
        

University of Bath

PHD

Pharmaceutical Analysis of Polyamines and Aminoglycosides

Buranaphalin, Sawanya

Award date:
2009

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 22. May. 2019



 i 

 
 
 

Pharmaceutical Analysis of 

Polyamines and Aminoglycosides 

 

 
 

Sawanya Buranaphalin 
 
 

A thesis submitted for the degree of Doctor of Philosophy 
 
 
 

University of Bath 
 

Department of Pharmacy and Pharmacology 
 

April 2009 
 
 
 
 

COPYRIGHT 

 

Attention is drawn to the fact that copyright of this thesis rests with its author.  A copy of 

this thesis has been supplied on condition that anyone who consults it is understood to 

recognise that its copyright rests with its author and that no quotation from the thesis and no 

information derived from it may be published without the prior written consent of the author. 

 

This thesis may be made available for consultation within the University Library and may be 

photocopied or lent to other libraries for the purposes of consultation. 

 

 

Signed:  ……………………………………. 

 



 ii 

Abstract 

 

Methods for polyamine derivatization with a panel of extrinsic fluorophores followed by 

HPLC with fluorescence and UV absorption detection have been developed.  Four 

fluorophores were examined using polyamines and aminoglycosides.  o-Phthalaldehyde 

(OPA) and fluorescamine are selective fluorophores that only react with primary amines; 9-

fluorenylmethyl chloroformate (FMOC Cl) and dansyl chloride react with both primary and 

secondary amines.  Reaction and HPLC conditions were optimized with each of the above 

fluorophores using a series of model mono- and diamines and then applied to natural and 

semi-synthetic polyamines.  The amines that have been investigated are natural di- and 

polyamines:  putrescine, cadaverine, spermidine, spermine, thermospermine, 

aminoglycosides:  kanamycin, paramomycin, neomycin, and synthetic polyamine conjugates 

e.g. N4,N9-dioleoylspermine, N1-cholesteryl spermine carbamate.  The resultant derivatives 

were confirmed by off-line high resolution electrospray ionization mass spectrometry (HR 

ESI MS). 

 

The results show that the synthesis of polyamine derivatives in quantitative yield depends on 

the time of reaction, the temperature and the ratio of fluorophore reagent.  Linearity of 

derivatization was calculated and regression coefficients ranged from 0.968 to 0.999 with 

good reproducibility.  HR ESI MS analysis of the reaction products demonstrated complete 

derivatization of both primary and secondary amino groups with dansyl and FMOC 

fluorescence derivatives and of primary amine groups for OPA and fluorescamine 

derivatives.  Under the ionization conditions used the dansyl derivatives showed, in addition 

to monovalent ions [M+H]+, divalent cations [M+2H]2+ because this chromophore contains a 

basic amine that can be easily protonated.  FMOC derivatives gave prominent [M+Na]+ ions.  

The OPA derivatization reaction is rapid, but the products have poor stability.  The 

derivatization with fluorescamine gave multiple products with glucosamine due to the 

presence of a chiral centre in the fluorophore.  The relative quantum yields of the polyamine-

fluorophore derivatives were examined to determine the effect of intramolecular 

fluorescence quenching.  Dansylation is the fluorescent derivatization method of choice. 
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Abbreviations 

 

Å  angstrom 

aq  aqueous 
oC  degrees Celsius 

CNLSD condensation nucleation light scattering detector 

COSY  correlated spectroscopy 

DCM  dichloromethane 

DEPT  Distortionless Enhancement by Polarization Transfer 

DNS Cl  dansyl chloride 

e.g.  exempli gratia, for example 

ELISA  enzyme-linked immunosorbent assay 

et al.  et alii, and others 

etc.  et cetera, and so forth) 

FMOC Cl 9-fluorenylmethyl chloroformate 

GC  gas chromatography 

h  hour 

HPLC  high performance liquid chromatography 

HR-ESI-MS high resolution-electrospray ionization-mass spectrometry 

Hz  Hertz 

i.e.  id est, that is 

IR  infrared 

J  coupling constant 

λex  excitation wavelength 

λem  emission wavelength 

λmax  wavelength at maximum absorption 

LC-MS  liquid chromatography-mass spectrometry 

µ, µm  micron, micrometre 

mM  millimolar 

M  molar 

MCE  mercaptoethanol 

Me  methyl 

MeCN  acetonitrile 

µL  microlitre 

mL  millilitre 

mp  melting point 



 v 

M.W.  relative molecular weight 

m/z  mass over charge 

nm  nanometre 

NMR  nuclear magnetic resonance 

ODC  ornithine decarboxylase 

ODS  octadecyl silane 

OPA  o-phthaladehyde 

ppm  part per million 

RIA  radio immunoassay 

Rt  retention time 

RP-HPLC reverse phase-high performance liquid chromatography 

TLC  thin layer chromatography 

UV  ultraviolet 

v/v  volume by volume 
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CHAPTER 1:  INTRODUCTION 

 

1.1  Polyamines - general introduction 

 

Polyamines, the diamines putrescine (1,4-diaminobutane), cadaverine (1,5-diaminopentane), 

the triamine spermidine (N-(3-aminopropyl)-1,4-diaminobutane) and the tetraamine 

spermine (N,N1-bis-(3-aminopropyl)-1,4-diaminobutane), are non-protein nitrogenous bases 

that are ubiquitous in living organisms (Seiler et al., 1978).  Although they were discovered 

many years ago, are relatively unfamiliar to most investigators because they have no striking 

or acute pharmacological effects, and because the significance of their presence was not 

known.  In recent years, several observations and many analytical studies have shown the 

occurrence of polyamines in various species of living organism such as in bacteria, in plants 

and in animal tissues (Hamana et al., 1992, 1993, 1994).  Polyamines constitute a group of 

cell components that are important in biochemical processes, mainly in cell proliferation and 

cell differentiation (Bauza et al., 1995).  As they are polybasic in nature, polyamines have a 

high affinity for cellular polyanions.  Indeed, there is increasing interest in the actions of 

polyamines on polynucleic acids, as the polyvalent cations titrate poly(anionic) phosphate. 

 

NH
2

NH
2

NH
2

N
H

NH
2

NH
2

N
H

N
H

NH
2

NH
2

NH
2

NH
2

NH
2

NH
2

N
H

N
H

NH
2

1,4-diaminobutane (putrescine, 4)

spermidine (3.4)1,5-diaminopentane (cadaverine, 5)

spermine (3.4.3)

1,3-diaminopropane (3)

thermospermine (3.3.4)

 

 

Figure 1.1  Naturally occurring di- and polyamines (the nomenclature reflects the methylene 

count in the spacing between nitrogen atoms). 
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The separate classification of polyamines and monoamines is based on the fact that the two 

types of compounds exhibit a number of quite different characteristics.  The polyamines are, 

in the main, linear aliphatic molecules.  The polymer-like nature of polyamines has led to an 

abbreviated way of denoting their structures.  The molecule starts with a primary amino 

group (H2N-) link to a chain of methylene groups (-CH2-) interspersed with secondary amino 

group (-NH-) and terminates with another primary amino group (-NH2); the structure can be 

described simply by denoting the number of carbons between each amino group.  Thus 

putrescine is shown as 4, spermidine 3.4, spermine 3.4.3, its regioisomer thermospermine 

3.3.4 etc.  The structures of some simple linear naturally occurring di- and polyamines are 

shown in Figure 1.1. 

 

In 1678, the early period of the Scientific Revolution, Antoni van Lewenhoeck examined 

various fluids include samples of human semen with the aid of a microscope.  He reported 

the existence of motile sperm (spermatozoa) in semen (Lewenhoeck, 1678) and described 

crystals that formed when left to cool.  These crystals are now known to be spermine 

phosphate which is a source of a semen-like odour (Rosenheim, 1924).  From the early 

period, it was believed that the compound spermine was uniquely present in human semen.  

There were several experiments and observations during this period, various names were 

given to the crystals.  In 1878, Schreiner described spermine as a substance present in many 

mammalian tissues not only in semen and he was the first to identify the crystals correctly as 

spermine phosphate (Schreiner, 1878).  In the period of 1923 to 1927, the correct chemical 

structure of spermine was established, determined and confirmed by synthetic spermine 

(Dudley et al., 1924, 1925, 1926; Rosenheim, 1924; Wrede et al., 1923, 1924, 1925, 1926, 

1927).  The diamines’ history is shorter than that of spermine.  1,4-Diaminobutane 

(putrescine) and 1,5-diaminopentane (cadaverine) were first described in decomposing 

animal material, in cadavers by Brieger in 1885 (Middlebrooks et al., 1988), and in urine of 

cystinuric patients (Bremer and Kohne, 1971).  The structures were established by 

comparison with synthetic diamines. 

 

Due to their pKa values, putrescine, cadaverine, spermidine and spermine are di- and 

polycations under physiological conditions and exhibit net charges close to 2+, 2+, 3+ and 4+, 

respectively.  The polyamines form complexes, especially with polyanionic compounds i.e. 

RNA and DNA and with nucleic acid containing structures and membranes.  Spermidine and 

spermine are particularly flexible and have charge distribution along the whole molecule, 

thus facilitating greater interaction with the negatively charged backbone of DNA (Teti et 

al., 2002).  This reduces the net charge and increases the conformational stability of the 

molecules (Liquori et al., 1967).  These interactions form the basis for the role of polyamines 



 - 3 - 

in cell metabolism at the replication, transcriptional, and post-transcriptional levels.  Their 

involvement in processes related to cell growth and cell differentiation has attracted much 

interest recently.  There is also evidence suggesting a role for polyamines in programmed 

cell death (Hawell et al., 2002).  As polyamines are synthesized by amino acid 

decarboxylation reactions which consume H+, polyamine accumulation may function as part 

of a homeostatic mechanism to keep intracellular pH at a constant value.  Rapidly growing 

tissues usually have higher amounts of polyamines and they have stimulating effects on 

DNA, RNA and protein synthesis.  Conversely, severe depletion of polyamines reduces 

growth in mammalian cells (Gugliucci, 2004). 

 

Polyamines are reported to have a role in the prevention of nerve damage and duodenal 

mucosal repair.  Spermine has been recommended for the treatment of human prostate 

cancer separately and in combination with other anticancer drugs (Ernestus, 2001).  One 

report indicated the functions of the polyamines as growth factors; antioxidants; stabilizers 

of DNA, RNA, membranes; metabolic regulators; nutrients and second messengers 

(Ekegren, 2005).  Spermidine and spermine bind to the phosphate backbone of poly-nucleic 

acids.  This interaction is mostly based on electrostatic interactions between positively 

charged ammonium groups of the polyamines and the negatively charged phosphates of the 

poly-nucleic acids.  Spermine is an important reagent widely used to precipitate DNA in 

molecular biology protocols.  Spermidine and spermine are derivatives of putrescine which 

is produced from L-ornithine by the action of ornithine decarboxylase (ODC).  Spermidine 

and spermine levels are also affected by the rate of conversion of their respective precursors, 

putrescine and spermidine.  Also, it is known that the reverse conversions of spermine into 

spermidine, and spermidine into putrescine are also important (Khuhawar, 2001). 

 

Early polyamine research was concentrated in the field of cancer and relatively little 

polyamine research was neuroscience related.  However, further research revealed the 

existence of uptake and release mechanisms for brain polyamines, as seen with other 

substances more commonly accepted as neurotransmitters (Ekegren, 2004).  Polyamines also 

play a regulatory role in cellular calcium homeostasis and have a metabolism that is 

deregulated in response to cerebral trauma or ischaemia (Moinard, 2005). 

 

In most cells polyamines are the products of a highly regulated biosynthetic pathway.  It is 

not clear whether the elaborate regulation of polyamine synthesis is a consequence of their 

essential roles in cellular differentiation and development, or part of a defence mechanism to 

prevent over accumulation of compounds that are toxic in excess (Sairam and Tyagi, 2004).  

In addition to their biosynthetic capability, many cells also process transport systems for 



 - 4 - 

polyamines that respond to intracellular polyamine levels, and other stimuli, and are 

regulated by mechanisms that are at present incompletely defined. 

 

The widespread occurrence of a variety of polyamine-oxidizing enzymes in animals, plants, 

bacteria and fungi results in the formation of aminoaldehydes as intermediates.  These 

compounds containing one or more amino groups that will be positively charged at 

physiological pH, and an aldehyde functional groups are highly reactive.  Aminoaldehydes 

have been shown to be cytotoxic to a wide variety of cell types (Yu, 2003).  It is not yet clear 

whether these compounds have any biological function or are merely unstable and rapidly 

degraded intermediates in the polyamine catabolic pathway. 

 

Intracellular polyamine concentrations vary throughout the cell cycle.  An increase in 

polyamine synthesis is a very early event in cell proliferation and takes place before any 

increase in protein or nucleic acid synthesis.  Thus, the polyamine biosynthetic pathway 

presents an attractive target in tumour and proliferative disease chemotherapy (Jänne et al., 

2004; Wallace and Niiranen, 2007).  Inhibitors of polyamine biosynthesis have been used 

successfully in the treatment of some protozoan diseases such as African trypanosomiasis 

(Heby et al., 2007). 

 

Adequate intracellular levels of polyamines are necessary for optimal growth and replication 

of animals, plants, bacteria, fungi, protozoa, and probably all living organisms (Jänne et al., 

1978; Tabor and Tabor, 1984; Wallace et al., 2003; Luo et al., 2009).  Polyamines influence 

the transcriptional and translational stages of protein synthesis, interact with the nucleic 

acids, stabilized membranes, alter intracellular free calcium, and have important 

neurophysiological functions (Bernsteina and Müller, 1995).  Fruit-ripening and flower-

setting processes in plants are modulated by polyamines (Toumadje and Richardson, 1988). 

 

1.2  Occurrence of polyamines in biological materials 

 

The three most commonly occurring natural polyamines are putrescine, spermidine, and 

spermine, together with 1,3-diaminopropane and cadaverine.  One or more of these 

compounds are present in every living cell.  All have been found in eukaryotes, but spermine 

is rare in prokaryotes or might be replaced by thermine (norspermine, 3.3.3) and 

thermospermine (3.3.4).  In addition to spermine, spermidine and putrescine, a large number 

of other linear, and some branched-chain, polyamines have been detected in mammalian 

tissues and excreta, or in plants, bacteria and microorganisms (Hamana et al., 1993, 1994). 
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Polyamine moieties are constituents of many compounds found in plants and insects.  

Putrescine, spermidine or spermine containing alkaloids are found in many plants, non-

proteinaceous spider and wasp toxins, and glutathionyl-spermidine conjugates in some 

pathogenic microorganisms (Bollinger, 1995). 

 

Polyamines in animal tissues 

 

The highest concentrations of spermidine and spermine in animal tissues are found in the 

pancreas, prostate, and human semen (Bolliger, 1935; Dudley et al., 1924, 1927; Harrison, 

1931, 1933; Rosenthal, 1958; Wrede, 1925).  The polyamines in human semen are largely in 

the seminal plasma, rather than in the spermatozoa.  The concentration of diamines is very 

low in animal tissues, and they are accordingly difficult to determine with accuracy or 

specificity.  However, several reports have shown the presence of diamines in animal tissues.  

1,3-Diaminopropane has been found in rat and guinea pig liver, and in human semen 

(Weaver and Herbst, 1958).  1,4-Diaminobutane has been found in the pancreas (Fischer and 

Bohn, 1957) and liver (Weaver and Herbst, 1958) of several species, in ox lung, in bovine 

brain, in pig brain, in human semen, in pupae and caterpillars of the silkworm (Weaver and 

Herbst, 1958).  1,5-Diaminopentane was found in liver.  Although most of the polyamines in 

animal tissues are present as free amines, some minor components are present in conjugated 

form e.g. conjugates of spermine and 1,3-diaminopropane with phenolic acids are found in 

the venoms of certain species of spider and wasp as acylpolyamines (Figure 1.2) (Schafer et 

al., 1994, Chesnov et al., 2002).  Spider Paracoelotes birulai produced venoms which 

contained guanidine derivative PA 3334G (Figure 1.3) (Chesnov et al., 2002).  The first 

polyamine alkaloid with the 1,4-diguanidinobutane moiety is Stellettadine A (Figure 1.4), 

obtained from a marine sponge Stelletta sp. (Tsukamoto et al., 1996). 

 

N
H

OH

N
H

N N
H

N
H

NH
2

O

OH

 

 

Figure 1.2  A spider venom acylpolyamine 
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Figure 1.3  Guanidine derivative of polyamine (PA 3334G) 
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Figure 1.4  Stellettadine A 

 

The functions of polyamines in animals are reported (Thomas and Thomas, 2003; Childs et 

al., 2003; Umekage and Ueda, 2006) as the essential regulators of growth, gene transcription 

and ribosome-mediated translation. 

 

Polyamines in microorganisms 

 

A very large number of papers have been published on polyamines in a variety of 

microorganisms such as bacteria and yeast (Tabor and Tabor, 1985; Bachrach, 1961; Dubin 

and Rosenthal, 1960).  The polyamines concentrations of the various bacteria vary with the 

pH and other cultural conditions for instance gram-positive organisms contained trace or no 

of polyamines, while high concentration of polyamines were formed in gram-negative 

organisms (Herbst, 1958).  The composition of the culture medium played important role in 

bacteria uptake, since many organism take up amines from the medium, which results in 

intracellular content of both the free amines and derivatives (Tabor et al., 1958; Dubin and 

Rosenheim, 1960).  The presence of high concentrations of polyamines in bacteria even 

when grown on a minimal glucose-salts medium support the concept that these amines are 

important biological compounds, rather than just a result of detoxification (Silverman and 

Harris, 1943). 

 

The most abundant polyamines in bacteria are putrescine and spermidine.  Cadaverine is also 

present but less abundant.  Thermospermine, an isomer of spermine was found in 

thermophillic bacterium Thermus thermophilus (Oshima, 1979), in Halophilic archaeum 

Halobacterium cutirubrum (Carteni-Farina et al., 1985), in Agrobacterium (Hamana et al., 

1989), in Paracoccus denitrificans (Hamana et al., 1990).  There are also a large number of 

polyamine alkaloids from the skeleton of 1,5-diaminopentane (cadaverine), spermidine and 

spermine alkaloids.  Incorporating a cadaverine backbone, Terragines A-E (Figure 1.5) were 

isolated from Streptomyces lividans (Wang et al., 2000). 

 

Various functions of bacteria polyamines have been reported (Wortham et al., 2007) such as 

they are the components of outer membrane of gram-negative bacteria, they are important in 

acid resistance, they play significant role for cellular differentiation, etc. 
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Figure 1.5  Terragines A-E 

 

Polyamines in plants 

 

In plants, putrescine (4), spermidine (3.4), spermine (3.4.3) are concerned as the core 

portions of ubiquitous polyamines.  Cadaverine (5) and thermospermine (3.3.4) are also 

present in legumes e.g. from Pisum sativum and Vicia sativa (Hamana et al., 1991).  

However, the less common polyamines such as polyamine (3.3), (3.5), (4.4), (3.3.4.3.3) also 

found in some alkaloids.  Polyamines in plants have been suggested that they play important 

roles in morphogenesis, growth, embryogenesis, organ development, leaf senescence and 

stress response (Kumar et al., 1997, Walden et al., 1997, Malmberg et al., 1998, Bouchereau 

et al., 1999, Liu et al., 2000).  Most of compounds from putrescine core are N1
,N

4-

diacylputrescine such as hemileptagline (N1
,N

4-bis-(3-(methylthio) propenoyl)putrescine 

(Figure 1.6) (Saifah et al., 1999), pyramidatine (Figure 1.7) from Aglaia species (Saifah et 

al., 1993, 1998).  These compounds exhibit cytotoxin and antiviral activities.  Previously, 

sulfur-containing amides had been reported as the constituents of the genus Glycosmis of the 

Rutaceae (Greger et al., 1993).  The putrescine alkaloid magnolamide (Figure 1.8), with a 

substituted pyrrole unit, was isolated by Yu et al. (1998) and was synthesized by Dong et al. 

(2002).  Many of the polyamine alkaloids reported as cinnamoyl, coumaroyl, caffeoyl, 

feruloyl, and sinapoyl derivatives of putrescine ((Figure 1.9), spermidine and spermine such 

as N1
,N

4
,N

9-tricoumaroylspermine and N1
,N

4
,N

9
,N

12-tetracoumaroylspermine (Figure 1.10).  

These compounds are believed to prevent photodamage to nucleic acids during the aerial 

transport of the pollen. 
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1.3  Physico-chemical properties 

 

Due to the proximity of at least two N-atoms in their structures, polyamines show reactivity that 

are distinctively different from those of monoamines.  Polyamines are small molecular mass 

molecules, polybasic, water soluble and at physiological pH many of the amino groups are 

protonated and carry a positive charge.  The distinctive names given to the diamines, putrescine 

and cadaverine, relate to the odour of the free volatile amines, which lack volatility and odour 

when they exist as their cationic salts.  Appropriate combinations of pH and solubility of the 

amines and their salts in aqueous and organic media were exploited early in the isolation and 

estimation of the polyamines.  The loss of the proton from the protonated amine at alkaline pH 

generating the free amine is crucial in the isolation and analysis of the natural polyamines.   

 

Basicity and pKa values of amines 

 

Table 1.1  pKa values of polyamines by potentiometry (Palmer and Powell, 1974). 

 

Polyamines pKa 

Putrescine 10.80, 9.63 

Spermidine 10.95, 9.98, 8.56 

Spermine 10.94, 10.12, 9.04, 7.97 

 

The pKa values of the various amines in the polyamines have been estimated by a variety of 

methods.  Palmer and Powel (1974) studied pKa of polyamines by potentiometric titration 

using glass electrodes (Table 1.1).  The initial protonations are on the sterically more 

accessible (less hindered) primary amines even though secondary amines are more basic.  

Whereas uncharged amines can frequently penetrate lipid-containing membranes by 

diffusion (Guarino and Cohen, 1979), charged amines, including the quaternary ammonium 
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salts, do not cross membranes easily, if at all, in most cellular environments.  The other 

technique used instead of glass electrode potentiometric measurement is spectroscopic, 

nuclear magnetic resonance (NMR) spectroscopy.  By potentiometric titration and by NMR 

chemical shift measurements, the pKa values of polyamines were determined (Table 1.2).  

From 13C-NMR studies it was concluded that in spermidine, the inner secondary amine is 

protonated only after the complete protonation of the primary amines.  Both primary 

nitrogens appeared to be protonated simultaneously, despite attachment to aliphatic chains of 

different length.  The amine protonation is affected by the length of an intervening aliphatic 

chain.  For spermidine and spermine, the initial protonations are on the primary amines.  The 

uncharged amino groups appeared at values above pH 9.5 (Kimberly and Goldstein, 1981). 

 

Table 1.2  pKa values of spermidine by difference measurements 

 

Polyamine pKa by 15N-NMR 

(Takeda et al., 1983) 

pKa by 13C-NMR 

(Takeda et al.,1983) 

pKa by1H-13C NMR 

(Onash et al., 1984) 

Spermidine 11.56, 10.80, 9.52 11.88, 10.77, 9.60 11.02, 10.02, 8.75 

 

Table 1.3  pKa values of diamines (Martell et al., 1997). 

 

Diamine pKa ∆pKa ∆Ka 

1,2-Diaminoethane (2) 9.89, 7.08 2.8 630 

1,3-Diaminopropane (3) 10.56, 8.76 1.8 63 

1,4-Diaminobutane (4) 10.72, 9.44 1.28 19 

1,5-Diaminopentane (5) 10.78, 9.85 0.93 8.5 

1,6-Diaminohexane (6) 10.97, 10.09 0.88 7.6 

 

The comparison of pKa values on the series of diamines (Table 1.3), triamines (Table 1.4) 

and tetramines (Table 1.5) have been reported (Martell et al., 1997).  For diamines, the 

difference between the pKa of the first and second protonation is 2.8 log unit (Ka = 630) for 

1,2-diaminoethane (2) (Table 1.3).  Then this difference is dramatically reduced in (3) (∆pKa 

= 1.8 log unit, ∆Ka = 63) which means that the propylenic spacer between the terminal 

primary amine groups reduces significantly the electrostatic repulsion between both sites.  

This effect is much smaller when ∆pKa is compared between (3) and (4), when one 

methylene group was added, and also clearly when more methylene groups are added in the 

chain to (5), and no such difference of ∆pKa occurs between (5) and (6).  The reduced effect 

of more spatially distant amine groups is reflected in higher pKa values (Table 1.3). 
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Triamines present two kinds of amines, primary at the end and secondary in the middle of 

the molecule.  In triamine, the change of an ethylenic chain by a propylenic (from 2.2 to 2.3) 

increases the basicity by more than two orders of magnitude.  In 2.2, the pKa represents two 

relatively high values and one much lower while the other triamines show a set of two high 

pKa values with one intermediate or three high pKa values as the function of the length of 

the hydrocarbon chains between the nitrogen atoms. 

 

Table 1.4  pKa values of triamines (Martell et al., 1997). 

 

Triamine pKa 

3-Azapentane-1,5-diamine (2.2) 9.84, 9.02, 4.23 

3-Azahexane-1,6-diamine (2.3) 10.21, 9.17, 6.10 

3-Azaheptane-1,7-diamine (2.4) 10.65, 9.42, 6.71 

4-Azapentane-1,7-diamine (3.3) 10.65, 9.57, 7.69 

4-Azaoctane-1,8-diamine (3.4, spermidine) 10.89, 9.81, 8.24 

 

Table 1.5  pKa values of tetraamines (Martell et al., 1997). 

 

Tetraamine pKa 

2.2.2 9.74, 9.07, 6.59, 3.27 

2.3.2 10.08, 9.26, 6.88, 5.45 

3.2.3 10.53, 9.77, 8.30, 5.59 

3.3.3 10.46, 9.82, 8.54, 7.21 

3.4.3 (spermine) 10.80, 10.02, 8.85, 7.96 

 

Tetraamines present two distinct kinds of nitrogen atoms, two primary amines at both ends 

and two secondary amines at the central part of the chain.  From Table 1.5, the trends of 

protonation present two large basicity constants and two intermediate values in (2.3.2) while 

in (3.2.3) shows three large constants and one intermediate.  However, in (2.2.2) the effect of 

repulsion effect of protonated nitrogens separated by ethylenic chains make three groups of 

pKa values, the first is intermediate (9.74, 9.07), the second is small (6.59) and the last is low 

(3.27) which is from the fourth protonation.  The polyamines (3.3.3) and (3.4.3) show a 

group of higher pKa values due to the propylenic or butylenic chains which reduce the 

electrostatic repulsion more than the (shorter) ethylenic chains. 
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1.4  Biological roles and pharmacological effects of polyamines 

 

Polyamines and nucleic acids 

 

Polyamines have been shown to have an important role in cell division and their amount 

increases dramatically under conditions of high cell division for instance tumor growth, 

cystic fibrosis and pregnancy (Russel and Durie, 1978).  As the polyamines carry multiple 

positive charges in vivo due to protonation of the polyamine groups, they will interact with 

negatively charged polynucleic acid and it has been estimated that a large amount of the 

polyamines present in the cell are associated to DNA or RNA (Watanabe et al., 1991).  

Polyamines have been shown to induce DNA condensation and to stabilize compact forms of 

DNA (Bloomfield, 1991, Gosule et al., 1976, Raspaud et al., 1999).  DNA often occurs in 

compact forms, e.g. in chromatin of eukaryotes and in sperm and phage heads, thus it is 

possible that polyamines are largely responsible for the stabilization of these compact DNA 

phases.  It is believed that the primary targets for polyamine binding are the charged DNA 

phosphates (Deng et al., 2000). 

 

Polyamines as the microbial growth factors 

 

The first study was those of Herbst et al. (1958) on Hemophilus parainfluenzae 7901.  In the 

absence of added polyamine no growth occurs on a purified medium.  Growth is obtained 

upon addition of small amounts of 1,3-diaminopropane, 1,4-diaminobutane or any one of 

about twenty other synthetic derivatives of these diamines, including spermidine and 

spermine.  Sneath (1995) described a mutant of Aspergillus nidulans that has an absolute 

requirement of 1,4-diamonobutane.  Several other compounds, including spermine, 

ornithine, arginine, lysine, 1,3-diaminopropane and 1,5-diaminopentane are ineffective, and 

only a small growth response is found with spermidine.  The occurrence of a mutant with 

this specific growth requirement for 1,4-diaminobutane indicate that 1,4-diamonobutane or a 

derivative has an essential function in the cell. 

 

Stabilization of bacterial spheroplasts and protoplasts by polyamines. 

 

The discovery of the stabilization of osmotically fragile bacteria by small amounts of 

spermine indicated that in some unknown way spermine affects the strength of the bacterial 

cell wall or membrane.  This work was demonstrated by Tabor (1962) by treating E. coli 

with lysozyme and ethylenediaminotetraacetate in a 20% sucrose medium; the bacteria are 

converted to spheroplasts (spheroplast is a cell from which the cell wall has been almost 
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completely removed) that lyse if the osmotic pressure is lowered.  Protection against lysis is 

afforded by 0.001 M spermine, spermidine, CaCl2, quinacrine or streptomycin; comparable 

concentrations of KCl, NH4Cl, MgCl2, ornithine, lysine or 1,4-diaminobutane are inactive.  

Spermine has a protective effect also on spheroplasts of E. coli produced by penicillin 

treatment and protoplasts of Micrococcus lysodeikticus made by treatment with lysozyme.  

The striking aspect of these results is the low concentration of spermine (0.001 M) needed to 

prevent lyse, compared to the 0.5 M sucrose usually used.  The interior of cell has a higher 

osmotic pressure than the external medium; the cell is prevented from swelling even in 

distilled water by the rigidity of its cell wall.  When the wall is damaged by lysozyme or its 

synthesis is inhibited by penicillin this restraint is absent and the spheroplast swells until its 

membrane ruptures, lyse occurs.  The 0.5 M sucrose prevents lysis by raising the osmotic 

pressure of the environment to that of the contents of the spheroplast.  Spermine in a 

concentration of 0.001 M does not increase the osmotic pressure significantly and therefore 

presumably acts by strengthening the spheroplast membrane. 

 

Antimicrobial effects 

 

Growth of several bacteria and yeast is inhibited by the polyamines; however, this effect 

varies in different species.  At pH 7, S. aureus is killed by spermine at 5 x 10-4 M, while 0.01 

M is necessary to kill E. coli (Razin and Rozansky, 1957).  A competitive inhibitory effect 

between the penetration of basic amino acids and the corresponding diamines (of similar 

chain length) was observed in Bacterium cadaveris (Mandelstam, 1956).  Various 

polyamines conjugated to cholesterol, cholenic acid and bile acids have been reported (Geall 

et al., 2000, Karigiannis, 2000).  Some of these sterol-polyamine conjugates exhibit 

antimicrobial (Kim, 2000, Kikuchi et al., 1997, Jones et al., 1996, Sadownik et al., 1995) 

and anti-trypanosomal activity (Khabnadideh et al., 2000).  The isolation, structural 

determination, and characterization of a water-soluble cationic steroid from the dogfish 

shark, Squalus acanthias, called squalamine exhibits potent antimicrobial activity against 

fungi, protozoa, and both Gram-negative and Gram-positive bacteria (Figure 1.11) (Moore et 

al., 1993). 

OSO
3
H

N
H

OHN
H

NH
2

 

 

Figure 1.11  Squalamine 
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1.5  Analysis of polyamines 

 

Polyamines content of cells and body fluids are in the range of 0.05–500 µmol/1012 cells and 

0.05 – 15 µmol/L.  The analysis of polyamines had been performed with almost all available 

techniques:  thin-layer and paper and liquid chromatography, electrophoresis, 

immunochemical methods, enzymatic methods, high-performance liquid chromatography 

(HPLC) and gas chromatography (GC).  The difficulties experienced in attempting to 

identify and measure the amount of polyamines in biological materials follow from three 

characteristics: their size as they are low-molecular-mass aliphatic amines, the low 

concentrations in which they are present, and that their only reactive centres are the amino 

groups which make them high basicity and strong adsorption on solid surfaces.  Thus 

methods for polyamine analysis must include procedures to extract, and perhaps concentrate, 

the polyamines; to separate them from other amino-containing compounds (such as amino 

acids), and from each other; to convert them into colour or fluorescence derivatives; to 

identify them; and then to make quantitative measurements.  All available methods have 

definite limitations and there is still no simple, specific method for the quantitative 

determination of the various polyamines.  It is usually necessary to carry out one or more 

preliminary steps to separate the polyamines from each other and from other cellular 

materials. 

 

Analytical methods for polyamines 

 

1.  Thin-layer chromatography (TLC) 

TLC has been used extensively for preliminary identification and semiquantitative of 

polyamines.  TLC is not very precise and specific technique.  However, it is simple, rapid and 

can be used without sophisticated equipment.  In these procedures, the amines are usually 

detected with a ninhydrin spray (Shirahata et al., 1983) or by derivative formation of primary 

and secondary amines with dansyl chloride (5-dimethyl aminonaphthalene-1-sulfonyl 

chloride) (Seiler and Wiechmann, 1965, Boffey et al., 1974, Fleisher et al., 1975, Heby et al., 

1978, Beyer et al., 1983, Wettlaufer, 1988, Madhubala, 1998).  TLC is an easy way to 

determine polyamines in tissue extracts and cell extracts (Madhubala, 1998).  Different 

solvent systems were evaluated for their ability to separate biogenic amines after dansylation 

by TLC and detected by fluorescence densitometry at 330 nm (Lapa-Guimarães et al., 2004).  

Recently, calcium sulphate (CaSO4) coated TLC plates were used for the analysis of aliphatic 

polyamines without derivatization for separation of six di- and polyamines (ornithine, 

citrulline, putrescine, cadaverine, spermidine and spermine) (Khan, 2006). 
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2.  Immunoassays 

The immunoassays which were used for the determination of polyamines are Radio 

Immunoassay (RIA) and Enzyme-Linked Immuno Sorbent Assay (ELISA).  Both techniques 

provide high sensitivity, require small tissue samples and allow multiple analyses in parallel.  

Moreover there is no need to derivatize the samples.  Nevertheless, a major problem is the 

specificity of the antibody produced the inability to obtain antibodies against putrescine and 

also the hazard of handling radioactive reagent in the RIA.  The early efforts to produce 

antibody of spermine had resulted in somewhat less specific antispermine that processed 

cross-reactivity with spermidine (Bartos et al., 1975).  Enzyme immunoassay which 

employed two antibodies against spermine and spermidine was developed by Fujiwara, 

proved to be non-specific again cross-reaction problems were present (Fujiwara et al., 1983). 

 

3.  Gas-liquid chromatography and Gas-chromatography-mass spectrometry 

Methods of analysis of polyamines by using GC were introduced in 1969 (Brooks et al., 

1969).  GC of non-derivatized polyamines is not very popular and not very successful 

because of their polar characteristics which present many problems of loss on the column, 

tailing patterns of elution, difficulties of improvements, non-reproducible.  GC is not as often 

used for the determination of polyamines as liquid chromatography.  One of the main 

problems with GC is that sample introduction as aqueous phase is undesirable, which causes 

problems with serum and urine samples.  Moreover, the presence of non-polar contamination 

in biogenic samples makes difficulty for detection by GC.  However, a GC method for non-

derivatized polyamines was developed to separate and detect polyamines in different organs 

(Beninati et al., 1977).  By using trifluoroacetylacetone as a derivatizing reagent for 

polyamines improved the sensitivity of putrescine and cadaverine quantification in the serum 

of cancer patients (Khuhawar et al., 1999).  The use of capillary columns instead of packed 

columns increased the sensitivity of GC systems and gives reproducible results.  Polyamines 

and acetylpolyamines were analysed simultaneously this minimized the problems of 

adsorption and reduced the analysis-time (Dorhout et al., 1997).  Further developments in 

GC analyses comprised both pre-purification and derivatization procedure improvements.  

Derivatisation usually necessitates isolation of analytes in a water and salt free form.  

Nevertheless, polyamine analyses by GC remained time-consuming and unattractive so GC 

has been become neglected probably because of initially laborious pre-purification.  The pre-

purification were carried out by extraction with alkaline butanol (Beninati et al., 1977), 

trichloroacetic acid (Fujihara et al., 1983, Emonds et al., 1983, Khuhawar et al., 1999), 

cation-exchange chromatography (Rattenbury et al., 1979, Slemr et al., 1984) or adsorption 

with silica gel (McGregor et al., 1976, Yamamoto et al., 1982, Muskiet et al., 1984, Jiang, 

1990, Dorhout et al., 1997).  The derivatizations performed with isobutyloxycarbonyl 
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(Bakowski et al., 1981), pentafluoropropionyl (Rattenbury et al., 1979), ethyloxycarbonyl 

(Yamamoto et al., 1982, 1984), trifluoroacetyl (Jiang, 1990; Khuhawar et al., 1999) or 

heptafluorobutylryl derivatives (Fujihara et al., 1983; Muskiet et al., 1984; van den Berg et 

al., 1986; Dorhout et al., 1997). 

 

GC systems can also be coupled with more selective detector methods such as MS which 

will give the powerful separation and identification technique.  Polyamines can be 

determined more selectively by applying isotopic labelled standards (Smith et al., 1977).  

GC-MS was used for determination of hair polyamines as hair is the noninvasive biosample 

(Choi et al., 2000).  At present capillary GC seems more suitable for profiling of polyamines 

because of its higher number of theoretical plates and its easy convertibility to GC-MS. 

 

4.  High-performance liquid chromatography (HPLC) 

HPLC with on-line detection is the most common applied profiling method for polyamines.  

Cation-exchange and reversed-phase high performance liquid chromatography require pre- 

or post-column derivatization, followed by UV-VIS spectrophotometric or fluorimetric 

detection.  An HPLC method for polyamines was first reported by Samejima in 1976 

(Samejima et al., 1976).  Chromatographic separation of polyamines is based on 

hydrophobic interactions of the residual part of the molecule; therefore retention of non-

derivatized polyamines is not easy on standard reversed-phase chromatographic columns.  

However, there was a method described based on this principle (Fransson et al., 1990).  The 

method was not sensitive and only applicable to high concentrations.  The separation of non-

derivatized polyamines is easily performed with ion-chromatography.  There are three 

methods of operation; (cat) ion-exchange, ion-pair and ion-exclusion chromatography.  The 

first two, ion-exchange chromatography and ion-pair chromatography are more popular than 

ion-exclusion chromatography for the separation of biogenic polyamines (Molnar-Perl, 

2005).  The strong electrostatic interaction between the two or more protonated amines of the 

analytes and the anionic fixed charged of the ion-exchange chromatography stationary phase 

cause strong analyte retention.  Thus, high concentrations of counter ion in the eluent are 

required to elute the polyamines.  The specific detection of non-derivatized polyamines after 

ion-exchange chromatography was done by a condensation nucleation light scattering 

detector (CNLSD) (Sadain et al., 1999).  Another interesting approach to directly detect non-

derivatized polyamines is LC-MS which is sensitive and selective due to the mass 

chromatograms.  However, an LC-MS with ion exchange systems is expensive, and not easy 

for quantification purposes.  The methods mentioned above were carried out by non-

derivatization reaction of polyamines, however, ion-chromatography with selective post-

column derivatization reaction is a very popular method to separate and detect polyamines 
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(Suzuki et al., 1990, Conca et al., 2001, Vidal-Carou et al., 2003).  OPA (o-phthalaldehyde) 

is most often used as the post-column detector.  Polyamine-ninhydrin is another post-column 

derivatization of choice (Bremer et al., 1971; Gehrke et al., 1974).  Pre-column 

derivatization is another alternative way to determine polyamines.  Some advantages of this 

technique over post-column derivatization are as follows:  the pre-column derivatization is 

not related to the mobile phase so unlike the post-column derivatization, the reaction 

conditions can therefore be chosen freely; the rates of the reactions are not usually limiting, 

whereas slow reaction can cause serious mixing and reaction-volume problems in post-

column derivatization; the pre-column derivatization can be use as a pre-clean-up step; 

selective reagents and extraction procedures can result in the easy elimination of much 

interference of reagents in contrast to reaction after separation; pre-column derivatization can 

improve the sensitivity and it uses small amounts of expensive derivatization reagents and 

achieves short analysis times. 

 

Pre- or post-column derivatisation with fluorogenic reagents became popular because of their 

superior sensitivity compared with those that introduce UV-VIS absorbing moieties.  Pre-

column derivatisation with DNS Cl in aqueous solution, followed by reversed-phase 

HPLC/fluorimetry is a widely employed method for polyamines in tissue and body fluids.  

Other examples of pre-column reactions to fluorophores are those with fluorescamine, 

OPA/MCE and OPA/ethanethiol.  Cation-exchange HPLC with post column OPA/ME 

fluorimetry is another option.  A number of pre-column derivatisation techniques have been 

developed for HPLC with UV-VIS spectrophotometric detection.  They include reaction 

with benzoyl chloride, p-toluenesulfonyl chloride (tosyl chloride), 2,4-dinitrofluorobenzene, 

4-fluoro-3-nitrobenzotrifluoride, quinoline-8-sulfonyl chloride and 4-dimethylaminoazo-

benzene-4-sulfonyl chloride (dabsyl chloride). 

 

5.  Mass spectrometric methods 

MS methods can simultaneously separate and identify polyamines on the basis of the 

difference of their mass without use of column (Furuumi et al., 1998).  A quadrupole MS 

with ionspray ionization interface (ISI-Q MS) was the first one used to determine polyamine 

concentrations in rat tissues (Xu et al., 2002).  Recent progress in MS has made it possible to 

use a time-of-flight mass spectrometer with electrospray ionization interface (ESI-TOF MS), 

which is more sensitive and provides a higher resolution (Samejima et al., 2007). 
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1.6  Aims of the study 

 

This study attempts to determine accurate and simple assays for a wide range of polyamines 

by optimizing the derivatization methods and increasing the sensitivity of polyamine 

detection by HPLC using four typical fluorescent chromophores:  o-phthalaldehyde/ 

mercaptoethanol (OPA/MCE), fluorescamine, 9-fluorenylmethyl chloroformate (FMOC Cl) 

and dansyl chloride (DNS Cl) for pre column derivatization and using HR-ESI-MS to 

confirm the structures of the derivatives.  Intramolecular and intermolecular interactions that 

might influence the sensitivity of fluorescence detection have also been investigated.  The 

synthesis of the spermine (3.4.3) regioisomer, thermospermine (3.3.4) has been carried out in 

order to investigate the methods to separate and quantify these two isomers by RP-HPLC. 

 

The objectives of this research are: 

 
1. To study the analytical pharmaceutical chemistry related to polyamines and 

aminoglycosides which are difficult to analyze using current protocols.  In this research 

we will use fluorescence spectroscopy (of e.g. o-phthalaldehyde/mercaptoethanol, 

fluorescamine, FMOC and dansyl derivatives) and the efficiency of poly-derivatization 

(and the quantification of such polyamine-fluorophore conjugates), detailing the 

potential for the regioselective, fluorescent derivatization of basic amines. 

 

2. To investigate the chromatographic and spectroscopic characterization of these 

derivatives of polyamines and aminoglycosides, from a variety of natural product 

sources, concentrating on those which contain several amine functional groups:  2 (as 

found in putrescine and cadaverine), 3 (spermidine), 4 (spermine, kanamycin), 5 

(paramomycin), up to 6 (neomycin). 

 

3. To investigate reactions which selectively convert primary and secondary amines into 

fluorescent derivatives.  Then to develop suitable chromatographic procedures using 

fluorescence detection to resolve and quantify these amine derivatives.  The parent 

polyamines are of interest as novel vectors in non-viral gene delivery.  The intermediates 

involved in their synthesis such di- and polyamines lack any useful chromophores and 

therefore they are intrinsically hard to analyse, to detect and especially to quantify. 

 

4. To synthesize thermospermine (4.3.3) and then to analyse it in the presence of spermine 

(3.4.3) by making deuteriated and fluorescent derivatives which can be easily and 

practically separated by RP-HPLC, ultimately working towards a quantitative analysis. 
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CHAPTER 2:  EXPERIMENTAL 

 

2.1  Materials and general methods 

 

Chemicals, reagents, and solvents were purchased from Fisher and Sigma-Aldrich, all in 

GPR grade, unless otherwise stated and were used without further purification unless 

specified.  Water refers generally to distilled water or to Milli-Q-water for HPLC.  

Concentrated acids and bases were diluted in aqueous solution unless otherwise stated and 

pH adjustments were monitored by pH meter model CCM C625 combined conductivity/pH 

meter, WPA Linton, Cambridge, UK. 

 

Typical extraction or reaction work-ups ended with the organic solution being dried over 

anhydrous magnesium sulfate, filtered, and then evaporated to dryness under reduced 

pressure.  Solvents were evaporated with a rotary evaporator (Büchi rotavapor) using a 

vacuum pump (Vacuubrand PC 2001 vario) with a pressure control (Vacuubrand CVC 2II) 

and a variable temperature water bath (Büchi water bath). 

 

Flash column chromatography (Still et al., 1978) was generally performed on silica gel 60 

(Merck, 0.040-0.063 mm, 230-400 mesh ASTM, pH 6.5-7.5 for a 10% suspension) or on 

activated standard grade, neutral, acidic and basic (Brockmann I) alumina gels (Sigma-

Aldrich, 58Å, ~150 mesh).  The column was packed in an open-glass column with an 

appropriate solvent that could achieve a satisfactory resolution on TLC.  Solvent ratios are 

v/v unless otherwise stated.  The progress of the elution was followed by collecting fractions 

from the eluate, concentrating and monitoring by analytical TLC, HPLC, NMR and HR-ESI-

MS. 

 

Analytical TLC was performed on commercial aluminium-backed plates pre-coated with 

silica GF254 60 in 0.25 mm thickness and commercial aluminium-backed plates pre-coated 

with aluminium oxide GF254 60 neutral purchased from Merck.  TLC samples were applied 

as solutions in methanol.  The four mobile phase systems (ratios in v/v/v) used to monitor the 

reaction are given in Table 2.1. 

 

TLC plates were subjected to a single development to a height of approx. 5 cm in saturated 

vapour conditions.  Compounds were visualized by drying the plate and dipping in (or 

spraying with) a freshly prepared solution of ninhydrin (1.0 g) in a mixture of 95% methanol 

(50 mL) and glacial acetic acid (10 mL) followed by heating for ~3 min.  The amine and 

polyamine components were visible as purple spots on a white background. 
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Table 2.1  TLC mobile phase systems for monitoring thermospermine synthesis. 

 

system 1 dichloromethane: methanol = 10:1 

system 2 dichloromethane: methanol = 4:1 

system 3 dichloromethane: methanol: ammonium hydroxide = 10:5:1 

system 4 dichloromethane: methanol: ammonium hydroxide = 20:10:1 

 

Ultraviolet (UV) spectra were measured in methanolic solution using a Perkin-Elmer 

UV/VIS spectrophotometer Lambda EZ201.  Infrared (IR) spectra were recorded from 

anhydrous KBr discs or NaCl plates using a Perkin-Elmer RX 1 FT-IR instrument. 

 

Fluorescence studies were carried out with a Perkin-Elmer LS 50B Luminescence 

Spectrometer (λex and λem for different chromophores as in Table 2.2) using a 1 cm path 

length, 3 mL glass cuvette, slit width 5 nm.  An IBM compatible personal computer was 

used for data collection, using FL Winlab (Perkin-Elmer) software. 

 

Table 2.2  λex and λem of different chromophores. 

 

Chromophore λex (nm) λem (nm) 

Dansyl derivatives 330 510 

OPA/MCE derivatives 340 450 

FMOC derivatives 264 310 

Fluorescamine derivatives 390 486 

 

The high performance liquid chromatography (HPLC) instrument consisted of a solvent 

delivery system equipped with a Jasco PU-980 Intelligent HPLC pump (Ishikawa-cho, 

Japan) and monitored by a Jasco UV-1575 variable wavelength ultraviolet detector and 

Waters 470 fluorescence detector in series.  HPLC detection was typically by UV with the 

λmax the same as the λex of fluorescence for typical fluorophores in Table 2.2.  

Chromatograms were recorded on a Goerz Metramatt SE 120 recorder with chart speed at 1 

cm/min.  All columns used were commercially pre-packed reversed phase HPLC columns, 

purchased from Phenomenex Inc.  Analytical column:  Phenomenex hypersil ODS C18 5µ 

150 x 4.60 mm, Phenomenex luna C18 5µ 150 x 4.60 mm, Phenomenex luna C8 5µ 150 x 

4.60 mm with guard column H1-5C18 were used for the analytical separation procedures.  

Samples were dissolved in mobile phase and filtered though a 17 mm diameter SYR Filter 

Nylon 0.45 µm before injection using a 20 µL Rheodyne injection loop.  All mobile phase 
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mixtures were pumped at a flow rate of 1 mL/min and at 20oC.  The column was washed 

using the chosen solvent for 20 min or until a stable base line was obtained. 

 

Table 2.3  Mobile phase for HPLC experiments  

 

Chromophore type Mobile phase (%v/v) 

OPA/MCE derivatives Acetonitrile (MeCN) : Milli-Q-water 

(40:60, 60:40, 65:35, 70:30, 80:20, 85:15, 90:10) 

 Methanol : Milli-Q-water 

(70:30) 

OPA/MCE/FMOC derivatives Acetonitrile (MeCN) : Milli-Q-water 

(65:35, 70:30, 80:20, 85:15) 

FMOC derivatives Acetonitrile (MeCN) : Milli-Q-water  

(40:60, 50:50, 60:40, 65:35, 70:30, 80:20, 85:15) 

 Methanol : Milli-Q-water 

(40:60, 70:30) 

Fluorescamine derivatives Acetonitrile (MeCN) : Milli-Q-water 

(40:60, 50:50, 60:40, 65:35, 70:30, 80:20, 85:15)  

 Methanol : Milli-Q-water 

(40:60, 70:30) 

 Acetonitrile (MeCN) : Methanol: Milli-Q-water 

(85:10:5) 

Dansyl chloride derivatives Acetonitrile (MeCN) : Milli-Q-water 

(40:60, 50:50, 60:40, 65:35, 70:30, 80:20, 85:15)  

 Acetonitrile (MeCN) : Milli-Q-water: Formic acid 

(90:10:1, 60:40:0.1, 60:40:2.5)  

 Methanol : Milli-Q-water 

(70:30) 

 Acetonitrile (MeCN) : Methanol: Milli-Q-water 

(20:65:15) 

Semi-preparative column Acetonitrile (MeCN) : Milli-Q-water  

(70:30, 40:60)  

 

Semi-preparative column:  Phenomenex gemini 10 µ C18 110A 250 x 10 mm; guard column:  

Phenomenex gemini 5 µ C18 10 x 10 mm.  Samples were dissolved in pure organic solvent 

or dissolved in mobile phase and filtered by 17 mm SYR Filter Nylon 0.45 µm before 
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injection onto HPLC using a 100 µL loop.  Acetonitrile: Milli-Q-water (70:30, 40:60) was 

used as the mobile phase at flow rate 5 mL/min. 

 

All the HPLC experiments were performed using isocratic elution.  HPLC grade methanol 

and acetonitrile were purchased from Fisher and filtered through a Whatman® Nylon 

membrane prior to use.  The acidic solution (0.1% formic acid) was filtered through Milli-Q 

Plus PF.  The aqueous mobile system was shaken vigorously and then degassed on a Decon 

ultrasonicator for 30 min before use.  The mobile phases that have been used are shown in 

Table 2.3. 

 

NMR spectra were obtained on either JEOL GX 270 (operating at 270 MHz for 1H and 67.8 

MHz for 13C) or a JEOL EX 400, Varian Mercury VX 400 (operating at 400 MHz for 1H and 

100.8 MHz for 13C) spectrometer, in solution of CDCl3 (~0.5 mL) unless otherwise stated.  

Chemical shifts values are recorded in part per million (ppm) on the δ scale.  Spectra were 

referenced internally using either the residual solvent resonance for 13C or to TMS (0.0 ppm) 

for 1H.  COSY and DEPT spectra were all recorded using automated programmes.  Coupling 

constants are reported in Hertz (Hz, absolute values) and the multiplicities abbreviated as:  s 

(singlet), d (doublet), t (triplet), q (quartet), quin (quintet) and m (multiplet).  The 

abbreviation br (broad) is used to indicate significant broadening due to rapid exchange or 

unresolved fine coupling.  The format used for reporting 1H NMR spectra is:  chemical shift 

(integration, multiplicity, coupling constant and assignment). 

 

High Resolution-Electrospray ionization-Mass Spectrometry (HR-ESI-MS) was performed 

on a BRUKER DALTONICS micrOTOF instrument in the Department of Pharmacy and 

Pharmacology, University of Bath. 

 

2.2  o-Phthalaldehyde (OPA)/Mercaptoethanol (MCE) derivatization 

 

Optimization of derivatization conditions 

 

The optimizations of derivatization conditions were done by: 

1. Optimisation the pH of borate buffer to the OPA/MCE reagent using the series, pHs 

4.0, 4.5,5.0, 5.5, 6.0, 6.5, 7.0, 8.3, 9.3 and 10.5. 

2. Optimisation of the molar ratio of OPA/MCE reagent to sample solution. 

3. Optimization of the mole ratio of MCE (mM) to 1 mM of OPA, using the series, 1.4, 

2.8, 5.7, 10.0, 11.4 and 17.0. 

4. Optimisation of the reaction time using the series, 1, 5, 10, 20, 30, 40, 50, 60 and 80 min. 
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5. Optimisation of the condition for maximum stability of the derivatives of amine-

OPA/MCE at 20oC and 1oC. 

6. Optimization the mobile phase for HPLC by using different ratio of acetonitrile: Milli-

Q-water range from 40:60, 70:30, 80:20, 85:15, 90:10 (% v/v). 

 

Optimization the pH of borate buffer 

 

OPA/MCE reagent 

 

The OPA/MCE reagents were prepared at least 90 min before use and stored no longer than 

3 days in the refrigerator (4oC).  The stock solution of OPA contained 0.75 g of OPA in 50.0 

mL methanol is referred to below as methanolic OPA solution. 

 

The mole ratio of [OPA]:[MCE] = [1:10] was obtained by mixing, in order of listing, 2.5 mL 

methanolic OPA, 2.0 mL borate buffer (at various pH, using the series, pHs 4.0, 4.5,5.0, 5.5, 

6.0, 6.5, 7.0, 8.3, 9.3 and 10.5) and 200 µL MCE and completed with methanol up to 10.0 

mL. 

 

Borate buffer solution 

 

Borate buffer pH 4.0 -10.5 (Ref Appendix I E, A69, British Pharmacopoeia 1988) 

A series of borate buffer (200 mM) from pH 4.0 to 10.5 was prepared by the following 

procedure.  To 50 mL of a solution containing 0.6189 g of boric acid and 0.7456 g of 

potassium chloride, 20.0 mL of 0.2 M sodium hydroxide was added.  The pH was adjusted 

by addition of boric acid solution or sodium hydroxide solution using a pH meter measure 

the pH then diluting to 200 mL with water. 

 

Sample solution 

 

Sample solutions of amines were prepared with distilled water at the concentration of 5.0 

mM.  Ethylamine and 1-butylamine were used in the optimisation the pH of borate buffer. 

 

100 µl of 5 mM ethylamine and 100 µL of 200 mM borate buffer solution pH 4.0, 4.5, 5.0, 

5.5, 6.0, 6.5, 7.0, 8.3, 9.3, and 10.5 were pipetted into 10 glass vials and mixed well.  100 µL 

of OPA/MCE reagent = [1:10] was added to each vial and left to react for 1 min.  Then this 

solution was injected onto the HPLC.  All the steps were repeated with 1-butylamine. 
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HPLC system 

 

Column: Phenomenex hypersil C18 5µ 150 x 4.60 mm. 

Mobile phase: Acetonitrile: Milli-Q-water (60:40) the mobile phase was filtered through a 

0.45 µm nylon membrane filter under vacuum and degassed in an ultrasonic 

bath for 30 min, used at a flow rate of 1 mL/min. 

Detection Fluorescence detection at OPA wavelength λex = 340 nm, λem = 450 nm. 

 UV detector at λmax = 340 nm. 

 

Optimization for the mole ratio of MCE to 1 mM of OPA 

 

OPA/MCE reagent 

 

The OPA derivative reagent was prepared by dissolving 0.134 g of OPA into 5.00 mL 

methanol, then adding MCE in series of 100, 200, 400, 700, 800, 1200 µL, which is equal to 

the mole ratio of [OPA]:[MCE] = [1:1.4], [1:2.8], [1:5.7], [1:10], [1:11.4] and [1:17.0] 

respectively and then diluting to 25.0 mL with borate buffer (pH 10.5). 

 

Borate buffer solution 

 

Borate buffer pH 4.0-10.5 (Ref Appendix I E, A69, British Pharmacopoeia 1988).   

A series of Borate Buffers (200 mM) 10.5 was prepared by the following method:  to a 50 

mL of a solution containing 0.6189 g of boric acid and 0.7456 g of potassium chloride, 20.0 

mL of 0.2 M sodium hydroxide was added.  The pH was adjusted by addition of boric acid 

solution or sodium hydroxide solution using a pH meter to measure the pH then diluting to 

200 mL with water. 

 

Sample solution 

 

1-Butylamine (5.0 mM in distilled water) was used in the optimisation the mole ratio of 

OPA/MCE reagent composition. 

 

1. 100 µL of 5 mM 1-butylamine and 100 µL of 200 mM borate buffer solution pH 10.5 

were pipetted into 6 glass vials and mixed well. 

2. 100 µL of OPA/MCE reagent [1:1.4], [1:2.8], [1:5.7], [1:10], [1:11.4] and [1:17.0] was 

added to each vial left to react for 1 min then injected onto HPLC. 
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HPLC system 

 

Column: Phenomenex hypersil C18 5µ 150 x 4.60 mm. 

Mobile phase: Acetonitrile: Milli-Q-water (60:40) the mobile phase was filtered through a 

0.45 µm nylon membrane filter under vacuum and degassed in an ultrasonic 

bath for 30 min, used at a flow rate of 1 mL/min. 

Detection Fluorescence detection at OPA wavelength λex = 340 nm, λem = 450 nm. 

 UV detector at λmax = 340 nm. 

 

Optimizing the mole ratio of OPA/MCE to amines 

 

OPA/MCE reagent 

 

The OPA derivative reagent was prepared by dissolving 0.268 g of OPA in 5.00 mL 

methanol, then adding MCE in series of 1.4 mL, which is equal to the mole ratio of 

[OPA]:[MCE] = [1:10] and then diluting to 25.0 mL with borate buffer (pH 10.5).  The 

concentration of OPA is 80 mM, then this solution was diluted by borate buffer (pH 10.5) to 

obtain the concentration series of 1 mM, 5 mM, 10 mM, 20 mM and 40 mM. 

 

Sample solution 

 

1-Butylamine (5.0 mM in distilled water) was used in the optimisation of the mole ratio of 

OPA/MCE reagent composition, derivatized as follows:  100 µL of 5 mM 1-butylamine and 

100 µL of 200 mM borate buffer solution pH 10.5 were pipetted into 6 glass vials and mixed 

well.  100 µL of OPA/MCE reagent concentration at 1, 5, 10, 20, 40 or 80 mM was added to 

each vial and left to react for 1 min.  After 1 min, this solution was injected onto HPLC. 

 

HPLC system 

 

Column: Phenomenex hypersil C18 5µ 150 x 4.60 mm. 

Mobile phase: Acetonitrile: Milli-Q-water (60:40) the mobile phase was filtered through a 

0.45 µm nylon membrane filter under vacuum and degassed in an ultrasonic 

bath for 30 min, used at a flow rate of 1 mL/min. 

Detection Fluorescence detection at OPA wavelength λex = 340 nm, λem = 450 nm. 

 UV detector at λmax = 340 nm. 
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Stability of amines-OPA/MCE derivatives: 

 

After the procedure had been optimized, the following OPA derivative reagent was used 

routinely, prepared by dissolving OPA (0.134 g) in 5.00 mL methanol, then adding MCE 

(700 µL) which is equal to the mole ratio of [OPA]:[MCE] = [1:10] and then diluting to 25.0 

mL with borate buffer (pH 10.5).  The concentration of OPA = 1 mmol, in 25 mL = 40 mM.  

The reagent was kept in the refrigerator (4oC) and used within 7 days. 

 

Sample solution 

 

The following amines were prepared as aqueous solutions at a concentration of 1 mM:  

ethylamine, 1-butylamine, 1,4-diaminobutane, 1,5-diaminopentane, 1,7-diaminoheptane.  

100 µl of 1 mM ethylamine and 100 µl of 200 mM borate buffer solution pH 10.5 were 

pipetted into a glass vials and mixed well.  Then 100 µl of OPA/MCE reagent (routine 

working reagent) was added to each vial left to react for 1 min and this solution was injected 

onto HPLC at 5, 10, 20, 30, 60, 70, 80 and 90 min (after reaction time).  All the steps were 

repeated with other four amines. 

 

Temperature and stability of the derivatives 

 

An aqueous solution of 1,4-diaminobutane (100 µL, 1 mM) was derivatized with borate 

buffer solution (100 µL, 200 mM, pH 10.5), pipetted into 2 glass vials and mixed well.  100 

µL of OPA/MCE reagent (routine working reagent) was added to each vial, left to react for 1 

min, then one vial was kept at 1oC and the other at 20oC.  After reaction, the solutions were 

injected after 5, 10, 20, 30, 60, 70, 80 and 90 min onto HPLC. 

 

HPLC system 

 

Column: Phenomenex hypersil C18 5µ 150 x 4.60 mm. 

Mobile phase: Acetonitrile: Milli-Q-water (70:30) the mobile phase was filtered through a 

0.45 µm nylon membrane filter under vacuum and degassed in an ultrasonic 

bath for 30 min, used at a flow rate of 1 mL/min. 

Detection Fluorescence detection at OPA wavelength λex = 340 nm, λem = 450 nm. 

 UV detector at λmax = 340 nm. 
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Polyamines-OPA/MCE derivatives 

 

Sample solution 

Amine solutions (concentration from 0.2-1 mM, 100 µl) were prepared.  The following 

amines were investigated:  ethylamine, 1-butylamine, 1,4-diaminobutane, 1,5-

diaminopentane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,12-

diaminododecane, spermidine, spermine, N4,N9-didecanoyl spermine, N4,N9-dilinoleoyl 

spermine, glucosamine, kanamycin and neomycin. 

 

Derivatization method 

 

1 100 µL of 5 mM 1-butylamine and 100 µL of 200 mM borate buffer solution pH 10.5 

were pipetted into 6 glass vials and mixed well. 

2 100 µL of OPA/MCE reagent (routine working reagent) was added to each vial left to 

react for 1 min. 

3 After 1 min, this solution was injected onto HPLC. 

 

HPLC system 

 

Column: Phenomenex hypersil C18 5µ 150 x 4.60 mm. 

Mobile phase: Acetonitrile: Milli-Q-water (40:60, 70:30, 80:20, 90:10) the mobile phase 

was filtered through a 0.45 µm nylon membrane filter under vacuum and 

degassed in an ultrasonic bath for 30 min, used at a flow rate of 1 mL/min. 

Detection Fluorescence detection at OPA wavelength λex = 340 nm, λem = 450 nm. 

 UV detector at λmax = 340 nm. 

 

Calibration curve obtained from amine-OPA/MCE derivatives 

 

Sample solution 

 

1-Butylamine, 1,4-diaminobutane, 1,5-diaminopentane, 1,7-diaminoheptane, spermidine and 

kanamycin over the concentration range 0.01 – 10 mM were examined to obtain the 

calibration curves. 
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Derivatization method 

 

1 100 µL of various concentration of 1-butylamine and 100 µL of 200 mM borate buffer 

solution pH 10.5 were pipetted into 6 glass vials and mixed well. 

2 100 µL of OPA/MCE reagent (routine working reagent) was added to each vial left to 

react for 1 min. 

3 After 1 min, this solution was injected onto HPLC. 

4 All the steps were repeated with other models (1,4-diaminobutane, 1,5-

diaminopentane, 1,7-diaminoheptane,spermidine, kanamycin). 

5 A plot of peak area versus the concentration of amines was obtained with R2 at least 

0.99 using Microsoft excel. 

 

HPLC system 

 

Column: Phenomenex hypersil C18 5µ 150 x 4.60 mm. 

Mobile phase: Acetonitrile: Milli-Q-water (40:60, 70:30, 90:10) the mobile phase was 

filtered through a 0.45 µm nylon membrane filter under vacuum and 

degassed in an ultrasonic bath for 30 min, used at a flow rate of 1 mL/min. 

Detection Fluorescence detection at OPA wavelength λex = 340 nm, λem = 450 nm. 

 UV detector at λmax = 340 nm. 

 

Measurement of relative fluorescence yield experiment 

 

Sample solution 

 

The model amines:  1-butylamine, 1,4-diaminobutane, 1,5-diaminopentane, 1,7-

diaminoheptane were used at a concentration of 0.01-0.1 mM. 

1 The sample amines were derivatized by using routine working reagent of OPA/MCE 

by varying the concentration of amine samples from 0.01 to 0.1 mM. 

2 This solution was injected onto HPLC. 

3 A comparison of fluorescence yields of the model series was obtained by comparison 

between the peak area of fluorescence intensity and peak area of UV absorbance. 

4 A plot of fluorescence intensity against absorbance and the FI/UV equation was 

obtained. 
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HPLC system 

 

Column: Phenomenex hypersil C18 5µ 150 x 4.60 mm. 

Mobile phase: Acetonitrile: Milli-Q-water (70:30) the mobile phase was filtered through a 

0.45 µm nylon membrane filter under vacuum and degassed in an ultrasonic 

bath for 30 min, used at a flow rate of 1 mL/min. 

Detection Fluorescence detection at OPA wavelength λex = 340 nm, λem = 450 nm.  

UV detector at λmax = 340 nm. 

 

OPA/MCE derivatives of a series of non-viral gene therapy (NVGT) vectors 

 

10 mM of N4,N9-didecanoyl spermine was dissolved in 1 mL of  methanol then diluted to 5 

mL with distilled water. 

10 mM of N4,N9-dilinoleoyl spermine was dissolved in 1 mL of methanol then diluted to 5 

mL with distilled water. 

 

1 100 µL of N4,N9-didecanoyl spermine and 100 µL of 200 mM borate buffer solution 

pH 10.5 were pipetted into a glass vials and mixed well. 

2 100 µL of OPA/MCE reagent (routine working reagent) was added to each vial left to 

react for 1 min. 

3 After 1 min, this solution was injected onto HPLC. 

4 All the steps were repeated with another model (N4,N9-dilinoleoyl spermine). 

 

HPLC system 

 

Column: Phenomenex hypersil C18 5µ 150 x 4.60 mm. 

Mobile phase: Acetonitrile: Milli-Q-water (90:10) the mobile phase was filtered through a 

0.45 µm nylon membrane filter under vacuum and degassed in an ultrasonic 

bath for 30 min, used  at a flow rate of 1 mL/min. 

Detection Fluorescence detection at OPA wavelength λex = 340 nm, λem = 450 nm.  

UV detector at λmax = 340 nm. 

 

OPA/MCE derivatives of Aminoglycosides 

 

Sample solutions of aminoglycosides kanamycin and neomycin were prepared with distilled 

water the concentration range 1.0 – 10.0 mM. 
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Optimizing the reaction time of OPA/MCE to kanamycin 

 

1 100 µL of 1 mM kanamycin and 100 µL of 200 mM borate buffer solution pH 10.5 

were pipetted into 4 glass vials and mixed well. 

2 100 µL of OPA/MCE reagent (routine working reagent) was added to each vial left to 

react for 1, 10, 35, 45 min. 

3 After the reaction time, these solutions were injected onto HPLC. 

 

Optimizing the mole ratio of OPA/MCE to amines 

 

1 100 µL of 1 mM kanamycin and 100 µL of 200 mM borate buffer solution pH 10.5 

were pipetted into 7 glass vials and mixed well. 

2 100 µL of OPA/MCE reagent concentration 1 mM, 2 mM, 4 mM, 5 mM, 10 mM, 15 

mM and 25 mM. was added to each vial left to react for 10 min. 

3 After 10 min, this solution was injected onto HPLC. 

4 All steps were repeated with another model (neomycin). 

 

HPLC system 

 

Column: Phenomenex hypersil C18 5µ 150 x 4.60 mm. 

Mobile phase: Acetonitrile: Milli-Q-water (40:60) the mobile phase was filtered through a 

0.45 µm nylon membrane filter under vacuum and degassed in an ultrasonic 

bath for 30 min, used at a flow rate of 1 mL/min. 

Detection Fluorescence detection at OPA wavelength λex = 340 nm, λem = 450 nm.  

UV detector at λmax = 340 nm. 

 

High Resolution-Electrospray ionization-Mass Spectrometry (HR-ESI-MS) 

 

The expected molecular masses of some of the amine-OPA/MCE derivatives were confirmed 

by collection of the peak eluent and examination by HR-ESI-MS. 

 

2.3  o-Phthalaldehyde (OPA)/Mercaptoethanol (MCE)/9-fluorenylmethyl 

chloroformate (FMOC Cl) derivatization 

 

A two step derivatization process was performed by applying the OPA/MCE reagent 

followed by FMOC Cl reagent.  By this method, molecules that contained both primary and 
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secondary amines such as spermidine and spermine should be fully labelled at their primary 

amines by OPA/MCE and their secondary amines by FMOC.  Use the working OPA/MCE 

as described previously.  FMOC Cl was in dissolved acetonitrile (4 mM).  Amine samples:  

Spermidine, spermine (concentration from 0.1 mM-1 mM, 10-100 µL). 

 

Derivatization procedure 

 

100 µL Amine solution was rapidly mixed with 100 µL OPA/MCE reagent (routine working 

reagent) at 20oC.  After 2 min (+/- 20 s), 100 µL of FMOC reagent was added and left for 2 

min, then 50 µL were injected onto the HPLC.  A blank was performed without amine. 

 

HPLC system 

 

Column: Phenomenex hypersil C18 5µ 150 x 4.60 mm. 

Mobile phase: consisted of acetonitrile: Milli-Q-water (65:35, 70:30, 80:20, 85:15) the mobile 

phase was filtered through a 0.45 µm nylon membrane under vacuum and 

degassed, used at a flow rate of 1 mL/min. 

Detection Fluorescence detection at FMOC wavelength λex = 264 nm, λem = 310 nm 

and at OPA wavelength λex = 340 nm, λem = 450 nm. 

 

2.4  Fluorescamine derivatization 

 

A stock solution of fluorescamine was prepared by dissolving 0.2 g fluorescamine in 10 mL 

of acetonitrile.  To 50 mL of a solution containing 0.6189 g of boric acid and 0.7456 g of 

potassium chloride add 36.85 mL of 0.2 M sodium hydroxide, adjust pH to 9.5 and dilute to 

200 mL with water.  Borate buffer pH 9.5 (Ref Appendix I E, A69, British Pharmacopoeia 

1988).  Using 1-butylamine, 1,4-diaminobutane, 1,5-diaminopentane, 1,7-diaminoheptane, 

serial dilutions of amine samples in water were prepared from concentration 0.1-2 mM, 0.1 

mL, added 0.4 mL of 0.4 a borate buffer (pH 9.5), 0.1 mL of water and 0.5 mL of 

fluorescamine solution.  The solution was left to react at 20oC for 5 min then injected onto 

the HPLC. 

 

HPLC system 

 

Column: Phenomenex luna C18 5µ 150 x 4.60 mm. 
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Mobile phase: consisted of methanol: Milli-Q-water (40:60, 50:50, 70:30) the mobile phase 

was filter through a 0.45 µm nylon membrane filter under vacuum and 

degassed, used at a flow rate of l/min. 

Detection Fluorescence detection at fluorescamine wavelength, λex = 390 nm, λem = 

486 nm.  UV detector at λmax = 390 nm. 

 

Measurement of relative fluorescence yield experiment 

 

Model amines:  1-butylamine, 1,4-diaminobutane, 1,5-diaminopentane, 1,7-diaminoheptane 

were dissolved in water to a concentration of 0.01- 0.1 mM.  A comparison of fluorescence 

yields of the model series of amines was carried out by the following procedure: 

 

1. The relevant HPLC peak was collected over 10 – 20 injection (depending upon the 

intensity of the peak). 

2. The identity and stability of the product were confirmed by HR-ESI-MS. 

3. A series of dilutions was prepared using the HPLC mobile phase:  acetonitrile: Milli-

Q-water (70:30). 

4. Absorbance at λex was measured by UV-VIS spectrophotometer and fluorescence 

intensity λem was measured by spectrofluorometer for each compound. 

5. For each compound a plot of Fluorescence Intensity against Absorbance was prepared. 

 

Fluorescamine and glucosamine 

 

A stock solution of fluorescamine was prepared by dissolving 0.2 g fluorescamine in 10 mL 

of acetonitrile.  Amine sample:  glucosamine (0.2 mM).  Borate buffer pH 9.5 (Ref Appendix 

I E, A69, British Pharmacopoeia 1988).  To 50 mL of a solution containing 0.6189 g of boric 

acid and 0.7456 g of potassium chloride add 36.85 mL of 0.2 M sodium hydroxide, adjust to 

pH 9.5 and dilute to 200 mL with water. 

 

Derivatization procedure 

 

1. 100 µL of 2 mM glucosamine in aq. solution and 0.4 mL of borate buffer (pH 9.5), 

were pipetted into a glass vial and mixed well. 

2. 0.5 mL of fluorescamine solution was added and left to react at 20oC for 5 min. 

3. This solution was injected onto the HPLC. 
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HPLC system 

 

Column: Phenomenex luna C18 5µ 150 x 4.60 mm 

Mobile phase: consisted of methanol: Milli-Q-water (30:70) the mobile phase was filter 

through a 0.45 µm nylon membrane filter under vacuum and degassed, used 

at a flow rate of 1 mL/min. 

Detection Fluorescence detection at fluorescamine wavelength, λex = 390 nm, λem = 

486 nm.  UV detector at λmax = 390 nm. 

 

The expected molecular masses of some of the amine-fluorescamine derivatives were 

confirmed by collection of the peak eluent and examination by HR-ESI-MS. 

 

2.5  9-Fluorenylmethyl chloroformate (FMOC Cl) derivatization 

 

Optimization of the FMOC Cl derivatization method 

 

The optimization was done by:  

1. Optimisation of the reaction time. 

2. Optimisation of the concentration of FMOC Cl reagent. 

3. Optimization for the effect of pH of borate buffer 

4. Methods to stop the reaction of FMOC Cl. 

5. Optimization of the mobile phase for HPLC by using different ratio of acetonitrile: 

Milli-Q-water range from 60:40, 70:30, 80:20, 85:15 (%v/v), using C-18 Phenomenex 

luna analytical reverse phase column. 

6. Stability of amine-FMOC derivatives. 

 

FMOC Cl solution was prepared by dissolving FMOC Cl reagent in acetonitrile to obtain the 

concentration series of 1, 2, 4, 6, 8, 10 and 40 mM.  The amines for optimization procedure 

were 1-butylamine (monoamine) and 1,5-diaminopentane (diamine).  Both were prepared at 

the concentration of 1mM in Milli-Q-water. 

 

Buffer preparation 

 

A series of borate buffers pH 4.0–10.5 (200 mM) was prepared by adding 20.0 mL of 0.2 M 

sodium hydroxide to 50 mL of a solution containing 0.6189 g of boric acid and 0.7456 g of 

potassium chloride.  The pH was adjusted to the required value by the addition of a solution 
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of boric acid or sodium hydroxide and using a pH meter measure the pH, then diluting to 200 

mL with water (Ref Appendix I E, A69, British Pharmacopoeia 1988). 

 

Optimization of the reaction time 

 

1. 100 µL of 1 mM 1-butylamine and 100 µL of 200 mM borate buffer solution pH 9.0, 

were pipetted into 8 glass vials and mixed well. 

2. 100 µL of 4 mM FMOC Cl reagent was added to each vial and left to react for 1, 5, 10, 

20, 30, 40, 50 and 60 min. 

3. At the appropriate time, 50 µL of 20 mM L-alanine solution (L-alanine 0.018 g in 10 

mL of acetonitrile) was added to stop the reaction and left for another 5 min. 

4. 100 µL of methanol was added to the vial and mixed well using a vortex mixer. 

5. 200 µL of this solution was diluted with methanol to 1.00 mL. 

6. This solution was injected onto HPLC. 

7. All the steps were repeated with another model (1,5-diaminopentane). 

 

Optimisation of the concentration of FMOC Cl reagent 

 

1. 100 µL of 1 mM 1-butylamine (and then 1,5-diaminopentane) and 100 µL of 200 mM 

borate buffer solution pH 9.0, were pipetted into 8 glass vials and mixed well.  

2. 100 µL of 1, 2, 4, 6, 8 and 10 mM FMOC Cl reagent were added to separate vials and 

left to react for 5 min. 

3. After 5 min, 50 µL of 20 mM alanine solution was added to stop the reaction and left 

for another 5 min. 

4. 100 µL of methanol was added to the vial and mixed well using a vortex mixer. 

5. 200 µL of this solution was diluted with methanol to 1.00 mL. 

6. This solution was injected onto the HPLC. 

 

Optimization for the effect of pH of borate buffer 

 

1 100 µL of 1 mM 1-butylamine and 100 µL of 200 mM borate buffer solution pH 4.0, 

4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 8.0, 8.5, 9.0, 9.5, 10.0 and 10.5 were pipetted into 13 glass 

vials and mixed well. 

2 100 µL of 4 mM FMOC Cl reagent was added to each vial left to react for 5 min. 

3 After 5 min, 50 µL of 20 mM alanine solution was added to stop the reaction and left 

for another 5 min. 
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4 100 µL of methanol was added to the vial and mixed well using vortex mixer. 

5 200 µL of this solution was diluted with methanol to 1.00 mL. 

6 This solution was injected onto HPLC. 

7 All the steps were repeated with another model (1,5-diaminopentane). 

 

Methods to terminate the reaction of FMOC Cl 

 

Three main methods of termination of the reaction and removal of the excess FMOC Cl were 

investigated.  In method 1, the excess of FMOC was removed by the reaction with alanine 

100 mM.  Method 2 removed the excess of FMOC Cl by extraction of amine-FMOC 

derivatives with pentane after derivatization.  Method 3 used glacial acetic acid to stop the 

reaction at the desired time by acidifying the medium mixture. 

 

Eight experiments were designed to examine and compare the methods to terminate the 

reaction of FMOC Cl as: 

 

Experiment 1  Control experiment 

 

1. 100 µL 5 mM 1-butylamine and 100 µL of 200 mM borate buffer pH 9.5 were placed 

in a glass vial. 

2. 100 µL 10 mM FMOC Cl reagent was added and left to react for 5 min. 

3. 200 µL methanol was added to this solution, and mixed well. 

4. 200 µL was taken and diluted by 800 µL mobile phase [acetonitrile: Milli-Q-water, 

(70:30)].  This was injected onto the HPLC. 

 

Experiment 2  Termination of the reaction with alanine 

 

1. 100 µL 5 mM 1-butylamine and 100 µL of 200 mM borate buffer pH 9.5 were placed 

in a glass vial. 

2. 100 µL 10 mM FMOC Cl reagent was added and left to react for 5 min. 

3. 100 µL 100 mM alanine solution was added and left for 1 min then 100 µL methanol 

was added to this solution. 

4. 200 µL was taken and diluted by 800 µL mobile phase [acetonitrile: Milli-Q-water 

(70:30)].  This was injected onto the HPLC. 
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Experiment 3  Termination of the reaction with glacial acetic acid 

 

1. 100 µL 5 mM 1-butylamine and 100 µL of 200 mM borate buffer pH 9.5 were placed 

in a glass vial. 

2. 100 µL 10 mM FMOC Cl reagent was added and left to react for 5 min. 

3. 100 µL glacial acetic acid was added and left for 1 min then 100 µL methanol was 

added to this solution. 

4. 200 µL was taken and diluted by 800 µL mobile phase [acetonitrile: Milli-Q-water 

(70:30)].  This was injected onto the HPLC. 

 

Experiment 4  Termination of the reaction with alanine and glacial acetic acid 

 

1. 100 µL 5 mM 1-butylamine and 100 µL of 200 mM borate buffer pH 9.5 were placed 

in a glass vial. 

2. 100 µL 10 mM FMOC Cl reagent was added and left to react for 5 min. 

3. 100 µL 100 mM alanine solution was added and left for 1 min then 100 µL glacial 

acetic acid was added and left for 1 min. 

4. 200 µL was taken and diluted by 800 µL mobile phase (acetonitrile: Milli-Q-water 

(70:30)].  This was injected onto the HPLC. 

 

Experiment 5  Termination of the reaction by extraction with pentane 

 

1. 1 mL of 5 mM 1-butylamine and 1 mL of 200 mM borate buffer pH 9.5 were placed in 

a glass vial. 

2. 1 mL of 10 mM FMOC Cl reagent was added and left to react for 5 min. 

3. This solution was extracted with pentane 3 x 5 mL. 

4. The pentane phase was combined and evaporated. 

5. 5 mL of methanol was used to dissolve the residue. 

6. 200 µL of this solution was taken and diluted by 800 µL mobile phase [acetonitrile: 

Milli-Q-water (70:30)].  This was injected onto the HPLC. 

 

Experiment 6  Termination of the reaction with alanine and extraction with pentane 

 

1. 1 mL of 5 mM 1-butylamine and 1 mL of 200 mM borate buffer pH 9.5 were placed in 

a glass vial. 

2. 1 mL of 10 mM FMOC Cl reagent was added and left to react for 5 min. 
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3. 1 mL 100 mM alanine solution was added and left for 1 min. 

4. This solution was extracted with pentane 3 x 5 mL. 

5. The pentane phase was combined and evaporated. 

6. 5 mL of methanol was used to dissolve the residue. 

7. 200 µL of this solution was taken and diluted by 800 µL mobile phase [acetonitrile: 

Milli-Q-water (70:30)].  This was injected onto the HPLC. 

 

Experiment 7  Termination of the reaction with glacial acetic acid and extraction with 

pentane 

 

1. 1 mL of 5 mM 1-butylamine and 1 mL of 200 mM borate buffer pH 9.5 were placed in 

a glass vial. 

2. 1 mL of 10 mM FMOC Cl reagent was added and left to react for 5 min. 

3. 1 mL glacial acetic acid was added and left for 1 min (pH of the solution = 3.35). 

4. This solution was extracted with pentane 3 x 5 mL. 

5. The pentane phase was combined and evaporated. 

6. 5 mL of methanol was used to dissolve the residue. 

7. 200 µL of this solution was taken and diluted by 800 µL mobile phase [acetonitrile: 

Milli-Q-water (70:30)].  This was injected onto the HPLC. 

 

Experiment 8  Termination of the reaction with alanine and glacial acetic acid then 

extraction with pentane 

 

1. 1 mL of 5 mM 1-butylamine and 1 mL of 200 mM borate buffer pH 9.5 were placed in 

a glass vial. 

2. 1 mL of 10 mM FMOC Cl reagent was added and left to react for 5 min. 

3. 1 mL 100 mM alanine solution was added and left for 1 min then 1 mL glacial acetic 

acid was added and left for 1 min (pH of the solution = 3.05). 

4. This solution was extracted with pentane 3 x 5 mL. 

5. The pentane phase was combined and evaporated. 

6. 5 mL of methanol was used to dissolve the residue. 

7. 200 µL of this solution was taken and diluted by 800 µL mobile phase (acetonitrile: 

Milli-Q-water (70:30)].  This was injected onto the HPLC. 
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Calibration curve of amine-FMOC derivatives 

 

Preparation of sample solutions 

 

Amine samples were ethylamine, 1-butylamine (monoamine), 1,4-diaminobutane, 1,5-

diaminopentane, 1,7-diaminoheptane, piperidine, piperazine, spermidine, spermine 

(polyamine), kanamycin, neomycin (aminoglycosides) 

 

Stock solutions of sample were prepared by dissolving the suitable amount of each in Milli-

Q-water.  A range of concentrations from 1 mM – 10 mM were prepared from the stock 

solution by dilution with Milli-Q-water.  All solutions were stored in the dark at 2oC.   

 

Working Method for FMOC derivatization 

 

1. 1 mL of sample solution and 1 mL of 200 mM borate buffer pH 9.5 were placed in a 

glass vial. 

2. 1 mL of 40 mM FMOC Cl reagent was added and left to react for 5 min. 

3. 1 mL 100 mM alanine solution was added and left for a further 1 min. 

4. This solution was extracted with pentane 3 x 5 mL. 

5. The pentane phase was combined and evaporated. 

6. 5 mL of methanol was used to dissolve the residue. 

7. 200 µL of this solution was taken and diluted by 800 µL mobile phase [acetonitrile: 

Milli-Q-water (70:30)]. 

8. This was injected onto the HPLC. 

9. A calibration curve of each amine-FMOC derivative was plotted. 

 

HPLC system 

 

Column: Phenomenex luna C18 5µ 150 x 4.60 mm. 

Mobile phase: Methanol: Milli-Q-water (60:40, 70:30, 80:20, 85:15) the mobile phase was 

filtered through a 0.45 µm nylon membrane filter under vacuum and 

degassed in an ultrasonic bath for 30 min, used at a flow rate of 1 mL/min. 

Detection Fluorescence detection at FMOC wavelength, λex = 264 nm, λem = 310 nm.  

UV detector at λmax = 264 nm. 
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Stability of amine-FMOC derivatives 

 

1. 1 mL of 1 mM of 1-butylamine was reacted with 1 mL 4 mM FMOC Cl reagent for 5 

min in the presence of 1 mL of 200 mM borate buffer pH 9.5. 

2. The reaction was terminated by reaction with alanine and extraction with pentane (as 

in Experiment 7) then after pentane phase was combined and evaporated, 5 mL of 

methanol was used to dissolve the residue. 

3. This solution was injected onto HPLC at various times from 5-70 min then stored the 

sample at 20oC, and injected at day 2, day 3, day 4, day 5, 1 week and 2 weeks.  

Measure the peak area. 

 

Measurement of relative fluorescence yield 

 

Sample solution: 

 

The amines:  1,5-diaminopentane, 1,7-diaminoheptane, piperidine, piperazine and 

spermidine were dissolved in water.  A comparison of fluorescence yields of the model 

series of amines was carried out by the following procedure: 

 

1. The relevant HPLC peak was collected over 10 – 15 injection (depending upon the 

intensity of the peak). 

2. The identity and stability of the product was confirmed by HR-ESI-MS. 

3. A series of dilutions was prepared using the HPLC mobile phase [acetonitrile: Milli-Q-

water (70:30)]. 

4. Absorbance at λex and fluorescence intensity λem was measured for each compound. 

5. For each compound a plot of Fluorescence Intensity against Absorbance was prepared. 

 

Analysis of spermidine and spermine as their hexahydropyrimidine derivatives 

 

N-(4-Aminobutyl)hexahydropyrimidine 

 

Spermidine was converted into N-(4-aminobutyl)hexahydropyrimidine by the reaction with 

formaldehyde.  

1. Spermidine 1.0 g. (6.88 mmol) in a 100-mL round bottomed flask was dissolved in 

distilled water (25 mL).  The solution was cooled to 5oC. 

2. Aqueous formaldehyde (0.5 mL of 37% solution: 1 equiv.) was slowly added to the 

cold solution. 
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3. The mixture was stirred for 1 h at 20oC. 

4. The aqueous layer was saturated with solid sodium chloride (NaCl) and extracted four 

times with chloroform. 

5. The combined chloroform extracts were dried (MgSO4) filtered and concentrated to 

dryness by evaporator. 

6. Dilution to the desired concentration. 

 

After this the FMOC derivative was prepared by the standard method. 

 

1,4-(Dihexahydropyrimidine) butane 

 

Spermine was converted into 1,4-(dihexahydropyrimidine) butane by the reaction with 

formaldehyde.  

1. Spermine 1 g. (4.95 mmol) in a 100-mL round bottomed flask was dissolved in 

distilled water (25 mL).  The solution was cooled to 5oC. 

2. Aqueous formaldehyde (1 mL of 37% solution: 2 equiv.) was slowly added to the cold 

solution. 

3. The mixture was stirred for 1 hr at 20oC. 

4. The aqueous layer was saturated with solid sodium chloride and extracted four times 

with chloroform. 

5. The combined chloroform extracts were dried (MgSO4) filtered and concentrated to 

dryness. 

 

FMOC derivatives of experimental non-viral gene therapy (NVGT) vectors 

 

Stock solutions of samples N4,N9-didecanoyl spermine, N4,N9-didodecanoyl spermine and the 

synthetic intermediate diphthalimido-4,9-diazadodecane were prepared by dissolving the 

suitable amount of each in methanol.  A range of concentrations from 1 mM–10 mM were 

prepared from the stock solutions by dilution with methanol.  These were derivatized with 

FMOC using the standard method. 

 

HPLC system 

 

Column: Phenomenex luna C18 5µ 150 x 4.60 mm. 

Mobile phase: consisted of methanol: Milli-Q-water (85:15) the mobile phase was filter 

through a 0.45 µm nylon membrane filter under vacuum and degassed in an 

ultrasonic bath for 30 min at a flow rate of 1 mL/min. 
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Detection Fluorescence detection at FMOC wavelength, λex = 264 nm, λem = 310 nm.  

UV detector at λmax = 264 nm. 

 

FMOC derivatization of aminoglycosides 

 

Stock solutions of samples (kanamycin, paramomycin) were prepared by dissolving the 

suitable amount of each in Milli-Q-water.  A range of concentrations from 1 mM–10 mM 

were prepared from the stock solution by dilution with Milli-Q-water. 

 

1. 1 mL of sample solution and 1 mL of 200 mM borate buffer pH 9.5 in glass vial. 

2. 1 mL of 40 mM FMOC Cl reagent was added and left to react for 5 min. 

3. 1 mL 100 mM alanine solution was added and left for a further 1 min. 

4. This solution was extracted with pentane 3 x 5 mL. 

5. The pentane phase was combined and evaporated. 

6. 5 mL of methanol was used for dissolve the derivative. 

7. This solution was pipetted 200 µL and diluted by 800 µL mobile phase to get 1mL.  

Injected onto the HPLC. 

 

HPLC system 

 

Column: Phenomenex hypersil C18 5µ 150 x 4.60 mm 

Mobile phase: consisted of methanol: Milli-Q-water (60:40) the mobile phase was filter 

through a 0.45 µm nylon membrane filter under vacuum and degassed in an 

ultrasonic bath for 30 min, used  at a flow rate of 1 mL/min. 

Detection Fluorescence detection at FMOC wavelength, λex = 264 nm, λem = 310 nm.  

UV detector at λmax = 264 nm. 

 

2.6  Dansylation derivatization 

 

Stability of Dansyl chloride (DNS Cl) reagent 

 

1. DNS Cl was prepared in series of concentrations from 0.1 to 0.8 mM in acetone. 

2. These solutions were injected onto HPLC (5 replicates). 

3. A calibration curve was plotted. 
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HPLC conditions 

 

Column: Phenomenex luna C18, 150 mm x 4.6 mm. i.d. cartridge column (5 µm 

particle size) with guard column, H1-5C18. 

Mobile phase: Acetonitrile: Milli-Q-water (70:30) at a flow rate of 1.00 mL/min. 

Detector: Waters Fluorescence detector 470 at λex = 330 nm and λex = 510 nm 

  Jasco UV detector at λmax = 330 nm. 

 

Blank-DNS reaction 

 

1. 1 mL of Milli-Q-water and 1 mL of saturated sodium carbonate solution were placed in 

a glass vial. 

2. 1 mL of 10 mM DNS Cl reagent (in acetone) was added and left at 60oC for 15 min. 

3. The excess of DNS Cl was removed by 20 mM alanine solution, then the reaction was 

left for 5 min at 20oC. 

4. This solution was extracted with toluene 3 x 5 mL. 

5. The toluene phase was combined and evaporated. 

6. 2 mL of mobile phase [acetonitrile: Milli-Q-water (70:30)] was used to dissolve the 

residue.  This was injected onto the HPLC. 

7. The peaks were eluted by HPLC, collected and then analyzed by HR-ESI-MS. 

 

HPLC conditions 

 

HPLC column: Phenomenex luna C18, 150 mm x 4.6 mm. i.d. cartridge column 

(5µm particle size) with guard column, H1-5C18. 

Mobile phase:  Methanol: Milli-Q-water (70:30) at a flow rate of 1.00 mL/min. 

Detector:  Waters Fluorescence detector 470 at λex = 330 nm and λex = 510 nm. 

   Jasco UV detector at λmax = 330 nm. 

 

HPLC condition establishment of mobile phase 

 

In order to optimize the mobile phase for HPLC condition, the following mobile phases were 

used: 

 

Acetonitrile: Milli-Q-water (60:40) 

Acetonitrile: Milli-Q-water (70:30) 
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Acetonitrile: 0.1 % formic acid in Milli-Q-water (60:40) 

Acetonitrile: 2.5 % formic acid in Milli-Q-water (60:40) 

Methanol: acetonitrile: Milli-Q-water (65:20:15) 

 

Selection of the excitation and emission wavelengths of amine-DNS derivatives 

 

The amines:  1-butylamine, 1,5-diaminopentane, 1,7-diaminoheptane, 1,8-diaminooctane, 

piperidine, piperazine, spermidine and spermine were examined by collecting the HPLC 

eluate after dansylation. 

 

Method 

 

1. 1 mL of sample solution (concentration at 2 mM) and 1 mL of saturated sodium 

carbonate were placed in glass vial. 

2. 1.00 mL of 10 mM DNS Cl in acetone was added. 

3. The reactant solution was incubated in a water bath for 15 min at 60oC  

4. This solution was extracted with toluene 3 x 2 mL. 

5. The toluene phase was combined and evaporated to dryness. 

6. The residue was dissolved with 5 mL of methanol. 

7. This solution was injected onto HPLC and the eluent of the amine-DNS derivatives 

were collected and confirmed by HR-ESI-MS. 

8. The excitation and emission wavelengths of these elutes of amines-DNS derivatives 

were determined by using Hitachi Fluorescence F-2000 spectrophotometer and 

methanol was used as the blank. 

 

Optimization of DNS Cl derivatization method 

 

Method 1  Without removing the excess of DNS Cl 

 

The reaction solution consisted of 1.0 mL DNS Cl (5-40 mM) in acetone, 1.00 mL of sample 

solution (1-5 mM) and 1.0 mL of saturated sodium carbonate.  The reactant solution was 

incubated in a water bath for 15 min at 60oC.  This solution was injected directly without any 

procedure to remove the excess DNS Cl. 
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Method 2  With alanine to remove the excess DNS Cl 

 

This derivatization method was based on the work of Minocha and Long (Minocha and 

Long, 2004).  To 1.0 sample solution, 1.0 mL of saturated aqueous of Na2CO3 was added to 

give a pH of 9-10 and then 1.0 mL DNS Cl solution was added.  The vials were capped, 

vortexed and incubated in a water bath at 60°C.  After 15 min, aqueous L-alanine (0.5 mL, 

10 mg/ mL) was added to react with the excess of DNS Cl, followed by further 5 min 

incubation.  The amine-DNS derivatives were extracted with toluene (3 x 4.0 mL), and the 

toluene phase evaporated to dryness under vacuum.  Methanol (7.0 mL) was added and 

vortexed for 2 min to redissolve the amine-DNS derivatives.  At this stage in the final 

development of dansylation method, mobile phase 2.0 mL was used to redissolve the amine-

DNS derivative.  The products were filtered through a 0.45 µm nylon syringe filter to 

remove particulate matter before being injected onto the HPLC column.  Blank HPLC runs 

were conducted using the procedure above without the amines. 

 

In all these methods, dansylation was performed in dark since the derivatives are light 

sensitive.  The solution of DNS Cl in acetone can be stored for 2 weeks at 4oC in the dark.  

After the dansylation reaction, the sample was kept in the dark or in dark vials. 

 

Optimization of DNS Cl derivatization method 

 

The aims of optimization condition of DNS derivatization (dansylation) were: 

1. Optimization of the pH of buffer for DNS Cl reaction with amines. 

2. Optimization of the ratio of molarity of DNS Cl reaction with amines. 

3. Optimization of the reaction time of DNS Cl with amines. 

4. Optimization of the temperature of DNS Cl of the reaction. 

 

Optimization of the pH of buffer for DNS Cl reaction with amines 

 

1. Method 2 was used to derivatize 1 mM 1-butylamine with 10 mM DNS Cl reagent 

using borate buffer at various pHs from 4.5-10.5. 

2. The vials were incubated at 60oC for 15 min. 

3. Toluene 3 x 5 mL was used to extract the DNS derivatives, then the combined organic 

phase was evaporated to dryness. 

4. The residue was dissolved with 2 mL methanol. 

5. This solution was injected onto HPLC. 
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Comparison between borate buffer pH 10.5 and saturated sodium carbonate 

 

1. Method 2 was used to derivatize 1 mM 1-butylamine with 10 mM DNS Cl reagent 

with borate buffer pH 10.5 and another vial was prepared in the same way but used 

saturated sodium carbonate. 

2. The vials were incubated at 60oC for 15 min. 

3. Toluene 3 x 5 mL was used to extract the DNS derivatives, then the combined organic 

phase was evaporated to dryness. 

4. The residue was dissolved with 2 mL methanol. 

5. This solution was injected onto HPLC. 

 

Optimization of the reaction temperature of dansylation 

 

1. Method 2 was used to derivatize 1 mM 1-butylamine with 10 mM DNS Cl reagent 

with 1 mL saturated sodium carbonate. 

2. The vials were incubated at various temperatures from 20, 40, 60, and 80oC for 15 

min. 

3. Toluene 3 x 5 mL was used to extract the DNS derivatives, then the combined organic 

phase was evaporated to dryness. 

4. The residue was dissolved with 2 mL methanol.  This solution was injected onto 

HPLC. 

 

Optimization of the reaction time of dansylation 

 

1. Method 2 was used to derivatize 1 mM 1-butylamine with 10 mM DNS Cl reagent 

with 1 mL saturated sodium carbonate. 

2. The vials were incubated at various times from 1, 5, 10, 15, 20, 30, 40, 50 and 60 min 

at 60oC. 

3. Toluene 3 x 5 mL was used to extract the DNS derivatives, then the combined organic 

phase was evaporated to dryness. 

4. The residue was dissolved with 2 mL methanol.  This solution was injected onto 

HPLC. 

 

Optimization of the concentration ratio of DNS Cl for dansylation  

 

For the optimization for DNS Cl concentration, DNS Cl solution of concentration range from 

1 to 100 mM was reacted with 1 mM solutions of ethylamine, 1-butylamine, 
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phenylethylamine, 1,4-diaminobutane, 1,7-diaminoheptane, piperidine, piperazine, 

spermidine. 

 

1. Method 2 was used to derivatize these amines with various concentrations of DNS Cl 

reagent 1-100 mM, 1 mL saturated sodium carbonate was used to adjust the pH. 

2. The vials were incubated at 60oC for 15 min. 

3. Toluene 3 x 5 mL was used to extract the DNS derivatives, then the combined organic 

phase was evaporated to dryness. 

4. The residue was dissolved with 2 mL methanol.  This solution was injected onto 

HPLC. 

 

General derivatization of amines 

 

DNS Cl reagent was prepared in acetone (2 concentrations, 10 mM prepared by dissolving 20 

mg of DNS Cl in 10 mL acetone and 148 mM by dissolving 40 mg in 10 mL acetone). 

 

An alanine solution was prepared from 100 mg of L-alanine dissolved in 10 mL of Milli-Q-

water to give a concentration of 112 mM. 

 

Amines examined were:  1-butylamine, 1,4–diaminobutane, 1,5-diaminopentane, 1,6-

diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,12-

diaminododecane, piperidine, piperazine, 1,4-diaminobutanol, 1,5-diaminopentanol, 

spermidine, spermine, thermospermine, N4,N9-didecanoyl spermine, N4,N9-dihexadecanoyl 

spermine, N1,N12-di-trifluoroacetyl- spermine, N1,N4,N9-tri-t-Boc-spermine derivative, N4,N9-

digeranoyl spermine, N4-decanoyl-N9-cholesteryl carbamate spermine, N4,N9-Oleoyl 

spermine and N4,N9-Dioctadecanoyl spermine.  Amine samples were dissolved in water from 

0.1 mM – 15 mM 

 

Amines for calibration curves 

 

The following amines were used to construct a calibration curve over the concentration range 

0.2-1 mM, all were in 5 replicates:  ethylamine, 1-butylamine, 1,4-diaminobutane, 1,7-

diaminoheptane, 2-phenylethylamine, piperidine, piperazine, spermidine, glucosamine, 

kanamycin.  Most of the semi-synthetic non-viral gene therapy agents and their synthetic 

intermediates are not soluble in water, so some drops of methanol were routinely added to 

help dissolution before they were dissolved in water otherwise the reaction was performed in 

dichloromethane. 



 - 47 - 

Conditions for the separation of N4,N9-oleoyl spermine and N4,N9-dioctadecanoyl spermine: 

 

1. 1 mL of 10 mM Samples (MKS pH = 9.07, Lipogen pH = 8.81) + 1 mL sat. Na2CO3 

(pH 11.20)  pH mixture = 11.96 (MKS C18) and pH = 11.91 (Lipogen). 

2. Added DNS (2 mL of 70 mM DNS), left 30 min at 60oC. 

3. Extract with toluene 3 x 5 mL, and evaporate. 

4. Redissolved with 1 mL acetonitrile: 1% formic acid in Milli-Q-water (90:10). 

5. Inject onto HPLC column C 8, acetonitrile: 1% formic acid in Milli-Q-water (90:10). 

 

HPLC conditions 

 

HPLC column: Phenomenex luna C18, 150 mm x 4.6 mm. i.d. cartridge column 

(5µm particle size) with guard column, H1-5C18  

Mobile phase: Acetonitrile: Milli-Q-water (85:15, 90:10, 95:5), used at flow rate of 

1.00 mL/min. 

Detector:  Waters fluorescence detector 470 at λex = 330 nm and λex = 510 nm. 

   Jasco UV detector at λmax = 330 nm. 

 

Aminoglycosides  

 

Aminoglycosides (1 mL of 10 mM, glucosamine, kanamycin) were reacted with 1 mL sat. 

Na2CO3 and DNS reagent (2 mL of 70 mM DNS) was added, left for 30 min at 60oC, then 

extracted with toluene (3 x 5 mL), and evaporated.  The residue was redissolved with 1 mL 

40% MeCN in water.  This solution was injected onto HPLC. 

 

HPLC conditions: 

 

HPLC column: Phenomenex luna C18, 150 mm x 4.6 mm. i.d. cartridge column 

(5µm particle size) with guard column, H1-5C18  

Mobile phase: Acetonitrile: Milli-Q-water (40:60), used at flow rate of 1.00 

mL/min. 

Detector:  Waters Fluorescence detector 470 at λex = 330 nm and λex = 510 nm 

   Jasco UV detector at λmax = 330 nm 
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Measurement of relative fluorescence yield experiment: 

 

The dansylation method 2 was applied to these amines:  1-butylamine, 1,4-diaminobutane, 

1,7-diaminoheptane and spermidine. 

 

Derivatization method to obtain the monoDNS derivatives and diDNS derivatives 

 

For diamines such as 1,4-diaminobutane both the mono- and di-DNS derivatives were 

prepared for a study of relative quantum yield.  To obtain the diDNS derivatives of the 

diamines, method 3 was used.  To obtain the monoDNS derivatives of diamines, the 

concentration of DNS Cl used was reduced to below 10 mM.  This yielded both mono- and 

diDNS derivatives which were easily resolved by HPLC and collected separately. 

 

HPLC conditions: 

 

HPLC column: Semi-preparative column:  Phenomenex Gemini 10 µ C18 110A 250 

x 10 mm; Guard column:  Phenomenex Gemini 5 µ C18 10 x 10 mm. 

Mobile phase: Methanol: Milli-Q-water (70:30), used at flow rate of 5.00 mL/min. 

Injection Volume: 100 µL 

Detector:  Waters Fluorescence detector 470 at λex = 330 nm and λex = 510 nm 

   Jasco UV detector at λmax = 330 nm. 

 

After collection of the peak of amine-DNS derivative, the expected molecular weight of the 

product was confirmed by HR-ESI-MS. 

 

To measure the relative fluorescent yield of each product the following procedure was used.  

The UV-VIS absorbance spectrum of the solvent background for the chosen sample was 

recorded and the absorbance at the excitation wavelength to be used was noted.  The 

fluorescence spectrum of the same solution in the 10 mm fluorescence cuvette was recorded. 

 

Increasing concentrations of each sample of the five solutions were analyzed and a graph of 

integrated fluorescence intensity vs. absorbance was plotted.  The slopes of the graphs 

obtained are proportional to the quantum yield of the different samples. 
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2.7  Synthesis of thermospermine 

 

Method 1  Thermospermine was synthesized from spermidine using the method of Ganem 

and Chantrapromma (1983) following the scheme shown in Figure 2.1. 
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Figure 2.1  Scheme of thermospermine synthesis. 

 

1.  N-(4-Aminobutyl) hexahydropyrimidine (2)  

 

Spermidine (1) 9.0 g (62 mmol), was dissolved in distilled water (225 mL) and the solution 

cooled to 5oC under N2.  37% Aqueous solution of formaldehyde (4.52 mL) (0.9 equiv.) was 

added dropwise then the solution was stirred for 1 h at 20oC.  The aqueous layer was 

saturated with solid NaCl and extracted four times with CHCl3.  The combined CHCl3 

extracts were dried (MgSO4) filtered and concentrated to dryness, giving N-(4-aminobutyl) 

hexahydropyrimidine (2) (94%, 9.2 g) as a waxy white solid.  TLC (dichloromethane: 

methanol: ammonia (20: 10: 1), detection by ninhydrin) Rt = 0.1. 
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NH N
NH
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δH (CDCl3) (400 MHz) 3.298 (2H, s, C(8)H2), 2.732 (2H, m C(1)H2), 2.643 (2H, m, C(7)H2), 

2.626 (2H, m, C(4)H2), 2.172 (2H, m, C(5)H2), 1.985 (1H, s, NH), 1.536 (2H, p, C(3)H2), 

1.410 (4H, m, C(2)H2, C(6)H2). 

 

δC (CDCl3) (100 MHz) 24.151, 26.957, 31.471, 41.716, 44.997, 52.943, 55.236, 69.736. 

C8H19N3 requires M.W. = 157.1579, HR-ESI-MS:  m/z [M+H]+ = C8H20N3 requires 

158.1657, found = 158.1630. 

 

2.  4-(N-Benzylideneaminobutyl) hexahydropyrimidine (3) 

 

N-(4-Aminobutyl) hexahydropyrimidine (2) 2.50 g. (15.90 mmol) was dissolved in toluene 

(30 mL).  Benzaldehyde (1.69 g, 15.90 mmol) was added and the mixture was refluxed at 

130oC for 3 h using a Dean-Stark apparatus to remove water azeotropically.  After removal 

of the solvent, the N-(4-aminobutyl)hexahydropyrimidine (2) with its primary amine 

protected as a benzylidine derivative, 4-(N-benzylideneaminobutyl) hexahydropyrimidine (3) 

was obtained as colourless oil (2.95g, 75%). 
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δH (CDCl3) (400 MHz) 8.235 (H, s, C(9) H), 7.680 (2H, m, C(10)H, C(11)H), 7.374 (3H, m, 

C(12)H, C(13)H, C(14)H), 3.584 (2H, t, C(1)H2), 3.071 (2H, s C(8)H2), 2.547 (2H, t, 

C(7)H2), 2.476 (2H, t, C(4)H2), 2.336 (2H, t, C(5)H2), 1.671 (2H, m, C(3)H2), 1.578 (4H, m, 

C(2) H2, C(6)H2). 

 

C15H23N3 requires M.W. = 245.1892, HR-ESI-MS: m/z [M+H]+ = C15H24N3 requires 

246.1970, found = 246.1945. 
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3.  N1-(N-Benzylidene-(1-hexahydropyrimidinebutyl)-N3-propionitrile (4) 

 

4-(N-Benzylideneaminobutyl) hexahydropyrimidine (3) 2.44 g (9.9 mmol) was dissolved in 

anhydrous methanol (15 mL) then acrylonitrile (0.66 mL, 9.9 mmol) was added dropwise 

with stirring under N2.  After 15 h, more acrylonitrile (0.5 mL) was added and stirring 

continued for 9 h, then concentrated under reduced pressure to yield N1
-(N-benzylidene-(1-

hexahydropyrimidinebutyl)-N3-propionitrile (4) (2.39 g, 80%). 

 

N N
N

N

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

 

 

δH (CDCl3) (400 MHz) 8.3 (H, s, C(9) H), 7.7 (2H, m, C(10)H, C(11)H), 7.4 (3H, m, 

C(12)H, C(13)H, C(14)H), 3.6 (2H, t, C(1)H2), 3.5 (2H, s C(8)H2), 3.2 (2H, t, C(16)H2), 2.7 

(2H, t, C(15)H2), 2.3 (4H, t, C(5)H2, C(7)H2), 2.5 (2H, t, C(4)H2), 1.6 (2H, m, C(2)H2), 1.6 

(2H, m, C(6)H2), 1.5 (2H, m, C(3) H2). 

 

C18H26N4 requires M.W. = 298.2157, HR-ESI-MS: m/z [M+H]+ = C18H27N4 requires 

299.2236, found = 299.2201. 

 

4.  Deprotection of the N1-(N-benzylidene-(1-hexahydropyrimidinebutyl)-N3-

propionitrile (4) to give 12-amino-4,8-diaza-dodecanenitrile (5) 

 

A solution of N1
-(N-benzylidene-(1-hexahydropyrimidinebutyl)-N3-propionitrile (4) (0.665 

g, 2.23 mmol) in 2M HCl-methanol (15 mL) was heated under reflux at 80oC for 8 h.  After 

evaporation of methanol under reduced pressure, the resulting residue was redissolved in 

water (4mL) and extracted with diethyl ether (3x 15 mL) to remove benzaldehyde.  The 

aqueous layer was alkalinized with 20% NaOH (8 mL) and extracted with CHCl3.  The 

CHCl3 extracts were dried (MgSO4), filtered and concentrated to yield 12-amino-4,8-diaza-

dodecanenitrile (5) (0.17 g, 40%). 

 

N

N
H

N
H

NH
2

1

2

3

45

6

78

9
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δH (CDCl3) (400 MHz) 2.86 (2H, t, C(9) H2), 2.76 (6H, m, C(4)H2, C(5)H2, C(7)H2), 2.66 

(2H, m, C(8)H2), 2.48 (2H, m, C(1)H2), 1.55 (4H, m, C(2)H2, C(6)H2), 1.45 (2H, m, C(3)H2). 

 

C10H22N4 requires M.W. = 198.1844, HR-ESI-MS: m/z [M+H]+ = C10H23N4 requires 

199.1923, found = 199.1923. 

 

5.  Thermospermine 

 

An ice-cold solution of 12-amino-4,8-diaza-dodecanenitrile (5) (0.150 g, 0.76 mmol) in dry 

methanol (15 mL) was mixed with CoCl2
. 6H2O (0.360 g, 1.52 mmol); then NaBH4 was 

added in portions (0.286 g, 10 equiv.).  After the addition was complete, stirring was 

continued for 3 h at 20oC.  The reaction mixture was acidified with 3M HCl and stirred until 

the black precipitate (Co2B) dissolved.  After concentration in vacuo, the resulting aqueous 

solution was alkalinized with 30% NaOH and extracted with CHCl3, to give the desired 

thermospermine (6) (0.05 g, 35%). 

 

NH
2

N
H

N
H

NH
2

1

2

3 4

5

6 7

8

9

10
1'

2' 3'

4'

 

 

δH (CDCl3) (400 MHz) 2.740 (4H, m, C(1)H2, C(10)H2), 2.645 (8H, m, C(3)H2, C(4)H2, 

C(6)H2, C(7)H2), 2.180 (H, s, N(2΄)H), 2.150 (H, s, N(3΄)H), 1.654 (2H, m, C(2)H2), 1.610 

(2H, m, C(5)H2), 1.562 (2H, m, C(9)H2), 1.424 (2H, m, C(8)H2). 

 

δC (CDCl3) (100 MHz) 24.504, 27.538, 31.867, 40.580, 42.181, 47.967, 48.585, 48.691, 

49.971. 

 

C10H26N4 requires M.W. = 202.2157, HR-ESI-MS: m/z [M+H]+ = C10H27N4 requires 

203.2236, found = 203.2236. 
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Method 2  By protection of N-(4-aminobutyl) hexahydropyrimidine (2) with phthalimide:  

the scheme shown in Figure 2.2. 
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Figure 2.2  Scheme of thermospermine synthesis by method 2. 

 

1.  2-(N-Butylhexahydropyrimidine) isoindoline-1,3-dione (7) 

 

N-(4-Aminobutyl)hexahydropyrimidine (2) 2.50 g. (15.90 mmol) was dissolved in 

dichloromethane (30 mL).  A solution of N-carbethoxyphthalimide 15.90 mmol in 

dichloromethane (10 mL), was added and stirred for 3 h at 20oC to obtain 2-(N-

butylhexahydropyrimidine) isoindoline-1,3-dione (7) (3.8 g, 85%). 
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NH N
N

O

O
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δH (CDCl3) (400 MHz) 7.846 (2H, m, C(10) H, C(11)H), 7.814 (2H, m, C(9)H, C(12)H), 

4.101 (2H, s, C(8)H2), 3.703 (2H, t, C(1)H2), 3.204 (2H, t C(7)H2), 3.015 (2H, t, C(4)H2), 

2.898 (2H, t, C(5)H2), 1.912 (2H, quin, C(3)H2), 1.824 (2H, quin, C(2)H2), 1.695 (2H, quin, 

C(6) H2). 

 

C16H21N3O2 requires M.W. = 287.1634, HR-ESI-MS: m/z [M+H]+ = C16H22N3O2 requires 

288.1712, found = 288.1699. 

 

2.  2-(N1-Butylhexahydropyrimidine)-isoindoline-1,3-dione-N3-propionitrile (8) 

 

The amine (7) 2.44 g (9.9 mmol) was dissolved in dry methanol (15 mL) then acrylonitrile 

(0.66 mL, 9.9 mmol) was added dropwise with stirring under N2.  After 15 h, more 

acrylonitrile (0.5 mL) was added and stirring continued for 9 hr.  Methanol was removed 

under reduced pressure to yield 2-(N1-butylhexahydropyrimidine)-isoindoline-1,3-dione-N3-

propionitrile (8) (2.00 g, 80%). 

N N
N

O

O

N
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δH (CDCl3) (400 MHz) 7.804 (2H, m, C(10) H, C(11)H), 7.691 (2H, m, C(9)H, C(12)H), 

3.659 (2H, m, C(8)H2), 3.659 (2H, t, C(1)H2), 2.863 (2H, t, C(14)H2), 2.732 (2H, m, 

C(13)H2), 2.683 (2H, m, C(4)H2),  2.490 (4H, m, C(5)H2, C(7)H2), 1.850 (2H, quin, C(3)H2), 

1.683 (2H, quin, C(2)H2), 1.567 (2H, m, C(6) H2). 

 

3  12-(1,3-Dioxoisoindolin-2-yl)-4,8-diaza-dodecanenitrile (9) 

 

A solution of (8) (0.665 g, 2.23 mmol) in 2 M HCl-methanol (15 mL) was heated under 

reflux at 80oC for 8 h.  Evaporation of the methanol gave a white solid which was 

redissolved in water (4 mL).  The aqueous solution was alkalinized with 20% (w/v) NaOH (8 
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mL) and extracted with CHCl3..  The CHCl3 extracts were dried (MgSO4) and concentrated 

to yield 12-(1,3-dioxoisoindolin-2-yl)-4,8-diaza-dodecanenitrile (9) (0.56 g, 85%). 

 

4  Removal of the phthalimide group to give 12-amino-4,8-diaza-dodecanenitrile (5) 

 

A solution of amine (9) in 40 mL of CH2Cl2/THF (1:1) was treated with hydrazine 

monohydrate (1.0 mL) and heated under reflux for 4 h at 80oC.  The solvent was evaporated 

to dryness under reduced pressure to yield 12-amino-4,8-diaza-dodecanenitrile (5) (0.30 g, 

50%).  

 

5  Simultaneous removal of phthalimide and hexahydropyrimidine from (8) to give 12-

amino-4,8-diaza-dodecanenitrile (5) 

 

A solution of amine (8) in 40 mL of CH2Cl2/ THF (1:1) was treated with hydrazine 

monohydrate (2 mL) and heated under reflux for 4 h at 80oC.  The solvent was evaporated to 

dryness under reduced pressure to yield the 12-amino-4,8-diaza-dodecanenitrile (5) (0.42 g, 

75%). 

 

2.8  Purification of intermediates 

 

Silica gel column chromatography (Merck, 40–63 µm, 230–400 mesh ASTM, pH 6.5–7.5) 

was used to purify the products from steps (7) of the thermospermine preparation.  The 

column was packed in an open-glass tube with dichloromethane.  The samples were 

dissolved in methanol, then applied to the column in a minimum volume.  The column was 

eluted with a mixture of dichloromethane: methanol: ammonia solution (10:5:1).  The 

progress of the elution was followed by collecting fractions (50 mL), concentrating and 

monitoring by analytical TLC, HPLC, NMR and HR-ESI-MS.  Semi-preparative HPLC 

column:  Phenomenex Gemini 10 µ C18 110A 250 x 10 mm; Guard column:  Phenomenex 

Gemini 5 µ C18 10 x 10 mm.  HPLC mobile phase used for separation was acetonitrile in 

Milli-Q-water (40:60) with amine (7) dissolved in methanol. 
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2.9  Analysis of thermospermine and spermine 

 

Hexahydropyrimidine derivative of spermine 

 

NH
2

N
H

N
H

NH
2

H

O

H

NH N
N NH

+

in water 
1 h, 20oC

10

11  

 

Spermine (10) 0.09 g (0.445 mmol), was dissolved in distilled water (25 mL) and the 

solution cooled to 5oC under N2.  37% Aqueous solution of formaldehyde 0.1 mL (2 equiv.) 

was added dropwise then the solution was stirred for 1 h at 20oC.  The aqueous layer was 

saturated with solid NaCl and extracted four times with CHCl3.  The combined CHCl3 

extracts were dried (MgSO4), filtered and concentrated to dryness, giving the dihexahydro-

pyrimidine ring derivative of spermine, 1,4-(dihexahydropyrimidine)butane (11). 

 

1,4-(dihexahydropyrimidine) butane (11) (C12H26N4, M.W. = 226.2157,) HR-ESI-MS: 

expected m/z [M+H]+ ion = 227.2236 , found = 227.2217. 

 

Hexahydropyrimidine derivative of thermospermine 

 

NH
2

N
H

N
H

NH
2

H H

O

NH N N
H

NH
2

+

in water 
1 h, 20oC

6

12  

 

Thermospermine (6) 0.09 g (0.445 mmol), was dissolved in distilled water (25 mL) and 

cooled to 5oC under N2.  An aq. solution of formaldehyde (37%, 0.1 mL, 2 equiv.) was added 

dropwise then the solution was stirred for 1 h at 20oC.  The aqueous layer was saturated with 

solid NaCl and extracted four times with CHCl3.  The combined CHCl3 extracts were dried 
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(MgSO4), filtered and concentrated to dryness, giving the hexahydropyrimidine ring 

derivative of thermospermine, 1-(hexahydropyrimidine)-4-aza-aminooctane (12) 

 

1-(Hexahydropyrimidine)-4-aza-aminooctane (12) (C11H26N4, M.W. = 214.2157,) HR-ESI-

MS expected m/z [M+H]+ ion = 215.2236, found = 215.2216 and doubly charged ion 

[M+2H]2+ = 108.1157, found = 108.1175. 

 

Tetradeuterio hexahydropyrimidine derivative of spermine 

D D

O

NH N
N NH

D D

D D

NH
2

N
H

N
H

NH
2

10

13

+

in water 
1 h, 20oC

 

 

Spermine (10) 0.09 g (0.445 mmol), was dissolved in distilled water (25 mL) and the 

solution cooled to 5oC under N2.  An aqueous solution of dideuteriated formaldehyde 0.1 mL 

(2 equiv.) was added dropwise then the solution was stirred for 1 h at 20oC.  The aqueous 

layer was saturated with solid NaCl and extracted four times with CHCl3.  The combined 

CHCl3 extracts were dried (MgSO4) and concentrated to dryness, giving the di-

hexahydropyrimidine ring derivative of spermine, 1,4-(dihexahydropyrimidine-2,2,2′,2′-

tetradeuterio) butane (13). 

 

1,4-(Dihexahydropyrimidine-2,2,2′,2′-tetradeuterio) butane (C12H22N4D4, M.W. = 230.2408,) 

HR-ESI-MS expected m/z [M+H]+ ion = 231.2486, found = 231.2472 and doubly charged 

ion of [M+2H]2+ = 116.1282, found = 116.1258. 

 

Dideuterio of hexahydropyrimidine derivative of thermospermine 

 

Thermospermine (6) 0.09 g (0.445 mmol), was dissolved in distilled water (25 mL) and the 

solution cooled to 5oC under N2.  Aqueous solution of dideuteriated formaldehyde 0.1 mL (2 

equiv.) was added dropwise then the solution was stirred for 1 h at 20oC.  The aqueous layer 

was saturated with solid NaCl and extracted four times with CHCl3.  The combined CHCl3 

extracts were dried (MgSO4) filtered and concentrated to dryness, giving the 

hexahydropyrimidine ring derivative of thermospermine, 8-(1-hexahydropyrimidine-2,2-

dideuterio)-4-aza-aminooctane (14). 
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8-(1-Hexahydropyrimidine-2,2-dideuterio)-4-aza-aminooctane (C11H24N4D2, M.W. = 

216.2283) HR-ESI-MS expected m/z [M+H]+ ion = 217.2361, found = 217.2348, doubly 

charged ion [M+2H]2+ = 109.1219, found = 109.1201 

 

Reaction of formaldehyde:dideuteriated formaldehyde (1:1) to spermine 

 

This experiment was repeated using an approximate 50:50 (v/v) mixture of formaldehyde 

and dideuteriated formaldehyde react with spermine. 

 

1,4-(Dihexahydropyridine)butane(11) (C12H26N4, M.W. = 226.2157) HR-ESI-MS expected 

m/z [M+H]+ ion = 227.2236, found = 227.2223.  1-(hexahydropyrimidine)-5-aza-

aminooctane (C12H24N4D2, M.W. = 228.2283) HR-ESI-MS expected m/z [M+H]+ ion = 

229.2361, found = 229.2343.  1,4-(Dihexahydropyrimidine tetradeuterio)butane 

(C12H22N4D4, M.W. = 230.2408) HR-ESI-MS expected m/z [M+H]+ ion = 231.2486, found = 

231.2480. 

 

Reaction of formaldehyde:dideuteriated formaldehyde (1:1) to thermospermine 

 

This experiment was repeated using an approximate 50:50 (v/v) mixture of formaldehyde 

and dideuteriated formaldehyde react with thermospermine. 

 

1-(Hexahydropyrimidine)-4-aza-aminooctane (12) (C11H26N4, M.W. = 214.2157) HR-ESI-

MS expected m/z [M+H]+ ion = 215.2236, found = 215.2225.  1-(Hexahydropyrimidine 

dideuterio)-4-aza-aminooctane (C11H24N4D2, M.W. = 216.2283,) expected m/z [M+H]+ ion = 

217.2361, found = 217.2355. 
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CHAPTER 3:  SELECTIVE POLYAMINE DERIVATIZATIONS 

 

3.1  Primary amine-o-phthalaldehyde/mercaptoethanol (OPA/MCE) derivatization 

 

ortho-Phthalaldehyde (OPA) is selective reagent reacting only with primary amines in the 

presence of alkylthiols to form fluorescent isoindole derivatives.  This reaction was 

introduced by Roth (1971) to investigate amino acids and the method has become widely 

used for the determination of amino acids (Patchett, 1988), peptides (Mendez, 1985), 

aminoglycoside antibiotics (Essers, 1984; Tawa, 1998), biogenic amines, polyamines and 

other primary amino group-containing compounds. 

 

In Roth’s original studies, 2-mercaptoethanol (MCE) was the thiol used (Roth, 1971) though 

later workers have explored a variety of thiols (Simons and Johnson, 1978).  The main 

advantage of the derivatization by OPA/MCE is that the reaction is easy to perform at pH 10 

in aqueous solution (usually borate buffer) under ambient temperature, with a short reaction 

of few minutes, yielding 1-alkylthio-2-alkylisoindole derivatives (Simons and Johnson, 

1976, 1977) which are highly fluorescent (Figure 3.1).  However, it has been reported that 

secondary amino groups do not form isoindoles (Lee, 1979; Roth, 1973). 

 

1-Alkylthio-2-alkylisoindoles exhibit several excitation maxima.  Usually the maximum 

wavelength at 340 nm is used, but wavelength 230 nm which gives higher fluorescence 

intensity could be used in order to improve the excitation of fluorescence (Schuster, 1988). 

 

The isoindoles are unstable, and decompose via an intramolecular rearrangement to non-

fluorescent 2,3-dihydro-1H-isoindole-1-one (Figure 3.2) (Simons and Johnson, 1978).  The 

degree of instability depends somewhat on the thiol and the amines (Lindroth, 1979; 

Stobaugh, 1983). 
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Figure 3.1  Formation of a 1-alkylthio-2-alkylisoindoles by reaction the OPA, a thiol and a 

primary amine. 

 

NH

O

 

 

Figure 3.2  2,3-Dihydro-1H-isoindole-1-one. 
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In aqueous medium, OPA undergoes hydration quite extensively to form a mixture of cis-, 

trans-cyclic-1,3-phthalandiols (Figure 3.3).  The 1,3-phthalandiols also absorb light at the 

same wavelength as the amine-OPA derivatives so the peak of this molecules always shows 

up in the chromatograms where UV absorbance detection is used. 
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Figure 3.3  Hydration of OPA in basic medium. 

 

The optimization of amine-OPA/MCE derivatization was by: 

1.  Optimisation the pH of borate buffer 

2.  Optimisation of the molar ratio of OPA/MCE reagent to sample solution. 

3.  Optimization of the mole ratio of MCE (mM) to 1 mM of OPA. 

4.  Optimisation of the reaction time. 

5.  Optimisation of the condition for maximum stability of the derivatives of amine-

OPA/MCE. 

6.  Optimization the mobile phase for HPLC. 

 

Optimization the pH of borate buffer 

 

The reactions of OPA/MCE at various pHs with ethylamine as a model primary amine were 

performed to optimize the pH.  The result (Figure 3.4) shows the range of pH from 8.3 to 

10.5 gave the highest derivative yields while acidic and neutral pH gave lower yields.  

Calibration curves were constructed at pHs 8.3, 9.3 and 10.5 (Figure 3.5 and Table 3.1). 
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Calibration curves of the reactions at the 3 pHs examined (8.3, 9.3, 10.5) showed 

approximately the same slopes.  However, the chromatogram of the reaction at pH 10.5 

showed the best resolution and fewer by-products.  Borate buffer pH 10.5 was used to 

determine the optimum reaction time by varying the reaction time of amines and OPA/MCE.  

The results were obtained with ethylamine (Figure 3.6) and also 1-butylamine (Figure 3.7).  

The best reaction time is 1 min, as longer reaction times gave smaller peak areas due to the 

instability of the reaction products. 
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Figure 3.4  Effect of various borate buffer pHs on the ethylamine-OPA/MCE derivatives 

yield (n = 5).  Peak areas were calculated by height x 0.5 width of peak, and peak areas are 

reported in cm2. 
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Figure 3.5  Calibration curve of ethylamine-OPA/MCE derivatives at various pHs (n = 5).  

Peak areas were calculated by height x 0.5 width of peak, and peak areas are reported in cm2. 
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Table 3.1  The calibration curves’ equations of ethylamine-OPA/MCE derivatives at various pHs. 

 

Ethylamine-OPA/MCE derivatives at various pH Calibration curve R2  (n = 5) 

pH 8.3 y = 2.23x – 0.078 0.984 

pH 9.3 y = 1.93x – 0.008 0.999 

pH 10.5 y = 1.915x + 0.025 0.999 
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Figure 3.6  Reaction of 1 mL 1mM ethylamine with 1 mL of OPA/MCE at various reaction 

times (n = 5).  Peak areas were calculated by height x 0.5 width of peak, and peak areas are 

reported in cm2. 
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Figure 3.7  Reaction of 100 µl 5mM 1-butylamine with 100 µl of OPA/MCE at various 

reaction times (n = 5).  Peak areas were calculated by height x 0.5 width of peak, and peak 

areas are reported in cm2. 
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Optimizing the mole ratio of reagent composition 

 

Mole ratios of MCE to OPA in the OPA reagent were altered from 1:1 to 17:1.  Thus, the 

behaviour of 1-butylamine has been compared with variation in the OPA/MCE mole ratio 

(Figure 3.8).  Further increasing the concentration of MCE in the reagent might result in 

increasing the rate of reaction as well as increasing of peak area.  In this study, it was found 

that there is insignificant increase in the peak area, the observed rate suppression at high 

thiol concentration is probably due to one or more OPA-thiol adducts which decrease the 

free OPA concentration (Figure 3.9) (Wong, Sternson and Schowen, 1985).  Thus the ratio 

of MCE: OPA = 10:1 was used for the next and subsequent studies. 
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Figure 3.8  Reaction of 1 µL 5mM 1-butylamine with 1 µL of OPA/MCE at various ratio of 

MCE (mM) per 1 mM of OPA (n = 5).  Peak areas were calculated by height x 0.5 width of 

peak, and peak areas are reported in cm2. 
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Figure 3.9  Reaction of thiol and OPA. 
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The derivatization method has been used to determine glucosamine (eluted by acetonitrile in 

Milli-Q-water (40:60), Rt = 2.0 min) which showed that the derivative is also unstable 

(Figure 3.10). 
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Figure 3.10  Glucosamine-OPA/MCE derivatives at various reaction times (n = 5).  Peak 

areas were calculated by height x 0.5 width of peak, and peak areas are reported in cm2. 

 

Optimizing the mole ratio of OPA/MCE to amines 

 

1-Butylamine (1 mM) was reacted with various mole ratios of OPA/MCE [1:10] at 0.2, 1, 2, 

4, 8, 16 fold.  Figure 3.11 shows that the completed yield was obtained from 1:1 mole ratio. 
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Figure 3.11  Ratio of concentration of OPA/MCE to 1-butylamine (by fold of mole, n = 5).  

Peak areas were calculated by height x 0.5 width of peak, and peak areas are reported in cm2. 
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After the optimization reactions for amine-OPA/MCE, these optimization conditions were 

then applied to:  1,4-diaminobutane, 1,5-diaminopentane and 1,7-diaminoheptane.  The 

conditions used were:  1 mL, 40 mM of OPA/MCE in borate buffer pH 10.5 and the reaction 

time was 1 min.  The OPA-MCE-polyamines derivatives were formed rapidly, but the 

products were unstable (Figure 3.12 and Table 3.2). 
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Figure 3.12  Polyamine-OPA/MCE derivatives at various reaction times (n = 5).  Peak areas 

were calculated by height x 0.5 width of peak, and peak areas are reported in cm2. 

 

Table 3.2  Time for 50% decrease in peak area of amine-OPA/MCE derivatives. 

 

Amine-OPA/MCE derivative Time (min) for peak area to 

decrease by 50% 

Ethylamine-monoOPA/MCE 9 

1-Butylamine-monoOPA/MCE 25 

1,4-Diaminobutane-diOPA/MCE 28 

1,5-Diaminopentane-diOPA/MCE 38 

1,7-Diaminoheptane-diOPA/MCE 45 
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The stability of the derivatives prepared under the same conditions, proved to be associated 

with the aliphatic chain length of the amine as the longer the chain length the slower the 

decomposition of the total of derivatives formed.  This also proved that particular 

optimization of the reaction needs to be done for particular amines.  The stability of the 

derivatives of OPA/MEC could be improved by putting the vial in an ice bath after 1 min 

reaction time; results are shown in Figure 3.13. 
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Figure 3.13  1,4-Diaminobutane-diOPA/MCE derivatives at various storage times at two 

different temperatures (20oC and 1oC, n = 5).  Peak areas were calculated by height x 0.5 

width of peak, and peak areas are reported in cm2. 

 

Polyamine-OPA/MCE derivatives 

 

Using the optimized conditions, derivatizations were carried out with 1-butylamine, 1,4-

diaminobutane, 1,5-diaminopentane, 1,7-diaminoheptane, 1,9-diaminononane, spermidine, 

and spermine.  For the mono- and di-amines, the chromatograms showed good resolution 

and peak symmetry (Figure 3.14).  The peak of 1,7-diaminoheptane-diOPA/MCE derivative 

was collected and the structure confirmed by HR-ESI-MS (Figure 3.15).  By adjusting the 

mobile phase, the retention time of some amine-OPA/MCE derivatives is shorter and they 

also show improved (more symmetrical) peak shape (Table 3.3).   
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Figure 3.14  HPLC chromatogram of amines-OPA/MCE derivatives, HPLC conditions:  

column: Phenomenex hypersil C18 5µ 150 x 4.60 mm, mobile phase is acetonitrile: Milli-Q-

water (70:30) with flow rate 1 mL/min, fluorescence detection at λex = 340 nm, λem = 450 

nm.  The chromatogram shows the solvent front at Rt = 1.3 min, peak 1 = 1-butylamine-

monoOPA/MCE at Rt = 3.4 min, peak 2 = 1,4-diaminobutane-diOPA/MCE at Rt = 5.6 min, 

peak 3 = 1,5-diaminopentane-diOPA/MCE at Rt = 7.0 min, peak 4 = 1,7-diaminoheptane-

diOPA/MCE at Rt = 12.2 min, peak 5 = 1,9-diaminononane-diOPA/MCE at Rt = 24.0 min. 

 

 

Figure 3.15  HR-ESI-MS spectra of 1,7-diaminoheptane di-OPA/MCE derivative, (M.W. = 

482.2062, C27H34N2O2S2) expected m/z [M+H]+ ion = 483.2140 (found = 483.2124) and [M+ 

Na]+ ion m/z = 505.1959 (found = 505.1966). 
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Table 3.3  The retention time (Rt) of various amine-OPA/MCE derivatives with different 

mobile phases. 

 

 

Amine-OPA/MCE derivatives 

Rt (min) 

eluted by  

70% MeCN 

Rt (min) 

eluted by 

80% MeCN 

Rt (min) 

eluted by  

90% MeCN 

1,4-Diaminobutane-diOPA/MCE 5.6 4.0 - 

1,5-Diaminopentane-diOPA/MCE 7.0 4.7 - 

1,7-Diaminoheptane-diOPA/MCE  12.2 7.5 - 

1,8-Diaminooctane-diOPA/MCE 21.3 - 3.0  

1,12-Diaminododecane-diOPA/MCE 73.0 - 6.2 

 

By varying the concentration of the amines, linearity of derivatization was calculated for 

each amine and the coefficient of regression ranged from 0.984 to 0.997 as shown in Table 

3.4 and in Figure 3.16 for the calibration curves obtained from fluorescence detector and in 

Figure 3.17 from ultraviolet detector.  These results mean that mono- and di-amines can be 

determined quantitatively by this method.  The calibration curve equations have high 

intercepts especially 1,7-diaminoheptane-diOPA/MCE derivative which might be due to 

high fluorescence background. 

 

Table 3.4  The calibration curve equations of various amine-OPA/MCE derivatives was 

detected by fluorescence. 

 

Amine-OPA/MCE derivatives Calibration curve equations R2 

1-Butylamine-monoOPA/MCE y = 82.64x + 0.24 0.989 

1,4-Diaminobutane-diOPA/MCE y = 31.69x + 0.72 0.989 

1,5-Diaminopentane-diOPA/MCE y = 23.79x + 0.47 0.984 

1,7-Diaminoheptane-diOPA/MCE  y = 20.57x + 1.48 0.997 
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Figure 3.16  Calibration curves of amine-OPA/MCE derivatives by fluorescence detection 

(n = 5).  Peak areas were calculated by height x 0.5 width of peak, and peak areas are 

reported in cm2. 
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Figure 3.17  Calibration curve of amine-OPA/MCE derivatives by UV detection (n = 5).  

Peak areas were calculated by height x 0.5 width of peak, and peak areas are reported in cm2. 
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Spermidine and spermine-OPA/MCE derivatization 

 

Spermidine and spermine, have two terminal primary amine groups while in the middle of 

the molecule are one and two secondary amine groups for spermidine and spermine 

respectively.  Thus, the derivatization reaction between OPA/MCE and spermidine, and 

spermine leads to the formation of di-isoindol-derivatives (Figures 3.18 and 3.19). 
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Figure 3.18  Spermidine-diOPA/MCE derivative. 
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Figure 3.19  Spermine-diOPA/MCE derivative. 
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Figure 3.20  Spermidine-OPA/MCE reaction after various times (n = 5).  Peak areas were 

calculated by height x 0.5 width of peak, and peak areas are reported in cm2. 
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Figure 3.21  HPLC chromatogram of spermidine-diOPA/MCE (10 mM), HPLC conditions:  

column:  Phenomenex luna C18 5µ 150 x 4.60 mm, mobile phase:  acetonitrile: Milli-Q-

water (90:10), flow rate 1 mL/min, fluorescence detection at λex = 340 nm, λem = 450 nm.  

The chromatogram shows the solvent front at Rt = 1.5 min and spermidine-diOPA/MCE 

derivative at Rt = 3.7 min. 

 

 

 

Figure 3.22  HR-ESI-MS spectra of spermidine-diOPA/MCE derivative, (M.W. = 497.2171, 

C27H35N3O2S2) expected m/z [M+H]+ ion = 498.2249 (found = 498.2225) and [M+ Na]+ ion 

m/z = 520.2068 (found = 520.2068). 
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Figure 3.23  Calibration curve of spermidine-OPA/MCE derivatives by fluorescence 

detection.  Calibration curve equation: y = 0.6333x +1.1615, R2 = 0.995, (n = 5).  Peak areas 

were calculated by height x 0.5 width of peak, and peak areas are reported in cm2. 

 

For both spermidine and spermine a graph of yield against reaction time (Figure 3.20) 

showed a rapid degradation of the product.  The HPLC chromatogram of the spermidine-

diOPA/MCE derivative was symmetrical and sharp when eluted by 90% acetonitrile in 

Milli-Q-water at Rt = 3.7 min (Figure 3.21).  HR-ESI-MS (Figure 3.22) showed a peak 

corresponding to the expected value, but the major peak at m/z 420.2098 could not be 

identified.  By varying the concentration of the spermidine, linearity of derivatization was 

calculated and the coefficient of regression is 0.995 for fluorescence detection and 0.991 for 

UV detection.  Figure 3.23 shows the calibration curve obtained from the fluorescence 

detector and in Figure 3.24 from the UV detector.  For spermine-diOPA/MCE derivative, the 

peak was broad and also decreased rapidly in just 10 min of reaction and nearly disappeared 

after 30 min (Figure 3.25). 
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Figure 3.24 Calibration curve of spermidine-OPA/MCE derivatives by UV detection.  

Calibration curve equation: y = 3.5453x +1.1215, R2 = 0.991, (n = 5).  Peak areas were 

calculated by height x 0.5 width of peak, and peak areas are reported in cm2. 

 

Although the stability of both spermidine-diOPA/MCE derivatives and spermine-

diOPA/MCE derivative were low, the spermidine-diOPA/MCE derivative was more stable, 

perhaps due to the lower number of secondary amine groups in the molecule. 
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Figure 3.25  HPLC chromatogram of spermine-diOPA/MCE (10 mM), HPLC conditions:  

column:  Phenomenex luna C18 5µ 150 x 4.60 mm, mobile phase:  acetonitrile: Milli-Q-

water (90:10) flow rate 1 mL/min, fluorescence detection at λex = 340 nm, λem = 450 nm.  

The chromatogram shows the solvent front at Rt = 1.5 min and spermine-diOPA/MCE 

derivative as the broad peak start at Rt = 4.9 min. (A) reaction time 1 min (B) reaction time 

15 min. 

 

Relative quantum yield of amines-OPA/MCE derivatives 

 

A comparison of fluorescence yields of the model series was obtained by comparison 

between the peak area of fluorescence intensity and peak area of UV absorbance rather than 

by collected the elution product from HPLC and separate measurement by UV/VIS 

spectrophotometer and fluorescence spectrometer due to the low stability of the amines-

OPA/MCE derivatives.  A plot of fluorescence intensity against absorbance (Figure 3.26) 

and the FI/UV equation (Table 3.5) were obtained. 

 

Table 3.5  The FI/UV equation of amine-OPA/MCE derivatives. 

 

Amine-OPA/MCE derivatives FI/UV equation 

1-Butylamine y = 3.22x – 0.56 

1,4-Diaminobutane y = 0.91x – 0.04 

1,5-Diaminopentane y = 1.79x – 0.72 

1,7-Diaminoheptane y = 3.49x – 0.75 

0 6 12 mins 
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Figure 3.26  Plots of fluorescence intensity against absorbance at λex of amine-OPA/MCE 

derivatives (n = 5).  Peak areas were calculated by height x 0.5 width of peak, and peak areas 

are reported in cm2. 

 

From the results, it is concluded that fluorescence yield is reduced when the two 

fluorophores are tethered in close proximity, but that the seven carbon chain of 1,7-

diaminoheptane allows sufficient flexibility for this not to occur. 

 

OPA/MCE derivatives of a series of non-viral gene therapy (NVGT) vectors 

 

The OPA/MCE derivatization method was applied to investigate two synthetic fatty acyl 

amides of spermine, N4,N9-didecanoyl spermine (Figure 3.27) and N4,N9-dilinoleoyl 

spermine (Figure 3.29).  These C10 and C14 conjugates are experimental non-viral vectors 

for DNA condensation with potential in gene delivery and therefore in non-viral gene 

therapy (NVGT).  The OPA/MCE labelling method was applied to these molecules and 

HPLC chromatograms of derivatives of N4,N9-didecanoyl spermine and N4,N9-

dibutadecanoyl spermine (Figure 3.30) were obtained.  The HR-ESI-MS of N4,N9-didecanoyl 

spermine (Figure 3.28) and N4,N9-dibutadecanoyl spermine (Figure 3.31) showed the mass 

expected for bis-isoindole derivatives. 
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Figure 3.27  N4,N9-Didecanoyl spermine-diOPA/MCE derivative. 

 

 

Figure 3.28  HR-ESI-MS spectra of N4,N9-didecanoyl spermine-diOPA/MCE derivative, 

(M.W. = 862.5465, C50H78N4O4S2) expected m/z [M+H]+ ion = 863.5543 (found = 863.5518) 

and [M+ Na]+ ion m/z = 885.5362 (found = 885.5385). 
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Figure 3.29  N4,N9-Dibutadecanoylspermine-diOPA/MCE derivative. 
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Figure 3.30  HPLC chromatogram of N4,N9-dibutadecanoylspermine-diOPA/MCE 

derivative. (10 mM), HPLC conditions:  column: Phenomenex luna C18 5µ 150 x 4.60 mm, 

mobile phase is acetonitrile: Milli-Q-water (90:10) with flow rate 1 mL/min.  The 

chromatogram shows the solvent front at Rt = 1.5 min and N4,N9-Dibutadecanoylspermine-

diOPA/MCE derivative as the broad peak starting at Rt = 7.9 min, (A) from fluorescence 

detector x10 sensitivity at λex = 340 nm, λem = 450 nm, (B) from UV detector 0.16 range at 

λmax = 340 nm. 
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Figure 3.31  HR-ESI-MS spectra of N4,N9-Dibutadecanoylspermine-OPA/MCE derivative, 

(M.W. = 974.6717, C58H94N4O4S2) expected m/z [M+H]+ ion = 975.6795 (found = 975.6758), 

[M+ Na]+ ion m/z = 997.6614 (found = 997.6584) and [M+K]+ ion m/z = 1013.7700. 

 

OPA/MCE derivatives of aminoglycosides 

 

Aminoglycoside antibiotics present a problem of detection by spectroscopic methods.  One 

approach to this problem is to derivatize the antibiotic with a UV or fluorescent 

chromophore for HPLC analysis. 

 

Kanamycins (Figure 3.32) are aminoglycoside antibiotics, which are synthesized by 

Streptomyces kanamyceticus.  Kanamycin A is the main component (>95%) kanamycin B is 

minor component (<5%) so kanamycin A is usually chosen as the detected target compound.  

The official British Pharmacopoeia method for the detection of kanamycin A is a 

microbiological method.  However, this method is time consuming and has a low sensitivity 

which can hardly provide reliable results.  There are also other analytical methods for 

determination of kanamycin A such as nuclear magnetic resonance (NMR) (Fourmy et al., 

1998), mass spectrometry (MS) (Oertel et al., 2004) and high performance liquid 

chromatography (HPLC) (David et al., 2001).  Compared to NMR and MS methods, HPLC 

is a simple procedure for detecting aminoglycosides, relatively easy to develop, and is well 

suited for the analysis of small compounds.  Simple chromatographic methods are not 

applicable due to lack of chromophores and strong hydrophilicity of aminoglycosides. 
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Figure 3.32  Kanamycin. 

 

The OPA/MCE derivatization method was applied to the polyamine glycoside antibiotics, 

kanamycin and neomycin.  The time of derivatization and the amount of derivative reagent 

were studied to optimize the derivatization conditions for kanamycin-OPA/MCE.  For the 

optimization of reaction time, kanamycin was derivatized at 1, 10, 30, 45 min.  The 

maximum peak area was reached at 10 min (Figure 3.33).  The amount of OPA/MCE to 

kanamycin was also investigated from 1- to 24-fold.  The results from the HPLC 

chromatogram show that the reaction was not complete with 2-fold mole ratio of OPA/MCE 

reagent (Figure 3.34), but appeared to be complete when a 10-fold mole ratio excess of 

reagent was used (Figure 3.35).  The retention time of kanamycin-OPA/MCE is 9.7 min 

(mobile phase: 40% acetonitrile in Milli-Q-water).  The graph of mole ratio of OPA/MCE 

vs. kanamycin (Figure 3.36) and the calibration curve were obtained (Figure 3.37). 
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Figure 3.33  Reaction of 100 µL 1mM kanamycin with 100 µL of OPA/MCE at various 

reaction times (n = 5).  Peak areas were calculated by height x 0.5 width of peak, and peak 

areas are reported in cm2. 
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Figure 3.34  HPLC chromatogram of kanamycin-OPA/MCE (10 mM), HPLC conditions:  

column: Phenomenex luna C18 5µ 150 x 4.60 mm, mobile phase is acetonitrile: Milli-Q-

water (40:60) with flow rate 1 mL/min, (A) from fluorescence detection at λex = 340 nm, λem 

= 450 nm.  (B) from UV detector at λmax = 340 nm.  The chromatogram shows the solvent 

front at Rt = 1.0 min and kanamycin-OPA/MCE derivative as the broad multiple peak 

starting at Rt = 3.0 min. 
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Figure 3.35  HPLC chromatogram of kanamycin-triOPA/MCE (10 mM), HPLC conditions:  

column:  Phenomenex luna C18 5µ 150 x 4.60 mm, mobile phase:  acetonitrile: Milli-Q-water 

(40:60), flow rate 1 mL/min, (A) fluorescence detection at λex = 340 nm, λem = 450 nm.  The 

chromatogram shows the solvent front at Rt = 1.0 min and kanamycin-triOPA/MCE 

derivative at Rt = 9.7 min (B) from UV detector at λmax = 340 nm. 
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Figure 3.36  Reaction of 100 µL 1mM kanamycin with 100 µL of OPA/MCE at various 

mole ratio (n = 5).  Peak areas were calculated by height x 0.5 width of peak, and peak areas 

are reported in cm2. 
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Figure 3.37  Calibration curve of kanamycin-OPA/MCE derivatives (n = 5).  Peak areas 

were calculated by height x 0.5 width of peak, and peak areas are reported in cm2. 

 

However, the HR-ESI-MS suggested that this product was kanamycin-triOPA/MCE (Figure 

3.38) instead of the expected tetra-OPA/MCE (Figure 3.39).  This might due to the steric 

effect of the two amine groups on the same 2-deoxy streptamine ring allowing only one 

molecule of OPA/MCE to react at one of the amine positions of this ring.  HR-ESI-MS from 

the broad peak of the incomplete reaction in Figure 3.34 showed the m/z kanamycin-

diOPA/MCE derivatives (Figure 3.40), for which several different structures are possible. 
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Figure 3.38  HR-ESI-MS spectra of kanamycin-triOPA/MCE derivative, (M.W. = 

1012.3268, C48H60N4O14S3) expected m/z [M+H]+ ion = 1013.3346 (found = 1013.3363) and 

[M+ Na]+ ion m/z = 1035.3166 (found = 1035.3171). 

 

N

N

S

O

O

OH

OH

OH
O O

OH

OH

OH

OH

N

S

N

S

OH

OH

OH

S

OH

 

 

 

Figure 3.39  Kanamycin-tetraOPA/MCE derivative. 
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Figure 3.40  HR-ESI-MS spectra of kanamycin-diOPA/MCE derivative, (M.W. = 836.2972, 

C38H52N4O13S2) expected m/z [M+H]+ ion = 837.3050 (found = 837.3063), [M+ Na]+ ion m/z 

= 859.2869 (found = 859.2879) and [M+K]+ ion m/z = 875.3955 (found = 875.2673). 

 

O

NH
2

NH
2

OH
OH

O

NH
2

OH

OH

NH
2

O

NH
2

OH

NH
2O

O

O

OH

OH

D-neosamine

2-deoxystreptamine

D-ribose

L-neosamine B

 

 

Figure 3.41  Neomycin B. 
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Figure 3.42  HPLC chromatogram of neomycin-pentaOPA/MCE (10 mM), HPLC 

conditions:  column: Phenomenex luna C18 5µ 150 x 4.60 mm, mobile phase is acetonitrile: 

Milli-Q-water (40:60) flow rate 1 mL/min, (A) fluorescence detection at λex = 340 nm, λem = 

450 nm.  (B) UV detection at λmax = 340 nm.  The chromatogram shows the solvent front at 

Rt = 1.0 min and neomycin-pentaOPA/MCE derivative at Rt = 16.7 min. 

 

The method for derivatization of kanamycin with OPA/MCE was also used to investigate 

neomycin.  Neomycin (Figure 3.41) is mainly composed of a mixture of neomycin B and its 

stereoisomer neomycin C (3-15% of the mixture) (Dutcher et al., 1951).  It is produced by 

cultures of Streptomyces fradiae (Waksman, 1949).  The structure contains three sugar 

residues linked to 2-deoxystreptamine.  One of these is the common sugar D-ribose.  

0 6 12 18 mins 

0 6 12 18 mins 
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Neomycin has very good activity against Gram-positive and Gram-negative bacteria, but it 

has a narrow therapeutic range and is ototoxic  For neomycin, ratios of OPA/MCE to 

neomycin up to 15-fold were required to achieve a symmetrical peak at 16.7 min (Figure 

3.42) eluted with mobile phase 40% acetonitrile in Milli-Q-water.  HR-ESI-MS analysis of 

the derivative peak showed neomycin-pentaOPA/MCE (Figure 3.43).  Instead of the 

expected hexaOPA/MCE as with kanamycin-triOPA/MCE, this may be due to the steric 

effect of the two amine groups on the same 2-deoxy streptamine ring.  The two amine groups 

on the D-neosamine and L-neosamine of neomycin are unlikely to show such a steric effect 

due to the rigidity of the ring which holds the amine groups at positions two and six well 

apart. 

 

 

Figure 3.43  HR-ESI-MS spectra of neomycin-pentaOPA/MCE derivative, (M.W. = 

1494.4602, C73H86N6O18S5) expected m/z [M+H]+ ion = 1495.4680 (found = 1495.4711), 

[M+ Na]+ ion m/z = 1517.4499 (found = 1517.4464) and [M+K]+ ion m/z = 1533.5585 

(found = 1533.4270). 

 

This OPA/MCE method for aminoglycosides is easy and simple to perform, the time of 

reaction (10 min) is also practical, and no process of extraction is needed.  The derivatives of 

aminoglycosides-OPA/MCE are more stable than the aliphatic amines.  RP-HPLC with C-18 

column and isocratic mobile phase of acetonitrile and Milli-Q-water were used to separate 

aminoglycosides.  By this method, we could use either UV or fluorescence detection to 

examine the aminoglycosides-OPA/MCE derivatives.  Thus it is possible to introduce HPLC 

in official monographs to replace a microbiological assay (Adams et al., 1998). 
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The two step derivatization of OPA/MCE/FMOC 

 

The method of derivatization by OPA/MCE did not give stable peaks for spermidine and 

spermine-OPA/MCE derivatives in the HPLC chromatogram.  Derivatives for molecules 

such as spermidine and spermine may be unstable due to their secondary amine groups 

which do not form OPA/MCE derivatives, but which may lead to rapid breakdown of the 

primary amine derivatives.  A two-step derivatization process, by applying OPA/MCE 

followed by FMOC reagent was explored.  By this method, spermidine and spermine should 

be fully labelled, at their primary amines with OPA/MCE and at their secondary amines with 

FMOC.  This process resulted in more stable derivatives, detected by both fluorescence and 

UV absorption of both chromophores and gave reproducible responses.  The derivatization 

product of spermidine-diOPA/MCE-monoFMOC (Figure 3.44) and spermine-diOPA/MCE-

diFMOC (Figure 3.47) gave symmetrical HPLC peaks (Figures 3.45 and 3.49, respectively) 

in terms of increased fluorescent responses and better reproducibility.  Table 3.6 shows the 

retention times of spermidine-diOPA/MCE-monoFMOC and spermine-diOPA/MCE-

diFMOC derivative using hypersil C-18 column when the mobile phase was changed.  

Spermidine-diOPA/MCE-monoFMOC derivative and spermine-diOPA/MCE-diFMOC 

derivatives show the expected m/z by HR-ESI-MS (Figures 3.46 and 3.48 respectively). 
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Figure 3.44  Spermidine-diOPA/MCE-monoFMOC. 

 

Table 3.6  Retention time of spermidine-diOPA/MCE-mono derivative and spermine-

diOPA/MCE-diFMOC derivative. 

 

Rt (min) Mobile phase 

Spermidine Spermine 

65% Acetonitrile : 35% Milli-Q-Water 25.7 - 

70% Acetonitrile : 30% Milli-Q-Water 22.0 49.5 

80% Acetonitrile : 20% Milli-Q-Water 6.5 18.0 

85% Acetonitrile : 15% Milli-Q-Water 5.3 9.0 
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Figure 3.45  HPLC chromatogram of spermidine-diOPA/MCE-monoFMOC derivative, 

HPLC conditions:  column: Phenomenex hypersil C18 5µ 150 x 4.60 mm, mobile phase is 

acetonitrile: Milli-Q-water (65:35) with flow rate 1 mL/min, fluorescence detection at λex = 

340 nm, λem = 450 nm.  The chromatogram shows the solvent front at Rt = 1.0 min and 

spermidine-diOPA/MCE-monoFMOC derivative at Rt = 25.7 min. 

 

 

Figure 3.46  HR-ESI-MS spectrum of spermidine-diOPA/MCE-monoFMOC derivative, 

(M.W. = 719.2852, C42H45N3O4S2) expected m/z [M+H]+ ion = 720.2929 (found = 

720.2919), [M+ Na]+ ion m/z = 742.2749 (found = 742.2709) and [M+K]+ ion m/z = 

758.3835 (found = 758.2474). 

 

0 6 12 18 24 mins 
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Figure 3.47  Spermine-diOPA/MCE-diFMOC. 

 

 

Figure 3.48  HR-ESI-MS spectra of spermine-diOPA/MCE-diFMOC derivative, (M.W. = 

998.4111, C60H62N4O6S2) expected m/z [M+H]+ ion = 999.4189 (found = 999.4192), [M+ 

Na]+ ion m/z = 1021.4009 (found = 1021.3971) and [M+K]+ ion m/z = 1037.5093 (found = 

1037.3732). 
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(A) 

 

 

 

(B) 

Figure 3.49  HPLC chromatogram of spermine-diOPA/MCE-diFMOC derivative, HPLC 

conditions:  column: Phenomenex hypersil C18 5µ 150 x 4.60 mm, mobile phase is 

acetonitrile: Milli-Q-water (85:15) with flow rate 1 mL/min, fluorescence detection at (A) 

FMOC wavelength λex = 264 nm, λem = 310 nm (B) OPA wavelength λex = 340 nm, λem = 

450 nm.  The chromatogram shows the solvent front at Rt = 1.0 min and peak 1 = spermine-

diOPA/MCE-diFMOC derivative at Rt = 9 min. 
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3.2 Primary amine-fluorescamine derivatives 

 

Fluorescamine, (4-phenylspiro [furan-2(3H),1-phthalan]-3,3-dione) a heterocyclic dione, is a 

selective fluorophore which reacts with primary amines to form a highly fluorescent product.  

Udenfriend first described that phenylacetaldehyde, which is formed by oxidative 

decarboxylation of phenylalanine by ninhydrin, reacts with an excess of ninhydrin and with a 

primary amino group to give a 5-(2-carboxyphenyl)-5-hydroxy-3-phenyl-2-pyrroline-4-one 

derivative with  highly fluorescent yield (λex = 275, 390 nm, λem = 480 nm) (Udenfriend et 

al., 1972).  This main fluorescent product was characterized as a pyrrolinone which led to 

the synthesis of fluorescamine (Debernar et al., 1974).  Ammonia also reacts with 

fluorescamine, but the product has little fluorescence.  The scheme of amine-fluorescamine 

reaction is shown in Figure 3.50. 
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Figure 3.50  Amine-fluorescamine reaction. 

 

Fluorescamine is a non-fluorescent compound that reacts with primary amines at room 

temperature to yield a highly fluorescent product.  The excess of reagent is destroyed by 

water to form a non-fluorescent hydrolysis product (Stein et al., 1974).  The reaction of 

fluorescamine with primary amines is strongly pH dependent and also the fluorescence is 

developed only in alkaline media (pH of 8.0-9.5) and disappears completely in acidic media.  

The derivatives of amines-fluorescamine are formed immediately and are stable for at least 1 

day so they are more stable than OPA derivatives.  The method of preparation of the amines-

fluorescamine was tested (HPLC chromatogram shown in Figure 3.51, retention time shown 

in Table 3.7) and the calibration curves obtained were linear (Table 3.8, Figure 3.52).  The 
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good linearity of the calibration curves is clearly evident by the values of the correlation 

coefficients.  Derivatization of spermidine and spermine was attempted, but no stable 

products were observed by HPLC. 

 

 

 

 

Figure 3.51  HPLC chromatogram of various amine-fluorescamine derivatives, HPLC 

conditions:  column: Phenomenex hypersil C18 5µ 150 x 4.60 mm, mobile phase is 

methanol: Milli-Q-water (40:60), flow rate 1 mL/min, fluorescamine fluorescence detection 

at λex = 400 nm, λem = 475 nm.  The chromatogram shows the solvent front at Rt = 1.3 min, 

peak 1 = 1-Butylamine-monofluorescamine at Rt = 3.2 min, peak 2 = 1,4-diaminobutane-

monofluorescamine at Rt = 3.8, peak 3 = 1,5-diaminopentane-monofluorescamine at Rt = 8.8 

min, peak 4 = 1,7-diaminoheptane-monofluorescamine at Rt = 12.8 min. 

 

Table 3.7  Retention time of various amine-fluorescamine derivatives. 

 

Amine-fluorescamine derivatives Rt (min) 

eluted by 

40% MeOH  

Rt (min) 

eluted by 

50% MeOH 

Rt (min) 

eluted by 

70% MeCN 

1-Butylamine-monofluorescamine 3.2 2.30 1.5 

1,4-Diaminobutane-monofluorescamine 3.8 - - 

1,5-Diaminopentane-monofluorescamine 8.8 - - 

1,7-Diaminoheptane-monofluorescamine 12.8 8.30 1.8 
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Table 3.8  The calibration curves’ equations for various amine-fluorescamine derivatives. 

 

Amine-fluorescamine derivatives Calibration curve equation R2 

1-Butylamine-monofluorescamine y = 1.245x +0.08 0.997 

1,4-Diaminobutane-monofluorescamine y = 1.501x + 0.16 0.994 

1,5-Diaminopentane-monofluorescamine y = 2.223x + 0.19 0.995 

1,7-Diaminoheptane-monofluorescamine y = 2.349x - 0.04 0.991 
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Figure 3.52  Calibration curves of amine-fluorescamine derivatives (n = 5). Peak areas were 

calculated by height x 0.5 width of peak, and peak areas are reported in cm2. 

 

HR-ESI-MS 

 

The HR-ESI-MS for fluorescamine derivatives was investigated to confirm the structures of 

the derivatives as 1-butylamine gave the expected mono-fluorescamine derivative (Figure 

3.53).  1,4-Diaminobutane (putrescine) could potentially form both mono- and di-fluorescent 

derivatives, but from the HPLC and MS results only the mono-derivative of fluorescamine 

was observed (Figure 3.54).  The di-fluorescamine moiety attached to putrescine is expected 

to give m/z [M+H]+ ion = 645.2237 (M.W = 644.2159, C38H32N2O8) which was not 

observed.  This may be due to some steric hindrance in forming the second derivative of 

monofluorescamine-1,4-diaminobutane. 
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Figure 3.53  HR-ESI-MS spectra of 1-butylamine-monofluorescamine derivative, (M.W. = 

351.1471, C21H21NO4) expected m/z [M+H]+ ion = 352.1549 and [M+ Na]+ ion m/z = 

374.1368 (found = 374.1362).  

 

 

Figure 3.54  HR-ESI-MS of 1,4-diaminobutane (putrescine)-monofluorescamine derivative, 

M.W. = 366.1579, C21H22N2O4, the expected m/z [M+H]+ ion = 367.1658 (found = 

367.1649). 

 

For 1,5-diaminopentane (cadaverine) the monofluorescamine derivative was the major 

product with a trace of the di-fluorescamine derivative as shown in Figures 3.55 and 3.56. 

 

 

Figure 3.55  HR-ESI-MS of 1,5-diaminopentane (cadaverine)-monofluorescamine 

derivative M.W. = 380.1736, C22H24N2O4, the expected m/z [M+H]+ ion = 381.1814 (found 

= 381.1784). 
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Figure 3.56  HR-ESI-MS of 1,5-diaminopentane (cadaverine)-difluorescamine derivative 

(C39H34N2O8, M.W. = 658.2315) is expected at m/z [M+H]+ ion = 659.2393 (found = 

659.2422) and [M+ Na]+ ion as C39H34N2NaO8 m/z = 681.2213 (found = 681.2210). 

 

For 1,7-diaminoheptane-monofluorescamine derivative, M.W. = 408.2049 C24H28N2O4, the 

expected m/z [M+H]+ ion = 409.2127.  Also, the 1,7-diaminoheptane-difluorescamine 

moiety is expected at m/z [M+H]+ ion = 687.2706 (M.W. = 686.2628, C41H38N2O8) (Figure 

3.57). 

 

 

Figure 3.57  HR-ESI-MS of 1,7-diaminoheptane-monofluorescamine derivative, M.W. = 

408.2049, C24H28N2O4, the expected m/z [M+H]+ ion = 409.2127. 

 

The derivatives of fluorescamine were stable in neutral and mildly alkaline media.  In acidic 

solutions the fluorescence rapidly deteriorated. 
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Relative quantum yield of amine-fluorescamine derivatives 

 

A comparison of fluorescence yields of the model amine series was obtained by comparison 

between the fluorescence intensity and UV absorption by collected the elution products from 

HPLC and separate measurement by fluorescence spectrometer and UV/VIS 

spectrophotometer.  A plot of fluorescence intensity against UV absorbance (Figure 3.58) 

and the FI/UV equation (Table 3.9) were obtained.  The results show that fluorescence yield 

is equal when one fluorophore is derivatized to each amine molecule. 

 

Table 3.9  The FI/UV equation of amine-fluorescamine derivatives. 

 

Amine-Fluorescamine derivatives FI/UV equation R2 

1-Butylamine-monofluorescamine y = 5661.3x – 24.91 0.993 

1,4-Diaminobutane-monofluorescamine y = 5410.3x – 17.83 0.999 

1,5-Diaminopentane-monofluorscamine y = 5437.1x – 22.64 0.998 

1,7-Diaminoheptane-monofluorescamine y = 5441.6x – 12.60 1.000 
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Figure 3.58  Plots of fluorescence intensity against absorbance at λex of  amine-

monofluorescamine derivatives (n = 5). 
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Fluorescamine derivative of glucosamine 

 

 

 

(A) 

 

       

 

   (B)     (C) 

 

Figure 3.59  HPLC chromatogram of glucosamine-fluorescamine derivatives (50 mM).  

HPLC conditions:  column: Phenomenex luna C18 5µ 150 x 4.60 mm, mobile phase is 

acetonitrile: Milli-Q-water (30:70) with flow rate 1 mL/min, UV detector at λmax = 330 nm.  

Glucosamine-fluorescamine derivatives Rt = 4.5, 5.0, 5.4 min.  (A) Blank  (B) injection 1  

(C) injection 2. 
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Prior to investigation of the aminoglycoside derivatization by fluorescamine, glucosamine 

(with only 1 amine group) was tested as a simple model.  The HPLC chromatogram of 

glucosamine-fluorescamine derivative showed three peaks as in Figure 3.59, probably due to 

the formation of several diastereoisomeric products.  The peak area and peak height of each 

peak were not stable possibly due to derivatization influencing the proportions of the two 

anomers of glucosamine.  However, at least the stereoisomers of glucosamine-fluorescamine 

derivatives were separated on the reversed phase C18 column under the chromatographic 

conditions described. 

 

HR-ESI-MS of peak 1 (Figure 3.60), peak 2 (Figure 3.61) and peak 3 (Figure 3.62) all 

showed similar MS profiles with the expected m/z [M+H]+ ion = 458.1451 (glucosamine-

monofluorescamine derivative, C23H23NO9, M.W. = 457.1373) and m/z [M+Na]+ ion 

(C23H23NNaO9) = 480 and a probable [M+H-H2O]+ at m/z = 440.1345. 

 

 

Figure 3.60  HR-ESI-MS of glucosamine-fluorescamine derivative (C23H23NO9, M.W. = 

457.1373) from peak 1 expected at m/z [M+H]+ ion = 458.1451 (found = 458.1445), m/z 

[M+Na]+ ion (C23H23NNaO9) = 480.1249 and [M+H-H2O]+ at m/z = 440.1345.  
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Figure 3.61  HR-ESI-MS of glucosamine-fluorescamine derivative (C23H23NO9, M.W. = 

457.1373) from peak 2 expected at m/z [M+H]+ ion = 458.1451 (found = 458.1460), m/z 

[M+Na]+ ion (C23H23NNaO9) = 480.1249 (found = 480.1291) and [M+H-H2O]+ at m/z = 

440.1345 (found = 440.1345).  

 

 

 

Figure 3.62  HR-ESI-MS of glucosamine-fluorescamine derivative (C23H23NO9, M.W. = 

457.1373) from peak 3 expected at m/z [M+H]+ ion = 458.1451 (found = 458.1436), m/z 

[M+Na]+ ion (C23H23NNaO9) = 480.1249 (found = 480.1267) and [M+H-H2O]+ at m/z = 

440.1345 (found = 440.1339). 
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Reaction of chiral non-fluorescent fluorescamine with a chiral amine begins by nucleophilic 

addition of the amine nitrogen to the C=C double bond of fluorescamine resulting in the 

breakage of a C-O bond and loss of fluorescamine’s chiral centre (to yield the diketone).  

Closing the 5-membered ring by a second nucleophilic attack of the amine nitrogen on the 

benzoyl ketone forms a fluorescent product with two chiral centres (Figure 3.63). 
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Figure 3.63  The reaction mechanism of the fluorescamine derivatization for amines. 

 

As from Figure 3.63, fluorescamine itself is a chiral molecule so when it reacts with a non-

chiral amine it will give rise to a pair of enantiomers.  Glucosamine (Figure 3.64) is an 

example of a chiral molecule which when it reacts with fluorescamine generates two 

diastereoisomers.  The existence of two anomeric forms of glucosamine will lead to the 
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formation of four diastereoisomeric products (Figure 3.65).  From the HPLC chromatogram 

(Figure 3.59), the four diastereoisomeric products of glucosamine-monofluorescamine 

derivatives show just three peaks, where in one peak might be the combination of two 

diastereoisomers and these three peaks are not reproducible in the heights which is probably 

due to the changeable ratios of the four anomers. 
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Figure 3.64  D-Glucosamine, C6H13NO5. 
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Figure 3.65  Structure of four fluorescent stereoisomers formed by the reaction of 

fluorescamine with glucosamine, where R and S relate to the chiral centre of fluorescamine, 

α and β relate to the anomeric centre of glucosamine. 

 

Thus, the derivatization of the polyamine aminoglycoside with fluorescamine was not 

pursued due to the likelihood of highly complex stereochemical mixtures being produced. 

 

Rα Sα 

Rβ Sβ 
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Conclusions of o-phthalaldehyde-mercaptoethanol (OPA/MCE) derivatization 

 

The reaction of o-phthalaldehyde (OPA) and 2-mercaptoethanol (MCE) selectively with 

primary amine gives a 1-alkylthio-2-alkylisoindole as the fluorogenic product.  Investigating 

the derivatization of amines as amine-OPA/MCE, the reaction occurred in alkaline media 

(pH 8.3–10.5) and the optimized pH which gave fewer by-products was 10.5.  By varying 

the composition of the OPA reagent in the reaction, it was demonstrated that the higher the 

concentration of MCE (SH-group additive), the lower the amount of the transformed 

product.  Varying the mole ratios of the OPA/MCE from 1:1 to 1:17, it was shown that the 

optimum ratio of OPA/MCE was 1:10.  At this ratio, when compared to other ratios at a 

strict reaction time, it gave the highest derivative product.  However, at higher ratio than 

1:10, the rate suppression was observed at high thiol concentration.  This implied that the 

free OPA concentration favoured the transformation of the initially formed isoindole if the 

concentration of MCE is too much it might cause OPA-thiol adducts which decrease the free 

OPA concentration.  Stability of derivatives prepared under the same conditions, proved to 

be associated with the chain length of the aliphatic amines:  the longer the chain length the 

slower the decomposition of the total of derivatives formed.  It is important in choosing 

optimum reaction times for the amine in question.  In cases of aliphatic amines with number 

of C from 4 to 12, the optimum reaction time is 1 min, but for larger molecule with many 

amine groups such as aminoglycosides a reaction time required at 10 min.  Thus, this 

suggested that the optimum reaction time need to be considered depend on the compound to 

be derivatized to obtain the maximum responses.  The advantage of amine-OPA/MCE 

derivatization is the simplicity of derivatization method with rapid reaction, short analysis 

time, and no process of extraction.  However, the drawback of OPA/MCE derivatization is 

the instability of the derivative. 

 

Conclusions of fluorescamine derivatization 

 

Fluorescamine is highly reactive with primary amines to produce fluorescent products, also 

fluorescamine and its hydrolysis products are non-fluorescent.  This property makes a clean 

chromatographic separation.  The results showed just one moiety of fluorescamine reacted 

with a diamine.  Therefore, steric hindrance of the bulky fluorescamine molecule made 

difficulty to complete the reaction of fluorescamine with all the amine positions even in 

small aliphatic diamines.  Also to be considered when using fluorescamine as the labelling 

reagent is that fluorescamine, itself is a chiral molecule, thus when it reacts with another 

chiral molecule, there is a greater chance of obtaining many peaks from one sample which 

will complicate its quantification. 
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CHAPTER 4:  DERIVATIZATION OF PRIMARY AND SECONDARY AMINES 

WITH 9-FLUORENYLMETHYL-CHLOROFORMATE (FMOC Cl) 

 

9-Fluorenylmethyl chloroformate (FMOC Cl) reacts with primary and secondary amines 

(Carpino and Han, 1970, 1972; Koole et al., 1989) under alkaline conditions to form 

derivatives (Figure 4.1).  FMOC Cl forms derivatives with amines in a short reaction time in 

buffered aqueous solution at room temperature to yield stable derivatives, so it is useful for 

analytical purposes (Moye and Boning, 1979).  The FMOC Cl was originally introduced into 

analytical practice (Einarsson et al., 1983) as a fluorescent label in amino acid analysis.  

Unfortunately, when a portion of the derivatization mixture was injected directly after the 

reaction, many interference peaks resulted.  This was expected, because FMOC Cl reagent 

remained after the reaction and its hydrolytic by-products (Figure 4.2) have almost identical 

excitation and emission spectra (Lopez, 1996; Varady et al., 2000). 
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Figure 4.1  Reaction of FMOC Cl with an amine. 
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Figure 4.2  Hydrolysis reaction of FMOC Cl. 

 

FMOC Cl, its derivatives and its cleavage products are strong chromophores absorbing at 

λmax = 264 nm which allow spectrophotometric analysis.  FMOC Cl is one of the few 
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protecting groups for amines that is not cleaved under acidic conditions, but it is readily 

cleaved under mildly basic conditions e.g. using piperidine (Figure 4.3) (Bayermann et al., 

1990; Carpino et al., 1990; Greene and Wuts, 1991).  In a subsequent slower step, 

elimination generates dibenzofulvene, an unstable species that rapidly adds nucleophiles, and 

a carbamate residue, which then decomposes with loss of carbon dioxide to release the free 

amine.  However, this deprotection method employs a large excess of secondary amine (in 

this case, piperidine) in dimethylformamide (DMF).  Use of piperidine/DMF is better suited 

to FMOC deprotections on solid-phase than in solution (Sheppeck II et al., 2000). 
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Figure 4.3  Deprotection of amine-FMOC by piperidine. 

 

The derivatization reaction of FMOC Cl was optimized by using 1-butylamine and 1,5-

diaminopentane solutions (1 mM in water) as the models for monoamine and diamine for 

various factors such as:  the reaction time, FMOC Cl concentration, pH of the buffer and 

fluorescence spectrum.  The HPLC chromatograms of blank-FMOC and 1-butylamine-

monoFMOC (Figure 4.4) both show a peak of hydrolysis product of FMOC Cl reagent at Rt 

= 3.6 min.  The HR-ESI-MS of 1-butylamine-monoFMOC (Figure 4.5) proved that the peak 

labelled 2 (Figure 4.4 (B)) is the desired molecule. 

 

It has been reported that a reaction time of 1 min is sufficient for complete derivatization of 

amino acids with FMOC-C1 (Einarsson et al., 1983) and other authors (Gustavsson and 
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Betner, 1990) reported that most amino acids were fully derivatized after 30 s.  In this study, 

the reaction time was examined by allowing the derivatization to proceed for various times 

ranging from 1 to 60 min.  The amine-FMOC derivative was formed within 1 min, but the 

optimum yield was obtained at 5 min after which the yields slightly decreased (Figure 4.6).  

The hydrolysis reaction of FMOC Cl also occurred which was observed as a small amount of 

precipitate and gave undesirable chromatographic peaks.  These undesirable 

chromatographic peaks were observed when the reaction time was greater than 10 min and 

when a high concentration of FMOC Cl reagent was used. 

 

      

 

 

   (A)     (B) 

 

Figure 4.4  HPLC chromatogram of amine-FMOC derivatives, HPLC conditions:  column: 

Phenomenex hypersil C18 5µ 150 x 4.60 mm, mobile phase is acetonitrile: Milli-Q-water 

(65:35) flow rate 1 mL/min, fluorescence detection at λex = 264 nm, λem = 390 nm.   

(A)  Chromatogram of blank-FMOC shows the solvent front at Rt = 1.1 min, peak 1 = 

hydrolysis product of FMOC Cl reagent at Rt = 3.6 min. 

(B)  Chromatogram of 1-butylamine-monoFMOC shows the solvent front at Rt = 1.1 min, 

peak 1 = hydrolysis product of FMOC Cl reagent at Rt = 3.6 min, peak 2 = 1-butylamine-

monoFMOC derivative at Rt = 8.9 min. 

1 1 

2 

0 0 6 6 12 12 mins mins 
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Figure 4.5  HR-ESI-MS spectra of 1-butylamine-monoFMOC derivative, (M.W. = 

295.1572, C19H21NO2) expected m/z [M+H]+ ion = 296.1650 (found = 296.1624), [M+Na]+ 

ion m/z = 318.1469 and [2M+Na]+ ion m/z = 613.3042 (found = 613.3045). 
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Figure 4.6  Effect of reaction time of 1-butylamine-mono FMOC derivative and 1,5-

diaminopentane-di FMOC derivative.  Both derivatives show the maximum yield at 5.0 min 

(n = 5).  Peak areas were calculated by height x 0.5 width of peak, and peak areas are 

reported in cm2. 
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Optimization of the concentration of FMOC Cl reagent 

 

The influence of concentration of FMOC Cl reagent on the reaction yield was examined in 

the range of 1-10 mM by reacting with 1 mM of mono- and diamine samples.  The optimum 

condition for 1, 5-diaminopentane-diFMOC derivative was gained when 4 mM FMOC Cl 

reagent reacted with 1 mM 1,5-diaminopentane.  For 1 mM 1-butylamine, a stable peak area 

was observed from 2 mM FMOC Cl reagent (Figure 4.7).  It was concluded that a 2-fold 

excess of FMOC is required to achieve complete reaction. 
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Figure 4.7  Effect of FMOC Cl reagent concentration (n = 5).  Using 1 mM 1-butylamine, 

and 1 mM of 1,5-diaminopentane reacted with various concentration of FMOC Cl reagent.  

Peak areas were calculated by height x 0.5 width of peak, and peak areas are reported in cm2. 

 

Optimization for the effect of pH of the borate buffer 

 

Since the reaction of FMOC Cl with amines is reported to occur better under alkaline 

condition (Price et al., 1987; Gao et al.,1990; Tonin et al., 1991) the optimization of the pH 

of the borate buffer was investigated.  1-Butylamine was used as the model compound for 

this study, using 200 mM borate buffer range of pH 4.0–10.5 for the reaction (Figure 4.8).  

The optimum reaction occurred at pH 9.0-10.5.  In addition to the higher yield of 1-

butylamine-monoFMOC derivative at higher pH there was also a reduction of multiple by-

product peaks, most probably due to the hydrolysis of FMOC Cl reagent.  The optimum pH 

of borate buffer at 9.5 was used for FMOC derivatization. 
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Figure 4.8  Effect of various pH of borate buffer on the 1-butylamine-monoFMOC 

derivative yield (n = 5).  Peak areas were calculated by height x 0.5 width of peak, and peak 

areas are reported in cm2. 

 

Methods to terminate the reaction of FMOC Cl 

 

The excess of FMOC Cl reagent reacts with water to form FMOC OH, which is also 

fluorescent and which may cause interference in the chromatogram.  To overcome this 

problem, a modification of the pre-column derivatization with FMOC described by Price et 

al. (1987) was developed, based on the addition of aspartic acid to the reaction mixture.  In 

their study, after the derivatization of polyamines, the excess of FMOC was reacted with 

aspartic acid to form an aspartic-FMOC derivative.  This derivative distributed into the 

aqueous phase, while the hydrophobic FMOC-polyamines were extracted with pentane.  The 

addition of aspartic acid did not affect the reaction yield and minimized the formation of 

FMOC-alcohol and reaction by-products.  The reactions with different amines were 

examined by the other research groups using adamantanyl amine (Gustavsson and Betner, 

1990), heptylamine (Kirschbaum and Lukkas, 1994), glycine (Stead and Richards, 1996). 

 

In this study, three main methods of termination of the reaction and removal of the excess of 

FMOC Cl were investigated.  In method 1, the excess of FMOC was removed by the 

reaction with alanine 100 mM, method 2 removes the excess of FMOC Cl by extraction of 

amine-FMOC derivatives with pentane after derivatization, and method 3 uses glacial acetic 

acid to stop the reaction at the desired time (Lopez et al., 1996).  In a series of experiments, 

these methods were evaluated alone and in combination against controls as shown in Table 

4.1. 
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Table 4.1  Termination of FMOC Cl reaction experiments. 

 

Termination method  

Experiment No. Addition of alanine pH reduction with 

Glacial acetic acid 

Extraction with 

pentane 

1    

2 √   

3  √  

4 √ √  

5   √ 

6 √  √ 

7  √ √ 

8 √ √ √ 

 

Experiments 1 to 4 were done without extraction with pentane while experiments 5 to 8 used 

pentane for separation of the amine-FMOC derivatives as the last step.  Experiment 1, 5 mM 

1-butylamine reacts with FMOC Cl in alkaline environment without removal of the excess of 

FMOC reagent (Figure 4.9).  In experiment 2, after 5 min of reaction time, the excess of 

FMOC reagent was removed by using alanine (Figure 4.9).  In experiment 3, the reaction 

was stopped by the addition of glacial acetic acid.  In experiment 4, alanine followed by 

glacial acetic acid was used to stop the reaction.  Experiments 5, 6, 7 and 8 involved the 

extraction with pentane at the end of the reaction.  Experiment 5 is equal to experiment 1, 

experiment 6 = experiment 2, experiment 7 = experiment 3 and experiment 8 = experiment 

4, but with the extraction step as the last step before dilution of the sample and injection onto 

HPLC. 

 

The HPLC chromatograms from each experiment above were obtained (Figures 4.9 and 

4.10) and the peak areas of the desired product (n = 5) were compared as histograms (Figure 

4.13).  The identities of the hydrolysis product of FMOC peak at Rt = 5.3 min and the 

alanine-monoFMOC derivative peak at Rt = 1.2 min were confirmed by HR-ESI-MS 

(Figures 4.11 and 4.12). 
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   Experiment 1   Experiment 2 

          

 

   Experiment 3   Experiment 4 

 

Figure 4.9  HPLC chromatogram of 1-butylamine-monoFMOC derivatives by different 

methods of stopping the reaction, HPLC conditions:  column: Phenomenex hypersil C18 5µ 

150 x 4.60 mm, mobile phase is acetonitrile: Milli-Q-water (70:30) with flow rate 1 mL/min, 

fluorescence detector x10 sensitivity at λex = 264 nm, λem = 390 nm.  Retention time of 1-

butylamine-monoFMOC is 6.8 min.  Experiment 1, the chromatogram shows the peaks at Rt 

= 3.0, 5.3, 6.8 min.  Experiment 2, the chromatogram shows the peaks at Rt = 1.2, 3.0, 6.8 

min.  Experiment 3, the chromatogram shows the peaks at Rt = 3.0, 5.3, 6.8, 7.9 min.  

Experiment 4, the chromatogram shows the peaks at Rt = 2.0, 3.0, 5.3, 6.8 min. 

0 0 6 6 mins mins 

0 0 6 6 mins mins 
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Experiment 5    Experiment 6 

          

 

  Experiment 7    Experiment 8 

 

Figure 4.10  HPLC chromatogram of 1-butylamine-monoFMOC derivatives with different 

methods of stopping the reaction, HPLC conditions:  column: Phenomenex hypersil C18 5µ 

150 x 4.60 mm, mobile phase is acetonitrile: Milli-Q-water (70:30) with flow rate 1 mL/min, 

fluorescence detector x10 sensitivity at λex = 264 nm, λem = 390 nm.  Retention time of 1-

butylamine-monoFMOC is 6.8 min.  Experiment 5, the chromatogram shows the peaks at Rt 

= 3.0, 5.3, 6.8, 7.9 min.  Experiment 6, the chromatogram shows the peaks at Rt = 1.2, 3.0, 

6.8 min.  Experiment 7, the chromatogram shows the peaks at Rt = 3.0, 5.3, 6.8, 7.9 min.  

Experiment 8, the chromatogram shows the peaks at Rt = 2.0, 3.0, 5.3, 6.8 min. 

0 0 6 6 mins mins 

0 0 6 6 mins mins 
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Figure 4.11  HR-ESI-MS spectrum of hydrolysis product of FMOC reagent, (M.W. = 

178.0783, C14H10) expected m/z [M+H]+ ion = 179.0861 (found = 179.0858). 

 

 

 

Figure 4.12  HR-ESI-MS spectrum of alanine-monoFMOC derivative, (M.W. = 311.1158, 

C18H17NO4) expected m/z [M+H]+ ion = 312.1236 (found = 312.1221) and [M+ Na]+ ion m/z 

= 334.1055 (found = 334.1043). 

 

CH
2  
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Figure 4.13  Comparison of 1-butylamine-monoFMOC derivatives’ peak area obtained by 

different methods of terminating the reaction.  The 1-butylamine-monoFMOC derivative is 

at Rt = 6.8 min (blue column).  Peak areas were calculated by height x 0.5 width of peak, and 

peak areas are reported in cm2. 

 

The histogram (Figure 4.13) shows 1-butylamine-monoFMOC derivatives (bars marked with 

arrows).  The chromatogram obtained from the direct injection after the derivatization 

(without the extraction) from Experiment 1 gave the highest peak area, but also showed a 

large peak area of hydrolysis product of FMOC Cl (Rt = 5.3 min).  Experiment 2 gave a 

good chromatogram without the hydrolysis peak, but it showed the peak for alanine-

monoFMOC derivative (Rt = 1.2 min).  Using glacial acetic acid to stop the reaction, created 

one more interfering peak at Rt = 7.9 min.  When both alanine and glacial acetic acid were 

used the 1-butylamine-monoFMOC derivative peak was decreased.  The peak areas that 

were obtained from the extraction method seemed to be less than the non-extraction methods 

which might be due to incomplete extraction of amine-FMOC derivative.  Experiment 6 

gave the best chromatogram in terms of less interfering peaks and showed that the alanine-

monoFMOC derivative was left in the aqueous phase after extraction with pentane.  Thus, 

the method in which the reaction was terminated by alanine and the amine derivatives 

extracted with pentane was chosen for derivatization of various amines. 

 

The amine-FMOC derivatives were separated by HPLC and the results from 5 replicates are 

shown in Table 4.2 using isocratic mobile phase of 70% acetonitrile: Milli-Q-water (Figure 

4.14). 
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Figure 4.14  HPLC chromatogram of amines-FMOC derivatives, HPLC conditions:  

column:  Phenomenex hypersil C18 5µ 150 x 4.60 mm, mobile phase is acetonitrile: Milli-Q-

water (70:30) with flow rate 1 mL/min, fluorescence detector x10 sensitivity at λex = 264 nm, 

λem = 390 nm. HPLC chromatogram of mixed amines-FMOC derivatives, 1 = 1-butylamine-

monoFMOC, 2 = 1,4-diaminobutane-diFMOC, 3 = 1,5-diaminopentane-diFMOC, 4 = 1,7-

diaminoheptane-diFMOC, 5 = spermidine-triFMOC. 

 

Table 4.2  The calibration curves of various amine-FMOC derivatives. 

 

Amine-FMOC derivatives Rt (min) Calibration curve equation R2 

1-Butylamine-monoFMOC 5.3 y = 0.091x +0.34 0.986 

Piperidine-monoFMOC 7.4 y = 0.019x – 0.01 0.990 

Piperazine-diFMOC 13.5 y = 0.023x - 0.16 0.999 

1,4-Diaminobutane-diFMOC 7.5 y = 0.054x + 0.41  0.995 

1,5-Diaminopentane-diFMOC 8.6 y = 0.113x - 1.51 0.998 

1,7-Diaminoheptane-diFMOC 13.0 y = 0.062x + 0.97 0.999 

Spermidine-triFMOC 27.7 y = 0.109x – 0.66 0.998 
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Figure 4.15  Calibration curves of amine-FMOC derivatives (n = 5).  HPLC condition:  

column:  Phenomenex hypersil C18 5µ 150 x 4.60 mm, mobile phase:  acetonitrile: Milli-Q-

water (70:30) flow rate 1 mL/min, fluorescence detection at λex = 264 nm, λem = 390 nm.  

Peak areas were calculated by height x 0.5 width of peak, and peak areas are reported in cm2. 

 

The calibration curves of amine-FMOC derivatives showed linearity with correlation 

coefficients higher than 0.99 (Figure 4.15, Table 4.2).   

 

 

Figure 4.16  HR-ESI-MS spectrum of 1,5-diaminopentane-diFMOC derivative, (M.W. = 

546.2519, C35H34N2O4) expected m/z [M+H]+ ion = 547.2597 (found = 547.2610), [M+ Na]+ 

ion m/z = 569.2416 (found = 569.2400) and [M+K]+ ion m/z = 585.3502 (found 585.2159). 



 - 117 - 

Peaks collected from the HPLC chromatogram were confirmed by HR-ESI-MS as the 

expected molecular mass for 1,5-diaminopentane-diFMOC derivative (Figure 4.16), 1,7-

diaminoheptane-diFMOC derivative (Figure 4.17), piperidine-monoFMOC (Figure 4.18) and 

piperazine-diFMOC (Figure 4.19). 

 

 

 

Figure 4.17  HR-ESI-MS spectrum of 1,7-diaminopentane-diFMOC derivative, (M.W. = 

574.2832, C37H38N2O4) expected m/z [M+H]+ ion = 575.2909 and [M+ Na]+ ion m/z = 

597.2729 (found = 597.2745). 

 

 

Figure 4.18  HR-ESI-MS spectrum of piperidine-monoFMOC derivative, (M.W. = 

307.1572, C20H21NO2) expected m/z [M+H]+ ion = 308.1651 (found = 308.1620) [M+ Na]+ 

ion m/z = 330.1470 and [2M+Na]+ ion m/z = 637.3042 (found = 637.3027). 
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Figure 4.19  HR-ESI-MS spectrum of piperazine-diFMOC derivative, (M.W. = 530.2206, 

C34H30N2O4) expected m/z [M+H]+ ion = 531.2284 (found = 531.2277) and [M+ Na]+ ion 

m/z = 553.2103 (found = 553.2103). 

 

The relative quantum yield of amine-FMOC derivatives was studied.  A comparative 

analysis of fluorescence yields of the model series was obtained by collecting the elution 

product from HPLC and separate measurement by fluorescence spectrometer and UV/vis 

spectrophotometer.  A plot of fluorescence intensity against absorbance (Figure 4.20) and the 

FI/UV equation (Table 4.3) was obtained. 
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Table 4.3  The FI/UV equation of amine-FMOC derivatives. 

 

Amine-FMOC derivatives FI/UV equation R2 

Piperidine-monoFMOC y = 43929x – 65.31 0.993 

Piperazine-diFMOC y = 20302x - 36.39 0.998 

1,5-Diaminopentane-diFMOC y = 34174x – 89.53 0.999 

1,7-Diaminoheptane-diFMOC y = 32370x + 29.09 0.995 

Spermidine-triFMOC y = 14246x – 91.96 0.997 
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Figure 4.20  Fluorescence intensity against UV absorbance of amine-FMOC derivatives (n = 

5).  Peak areas were calculated by height x 0.5 width of peak, and peak areas are reported in 

cm2. 

 

The stability of the amine-FMOC derivatives was examined by using 1 mM of 1-butylamine 

as the model amine reacted with 4 mM FMOC Cl reagent for 5 min in the presence of borate 

buffer pH 9.5.  The reaction was terminated by the addition of alanine and then extracted 

with pentane.  The stability of the sample was monitored over the period 5 min after the 

reaction to 70 min.  The peak area of the derivative remained constant for more than 70 min 

after the derivatization reaction had been stopped.  Over a longer time scale, the 1-

butylamine-monoFMOC derivative was stable for at least 5 days (the sample was kept at 

20oC, and could be stable for longer periods if the sample is stored in a fridge) then the peak 

area gradually decreased to 75% after 2 weeks (Figure 4.21). 
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Figure 4.21  Stability of 1-butylamine-monoFMOC (n = 5).  Peak areas were calculated by 

height x 0.5 width of peak, and peak areas are reported in cm2. 

 

Spermidine and spermine-FMOC derivatives 

 

For biological polyamines spermidine and spermine, their derivatization requires larger 

quantities of reagent because of the presence the secondary amines.  Moreover, in 70% 

acetonitrile: Milli-Q-water the retention time of spermidine-triFMOC derivative was 27.7 

min and that of spermine-tetraFMOC derivative was likely to be even longer.  With a mobile 

phase of acetonitrile: methanol: Milli-Q-water = 85:10:5, the retention time of 1,7-

diaminoheptane-diFMOC derivative was 3.5 min and the retention times of spermidine-

triFMOC derivative and spermine-tetraFMOC derivative were also shorter (Table 4.4).  

Calibration curves of both biological amines were obtained (Figure 4.22).  HR-ESI-MS of 

spermidine-triFMOC derivative and spermine-tetraFMOC derivative were confirmed 

(Figures 4.23 and 4.24). 

 

Table 4.4  Calibration curve equations of biological polyamine-FMOC derivatives, the 

condition of HPLC: column: Phenomenex hypersil C18 5µ 150 x 4.60 mm, mobile phase is 

acetonitrile: methanol: Milli-Q-water (85:10:5) with flow rate 1 mL/min, fluorescence 

detection at λex = 264 nm, λem = 390 nm. 

 

Amine-FMOC derivatives Retention time Calibration curve R2 (n = 5) 

Spermidine 4.6 min y = 17.85x – 0.088 0.999 

Spermine 7.8 min y = 23.43x - 0.125 0.999 
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Figure 4.22  The calibration curve of polyamine-FMOC derivatives (n = 5).  The HPLC 

conditions:  column:  Phenomenex hypersil C18 5µ 150 x 4.60 mm, mobile phase is 

acetonitrile: methanol: Milli-Q-water (85:10:5) flow rate 1 mL/min, fluorescence detection at 

λex = 264 nm, λem = 390 nm.  Peak areas were calculated by height x 0.5 width of peak, and 

peak areas are reported in cm2. 

 

 

Figure 4.23  HR-ESI-MS spectrum of spermidine-triFMOC derivative, (M.W. = 811.3621, 

C52H49N3O6) expected m/z [M+H]+ ion = 812.3699 and [M+ Na]+ ion m/z = 834.3519 (found 

= 834.3477). 

 

 

Figure 4.24  HR-ESI-MS spectra of spermine-tetraFMOC derivative, (M.W. = 1090.4881, 

C70H66N4O8) expected m/z [M+H]+ ion = 1091.4959 and [M+ Na]+ ion m/z = 1113.4778 

(found = 1113.7389). 
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Analysis of spermidine and spermine as their hexahydropyrimidine derivatives. 

 

Spermidine and spermine were converted into their respective hexahydropyrimidine ring 

derivatives by reaction with formaldehyde (Figures 4.25 and 4.26) then labelled with FMOC.  

As FMOC does not react with tertiary amines these amines were detectable with shorter 

retention time when compared with the authentic molecules (spermidine and spermine) due 

to smaller molecular weight after labelling with two moieties of FMOC (Figure 4.27). 
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Figure 4.25  Reaction of spermidine with formaldehyde. 
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Figure 4.26  Reaction of spermine with formaldehyde. 
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Figure 4.27  Comparison of the FMOC derivatization products of spermidine, spermine, N-

(4-Aminobutyl) hexahydropyrimidine and 1,4-(Dihexahydropyrimidine)butane. 

 

Table 4.5  Retention time of biological polyamine-FMOC derivatives.  HPLC conditions:  

column:  Phenomenex hypersil C18 5µ 150 x 4.60 mm, mobile phase: acetonitrile: Milli-Q-

water (70:30) flow rate 1 mL/min, fluorescence detection at λex = 264 nm, λem = 390 nm. 

 

Amine-FMOC derivatives Retention time (min) 

Spermidine-triFMOC 27.7 

N-(4-Aminobutyl) hexahydropyrimidine-diFMOC 13.2 

Spermine-tetraFMOC 59.0 

1,4-(Dihexahydropyrimidine)butane-diFMOC 27.1 
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Figure 4.28  Chromatogram of N-(4-aminobutyl) hexahydropyrimidine-diFMOC derivative, 

HPLC conditions:  column: Phenomenex hypersil C18 5µ 150 x 4.60 mm, mobile phase is 

acetonitrile: Milli-Q-water (70:30) flow rate 1 mL/min, fluorescence detection at λex = 264 nm, 

λem = 390 nm, peak 1 = N-(4-aminobutyl) hexahydropyrimidine -diFMOC at Rt = 13.2 min. 

 

 

 

 

Figure 4.29  HPLC chromatogram of 1,4-(dihexahydropyrimidine)butane-diFMOC derivative, 

HPLC conditions:  column: Phenomenex hypersil C18 5µ 150 x 4.60 mm, mobile phase is 

acetonitrile: Milli-Q-water (70:30) flow rate 1 mL/min, fluorescence detection at λex = 264 nm, 

λem = 390 nm, peak 1 = 1,4-(dihexahydropyrimidine)butane-diFMOC at Rt = 27.1 min. 
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Figure 4.30  HR-ESI-MS spectrum of N-(4-aminobutyl) hexahydropyrimidine-diFMOC 

derivative, (M.W. = 601.2940, C38H39N3O4) expected m/z [M+H]+ ion = 602.3019 (found = 

602.2991) and [M+ Na]+ ion m/z = 624.2838. 

 

FMOC derivatives of spermidine, hexahydropyrimidine of spermidine, spermine and 1,4-

(Dihexahydropyrimidine)butane were examined using a mobile phase of acetonitrile: Milli-

Q-water (70:30) (Table 4.5, Figure 4.28, Figure 4.29).  Molecular weight of N-(4-

aminobutyl) hexahydropyrimidine-diFMOC was confirmed by HR-ESI-MS (Figure 4.30). 

 

FMOC derivatives of non-viral gene therapy (NVGT) vectors  

 

The FMOC derivatization method was applied to investigate three synthetic fatty acyl 

amides of spermine and confirmed the structures by HR-ESI-MS:  1,12-diphthalimido-4,9-

diazadodecane (Figure 4.31, HPLC chromatograms is Figures 4.32 and HR-ESI-MS is 

Figure 4.33), N4,N9-didecanoyl spermine (Figures 4.34 and 4.35) and N4,N9-didodecanoyl 

spermine (Figures 4.36 and 4.37).  These C10 and C12 conjugates are experimental non-viral 

vectors for DNA condensation with potential in gene delivery and therefore in non-viral gene 

therapy (NVGT). 

 

 

 

Figure 4.31  1,12-Diphthalimido-4,9-diazadodecane-diFMOC derivative. 
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Figure 4.32  HPLC chromatogram of 1,12-diphthalimido-4,9-diazadodecane-diFMOC 

derivative, HPLC conditions:  column:  Phenomenex hypersil C18 5µ 150 x 4.60 mm, 

mobile phase is acetonitrile: Milli-Q-water (85:15) flow rate 1 mL/min, fluorescence 

detector x10 sensitivity at λex = 264 nm, λem = 390 nm, (A) blank chromatogram (B) peak 1 

= 1,12-diphthalimido-4,9-diazadodecane-diFMOC derivative at Rt = 9.1 min. 

0 6 12 mins 

0 6 12 mins 

1 
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Figure 4.33  HR-ESI-MS spectra of 1,12-diphthalimido-4,9-diazadodecane-diFMOC 

derivative, (M.W. = 906.3629, C56H50N4O8) expected m/z [M+H]+ ion = 907.3707 (found = 

907.3693) and [M+ Na]+ ion m/z = 929.3526 (found = 929.3512). 
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Figure 4.34  N4,N9-Didecanoyl spermine-diFMOC derivative. 
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Figure 4.35  HR-ESI-MS spectrum of N4,N9-didecanoyl spermine-diFMOC derivative, 

(M.W. = 954.6234, C60H82N4O6) expected m/z [M+H]+ ion = 955.6312 (found = 955.6334) 

and [M+ Na]+ ion m/z = 977.6132 (found = 977.6116). 
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Figure 4.36  N4,N9-Didodecanoyl spermine-diFMOC derivative. 
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Figure 4.37  HR-ESI-MS spectra of N4,N9-didodecanoyl spermine-diFMOC derivative, (M.W. 

= 1010.6860, C64H90N4O6) expected m/z [M+H]+ ion = 1011.6938 (found = 1011.6939) and 

[M+ Na]+ ion m/z = 1033.6758 (found = 1033.6771). 

 

FMOC derivatization of aminoglycosides 

 

The FMOC derivatization was carried out at alkaline pH (in borate buffer) in order to 

prevent extensive hydrolysis by reaction with phenols or alcohols (Figure 4.38).  In this 

alkaline environment, the reaction of hydroxyl groups on aminoglycosides such as 

kanamycin (Figure 4.39) is prevented.  Kanamycin reacts with 4 moieties of FMOC only at 

the amine functional groups. 

 

O

O Cl

O

O OR

+ + HClR-OH

 

 

Figure 4.38  The reaction of an aliphatic alcohol with FMOC Cl reagent. 
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Figure 4.39  Kanamycin has four primary amino groups. 
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We have proved that kanamycin reacts with four molecules of FMOC Cl to yield 

kanamycin-tetraFMOC derivative which gave the symmetrical peak of HPLC chromatogram 

at peak at Rt = 8.30 min (Figure 4.40).  The elution of kanamycin-FMOC derivative was 

confirmed as tetra-substituted by HR-ESI-MS (Figure 4.41).  The expected formula is 

C78H76N4O19 m/z = 1372.5104, [M+H]+ = 1373.518, [M+Na]+ = 1395.4998, found = 

1395.5003.  Paramomycin is another aminoglycoside that was also examined, the HPLC 

chromatogram of the FMOC derivative has Rt = 12.2 min (Figure 4.42). 

 

The amine-FMOC derivatives gave predominantly [M+Na]+ ions in addition to monovalent 

ions (M+H)+ as the summary Table shows in Table 4.6. 

 

 

 

 

 

Figure 4.40  HPLC chromatogram of kanamycin-tetraFMOC derivative, HPLC conditions:  

column:  Phenomenex hypersil C18 5µ 150 x 4.60 mm, mobile phase is acetonitrile: Milli-Q-

water (60:40) with flow rate 1 mL/min, fluorescence detector at λex = 264 nm, λem = 390 nm, 

peak 1 = kanamycin-tetraFMOC at Rt = 8.2 min. 
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Figure 4.41  HR-ESI-MS spectrum of kanamycin-tetraFMOC derivatives, expected m/z 

[M+Na]+ = 1395.4998, found = 1395.5003. 

 

 

 

 

 

Figure 4.42  HPLC chromatogram of paramomycin-pentaFMOC derivative, HPLC 

conditions:  column: Phenomenex hypersil C18 5µ 150 x 4.60 mm, mobile phase is 

acetonitrile: Milli-Q-water (60:40) flow rate 1 mL/min, fluorescence detector x10 sensitivity 

at λex = 264 nm, λem = 390 nm, peak 1 = paramomycin-pentaFMOC at Rt = 12.2 min. 
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Table 4.6  Summary of HR-ESI-MS data of FMOC derivatives. 

 

FMOC derivatives Molecular Formula HR-ESI-MS 

calculated 

HR-ESI-

MS found 

C18H18NO4 [M+H]+ 312.1236 312.1230 Alanine-monoFMOC 

C18H17NO4 C18H17NNaO4 [M+Na]+ 334.1055 334.1050 

1-Butylamine-monoFMOC 

C19H21NO2 

C19H22NO2 [M+H]+ 296.1651 296.1645 

C20H22NO2 [M+H]+ 308.1651 308.1620 Piperidine-monoFMOC 

C20H21NO2 C20H21NNaO2 [M+Na]+ 330.1469 330.1542 

C34H31N2O4 [M+H]+ 531.2284 531.2277 Piperazine-diFMOC 

C34H30N2O4 C34H30N2NaO4 [M+Na]+ 553.2103 553.2103 

1,5-Diaminopentane-diFMOC 

C35H34N2O4 

C35H35N2O4 [M+H]+ 547.2597 547.2591 

1,7-Diaminoheptane-diFMOC 

C37H38N2O4 

C37H38N2NaO4 [M+Na]+ 597.2729 597.2724 

Spermidine-triFMOC 

C52H49N3O6 

C52H49N3NaO6 [M+Na]+ 834.3519 834.3514 

Spermine-tetraFMOC 

C70H66N4O8 

C70H66N4NaO8 [M+Na]+ 1113.4778 1113.7389 

C56H51N4O8 [M+H]+ 

 

907.3707 907.3693 1,12-Diphthalimido-4,9-

diazadodecane-diFMOC 

C56H50N4O8 C56H50N4NaO8 [M+Na]+ 929.3526 929.3512 

C60H83N4O6 [M+H]+ 955.6307 955.6334 N
4,N9-Didecanoyl spermine-

diFMOC C60H82N4O6 C60H82N4NaO6 [M+Na]+ 977.6132 977.6153 

C64H91N4O6 [M+H]+ 

 

1011.6938 1011.6913 N
4,N9-Didodecanoyl spermine-

diFMOC  

C64H90N4O6 C64H90N4NaO6 [M+Na]+ 1033.6758 1033.6740 

Kanamycin-tetraFMOC 

C78H76N4O19 

C78H76N4NaO19 [M+Na]+ 1395.5001 1395.5033 

 

 

 

 

 

 



 - 133 - 

Conclusions of FMOC Cl derivatization 

 

The reaction of FMOC is carried out at alkaline pH, in borate buffer, in order to prevent 

extensive reaction with phenolic or alcoholic hydroxyls.  In this way, the polyols of e.g. 

aminoglycosides will not react with FMOC, only the amines will react with FMOC.  The 

amine derivatization reaction is fast, but it also depends upon the structure of the molecule 

e.g. with short chain 1-butylamine, the reaction was complete in under 60 s, but for 

kanamycin up to 5 min was required to complete the reaction. 

 

We proved that the amount of reaction volume can be restricted to 300 µl (from 1-2 ml) and 

on this scale it was not necessary to extract the derivative, rather the whole reaction mixture 

can be directly injected into the HPLC.  This is a convenient analytical method.  However, 

when the reaction was extracted with pentane, the HPLC chromatogram obtained had fewer 

interfering peaks which is better for applying the method for mixed amine samples or 

biological samples so we can separate biological amines in the organic phase and amino acid 

derivatives in the aqueous phase prior to chromatographic separation.  FMOC (fluorescent) 

derivatives of amines are stable at 20oC and in daylight for at least five days. 

 

A disadvantage of FMOC Cl is its reactivity toward water.  After hydrolysis and 

decarboxylation, the resulting fluorescent alcohol elutes in the middle of the chromatogram. 

 

OH  

Hydrolysis product of FMOC Cl 

 

At high concentrations, this hydrolysis peak overlaps with the other analytes in the 

chromatogram which complicates the quantification of the analyses.  Also, FMOC Cl is 

fluorescent, therefore the excess of reagent should be removed before chromatography.  

Comparisons of three methods to terminate the excess of FMOC Cl reagent were made 

using:  alanine, glacial acetic acid, and pentane extraction.  With the pentane extraction, the 

majority of the hydrolysis product of FMOC Cl (the alcohol) is removed, thus minimizing 

interference in the chromatograms. 
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CHAPTER 5:  DERIVATIZATION OF PRIMARY AND SECONDARY AMINES 

WITH DANSYL CHLORIDE 

 

Background to amine dansyl derivatization 

 

In 1952, 5-dimethylaminonaphthalene-1-sulfonyl chloride (dansyl chloride, DNS Cl) was 

introduced by Weber as the reagent for the preparation of fluorescent conjugates of proteins 

(Weber, 1952) and in 1956, the dansylation procedure was first applied to the identification 

of biogenic amines (Seiler and Wiechmann, 1965).  They also published the first method for 

the quantitative estimation of DNS amine derivatives (Seiler and Wiechmann, 1966).  

Currently, dansylation is widely used to prepare fluorescent derivatives which are then 

separated by HPLC and detected by UV as well as by fluorescence. 

Dansylation mechanism 

 

DNS Cl reacts with both primary and secondary amino groups even at slightly alkaline pH 

(Figure 5.1) to yield stable fluorescent derivatives (Seiler, 1970). 
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Figure 5.1  DNS derivatization of amines. 

 

The rate of dansylation increases with increasing pH, but is paralleled by an increased rate of 

hydrolysis of the DNS Cl.  Optimal conditions should give the most effective reaction of 

reactive groups in a limited amount of reagent.  Most amino acids and amines are optimized 

at pH 9.5-10.0 (at 20oC).  DNS Cl is slightly soluble in water, and so dansylation is mostly 

performed in a mixed solvent system of acetone/water which is homogeneous. 

 

Properties of DNS-derivatives 

 

The DNS derivatives are yellow crystalline solids, mostly readily soluble in organic solvents 

and only slightly soluble in water.  The spectroscopic properties of DNS derivatives are 
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dependent on their structures, but are also changed by different solvents and pH (Chen, 

1967; Schmidt-Glenewinkel, 1973; Schneider, 1973; Seiler et al., 1973). 

 

In addition to UV absorption, fluorimetry, quantitative MS and the application of radioactive 

DNS have been used to quantify DNS derivatives.  The intense absorption bands of DNS 

derivatives are in the range of 250-255 and 335-350 nm (Seiler, 1970).  UV absorption is 

less sensitive than fluorimetry in which DNS derivatives have excitation wavelengths 

between 340 and 395 nm and emission fluorescence between 500 and 530 nm.  For amine 

derivatives, the fluorescence intensity is linearly related to the amount of DNS derivatives up 

to a concentration of 10 µM (Seiler, 1970) and even up to 2 mM in our studies (see below). 

 

Stability of DNS Cl reagent 

 

The chromatographic peak of standard DNS Cl was observed by dissolving DNS Cl in 

acetone from concentration 0.1-0.8 mM, then injecting the solution onto the HPLC column, 

HPLC conditions:  mobile phase is acetonitrile: Milli-Q-water (70:30), C18-luna column, 

flow rate 1 mL/min using two detectors in series:  fluorescence detector at λex = 330 nm, λem 

= 510 and then UV detector at λmax = 330 nm.  Chromatograms obtained from the 

fluorescence detector showed the solvent front at retention time (Rt) = 1.0 min, but no other 

peaks were observed.  However, with UV detection, the chromatogram showed at least three 

peaks which are:  (1) the solvent front at Rt = 1.0 min, (2) unknown peak at Rt = 1.9 min, and 

(3) the DNS Cl peak at Rt = 9.0 min (Figure 5.3).  Using UV detection, the DNS Cl peak 

gave a linear calibration curve (Figure 5.2).  The stability of the DNS reagent was good 

within 2 weeks after preparation (stored at 4oC) as the calibration curve of the reagent showed 

good linearity. 
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Figure 5.2  Calibration curve of DNS Cl (freshly prepared) detected by UV, (n = 5). 
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Figure 5.3  HPLC chromatogram of solution of DNS Cl in acetone (10 mM), HPLC 

conditions:  mobile phase is acetonitrile: Milli-Q-water (70:30), C18-luna column, flow rate 1 

mL/min, (A) from fluorescence detector at λex = 330 nm, λem = 510 nm.  The chromatogram 

shows only the solvent front at Rt = 1.0 min, (B) from UV detector at λmax = 330 nm.  The 

chromatogram shows peak 1 = the solvent front at Rt = 1.0 min, peak 2 unknown peak at Rt = 

1.9 min, and peak 3 = DNS Cl at Rt = 9.0 min. 

 

From the HPLC chromatogram above, unchanged DNS Cl would give no interfering peaks in 

fluorescence detection.  The reaction of DNS Cl with amines was found to be pH-dependent.  

The DNS-derivatives will not form if the conditions are not alkaline enough (pH should be 

more than 8.5).  The reaction can be explained in terms of three competing reactions (Fu et 

al., 1998): 

 

R-NH2    +      DNS-Cl   R-NH-DNS    +    HCl        (1) 

H2O        +      DNS Cl                  DNS-OH        +    HCl         (2) 

R-NH-DNS + DNS Cl                  DNS-NH2       +   other products  (3) 

1 3 

0 6 12 18 24 mins 

0 6 12 18 24 mins 

2 
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Where R-NH2 represents polyamine, DNS-OH is dansylic acid and DNS-NH2 is dansyl 

amide.  Desirable reaction (1) is accelerated by alkaline pH from pH 8.5, but at high pH 

reaction (2) also occurred.  Reaction (3) leads to decomposition of R-NH-DNS (polyamine-

DNS derivative).  This reaction (3) could happen in the presence of an excess of DNS Cl 

reagent (Neadle and Pollit, 1965).  Thus, an optimum pH must be found and the 

concentration ratio of DNS Cl to the amines needed to be examined. 

 

A “blank-DNS” reaction was performed where water was used instead of a solution of amine 

to react with DNS Cl reagent followed by removal of the excess of DNS Cl by using alanine 

solution.  The elution of peaks that appeared in the HPLC chromatograms from the 

fluorescence detector and from the UV detector (Figure 5.4) were confirmed by HR-ESI-MS 

for dansylic acid (Figure 5.5), dansyl amide (Figure 5.6) and DNS Cl (Figure 5.7). 

 

 

 

 

(A) 

 

 

 

      (B) 

Figure 5.4  HPLC chromatogram of “Blank-DNS”, HPLC conditions:  mobile phase is 

acetonitrile: Milli-Q-water (70:30) C18-luna column, flow rate 1 mL/min, (A) from 
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fluorescence at λex = 330 nm, λem = 510 nm.  The chromatogram shows:  peak 1 = dansylic 

acid at Rt = 1.2 min and peak 2 = dansyl amine at Rt = 2.6 min, (B) from UV detector at λmax 

= 330 nm.  The chromatogram shows peak 1 = dansylic acid, peak 2 = dansyl amide and peak 

3 = DNS-Cl at Rt = 8.9 min. 

 

 

Figure 5.5  HR-ESI-MS spectrum of dansylic acid from peak 1, (M.W. = 251.0616 

C12H13NO3S) expected m/z [M+H]+ ion = 252.0694 (found = 252.0682) and [M+Na]+ ion = 

274.0513 (found = 274.0504). 

 

 

Figure 5.6  HR-ESI-MS spectrum of dansyl amide from peak 2, (M.W. = 250.0776 

C12H14N2O2S) expected m/z [M+H]+ ion = 251.0854 (found = 251.0842) and [M+Na]+ ion = 

273.0673 (found = 273.0667). 
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Figure 5.7  HR-ESI-MS spectrum of DNS Cl (M.W. = 269.0277, C12H12ClNO2S) expected 

m/z [M+H]+ from C12H13
35ClNO2S ion = 270.0355 (found = 270.0324) and expected m/z 

[M+H]+ from C12H13
37ClNO2S ion = 272.0317. 

 

HPLC mobile phase conditions 

 

The peaks were separated by isocratic elution.  In order to optimize the mobile phase for 

HPLC, the following mixtures were used: 

  

Acetonitrile: Milli-Q-water (40:60) 

Acetonitrile: Milli-Q-water (60:40) 

Acetonitrile: 0.1 % formic acid in Milli-Q-water (60:40) 

Acetonitrile: 2.5 % formic acid in Milli-Q-water (60:40) 

Acetonitrile: Milli-Q-water (65:35) 

Methanol: acetonitrile: Milli-Q-water (65:20:15) 

Acetonitrile: Milli-Q-water (70:30) 

 

Addition of formic acid to the mobile phase did not make any significant difference to the 

separation of analytes.  Thus, mixtures of acetonitrile, methanol and water and adjustment of 

the ratio of these solvents were used in preparing suitable mobile phases.  The peaks 

produced by hydrolysis of DNS Cl were completely separated from the analytes.  The best 

separation of derivatives was obtained using the mobile phase of 70:30 acetonitrile: Milli-Q-

water. 
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Two detectors, fluorescence and UV, were simultaneously employed to detect peaks after 

HPLC separation.  Although amine-DNS derivatives could be monitored by both UV and 

fluorescence detection, the fluorescence detector was more sensitive than the UV under the 

conditions employed.  Both the UV absorbance and fluorescence spectra of the different 

analyte amine derivatives were sufficiently similar to allow the same detection parameters to 

be used throughout. 

 

Due to the differences between the two detection modes, regarding the sensitivity and 

selectivity of the detectors, there are cases where some peaks not detected by UV absorbance 

can be investigated by fluorescence and vice versa as shown in Figure 5.4.  This enables the 

detection of possible non-fluorescent by-products and increases the reliability of the method.  

When detected by UV absorption, the chromatograms gave multiple peaks compared with 

fluorescence detection.  Thus, the selectivity of the fluorescence detector is better (than using 

the UV detector) and from the size of the peaks, it is concluded that fluorescence detection is 

more sensitive than UV for dansylated amines.  An advantage of using fluorescence 

detection is that the fluorescence detector is more selective as only the analyte with the 

appropriate λex and λem will be observed while UV is not so selective and can give rise to 

additional peaks in the HPLC.  The hydrolysis products produced by DNS Cl were observed 

as intense HPLC peaks in chromatograms which eluted rapidly and might not cause any 

interference with the analyte peaks.  However, UV detection revealed that an excess of DNS 

Cl remained after the reaction.  Thus, simultaneous detection minimizes the risk of missing 

trace amounts of an analyte, further increasing the reliability of this analytical method. 

 

Selection of the excitation and emission wavelengths of amine-DNS derivatives 

 

Fluorescence excitation and emission were recorded using a Hitachi F-2000 Fluorescence 

Spectrometer.  Using model primary amines, e.g. 1-butylamine monoDNS derivative showed 

λex = 328 nm, λem = 509 nm and 1,7-diaminoheptane monoDNS derivative showed λex = 334 

nm, λem = 525 nm.  Also studied were primary amine diDNS derivatives e.g. 1,5-

diaminopentane-diDNS derivative, λex = 334 nm, λem = 519 nm, and a typical secondary 

amine (piperidine monoDNS derivative) λex = 332 nm, λem = 510 nm for detection using an 

HPLC system (Table 5.1).  Thus, the HPLC fluorescence detection was typically set at λex = 

330 nm and λem = 510 nm.  It has recently been reported in the literature (during these 

studies) (Loukou and Zotou, 2003; Gaboriau et al., 2003; Geuns et al., 2006; Takao et al., 

2008) that polyamine-dansyl derivatives are detected at λex = 320 nm to 340 nm and λem = 

500 nm to 550 nm when analyzed by HPLC with fluorescence detection. 
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Table 5.1  The excitation (λex) and emission (λem) wavelengths of amine-DNS derivatives. 

 

Amine-DNS derivatives λex (nm) λem (nm) 

1-Butylamine-mono DNS 328 509 

1,5-Diaminopentane-diDNS 334 519 

1,7-Diaminoheptane-monoDNS 334 524 

1,7-Diaminoheptane-diDNS 333 525 

1,8-Diaminooctane-diDNS 332 515 

Piperidine-monoDNS 332 523 

Piperazine-diDNS 336 529 

Spermidine-triDNS derivative 336 522 

Spermine-tetraDNS derivative 335 523 

 

Dansylation methods 

 

Method 1  Without termination of the excess of DNS Cl 

 

1-Butylamine (1 mM) was used against various concentration of DNS Cl (5 mM to 40 mM).  

Results showed that excess DNS Cl peak appeared at Rt = 8.9 min when DNS Cl was used at 

5-fold excess (UV detector, HPLC conditions:  mobile phase is acetonitrile: Milli-Q-water 

(70:30) C18-luna column, flow rate 1 mL/min). However, the reaction was completed when 

DNS Cl was used at 10-fold excess.  Without termination of the excess of DNS Cl, the final 

product separated into two phases.  Small droplets of the excess of DNS Cl were observed, 

thus, this product was inhomogeneous.  This product was stirred and injected onto HPLC, 

however, the results from 5 replicates were non-reproducible. 

 

Method 2  Using alanine to remove the excess of DNS Cl 

 

A solution of L-alanine was used to remove the excess of DNS Cl (Ala-DNS is held in the 

aqueous phase), followed by extraction of the desired amine-DNS derivative with toluene 

which was then evaporated and the residue was redissolved in mobile phase and analyzed by 

HPLC.  With this elimination step, the chromatogram was improved as there were fewer 

interfering peaks, no peak from the excess (e.g. 70-fold or 10-fold) of DNS Cl and the peaks 

of the desired product were reproducible (n = 5). 
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Optimization of DNS Cl derivatization method 

 

Published conditions for DNS derivatization are different from one research group to 

another.  For example, the reaction temperature ranged from 20 to 90oC.  Many conditions 

such as temperature, reaction time, pH of medium, concentration of DNS Cl have effects on 

the yield of DNS derivatization.  The dansylation reaction was optimized for the following 

variables:  the pH of buffer for amine and DNS Cl reaction, the ratio of volume of DNS Cl, 

the reaction time and the temperature. 

 

Optimization of the pH of buffer for DNS Cl reaction with amines 

 

Only the neutral form of an amine will react with DNS Cl (Seiler, 1975), and therefore, the 

optimum pH must be high enough to ensure that the amine is unionized.  However, the pH is 

limited by an increase in side reactions, such as the formation of the sulfonic acid at high 

values (Gros and Labouesse, 1969).  Moreover HCl is released during the dansylation 

reaction, so a buffer is always required.  The effect of the pH of buffer was investigated by 

using borate buffer, pH range from 4.5 to 10.5 (Figure 5.8).  The result showed that under 

acidic conditions, the reaction occurred to only a small extent when compared to the region 

from pH 8.5 to 10.5.  The peak areas were stable and the yields of the derivatives were high.  

When borate buffer and saturated sodium carbonate which has the pH = 9.80 were 

compared, insignificant difference of the yields were obtained (Figure 5.9).  Thus, saturated 

sodium carbonate was used routinely in the DNS Cl reaction because it was more convenient 

for preparation. 

0

0.5

1

1.5

2

2.5

3

3.5

4

4 5 6 7 8 9 10 11

pH of borate buffer

pe
ak

 a
re

a

 

Figure 5.8  Optimization of pH of borate buffer in the reaction of 1-butylamine and DNS Cl 

(n = 5).  Peak areas were calculated by height x 0.5 width of peak, and peak areas are 

reported in cm2. 
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Figure 5.9  Comparison of the yields of 1-butylamine-monoDNS obtained using borate 

buffer pH 10.5 and saturated sodium carbonate for making the solution alkaline for 

dansylation. 

 

Optimization of the reaction temperature of dansylation 

 

Different temperatures were examined with the fixed reaction time of 15 min to determine 

the optimum conditions for derivatization of polyamine.  A temperature series was run at 20, 

40, 60, and 80oC with 1 mM of 1-butylamine while other solvents and reagent concentrations 

remained constant.  The yields were evaluated by HPLC by measurement of the peak areas.  

Yields of derivatization increased with rising temperature (Figure 5.10).  However, at 

temperatures greater than 60oC, rapid evaporation of acetone from the reaction led to 

solubility problems and bumping of the reaction mixture.  Therefore 60oC was used for the 

remainder of the study. 
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Figure 5.10  Optimization of temperature of dansylation (n = 5).  Peak areas were calculated 

by height x 0.5 width of peak, and peak areas are reported in cm2. 
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Optimization of the reaction time of dansylation 

 

The time effect studies were carried out from 1 min to a maximum of 60 min (Figure 5.11).  

The reactions were run at 60oC with 1 mM of 1-butylamine.  The optimum reaction time for 

1-butylamine was about 15 min which was subsequently used routinely. 
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Figure 5.11  Influence of time on the dansylation reaction of 1 mM 1-butylamine (n = 5).  

Peak areas were calculated by height x 0.5 width of peak, and peak areas are reported in cm2. 

 

Optimization of the concentration ratio of DNS Cl 

 

After optimizing the pH of the reaction, the reaction time, the reaction temperature, intense 

HPLC-peaks overlapping the derivatives were observed due to hydrolysis products generated 

by the reaction of DNS Cl with water.  Cleaner chromatograms were obtained by using a 

minimum amount of DNS Cl. 

 

For the optimization of DNS Cl concentration, 1 mM of model amines were reacted with 

DNS Cl concentration range from 1 to 100 mM.  The desired amine-DNS derivatives 

increased with the increasing DNS solution concentration up to 10 mM then they were stable 

or increased indistinctively.  For the pH optimization, the reaction required an alkaline pH of 

9.5.  For the ranges of pH examined, saturated sodium carbonate solution (pH 9.80) was 

selected to give an optimum pH.  However, different amines required different amounts of 

DNS Cl to complete the reaction; for example to complete the reaction of piperidine and 

DNS Cl required a 5-fold excess of DNS Cl whereas 1-butylamine required 10-fold excess 

of DNS Cl (Figure 5.13).  From Figure 5.13, the peak areas obtained for amine-DNS 

derivative increased by increasing the concentration of DNS Cl.  An excess of DNS Cl was 

needed to achieve complete reaction.  However, the excess of DNS Cl can also give 

competitive reactions with water and the amine-DNS derivative.  So, the optimized 
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concentration of DNS Cl was chosen at 10 mM.  The amine-DNS derivatives were examined 

with 10 mM DNS Cl and the retention times from 5 replicates are shown in Table 5.2.  By 

varying the concentration of the amines, calibration curves were plotted as shown in Figure 

5.14 and the equations were obtained as shown in Table 5.3.  Derivatization conditions of 

DNS Cl, for the rest of the study used 10-fold excess of DNS Cl reagent to amines, at pH 9.8 

saturated sodium carbonate solution for 15 min at 60oC, the reaction was terminated and the 

excess of DNS Cl removed by adding 112 mM L-alanine.  The desired products were 

extracted by toluene to leave the undesired by-products in the aqueous phase.  After 

evaporation of the toluene, the residue was redissolved with mobile phase, filtered through 

0.45 µm nylon filter before injection onto the HPLC.  DNS derivatives are very stable as 

they gave the nearly same peak area after 10 days (stored in the fridge, 4oC).  Using a 

Phenomenex Hypersil C18 5µ 150 x 4.60 mm column, the optimized condition of mobile 

phase was 70:30 acetonitrile: Milli-Q-water.  A good resolution was obtained of the amine-

DNS derivative from the potential interference peaks, e.g. a chromatogram of 1-butylamine-

monoDNS (Figure 5.12). 

 

 

 

 

Figure 5.12  HPLC chromatogram of 1-butylamine-DNS derivative, HPLC conditions:  

column:  Phenomenex Hypersil C18 5µ 150 x 4.60 mm, mobile phase is acetonitrile: Milli-

Q-water (70:30) with flow rate 1 mL/min, fluorescence detector at λex = 330 nm, λem = 510 
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nm, peak 1 = solvent front, peak 2 = dansylic acid, peak 3 = dansylamide and peak 4 = 1-

butylamine-monoDNS derivative. 
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Figure 5.13  Optimization of conditions in the reaction between 1.0 mM 1-butylamine and 

various concentrations of DNS Cl (n = 5).  Peak areas were calculated by height x 0.5 width 

of peak, and peak areas are reported in cm2. 

 

Table 5.2  The retention times of various amine-DNS derivatives.  HPLC conditions:  

column:  Phenomenex Hypersil C18 5µ 150 x 4.60 mm, mobile phase is acetonitrile: Milli-

Q-water (60:40) with flow rate 1 mL/min 

 

Amine-DNS derivatives Type of amine Retention time (min) ± range 

Ethylamine Primary monoamine 4.12 ± 0.17 

1-Butylamine Primary monoamine 7.15 ± 0.15 

Phenylethylamine Primary monoamine 8.10 ± 0.30 

1,4-Diaminobutane Primary diamine 9.20 ± 0.15 

1,7-Diaminoheptane Primary diamine 16.95 ± 0.35 

Piperidine Secondary monoamine 9.35 ± 0.25 

Piperazine Secondary diamine 19.60 ± 0.08 
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Figure 5.14  Calibration curves of amine-DNS derivatives (n = 5).  Peak areas were 

calculated by height x 0.5 width of peak, and peak areas are reported in cm2. 

 

Table 5.3  The calibration curve equations of various amine-DNS derivatives 

 

Amine-dansyl derivatives Calibration curve R2  (n = 5) 

Ethylamine y = 3.42x-0.139 0.991 

1-Butylamine y = 3.65x-0.122 0.996 

2-Phenylethylamine y = 3.72x-0.265 0.988 

1,4-Diaminobutane y = 5.75x + 0.161 0.989 

1,7-Diaminoheptane y = 6.90x-0.612 0.992 

Piperidine y = 9.40x-0.300 0.999 

Piperazine y = 9.11x – 0.144 0.968 

 

At concentrations from 0.2 mM to 1.0 mM, both 1,4-diaminobutane-DNS and 1,7-

diaminoheptane-DNS derivatives show linear calibration curves (Figure 5.15), but from the 

concentration 2.0 mM up to 10 mM, the line of 1,4-diaminobutane-DNS was not linear 

whereas the line of 1,7-diaminoheptane-DNS is remained linear (Figure 5.16).  This result 

might due to “self-quenching” of two DNS groups linked by the short hydrocarbon chain of 

butane compared to a heptane chain. 

 



 - 148 - 

0

1

2

3

4

5

6

7

0 0.2 0.4 0.6 0.8 1 1.2

concentration of amine-DNS derivatives (mM)

pe
ak

 a
re

a

1,4-diaminobutane-diDNS 1,7-diaminoheptane-diDNS
 

Figure 5.15  Calibration curves of 1,4-diaminobutane-diDNS derivative and 1,7-

diaminoheptane-diDNS derivative which were both linear from concentration 0.2 to 1 mM (n 

= 5).  Peak areas were calculated by height x 0.5 width of peak, and peak areas are reported 

in cm2. 
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Figure 5.16  Calibration curves of 1,4-diaminobutane-diD NS derivative and 1,7-

diaminoheptane-diDNS derivative (n = 5).  This graph shows 1,4-diaminobutane-diDNS 

became non-linear at higher concentrations due to “self-quenching”.  Peak areas were 

calculated by height x 0.5 width of peak, and peak areas are reported in cm2. 

 

Spermine and Spermidine 

 

The same procedure was applied to spermidine and spermine except the composition of 

mobile phase was changed from 60:40 acetonitrile: Milli-Q-water to 65 % methanol: 20 % 
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acetonitrile: 15 % Milli-Q-water due to the shorter retention time gained from 36 min to 6 

min for spermidine and 39 min to 8 min for spermine.  By varying the concentration of 

biological amines, calibration curves were obtained, the results are shown in Figure 5.17 and 

Table 5.4.  Structure of spermidine-triDNS derivative and spermine-tetraDNS derivative 

(Figure 5.18) were confirmed the expected M.W. by HR-ESI-MS. (Figure 5.19 for 

spermidine-triDNS derivative and Figure 5.20 spermine-tetraDNS derivative). 
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Figure 5.17  Calibration curves of natural amine-DNS derivatives (n = 5).  Peak areas were 

calculated by height x 0.5 width of peak, and peak areas are reported in cm2. 

 

Table 5.4  Calibration curve equations of natural amine-DNS derivatives. 

 

Amine-dansyl derivatives Calibration curve R2 (n = 5) 

Spermidine y = 6.47x – 0.380 0.995 

Spermine y = 9.91x + 0.624 0.989 
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 (A) Spermidine-triDNS derivative                                        (B) Spermine-tetraDNS derivative 

 

Figure 5.18  (A) Spermidine-triDNS derivative, (B) spermine-tetraDNS derivative. 
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Figure 5.19  HR-ESI-MS spectra of spermidine triDNS derivative (M.W. = 844.3110, 

C43H52N6O6S3) expected m/z [M+H]+ ion = 845.3188, doubly charged [M+2H]2+ ion = 

423.1633 (found = 423.1615) and [M+Na]+ ion = 867.3008 (found = 867.2992). 

 

 

 

Figure 5.20  HR-ESI-MS spectra of spermine tetraDNS derivative (M.W. = 1134.4199, 

C58H70N8O8S4) expected m/z [M+H]+ ion = 1135.4277 (found = 1135.4241) and [M+Na]+ 

ion = 1157.4097 (found = 1157.4061). 

 

Relative quantum yield 

 

The fluorescence intensity and UV absorbance of various polyamine-DNS derivatives were 

determined in order to compare the relative quantum yields.  The derivatives of diamines-

DNS were made in order to obtain both diamines-monoDNS and diamines-diDNS (the 
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chromatogram is shown in Figure 5.21).  The peak of each amine-DNS was collected after 

separation on a semi-preparative HPLC column.  As these derivatives eluted they were 

collected and the molecular mass of all these derivatives were confirmed using HR-ESI-MS:  

1,4-diaminobutane-monoDNS derivative (Figure 5.22), 1,4-diaminobutane-diDNS derivative 

(Figure 5.23), 1,7-diaminoheptane-monoDNS derivative (Figure 5.24), 1,7-diaminoheptane-

diDNS derivative (Figure 5.25). 

 

A series of dilutions of each eluted peak of the model series was prepared and the UV 

absorbance and fluorescence intensity of each were measured.  The HPLC was monitored by 

measurement of absorbance at the λex using Unicam Helios UV-VIS spectrophotometer and 

measurement of fluorescence intensity on a Perkin Elmer Luminescence Spectrometer LS 

50B.  For each compound, a plot of fluorescence intensity against UV absorbance was made 

(Table 5.5, Figure 5.26).  The fluorescence yield of each derivative is proportional to the 

gradient. 

 

 

 

Figure 5.21  HPLC chromatogram of 1,7-diaminoheptane-DNS derivative amine-dansyl 

derivatives, HPLC conditions:  semi-preparative column:  Phenomenex Gemini 10 µ C18 

110A 250 x 10 mm with guard column:  Phenomenex Gemini 5 µ C18 10 x 10 mm.  Mobile 

phase is acetonitrile: Milli-Q-water (70:30) with flow rate 5 mL/min, fluorescence detector at 

0 6 12 mins 
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λex = 330 nm, λem = 510 nm, peak 1 = 1,7-diaminoheptane-monoDNS derivative, peak 2 = 

1,7-diaminoheptane-diDNS derivative. 

 

Figure 5.22  HR-ESI-MS spectrum of 1,4-diaminobutane monoDNS derivative (M.W. = 

321.1511, C16H23N3O2S) expected m/z [M+H]+ ion = 322.1589 (found = 322.1562) doubly 

charged ion [M+2H]2+ = 161.5834 (found = 161.5814) and [2M+H]+ ion = 643.3100 (found 

= 642.3112). 

 

 

 

Figure 5.23  HR-ESI-MS spectra of 1,4-diaminobutane diDNS derivative (M.W. = 

554.2375, C28H34N4O4S2) expected m/z [M+H]+ ion = 555.2099 (found = 555.2100) doubly 
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charged ion [M+2H]2+ = 278.1089 (found = 278.1170) and [M+Na]+ = 577.1919 (found = 

577.1923). 

 

 

Figure 5.24  HR-ESI-MS spectrum of 1,7-diaminoheptane monoDNS derivative (M.W. = 

363.1980, C19H29N3O2S) expected m/z (M+H)+ ion = 364.2059 (found = 364.2036), doubly 

charged ion [M+2H]2+ = 182.6068 (found = 182.6045), [M+Na]+ = 386.1878 and [2M+H]+ = 

727.4038 (found = 727.4035). 

 

 

 

Figure 5.25  HR-ESI-MS spectrum of 1,7-diaminoheptane diDNS derivative (M.W. = 

596.2491, C31H40N4O4S2) expected m/z [M+H]+ ion = 597.2569 (found = 597.2550) doubly 

charged ion [M+2H]2+ = 299.1324 (found = 299.1293). 

 

Table 5.5  Equation of F.I. and U.V. absorption of various amine-DNS derivatives. 

 

Amines-DNS derivatives Equation of F.I and UV absorption R2 

1-Butyl-monoDNS y = 2623.3x + 15.17 0.997 

1,4-Diaminobutane-monoDNS y = 2782.2x + 8.91 0.991 

1,7-Diaminoheptane-monoDNS y = 2662.8x + 9.42 0.999 

1,4-Diaminobutane-diDNS y = 2011.6x + 7.78 0.994 

1,7-Diaminoheptane-diDNS y = 2179.2x + 18.94 0.997 

Spermidine-triDNS y = 1834.3x + 38.89 0.999 
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Figure 5.26  F.I. and U.V. absorption of various amine-DNS derivatives (n = 5). 
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Figure 5.27  Linear plots for three amine-monoDNS derivatives (n = 5).  The gradients of all 

three samples are similar in value. 
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Figure 5.28  Linear plots for two amine-diDNS derivatives (n = 5).  The gradients for both 

samples are similar in value. 

 

The gradients of all amine-monoDNS are similar (Figure 5.27) as are the gradients from 

amine-diDNS (Figure 5.28), the latter values are smaller when compared with the former.  

The lowest gradient was obtained from amine-triDNS.  From the results, it is concluded that 

the more DNS moieties that are bound to the polyamine molecule, the lower the gradients 

are.  From theory, the gradient should be the same when the number of fluorophores is 

increased.  However, from the experiment, the more fluorophores added, the lower the 

resultant gradient.  A comparison of fluorescence yield showed those of the polyamine 

conjugates to be lower than those of monoamine conjugates.  So, it is shown that two or 

more fluorophores tethered in close proximity interfere with the fluorescence process. 

 

Piperidine- and piperazine-DNS derivatives 

 

The relationship between the number of fluorophores and the intensity of fluorescence was 

examined to determine if the fluorescence intensity doubled when the DNS derivative has 

two fluorophores in its structure.  The experiment initially used piperidine and piperazine as 

the amine models, both are heterocyclic secondary amines piperidine containing one nitrogen 

atom and piperidine containing two (1,4)-nitrogen atoms.  The same concentration of 

piperidine and piperazine was used to react with the DNS Cl reagent.  Piperazine contains 

two secondary amines groups so sufficient DNS Cl to derivatize both amine groups was used 

otherwise the combination of monoDNS derivative and diDNS derivative of this compound 
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would be obtained.  Silica gel TLC was used to confirm and monitor the reaction of DNS-

derivatization using dichloromethane: methanol (4:1) as the mobile phase.  The results 

showed that the DNS Cl to piperidine 5: 1 (mole) was an efficient mole ratio to obtain the 

complete reaction.  If the ratio of piperidine: DNS Cl was 1:1, only 60% product was 

obtained.  Moreover, TLC showed that dansylic acid was still present in the organic phase 

after 3-fold extraction with toluene.  Method 2 (see page 45 in Chapter 2) was used to prepare 

piperidine-monoDNS derivative and piperazine-diDNS derivative.  The retention time of 

piperidine-monoDNS derivative was 8.6 min (Figure 5.29 (A)) and for piperazine-diDNS 

derivative was 15.1 min (Figure 5.29 (B)) when eluted with 65% acetonitrile: 35% Milli-Q-

water.   

 

 

 

 

      (A) 

 

 

  

(B) 

Figure 5.29  HPLC chromatogram of piperidine-monoDNS and piperazine-diDNS derivative, 

HPLC conditions:  mobile phase is acetonitrile: Milli-Q-water (65:35) C18-hypersil column, flow 

rate 1 mL/min, fluorescence detector at λex = 330 nm, λex = 510 nm.  (A) piperidine-monoDNS 

derivative.  The chromatogram shows peak 1 = piperidine-monoDNS derivative at Rt = 8.6 min.  

(B) piperazine-diDNS derivative.  The chromatogram shows peak 1 = piperazine-diDNS 

derivative at Rt = 15.1 min.  
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Figure 5.30  HR-ESI-MS spectra of piperidine-monoDNS derivative (M.W. = 318.1402, 

C17H22N2O2S) expected m/z [M+H]+ ion = 319.1480 (found = 319.1472) and m/z [2M+H]+ 

ion = 637.2882 (found = 637.2915). 

 

These peaks were proved to be the expected DNS derivatives by HR-ESI-MS (Figure 5.30 

for piperidine monoDNS derivative and Figure 5.31 for piperazine diDNS derivative).  

When the chromatographic peak area per millimole on column for a monoamine (piperidine) 

and diamine (piperazine) were compared, the peak area of piperazine was nearly twice that 

of the monoDNS compound.  The slightly lower than expected values may be due to the 

differences in the chromatographic conditions. 
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Figure 5.31  HR-ESI-MS spectra of piperazine-diDNS derivative (M.W. = 552.1865, 

C28H32N4O4S2) expected m/z [M+H]+ ion = 553.1943 (found = 553.1911).  The spectrum is 

dominated by the doubly charged peak [M+2H]2+ at m/z = 277.1011 (found = 277.1009). 

 

For piperazine, no quenching effect of two fluorophores bound to piperazine was observed.  

Due to the rigid stereochemistry of (1,4-)piperazine-disulfonamide (diDNS), the two 

fluorophores are held apart from each other. 
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Characteristic of amine-DNS derivatives by HR-ESI-MS 

 

One characteristic of amine-DNS derivatives is doubly charged ions which were observed by 

HR-ESI-MS e.g. spectra of 1,12-diaminododecane-diDNS derivative (Figure 5.32) and 1,5-

diaminopentane-diDNS derivative (Figure 5.33) and the summary table of the doubly 

charged ions in Table 5.8. 

 

 

Figure 5.32  HR-ESI-MS spectrum of 1,12-diaminododecane-diDNS derivative (M.W. = 

666.3273, C36H50N4O4S2) expected m/z [M+H]+ ion = 667.3352, doubly charged ion 

[M+2H]2+ = 334.1715 (found = 334.1708). 

 

 

Figure 5.33  HR-ESI-MS spectrum of 1,5-diaminopentane-diDNS derivative (M.W. = 

568.2178, C29H36N4O4S2) expected m/z [M+H]+ ion = 569.2256, doubly charged ion 

[M+2H]2+ = 285.1167. (found = 285.1158). 
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DNS derivatives of a series of non-viral gene therapy (NVGT) vectors 

 

The DNS derivatization method was applied to synthetic spermine fatty acyl amides, N4,N9-

didecanoyl spermine-diDNS (Figure 5.34), N4,N9-dihexadecanoyl spermine-monoDNS (Figure 

5.36), N1,N12-di-trifluoroacetyl-N4,N9-spermine-diDNS (Figure 5.38), N1,N4,N9-tri-t-Boc-N12-

DNS spermine (Figure 5.40), N4,N9-digeranoyl spermine-monoDNS (Figure 5.42), N1-DNS-N4-

decanoyl-N9-cholesteryl carbamate spermine (Figure 5.44), N4,N9-oleoyl spermine monoDNS 

(Figure 5.46) and N4,N9-dioctadecanoyl spermine-monoDNS (Figure 5.48). 

 

These conjugates are experimental non-viral vectors for DNA condensation with potential in 

gene delivery and therefore in non-viral gene therapy (NVGT).  The DNS labelling method 

was applied to these molecules and HPLC chromatograms of these spermine derivatives 

were obtained, the data for retention time are shown in Table 5.6.  The HR-ESI-MS of N4,N9-

didecanoyl spermine-diDNS (Figure 5.35), N4,N9-dihexadecanoyl spermine-monoDNS 

(Figure 5.37), N1,N12-di-trifluoroacetyl-N4,N9-diDNS spermine (Figure 5.39), N1,N4,N9-tri-t-

Boc-N12-DNS spermine (Figure 5.41), N4,N9-digeranoyl spermine-monoDNS (Figure 5.43), 

N
1-DNS-N4-decanoyl-N9-cholesteryl carbamate spermine (Figure 5.45), N4,N9-oleoyl 

spermine monoDNS (Figure 5.47) and N4,N9-dioctadecanoyl spermine-monoDNS (Figure 

5.49) were all satisfactorily obtained. 

 

Table 5.6  Retention time of non-viral gene therapy (NVGT) vectors-DNS derivative, HPLC 

conditions:  mobile phase:  acetonitrile: 1% formic acid in Milli-Q-water (90:10) C8-luna 

column, flow rate 1 mL/min, fluorescence detector at λex = 330 nm, λex = 510 nm. 

 

NVGT vectors-DNS derivative Retention time (min) 

N
4,N9-Didecanoyl spermine-diDNS  10 

N
4,N9-Digeranoyl spermine-monoDNS  19 

N
4-Decanoyl-N9-cholesteryl carbamate spermine-mono DNS  21 

N
4,N9-Oleoyl spermine monoDNS  13 

N
4,N9-Dioctadecanoyl spermine-monoDNS  24 
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Figure 5.34  N4,N9-Didecanoyl spermine-diDNS. 
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Figure 5.35  HR-ESI-MS spectrum of N4,N9-didecanoyl spermine-diDNS derivative (M.W. 

= 976.5894, C54H84N6O6S2) expected m/z [M+H]+ ion = 977.5972 (found = 977.5947) and 

[M+Na]+ ion = 986.7472 (found = 986.7472). 
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Figure 5.36  N4,N9-Dihexadecanoyl spermine-monoDNS. 

 

 

Figure 5.37  HR-ESI-MS spectrum of N4,N9-dihexadecanoyl spermine-monoDNS derivative 

(M.W. = 911.7261, C54H97N5O4S) expected m/z [M+H]+ ion = 912.7339 (found = 912.7374). 
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Figure 5.38  N1,N12-Di-trifluoroacetyl-N4,N9-diDNS spermine. 

 

 

 

Figure 5.39  HR-ESI-MS spectra of N1,N12-di-trifluoroacetyl-N4,N9-diDNS spermine 

derivative (M.W. = 860.2824, C38H46F6N6O6S2) expected m/z [M+H]+ ion = 861.2902 (found 

= 861.2927) doubly charged ion [M+2H]2+ = 431.1490 (found = 431.1491) and [M+Na]+ ion 

= 883.2722 (found = 883.2754). 
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Figure 5.40  N1,N4,N9-Tri-t-Boc-N12-DNS spermine. 

 

 

Figure 5.41  HR-ESI-MS spectrum of N1,N4,N9-tri-t-Boc-N12-DNS spermine derivative 

(M.W. = 735.4241, C37H61N5O8S) expected m/z [M+H]+ ion = 736.4319 (found = 736.4287) 

and [M+Na]+ ion = 758.4139. 
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Figure 5.42  N4,N9-Digeranoyl spermine-monoDNS derivative. 
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Figure 5.43  HR-ESI-MS spectrum of N4,N9-Digeranoyl spermine-monoDNS derivative 

(M.W. = 735.4757, C42H65N5O4S) expected m/z [M+H]+ ion = 736.4835 (found = 736.4850). 
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Figure 5.44  N1-DNS-N4-decanoyl-N9-cholesteryl carbamate spermine C60H99N5O5S. 

 

 

Figure 5.45  HR-ESI-MS spectrum of N1-DNS-N4-decanoyl-N9-cholesteryl carbamate 

spermine derivative (M.W. = 1001.7367, C60H99N5O5S) expected m/z [M+H]+ ion = 

1002.7445. (found = 1002.7408) and [M+Na]+ ion = 1024.7264 (found = 1024.7357). 
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Figure 5.46  N4,N9-Oleoyl spermine monoDNS derivative. 

 

 

 

 

Figure 5.47  HR-ESI-MS spectra of N4,N9-Oleoyl spermine monoDNS derivative (M.W. = 

963.7574, C58H101N5O4S) expected m/z [M+H]+ ion = 964.7652. (found = 964.7666), doubly 

charged [M+2H]2+ = 482.8865 and [M+Na]+ ion = 986.7472 (found = 986.7472). 
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Figure 5.48  N4,N9-Dioctadecanoyl spermine-monoDNS derivative. 

 

 

 

Figure 5.49  HR-ESI-MS spectra of N4,N9-Dioctadecanoyl spermine-monoDNS derivative 

(M.W. = 967.7887, C58H105N5O4S) expected m/z [M+H]+ ion = 968.7965. (found = 

968.7984), doubly charged ion [M+2H]2+ = 484.9022 (found = 484.9026) and [M+Na]+ ion 

= 990.7785 (found = 990.7806). 

 

DNS derivatization of aminoglycosides 

 

Glucosamine was examined by using method 2 for dansylation.  The glucosamine-

monoDNS derivative is a polar molecule which contains many OH groups so it can elute 
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rapidly under reversed-phase conditions (Figure 5.50).  Glucosamine-monoDNS derivative 

was confirmed by HR-ESI-MS (Figure 5.51). 
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Figure 5.50 Calibration curve of glucosamine-DNS derivatives (n = 5). 

 

Figure 5.51  HR-ESI-MS spectra of glucosamine-monoDNS derivative (M.W. = 412.1304, 

C18H24N2O7S) expected m/z [M+H]+ ion = 413.1383 (found = 413.1384) and [M+Na]+ ion = 

435.1202 (found= 435.1205). 

 

Using method 1 to derivatize 0.1 mM glucosamine with DNS Cl reagent, the glucosamine-

DNS derivative eluted at Rt = 1.60 min (HPLC conditions:  mobile phase:  acetonitrile: Milli-

Q-water (40:60) C18-Hypersil column, flow rate 1 mL/min, fluorescence detector at λex = 

330 nm, λex = 510 nm).  The reaction was completed using a 4-fold excess of DNS Cl (Figure 

5.52). 
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Figure 5.52  Peak area of glucosamine-DNS derivative versus the concentration of DNS Cl 

(n = 5), glucosamine (1 mL, 1 mM) against DNS Cl (1 mL of various concentrations).  Peak 

areas were calculated by height x 0.5 width of peak, and peak areas are reported in cm2. 

 

Kanamycin-DNS derivatives 
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Figure 5.53  Kanamycin-tetraDNS derivative. 

 

 

 

Figure 5.54  HR-ESI-MS spectra of kanamycin-tetraDNS derivative (M.W. = 1416.4422, 

C66H80N8O19S4) expected m/z [M+H]+ ion = 1417.4500 (found = 1417.4496) and [M+Na]+ 

ion = 1439.4320. 
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Method 2 was used for dansylation to prepare kanamycin-tetraDNS derivative (Figure 5.53).  

The HPLC chromatogram was obtained (Figure 5.55), the desired peak collected and the 

product was confirmed as the tetrasubstituted derivative by HR-ESI-MS (Figure 5.54). 

 

 

 

      (A) 

 

 

      (B) 

Figure 5.55  HPLC chromatogram of kanamycin-tetraDNS derivative, HPLC conditions:  

mobile phase is acetonitrile: Milli-Q-water (70:30) C8-luna column, flow rate 1 mL/min, 

fluorescence detector at λex = 330 nm, λex = 510 nm.  (A) The chromatogram of blank  (B) 

The chromatogram shows peak 1 = kanamycin-tetraDNS derivative at Rt = 4.9 min. 

 

1 
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Table 5.8  Summary of HR-ESI-MS from dansylation. 

 

DNS derivatives Molecular Formula HR-ESI-MS 
calculated 

HR-ESI-
MS found  

Aspartic acid-monoDNS 
C16H18N2O6S 

C16H19N2O6S (M+H)+ 367.0964 
 

367.0942 

Piperidine-monoDNS 
C17H22N2O2S 

C17H23N2O2S (M+H)+ 
 

319.1475 319.1472 
 

Piperazine-monoDNS 
C16H21N3O2S 

C16H22N3O2S (M+H)+ 
 

320.1437 320.2235 

Piperazine-diDNS 
C28H32N4O4S2 

C28H33N4O4S2 (M+H)+ 
C28H34N4O4S2 (M+2H)2+ 

553.1938 
277.1011 

553.1911 
277.1009 

1,4-Diaminobutane-monoDNS 
C16H23N3O2S 

C16H24N3O2S (M+H)+ 
 

322.1589 322.1562 

1,4-Diaminobutane-diDNS 
C28H34N4O4S2 

C28H35N4O4S2 (M+1)+ 
 

555.2094 555.2091 

1,7-Diaminoheptane-monoDNS 
C19H29N3O2S 

C19H30N3O2S (M+H)+ 
 

364.2053 364.2036 

1,7-Diaminoheptane-diDNS 
C31H40N4O4S2 

C31H41N4O4S2 (M+H)+ 
 

597.25564 597.2250 

1,12-Diaminododecane-diDNS 
C36H50N4O4S2 

C36H52N4O4S2 (M+2H)2+ 
 

334.1696 334.1708 

C43H53N6O6S3 (M+H)+ 
 

845.3183 845.3163 Spermidine-triDNS 
C43H52N6O6S3 

 C43H52N6NaO6S3 
(M+Na)+ 

867.3003 867.2992 

N-(4-Aminobutyl) 
hexahydropyrimidine-monoDNS 
C20H30N4O2S 

C20H31N4O2S (M+H)+ 
 

391.2162 391.2148 

N-(4-Aminobutyl) 
hexahydropyrimidine-diDNS 
C32H41N5O4S2 

C32H42N5O4S2 (M+H)+ 
 

624.2678 624.2676 

C58H71N8O8S4 (M+H)+ 1135.4272 1135.4241 Spermine-tetraDNS 
C58H70N8O8S4 C58H70N8NaO8S4 

(M+Na)+ 
1157.4097 1157.4061 

1,4-(Dihexahydropyrimidine) 
butane-diDNS 
C36H48N6O4S2 

C36H49N6O4S2 (M+H)+ 693.3251 693.3275 

C47H59N7O6S3 (M+H)+ 
 

914.3767 914.3772 1-(Hexahydropyrimidine)-5-aza-
aminooctane-triDNS 
C47H59N7O6S3 C47H59N7NaO6S3 

(M+Na)+ 
936.3586 936.3560 

N
4,N9-Oleoyl spermine-

monoDNS C58H101N4O4S2 

C58H102N4O4S2 (M+H)+ 
 

964.7647 964.7666 

N
4,N9-Didecanoyl spermine-

diDNS 
C54H84N6O6S2 

C54H85N6O6S2 (M+H)+ 
 

977.5972 977.5947 

C60H100N5O5S (M+H)+ 
 

1002.7440 1002.7434 N
4-Decanoyl-N9-cholesteryl 

carbamate spermine-mono DNS 
C60H99N5O5S C60H99N5NaO5S (M+Na)+

 1024.7264 1024.7357 
N

4,N9-Digeranoyl spermine- 
monoDNS 
C42H65N5O4S 

C42H66N5O4S (M+H)+ 
 

736.4830 736.4850 
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N
4,N9-Dioctadecanoyl spermine-

monoDNS 
C58H105N5O4S 

C58H106N5O4S (M+H)+ 
 

968.7965 968.7984 

Kanamycin-tetra DNS 
C66H80N8O19S4 

C66H81N8O19S4  (M+H)+ 1417.4500 1417.4496 

 

Conclusions of DNS Cl derivatization 

 

DNS Cl reacts with primary and secondary amines with the result of full derivatization if the 

molar ratio to DNS Cl is enough, resulting in diDNS derivatives for diamines such as 1,4-

diaminobutane, 1,5-diaminopentane, 1,7-diaminoheptane, triDNS derivative for spermidine 

and tetraDNS derivative for spermine.  However, the monoDNS derivative of each diamine 

was obtained when we used lower DNS Cl ratios whilst investigating the phenomenon of 

fluorescence yield.  Peaks in HPLC chromatograms from spermine-tetraDNS derivatives are 

eluted after 30 min even when a C8 column was used (with isocratic mobile phase of 

acetonitrile: Milli-Q-water = 70:30) due to the hydrophobic nature of the molecule and its 

high molecular weight.  However, by converting spermine into 1,4-dihexahydropyrimidine-

butane (the dihexahydropyrimidine derivative of spermine) before dansylation, the retention 

time was reduced to ~19 min.  The excess of DNS Cl reagent was destroyed using a solution 

of alanine.  Polyamines were analysed on an Reversed-phase ODS Hypersil, ODS luna, C8 

luna column with an isocratic mobile phase mixture of acetonitrile and Milli-Q-water at a 

flow rate of 1 mL/min with fluorescence detection at excitation and emission wavelength of 

330 and 510 nm, respectively and UV detection at λmax = 330 nm.  The reaction time of DNS 

Cl at 20oC gave a lower yield than at 60oC and it is better to set the temperature at 60oC 

rather than at room temperature which might vary. 

 

Several advantages of DNS Cl derivatization are:  its high degree of reproducibility, 

precision, sensitivity and the high stability of the derivatives.  However, when compared 

with other derivatization methods, DNS Cl requires more time than the others.  The DNS Cl 

derivatization might not be suitable for large molecules.  If the molecule has many reactive 

amino groups, then when it is (poly)-labelled with DNS Cl the product is more lipophilic and 

therefore slower to elute from the HPLC column.  In this study, the simultaneous use of two 

detectors connected in series for the determination of polyamine-DNS derivatives, to detect 

both UV and fluorescence benefits in not missing a peak that might detected by only one 

detector, thus increasing the reliability of the method.  On the basis of peak size, 

fluorescence detection showed higher sensitivity for amine-DNS derivatives.  However, both 

detectors were shown to be accurate and produced calibration curves of good linearity. 
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CHAPTER 6:  THERMOSPERMINE SYNTHESIS 

 

Spermidine (3.4) and spermine (3.4.3) are major polyamines in most organisms.  Spermine is 

probably present in all eukaryotes; however, it is rare in prokaryotes or might be replaced by 

thermine (norspermine, 3.3.3) and thermospermine (3.3.4) e.g. in certain species of 

thermophilic bacteria.  Thermus thermophilus is an extreme thermophile and the major 

polyamines in this bacterium, grown under the optimal conditions at 800C, are thermine and 

thermospermine (Figure 6.1) (Oshima, 1979). 
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Figure 6.1  Thermine (C9H24N4) has a 3.3.3 methylene distribution, one methylene less than 

spermine (3.4.3), Thermospermine (C10H26N4) with its 3.3.4 methylene arrangement is an 

isomer of spermine (3.4.3). 

 

Thermus aquaticus is a species of thermophillus that thrives at 700C.  It is the source of the 

heat-resistant enzyme Taq DNA polymerase, one of the most important enzymes in 

molecular biology due to its use in the polymerase chain reaction (PCR) DNA amplification 

technique. 

 

Using current methods, thermine (3.3.3) and thermospermine (3.3.4) are difficult to 

distinguish from spermine (3.4.3) (Oshima, 1983; Knott et al., 2007).  It is also possible that 

some literature reports of spermine biosynthesis may in fact be partly or wholly due to 

thermospermine (Hamana and Matsuzaki, 1984; Hosoya et al., 2004).  Thus, 

thermospermine has been synthesised in order to develop improved methods for its 

separation from spermine and their analysis.  The synthesis started with spermidine (3.4) and 

used the method of Ganem and Chantrapromma (1983) (Figure 6.2). 
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Figure 6.2  Thermospermine synthesis (Method 1). 

 

Method 1 step 1  N-(4-Aminobutyl)hexahydropyrimidine (2) 

 

N-(4-Aminobutyl)hexahydropyrimidine (2) was prepared by the reaction of spermidine and 

formaldehyde (equal mole ratios) to give the stable hexahydropyrimidine ring as a viscous 

oily liquid which displayed a molecular weight greater than that of spermidine by the desired 

12 mass units (found 158.1630, C8H20N3 requires m/z [M+H]+ = 158.1657).  The product 

obtained from formaldehyde (2 equiv.) gave the HR-ESI-MS (Figure 6.3).  This spectrum 

shows a peak at m/z 158.1630 (required = 158.1657) corresponding to the [M+H]+ ion 

derived from N-(4-aminobutyl)hexahydropyrimidine (2) together with a trace peak at m/z 

146.1673 (required = 146.1657) corresponding to the [M+H]+ ion of the starting material 

spermidine.  However, the major peak was at m/z 170.1635 (required = 170.1657) which 

corresponds to the [M+H]+ ion of the N-(N′-methylene-4-iminobutyl)-hexahydropyrimidine 

(13) (Figure 6.4) which had an additional molecule of formaldehyde reacted at the remaining 

primary amino group. 
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Figure 6.3  HR-ESI-MS spectrum of spermidine (1) (M.W. = 145.1579, C7H19N3) expected 

m/z [M+H]+ ion = 146.1657 (found = 146.1673), N-(4-aminobutyl) hexahydropyrimidine (2) 

(M.W. = 157.1579, C8H19N3) expected m/z [M+H]+ ion = 158.1657 (found = 158.1630), N-

(N′-methylene-4-iminobutyl)-hexahydropyrimidine (13) (M.W. = 169.1579, C9H19N3) 

expected m/z [M+H]+ ion = 170.1657 (found = 170.1635). 
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Figure 6.4  N-(N′-Methylene-4-iminobutyl)-hexahydropyrimidine (13), C9H19N3 (M.W = 

169.1579). 

 

Even with 1.1 equiv. of formaldehyde a small peak of m/z = 170.1648 (required = 170.1657) 

was observed (Figure 6.5), but was virtually eliminated when 0.9 equiv. of formaldehyde 

were used (Figure 6.6).  The reaction were examined in different mole ratio of formaldehyde, 

the results were obtained (Table 6.1).  The desired product, N-(4-aminobutyl) 

hexahydropyrimidine (2), was examined by NMR spectroscopy (Figures 6.7, 6.8, and 6.9) 

and the peaks were assigned. 
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Figure 6.5:  HR-ESI-MS spectrum of products by the reaction of 1.1 equiv. of formaldehyde 

against spermidine.  The spectrum shows spermidine (1) (M.W. = 145.1579, C7H19N3) 

expected m/z [M+H]+ ion = 146.1657 (found = 146.1673), N-(4-aminobutyl) 

hexahydropyrimidine (2) (M.W. = 157.1579, C8H19N3) expected m/z [M+H]+ ion = 158.1657 

(found = 158.1632), N-(N′-methylene-4-iminobutyl)-hexahydropyrimidine (13) (M.W. = 

169.1579, C9H19N3) expected m/z [M+H]+ ion = 170.1657 (found = 170.1648). 

 
 

 
 

Figure 6.6  HR-ESI-MS spectrum of products by the reaction of 0.9 equiv. of formaldehyde 

against spermidine.  The spectrum shows spermidine (1) (M.W. = 145.1579, C7H19N3) 

expected m/z [M+H]+ ion = 146.1657 (found = 146.1664), N-(4-aminobutyl) 

hexahydropyrimidine (2) (M.W. = 157.1579, C8H19N3) expected m/z [M+H]+ ion = 158.1657 

(found = 158.1630), N-(N′-methylene-4-iminobutyl)-hexahydropyrimidine (13) (M.W. = 

169.1579, C9H19N3) expected m/z [M+H]+ ion = 170.1657 (found = 170.1642). 
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Table 6.1  Comparison of the amount of the desired product N-(4-aminobutyl) 

hexahydropyrimidine (2) at expected m/z [M+H]+ ion = 158.1657: N-(N′-methylene-4-

iminobutyl)-hexahydropyrimidine (13) at expected m/z [M+H]+ ion = 170.1657; starting 

material spermidine (1) at expected m/z [M+H]+ ion = 146.1657 when prepared using 

different ratios of formaldehyde to spermidine. 

 

mole ratio of formaldehyde to spermidine (1) (2) (13) 

2.0 equiv. 1.8% 43.2% 55.0% 

1.1 equiv. 7.1% 76.1% 16.8% 

0.9 equiv. 7.6% 81.4% 11.0% 

 

 

 

 

Figure 6.7  Expansion of 1H-NMR spectrum (400 MHz, CDCl3) of N-(4-aminobutyl) 

hexahydropyrimidine (2). 
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Figure 6.8  13C-NMR spectrum (100 MHz, CDCl3) of N-(4-aminobutyl) 

hexahydropyrimidine (2). 

 

 

 

Figure 6.9  13C-NMR DEPT spectrum (100 MHz, CDCl3) of N-(4-aminobutyl) 

hexahydropyrimidine (2). 
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δH (CDCl3) (400 MHz) 3.29 (2H, s, C(8)H2), 2.73 (2H, m C(1)H2), 2.64 (2H, m, C(7)H2), 

2.44 (1H, s, NH), 2.62 (2H, m, C(4)H2), 2.17 (2H, b, C(5)H2), 1.62 (2H, s, NH2), 1.54 (2H, 

p, C(3)H2), 1.41 (4H, m, C(2) H2, C(6)H2). 

 

δC (CDCl3) (100 MHz) 24.15 (C(6)), 26.96 (C(3)), 31.47 (C(2)), 41.72 (C(1)), 44.99 (C(7)), 

52.94 (C(4)), 55.24 (C(5)), 69.74 (C(8)). 

 

After N-(4-aminobutyl) hexahydropyrimidine (2) was obtained, the protection of the primary 

amine by using BOC (tert-Butyl carbamates) was considered.  However, BOC reacts with 

both primary (Figure 6.10) and secondary amines (Figure 6.11) of N-(4-aminobutyl) 

hexahydropyrimidine (2) and yielded a mixture of mono- and diBOC products as confirmed 

by HR-ESI-MS (Figure 6.12). 
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Figure 6.10  N-(4-Aminobutyl) hexahydropyrimidine (2) monoBOC derivative. 
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Figure 6.11  N-(4-Aminobutyl)hexahydropyrimidine (2) diBOC derivative. 

 

 

Figure 6.12  HR-ESI-MS spectrum of N-(4-aminobutyl) hexahydropyrimidine (2) with 

mono BOC on primary amine (M.W. = 257.2103, C13H27N3O2) expected m/z [M+H]+ ion = 

258.2181 (found = 258.2166) and N-(4-aminobutyl) hexahydropyrimidine (2) with diBOC 

(M.W. = 357.2627, C18H35N3O4) expected m/z [M+H]+ ion = 358.2706 (found = 358.2685). 
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Method 1 step 2  Protection of primary amine group of N-(4-aminobutyl) 

hexahydropyrimidine (2) by the method of Ganem. 

 

N-(4-Aminobutyl) hexahydropyrimidine (2) was reacted with benzaldehyde which is a 

selective protecting group for the remaining primary amine to obtain 4-(N-

benzylideneaminobutyl)hexahydropyrimidine (3) (Figure 6.13). 

 

NH N
N

 

 

Figure 6.13  4-(N-Benzylideneaminobutyl)hexahydropyrimidine (3), C15H23N3 (M.W = 

245.1892). 

 

HR-ESI-MS of 4-(N-benzylideneaminobutyl)hexahydropyrimidine (3) (Figure 6.14) shows 

the presence of an ion at m/z 246.1970 (found = 246.1945) corresponding to [M+H]+ ion of 

this compound but also apparently a large peak at m/z = 158.1657 (found = 158.1628) for 

unreacted starting material.  Another possibility is that this peak (m/z = 158.1657) arose 

from deprotection of the product when the MS solution was made up. 

 

 

Figure 6.14  HR-ESI-MS spectrum of N-(4-aminobutyl)hexahydropyrimidine (2) (M.W. = 

157.1579, C8H19N3) expected m/z [M+H]+ ion = 158.1657 (found = 158.1628) and the 

desired product of 4-(N-benzylideneaminobutyl) hexahydropyrimidine (3) (M.W. = 

245.1892, C15H23N3) expected m/z [M+H]+ ion = 246.1970 (found = 246.1945). 
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The product was examined by NMR. 

NH N
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δH (CDCl3) (400 MHz) 8.24 (H, s, C(9) H), 7.68 (2H, m, C(10)H, C(11)H), 7.37 (3H, m, 

C(12)H, C(13)H, C(14)H), 3.58 (2H, t, C(1)H2), 3.07 (2H, s C(8)H2), 2.55 (2H, t, C(7)H2), 

2.48 (2H, t, C(4)H2), 2.34 (2H, t, C(5)H2), 1.67 (2H, m, C(3)H2), 1.58 (4H, m, C(2) H2, 

C(6)H2). 

 

Dansylation method 2 (Chapter 2, page 45) was also used to investigate the purity of the 4-

(N-benzylideneaminobutyl)hexahydropyrimidine (3).  The HPLC chromatogram (Figure 

6.17) showed the main peak at Rt = 6.4 min.  HR-ESI-MS showed mainly 4-(N-

benzylideneaminobutyl)hexahydropyrimidine (3)-monoDNS derivative (Figure 6.15, HR-

ESI-MS as Figure 6.19) with a trace amount of N-(4-aminobutyl) hexahydropyrimidine (2)-

monoDNS derivative (Figure 6.16, HR-ESI-MS as Figure 6.18).  This might be evidence for 

the loss of the benzylidine group prior to MS because from the previous study N-(4-

aminobutyl) hexahydropyrimidine (2) forms the diDNS derivative.  Thus it appears that the 

primary amino group was still protected when the dansylation reaction was carried out. 
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Figure 6.15  4-(N-Benzylideneaminobutyl)hexahydropyrimidine (3)-monoDNS derivative. 
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Figure 6.16  N-(4-Aminobutyl)hexahydropyrimidine (2)-monoDNS derivative. 
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Figure 6.17  HPLC chromatogram of 4-(N-benzylideneaminobutyl)hexahydropyrimidine (3)-

monoDNS derivative.  HPLC conditions:  mobile phase is acetonitrile: Milli-Q-water (70:30), 

C8-luna column, flow rate 1 mL/min, fluorescence detector at λex = 330 nm, λem = 510 nm.  

The chromatogram shows peak 1 = 4-(N-benzylideneaminobutyl)hexahydro-pyrimidine (3)-

monoDNS derivative at Rt = 6.4 min, peak 2 = spermidine triDNS derivative at Rt = 11.0 

min. 

 

 

 

Figure 6.18  HR-ESI-MS spectrum of N-(4-aminobutyl)hexahydropyrimidine (2) –

monoDNS derivative (M.W. = 390.2089, C20H30N4O2S) expected m/z [M+H]+ ion = 

391.2168 (found = 391.2134) and dimer ion m/z [2M+H]+ ion = 781.4346 (found = 

781.4233). 

0 6 12 mins 

1 

2 
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Figure 6.19  HR-ESI-MS spectrum the desired product of 4-(N-benzylideneaminobutyl)-

hexahydropyrimidine (3)-monoDNS (M.W. = 478.2403, C27H34N4O2S) expected m/z 

[M+H]+ ion = 479.2481 (found = 479.2491) (this figure was expanded from Figure 6.18). 

 

Method 1 step 3  Michael addition of acrylonitrile 

 

N
1
-(N-Benzylidene-(1-hexahydropyrimidinebutyl)-N3-propionitrile (4) was prepared by 

Michael addition of the unprotected secondary amine of 4-(N-benzylideneaminobutyl)-

hexahydropyrimidine (3) with acrylonitrile to yield N1
-(N-benzylidene-(1-hexahydro-

pyrimidinebutyl)-N3-propionitrile (4) (Figure 6.20) (80% yield). 

N N
N

N

 

Figure 6.20:  N1
-(N-Benzylidene-(1-hexahydropyrimidinebutyl)-N3-propionitrile (4), 

C18H26N4 (M.W = 298.2157). 

 
By HR-ESI-MS spectra (Figure 6.22), the desired product was found at m/z [M+1]+ ion = 

299.2201.  However, a contamination of C11H22N4 (the possible structures shown in Figure 

6.21) was also found at m/z [M+1]+ ion = 211.1895.  Depending upon whether the 

benzylidine group was lost when the sample was prepared for MS or whether it was absent 

in the starting material. 
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Figure 6.21  C11H22N4 (M.W = 210.1844). 
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Figure 6.22  HR-ESI-MS spectra of the desired product of N1
-(N-benzylidene-(1-

hexahydropyrimidinebutyl)-N3-propionitrile (4) (M.W = 298.2157, C18H26N4), expected m/z 

[M+H]+ = 299.2235 (found = 299.2201) and a contamination product (Figure 6.26) at M.W 

= 210.1844, C11H22N4, expected m/z [M+H]+ ion = 211.1922 (found = 211.1895). 

 

Method 1 step 4  Deprotection of the amino groups 

 

Both the protection functions were removed simultaneously by heating under reflux with 2M 

HCl in methanol to yield 12-amino-4,8-diaza-dodecanenitrile (5) (Figure 6.23) which was 

confirmed by HR-ESI-MS (Figure 6.24) and the structure was confirmed by NMR (Figure 

6.25, 6.26). 
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Figure 6.23  12-Amino-4,8-diaza-dodecanenitrile (5), C10H22N4 (M.W. = 198.1844). 



 - 184 - 

 

 

Figure 6.24  HR-ESI-MS spectra of desired product 12-amino-4,8-diaza-dodecanenitrile (5), 

(M.W. = 198.1844, C10H22N4) expected m/z [M+H]+ ion = 199.1923 (found = 199.1923). 

 

 

 

 

Figure 6.25  Expansion 1H-NMR (400 MHz, CDCl3) spectra of 12-amino-4,8-diaza-

dodecanenitrile (5). 
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Figure 6.26  Expansion of 13C-NMR (100 MHz, CDCl3) spectra of 12-amino-4,8-diaza-

dodecanenitrile (5). 
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δH (CDCl3) (400 MHz) 2.88 (2H, t, C(9) H2), 2.67 (4H, m, C(5)H2, C(7)H2), 2.57 (2H, t, 

C(8)H2), 2.48 (2H, m, C(1)H2), 2.46 (2H, m, C(4)H2), 1.65 (4H, m, C(2)H2, C(6)H2), 1.44 

(2H, m, C(3)H2). 

 

δC (CDCl3) (100 MHz) 18.64, 27.34, 29.95, 31.40, 41.96, 45.05, 47.81, 48.29, 49.80, 118.71. 
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Step 5:  Thermospermine 

 

CoCl2 catalyzed reduction of the 12-amino-4,8-diaza-dodecanenitrile (5) by sodium 

borohydride yielded the desired thermospermine, 1,12-diamino-4,8-diazadodecane, (6) 

(Figure 6.27) as a yellowish oily liquid.  HR-ESI-MS (Figure 6.28) showed a major peak at 

m/z = 203.2236 corresponding to the [M+H]+ ion of spermine and thermospermine. 
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Figure 6.27  Thermospermine, C10H26N4 (M.W = 202.2157). 

 

 

 

Figure 6.28  HR-ESI-MS spectrum of desired product thermospermine, (M.W. = 202.2157, 

C10H26N4) expected m/z [M+H]+ ion = 203.2236 (found = 203.2236). 
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Method 2  Thermospermine synthesis by using phthalimide as the protecting group. 

 

The alternative method of thermospermine synthesis was done by using phthalimide as the 

protecting group (Figure 6.29). 
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Figure 6.29  Thermospermine synthesis (method 2). 

 

Method 2 step 1  N-(4-Aminobutyl)hexahydropyrimidine (2) 

 

N-(4-Aminobutyl)hexahydropyrimidine (2) was prepared by the reaction of spermidine and 

formaldehyde as in method 1 step 1. 
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Method 2 step 2  2-(N-Butylhexahydropyrimidine)isoindoline-1,3-dione 

 

N-(4-Aminobutyl)hexahydropyrimidine (2) was reacted with phthalimide which is a 

selective protecting group for the remaining primary amine to obtain the 2-(N-butyl-

hexahydropyrimidine) isoindoline-1,3-dione (7) (Figure 6.30) which was confirmed by HR-

ESI-MS (Figure 6.31) and by NMR (Figure 6.32). 

NH N
N
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Figure 6.30  2-(N-Butylhexahydropyrimidine)isoindoline-1,3-dione (7), C16H21N3O2 (M.W 

= 287.1634). 

 

δH (CDCl3) (400 MHz) 7.846 (2H, m, C(10) H, C(11)H), 7.814 (2H, m, C(9)H, C(12)H), 

4.101 (2H, s, C(8)H2), 3.703 (2H, t, C(1)H2), 3.204 (2H, t C(7)H2), 3.015 (2H, t, C(4)H2), 

2.898 (2H, t, C(5)H2), 1.912 (2H, quin, C(3)H2), 1.824 (2H, quin, C(2)H2), 1.695 (2H, quin, 

C(6) H2). 

 

 

 

Figure 6.31  HR-ESI-MS spectrum of 2-(N-butylhexahydropyrimidine)isoindoline-1,3-dione 

(7) (M.W. = 287.1634, C16H21N3O2) expected m/z [M+H]+ ion = 288.1712 (found = 

288.1719). 
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Figure 6.32  1H NMR of 2-(N-butylhexahydropyrimidine)isoindoline-1,3-dione (7). 

 

Method 2 step 3  Adding acrylonitrile to 2-(N-butylhexahydropyrimidine) isoindoline-

1,3-dione (7) 

 

2-(N1-Butylhexahydropyrimidine)-isoindoline-1,3-dione-N3-propionitrile (8) was prepared 

by Michael addition of the unprotected secondary amine of 2-(N-

butylhexahydropyrimidine)isoindoline-1,3-dione (7) by acrylonitrile (80% yield) (Figure 

6.33).  This amine was confirmed by HR-ESI-MS (Figure 6.34) and examined by NMR 

(Figure 6.35, 6.36, 6.37). 
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Figure 6.33  2-(N1-Butylhexahydropyrimidine)-isoindoline-1,3-dione-N3-propionitrile (8), 

C19H24N4O2 (M.W = 340.1899). 

 

δH (CDCl3) (400 MHz) 7.804 (2H, m, C(10) H, C(11)H), 7.691 (2H, m, C(9)H, C(12)H), 

3.659 (2H, m, C(8)H2), 3.659 (2H, t, C(1)H2), 2.863 (2H, t, C(14)H2), 2.732 (2H, m, 
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C(13)H2), 2.683 (2H, m, C(4)H2),  2.490 (4H, m, C(5)H2, C(7)H2), 1.850 (2H, quin, C(3)H2), 

1.683 (2H, quin, C(2)H2), 1.567 (2H, m, C(6) H2). 

 

 

Figure 6.34  HR-ESI-MS spectrum of 2-(N1-butylhexahydropyrimidine)-isoindoline-1,3-

dione-N3-propionitrile (8), (M.W. = 340.1899, C19H24N4O2) expected m/z [M+H]+ ion = 

341.1977 (found = 341.1971). 

 

 

Figure 6.35  1H NMR of 2-(N1-butylhexahydropyrimidine)-isoindoline-1,3-dione-N3-

propionitrile (8). 
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Figure 6.36  Expansion of 1H NMR of 2-(N1-butylhexahydropyrimidine)-isoindoline-1,3-

dione-N3-propionitrile (8). 

 

 

Figure 6.37  13C NMR of 2-(N1-butylhexahydropyrimidine)-isoindoline-1,3-dione-N3-

propionitrile (8). 
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Method 2 step 4  Deprotection of the hexahydropyrimidine ring of 2-(N1-

butylhexahydropyrimidine)-isoindoline-1,3-dione-N3-propionitrile (8) 

 

By reflux with 2 M HCl-methanol (15 mL) at 80oC for 8 h., the methylene group from 

hexahydropyrimidine ring of 2-(N1-butylhexahydropyrimidine)-isoindoline-1,3-dione-N3-

propionitrile (8) was removed to yield 12-(1,3-dioxoisoindolin-2-yl)-4,8-diaza-

dodecanenitrile (9) (Figure 6.38) (85% yield). 

 

HR-ESI-MS spectrum of 12-(1,3-dioxoisoindolin-2-yl)-4,8-diaza-dodecanenitrile (9) (M.W. 

= 328.1899, C18H24N4O2) expected m/z [M+H]+ ion = 329.1977 (found = 329.1965) and also 

found 2-(N1-butylhexahydropyrimidine)-isoindoline-1,3-dione-N3-propionitrile (8) (M.W. = 

340.1899, C19H24N4O2) expected m/z [M+H]+ ion = 341.1977 (found = 341.2005). 
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Figure 6.38  12-(1,3-Dioxoisoindolin-2-yl)-4,8-diaza-dodecanenitrile (9), C18H24N4O2 

(M.W. = 328.1899). 

 

Method 2 step 5  Removal of the phthalimide group to give 12-amino-4,8-diaza-

dodecanenitrile (5) 

 

12-(1,3-Dioxoisoindolin-2-yl)-4,8-diaza-dodecanenitrile (9) was treated with hydrazine 

monohydrate in CH2Cl2/ THF (1:1) and reflux for 4 h at 80oC to yield 12-amino-4,8-diaza-

dodecanenitrile (5) (50% yield) (Figure 6.39).  This amine was confirmed by HR-ESI-MS. 

 

HR-ESI-MS spectra of desired product 12-amino-4,8-diaza-dodecanenitrile (5), (M.W. = 

198.1844, C10H22N4) expected m/z [M+H]+ ion = 199.1923 (found = 199.1920) 
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Figure 6.39  12-Amino-4,8-diaza-dodecanenitrile (5), C10H22N4 (M.W. = 198.1844). 
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Dansylation (Chapter 2, page 45) was used to investigated 12-amino-4,8-diaza-

dodecanenitrile (5).  The HPLC chromatogram of 12-amino-4,8-diaza-dodecanenitrile (5)-

triDNS derivative was obtained (Figures 6.40 and 6.41), the derivative was eluted at 12.5 

min (HPLC conditions:  C-8 luna column, mobile phase:  acetonitrile: Milli-Q-water (70:30), 

flow rate = 1 mL/min) and confirmed by HR-ESI-MS (Figures 6.42 and 6.43). 
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Figure 6.40  12-Amino-4,8-diaza-dodecanenitrile (5)-triDNS derivative. 

 

 

 

 

 

Figure 6.41  HPLC chromatogram of 12-amino-4,8-diaza-dodecanenitrile (5)-DNS derivative.  

HPLC conditions:  mobile phase is acetonitrile: Milli-Q-water (70:30), C8-luna column, flow 

rate 1 mL/min, fluorescence detector at λex = 330 nm, λem = 510 nm.  The chromatogram shows 

peak 1 = 12-amino-4,8-diaza-dodecanenitrile (5)-diDNS derivative at Rt = 5.0 min, peak 2 = 

12-amino-4,8-diazadodecanenitrile (5)-triDNS derivative at Rt = 12.5 min. 

0 6 12 mins 

1 2 
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Figure 6.42  HR-ESI-MS spectra of 12-amino-4,8-diaza-dodecanenitrile (5)-monoDNS 

derivative (M.W. = 431.2355, C22H33N5O2S) expected m/z [M+H]+ ion = 432.2433 (found = 

432.2416) and 12-amino-4,8-diaza-dodecanenitrile (5)-diDNS derivative (M.W. = 664.2865, 

C34H44N6O4S2) expected m/z [M+H]+ ion = 665.2943 (found = 665.2920). 
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Figure 6.43  HR-ESI-MS spectra of 12-amino-4,8-diaza-dodecanenitrile (5)-triDNS 

derivative (M.W. = 897.3376, C46H55N7O6S3) expected m/z [M+H]+ ion = 898.3454 (found = 

898.3441) and doubly charged [M+2H]2+ ion = 449.6766 (found = 449.6742) (at Rt = 12.5 

min). 

 

Method 2 step 6  Thermospermine 

 

The last step is to reduce triple bond of nitrile of 12-amino-4,8-diaza-dodecanenitrile (5) to 

obtain thermospermine by using sodium borohydride.  The molecular weight of the desired 

thermospermine was confirmed by HR-ESI-MS (Figure 6.44). 
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Figure 6.44  HR-ESI-MS spectrum of desired product thermospermine, (M.W. = 202.2157, 

C10H26N4) expected m/z [M+H]+ ion = 203.2236 (found = 203.2232) and doubly charged ion 

[M+2H]2+ = 102.1156 (found = 102.1130). 

 

Method 2 alternative step 4  Alternative deprotection method for 12-amino-4,8-diaza-

dodecanenitrile (5) by simultaneous removal of phthalimide and hexahydropyrimidine 

from 2-(N1-butylhexahydropyrimidine)-isoindoline-1,3-dione-N3-propionitrile (8) 

 

2-(N1-Butylhexahydropyrimidine)-isoindoline-1,3-dione-N3-propionitrile (8) was treated 

with hydrazine monohydrate in CH2Cl2/ THF (1:1) and reflux for 4 h at 80oC to remove the 

phthalimide group to yield 3-(N1-(4-aminobutyl) hexahydropyrimidine)propanenitrile 

(Figure 6.45).  This amine was confirmed by HR-ESI-MS (Figure 6.46). 
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Figure 6.45  3-(N1-(4-Aminobutyl) hexahydropyrimidine)propanenitrile, C11H22N4 (M.W. = 

210.1844). 

 

From this MS result, it suggested that the deprotection reaction of the phthalimide group by 

hydrazine monohydrate simultaneously removed the methylene from the 

hexahydropyrimidine ring of N-(4-aminobutyl) hexahydropyrimidine (2).  This result was 

confirmed by removal of hexahydropyrimidine ring from N-(4-aminobutyl) 

hexahydropyrimidine (2) by the same method (Figure 6.47).  The HR-ESI-MS of this 

starting material, N-(4-aminobutyl) hexahydropyrimidine (2) was confirmed as M.W. of = N-

(4-aminobutyl) hexahydropyrimidine (2) = 157.1579 (C8H19N3) expected m/z [M+H]+ ion = 
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158.1657 (found = 158.1640).  The product of spermidine (1), M.W. = 145.1579 (C7H19N3) 

was confirmed by HR-ESI-MS as expected m/z [M+H]+ ion = 146.1657 (found = 146.1638) 

which was obtained from the reaction of hydrazine. 

 

 

Figure 6.46  HR-ESI-MS spectrum of 3-(N1-(4-aminobutyl) hexahydropyrimidine) 

propanenitrile (M.W. = 210.1844, C11H22N4) expected m/z [M+H]+ ion = 211.1923 (found = 

211.1924) and also found 12-amino-4,8-diaza-dodecanenitrile (5), (M.W. = 198.1844, 

C10H22N4) expected m/z [M+H]+ ion = 199.1923 (found = 199.1921). 
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Figure 6.47  Scheme of removal of hexahydropyrimidine ring from N-(4-aminobutyl) 

hexahydropyrimidine (2). 

 

Thermospermine synthesised by method 1 has a problematic step at step 2 when using 

benzaldehyde as the protecting group which the environment needed to be dry, a small 

amount of water will cleave the benzaldehyde group.  Thus, the risk of getting incomplete 

reaction started from this step.  By using phthalimide as the protecting group in method 2 

step 2, the reaction was set at milder conditions (at 20oC) and gave more yield of desired 

product.  By alternative way of remove the protecting group by method 2 step 4, the yield of 

the aminonitrile, 12-amino-4,8-diaza-dodecanenitrile (5) was increased (75% yield). 
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Spermine and Thermospermine 

 

A comparison of the NMR spectra between spermine and thermospermine was performed.  

The NMR of spermine is shown in Figures 6.48, 6.49 and 6.50 and the NMR of 

thermospermine in Figures 6.51, 6.52 and 6.53. 

 

Figure 6.48  1H NMR of spermine. 

 

Figure 6.49  1H NMR of spermine. 
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Figure 6.50  COSY of spermine. 

 

 

 

Figure 6.51  1H NMR of thermospermine. 
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Figure 6.52  1H NMR of thermospermine. 

 

 

 

 

Figure 6.53  COSY NMR of thermospermine. 
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Analysis of Thermospermine and Spermine 

 

Method 1 Analysis by HR-ESI-MS 

 

Hexahydropyrimidine derivative of spermine 

 

Dihexahydropyrimidine rings derivative of spermine, 1,4-(dihexahydropyrimidine)butane 

(11) was prepared by the reaction of spermine (10) against formaldehyde (2 equiv.) (Figure 

6.54) and the result was confirmed by HR-ESI-MS (Figure 6.55). 
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Figure 6.54  1,4-(Dihexahydropyrimidine) butane (11) synthesis. 

 

 

Figure 6.55  HR-ESI-MS spectrum of desired product 1,4-dihexahydropyrimidine-butane 

(11) (M.W. = 226.2157, C12H26N4) expected m/z [M+H]+ ion = 227.2236 (found = 227.2218) 

and doubly charged ion [M+2H]2+ = 114.1157 (found = 114.1181) also found was the 

product of incomplete reaction where spermine had been derivatized with only one 

hexahydropyrimidine ring, 1-hexahydropyrimidine-5-aza-8-aminooctane (M.W. = 214.2157, 

C11H26N4) expected m/z [M+H]+ ion = 215.2236 (found = 215.2222) 
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From this result, it is concluded that the reaction of spermine (10) with formaldehyde (2 

equiv.) was not complete so the mole ratio of formaldehyde was increased to 2.5 equiv. and 

the result was confirmed by HR-ESI-MS (Figure 6.56). 

 

 

Figure 6.56  HR-ESI-MS spectra of desired product 1,4-(dihexahydropyrimidine) butane 

(11) (M.W. = 226.2157, C12H26N4) expected m/z [M+H]+ ion = 227.2236 (found = 227.2217) 

also found was the product of incomplete reaction where spermine had been derivatized with 

only one hexahydropyrimidine ring, 1-hexahydropyrimidine-5-aza-8-aminooctane (M.W. = 

214.2157, C11H26N4) expected m/z [M+H]+ ion = 215.2236 (found = 215.2237). 

 

The mole ratio of formaldehyde was increased to 2.5 equiv., however, the m/z [M+H]+ ion = 

215.2236 was still obtained.  It is possible that this value of [M+H]+ ion at 215.2236 arose 

from hexahydropyrimidine ring of thermospermine, 1-(hexahydropyrimidine)-4-aza-

aminooctane (12), which means that thermospermine might contaminate in the commercial 

spermine. 

 

Hexahydropyrimidine derivative of thermospermine 

 

Hexahydropyrimidine ring derivative of thermospermine, 1-(hexahydropyrimidine)-4-aza-

aminooctane (12) was prepared by the reaction of thermospermine (6) against formaldehyde 

0.1 mL (2 equiv.) (Figure 6.57).  The product was confirmed by HR-ESI-MS (Figure 6.58). 
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Figure 6.57  1-(Hexahydropyrimidine)-4-aza-aminooctane (12) synthesis. 

 

 

 

Figure 6.58  HR-ESI-MS spectra of desired product 1-(hexahydropyrimidine)-4-aza-

aminooctane (12) (M.W. = 214.2157, C11H26N4) expected m/z [M+H]+ ion = 215.2236 

(found = 215.2216) and doubly charged ion [M+2H]2+ = 108.1157 (found = 108.1175) also 

the starting material of thermospermine (6), (M.W. = 202.2157, C10H26N4) expected m/z 

[M+H]+ ion = 203.2236 (found = 203.2223) and peak of N-(4-aminobutyl) 

hexahydropyrimidine (2) (M.W. = 157.1579, C8H19N3), expected m/z [M+H]+ ion = 

158.1657 (found = 158.1639). 
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From the result of HR-ESI-MS, it suggested that not all of thermospermine was converted to 

N
11-(hexahydropyrimidine)-4-aza-aminooctane (12), as the MS showed peak at [M+H]+ ion 

= 203.2236 of the starting material and also the peak of N-(4-aminobutyl) 

hexahydropyrimidine (2) at [M+H]+ ion = 158.1657, however, the peak of 1,4-

(dihexahydropyrimidine)butane (11) not found. 

 

Method 2:  Analysis by the reaction with dideuteriated formaldehyde. 

 

Spermidine 

 

The reaction of spermidine (1) with dideuteriated formaldehyde gave the desired product of 

N-(4-aminobutyl) hexahydropyrimidine dideuteriated but this reaction might give the other 

possible product (Figure 6.59), the presence of both products were confirmed by HR-ESI-

MS (Figure 6.60). 
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Figure 6.59  The products from the reaction of spermidine (1) with dideuteriated 

formaldehyde. 
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Figure 6.60  HR-ESI-MS spectra of spermidine (1) (M.W. = 145.1548, C7H15N3D2) 

expected m/z [M+H]+ ion = 146.1626 (found = 146.1636), and the peak of N-(4-aminobutyl) 

hexahydropyrimidine dideuteriate (M.W. = 159.1704, C8H17N3D2) expected m/z [M+H]+ ion 

= 160.1783 (found = 160.1774) and the peak of N-(4-(1-ine dideuteriorated)-aminobutyl)-

hexahydropyrimidine dideuteriate (M.W. = 173.1829, C9H15N3D4) expected m/z [M+H]+ ion 

= 174.1908 (found = 174.1887) 

 

The result showed the desired product of N-(4-aminobutyl) hexahydropyrimidine 

dideuteriate at m/z [M+H]+ ion = 160.1783 as the main peak and the expected peak of N-(4-

(1-ine dideuteriated)-aminobutyl)-hexahydropyrimidine dideuteriate at m/z [M+H]+ ion = 

174.1908, however, there was another peak at m/z [M+H]+ ion = 146.1626 which might be 

from the contamination of 3, 3 amine (Figure 6.61) from the commercial spermidine. 
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Figure 6.61  The reaction between spermidine and dideuteriated formaldehyde. 
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Spermine 

 

Spermine was reacted with dideuteriated formaldehyde to obtain the desired product 1,4-

dihexahydropyrimidine-2,2,2′,2′-tetradeuterio-butane (Figure 6.62) confirmed by HR-ESI-

MS (Figure 6.63).  The mole ratio of dideuteriated formaldehyde used was 2.5 equiv., 

however, the m/z [M+H]+ ion = 217.2361 was obtained.  It is possible that in the commercial 

spermine contains thermospermine which will give the same [M+H]+ ion value. 
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Figure 6.62  1,4-Dihexahydropyrimidine-2,2,2′,2′-tetradeuterio-butane (spermine-di-

2,2,2′,2′-dideuterohexahydropyrimidine). 

 

 

 

Figure 6.63  HR-ESI-MS spectra of 1,4-(dihexahydropyrimidine-2,2,2′,2′-tetradeuterio) 

butane (M.W. = 230.2408, C12H22N4D4) expected m/z [M+H]+ ion = 231.2486 (found = 

231.2472), doubly charged ion of [M+2H]2+ at 116.1282 (found = 116.1258) and also the 

trace of C11H24N4D2, M.W. = 216.2283 expected m/z [M+H]+ ion = 217.2361 (found = 

217.2371). 
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Thermospermine 

 

The reaction of thermospermine with dideuteriate formaldehyde was carried out and the 

desired product of 1-(hexahydropyrimidine dideuterio)-4-aza-aminooctane was obtained 

(Figure 6.64) which was confirmed by HR-ESI-MS (Figure 6.65).  The HR-ESI-MS showed 

the major peak of the desired product, 8-(1-hexahydropyrimidine-2,2-dideuteri)-4-aza-

aminooctane, at [M+H]+ ion = 217.2361 but also found the contamination of 1,4-

(dihexahydropyrimidine-2,2,2′,2′-tetradeuterio) butane at [M+H]+ ion = 231.2486.  Which 

indicates that thermospermine is not pure. 

 

NH N N
H

NH
2

D D

 

 

Figure 6.64  8-(1-Hexahydropyrimidine-2,2-dideuterio)-4-aza-aminooctane. 

 

 

 

Figure 6.65  HR-ESI-MS spectra of 8-(1-hexahydropyrimidine-2,2-dideuterio)-4-aza-

aminooctane (M.W. = 216.2283, C11H24N4D2) expected m/z [M+H]+ ion = 217.2361 (found 

= 217.2348) doubly charged ion [M+2H]2+ = 109.1219 (found = 109.1201) also found the 

peak of contamination of 8-(1-hexahydropyrimidine-2,2-dideuteri)-4-aza-aminooctane 

(M.W. = 230.2408, C12H22N4D4) expected m/z [M+H]+ ion = 231.2486 (found = 231.2478). 
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Method 3  By the reaction of formaldehyde: dideuteriated formaldehyde (1:1). 

 

Spermidine 

 

Formaldehyde: dideuteriated formaldehyde (1:1) solution was used to react with spermidine 

in equal mole ratio, the desired products were the mixture of N-(4-aminobutyl)hexahydro-

pyrimidine (2) and N-(4-aminobutyl) hexahydropyrimidine dideuteriate which were 

confirmed by HR-ESI-MS (Figure 6.66). 

 

 

Figure 6.66  HR-ESI-MS spectrum of N-(4-aminobutyl) hexahydropyrimidine (2) (M.W. = 

157.1579, C8H19N3) expected m/z [M+H]+ ion = 158.1657 (found = 158.1650) and N-(4-

aminobutyl) hexahydropyrimidine dideuteriate (M.W. = 159.1704, C8H17N3D2) expected m/z 

[M+H]+ ion = 160.1783 (found = 160.1777). 

 

Spermine 

 

The possible products from the reaction of spermine against formaldehyde: dideuteriated 

formaldehyde (1:1) solution (2 equiv.) was shown in Figure 6.67 and confirmed by HR-ESI-

MS (Figure 6.68). 
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Figure 6.67  The possible products from the reaction of spermine against formaldehyde: 

dideuteriated formaldehyde (1:1) solution (2 equiv.). 

 

 

Figure 6.68  HR-ESI-MS spectrum of desired product 1,4-(dihexahydropyridine)butane(11) 

(M.W. = 226.2157, C12H26N4) expected m/z [M+H]+ ion = 227.2236 (found = 227.2223), the 

product of 1-(hexahydropyrimidine)-5-aza-aminooctane (M.W. = 228.2283, C12H24N4D2) 

expected m/z [M+H]+ ion = 229.2361 (found = 229.2343) 1,4-(dihexahydropyrimidine 

tetradeuteriate) butane (M.W. = 230.2408, C12H22N4D4) expected m/z [M+H]+ ion = 

231.2486 (found = 231.2480). 

 

 

Thermospermine 

 

The possible products from the reaction of thermospermine against formaldehyde: 

dideuteriated formaldehyde (1:1) solution (2 equiv.) was shown in Figure 6.69 and 

confirmed by HR-ESI-MS (Figure 6.70). 
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Figure 6.69  The possible products from the reaction of thermospermine against 

formaldehyde: dideuteriated formaldehyde (1:1) solution (2 equiv.). 

 

 

Figure 6.70  HR-ESI-MS spectra of desired product 1-(hexahydropyrimidine)-4-aza-

aminooctane (12) (M.W. = 214.2157, C11H26N4) expected m/z [M+H]+ ion = 215.2236 

(found = 215.2225) and 1-(hexahydropyrimidine dideuteriate)-4-aza-aminooctane (M.W. = 

216.2283, C11H24N4D2) expected m/z [M+H]+ ion = 217.2361 (found = 217.2355). 

 

Method 4  By labelling the thermospermine and hexahydropyrimidine ring of 

thermospermine with dansyl chloride. Later, method 2 of dansylation was used to investigate 

these products. 

 

Spermidine 

 

N-(4-Aminobutyl) hexahydropyrimidine (2) reacts with DNS Cl to give N-(4-aminobutyl) 

hexahydropyrimidine (2)-diDNS derivative (Figure 6.71).  HPLC chromatogram of this 
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product showed shorter retention time than spermidine (1)-triDNS derivative (Figure 6.72).  

The elution of N-(4-aminobutyl) hexahydropyrimidine (2)-diDNS derivative was confirmed 

by HR-ESI-MS (Figure 6.73). 
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Figure 6.71  N-(4-Aminobutyl) hexahydropyrimidine (2)-diDNS derivative (M.W. = 

623.2599, C32H41N5O4S2) 

 

 

 

 

 

Figure 6.72  HPLC chromatogram of N-(4-aminobutyl) hexahydropyrimidine (2)-diDNS 

derivative.  HPLC conditions:  mobile phase is acetonitrile: Milli-Q-water (70:30), C8-luna 

column, flow rate 1 mL/min, fluorescence detector at λex = 330 nm, λem = 510 nm.  The 

chromatogram shows peak 1 = N-(4-aminobutyl) hexahydropyrimidine (2)-diDNS derivative 

at Rt = 7.0 min, peak 2 = spermidine-triDNS derivative at Rt = 11.5 min. 
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Figure 6.73  HR-ESI-MS spectra of N-(4-aminobutyl) hexahydropyrimidine (2)-diDNS 

derivative (M.W. = 623.2599, C32H41N5O4S2) expected m/z [M+H]+ ion = 624.2678 (found = 

624.2638) and doubly charged ion [M+2H]2+ = 312.6378 (found = 312.6346). 

 

Spermine and thermospermine 

 

Spermine and thermospermine react with DNS Cl to give the same molecular weight 

derivatives as tetraDNS derivatives (Figure 6.74) which both cannot be distinguished by HR-

ESI-MS (Figure 6.76) or by HPLC chromatogram (Figure 6.75) as they will be eluted at the 

same retention time (at 30 min, HPLC conditions:  mobile phase is acetonitrile: Milli-Q-

water (70:30), C8-luna column, flow rate 1 mL/min).  However, by the reaction with 

formaldehyde, spermine will be changed into 1,4-(dihexahydropyrimidine)butane (11) which 

reacts with only two moiety of DNS Cl while thermospermine will be changed into 1-

(hexahydropyrimidine)-4-aza-aminooctane (12) which reacts with three moiety of DNS Cl.  

Thus, by this method, spermine and thermospermine will be distinguished by HPLC. 
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(A) Spermine-tetraDNS derivative 
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(B) Thermospermine-tetraDNS derivative 

 

Figure 6.74  The tetraDNS derivatives of (A) spermine and (B) thermospermine, both have 

the same molecular formula C58H70N8O8S4, M.W. = 1134.4199. 

 

 

 

 

Figure 6.75  HPLC chromatogram of spermine-tetraDNS derivative.  HPLC conditions:  

mobile phase is acetonitrile: Milli-Q-water (70:30), C8-luna column, flow rate 1 mL/min, 

fluorescence detector at λex = 330 nm, λem = 510 nm.  The chromatogram shows peak 1 = 

spermine-tetraDNS derivative at Rt = 28.5 min. 
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Figure 6.76  HR-ESI-MS spectrum of spermine or thermospermine-tetraDNS derivative 

(M.W. = 1134.4199, C58H70N8O8S4) expected m/z [M+H]+ ion = 1135.4277 and doubly 

charged ion [M+2H]2+ = 568.2177 (found = 568.2125). 

 

When spermine reacts with formaldehyde, two possible products could be obtained.  One 

possible product contains one ring of hexahydropyrimidine and another one from the 

completed reaction which adds two methylene groups to spermine yield 1,4-

(dihexahydropyrimidine)butane (11).  The reaction of formaldehyde with thermospermine 

leads to production of 1-(hexahydropyrimidine)-4-aza-aminooctane (12).  Both one ring of 

hexahydropyrimidine of spermine and 1-(hexahydropyrimidine)-4-aza-aminooctane (12) 

react with DNS Cl reagent to yield triDNS derivatives which both have the same molecular 

weight.  Thus, HPLC chromatogram cannot differentiate these two molecules.  So it is 

necessary to get the reaction complete to obtain only one product of 1,4-

(dihexahydropyrimidine)butane (11) from the reaction of spermine against formaldehyde. 

 

1,4-(Dihexahydropyrimidine)butane (11) reacted with DNS Cl to yield 1,4-

(dihexahydropyrimidine)butane (11)-diDNS derivative (Figure 6.77).  HPLC chromatogram 

of this derivative was obtained (Figure 6.78) and confirmed the elution at Rt = 10 min by 

HR-ESI-MS (Figure 6.79). 
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Figure 6.77  1,4-(Dihexahydropyrimidine)butane (11)-diDNS derivative. 
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Figure 6.78  HPLC chromatogram of 1,4-(dihexahydropyrimidine)butane (11)-diDNS 

derivative.  HPLC conditions:  mobile phase is acetonitrile: Milli-Q-water (70:30), C8-luna 

column, flow rate 1 mL/min, fluorescence detector at λex = 330 nm, λem = 510 nm.  The 

chromatogram shows peak 1 = 1,4-(dihexahydropyrimidine)butane (11)-diDNS derivative at 

Rt = 10.0 min. 

 

By dansylation thermospermine, the peak of 1-(hexahydropyrimidine)-4-aza-aminooctane 

(12)-triDNS derivative was eluted at Rt = 18 min (HPLC condition; C-8 luna, mobile phase: 

acetonitrile: Milli-Q-water (70: 30) flow rate = 1 mL/min).  HPLC chromatogram is shown 

in Figure 6.80, the elution was confirmed by HR-ESI-MS (Figure 6.81). 
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Figure 6.79  HR-ESI-MS spectra of 1,4-(dihexahydropyrimidine)butane (11)-diDNS 

derivative (M.W. = 692.3178, C36H48N6O4S2) expected m/z [M+H]+ ion = 693.3256 (found = 

693.3256) and doubly charged ion [M+2H]2+ = 347.1667 (found = 347.1654). 

 

 

 

 

 

Figure 6.80  HPLC chromatogram of 1-(hexahydropyrimidine)-4-aza-aminooctane (12)-

triDNS derivative.  HPLC conditions:  mobile phase is acetonitrile: Milli-Q-water (70:30), 

C8-luna column, flow rate 1 mL/min, fluorescence detector at λex = 330 nm, λem = 510 nm.  

The chromatogram shows peak 1 = N-(4-aminobutyl) hexahydropyrimidine (2)-diDNS 

derivative at Rt = 7.0 min, peak 2 = 1,4-(dihexahydropyrimidine)butane (11)-diDNS 

derivative at Rt = 12.0 min, peak 3 = 1-(hexahydropyrimidine)-4-aza-aminooctane (12)-

triDNS derivative at Rt = 19.0 min. 
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Figure 6.81  HR-ESI-MS spectra of 1-(hexahydropyrimidine)-4-aza-aminooctane (12)-

triDNS derivative (M.W. = 913.3689, C47H59N7O6S3) expected m/z [M+H]+ ion = 914.3767 

and doubly charged ion [M+2H]2+ = 457.6923 (found = 457.6932). 

 

1,4-(Dihexahydropyrimidine tetradeuterio)butane was reacted with DNS Cl to obtain the 

diDNS derivative (Figure 6.82) and injected onto HPLC.  After purification by HPLC the 

identity of the homogenous product was confirmed by HR-ESI-MS (Figure 6.83). 
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Figure 6.82  1,4-(Dihexahydropyrimidine tetradeuterio)butane-diDNS derivative. 
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Figure 6.83  HR-ESI-MS spectra of 1,4-(dihexahydropyrimidine tetradeuterio)butane-

diDNS derivative (M.W. = 696.3429, C36H44N6O4S2D4) expected m/z [M+H]+ ion = 

697.3508 (found = 697.3473) and [M+Na]+ = 719.3327 (found = 719.3288). 

 

1-(Hexahydropyrimidine dideuterio)-4-aza-aminooctane was reacted with DNS Cl to obtain 

the triDNS derivative (Figure 6.84) and injected onto HPLC.  The chromatogram was 

obtained and was confirmed by HR-ESI-MS (Figure 6.85). 
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Figure 6.84  1-(Hexahydropyrimidine dideuterio)-4-aza-aminooctane–triDNS derivative. 
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Figure 6.85  HR-ESI-MS spectra of 1-(hexahydropyrimidine-2,2- dideuterio)-4-aza-

aminooctane–triDNS derivative (M.W. = 915.3814, C47H57N7O6S3D2) expected m/z [M+H]+ 

ion = 916.3892 (found = 916.3863). 

 

The analysis of spermidine, spermine and thermospermine were examined.  The reaction to 

turn these molecules into hexahydropyrimidine derivatives was proved by HR-ESI-MS.  

Moreover, in the case of spermine and thermospermine, their hexahydropyrimidine 

derivatives were separated well after labelling with the fluorophores which can be visualized 

by the different retention time from HPLC chromatograms and also the retention times were 

shorter than their original molecules (spermidine, spermine and thermospermine). 
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General conclusions 

 

The increasing interest in natural and synthetic polyamines, and investigations into their 

roles in physiological and biochemical processes, has led to a need for the development of 

simpler and more efficient methods for their quantitative and qualitative determination. 

 

The difficulties encountered in identifying and measuring the quantity of e.g. cellular 

polyamines are especially that the only reactive centres are the amine groups.  Aliphatic 

mono-, di- and polyamines do not have chemical structures that permit their investigation by 

UV spectrophotometry as they lack chromophores.  Thus, for many analytical techniques, 

the sensitivity of detection of these amines depends on derivatization reactions.  Specificity 

is also limited by the quality of the chromatographic separation procedures with these basic 

molecules. 

 

The most widely employed procedures for the detection and determination of separated 

primary and secondary amines are TLC visualised with ninhydrin reagent.  The use of 

fluorescamine as a spray reagent enables the analysis of these amines in picomole amounts.  

Other techniques include ion-exchange and ion-paired RP-HPLC combined with pre- or 

post-column derivatization and UV or fluorescence monitoring.  However, these methods 

have been replaced by more sensitive and specific techniques, pre-column derivatization 

followed by RP-HPLC separation is now the preferred method for the separation and 

quantitation of polyamines. 

 

A number of reagents have been used for the pre-chromatographic derivatization of 

polyamines.  Among many suitable reagents, 5-dimethylaminonaphthalene-1-sulfonyl 

chloride (DNS Cl), fluorescamine, 9-fluorenylmethyl carbamate (FMOC Cl) and o-

phthalaldehyde/mercaptoethanol (OPA/MCE) have been widely applied for pre- 

chromatographic derivatization of polyamines.  Many factors influence the derivatization 

procedures for amines such as the pH value of the reaction, concentration of the reagents, 

reaction temperature and reaction time. 

 

In this research, attempts have been make to optimize the derivatization methods of different 

fluorophores with respect to the time duration, temperature, pH of the reactions.  In addition, 

the HPLC mobile phase has been optimized to achieve good base-line resolution and to 

increase the sensitivity of the amine detection by RP-HPLC.  Furthermore, the studies 

investigate the chemical reaction of these fluorophores with biogenic polyamines and 
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synthetic intermediates using mass spectrometry to confirm the chemical identity of the 

derivatives. 

The ideal fluorophore reagent should react rapidly and quantitatively under mild conditions.  

The reagent should give only a single, stable derivative per amine.  The derivatives should be 

detectable with high sensitivity and the reagent itself or its degradation products should not 

interfere with the chromatographic separation. 

 

In this work, four fluorophores have been used for labelling polyamines i.e. OPA/MCE, 

fluorescamine, FMOC-Cl and DNS Cl.  The first two fluorophores are more selective 

reagents, reacting only with primary amines in contrast with the latter two acid chlorides 

which react with both primary and secondary amino groups. 

 

1,7-Diaminoheptane forms the di-derivatives of OPA/MCE while this diamine forms only a 

mono-fluorescamine derivative.  This might due to the bulky molecule of fluorescamine 

itself creating a steric hindrance to further reaction. 
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1,7-Diaminoheptane monofluorescamine derivative 

 

With these amines, two protons need to be lost from the nitrogen atom in order to create the 

closed five-membered ring which is isoindole when OPA/MCE is used and oxidised pyrrole 

when fluorescamine is used.  Thus those reagents are specific for primary amines.  

Fluorescent molecules tend to be rigid molecules with delocalized electron systems which in 
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these cases are the lone pair electrons on the nitrogen atoms that delocalize in the aromatic 

ring.  These electronic properties give these derivatives high fluorescence intensity. 

The application of OPA/MCE is more advantageous than using fluorescamine as the 

derivatives of OPA/MCE have a relatively high quantum yield in comparison with the 

derivatives of fluorescamine.  However, the derivatives formed by OPA/MCE are not very 

stable, especially polyamines containing unreacted secondary amino groups e.g. spermidine 

and spermine.  Some disadvantages of pre-column derivatization by OPA/MCE are that the 

process of derivatization needs to be more carefully controlled in the reaction conditions to 

achieve good reproducibility because of poor stability and also the difficulties in reagent 

preparation. 

 

Although the stability of both spermidine-diOPA/MCE derivatives and spermine-

diOPA/MCE derivative were low, the spermidine-diOPA/MCE derivative was more stable, 

perhaps due to the lower number of secondary amino functional groups in the molecule.  

Protecting these secondary amines of spermidine and spermine with FMOC Cl after 

OPA/MCE, enabled the molecule to be fully derivatized as spermidine-diOPA/MCE-

monoFMOC and spermine-diOPA/MCE-diFMOC. 
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The derivatization products of spermidine-diOPA/MCE-monoFMOC and spermine-

diOPA/MCE-diFMOC gave HPLC peaks with good symmetrical shape and efficient 

derivatization in terms of increased fluorescent responses and better reproducibility. 

 

The OPA/MCE method for aminoglycosides is easy and simple to perform.  The reaction 

time (10 min) is also practical, and no extraction process is needed.  The derivatives of 

aminoglycosides-OPA/MCE are more stable than those of the simple (model) aliphatic 

amines.  The HR-ESI-MS suggested that the derivative of kanamycin and OPA/MCE was 

kanamycin-triOPA/MCE instead of the expected tetra-OPA/MCE.  Furthermore, the HR-

ESI-MS analysis of the derivative peak showed neomycin-pentaOPA/MCE instead of the 

expected hexaOPA/MCE as with kanamycin-triOPA/MCE.  This might due to the steric 

effect of the two amine groups on the same 2-deoxy streptamine ring allowing only one 

molecule of OPA/MCE to react at one of the amine positions of this ring. 
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The expected kanamycin tetra-OPA/MCE 

 

Fluorescamine reacts in seconds with amines in borate buffer and unreacted reagent is 

hydrolyzed in water to yield a non-fluorescent product.  The many complicated peaks that 

are obtained by using this reagent arise from its structure which is chiral and thus, if the 

reactant also is a chiral molecule, then diastereoisomeric products often give rise to more 

than one peak by HPLC. 

 

In contrast with the selective fluorophores above, the acid chloride reagents DNS Cl and 

FMOC Cl react with both primary and secondary amines. 

 

9-Fluorenylmethyl chloroformate (FMOC-Cl) reacts rapidly only with primary and 

secondary amine groups forming stable and highly fluorescent derivatives under mild 

conditions.  The resulting carbamate derivatives exhibit high fluorescent responses and are 

stable at 20oC for several days.  The disadvantage of FMOC is that it also reacts with water, 
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to give fluorescent FMOC-OH which displays similar HPLC behaviour and may therefore 

interfere with some of the HPLC peaks of amine-FMOC derivatives.  Also, the FMOC Cl 

reagent is fluorescent and, as it is used in excess, this can distort or complicate the 

quantitative (and qualitative) analysis.  FMOC Cl gave fully derivatized amines with linear 

polyamines such as the diFMOC of 1,7-diaminoheptane. 
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Spermidine-triFMOC     Spermine-tetraFMOC 

 

The FMOC derivatization method was then applied to kanamycin, and the elution of 

kanamycin-FMOC derivatives was confirmed by HR-ESI-MS as mainly the desired 

tetrasubstituted derivative in contrast with the kanamycin-triOPA/MCE described above. 
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Compared with using OPA/MCE, kanamycin was fully labelled by FMOC Cl.  This might 

due to the reactivity of the FMOC Cl or the flexibility of the linker between the kanamycin 

nitrogen and the fluorophores.  With OPA/MCE, the amine nitrogen atom is built into the 

fluorophores in a reaction with several steps. 

 

DNS Cl reacts with primary and secondary amines with the result of full derivatization if the 

molar ratio of DNS Cl is sufficiently high (10-fold or greater excess).  DiDNS derivatives 

form for diamines such as 1,7-diaminoheptane, the triDNS derivative for spermidine, and the 

tetraDNS derivative for spermine. 
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The monoDNS derivatives of a series of simple aliphatic diamines were prepared for 

investigation of the fluorescence yield.  These monoDNS derivatives were prepared by 

reducing the mole ratio of DNS Cl (to 2-fold) to yield single derivatives. 

 

The OPA/MCE, FMOC Cl and DNS Cl analysis methods were applied to the determination 

of lipopolyamines with potential in non-viral gene therapy, polyamine conjugates such as 

N
4,N9-dioleoylspermine, neochol and also intermediate molecules which were synthesized in 

the Blagbrough research group.  By careful control of the dansylation reaction conditions, 

most of these compounds yielded only a monoDNS derivative probably due to steric 

hindrance. 

 

Within the series of fluorophores the relative fluorescence yields of mono- and multiple 

derivatized amines were determined by measurement of the fluorescent intensity versus UV 

absorption of the HPLC eluent collected from peaks of the amine-fluorophore derivatives 

(confirmed by HR-ESI-MS).  Ideally, the slope for each sample is proportional to that 

sample’s fluorescence quantum yield.  Amine-difluorophore derivatives and amine-

trifluorophore derivatives should present the same slope as amine-derivatives.  However the 

results showed that all the amine-difluorophore derivatives have similar slopes in their group 

but a lower in values than the amine-monofluorophore derivative.  For the amine-

trifluorophore derivative, the slope is even lower than the slope of the amine-difluorophore 

derivatives.  Thus, the fluorescence intensity did not increase in proportion to the number of 

fluorophores that were attached to the polyamine, so two or more fluorophores tethered in 

close proximity interfere with (quench) the fluorescence process.  However, it is possible to 

use the slope for predicting how many fluorophores are attached to a specific polyamine. 

 

Thermospermine (3.3.4), a regioisomer of spermine (3.4.3) was synthesised from spermidine 

(3.4) as the starting material.  The reaction of spermidine and formaldehyde created N-(4-

aminobutyl)hexahydropyrimidine, this step forming a six-membered ring leaves one primary 

amine unreacted with four methylene carbons from the stable hexahydropyrimidine ring. 

NH
2

N
H

NH
2

H

O

H
NH N

NH
2

+
in water

    1 h
   20oC

spermidine (3.4) N-(4-aminobutyl)hexahydropyrimidine  

 

After this step, a selective primary amine protecting groups benzaldehyde (to form an imine) 

and phthalimide were added to N-(4-aminobutyl) hexahydropyrimidine.  These two 

protecting groups were then compared. 
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4-(N-benzylideneaminobutyl)hexahydropyrimidine

in toluene, 3 h, 130oC 

2-(N-butylhexahydropyrimidine)isoindoline-1,3-dione 

 

The phthalimide protecting group was added under milder reaction conditions and gave 

a higher yield than benzaldehyde.  Acrylonitrile was added to secondary amine group 

using the same condition for both starting materials.  After that, deprotection of the 

protecting group and removal of CH2 from the hexahydropyrimidine were applied in 

one step.  The final step was reduction of the nitrile group using sodium borohydride to 

obtain the desired thermospermine (3.3.4). 

 

FMOC and dansyl derivatives of spermine (3.4.3) and thermospermine (3.3.4) were 

not separate by HPLC.  By the reaction of formaldehyde, the two isomers yield different 

products which can be separated by HPLC after labelling with any fluorophores.  By using 

dideuteriated formaldehyde to react with spermine and thermospermine, the expected 

molecular weight was confirmed by HR-ESI-MS. 
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Reaction of spermine with dideuteriated formaldehyde 
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Reaction of thermospermine with dideuteriated formaldehyde 

 

In conclusion, these studies have proven by experiment the benefits of using different 

fluorophores to label polyamines which allow them to be detected by simple isocratic HPLC 

systems.  The relative fluorescence yield of mono-, di- and tri-derivatives of different 

fluorophores showed two aspects.  Firstly, that the di- or tri-fluorophore derivatives have 

lower fluorescence yield than the mono-fluorophore derivative which means that the two (or 

more) fluorophores when tethered in close proximity interfere with (quench) the fluorescence 

process.  Secondly, that plots of fluorescence intensity and UV absorbance can used to 

predict the relative of the number of fluorophores that are bound to polyamines which also 

tell about the behaviour of the fluorophores.  In these studies, the optimum conditions of 

derivatization of polyamines by four fluorophores and optimum isocratic HPLC conditions 

were developed.  We have shown that a simple isocratic HPLC system combined with some 

chemical reaction and derivatization by fluorophores can separate the two isomers of 

spermine and thermospermine.  By reacting dideuteriated formaldehyde with spermine and 

thermospermine then directly using HR-ESI-MS is a simple alternative way of analysis to 

distinguish between these two isomers. 
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Fluorescence derivatives have long been used in the polyamines which lack chromophores in their 
molecules.  In this study, fluorescence derivatization was extended to examine partially protected 
polyamines, aminoglycosides and synthetic intermediates in the preparation of complex lipophilic 
polyamine compounds required for non-viral gene delivery investigations.  Fluorescence spectroscopy 
and poly-derivatization with a panel of extrinsic fluorophores (e.g. dansyl chloride, o-phthalaldehyde, 
9-fluorenylmethoxycarbonyl chloride and fluorescamine derivatives) will enable optimization of 
synthetic routes in with analysis of intermediates.  A variety of natural products which contain several 
amine functional groups:  2 (putrescine, cadaverine), 3 (spermidine), 4 (spermine, kanamycin), 5 
(tobramycin, paromomycin), up to 6 (neomycin) and also synthetic intermediates such as 
diphthalimido spermine, trifluoroacetate spermine, tri-Boc spermine were examined. 
 
After derivatization, the di- and polyamines were separated by the reversed-phase high performance 
liquid chromatography (RP-HPLC) on the ODS column (150 x 4 mm I.D., 5 µm) using suitable 
isocratic systems, a flow rate of 1 ml min-1 and fluorescence detection.  Where necessary, the 
contaminants, produced during the derivatization reaction, were almost eliminated by extraction steps.  
The identity of fluorescent derivatives was confirmed by liquid chromatography-mass spectrometry to 
monitor for partial derivatization of polyamino compounds. 
 
The results show that synthesis of polyamine derivatives in quantitative yield depends on the time of 
reaction, the temperature and the ratio of fluorophore reagent.  A number of model chromatographic 
separations of polyamine-fluorophores were achieved.  Linearity of derivatization was calculated for 
amines and regression coefficient ranged from 0.968 to 0.999.  The repeatability of the method was 
good.  In some cases, the derivatization reactions failed to yield the desired products due to 
incompatibility of the reaction conditions with protecting groups present in the substrate.  Relative 
quantum yields of the polyamine-fluorophores derivatives also examined to determine the effect of 
intramolecular quenching which was appeared to give less fluorescence intensity in some polyamine-
fluorophores derivatives.  This methodology will provide a useful way to analyse semi-synthetic 
analogues of those natural products which are being developed as vehicles for non-viral gene delivery. 
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The development of the innovative, nano- and biotechnologies for drug delivery, together with the use of 
natural products and their conjugates in drug discovery and as biomarkers make the application of linear 
polyamines, e.g. spermidine and spermine, and aminoglycosides (branched naturally occurring 
polyamines e.g. neomycin with 6 amines) important as pharmaceutical leads for the efficient delivery of 
biopharmaceuticals e.g. siRNA delivery and DNA delivery for gene therapy. 
 
Our continuing research on organic nano-bioparticles as vehicles for non-viral gene delivery has 
afforded a library of semi-synthetic polyamine conjugates which are efficient at DNA condensation 
and DNA delivery.  These compounds e.g. N4,N9- dioleoyl-spermine and a cholesteryl neomycin 
conjugate have been synthesized in our laboratories.  However, their quantitative analysis is 
challenging as they lack any chromophore.  In order to analyse these polyamine-containing molecules, 
fluorescence derivatization was used.  We have developed methods for poly-derivatization with a 
panel of extrinsic fluorophores (e.g. dansyl chloride, o-phthalaldehyde, 9-fluorenylmethoxycarbonyl 
chloride and fluorescamine) followed by HPLC with fluorescence and UV absorption detection.  
These methods enable optimization of synthetic routes with analysis of intermediates. 
 
Reaction and chromatographic conditions were optimized with each of the above fluorophores using a 
series of model mono- and diamines and finally applied to natural and semi-synthetic polyamines.  
Linear responses were obtained over the concentration range (0.01-1.0 mM).  The relative quantum 
yields of the polyamine-fluorophore derivatives were examined to determine the effect of 
intramolecular quenching.  This methodology will provide a useful way to analyse semi-synthetic 
analogues of these important natural products which are being developed as efficient vehicles for non-
viral gene delivery. 
 
We thank the CRN for financial support (studentship to SB). 
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Investigation of organic nano-bioparticles as vehicles for non-viral gene delivery has afforded a library 
of semi-synthetic polyamine conjugates which are efficient at DNA condensation and DNA delivery.  
We are continuing our studies with compounds containing linear polyamines, e.g. spermidine and 
spermine which are then applied to drug delivery.  However, their quantitative analysis is challenging as 
they lack any chromophore.1  In order to analyse these polyamine-containing molecules, fluorescence 
derivatization has been applied. 
 
One aim of this study was to extend fluorescence derivatization to examine partially protected 
polyamines and synthetic intermediates in the preparation of complex lipophilic polyamine conjugates 
required for non-viral gene delivery investigations. 
 
We have developed methods for poly-derivatization with a panel of extrinsic fluorophores (e.g. dansyl 
chloride,1 OPA (o-phthalaldehyde),2 FMOC (9-fluorenylmethoxycarbonyl chloride)2,3 and 
fluorescamine) followed by HPLC with both fluorescence and UV absorption detection.  The target 
analytes, e.g. natural and semi-synthetic polyamines, possess multiple amino-functions, primary and 
secondary including some which are sterically hindered.  The reaction and chromatographic 
conditions were optimized for each fluorophore using a series of model mono- and diamines and 
finally applied to the linear and branched polyamine natural product conjugates.  The methods we 
have developed enable the analytical optimization of synthetic routes.  Our results show that synthesis 
of polyamine derivatives in quantitative yield depends on the reaction conditions:  time, temperature, 
and the molar ratio of derivatization reagent to substrate amine.  The chemical structures of the 
resulting derivatives were confirmed by off-line high resolution electrospray ionization mass 
spectrometry (HR ESI-MS).  Linear responses were obtained over the concentration range (0.01-1.0 
mM).  The relative quantum yields of the polyamine-fluorophore derivatives were examined to 
determine the effect of intramolecular quenching. 
 
Off-line MS analysis of the reaction products demonstrated complete derivatization of both primary 
and secondary amino groups with dansyl and FMOC fluorescent derivatives and of primary amine 
groups for OPA and fluorescamine derivatives.  Dansyl derivatization of polyamines showed no 
apparent steric hindrance.  Under the HR ESI-MS ionization conditions used, the expected [M+H]+ 
and also the doubly charged [(M+2H)/2]++ ions were often observed with dansyl derivatives, 
presumably because this fluorophore contains basic amino groups that can be protonated easily, 
whereas FMOC derivatives gave predominantly [M+Na]+ ions.  The OPA reaction with polyamines is 
rapid, but the products have poor stability.  The derivatization of polyamines with fluorescamine gave 
multiple products (HPLC analysis).  In summary, this methodology to detect and quantify polyamines 
and their conjugates provides a useful way to analyse semi-synthetic analogues of these important 
natural products which are being developed as efficient vehicles for non-viral gene delivery and as 
anti-cancer lead compounds where quantitative analysis is important. 
 
We acknowledge the CRN for financial support (studentship to SB) and we also thank the EPSRC 
National Mass Spectrometry Centre (Swansea) for rapid and efficient HR MS analytical services. 
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2.  Koros A., Hanczko R., Jambor A., Qian Y., Perl A., Molnar-Perl I., J. Chromatogr. A, 2007, 1149, 

46-55. 
3.  Lozanov V., Petrov S., Mitev V., J. Chromatogr. A 2004, 1025, 201-208. 
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Objectives: 
The applications of linear polyamines, e.g. spermidine and spermine and branched polyamines e.g. 
aminoglycosides as the innovative biotechnologies for drug delivery are continuing researched in our 
group.  The organic nano-bioparticles as vehicles for non-viral gene delivery has afforded a library of 
semi-synthetic polyamine conjugates which are efficient at DNA condensation and DNA delivery.  
However, their quantitative analysis is challenging as they lack any chromophore1.  In order to analyse 
these polyamine-containing molecules, fluorescence derivatization was used.   
 
Methods: 
We have developed methods for poly-derivatization with a panel of extrinsic fluorophores (e.g. dansyl 
chloride2, o-phthalaldehyde, 9-fluorenylmethoxycarbonyl chloride3 and fluorescamine) followed by 
HPLC with fluorescence and UV absorption detection.  These methods enable optimization of 
synthetic routes with analysis of intermediates. Reaction and chromatographic conditions were 
optimized with each of the above fluorophores using a series of model mono- and diamines and 
finally applied to natural and semi-synthetic polyamines. The resulted derivatives were confirmed by 
off-line high resolution electrospray ionization mass spectrometry.  Linear responses were obtained 
over the concentration range (0.01-1.0 mM).  The relative quantum yields of the polyamine-
fluorophore derivatives were examined to determine the effect of intramolecular quenching.  
 
Results: 
The results show that synthesis of polyamine derivatives in quantitative yield depends on the time of 
reaction, the temperature and the ratio amount of the labels chromophore.  Protonated polyamines e.g. 
putrescine, spermidine and spermine are polycations when made the derivatization of these molecules 
with the chromophore. Off-line MS analysis of the reaction products demonstrated complete 
derivatization of both primary and secondary amino groups with dansyl and FMOC fluorescence 
derivatives and of primary amine groups for OPA and fluorescamine derivatives. Under the ionization 
condition used the derivatives showed bivalent cation [(M+2H)/2]++ in addition to monovalent ions 
(M+H)+ with Dansyl derivatives because this chromophore contain basic amino groups that can be 
protonated easily whereas FMOC derivatives gave prominent [M+Na]+ ions.  Derivatization of 
polyamines showed no apparent steric hindrance. OPA reaction is rapid but the products have poor 
stability.  The derivatization with fluorescamine gave multiple products with polyamines and chiral 
compounds due to the presence of a chiral cetre in the fluorophore 
 
Conclusions: 
This methodology will provide a useful way to analyse semi-synthetic analogues of these important 
natural products which are being developed as efficient vehicles for non-viral gene delivery. 
 
We thank the CRN for financial support (studentship to SB). 
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