7. Population density and size are interchangeable here as the spatial area and reser-
voir volume are kept �xed between patches to allow the e�ect of di�erent population
sizes to be studied independently of reservoir volume.

The change in standard deviation shown in �gure 5.7 moves the distribution from
an uniform distribution to an increasing set of values. Unless otherwise stated, we will
keep the standard deviation as one third of the mean population density, shown in blue
in �gure 5.7. This will truncate the normal distribution to 99.8 % of its original size.
This choice of sd will also preserve the shape of the distribution, as shown for a higher
number of patches in �gure 5.8. However, the truncation may omit the most extreme
density values for a small number of patches.

In addition to population density, we also consider heterogeneity in the rate of
contact with the contaminated environment.
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Figure 5.7: Population densities in the centre and four peripheral patches for di�erent
standard deviation values. The total population size here is 5×107.

Figure 5.8: Population densities in the centre and 99 peripheral patches. The total
population size here is 5e7 and sd is one third of the mean population density.
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5.2.3 Heterogeneous contact with the contaminated reservoir

There may be considerable variation in access to clean water throughout a developing
world city. We can model this through the contact rate parameter βi. The contact rate
is de�ned as the number of contacts with the contaminated environmental reservoir per
day. Therefore, if there is clean water freely available, the contact rate will be almost
zero.

In terms of the disease spread, the higher the contact rate with the contaminated
reservoir, the higher the chance of infection. The question will be the same as before,
when the structure and contact rates are heterogeneous, which is the optimum patch
to place control measures such as a treatment facility?

As before, we assume that the contact rate is normally distributed around the
periphery and keep the contact rate in the central patch at the mean value for the
system. The total population size was �xed in the previously considered. We �x the
`total' contact rate in a similar way i.e. to be M× (average contact rate).

When both heterogeneities are present, they are proportional. The population struc-
ture models for developing world cities suggest that areas with high-density housing are
generally less well serviced. The low-density areas are high cost and most recently up-
dated and therefore have access to the best services such as clean water and sanitation.
This correlation is seen in all the models of developing world city structure. Thus,
the heterogeneities for contact rate and population density are proportional without
intervention measures.

5.2.4 Control methods

In previous chapters we examined the treatment of infected individuals alone. Now, we
introduce a control measure with the environmental bacteria in mind. This control will
aim to account for water decontamination in the city and each facility will a�ect the
environmental reservoir in the patch where it is located. The control will increase the
rate at which bacteria degrade in the environment and will be included as an extra term
in the equations shown in sections 5.6 and 5.7. This term is ζiBi where ζi is the rate at
which the bacteria degrade due to water decontamination in patch i. We also assume
that the degradation due to decontamination is greater than that occurring naturally.

Therefore we examine two controls in a heterogeneous population. The manner in
which we combine heterogeneities is now discussed.

5.2.5 Summary of city structure and heterogeneities

A developing world city can be approximated in structure by concentric rings of di�erent
housing patches with additional peripheral heterogeneities. This can be represented by
a star of patches with a central patch that is linked to every other patch. The centre
is a well-serviced, mean density patch surrounded by peripheral patches with varying
densities. These peripheral patches have services which are proportional to their density
as some patches are in poverty and others are wealthier. The service is clean water
provision, which reduces people's contact with the contaminated environment.

5.3 Epidemiological dynamics

We consider the epidemiology of an environmentally transmitted disease following a
�ood. In this section, we explain the disease dynamics and parameters. The derivation
of the proportions of exposure to the environment of each patch can be found in previous
chapters as well as the model equations for a fully connected M patch system.
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Recall that there is a weighting attached to the outward and return edges between
two patches. These are scaled when considering the infected individuals where edges
towards a treatment facility are scaled up and edges away from treatment facilities are
scaled down. We use these weightings to de�ne the proportions of exposure experienced
by uninfected or infected individuals residing in the centre or peripheral patches.

For uninfected individuals, the proportions of exposure are the following:

σii = σ =
τ

φ+ τ
, σic = 1− σ =

φ

φ+ τ
,

σcc = σ , σci =
1− σ
M − 1

.

The proportions of exposure for infected individuals have the additional inertia
weight χ1 and animation weight χ2. For peripheral patch i they are as follows:

σIii =


χ2σ

χ2σ + χ1(1− σ)
treatment facility in peripheral patch i but not in centre,

χ1σ

χ1σ + χ2(1− σ)
treatment facility in centre patch but not in peripheral patch i,

σ else,

σIic = 1− σIii.

The proportions of exposure for infected individuals residing in the centre patch
have a larger number of forms as there could be a treatment facilities in proportion n
of the M − 1 peripheral patches. The proportions are given by the following,

σIcc =


χ1σ

χ1σ + (1− σ)(nχ2 + (1− n)χ1)
treatment facility not in centre,

χ2σ

χ2σ + (1− σ)(nχ2 + (1− n)χ1)
treatment facility in centre,

σIci =



χ2(1− σ)

χ1σ + (1− σ)(nχ2 + (1− n)χ1)
treatment in peripheral patch i but not centre,

χ1(1− σ)

χ1σ + (1− σ)(nχ2 + (1− n)χ1)
treatment not in peripheral patch i or centre,

χ2(1− σ)

χ2σ + (1− σ)(nχ2 + (1− n)χ1)
treatment in peripheral patch i and in centre,

χ1(1− σ)

χ2σ + (1− σ)(nχ2 + (1− n)χ1)
treatment not in peripheral patch i but in centre,

These are a special case of the general equations seen in Chapter Four. The force
of infection experienced by residents of the central patch Fc is composed of terms
representing exposure in patch c, and exposure in each peripheral patch i,

Fc = βc
Bc

κ+Bc
σ +

∑
i

βi
Bi

κ+Bi

(
1− σ
P

)
. (5.1)

Similarly, the force of infection experienced by residents of peripheral patch i, Fi is
composed of terms representing exposure in patch c, and exposure in patch i:

Fi = βc
Bc

κ+Bc
(1− σ) + βi

Bi
κ+Bi

σ. (5.2)
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Infected residents of the central patch are treated at rate Hc, and residents of peripheral
patch i are treated at rate Hi where

Hc = σIccξc +
∑
i

σIciξi,

Hi = σIicξc + σIiiξi,

(5.3)

and

ξj =

{
ξ if patch j has a treatment facility,

0 if patch j does not have a treatment facility.
(5.4)

The total rates at which bacteria are shed into the central patch, Gc, and into peripheral
patch i, Gi, are composed of terms representing the contributions of residents and
contributions of visitors

Gc = (σIccIc +
∑
i

σIicIi + σTc +
∑
i

(1− σ)Ti)η,

Gi = (σIciIc + σIiiIi +

(
1− σ
P

)
Tc + σTi)η.

(5.5)

A �ow diagram for the system is shown in �gure 5.5. Parameter values are given
in table A.8. The complete epidemiological dynamics for residents of the central patch
are given by

Ṡc = µNc −FcSc − µSc,
İc = FcSc − (γ +Hc + µ)Ic,

Ṫc = HcIc − (αγ + µ)Tc,

Ṙc = αγTc + γIc − µRc,
Ḃc = Gc − (ζ + θ)Bc.

(5.6)

The epidemiological dynamics for residents of any peripheral patch i are given by

Ṡi = µNi −FiSi − µSi,
İi = FiSi − (γ +Hi + µ)Ii,

Ṫi = HiIi − (αγ + µ)Ti,

Ṙi = αγTi + γIi − µRi,
Ḃi = Gi − (ζ + θ)Bi.

(5.7)

The parameter de�nitions for these equations are shown in table A.8 and three impor-
tant assumptions in equations (5.6) and (5.7) are

• A patch with a treatment facility is more attractive to infected individuals. Thus
edges toward treatment facilities are scaled up by an animation weight and edges
away are scaled down by an inertia weight for infected individuals.

• The decontamination facilities do not alter the movement rates.

• Treated individuals continue to contribute bacteria to the contaminated reservoir
at the same rate as untreated individuals.

We �x the parameters given in table A.8 at the values shown in table A.8. There are
two parameter sets corresponding to stable equilibria in which the disease is absent or
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endemic. When the system is disease free, the value of β is altered to give R0 < 1. This
was chosen as it has a large impact on R0 and is signi�cant in the model. When the
disease is endemic, R0 > 1.

We gave a background in Chapter One about natural disasters and the e�ect of
�oods. We now describe the simulation of the �ood.

5.3.1 Simulating a �ood perturbation

Recall, �ooding can contaminate drinking water and hinder sanitation. We model a
�ood using a step change in the relevant parameter values; the shed and contact rates.
The �ood is modelled as a step up to a perturbed value of the parameter, β and η, and
a step down to the normal value at the end of the a �xed time span. This pro�le is
shown in �gure 5.9.

Figure 5.9: Pro�le of binary �ood in terms of parameter p.

The perturbed parameter values are proportional to the normal values. We consider
a 100% change i.e. perturbed value = 2×(normal value). This will be large enough to
show trends that represent the large e�ect that a natural disaster would produce.

5.4 The Solution: using simulation

In this chapter we have been considering the problem of deciding where, in a population
structured by one or more heterogeneous characteristics, a treatment or decontamina-
tion facility should be located in order to minimise the impact of environmentally trans-
mitted disease following a natural disaster. One way to �nd a solution to this problem
is by simulation.

We seek a de�nitive solution by exhaustive search. This approach examines every
possible option for locating a treatment or decontamination facility and �nds the `best'.
We consider a population structured into �ve patches. An environmentally transmitted
disease is either endemic in the population or introduced through the initial conditions.
At the beginning of each simulation, a �ood is modelled by parameter perturbation as
described in section 5.3.1. The number of infections above those expected in normal
endemic circumstances is recorded.

The steps of the algorithm are shown below. We add all the treatment and/or
decontamination facilities at the same time before the �ood. However, adding the
facilities following the �ood perturbation is also considered.

1. Choose initial distribution of treatment and/or decontamination facilities, for in-
stance, if there is one treatment facility, start by trying it in patch one, the centre,
then try patch two, three and so on in turn. If there are several facilities, generate
the full list of possible arrangements using MATLAB's nchoosek function. Then,
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examine each distribution scenario in turn before �nally simulating the �ood per-
turbation.

2. Solve the system until it is at equilibrium. For endemic equilibrium use parameter
set 1 in table A.8. For disease free equilibrium use parameter set 2 in table A.8.
It should be noted that there may occur a point at endemic steady state where
the number of control facilities brings R0 below one.

3. Simulate the �ood, this is detailed in section 5.3.1. If the initial equilibrium is
disease free, introduce a small number of infected individuals into each patch (set
I0i = (10−4) ∗Ni).

4. Record the total number of new infections over the course of the �ood. This is
done using an additional model compartment which describes the dynamics of the
infected class without recovery, treatment or death. This `collects' infections over
the time speci�ed.

5. If the initial equilibrium is not disease free, �nd the total number of new infections
over the course of the �ood due to endemic turnover with unperturbed param-
eters. Remove these from the total number of infections recorded for the �ood
simulation. The result is the number of excess infections attributed to the �ood.

6. Repeat step 1-5 with the next arrangement of facilities until all possibilities have
been exhausted.

7. Compare the numbers of excess infections attributed to the �ood for each arrange-
ment of treatment and/or decontamination facilities. The optimum arrangement
is the one that minimises the number of infections.

The above algorithm leads to the optimal, pre-emptively placed control facility dis-
tributions to minimise the epidemic size. However, we also consider those distributions
that are placed at the beginning of the perturbation to minimise the infections over the
�ood. These are termed reactively placed control facility distributions and do not a�ect
the equilibrium properties prior to the �ood. Therefore, the optimal distributions of
control facilities placed reactively or pre-emptively only di�er at endemic equilibrium.

We also consider how long the system takes to return to equilibrium. To calculate
the return time, we follow the algorithm to step 5 and then continue to simulate until
the system is su�ciently close to the equilibrium value. This is measured through the
infected individuals in the centre patch as they are most sensitive to changes in the
system. However, we have also used di�erent infected classes as the measure to arrive
at the same results.

These algorithms lead to the results shown in the following Sections. They will �rst
be discussed when one control facility is available. Then, once the optimum treatment
or decontamination facility distributions have been understood, we may examine the
distributions of both control facility types.

5.5 Results

5.5.1 Distributions with a single control measure

We �rst examine the results when there is only one type of control measure available,
either treatment or decontamination. The aim is to discover which optimal distributions
are common to both control types and which only apply with one type.
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5.5.1.1 Summary of results

Table 5.1: Optimal distributions of between one and four control facilities in a city
structured by a heterogeneity. Optimisation minimises the size of the epidemic asso-
ciated with a �ood in a system that is initially at endemic equilibrium (top rows) or
disease free equilibrium (bottom row). The heterogeneity may be in the contact rate,
population density or both. Larger circles indicate higher contact rates/ densities. Con-
trol facilities may provide treatment or decontamination. Shaded circles denote control
facility locations. The unmarked distributions shown are optimal for all combinations
of heterogeneity, control measure and placement time mentioned in table B.1 of the
appendix. Distributions marked with (*) are not optimal for all heterogeneities but are
not signi�cantly worse that the alternative distributions which are shown in table B.2.

We start with the distributions that minimise epidemic size. Table 5.1 shows that,
when the system is at endemic equilibrium, and the facilities are placed pre-emptively,
treatment and decontamination facilities are optimally placed in the peripheral patches
with lowest contact rate/density. In the �nal instance, when four facilities are to be
placed, treatment facilities are optimally positioned in the centre and peripheral patches
with highest contact rate and/or density whereas decontamination facilities are placed
in the peripheral patches only. Pre-emptively placed facilities are placed before the
system is simulated to its equilibrium state. Therefore, their placement may a�ect the
equilibrium population characteristics. In contrast, when facilities are placed reactively,
at the beginning of the perturbation, the centre patch is included in many of the optimal
distributions. The optimal, reactively placed distributions of treatment facilities include
the centre and peripheral patches with lowest contact rate and/or density for one to
three facilities. Then four treatment facilities are placed in the peripheral patches only.
The optimal, reactively placed distributions of decontamination facilities include the
centre patch and peripheral patches with highest contact rate/density.
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Table 5.2: Optimal distributions of between one and four control facilities in a city
structured by a heterogeneity. Optimisation minimises the time to return to equilib-
rium after an epidemic associated with a �ood in a system that is initially at endemic
equilibrium or disease free equilibrium. Larger circles indicate higher contact rates/
densities. Shaded circles denote control facility locations. The distributions shown are
optimal for all combinations of heterogeneity, control measure and placement time men-
tioned in table B.1 except for a few speci�c cases detailed in table B.3 denoted with an
(*) .
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When the system is initially at disease free equilibrium the decontamination facil-
ities are once again placed in the centre and peripheral patches with highest contact
rate/density. The optimal distributions of treatment facilities are more varied. The
optimal distribution of one treatment facility at disease free equilibrium is in the cen-
tre. The optimal distribution of two facilities includes the centre and peripheral patch
with lowest contact rate/density. However, when three facilities are available, it is best
to place them in the peripheral patches with highest contact rate and/or density only.
This distribution is retained when four facilities are placed as they are positioned in the
peripheral patches. The changing distributions of treatment facilities will be discussed
in Section 5.5.1.2.

We now consider the distributions that optimise, i.e. minimise, the return time.
Table 5.2 shows that, when the system is at endemic equilibrium and the facilities
are placed pre-emptively, treatment facilities are optimally positioned in the centre
patch and peripheral patches with lowest contact rate/density. Pre-emptively placed
decontamination facilities are optimally distributed if positioned in the highest contact
rate/density peripheral patches. When the facilities are placed reactively, decontamina-
tion facilities are optimally placed in the lowest contact rate and/or density peripheral
patches. Treatment facilities are best placed in the centre patch and peripheral patches
with highest contact rate and/or density. When the system is initially at disease free
equilibrium, the optimal distributions of one to three treatment facilities include the
centre patch and the peripheral patches three and two i.e. the peripheral patches with
second highest and second lowest contact rate/density respectively. The optimal distri-
bution of four treatment facilities omits the centre. The decontamination facilities are
optimally positioned in the centre and highest density/contact rate peripheral patches.
There are some exceptions where another distribution is slightly better, denoted with
an asterisk. These are discussed in Section 5.5.1.4 and the alternative distributions can
be found in table B.3.

5.5.1.2 The e�ect of weighting on optimal distributions of treatment facil-

ities

We found that the optimal con�gurations of treatment facilities varied with the number
of facilities to be placed and the state of the system. This is related to the weight scaling
of infected individuals towards treatment. When the scaling is weak or absent, the
optimal con�gurations of treatment facilities are similar to those for decontamination
facilities. Locating treatment facilities in the centre bene�ts the most people because it
is accessible from all peripheral patches and infected people are drawn in when weights
are scaled. However, as the scaling towards a treatment facility increases and scaling
away from a treatment facility decreases, a number of transitions occur. A higher ratio
of scaling towards treatment facilities to scaling away from treatment facilities, or bias,
means that infected individuals have proportionally more exposure to the environment
of the patch with the treatment facility. This leads to increased contamination of the
environment around a treatment facility. Figure 5.10 shows how the bias can alter the
optimal distributions of treatment facilities. As the bias increases, we see a transition
from the optimal con�gurations including the centre and high density or contact rate
peripheral patches, region (A) in �gure 5.10, to including the centre and low density or
contact rate peripheral patches, region (B). This is because the increased contamination
raises the force of infection in the patches with treatment facilities. As such, it can
increase the number of infections. This is particularly the case when the density or
contact rate is high. Thus, the peripheral patches with lower density or contact rate
become more viable options for treatment facility placement.
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Figure 5.10: Epidemic size over weighting towards treatment facilities when densities
are heterogeneous for di�erent placements of two treatment facilities. As the inertia
weight decreases and the animation weight increases, infected individuals are propor-
tionally more exposed to the environment surrounding a treatment facility. Line style
denotes where the treatment facilities are placed; in the centre and peripheral patches
(dashed with a darker shade indicating a higher density) or the periphery (solid with
a darker shade indicating a higher density). Regions A, B and C are divided by which
distributions are optimal. Parameters as shown in table A.8 and the system is initially
at disease free equilibrium.

As the bias increases further, the centre patch is omitted from the optimum distri-
bution, region (C) in �gure 5.10. At this point the negative e�ect of increased contami-
nation of the centre patch outweighs the bene�t of having a treatment facility in such an
accessible position. This is because locating treatment facilities in the periphery has an
`auto-quarantine' e�ect; infected individuals move towards a treatment facility if they
have access to it. Consequently, treatment facilities on the periphery tend to keep resi-
dents at home, providing them with quicker treatment and preventing contamination of
the centre patch. Therefore, when three or four treatment facilities are placed at disease
free equilibrium it is optimal to omit the centre. At endemic equilibrium the regime
does not reach the point at which it is optimal to omit the centre until four facilities are
placed. This is because the susceptible population is depleted and the auto-quarantine
e�ect produces only a marginally smaller epidemic size than distributions including the
centre patch.

There is another consideration, the waiting time until treatment. This depends on
the treatment rate as well as the number of facilities an infected individual has access
to. Figure 5.11 shows that as the waiting time increases it is no longer optimal to place
a treatment facility in the centre patch. This is because infected individuals are biased
towards the patch with the treatment facility. A longer waiting time means a longer
infectious period. Therefore, there is an extended period of shedding in the patch with
the treatment facility.
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Figure 5.11: Epidemic size over treatment rate when densities are heterogeneous for
di�erent placements of one treatment facility. Line style denotes where the treatment
facility is placed; in the centre (dashed) or the periphery (solid with a darker shade
indicating a higher density). Parameters as shown in table A.8 and the system is
initially at disease free equilibrium.

5.5.1.3 The di�erence between pre-emptive and reactive placement of con-

trol facilities

Pre-emptive deployment added control facilities to the system with endemic disease and
allowed it to move to the new endemic equilibrium before any transmission perturbation
occurred. Thus pre-emptively deployed facilities a�ect the epidemic associated with the
perturbation directly, and indirectly through their e�ect on the equilibrium state before
the perturbation. Consequently, the optimal pre-emptive con�gurations of control fa-
cilities to minimise the size of an epidemic associated with a transmission perturbation
are not optimal when minimising the infection risk during endemic circulation, see table
5.3.

Table 5.3: Optimal con�gurations of control facilities to minimise the lifetime infection
probability at endemic equilibrium. Population densities (N) or environmental contact
rates (β) or both may be heterogeneous. Larger circles indicate patches with higher
densities and/or contact rates. Shaded circles indicate control facility locations. In
the lower two rows grey indicates decontamination, black treatment. Con�gurations
marked (*) are optimal but only marginally better then the con�gurations suggested
by applying the general rule.
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In all of the cases we have examined, for pre-emptive deployment, the con�gurations
that minimise epidemic size are also the con�gurations that minimise the size of the
total susceptible population at endemic equilibrium. The susceptible population is the
fundamental resource for an epidemic, and depletion of this resource has a direct impact
on the epidemic size. All con�gurations also reduce the endemic infection risk. However,
since the endemic infection risk is proportional to the size of the susceptible population,
it follows that the optimal con�guration for minimising epidemic size is always the
least bene�cial con�guration for reducing the endemic infection risk. Therefore, when
deciding on an appropriate con�guration for the pre-emptive deployment of control
facilities we would have to weight the frequency with which perturbation are expected
to occur against the impact of endemic circulation.

5.5.1.4 Notable di�erences in the optimal control facility distributions

The distributions in 5.1 and 5.2 were optimal in many situations but there were some
exceptions, shown in tables B.2 and B.3 in the appendix. When the system is initially
at endemic equilibrium there is one alternative to the distributions shown. This oc-
curs when two decontamination facilities are placed reactively and contact rates are
heterogeneous. In this situation the optimal distribution includes the centre patch and
peripheral patch with second lowest contact rate/density. However, the di�erence be-
tween this distribution and the one optimal in most cases is 0.88%, see table C.3, which
is not considered signi�cantly di�erent when compared to the greatest possible di�er-
ence between distributions. The same applies for many of the alternative distributions
that are optimal at disease free equilibrium, see table C.1. However, when three and
four treatment facilities are placed, there are alternative distributions that are signi�-
cantly di�erent to the con�guration that is optimal in most cases. These occur when
both contact rates and densities are heterogeneous as facilities are optimally placed in
the centre and lowest contact rate/density peripheral patches, rather than just in the
peripheral patches. To explain this we refer to �gure 5.10. When both contact rates
and densities are heterogeneous, the omission of the centre comes at a higher price than
when only one heterogeneity is present. This is because the force of infection is higher
in a high density and high contact rate patch. As such, the transition to omitting the
centre from optimal distributions occurs at a higher bias or waiting time than the one
employed here.

We now examine the alternative distributions that minimise return time. When
the system is initially at endemic equilibrium and the facilities are placed reactively,
there is one exception, when two treatment facilities are positioned and densities are
heterogeneous. In this situation the optimal distribution includes the centre patch and
peripheral patches with highest density. However, the di�erence in return time allowed
by this distribution and the most commonly optimal one is 28 minutes, see table C.4.
Therefore, this is an insigni�cant di�erence when compared to the maximum possible
di�erence of 6 days. When the system is initially at disease free equilibrium, there are
only two signi�cantly di�erent alternative control facility distributions. These occur
when four treatment facilities or two decontamination facilities are placed when both
contact rates and densities are heterogeneous. In the case of treatment, the alterna-
tive optimal distribution includes the centre patch and peripheral patches with lowest
contact rate and density. This distribution reduces the return time to equilibrium as
it reduces the epidemic size, see table B.2. However, for decontamination, the alter-
native distribution is optimal for a di�erent reason. When the number of available
decontamination facilities is low, the optimal distributions allow large epidemics that
exhaust themselves quickly, minimising return time. However, as the number increases,
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it becomes viable to minimise the return time through limiting the epidemic size. The
point at which it becomes viable to limit return time through limiting epidemic size
when contact rates and densities are heterogeneous comes at a higher number of de-
contamination facilities than when only one heterogeneity is present. Therefore, there
is a signi�cant alternative optimal distribution of two decontamination facilities when
contact rates and densities are heterogeneous.

5.5.2 Distributions with two control measures

We now examine the situation where treatment and decontamination facilities can both
be placed. The optimal distributions of these facilities will indicate whether one control
measure should be prioritised in certain situations than the other. They will also show
whether the placement of one control measure a�ects the placement of the other.

5.5.2.1 Summary of results

We separate the distributions by equilibrium and assessment criteria, as before. We
start with the distributions that minimise epidemic size. Table 5.4 shows that when the
system is initially at endemic equilibrium and facilities are placed pre-emptively, it is
optimal to place one to four decontamination facilities in the lowest contact rate/density
peripheral patches. When �ve facilities are available it is optimal to place three decon-
tamination and two treatment facilitates in the peripheral patches with lowest contact
rate and/or density. However, when six or more facilities are available, a treatment
facility is placed in every patch and decontamination facilities are positioned in the
peripheral patches with lowest contact rate/density. When the system is initially at en-
demic equilibrium and facilities are placed reactively, the results are the same as when
the system is initially at disease free equilibrium. It is optimal to place a treatment
facility in the centre then both decontamination and treatment facilities in the centre.
This distribution is retained as decontamination facilities are placed in the peripheral
patches with highest contact rate/density until all patches contain a decontamination
facility. When decontamination facilities are placed in all patches, treatment facilities
are placed in the peripheral patches with lowest contact rate/density until the �nal
instance, where they are placed in the peripheral patches only. There are exceptions to
these optimal distributions, shown in table B.4 and discussed in section 5.5.2.2.

We now examine the distributions that minimise the return time. Table 5.5 shows
that when the system is initially at endemic equilibrium and the facilities are placed
either reactively or pre-emptively it is optimal to place one treatment facility in the
centre. This placement is retained and two decontamination facilities are placed in the
peripheral patches with highest contact rate/density. When four to six facilities are
available, both treatment and decontamination facilities are placed in the centre with
decontamination facilities in the high contact rate/density peripheral patches. Then
when seven and eight facilities are available, decontamination facilities are placed in all
patches with treatment facilities placed in the centre and peripheral patches with lowest
contact rate/density. Finally, when nine facilities are placed pre-emptively it is optimal
to position decontamination facilities in all patches and treatment facilities in the centre
and lowest contact rate/density peripheral patches. However, when facilities are placed
reactively the treatment facilities should be positioned in the peripheral patches only.
It should be noted that the �nal three distributions of reactively placed control facilities
are assessed on their return time to disease free equilibrium as these distributions bring
R0 < 1.
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Table 5.4: Optimal distributions of between one and nine control facilities placed in
a city structured by a heterogeneity. Optimisation minimises the size of an epidemic
associated with a �ood in a system that is initially at endemic or disease free equilibrium.
Larger circles denote higher contact rates/ densities. Shaded circles denote control
facility locations with grey representing decontamination and black, treatment. The
distributions shown are optimal for all combinations of heterogeneity mentioned in
table B.1 except for particular cases, denoted (*), mentioned in table B.4.

Table 5.5: Optimal distributions of between one and nine control facilities pre-emptively
placed in a city structured by a heterogeneity. Optimisation minimises the return time
to equilibrium for an epidemic associated with a �ood in a system that is initially at en-
demic or disease free equilibrium. Larger circles denote higher contact rates/ densities.
Shaded circles denote control facility locations with grey representing decontamination
and black, treatment. The distributions shown are optimal for all combinations of het-
erogeneity mentioned in table B.1 except for particular cases, denoted (*), mentioned
in table B.5.
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5.5.2.2 Notable di�erences in the optimal control facility distributions

The general rules shown when placing control facility types to minimise epidemic size
have a few exceptions. However, these exceptions can not be considered signi�cantly
di�erent to the general rule, see tables C.1 and C.3. As such, we may consider the
general rules as representative up to parametrization.

5.6 Conclusion

We separate our conclusion into three areas; a summary of our methods and results,
a commentary on the e�ectiveness of our analysis and �nally a review of our progress
towards answering our main question.

5.6.1 Summary

We aimed to �nd the optimum distribution of one to nine control facilities of two types
in a heterogeneous city with an environmentally transmitted disease. This disease was
either endemic or introduced and an epidemic occurred as a result of a natural disaster
in the form of a �ood. We determined these distributions when the facilities were
placed pre-emptively or reactively through simulation. The simulations calculated the
number of new infections over the course of an epidemic, excluding endemic turnover
where appropriate, and the return time to equilibrium. The steps of the simulation are
shown in �gure 5.12. The number of infections or duration was saved as the control
facility distribution `score'. The distribution with the minimum score was declared the
optimum.

Figure 5.12: Flowchart depicting simulation steps.

The optimum distributions of one control type were generally indicative of the op-
timum distributions of two types of control facility. When the system was initially at
disease free equilibrium or the facilities were placed reactively at endemic equilibrium,
the centre and peripheral patches with highest contact rate/density were prioritised
for decontamination and the centre and lowest contact rate/density peripheral patches
were prioritised for treatment.

A notable feature of the results is the variability of the optimal distributions of
treatment facilities. This is due to the bias in the exposure weightings for infected
individuals. As the bias increases the infected individuals can be increasingly exposed to
areas with high force of infection or high susceptible tra�c. Consequently, a compromise
must be reached between areas that allow access to the greatest number of individuals
and areas that may be more negatively a�ected by any increased shedding of bacteria.

5.6.2 Assessing the assessments

Generally, the epidemic size is the most intuitive measure of an epidemic. It gives the
excess number of individuals who are infected over the course of the �ood for each dis-
tribution of control facilities. The optimum distributions which minimise epidemic size
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are fairly consistent. They are also clear to interpret. Although, there are issues with
placement time. The pre-emptive placement of control facilities can a�ect the equilib-
rium characteristics of the population. Namely, it can reduce the number of susceptible
individuals prior to the perturbation. This e�ectively maximises the lifetime probability
of infection which is the least desirable situation when managing an endemic disease.
Therefore, there are con�icts between those strategies that minimise the new infections
over a perturbation and those that minimise the lifetime probability of infection. This
placement time issue is partly resolved using reactive placement. The reactive place-
ment time in this situation is unrealistic but it does give insight into those distributions
of control facilities that minimise the infections over the perturbation only.

The return time may not be as good an assessment of the optimum distribution of
control facilities. To a certain extent, there is a correlation between epidemic size and
duration. A very small epidemic will have few infections and die out quickly. However,
the rate at which an epidemic declines is not necessarily related to the rate at which
it grows or its peak value. Therefore, there are situations where a smaller epidemic
will have a longer duration than a larger one. This means that the optimum distribu-
tions found using return time as an assessment may allow epidemics with undesirable
attributes such as a high growth rate and large peak value. This issue is illustrated in
�gure 5.13. The �gure shows the number of infected individuals over time for three epi-
demics. The reference epidemic, in black, has fewest infections; however the epidemic
of shortest duration is the orange, due to a larger growth rate and steeper decline.
Therefore, in this case, the optimum distribution of control facilities to minimise return
time would allow a more sudden and extreme epidemic.

Figure 5.13: Graph of infections over time for three epidemics. The black represents the
reference time series of smallest epidemic size. The orange and blue both have greater
epidemic size but the orange epidemic is of shorter duration due to faster growth and
decline rates.

5.6.3 The solution

There are a few things to consider when determining the optimum distribution of control
facilities. One of the most important factors is the population response to the control
measure. We have seen that the bias in exposure weighting for infected individuals
towards treatment facilities, as well as the treatment waiting time, strongly in�uence
the optimal distributions of control facilities. In a situation where bias is high, it may
be bene�cial to avoid placing treatment facilities in areas such as the centre. This
is because the high bias increases shedding around a treatment facility. As such, it

130



is optimal to place treatment facilities in patches with low force of infection or low
susceptible tra�c.

Other considerations are the number, placement time and state of the system prior
to the �ood. The number of facilities to be placed also a�ects the optimum distributions.
We assumed that all facilities were placed at the same time rather than iteratively. As
such, there are situations where the optimum distribution of `(n − 1)' facilities bears
little resemblance to that for `(n)'. For example, the optimum distributions of eight
and nine facilities placed reactively to minimise epidemic size vary substantially when
the unperturbed system is at endemic equilibrium.

In summary, city authorities wishing to minimise an epidemic caused by a �ood
would need to consider the following questions before deciding on a course of action.

1. How will the population respond to the control measures?

There may be negative outcomes of the control measures which need to be bal-
anced against their potential bene�t.

2. What is the state of the city before the �ood?

If the disease is endemic and facilities are placed pre-emptively a very di�erent
distribution of control facilities is optimal compared to when the disease is newly
introduced.

3. How many facilities are to be placed?

The number of facilities to be placed and whether those facilities are to be placed
at the same time a�ects which patches should be prioritised for control measures.
As such, it may be necessary to choose between a distribution that is optimal now
or one that will be optimal if further facilities are added in future.

4. Which control facility type is to be used?

Treatment and decontamination are both optimal measures but in di�erent situ-
ations.

Once these three questions have been answered, the di�erent areas or patches of the
city may be prioritised for control facilities by their population density, contact rate
with the environment and whether the patch lies in the centre or on the periphery.

5.6.4 Further work

So, is the problem solved? We would say that it is but with some codicils. The question
appears to be a simple one: when should we deploy limited resources to minimise infec-
tions given a perturbation in transmission rates. However, the pre-emptive deployment
results demonstrate that there is more to consider than just the number of infections.
The pre-emptively placed distributions of control facilities limit an epidemic by min-
imising the susceptible population. Conversely, protecting the population by limiting
endemic prevalence can make it more vulnerable to epidemics given a transmission per-
turbation. These two strategies are clearly at odds. Therefore, in future it may be
bene�cial to conduct a cost-bene�t analysis of endemic prevalence management against
epidemic control given di�erent frequencies of transmission perturbations.

Another consideration is that the simulations we used are not quick or computation-
ally cheap. Every possible arrangement of control facilities must be checked and when
there are two available controls, the list of possible arrangements is extensive. If we
wished to examine a higher number of patches or even an additional control measure,
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simulations would soon become prohibitively expensive. Therefore, whilst we have a
solution for �ve patches and two control measures, we can not extend this solution
easily. Thus, a proviso for our current solution is that the number of patches is low.

To extend this work to a higher number of patches, we will need a faster method
for identifying optimum distributions. We can test the new method or methods using
the results shown in this chapter. Then, we can con�dently use the new method to �nd
optimum distributions of control facilities for higher numbers of patches. The criteria
for the new methods are:

• To indicate the results shown in this chapter for the �ve patch model.

• Be computationally inexpensive.

• Make biological sense.

The last item is pertinent as we need a method that has an interpretation which
agrees with the meaning of the simulation to ensure any predictions are useful.

A place to start the search for the new methods is the equilibria properties such
as R0 and the value of the endemic equilibrium. These may be useful as our results
indicate a clear dependence on the equilibrium value. We may also explore features such
as the resilience and reactivity which relate to the speed at which the system returns to
equilibrium once perturbed and the route that it returns via. Finally, we can examine
how the �ood a�ects the system and where the damage is felt most. These methods
should build a picture of the system behaviour that not only predicts the results of the
simulations but explains the system response to perturbation more thoroughly.
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Chapter 6

Alternative indicators of optimal

resource deployments

6.1 The problem

In the previous chapter we found the optimal distributions of treatment and decontami-
nation facilities to minimise the size of a disease epidemic. The disease was transmitted
environmentally and was either introduced or endemic in the system. The epidemic
was initiated by a �ood and the size of epidemic was calculated over the course of the
�ood. We assessed possible control facility distributions using simulation to �nd those
that allowed the smallest epidemic. We now seek alternative methods to �nd these
optimal distributions. These methods will be required to have a biologically realistic
interpretation and be computationally less expensive.

We start by introducing our alternative methods and their capabilities. We will
then use them both as an assessment in an exhaustive search for optimal control facility
distributions and as a way of prioritising patches for control. Lastly, we discuss their
agreement with the simulation results of the previous chapter.

6.2 Alternative methodologies

Our objective in this chapter is to predict and understand the optimum distributions
of pre-emptively and reactively placed control facilities, shown in the previous chapter,
using more e�cient and informative methods. We wish to use procedures that have
biologically meaningful interpretations. Therefore we will use a variety of analyses that
apply at di�erent points in time with respect to a �ood. These are placed in three
categories: equilibrium properties, the response to the �ood and the recovery of the
system. These apply before the �ood occurs, at the start of the �ood and when the
epidemic starts to decline, shown in �gure 6.1.

We shall use our assessments in two ways. Firstly we shall prioritise patches for
treatment and/or decontamination facilities based on their local assessment value. An
example of this prioritisation is shown in the section of part reproductive numbers. The
second way we shall use our assessments is through exhaustive search. We shall test
every possible distribution of control facilities by their e�ect on the global assessment
criteria. Finally, we compare the prioritisation and optimal distribution found through
exhaustive search to those distributions deemed optimal by simulation.

The aim of this section is to explain the methodology of each of the analyses. We
shall also state the results we would expect from each analysis if they are e�ective at
predicting the optimum distributions of control facilities found through simulation.
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Figure 6.1: Analysis areas of an epidemic associated with a �ood. The black line denotes
the change in the number of infected individuals over time.

6.2.1 Equilibrium Properties

The �rst aspects of the system we can examine are the equilibrium properties in the
absence of the �ood. The state before the �ood, disease free or endemic, a�ects the
optimal distribution of control facilities. We aim to examine these states or equilibria
through di�erent, but related, quantities. At disease free equilibrium we examine the
basic reproductive number and part reproductive numbers. At endemic equilibrium,
we focus on the endemic prevalence, the proportions of susceptible individuals in each
patch and the e�ective reproductive number.

6.2.1.1 R0, RE and the part reproduction numbers

We detail the method for �nding and decomposing the basic reproductive number, R0,
in Chapter Two. We now additionally consider the e�ective reproduction number, RE ,
which applies when the entire population is not susceptible. It is calculated in the same
manner as R0 and we expect RE = 1 when the system is at endemic equilibrium.

We may be interested in which infected class contributes most to the reproduction
numbers and to assess this we must divide R0 or RE into their constituent parts.
R0 is the lead eigenvalue of the next generation matrix, NGM, linearised about the
disease free equilibrium whereas RE is the lead eigenvalue of the next generation matrix
linearised about the endemic equilibrium. The NGM is found by multiplying the
transmission matrix, T , by the inverse of the transition matrix, Σ. These matrices
consist of the transmission and transition terms of the system Jacobian at equilibrium.
We detailed the full steps of the decomposition in Chapter Two and the computing
method for these matrices in Chapter Four. The interpretation of the part reproduction
numbers, Ri0 or R

i
E , is the absolute contribution of each type i to the basic or e�ective

reproduction number. That is, the extent each class of the system adds to the number
of infections caused by one individual in one generation.

We will examine whether the part reproduction numbers may be used to predict
the results of the simulations by prioritising the patches for treatment facilities using
the infected class Ri0, and for the decontamination facilities using the bacterial Ri0. The
patch with the highest Ri0 for the infected class is prioritised for a treatment facility.
The patch with the highest Ri0 for the bacterial class is prioritised for a decontamination
facility. In �gure 6.2 an example of the ordering is shown where the prioritisation is
given in white numbers.

In section 6.3.2.1 we shall also examine the distributions of control facilities found by
exhaustive search that minimise the reproduction numbers or sum of infected class part
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Figure 6.2: An example of the prioritisation of patches for control facilities based on
their part R0 value for the infected or bacterial class. Bar height is part Ri0 magnitude,
white number is ordering.

reproduction numbers. This will indicate which distributions limit the initial growth of
the epidemic to the greatest extent.

6.2.1.2 The endemic prevalence and proportion of susceptible individuals

We also consider the composition of the population at endemic equilibrium. The
endemic prevalence and proportion of susceptible individuals are calculated by alge-
braically solving the system of ordinary di�erential equations assuming that they are
at equilibrium. The equilibrium values can also be calculated by simulation as with
the previous chapter. The endemic prevalence is a quantity of interest as it can a�ect
the number of infections due to a perturbation. For instance, a higher number of in-
fected individuals can infect a larger number of individuals if transmission is perturbed.
However, there can only be new infections if there are available susceptible individuals.
Therefore, we also measure the proportion of the population in each patch that is sus-
ceptible to evaluate the capacity of the population for new infections. The susceptible
proportion of the population is also related to RE and is a measure of the lifetime
probability of infection given by 1− S∗

N at endemic equilibrium.

We use the endemic prevalence and susceptible population size to prioritise patches
for treatment facilities in section 6.3.2.2. We prioritise patches in ascending order with
respect to the size of the susceptible population at endemic equilibrium and in descend-
ing order with respect to the patch prevalence at endemic equilibrium. We also examine
the distributions of control facilities found by exhaustive search that minimise the pro-
portion of the population that is infected and maximise the proportion of the population
that is susceptible. This will indicate which distributions allow the lowest number of
infections at endemic equilibrium and which protect the susceptible individuals to the
greatest extent. Finally, we consider the optimal pre-emptively placed distributions by
examining those distributions that minimise the size of the susceptible population at
endemic equilibrium.
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6.2.2 Response to �ood

Whilst the state of the system prior to the �ood may be informative, we also wish to
examine the system reaction to the perturbation. As such, we need a measure of the
change in each system aspect due to the perturbation. We consider three such measures
in this section: the impact, sensitivity and in�uence.

6.2.2.1 Impact

We introduced the impact in Chapter Four. It is a measure of the reaction of each system
element to a perturbation. We examined the e�ect of a perturbation approximating a
natural disaster on di�erent patch arrangements and levels of spatial segregation. We
will now order the infected classes by their impact and prioritise treatment facilities to
the patches for which the infected class impact is highest. We will order the bacterial
classes by their impact and prioritise decontamination facilities to the patches for which
the bacterial class impact is highest. This will be based on the impact experienced
by each class in the absence of any control. We will assess whether this can be used
instead of an exhaustive search to predict optimal control facility distributions. Then we
shall �nd distributions by exhaustive search that minimise the sum of the infected and
bacterial class impacts and compare those to the distributions that minimise epidemic
size.

6.2.2.2 Sensitivity and In�uence

The sensitivity and in�uence explain some elements of the reaction to a perturbation
that the impact misses. They utilise the system Jacobian once again to �nd which state
variables are most susceptible to a perturbation, and which are most able to amplify a
perturbation. There is a key di�erence between the sensitivity and in�uence compared
to the impact: the perturbation that is used. The perturbation in this case is a press
perturbation which means it a�ects all classes and patches equally. Therefore, the
perturbation is not speci�cally representative of a �ood.

The sensitivity and in�uence were explained in [12] from the work in [98]. They
both use the eigenvalues and eigenvectors of the Jacobian, the sensitivity using the
right eigenvectors and the in�uence the left. The eigenvalues represent the magnitude
of the e�ect of the perturbation and the eigenvectors represent the distribution of that
e�ect at steady state. The right eigenvector dictates where the perturbation is most
felt i.e. which class has the largest change due to the perturbation. The left eigenvector
dictates which classes are most e�ective at spreading the perturbation. The magnitude
and distribution is summed for each class. This is because, although the lead eigenvalue
dominates the system behaviour, there are other behaviours that need to be accounted
for through the other eigenvalues. The �nal mathematical formula is then as follows.

sensitivity(i) = −
∑
k

|v(k)i |/Re(λk),

in�uence(i) = −
∑
k

|w(k)
i |/Re(λk).

Here, v
(k)
i represents the ith element of the kth right eigenvector, arranged in columns;

w
(k)
i represents the ith element of the kth left eigenvector, arranged in rows, and λk rep-

resents the kth eigenvalue of the Jacobian at equilibrium.
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To explain this calculation, we refer back to the simple example in Chapter Four. This
example was of a one patch direct transmission disease with no recovery, i.e. a simple
SI model. This had the form of the following non-dimensional equations with S and
I as state variables for the susceptible and infected classes. The parameters µ and β
represent the death rate and contact rate respectively.

Ṡ = µ− βSI − µS
İ = βSI − µI

Therefore the Jacobian at endemic equilibrium, its eigenvalues and eigenvectors, are

J =

(
−β −µ
β − µ 0

)
, λ1 = −µ, λ2 = (µ− β), v =

( µ
µ−β 1

1 −1

)
, w =

(
1 1

β−µ
µ 1

)
.

Thus, the sensitivity and in�uence are:

Sensitivity(1) = −
( | µ

µ−β |
−µ

+
|1|

µ− β

)
=

2

β − µ
,

Sensitivity(2) = −
(
|1|
−µ

+
| − 1|
µ− β

)
=

β

µ(β − µ)
,

In�uence(1) = −
(
|1|
−µ

+
|β+µµ |
µ− β

)
=

2

µ
,

In�uence(2) = −
(
|1|
−µ

+
|1|

µ− β

)
=

β

µ(β − µ)
.

If we let β = 2 and µ = 0.5, the infected class, class two, has a greater reaction to a
perturbation as its sensitivity value is 2.6̇ compared with 1.3̇ for the susceptible class.
However, the susceptible class has an in�uence value of 4 as opposed to 2.6̇ for the
infected class. This means that a perturbation to the susceptible class has a greater
overall e�ect than one to the infected class.

The sensitivity and in�uence are decompositions of the impact assuming a press
perturbation. They function as a measure of excitability in each class [12]. We may
expect those patches with high in�uence values for their infected classes to feature in
the optimal distributions of control facilities. This is in order to minimise the e�ect that
infected individuals have in the population. We may also expect the patches with the
most sensitive infected classes to feature in the optimal distributions of control facilities.
This is in order to protect vulnerable individuals. Therefore we use the in�uence and
sensitivity to prioritise patches for treatment and decontamination facilities in the same
manner as the impact.

In section 6.3.3.2 we shall also examine those distributions found by exhaustive
search that minimise the sum of the infected and bacterial class in�uences and the sum
of the infected and bacterial class sensitivities. The distributions that minimise infected
class in�uence limit the ability of the infected classes to a�ect other classes such as the
susceptible class. This may indicate which distributions limit new infections the most.
The distributions that minimise the infected sensitivity allow the smallest reaction of
the infected classes to the perturbation. As such, this may indicate which distributions
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limit the growth of the epidemic due to a perturbation.

6.2.3 Recovery

Finally, we wish to examine how the system recovers after an epidemic associated with
a �ood. The recovery denotes the return of the system to the initial equilibrium state.
Therefore, we may study how quickly the system returns to equilibrium and whether it
moves further away from the equilibrium initially.

6.2.3.1 Resilience

We introduced the resilience in Chapter Two as a decay rate for the perturbations.
We may decompose it in the same manner as described for R0 in section 6.2.1.1. The
resilience is the negative of the lead eigenvalue of the Jacobian at equilibrium. So
it may be decomposed into part resiliences using the columns and lead eigenvector
of the Jacobian at equilibrium. The interpretation of these part resiliences is that
they measure the contribution of each class to the system resilience. A larger, more
positive part resilience increases the system resilience which means that the rate of
decay of perturbations is higher. Whereas, a negative part resilience decreases the
system resilience, slowing the rate of decay of perturbations.

In section 6.3.4.1 we examine the part resiliences for each infected class at the
endemic and disease free equilibria to prioritise patches for treatment facilities, using
the infected classes, and decontamination, using the bacterial classes. Those patches
with a smaller, more negative part resilience are prioritised for control facility placement.
We also discuss the distributions of control facilities found by exhaustive search that
maximise the system resilience and sum of infected class part resiliences to speed the
decay of perturbations to the system.

6.2.3.2 Reactivity

The reactivity gives the maximal rate that perturbations can be ampli�ed initially. We
introduced it in Chapter Two as the lead eigenvalue of Hermitian part of the Jacobian
at equilibrium. Therefore it may be decomposed in a similar way to the resilience and
reproduction numbers. The part reactivities for each class, found using this decompo-
sition, can be interpreted as the contribution of that class to the system reactivity. A
larger part reactivity increases the system reactivity and thus increases the rate that
perturbations can be ampli�ed. A positive reactivity means that the system is reactive
and any perturbation applied to the system will be initially ampli�ed. We use the part
reactivities for the infected and bacterial classes to prioritise patches; a higher part
reactivity for a patch will lead to a higher priority. In section 6.3.4.2 we shall also
inspect the distributions of control facilities found by exhaustive search that minimise
the system reactivity and sum of infected class part reactivities. These distributions
will limit the rate at which perturbations are ampli�ed initially, reducing the initial
epidemic.

6.3 Alternate methods results

We shall now use our de�ned assessments to predict and understand the optimal dis-
tributions of control facilities found through simulation. We shall do this in two ways.
Firstly, we prioritise patches for facility deployment based on the local patch assess-
ment value. Secondly, we shall use exhaustive search to test each possible control
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facility distribution by the global assessment value. If the distribution that optimises
the assessment also minimises the epidemic size in simulation then that assessment is
e�ective. We consider the distributions to agree if they exactly match or match the
general rule.

6.3.1 Summary of results

The aim was to �nd the optimum distributions of control facilities to minimise epidemic
size using more e�cient methods than simulation. We have outlined the methods to be
examined and how to interpret them. We will now show an overview of how well the
distributions that optimise these new assessments, found by exhaustive search, agree
with those that minimise epidemic size. Figures 6.3 and 6.4 show the proportion of situ-
ations in which the optimal facility distribution is correctly found by the given method.
A situation accounts for one possible number of facilities with one possible heterogene-
ity. For instance, at disease free equilibrium, there are 20 situations where one control
facility type minimises both R0 and the epidemic size, see �gure 6.3. There are 24
situations with one control facility type at each equilibrium as one to four facilities pro-
viding either treatment or decontamination can be placed across three heterogeneities.
There are 27 situations with two control facility types at each equilibrium as one to
nine facilities may be placed across three heterogeneities.

We notice that there are a higher proportion of situations where assessments agree at
disease free equilibrium and when facilities are placed reactively at endemic equilibrium.
We also see more agreement for the equilibrium properties. To examine why this is the
case we will now look at the distributions that optimise each assessment. We shall
particularly focus on why some analyses are optimised by the same distributions that
minimise epidemic size and why some are not.
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6.3.2 Equilibrium Properties

In this section, we examine the e�ectiveness of R0, RE , part reproduction numbers and
endemic population characteristics as assessments of distributions of control facilities.
If they are successful, the distributions that optimise the assessments will also minimise
the epidemic size.

6.3.2.1 R0, RE and the part reproduction numbers

We �rst prioritise patches for control facilities based on the part reproduction numbers
Ri0 and RiE in the absence of control. We order the patches for placement of treat-
ment facilities by the part reproductive numbers for the infected classes. We order the
patches for decontamination facility placement by the part reproductive numbers for
the bacterial classes.

(a) part R0 (b) Part RE

Figure 6.5: Prioritisation order for treatment, in red, and decontamination, blue, where
a darker shade indicates a higher priority. Patches are prioritised by Ri0 at disease
free equilibrium (6.5a) and RiE at endemic equilibrium (6.5b) in each patch of a city
structured by a heterogeneity. The order holds across all heterogeneities except when
marked with an asterisk. The parameters used are those found in table A.8.

We may see in �gure 6.5 at disease free equilibrium, the centre and high density
patches should be prioritised for the placement of control facilities. This is the case for
all heterogeneities; however, when contact rates are heterogeneous, the order of the cen-
tre and highest contact rate peripheral patch is reversed for the placement of treatment
facilities. If we compare this prioritisation with the simulation results, we see general
agreement for the decontamination facilities. However, the part R0 only e�ectively pre-
dict the placement of one to two treatment facilities as the optimal distributions found
by simulation then omit the centre patch.

When we prioritise patches for control facilities by the e�ective part reproduction
numbers, we see good agreement for the reactive placement of decontamination facilities.
However, the simulation results suggest that the centre and low density/ contact rate
patches should be prioritised for the placement of treatment facilities which is not seen
here.

We now examine the optimal distributions of control facilities found through ex-
haustive search to minimise the R0 and the sum of the infected class part R0. Note, we
examine only the infected class contribution to R0 rather than infected and bacterial.
This is because if we were to consider both classes it would almost amount to the system
R0 which we already consider. Table 6.1 shows the optimal distributions of one control
facility type.

As seen from the summary bar graphs in �gures 6.3 and 6.4, the distributions that
minimise the reproduction numbers at disease free equilibrium and endemic equilibrium,
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(a) R0 (b) Part R0

Table 6.1: Optimum distributions of one control facility type in a city structured by a
heterogeneity. The optimisation minimises R0 (6.1a) or the sum of Ri0 for the infected
classes (6.1b). The parameters used are those found in table A.8 at both DFE and EE.
Larger circles denote higher contact rates/ densities. The shaded cells indicate those
distributions also minimise epidemic size at DFE (blue) or when placed reactively at
EE (green).
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when placed reactively, also generally minimise the epidemic size. There are some
exceptions to this. The blue denotes distributions optimal at disease free equilibrium.
There are three situations where the distributions that minimise R0 do not minimise the
epidemic size. This is the same for Ri0. The green denotes distributions optimal when
placed reactively at endemic equilibrium. We see four situations where the distributions
that minimise R0 do not minimise epidemic size when placed reactively at endemic
equilibrium. However, there are six such situations for the part R0.

Table 6.2: Optimum distributions of two control facility types in a city structured by
a heterogeneity. The optimisation minimises R0 or the sum of the part Ri0 for the
infected classes. The parameters used are those found in table A.8 at both DFE and
EE. Larger circles denote higher contact rates/ densities. The shaded cells indicate
those distributions also minimise epidemic size at DFE (blue) or when placed reactively
at EE (green).

Table 6.2 shows the optimal distributions of two types of control facilities to min-
imise R0 or the sum of Ri0 for the infected classes. The results were the same for R0

and the part R0 using the parameters at disease free and endemic equilibria. Only a
few distributions that minimise R0 do not also minimise epidemic size: namely, four
situations at disease free equilibrium and three situations at endemic equilibrium. In
table 6.2, R0 and the sum of Ri0 for the infected classes are equally e�ective as anal-
yses of the optimal distributions of control facilities. They are both quite e�cient as
methods, requiring only the next generation matrix, its eigenvalues and eigenvectors.

We will now examine the reproduction numbers, RE , with parameters as in the
�ood at endemic equilibrium.

The e�ective reproduction numbers and part reproduction numbers are calculated
with the Jacobian linearised about the endemic equilibrium before the �ood using the
parameters during the �ood i.e. using the perturbed values of β and η. This measures
the growth of the epidemic at the beginning of the �ood assuming the system is at en-
demic equilibrium. It also allows us to place facilities reactively or pre-emptively. Table
6.3 shows that the RE and part RE for the infected classes are very e�ective identi�ers
of the optimal distributions of control facilities. There are only a few distributions that
minimise RE but not epidemic size, namely �ve when they are placed pre-emptively and
none when they are placed reactively. There is one reactively placed distribution and
12 pre-emptively distributions that minimise the sum of the part RE but not epidemic
size.

The e�ective reproduction number continues to be a good predictor of the optimal
control facility distributions when two control facility types are placed reactively. Table
6.4 shows that this is particularly the case when facilities are placed reactively as every
distribution minimises both RE and the epidemic size. When the facilities are placed
pre-emptively 15 distributions minimise RE for the �ood but not the epidemic size.
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(a) RE (b) Part RE

Table 6.3: Optimum distributions of one control facility type in a city structured by a
heterogeneity. The optimisation minimises the RE for the �ood (a) or sum of RiE for
the infected classes in the �ood (b). The parameters used are those found in table A.8
at EE. Larger circles denote higher contact rates/ densities. The shaded cells indicate
those distributions also minimise epidemic size when placed pre-emptively (yellow) or
when placed reactively (green).

Table 6.4: Optimum distributions of two control facility types in a city structured by a
heterogeneity. The optimisation minimises the RE for the �ood. The parameters used
are those found in table A.8 at EE. Larger circles denote higher contact rates/ densities.
The shaded cells indicate those distributions also minimise epidemic size when placed
pre-emptively (yellow) or when placed reactively (green).
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Table 6.5: Optimum distributions of two control facility types in a city structured by a
heterogeneity. The optimisation minimises the sum of the part RE for the infected and
bacterial classes. The parameters used are those found in table A.8 at EE. Larger circles
denote higher contact rates/ densities. The shaded cells indicate those distributions also
minimise epidemic size when placed pre-emptively (yellow) or when placed reactively
(green).

The part reproduction numbers are less successful as an indicator than RE , see table
6.5. They only predict the optimal reactively placed distributions of control facilities.

The reproductive numbers describe the risk of an epidemic and the number of new
infections per generation. As such, a distribution of control facilities that minimises
these quantities, minimises the initial growth of an epidemic. This can, in turn, limit
the epidemic size. The optimal pre-emptively placed distributions to minimise epidemic
size are not always well predicted here. This may be as the limiting nature of the size of
the susceptible pool is not fully incorporated into the calculation of the part RE in the
�ood. We now investigate the size of the susceptible population directly as an indicator.

6.3.2.2 The endemic prevalence and proportion of susceptible individuals

We examine the endemic equilibrium by the proportions of infected and susceptible
individuals in each patch. Figure 6.6 shows the results if we use these quantities to
prioritise patches for treatment facilities. We focus only on the human population and
so do not order the patches for decontamination facilities.

Figure 6.6: Prioritisation order for treatment in red where a darker shade indicates
a higher priority. Patches are prioritised by endemic prevalence and the size of the
susceptible population at endemic equilibrium in each patch of a city structured by a
heterogeneity. The order holds across all heterogeneities except when marked with an
asterisk. The parameters used are those found in table A.8.

Figure 6.6 shows that whether we use the endemic prevalence or proportion of
susceptible individuals to prioritise the patches, the results are the same. Treatment
facilities should be placed in the centre �rst and then patches with high density and/or
contact rate. This does not agree fully with the simulation results as the treatment
facilities were placed in the patches with lowest density/ contact rate as well as the
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centre patch.

We now examine the optimal distributions of control facilities found by exhaus-
tive search to minimise the size of the infected population, maximise the size of the
susceptible population or minimise the size of the susceptible population at endemic
equilibrium, table 6.6. These have a slightly di�erent aims. We compare the optimal
distributions here to those that minimise epidemic size in a system initially at disease
free equilibrium and in systems initially at endemic equilibrium. Whilst we compare
the distributions that maximise the susceptible population at endemic equilibrium etc.
with those that minimise the epidemic at disease free equilibrium, we use a slightly
di�erent parameter set. The reason for this comparison is the population composition
at endemic equilibrium gives information about the historical behaviour of the system.
For example, if there have been many infections in the system, the susceptible pop-
ulation will be smaller at endemic equilibrium. Therefore, we may infer information
about the system behaviour before reaching equilibrium by examining the population
composition at equilibrium.

(a) maximises the size of the susceptible popula-
tion

(b) minimises the size of the infected population

(c) minimises the size of the susceptible population

Table 6.6: Optimum distributions of one control facility type in a city structured by
a heterogeneity. The optimisation maximises the susceptible population (6.6a), min-
imises the infected population (6.6b) and minimises the susceptible population (6.6c)
at endemic equilibrium. The parameters used are those found in table A.8 at DFE and
EE. Larger circles denote higher contact rates/ densities. The shaded cells indicate that
those distributions also minimise epidemic size at disease free equilibrium (blue) and
at endemic equilibrium when placed pre-emptively (yellow) or when placed reactively
(green).

Table 6.6a shows the distributions that maximise the susceptible population at en-
demic equilibrium also, often, minimise the epidemic size at disease free equilibrium
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and at endemic equilibrium when placed reactively. There are eight exceptions to this
agreement at disease free equilibrium. There are seven distributions of control facilities
that maximise the susceptible population but do not minimise the epidemic size when
placed reactively.

The distributions that minimise the infected population are less successful at min-
imising the epidemic size, see table 6.6b. At disease free equilibrium there are ten
distributions that minimise the infected population but not epidemic size; at endemic
equilibrium there are nine such reactively placed distributions.

Lastly, we compare those distributions that minimise the susceptible population with
those that minimise epidemic size when placed pre-emptively at endemic equilibrium,
table 6.6c. These agree in all but four situations.

Table 6.7: Optimum distributions of two control facility types in a city structured by
a heterogeneity. The optimisation maximises the size of the susceptible population at
endemic equilibrium. The parameters used are those found in table A.8 at DFE and
EE. Larger circles denote higher contact rates/ densities. The shaded cells indicate
those distributions also minimise epidemic size at disease free equilibrium (blue) and
at endemic equilibrium when placed pre-emptively (yellow) or when placed reactively
(green).

Table 6.8: Optimum distributions of two control facility types in a city structured
by a heterogeneity. The optimisation minimises the size of the infected population at
endemic equilibrium. The parameters used are those found in table A.8 at DFE and
EE. Larger circles denote higher contact rates/ densities. The shaded cells indicate
those distributions also minimise epidemic size at disease free equilibrium (blue) and
at endemic equilibrium when placed pre-emptively (yellow) or when placed reactively
(green).

The optimal distributions of two control facility types to maximise the susceptible
population or minimise the infected population generally minimise the epidemic size
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at disease free equilibrium or at endemic equilibrium when placed reactively, table 6.7.
This is particularly the case when maximising the endemic susceptible population size
which is a 100% e�ective indicator of the optimal distributions to minimise epidemic
size. There are �ve distributions that minimise the infected population but not the
epidemic size, shown in table 6.8.

We have linked epidemic size and prevalence. However the prevalence may not be
the clearest predictor of epidemic size. If a greater number of individuals are infected
they may infect a larger number of susceptible individuals. However, a small infected
population does not necessarily mean a smaller epidemic, it could mean a large epidemic
with swift recovery. In contrast, a large susceptible population at endemic equilibrium
can only mean that there have been few infections as there is no re-entry to the suscepti-
ble class once infected and the birth rate is kept �xed. Thus, the susceptible population
at endemic equilibrium, more so than the infected, is an e�ective indicator of epidemic
size. There appears to be more agreement when two control facility types are placed;
however, we have allowed agreement where the di�erence between the optimal distri-
bution of control facilities is only negligibly di�erent from the most commonly optimal
distribution, see Appendix C for di�erences.

Table 6.9: Optimum distributions of two control facility types in a city structure by
a heterogeneity. The optimisation minimises the size of the susceptible population at
endemic equilibrium. The parameters used are those found in table A.8 at EE. Larger
circles denote higher contact rates/ densities. The shaded cells indicate those distri-
butions also minimise epidemic size at endemic equilibrium when placed pre-emptively
(yellow).

We also compared those distributions that minimise the susceptible population
with those that minimise the epidemic size at endemic equilibrium when placed pre-
emptively. Table 6.9 shows 100% agreement. This is because those distributions that
remove the resource of the an epidemic, the susceptible individuals, reduce the epidemic
over the course of the �ood. This is not an optimal control strategy, as discussed in the
previous chapter, but it does illustrate the use of examining the endemic population
proportion of susceptible individuals.

We have examined the properties of both equilibria without factoring in the e�ect of
the �ood. We will now address this with the impact, sensitivity and in�uence analyses
which take into account the perturbation.

6.3.3 Response to �ood

In this section, we examine the e�ectiveness of the impact, sensitivity and in�uence
as indicators of optimal distributions of control facilities. If they are successful, the
distributions that optimise the assessments will also minimise the epidemic size. These
analyses take into account the e�ect of perturbations on every system element.
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6.3.3.1 Impact

The impact measures the propensity of each infected and bacterial class in each patch
to react to a �ood. A class with a high impact value will vary to a greater extent when
perturbed by the �ood and may be a good focus for control. Similarly, the control facility
distribution that minimises the sum of the infected and bacterial class impacts limits the
variation in the infected and bacterial classes due to the �ood. Less variation in these
classes can mean a smaller epidemic when perturbed. We �rst prioritise the patches
for treatment facilities, based on the infected class impacts, and for decontamination
facilities, based on the bacterial class impacts.

(a) DFE (b) EE

Figure 6.7: Prioritisation order for treatment, in red, and decontamination, blue, where
a darker shade indicates a higher priority. Patches are prioritised by the impact at
disease free equilibrium (6.7a) and at endemic equilibrium (6.7b) in each patch of a city
structured by a heterogeneity. The order holds across all heterogeneities except when
marked with an asterisk. The parameters used are those found in table A.8.

We see a di�erent ordering at each equilibrium in �gure 6.7. At disease free equilib-
rium, the centre and highest density/ contact rate peripheral patches are prioritised for
treatment and decontamination facilities. There is one exception, when contact rates
are heterogeneous, the ordering of the centre and highest contact rate peripheral rate
patch is reversed for treatment facilities. These generally agree with the ordering seen
in the simulation results.

When the endemic equilibrium is stable, a di�erent ordering is seen. The bacterial
class impacts indicate decontamination facilities should be placed in the centre and then
lowest contact rate/density peripheral patches. Whereas the treatment facilities should
be placed in the lowest contact rate/density peripheral patches only. These both agree
well with the simulation results for pre-emptively placed facilities. We now examine the
full optimal distributions found by exhaustive search to minimise the impact.

The Jacobian is linearised around the disease free equilibrium or endemic equilibrium
in the impact calculation. When at endemic equilibrium, control facilities are either
placed before or after the equilibrium is calculated and input into the Jacobian to take
account of pre-emptive or reactive control facility placement. This leads to the results
shown in table 6.10.

In table 6.10 we compare the distributions that minimise the impact when con-
trol facilities are placed reactively or pre-emptively at endemic equilibrium and placed
at disease free equilibrium. These distributions also minimise epidemic size in many
cases, particularly at disease free equilibrium and endemic equilibrium when placed
pre-emptively. There are two exceptions to this at disease free equilibrium. At endemic
equilibrium, when facilities are placed pre-emptively, there are three that minimise the
impact but do not minimise the epidemic size. There are 15 exceptions when facilities
are placed reactively.
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Table 6.10: Optimum distributions of one control facility type in a city structured by
a heterogeneity. The optimisation minimises impacts of both infectious and bacterial
classes. The parameters used are those found in table A.8 at DFE and EE. Larger circles
denote higher contact rates/ densities. The shaded cells indicate those distributions also
minimise epidemic size at disease free equilibrium (blue) and at endemic equilibrium
when placed pre-emptively (yellow) or when placed reactively (green).

Table 6.11: Optimum distributions of two control facility types in a city structure by
a heterogeneity. The optimisation minimises the sum of the impacts of the infected
and bacterial classes. The parameters used are those found in table A.8 at DFE and
EE. Larger circles denote higher contact rates/ densities. The shaded cells indicate
those distributions also minimise epidemic size at disease free equilibrium (blue) and
at endemic equilibrium when placed pre-emptively (yellow) or when placed reactively
(green).
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When two control facility types are placed the level of agreement between distribu-
tions that minimise the sum of the infected and bacterial class impacts and those that
minimise epidemic size is similar to when one control facility type was placed, see table
6.11. There are seven exceptions at disease free equilibrium. At endemic equilibrium,
when facilities are placed pre-emptively, there are 11 exceptions. When facilities are
placed reactively, there are 15 distributions minimising the impact but not epidemic
size.

The impact assesses the change in a state variable per unit change in the perturbed
parameter. In the above, we see a good level of agreement between those distributions
that minimise the sum of the impacts for the infected and bacterial classes except when
facilities are placed reactively. This is as the method breaks down in this situation. As
shown previously, we calculate the equilibrium and then the perturbation and impact.
However, with reactive placement, we calculate the the equilibrium and then change
the system so that, arguably, the equilibrium values used in the following calculations
are no longer valid.

6.3.3.2 Sensitivity and in�uence

The sensitivity and in�uence are related to the impact in that they measure the response
of the system elements to a perturbation. A highly sensitive variable reacts to a greater
extent to a perturbation; an in�uential state variable a�ects other state variables to a
greater extent.

(a) In�uence DFE (b) Sensitivity DFE

(c) In�uence EE (d) Sensitivity EE

Figure 6.8: Prioritisation order for treatment, in red, and decontamination, blue, where
a darker shade indicates a higher priority. Patches are prioritised by in�uence at disease
free equilibrium (6.8a) and at endemic equilibrium (6.8c) or ordered by sensitivity at
disease free equilibrium (6.8b) and at endemic equilibrium (6.8d) in each patch of a city
structured by a heterogeneity. The order holds across all heterogeneities except when
marked with an asterisk. The parameters used are those found in table A.8.

Figure 6.8 shows the prioritisation of patches based on their infected or bacterial
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class sensitivity and in�uence. We start with the in�uence, which has the same patch
ordering at both equilibria. It suggests we should prioritise the centre and high den-
sity/ contact rate patches for treatment and decontamination facilities. This agrees
with the simulation results well for decontamination facilities with a few exceptions
where the order of the patches has been reversed when densities and contact rates are
heterogeneous.

The sensitivity has a number of patch orderings which do not agree over any het-
erogeneity, particularly at disease free equilibrium. When the disease free equilibrium
is stable, treatment facilities should be placed in the lowest density/ contact rate patch
for all heterogeneities. However, there is no other prioritisation consistent across all
heterogeneities although patches are generally ordered by density for the placement of
treatment facilities. There is no such trend for decontamination facilities. The ordering
at endemic equilibrium is more consistent with the centre and high density/ contact rate
patches generally chosen �rst for control facilities except when contact rates are hetero-
geneous where is no discernible trend. The ordering when densities are heterogeneous
agrees with the simulation results for reactive placement of control facilities.

We now examine the optimal distributions found by exhaustive search to minimise
the sum of the infected and bacterial class sensitivities or in�uences.

(a) In�uence (b) Sensitivity

Table 6.12: Optimum distributions of one control facility type in a city structured by
a heterogeneity. The optimisation minimises in�uence (6.12a) and sensitivity (6.12b)
of the infected and bacterial classes. The parameters used are those found in table
A.8 at DFE and EE. Larger circles denote higher contact rates/ densities. The shaded
cells indicate those distributions also minimise epidemic size at disease free equilibrium
(blue) and at endemic equilibrium when placed pre-emptively (yellow) or when placed
reactively (green).

The optimal distributions of control facilities to minimise the sum of the infected
and bacterial class in�uences often minimise epidemic size when placed at disease free
equilibrium or pre-emptively at endemic equilibrium, see table 6.12. There are three
distributions that minimise the in�uence at disease free equilibrium but not the epi-
demic size. There are eight distributions that minimise the in�uence, but not epidemic
size, at endemic equilibrium when placed pre-emptively. The distributions for the in�u-
ence are unsuccessful at minimising epidemic size at endemic equilibrium when placed
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reactively, see table D.1. In this situation only one distribution minimises the in�uence
and epidemic size.

The sensitivity is less e�ective as a measure of the optimal distributions of control
facility distributions at disease free equilibrium and pre-emptively at endemic equilib-
rium, see table D.2. There are 19 distributions at disease free equilibrium that minimise
the sum of the infected and bacterial class sensitivities but not epidemic size. There are
no distributions of control facilities that minimise both the sensitivity and epidemic size
when placed pre-emptively at endemic equilibrium. There are 12 distributions placed
reactively at endemic equilibrium that minimise the sensitivity but not epidemic size.
This leads to the optimal distributions of two control facility types to minimise the sum
of the in�uence or sensitivity for the infected and bacterial classes.

Table 6.13: Optimum distributions of two control facility types in a city structured
by a heterogeneity. The optimisation minimises in�uence of the infected and bacterial
classes. The parameters used are those found in table A.8 at DFE and EE. Larger circles
denote higher contact rates/ densities. The shaded cells indicate those distributions also
minimise epidemic size at disease free equilibrium (blue) and at endemic equilibrium
when placed pre-emptively (yellow) or when placed reactively (green).

The distributions of control facilities that minimise the sum of the infected and bac-
terial class in�uences at disease equilibrium, and some pre-emptively placed at endemic
equilibrium also minimise the epidemic size, see table 6.13. There are 12 pre-emptively
placed distributions and 23 reactively placed distributions that minimise the in�uences
but not epidemic size. Once again, the in�uence is not an e�ective measure of the distri-
butions that minimise the epidemic size when placed reactively at endemic equilibrium.

When we compare those distributions that minimise the sum of the sensitivities for
the infected and bacterial classes with those that minimise epidemic size we see more
agreement when facilities are placed reactively. At disease free equilibrium and endemic
equilibrium when facilities are placed reactively, only 9 distributions of facilities do not
minimise both sensitivity and epidemic size. However, when facilities are placed pre-
emptively at endemic equilibrium, 19 distributions minimise sensitivity but not epidemic
size.
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Table 6.14: Optimum distributions of two control facility types in a city structured
by a heterogeneity. The optimisation minimises sensitivity of the infectious classes.
The parameters used are those found in table A.8 at DFE and EE. Larger circles
denote higher contact rates/ densities. The shaded cells indicate those distributions also
minimise epidemic size at disease free equilibrium (blue) and at endemic equilibrium
when placed pre-emptively (yellow) or when placed reactively (green).

The in�uence and sensitivity do not use the same perturbation in their calculation
as the impact. However, they still capture some of the optimal distributions of control
facilities at disease free equilibrium, see table 6.14. At endemic equilibrium, neither
analysis is fully successful at predicting the optimal distributions to minimise the epi-
demic size. The distributions that minimise the in�uence often minimise the epidemic
size when placed pre-emptively but seldom when placed reactively. The converse is true
for the sensitivity although it is a less successful predictor overall. Thus, whilst both
analyses capture some of the dynamics at each equilibrium there are issues brought
by the unrealistic press perturbation and invalid equilibrium when facilities are placed
reactively.

6.3.4 Recovery

In this section we examine the last area of interest in �gure 6.1, the way the system
recovers from the perturbation. We will scrutinise the resilience and reactivity as as-
sessments of distributions of control facilities. In previous sections, we inspected the
state of the system before the �ood and its reaction to a perturbation. We now examine
the behaviour after the perturbation. This will complete our view of the dynamics of
an epidemic caused by a �ood.

6.3.4.1 Resilience

The resilience is a measure of the decay rate of a perturbation to the system. A
larger resilience means that perturbations decay more quickly and the system returns
to equilibrium faster. Therefore, the distribution of control facilities that maximises the
resilience speeds the decay of perturbations and will limit their ongoing e�ects. However,
�rst we shall examine the prioritisation of patches based on their part resilience.

We aim to maximise the resilience to reduce the return time to equilibrium. There-
fore, we are interested in those classes that negatively contribute to the system resilience
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(a) DFE (b) EE

Figure 6.9: Prioritisation order for treatment, in red, and decontamination, blue, where
a darker shade indicates a higher priority. Patches are prioritised by the part resiliences
at disease free equilibrium (6.9a) and at endemic equilibrium (6.9b) in each patch of
a city structured by a heterogeneity. The order holds across all heterogeneities except
when marked with an asterisk. The parameters used are those found in table A.8.

as they may be good foci for control measures. As such, �gure 6.9 shows the prioritisa-
tion of patches for treatment facilities, based on their infected class part resilience, or
decontamination facilities, based on their bacterial class part resilience. We see that, at
both equilibria, treatment facilities should be placed in the highest contact rate/density
peripheral patches and centre whereas decontamination facilities should be placed in
the lowest contact rate/density peripheral patches. Therefore, the agreement with the
simulation results is only in the case when decontamination facilities are placed pre-
emptively at endemic equilibrium and treatment facilities are placed at disease free
equilibrium. The exceptions in the ordering occur for the treatment and decontamina-
tion facilities at endemic equilibrium when contact rates are heterogeneous and for the
decontamination facilities at disease free equilibrium when contact rates and densities
are heterogeneous.

Table 6.15 shows the optimal distributions of control facilities to maximise the sys-
tem resilience or sum of part resiliences for the infected classes. There are ten distri-
butions that maximise the system resilience but do not minimise the epidemic size at
disease free equilibrium. At endemic equilibrium six reactively placed distributions and
11 pre-emptively placed distributions maximise the resilience but do not minimise epi-
demic size. There are six distributions that maximise the sum of the part resiliences for
the infected classes but do not minimise epidemic size. The distributions that minimise
the system resilience and epidemic size also minimise the part resiliences except for nine
reactively placed distributions at endemic equilibrium. There are 17 distributions that
maximise the sum of the part resiliences but do not minimise epidemic size.

These results suggest that asymptotic nature of the resilience limits its e�ectiveness
as a measure. There are very few distributions of two control facility types that max-
imise both the resilience or part resiliences and minimise the epidemic size, see tables
D.6 and D.5 in the appendix. These distributions may speed the return to equilibrium
but the analysis fails to take into account the intermediate infections. This leads to it
failing to predict the optimal distributions of treatment facilities which have complex
e�ects due to the weighting bias. The weighting bias plays a role as the resilience is a
more e�ective indicator of optimal distributions of decontamination facilities, which do
not have any weight scaling attached to them. We examine the reactivity to account
for these transient dynamics.
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(a) Resilience (b) Part resilience

Table 6.15: Optimum distributions of one control facility type in a city structured by
a heterogeneity. The optimisation maximises the resilience (6.15a) and the sum of the
infected class part resiliences (6.15b). The parameters used are those found in table
A.8 at DFE and EE. Larger circles denote higher contact rates/ densities. The shaded
cells indicate those distributions also minimise epidemic size at disease free equilibrium
(blue) and at endemic equilibrium when placed pre-emptively (yellow) or when placed
reactively (green).
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6.3.4.2 Reactivity

The reactivity measures the maximum possible initial ampli�cation of a perturbation to
the system. A positive reactivity suggests that if the system is perturbed at equilibrium
it will initially move further away even if that equilibrium is stable. Therefore, the
distribution of control facilities that minimises the reactivity limits the growth of any
perturbation to the system. We �rst examine the contribution of each infected class to
the reactivity in the absence of control.

Figure 6.10: Prioritisation order for treatment, in red, and decontamination, blue, where
a darker shade indicates a higher priority. Patches are prioritised by part reactivity at
disease free and endemic equilibrium in each patch of a city structured by a heterogene-
ity. The order holds across all heterogeneities except when marked with an asterisk.
The parameters used are those found in table A.8.

In �gure 6.10, we examine the ordering of patches based on their part reactivities for
the infected and bacterial classes. We see the same prioritisation at both disease free and
endemic equilibrium. That is, facilities should be placed in the centre patch and then
the highest density/contact rate peripheral patches. This agrees with the simulation
results perfectly for the decontamination facilities placed at disease free equilibrium and
reactively at endemic equilibrium. However, the simulations suggested the treatment
facilities should be placed in the centre and then lowest density/contact rate peripheral
patches. Thus, the part reactivities are less good as indicators of the optimal placement
of treatment facilities.

We now examine the optimal distributions found by exhaustive search to minimise
the system reactivity and the sum of the infected class part reactivities and their agree-
ment with the distributions that minimise epidemic size in table 6.16.

Firstly, there are a number of situations where the distributions that minimise the
reactivity do not minimise the epidemic size; namely ten at disease free equilibrium, 15
at endemic equilibrium when placed pre-emptively and nine when placed reactively at
endemic equilibrium. Similarly, there are distributions that minimise the sum of the
part reactivities but not epidemic size; speci�cally nine at disease free equilibrium, 19
pre-emptively placed and 18 reactively placed at endemic equilibrium.

This leads us to the distributions of two control facility types that minimise the
reactivity or sum of part reactivities and epidemic size.

In some situations, we see more agreement between those distributions that minimise
the system reactivity and epidemic size when two control facility types are placed, see
table 6.17. There are only three distributions that do not minimise both reactivity
and epidemic size at disease free equilibrium or when placed reactively at endemic
equilibrium. However, no distributions minimise reactivity and the sum of the part
reactivities when placed pre-emptively at endemic equilibrium, see table D.3 in the
appendix. The distributions that minimise the sum of the part reactivities also do
not minimise epidemic size when placed pre-emptively, see table D.4. However, at
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(a) Reactivity (b) Part reactivity

Table 6.16: Optimum distributions of one control facility type in a city structured by
a heterogeneity. The optimisation minimises the reactivity (6.16a) and the sum of the
infected class part reactivities (6.16b). The parameters used are those found in table
A.8 at DFE and EE. Larger circles denote higher contact rates/ densities. The shaded
cells indicate those distributions also minimise epidemic size at disease free equilibrium
(blue) and at endemic equilibrium when placed pre-emptively (yellow) or when placed
reactively (green).

Table 6.17: Optimum distributions of two control facility types in a city structured by a
heterogeneity. The optimisation minimises the system reactivity. The parameters used
are those found in table A.8 at DFE and EE. Larger circles denote higher contact rates/
densities. The shaded cells indicate those distributions also minimise epidemic size at
disease free equilibrium (blue) and at endemic equilibrium when placed pre-emptively
(yellow) or when placed reactively (green).
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disease free equilibrium, there are 18 situations and at endemic equilibrium there are
six situations when reactively placed distributions minimise both the epidemic size and
the sum of the part reactivities, see table 6.18.

Table 6.18: Optimum distributions of two control facility types in a city structured
by a heterogeneity. The optimisation minimises the infectious class part reactivities.
The parameters used are those found in table A.8 at DFE and EE. Larger circles
denote higher contact rates/ densities. The shaded cells indicate those distributions also
minimise epidemic size at disease free equilibrium (blue) and at endemic equilibrium
when placed pre-emptively (yellow) or when placed reactively (green).

The reactivity is a successful measure when predicting the optimal distributions of
control facilities at disease free equilibrium and at endemic equilibrium when facilities
are placed reactively. This is particularly the case when two control facility types are
placed. However, the analysis is not e�ective when considering pre-emptively placed
control facilities. This is as the reactivity examines the maximum possible spontaneous
ampli�cation of perturbations to the system. It does not measure the return to equilib-
rium after this ampli�cation. Therefore, the distributions we see are best at minimising
this initial potential growth of the perturbation but do not take into account limita-
tions imposed by the size of the susceptible population for example. The reactivity is
also not a good indicator of the optimal distributions of treatment facilities. This is
because it only partly takes the edge weight scaling into account. The distributions will
reduce the initial growth of a perturbation. However, they will not safeguard against
a rise in secondary infections. It is also worth noting that the part reactivities for the
infected classes are less e�ective at predicting optimal distributions of control facilities.
Therefore, we may consider the system reactivity a better measure of the instantaneous
dynamics at the beginning of the epidemic than its decomposition.

6.4 Discussion

We sought alternative methods to �nd optimal distributions of control facilities to
minimise epidemic size. We described a number of analyses that gave information on
the state of the system before the �ood; the response of the system to the �ood and the
way the system returns to steady state following the �ood. Together, these analyses
should outline all disease dynamics of the system relating to the �ood.

The analyses that examined the state of the system before the �ood were the repro-
duction numbers, endemic prevalence and population proportion of susceptible individ-
uals at endemic equilibrium. The reproduction numbers, R0 and RE , were particularly
e�ective when used with exhaustive search as the distributions of control facilities that
minimised them also minimised epidemic size in almost every case. They are also ef-
fective when prioritising the patches for decontamination facilities but not treatment
facilities. The part reproduction numbers for the infected classes were similarly e�ective
as measures of the optimal distributions of control facilities. The reproduction numbers
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describe the risk of an epidemic and the growth of one should it occur. Therefore,
they are directly related to the initial number of infections which can dictate the �nal
epidemic size.

We assessed the endemic prevalence and population proportion of susceptible indi-
viduals at endemic equilibrium through the agreement between the distributions that
optimise them and the distributions that minimise the epidemic size. We compared
those distributions that minimise the endemic prevalence and maximise the propor-
tion of susceptible individuals at endemic equilibrium with distributions that minimise
the epidemic size at disease free equilibrium and when placed reactively at endemic
equilibrium. We also compared those distributions that minimised the proportion of
susceptible individuals with those that minimised the epidemic size when placed pre-
emptively at endemic equilibrium. The proportion of susceptible individuals was the
most e�ective indicator in all cases as a high proportion can only mean few infections
have occurred and a low proportion means a low capacity for further infections. The
proportion of infected individuals was slightly less informative as a low prevalence can
either mean few infections or many recoveries. We also prioritised patches for treatment
facilities. However, this was only optimal when one treatment facility was placed.

To take into account the e�ect of a perturbation on the system at equilibrium, we
examined the response to the �ood. This was assessed through the impact, sensitivity
and in�uence. All three analyses captured aspects of the dynamics of the system, partic-
ularly at disease free equilibrium. There may be issues using the impact and in�uence
away from equilibrium as the method breaks down. However, we may still consider
them e�ective measures of optimal control facility distributions placed at equilibrium.
This is also re�ected in the prioritisation which was very successful for the impact and
in�uence when decontamination facilities were placed, but was not successful when we
used the sensitivity.

Lastly, we examined the system recovery. This was measured through the resilience
and reactivity. The resilience is an asymptotic property inversely related to the return
time to equilibrium following a perturbation. The ordering indicated by the part re-
siliences only agreed with the simulation results when decontamination facilities were
placed pre-emptively at endemic equilibrium. The distributions that maximise the sys-
tem resilience or sum of part resiliences for the infected classes minimise the epidemic
size in only some situations. Therefore, we consider the resilience an ine�ective mea-
sure of the optimal distributions of the control facilities to minimise epidemic size. The
reason that the resilience does not reliably predict these optimum distributions is that
it is an asymptotic property that ignores transient behaviour [94]. Thus, the epidemic,
which can be entirely classed as transient behaviour, is not adequately measured by the
resilience.

The reactivity, in contrast to the resilience, only measures transient behaviour.
Speci�cally, the reactivity gives the maximum possible instantaneous rate of ampli�-
cation of perturbations to the system [94]. Therefore, it can describe, at the instance
of perturbation onset, whether the system strays further from equilibrium or starts to
return to it. Generally, it was a more e�ective measure of optimal control facility dis-
tributions than the resilience. For instance, it accurately indicates the optimal patch
ordering for decontamination facilities. However, neither reactivity nor part reactivities
were 100% e�cient measures, particularly when control facilities were distributed pre-
emptively. The reason for this is that the reactivity is a measure of possibility; given all
possible initial perturbations, what is the maximum possible ampli�cation. Therefore,
there may be initial conditions where the perturbation is not ampli�ed to the same
extent and the reactivity is not a true representation of the behaviour. It is for this
reason that the reactivity is not the best measure of control facility distributions to
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minimise epidemic size.

6.5 Conclusion

We set out to �nd alternative methods to assess distributions of control facilities to
minimise epidemic size. In many ways, we were successful. The distributions that
minimise the reproduction numbers which describe the rate of growth of an epidemic,
match those that minimise the epidemic size. Therefore the traditional indicators of
epidemic severity are still valid here. However, we have also had some success with
measures not traditionally used in epidemiological models. The impact is a concept
borrowed from ecology; but it was an e�ective indicator of the optimal distributions
of control facilities to minimise the epidemic size at disease free equilibrium and, when
placed pre-emptively, at endemic equilibrium. It also gave a good indication of which
patches should be prioritised for control facility placement, particularly when the control
was decontamination. In a similar manner, the in�uence gave a good prediction of
which patches should be prioritised and which distributions of control facilities were
optimal to minimise epidemic size. The sensitivity was less successful in this respect.
However, recall that we only seek distributions that minimise epidemic size, not any
other bene�cial information. Thus, even though the sensitivity does not indicate these
optimal distributions it can still give us vital information about the system. Namely,
the `weak links' in our perturbed epidemiological chain. These could then be isolated
by reducing patch coupling. This could lead to an interesting exercise in optimising the
patch arrangement to reduce sensitivity in `hot spots'.

The last indicators we examined were the resilience and reactivity. Of the two, the
reactivity was the more successful predictor of optimal control facility distributions to
minimise epidemic size. However, the resilience may be informative when we examine
the long-term dynamics rather than a brief epidemic.

There were no 100% e�ective measures of the optimal control facility distributions
to minimise epidemic size. Of the indicators we examined, the reproduction numbers
were the closest to accurate and we could con�dently use them to predict `near' optimal
distributions. Similarly, with the susceptible population size at endemic equilibrium.
Other indicators such as the impact would need corroboration before we could be certain
of their accuracy and some methods, such as the resilience, may be best avoided in this
setting.

Therefore we �nish with our decision. In a situation where the model is more
complex, spatially segregated and intractable for simulation, which of our alternative
methods should we employ to �nd optimal control strategies? We found that the basic
reproduction numbers to be most consistent with their agreement with simulation and
so we would conclude they should be used in exhaustive search algorithms for more
complicated models. The prioritisation of patches in the absence of control may be
used with caution. This is as the method breaks down when the optimal distribution
of n + 1 facilities does not incorporate that of n facilities. However, the particular
requirements of the output would need to be considered as other methods such as the
impact could come into their own.
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Chapter 7

Systems epidemiology

7.1 Introduction

We have focused on the epidemiological characteristics of systems and e�ective methods
for �nding optimal control strategies. However, many of the methods we have adapted
are primarily used in systems biology. Here, we consider using the complete systems
biology mentality for complex epidemiological models.

Analysis and construction of complex epidemiological models can be disjointed. We
consider whether the system-wide approach of systems biology might o�er a standard-
ised framework for model development and analysis of complex epidemiological and
ecological systems.

The structure of this chapter revolves around �gure 7.1. We start by explaining
the subject of systems biology and its key methods. Then, we put those methods to
the test on a simple epidemiological model. Finally, we compare the new methods with
classical techniques to �nd the scope for `systems epidemiology'.

7.2 Systems and Synthetic Biology

The �elds of systems and synthetic biology are growing at a ferocious rate. Systems
biology has been de�ned as the the study of biological systems before and after genetic
or chemical perturbation [3]. It aims to establish computational models that predict
the behaviour of a system. Systems biology has also been hailed as an `emerging �eld
of biological research that aims at systems- level understanding of genetic or metabolic
pathways' [100]. There are four properties of particular interest in systems biology:
system structures, system dynamics, control methods and design methods [64]. These
describe the topology of the systems, interactions and inter-relationships of this topology
and the implementation of control strategies to improve the system. Synthetic biology
has a less theoretical objective. It applies engineering principles to biology in order to
rationally construct complex systems [84]. In other words, it is a method of engineering
cellular systems to perform speci�c functions [102]. Therefore, synthetic biology is the
application of systems biology to build systems with preferable qualities.

The stages shown in �gure 7.1 show how the di�erent analyses and strategies relate to
one another in systems and synthetic biology. We focus on the mathematical modelling
area which encompasses parameter estimation and optimisation and we will detail some
methods for both.

One of the key approaches of systems biology is the generalisation of a complex
system into layers of components each with their own functionality and role. We de�ne
this concept now with some examples.
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Figure 7.1: Diagram of the role of mathematical modelling and analysis in synthetic
biology [147].

7.2.1 Abstraction Hierarchies

A valuable procedure in systems biology is the deconstruction of the model into lay-
ers. This leads to an abstraction hierarchy. We can de�ne abstraction hierarchies as
`an assembly of complex systems from orthogonal sub-systems' [20]. They separate a
complicated problem and the aim is to have a more manageable system where each
layer can be examined independently. Endy stated that the hierarchies should allow
individuals to ignore complexities of all levels except the one under examination and
allow limited information exchange across levels [39]. This idea is shown in �gure 7.2
where the levels are separate except for a small information exchange. The higher levels
should hide unnecessary information from lower levels through abstraction [20].

7.2.1.1 Hierarchical levels

The most commonly used level names in abstraction hierarchies are shown in �gure
7.2. The layers represent sub-systems with the levels below functioning as part of the
levels above. There is a limited exchange of information between layers denoted by
the arrows. We conducted a literature review shown in table 7.1 to further de�ne or
categorize these levels. Generally, the DNA is just that, the most basic unit of genetic
building material. If we use the analogy of a computer chip, the DNA would be the wire.
This component forms `parts' which have a very simple purpose. They are similar to a
resistor or bulb in an electrical circuit and can be combined to form `devices'. Devices
are a slightly more complicated functional unit which are akin to a electric circuit. The
devices then work together, rather than being actually combined, as a unit with a more
complicated function. This is analogous to circuits in a memory chip where the system
encompasses the whole chip. Finally, we have a chassis which holds the components.
This is the environment in which they work and is akin the actual board that a circuit
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is printed on.

Figure 7.2: Abstraction Hierarchy Diagram for Genetic Systems adapted from the work
of Endy [39].

We compare the layers to electrical components as circuits partly inspired systems
biology techniques. The �nal row in table 7.1 is one of engineering de�nitions and in
�gure 7.3 we directly compare computing and biology layers.

(a) Computing (b) Biology

Figure 7.3: Comparison between computing and biological abstraction hierarchies. [7]
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We have examined the various de�nitions for the levels of an abstraction hierarchy
in detail. We now formalise this de�nition into the following example, shown in �gure
7.4:

• DNA: The �rst level is the smallest unit of construction- the bricks of the system.
These should be units of a very basic nature with many possible purposes when
combined but almost none individually.

• Part: The next level should have a simple unit purpose, these could be the walls
and �oors constructed from the bricks. Their purpose should be singular and
basic and they should be `combinable' with each other.

• Device: The walls and �oors will now be combined into a house. This is multi-
purpose unit that works independently, it cannot be functionally combined with
other components of the same level but they can work together.

• System: Finally these devices lie in a system, which in the analogy could be a
town. The components of this level function together but are independent units.

Figure 7.4: Brick abstraction hierarchy example.

7.2.1.2 Biobricks

The best example of abstraction hierarchies in systems biology is shown in BioBricks.
BioBricks is a standardised database of biological components. The components in the
BioBrick database cover a range of levels in the hierarchy of systems biology (Parts,
Devices, Chassis). The parts and devices are ordered by type, function and chassis
(although most parts in the database work in E.Coli). All are constructed from the
components detailed in table 7.2. A summary of some of these components is shown in
table 7.3. Thus, the components in the BioBrick database can be used to build systems
such as those in �gure 7.5.
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Table 7.2: Key for BioBrick components [65].

Component Meaning Layer

Terminators Stops transcription Part

Protein coding Alters direction of RNA polymerase
coding

Device

Cell strain Type of cell Chassis

Reporter Express proteins, often �orescent Part

Signalling Allows cells to communicate with other
cells

Device

Primer Directs DNA polymerase where to di-
rect DNA replication

Part

Tag Forms part of protein coding Part

Protein generator Protein coding to enable MRNA expres-
sion

Device

Inverter Outputs repressor concentration Device

Regulatory / Promoters Provide RNA polymerase binding re-
gions

Device

Plasmid backbone Holds components within cell Chassis

Table 7.3: BioBrick de�nitions [65].

Figure 7.5: Two of examples of BioBrick components [65]. The �rst is a plasmid
BBa_K510000 and the second a composite BBa_K510037.
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7.2.2 Sensitivity Analyses

One of the key methods of parameter estimation and model analysis is examining the
sensitivity of an output to a change in an input, see �gure 7.1. We have already
used a range of sensitivity analyses to �nd the important input parameters for our
epidemiological model. We divide the analyses into two types of sensitivity: local and
global. Local sensitivity is the change in an output given a change in an input at one
point in the parameter space. Global sensitivity is a form of average change in output
given a change in the input which holds across the parameter space. We shall explain
a few of each sensitivity analysis type and, where appropriate, signpost the relevant
chapter where we introduced the concept.

7.2.2.1 Local Sensitivity

We examine analyses that may be conducted at speci�c points in the parameter space.
As such, they lead to insights into the input- output relationship which may not hold
for all parameter sets. First, we describe two numerical methods commonly used to
facilitate sensitivity analyses.

Finite di�erence approximation We used the �nite di�erence approximation as
a method for approximating a derivative in Chapter Three. To calculate a derivative
of f(x) from �rst principles we take the limit of the following f(x+h)−f(x)

h as h → 0.
The �nite di�erence approximation assumes h > 0 and takes the value of this function
rather than its limit to describe the change in output, f(x), given a change in input, x.

Direct di�erential method The direct di�erential method is a di�erential compu-
tation method which solves the system equations for the sensitivity coe�cients [148].
In this case, it is possible to write a di�erential equation for the sensitivities, T, in
matrix form with respect to the system Jacobian, J, and vector fp, consisting of ∂fi

∂p ,
the derivative of the ODEs with respect to parameter, p.

Ṫ = fp + J ∧T.

We may solve the sensitivities of all variables with respect to a parameter simultaneously
using this method. It can be improved by a Green's kernel and function, termed an
`adjoint sensitivity analysis'.

Metabolic Control Analysis, MCA MCA is a standard mathematical framework
for quantifying the dependence of the network properties on parameters [148]. The
general form is the control coe�cient de�ned:

Cf(x)x =
x

f(x)
× ∂f(x)

∂x
.

This class of coe�cients includes the elasticity which we used from Chapter Two on-
wards. However, there are many di�erent control coe�cients using the outputs and
inputs, detailed in table 7.4. Some of these values hold globally, such as the concentra-
tion control coe�cients, and some only hold locally, such as the elasticity.
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Symbols Explanation

n Number of steps (enzymes) in network
J Flux
Mj Concentration of metabolite j
vi Activity of enzyme i
p Parameter
Cxvi Control coe�cient of vi on x
εviMj

Elasticity coe�cient of vi toward Mj

Rxp Response coe�cient- the relative change in x with p

De�nitions

CJvi =

(
dJ/J
dvi/vi

)
steady state

Flux Control Coe�cients (global)

C
Mj
vi =

(
dMj/Mj

dvi/vi

)
steady state

Concentration Control Coe�cients (global)

εviMj
=

(
∂vi/vi
∂Mj/Mj

)
steady state

Elasticity Coe�cients (local)

RJp =

(
dJ/J
dp/p

)
=
∑
CJviε

vi
p Response Coe�cients

Table 7.4: Table of control coe�cients for Metabolic Control Analysis [63, 70, 115, 148].

7.2.2.2 Global Sensitivity

Table 7.4 demonstrates that MCA can hold globally and locally as a sensitivity analysis.
Yet, there are some speci�cally global sensitivity analyses. These generally begin with
a parameter space sampling technique such as Latin Hypercube Sampling, LHS, which
we used from Chapter Two onwards.

Weighted Average of Local Sensitivities,WALS WALS is a simple extension of
local analyses to the whole parameter space. Local sensitivities are measured at random
locations in the parameter space and then weighted using a Boltzman distribution,
exp(−EkbT ) [146, 148]. Here E is the weighted least squares error between the perturbed
model and a reference model and kb is a customisable scaling factor for the sensitivity,
T. The weight factor for the parameter p in set xk is as follows:

wkp = exp

(
−E(xk)

min{E(xi)}

)
.

Therefore the global sensitivity coe�cient of parameter p is de�ned as:

WALSp =

N∑
k=1

T kp w
k
p .

Where T kp is the local sensitivity of the output with respect to parameter p in set k.

Multi-Parametric Sensitivity Analysis, MPSA We introduced the MPSA in
Chapter Three to establish which, and for what values, parameters were most in�u-
ential. The parameter space is sampled and these values are used to calculate the
output. The output values for each parameter set are then categorised as `acceptable'
or `unacceptable' in relation to a user-de�ned threshold. The frequency of acceptable
to unacceptable values is calculated over the range of the input parameter and used to
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draw a normalised cumulative frequency graph. The maximum distance between the
normalised cumulative frequency graphs for the acceptable and unacceptable values is
used as the sensitivity. This is termed a Kolmogorov- Smirno� statistic.

Partial Rank Correlation Coe�cient, PRCC We introduced the PRCC in Chap-
ter Two and used it extensively to �nd the relationship between inputs and outputs in
our model. It holds only when the relationship between input and output is monotonic.
We start with a parameter sample and calculate the output for each parameter set.
These output values are then ranked by magnitude and the same is done for the input
values. The expected values for the ranked inputs and outputs are calculated for each
parameter set using a linear regression. This is used to calculate the residuals which
are the di�erences between expected and actual values. Finally, the PRCC is calcu-
lated from these residuals and takes values in the range [−1, 1] where a value outside
[−0.5, 0.5] is considered signi�cant. The sign of the PRCC indicates the direction of
in�uence.

Fourier Amplitude Sensitivity Test, FAST We examined the FAST in Chapter
Three. It is calculated by introducing a frequency into the input and searching for that
frequency in the output. The �nal sensitivity is calculated by dividing the variance
of the parameter by the variance of the output. We calculated the FAST using a an
adapted version of the program written by Per- Anders Ekström [42].

7.2.3 Bifurcation Analysis

We introduced bifurcation analysis in Chapter Three and used it extensively when
the treatment rate of infected individuals was a function of the size of the infected
population. We used MATLAB and MATCONT to chart changes in equilibrium stability to
�nd bifurcation points. These are parameter values where a change of stable state is
seen.

7.2.4 Metabolic/ Regulatory Network Analysis

A key method in �gure 7.1 is metabolic and regulatory network analysis which examines
the topology of the system in order to �nd pathways and key nodes. We start with a
technique for examining metabolite �ows through the system at steady state.

7.2.4.1 Flux Balance Analysis, FBA

FBA is a mathematical tool for analysing the �ow of metabolites through system net-
works. Metabolites are the intermediates and products of metabolism. They are a re-
sult of enzyme catalysed reactions that occur with the cell [59]. FBA charts metabolite
movement at steady state and has the bene�t of being computationally inexpensive.
It requires only the stoichiometry of the system and demands of the network [101].
The stoichiometry of a reaction details the relative numbers of reactants and products
required. It should be noted that the FBA cannot be used to predict speci�c concen-
trations of metabolites as it de�nes the `best' a system can do [40]. It is also only
applicable to the system at steady state [101]. FBA is based on the law of mass conser-
vation and application of optimisation principles. It predicts the optimal distribution of
metabolic resources within a metabolic network [119]. The mass conservation equation
for a metabolic network is as follows:
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d

dt
X = S.v − µ.X.

Here, X is the concentration of internal metabolites and S is the stoichiometry matrix
where sij is the stoichiometry coe�cient of element i involved in reaction j. We also
include the vector of reaction rates or �uxes, v, and dilution rate, µ, related to the
change in volume in the system [40, 130].

The system is assumed to be at steady state where �uxes for each reaction are
maximal and positive and the dilution rate is assumed to be slow with respect to the
reaction rates. Thus:

S.v = 0 (7.1)

v ≥ 0 (7.2)

Equations 7.1 and 7.2 give an under-determined system which can be solved by three
techniques:

1. Metabolic Flux Analysis

Here, the equations are divided into measurable, subscript m, and unmeasurable,
subscript u, coe�cients or �uxes. The non-singular nature of S is utilised in order
to solve the equation for the unmeasured �uxes like so:

ru = −S−1u Sm.rm.

2. Flux Balance Analysis

FBA examines the intersection of the nullspace of S and the area de�ned by
the inequalities, the feasible set, using linear programming. This is done by �rst
de�ning an objective function, Z, to show how much each reaction contributes to
the overall behaviour of the system [101]. It is de�ned as follows:

Z = c.v. (7.3)

Here, c is the vector of weights for the linear combination of �uxes. For example,
if the aim was to target reaction one, the vector of weights would be a unit vector
with �rst element equal to one.

The linear programming problem in canonical form is as follows:

maximise cTv,

subject to Sv = 0,

and lower bound ≤ v ≤ upper bound.

Where the upper and lower bounds are determined by the minimal and maximal
�uxes for each reaction in the system.

Once this problem has been formulated and the feasible set de�ned in �ux space,
the system can be solved using linear programming software such as LINDO [40].
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The solution of the FBA is an optimal solution for the system. However, it is
not unique. Thus, for a complete set of solutions in the feasible set, Metabolic
Pathway or Elementary Mode analyses are required as well.

3. Metabolic Pathway Analysis

One such metabolic pathway analysis is elementary mode analysis explained in
the next section.

7.2.4.2 Elementary Mode Analysis, EMA

EMA is a form of metabolic pathway analysis that identi�es structure in a metabolic
network. The analysis begins with the problem formulated in equations 7.1 and 7.2.
This identi�es all metabolic �ux vectors in the admissible �ux space. The admissible
space (also know as the feasible set) is a convex polyhedral cone and each solution
contained in the cone is an Elementary Mode. Each mode is a unique and minimal set
of enzymes that support steady state operation [130]. However, there is a subset of this
de�ned as Extreme Pathways. Extreme pathways are the set of independent elementary
modes that span the polyhedral cone and can be used to de�ne the admissible �ux
space. We can consider the extreme pathways as the basis for the admissible �ux space.

This analysis technique has been used to engineer a strain of E. coli to simultaneously
utilize xylose and glucose to produce ethanol. EMA has also been used to identify a
minimum set of metabolic pathways that support growth and ethanol production by
reaction deletion in E. coli [80].

7.2.4.3 Combining Pathway and Flux Balance Analyses

The equations 7.1 and 7.2 lead to the de�nition of a �ux space within the context of
convex analysis. As previously mentioned, this admissible �ux space is a polyhedral
cone spanned by the extreme pathways of the system; they form the edges of the cone
[119]. Thus, one approach for identi�cation and analysis of the system is to use convex
analysis tools such as elementary modes and extreme pathways to de�ne limitations and
production capabilities. The theory starts similarly to before. The system is described
by a series of ordinary di�erential equations representing the dynamic mass balances
for each metabolite. Once this is complete, the system is assumed to be at steady state
and equation 7.1 is arrived at. Then the constraints are added as before in equation 7.2
where any reversible reaction is decomposed into two reactions to retain positive rates
for all reactions. Next, the admissible �ux space cone A is de�ned:

A = {v : v =
k∑
i=1

wipi, wi ≥ 0 ∀i}. (7.4)

In equation 7.4, wi are coe�cients for each of the convex spanning vectors pi,
the extreme pathways. As the admissible �ux space is de�ned in this way, any �ux
distribution will be a linear combination of the extreme pathways.

The next stage is to assess the system performance to demands. This leads to the
addition of an exchange �ux and corresponding constraints to the system of equations.
In doing so, the same or increased number of extreme pathways is arrived at for the
new balanced set of demands. These new pathways form a higher dimensional cone
that can be projected onto the original one. In this case the new extreme pathways can
be written in terms of a linear combination of the old which is termed an equivalency.
Equivalencies allow �ux distributions to be written in terms of pathways that produce
a distribution pattern.
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Now that the �ux cone is fully de�ned, the area within must be assessed. This
leads to the use of �ux balance analysis on the (now bounded) cone. The problem is
formulated as before and solved through linear optimization to give a distribution that
is a linear combination of the extreme pathways. More speci�cally, the �ux distribution
lies on the extreme edges of the cone (a simple example is shown by Schilling et al.
[119]). This means that changing demands on the system lead to movement of a �ux
distribution across the faces of the �ux cone and optimal solutions will be found on the
vertices.

We have considered the analysis techniques. Now, we examine methods for improv-
ing the system.

7.2.5 Optimisation

We focus on evolutionary algorithms as an e�cient way of improving a system with
respect to a speci�c objective. Initially, the system has an arbitrary set of characteristics
and is developed step by step until it has certain desirable properties. The steps of one
such an algorithm are as follows, we use a similar algorithm later, [46, 125]:

1. Initial network set A set of independent systems are generated.

2. Growth Phase The set grows in size as each system in the original set is altered
at random following one or two simple rules. These rules could be one of the
following:

(a) Modi�ed degradation rate (there may be several and one will be chosen at
random).

(b) Modi�ed kinetic constant.

(c) New gene created.

(d) New interaction between gene and promoter.

(e) Post-transcriptional reaction added.

These are speci�c to designing genetic networks but it is possible to generalise
them.

3. Selection Phase The assessment of each network takes place based on a speci�c
�tness function. Once each network has been assessed, the `worst' proportion of
the set will be deleted and the algorithm repeats.

There are a number of ways of expediting this process. Haseltine and Arnold sug-
gest using the sensitivity and bifurcation analyses to �nd targets for improvement [61].
Thus, in�uential parameters or structures can be prioritised for mutation. Batt et al.
advocate discretisation of the system [13]. This is similar to examining a continuously
heterogeneous population as a number of separate sub populations with di�erent char-
acteristics. It allows a greater �exibility when conducting robustness analyses whilst
relating to characteristics of the original system.

There are a variety of computing programs designed with optimal regulatory net-
works in mind. MATLAB has a genetic programming toolbox and can be used with
RoVerGeNe (Robust Veri�cation of Gene Networks) to model genetic systems [46].
Genetdes works in C as a simulated annealing algorithm to �nd speci�c behaviour in
a genetic system [114]. There is also BioJade, a graphical design algorithm in JAVA
speci�cally for synthetic biology use [52]. This simulates designs based on a library of
parts. However, the modi�cation of systems in these methods can come with its issues.
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There is always the possibility of creating physically impossible arrangements and so
rigorous checks must be carried out [79].

7.3 Systems epidemiology

We have detailed the key systems biology methods. Now, we use an example of a sim-
ple epidemiological model to examine how the system epidemiology could work [19, 18].
Recall, we wish to see how the systems biology framework could facilitate epidemiologi-
cal model construction and analysis. Therefore we investigate the new insights brought
by these methods. The di�erential equations for the example model are as follows:

ṡ = µN − βsi− µs,
i̇ = βsi− γi− µi,
ṙ = γi− µr.

The variables s, i and r correspond to the susceptible, infected and recovered popula-
tions respectively. The parameters µ,N, β and γ represent the death/ birth rate, total
population size, contact rate and recovery rate. We assume the population size is con-
stant with N = s+ i+ r. We now consider the reactions or transitions in the system to
formulate this in a metabolic or regulatory network form. These reactions as follows:

r1 :→ S,

r2 :S + I → I + I,

r3 :S →,
r4 :I → R,

r5 :I →,
r6 :R→ .

These reactions allow us to reformulate the di�erential equations as metabolic equations.
In this setting we focus on the concentration of our `metabolites', S, I and R, denoted
by ‖S‖, ‖I‖ and ‖R‖. Coe�cient, kri , is the reactivity the reaction i or the rate at
which reaction i occurs. The metabolic equations are:

∆‖S‖ = kr1 − kr2‖SI‖ − kr3‖S‖,
∆‖I‖ = kr2‖SI‖ − kr4‖I‖ − kr5‖I‖,
∆‖R‖ = kr4‖I‖ − kr6‖R‖.

We start with the abstraction hierarchy.

7.3.1 Abstraction hierarchy

This model represents one device layer of the hierarchy. We could consider the individu-
als as the layer below which we have averaged to form our device layer. The layer above
could be a composite population, a metapopulation. The real bene�ts of abstraction
hierarchies would come when the model becomes increasingly complex and we may use
many modules of the form of our simple example model to build a composite system.
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Next, we examine the sensitivity analyses applied to the di�erential equations. We
shall also examine R0 and r for this model, given by R0 = βN

γ+µ and r = βN − (γ + µ).

7.3.2 Sensitivity

7.3.2.1 Local Analyses

We examine the sensitivities that apply at one point in the parameter space. We begin
with most basic measure of sensitivity, the partial derivative.

Partial Derivative The sensitivity of an output to an input at one point is tradi-
tionally the partial derivative at that point. We utilised this method as part of the
elasticity which is scaled. As such, we have not used the sensitivity as it does not
allow parameters with di�erent scales to be compared. However, for completeness, the
sensitivities, T , of R0 with respect to each parameter are:

TN =
∂R0

∂N
=

β

γ + µ
,

Tβ =
∂R0

∂β
=

N

γ + µ
,

Tγ =
∂R0

∂γ
=
−βN

(γ + µ)2
,

Tµ =
∂R0

∂µ
=
−βN

(γ + µ)2
.

Therefore, if the parameters take the following values, N = 1, β = 1, γ = 0.8 and
µ = 0.0001, the local sensitivities are as follows:

∂R0

∂N
= 1.25,

∂R0

∂β
= 1.25,

∂R0

∂γ
= −1.6,

∂R0

∂µ
= −1.6.

Thus, we see at this point that γ and µ have a negative e�ect on R0 with the same
magnitude and β and N a positive impact. If we calculated the elasticities for these
parameters we would have the following values for each parameter: N , 1; β, 1; γ, -1
and for µ, -1×10−4. The elasticities are far more comparable and representative of
the in�uence of each parameter. We also consider related quantities in the metabolic
control analysis.

Direct Di�erential Method The direct di�erential method formulates the calcula-
tion of the sensitivities as a matrix equation. Once again, T represents the sensitivity, p
is an arbitrary parameter and f is de�ned as the function satisfying R0 = f(N, β, γ, µ).
Thus the matrix equation becomes:
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Ṫ = fp

Therefore, in this simple case, the sensitivities are the same as the partial derivatives.

Metabolic Control Analysis, MCA The advantage of all MCA is that the sensi-
tivities are non-dimensionalised. As such, we may compare the e�ect of inputs on an
output even if those inputs are on di�erent scales.

We consider the response coe�cients, de�ned in table 7.4, for our simple model.
These coe�cients �nd the elasticity of the �ux with respect to the system parameters.
We must de�ne the �ux for our epidemiological system. The �ux represents a �ow and
as we are interested in the number of infections, we de�ne the �ux as a �ow of infected
individuals; this is the intrinsic growth rate of the epidemic. We examined the elasticity
of the intrinsic growth rate with respect to the system parameters in Chapter Two and
Three. In the SIR case, the response coe�cients are:

r = βN − (γ + µ)

RNr =
βN

βN − (γ + µ)
,

Rβr =
βN

βN − (γ + µ)
,

Rγr =
−γ

βN − (γ + µ)
,

Rµr =
−µ

βN − (γ + µ)
.

Thus, if the values of the inputs are taken as before ( N = 1, β = 1, γ = 0.8 and
µ = 0.0001) the response coe�cients are:

RNr = 5,

Rβr = 5,

Rγr = 4,

Rµr = −5× 10−4.

Therefore, the intrinsic growth rate depends most on the total population size and
contact rate at this point in parameter space.

There are many other coe�cients in metabolic control analysis. In order to use
these, we �rst de�ne the activity of an enzyme in terms of an epidemiological system.
This is discussed further in the Comparison.

7.3.2.2 Global Analyses

We now look at analyses that hold across the parameter space. As such, we start
by sampling the parameter space using Latin Hypercube Sampling. For the following
analyses, we hold the population size at 1. The chosen ranges for the other parameters
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are β ∈ [0, 2], γ ∈ [0, 1] and µ ∈ [0, 0.1] and the distributions are assumed to be
uniform so as not to under-sample any part of the parameter space. These ranges are
sampled �ve times and permuted to form the matrix L below (the rows correspond to
the parameters in the order β, γ, µ).

L =

0.0135 1.1613 1.1585 1.1855 1.1208
0.5204 0.8638 0.1324 0.2942 0.1919
0.0094 0.0014 0.0076 0.0090 0.0083


Weighted Average of Local Sensitivities, WALS WALS uses the local sensitiv-
ities at points throughout the parameter space and weights them using the Boltzman
distribution. We shall use the partial derivatives of R0 as our sensitivities. The Botz-
man distribution depends on the weighted least squares error, E. In the following, with
no experimental data, E will be assumed the same for all parameter sets. The weight
factor follows the form mentioned in section 7.2.2.2. In this case, the weight factor is
e−1 for all sets and so the WALS for R0 with respect to β, γ and µ are as follows,

WALSp =

N∑
k=1

T kp e
−1,

WALSβ = 0.4598,

WALSγ = −0.5886,

WALSµ = −0.5886.

In this case, the analysis suggests that γ and µ are more in�uential than β. However,
the assumption of equal weighting for each set is not realistic. To improve this, one
could weight the sets depending on whether R0 > 1 or R0 < 1 for example.

7.3.3 Metabolic/ Regulatory Network Analyses

We de�ned the model in terms of concentrations of our `metabolites' or reactants, S, I
and R. We will now state the stoichiometric matrix in order to conduct the �ux and
elementary mode analyses.

7.3.3.1 Flux Balance Analysis

The �rst stage with this methodology is to de�ne the stoichiometric matrix, S. In the
case of the epidemiological model, there are three `reactants' and six reactions. The
stoichiometric matrix takes the following form with the columns as reactions and the
rows as reactants [68].

S =

1 −1 −1 0 0 0
0 1 0 −1 −1 0
0 0 0 1 0 −1


Now S is de�ned, we may formulate the problem in the format of equations 7.1 and
7.2. We consider how to optimise the recovery rate. Thus, we de�ne an objective
function with weight vector, c, as a unit vector in the direction of interest, the recovery
transition,
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c =



0
0
0
1
0
0

 .

Thus, the problem is:

Maximise v4,

subject to S.v = 0,

and 0 ≤ v ≤ 1.

We solve this problem using linear programming in LINDO. The solution is reaction
rates 1,2,4 and 6 equal to 1 and all others zero. Therefore, the objective function is equal
to one. The interpretation is that the birth rate, rate of infection, recovery rate and
recovered individual death rate are all maximised. As such, to maximise the recovery
of individuals, we must maximise the production of infected individuals. Whilst this is
not an `optimal' solution in terms of controlling an epidemic, it does demonstrate how
we can de�ne an aim and use FBA to show us the pathway to that aim. However, we
must carefully specify the problem.

7.3.3.2 Elementary Mode Analysis

We use the software METATOOL to calculate the elementary modes. This works within
MATLAB and is freely available [2, 108]. The inputs used for the computation of the ele-
mentary modes are the stoichiometric matrix and a row vector denoting the reversibility
of each reaction. However, it is possible to create a METATOOL �le with the full network
details or a SBML model. The elementary mode matrix for the system is,

1 1 1
1 1 0
0 0 1
0 1 0
1 0 0
0 1 0

 .

Recall, an elementary mode is a minimal set of reactions that allow steady state oper-
ation. Therefore, the following elementary modes contain the possible reaction combi-
nations occurring at steady state:

→ S → I →,
→ S → I → R→,
→ S → .

The �rst two pathways correspond to endemic steady state where an individual is born,
infected and dies or they are born, infected, recover and then die. The third pathway
corresponds to disease free steady state where an individual is born and then dies
naturally.
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Figure 7.6: Elementary pathways for SIR model. Pathway 1: red, 2: blue and 3: yellow.

7.3.3.3 Combining Pathway and Flux Balance Analyses

We have examined the elementary modes and the �uxes that maximise the recovery
reaction and keep the system balanced. However, we can relate the two. The FBA
suggested we should maximise the reactions in → S → I → R→ to maximise recovery
rates. Thus, the optimal pathway distribution is 0×p1 +1×p2 +0×p3. However, if we
wanted to answer a slightly more complicated question on more complicated network,
the optimal combination of pathways would be altered. Schilling et al. examined how
the distribution of �uxes and pathways through the system are altered by di�erent
constraints and structures [119].

7.3.4 Optimisation

We used a very simple evolutionary algorithm on our SIR model to �nd the optimal
parameter combination when there was a �xed population size. We follow the algorithm
explained by Spears et al. [125].

1. Initialising

The set of initial networks is speci�ed by the user or randomly generated.

In our MATLAB code, the parameters for the SIR model were randomly generated.
The parameters of interest are γ, β and µ and the values were generated in a
Latin Hypercube with ten samples.

2. Evaluation of Population

We use a speci�c �tness function. The function scores each system based on how
well it �ts with the desired outcome. It also suggests which systems would be
best to act as `parents' to new `children' in the population.

In our example, the �tness function was the total epidemic size over 100 days.
Thus, the parameter values are inputted into the ODE system and solved. The
`score' that was assigned was the total number of infected individuals over the
course of the epidemic. The start point for the solution for the ODEs is the
disease free equilibrium with one infected individual introduced and a total pop-
ulation size of 1000. The �nal population size is then calculated as the number of
individuals infected over that timespan using an extra compartment in the model,
as in previous chapters.

3. Parent Selection

Now the test systems have all been evaluated, the `best' can be chosen to become
parents. These are then averaged or elements of each are used to create new
children in the population. The idea is that their suitability is carried on and
increased in the children.

We chose the `best' four parameter sets i.e. those with lowest epidemic size.
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4. Children through Recombination

Once the parents are chosen they are recombined to produce children.

In our example, the parameter values of the 1st and 4th and the 2nd and 3rd best
systems are averaged in their children. The children are then added to the set of
possible parameter sets.

5. Children through Mutation

In order to stop the `gene pool' stagnating with a narrowing range of values,
children are also added by mutation. This could occur through a new random set
of parameters being chosen or through permutation of an existing set.

We introduced new, random parameter sets to create two new children.

6. Re-evaluation and Survival

After the new children are added to the population the whole population is as-
sessed again and the weakest chosen for deletion.

The highest scoring elements were chosen and deleted. This means that the
parameter sets that produced the most infected individuals over the course of the
epidemic were deleted. At this point, the process repeats.

7. Desired Outcome

The outcome after a number of iterations is hopefully a system or population with
the required properties.

We continued until there was a parameter set leading to an epidemic size of less
than ten individuals. This is considered our optimal parameter set. The best
parameter selection here was β = 0.8602, γ = 0.6081 and µ = 0.0014. It took 23
iterations and 98 seconds to arrive at this conclusion. However, it will not always
be the case as it depends on how close the starting set of systems is to the goal
set.

The simplicity of the model illustrates the methods and begins to illustrate the
issues. It takes 98 seconds to run this algorithm if only 23 iterations are needed.
However, on another run, 73 iterations were required and this took �ve minutes. As the
systems under test become more complicated, the time of each iteration will increase.
Therefore reducing the number of iterations will become more important. We detailed
a number of methods for targeting areas for improvement and speeding the process.
Therefore, if we considered more complicated structures and possible changes, we could
employ these techniques to get a head start on calculating the optimal system.

7.4 Comparison

There have been many methods that we used for our epidemiological model analysis
that are also used in systems biology. We measured the sensitivity of our system in a
variety of ways. We examined the relation between input and output at points across
the parameter space with an elasticity analysis; an element in metabolic control analy-
sis. The speed of this calculation was improved by approximating the derivative with a
�nite di�erence approximation. We examined the global sensitivity using three separate
methods, all with their individual bene�ts. The PRCC gave us insight into the magni-
tude and direction of in�uence of an input on output. Whereas, the FAST allowed us to
see correlation without the need for a monotonic input-output relationship. The MPSA
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highlighted in�uential areas of the parameter space. We have also extensively used
bifurcation analysis when examining the complicated dynamics introduced by a limited
capacity for treatment. Therefore, we have already exploited some of the intersecting
methodologies between epidemiology and systems biology.

We feel there is great opportunity for further use of systems biology techniques in
epidemiological model analysis. The example of a simple SIR model has allowed us to
examine these techniques in a familiar setting but there is more to be said. Firstly, the
concept of abstraction hierarchies could be explored to a much greater extent. We may
consider how a model such as this one could be abstracted into layers with a limited
exchange of information. We start with the most basic layer, the DNA which forms
all layers above. In a human population, the DNA could be considered the individuals
themselves. Thus, on this layer we examine the individual transition through disease
classes. Using the individual as our start point, there are a few places we could move
next. We could examine households or neighbourhoods of individuals and their intersec-
tion. In essence, this is considered a metapopulation with each patch a sub-population
of individuals. At this stage, we need not think about the individual transitions but
rather the average dynamics over each sub-population. From here we could consider
cities where each city is linked by a small transport link. The group of cities would form
the system. Therefore there are three di�erent modelling techniques that could be em-
ployed separately to di�erent components in an epidemiological database. The idea of a
database of standard epidemiological components and their interactions is an attractive
one and could be used to form a composite picture of the epidemiological dynamics.
This picture could then be used for simulation, sensitivity or pathway analysis.

There are number of sensitivity analyses that we used in our work. However, there
are a few methods left unexplored such as the alternative control coe�cients. We used
the elasticity coe�cients as a measure of the sensitivity throughout our work. The
�ux control coe�cients and concentration control coe�cients could be useful in their
own right with the right de�nitions. We already drew a parallel between our variables
S, I and R and the metabolites of the system, and the �ux with the epidemic growth
rate. Yet, we could also examine the e�ect of an `enzyme' on the system. An enzyme
works as a catalyst, facilitating a reaction without being altered by that reaction. We
could consider the control measures such as treatment facilities as the `enzymes' of our
epidemiological system. Thus, the concentration control coe�cients could denote how
our variables were a�ected by the action of a treatment facility.

The local sensitivities we have used, such as the elasticity, could be used with WALS.
We examined the range and mean of our elasticity values. However, the WALS could
allow us to weight our individual values to arrive at one value relating input and output
across the parameter space.

The big opportunities for advancing our understanding come from the metabolic
and regulatory network analyses. A large, spatially structured population in an epi-
demiological model becomes increasingly di�cult to deal with. Therefore, the concept
of stoichiometry, examining each transition as a reaction and sidestepping the ODEs
and non-linearity, is very appealing. In our simple SIR model, it is easy to see which
pathways or transitions sustain steady state operation. However, if we considered a city
network with many sub-populations, those pathways become less clear and elementary
mode analysis could be very useful. This is particularly the case when is it used in
conjunction with �ux balance analysis. If we wished to examine how a control facility
placement a�ects the network we could consider introducing a new �ux constraint and
examine how that constraint alters the results of the FBA and pathway distribution.

The �nal method of interest is one we have brie�y examined in the latter part of
this thesis. We examined optimal control facility distributions through simulation and
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alternative indicators. Therefore, we de�ned a �tness function through the simulation of
an epidemic and the indicators in Chapter Six. We used this �tness function to asses our
control facility distributions until the `best' was found. The format of an evolutionary
algorithm could speed this process. In our work we either prioritised patches for control
facility placement or found them by exhaustive search. However, with an evolutionary
algorithm, we could start with a selection of arbitrary distributions and whittle them
down. Therefore, the maximum time taken would be the same as the exhaustive search.
The only problem is knowing an optimal distribution when you �nd it. We compared
each distribution to each other through our �tness function but we could consider aiming
to have a distribution that brings the total epidemic size below a certain threshold. This
process could additionally be accelerated through using the prioritisation of patches in
Chapter Six as the starting points for the evolutionary algorithm. This would mean we
start closer to the `answer'.

We have analysed our increasingly complex model with a variety of methods. There
have been classical modelling techniques, methods used in both epidemiology and sys-
tems biology and those analyses borrowed from ecology. We have learnt a many things,
the key parameters and their a�ects, the type of oscillations brought about by limited
control and the rami�cations of a natural disaster. However, there are a whole range
of methods in systems biology that could help us evolve our system further. We could
examine a multi-layered complex system through its stoichiometry to �nd the key nodes
and reactions. We could use these as potential targets for control and evolve the sys-
tem from these. This methodology could also be used as a template for a standardised
database and analysis tool set.

7.5 Conclusion

We have viewed our spatially structured population with an epidemiological eye. Apart
from brief forays into ecology and systems biology, we have only just begun to ex-
plore the possibilities for analysis. When we examine the bigger picture, we see the
opportunity for an automated, multi-level model builder with extensive capabilities for
analysis, simulation and evolution. We have started the work with the automation of
our �ve patch model equations. The next step would be to break our model into its key
components in order to recombine them in a range of complex, resilient and, above all,
realistic systems.

183



Chapter 8

Conclusion

8.1 The epidemiological analysis so far

We started with a simple environmental transmission model with commuter movement
in Chapter Two. This was initially in a homogeneous population which we then split
into two coupled patches; the start of our metapopulation work. We examined the
model through the basic reproductive number and its decomposition, the resilience
and reactivity, all calculated at disease free equilibrium. We took a Latin Hypercube
Sample of the parameter space and used this in two sensitivity analyses, the elasticity
and partial rank correlation coe�cient. The sensitivity analyses were used to �nd
the important system parameters and the direction in which they a�ected the system
outputs. Also, simulations starting at the disease free equilibrium allowed us to examine
the transient system dynamics. The key parameters were the bacteria degradation rate,
shed rate, recovery rate, population size, contact rate and half-saturation constant.
When the population was split over two patches the coupling parameters determined
the importance of the local parameters in each patch.

In Chapter Three, we extended our model to include treatment of infected individu-
als and a corresponding behavioural change. The aim was to �nd the e�ect of control on
the dynamics of an environmentally transmitted disease present in a metapopulation.
Treatment was available in one of the two patches. Therefore, the exposure weightings
for infected individuals were revised as the individuals were assumed to seek treatment.
The outputs of the model were then de�ned with some analyses to examine them. The
analyses focused on the sensitivity of the outputs to the model parameters. We used
the elasticity and PRCC once more to compare the results of the new model to those
of the model in Chapter Two. Furthermore, we used the FAST and MPSA to examine
the progress of uncertainty from input to output and highlight the areas of the param-
eter space which were particularly important. Finally, we examined the transition from
disease free to endemic equilibrium using a bifurcation analysis.

In our four sensitivity analyses, we highlighted some key parameters, all of which
were mentioned in Chapter Two. These parameters were the degradation rate, recovery
rate, half-saturation constant and contact rate which are fundamental parts of the force
of infection and duration of infection. However, we discovered additional information.
The edge scaling towards the treatment facility is increased, raising the exposure of
infected individuals to the environment of the patch containing the treatment facility.
Therefore, the local parameters of the patch with the treatment facility were found to
be more in�uential on average than those in the patch without a treatment facility. The
edge scaling also led to a non-monotonic relationship between R0 and the treatment
rate. Increasing the treatment rate reduces R0 for the majority of parameter sets. Yet,
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when the shed rate in the patch without treatment is high, the edge scaling towards
treatment is also high and the edge scaling away from treatment is low, increasing the
treatment rate increases R0. The increase is because the edge scaling leads to almost all
infected individual exposure being experienced in the patch with a treatment facility.
However, as soon as an infected individual becomes treated, their exposure returns to
`normal' and their contribution of bacteria in the patch with high shed rate increases.
The raised contribution increases the number of infections. Therefore, the behavioural
change of infected individuals in response to treatment can a�ect the disease dynamics
in surprising ways. We also conducted a bifurcation analysis and found the endemic
prevalence to be lower in the patch with a treatment facility. Thus, whilst the behaviour
can a�ect the dynamics, the treatment of infected individuals is generally bene�cial.

In the second part of Chapter Three we incorporated a limit on treatment capacity.
This led to a reduction in the treatment rate as the number of infected individuals
rose because the medical facility was overwhelmed with infected individuals. Only
the dynamics away from disease free equilibrium were of interest; when there were no
infected individuals, the treatment rate was at a constant maximum. As such, we
examined the epidemic size for the epidemic initiated from disease free equilibrium
and the endemic prevalence through a bifurcation analysis. The epidemic size when
simulated from disease free equilibrium depended mainly on R0, a property relevant
when the system is disease free. Therefore, the epidemic size at this equilibrium is
una�ected by a limited treatment capacity. Yet, the capacity in�uenced the dynamics
away from disease free equilibrium. Using MATCONT and MATLAB, we found a transcritical
bifurcation where the disease free equilibrium lost its stability. After this bifurcation,
the endemic equilibrium was stable until a sub-critical Hopf bifurcation. The Hopf
bifurcation led to unstable limit cycles appearing backward until a fold rendered the
limit cycles stable. Therefore, there is an interval where both the endemic equilibrium
and oscillations are stable. We further categorised these oscillations using a Poincaré
section and found them to be doubly periodic. Therefore, there are two regimes when
the rate of treatment is linked to medical capacity. The �rst holds when the number
of infected individuals is low. In this situation, we remain in region one in �gure 8.1
and the treatment rate stays near its maximum. However, if there is a large in�ux of
infected individuals we move into region two of �gure 8.1. In this case, the treatment
rate drops dramatically allowing a large epidemic to deplete the susceptible population.
Epidemics reoccur when the susceptible population is replenished and we have a cycle
of large epidemics.

Figure 8.1: Regions, shown in blue and pink, of treatment rate for stable equilibrium
and stable oscillatory behaviour. The treatment rate, ξ(I) is a function of the number
of infected individuals, shown with a blue line.
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In Chapter Four we further segregated our population and looked at the in�uence
of patch arrangement. We also investigated the consequences of a natural disaster on
disease dynamics. Our model was reformulated and we de�ned our exposure weightings
to account for di�erent numbers of connected patches and treatment facilities. This
allowed us to de�ne a function in MATLAB to generate equations given a particular ar-
rangement of patches, placement of treatment facilities and parameter set. The bene�t
of this automation was accuracy and it left us in a position to exploit our equations
further in MATLAB. We examined R0 and the epidemic size and made use of a concept
more commonly applied in ecology, the impact. The impact quanti�es the e�ect of a
perturbation on each each system element. We de�ned our perturbation in terms of a
�ood, assuming it changed the shed and contact rates. Thus, we could examine which
arrangements of patches were most resilient to a natural disaster.

There was no correlation between R0 or epidemic size and the number of patches
when the patches were in a cycle or complete arrangement. In these arrangements,
as the number of patches increases, the local population size of each patch decreases;
however, the local shed rate proportionally increases as the reservoir volume is reduced.
Thus, the net e�ect of increasing the number of patches is almost zero. In contrast,
when the patches are in a star arrangement, there is a correlation between R0, epidemic
size and number of patches. In this arrangement, there is always one central patch
which the entire population can access. As such, the rise in local shed rate when the
number of patches increases is not balanced by a reduction in the number of individuals
accessing the central reservoir. It is as a result of this central reservoir that R0 and the
epidemic size are also generally higher when the patches are in a star arrangement.

In the latter part of Chapter Four, we examined the e�ects of a natural disaster
through the impact analysis. The capacity for the infected class to react to a per-
turbation is partly dictated by the size of the susceptible population; if there are few
susceptible individuals then there can not be many infections. As such, the response
of the infected class to a perturbation is far greater at disease free equilibrium than at
endemic equilibrium. This di�erence is particularly apparent when the patches are in a
star arrangement. The central patch, with its high amount of human tra�c facilitates
the ampli�cation of the perturbation. When the endemic equilibrium is stable, the
situation is quite di�erent. The susceptible population is far smaller, particularly when
the patches are in the star arrangement. As such, the impact is smallest for infected
individuals when patches are arranged in a star arrangement. Therefore, the structure
of the patches is a vitally important in�uence on the disease dynamics.

In Chapter Five we based our patch arrangement on models of developing world city
structures. Therefore, they formed a star arrangement. We included heterogeneities
such as a variation in patch density and contact with the environmental reservoir. This
was in order to model the variation in sanitation and population distribution you would
expect to �nd in a real city. We found optimal intervention strategies in this spatially
structured population using simulation. The environmentally transmitted disease was
either introduced or endemic in the population and there was a perturbation in trans-
mission caused by a �ood. This perturbation instigated an epidemic and we noted the
number of infections over the epidemic's course and its duration. We found the optimal
control distributions through exhaustive search, assessing each possible arrangement of
control facilities by the allowed epidemic size and duration. The arrangement with the
smallest epidemic size or shortest duration was deemed optimal and each arrangement
was either formed from treatment facilities, decontamination facilities or both. The de-
contamination facilities shortened the lifespan of the bacteria in the patch where they
were positioned. Simulation steps can be found in �gure 8.2.

The optimal distributions of treatment or decontamination facilities were good in-
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Figure 8.2: Flowchart depicting simulation steps.

dicators of the optimal distributions of facilities when both control types could be
positioned. Generally, when the system was initially at disease free equilibrium, the
centre and highest density/ contact rate peripheral patches were prioritised for decon-
tamination and the centre and low density/ contact rate patches were prioritised for
treatment facilities. This was also the case when facilities were placed reactively at en-
demic equilibrium. When the facilities were placed pre-emptively, the lowest density/
contact rate peripheral patches were prioritised for facility placement. These distri-
butions allowed the susceptible population to deplete, leaving the population resilient
to infection. The optimal distributions of treatment facilities were not always easy to
describe with a simple rule. The edge scaling attached to the placement of a treatment
facility meant that the optimal distributions of treatment facilities were a trade-o� be-
tween accessibility and contamination of the environment. When a treatment facility
was located in a patch, it encouraged infected individuals to be exposed and shed in
that patch, therefore increasing the local bacterial population size. As such, we may
choose to place treatment facilities in patches with a low force of infection or level of
human tra�c to encourage them away from vulnerable environments. We called this
an auto-quarantine e�ect. Therefore, there were a few important considerations when
determining optimal distributions of control facilities. The most vital consideration is
the population response to the provision of a control measure. However, the number of
facilities to be placed, placement time and state of the system prior to perturbation all
a�ect the optimal distributions of control facilities as well. We assumed facilities were
all placed at the same time, as such there were cases where the optimal distribution of
n facilities was not featured in the optimal distribution of n+ 1 facilities. The state of
the system and placement time were both important factors; the optimal distributions
at disease free equilibrium were drastically di�erent to those placed pre-emptively at
endemic equilibrium. Therefore, the optimal placement of control facilities is a complex
problem a�ected by many characteristics of the structure and population.

In the Chapter Six, we set out to �nd alternative indicators of optimal control
facility distributions. We used methods introduced throughout the thesis, as well as
some new ones, to �nd optimal control facility distributions. We also used the indicators
to prioritise patches for control measures based on their local values for each patch
in the absence of treatment or decontamination. The indicators were divided by the
characteristic of the epidemic to which they applied. For instance, for the state of the
system prior to the �ood, we examined the basic and e�ective reproduction numbers and
their decompositions, the endemic prevalence and size of the susceptible population at
endemic equilibrium. When we prioritised patches for decontamination facilities based
on their local part reproduction numbers or endemic population composition, the order
matched that for their placement to minimise epidemic size. This was not the case
for treatment facilities. However, when we examined each control facility distribution
by exhaustive search, those distributions of both control facility types that optimised
these indicators, also minimised the epidemic size. The reproduction numbers and
size of the susceptible population at endemic equilibrium were particularly e�ective
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indicators here.
We also assessed indicators that describe the response of the system to a perturba-

tion; these were the impact, in�uence and sensitivity. The in�uence and sensitivity can
be seen as decompositions of the impact when there is a press perturbation. The impact
was an e�ective indicator of the optimal control facility distributions. The in�uence,
which highlights which system variables amplify the perturbation, was almost as e�ec-
tive as the impact as an indicator of optimal distributions. In contrast, the sensitivity
may be more bene�cial as a measure of which patches are most susceptible to the e�ects
of a perturbation rather than the most e�ective positions for treatment or decontam-
ination facilities. Lastly, we examined those indicators that describe the recovery of
the system from perturbation, namely the resilience, the reactivity and their decom-
positions. The reactivity was a good indicator of the optimal reactively placed control
facility distributions. However, the resilience may be better employed when examining
the long-term dynamics rather than highlighting e�ective positions for control facili-
ties. We established various methods to use as indicators of the optimal control facility
distributions to minimise epidemic size. Yet, there was more information to be gained
for these methods and in some cases they may be more bene�cial when examining the
long-term dynamics or structure rather than the relatively brief epidemic.

8.1.1 Summary

This thesis examined the dynamics and control of an environmentally transmitted dis-
ease in a perturbed system. We developed the model in stages to understand the dy-
namics and the reasons for certain behaviours. Therefore, we examined only the disease
in a homogeneous population as our �rst step. Only after we understood this behaviour
could we segregate the population and introduce control measures. The patch struc-
ture and control were introduced separately and we took pains to examine the e�ect of
spatial segregation and patch arrangement independently of the response to treatment
provision. We also examined the situation where infected individuals a�ect the control
through a saturating treatment rate and found interesting oscillatory dynamics which
may hold for more complicated systems. We then combined patch arrangement and
control to begin answering the question: what is the optimal control strategy in a city
given a natural disaster. To �nd this answer, we established a `realistic' heterogeneous
arrangement of patches as our city and simulated a �ood as a perturbation in trans-
mission. We used this to establish the optimal control facility distributions which we
further calculated using a range of analysis methods. Thus, we arrived at a de�nitive
answer for our speci�c model formulation through an arsenal of methods. However, the
question we asked in Chapter Seven is whether there are methods from another �eld,
namely systems biology, that could have helped us and be used in future for models of
this type. We de�ned systems biology and some of its key methods before trying them
out in an epidemiological context.

8.2 The future

There are two main directions that this work could take in future. The �rst builds on
the analysis of the simple models shown. We discussed in the Introduction four main
steps in the models of environmentally transmitted diseases. Namely, the inclusion of
susceptible individuals, HI bacteria, asymptomatic infection and spatial structure. We
have only included two of these aspects and arguably only half of spatial structure as,
for various reasons, we have omitted bacterial transport. Therefore, there are a number
of elements we could include in our model. The HI bacterial state may a�ect the optimal
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deployments of facilities that we found in Chapter Five. This is because the HI state
could make the freshly shed bacteria more in�uential rendering a patch experiencing
fresh shedding disproportionately contaminated. However, this HI state only really
becomes relevant when the bacteria may move between settlements. Therefore, if we
were to include bacterial transport and HI bacteria it may be interesting to see if
localised shedding preserves the optimal spatial arrangement of facilities even if those
bacteria can move. Lastly, the asymptomatic infection may be included through varying
the level of exposure of infected individuals i.e. assuming severe, symptomatic cases
are only exposed to their own patch environment. This may also be tied to the dose
of bacteria where an individual is more likely to be severely infected if they have a
high dose of bacteria. The results of the asymptomatic/ severe infection may be that
the contamination of the environment is even more of an issue, exacerbating the auto-
quarantine e�ect.

The alternative direction is the extension to highly complex models parametrized
by real data. We have examined fairly theoretical population structures despite our
use of city structure models. Thus, could we use the framework developed throughout
this thesis to model dynamics in a real city? Let us examine Port au Prince, for
example. Port au Prince is the capital of Haiti and does not conform to the mono-
centric city structure we examined in Chapter Five. However, it does have similar
characteristics to the Latin American city model [69]. Figure 8.3 shows the di�erent
districts of Port au Prince with their corresponding population densities according to
the 2003 census data. Using data such as this we could construct a 171 patch model
as there are 171 districts. Then we could build and analyse the potential dynamics of
an environmentally transmitted disease through this population. There may be issues

Figure 8.3: Density map of Port-au-Prince, Haiti [69].

with the parametrisation of such a model, the local parameters for each district may
be di�cult to obtain. Additionally we must consider the movement patterns of both
humans and bacteria. These could be found through mobile phone data and mapping
the river network but may be highly sensitive to changes in behaviour and man-made
hydrological networks.

However, such a model could be developed within the framework of this thesis.
Given the appropriate parametrization, we could automate the construction of the
model equations. Once these are built, we can �nd reproductive numbers both locally
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and for the entirety of Port au Prince. These, and other model outputs could be used
to conduct sensitivity analyses and simulations. We could also abstract the model into
a stoichiometric matrix in order to conduct pathway and �ux analyses. These could
show us bottlenecks and hotspots for disease transmission in the population. Lastly,
we could employ a mixture of the above analyses in an evolutionary algorithm to �nd
optimal control strategies in this particular city. Thus, if we compare our framework to
that of Bertuzzo et al. [16], we have included more speci�c movement parameters for
host individuals, on a city-wide rather than nationwide scale with a variety of methods
for �nding and constructing optimal control strategies.

Thus, once we have the structure and a parameter set, we can automate the con-
struction of the equations for the system; stoichiometry; pathways; sensitivity; model
outputs and simulations, see �gure 8.4. We could construct some standardised soft-
ware within MATLAB with all of these capabilities. This would be a step forward in
epidemiological modelling and one that could be rolled out for a variety of transmission
types.

Figure 8.4: A framework for model development and analysis.
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Parameter values
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Parameter/
Variable

Meaning Range Units Ref

Xpq Susceptible population resi-
dent in patch p currently in
patch q.

[0, 107] Individuals

Ypq Infected population resident
in patch p currently in patch
q.

[0, 107] Individuals

Zpq Recovered population resi-
dent in patch p currently in
patch q.

[0, 107] Individuals

Sp Susceptible population resi-
dent in patch p. Sp = Xpp+
Xpq.

[0, 107] Individuals

Ip Infected population resident
in patch p. Ip = Ypp + Ypq.

[0, 107] Individuals

Rp Recovered population resi-
dent in patch p. Rp = Zpp+
Zpq.

[0, 107] Individuals

Np Population resident in patch
p.

[0, 107] Individuals [30]

Bp Concentration of bacteria in
environment of patch p.

[0, 108] Bacteria/
Volume

[30, 109]

µ Birth/death rate. [0, 4.5× 10−5] Days−1 [51, 86]

φp Leave rate from patch p. [0,1] Days−1

τp Return rate to patch p. [0,1] Days−1

σp Proportion of time an indi-
vidual resident in patch p
spends in resident patch.

[0,1] Days [28]

βp Contact rate with environ-
ment.

[0,10] Days−1 [51, 86, 91]

κp Half-saturation constant for
transmission in patch p.

[0, 108] Bacteria/
Volume

[30, 109]

γp Recovery rate in patch p. [0,0.5] Days−1 [28, 30, 51, 86]

ηp Bacterial shedding rate in
patch p, scaled by reservoir
volume

[0,1] Bacteria/
Volume /
Days

[30, 109]

θp Natural bacterial degrada-
tion rate in patch p.

[0,0.5] Days−1 [28, 30]

Table A.1: Parameters used from Chapter Two onwards unless stated otherwise.

θ ηi γ µ N (one patch model) Ni βi κ σi
0.25 0.25 0.2 4.5×10−5 107 5× 106 1 2× 107 0.6

Table A.2: Parameters used in simulations in Chapter Two.
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Parameter/Variable Meaning Range Units Notes

Wpq Treated population resident in
patch p currently in patch q.

[0, 107] Individuals

Tp Treated population resident in
patch p.

[0, 107] Individuals

µ Birth/death rate, average
lifespan 70 years

[2.5 ×
10−5,
6.8 ×
10−5]

Days−1

φp Weighting on outward edge of
patch p.

1 Fixed

τp Weighting on inward edge of
patch p

[0,∞]

χ1 Weight scaling on outward
edge of patch with treatment
facility

[0,1]

χ2 Weight scaling on inward edge
of patch with treatment facil-
ity

[1,5]

σ Proportion exposure to the
environment an uninfected in-
dividual experiences at home.

[0.5,1]

γ Recovery rate [0,1] Days−1

α Scaling for treated recovery
rate.

[1,5]

ξ Treatment rate [0,1] Days−1 Treatment
only avail-
able in
patch q

Table A.3: Parameters used from Chapter Three A onwards. These are amended from
or additional to the values shown in table A.1.

θ ηp ηq ξ∗ Np Nq σ

0.8000 0.4989 0.3024 0.4988 107 107 0.8666

χ1 χ2 γ α κ Υ µ

0.6351 4.7882 0.2000 4.2816 107 104 6.27× 10−5

Table A.4: Parameters used in bifurcation analysis in Chapter Three part B.

Parameter Meaning Range Units Notes

Υ Capacity of treatment facility [0,∞] Individuals

ξ(I) Saturating treatment rate [0,1] Days−1 Equation
(3b.4)

Table A.5: Parameters used from Chapter Three B. These are amended from or addi-
tional to the values shown in table A.3.
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Parameter Meaning Range Notes

σ Proportion of expo-
sure a non-infected
individual spends at
from home.

[0,1]

σIij Proportion of ex-
posure an infected
individual from
patch i experiences
in patch j.

[0,1] De�ned in equations (4.3) and (4.4)

Ci Number of con-
nected patches to
patch i.

[0,∞]

ci Proportion of
patches connected
to patch i with
treatment facilities.

[0,1]

ξi Treatment rate in
patch i.

[0,1] ξi =

{
ξ treatment facility in i

0 else

Pij Distributions of ex-
posure of individu-
als from patch i,
away from home, in
patch j.

[0,1] Pij =

{
1
Ci

patches i and j connected

0 else

Xij Edge scaling from
patch i to patch j.

Xij =

{
χ2 treatment facility in patch j

χ1 treatment facility in patch i

Xii =

{
χ1 no treatment facility in patch i

χ2 treatment facility in patch i

Table A.6: Parameters used from Chapter Four onwards. These are amended from or
additional to the values shown in table A.3.

Parameter Meaning Range

η Shed rate [0,1]*M

N Total population size 5× 107

Table A.7: Parameter values used from Chapter Four. These are amended from or
additional to the values shown in table A.3.
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Parameter Meaning Value for endemic infection

N see table A.3 5× 107

Nj see table A.3 [1, 0.7124, 0.9203, 1.0797, 1.2876] ×
107

µ see table A.3 4× 10−5

φ see table A.3 1

τ see table A.3 2

σ see table A.3 2/3

χ1 see table A.3 0.2

χ2 see table A.3 2

βj see table A.3 1, 0.7124, 0.9203, 1.0797, 1.2876

κ see table A.3 2× 107

ξ see table A.3 0.5

γ see table A.3 0.2

α see table A.3 3

η see table A.3 0.25

ζ Decontamination rate of the
bacteria in the environment

0.5

θ see table A.3 0.25

Table A.8: Parameter values used from Chapter Five onwards. All rates are per day.
These values lead to a stable equilibrium where infection is endemic. For analyses that
require a stable disease-free equilibrium, The contact rate is changed to βj = 0.1 on
average i.e. there the rate of contact with the environment is reduced.
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Appendix B

Optimal control facility

distributions to minimise epidemic

size and duration

Table B.1: Table of possible assessment criteria, heterogeneity, placement time, equi-
librium and control examined in this chapter.
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Table B.2: Optimal distributions of between one and four control facilities in a city
structured by a heterogeneity. Optimisation minimises the size of the epidemic as-
sociated with a �ood in a system that is initially at endemic equilibrium (top row)
or disease free equilibrium (bottom row). The heterogeneity may be in the contact
rate, population density or both. Larger circles indicate higher contact rates/ densities.
Control facilities may provide treatment or decontamination. Shaded circles denote
control facility locations. The distributions shown are optimal for all combinations of
heterogeneity, control measure and placement time mentioned in table B.1.
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Table B.3: Optimal distributions of between one and four control facilities in a city
structured by a heterogeneity. Optimisation minimises the return time to equilibrium
after an epidemic associated with a �ood in a system that is initially at endemic equi-
librium (top row) or disease free equilibrium (bottom row). The heterogeneity may be
in the contact rate, population density or both. Larger circles indicate higher contact
rates/ densities. Control facilities may provide treatment or decontamination. Shaded
circles denote control facility locations. The distributions shown are optimal for all
combinations of heterogeneity, control measure and placement time mentioned in table
B.1.
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Appendix C

Di�erences in optimal control

facility distributions to minimise

epidemic size and duration

Table C.1: Proportional di�erences in epidemic size between di�erent key treatment
facility pre-emptively placed distributions. The exception optimal distribution is com-
pared to the alternative optimal distribution and distribution that allows the largest
epidemic size. Distributions minimise epidemic size.
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Table C.2: Proportional di�erences in return time between di�erent key treatment facil-
ity pre-emptively placed distributions. The exception optimal distribution is compared
to the alternative optimal distribution and distribution that allows the longest return
time.

Table C.3: Proportional di�erences in epidemic size between di�erent key facility reac-
tively placed distributions. The exception optimal distribution is compared to the most
common optimal distribution and distribution that allows the largest epidemic size.

Table C.4: Proportional di�erences in return time between di�erent key facility reac-
tively placed distributions. The exception optimal distribution is compared to the most
common optimal distribution and distribution that allows the longest return time.
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Appendix D

Optimal control facility

distributions to minimise

alternative indicators

Table D.1: Optimum distributions of one control facility type in a city structure by
a heterogeneity. The optimisation minimises in�uence of the infected and bacterial
classes. The parameters used are those found in table A.8 at DFE and EE. Larger circles
denote higher contact rates/ densities. The shaded cells indicate those distributions also
minimise epidemic size at disease free equilibrium (blue) and at endemic equilibrium
when placed pre-emptively (yellow) or when placed reactively (green).
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Table D.2: Optimum distributions of one control facility type in a city structure by
a heterogeneity. The optimisation minimises sensitivity of the infected and bacterial
classes. The parameters used are those found in table A.8 at DFE and EE. Larger circles
denote higher contact rates/ densities. The shaded cells indicate those distributions also
minimise epidemic size at disease free equilibrium (blue) and at endemic equilibrium
when placed pre-emptively (yellow) or when placed reactively (green).

Table D.3: Optimum distributions of two control facility types in a city structure by a
heterogeneity. The optimisation minimises the system reactivity. The parameters used
are those found in table A.8 at DFE and EE. Larger circles denote higher contact rates/
densities. The shaded cells indicate those distributions also minimise epidemic size at
disease free equilibrium (blue) and at endemic equilibrium when placed pre-emptively
(yellow) or when placed reactively (green).

Table D.4: Optimum distributions of two control facility types in a city structure by
a heterogeneity. The optimisation minimises the infectious class part reactivities. The
parameters used are those found in table A.8 at DFE and EE. Larger circles denote
higher contact rates/ densities. The shaded cells indicate those distributions also min-
imise epidemic size at disease free equilibrium (blue) and at endemic equilibrium when
placed pre-emptively (yellow) or when placed reactively (green).
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Table D.5: Optimum distributions of two control facility types in a city structure by
a heterogeneity. The optimisation minimises the sum of the infected class part re-
siliences.The parameters used are those found in table A.8 at DFE and EE. Larger
circles denote higher contact rates/ densities. The shaded cells indicate those distri-
butions also minimise epidemic size at disease free equilibrium (blue) and at endemic
equilibrium when placed pre-emptively (yellow) or when placed reactively (green).

Table D.6: Optimum distributions of two control facility types in a city structure by a
heterogeneity. The optimisation minimises the system resilience. The parameters used
are those found in table A.8 at DFE and EE. Larger circles denote higher contact rates/
densities. The shaded cells indicate those distributions also minimise epidemic size at
disease free equilibrium (blue) and at endemic equilibrium when placed pre-emptively
(yellow) or when placed reactively (green).
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