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Abstract 

The 21
st
 century demand for innovation is leading towards a revolution in the way products are 

perceived. This will have a major impact on manufacturing technologies as current product 

innovation is constrained by the available manufacturing processes, which function 

independently. One of the most significant developments is the emergence of hybrid 

manufacturing technologies integrating various individual manufacturing processes. Hybrid 

processes utilise the advantages of the independent processes whilst minimising their 

weaknesses as well as extending application areas. 

Despite the fact that the drawbacks of the individual processes have been significantly reduced, 

the application of state of the art hybrid technology has always been constrained by the 

capabilities of their constituent processes either from technical limitations or production costs. 

In particular, it is virtually impossible to machine complex parts due to limited cutting tool 

accessibility. By contrast, additive manufacturing (AM) techniques completely solve the tool 

accessibility issue, but this increased flexibility and automation is achieved by compromising 

on part accuracy and surface quality. Furthermore, the shape and size of raw materials have to 

be specific for each hybrid process. More importantly, process planning methods capable of 

effectively utilising manufacturing resources for hybrid processes are highly limited. 

In this research, a hybrid process, entitled iAtractive, combining additive, subtractive and 

inspection processes is proposed. An experimental methodology has been designed and 

implemented, by which a generative reactionary process planning algorithm (GRP
2
A) and 

feature-based decision-making logic (FDL) is developed. GRP
2
A enables a complex part to be 

accurately manufactured as one complete unit in the shortest production time possible. FDL 

provides a number of manufacturing strategies, allowing existing parts to be reused and 

transformed into final parts with additional features and functionalities. A series of case studies 

have been manufactured from zero and existing parts, demonstrating the efficacy of the 

iAtractive process and the developed GRP
2
A and FDL, which are based on a manual process. 

The major contribution to knowledge is the new vision for a hybrid process, which is not 

constrained by the capability of the individual processes and raw material in terms of shape and 

size. It has been demonstrated that the hybrid process together with GRP
2
A and FDL provides 

an effective solution to flexibly and accurately manufacture complex part geometries as well as 

remanufacture existing parts. 
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1 Introduction 

1.1 Background 

Manufacturing technology has gone through a number of evolutionary developments over 

the past decades (Brecher et al., 2009). However, due to the technological constraints of 

independent manufacturing processes, it is not always feasible to produce components in 

terms of material, geometry, tolerance and strength etc. (Kolleck et al., 2011). 

Computer Numerically Controlled (CNC) machining, a subtractive process, is typically 

used for hard material machining, due to high accuracy and the relatively short production 

times achievable. Nevertheless, since a cutting tool must be carried in a spindle, there may 

be certain accessibility constraints or clashes preventing the tool from being positioned on 

the machining surface of a part. In other words, tool accessibility is a key limitation that 

determines part complexity that CNC machining processes can create. Injection moulding, 

another common process widely used, is only applicable to mass production. There costs 

increase exponentially when the number of items to be produced significantly decreases 

(Dhokia et al., 2011). 

In addition, additive manufacturing (AM) techniques, first introduced in late 1980s, 

provide the capability to automatically produce components with various part designs even 

with complex internal features (Levy et al., 2003). AM techniques share some of the 

manufacturing DNA with CNC machining technology (Gibson et al., 2009), such as using 

similar GCodes to control machine movements in the orthogonal Cartesian coordinates. 

CNC technology differs largely in that it is a subtractive rather than additive process, 

requiring a block of material that must be at least as big as the part that is to be made, 

whereas, in AM processes, parts are built layer-by-layer from zero. This layer-by-layer 

fabrication approach indicates that the shapes of cross sections of a part can be arbitrarily 

complex, up to the resolution of the process (Gibson et al., 2009). As a result, AM 

processes are not constrained in the same way, and undercuts and internal features can be 

easily produced without specific process planning (Cheah et al., 2005). Generally, the 

geometric complexity of AM processes far exceeds that of conventional manufacturing 

processes. However, a number of limitations hinder its further development, such as 

limited materials available, long production times, diminished surface quality and reduced 
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dimensional accuracy, compared to CNC machining. Moreover, the AM processes are 

designed to produce prototypes using filament, powder or liquid, which means parts are 

manufactured from zero rather than a block. This further restricts its application areas. 

In recent years, the on-going industrial trend towards energy efficiency and material 

consumption requires new technology to be developed. As a result, the concept of hybrid 

manufacturing begins to emerge (Zhu et al., 2013). A number of hybrid manufacturing 

processes have been developed, consisting of various manufacturing process in either a 

parallel or serial manner. However, all of these hybrid processes are still constrained by the 

constituent processes in terms of process capability and raw material. This is due to the 

lack of reasonable combinations of individual processes. 

Moreover and today, process planning techniques have been widely used in various 

domains of production. Generally, process planning comprises of the selection and 

sequencing of processes and operations to transform a chosen raw material into a finished 

component (Scallan, 2003). It is the act of preparing detailed work instructions to 

transform designer’s idea into a component economically and competitively (Xu et al., 

2011). Two basic methods are widely employed in process planning, which are manual and 

computer-aided process planning (CAPP). With the rapid development of computing 

technology, CAPP has been widely used in various domain of production (Li et al., 2004). 

As the pivotal link between design to end product, process planning is essential and cannot 

be omitted. However, the majority of process planning research focuses on machining 

technology (Sankar et al., 2008). Furthermore, the capabilities of the current hybrid 

processes have not been fully exploited and utilised due to the limited process planning 

approaches. 

1.2 Research Aims 

This research aims to propose a novel concept of hybrid process, which is not constrained 

by the individual processes capabilities and raw material in terms of shape and size. In 

essence it will investigate the process planning technique to enable the proposed hybrid 

process to accurately manufacture complex part geometries and reuse existing parts. The 

aims are further described with detailed objectives in sections 2.2 and 2.3, chapter 2. 
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1.3 Layout of the Thesis 

The research in this thesis has been organised into 10 chapters as illustrated in Figure 1.1. 

The first two chapters are introduction, research aims, objectives and scope. Chapter 3 

provides a comprehensive and critical review of the state-of-the-art in hybrid 

manufacturing technology, which is used to identify the research gaps and opportunities. 

Chapter 4 proposes a novel concept of a hybrid manufacturing process consisting of a 

manual process planning algorithm and decision-making logic. The requirements for such 

a hybrid process are specified followed by the development of an experimental 

methodology for realising the hybrid process production. Chapter 5 investigates a part 

manufacturing strategy for the hybrid process, establishing a number of rules, suggestions 

and criteria to be included and used in the process planning algorithm and the decision-

making logic, presented in chapters 6 and 7, respectively. In chapter 6, the process 

planning algorithm is developed, which is able to generate static and dynamic process 

plans where operations are sequenced and process parameters are determined for the 

manufacture of complex part geometries. Chapter 7 illustrates the decision-making logic, 

which provides a number of manufacturing strategies for further manufacturing given 

existing parts with various features. The process planning algorithm and decision-making 

logic are based on a manual process and although automation is desirable, it has not been 

addressed in the thesis. Chapter 8 utilises the hybrid process developed in chapters 5, 6 and 

7 to produce a number of case study parts for evaluating the process capability and 

demonstrating the process efficacy. In chapter 9, a number of research issues that have 

been raised based on the areas of investigation are discussed and suggestions for improving 

this research are provided. Finally the conclusions drawn from the research together with 

areas for potential future research are documented in chapter 10. 



 

Chapter 1 – Introduction 

 

4 

 
 

Chapter 1: Introduction

Introduction and Research Scope

Chapter 2: Research aims, 

objectives and scope

Background and Literature Review

Chapter 3: State-of-the-art in 

hybrid manufacturing 

technology

Theoretical and Experimental Research

Chapter 5: Investigation of a 

part manufacturing strategy for 

the hybrid process

Chapter 6: A generative 
reactionary process planning 

algorithm for the manufacture of 
complex part geometries

Chapter 7: Development of 

feature-based decision-making 

logic for material reuse

Chapter 8: Evaluation of the 

hybrid manufacturing process

Chapter 4: The proposed hybrid 

process and experimental 

methodology

Research Conclusions

Chapter 9: Concluding 

discussion

Chapter 10: Conclusions and 

future work

 

Figure 1.1 – A structured view of the thesis chapters 
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2 Research aims, objectives and scope 

2.1 Introduction 

This chapter defines the aims of the research together with the research objectives. The 

research boundaries are then established to specify the manufacturing processes and 

resources which are used to develop the author’s hybrid process in the context of 

manufacture of prismatic parts. Finally, the scope of the research is identified to present 

the areas of investigation from design to the development and validation of the process 

planning approach for the proposed hybrid process. 

2.2 Research Aims 

The manufacturing processes currently used are constrained by their capabilities either 

from technical limitations, such as limited materials and complex part geometries, to 

excessive production costs (Ren et al., 2010). 

AM methods provide the capability with which to produce complex geometries, for 

example, internal features, which are virtually impossible to create with any other 

manufacturing process (Cheah et al., 2005). However, a considerable number of 

limitations restrict its further development, such as limited materials available, lengthy 

production times, diminished surface quality and dimensional accuracy when compared to 

CNC machining. 

On the other hand, CNC machining technology, a subtractive process, has become one of 

the predominant methods for manufacturing industrial and consumer products. It is 

typically used for hard material machining, due to high accuracy and the relatively short 

production times achievable. Nevertheless, certain features like internal cavities are still 

difficult to produce due to limited tool accessibility (Karunakaran et al., 2010). It is also 

constrained by the available raw material in terms of shape and size. Traditionally, 

inspection has been considered as a non-value adding activity. Though, today it is seen as 

essential to control, monitor and maintain product and part quality, maintaining that the 

products are manufactured according to the specifications (Kwon et al., 2005). The 

finished parts of which the dimensions are out of tolerance are simply scrapped, resulting 

in material waste, increased costs and times. The above examples indicate each 
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manufacturing process has its own or unique advantages but also suffers problems that 

constrain its applications in certain areas. 

The main hypothesis of this research is that it is possible to both flexibly and accurately 

manufacture complex components without being constrained by the process capabilities 

and raw material. This can be achieved by adopting a hybrid manufacturing process 

together with a process planning algorithm and decision-making logic. 

The aims of this research are to explore the use of the hybrid process through combining 

additive (i.e. Fused Filament Fabrication, FFF
*
), subtractive (i.e. CNC machining) and 

inspection processes to: 

(a) Enhance the flexibility of the manufacturing processes. 

(b) Improve part accuracy. 

(c) Re-use and re-manufacture parts. 

This hybrid process will enable: 

(1) Complex to manufacture part geometries to be flexibly and accurately manufactured. 

(2) Existing parts or legacy products to be reused and further manufactured, 

transforming them into final parts. 

2.3 Research Objectives 

To achieve the aforementioned research aims, a number of objectives have been identified 

as follows: 

 Review the state of the art in hybrid manufacturing technology, additive 

manufacturing together with process planning for hybrid manufacture, identifying the 

research gaps and possible combinations of different processes for achieving the 

research aims. 

 Design an experimental methodology for determining knowledge on the hybrid 

process. The methodology defines the requirements for the proposed hybrid process 

and the overall structure of the process planning approach. 

                                                           
*
 Fused Filament Fabrication (FFF) is sometimes called Fused Deposition Modelling (FDM). 

However, the latter term is trademarked by Stratasys Inc., and cannot be used publicly without 

authorisation from Stratasys Inc. 
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 Develop the process planning approach, mentioned above, including a process 

planning algorithm and decision-making logic. This approach facilitates the 

manufacture of complex parts and the reuse of existing parts, using the hybrid process. 

The major activities involved in achieving this objective are outlined as follows: 

◊ Investigate and develop a part manufacturing strategy to produce parts using 

appropriate process parameters for the hybrid process. 

◊ Develop the process planning algorithm for the manufacture of complex part 

geometries in the least amount of time. 

◊ Develop the decision-making logic for the reuse and remanufacture of existing 

parts. 

 Evaluate the performance of the hybrid process and the feasibility of the process 

planning approach with a number of case study examples where a series of test parts 

will be manufactured by using the hybrid process and the process plans as generated 

by the process planning approach. 

2.4 Research Context and the Novelty of the Research 

The research has been undertaken within the context of manufacturing technologies where 

different manufacturing processes are integrated and interchangeably used. 

The novelty of this research lies in the capability to accurately manufacture complex parts 

and to remanufacture parts from various raw materials in terms of shape and size. 

To avoid confusion, the definitions used in this research are given as follows: 

Geometrical complexity: a prismatic part has the features (e.g. internal features) that are 

unable to be produced by using CNC machining techniques due to cutting tool 

inaccessibility. In this case, the geometry of the part is considered to be complex to 

manufacture. 

Flexibility: is defined as the ability of a manufacturing process to directly manufacture a 

complex part as one complete unit. Manufacturing subparts and assembling them together 

is not considered as flexible in this research. 



 

Chapter 2 – Research aims, objectives and scope 

 

 

 
 

8 

Accuracy: is referred to dimensional and geometric accuracy. A final part that has a high 

degree of accuracy to that of an entirely CNC machined part can be seen as accurately 

manufactured. 

Manufacture of a product from its design to manufacturing stage is usually constrained by, 

either process capability or available raw material. In this research, the novel concept of 

hybrid manufacturing is proposed, which combines additive, subtractive and inspection 

processes in a serial manner. Incorporating an additive process releases design constraints 

caused by tool accessibility in CNC machining. Using CNC machining methods the final 

part can achieve a high degree of accuracy comparable to that of an entirely CNC 

machined part. Furthermore, dimensional information of the existing parts can be obtained 

by using an inspection technique, enabling the existing part to be further manufactured by 

additive and/or subtractive processes, providing new functionality. Thus the raw material 

constraint in terms of shape and size can be eliminated. 

Table 2.1 outlines certain limitations of individual FFF and CNC processes, and compares 

them with the proposed unconstrained hybrid process. The symbol ‘√’ denotes that the 

process is able to manufacture parts with the selected constraint. 

Table 2.1 – Capability comparison of the hybrid process, individual 

FFF and CNC machining processes 

    Constraint 

 

 

Process 

Raw material constraint 
Design/manufacture 

constraint 

Filament 
Existing part 

– block 

Existing part – 

random shape 

Geometrical 

complexity 
Accuracy 

FFF √   √  

CNC  √   √ 

The hybrid 
process √ √ √ √ √ 

2.5 Research Boundaries 

A number of research boundaries have been identified within the context to allow the 

research to focus on the key issues of process planning on process integration and 

utilisation. These boundaries are illustrated in Figure 2.1, where the rectangular boxes 

represent the relevant research areas and the circle highlights the research boundaries. The 

areas within the circle are the major focus of this research, which are defined as follows: 
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Figure 2.1 – Research boundaries within the context 

2.5.1 Manufacturing process 

Today, a wide range of manufacturing processes have been used for the production of 

various types of components. Among these processes, CNC machining technology 

dominates hard material manufacture. In addition, the accuracy of CNC machined parts is 

considerably higher when compared with that of parts produced by most of the other 

manufacturing processes. AM methods are considered to be the state of the art in 

manufacturing since they provide the capability with which to produce complex 

geometries, for example, internal features, which are virtually impossible to create with 

any other single manufacturing process. 

Given that both the hardware and software of FFF is open source, flexible modifications to 

the hardware and software can be made. This allows the modified hardware configuration 

and the command codes to be well integrated in the hybrid process. Therefore, the FFF and 
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3-axis CNC milling processes have been chosen, which will provide both flexibility and 

accuracy. Inspection has also been selected as it is the bridge between CNC milling and 

FFF, and more importantly, it enables components to be manufactured from existing parts. 

2.5.2 Material 

Research relating to manufacturing techniques is a very broad area including a wide range 

of manufacturing processes as well as process planning techniques for manufacture of 

metal, plastics, composites, etc. Moreover, the manufacturing technologies for each 

material involve a large number of research themes. The FFF process has traditionally 

utilised Acrylonitrile Butadiene Styrene (ABS) and Polylactic Acid (PLA) and recently 

low melting point bespoke alloys have become available (Jones, 2013). Due to the process 

stability as well as the low coefficient of thermal expansion and glass transition 

temperature (Tg), the material used in this research was constrained to PLA as the main 

build material for demonstrating the feasibility and capability of the hybrid process. 

2.5.3 Application in manufacturing 

Typical CNC machined and FFF manufactured components include prismatic parts, 

asymmetric rotational parts and sculptured surface products etc. To focus on the research 

aims, prismatic parts with complexity and accuracy combined with the capability to reuse 

material have been selected as the main research domains. 

2.5.4 Process planning 

A plethora of research has been conducted within the process planning domain 

encompassing a wide range of topics for a number of manufacturing processes such as 

CNC machining (Xu et al., 2011) and AM processes (Kulkarni et al., 2000). Process 

planning for processes integration and utilisation has been targeted as the key enabler for 

the hybrid process to appropriately manufacture parts in terms of the processes capabilities 

and flexibility. 

2.6 Scope of Research: Areas of Investigation 

To achieve the research objectives outlined in section 2.3, the research scope is identified 

as follows: 
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2.6.1 Review of the state of the art in hybrid manufacturing 

A comprehensive state of the art review will be carried out, identifying various hybrid 

manufacturing processes currently developed together with their applications. This review 

will be utilised to identify feasible combinations of processes and the research gaps. 

2.6.2 Design of an experimental methodology for the hybrid manufacturing process 

An experimental methodology will be designed based on the research aims, literature 

review and the research gaps identified. This methodology specifies the requirements for 

the hybrid process and defines the overall structure of the process planning approach along 

with the major stages for developing the approach. 

2.6.3 Investigation of the part manufacturing strategy for the hybrid process 

Manufacturing of any type of material, by the use of different manufacturing techniques, 

requires investigation of the part manufacturing strategy including the appropriate process 

parameters. However, the process parameters for individual additive and subtractive 

processes are no longer appropriate for the hybrid process due to the process interaction 

that affects the quality of the part produced. The appropriate process parameters will be 

explored and then be used in different elements within the process planning approach, 

forming the basis for the hybrid process. 

2.6.4 Development of the process planning algorithm for the manufacture of 

complex part geometries 

Process planning techniques are enablers for effectively utilising specific manufacturing 

processes. A logical Generative Reactionary Process Planning Algorithm (GRP
2
A) will be 

developed for integrating and utilising additive, subtractive and inspection processes, 

interchangeably and sequentially. It is able to generate the process plan from a given part 

design and specify process sequences and parameters for shop floor manufacture. 

2.6.5 Investigation of the decision-making logic for material reuse 

Feature-based Decision-making Logic (FDL) will be specified, designed and implemented 

with the goal of using existing parts. This logic will provide a number of available 

manufacturing strategies for further manufacturing the given existing part depending on 

the type and dimensions of the features on the existing part and final part. By using the 
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additive and subtractive processes interchangeably, the existing part will be transformed 

into the final part within the designed tolerances. 

2.6.6 Evaluation of the hybrid process and the specific process planning approach 

A series of case studies will be used to demonstrate the hybrid process. The process 

planning approach consisting of GRP
2
A and FDL will be evaluated by manufacturing a 

series of test parts that cannot be manufactured solely by any existing individual 

manufacturing process. 

2.7 Research Methodology 

An experimental methodology will be developed and introduced in chapter 4. This 

methodology addresses the requirements for developing the proposed hybrid process, and 

defines the overall structure of GRP
2
A and FDL. Three major stages for realising GRP

2
A 

and FDL as well as achieving the research aims are also identified in the methodology. 

These three major stages are comprised of a series of experiments that are designed to 

develop and validate the concept of the hybrid process. As identified in sections 2.2 and 

2.4, the problems in this research are (1) the inability to accurately manufacture parts with 

complex part geometries; (2) the inability to manufacture parts from any given raw 

material in terms of shape and size. A number of case studies will be used to evaluate the 

feasibility of the hybrid process in terms of flexibility and accuracy, and demonstrate the 

efficacy of GRP
2
A and FDL. 
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3 State-of-the-art in hybrid manufacturing technology 

3.1 Introduction 

This chapter reviews the state-of-the-art in hybrid manufacturing technology. The current 

manufacturing processes are first classified into technologies. The research conducted over 

the past two decades regarding efforts to combine additive, subtractive, joining and 

transformative technologies are presented. The author then classifies the existing hybrid 

processes in academia and industry. A subsection related to process planning and 

particularly towards to hybrid manufacturing issue is also provided. The final part of the 

chapter provides a critique to highlight the advantages and disadvantages of each type of 

hybrid process, which is used to identify the research gaps. It should be noted that the large 

majority of the text in this chapter has been published by the author in Zhu et al. (2013). 

3.2 Existing Methods for Classifying Manufacturing Processes 

This section illustrates the classifications of manufacturing processes based on previous 

researchers’ definitions. These are used to provide the basis of the author’s categorisation 

method, forming the foundations of the review, definition and classification of hybrid 

manufacturing processes in sections 3.4 and 3.6. 

3.2.1 Existing manufacturing processes classifications 

A number of researchers have previously classified manufacturing processes, from which, 

two major classifications are widely adopted. The first, by Swift and Booker (2003), 

classifies processes into casting, cutting, forming and fabrication. The second by 

Kalpakjian and Schmid (2010) is more comprehensive, as they classify processes into six 

sub-sections with casting, machining and finishing processes similar to Swift and Booker 

(2003), but they have four further classes of joining, sheet metal, polymer processing and 

bulk deformation processes. The major difference lies in the classification of polymer 

processing methods containing AM processes which today are also applicable to metals. 

3.2.2 Classification of manufacturing processes into technologies 

Traditional classifications, such as those introduced in the previous sections, have 

difficulties when identifying newly developed manufacturing technologies. Consequently, 
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Nassehi et al. (2011) proposed a technology based classification method consisting of five 

categories, namely joining, dividing, subtractive, transformative and additive technologies. 

(i) Joining technology: consists of processes by which two or more workpieces are 

joined to form a new workpiece. Typical examples are welding and assembly. 

(ii) Dividing technology: dividing processes are the opposite of joining processes, for 

example, sawing and disassembly. 

(iii) Subtractive technology: subtractive/negative operations are material removal 

processes, by which material is removed from a single workpiece resulting in a 

new workpiece, such as machining operations (e.g. milling, water-jet cutting and 

EDM etc.). 

(iv) Transformative technology: a single workpiece is used to create another workpiece 

and the mass does not change. Forming, heat treatment and also cryogenic cooling 

are the examples of transformative processes. 

(v) Additive technology: material is added to an existing workpiece to build a new 

workpiece where the mass of the finished workpiece is greater than before. Rapid 

prototyping processes, die casting and injection moulding are the most widely used 

additive manufacturing processes. 

3.2.2.1 Additive manufacturing processes 

Today, AM largely refers to rapid prototyping or layered manufacturing (Gibson et al., 

2009). It has its origins in photo sculpture and topography that were developed in the 19
th
 

century (Cheah et al., 2005). The surge in AM methods came with the development of 

computers in the manufacturing environment. Particularly, the ever-increasing use of 

Computer Aided Design (CAD) has made the development of additive manufacturing 

possible (Chua et al., 2003). It is the use of CAD that begins the additive manufacturing 

process in all commercial applications. A part is modelled in a CAD program and then 

converted into a .STL file which converts the geometry of the CAD model into a series of 

polygons. A computer program that comes along with the AM machine then “slices” the 

model into a series of cross-sections which are subsequently built physically by the 

machine. All the AM processes have a common feature, namely parts are produced by 

adding material instead of removing material (Yan and Gu, 1996). 
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The number of different AM methods available has increased steadily since the first 

commercial machine was introduced onto the market by 3D systems in 1988 (Chua et al., 

2003). These methods process a variety of materials including polymers, metals, ceramics 

and paper. The raw materials used also come as solids (as filament, granules and powders), 

liquids and gases. However, a full review on AM processes as well as other individual 

manufacturing processes is outside the scope of this research. For the most widely used 

additive processes, the readers are referred to Table 3.1, which highlights the major 

properties of these processes. More information can be found in the book by Gibson et al. 

(2009) and the paper by Cheah et al. (2005). It is noted that die casting and injection 

moulding though traditional processes are also considered as additive processes and 

readers are referred to Amstead et al. (1987) for an overview. 

Table 3.1 – Overview of commercially available additive manufacturing methods adapted 

from (Yan and Gu, 1996; Karapatis et al., 1998; Cheah et al., 2005) 

Additive 

process 
Material 

Material 

type 

Manufacturer/ 

research centre 

Surface 

roughness 

(µm) 

Tolerance 

(mm) 

Minimum 

layer 

thickness 

(mm) 

Build 

speed 

Stereoli-

thography 

(SLA) 

Photopolymers Liquid 
3D Systems 

EOS 
12.5 ±0.125 0.05 Average 

SLS 

Thermoplastics 

Metal Alloys 

Polycarbonate 

Powders 

University of 

Texas 

DTM 

EOS 

KUL 

3D Systems 

13 ±0.25 0.1 Fast 

Three 

Dimensional 

Printing 

(3DP) 

Metals 

Elastomers 

Composites 

Ceramics 

Powders 

MIT 

Soligen 

Z Corporation 

50 ±0.127 0.050 Fast 

FDM 

Polycarbonate 

Thermoplastics 

Elastomer 

Wax 

Solid 

(filament) 
Stratasys 12.5 ±0.020 0.127 Slow 

Laminated 

Object 

Manufactur-

ing 

(LOM) 

Plastics 

Metals 

Paper 

Solid 

(sheet) 

Helisys 

SPARX 
25 ±0.25 0.050 Fast 

Multi jet 

modelling 

(MJM) 

Thermoplastics 

Wax 

Solid 

(filament) 

3D Systems 

Solidscape 
25 ±0.025 0.013 Fast 
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Two of the most popular AM research interests lie in the areas of part accuracy and 

additive process production time (i.e. build time). In these two areas, investigations of 

distortion induced dimension deviations and estimation of build time have drawn 

significant research attention. 

(I) Distortion induced dimension deviations 

The following describes state of the art research related to part distortions. Nickel et al. 

(2001) examined the effect of deposition patterns on the resulting stresses and deflections 

in the shape deposition manufacturing (SDM) process. Both finite element analysis and 

experiments show that the deposition pattern has a significant effect on the deflection of 

the manufactured part. The interaction between the process parameters and material 

properties also influence the deflection. Material properties such as dynamics of 

polymerisation related to the amount of volume shrinkage in the SLA process was 

investigated by Wiedemann et al. (1995). They further identified that the dynamics of 

polymerisation can be used to optimise hatching strategies for reducing internal stress, 

which in turn diminishes curl development of the part surface. Dalgarno (1996) carried out 

a structural analysis, modelling the curl development of the parts in the SLS process. 

Double sintering the first two layers was found to be an effective way to reduce the curling 

level. Sonmez and Hahn (1998) developed a thermo-mechanical model investigating 

temperature and stress distributions in each layer in the LOM process. A large roller 

diameter and slow roller speed are recognised as beneficial for laminate bonding, and it is 

suggested that these two factors could contribute to part warpage. Zhang and Faghri (1999) 

developed a physical model where melting a mixture of two powders with significant 

different melting points was explored. It was found that the porosity of the part contributes 

to the shrinkage, leading to distortions. The shrinkage phenomenon accelerates the melting 

process while the material is at fixed solid phase. Chin (2001) studied the thermo-

mechanical relationship between droplet columns and adjacent droplets in the SDM 

process. The established model shows that the process-induced pre-heating has noticeable 

impact on the reduction in thermal gradients and residual stresses, which consequently 

reduces distortions. Xu et al. (2004) studied the distortion deformation of the plate parts 

and developed a mechanical equivalent model of resin phase change shrinkage in the SLA 

process. Yang et al. (2002a) developed a scale factor in three dimensions to compensate 

the distortions of the SLS components caused by the material phase changes during the 
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laser sintering process. The Taguchi method was applied to maintaining dimensional 

accuracy against the changes in the build positions and part size. The accuracy was 

improved by up to 24% compared with the counterparts made by other commercial 

machines. 

Wang et al. (2007) simplified the factors that affect the part deformation phenomenon and 

therefore proposed a mathematical model where only temperature, length of cross-section 

and layer thickness were considered. By theoretically analysing the model, linear and non-

linear relations between these factors have been obtained, indicating that the changes of 

each factor significantly influence the part accuracy. Zhang and Chou (2008) developed a 

comprehensive finite element model, which is able to simulate the FDM process involving 

mechanical and thermal processes. Experiments were also conducted and the results were 

compared with the simulation results, revealing that scan speed is the most significant 

factor followed by the layer thickness. In slicing Computer Aided Design (CAD) models, 

the inconsistent layer geometry containment where all the approximated extruded square-

edged layers do not correspond to the minimum circumscribed volume results in 

systematic distortion (Chen and Feng, 2011). Chen and Feng (2011) proposed a layer 

contour generation approach, creating the minimum circumscribed extruded layered 

geometries. Along with the developed marching algorithm, which generates the boundary 

contour for each layer, the systematic distortion in AM parts can be eliminated. Yu et al. 

(2011) explored part distortions, interior quality and mechanical properties of the Laser 

Solid Forming (LSF) manufactured parts by using four deposition tool path patterns, 

namely raster, offsetin (offset from the inside to the outside), offsetout (offset from the 

outside to the inside) and fractal. Both finite element analysis and experiments show that 

the part distortions are primarily influenced by the transient temperature gradient arising 

from deposition patterns. The smallest deformation was obtained when using fractal 

pattern followed by offsetout. Vatani et al. (2012) employed the classical lamination 

theory to model mechanical properties of layers, layer shrinkage and residual stress growth 

during the SLA process by taking into consideration the heterogeneous property of the 

SLA parts. The model was then used to predict the curvature of distorted parts, identifying 

that increasing layer thickness results in decreased degree of distortion. It was also found 

that the distortion degree is proportional to part height. 
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(II) Build time estimation 

Research has been conducted on estimating build times for certain additive processes. Han 

et al. (2003) theoretically analysed the deposition parameters and identified that layer 

thickness, deposition speed and deposition road width are the major parameters that 

determine the build time for a FDM process. Pham and Wang (2000) discussed the 

interrelation between build time, roller travel speed, build height, laser scan speed, scan 

area and part volume in a selective laser sintering process. Subsequently an approximate 

build time estimation method was introduced, incorporating those key factors. In the paper 

by Kechagias et al. (2004), an algorithm for predicting build times for LOM was presented, 

in which the part volume and surface area and the flat area were taken into account. The 

prediction errors were within 7.6% of the actual build times. Instead of using an STL file 

to represent the part design, Campbell et al. (2008) proposed a build time estimator, which 

is able to predict build times for the Stereolithography process based on a 2D sketch with 

maximum 23.4% percentage of error. The build time of a part is calculated by using basic 

volumetric shapes in the drawing. Kumar and Regalla (2012) investigated the influence of 

the parameters (i.e. layer thickness, raster angle, orientation, contour width and raster 

width) on the build time and support material volume for a FDM process. The 

experimental results show that the increase of layer thickness and raster width tends to 

reduce the build time. 

3.2.2.2 Subtractive manufacturing processes 

Subtractive manufacturing processes are material removal processes which remove 

material from the surface of a workpiece by producing chips (Merchant, 2003). A large 

number of subtractive processes have been developed continuously since the 1700s and 

Figure 3.1 shows a range of subtractive manufacturing methods. Readers are referred to 

Kalpakjian and Schmid (2010) for an overview of these processes. 
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Figure 3.1 – Subtractive manufacturing processes family tree 

adapted from Kalpakjian and Schmid (2010) 

3.2.2.3 Inspection techniques 

Precision inspection has been widely used in the manufacturing domain to ensure certain 

characteristics of products are in line with the specified requirements and standards (Li and 

Gu, 2004). For regular geometric features, contact measurements i.e. coordinate-measuring 

machines (CMM) or non-contact measurements i.e. laser/optical scanner can be applied to 

examination of part accuracy and tolerances. Certain typical inspection devices are 

illustrated in Figure 3.2. However, a full review on precision inspection technology is 

outside the research scope. The inspection technology has been reviewed by Shenghua et 

al. (2000) and Li and Gu (2004), and the readers are also referred to other PhD theses 

(Bagshaw, 1999; Ali, 2005; Kumar, 2008), which review the state-of-the-art inspection 

technology. 

 
Figure 3.2 – Inspection devices adapted from Li and Gu (2004) 
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3.3 Definitions of Hybrid Processes in the Literature 

This section briefly introduces the definitions of hybrid processes and associated 

nomenclature used in literature to date, to serve as an introduction to the fundamentals of 

hybrid processes. 

It is recognised that hybrid manufacturing/processes is a vague term. Many researchers 

refer to the combination of different manufacturing processes as ‘hybrid manufacturing’ or 

‘hybrid processes’ without a precise definition (Zhu et al., 2013). 

Rajurkar et al. (1999) described ‘hybrid machining’ as a combination of two or more 

machining processes to remove material, which is still deemed to be vague. Kozak and 

Rajurkar (2000) highlighted that ‘the performance characteristics of hybrid machining 

processes must be considerably different from those that are characteristic for the 

component processes when performed separately’. Aspinwall et al. (2001) stated that the 

combination of machining operations may be considered either in terms of a hybrid 

machining method, by which two or more machining processes are applied independently 

on a single machine, or in terms of an assisted machining approach, by which two or more 

processes are utilised simultaneously. Similarly, Menzies and Koshy (2008) used ‘hybrid 

machining process’ to represent the combination of two or more machining processes with 

‘distinct mechanisms of material removal’. More recently, Curtis et al. (2009) offered a 

limited definition, stating that only a method, where two or more material removal 

processes work simultaneously, can be termed ‘hybrid’. 

An alternative methodology was proposed by Rivette et al. (2007), in which a prototype 

oriented definition was used to describe hybrid manufacturing as, ‘the prototype is 

manufactured by different processes, usually the rapid prototype process and conventional 

process’. In terms of energy consumption, Klocke et al. (2010) and Nau et al. (2011) view 

hybrid processes as an approach where ‘different forms of energy or forms of energy 

caused in different ways respectively are used at the same time at the same zone of impact’. 

Lauwers et al. (2010) stated that ‘hybrid’ could mean ‘a combination of processes having a 

large influence on the process characteristics’, which means hybrid processes combine 

active principles. Typical examples are laser assisted turning/milling (Dandekar et al., 

2010) and laser assisted water-jet cutting (Molian et al., 2008). Moreover, Lauwers et al. 

(2010) and Klocke et al. (2011) also define it as ‘the combination of effects that are 
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conventionally caused by separated processes in one single process at the same time’. In 

addition, Lauwers et al. (2010) then extended the definition, stating that ‘processes should 

be created resulting in one or more significant process effects such as large force 

reductions’. Based on that, cutting through the use of high pressure coolants is also 

identified as a hybrid process due to a change in the chip formation (Lauwers et al., 2010). 

CIRP, namely the International Academy for Production Engineering (CIRP, 2011), 

suggested three definitions to define hybrid processes, which are: 

i) Integrated application or combination of different physical active principles e.g. 

laser assisted machining (Dandekar et al., 2010); 

ii) Integrated combination of usually separated performed process steps e.g. stretch 

forming and incremental sheet metal forming (Araghi et al., 2009); 

iii) Integrated machines, so called hybrid machines, that can perform different 

processes at one place e.g. mechanical milling and turning (She and Hung, 2008). 

In 2010, CIRP refined these definitions and proposed an open definition and a narrow 

definition (CIRP, 2011): 

i) Open definition: a hybrid manufacturing process combines two or more 

established manufacturing processes into a new combined set-up whereby the 

advantages of each discrete process can be exploited synergistically; 

ii) Narrow definition: Hybrid processes comprise a simultaneous acting of different 

(chemical, physical, controlled) processing principles on the same processing zone. 

In addition to this, products that have a hybrid structure or hybrid function (e.g. metal 

plastic composite components) are seen as hybrid products (Roderburg et al., 2011) or 

hybrid components (Holtkamp et al., 2010). 

3.4 Major Research Areas of Hybrid Manufacturing Processes 

The author has classified and defined the research of hybrid manufacturing processes into 

seven investigation areas. Each of these research areas deals with different combinations of 

manufacturing operations in five manufacturing categories as presented in section 3.2.2. 

The first three headings relate to the combinations of processes from the same category, 
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with the aim of enhancing process capabilities, such as material removal, tool wear and 

surface quality. The four subsequent headings focus on combining processes from different 

manufacturing categories in order to extend application areas in terms of materials and part 

geometry. A list of subsections is given below: 

- Hybrid subtractive manufacturing processes (3.4.1) 

- Hybrid transformative manufacturing processes (3.4.2) 

- Hybrid additive manufacturing processes (3.4.3) 

- Hybrid additive & subtractive manufacturing processes (3.4.4) 

- Hybrid joining & subtractive manufacturing processes (3.4.5) 

- Hybrid additive & transformative manufacturing processes (3.4.6) 

- Hybrid subtractive & transformative manufacturing processes (3.4.7) 

3.4.1 Hybrid subtractive manufacturing processes 

A significant number of papers have reported the development of hybrid processes for 

integrating different machining methods as described below. These hybrid processes 

typically aim to achieve higher performance, in terms of MRR, surface integrity and tool 

wear. 

3.4.1.1 Mechanical machining and Electrochemical Machining (ECM) 

A few studies have been reported on applying electrochemical and mechanical machining 

(finishing processes) simultaneously, in which case material is removed mainly by 

chemical dissolve dissolution. Komanduri et al. (1997) reviewed chemical mechanical 

polishing processes and showed its effectiveness for polishing of semiconductors. Lee and 

Jeong (2009) conducted experiments for polishing workpieces made of copper, in which 

the copper ion is dissolved electrochemically in an electrolyte and followed by mechanical 

polishing on a single machine. However, the electrolyte contamination was unavoidable. 

Zhu et al. (2011) investigated the mechanical-electrochemical machining of small holes by 

ECM and grinding. Electrochemical machining is also used in the in-process machining of 

grinding wheels. Lim et al. (2002a) and Fathima et al. (2007) studied the mechanisms of 

dressing and grinding operations. The retrofitted grinding machine they developed consists 

of a metal-bonded grinding wheel and a dressing unit which utilises the effects of 

electrochemical machining processes for the in-process dressing of the wheel, as depicted 

in Figure 3.3. 
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Figure 3.3 – Schematic illustration of the hybrid grinding and 

ECM process (Lim et al., 2002a) 

3.4.1.2 Mechanical machining and EDM 

The application of mechanical machining and EDM has enabled the exploration of 

machining micro features in hard and brittle materials. Aspinwall et al. (2001) combined 

EDM and high speed milling (HSM) by mounting a graphite electrode on the spindle of the 

HSM centre to machine nickel-based alloys. An attempt has been made by Lim et al. 

(2002b) to machine components with microstructures by turning and micro-EDM, where 

turning was used for fast preparation of the thin tool electrode on-machine as demonstrated 

in Figure 3.4. The micro-EDM process was used to machine micro-components by using 

the turned shaft. 

 

Figure 3.4 – Turning-micro-EDM process (Lim et al., 2002b) 

Kozak et al. (2003) replaced a graphite and brass grinder with a metal-bonded grinding 

wheel in the electro discharge grinding process for rough machining, where the synergistic 
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interactive effect of the combination of conventional and electro discharge grinding 

realised a higher material removal rate (Kozak and Oczos, 2001). Similarly, Menzies and 

Koshy (2008), modified a wire-EDM process in which the original wire was replaced by a 

fixed wire with a number of electrically non-conductive abrasives, as shown in Figure 3.5 

(a). Therefore, the workpiece was machined by spark erosion, which is the inherent 

mechanism of the wire-EDM process. Moreover, the abrasives abraded the workpiece, as 

illustrated in Figure 3.5 (b). This process is able to significantly increase MRR by up to an 

order of magnitude and generate surfaces with minimal recast material, in comparison to 

an equivalent wire EDM process. However, it can only be used for roughing operations 

given that the force due to abrasion would negatively influence machining accuracy. 

   
(a)                                                                  (b) 

Figure 3.5 – Abrasive wire-EDM process (Menzies and Koshy, 2008) 

3.4.1.3 Mechanical machining and laser cutting 

As laser cutting provides high precision and zero tool wear, the resulting combination of 

mechanical machining and laser cutting dramatically reduces tool wear, leading to 

increased accuracy. 

In industry, the most wide-spread application of this technology is the use of mechanical 

machining centres integrated with laser processing units (DMG, 2011). 

In the academic literature, more variations of this technology have been identified and are 

recognised below. A high speed milling machine equipped with an Neodymium-doped 

Yttrium Aluminium Garnet (Nd: YAG) laser source has been developed by Quintana et al 

(2009), which is capable of producing micro metallic components. Li et al. (2005a) 

reported a 100% increase in MRR compared to pure laser milling, while simultaneously 

applying a high speed abrasive jet to the laser melted pool for removing the molten 

metallic material in-situ, as illustrated in Figure 3.6. 
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Figure 3.6 – Grit blast assisted laser milling of metallic alloys (Li et al., 2005a) 

Instead of using a laser simultaneously, Okasha et al. (2010) used a sequential laser and 

mechanical drill for the micro-drilling of Inconel
®
 718. Similarly, Biermann and Heilmann 

(2011) used a laser to pre-drill a pilot hole, followed by single-lip deep hole mechanical 

drilling on non-planar surfaces. The reduction of burr size and the increased tool life were 

found, by using either of these two hybrid processes. 

3.4.1.4 Laser cutting and EDM 

Laser cutting and EDM research concentrates on micro-machining applications for 

reducing production time and eliminating the recast and heat affected zone caused by laser 

ablation. Li et al. (2006) used a sequential laser and EDM for the micro-drilling of a fuel 

injection nozzle with a diameter of 137-140μm. Kim et al. (2010) applied laser cutting for 

rough machining of grooves and subsequently, micro-EDM was employed to finish 

machine the parts, therefore significantly reducing the tool wear of the electrode. 

3.4.1.5 Laser cutting and ECM 

This is a method that uses laser drilling with an electrochemical dissolution, which has 

been investigated to improve the quality of drilled holes in terms of recast layer, spatter 

and heat affected zones (Li and Achara, 2004). A jet electrolyte was aligned coaxially with 

the laser beam, where the material was removed mainly by the laser with the recast layer 

and spatter being dramatically reduced by the effect of ECM jet simultaneously (Zhang et 

al., 2009a). 
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3.4.1.6 EDM and ECM 

The electrochemical discharge machining (ECDM) process, which combines ECM and 

EDM on a single platform, has been studied since the 1970s (Cook et al., 1973; Tsuchiya 

et al., 1985; Chikamori, 1991). Electrical discharges between the cathodic electrode and 

the anodic workpiece occurs, whilst the electrochemical dissolves the workpiece (Chak 

and Rao, 2007). Bhattacharyya et al. (1999) and Schopf et al. (2001) successfully utilised 

an ECDM process in trueing and dressing of metal bonded diamond grinding wheels/tools. 

3.4.1.7 Turn-mill, mill-grind 

Turn-mill machine tools incorporate both a spindle for milling operations and a spindle for 

turning operations, and have been on the market for a considerable number of years (She 

and Hung, 2008). These types of machines have led to other combinations, namely mill-

grind, turn-grind and turn-hone machining centres (MAG, 2010; Mazak, 2011). 

3.4.1.8 Ultrasonic assisted mechanical machining 

Ultrasonic assisted mechanical machining is not a new hybrid process and has been known 

for over 50 years (Colwell, 1956). It is the simultaneous application of mechanical 

machining by spindle rotation, and ultrasonic vibration by a high frequency axial ultrasonic 

oscillation of the cutting tool or workpiece (Markov and Neppiras, 1966). 

(I) Ultrasonic assisted grinding 

A large proportion of ultrasonic assisted mechanical machining research lies in ultrasonic 

assisted grinding, aimed at achieving better surface integrity of ground surfaces. Uhlmann 

and Hübert (2007) applied the superposition method to combine a grinding operation with 

a secondary oscillation, by which the oscillation of the grinding tool was excited by 

piezoelectric oscillators. The tool was vibrating in a vertical direction while it was cutting 

material horizontally as shown in Figure 3.7. 
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Figure 3.7 – Schematic illustration of ultrasonic assisted grinding 

(Uhlmann and Hübert, 2007) 

However, in the experiments by Yanyan et al. (2009), the ultrasonic vibration actuator was 

adhered to the workpiece instead of the diamond grinding tool, which led to the 

oscillations of the workpiece. With vibration assistance, tool wear can be reduced and 

Lauwers et al. (2008) further developed a tool path generation algorithm for machining of 

ceramic components, obtaining better surface quality. Brecher et al. (2010b) suggested a 

new way to design vibrating components which aims to increase MRR. From the aspect of 

rotary grinding, Ya et al. (2002) built a model for analysing MRR in ultrasonic assisted 

rotary grinding. Li et al. (2005b) designed a series of experiments to drill holes on ceramic 

matrix composite panels. 

(II) Ultrasonic assisted turning 

In the turning of hardened steel, Klocke et al. (2009) used a monocrystalline diamond tool 

with superimposed ultrasonic linear vibration to machine moulds for optical replication. 

Zhong and Lin (2006) mounted an ultrasonic vibration rig onto a CNC machine tool for the 

turning of aluminium based metal matrix composite workpieces. Jamshidi and Nategh 

(2013) developed an analytical model for predicting the normal and friction forces acting 

on the rack face in ultrasonic-vibration assisted turning. The predicted results have also 

been verified in the experiments, which reveal that both the tool-chip contact length and 

the normal stress acting on the tool-chip interface exponentially reduce when increasing 

cutting speed. 
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(III) Ultrasonic assisted drilling 

The shortcomings of conventional mechanical drilling gradually emerge in the drilling of 

deep and micro holes in hard materials, in particular in the aerospace industry. By 

continuous frequency vibration of cutting tools during drilling operations, the quality of the 

deep micro-holes can be significantly improved. Azarhoushang and Akbari (2007) 

developed a drilling tool with high frequency and low amplitude ultrasonic oscillation for 

the drilling of Inconel
®
 738-LC, which showed a noticeable improvement in terms of 

average surface roughness and circularity, but, Liao et al. (2007) argued that the vibration 

amplitude of more than 12 µm is likely to result in negative effects, such as reducing tool 

life. Heisel et al. (2008) and Potthast et al. (2008) designed a piezoelectric actuator and a 

piezoelectric transducer, which was used for deep hole drilling of electrolytic copper. This 

indicated a decrease in feed force and drilling torque when compared to gun drilling. 

Although ultrasonic assistance provides superiority, there are a number of drawbacks. For 

instance, due to the higher tool tip temperature and variations in ultrasonic assisted drilling, 

Pujana et al. (2009) monitored feed force, chip formation and temperature in the drilling of 

Ti6Al4V, revealing that ultrasonic assistance offered lower feed force and higher process 

temperatures as compared with conventional drilling. It was also found that higher force 

reductions and higher temperature increments when increasing vibration amplitude. Due to 

high temperature that is likely to be detrimental to surface finish, Pujana et al. (2009) 

argued that the heat generation mechanism needed further study. Sadek et al. (2013) 

conducted a series of experiments based on a full factorial design to compare vibration-

assisted drilling with conventional drilling in terms of cutting temperature, axial force and 

surface roughness. It was found that the cutting temperature and axial force were reduced 

by 50% and 40%, respectively. The feed was shown to be the main parameter controlling 

the tool temperature. The surface roughness of the vibration-assisted drilled holes does not 

show significant improvement. However, it was deteriorated by up to 200% while using 

the highest rotational speed together with the highest axial speed ratio. 

3.4.1.9 Ultrasonic assisted EDM 

The combination of USM and EDM has the potential to reduce tool wear and electrode 

deflection in EDM of micro-holes and grooves. In the paper by Jia et al. (1997), the 

mechanical signal was generated and transmitted to the tool-electrode, which was applied 

to remove material. On the other hand, Jahan et al. (2010) attempted to drill micro-holes, 
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where the tungsten carbide workpiece was being vibrated while the EDM process was 

carried out. Other studies employing similar configurations have been reported by Yeo and 

Tan (1999), Zhao et al. (2002), Huang et al. (2003), Sundaram et al. (2008) and Yu et al. 

(2009) for producing high aspect ratio of micro-holes on steel, stainless steel, titanium 

alloy and nitinol workpieces, respectively. 

3.4.1.10 EDM and etching 

A novel approach, combining wire electric discharge machining (WEDM) and anodic 

etching into a single process for slicing/cutting of silicon ingots into wafers has been 

developed by Wang et al. (Wang et al., 2009; Wang et al., 2011). Silicon ingots are sliced 

by using WEDM and chemical etching simultaneously. However, the surface roughness of 

5µm is considered to be unsatisfactory. Fonda et al. (2013) proposed a hybrid fabrication 

process consisting of EDM and chemical etching for producing 3D hemispherical mould 

features. An EDM process is first used to rough machine the hemispherical mould 

followed by wet isotropic etching that is conducted using HNA liquid (HF/nitric/acetic 

acids) to obtain a smooth and highly axisymmetric mould. Nevertheless, it was found that, 

applying HNA etching to the EDM machined surface leads to degradation of the geometric 

accuracy. This may be attributed to over-etching of the EDM finished surfaces. It has also 

been identified that it is not beneficial from using this hybrid process. This is because the 

surface machined by the individual micro-milling process has shown higher geometric 

accuracy than that of the surface manufactured by the hybrid process. 

3.4.2 Hybrid transformative manufacturing processes 

This section is concerned with the processes combined within the transformative 

manufacturing operations category such as sheet metal forming (Emmens et al., 2010) and 

laser heat treatment (Zhang et al., 2009b). 

3.4.2.1 Sheet metal forming processes 

Each sheet metal forming process has its specific application in terms of the features 

formed (Micari et al., 2007). The combination of different forming processes enables a 

part to be produced with various features. Araghi et al. (2009) and Galdos et al. (2010) 

first employed the stretch forming process for pre-forming rough shapes. An asymmetric 
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incremental sheet forming (AISF) process was subsequently carried out to produce the 

final parts, as shown in Figure 3.8. 

 

         (a) machine set up                  (b) stretch forming                           (c) AISF 

Figure 3.8 – Combination of AISF and stretch forming (Araghi et al., 2009) 

3.4.2.2 Laser heat treatment and sheet metal forming 

The heat energy provided by a laser beam has been found to be effective for changing the 

microstructure and mechanical properties of the irradiated workpieces, facilitating the 

following metal forming process. Duflou et al. (2007) utilised a laser to heat the underside 

of the sheet for increasing formability in the single point incremental forming process 

(Duflou et al., 2008). Alternatively, Biermann et al. (2009) used a laser beam to heat the 

workpiece in front of the forming tool to assist the forming process. In addition, Shen et al. 

(2006) developed a model to predict the bending angle in laser assisted incremental 

forming. A deep drawing process with laser assistance has been investigated by Schuocker 

et al. (1999) and Kratky et al. (2004). Before the drawing operation takes place, laser 

energy is used to selectively heat the material near the drawing edge, which is able to 

reduce the drawing force (Schuocker, 2001), reduce forming steps and produce deeper 

features than that of conventional deep drawing (Geiger et al., 2004). 

3.4.3 Hybrid additive manufacturing processes 

The majority of additive manufacturing processes (Bingham et al., 2007) can also be 

considered as layered manufacturing (Levy et al., 2003) and in recent years laser cladding 

(Onwubolu et al., 2007) and arc welding deposition (Jandric et al., 2004) have received 

significant attention, especially for hybrid process research. 

3.4.3.1 Melting deposited material 

In general, there are two methods for material deposition i.e. deposit material (usually 

powders) and then melt them, or directly deposit melted material. In this type of hybrid 
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additive process, powders are pre-placed on workpiece surfaces waiting to be melted and 

bonded. Two different additive processes – one as a major heat contributor and another one 

as an additional heat energy – are applied to build the part, improving the corrosion, wear 

resistance as well as tensile strength of the workpiece. Ono et al. (2002) used a Nd:YAG 

laser beam as the major contributor to the welding process and an arc welding electrode 

was located behind the laser radiation point to increase the temperature, whereas, Zhang et 

al. (2006) and Qian et al. (2006) used a laser beam to act as an assistant tool rather than the 

plasma arc, as shown in Figure 3.9. Moreover, there are another two hybrid laser-arc 

welding processes with similar configurations and functions, which are (i) hybrid CO2 

laser – GMAW (MIG)
†
 process (Campana et al., 2007; Casalino, 2007; Bang et al., 2010) 

and (ii) hybrid Nd: YAG laser – GTAW (TIG)
‡
 process (Liu et al., 2004; Song et al., 

2006). 

 

Figure 3.9 – Schematic representation of a hybrid additive process (Zhang et al., 2006) 

3.4.3.2 Deposition of melted material 

This type of hybrid additive processes is a synergistic process able to build a part 

consisting of multi-materials by depositing a binder/powder mixture (i.e. one extrusion 

head), or by means of the depositing different materials alternatively (i.e. multiple 

extrusion heads). 

(I) Mixed material deposition 

Fessler et al. (1997) fabricated an injection moulding tool comprised of functional gradient 

materials, namely nickel iron alloy, stainless steel and copper, showing that the mixed 

material provides material properties intermediate to those of the constituent feed powders. 

                                                           
†
 GMAW – Gas Metal Arc Welding, MIG – Metal Inert Gas 

‡
 GTAW – Gas Tungsten Arc Welding, TIG – Gas Tungsten Arc 
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(II) Multi-material deposition 

Allahverdi et al. (2000) installed two additive heads on a single machine, where two 

materials were extruded for the deposition of ceramic microstructures (Gasdaska et al., 

1998). Jafari et al. (2000) and Safari et al. (2000) further investigated this process enabling 

up to four different materials to be deposited in a single deposition step with arbitrary 

geometry. As shown in Figure 3.10, the deposition unit has one deposition head with four 

liquefiers and each liquefier is able to deposit one material. 

     

Figure 3.10 – Deposition units for multi-material deposition (Jafari et al., 2000) 

A freeform fabrication method developed by Malone et al. (2004) and Malone and Lipson 

(2006) uses two separate deposition tools for fabrication of 3D functional assemblies with 

embedded conductive wiring, power sources and actuators. Other examples of 

simultaneously using multiple deposition tools are: Hayes et al. (1998) investigated a 

micro-jet printing process for polymer and solder deposition for chip-scale packaging (CSP) 

in microelectronics manufacturing; Fuller et al. (2002) employed multiple ink-jet 

deposition heads mounted on a computer-controlled 3-axis gantry to continuously squeeze 

nano-particles to additively build micro electromechanical systems and electrical circuitry. 

3.4.4 Hybrid additive and subtractive manufacturing processes 

Generally, hybrid additive and subtractive manufacturing processes methods use an 

additive process to build a near-net shape which will be subsequently machined to its final 

shape with desired accuracy by a subtractive process. 

3.4.4.1 Laser cladding and mechanical machining 

Certain research activities were carried out to retrofit traditional milling machines with a 

laser cladding unit, which aimed to utilise the flexibility of laser cladding operations and 
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higher surface finishes provided by milling operations, and further reduce set-up time. Jeng 

and Lin (2001) fabricated metal and alloy injection moulds by conducting laser cladding 

and milling operations in series. Choi et al. (2001) claimed that a reliable mechanical 

connection between layers was formed. Hur et al. (2002) used a five-axis CNC machine 

performing drilling, milling and grinding to machine laser cladded parts. Nowotny et al. 

(2010) further claimed that this technology has the potential to produce components for gas 

turbines due to high hardness and accuracy. Liou et al. (2001) and Zhang and Liou (2004) 

incorporated a laser cladding unit with a five-axis milling machine as illustrated in Figure 

3.11, where any deposition feature can be built in the horizontal direction by rotating the 

workstation. Thus, the need for supporting material during the deposition is eliminated, 

further reducing build time (Ruan et al., 2005). A process planning system has also been 

developed, which is able to generate non-uniform layer thickness and group operations 

(Liou et al., 2007). However, the system is not able to identify the most appropriate 

operation sequence in terms of production time. 

 

Figure 3.11 – Five-axis milling machine equipped with a laser 

cladding unit (Zhang and Liou, 2004) 
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3.4.4.2 Arc welding and mechanical machining 

The principle of this type of hybrid process is similar to laser cladding & mechanical 

machining, but replaces laser cladding with arc welding. An example by Song and Park 

(2006) utilised two GMAW guns for deposition of different materials, and CNC milling to 

fabricate injection mould inserts. Karunakaran et al. (2004), and Suryakumar et al. (2011) 

used face milling to individually machine each slice built by MIG and metal active gas 

(MAG) welding. The retrofitted machine is shown in Figure 3.12. 

Arc welding 
torch

Mill 
cutter

 

Figure 3.12 – The milling head and the welding torches: (left) front view; (right) side view 

adapted from Karunakaran et al. (2010) 

However, there is no robust process planning approach developed. The hybrid process just 

deposits one layer followed by a face milling operation. Further layers are deposited and 

machined until the entire part is produced. Therefore, Karunakaran et al. (2008) argued 

that the need to face mill each layer is the major barrier for reducing production time. 

Furthermore, Karunakaran et al. (2009) pointed out that the tools fabricated by this hybrid 

process might be inferior to their conventional counterparts in composition and tool life. 

Xiong et al. (2009) studied the mechanism of plasma arc deposition and integrated the 

plasma torch on a milling machine for manufacturing double helix impeller. 

3.4.4.3 Shape Deposition Manufacturing and mechanical machining 

SDM has been synonymous with Stanford University from the first development phases 

introduced by Merz et al. (1994) through to their continued work (Pinilla and Prinz, 2003; 

Dollar and Howe, 2006). SDM deposits molten material from a container and the material 

solidifies almost immediately. Cooper et al. (1999) applied SDM by dropping to build the 
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near-net shape of a part, which were then cured and finally shaped into the final 

dimensions by milling. The SDM and machining cycle is illustrated in Figure 3.13. 

Lanzetta and Cutkosky (2008) utilised the combination of SDM and milling to build 

smooth and sculpted 3D contours of dry adhesives which could be used to aid human and 

robotic climbing. 

 

Figure 3.13 – The working procedures of shape deposition manufacturing and 

machining (Lanzetta and Cutkosky, 2008) 

3.4.4.4 Electroforming and polishing 

Electroforming is a variation of the electroplating process, but with moderate surface 

quality due to the presence of pinholes and nodules on the coating surfaces. In order to 

eliminate this drawback, Zhu et al. (2006) employed abrasive polishing operations for 

removing pinholes and nodules by the movement of the spherical ceramic particles filling 

in the space between the cathode mandrel and the anode. 

3.4.4.5 Injection moulding and milling 

Kelkar et al. (2005) developed a re-configurable moulding process where a part surface is 

approximated using an array of discrete and movable pins so as to generate the part mould 

cavity. By re-positioning the pins, a new mould cavity can be generated according to the 

change of product design, as shown in Figure 3.14. Furthermore, Kelkar and Koc (2008) 
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incorporated re-configurable mould tooling and multi-axis machining. After a part is 

moulded, multi-axis machining was conducted to improve the surface accuracy of the part. 

 

Figure 3.14 – Reconfigurable mould cavity (Kelkar and Koc, 2008) 

3.4.5 Hybrid joining and subtractive manufacturing processes 

This section reports on the platforms capable of performing joining and milling operations 

in series. Taylor et al. (2001) developed a method which combines CNC milling and 

solvent welding technology, by which a number of the solvent weldable thermoplastic 

sheets were welded and machined in sequence. By contrast, Kuo et al. (2002) developed a 

single platform, which combines a micro-EDM mechanism for the micromachining of the 

metallic parts and Nd:YAG laser welding performing the micro-assembly of parts 

machined, as shown in Figure 3.15. Further machining operations can be implemented 

after assembly if needed. However, Kuo et al. (2003) revealed that the cumulative errors 

were likely to increase during the entire hybrid process. 

 

Figure 3.15 – Schematic diagram of the integrated micro-EDM and laser welding 

workstation (Kuo et al., 2002) 
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3.4.6 Hybrid additive and transformative manufacturing processes 

A small amount of research has focussed on the investigation of effectively applying 

additive and transformative processes together. Lucchetta and Baesso (2007) tested the 

feasibility of performing injection moulding and sheet metal forming processes. Sheet 

metal was inserted between the open halves of a mould, and was bent to form the desired 

shape while closing the mould cavity. The molten polymer material was subsequently 

injected into the remaining cavity with adhesion taking place between the metal and the 

polymer (Bariani et al., 2007; Baesso and Lucchetta, 2007). Yasa et al. (2011) used 

selective laser melting (SLM) to build 2D layers and after building each layer, the same 

laser source was applied to heat the solidified layer as a laser erosion process, showing 

significant improvement in surface quality in comparison to individual SLM. 

3.4.7 Hybrid subtractive and transformative manufacturing processes 

In this category, most of the transformative processes e.g. laser heating are used as an 

assistant tool to provide better machining conditions for mechanical machining. The 

subsections below categorise each of the studies into the available process combinations 

and applications. 

3.4.7.1 Thermally enhanced mechanical machining 

Thermally enhanced mechanical machining applies external heat sources to heat the 

workpiece locally in front of the cutting tool. With the effect of heating, the workpiece is 

softened along with a change in the microstructure, facilitating the conventional machining 

process through the reduction of workpiece hardness, cutting forces and tool wear (Ding 

and Shin, 2010). The external heat sources that are most frequently used are plasma 

(Novak et al., 1997) and laser beam (Pfefferkorn et al., 2004; Anderson et al., 2006). 

(I) Laser assisted mechanical machining (LAMM) 

Laser assisted mechanical machining has been developed and investigated for over twenty 

years (Rozzi et al., 2000; Lei et al., 2001). Recently, LAMM has been considered as an 

alternative process for machining high-strength materials, such as ceramics, metal matrix 

composites and high-temperature alloys (Rebro et al., 2002; Tian et al., 2008; Bejjani et al., 

2011). 
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Laser assisted turning: Laser assisted turning is considered to be the most favourable laser 

integration process. This is because the cutting tool keeps stationary during the machining 

operation. As a result, it is relatively easy to incorporate the laser beam within a 

conventional turning machine (Sun et al., 2010). A typical configuration of the laser 

assisted turning process is depicted in Figure 3.16. 

 

Figure 3.16 – Schematic of laser assisted turning (Pfefferkorn et al., 2004) 

Sun et al. (2010) provided a comprehensive review, summarising various laser assisted 

machining processes and identifying their respective materials and surface integrity 

limitations. For further increases in the capability of LAMM and reductions in tool wear, 

the researchers have identified two improvement strategies: (1) Dumitrescu et al. (2006) 

attempted to use a high power diode laser instead of a more conventional CO2 or Nd:YAG 

laser, suggesting that higher machining efficiency and better metal absorption can be 

expected. (2) Anderson and Shin (2006) proposed a new configuration in which two laser 

beams simultaneously irradiate a machined chamfer and an unmachined surface adjacent to 

the chamfer, respectively. Researchers also realised that a better understanding of heat 

energy generation during the operations is able to provide optimisation methods for the 

hybrid process mechanisms. Therefore, research has focused on the modelling of the laser 

assisted turning processes. Pfefferkorn et al. (2005) modelled the heat distribution in laser 

assisted turning, illustrating that the temperature is mainly affected by laser power and 

feedrate. Tian and Shin (2006) also built a transient thermal model for predicting heat 

transfer during laser assisted turning of silicon nitride workpiece. The model has been 

validated by comparing the predicted results with the actual results obtained from the 

experiments, demonstrating that the developed model is able to predict heat transfer in 
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machining of silicon nitride parts. Jung et al. (2013) studied the thermal deformation 

caused by laser heat and friction induced heat in laser assisted turning of silicon nitride. 

The developed prediction model is able to predict thermal deformation within the average 

error of 9.59%. Ding and Shin (2013) investigated the effects of material removal 

temperature, cutting speed and feed on tool wear and surface finish in laser assisted turning 

of Waspaloy. A thermal model has been developed, which is able to predict the 

temperature fields with a workpiece undergoing laser heating. A series of experiments 

have also been conducted and the best machining results, in terms of tool wear, surface 

roughness (0.6 – 0.8μm) and cutting forces, were obtained under intermediate material 

removal temperature between 300 – 400°C. 

Laser assisted milling: Laser assisted milling typically adopts one of two configurations; 

either the laser beam is located next to a milling tool, or it is integrated on the tool spindle 

(Sun et al., 2010). Recently, the trend has been towards micro-machining, where Melkote 

et al. (2009) investigated the combined use of micro-milling and laser assistance grooving 

a hardened A2 tool steel. Brecher et al. (2010a) employed a similar configuration for the 

dry machining of Ti- and Ni-based-alloys. Singh and Melkote (2007) applied an ytterbium 

fibre laser to assist micro-scale grooving of H-13 mould steel and reported an accuracy 

improvement in the groove depth. 

Laser assisted grinding: Kumar et al. (2011) used a laser to scan the surface of the silicon 

nitride ceramic workpiece, which is subsequently ground to remove the laser affected area. 

The experimental results indicated that the grinding forces were reduced and the tool life 

was increased as compared to the individual grinding process. 

(II) Plasma enhanced mechanical machining 

An approach called plasma enhanced machining e.g. turning and milling has been 

developed in which the plasma jet is primarily used for localised heating and softening of 

the workpiece to reduce cutting forces and improve surface roughness with respect to 

traditional machining (Leshock et al., 2001). Wang et al. (2003) introduced the application 

of plasma heating in the turning of Inconel
®
 718 material. De Lacalle et al. (2004) used 

plasma gas and an electrode to generate a plasma beam in the front of a milling cutter to 

machine Ti6Al4V, as illustrated in Figure 3.17. A certain level of degradation level was 
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observed in the microstructure of the material, indicating that machining of this alloy does 

not benefit from using this hybrid process. 

 

Figure 3.17 – Plasma assisted milling system (de Lacalle et al., 2004) 

3.4.7.2 Laser assisted water-jet cutting 

A laser beam, again, acts as an assistant tool to pre-heat the workpiece followed by a water 

jet functioning as a material removal process. Molian et al. (2008) and Kalyanasundaram 

et al. (2008) conducted experiments whereby a CO2 laser was used to heat a small zone on 

a ceramic workpiece to create a temperature gradient. Trailing in the laser beam’s path, a 

pure water-jet was used to produce localised thermal shock fractures. Barnes et al. (2007) 

explained that the increase of cutting efficiency was due to the kinetic energy of the water 

jet that removes the material and washes debris away. Based on the previous research, 

Kalyanasundaram et al. (2010) established a model that was used for the determination of 

transient temperature and stress distribution, indicating that thermal shock stresses are 

primarily responsible for crack propagation and material separation. 

3.4.7.3 Laser assisted ECM 

Unlike laser drilling with chemical dissolution by Zhang et al. (2009a), laser assisted ECM 

employs a laser beam for the purposes of heating the workpiece, which helps and 

accelerates the electrochemical reaction. In the experiment by Pajak et al. (2006) and De 

Silva et al. (2011), a laser beam was coaxially aligned with an electrolyte jet, creating a 

non-contact tool-electrode to intensify the dissolution in the localised zone (Kozak and 

Oczos, 2001). Consequently, the material removal rate increased and the localisation 

enhanced dimensional accuracy through a reduction in stray machining action (De Silva et 
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al., 2004). This process is shown in Figure 3.18. Nevertheless, this hybrid process is not 

effective in machining of materials with poor electrical and thermal conductivity. 

 

Figure 3.18 – Laser assisted ECM process (Pajak et al., 2006) 

3.4.7.4 Laser assisted shearing 

Laser assisted shearing has been developed by Brecher and Emonts (2010), where a laser 

beam was applied to the underside of the shearing zone on a sheet metal plate before the 

cutting stamp punched the top side of the metal plate. A significant reduction in cutting 

forces and edge warping were achieved and punch-sheared edges with continuous clear-cut 

surfaces were observed. 

3.4.7.5 Cryogenic machining 

Cryogenic machining methods apply a cryogen, primarily liquid nitrogen (LN2) rather than 

oil coolant, to cool either a cutting tool or a workpiece to a very low temperature e.g. -

197ºC (Yildiz and Nalbant, 2008). The majority of cryogenic machining research can be 

split into two areas i.e. cooling of cutting tools and cooling of workpieces. 

(I) Cryogenic machining of hard metal materials 

Traditionally, machining of hard materials, especially ceramics and superalloys, is 

considered to be difficult due to high tool wear rate; partially resulting from the extreme 

high temperatures in the shear zone (Krain et al., 2007; Zhang et al., 2010). Most of the 

papers focus on the development of a spray jet system which sprays LN2 directly to the 

cutting zone to decrease the tool temperature, which in turn reduces the temperature 

dependent tool wear and increases the tool life in successive cuts (Wang et al., 1996). 
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Turning: Hong and Ding (2001) introduced an economical cryogenic cooling system, as 

shown in Figure 3.19, where the LN2 is directly jetted at the tip of the cutting tool. By the 

cooling effect of LN2, crater and flank wear are reduced along with a reduction in 

temperature at the tip of the cutter (Hong et al., 2001). 

 

Figure 3.19 – A schematic of the cryogenic machining approach (Hong et al., 2001) 

Through experimentation, Wang and Rajurkar (2000) validated that the surface finish of 

titanium and Inconel
®
 alloy parts machined with cryogenic cooling were far superior to 

those observed in conventional machining. In addition, Venugopal et al. (2003) developed 

two LN2 jets in one system for cooling the rake surface and principal flank, tool nose and 

auxiliary flank, respectively. While machining hard materials, the microstructure alter 

(often called white layer formation) as a result of local high temperatures in the very small 

material deformation zone. Such an affected layer is generally considered to be detrimental 

to the life of the machined component. Umbrello (2013) evaluated the effect of LN2 

coolant on the machined surface alternations in machining of hardened AISI 52100 bearing 

steel. The experimental results indicate that utilising cryogenic coolant is able to 

effectively reduce white layer thickness because cutting temperatures are significantly 

reduced leading to inhibition on martensitic phase changes. 

Milling: Goujon et al. (2001) conducted a series of experiments on cryogenic milling of Al 

alloy / AlN powders at -196ºC produced by LN2, suggesting that certain chemical reactions 

e.g. oxidation and nitridation need to be studied. As shown in Figure 3.20, Rahman et al. 

(2003) employed two nozzles constantly supplying chilled air of -30ºC to the workpiece 
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and the cutting tool on a CNC milling machine, separately. The tool wear and surface 

roughness was found to be lower in the chilled air milling in comparison to the 

conventional milling process. 

 

Figure 3.20 – The retrofitted milling machine with two nozzles (No. 2 and 6) supplying 

chilled air (Rahman et al., 2003) 

Grinding: There are only a few research papers reporting on cryogenic grinding (Dhokia, 

2009). This may be because, originally, coolant was seldom used in conventional grinding. 

In the research presented by Ben Fredj et al. (2006), it was demonstrated that cryogenic 

cooling was able to improve surface integrity. Nguyen et al. (2007) installed a nozzle on 

the wheel guard providing steady LN2 jet to the grinding point. The experimental results 

show that the surface hardness has been improved due to a generated martensitic layer 

resulting from a phase transformation during grinding. 

(II) Cryogenic machining of soft materials 

Shih et al. (2004) used solid carbon dioxide as a cryogen to cool an elastomer workpiece 

during machining operations. The elastomer was cooled to approximately -78.6°C at which 

point it transformed to a brittle phase. Dhokia et al. (2011) developed a novel cryogenic 

CNC machining method, which sprays LN2 onto the workpiece (i.e. soft elastomer) to 

rapidly reduce the material to its glass transition temperature. This increases the stiffness 

of the low-density workpiece, allowing it to be machined by conventional CNC machining 

methods. 
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3.4.7.6 Thermally and cryogenically machining 

(I) Laser assisted and cryogenic machining 

Dandekar et al. (2010) utilised a CO2 laser to alter the material properties of the workpiece, 

whilst simultaneously cooling CNC turning tools with LN2 to improve the machinability of 

titanium alloys. It was reported that 200% increase in tool life was achieved. In the 

meantime, no discernible difference between the microstructures of the parts machined by 

the hybrid process and the conventional turning process was observed. 

(II) Plasma enhanced and cryogenic machining 

Based on plasma enhanced machining, Wang et al. (2003) designed a cooling chamber 

which supplied LN2 for cooling the cutter during the plasma enhanced turning of Inconel
®
 

718, as shown in Figure 3.21. The surface roughness of 2.35μm was obtained. The tool life 

was prolonged due to the reduction in temperature-dependent tool wear. 

 

Figure 3.21 – The plasma and cryogenically enhanced machining (Wang et al., 2003) 

3.4.7.7 High pressure cooling assisted mechanical machining 

High pressure cooling (HPC) has been recently found to be an effective way to improve 

machining conditions in terms of cutting force, chip formation and tool life. Coolant was 

delivered under pressures of 11 MPa during the drilling and turning of Ti6Al4V and 

Inconel
®
 718 by de Lacalle et al. (2000). Sanz et al. (2007) and Kramar et al. (2010) 
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compared the experimental results of turning titanium alloys with and without HPC, 

claiming that HPC could provide longer tool life, lower cutting forces and increased chip 

breakability. In addition, Nandy et al. (2009) argued that using water-soluble oil coolant, 

instead of neat oil coolant, is beneficial in terms of improving cutting tool life. Conversely, 

Ezugwu et al. (2005) studied the effects of using different cooling pressure and suggested 

that higher cooling pressure does not always lead to higher tool life. Sorby and Tonnessen 

(2006) revealed that high pressure rake face cooling is likely to result in adverse effects for 

other parts of the workpiece surface. 

3.4.7.8 Grinding and hardening 

Brinksmeier and Brockhoff (1996) proposed a concept of the grind-hardening process, 

where the grinding wheel acts as moving heat source, by which the temperature of the 

workpiece surface was raised above that of austenitisation. Along with self-quenching via 

heat dissipation, occurring naturally or through the use of coolant, martensitic phase 

transformation takes place (Salonitis and Chryssolouris, 2007). Salonitis et al. (2008) also 

claimed that grind-hardened cylindrical parts have high hardness. 

3.4.7.9 Milling and forming 

In deformation machining, as identified by Smith et al. (2007), thin features are machined 

to the desired accuracy by milling. Forming operations are then carried out to create 

deformations of the thin sections by bending or stretching the features to finally form the 

designed shapes, as illustrated in Figure 3.22. This hybrid process provides a less 

expensive way to create sheet metal parts without dies. 

 

Figure 3.22 – (a) Milling (b) and deforming a thin wall (Smith et al., 2007) 
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3.4.7.10 Turning and rolling 

Hybrid machines which are able to perform turning and cold rolling operations have been 

reported (Axinte and Gindy, 2004; MAG, 2010). A cold rolling unit is integrated on a 

turning machine, enabling the gears to be turned and rolled in series, indicating the 

potential to reduce production cost and time. 

3.5 Review of Process Planning for Hybrid Manufacture 

This section briefly introduces CAPP history and two major process planning methods, and 

then reviews the state-of-the-art process planning methods for hybrid processes. 

3.5.1 Evolution of CAPP 

The desire to increase quality and reduce lead time and cost, or to improve productivity, 

has led to a widespread interest in CAPP (Halevi and Weill, 1995). CAPP’s inception dates 

back to the mid-1970s (Newman et al., 2012). Since the concept of using computers to 

help engineers to plan manufacturing operations first introduced by Niebel (1965), vast 

amount of CAPP research has been conducted during the past decades (Xu et al., 2011). 

Amongst CAPP research, one of the major pioneers was Wysk (1977) who outlined an 

automated process planning and selection program entitled APPAS. Weill et al. (1982) and 

Alting and Zhang (1989) reviewed numerous developments of CAPP systems in the 1970s 

and 1980s, respectively. The computer integrated manufacturing (CIM) systems push of 

the 1990s saw commercial CAPP systems being integrated within CAD/CAM and tooling 

systems (Maropoulos, 1995) for micro-process (machine level) planning together with 

macro process planning linking process planning and production planning and control 

(ElMaraghy, 1993). Along with these commercial CAPP system developments, Artificial 

Intelligent and Knowledge Based techniques (Kiritsis, 1995) combined with CAPP 

research in design and manufacturing features (Case and Gao, 1993) was investigated in 

academia. In the review by Marri et al. (1998), it was identified that the number of CAPP 

systems was significantly reduced since the 1980s. Today there is an emerging need to 

integrate process planning and other factory software systems to enable real time planning 

and decision-making based on the current and predicted status of the factory shopfloor. 
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3.5.2 Variant and generative process planning approaches 

Two major approaches, namely variant and generative, are used in the structure of process 

planning systems (Chang and Wysk, 1984). They are outlined as follows: 

A variant process planning system uses the similarity among components to retrieve 

existing process plans (Scallan, 2003). A process plan that can be used by a family of 

components is called a standard plan. A standard plan normally contains at least a 

sequence of manufacturing operations. When a standard plan is retrieved, a certain degree 

of modification is usually made so as to adjust the plan and make it appropriate for a new 

part. 

By contrast, in the generative process planning approach, the manufacturing knowledge, 

equipment capabilities and geometric vision of the part are stored in the computer 

programs. Process plans are generated by means of technology algorithms, decision logics, 

formulae and geometry base data to perform uniquely the many processing decisions for 

converting a part from raw material to the finished state (Halevi and Weill, 1995). A 

unique process plan for manufacturing a specific part is automatically generated without 

referring to any previous part plan. 

3.5.3 Process planning for hybrid manufacture 

Very limited research on process planning for hybrid processes has been reported. These 

reports though identifying process planning approaches have been developed for specific 

hybrid processes. 

Jeng and Lin (2001) developed control software for the hybrid process of milling and laser 

cladding. Once one cladding operation was completed, the workpiece was moved to the 

position beneath the milling head for finish machining. The machined workpiece was 

moved back to the laser zone for adding the next layer. This process planning approach 

was used in other hybrid processes consisting of milling and laser melting or arc welding 

(Choi et al., 2001; Akula and Karunakaran, 2006; Xiong et al., 2009). Hu and Lee (2005) 

developed a concave edge-based part decomposition method for the hybrid process of 

milling and sheet welding. A part is decomposed into layers by considering the tool 

accessibility, the total number of layers, and the allowable sheet thickness. Based on a 

given build-up direction, the undercut edges, which cause a part to be inaccessible by a 
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cutting tool, are divided into two parts for eliminating these undercut edges. Ruan et al. 

(2005) proposed a process planning method which was able to generate non-uniform layers 

and tool paths and sequence operations. Thick layers are used when high part accuracy is 

not required. Operation sequencing is conducted by taking cutting tool accessibility (i.e. 

tool length) into account, which means each machining operation can be carried out if the 

tool spindle does not collide with the deposited part. Liou et al. (2007) further extended 

Ruan et al.(2005)’s work, developing an automated process planning system. This system 

planning uses STL models as input and generates a description that specifies contents and 

sequences of operations for the hybrid process of 5-axis milling and laser melting. The 

results consist of the decomposed subpart information and the build/machining sequence. 

However, this system is unable to deal with complex part geometries as the tool approach 

direction (TAD) and deposition nozzle accessibility. Karunakaran et al. (2010) 

investigated a process planning approach which uses an edge approximation slicing 

strategy to calculate each slice thickness to be deposited with the required metal as 

successive layers from the lowest to the topmost layer. It also generates Numerically 

Controlled (NC) codes for machining the deposited metallic layers to attain the required 

contour profile shape. 

Moreover, some efforts have been made on process optimisation. Mognol et al. (2006) 

conducted a topologic and dimensional analysis, suggesting suitable features that can be 

beneficial from being produced by laser cladding or high speed milling. Another method 

used to estimate manufacturing complexity has been presented by Kerbrat et al (2010), 

which utilises an Octree concept to represent a three-dimensional object by the division of 

space into small cubic cells or small parallelepipeds. The features are manufactured 

separately and finally assembled. 

3.6 Discussion and Critique 

The previous sections provide a comprehensive review on hybrid manufacturing research. 

The author has classified a range of hybrid processes referred in this chapter, into seven 

major areas. In addition the author has developed his own classification, which is used in 

the following subsections to define the term ‘hybrid processes’, and to structure a critique 

of research gathered, and identify a number of research gaps. 
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3.6.1 Definition of hybrid processes 

The author’s classification of hybrid processes is shown in Figure 3.24. This consists of 

four hybrid and three sub-hybrid types. From the author’s viewpoint, the term ‘hybrid 

manufacturing processes’, or ‘hybrid processes’ for short, is defined as an approach that 

combines two or more manufacturing operations, each of which is from different 

manufacturing technology, as introduced in section 3.2.2. The constituent processes 

influence and interact with each other. This can be achieved from the processes being 

carried out simultaneously or in a serial manner on a single platform. 

To clarify this definition, the following statements are made: 

(i) As hybrid manufacturing is mainly concerned with the combinations of different 

manufacturing technologies, if all of the constituent processes are from the same 

manufacturing technology, this type of combination is defined as a sub-hybrid 

process. 

(ii) Constituent processes should influence or interact with each other. For example, in 

laser assisted turning (Sun et al., 2010), the laser beam softens the material, which 

generates the influence that makes the turning easier and faster. Additionally, in 

laser cladding and milling (Zhang and Liou, 2004), the milling machine removes 

material from the near-net shape produced by laser cladding; on the other hand, the 

new layers are deposited on the smooth surface produced by the milling operations, 

which reduces the stair effects in the laser cladding process. The dimensions of the 

milled part also affect the subsequent stages of the laser cladding process. This 

exemplifies the laser cladding’s influence on the milling operations.  

(iii) Constituent processes should directly act on the workpiece being manufactured. 

Based on the above description, magnetic field assisted finishing (Riveros et al., 2009; 

Yamaguchi et al., 2010) is not considered as a hybrid process. This method uses the 

alternating magnetic field to drive the magnetic fluid which contains abrasive slurry, to 

flush mirror chips in the micro-pore x-ray mirror fabrication process (Yamaguchi et al., 

2011). However, the magnetic field actually drives the fluid but the field does not directly 

work on the workpiece. Similarly, using robot(s) to hold milling cutter(s) in the machining 

operations (Chen and Song, 2001; Yang et al., 2002b) is not considered as a hybrid process. 
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In addition, water-jet guided laser cutting (Li et al., 2003; Kray et al., 2007), where the 

water-jet guides the laser beam before the beam reaches the workpiece surface, is not 

categorised as a hybrid process, as the jet itself does not change the microstructure of the 

workpiece or remove the material. 

3.6.2 Hybrid subtractive manufacturing processes 

Hybrid subtractive manufacturing processes normally involve thermal, chemical, 

electrochemical and mechanical interactions (Molian et al., 2008). As shown in Figure 

3.23, the vast majority of research activities have focused on the combinations of 

subtractive processes, which have gradually been used to reduce tool wear and production 

time, and increase machining efficacy through tight tolerances and high levels of surface 

finish. The implementation of ultrasonic assisted mechanical machining or EDM showed 

higher machining efficiency than that of the individual mechanical machining, ultrasonic 

machining and EDM. Similarly, the integration of laser cutting and EDM (Li et al., 2006) 

facilitates drilling of micro-holes with lower tool wear and better surface quality. These 

advantages are gained by carrying out the processes simultaneously (e.g. laser cutting and 

ECM (Zhang et al., 2009a) or in series (e.g. sequential laser drilling and mechanical 

drilling (Biermann and Heilmann, 2011). It is noted that hybrid subtractive processes are 

not only applied in the conventional machining scenarios, but also in other application 

areas e.g. micromachining (Lim et al., 2002b) and in the production of semiconductors in 

the photovoltaics industry (Wang et al., 2008). 

Although encouraging results have been shown, certain issues still need to be resolved. In 

ultrasonic assisted machining processes, high frequency and amplitude vibration 

mechanisms are likely to deteriorate the surface quality and the dimensional accuracy of 

the machined parts (Jahan et al., 2010). In conjunction with this, the machining energy 

only decreased 10%. In addition, with its high precision, laser processing has the potential 

to be incorporated in wider application areas. Thus, more research effort will continue to 

be made in ultrasonic and laser related processes. 
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Figure 3.23 – Distribution of the collected hybrid research papers 

3.6.3 Hybrid transformative, additive and transformative, subtractive and joining 

manufacturing processes 

There is limited research work reported on each of these three categories. In hybrid 

transformative processes, two types of sheet metal forming processes were used in series, 

which improved the accuracy and decreased the forming steps. The use of laser heat 

treatment with forming tools is a popular machine configuration as the laser beam is able 

to soften material, increasing formability at higher temperatures as well as reducing 

springback effects (Duflou et al., 2007). There is an emerging research trend that integrates 

a laser unit inside a forming tool, which has the potential to effectively utilise the laser 

beam in the forming processes where the working spaces are enclosed e.g. deep drawing. 

The development of hybrid additive and transformative process is still at an early stage. 

Yasa and Kruth (2008) identified that, in the laser melting and erosion, longer processing 

times led to lower productivity, which restricts its further development. Lucchetta and 

Baesso (2007) used a mould to perform the sheet metal forming and injection moulding of 

sheet metal-polymer composites, providing a new method to produce multi-materials 

components. However, the feasibility of using the injection mould as a forming tool needs 

to be further validated. 
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Figure 3.24 – Classification of the major hybrid processes research areas (corresponding 

section numbers are in brackets) 
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With regards to hybrid subtractive and joining processes, the machining operations 

enhance the capability of the welding processes by providing a high level of surface finish. 

However, cumulative errors are likely to increase over the whole operation (Kuo et al., 

2003). 

3.6.4 Hybrid additive manufacturing processes 

Researchers, who aim to fabricate functional parts comprised of multi-materials, apply a 

hybrid additive approach, which is able to deposit various materials alternately via the 

mounted additive heads. Another building approach uses different material powders mixed 

using a user-defined ratio. As a result, the manufactured parts have new properties 

intermediate to their constituent materials. In addition, researchers also employed an 

additional heat source to provide higher energies in the laser cladding and arc welding 

processes, which accelerated the deposition speed, reduced production time, and more 

importantly, increased welding stability (Ono et al., 2002). It was also noted that the 

change of additional energy input remarkably influenced the precision of the layer 

deposition (Qian et al., 2010). Hence, the investigation of appropriate energy input will 

receive research attention to some extent. Moreover, it is necessary to point out that hybrid 

additive processes, based on additive manufacturing techniques, also have inherited their 

drawbacks, which are slower production times in mass production, moderate surface finish 

and relatively high cost compared to CNC machined parts. Thus, these issues hinder a 

broader application of this technology. The improvement in surface roughness and the 

reduction of production cost will continue to be a major area of further development. 

3.6.5 Hybrid additive and subtractive manufacturing processes 

The research relating to hybrid processes combining an additive process and a subtractive 

process concentrates on the increase in manufacturing flexibility with no detrimental effect 

on surface finish (Choi et al., 2001). Two deposition methods are mainly utilised i.e. laser 

cladding and arc welding to build near-net shapes directly from CAD models. Meanwhile, 

a machining process is implemented to ensure dimensional accuracy and eliminate the stair 

effects after certain layers have been deposited. Finally, the near-net shapes are finish 

machined to their desired surface finish. 

However, this hybrid technology is currently only suitable for small batch production of 

customised products rather than for mass production. The review has revealed that the 
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main application is in the production of injection moulds and dies. Other applicable 

products are limited and it should be noted that the fabricated tools may be inferior to their 

counterparts produced by conventional machining in terms of tensile strength and tool life 

(Akula and Karunakaran, 2006). In addition, the restrictive range of materials that can be 

used for additive processes partly contributes to the limited application areas of hybrid 

additive and subtractive processes. It is expected that future research will focus on 

exploring broader application areas, which may include a migration towards the use of 

metallic and other hard materials alongside the development in rapid prototyping 

technology. 

3.6.6 Hybrid subtractive and transformative manufacturing processes (HSTMP) 

Thermally enhanced machining and other laser assisted machining processes, such as the 

water-jet, have generated significant research interest. In these processes, only one of the 

participating processes directly removes the material. The other one assists in the material 

removal operations by changing the machining conditions, which is beneficial for cutting 

processes (Molian et al., 2008). The author has identified that the research in this category 

largely focuses on the machining of hard-to-machine materials e.g. ceramics, composites 

and superalloys. The experiments by Pfefferkorn et al. (2004) and Dandekar et al. (2010) 

reported that the cutting tool life can be prolonged by up to 3 times and the material 

removal rate can be effectively increased. 

However, the tremendous advantages notwithstanding, HSTMP does not increase the 

flexibility of the original machining process. In other words, if a part cannot be machined 

by conventional CNC machining processes due to tool inaccessibility, likewise, HSTMP 

will not be able to manufacture it. Further efforts should be made for developing thermally 

enhanced machining with the capability of machining ductile materials (Sun et al., 2010). 

Some researchers have been working on the effects of a laser beam input angle and heated 

area, and have initially identified that these two factors influence the machining efficiency. 

There is a possibility that future research will focus on these issues. Moreover, for a better 

understanding of HSTMP mechanisms, modelling of heat transfer is another potential 

major research topic. 

Recently, cryogenic machining has drawn attention as it enables both hard and soft 

materials to be machined under desirable machining conditions such as lower forces and 
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temperature. Through cooling the cutting tool using LN2, tool degradation can be 

significantly reduced and thus cryogenic machining can increase tool life (Shokrani et al., 

2012). The improved surface finish, increased length of cut and reduced cutting force have 

also been reported. 

In summary, cryogenic machining is under investigation and the majority of research 

focuses on turning of hard material. However, less attention is paid to milling and grinding 

operations which are also significant in today’s CNC manufacturing industry. There is also 

a lack of knowledge in the machining of soft materials with the exception of Dhokia et al. 

(2010). These issues require further research. With respect to high pressure cooling, 

research is likely to concentrate on coolant system cost and set-up times (Shokrani et al., 

2013). 

3.6.7 The importance of hybrid manufacturing research 

As discussed above, the research of hybrid manufacturing has gained significant attention 

both in academia and industry. The importance of hybrid manufacturing processes may be 

briefly summarised using two key points: (1) conventional manufacturing processes have 

inherent advantages and disadvantages; (2) some new products cannot be manufactured by 

using individual conventional manufacturing processes. In other words, it is more feasible 

to manufacture such products by utilising hybrid processes due to heightened process 

capability, production time and costs. Some typical and representative examples are 

outlined below. 

 Conventional deep micro-hole mechanical drilling of Inconel
®
 718 is a time consuming 

process. A noticeable improvement in terms of circularity was observed and 50% increase 

of MRR was reported whilst using combined mechanical drilling, laser and ultrasonic 

vibration technologies (Okasha et al., 2010; Liao et al., 2007). 

 On the other hand, recast layer and spatter cannot be completely eliminated if an 

individual laser drilling process is used. The combination of laser drilling and ECM 

provides a solution to dramatically reduce recast layer (Zhang et al., 2009a). 

 In order to increase tool life, reduce cutting forces as well as obtain better surface finish 

in mechanical milling, turning and grinding of hard materials (e.g. ceramics, H-13 mould 

steel, Ti and Ni-based-alloys and Inconel
®
 718), the concepts of ultrasonic assisted 
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machining and thermally enhanced mechanical machining have been proposed (Brecher et 

al., 2010b; Sun et al., 2010). 

 EDM process has been widely used in the machining of tungsten carbide and stainless 

steels, but electrode deflection restricts its further development. Ultrasonic assisted EDM is 

capable of machining those hard materials with reduced electrode deflection effect (Jahan 

et al., 2010). 

 Long production time is always the major concern in forming processes. Laser assisted 

sheet metal forming has shown the advantages in improving material formability and more 

importantly, reducing forming steps (Duflou et al., 2007), which results in reduced 

production time. 

 Making mould inserts is not an economical process for low volume production, but now 

the costs can be significantly reduced by combining laser cladding and CNC machining 

(Jeng and Lin, 2001). The manufacture of components for gas turbines is another potential 

application area for this hybrid process (Nowotny et al., 2010). Furthermore, biomimetic 

robotics with embedded sensors and circuits can also be produced (Dollar et al., 2006), 

which was previously considered to be impossible without further assembly operations. 

 Recently, a low cost process namely, cryogenic CNC machining, for the production of 

personalised shoe insoles has been developed (Dhokia et al., 2008), replacing injection 

moulding processes in the production cycle. This hybrid process has the potential to be 

widely used in low volume and personalised soft material product manufacture. 

3.6.8 Research gaps 

Based on the above discussion, a number of research gaps have been identified as follows: 

 Lack of a clear definition of hybrid manufacturing processes. 

 Limited materials that are available to be used in the hybrid processes. Each hybrid 

process is constrained in a small range of the specific materials. 

 The majority of the hybrid process research has been carried out on enhancing the 

capability of the individual processes such as reduced surface roughness and improved 

machinability. However, these approaches do not address the issue that constrains the 
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application of the manufacturing processes in manufacture of complex part geometries 

due to the lack of process flexibility. 

 Although a vast amount of research has been conducted on developing the hybrid 

processes which combine additive and subtractive processes, limited process planning 

approach has been reported. Thus, the developed hybrid processes are only able to deal 

with very specific applications and their validity fails while applying these hybrid 

processes to manufacturing other parts with various structures, particularly complex 

geometries. Additionally, process plans have not been well organised in terms of 

process capability, flexibility, production times and costs etc. In the meantime, for the 

hybrid processes where the constituent individual processes are being carried out 

simultaneously (such as laser assisted machining) rather than interchangeably, there 

has been no need for process planning since the secondary process is only used to 

assist the primary process that is actually applied to creating the majority of the part 

geometries and features. 

 The potential of the hybrid additive and subtractive process is underutilised in the 

current manufacturing environment. To the author’s knowledge, the current 

manufacturing processes are always constrained by the available raw materials in 

terms of shape and size. The application of such hybrid processes on material reuse has 

not been thoroughly explored, also due to the lack of process planning techniques. 

 There is a need to establish the relationships between constituent processes and their 

respective control systems. This will largely determine the development of hybrid 

processes in the future. 
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4 The hybrid process and experimental methodology 

4.1 Introduction 

This chapter provides the author’s view of the hybrid process and the experimental 

methodology. It is divided into 3 major sections, consisting of the proposed hybrid process, 

the requirements and the methodology for realising this hybrid process for manufacture of 

complex parts and reusing material. This methodology is comprised of three stages, which 

are utilised to specify the research activities described in chapters 5, 6 and 7. 

4.2 The Hybrid Process – iAtractive 

This section describes the author’s view of the hybrid process together with its specific 

definition in this research. 

4.2.1 The iAtractive process – combination of additive, subtractive and inspection 

processes 

One of the research gaps is that there is no current method that is able to accurately 

manufacture products with high geometrical complexity (as defined in section 2.4) whilst 

not being constrained by process capability and raw material in terms of shape and size. 

High flexibility provided by FFF allows complex structures to be created, which makes it 

an ideal candidate to be utilised as one of the constituent processes in the iAtractive 

process. Today, CNC machining is used for the finishing of additive manufactured parts 

(Gibson et al., 2009). Thus, CNC machining has been used in this research to improve the 

accuracy and surface roughness of FFF manufactured parts. As a result, the capability 

constraints of the individual processes (i.e. low level of flexibility of CNC machining and 

low level of accuracy of the FFF manufactured parts) can be significantly reduced. 

In addition, incorporating inspection techniques, the dimensions of raw material, in-

process and finished products can be measured and obtained. This enables decisions to be 

made on how to use FFF and CNC machining to further manufacture the given raw 

material (i.e. existing part) by adding and/or removing material and transforming it into the 

final part. Through the interchangeable combination of FFF, CNC machining and 

inspection processes, the raw material constraint is thus eliminated. The hybrid process in 
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this research is thereby entitled the iAtractive process. To avoid confusion in the 

proceeding sections and chapters, additive and subtractive processes refer to FFF and CNC 

machining, respectively. 

4.2.2 The definition of the hybrid process in this research 

The term ‘hybrid process’ has been defined and explained in section 3.6.1. This definition 

is given for the hybrid process research in academia and industries. To clarify the 

definition of the hybrid process in this research, it is defined as an approach that combines 

an additive (i.e. FFF) with a subtractive process (i.e. CNC machining) and the inspection 

technique (i.e. CMM). This can be achieved from the different individual processes being 

carried out in a serial manner on a single platform. The purpose of the iAtractive process is 

to increase the flexibility and enhance the capability of the individual processes, and 

effectively utilise available manufacturing resources in terms of manufacturing process and 

raw material. 

This definition of the iAtractive process and the material used (i.e. PLA) in this research is 

illustrated and highlighted in Figure 4.1 below. The rectangular block represents that 

iAtractive combines the FFF, CNC machining and inspection processes, including all the 

material that is currently and potentially available to be used in the future, from soft to hard 

materials as indicated by the red arrow. In order to avoid confusion, hardness is defined as 

the resistance to permanent indentation (Kalpakjian and Schmid, 2010) and refers to 

Vickers hardness in this research. At present, a range of materials can be used for the 

iAtractive process, such as PLA, ABS and low melting point alloys. Considering the 

current development progress on the FFF technique (Jones, 2013), soft material is an ideal 

candidate for demonstrating the iAtractive process. PLA has been used in this research and 

the reasons will be explained in section 5.2.3. 
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Figure 4.1 – The hybrid process defined in this research 

4.2.3 The vision of the iAtractive process production 

The top-level functional view of the iAtractive process is depicted in Figure 4.2. Various 

types of raw materials, in terms of shape and size, together with part designs are input into 

the iAtractive process. The relevant knowledge used in the iAtractive process for 

manufacturing the part is multi-process control, material manufacture, process planning 

and inspection knowledge. As the three processes are eventually integrated on a single 

platform/machine, multi-process control techniques are needed to control the machine. 

Inspection knowledge is essential since inspection is used in measurement of raw material, 

half-finished parts during production and final parts. Material manufacture knowledge is 

used for determining how to produce the part by utilising the FFF and CNC machining 

processes interchangeably. This information will be taken into account in the process 

planning stage, generating feasible process plans. The raw material is then manufactured 

according to the most appropriate process plan by which the finished part is obtained. 
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Figure 4.2 – IDEF0 overview of the iAtractive process 

The author has utilised the current knowledge on additive manufacture, CNC machining 

and inspection within the manufacturing engineering domain to depict the primary vision 

of the iAtractive process, as shown in Figure 4.3. This indicates that the iAtractive process 

is not constrained by raw material in terms of shape, geometry or features. Raw material 

can be (1) zero (filament for deposition from zero); or (2) an existing/legacy product; or (3) 

a billet. By using the additive, subtractive and inspection processes interchangeably, the 

given raw materials can be further produced to the finished part with complex geometries. 

 

Figure 4.3 – The vision of the iAtractive process production 
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4.2.4 The overall work flow of the iAtractive process production 

The overall work flow of the iAtractive process is shown in Figure 4.4 and outlined as 

follows: 

(i) Raw material is first inspected using a CMM. The importance of this step is to 

obtain the actual geometrical attributes of the raw material, which becomes the 

basis of the process plan for determining subsequent operations. It is noted that the 

raw material is considered as zero if filament or other material that is specifically 

used in additive processes (e.g. powder and liquid) is given. 

(ii) The part design (CAD model) is input into the decision-making engine. Decisions 

are then made on whether to manufacture the product from zero or reuse the 

existing part geometry to further manufacture it to the final shape. Figure 4.4 

shows certain typical constraints that could determine the decision-making process. 

(iii) For the first scenario, additive, subtractive and inspection processes are utilised 

interchangeably in a serial manner according to both (a) the process plan generated 

beforehand based on the part design; and (b) the process plan updated during 

production, based on the inspection feedback. By doing so, the final part is 

produced. 

(iv) For the second scenario, according to the dimensions of the existing part, a new 

CAD model is generated. The new model shows the shape of the rest of the 

material required to produce the designed part. Then, the existing part is further 

manufactured to the final shape and part tolerances by the use of interchangeable 

additive, subtractive and inspection processes. 

(v) At the end of both scenarios, the part is further inspected identifying which 

dimension is out of tolerance. If this is the case then further decisions can be made 

on whether to add more manufacturing operations until the dimensions are in 

tolerance. 
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Figure 4.4 – The overall work flow of the iAtractive process 

4.3 Requirements for the iAtractive Process 

The requirements for developing the iAtractive process have been based on the critique of 

the literature review, research gaps (section 3.6), research aims and objectives (sections 2.2 

and 2.3), and the vision of the iAtractive process production (section 4.2). These 

requirements are shown in Figure 4.5 and outlined in the following subsections. 
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Figure 4.5 – Requirements for the development of the iAtractive process 

4.3.1 Major considerations for developing the iAtractive process 

The major considerations for developing the iAtractive process can be demonstrated by 

using an example scenario as shown in Figure 4.6, where the material is first deposited 

(starting from zero), followed by an inspection and a machining operation. More material 

is subsequently added and removed, and finally the finished part is inspected. It should be 

noted that in more complex studies inspection is required multiple times after an additive 

or machining operation, and different combinations of operations can be obtained 

according to the given part design. 
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Figure 4.6 – An example scenario for part production using the iAtractive process 
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In order to manufacture the final part, the following issues have to be considered: 

(i) The first question is how this process plan is generated. To answer this question, 

the blue part being produced in additive operation I can be seen as a subpart. For 

producing such a subpart, the entire part has to be first decomposed into numbers 

of subparts followed by the determination of their build directions. 

(ii) Having decomposed the part, the next questions would be: which subpart is the 

first subpart to produce (the blue subpart in additive operation I in Figure 4.6); 

which subparts are the following subparts to produce; and in what orientations and 

build directions (the purple subpart in addition operation II). 

(iii) Since the blue subpart is produced in a layer by layer manner and each layer is 

bonded to each other, the process parameters for machining the layered part 

(machining operation I and II) may be different from the parameters used in 

traditional machining scenarios (i.e. from blocks). 

(iv) Given that the deposited features will be finish machined, they have to be bigger 

than their nominal sizes. Due to thermal contraction as well as unknown 

dimensional and positioning errors of the additive process and the machine, an 

accuracy index is required to compensate the errors. 

(v) Due to the temperature difference during the deposition of one subpart onto 

another subpart previously manufactured, the thermal induced stress develops, 

leading to the part distortions (i.e. the purple subpart is added onto the blue subpart 

in addition operation II). Therefore, a solution is required to understand part 

distortion behaviour for achieving high part accuracy. 

(vi) In certain circumstances where a number of process plans are potentially feasible, 

the most appropriate process plan in terms of production time has to be identified. 

Thus, an estimation of production time is needed. 

(vii) Furthermore, if the final part is produced from an existing part, the available 

manufacturing strategies for transforming the existing part into the final part need 

to be investigated, taking into account the capabilities of the FFF and CNC 

machining processes. 

4.3.2 Part manufacture knowledge for the iAtractive process 

The knowledge base is a core part of the iAtractive process, and not only contains material 

fabrication and machining resources including the information of available machines, tools 
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and deposition heads etc., but also contains the material manufacture knowledge that will 

be used in the process planning stage for generating process plans. Although machining 

technology has been well researched (Kalpakjian and Schmid, 2010), the machining 

knowledge for combining processes remains relatively unknown. As a newly developed 

additive process, the FFF capability and its application on the iAtractive process needs to 

be investigated, which in turn will also be used in the process planning stage, in particular 

operation sequencing. Due to the iAtractive process that utilises FFF and CNC machining 

interchangeably, the material delamination behaviour in machining layered parts and the 

material deformation behaviour in depositing new material onto existing parts become the 

major concerns. 

4.3.3 Process planning knowledge for the iAtractive process 

As identified in section 2.5.4, the development of process planning knowledge is the major 

focus in this research. This is because, for transforming a product from its design to 

manufacture stage, process planning acts as an enabler, particularly for the iAtractive 

process production. It specifies appropriate operations and determines operation sequences 

based on a given part design, identifies and selects appropriate process parameters for the 

specific additive and subtractive operations, and determines tool paths for each sequenced 

operation at different production stages. It enables the iAtractive process to flexibly and 

accurately manufacture complex components as well as reuse existing parts. 

Being able to decide, based on the CAD representation of a part, how best to manufacture 

that part utilising the available resources, is a critical aspect of the process planning 

approach. The process plan should address the designed part geometries and the capability 

of FFF and CNC machining. The part can be manufactured in the shortest time possible by 

implementing the generated process plans. Process planning in this research also involves 

the development of decision-making logic, which will be able to provide feasible process 

plans based on various raw materials in terms of shape and size. Moreover, the process 

planning approach should be capable of dealing with feedback obtained from inspection, 

adjusting and regenerating new process plans accordingly. In order to realise these 

functions, a set of rules for utilising the inspection technique will be established. 
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4.4 The Hybrid Manufacturing Experimental Methodology 

To the author’s knowledge, there is also very little research conducted on process planning 

for hybrid processes (see section 3.6.8). Each process planning approach proposed is 

dedicated to the specific hybrid process (Hu and Lee, 2005; Liou et al., 2007; Kerbrat et al., 

2011). Thus, these approaches are not feasible to be adapted for the iAtractive process. As 

a result, the experimental methodology has been designed based on the requirements 

described in section 4.3, identifying the research activities for developing GRP
2
A, FDL 

and the related part manufacturing strategy. It should be noted that this research is limited 

to the development of the iAtractive process together with the process planning technique. 

The methodology is demonstrated in Figure 4.7 and can be split into three major stages, 

which are: 

• Stage 1: Investigation of the part manufacturing strategy for the iAtractive process. 

• Stage 2: Development of GRP
2
A for the manufacture of complex parts. 

• Stage 3: Investigation of FDL for material reuse. 

4.4.1 Stage 1: Investigation of the part manufacturing strategy for the iAtractive 

process 

This stage explores part manufacture knowledge for the iAtractive process, which largely 

involves the investigation of appropriate process parameters, the FFF capability, material 

delamination and deformation behaviours. This knowledge will be used in the process 

planning stage since the generation of process plans highly depends on the individual 

processes capabilities. Stage 1 is comprised of four major phases which are outlined below 

and illustrated in Figure 4.7. 
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Figure 4.7 – The experimental methodology for the development of 

the iAtractive process production 
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i) Accuracy of FFF manufactured parts 

This phase aims to investigate the dimensional and geometrical accuracy of FFF 

manufactured components. Accuracy errors of FFF parts can be divided into errors of the 

FFF machine and thermal contractions. Thermal contractions can alter the geometrical 

attributes of a feature, resulting in actual dimensions that are smaller than the nominal 

dimensions. The FFF machine errors contribute to the majority of accuracy errors of the 

FFF fabricated parts, which will be investigated in section 5.4. When a machining 

operation (i.e. machining operation I) is needed to finish machine the features fabricated in 

additive operation I (as shown in Figure 4.6), accuracy errors of the FFF process needs to 

be considered and compensated in the process planning stage. In addition, for 

manufacturing a feature, it has to be decided whether to use one additive operation or both 

additive and subtractive operations or other combinations of operations at the stage of 

operation selection and sequencing. This is not only dependent on the application 

requirements but also the accuracy and quality of the feature that FFF can produce, which 

will be described in section 5.4.2. 

ii) The FFF process capability of producing overhanging features 

This phase is to identify the FFF capability in building overhangs in terms of overhang 

lengths and inclination angle. This will be used to determine build directions for creating 

features, which will be presented in section 6.5. Moreover, this identified capability also 

determines the constraints that are used in manufacturing strategy selection in FDL, which 

will be described in section 7.4. 

iii) Process parameters for machining of layered parts 

In this phase, the machinability of FFF layered plastic parts made of PLA and the material 

delamination behaviour will be investigated, identifying appropriate machining parameters, 

namely spindle speeds, feed rates and depths of cut, related to friction induced temperature. 

The appropriate combinations of the parameters will be identified for CNC machining 

process (e.g. machining operation I and II in Figure 4.6) in various machining scenarios for 

obtaining high surface quality whilst reducing machining times. 
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iv) Part distortions analysis 

In the iAtractive process, while new material is deposited onto the top of the previously 

built part or machined part (e.g. additive operation II in Figure 4.6), the temperature 

difference between the new material (i.e. the material being extruded with 205°C) and the 

built/machined part (at the room temperature) results in the shrinkage of the newly 

deposited layers, which is the primary factor that leads to warp deformation. A typical 

example is shown in additive operation II and machining operation II in Figure 4.6. The 

deformation behaviour will be explored, taking into account the following factors: 

deposition tool path styles, part geometry, deposition speed, section length and thickness of 

stacking layers and part height. 

4.4.2 Stage 2: Development of GRP
2
A for the manufacture of complex part 

geometries 

This stage is concerned with the development of GRP
2
A for manufacturing complex parts. 

This process planning algorithm is able to generate a static process plan based on a given 

part design and further update the plan based on the feedback of inspection results. 

Therefore, stage 2 can be divided into two major phases, namely, generation of static and 

dynamic process plans. 

i) Generation of static process plans 

The major considerations of generating static process plans are: 

• To be able to determine whether the feature can be solely produced by CNC 

machining by taking cutting tool accessibility into consideration. 

• To be able to decompose complex part features for reducing manufacturing 

difficulties and specify appropriate additive and/or subtractive operations for each 

feature based on the process flexibility and capability identified in stage 1. The 

author wishes to note that the capability of decomposing complex part geometries 

is very important in the process planning algorithm, but this is a major area in its 

own right and is beyond the scope of this research and requires additional 

significant investigation. 
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• To be able to determine operation precedence by applying process constraints 

knowledge (e.g. geometric constraints and technological constraints). 

• To be able to estimate total production times and thereupon sequence operations, 

achieving the shortest amount of production time. 

• To be able to utilise the inspection technique for generating dynamic process plans 

and ascertaining that the dimensions are in tolerances. 

ii) Generation of dynamic process plans 

The dynamic process plans will be generated during production based on the knowledge of 

the static plan generation, according to the feedback obtained from inspection. A dynamic 

process plan is able to deal with the inspection feedback and adjust the corresponding 

static process plan accordingly by adding or removing operations and updating the process 

parameters in the relevant operations. The overall goal of generating dynamic process 

plans is to ensure the accuracy of the final part. 

4.4.3 Stage 3: Investigation of FDL for material reuse 

In this stage, FDL will be developed, showing feasible manufacturing strategies for 

manufacturing a part based on a given existing part. The feasibility of this decision-making 

logic will be demonstrated through a number of examples. The major activities involved in 

this stage are: 

i) Investigation of FDL 

Various prismatic parts in terms of features will be classified and then used in the 

development of the decision-making logic. The dimensions of existing features and final 

part are considered as constraints in the decision-making logic since feasible combinations 

of operations that can be used to further manufacture the existing parts are highly 

dependent on them. The material manufacture knowledge gained in the previous stages 

will also be applied to the decision-making logic. This logic enables available raw material 

(i.e. existing parts/legacy products) to be reused or reincarnated into additional products. 
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ii) Identifying potential deposition nozzle collisions 

Depositing material onto an existing part needs to consider certain factors that are not 

normally taken into consideration for the individual FFF process. The existing features 

together with the dimensions significantly affect the deposition tool path due to potential 

collisions between the deposition nozzle and the existing features. The FFF capability 

identified in stage 1 will be used for avoiding potential deposition nozzle collisions. 

4.5 Summary 

This chapter first proposed the iAtractive process and its specific definition in this research 

followed by the author’s vision and the overall work flow of the iAtractive process 

production. The requirements were then presented, specifying the major functions and 

considerations that are involved in the development of the iAtractive process. An 

experimental methodology has been developed, of which the functional view is depicted as 

an IDEF0 diagram in Figure 4.8. This figure shows the operational structure of the 

methodology with three major stages, which form the basis of the author’s research and are 

described in detail in chapters 5, 6 and 7. 
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Figure 4.8 – Functional overview of the experimental methodology 
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5 Investigation of a part manufacturing strategy for the hybrid 

process 

5.1 Introduction 

In this chapter, the dimensional and geometric accuracy of FFF manufactured parts is first 

evaluated, developing an accuracy index of the FFF process to be incorporated in GRP
2
A. 

The capability of the FFF process on producing overhanging features is explored, which is 

used as the criteria in different elements in GRP
2
A and FDL. The appropriate combinations 

of feeds, speeds and depths of cut (DoC) are experimentally investigated for achieving 

high surface quality in CNC machining of layered parts. Part distortion behaviour in the 

material deposition process is also studied. The work presented in this chapter composes 

the first stage of the hybrid manufacturing experimental methodology, which also becomes 

the basis for GRP
2
A and FDL presented in chapters 6 and 7, respectively. 

5.2 Fused Filament Fabrication Process 

The FFF process utilised in this research is briefly introduced, including its basic working 

principle, hardware and software as well as the available materials and material selection. 

5.2.1 Overview of the process working principle 

One of the current most popular additive manufacturing techniques is Fused Filament 

Fabrication (Terry, 2010), whereby material in filament form is fed into a liquefier 

chamber where it is heated to a semi-liquid state and deposited through a nozzle onto a 

build platform where it quickly solidifies (Jones et al., 2011). In a continuous process, the 

newly deposited material fuses with adjacent material that has already been deposited. The 

deposition nozzle continuously extrudes material and simultaneously moves around on the 

horizontal plane according to specific paths generated based on the part geometry. Once a 

layer has been completely printed, the deposition nozzle moves upwards a certain distance 

(i.e. layer thickness) in the vertical direction and then immediately starts printing a new 

layer onto the top of the previous layer. This process continues until a physical 

representation of the CAD model is fully produced. The schematic of the FFF process is 

depicted in Figure 5.1 and a FFF machine is shown in Figure 5.2 where a heated bed is 

used as the platform holding the part. Moreover, the bed is designed to ensure the part is 
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kept above the Tg of its constituent material, reducing the part warping effect resulting 

from thermal contraction occurred after material extrusion (Nickel et al., 2001). 

 

Figure 5.1 – Working mechanism of the FFF process (RepRap, 2012a) 

 

Figure 5.2 – A FFF machine (RepRap, 2012b) 

In terms of deposition tool path patterns, a deposition head is traversed relative to the 

platform to first create one or more outer shells (defined by the user) before filling this 

shell with an infill hatch. This process is then repeated for subsequent layers. In this 

research, the direction of each layer of infill is perpendicular to the previous layer, 

resulting in a structure with anisotropic material properties. Further in an effort to reduce 

build times and cost, the interior of the component may be manufactured with a different 

level of porosity compared to exposed layers, which also leads to a component with 
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varying mesoscale anisotropic mechanical properties (Lee et al., 2007). The outer shells 

and the infill hatch of a layer of a rectangular block are shown in Figure 5.3. 

Outer 

shells

Infill 

hatch

 

Figure 5.3 – Outer shells and infill hatch 

5.2.2 Hardware and Software 

This non-commercial machine largely consists of stepper motors, threaded rods, a 

deposition head, a heated bed and electronics. Three stepper motors are used in 

conjunction with threaded rods to realise movements in the X, Y and Z directions. The 

deposition head, which is also called extrusion head or extruder, equipped with a stepper 

motor, drives filament into liquefier chamber and extrudes it out of the nozzle. The 

systems electronics receives commands from the computer software and controls the four 

stepper motors, and temperatures of the heated bed and the extrusion nozzle. 

The computer software takes STL files of the objects that the FFF machine is about to print, 

to horizontally slice them into a series of layers before computing the required infill 

patterns; and to save the results as G-Code Numerically Controlled (NC) files that the 

machine expects (Jones et al., 2011). All of the parameters can be individually set in the 

software for specific part designs. 

5.2.3 Available materials and material selection 

A number of materials can be used in the FFF process and the majority of these materials 

falls under the polymer class. Despite the fact that duroplastics have been reported to be 

available for FFF (RepRap, 2012b), by the time that the author started this research, there 

were four thermoplastics and one metal that have been successfully used for certain 

applications. These materials are outlined as follows and the reasons for choosing PLA as 

the main build material is also explained. 
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(i) Polycaprolactone (PCL) 

As the first material tested in the RepRap project (Jones et al., 2011), PCL has a very low 

melting point (i.e. approximately 60°C). However, its low friction makes it difficult to be 

driven into the liquid chamber. More importantly, it is sticky and stringy while it is being 

deposited, resulting in poor quality of finished parts. 

(ii) ABS 

ABS has been widely used in commercial FDM machines (Stratasys, 2012), not only 

because of its low price but also high quality of built parts (e.g. high rigidity, less viscous 

during prototyping). It is noted that ABS can have linear thermal expansion coefficient of 

37.8µstrain°C depending on the degree of polymerisation. This indicates that its 

contraction effect during solidification results in the bottom of the part curling away from 

the base upon which it was built, particularly for large prototypes. The high Tg 

(approximately 110°C) can also contribute to severe warping. Stratasys machine (Stratasys, 

2012) accommodates an oven consistently providing heat flow with the temperature above 

the ABS’s Tg, by which the contraction effect can be significantly reduced. Given that the 

FFF machine is only equipped with a heated bed in order to reduce cost, prototypes made 

from ABS still suffer significant contraction. 

(iii) High Density PolyEthylene (HDPE) 

HDPE, when compared to FDM-friendlier plastics has a very high shrinkage factor upon 

solidification, which directly leads to severe part distortion. Thus, it is not feasible for the 

iAtractive process. 

(iv) Bespoke Alloy 

This bespoke alloy is comprised of Tin, Bismuth and Indium with mass proportion of 

57.98%, 39.9% and 2.1%, respectively (Jones, 2013). Its melting point is approximately 

130 – 150°C, which means this alloy can be directly used with the current deposition head 

design with minimal system changes. However, the quality of parts made of this alloy is 

still under initial test and as a result, it was not chosen to be used in this research. 
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(v) PLA 

PLA has been used in the Replicating Rapid Prototyper (RepRap) project at the University 

of Bath since 2008 (Jones et al., 2011) and its Tg is only 55°C – 60°C and the linear 

thermal expansion coefficient is 126 µstrain°C (NatureWorks, 2012). Due to these 

properties, the contraction effect during cooling can be significantly reduced when using a 

heated bed as the build platform. In addition, PLA adheres to itself strongly when new 

layers are being deposited on top of existing ones. This property makes it be an ideal 

material for the iAtractive process for material reuse application where new material is 

deposited on existing parts. Moreover, PLA parts are less susceptible to delamination 

under stress in the vertical build direction than that of ABS parts. Therefore, PLA is suited 

to the iAtractive process production in which FFF manufactured parts are machined and 

undesired layer delamination is highly unexpected. 

5.3 Definitions of Prismatic Features in this Research 

Although 2½D machining features have been defined and presented in ISO 14649:10 (ISO 

14649:10, 2002), the features referred to in this research are re-defined due to the 

combined nature of CNC machining and FFF processes that are utilised in the iAtractive 

process. Owing to the fundamental differences between FFF and CNC machining, features 

are produced in completely different manners, which could lead to ambiguity while 

allocating and sequencing operations. For example, a pocket can be obtained by removing 

material from a block using CNC machining. However, for the FFF process, material 

cannot be removed from a block but the pocket can be created by adding material. The 

following subsections briefly introduce the definitions of the features and specify the terms 

used to describe the manufacturing of these features. 

5.3.1 Positive feature 

For the FFF process, each feature can be considered to be positive, since the final product 

is manufactured from zero. However, only certain features can be seen as positive for CNC 

machining. In order to avoid definition conflict, this research adopts the definitions of boss, 

pocket, slot, step, hole and planar face in ISO 14649:10 (ISO 14649:10, 2002). As a result, 

a boss can be classified as a positive feature because it is a protrusion relative to the planar 

face. In the iAtractive manufacturing aspect, a boss can be machined from a block by CNC 

machining or can be added/deposited/built upon a horizontal plane by the FFF process. 
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5.3.2 Negative feature 

Pocket, slot, step and hole are categorised as negative features in this research. A pocket 

feature can be produced by removing the material (as shown in Figure 5.4(a)) or by adding 

the material onto a specified area (as shown in Figure 5.4(b)). 

remove

 

add

 
(a) removing material (b) adding material 

Figure 5.4 – Two ways of manufacturing a pocket (a) by CNC machining; (b) by FFF 

5.3.3 Interacting features 

The ability to deal with interacting features has been an informal benchmark for industrial 

acceptability of a feature recognition system (Verma and Rajotia, 2010). For machining 

processes, the feature(s) in Figure 5.5(a) can be recognised as a pocket (Figure 5.5(b)) or 

two slots (Figure 5.5(c)), depending on the recognition methods used. For the purpose of 

facilitating process planning, a feature is only classified as either a positive or negative 

feature in this research. The features in Figure 5.5(a) are positive features and thus are 

considered as four bosses. These four bosses can be manufactured by either building four 

individual bosses on a block or machining a pocket/two slots off. 

 

                      (a)                                      (b)                                           (c) 

Figure 5.5 – An example of interacting features adapted from (Verma and Rajotia, 2010) 
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5.3.4 Overhanging feature 

An overhanging feature example is shown in Figure 5.6. There is no clear definition for 

overhanging features in ISO14649:10 (ISO 14649:10, 2002). Given the working principle 

of the FFF process, overhang refers to cantilever and bridge in this thesis, which is defined 

in Figure 5.7 and the nomenclature is introduced below. 

Overhang 

(unspported)

Build 
direction

 
Figure 5.6 – An overhanging feature example 
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Figure 5.7 – Defining an overhanging feature 
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In Figure 5.7, a part is first sliced into a number of layers (i.e. N layers). The projected area 

in the horizontal plane (i.e. the XY plane) is denoted as S. The projected area of the n
th
 

layer is therefore denoted as Sn. The area and the location of Sn can be obtained by using 

the feature recognition approach proposed by Zhang et al. (2004). In addition, So represents 

the overlapping projected area between the n
th
 and (n+1)

th
 layer, i.e. So = Sn ∩ Sn-1. If Sn > 

Sn-1, Sn is recognised as an overhanging layer due to part of Sn that is deposited without the 

support provided by the layer underneath. The structure could also be an overhang when Sn 

≤ Sn-1, in which case So is smaller than Sn (i.e. So < Sn). While So = Sn, the feature can be a 

pocket, hole, slot, boss or chamfer, which are obviously not overhanging features. 

5.4 Evaluation of Dimensional and Geometric Accuracy of FFF 

Manufactured Parts 

This section evaluates and analyses the variability in the dimensional and geometric 

accuracy of the FFF manufactured parts. The results are used to develop a part accuracy 

index for the process planning algorithm. 

5.4.1 Design of experiments (DoE) for dimensional and geometric accuracy 

evaluation 

In this subsection, the error sources of the FFF process is briefly introduced, three test parts 

and a series of experiments are designed. 

5.4.1.1 Error sources of the FFF process 

A number of factors that contribute to the output accuracy of FFF manufactured parts can 

be categorised as follows: 

(i) CAD/CAM induced errors: 

STL file format used in the FFF process as well as other additive processes causes 

dimensional, geometrical and surface errors, since the three dimensional surfaces of the 

part are represented using approximation of triangular facets (Zhou et al., 2000). This type 

of error cannot be completely eliminated and the majority of the errors stays in sculptured 

surfaces since they are represented as planar triangular patches. Given that this research is 

only limited to prismatic part manufacture, the CAD/CAM induced errors are ignored. 
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(ii) FFF machine errors: 

Errors originating from the FFF machine can be further classified into a series of sources 

such as transmission errors (e.g. stepper motor, gears and pulleys) and extrusion 

mechanism errors (e.g. nozzle diameter and liquefier chamber blockage). In this research, 

this type of error is considered as an individual factor to be investigated for developing the 

part accuracy index. 

(iii) Process parameter errors: 

Process parameters such as layer thickness, raster angles, hatching width and air gap 

individually and interactively affect part accuracy. The dimensional accuracy of a range of 

additive processes has been investigated (Zhou et al., 2000; Dimitrov et al., 2006; Sood et 

al., 2009; Campanelli et al., 2007). Therefore, this research only adopts the parameters 

widely used in the RepRap project, which has been approved to be appropriate in the initial 

tests (RepRap, 2012b). In other words, the errors caused by the process parameters can be 

seen as constant in the experiments presented in section 5.4.2. 

(iv) Material shrinkage errors: 

As introduced in section 5.2.3, the FFF processed part accuracy is a direct result of the 

material properties. The effect of thermal expansion/contraction will be compensated in the 

analysis of the measurement results. 

Based on the above, the part accuracy index of the FFF process to be developed can be 

attributed to the FFF machine and material shrinkage errors. Therefore, test parts are 

designed and introduced in the next subsection. 

5.4.1.2 Test part designs 

Unlike the CNC machining techniques which have generic test parts for machine tool 

evaluation such as the NAS 979 test part (National Aerospace Standard 979, 1969), the test 

parts for additive process were designed for the specific processes. These test part designs 

highly depend on the objectives of the experiments that the designer focuses on. This 

research is targeted at prismatic part manufacture, which is realised by using the hybrid 

process rather than other individual rapid prototyping processes. As a result, the test parts 

for 3DP (Stopp et al., 2008) and SLA (Zhou et al., 2000) are not applicable to this research. 
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Sood et al.’s test part (Sood et al., 2009) for the FDM process is a cube specially designed 

for exploring the process parameter errors rather than dimensional and geometric accuracy. 

The author has thus decided to design three test parts (named test part A, B and C), which 

are shown in Figure 5.8, Figure 5.9 and Figure 5.10, respectively. Through manufacturing 

and measuring these test parts, the part accuracy of the FFF process can be evaluated. 

Due to the FFF machine transmission errors, the part dimensional deviation is likely to 

accumulate while the distance that the deposition nozzle moves increases. Thus, test part A 

and B were designed to include varying lengths in the X, Y and Z directions. With these 

two test part designs, the dimensional accuracy for positive and negative features, and the 

positioning accuracy of the FFF machine can be investigated. Furthermore, the designs 

allow the author to identify whether the FFF machine errors affect the part dimensional 

accuracy in terms of distance that the deposition nozzle travels. Test part A is composed of 

ten stairs with constant thickness of 4mm. The size of the bottom stair is 100mm in length 

and 100 mm in width. Both the length and width of each stair were designed in a 

descending order with 10mm difference to that of the stair underneath. Each stair shares 

the two vertical planes, which aims to simplify the measurement procedures. 

 

Figure 5.8 – Test part A for the evaluation of dimensional accuracy for positive features 

 

Figure 5.9 – Test part B for the evaluation of dimensional accuracy for negative features 
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Test part B consists of ten nested square pockets, each centred about the last, with width 

decreasing in 10mm increments and depth increasing in 4mm increments. The size of the 

biggest pocket (on the top) is 100×100×4mm
3
. Both the length and width of each pocket 

are 10mm shorter than that of the pocket located above. 

 

Figure 5.10 – Test part C for the evaluation of geometric accuracy of the FFF process 

Test part C consists of typical 2½D features, namely planar faces, a boss, a pocket, a step 

and two holes. These features are measured for evaluating the geometric accuracy of the 

FFF manufactured parts. 

5.4.1.3 Experimental design 

The aim of the experiments was to evaluate the accuracy of the FFF manufactured parts 

rather than the importance of the FFF process parameters on the finished parts accuracy. 

Therefore, neither fractional factorial design nor Taguchi design strategy (Ross, 1996) met 

the experimental requirements. Five samples are the minimum quantity recommended in 

order to expect reliable results (BS ISO 5725-1:1994, 1994). Thus, five examples for each 

test part A and B were manufactured. As mentioned before, the FFF machine transmission 

errors are likely to accumulate while the machine is designated to print large prototypes. 

Therefore, the length, width and thickness/depth of each stair were measured using a CMM. 

This was to explore the dimensional accuracy of positive and negative features whilst 

identifying whether the dimensional accuracy varies accordingly when changing the 

distance that the machine moves. The positioning accuracy in the X and Y axes was also 

investigated by measuring the positions of the pockets in test parts B. It is noted that the 

positioning accuracy in the FFF process directly relates to the dimensional accuracy 

because the accuracy of the parts that the machine can produce is dependent on the 

machines movement accuracy. It should also be pointed out that this experimental design 
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was developed to obtain the accuracy information to be used in the ‘feature modification’ 

module, which is included in GRP
2
A (see section 6.6). 

Further to the geometric accuracy, seven test parts C were produced with the same process 

parameters on the same location of the build platform. Concentricity and roundness of the 

holes, perpendicularity and angularity of the bosses, pockets and steps were measured and 

calculated. The flatness of the horizontal surfaces was also identified. 

Based on the dimensional, geometric and positioning accuracy, the part accuracy index has 

been developed and will be presented in section 5.4.4. 

5.4.2 Experimental results and discussion 

A series of test parts were solely fabricated by the FFF process and then measured on a 

CMM in a temperature controlled environment. Given that the linear contraction cannot be 

completely eliminated once the parts are taken off the heated bed, the measurement results 

were post-processed by removing the deviations caused by the contraction effect so that 

the FFF machine and process parameter errors can be evaluated. The linear thermal 

expansion coefficient of the specific PLA used in this study is 126µstrain°C. The 

deviations caused by the contraction can be calculated by using Equation 5.1 below: 

Equation 5.1      0( )g idl T T L     

Where, dl is the change in length (unit: mm), Tg is the glass transition temperature (°C), Ti 

is the inspection room temperature, α is the coefficient of linear thermal expansion and L0 

is the initial length. Note that, in this study, the length in X, Y and Z represents the length, 

width and depth/height, respectively. 

5.4.2.1 Dimensional and positioning accuracy 

Five samples for each test part A and B were fabricated. The length, width and 

depth/height were measured three times for each sample and the mean was calculated as 

the representative value for each of these dimensions. The error and percentage error in 

dimensions were calculated using Equation 5.2 and Equation 5.3, respectively, which aims 

to identify whether the error accumulates while the machine moves a certain specified 

distance. 
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Equation 5.2          CADX X X    

Equation 5.3   % 100CAD

CAD

X X
X

X


    

where X is the measured value of length or width or depth/height, XCAD denotes the 

corresponding value in the CAD model (i.e. nominal dimension), ∆X and %∆X stand for 

the error and percentage error in the X axis. ∆Y, ∆Z, %∆Y and %∆Z were calculated in the 

same way for width and depth/height. 

The percentage dimensional error in length and width for positive and negative features are 

plotted in Figure 5.11 and Figure 5.12, respectively. It was found that the percentage 

dimensional error tends to decrease while the distance that deposition nozzle travels 

increases. This percentage error shows similar trend in both the X and Y axes. The 

percentage error becomes consistent when printing a part where the length/width is more 

than 40mm. This indicates that the dimensional error does not accumulate while increasing 

the machine movement distance. On the other hand, the FFF process is less accurate as 

parts become smaller (less than 20×20mm
2
 in the XY plane). The motor synchronisation 

issues (e.g. jerk, back lash and hysteresis), the low accuracy pulleys and the driving belts 

may contribute to the decreased part accuracy. It was also observed that the percentage 

dimensional error of a typical FFF part is more than 20% while producing features with 

less than 5mm. This is because, in this case, the majority of the error source is not the FFF 

machine error but the thermally induced error. For printing small features, the cycle time 

for each layer can be as short as a few seconds. This essentially means the new molten 

material is continuously laid down onto the deposited material before the deposited 

material completely cools down below Tg. In other words, the uncooled material can 

deform when a force acts upon it. Each continuous deposition cycle takes place in a very 

short period of time (less than 10s). As a result, the weight of the newly deposited material 

accumulates quickly and the gravity towards the previously deposited material results in 

part deformation. This also explains the diminished dimensional accuracy in printing small 

parts and cone geometries. The percentage dimensional error in the Z axis shows similar 

varying trends and it is thus not shown in Figure 5.11 and Figure 5.12 but is included in 

section 5.4.4. 
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Figure 5.11 – The percentage dimensional error for positive features 

 

 

Figure 5.12 – The percentage dimensional error for negative features 

For the five test parts B, the distance between each XZ vertical plane (on each pocket) and 

the origin XZ plane where the machine started printing was measured. The distance 

between each YZ plane and original YZ plane was also measured, as shown in Figure 5.13, 

which is the top view of test part B. 
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Figure 5.13 – The measured vertical planes in a test part B 

The measurement results were post-processed using Equation 5.2 and Equation 5.3. The 

varying trend of the positioning error with differing distance that the machine moved was 

examined. The percentage positioning error in the X and Y directions (horizontal plane) 

are plotted in Figure 5.14, which illustrates that the percentage positioning error in both the 

X and Y directions decrease with increasing machine travel distance. In each case, the 

percentage error is positive (>0), indicating that the machine moved beyond the point that 

it was initially sent to. However, it should be noted that, for the FFF process, the 

positioning error also contributes to the dimensional error since the actual feature 

dimensions are dependent on how accurately the position of the deposition nozzle may be 

controlled. The aim of using this method identified in this section is to develop an accuracy 

index to be used in GRP
2
A. It is worth mentioning that while a new feature is added onto a 

produced feature, the actual height of the previous feature has to be measured. This height 

will determine the layer thickness to be used in depositing the new feature, of which the 

coordinate of the start point (in the Z axis) is the actual absolute height of the existing 

feature measured in the inspection. The details will be provided in section 6.7.2. As a result, 

there is no need to identify the positioning error in the Z axis. Moreover, the most 

important factors that affect the part accuracy – in particular, the accuracy of the features 

that are added on the existing part – are the errors in the XY plane. 
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Figure 5.14 – The percentage positioning error in the X and Y directions 

5.4.2.2 Geometric accuracy 

The geometric accuracy of FFF manufactured parts has been explored and reported under 

the proceeding subheadings below: 

(i) Concentricity 

As parts are built layer by layer, the entire process for fabricating a part can be viewed as a 

number of consecutive operations. As a result, it is possible that the diameter of a hole 

varies at different depths. Two holes were designed in test part C, which are named Hole 1 

and Hole 2 on the left and right hand side, respectively, in Figure 5.10. The diameters of 

the holes at different depths were measured in order to investigate the variation of the 

diameters as well as the concentricity of the holes. Three circles for each hole were 

selected, representing the diameters of the holes at three different depths. 

 

Figure 5.15 – Concentricity of the holes measured at three different depths 
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Figure 5.15 shows the concentricity of Hole 1 and 2 at three different depths. It can be 

observed that the maximum discrepancy was 0.340 mm between circle 1 and 3 in Hole 1. 

There is no trend that has been found related to the concentricity and depth. The majority 

of the variation in concentricity is caused by the diameter discrepancy in different depths, 

which is depicted in Figure 5.16 below. 

 

Figure 5.16 – Diameters of Hole 2 at three different depths 

Figure 5.16 shows that the diameters vary in different depths where the maximum 

discrepancy is 0.177 mm and the minimum is 0.024 mm. This implies that the consecutive 

deposition operations are highly unrepeatable and unstable in terms of geometric accuracy. 

In turn, there is no need to identify the roundness of the holes due to the high inaccuracy of 

the holes that the FFF process produced. This result also suggests that a finishing operation 

is required in the iAtractive process for achieving high accuracy of holes. 

(ii) Angularity 

The angle between two adjacent vertical planes on the boss, pocket, and step on each test 

part C was measured. Figure 5.17 plots the nominal and actual angles. It is identified that 

the angles for the pockets and the steps in particular, are out of tolerance (tolerance: ±0.8º). 

It is also noted that for all of the test parts C, the angles for the bosses, which are positive 

features, are in tolerance, whereas the angles for the negative features are out of tolerance. 
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Figure 5.17 – Angles between two adjacent vertical planes 

(iii) Flatness 

In order to identify the flatness of the horizontal surface, two random areas on the same 

plane on each test part were selected and the angle between them was measured. The angle 

between two random areas on the horizontal plane located on the boss for each test part C 

is shown in Figure 5.18, where the discrepancy is within +/-0.608°, which can be 

considered as satisfactory for the FFF process in this research. This essentially indicates 

that a face milling operation for each layer is not necessarily required if material is to be 

deposited continuously onto the surface with the same build direction. This significantly 

reduces production times compared to that of the process plans proposed by Karunakaran 

et al. (2010), in which each layer has to be face milled before beginning the deposition for 

the next layer. More importantly, this result indicates that neighbouring subparts can be 

merged in the process planning stage, which will be presented in section 6.5.3. 

 

Figure 5.18 – Angle between two random areas on the horizontal plane of the boss 
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(iv) Perpendicularity 

Due to the flatness of the horizontal planes that is considered to be satisfactory for the 

iAtractive process, perpendicularity can be simply identified by measuring the angles 

between the two adjacent vertical and horizontal planes. The graph presented in Figure 

5.19 shows the angles between the horizontal and vertical planes for the boss, pocket and 

step on each test part C. Significant fluctuation was observed in the angles for the negative 

features (i.e. the pockets and the steps in particular). By contrast, the FFF process is able to 

produce positive features, achieving better perpendicularity than that of negative features. 

 

Figure 5.19 – Perpendicularity for boss, pocket and step 

5.4.3 Findings and suggestions for the iAtractive process planning 

Based on the results and discussion above, the following findings are obtained: 

• In the evaluation of dimensional accuracy, it was found that the percentage 

dimensional error in both the X and Y axes tends to decrease as parts become larger. 

The thermally induced dimensional error primarily results in the diminished accuracy, 

implying that small subparts (10×10×8mm
3
) is detrimental and should be avoided in 

part decomposition (section 6.4). This is because the highly inaccurate deposited small 

subparts may lead to print failure or undesired part quality (e.g. dimensional accuracy 

and layer bonding strength) in depositing new subparts. 
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• In terms of geometric accuracy, the flatness of the surfaces on the horizontal plane has 

been identified as satisfactory, which indicates that face milling for each layer 

(Karunakaran et al., 2010) is not required for manufacturing fully dense parts (100% 

density, no porous structure). This finding is also used in ‘subpart merging’ (section 

6.5.3) and ‘operation sequencing’ (section 6.5.5) in GRP
2
A. 

• The deposition operation for each layer is not highly repeatable, which is reflected in 

the concentricity of the holes, implying that a finishing operation must be scheduled 

after the additive operation for producing final features (introduced in section 6.5.5). 

The FFF process is able to accurately produce positive features rather than negative 

features in terms of angularity and perpendicularity. 

5.4.4 Development of an accuracy index of the FFF process 

Figure 5.20 gives an example (top view) of an actual fabricated feature (blue lines) as 

compared to the designed feature (red dashed lines), when a boss is added onto a 

rectangular block (black lines). Hence, the relevant features (the boss in this example) have 

to be modified accordingly to compensate for the dimensional and positioning errors, 

ensuring that the real positive features fabricated are slightly bigger than their nominal 

dimensions, and the real negative features are, on the other hand, slightly smaller than the 

nominals. This allows the machining process to finish machine the part, achieving the 

required surface quality and accuracy. As a result, a component named ‘feature 

modification’ has been designed in GRP
2
A, which will be presented in section 6.6. An 

accuracy index is thereby developed, as shown in Table 5.1. A range of 10 dimensions in 

the X, Y and Z axes are given. These by no means represent a comprehensive list of part 

dimensions that the FFF process is able to produce, but provide a suitable range based on 

the working volume of the specific FFF machine used in this research and the most 

common part size for the FFF process (Gibson et al., 2009). These values only hold true 

for certain additive process parameters such as deposition speed and infill hatch. The 

coordinates (positions) of each feature in ‘feature modification’ component can then be 

obtained using Equation 5.4 and referring to Table 5.1. 
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Figure 5.20 – Dimensional and positioning deviations in depositing a boss onto a block 

Equation 5.4 

1 2 1

1 2 1
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x x x x x x x
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C P PE dl C C ND DE dl

C P PE dl C C ND DE dl

C C C C ND DE dl

        


       


     

 

Where, (Px, Py) is the coordinate of the start point of a line. It is the nominal value and is 

also the start point that the nozzle of the additive head should position for printing. Cx1 and 

Cx2 denote the coordinates of the start point and the end point of the corresponding line in 

the modified CAD model, respectively, which are the coordinates to be used in the 

production. PE% is the percentage positioning error and DE% is the percentage 

dimensional error, which are referred to Table 5.1. In this table, P represents positive 

feature, N represents negative feature and dl is the linear dimension change in length due to 

thermal contraction. Given that a new feature is added onto another feature previously 

manufactured, the Z value of the start point of a line on the new feature (Cz1) depends on 

the actual absolute coordinate of the end point of the line (denoted by Cz'2) on the previous 

feature. For the combinations of operators such as ±, use the upper operator for positive 

features, and the lower operator for negative features. This is because printed positive 

feature should be bigger than its nominal size, whereas printed negative feature should be 

smaller than the nominal size. All units are in mm. 
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Table 5.1 – The accuracy index for the additive process integrated in the iAtractive process 

 
Dimensions of the features that the FFF process produces in the XY plane (mm) 

10 20 30 40 50 60 70 80 90 100 

Dimensional 
error (DEx) in 
X axis (%)_P 

5.364 -0.599 0.417 0.121 0.192 0.590 0.574 0.402 0.507 0.446 

Dimensional 
error (DEy) in 
Y axis (%)_P 

6.001 0.657 0.674 0.641 0.627 0.534 0.521 0.527 0.343 0.215 

Dimensional 
error (DEx) in 
X axis (%)_N 

-3.011 -1.604 -1.470 0.180 0.125 0.038 0.152 0.029 0.212 0.349 

Dimensional 
error (DEy) in 
Y axis (%)_N 

-3.413 -1.102 -0.499 0.054 0.044 -0.180 -0.039 0.029 0.008 0.141 

 

 
Dimensions of the features that the FFF process produces in the XY plane (mm) 

5 10 15 20 25 30 35 40 45 50 

Positioning 
error (PEx) in 

X axis (%) 

4.661 2.450 2.561 1.930 0.560 0.618 0.267 0.381 0.216 0.105 

Positioning 
error (PEy) in 

Y axis (%) 

5.063 2.751 2.360 1.679 1.337 1.054 0.497 0.314 0.194 0.185 

 

 
Dimensions of the features that the FFF process produces in the Z axis (mm) 

4 8 12 16 20 24 28 32 36 40 

Dimensional 
error (DEz) in 

Z axis (%) 

1.596 1.721 0.981 0.946 0.440 0.395 0.495 0.810 0.627 -0.122 

It should also be noted that the method proposed by Jeng and Lin (2001), where the part is 

simply scaled up 2-3%, has been proved to be incorrect. This is because scaling up 

negative features (e.g. pocket) leads to less material being deposited, which makes the 

negative features bigger than the nominal sizes. In this case, they cannot be further 

machined. 

5.5 Investigation of FFF Capability of Producing Overhanging Features 

In the initial tests, it was found that FFF is able to produce certain overhanging features 

without support. However, this capability still remains under developed. Thus, the present 

section identifies this capability, which more importantly, establishes the criteria enabling 
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GRP
2
A and FDL to determine operations and parameters to manufacture/remanufacture 

parts/existing parts. 

The author categorises overhanging features as bridge and cantilever, as depicted in Figure 

5.21. The aims of this subsection are to explore the maximum distance between two 

adjacent bridge piers as well as the minimum inclination angle of cantilever that the FFF 

process can produce satisfactorily. 

 
(a)                                                          (b) 

Figure 5.21 – Two types of overhanging feature (a) bridge (b) cantilever 

To achieve the aims, the tests were carried out in a simple manner, where – (1) the distance 

between two bridge piers was increased by 1mm each time; (2) the inclination angle was 

decreased by 5° each time – until print failure was observed. 

5.5.1 Printing bridges and recovery layers 

The deposition nozzle traverses two adjacent piers whilst keeping depositing material 

continuously upon the air in printing a bridge, which results in a number of layers that are 

not flat (from layer i to i+3), as demonstrated in Figure 5.22. 
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Figure 5.22 – Recovery layers 
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Layer i is the first layer built upon the air; layer i+1 is the second layer built on the top of 

layer i. Due to no support that exists underneath, the entire layer i cannot be fully formed, 

leaving some random gaps between the two piers. This leads to part of layer i+1 that 

cannot be fully formed and similarly for the layers deposited afterwards (e.g. layer i+2 and 

i+3). After printing a number of layers, the gaps have been gradually filled and the further 

layers that are deposited (e.g. layer i+4 in this example) become flat. Layers i, i+1, i+2 

and i+3 are thereby called recovery layers. Due to the existence of random gaps, the 

structure of recovery layers is porous. The print quality of layers i, i+1, i+2 and i+3 is thus 

considered to be abnormal and the print quality of layers i+4 and onwards is considered to 

be normal. 

The tests started from printing bridge lengths of 5mm. The FFF machine continuously 

printed the next bridge with 1mm increment in length if the previous print was successful. 

The print failed when the machine attempted to produce the bridge with the length of 

24mm. For the stability and repeatability concerns, three identical sets of tests were 

conducted and the largest number of recovery layers for each bridge length was recorded. 

Table 5.2 presents the number of recovery layers required in relation to the bridge length. 

It should be noted that the results obtained from the tests were based on the certain FFF 

process parameters such as material extrusion rate, travel speed of the deposition nozzle 

and the extrusion temperature etc. The change of any of the process parameters may 

produce different results. In these tests, the process parameters used are the most 

commonly used values and readers are referred to RepRap (2012b). These parameters were 

kept consistent in other experiments throughout this research. 

Table 5.2 – Bridge lengths and recovery layers 

Bridge length (D) (mm) Number of recovery layers (R) 

5, 6, 7 2 

8, 9, 10, 11, 12 4 

13, 14, 15, 16 5 

17, 18, 19, 20, 21, 22, 23 7 

> 23 Failed 

As shown in Figure 5.22, owing to the porosity and low accuracy of recovery layers, they 

have to be removed, which brings another issue, namely, the bridge thickness may be less 

than its designed thickness. Thereupon, it is necessary to modify the CAD model by either 
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altering the height of the bridge according to Table 5.2 in the ‘feature modification’ 

element (section 6.6) or adding support material. 

5.5.2 Printing cantilevers 

Similar to the tests carried out in section 5.5.1, the first trial for identifying the FFF 

capability in terms of printing cantilevers was to produce a cantilever with an inclination 

angle of 80°. A series of trials were conducted, setting up the inclination angle decreasing 

in 5° decrements for each consecutive trial until the cantilever could not be effectively 

generated. Again, three sets of trials were carried out, resulting in the minimum inclination 

angle applicable to the FFF process being 60°. Sells (2009) identified that the FFF process 

is able to produce cantilevers of minimum 45° angle, but it was observed in the trials that 

the entire printing process was unstable and print failure took place occasionally. This is 

because a large area of layers was printed in air as illustrated in Figure 5.23. In addition, 

producing 45°cantilevers requires reducing the nozzle travel speed and the nozzle 

temperature, which leads to a quality change in producing non-overhanging features. 

Based on the above reason, 60° is considered to be the minimum inclination angle for the 

FFF process. 

60° 45° 

Overhanging 
area

Overhanging 
area

Layer

 

Figure 5.23 – Manufacturing overhanging features with different inclination angles 

5.6 Investigation of Machinability of Plastic Layered Parts 

This section investigates the machinability of FFF layered parts, made of PLA, and the 

delamination behaviour, identifying the appropriate machining parameters, namely spindle 

speed, feed rate and depth of cut, related to friction induced temperature. 
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5.6.1 Significance of machining process parameters for the iAtractive process 

Extensive research has been conducted concentrating on the machining of hard materials, 

paying less attention on soft material machining. However, machining additively 

manufactured plastic parts presents a number of challenges as identified by Zhu et al. 

(2012). The parts are built layer by layer along the build direction in different alignment of 

the polymer chain. As a result, the resultant material only has approximately 1/3 the 

ductility relative to the natural material (Bellini and Guceri, 2003), which in turn increases 

brittleness. This increased brittleness implies that it makes material – that is not expected 

to be removed – easier to chip away during machining. In other words, while machining 

the n
th
 layer, the (n-1)

th
 layer (the layer located under the n

th
 layer) tends to be taken off 

together with the n
th
 layer. A CNC machining process is employed to ensure high accuracy 

and low surface roughness, whereas adopting inappropriate process parameters is, instead, 

likely to damage the surface quality. In addition, different combinations of the process 

parameters are required in order to deal with different applications (e.g. roughing/finishing 

subparts/final parts/existing parts). Moreover, the low melting temperature indicates that it 

makes the surface being machined easier to melt, leading to surface degradation and 

increases in surface roughness. Therefore, there is a need to investigate the machinability 

of layered parts and identify the appropriate process parameters in terms of surface 

roughness for the iAtractive process. 

5.6.2 Design of experiments for machining of layered parts 

The success of machining experimentation relies on the selection of appropriate machining 

variables and their interactions. Three parameters were selected, namely feedrate, spindle 

speed and depth of cut. This is due to the fact that they are the most accessible factors, 

which directly affect the geometric accuracy and quality of a machined part (Dhokia et al., 

2011). Moreover, these three parameters have been used in the experiments for machining 

plastics i.e. polypropylene and the results show significant effect on surface roughness 

(Dhokia et al., 2008). 

As the aim of the experiments was to identify the appropriate parameters for machining of 

layered parts for the iAtractive process, a standard approach for this purpose is to use the 

full factorial design. Given that there are only three factors to be investigated, the full 

factorial method is acceptable if each of the factors consists of no more than four levels. 
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Both the literature on machining of hard materials (Kumar and Choudhury, 2008) and DoE 

strategies (Holman, 2001) suggest that three levels (i.e. high, medium and low) are widely 

used and by doing so, the significance of each individual factors and their interactions can 

be identified. Based on the above reasons, the full factorial design was used. The next step 

was to determine the levels of the factors to be examined. 

There is already a vast array of research on appropriate machining parameters in the metal 

cutting domain (ToloueiRad and Bidhendi, 1997). However, as already documented, there 

is virtually no data on machining of plastic layered parts. In this case, spindle speed 

(revs/min) has to be determined from the following standard cutting equation (Kalpakjian 

and Schmid, 2010), where v is the cutting speed (m/min) and d is the diameter of the 

cutting tool (mm): 

Equation 5.5          
1000 v

rpm
d


  

Feedrate can then be obtained as follows: 

Equation 5.6       FR rpm T CL    

where, FR is the feed rate (mm/min), T is the number of teeth and CL is the chip load 

(mm/tooth). 

In order to calculate spindle speed and feedrate, cutting tool and cutting speed should be 

decided first. A 6mm 2 flute cutter with approximate chip load of between 0.002 and 

0.021mm/tooth was taken from the Onsrud cutting tool data catalogue (Onsrud, 2011) and 

it was used in all the cutting experiments. Obviously there is a large range of tooling 

options available for CNC machining of different materials. Due to FFF manufactured 

parts being relatively small as well as prismatic parts that have been identified as final 

parts in section 2.5, a 6mm diameter solid carbide slot mill cutter was selected. Regarding 

the chip load selection, it was difficult to produce more accurate chip load characteristic 

since this can only be achieved by carrying out experiments using dynamometers, which is 

considered to be outside the research scope. Thus, three different chip loads have been 

chosen i.e. 0.002, 0.012 and 0.021mm/tooth. 
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After defining the cutter, the spindle speed and feedrate can be determined. However, the 

calculation results show that theoretical feedrate is not applicable to real machining 

scenarios. One example is given below. 

Spindle speed: 
1000 1000 1000

5305.2
3.14159 6

v
rpm

d

 
  


 (revs/min) 

Feedrate: 5305.2 2 0.002 21.2FR rpm T CL       (mm/min) 

This slow feedrate indicates long engagement time at the point of cut, which allows the 

heat to build up leading to undesired material deformation and poor quality machined 

surfaces. Therefore, empirical data was used based on the DoE strategy. The feedrate was 

within the reasonable range for machining of soft materials (Dhokia et al., 2008). Depth of 

cut was chosen according to the layer thickness, which was 0.25mm/per layer. The limiting 

factor was the vertical machining centres 8000rpm maximum spindle speed. Hence, 1000, 

4000 and 8000rpm were selected, representing low, medium and high levels, respectively. 

The full factorial design method was applied, giving a total of 36 experiments, which are 

listed in Table 5.3. Slot milling experiments were conducted since the focus of this 

research is laid on prismatic parts. In order to further explore the effect of friction-induced 

temperature, these slot-milling experiments were carried out in dry cutting conditions. 

Having identified the appropriate machining parameters in the dry cutting conditions, 

another set of wet cutting experiments was carried out, using the appropriate machining 

parameters identified above, to compare the surface roughness obtained in dry and wet 

cutting conditions. 

5.6.3 Experimental results and discussion 

Fully dense PLA blocks were manufactured by using the FFF process in a 45º raster style 

tool path strategy. Slot milling experiments in dry cutting conditions were conducted and 

Figure 5.24 shows six slots of the total 36 slots. The surface roughness was measured on a 

laser profilometer as shown in Figure 5.25, which is a non-contact measuring instrument. 

The laser scans the surface of the slot while the surface is being moved relative to the laser. 

By analysing/post-processing the light interference signals sent back to the profilometer 

detector, the surface roughness is obtained. The delamination behaviour and the melted 

surfaces were observed and are analysed below. 
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Table 5.3 – Design of experiments generated output for the machining of layered parts 

Experiment 

number 
Feed 

(mm/min) 
Speed 

(rpm) 

Depth 

of cut 

(mm) 
 

Experiment 

number 
Feed 

(mm/min) 
Speed 

(rpm) 

Depth 

of cut 

(mm) 

1 1500 1000 0.25  19 2500 4000 1 

2 2000 1000 0.25  20 3000 4000 1 

3 2500 1000 0.25  21 1500 8000 1 

4 3000 1000 0.25  22 2000 8000 1 

5 1500 4000 0.25  23 2500 8000 1 

6 2000 4000 0.25  24 3000 8000 1 

7 2500 4000 0.25  25 1500 1000 2 

8 3000 4000 0.25  26 2000 1000 2 

9 1500 8000 0.25  27 2500 1000 2 

10 2000 8000 0.25  28 3000 1000 2 

11 2500 8000 0.25  29 1500 4000 2 

12 3000 8000 0.25  30 2000 4000 2 

13 1500 1000 1  31 2500 4000 2 

14 2000 1000 1  32 3000 4000 2 

15 2500 1000 1  33 1500 8000 2 

16 3000 1000 1  34 2000 8000 2 

17 1500 4000 1  35 2500 8000 2 

18 2000 4000 1  36 3000 8000 2 

 

 

Figure 5.24 – Six slots of the total 36 slots in the dry slot milling experiments 

 

Figure 5.25 – The laser profilometer 
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Variations in the process parameters i.e. speed, feed and DoC affect the surface 

characteristic of the machined slots. From Figure 5.26, it can be identified that the surface 

roughness is lowest at the maximum spindle speed, maximum feed and minimum DoC. 

Although there is no varying pattern observed with regard to the relationship of variation 

of DoC and surface roughness, the surface roughness is consistent for each depth of cut. 

 

Figure 5.26 – Variation of surface roughness with feed and DoC 

at the maximum spindle speed 

Figure 5.27 also supports the fact that the surface roughness is the lowest at a DoC of 

0.25mm rather than 1mm or 2mm. Figure 5.26 and Figure 5.27 also illustrate that neither 

low spindle speed (e.g. 1000rpm) nor is high spindle speed (e.g. 8000rpm) beneficial in 

terms of surface roughness. On the other hand, using spindle speeds in an intermediate 

range between the maximum and minimum such as 4000rpm is most likely to achieve 

better surface quality. This is partially due to using high speed and feed that are likely to 

generate a greater degree of friction and friction induced heat, leading to part deformation 

and subsequently an increased surface roughness. In particular, the heat generated has 

significant effect on the machining of PLA, of which the melting point is relatively low at 

195°C. From this perspective, a lower DoC is recommended as less material is removed 

during machining, which facilitates heat release and in turn reduces the temperature of the 

cutting edge and cutting zone. 
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Figure 5.27 – Variation of surface roughness with speed and DoC at the maximum feed 

Feedrate is one of the dominant factors that determine machining times since it directly 

specifies the moving speed of the cutting tool relative to the worktable. For reducing 

production times in the iAtractive process, appropriate feedrate needs to be identified. 

Thus, the analysis of variance (ANOVA) technique was used and the results are shown in 

Table 5.4. 

Table 5.4 – ANOVA table for surface roughness analysis 

Source DOF 
Sum of 

squares (SS) 

Adj Mean 

square (MS) 
F P 

Feed (A) 3 2.78 0.93 0.18 0.91 

Speed (B) 2 22.72 11.36 2.22 0.15 

DoC (C) 2 184.09 92.05 17.99 <0.001 

AB 6 79.93 13.32 2.60 0.08 

AC 6 41.49 6.92 1.35 0.31 

BC 4 45.30 11.33 2.21 0.13 

Error 12 61.41 5.12   

Total 35 437.73    

Table 5.4 indicates that depth of cut is the most important factor that determines surface 

roughness. The change of feedrate has the smallest impact on surface quality as compared 

to speed and DoC, implying that increasing feedrate is a feasible way of significantly 

reducing machining time without compromising on surface quality. This finding is very 

useful for process planning since a given part is decomposed into a number of subparts, on 

which more material will be added. A high feedrate can be used in the machining of 

subpart surfaces which are not the exposed surfaces on the final part. Although the surface 

roughness is relatively higher than that of using low feedrates, it is still considered as 

adequate for acting as a build platform for the succeeding deposition operations (i.e. Ra < 
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16µm). However, it should also be pointed out that the effect caused by the combination of 

feed and speed is the second significant factor that leads to the variation in surface 

roughness. The values of R
2
 (i.e. 86.0%) and (R

2
)adj (i.e. 59.1%) indicate that the surface 

roughness of the machined layered part does not follow a clear trend. Therefore it is worth 

identifying the appropriate combinations of feed, speed and DoC. The effects of the 

individual factors are thus plotted, as shown in Figure 5.28. The three points shown in each 

plot of the three control factors represent the corresponding measured surface roughness 

values while such a factor was set at different levels (i.e. from low to high), respectively. 

The plots illustrate that while applying low DoCs, the surface roughness is significantly 

lower than that of high DoCs. The medium level of speed is suggested. Unlike the 

assumption proposed in the DoE, high feeds do not directly contribute to the decreased 

surface roughness, whereas, using low feeds tend to obtain better surface quality. 

 

Figure 5.28 – The main effects plots for surface roughness 

The effects of factor interactions are plotted in Figure 5.29, where each block represents 

the effect of the interaction of two factors. 8, 12 and 16µm are the measured surface 

roughness; 1000, 4000 and 8000rpm are spindle speed; 1500, 2000, 2500 and 

3000mm/min are feedrate. The best combination of each two factors in terms of surface 

finish can be identified by referring to the corresponding block. For example, in block 

L3_C1, it is advisable to use 0.25mm DoC and 3000mm/min feed because it can produce 

the lowest surface roughness. Similarly, using a DoC of 0.25mm and a spindle speed of 

4000rpm is recommended as indicated in block L3_C2. For certain scenarios where 
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machining time is the primary consideration, parts can be beneficial from being produced 

by using 3000mm/min and 4000rpm (as demonstrated in block L2_C1). A speed of 

1000rpm should be avoided because the surface finish will be significantly diminished 

while increasing either feed or DoC (as shown in block L2_C1 and L2_C3). By 

considering all the effects of each two factor interaction as well as the consistency of 

surface finish that can be obtained by using the process parameters, the following process 

parameters in Table 5.5 are suggested for different applications. 

 

Figure 5.29 – Effects of factor interactions in machining of plastic layered parts 

Table 5.5 – Recommended machining parameters for dry cutting 
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Given that the friction at the point of cut increases as DoC increases, the increased DoC 

has the potential to increase the amount of heat generated as a result of friction, which 

possibly leads to the increase in surface roughness. Therefore, a set of slot milling 

experiments were conducted on both dry and wet cutting conditions by using the 

appropriate machining parameters identified above. Figure 5.30 shows the detailed surface 

characteristics while using a speed of 4000rpm, feed of 1500mm/min and DoC of 0.25mm 

with coolant. Figure 5.31 compares the surface roughness of the machined slots with and 

without coolant during the machining operation with speed 4000rpm, feed 1000 – 

3000mm/min and DoC 0.25mm. The significantly improved surface quality demonstrates 

that heat is a major factor affecting the machined surface quality. 

 

Figure 5.30 – Surface characteristic in speed 4000rpm, feed 1500mm/min and DoC 

0.25mm with coolant 

 

Figure 5.31 – Comparison of surface roughness with/without coolant during machining 
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The reason for this is that PLA is an amorphous plastic, which essentially implies that even 

at temperatures below their melting point they can substantially soften at temperatures 

above their Tg. This is basically the temperature at which they can no longer withstand 

relatively small amount of stress. Whilst the melting temperature of PLA is technically 

195ºC, the key temperature is actually the Tg which is approximately 50 – 60ºC. With the 

absence of coolant, the temperature of the material surface being machined is much higher 

than 60ºC, leading to the degradation of the surface quality. This is also the reason why the 

bed temperature is 60ºC and why it stops the contraction and warping effects. Hence, this 

property of PLA makes the thermal control whilst milling even more important. Above 50 

– 60ºC the part will become soft and just deform rather than allow material to be removed.  

5.6.4 Findings and suggestions for the iAtractive process planning 

This section has explored the machinability of additively manufactured parts and identified 

the appropriate machining parameters and their combinations. The surface roughness 

measurement results indicate that selecting low DoCs (e.g. 0.25mm) is more likely to 

obtain less surface roughness. A spindle speed of 4000 – 5000 rpm is recommended and a 

high feed is feasible for reducing machining times whilst not significantly diminishing 

surface quality. Different parameter combinations are provided in Table 5.5 for machining 

parts in various stages of the iAtractive process. In addition, friction induced heat is the 

major factor that affects surface roughness and thus, using coolant in the finishing 

operation is required. The above findings and suggestions become the basis for the 

iAtractive process and GRP
2
A described in chapter 6. 

5.7 Analysis of Part Distortions 

This section starts with the theoretical analysis of residual stress induced warping. Based 

on the theoretical analysis, the experiments were designed and carried out. The distortions 

of the test parts were measured on a CMM and were then statistically analysed, identifying 

the relationship between the distortion behaviour and the iAtractive process parameters. 

5.7.1 The effects of part distortions on the iAtractive process 

One of the major advantages of the iAtractive process is the capability to flexibly and 

accurately manufacture complex parts. To realise this capability, the sequenced additive, 

subtractive and inspection operations are required to be carried out interchangeably. 
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Another prominent advantage is that the iAtractive process is able to remanufacture and 

reincarnate existing part into another part. In both cases, material is added onto the part 

that has previously been built or machined. Due to temperature gradients involved in the 

FFF deposition process, thermal stresses develop (Nickel et al., 2001). These stresses arise 

from the contraction associated with the deposition of each layer, resulting in distortions or 

even failure of the deposition process. The previously deposited, machined part, existing 

part or legacy product (for convenience, all of them are seen as existing parts) is 

considered as being in a room temperature state (20ºC). This is because warming it up to 

the Tg is highly time consuming, which significantly increases the production time. More 

importantly, even though the existing part has been placed and heated on the heated bed of 

the FFF machine, it is highly unlikely that the heat can be equally distributed in the entire 

existing part, achieving a constant temperature due to thermal conduction as well as the 

part geometry. Moreover, once the existing part has been heated, the temperature 

difference between its bottom and top leads to part distortion behaviour being even more 

complicated to quantify. As a new additive operation starts, bonding between the newly 

deposited layer and the previous layer takes place by local re-melting of previously 

solidified material and diffusion (Sun et al., 2004). The heating and rapid cooling cycles of 

the material lead to non-uniform thermal gradients that cause continuous stresses 

accumulation, resulting in further distortions between the existing part and the part built 

upon it. The distortion behaviour can be found in Figure 5.32 as an example, where the 

new material (blue part) was built on the existing material (white part). The heat was 

dissipated during deposition of the blue part. As a result, the rapid temperature reduction 

after the blue material was extruded caused the material to quickly solidify and contract, 

which consequently pulled up the existing part. 

 

Figure 5.32 – Warping deformation while manufacturing a part from an existing part 
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In general, parts that are solely manufactured by FFF are placed in a temperature 

controlled chamber or on a heated bed. By doing so, warping can be significantly reduced. 

However, the warping effects become evident and unavoidable owing to the working 

principle of the iAtractive process, which requires material to be continuously added onto 

the existing part. Moreover, the warped bottom surface of the part leads to difficulty in 

clamping the workpiece if it is to be subjected to further machining operations. Thus, 

tolerance loss due to residual stress induced warping is a major concern. 

The height of the feature is usually smaller than its nominal dimension since the bottom of 

the part has been warped, which has to be eventually removed. This also results in more 

operations leading to increased production time. Simply depositing extra layers while 

remanufacturing the existing part seems to solve this problem, but this increases 

unnecessary production time. Printing a single square layer (100% density) with an area of 

100100mm
2
 requires approximately 5 minutes. This means printing extra redundant 

material of 2mm thickness which will be warped and machined afterwards, requires extra 

40 minutes build time (0.25mm layer thickness applied). There is a need to reduce this 

significant waste of time and the distortion behaviour related to the additive process 

parameters is thus investigated. 

5.7.2 The method for investigating part distortion behaviour 

Due to each additive process involving a large number of process parameters, the change 

of any parameter may lead to the quality changes of the final part. It is impractical to 

explore the effects caused by every FFF process parameter. From the brief literature survey 

reported section 3.2.2.1, it can be identified that there is no consensus on which process 

parameters are of the most significance in terms of part distortions. The process parameters 

that govern the warp deformation behaviour could be completely different depending on 

each individual additive process. To the author’s knowledge, there is no research on part 

distortions of FFF processed parts. 

In order to explore the distortion behaviour in the iAtractive process, the parameters to be 

investigated in the experiments have to be determined. A simplified mathematical model 

was first developed, identifying the primary influential process parameters. These 

parameters were analysed and four parameters were selected. The test parts were designed 

based on the four parameters. The Taguchi DoE strategy was adopted for designing a 
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series of experiments. The ANOVA technique was used to analyse the results, identifying 

the most significant parameters that lead to part distortion. This method is represented in 

the following IDEF0 representation in Figure 5.33. 
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Figure 5.33 – The method for investigating part distortions 

5.7.3 A mathematical model of distortion deflection for a subpart built onto 

another subpart 

This mathematical model aims to identify the major factors that affect part distortion 

behaviour. These factors were involved in the design of experiments stage. 

5.7.3.1 Assumptions 

The following assumptions are made, which simplifies the FFF process and allows the 

mathematical model to focus on the major factors that are influential to distortion. 

• Deposition speed is constant. The constant and steady deposition speed means the 

stress inside each deposited fibre of the layer plane can be considered as uniform. If 

the speed changes frequently, the heat dissipation rate per unit time changes 

accordingly, leading to cooling rate changes. This essentially indicates the varying 

levels of stress distributed in different areas of a layer, which significantly increases 
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the complexity in developing such a model. In addition, this research focuses on how 

to utilise additive, subtractive and inspection process to manufacture products and thus, 

for each individual additive operation, the deposition speed is considered to be 

constant. 

• The deposited part does not have voids. The existence of voids between stacking fibres 

implies the structure changes in micro areas, which means that stresses do not change 

uniformly and continuously. 

• Inner stresses in each layer do not accumulate when the temperature decreases from 

the melting temperature (Tm) to Tg. As mentioned in section 5.6, PLA is an amorphous 

plastic. At temperatures above its Tg, it can no longer withstand much stress in which 

case, significant deformation may occur. In other words, in spite of the fact that the 

part is subjected to contraction due to the temperature difference between Tm to Tg, no 

inner stress accumulates. The inner stress is largely induced by the cooling process 

between Tg to room temperature (Tr), which results in part distortions. 

• The existing part or the part directly built on the heated bed is considered to be 

unwarped. As the FFF process is only able to deposit material on a flat surface, an 

already warped existing part has to be machined first before more material is deposited. 

To simplify the process, all surfaces on the existing part are considered to be flat. As 

mentioned in section 5.2.1, using a heated bed significantly reduces the warping effect. 

• Each layer is produced and completed instantaneously in the model. Research has 

reported that it takes approximately 0.55s to reach the material Tg (94°C) once the 

material (ABS) is extruded from the nozzle (Tm = 270°C) and only 1.2s is needed from 

Tg to the FDM machine chamber temperature (70°C) (Rodriguez et al., 2000). 

Although no research data have been published for PLA whose both Tm (195°C) and Tg 

(55°C) are much lower than that of ABS, it is obvious that the cooling time for PLA 

can be regarded as infinitely small compared to the build time for fabricating a middle-

sized prototype cube (e.g. 50×50×50 mm
3
). In this case, for simplifying the model, the 

part is considered as being stacked by a number of layers and each layer is finished 

instantaneously. 

5.7.3.2 A simplified mathematical model 

Given that the process plan is generated based on part design and existing part geometries 

including various features, their dimensions and tolerances are the most accessible 



 

Chapter 5 – Investigation of a part manufacturing strategy for the hybrid process 

 

113 

 
 

geometrical information inputs for GRP
2
A to make decisions. The model, thus, focuses on 

the dimensions of the part that affect the degree of part distortions rather than the material 

properties that essentially cause distortions. Figure 5.34 depicts a scenario before 

distortions take place, where a layer (thickness of t) with length of Ls is deposited onto an 

existing part with Ls in length and he in height. 

Z

X

Build platform

Existing part

Newly deposited layer 
upon exiting part

t
H

he

Ls

 

Figure 5.34 – Deposition of a new layer onto an existing part 

While distortions occur during the material cooling and deformation finally and completely 

forms (as shown in Figure 5.35), the main body of the entire part achieves equilibrium. 

This means the net force between thermal induced stress (σ), the bending stress (τ) and a 

constant stress (σc) has to be zero (Wang et al., 2007), which is depicted in Equation 5.7. 

Equation 5.7          
0

( ( ) ( )) 0
eh t

g rE T T E z dz  



       

where, E is Young’s modulus of elasticity, α is coefficient of thermal expansion and γ is 

the distance between the point on the top surface in the neutral axis and the point on the 

surface where the nozzle moves, κ is the curvature. 

½ Ls

γ 
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New part
Z

X

Nozzle moving 
plane

 

Figure 5.35 – Part distortions occur while adding material to an existing part 
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In addition, the net moments generated by these forces (σ, τ and σc) are equal to zero 

(Wang et al., 2007), see Equation 5.8. 

Equation 5.8     
0

( ( ) ( )) 0
eh t

g rE T T E z z dz  



        

Solving trigonometric function relationships and simply slicing the part into layers, the 

distortion displacement (s) for depositing n new layers can be obtained, using Equation 5.9. 

Equation 5.9          
3

3

3( )
1 cos[ ( )]

6 ( ) ( )

s
g r

g r

NLN n t
s T T

N T T N n t





 
    

  
 

where, N is the number of layers for the existing part, and n is the number of layers 

deposited onto the existing part. 

From Equation 5.9, it can be identified that in the scenario specified in the above 

assumptions, the degree of distortion depends on the height of the existing part, the number 

of layers to be deposited and the section length of the existing part and the newly deposited 

part. This finding is used to design the experiments in the proceeding subsection. 

5.7.4 Design of experiments: Taguchi DoE strategy for part distortions analysis 

5.7.4.1 Determination of process parameters 

Prior to conducting the part distortion experiments, the process parameters had to be 

determined first. As identified in the brief review of the related work presented in section 

3.2.2.1, deposition speed (i.e. nozzle travelling speed during material deposition), layer 

thickness, part porosity, deposition patterns (i.e. patterns of deposition tool path) and road 

width are the influential factors. In addition, the unique features of the iAtractive process 

also have to be considered. These factors are discussed as follows: 

• Deposition speed/nozzle travelling speed: the main effect resulting from the changes 

of travelling speed is the frequency changes of the material heating and cooling cycle, 

which essentially alters the degrees of thermal gradients, affecting the thermal-

induced stresses accordingly. However, the nozzle travelling speed is considered to be 

constant during the entire iAtractive process and the reason has already been given in 

section 5.7.3.1. The effect caused by deposition speed will be discussed in section 

5.7.5. 
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• Layer thickness (t): it directly determines the number of layers to be deposited for 

printing the part. In other words, fewer layers indicate a lesser number of material 

heating and cooling cycles and vice versa. On the other hand, applying thick layers 

diminishes the part quality (Karunakaran et al., 2010). Moreover, for better material 

bonding, the determination of layer thickness highly depends on the height of the 

existing part, which will be introduced in section 6.7.2. The influence on part 

distortions as a result of using different layer thickness is investigated in section 5.7.5. 

• Part porosity/density and extrusion infill width: increased part density requires more 

material to fill in certain areas in each layer, increasing the length of the tool path. As 

a result, more heat is introduced. By contrast, increasing extrusion infill width can 

effectively reduce the number of loops required for printing a layer, which 

consequently reduces the tool path length as well as heating and cooling cycles. 

However, wider infill width will also increase more heat input within a certain period 

of time, resulting in more obvious distortions during material cooling. Additionally, 

voids between rasters of two adjacent layers also affect heat dissipation and thus may 

decrease residual stresses. Hence, for maximising distortion behaviour, 100% density 

is used. However, it is worth exploring the effect of porosity and infill width in future 

work. 

• Deposition pattern: Figure 5.36 demonstrates various deposition patterns available in 

the fabrication of a layer for a rectangular block. A number of research activities have 

been carried out, identifying the effects caused by the deposition patterns. The raster 

pattern with lines oriented 90° from the long axis of the rectangular block produces 

the lowest deflections (Nickel et al., 2001). Klingbeil et al. (1998) identified that 

when depositing in a raster path, material should not be deposited parallel to the 

longest part dimension. This is because the curvature is the greatest parallel to the 

deposition direction and depositing parallel to the longest part dimension would result 

in greater warping deflections and loss of tolerance. The raster pattern with lines 45° 

and concentric pattern generate low and uniform deflection but the part produced by 

using the former pattern shows better mechanical properties in terms of stiffness and 

bonding strength between adjacent layers (Bellini and Guceri, 2003). The deflection 

and mechanical properties of the part by using the Hilbert curve and Octagram spiral 

are still under development. An initial study has been conducted, showing the Hilbert 

curve and Concentric patterns generate smaller substrate deflections, compared with 
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raster 0° (Yu et al., 2011). Given that the purpose of this study was to investigate the 

distortion behaviour when adding new material to the existing parts in the iAtractive 

process, the raster 45º pattern was chosen for the experimentation, which is also the 

most widely used pattern in FDM processes (Bellini and Guceri, 2003). 

  
(a) Raster 0° (b) Raster 45° 

  
(c) Raster 90° (d) Concentric 

  
(e) Hilbert curve (f) Octagram spiral 

Figure 5.36 – Deposition patterns for printing a layer of the rectangular block 

• Part geometry: distortion is also geometry dependent, which is virtually impossible to 

quantify. A typical example is given in Figure 5.37, which is the top view of the 

cross-section of the parts. The part distortion in Figure 5.37(a) is relatively easier to 

predict if all the above mentioned parameters are constant. However, the part 

distortion in Figure 5.37(b) is far more complicated since this relates to the deposition 

patterns. Using the raster 45° pattern, for example, the shape edge highlighted in the 

red circle can have (i) long continuous tool path; or (ii) short continuous tool path (see 

Figure 5.38, in which white lines are tool paths), depending on the position of the 

shape edge. As discussed above, long tool paths are likely to produce greater degrees 

of deflection. In addition, the tool path also varies while changing the magnitude of 

angle θ, leading to the variation of the residual stress distributions. Furthermore, the 
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build direction of the existing part may be different from that of the new part being 

built upon the existing part, which means the deposition patterns of these two parts are 

possibly different. For simplifying the experimental design and obtaining expected 

results, a rectangular block is adopted as the part geometry in the experiments, which 

will be introduced in the proceeding section. 

  
(a) (b) 

Figure 5.37 – The difference resulted from two part geometries in part distortions 

θ  

  
(i) (ii) 

Figure 5.38 – The tool path for printing part (b) in Figure 5.37 

• Section length of the existing part (Ls), heights of the existing part (he) and the newly 

deposited part (hn): these three parameters have already been identified as important 

parameters (in Equation 5.9) that have direct effect on part distortions. These three 

parameters are also the most accessible geometrical information for GRP
2
A. 

To this end, the influential parameters to be investigated together with the other parameters 

to be used in the experiments have been defined. It is worth mentioning that all of the 

above parameters are interrelated. Nevertheless, given that part distortion analysis will be 

used as a component for GRP
2
A, only Ls, he and hn and t were selected. 
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5.7.4.2 Design of test parts 

Two rectangular blocks were designed, as shown in Figure 5.39. Part D is an existing part 

and part E is deposited directly onto the top of part D. 

Part D

Part E

X
Y

 

Figure 5.39 – Test part design for part distortion analysis 

5.7.4.3 Taguchi design of experiments 

If three levels for each control factor are adopted, the study of four factors requires 81 (3
4
) 

experimental runs in the full factorial DoE. The Taguchi design of experiments strategy 

has been proved to be a powerful tool for effectively reducing the number of experiments 

to be conducted whilst obtaining similar statistically valid results as compared to that of 

using the full factorial method (Ross, 1996). Since the aim of the experiments was to 

identify their effects on part distortions, the Taguchi DoE strategy was chosen as an ideal 

candidate for the experimentation. 

Three levels were applied to each parameter, representing low, medium and high levels, 

respectively. By considering the working volume of the FFF machine, 60mm, 90mm and 

120mm were chosen for section length (Ls). Producing a block of 100cm
3
 would cost 

significant increase in build times, thus 3mm, 6mm and 9mm were decided to be the three 

levels for the heights of the existing parts (he). These three levels of he were also applied to 

the heights of the newly deposited parts (hn). By doing so, the ratio of he to hn can be 33%, 

50%, 67%, 100%, 150%, 200%, 300%, which covers a wide range of the scenarios where 

the new part is added onto the existing part. The layer thicknesses of 0.2, 0.25 and 0.3mm 

were used, which are the most stable set up used for the FFF machine. More importantly, 

these three levels of layer thickness meet the requirements in the process planning stage to 
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be introduced in section 6.7.2. The interactions between Ls, he and hn were also taken into 

consideration. Therefore, an L27 Taguchi orthogonal array was generated. The variables 

and the other process parameters to be used in the experiments are listed in Table 5.6. 

Table 5.6 – Process parameters used in the part distortion experiments 

Process parameter 
Level 

Unit Definition 
1 2 3 

Section length (Ls) 60 90 120 mm See Figure 5.34 

Height of existing 

part (he) 

3 6 9 mm See Figure 5.34 

Height of newly 

deposited part (hn) 

3 6 9 mm See Figure 5.34 

Layer thickness (t) 0.2 0.25 0.3 mm See Figure 5.34 

 

Fixed factors Value Unit Definition 

Extrusion 

temperature 

205 °C The operating temperature 

of the nozzle/extruder 

Deposition nozzle 

speed 

2500 mm/min The speed at which the 

deposition nozzle travels 

Deposition pattern 45° raster N/A See Figure 5.36 

Road width 0.5 mm The width of deposition line 

Perimeter to raster air 

gap 

0.0 mm The distance between the 

perimeter and raster infill 

Part density 100 % The porosity of the part 

Infill overlap 0.2 mm The distance the infill 

overlaps with the outline 

perimeter 

 

5.7.5 Results and discussion 

The top surface of each newly deposited part (Part E in Figure 5.39) was face milled with 

0.5mm removed in order to achieve a flat surface as a datum for measurement. The bottom 

surface of each test part (in reference to the build direction) was measured using the 

scanning mode on a CMM, as showed in Figure 5.40. The white part is the existing part 

and the blue part is the newly deposited part. The part was positioned in the direction 

opposite to the build direction. A large number of 0.5mm equally spaced points were 

collected for each scanned line along the section length (Y axis). In order to obtain the 

results as accurately as possible, 5 lines with 4mm interval between each other along the X 

axis were scanned. It is noted that the shadow under the blue part is the gap resulting from 
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the deburring process. All the measurement results are listed in Table 5.7 together with the 

Taguchi DoE array output. 

XY

Z

 

Figure 5.40 – Scanning the bottom surface of a test part 

Table 5.7 – Experimental runs and the measurement results for part distortion analysis 

Experimental 

run 

Section 

length Ls 

(mm) 

Height of 

existing part 

he (mm) 

Height of 

new part hn 

(mm) 

Layer 

thickness t 

(mm) 

Distortion 

deviation 

(mm) 

1 60 3 3 0.2 0.465 

2 60 3 6 0.25 0.380 

3 60 3 9 0.3 0.521 

4 60 6 3 0.25 0.192 

5 60 6 6 0.3 0.267 

6 60 6 9 0.2 0.155 

7 60 9 3 0.3 0.190 

8 60 9 6 0.2 0.066 

9 60 9 9 0.25 0.166 

10 90 3 3 0.25 0.714 

11 90 3 6 0.3 0.710 

12 90 3 9 0.2 1.285 

13 90 6 3 0.3 0.278 

14 90 6 6 0.2 0.314 

15 90 6 9 0.25 0.186 

16 90 9 3 0.2 0.316 

17 90 9 6 0.25 0.364 

18 90 9 9 0.3 0.389 

19 120 3 3 0.3 1.158 

20 120 3 6 0.2 1.438 

21 120 3 9 0.25 1.263 

22 120 6 3 0.2 0.250 

23 120 6 6 0.25 0.487 

24 120 6 9 0.3 0.720 

25 120 9 3 0.25 0.086 

26 120 9 6 0.3 0.426 

27 120 9 9 0.2 0.285 
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The ANOVA approach was used to statistically analyse the results, identifying significant 

parameters and interactions between these parameters. The analysed results are shown in 

Table 5.8, indicating that the height of the existing part (he) is the most significant 

parameter, followed by the section length (Ls). The height of newly deposited part (hn) and 

the layer thickness (t) are insignificant. It was found that the layer thickness of 0.25mm 

produces the smallest degree of distortion as compared to the layer thickness of 0.2mm and 

0.3mm, as demonstrated in Figure 5.41. The three points shown in each plot of the four 

control factors represent the mean of the measured distortion deviation while such a factor 

was set at different levels (i.e. from low to high), respectively. The plots illustrate that 

while applying low section length and/or high value of existing part height, the degree of 

distortion deviation is significantly lower than that of other factors’ levels. Unlike the 

assumptions proposed in the DoE and the analysis in the mathematical model, layer 

thickness and height of newly deposited part do not contribute to the majority of the 

changes in distortion deviation. Regarding the parameter interactions, the interaction of 

section length and height of the existing part is of primary significance. Therefore, the top 

three greatest tolerance losses were observed in the test parts, of which Ls was 120mm and 

he was 3mm. In addition, the top three smallest degree of warp deformation were found in 

the test parts, where Ls was 60mm and he was 9mm. 

Table 5.8 – ANOVA table for the analysis of part distortions 

Source DOF 

Sum of 

squares 

(SS) 

Adj Mean 

square 

(MS) 

F P 

Section length (Ls) 2 0.77 0.39 19.80 0.01 

Height of existing part (he) 2 2.15 1.07 55.18 <0.001 

Height of newly deposited part (hn) 2 0.10 0.05 2.53 0.16 

Layer thickness (t) 2 0.025 0.01 0.63 0.56 

Ls*he 4 0.47 0.12 6.03 0.03 

Ls*hn 4 0.11 0.03 1.46 0.32 

Ls*t 4 0.11 0.03 1.42 0.33 

Error 6 0.12 0.02   

Total 26 3.86    

 



 

Chapter 5 – Investigation of a part manufacturing strategy for the hybrid process 

 

122 

 
 

 

Figure 5.41 – The main effect plots for part distortions 

Figure 5.42 shows significance of interaction between two factors. From blocks L1_C2, 

L3_C2 and L4_C2, it can be identified that increasing the height of the existing part (he) 

can significantly reduce the distortion deviation. The blocks L2_C1, L3_C1 and L4_C1 

reveal that increasing section length leads to increased degree of distortion. However, the 

change of layer thickness (t) or height of newly deposited part (hn) does not have 

significant influence on part distortion, as identified in block L3_C1 and L4_C1. In terms 

of the interaction between the height of existing part and other three factors (blocks L2_C1, 

L2_C3 and L2_C4), the height of the existing part is far more important than the other 

three factors, which supports the ANOVA results shown in Table 5.8. Table 5.8 also 

identifies that the height of newly deposited part and layer thickness are insignificant 

factors. As a result, there interaction is insignificant as well, as shown in block L3_C4 and 

L4_C3 where the distortion deviation does not fluctuate severely while changing either of 

the factors. 
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Figure 5.42 – Interaction plot for distortion deviation 

The inner stresses are the main reason that results in Ls, he and their interaction being 

significant. Shrinkage along the deposition tool path may be attributed to the development 

of inner stresses resulting from the contraction of deposited thermoplastic fibres. The 

contraction is caused by the rapid cooling of the deposited material from its extrusion 

temperature (205ºC) to Tg (60ºC) in a very short period of time. However, it should be 

noted that, at this temperature range the deposited fibre can acquire a large deformation 

with less force and the capacity to resist outside force is small (Sood et al., 2009). As a 

result, despite contraction, the inner stresses are not accumulated in this temperature range. 

Nevertheless, when cooling from Tg to Tr (20ºC), stress (σ) given by Equation 5.10 is 

developed and continuously accumulated. 

Equation 5.10         ( )g rE T T      

where, E is Young’s modulus of elasticity, Tg is the glass transition temperature (°C), Tr is 

the inspection room temperature and α is the coefficient of linear thermal expansion. 

Moreover, in the FFF process, heating and rapid cooling cycles of the material results in 

non-uniform temperature gradients. Consequently, this leads to build up in stresses, which 

further causes distortions, resulting in dimensional inaccuracy and inner layer cracking or 
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even delamination. The reason attributed to non-uniform heating and cooling cycles is the 

working principle of the FFF process. That is heat dissipated by conduction and convection 

during the entire deposition process. The rapid reduction in temperature enables the 

material to quickly solidify onto the surrounding filaments (Sood et al., 2009). The heat 

brought from the newly deposited material diffuses to the previously solidified material, 

generating local re-melting effects, realising strong bonding between the filaments and 

adjacent layers. This leads to uneven heating and cooling of material and in turn, generates 

non-uniform temperature gradients. As a result, uniform stress will not be developed in 

either the newly deposited part or the existing part. The existing part can no longer regain 

its original dimension completely. Furthermore, higher stresses are found along the long 

axis of the deposition tool path (Klingbeil et al., 1998). Also, according to Equation 5.1, 

the longer the part that the FFF process produces, the greater the linear contraction. As a 

result, the longer section length directly leads to greater tolerance loss. 

The scanned points were used to plot the contour of the bottom surface of each test part. 

The contour of the bottom of test part 19 is displayed in Figure 5.43 (Ls = 120mm, he = 

3mm, hn = 3mm, t = 0.3mm). However, it should be noted that the profile has been 

displayed in an inverted configuration. This vaulting shape is the typical distortion pattern 

and all the measured test parts show the similar pattern. It was found that the distortion 

core shifts away from the geometric centre of the bottom surface along the Y axis. This 

phenomenon can be explained using the conclusion obtained from the simulation results by 

Zhang and Chou (2008), who identified that the developed asymmetric stress is distributed 

during the deposition process. As a result, the position of the distortion centre is shifted. 

Yu et al.’s (2011) results derived from the finite element analysis of temperature 

distributions also support this finding, demonstrating that the highest temperature zone is 

not located in the centre of the cross-section of the part in the XY plane. 
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(a) Two dimensional profile 

 

(b) Three dimensional profile 

Figure 5.43 – The curvature formed at the bottom of test part 19 

There are also other factors that lead to non-uniform heating and cooling cycles: 

• Extrusion speed. This is the speed at which the nozzle is extruding/depositing the 

material. Extrusion speed may alter the heating and cooling cycle and results in 

different degree of thermal gradient and thus also affects the part distortions and 

dimensional accuracy. Apparently, at lower slice thickness (e.g. 0.2mm), the extrusion 

speed is slower as compared to higher slice thickness (e.g. 0.3mm). This is because, in 
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the same per unit length and the same unit time, more material has to be extruded 

while printing a 0.3mm depth layer than that of 0.2mm depth layer. In addition, in a 

continuous deposition process, the nozzle stops depositing material in a random 

manner (in depositing a layer and after completely depositing a layer), which also 

results in non-uniform heating and cooling cycles. 

• Deposition speed/nozzle travelling speed. As introduced in the experimental design 

(section 5.7.4), the changes of deposition speed also results in non-uniform heating 

and cooling. Moreover, no matter what deposition pattern is used, the nozzle 

travelling speed has to be significantly decreased or even set to zero, when depositing 

the material at the turns near the part boundary or as the nozzle is approaching a 

corner on a continuous tool path. In particular, referring to Figure 5.36, the distortion 

degree of the part produced by using raster 45º is greater than that of parts produced 

by raster 90º and concentric due to a considerable turns/corners around the part 

boundary. After passing through the turn/corner, the nozzle accelerates until it 

achieves the constant speed (i.e. the speed at which the deposition nozzle prints a 

straight line). If the length of a deposition tool path is short, this will require 

accelerating and decelerating the deposition nozzle in a short period of time, leading 

to non-uniform stress build up, particularly near the boundary of the part. 

• Deposition patterns. As described in the DoE, the pattern used to deposit material has 

an effect on the heating and cooling cycle and furthermore the resulting stresses and 

part deformation. According to Equation 5.1, higher stresses are normally found along 

the long axis of a deposition line, as shown in Figure 5.36(a) and Figure 5.38(ii). Thus, 

it is advisable to adopt short raster lengths along the long axis of part to reduce the 

stresses. An adaptive tool path generation method is needed, which is able to generate 

appropriate tool paths in terms of length according to part geometries. 

5.7.6 Findings and suggestions for the iAtractive process planning 

A number of findings together with the suggestions for process planning are summarised 

as follows: 

• The experimental results indicate that the section length and the height of existing part 

as well as their interaction are of primary significance. 
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• Long section length and thin existing part are detrimental to dimensional accuracy 

since a great degree of distortion was observed. Therefore, it is advisable to avoid 

decomposing long and thin subparts in the part decomposition stage. 

• It is also suggested to use a layer thickness of 0.25mm if possible, as it produces the 

smallest degree of distortion. 

• The essential reason that causes the part distortions is the accumulation of residual 

stresses resulting from non-uniform temperature gradients in continuous heating and 

cooling cycles in the deposition process. 

5.8 Summary 

In this chapter, the part manufacturing strategy for the iAtractive process has been 

investigated, developing an accuracy index for FFF manufactured parts and features; 

identifying the FFF process capability in producing overhangs; exploring the appropriate 

parameters for machining of layered parts; and analysing part distortion behaviour. This 

knowledge forms the basis for the GRP
2
A and FDL presented in chapters 6 and 7, 

respectively, determining the generation of process plans and decision-making. 
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6 A generative reactionary process planning algorithm for the 

manufacture of complex part geometries 

6.1 Introduction 

The elements that compose GRP
2
A are presented in this chapter. The developed algorithm 

consists of generation of static and dynamic process plans, which allows the iAtractive 

process to manufacture complex part geometries as well as respond promptly to quality 

changes during production. 

6.2 An Overview of the Process Planning Algorithm 

The logical GRP
2
A is proposed and contains two major phases, namely generation of static 

and dynamic process plans. The overall goal of GRP
2
A is to generate process plans from 

given part designs. The additive, subtractive and inspection processes are used 

interchangeably to produce the part in the shortest time possible. A static process plan is 

first generated, including the scheduled sequence of the additive, subtractive and 

inspection operations together with the process parameters identified in sections 5.4 – 5.7. 

The static process plan is ready for use in a shop floor manufacture environment, which 

may be further updated into dynamic plans according to the inspection feedback. A flow 

chart is depicted in Figure 6.1. This chapter first elaborates the elements in GRP
2
A for 

generation of static process plans (sections 6.1 – 6.7), followed by the introduction of 

dynamic process plan generation (section 6.8). 

Generation of static process plans involves three major stages, namely, pre-processing, 

processing and post-processing stages. The flexibility provided by the FFF process are 

utilised to create complex structures; CNC machining is used to finish machine FFF 

manufactured features, ensuring that the dimensions are within the designed tolerances. 

Three factors are defined as the criteria for generating static process plans, which are 

cutting tool accessibility, production time and dimensional accuracy. 
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Figure 6.1 – The overview of the generative reactionary process planning algorithm 

The three major stages can be further classified into nine steps. Pre-processing includes 

feature interpretation, manufacturability analysis and part orientation. In the processing 

stage, a number of operation sequences are generated and the most appropriate one is 

identified in terms of production time. This stage is the main focus of this chapter. The tool 

paths for each operation are generated in the post-processing stage based on the specified 

static process operation. The functional view of GRP
2
A is depicted as an IDEF0 diagram 

in Figure 6.2. This figure shows the nine steps together with the relevant tools for 

generating the static process plan from a part design. The pre-processing stage is 

introduced in section 6.3. Sections 6.4 – 6.6 present the processing stage followed by post-

processing as described in section 6.7. 
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Figure 6.2 – IDEF0 view of GRP
2
A for the generation of static process plans 
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6.2.1 The overview of the method for generation of static operation sequences 

As introduced above, a number of feasible manufacturing operations are generated in the 

processing stage. Unlike process planning for CNC machining where operation sequences 

largely determines production times and costs (Scallan, 2003), the operation sequences for 

manufacture of complex parts directly determines whether the part (internal features in 

particular) can be accurately manufactured. Given that the iAtractive process utilises 

additive, subtractive and inspection processes, the traditional process planning methods 

(Kulkarni et al., 2000; Lee et al., 2004; Guo et al., 2009; Jin et al., 2013) cannot be 

adopted since tool accessibility for internal features are not considered in these methods. 

As a result, the author proposes a method for generating static operation sequences, as 

shown in Figure 6.3, where the rectangular boxes represent the actions and the round boxes 

are the outputs of the actions. The final output of this method is the most appropriate 

operation sequence in terms of production times. 

Determine subparts’ build directions by 
considering deposition nozzle collisions

Decomposed subparts

Feasible sets of build directions of subparts 
(including build direction allocation sequences)

Insert subtractive operations by 
considering cutting tool accessibility

Feasible sequences of additive and 
subtractive operations

Insert inspection operations by 
considering probe accessibility

Feasible sequences of additive, 
subtractive and inspection operations

Estimate production times for each 
operation sequence

The most appropriate operation sequence 
to be used in the static process plan

 

Figure 6.3 – The proposed method for the generation of the static operation sequence 

In this method, the operations for additive, subtractive and inspection operations are 

considered independently in a certain sequence. Since a part will be produced from zero, it 

has to be built using the FFF process first. Due to the internal features that are required to 

be finish machined, the part has to be decomposed into a number of subparts, which will 

be introduced in section 6.4. Thus, the operation sequences for producing these subparts 

are determined by taking the deposition nozzle collisions into consideration (sections 6.5.2 
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and 6.5.3). Having obtained the sequences for building the subparts, the machining 

operations are inserted into the sequenced additive operations for machining the subparts 

where high surface quality and accuracy are required (sections 6.5.4 and 6.5.5). The 

cutting tool accessibility is also considered. Finally, the inspection operations are added 

into the generated additive and subtractive operations to ensure the internal features are 

measured before they become inaccessible (section 6.7.1). By doing so, a number of 

feasible sets of operation sequences are scheduled. The most appropriate operation 

sequence is then identified using the production time and build time estimation models 

(sections 6.9 and 6.10). 

6.3 Pre-processing Stage 

6.3.1 Feature interpretation and manufacturability analysis 

CAD model format is one of the most frequently used input formats for the majority of the 

existing process planning systems (Zhang et al., 2013). Pre-processing CAD models i.e. 

interpreting features and analysing the feature structures, requires significant effort to be 

made. The CAD model interpretation is considered to be beyond the research scope and is 

only briefly introduced in this section. 

The first step is feature interpretation, which involves extracting and interpreting features 

from the defined CAD model. A large amount of research has been conducted on feature 

recognition since the 1970s (Shah and Mäntylä, 1995). Features and associated entities 

generated by different CAD/CAM systems or representation methods are recognised, 

which are then input into other CAD/CAM/CAPP systems. A number of feature 

recognition methods have been proposed and the readers are referred to the papers by Lam 

and Wong (2000), and Miao et al. (2002). It is worth mentioning that due to the 

fundamental differences between various manufacturing processes, the recognition 

methods that are available for one manufacturing process may no longer be feasible for 

other processes. In this research, feature interpretation is completed using human 

intervention. 

The identified features are then analysed in the manufacturability analysis module. 

Manufacturability analysis falls into two activities, which are machinability and 

buildability analysis. Any features such as internal and concave features (as shown in 

Figure 6.4) that are likely to cause potential tool accessibility problems are detected as part 
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of the machinability analysis. Features that can only be manufactured by the additive 

process (e.g. a pocket with sharp corners) will also be identified. 

 

Figure 6.4 – Tool inaccessibility in machining a concave feature 

Additionally, cutting tool collision detection will also be conducted even though all the 

surfaces of the features are exposed (i.e. no internal features). An example can be found in 

Figure 6.5, in which the heights of the two features exceed the maximum length of the tool, 

resulting in tool collision if attempting to produce the entire features by using the 

machining process only. 

       

Figure 6.5 – Cutting tool collisions 

Buildability analysis identifies overhanging and thin wall features. Overhangs are 

classified into bridges and cantilevers, as presented in section 5.5. As identified in sections 

5.5.1 and 5.5.2, bridges with the length of over 23mm, and cantilevers of which the 

inclination angles are smaller than 60°, have to be manufactured together with support 

material. As the dimensional accuracy of FFF manufactured parts shows significant 

deviation to the nominal values (section 5.4.2), thin wall and small features are highlighted, 
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indicating that a machining operation is essential. Previous printing tests have identified 

that the percentage dimensional error of the FFF parts has the potential to be more than 20% 

while producing features with less than 5mm. Any feature with the dimension of no more 

than 5mm is thus considered as a small feature or thin wall. In addition, nozzle collision 

detection will also be carried out to indicate any possible collisions between the deposition 

nozzle and the existing features in the case that the existing part is used. More details will 

be provided in chapter 7. 

The aim of this step is to identify whether the given part can be solely produced by the 

additive or subtractive process. If this is the case, the following stages in Figure 6.2 will 

not have to be carried out. This is because the part can be machined directly from a block 

or added to the near-net shape followed by a machining operation. If there are any 

problems detected, this essentially means that the individual additive or subtractive process 

is unable to create all features due to the FFF process capability or cutting tool accessibility. 

The identified machinability difficulties indicate that the additive process has to be used to 

produce the features. Any features that cause buildability issues would require 

implementing machining operations. The result of the manufacturability analysis largely 

determines the following steps. For example, a part with internal features requiring high 

dimensional accuracy has to be manufactured by FFF and CNC machining interchangeably. 

The machining operations have to be conducted while the internal feature has not been 

fully built and the part features are still accessible by the cutting tool. On the other hand, if 

there is no specific requirement on accuracy, the internal feature can be fabricated by the 

additive process only, which also leads to different decomposition results while 

decomposing the part. It is noted that, although the manufacturability analysis has been 

recognised as an important element for GRP
2
A, developing an algorithm for 

manufacturability analysis is considered to be outside the research boundaries. At present, 

the manufacturability analysis still heavily relies on operator’s experience. 

6.3.2 Part orientation 

Part deposition orientation is a very important factor in layered manufacturing as it affects 

build times, part strength, dimensional accuracy, surface finish and cost of the prototype 

(Kulkarni et al., 2000). A number of layered manufacturing process specific parameters 

and constraints have to be considered while deciding the part deposition orientation. 
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Traditionally, for individual additive processes, orientation of the part within the machine 

can affect part accuracy. In addition, part orientation may be in contrast with other factors 

such as time taken to build a part, whether a certain orientation will generate more supports, 

or whether certain surfaces should be built face-up to ensure good surface finish in areas 

that are not in contact with support structures. This is because no matter which additive 

process system is in use, any down-facing surface will be marginally poorer in surface 

quality than surfaces that point upwards and to the outside (Gibson et al., 2009). Supports 

exacerbate this situation. 

However, dimensional accuracy and surface finish are not taken into account in this step 

because the part will be finish machined afterwards. Sood et al. (2009) identified that the 

FDM processed ABS parts are not superior to traditionally moulded parts. The maximum 

tensile strength and flexural strength of the FDM parts is 16.4MPa and 35.2MPa, 

respectively, whereas, the moulded parts could achieve up to 65.0MPa in tensile strength 

and 95.1MPa in flexural strength, respectively. (Sood et al., 2009). The major reasons for 

the decreased mechanical properties may be attributed to void formation and thermally 

induced stresses in the FDM parts (Sood et al., 2010). FFF is a comparable process to 

FDM (see section 5.2). Therefore, part strength is not taken into consideration in GRP
2
A 

since the part strength of FFF parts is not comparable to its moulded counterparts. 

As a result, only build time is considered to be the major factor that determines part 

orientation. That is, amongst the different candidate orientations, the most important 

consideration in choosing orientation is the minimisation of the time to manufacture. A 

multi-factor regression model has been developed, estimating the time used in the additive 

process for manufacturing the part from different directions. The development of the 

model is presented in section 6.10. Based on the model, the following factors should be 

addressed: 

 Part volume. The part volume will not change while orientating the part, but the 

amount of material to be extruded for manufacturing the part may be different as 

producing the part in certain orientations requires support. Furthermore, extra time will 

be spent in machining, setting up the CNC machine and switching between the 

machining and the FFF process. Thus, the CAD model is orientated in a position, in 

which the part can be fabricated without support material. Figure 6.6 shows three 

possible orientations and (c) is the recommended orientation. 
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support 
material 
needed

Build 
direction

support 
material 
needed

no support 
material needed

 
                         (a)                                        (b)                                         (c) 

Figure 6.6 – Different part orientations 

 Overhangs. It is advisable to minimise the amount of support material since more 

material will require longer build time, which will be demonstrated in section 6.10. In 

other words, printing overhanging features should be avoided if possible. In certain 

cases, there are always some facets that cannot withstand the overhang no matter 

which orientation the part is positioned. The CAD model should be orientated into a 

position, where the part can be produced with the least amount of support material 

possible. 

 Height. The build time estimation model has identified that part height also relates to 

total build times. Taller builds take longer than shorter ones. As a result, high aspect 

ratio parts may be better built lying down. However, it is noted that part height may 

not directly correspond to build times if an adaptive slicing approach is adopted, which 

is considered to be the future trend for AM techniques (Gibson et al., 2009). 

 Base face. The area of the base on which the part rests. This area affects the stability of 

the object as it is being built. This base face functions as the fixture in the additive 

process. As the deposition nozzle is touching the part during printing, the small contact 

area at the bottom is not able to provide enough resistance against friction while the 

nozzle is moving across the part. Additionally, given that part distortions may occur, 

leading to potential print failure, the base face should not be too small. In initial testing, 

it was found that the base face should be no smaller than 20×20mm
2
. Otherwise, the 

build is likely to fail. An example is given in Figure 6.7, in which both orientations are 

feasible and no support is needed, but orientation (b) is suggested. 
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(a) (b) 

Figure 6.7 – Base face consideration 

Since parts that this research deals with have internal features along multiple axes, there 

may not be an ideal orientation for a particular part. If high dimensional accuracy and 

surface quality is not specified for all internal features, it may be more important to 

maintain the geometry of some features when compared with others. For all features that 

require finish machining, orientating the part in this step is only a dummy activity since all 

the available orientations will be used and evaluated in order to obtain the most appropriate 

process sequence, which will be described in section 6.5. 

6.4 Part Decomposition 

If the part has internal features that cannot be machined because of cutting tool 

inaccessibility, it will be decomposed into a set of subparts, which allows the internal 

features to be first produced to the required dimensions and tolerances. Subsequent 

features are then added. In addition, machining certain non-internal features can also result 

in tool inaccessibility issue. For instance, the part shown in Figure 6.8 has to be 

decomposed since there is no available tool access direction for machining the hole. 

 

Figure 6.8 – A typical non-internal feature that causes tool inaccessibility issue 
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The aim of the decomposition is to enable complex parts to be manufactured as one 

complete unit rather than producing a number of separate pieces requiring assembly. The 

decomposed subparts are named original subparts. The output of part decomposition is a 

set of original subparts, which will be further optimised and merged in later stages. Figure 

6.9 shows the decomposition results for the part in Figure 6.8. The part is decomposed into 

three subparts A, B and C. 

Subpart A
Subpart B

Subpart C

 

Figure 6.9 – Decomposed original subparts 

As stated in chapter 4, decomposition of complex part geometries is one of the important 

stages in the process planning algorithm. However, this is a major area in its own right and 

is beyond the scope of this research and requires additional significant investigation. The 

decomposed subparts in this research are obtained using a method adapted from Hu and 

Lee (2005). 

6.5 Determination of Build Directions, Operation Selection and Sequencing 

of Additive and Subtractive Operations 

6.5.1 Methodology 

Figure 6.10 illustrates the various stages in the process planning algorithm. A given part is 

decomposed into a number of subparts. The viable build directions for each subpart are 

then identified followed by subpart merging. Subsequently the sequence of the additive 

and subtractive operations is scheduled, which takes cutting tool accessibility into 

consideration. In certain scenarios the feasible sequence for producing the part cannot be 

found due to the limitations of the FFF and CNC machining processes. In this case, the 



 

Chapter 6 – A Generative Reactionary Process Planning Algorithm for the Manufacture of 

                    Complex Part Geometries 

 

139 

 
 

merged subparts that lead to the failure in operation sequencing will be re-decomposed. 

Having obtained one feasible sequence, other possible sequences will also be identified if 

the subparts have other viable build directions. This entire process is then applied to other 

part orientations, identifying other sequences that can potentially be used to manufacture 

the part. 

Start from one pre-
determined orientation

Determine build directions for 
each subpart

Sequencing of additive and 
subtractive operations

Operation sequencing can be done?

Other sets of build directions available?

Other orientations available?
Change to 

another 
orientation

Any merged 
subparts left?

Re-decompose the 
merged subparts

Change to 
another set of 

build directions

Y

N
Y

N
Y

N

Y

N

Decomposed 
subparts

A number of scheduled additive and 
subtractive operation sequences

Operation selection

Merge subparts

 

Figure 6.10 – The work flow of build direction determination, operation 

selection and sequencing 
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6.5.2 Determination of build directions 

This subsection presents the method for determining build directions of decomposed 

subparts. The considerations and procedures in build direction determination are described 

in the proceeding subsections. 

6.5.2.1 Considerations in determination of build directions 

In determining build directions, two issues should be addressed: 

(i) Deposition nozzle collisions may happen while depositing material in certain 

directions. 

Owing to the working principle of the material deposition process, the FFF process can 

only produce parts layer by layer from the bottom to the top for a given part orientation. 

Figure 6.11 shows the deposition nozzle on the FFF machine used in this research. Unlike 

the laser based additive processes, the heated block and the nozzle are the major barriers in 

printing a subpart on a side face of another subpart. 

A typical example is as follows: a part is comprised of three subparts. Figure 6.12(a) shows 

the scenario where the deposition nozzle collides with subpart 2 while attempting to 

produce subpart 3 following the build direction indicated by the red arrow. As the build 

direction of subpart 3 in Figure 6.12(a) is different from that of subpart 2, there is an 

interruption between printing subpart 2 and 3. This means subpart 2 has already been 

produced before starting to produce subpart 3. In this case, using the build direction for 

subpart 3 in Figure 6.12(a) will undoubtedly lead to collisions. Alternatively, the build 

direction in Figure 6.12(b) is feasible. 

heated 
block

nozzle

12.5mm

tool 
length

12.5

16.5

Front view of the nozzle Top view of the heated block

8

unit: mm

R4

 

Figure 6.11 – The FFF deposition nozzle used in this research 
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1 2 3

 

(a) 

1 2 3
 

(b) 

Figure 6.12 – Deposition nozzle collisions 

(ii) The specific operation sequences are restricted by the limitation of the FFF process, 

namely, features cannot be built without support. 

Use the subparts in Figure 6.9 as an example. Having created subpart B using the build 

direction indicated in Figure 6.13, the build direction of subpart C cannot be the same as 

that of subpart B, not only because of the deposition nozzle collision but also the lack of 

support beneath subpart C. As a result, subpart B has to be orientated to act as a build 

platform. Subpart C can then be deposited using the build direction indicated in Figure 

6.13. 

B

C

 

Figure 6.13 – Support is required when using certain build directions 

Additionally, it should be noted that the build directions in Figure 6.12(a) may be feasible 

if using other additive methods, such as laser cladding, rather than the FFF deposition 

method. Readers are referred to the papers by Ruan et al. (2005) and Lanzetta and 

Cutkosky (2008) for more information. 
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6.5.2.2 Procedures in determining subpart build directions 

After decomposing the part into a number of original subparts, the build directions of these 

subparts will be determined. The major steps are outlined as follows: 

 Based on the pre-determined part orientation and the given subparts, the build 

direction determination module starts allocating a build direction for the leftmost 

subpart located at the bottom of the entire part. The build direction of this subpart 

(called subpart 1 or the first subpart) should be exactly the same as the part orientation 

specified in the previous stage. 

 The adjacent subpart is then selected and the available build directions are determined. 

If there is more than one subpart that is adjacent next to subpart 1, the subpart (called 

subpart 2) that shares the same base plane with subpart 1 is chosen first. This is for 

facilitating subpart merging in the later stage.  

 The build directions of the rest of the subparts together with their adjacent subparts 

will be determined accordingly. An example can be found in Figure 6.14, where two 

build directions are available for subpart 2, which are indicated by the red arrows. The 

feasible build directions of subpart 3 (adjacent to subpart 2) are then specified 

followed by determining the build directions for subpart 4. 

 The build directions of every subpart must be specified. However, the subparts of 

which the build directions have been allocated will not be subject to further build 

direction determination in one single round. This is to avoid repetition in determining 

build directions. If a part is decomposed into 4 subparts, each subpart is allocated a 

build direction and the build direction allocation sequence is subpart 1, 2, 3 and 4. This 

is considered as one single round. If there is another available allocation sequence, 

namely subpart 1, 2, 4 and 3. It is regarded as another single round. When the build 

directions of all the subparts have been specified and no deposition nozzle collisions 

have occurred, this set of subparts’ build directions is considered to be valid. Each 

single round can only have one or none valid set of build directions. 

 Choose another subpart and set it as the first subpart to be determined a build direction 

until every subpart has been used as the first subpart once. 

 Re-orient the entire part and implement the above steps until all the available part 

orientations (totally six orientations) have been performed. 
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Figure 6.14 shows two sets of available build directions and demonstrates the procedure in 

determining these build directions. The build directions of subpart 1, 2, 3 and 4 are 

determined in sequence. The build direction of subpart 1 is fixed, which has to be the same 

as the pre-determined part orientation. There are two build directions available for 

producing subpart 2, and for each of these directions, subpart 3 only has one available 

direction. Subpart 1 and 2 may have the same build direction since they share the same 

base plane, which implies that subpart 1 and 2 can be merged into a bigger subpart. By 

doing so, subpart 1 and 2 can be produced simultaneously. Similarly, the build direction of 

subpart 3 can also be the same as subpart 1 and 2, as shown in Figure 6.14(a). 

Alternatively, subpart 3’s build direction may be different from that of subpart 1, as shown 

in Figure 6.14(b). Subpart 4 is adjacent to subpart 3, which means it cannot be produced 

prior to generating subpart 3. Subpart 4 is built on subpart 3 and as a result, the build 

direction can also be the same as subpart 3. However, once the build direction of subpart 2 

is different from subpart 1, it represents that there is an interruption between producing 

these two subparts, namely, subpart 1 has to be created and then re-oriented. After re-

orienting subpart 1, subpart 2 can be produced using the build direction shown in Figure 

6.14(b). The build directions of subpart 3 and 4 have to be changed accordingly. It is noted 

that, having allocated the build directions of a subpart, it can be rotated 90º each time in 

order to create more available build directions for other subparts. More importantly, this 

provides more operation sequences for producing complex part geometries. Furthermore, 

for manufacturing a complete part, there might be more sets of build directions available 

depending on results of the part decomposition. 

1 2 3

4

 
1 2 3

4

 
(a) (b) 

Figure 6.14 – Available build directions for adjacent subparts 

Figure 6.15 illustrates the workflow for the determination of subpart build directions 

described above for a given part orientation. It is noted that in certain scenarios, feasible 

build directions might not exist due to deposition nozzle collisions and the limitation of the 
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FFF process described in section 6.5.2.1. When no feasible build direction can be found for 

any subpart in a single round, it is considered as an error. The subparts which have more 

than one adjacent subpart or have multiple build directions are recorded in the step 

(labelled by star *, see Figure 6.15) where subparts’ build directions are determined one by 

one. Only one build direction will be specified and only one adjacent subpart will be 

chosen in each single round. If there are more than two subparts that have more than one 

available adjacent subpart or build direction, the last subpart that is allocated a build 

direction is recorded. For example, there are 5 subparts and the allocation sequence is 

subpart 12345. In this sequence, both subpart 2 and 4 have two available build 

directions. The last subpart that has two or more adjacent subparts is subpart 4. After 

determining the build directions for every adjacent subpart, the build directions of the 

remaining subparts will also be decided if there are any subparts left. Having determined 

the build directions for all the subparts, if no error has ever occurred, the determination of 

build directions is successful and a set of subparts’ build directions has been generated. 

The build directions determination module will then identify other possible sets of build 

directions starting from the recorded last subparts that have two or more adjacent subparts 

or available build directions. To this end, all the sets of build directions based on the build 

directions of the first subpart have been obtained. It is also likely that there are further sets 

of build directions available if using a different subpart as the first subpart that is allocated 

a build direction. Therefore, the module will also identify other sets of build directions 

using other subparts as the first subparts. 

The outcome of build direction determination based on a certain part orientation can be 

demonstrated in the graph shown in Figure 6.16. Each branch represents a single round, 

which is also a set of build directions for producing the identical entire part. Each node 

represents an individual subpart with a certain build directions. Each black arrow 

represents the allocation sequence between two subparts. In each set of build directions, 

only one build direction is specified for each subpart. The build direction determination 

process moves forward (i.e. allocating build directions one by one). This means the build 

directions of the same subpart will not be determined again once its build direction has 

been specified. There are x subparts that are adjacent to subpart 2 (i.e. subpart 3, 4 and etc.). 

As a result, there are x branches expanding from subpart 2. The subparts in each dashed 

block are identical but have different available build directions. Subpart 4 has a number of 

build directions and thus, there are a number of corresponding branches spreading from 
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subpart 3. Subpart n has two neighbouring subparts and consequently, there are two 

branches expanding from it. It is noted that this graph can potentially be used to show the 

results of build direction determination for the iAtractive process that integrates multiple 

additive units in the future. Multiple additive units provide enhanced deposition capability, 

which increases the number of options in determining build directions such as more 

available build directions and adjacent subparts. 

Decomposed 
subparts

Start from a new subpart

Set its build direction identical to 
the part orientation

Determine build directions for all 
the following adjacent subparts *

Error occurred ?

Has every subpart been
allocated a build direction ?

Determine build 
directions for each 
remaining subpart

Determine build 
directions for the 
adjacent subpats

Y

N

N

Save it as a valid set of build 
directions

Is there any subpart that
has more than one adjacent subpart ?

Is there any subpart that have
more than one available direction ?

N

Is there any subpart that hasn’t
been used as the first subpart ?

N

N

End (ready to change to 
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Start determining a build 
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Figure 6.15 – The overall workflow for build direction determination 
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Figure 6.16 – The results obtained in build direction determination 

6.5.2.3 An example demonstrating build direction determination 

An example for the determination of build directions is provided as follows: Figure 6.18, 

Figure 6.19 and Figure 6.20 demonstrate a number of sets of build directions for the 

decomposed subparts. The part is decomposed into 9 subparts as shown in Figure 6.17. 

The build direction of subpart 1 has to be the same as the current part orientation. 

 

1 2 3

45

678

9

 

Figure 6.17 – An example part and its decomposed subparts 
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(i) A feasible set of build directions is shown in Figure 6.18(a). The build direction 

allocation sequence is: subpart 1 → 2 → 3 → 4 → 5 → 7 → 6 → 9 → 8. Having 

determined the build direction for subpart 9, there is no adjacent subpart anymore. 

However, there is one subpart left i.e. subpart 8, of which the build direction has not 

been decided. According to the activity called ‘allocate build directions for each 

remaining subpart’ in Figure 6.15, subpart 8 is specified a build direction. 

(ii) In the above allocation sequence, among these subparts, there are two available 

adjacent subparts for subpart 2, 4 and 7, respectively. Subpart 3 has two neighbours 

i.e. subpart 2 and 4, but the build direction of subpart 2 has already been determined 

before determining the build direction for subpart 3. According to the rules stated 

above, no repetition in build direction determination is allowed. This means subpart 

4 is the only available adjacent subpart for subpart 3. Subpart 7 is the last subpart 

that has two adjacent subparts. As a result, another two sets of build directions are 

developed expanding from subpart 7, which are subpart 1 → 2 → 3 → 4 → 5 → 7 

→ 8 → 6 → 9 and subpart 1 → 2 → 3 → 4 → 5 → 7 → 8 → 9 → 6, as shown in 

Figure 6.18(b). In these two sets of build directions, having determined the build 

direction for subpart 8, subpart 6 and 9 become two remaining subparts. However, 

due to the deposition nozzle collisions and the FFF process limitation, these two sets 

of build directions are invalid. In other words, the feasible build directions based on 

the allocation sequence (subpart 1 → 2 → 3 → 4 → 5 → 7 → 8 →) does not exist. 

1 2 3

45

678

9

 
1 2 3

45

678

9

error

error

 
(a) (b) 

Figure 6.18 – Two sets of build directions 

(iii) In determining the build directions according to the allocation sequence (subpart 1 

→ 2 → 3 → 4 → 5 → 7 → 8 → 9 → 6), subpart 4 is identified as the subpart that 

has two available neighbouring subparts (i.e. subpart 5 and 6). Hence, a new set of 
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build directions are identified. More sets of build directions are found in identifying 

this new set of build directions. These sets are illustrated in Figure 6.20, where the 

cross symbol (×) represents an error which has occurred in allocating the build 

direction of a certain subpart. 

(iv) Upon obtaining all the sets of build directions based on the build direction of subpart 

2 shown in Figure 6.18, more sets of build direction will be identified as a result of 

two build directions that exist for subpart 2. One of the feasible sets of build 

direction (i.e. subpart 1 → 2 → 3 → 4 → 5 → 7 → 6 → 9 → 8) is depicted in 

Figure 6.19. Further sets of build directions are illustrated in Figure 6.20. 

1 2 3

45

678

9

 

Figure 6.19 – A set of build directions based on another build direction of subpart 2 

6.5.2.4 Relationships between two successive subparts in a set of build directions 

As introduced in section 6.4, the subparts obtained from part decomposition are termed 

original subparts. If two original subparts in a set of build directions are allocated build 

directions in sequence, they are considered to be successive subparts. The relationships 

between two successive subparts in a set of build directions are categorised as parent, child, 

twin and unconnected. The parent and child relationship is generated as a result of additive 

operation interruption, as explained in section 6.5.2.1(i) and Figure 6.12. A subpart that has 

to be deposited onto another subpart is considered to be a child part. For example, subpart 

3 is a parent part and subpart 4 is a child part in Figure 6.19. This is because subpart 4 is 

built on subpart 3 and thus, subpart 4 cannot be produced without generating subpart 3 

beforehand. The twin relationship indicates these two subparts may be produced 

simultaneously by sharing a same build platform, such as subpart 1 and 2 in Figure 6.18. 

Unconnected subparts are the subparts that are not physically connected to each other. 

Subpart 9 and 8 in the build direction set as shown in Figure 6.18(a) are an example of a 

pair of unconnected subparts. However, it should be pointed out that the relationship 
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between two successive subparts is only valid in a certain set of build directions in a 

certain part orientation. In different sets of build directions, the relationship between the 

two successive subparts may vary. For example, in Figure 6.19, subpart 1 and 2 are parent 

and child part, respectively, whereas they are twin subparts in the scenario shown in Figure 

6.18. 
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Figure 6.20 – A partial representation of the full set of build directions 
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6.5.3 Subpart merging 

The two original subparts can be merged into one subpart if they meet the requirements 

below: 

 They are adjacent subparts 

 They are successive subparts in a set of build directions 

 They have the same build direction 

A merged subpart can further be merged with its adjacent original subparts if they have the 

same build direction. The sequence of subpart merging should follow the sequence in 

allocating build directions for original subparts. It is noted that the results of subpart 

merging may be different from one set to another set of build directions. Two examples of 

subpart merging are provided in Figure 6.21. The eight original subparts in Figure 6.18(a) 

are merged into one merged subparts as shown in Figure 6.21(a). Figure 6.21(b) shows the 

two merged subparts which are obtained from merging the seven original subparts in 

Figure 6.19. 

1 2 3
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(a) (b) 

Figure 6.21 – Subpart merging 

Subpart merging is preferable when two adjacent subparts can either be produced in series 

or simultaneously. This is because producing merged subparts can lead to reduction in 

production time. Subpart merging also provides more available build directions for original 

subparts. For instance, in Figure 6.21(a), if subpart 2 has been produced before starting to 

create subpart 3, this leaves only one available build direction (i.e. →) for subpart 3. Again, 

once subpart 2 is built separately with the build direction indicated in Figure 6.21(a), it has 

to be machined and measured before subpart 3 can be deposited. This increases the 

production time, namely extra time used in: (i) switching from the additive operation 
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(building subpart 2) to the subtractive operation (machining subpart 2); (ii) setting up the 

machine tool (setting up fixtures, clamping built subpart 2 and etc.); (iii) machining 

subpart 2; (iv) switching from the subtractive operation to the inspection operation; (v) 

inspection (measuring machined subpart 2); (vi) switching from the inspection operation to 

the additive operation (building subpart 3); (vii) positioning machined subpart 2 on the 

build platform of the FFF machine. Moreover, there is a possibility that dimensional error 

is introduced in those above operations. Another issue is that the bonding strength between 

two subparts is much lower than one single subpart that is purely built in one additive 

operation. Hence, it is advisable to fabricate as many subparts as possible in one single 

additive operation. 

6.5.4 Operation selection 

Operation selection is a broad topic in process planning research, which involves a large 

number of factors that need to be taken into consideration, such as part geometry and cost 

(Xu et al., 2011). In this research, operation selection is restricted in a very narrow area. 

Operations used in the iAtractive process production are classified into additive, 

subtractive (machining), inspection, switch operations. A brief description is given as 

follows: 

 Additive/deposition operations are applied to manufacturing every subpart/feature if a 

part is produced from zero. In this study, additive operations are conducted on the FFF 

machine. 

 Subtractive operations can be further classified into two operations, namely roughing 

and finishing. The additive process is used to create the near-net shape of the 

feature/subpart/part. Thus, finishing operations are used to finish machine the near-net 

shape of the feature. Machining is considered to be the way to obtain high part 

accuracy and surface quality. Roughing operations are largely used in manufacturing 

the first feature from an existing part and an example is provided in section 7.4.4.2(i). 

In addition, roughing operations are also used to remove sacrificial support material. 

The details of machining operations will not be considered. For example, the details 

such as face mill the top surface of the feature and drill the hole will not be specified. 

Instead, operations in GRP
2
A are: rough machine the feature, finish machine the 

feature, finish machine the hole. Machining operations are carried out on a 3-axis 

vertical CNC milling centre. 
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 Inspection operations are used to obtain the actual dimensions of the features, which 

provides geometrical information for the process planning algorithm. 

 Switch operations indicate there is a switch between either two of additive, subtractive 

and inspection processes. Additionally, reorientation and repositioning of the subpart 

are required when the build direction changes, which is also categorised as a switch 

operation. 

For simplifying the considerations in operation selection and sequencing, it is assumed that 

a tool magazine with a full range of cutting tools is provided. That means the cutting tools 

with various diameters for producing the features are available. For example, a 3mm 

diameter slot mill is available if a pocket with a corner of 1.5mm radius is required to be 

produced. Additionally, even though the determination of cutting tools is an important step 

in process planning of CNC machining production, it is not within the boundaries of this 

research. The reason is: for machining a 50mm wide face feature, all the tools whose 

diameter is less than 75mm can be used, such as 75mm, 50mm and 20mm diameter tools.  

Using a 20mm diameter tool to machine the face will take approximately three times 

longer than that of using a 75mm tool due to the tool being over three times bigger. In this 

case, the 20mm diameter tool should not be used in terms of production time and costs. 

This example shows that involving the cutting tool determination brings more complexity 

in process planning. Tool selection has been well researched for CNC machining processes 

(Fernandes and Raja, 2000; You et al., 2007; Xu et al., 2011). In order to focus on the 

major considerations outlined in section 4.3.1, cutting tool selection will not be considered 

in this research but appropriate cutting tools are selected based on the features to be 

machined. 

6.5.5 Sequencing of additive and subtractive operations 

This subsection first presents the constraints that are applied in sequencing of additive and 

subtractive operations. The overall work flow of operation sequencing is then presented. 

6.5.5.1 Precedence Constraints 

Three types of precedence constraints are considered, which are dimensional accuracy 

constraints, build direction allocation sequence constraints, and machining constraints. 
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(i) Dimensional accuracy constraints 

For the features where low surface roughness and high accuracy are specified in the part 

design, a machining operation must be used to ensure the surface quality and dimensional 

accuracy. Table 5.1 provides the dimensional accuracy deviation of parts produced by the 

FFF process, which provides the accuracy information for GRP
2
A to make decisions on 

whether to conduct a machining operation for the feature. In this chapter, the iAtractive 

process aims to accurately produce complex parts and thus, the dimensions of every 

feature are required to be accurate and only a finish machining operation is able to achieve 

this high accuracy. 

(ii) Build direction allocation sequence constraints 

This type of constraint means that machining operations should be inserted into the build 

direction allocation sequence. For example, the operations for machining the child part 

have to be scheduled after the additive operations that are used to create the parent part. 

This is also logical since the child part cannot be machined before the parent part is built. 

Moreover, the operations to produce two unconnected subparts should also follow the 

allocation sequence of build directions. 

(iii) Machining constraints 

A feasible operation sequence should also comply with the machining constraints that 

come from geometrical and technological considerations. The machining precedence 

constraints between machining operations are usually classified into six types, which are 

fixture interaction, tool interaction, datum interaction, thin-wall interaction, material-

removal interaction and fixed order of machining operations (Li et al., 2004). The 

illustrative examples of these machining constraints are provided in Table 6.1. 

6.5.5.2 Tool accessibility Constraints 

Tool accessibility is one of the most important factors to be considered in the process 

planning algorithm as this directly determines whether or not a feature, especially an 

internal feature, can be built and machined. Tool accessibility constraints consist of cutting 

tool accessibility and deposition nozzle accessibility. The deposition nozzle accessibility 

has already been illustrated in section 6.5.2.1. Cutting tool accessibility is concerned with 

TAD. 
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Table 6.1 – Examples of precedence constraints (Li et al., 2004) 

Constraint Example Explanation 

Fixture 

interactions 

 

The hole should be 

machined before the 

chamfer, otherwise it 

cannot be fixed. 

Tool interactions 

 

In order to position a 

drilling tool correctly, 

the drilling of the hole 

should precede the 

machining of the 

chamfer. 

Datum 

interaction 

 

The top face (the datum 

feature) should be 

machined prior to the 

base face. 

Thin-wall 

interactions 

 

Good practice should 

involve drilling the 

hole, then machining 

the slot to avoid 

deformation of the thin 

wall. 

Material-removal 

interactions 

 

The step should be 

machined prior to the 

hole for achieving high 

machining efficiency 

(milling is faster than 

drilling) and surface 

quality. 

Fixed order of 

machining 

operations 

 

A typical sequence of 

machining a hole is 

drilling, boring and 

reaming. 

In a 3-axis machining environment, there are six TADs, i.e. +x, –x, +y, –y, +z and –z. In a 

5-axis machining environment, different TADs can be achieved by the extra two degrees 

of freedom movements using the same fixture. However, for 3-axis machining, using 

different TADs requires changing the fixture accordingly. This means additional time will 

be spent in setting up fixtures. Selection of TADs involves a number of factors to be 
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considered such as machining costs, fixture elements, availability of cutters, tolerance and 

surface roughness requirements (Guo et al., 2009). Although the author has recognised that 

TADs selection is important in the process planning stage, it is beyond the scope of this 

research (see sections 2.5 and 2.6). Therefore, the most appropriate TAD is always chosen 

and the operation sequencing deals with whether a cutting tool or deposition nozzle can 

have the correct feature access. 

Figure 6.22 shows two available TADs for machining a through step feature, which are –x 

and –z directions. As stated above, as long as the feature (the step) is accessible, it is 

considered to be machinable and/or buildable. In GRP
2
A, the operations to create the step 

can be to build the near-net shape of the step using the FFF process (with a determined 

build direction) and machine it in a finishing operation. Further to the TADs, negative z 

may be an appropriate candidate if the workpiece was set up in a position as shown in 

Figure 6.22 in the previous operation. 

– Z

– X

X

Y

Z

 

Figure 6.22 – A through step with two valid tool approach directions 

6.5.5.3 Considerations in operation sequencing 

In addition to the constraints introduced in the sections 6.5.5.1 and 6.5.5.2, there are other 

considerations to be taken into account in sequencing additive and subtractive operations: 

(i) A subtractive operation should be scheduled to finish machine the bottom surface of 

the part/subpart/feature due to part distortions. 

Figure 6.23 shows the front view of three rectangular subparts A, B and C. Subpart A is 

the first subpart to be built. After adding subpart B onto subpart A, the bottom surface of 
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subpart A is warped. Therefore, the bottom surface of subpart A should be machined in 

order to obtain a flat surface. The reasons for doing this are: (1) obviously, the dimensional 

accuracy of the warped part is out of tolerance as identified in section 5.7; (2) subpart C is 

to be added onto the combined/fabricated subpart A and B. In the meantime, subpart A has 

to be positioned on the heated bed using the same part orientation in depositing subpart C, 

as shown in Figure 6.23(a). A flat surface is required when positioning a part on the heated 

bed; (3) if subpart C is to be added onto the warped bottom surface of subpart A (see 

Figure 6.23(b)), this surface has to be flat because material has to be deposited on a flat 

surface in order to obtain strong bonding strength between two subparts; (4) if the 

following subparts require finish machining, the warped surface cannot be clamped 

steadily on the machine tool bed. 

B

C

A

 
B

C

A

 
(a) (b) 

Figure 6.23 – Scheduling a machining operation for a warped surface 

(ii) Multiple and repetitive machining operations for the same feature should be avoided. 

(iii) Certain machined features/surfaces on a subpart will become un-machined again if 

there is more material to be added onto the subpart. 

An example can be found in Figure 6.24, where each surface of the part is required to be 

machined to achieve the correct surface quality and tolerances. Figure 6.24(b) is the 

internal view of the part, which has five connected pockets. For better representation, 

round corners are intentionally ignored in Figure 6.24(b). The decomposed result is also 

shown in Figure 6.24(c). Twenty three subparts are merged into 5 as some of them have 

the same build directions whilst satisfying the criteria described in section 6.5.3. The 

merged subparts together with their build directions are shown in Figure 6.24(d). It should 

be noted that the result of subpart merging shown in Figure 6.24(d) is only valid for a 

certain set of build directions. Subpart 1 and 2 can also be merged, but for demonstrating 
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the considerations in operation sequencing, they are considered as separate subparts. The 

overall sequence is to manufacture subparts from 1 to 5 by interchangeable FFF and CNC 

machining processes. Even though subpart 1 has been finish machined, the surface 

highlighted by the black arrow in Figure 6.24(d) becomes rough (un-machined) again once 

subpart 2 is added. This is because printing subpart 2 onto the pocket on subpart 1 is 

equivalent to printing a bridge. Due to the recovery layers (see Figure 5.22), the 

highlighted surface requires finish machining again. Similarly, finishing operations are 

needed for the two highlighted pockets on subpart 2 once subpart 3 and 4 are added, 

respectively. 

It is noted that, since these highlighted surfaces are subject to repetitive machining 

operations, there is no need to machine them until new subparts are added resulting in 

cutting tool inaccessibility. In other words, subpart 1 does not have to be finish machined 

prior to adding subpart 2. Having added subpart 2, subpart 1 can then be machined since 

the pockets on subpart 1 are still accessible. As a result, the total number of repetitive 

machining operations is reduced. It is also noted that the majority of the failure in 

operation sequencing is attributed to the machined features that become un-machined when 

more subparts are stacked up. Figure 6.24(e) shows the merged subparts obtained from 

another set of build directions based on a certain part orientation. The operation sequence 

is to manufacture subpart 1, 2 and 3. However, the surface pointed by the black arrow in 

Figure 6.24(e) becomes rough again once subpart 3 is built. In this case, the surface cannot 

be machined anymore as the cutting tool can no longer access the pocket on subpart 1. 

 
X

Y

 

(a) example part (b) internal view 
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Decomposition

 

(c) cross-sectional view and part decomposition results 

1

2
3

4

5

Un-machined 
surface

Un-machined 
surface

Un-machined 
surface  

(d) build directions and merged subparts 

1

3
2

Un-machined 
surface

 

(e) failure in operation sequencing 

Figure 6.24 – Repetitive machining operations and un-machined surfaces 
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6.5.5.4 Re-decomposition of merged subparts 

Due to cutting tool and deposition nozzle accessibility that has been considered in part 

decomposition, the original subparts are free to be produced without any tool accessibility 

constraints. However, more constraints are induced as a result of a number of original 

subparts that have been merged, which leads to further tool accessibility issues. In this case, 

the merged subparts that lead to the failure in operation sequencing will be re-decomposed 

into the original subparts, releasing the constraints. The build directions of these re-

decomposed subparts should be the same as the directions that are specified in the build 

direction determination stage. These re-decomposed subparts will not be combined in the 

subsequent stages again because combining them is likely to bring the constraints back 

leading to the operation sequencing failure. Figure 6.25 shows the sectional view of a part 

that has internal pockets. If subpart 1 and 2 were merged as they had the same build 

directions (denoted by the red arrows), the blind pocket would not have been machined. 

Therefore, the combination of subpart 1 and 2 has to be separated. 

1

2

3

Blind 
pocket

 

Figure 6.25 – Re-decomposing merged subparts 

It is noticed that the last merged subparts that causes the tool accessibility issue will be re-

decomposed first. Take the subparts in Figure 6.9 as an example. One available set of build 

directions is shown in Figure 6.26(a) and the build direction allocation sequence is subpart 

A, B, and C. Subpart A and B were merged first and then subpart C was combined with the 

merged subpart A and B (called subpart A-B). However, in operation sequencing, the 

drilling tool cannot access the hole. Since subpart C was the last subpart merged, it was 

separated from the combined subpart A-B-C. As a result, the combined subpart A-B will 

be built first followed by a machining operation for drilling the hole. Subpart C is then 

created after the hole is drilled. Another set of build directions is also shown in Figure 

6.26(a), but with a different build direction allocation sequence, which is subpart B, C and 
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A. Certainly, these three subparts meet the requirements of subpart merging and were thus 

merged. In this case, subpart A was the last merged subpart which led to the cutting tool 

inaccessibility after it was merged with the already combined subpart B-C. Nevertheless, 

having re-decomposed subpart A, the machinability of the hole still cannot be solved. As 

subpart C was the last merged subpart after subpart A was taken off from the combined 

subpart B-C-A, subpart C was therefore separated from the merged subpart B-C. If all the 

merged subparts have been re-decomposed into their original subparts and the tool 

inaccessibility issue cannot be solved, this indicates that the available operation sequence 

does not exist for this set of build directions with a certain build direction allocation 

sequence based on a certain part orientation. It is also worth mentioning that, for certain 

sets of build directions, merged subpart re-decomposition might not be needed and an 

example is demonstrated in Figure 6.26(b), where the build direction allocation sequence is 

subpart A, B and C, and subpart A-B are the merged subpart. 

B

C

A
 

B

C

A

 
(a) (b) 

Figure 6.26 – Re-decomposing different merged subparts 

6.5.5.5 Procedures in sequencing additive and subtractive operations 

After determining build directions for each subpart and obtaining merged subparts, the 

sequence of addition and subtractive operations will be scheduled for each valid set of 

build directions. It is noted that for a given part orientation, a certain number of feasible 

sequences may exist due to some subparts that have multiple build directions and adjacent 

subparts. Other possible sequences that result from different orientations will also be 

identified. The procedures for sequencing additive and subtractive operations for a single 

set of build directions are illustrated in Figure 6.27. As presented in section 6.5.5.4, a 
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viable sequence might not be found for a certain set of build directions when the part is 

positioned in certain orientations (an error occurs in Figure 6.27). 

Numbered subpart
(j subparts in total)

Are all the features on
the subpart accessible ?

N

N

Y

Schedule an additive operation to 
produce the first subpart

i ++

i > j ?

Schedule an additive 
operation to produce subpart i

Set i = 1

Are all the un-machined features on the
previous subpart (1, 2, …, i) accessible ?

Y

N

Schedule machining operations before 
subpart i is built to machine the features on 
the previous subparts, which will become 

inaccessible after producing subpart i

Any machined feature required to be
machined again after producing subpart i ?

Are these features still accessible
after producing subpart i ?

Y

Y

Any subpart left ?

Error

Re-decompose the last 
merged subpart that 

causes tool inaccessibility

N

Y

Re-number subparts, 
j subparts in total

N

N

Y

Have all the features been 
machined ?

Sequenced additive and 
subtractive operations

Y

N

Can these features be machined ?
N

Y

Schedule machining operations 
for exposed features (including 

support structures)

Sequenced additive and 
subtractive operations

 

Figure 6.27 – The procedures for sequencing additive and subtractive operations 

The major steps are outlined as follows: 

 The subparts (including original and merged subparts) to be produced are numbered. 

These subparts do not have to be numbered, but for better demonstration in Figure 6.27, 

the subparts are numbered according to the build direction allocation sequence. The 

first subpart/merged subpart to be produced is subpart 1, the second subpart/merged 
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subpart to be produced is subpart 2 and the rest can be done in the same manner. There 

are j subparts in total. 

 The first subpart (i.e. subpart 1) will be built followed by adding more subparts until 

the features on the subparts cannot be machined due to cutting tool inaccessibility. As 

long as there is one available TAD, the features are considered to be accessible. This 

step aims to reduce the number of repetitive subtractive operations conducted for 

machining the same features. 

 After scheduling a subtractive operation for machining a feature on a subpart, it is 

necessary to identify whether or not the feature (or any surface on the feature) will 

become rough again once the subsequent subpart is added onto the machined subparts. 

If this is the case, it has to be identified whether or not the feature is still accessible 

when the subsequent subpart is added. If the cutting tool still has access to the feature, 

the subsequent subpart can be built onto the machined subparts. 

 If the feature is not accessible anymore, the last merged subpart that causes this tool 

inaccessibility issue will be re-decomposed into the original subparts, which releases 

the cutting tool constraints arising from subpart merging. More merged subparts will 

be re-decomposed until there is at least one TAD that can be obtained. 

 Once merged subparts are re-decomposed, all the current subparts will be renumbered. 

The numbers should follow the build direction allocation sequence and the build 

directions of the subparts should be the same as the build directions determined in the 

build direction determination stage. 

 The re-decomposed subparts should meet the deposition nozzle accessibility 

requirements when sequencing an additive operation to fabricate them. This is because 

they were scheduled to be built simultaneously with other merged subparts. As they 

have now been re-decomposed and the other merged subparts have been produced, 

deposition nozzle collisions may occur when attempting to build the re-decomposed 

subparts onto the produced merged subparts. 

 Once the build direction of the re-decomposed subparts allocated in the build direction 

determination stage causes the deposition nozzle collision, it can be concluded that a 

feasible operation sequence based on this set of build directions cannot be obtained. 

On the other hand, when all the merged subparts have been re-decomposed into the 

original subparts, the feasible operation sequence does not exist if the un-machined 

surfaces still suffer cutting tool inaccessibility. 
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 The subtractive operations for machining the exposed features are scheduled in the end 

of the process sequence because these features can always be machined. 

 Subtractive operations will also be scheduled for removing the support material if 

needed. 

 Finally, as mentioned in section 6.5.5.3, subtractive operations will be arranged in 

order to get a flat surface to be used as a build platform for the subsequent additive 

operations or a datum for the subsequent subtractive operations. In addition to part 

distortions, a subtractive operation is needed for the side surface of a subpart when 

there is another subpart to be built onto the side surface of the subpart. 

6.6 Feature Modification for Different Operations 

For CNC machining processes, NC programs to be used in the shop floor production 

environment are generated from the drawings (or CAD models) where part nominal 

dimensions are specified. However, for the iAtractive process, due to the interactions 

between individual processes, the features in the part designs (the CAD models) cannot be 

directly used for the individual additive and subtractive operations. The following features 

have to be modified: 

(i) Features to be produced in additive operations 

Due to the various errors caused by the FFF machine gearings, process parameters (e.g. 

layer thickness, diameter of deposition nozzle) and material shrinkage, the dimensional 

accuracy of fabricated plastic parts are normally not as high as that of CNC machined parts. 

Figure 5.20 gives an example (top view) of an actual fabricated feature (denoted by the 

blue lines) as compared to the nominal feature (red dashed line), when a boss is added onto 

a block. A series of measurement tests were conducted as detailed in section 5.4.2, to 

identify the variability in dimensional, positioning and geometric accuracy of FFF 

manufactured parts. An accuracy index has been developed and readers are referred to 

section 5.4.4. The dimensions to be used in additive operations can be obtained by using 

Equation 5.4 and Table 5.1. Based on the accuracy index of the FFF process, the CAD 

model is modified, ensuring (1) a real positive feature fabricated is slightly bigger than its 

nominal dimensions (e.g. the modified length is 2.5% longer than its nominal value); (2) a 

real negative feature fabricated is slightly smaller than its nominal dimensions (e.g. the 
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modified length is 2.5% shorter than its nominal value). This allows the machining process 

to finish machine the part, achieving the required surface quality and accuracy. 

(ii) Parent subpart on which the child subpart will be built 

As identified in section 5.7, part distortions occur when a child part is built onto a parent 

part or material is added onto an existing part. This essentially indicates that more material 

has to be removed, namely, the bottom surface of the warped part has to be face milled. 

Thus, the related features have to be modified accordingly for the distortion deviations, 

ensuring that the real part fabricated is higher than its nominal height, which allows the 

machining process to finish machine the warped bottom surface. Figure 6.28 shows the 

warped bottom surface of subpart A in Figure 6.23. 

B

A

Machining 
direction

Machining 
plane

 

Figure 6.28 – Machining a warped parent part 

(iii) Support material 

Support structures will be added to the CAD model if overhangs have been identified in 

the buildability analysis stage (see section 6.3.1). Additionally, in certain scenarios where a 

subpart is added onto another subpart, a support structure is needed. In Figure 6.29(a), 

subpart 2 cannot be built without support and thus, the CAD model is modified and the 

support structure will be constructed together with subpart 1. However, for the subparts 

depicted in Figure 6.29(b), the CAD model will not be modified. Even though the support 

structure can be created together with subpart 1, subpart 2 cannot be produced after subpart 

1 is built due to deposition nozzle collisions. It is worth pointing out that the build 

direction of subpart 2 as shown in Figure 6.29(b) is considered to be invalid in the build 

direction determination stage. 
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Figure 6.29 – Modifying the CAD model to support an overhanging feature 

(iv) Bridges 

This scenario arises from producing subparts. While a subpart is added onto another 

subpart, the iAtractive process is actually producing a bridge even though neither of these 

two subparts has overhanging features or bridge structures. In Figure 6.30(a), subpart B is 

added onto subpart A. Since there is a slot on subpart A, while the FFF process is creating 

subpart B, it is actually manufacturing a bridge. According to Table 5.2 and Figure 5.21, 

the surface quality and part density is of poor quality until a number of recovery layers are 

laid down. The aim of feature modification is to decrease the height of the bridge in the 

CAD model, ensuring that the print quality comes back to normal FFF print quality before 

the deposition nozzle reaches the nominal bridge height, as shown in Figure 6.30(c). The 

orange area consists of a number of recovery layers, which will be removed using the 

machining process afterwards. All corners are round and are ignored in Figure 6.30 for 

better demonstration. 
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(b) original features (c) modified features 

Figure 6.30 – Producing a bridge while adding a subpart onto another subpart 

(v) Creating new CAD models for dynamic process plans 

In generating a dynamic process plan, new subparts (features) are added onto the subparts 

that have already been produced. Therefore, the CAD models of these new subparts will be 

created. 

6.7 Post-processing Stage 

6.7.1 Integration of inspection operations and generation of static process plans 

Integrating inspection into the iAtractive process means that it becomes a value adding 

process. Inspection is considered to be the enabler for transforming a static process plan 

into a dynamic process plan, which will be presented in section 6.8. The inspection 

operations are added into the scheduled additive and subtractive operation sequences and 

the most appropriate operation sequence in terms of production time is then identified. To 

this end, the static operation sequence is now completely organised. 
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The inspection process should be used before the following operations take place: 

(i) The first additive or subtractive operation. 

This strategy only applies to the scenarios where parts are manufactured from existing 

parts. Inspection operations are used at the beginning of the iAtractive process to identify 

the shape and dimensions of the existing part. 

(ii) Machining operations. 

An inspection operation is scheduled before a machining operation starts, identifying the 

amount of material that should be removed from the deposited feature. In traditional 

machining of 2½D parts, the size of the raw material (normally a block) is bigger than that 

of the finished part. However, as subparts are continuously added onto previous subparts, 

each subpart fabricated is slightly bigger and higher than the corresponding nominal 

subparts. Additionally, due to the dimensional deviation in the Z axis, it is necessary to 

obtain the actual height and width of the subpart/feature before machining can commence. 

If the deposited feature is smaller than its nominal size, as identified in the inspection 

operation, further deposition operations will be added before the machining operation is 

executed. 

(iii) Additive operations for creating child parts. 

Inspection operations are conducted before depositing a child part onto an un-machined 

parent part due to the differing heights of the parent part that could result in the change of 

depositing parameters. This is concerned with bonding strength between the two subparts. 

A thickness of 0.25mm is the most widely used layer thickness for the FFF process for 

printing various part structures (RepRap, 2012b). However, it is not always feasible to 

print child parts. A typical example is: the height of a parent part is 10.2mm, however 

10.2mm cannot be divided exactly by 0.25mm. In this case, the FFF process will start 

printing the child part from 10.5mm because 10.25mm is the closest layer to 10.2mm. As a 

result, there is a 0.3mm gap between the build plane of the first layer of the child part, 

leading to weaker bonding strength between the parent and child subparts. In this example, 

layer thicknesses of 0.2mm and 0.3mm can be used. It should be noted that for a different 

layer thickness, the amount of melted material extruded per unit time is different. It should 

also be noted that the settings for 0.25mm layer thickness cannot be used to deposit 
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material starting from 10.25mm in height due to the narrow gap that will block the material 

extrusion from the nozzle. If the user insists on printing from 10.25mm, a layer thickness 

of less than 0.05mm may be potentially suitable, but it requires further investigations on 

layer thickness, print settings and part accuracy etc. 

(iv) Additive operations that lead to the cutting tool inaccessibility. 

In order to measure internal features, inspection has to be carried out when the features are 

still accessible. In this research, the touch trigger probe measuring method is used. The 

probe accessibility is the same as the cutting tool accessibility. Referring to the example 

shown in Figure 6.24(d), the actual dimensions of the internal pocket on subpart 1 have to 

be measured before adding subpart 3. Similarly, the two highlighted pockets on subpart 2 

have to be measured prior to producing subpart 4 and 5, respectively. 

(v) The final inspection operation is scheduled at the end of the complete operation 

sequence, ensuring that the part dimensions are within the part tolerances. 

Based on the rules described above, the overall workflow for integrating inspection 

operations in the scheduled sequences of additive and subtractive operations is depicted in 

Figure 6.31. 

6.7.2 Generation of tool path and process parameters for additive and subtractive 

operations, and measurement programs 

This is the last stage in generation of a static process plan. In this stage, the appropriate 

process parameters are selected and tool paths are generated for additive and subtractive 

operations. In addition, the measurement programs including the number of points to be 

collected and the probe movement paths for measuring the subparts are prepared. 

(i) Machining process parameters 

A number of selected combinations of the machining process parameters for various 

machining applications are provided in Table 5.5. The main effects plots for surface 

roughness shown in Figure 5.28 indicate that increasing feedrate is a feasible way of 

significantly reducing machining times, particularly for machining subparts. As a result, 

for roughing operations, feedrate is normally faster than that of finishing operations, in 

order to reduce machining time whilst maintaining high surface quality. The effects of 
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factor interactions depicted in Figure 5.29 indicate the appropriate parameter combinations 

if operators attempt to use a DoC of 1mm or 2mm for the purpose of further reducing 

machining time. 

In the iAtractive process, finishing operations are divided into two, namely finish 

machining subparts and final parts (or final features). For finish machining final parts and 

features, the feedrate to be used should be slower than that of finishing subparts. 

Additionally, better surface quality (Ra < 2µm) can be achieved when using a depth of cut 

of 0.25mm. For other application requirements, Figure 5.29 can be used to identify the 

suitable parameter combinations for the specific applications. 
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Additive operation ?
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Y

No inspection operation needs to 
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current additive operation ?

Is the last operation an additive operation ?
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Figure 6.31 – Workflow of integrating inspection plans in the operation sequences 
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(ii) Additive process parameters 

In general, the additive process parameters (e.g. extrusion temperature, infill width, infill 

pattern and deposition speed etc.) are consistent throughout this research. The only one 

parameter that may vary is the layer thickness. Differing heights of the parent part may 

require specific layer thicknesses. The changes of layer thickness could also cause changes 

in the total amount of material to be deposited per unit time, resulting in changes in 

material shrinkage per unit time. This will further lead to the deviation variations of the 

dimensional accuracy of the FFF manufactured part and the degree of part distortion. Once 

the dimensional accuracy and the degree of part distortion have changed, the features on 

the subparts should be modified accordingly in order to compensate for these changes. The 

relationships of deposition parameters are illustrated in Figure 6.32, showing the 

interrelated parameters. It is noted that identifying the dimensional accuracy, the capability 

of printing overhangs, and part distortions based on different layer thicknesses are beyond 

the research scope. All above described information was gathered using the layer 

thicknesses of 0.2mm, 0.25mm and 0.3mm. 
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Figure 6.32 – Relationships between additive process parameters 
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(iii) Tool paths for additive and subtractive operations 

The tool paths for additive and subtractive operations are generated by the using different 

open source and commercial software, such as RepRap host (RepRap, 2012b), Slic3r 

(Slic3r, 2013), and Delcam Powermill (Delcam, 2012). It should be noted that the additive 

process tool path strategy should be developed to cope with deposition of adaptive layers 

and dematerialised structures in the future, which will be presented in section 10.4.2. 

To this end, a static process plan has been fully developed and it will be updated during the 

production phase by adding new operations to the plan. 

6.8 Generation of Dynamic Process Plans 

Due to the integration of inspection, the iAtractive process is able to react promptly to 

quality changes. Dynamic process plans are generated during the production of the part 

based on the knowledge of the static plan generation, according to the feedback of 

inspection information. Operations are adjusted and added into the static process plan if 

necessary. By doing so, quality changes can be identified in an early stage of production 

rather than in the final inspection. 

Given that there is only one static process plan where a number of subparts together with 

the specific build directions and operation sequence are specified, it is inferred that the 

updated dynamic process plan will not disorganise the initial static process plan. The 

operation that leads to the dimensions of the subpart being out of tolerance is considered to 

be a failed operation. The subpart produced in the failed operation is called an unqualified 

subpart. The aim of generating dynamic process plans is to add extra operations to ensure 

the dimensions of the subpart are in tolerance before continuously implementing the 

operations scheduled after the failed operation. This can be achieved by adding and/or 

removing material from the subpart. The amount of material to be deposited and/or 

removed depends on inspection feedback. 

Figure 6.33 illustrates a dynamic process plan, where each block represents one single 

operation. The symbol ‘+’ denotes additive operation, ‘-’ denotes subtractive operation and 

‘I’ denotes inspection operation. The blue blocks are the operations that are sequenced in 

the static process plan; the grey blocks are the new operations added in the dynamic 

process plan; the arrows denote the operation sequence and the cross (×) denotes the 
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cancelled static operation sequence. Every output of the inspection operations could be the 

start of the dynamic plan if the inspection results indicate that the subpart manufactured 

does not achieve the designed requirements in terms of dimensions and tolerance. New 

additive, subtractive and inspection operations will be added after the failed operation. The 

end output of the dynamic process plan leads to the operation sequenced after the failed 

operation in the static process plan. The next start of the dynamic plan will be the next 

inspection operation that identifies the unqualified features. It should be noted that, when 

new operations are scheduled, the new CAD model is generated, showing the new features 

that will be added and/or removed from the failed subpart. Subsequently these new 

features will be modified according to the requirements presented in section 6.6. 

+ I – + I – …...

Additional 
operations

+ I I× × 

Static process plan

Dynamic process plan
Additional 
operations

 

Figure 6.33 – A dynamic process plan 

An example is given in Figure 6.34, where a part is decomposed into three rectangular 

subparts. Subpart 1 is manufactured first followed by subpart 2 and 3, as shown in Figure 

6.34(a). However, it was found that the height of the actual subpart 2 fabricated by the 

additive operation was lower than its height specified in the modified CAD model obtained 

in the feature modification stage (see Figure 6.34(b)). In this case, subpart 3 cannot be 

directly added onto the unqualified subpart 2. As a result, three new operations are added 

and inserted into the original static operation sequence. These three new operations are (i) 

adding the material onto the unqualified subpart 2, as shown in Figure 6.34(c); (ii) finish 

machining subpart 2; (iii) measuring the dimensions of subpart 2. After conducting the 

three new operations, subpart 3 can then be added. 

If the unqualified subpart contains a number of internal features causing potential tool 

inaccessibility issues when conducting new operations in the dynamic plan, the entire 

unqualified subpart should be removed. New operations can then be added to produce a 

new subpart. Future work should be carried out, investigating various solutions in the 

generation of dynamic process plan to deal with quality changes in production. 



 

Chapter 6 – A Generative Reactionary Process Planning Algorithm for the Manufacture of 

                    Complex Part Geometries 

 

173 

 
 

1

2

3

 
1

2

 
1

2

 
(a) (b) (c) 

Figure 6.34 – An example of scheduling new operations in a dynamic process plan 

Another possible method for generating dynamic process plans is to: 

 remove all the operations sequenced after the failed operation in the static process plan. 

 run through the process planning stages detailed in sections 6.4 – 6.7. 

 utilise the subparts that have already been produced and generate new operations to 

further manufacture the subparts until the final part is manufactured. 

 if unqualified subparts are identified in the new operations, remove all the operations 

sequenced after the failed operation in the dynamic process plan, and repeat the above 

three steps. 

This alternative method is illustrated in Figure 6.35. The red arrows represent the actual 

operations sequence implemented in the production; the black arrows represent the 

operations that were going to be conducted, but were abandoned in the production; the blue 

blocks are the operations in the static process plan; the grey blocks are the new operations 

scheduled in the dynamic process plan; and the purple blocks are the failed operations. 

+ I – + I – …...+ I I

+ I – + …... II +

– + …... I

Static process plan

Dynamic process plan

Updated dynamic 
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Figure 6.35 – An alternative method for dynamic process plan generation 
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One of the important things found in the practical machining tests is that more material 

should be removed if an actual part is just shorter than its nominal height (e.g. 2mm 

shorter). The 2mm thick material cannot simply be added onto the actual part because the 

bonding strength between the two parts (the actual part and the 2mm thick newly deposited 

part) is weak. In the finishing operation, the weak bonding strength will result in a final 

part that falls apart along the plane where the two parts are connected to each other. Thus, 

it is advisable to remove 3mm from the actual part and then add 5mm of material thickness 

back. 

6.9 Production Times 

Having gone through all the stages in Figure 6.2, a number of feasible operation sequences 

have thus been obtained. The criterion defined in this research for identifying the most 

appropriate operation sequence is production time, as shown Figure 6.36. 

 

Figure 6.36 – The most appropriate operation sequence in terms of production time 

The iAtractive process aims to manufacture products in the least amount of time possible. 

The total production time for manufacturing a part is defined as: 

Equation 6.1      a s c mT T T T T     

where T is the overall production time, Ta is the time for the additive process, namely build 

time; Ts is the time used in the subtractive process; Tc is the switching time between the 

additive and subtractive operations, which includes machine set-up time; Tm is the 

inspection time. 
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From Equation 6.1, it can be identified that the fewer the number of interchanges between 

the machining process and deposition process the better. Each switch requires retreating 

and relocating of the deposition nozzle as well as the machining tools, which may cost 

extra time, even though the deposition unit is integrated within the machine tool. The time 

used in each switch is considered to be constant. Since the part is decomposed into a 

number of subparts with reduced features, the inspection time can be considered to be 

constant. 

Machining time estimation has been extensively researched and different estimation 

methods have been developed (Scallan, 2003). As the machining parameters, i.e. speed, 

feed and DoC, have been selected in section 6.7.2, a method proposed by Maropoulos et al. 

(2000) is adopted in GRP
2
A, which estimates tool travel distance and calculates machining 

times using the above three machining parameters. 

By contrast, the additive process takes longer to implement than other processes utilised. 

For example, the build time for producing a feature with volume of 50cm
3
 could be up to 

20 times more than the machining time for machining such a feature. There is a need to 

develop a model for estimating build times, as this directly determines operation 

sequencing. In addition to the time estimation accuracy, the major requirement of the 

model is the efficiency, i.e. being capable of predicting build times from a CAD model or 

2D drawings which is considered to be the most accessible geometrical information for the 

process planning algorithm. 

6.10 Development of a Build Time Estimation Model 

This section reports on the development of a method for establishing a build time 

estimation model to be used at the process planning stage for the iAtractive process. A 

series of test parts with various combinations of features have been designed for 

developing and validating the model. Statistical analysis was carried out and the influential 

factors related to part geometries and material deposition tool path have been identified. 

6.10.1 The method for developing a build time estimation model 

Build times of the actual additive processes depend on part geometries, part orientation and 

the parameters of the additive processes involved. The parameters affecting build times 

may vary depending on the specific additive processes. A brief review was conducted, 
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identifying the existing approaches in build time estimation of additive processes such as 

SLA and LOM. In order to develop a build time estimation model for the FFF process, an 

analytic analysis was first carried out to theoretically analyse the influential parameters. 

Two test parts were designed and the initial tests were conducted, identifying and 

determining the most significant parameters that were to be used in the model. 

Subsequently, four test parts with varying combinations of features were designed and a 

fractional factorial design strategy was employed to design a series of experiments. The 

statistical analysis techniques, namely multi-factor regression analysis and ANOVA were 

used iteratively to develop the model. Finally, three test parts with specific features and 

volumes, combined with the t-tests method were used to evaluate and validate the 

developed model. Figure 6.37 illustrates the method used for developing such an 

estimation model. 
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Figure 6.37 – The method for developing the build time estimation model 

6.10.2 Development of an analytical model 

In this subsection, an analytical model for accurately calculating build times has been 

developed. This model is used in the development of the build time estimation model, 

comparing errors between actual and estimated build times. 
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6.10.2.1 FFF process parameters 

Build time (Ta) is defined by the author as the amount of time that is required to fabricate a 

single or a group of parts by using the FFF process. The estimation of build time involves a 

number of parameters to be taken into consideration. These parameters can be split into 

process parameters and geometry parameters, which are summarised in Table 6.2. These 

parameters are used in the development of the analytical model. 

Table 6.2 – Process and geometry parameters of the FFF process 

Process parameter Notation Unit 

Layer thickness t mm 

Boundary locations in the XY plane BLx, BLy mm 

Hatch spacing λ mm 

Road width RW mm 

Printing speed in the XY plane Vpr mm/s 

Repositioning speed in the XY plane Vxy mm/s 

Repositioning speed in the Z axis Vz mm/s 

Number of repositioning times NR scalar 

Acceleration/deceleration in the XY plane Axy/Dxy mm/s
2
 

Acceleration/deceleration in the Z axis Az/Dz mm/s
2
 

Filament retraction speed Vret mm/s 

Deposition head heating time Theater s 

Bed heating time Tbed s 

Delay time per print Tdelay s 

Geometry parameter Notation Unit 

Part volume V cm
3
 

Support material volume Vs cm
3
 

Surface area of the part Sa mm
2
 

Number of parts to be built NP scalar 

Part height H mm 
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Geometry parameters are the primary variables to be considered prior to the FFF process 

as they have direct effect on build times. Process parameters are the controllable factors, 

and changing them can lead to the increase/decrease in build time. For example, increasing 

printing speed directly results in the reduction in build time. 

However, it has been reported that the change of process parameters affects the output 

quality of the printed parts, such as surface quality, dimensional accuracy and tensile 

strength (Anitha et al., 2001). The purpose of predicting build times is to identify the most 

appropriate operation sequence which requires the least amount of build time. Despite the 

fact that changing the process parameters will most likely lead to the increase/decrease in 

build times, the aforementioned purpose cannot be achieved. This is because increasing or 

decreasing any or all of the speeds and accelerations/decelerations, affects the entire FFF 

process resulting in the increase or decrease in build times for producing the prototypes, 

respectively. This cannot be used to identify the appropriate operation sequence. Therefore, 

the process parameters are kept constant during the development of the build time 

estimation model. In order to avoid ambiguity in the analytical model, certain important 

parameters are defined as follows: 

Layer thickness: the thickness of each slice of the part deposited by the nozzle and built on 

the previous layer. In this stage a layer thickness of 0.25mm is used. 

Hatch spacing: the distance between the centrelines of adjacent parallel hatch vectors. 

Road width: the width of the deposition path. 

Boundary locations in the XY plane: this is the location of the part on the build platform, in 

which the nozzle has to operate during deposition. 

Printing speed: the speed of the deposition head travels during the deposition process. 

Repositioning: the deposition head moves from the point where the first path deposition 

ends to the point where the second path deposition starts. No material is deposited during 

repositioning operation. 

Repositioning speed: the speed of the deposition head travels while it is being repositioned. 

Acceleration: the acceleration enables the nozzle or bed to accelerate from 0 to printing 

speed/repositioning speed. 
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Filament retraction speed: before depositing material on each individual continuous path, 

the filament is fed back and subsequently fed into the liquefier chamber. This is because 

PLA tends to ‘string’ slightly, leaving filaments sticking out from builds where the 

deposition head has left the build for a repositioning movement. This problem can be 

eliminated by reversing the extruder by a short distance at the end of each completed 

deposition before the repositioning movement (Jones et al., 2011). This retraction speed is 

thus defined as the speed that filament is fed back and fed into the liquefier chamber. 

Delay time per print: before depositing material on each individual continuous path, there 

is a delay (delay before material deposition and head movement), which can be seen as 

constant. 

6.10.2.2 The analytical model 

Assuming that a part is sliced into N layers (N = |H/t|
+
 and | |

+
 represents the round up to the 

next integer number), the overall build time of producing the part can be described as 

Equation 6.2   
1

N

a n bed heater

n

T T T T


    

where Tbed is the time for warming up the bed to Tg of the material to be deposited (for 

PLA, it is 60°C) at which point the part stops warping; Theater is the time used in turning on 

the heater until it reaches the temperature that is 10°C higher than the material melting 

temperature (for PLA, the melting temperature is 195°C); Tn is the time used in printing n
th
 

layer, n ϵ [1, N]. 

For each layer, the build time Tn is divided into two parts, namely, 

Equation 6.3       _ _n dep n idle nT T T   

where, Tdep_n is the deposition time for n
th
 layer; Tidel_n is the idle time for the n

th
 layer. Idle 

time includes deposition head repositioning time in the XY plane and Z axis (Trep_n_xy and 

Trep_n_z), which can be calculated using Equation 6.4 below: 
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Equation 6.4        
_ _

_ _ _ _ _

1

J
rep j xy xy

idle n rep n xy rep n z

jz xy xy

S Vt
T T T

V V A

 
     

 
 

  

where, Srep_j_xy is the j
th
 (j ϵ [1, J]) repositioning displacement (unit: mm) before depositing 

the j
th
 continuous deposition path. 

Deposition time (Tdep) is the time when the material is being extruded, which is expressed 

in Equation 6.5: 

Equation 6.5              
_ _

_

1

2K
ret k pr k pr

dep n delay

k ret pr xy

L S V
T T

V V A

 
    

 
 

  

where, Spr_k is the length of the k
th
 (k ϵ [1, K]) continuous deposition path; Lret_k is the 

length of the filament retracted before depositing the k
th
 deposition path. Tdelay is the delay 

time before depositing material on each individual continuous path. 

Based on the analysis outlined in the proceeding Equations 6.2, 6.3, 6.4 and 6.5, a full 

representation of the build time for a single part is derived, namely 

Equation 6.6

 _ _ _ _

1 1 1

2

a bed heater

I J K
rep j xy xy ret k pr k pr

delay

i j kxy xy ret pr xy Z

T T T

S V L S V t
T

V A V V A V  

 

    
          

   
     

  
 

6.10.3 Selection and determination of parameters 

In this subsection, the process parameters to be investigated and included in the build time 

estimation model are selected. 

6.10.3.1 Initial selection of the parameters 

Based on the analysis above, the following statements can be made: 

 Calculation of the build time using an analytical approach (Equation 6.6) is generally 

not practical or viable in the proposed process planning approach when only CAD 

models or 2D drawings are given. In particular, the generation of tool paths highly 

depends on the part geometry and the slicing strategy. Therefore, the appropriate 

parameters need to be selected for developing the build time estimation model. 
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 Length of continuous deposition path (Spr) primarily determines build times when 

certain printing speed and acceleration/deceleration are applied. The length of 

continuous deposition path is proportional to build times. Therefore, part volume (V) is 

considered as one of the major parameters that directly contributes to the total amount 

of build time. 

 The time spent in heating the bed and the heater is constant for producing any given 

parts. Thus they are not included in the estimation model. 

 Hatch spacing (λ) is not represented in Equation 6.6, but it plays an important role in 

terms of build time. Normally, parts are not fabricated in a fully dense pattern in the 

FFF process. A high value of hatch spacing indicates low density of the part (i.e. the 

part is more porous), which in turn reduces the total length of the deposition path. As a 

result, part density (ρ) is introduced in the build time estimation model. Density is also 

defined as: density = 100% – part porosity. 

 Reducing the time taken to reposition as well as length of repositioning tool path (Srep) 

can lead to decreases in build time. For each time the deposition head repositions, 

filament retraction and print delay (Tdelay) are required, resulting in increased time. The 

reasons that cause the head reposition are (i) start printing next layer; and (ii) certain 

areas do not require material, such as printing pockets. The importance of head 

repositioning needs to be investigated further in order to decide whether or not to 

include this parameter in the model. 

 Part height (H) has potential effect on build time. Since the layer thickness is being 

kept unchanged, different heights of the part resulting from part orientation could 

possibly require different build times (N = |H/t|
+
). However, different orientations also 

lead to changes in the lengths of the deposition tool path and the tool path of the 

deposition head repositioning as well as the number of repositioning times etc. It is 

unclear whether part height should be considered in the complete estimation model. As 

a result, in the next subsection, a series of simplified experiments were conducted in 

order to finalise the parameters to be investigated in the development of the build time 

estimation model. 

6.10.3.2 Determination of the parameters 

The number of experiments to be conducted increases exponentially when further 

parameters are introduced in the build time estimation model. Moreover, the representation 
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of the model will become complicated, which is unsuitable for predicting build times in the 

process planning algorithm. Hence, it is suggested to exclude less important independent 

variables in the experiments since these variables do not significantly affect the predicted 

results but do make the model more complicated and thus significantly increase 

experimental runs. The volume and the density of the part directly determine the amount of 

material that is about to be deposited. In other words, high volume and high density require 

longer build times and thus they are included in the model. 

(I) Design of experiments: 

According to the statements made in section 6.10.3.1, the following two tests have been 

designed to evaluate the importance of two interrelated parameters, namely, part height 

and deposition head repositioning. Test parts F and G are shown in Figure 6.38(a) and (b), 

respectively. 

  
(a) test part F (b) test part G 

Figure 6.38 – Test part F and G 

The 2
k
 full factorial DoE strategy was used for the tests. 

Test 1: for the same rectangular blocks (test part F) with the same porosity, changing the 

block orientations meant changing the height values. Thus, four sets of rectangular blocks 

were used in Test 1. For each set of blocks, the volumes were kept the same but the height 

values varied. Three heights were used, namely, 10mm, 30mm and 50mm. Each height 

value was applied to all sets of blocks. 

Test 2: Five sets of parts with four different sizes of through pockets were designed. 

Producing rectangular blocks with pockets requires repositioning the deposition head 

repeatedly and frequently since the pockets do not need material. Every time the head 

travels across the pocket, it can be seen as a repositioning action. In order to avoid the 
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effects caused by the varying volumes and heights, all of the parts in each set had the same 

volume and height but different pocket sizes as compared to the other parts in the same set. 

A density of 25% was also applied to all the parts in Test 2. 

(II) Results and analysis: 

The build times were calculated by using the developed analytical model (Equation 6.6), 

which can be considered as the actual build times. The results for Test 1 and 2 are listed in 

Table 6.3 and Table 6.4. 

Table 6.3 – Build times used in producing the test parts in Test 1 (unit: second) 

                        Height 

Volume 

Height 1 

(10mm) 

Height 2 

(30mm) 

Height 3 

(50mm) 

Volume 1 (15 cm
3
) 1239 1530 1593 

Volume 2 (32.4 cm
3
) 2444 2598 2958 

Volume 3 (58.8 cm
3
) 4236 4219 4535 

Volume 4 (96 cm
3
) 6754 6453 6762 

Table 6.4 – Build times used in producing the test parts in Test 2 (unit: second) 

             Pocket size 

Volume 

Pocket 1 

(0×0mm
2
)

*
 

Pocket 2 

(10×20mm
2
) 

Pocket 3 

(30×40mm
2
) 

Pocket 4 

(40×50mm
2
) 

Volume 1 (24cm
3
) 2093 2982 3826 5073 

Volume 2 (35cm
3
) 2837 3717 4875 5204 

Volume 3 (56cm
3
) 4178 5094 6293 6931 

Volume 4 (72cm
3
) 5164 6003 7026 7881 

Volume 5 (90cm
3
) 6249 7164 8119 8830 

The results (i.e. build times) were analysed using ANOVA, revealing that part height and 

deposition head repositioning are significant parameters in relation to the total build times. 

The ANOVA results are shown in Table 6.5 and Table 6.6. 

 

 

                                                           
*
 pocket 1 (0×0mm

2
) represents there was no pocket 
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Table 6.5 – ANOVA table for part height 

Source SS df MS F P-value F credit 

Volume 45676615 3 15225538 714.80 <0.0001 4.34 

Height 207921.5 2 103960.8 4.88 0.06 4.66 

Error 127801.8 6 21300.31    

Total 46012338 11         

Table 6.6 – ANOVA table for length of repositioning tool path 

Source SS df MS F P-value F credit 

Volume 44986349 4 11246587 517.53 <0.0001 3.26 

Pocket 20654559 3 6884853 316.82 <0.0001 3.49 

Error 260773.2 12 21731.1    

Total 65901681 19         

Due to F credit = 4.66 < F = 4.88 in Table 6.5, significant difference in build times has 

been identified while changing the part height. Similarly, in Table 6.6, F credit = 3.49 < F 

= 316.82 indicates that length of repositioning tool path is also an important factor. Test 2 

demonstrates that build time is not only dependent on total part volume, but also the 

distribution of material. Based on the tests and the ANOVA results, part height and length 

of repositioning tool path should be included in the build time estimation model. In 

addition, it is worth mentioning that the effect of part volume is of more significance than 

that of part height and length of repositioning tool path. 

(III) Intermittent factor: 

In order to make the build time estimation model easy to use in the process planning 

algorithm, the parameters in the build time estimation model can be directly or indirectly 

obtained from the CAD model and/or 2D drawings. From the experiments presented above, 

the length of the repositioning tool path cannot be used as a variable in the estimation 

model despite the fact that it is a significant factor. This is because the distance travelled in 

repositioning and the number of times for repositioning cannot be obtained from the CAD 

model and/or drawings, which also depends on the part geometry and slicing strategy 

employed. 

A term entitled intermittent factor (I) is therefore proposed to reflect the influence of the 

above two variables against total build times. A high intermittent factor implies that a 
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significant amount of time is used in repositioning the deposition head and other relevant 

actions such as filament retraction and print delay (Tdelay). The parameters related to 

repositioning actions include two variable and four constant parameters, in which length of 

repositioning tool path and number of repositioning times are variable/inconstant. 

Although repositioning speed, acceleration/deceleration, filament retraction speed and 

delay time per print are kept constant throughout the estimation model development, they 

are still included in the intermittent factor as the constant and variable parameters 

individually and interactively affect build times. A typical example is the increase in the 

number of repositioning times results in a longer build time since the resulting delay time 

and filament retraction time increase accordingly. Assume that a feature (e.g. feature A) is 

sliced into a number of layers where discrete deposition areas exist. The intermittent factor 

can be calculated as the product of the ratio of discrete areas and STL boundary areas, and 

the ratio of feature A’s height and the height of outer feature that contains feature A. 

As stated above, high intermittent factor implies that a significant amount of time is 

consumed in repositioning related activities, particularly in zig-zag deposition tool path 

strategies. As illustrated in Figure 6.39, the build time for printing this single layer is 

divided into two parts, namely, productive time during which the material is being 

deposited (i.e. deposition time), and idle time. During idle time, the nozzle is switched off, 

the head quickly moves to the next deposition position and the material is being prepared 

to be deposited (i.e. repositioning time, filament retraction time and delay time). An 

example part is shown Figure 6.39(a), and the tool paths are shown Figure 6.39(b) where 

the black lines represent the material deposition tool paths; and the red lines highlight the 

tool paths for the deposition head movement in the idle time. 

  
(a) the CAD model of the part (b) tool path for printing a layer 

Figure 6.39 – Zig-zag tool path strategy for printing a layer 
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Table 6.7 shows the classifications of the sliced layers of 2.5D features while the 

features/subparts are oriented in different directions. In this table, D stands for the layers in 

which there are discrete deposition areas. Similarly, the layers where only continuum 

deposition areas exist are denoted as C. NC represents the layers where there is a non-

material deposition area located within the continuum deposition areas (e.g. a pocket or the 

part shown in Figure 6.39). Table 6.7 indicates that the intermittent factor has been defined 

appropriately since it covers all the scenarios in the determination of part orientation and 

operation sequencing where the part/subpart/feature is built along different build directions. 

By changing the build directions, the new intermittent factor can be calculated accordingly. 

Table 6.7 – The classification of sliced layers of 2.5D features in different orientations 

                Rotation 

 

Feature 
0° 

90° 

in X 

axis 

180° 

in X axis 

270° 

in X 

axis 

90° 

in Y 

axis 

180° 

in Y 

axis 

270° 

in Y 

axis 

Planar face C C C C C C C 

Boss C C C C C C C 

Open pocket C C C C C C C 

Closed pocket NC C NC C C NC C 

Through pocket NC D NC D D NC D 

Open slot D C D C C D C 

One open end slot C C C C C C C 

Step C C C C C C C 

Through hole NC D NC D D NC D 

Non-through hole NC C NC C C NC C 

To this end, part volume (V), part density (ρ), part height (H) and intermittent factor (I) 

were selected and defined to be investigated in the experiments for developing the build 

time estimation model. Among these four parameters, part volume and height can be 

directly obtained from the CAD model and/or 2D drawings; part density is specified by the 

operator; the intermittent factor can be calculated based on the dimensions of the features. 

This facilitates the calculations in the process planning stage as compared to other build 

time estimation methods (Han et al., 2003; Kechagias et al., 2004). 
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6.10.4 Test part designs 

There have already been several existing test parts for additive manufacturing machines 

but most of these parts were designed for accuracy evaluation only (Brajlih et al., 2011). 

Therefore, four new test parts (test part H – K) were designed by the author, containing 

various combinations of features, volumes, heights and intermittent factors. Due to factor 

interactions, four variables can be expanded to 14 different combinations. Thus, these four 

test parts were scaled proportionally, generating more test parts with varying volumes and 

heights but constant intermittent factors. The four test parts are shown in Figure 6.40. 

  

(a) Test part H (b) Test part I 

  

(c) Test part J (d) Test part K 

Figure 6.40 – Test parts H, I, J and K 

6.10.5 Design of experiments 

In the development of the build time estimation model, reducing experimental runs was 

critical since the theoretical model (Equation 6.6) had identified 12 variables, leading to a 
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large number of experiments. In order to significantly reduce experimental runs, the 

number of control factors and interactions to be examined was minimised. The first step in 

designing experiments was to select and determine the factors, which have been elaborated 

in section 6.10.3. 

Having determined the parameters to be involved in the model, the next step was to 

determine the number of levels to be investigated for each factor. Given that those four 

factors are multi-level variables and their outcome effects are not linearly related, four 

levels were thus chosen to apply to part volume, height and density for each test part 

design. As the aim of the experiments was to develop a build time estimation model rather 

than identify the influence of important factors only, the Taguchi method (Ross, 1996) was 

not considered to be appropriate for this experimental design. Another standard approach 

for DoE is to use full factorial method. However, this method is only acceptable and 

feasible when a few (usually no more than three) factors are to be explored. In this regard a 

3
4
 experimental plan would have been required if the full factorial method was to be used. 

Furthermore, involving four variables implies there are ten interactions between them, 

requiring even more experimental runs. In addition, the intermittent factor represents the 

geometrical attributes, which are constant and unique for each test part. However, the full 

factorial methods require different levels for each variable. 

However, for predicting build times, the more experimental data obtained the more 

accurate the prediction results. As a result, the levels of the parameters need to cover a 

wide range of values. For instance, it is better to investigate the influences caused by both 

a small volume part and a large volume part and other volumes in between. Based on the 

above reasons, the four test parts were scaled up 1.2, 1.4 and 1.6 times, by which the part 

volume, height vary accordingly. It is also noted that the length of repositioning tool path 

in the XY plane and Z axis were changed accordingly as well. Four levels of part density, 

namely 25%, 50%, 75% and 100% were used for each part volume and height variables. 

As a result, 64 experimental runs were required. Table 6.8 shows the parameters for 16 

experiments for test part H. Note that the intermittent factor was constant for the identical 

build direction. 
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Table 6.8 – The designed experiments for test part H 

Volume 

(cm3) 
Porosity (%) Height (mm) 

Intermittent 

factor 

46.2 25 30 0.115 

46.2 50 30 0.115 

46.2 75 30 0.115 

46.2 100 30 0.115 

79.8 25 36 0.115 

79.8 50 36 0.115 

79.8 75 36 0.115 

79.8 100 36 0.115 

126.8 25 42 0.115 

126.8 50 42 0.115 

126.8 75 42 0.115 

126.8 100 42 0.115 

189.2 25 48 0.115 

189.2 50 48 0.115 

189.2 75 48 0.115 

189.2 100 48 0.115 

6.10.6 Experimental results, analysis and discussion 

To obtain the build time estimation model, regression analysis and ANOVA was carried 

out iteratively. The errors were analysed by comparing the actual and the predicted build 

times to identify the importance of the interactions among the four control factors. By 

feeding back the error analysis, the final estimation model was obtained, where 

unimportant interactions were removed. 

In detail, the actual build times of a total of 64 test parts were accurately calculated using 

Equation 6.6. Having obtained the actual times, a multi-factor regression analysis 

technique was used to obtain a full factorial estimation model. This model was 

subsequently applied to the same test parts to estimate the build times. The estimated and 

actual results were compared and the errors were analysed. The development of the 

estimation model and the deviation analysis were carried out iteratively. The deviation 

analysis identified the importance of each parameter and the interactions. In turn, the 

parameters that were of secondary importance were removed in the next step of the 

development process. The deviation in the new model was analysed again, identifying the 

least important parameters which were ignored in the following regression analysis. By 

doing so, the original 14 factors (including individuals and interactions) were reduced to 

four. 
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The actual build time (Ta) and the estimated build time (Ta
*
) can be depicted in Equation 

6.7 and Equation 6.8, respectively. 

Equation 6.7      
1 2

1

( , , , ) ( , , , ) ( , , , )
P

a i

p

T f V H I f V H I f V H I  


       

Equation 6.8  * * * *

1 2

1

( , , , ) ( , , , ) ( , , , )
Q

a i

q

T C f V H I f V H I f V H I  


        

where, fi and fi
*
 are the functions related to part volume, height, density and intermittent 

factor in the actual and the build time estimation model, respectively. C is the intercept. 

Thus, the deviation (ζm) for each individual experiment can be simply expressed using 

Equation 6.9. 

Equation 6.9        *

. .m total m total mT T    

The root mean square of the deviation (RMSζ) and each function (RMSfi) in the estimation 

model can be calculated using Equation 6.10 and Equation 6.11, where, m denotes 

experiment number m. 

Equation 6.10     

64M

m

mRMS
M









 

Equation 6.11    

64

.

i

M

i m

m
f

f

RMS
M






 

Given that producing a middle size prototype (i.e. 1.25×10
2
cm

3
) requires up to 7 hours, the 

acceptable deviation between the actual and estimated build times was set to be five 

minutes. Therefore, for those RMSfi that were one or more orders of magnitude greater than 

RMSζ, the corresponding functions were kept in the next run of the estimation model 

development process. Other functions were taken off from the model. After five iterations, 

the final build time estimation model was obtained as depicted in Equation 6.12. 

Equation 6.12       168.33 23.56 9.44 160.19 78.17aT V H V HI        

where, ε is the uncertainty in the actual experiments. 
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The selected analysis results are shown in Table 6.9, which were obtained by fitting a 

second-order regression model (Equation 6.12). Due to the square terms of the four 

variables and other interactions that were either unimportant or not considered in the DoE, 

they are not shown in Table 6.9. The t-stat represents the statistic t-test value for individual 

regression coefficients. A large absolute value of the t-stat implies the significance of the 

variables and interactions. P-value represents the probability value. The smaller the value 

the more significant it represents. Since the P-values of part volume, the interaction of 

volume and density, height, and intermittent factor are significantly smaller than the 

threshold value of 5% in the analysis, they are of primary significance. Among them, the 

interaction of volume and density is the most significant factor, followed by part volume. 

With respect to the regression confidence and the adjusted regression confidence, R
2
, 

(R
2
)adj and the difference between them indicates that the regression model is satisfactory. 

Table 6.9 – Summary of the selected regression analysis results 

Variables 
Standard 

deviation 
t-stat P-value R square 

Adjusted 

R square  

Intercept 27.76 0.61 0.55    

Part volume (V) 0.94 25.07 <0.001   significant 

Part height (H) 8.35 1.13 0.26    

V×ρ 0.50 318.60 <0.001   significant 

H×I 17.08 4.58 <0.001   significant 

Regression model    99.98% 99.98%  

The residual analysis was carried out for checking the adequacy of the developed 

estimation model. Figure 6.41 is the normal probability plot of the standardised residuals 

of the model. It is considered as satisfactory due to the standardised residuals that are 

evenly distributed along the straight line. Figure 6.42 shows the distribution of the 

standardised residuals versus the experiment numbers. No distinct pattern has been 

observed, revealing that the current model is appropriate and no further factors are required 

for describing the relationship between the input factors and the estimated times. 

Approximately 98.4% of the standardized residuals fall in the interval (-2, +2), 

demonstrating that the errors are normally distributed. Nevertheless, it should also be noted 

that there are two points that are outside the interval. The standardised residual of one of 

the points is 2.01, which can still be considered as normal, but another standardised 

residual of 3.02 indicates the presence of an outlier. Thus, the parameters in the 

corresponding influential observation (experiment number 45) were traced back and the 
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distance of the point from the average of all the points in the data set was recalculated. The 

results show that the outlier does not have a dramatic impact on the regression model. 

Figure 6.43 also supports this statement, which plots the errors curve showing that the 

error of 2.2% in experiment 45 is acceptable. Due to an unknown reason that caused the 

high-standardised residual, more tests are required to validate and evaluate the 

performance of the model, which will be presented in the next section. 

 

Figure 6.41 – Normal probability plot of standardised residuals 

 

Figure 6.42 – Distribution of standardised residuals versus experiment number 
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It is noted that the errors tend to increase while the part volume is small, as identified in 

Figure 6.43. While the four test parts were not scaled up (experiment 1-4, 17-20, 33-36 and 

49-52), the errors are relatively larger than the errors in other experiments. In addition, the 

original volumes of test part H and I are small (less than 50 cm
3
). As a result, the errors do 

not decrease significantly while the parts were scaled up 1.2 times. An exact reason cannot 

be provided, however for small parts where the volume does not exceed 100 cm
3
, even 

though the number of repositioning and filament retraction times is kept unchanged, the 

length of the repositioning tool path is significantly shorter than that of the larger volume 

parts, while the intermittent factors are identical. This may lead to an increase in estimation 

error. Furthermore, it is worth mentioning that errors can be simply reduced to lower than 

1% by expanding Equation 6.12 with more factors (e.g. adding interactions between V, H, 

ρ and I, as shown in Equation 6.13 as an example). 

Equation 6.13 

* 2 *51.32 26.71 8.62 160.19 0.07 69.83 0.10aT V H V VH HI H          

 

Figure 6.43 – Percentage errors between the actual and estimated build times for the test 

parts in the estimation model development 

6.10.7 Evaluation of the developed build time estimation model – case study 

After obtaining positive results from the previous experiments, three case studies were 

conducted for the evaluation and validation of the developed build time estimation model, 

and are described below. 

-6

-4

-2

0

2

4

6

8

0 5 10 15 20 25 30 35 40 45 50 55 60

Er
ro

r 
(%

) 

Experiment number 



 

Chapter 6 – A Generative Reactionary Process Planning Algorithm for the Manufacture of 

                    Complex Part Geometries 

 

194 

 
 

6.10.7.1 Design of experiments for the estimation model evaluation 

Given that the aim of the evaluation experiments was to evaluate and validate the 

developed model, the Taguchi design strategy was not appropriate and full factorial 

experiments were unnecessary. The designed test parts needed to include various prismatic 

features. More importantly, fabricating these features requires varying length of 

repositioning tool paths and differing number of repositioning and filament retraction times. 

This research focuses on prismatic part manufacture, but it is still worth understanding the 

performance of the build time estimation model in relation to the manufacture of 

sculptured surfaces. This is because the iAtractive process is likely to be further developed 

for sculptured surface manufacture. Based on the above reasons, three test parts (as shown 

in Figure 6.44) have been designed and modified, covering the typical prismatic features 

and two 3D features. Test part M was modified from the NAS 979 (National Aerospace 

Standard 979, 1969) test part; and test part N was selected and modified from Zhou et al.’s 

(2000) test part which contains nine features including planar face, boss, pocket, sphere 

and chamfer. 

 

(a) Test part L 

  

(b) Test part M (c) Test part N 

Figure 6.44 – Test parts L, M and N 
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It was found that the majority of the estimation inaccuracy lies in producing parts with a 

volume of less than 50 cm
3
. Therefore, the volumes of test part L and test part N were 

specially designed to be less than 50 cm
3
. Subsequently the three original test parts were 

scaled up 1.2, 1.4 and 1.6 times, generating 12 test parts with differing part volumes and 

heights. Due to the interaction of volume and porosity that is the most significant factor, 

25%, 50%, 75% and 100% levels of porosity were applied to these 12 test parts. The 

properties of the original test parts L, M and N are summarised in Table 6.10. A total of 48 

test parts were defined. 

Table 6.10 – Properties of the test parts L, M and N 

              Properties 

Part Volume (cm
3
) 

Height 

(mm) 
Porosity (%) 

Intermittent 

factor 

Test part L 26.05 13 N/A 0.245 

Test part M 45.68 20 N/A 0.141 

Test part N 25 18 N/A 0.689 

6.10.7.2 Experimental results and discussion 

The actual build times of the above 48 test parts were obtained using Equation 6.6 and the 

estimated build times were calculated using Equation 6.12. Table 6.11 presents the results 

obtained in the experimental runs 17 – 32. The errors between the predicted and the actual 

build times are also presented. It is observed that the errors for the part volume of 45 cm
3
 

could be up to -6.73%, whereas the largest error is only 0.75% for the part volume of 

187.11 cm
3
. With the increase in part volume, the mean error gradually reduces from 3.44% 

to 0.36%. 

The percentage errors between the predicted and actual build times are plotted in Figure 

6.45. The best results were obtained in the experimental runs 17-32 and there is no obvious 

fluctuation (less than 12% error) in the experimental runs 1-16 and 33-48. As the 

estimation model (Equation 6.12) only has four factors rather than 6 factors (Equation 

6.13), it is not as sensitive as Equation 6.13 in terms of the accuracy in predicting times for 

the actions relating to repositioning. The test parts in the experiments 17-32 (test part M 

and variations) have a low intermittent factor (less than 0.2), indicating the short length of 

repositioning tool path, relatively low number of repositionings and filament retraction 

times, as well as a short resulting delay time during production. As a result, the resulting 
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errors were reduced. In other words, the developed build time estimation model has better 

performance for parts with a low intermittent factor (< 0.2). The predicted times tend to be 

longer than the actual times while the model is applied to parts with a high intermittent 

factor (> 0.5). 

Table 6.11 – The predicted build times using the developed estimation model 

Experiment 

number 

Volume 

(cm
3
) 

Height 

(mm) 

Porosity 

(%) 

Intermittent 

factor 

Actual 

build 

times 

(seconds) 

Estimated 

build 

times 

(seconds) 

Errors 

(%) 

17 45.68 20 25 0.14 3735 3483.58 -6.73 

18 45.68 20 50 0.14 5365 5312.99 -0.97 

19 45.68 20 75 0.14 7012 7142.40 1.86 

20 45.68 20 100 0.14 8609 8971.81 4.21 

21 78.94 24 25 0.14 5981 5680.68 -5.02 

22 78.94 24 50 0.14 8962 8841.90 -1.34 

23 78.94 24 75 0.14 11931 12003.12 0.60 

24 78.94 24 100 0.14 14794 15164.34 2.50 

25 125.35 28 25 0.14 8982 8714.54 -2.98 

26 125.35 28 50 0.14 13866 13734.44 -0.95 

27 125.35 28 75 0.14 18670 18754.34 0.45 

28 125.35 28 100 0.14 23493 23774.24 1.19 

29 187.11 32 25 0.14 12788 12724.62 -0.50 

30 187.11 32 50 0.14 20220 20217.88 -0.01 

31 187.11 32 75 0.14 27661 27711.14 0.18 

32 187.11 32 100 0.14 34941 35204.40 0.75 

 

 

Figure 6.45 – Percentage errors between the actual and estimated build times for the test 

parts in the estimation model evaluation 
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In order to evaluate the model, a statistical method, namely, t-tests was used to analyse the 

results, identifying whether significant difference exists between the estimated and actual 

build times. Paired t-tests were carried out for all the test parts at a 95% confidence interval 

for the analysis of the differences between the estimated and actual times. The selected 

results are listed in Table 6.12, where t-stat is 0.75 < t two-tail critical = 2.01 (α = 0.05). 

Thus, it can be concluded that the build time estimation model does not yield significantly 

different results when compared to the actual times. 

Table 6.12 –Selected results of the paired t-test 

t-test output Estimated Actual 

Observations 48 48 

Pearson correlation 0.99  

df 47  

t Stat 0.75  

P(T<=t) one-tail 0.23  

t one-tail critical 1.68  

P(T<=t) two-tail 0.46  

t two-tail critical 2.012   

6.11 Summary 

In this chapter, a process planning algorithm, entitled GRP
2
A, has been investigated, which 

is capable of generating static and dynamic process plans for the manufacture of complex 

part geometries. The procedure for generating process plans is: 

• The part features are first recognised and the analysed, identifying potential cutting 

tool collisions and overhanging features (section 6.3.1). The part is then oriented into a 

position and the factors affecting orientation were addressed (section 6.3.2). 

• The part is decomposed into a number of subparts, enabling the internal features to be 

finish machined without cutting tool collisions (section 6.4). 

• Build directions are allocated to each subpart by considering the FFF process 

capability and deposition nozzle collisions. If every subpart has been specified a build 

direction and no nozzle collisions occur, this set of build directions is considered to be 

valid. A number of sets of build directions may exist (sections 6.5.2 and 6.5.3). 
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• Machining operations are inserted into the valid sets of build directions whilst taking 

into considerations precedence and tool accessibility constraints (section 6.5.5). Thus, 

the additive and subtractive operations are sequenced. 

• Features are modified for the corresponding additive and subtractive operations 

(section 6.6). 

• Inspection operations are added into the scheduled additive and subtractive operation 

sequences, by which feasible operations for manufacturing the part are obtained 

(section 6.7.1). 

• The production times for feasible operations are estimated and the most appropriate 

operation sequence is identified (sections 6.9 and 6.10). The tool paths and process 

parameters are then generated and determined, respectively (section 6.7.2). To this end, 

the static process plan is generated. 

• This static process plan will be further updated into the dynamic process plan 

depending on the inspection feedback (section 6.8). 
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7 Investigation of feature-based decision-making logic for 

material reuse 

7.1 Introduction 

One of the major advantages of the iAtractive process, namely accurate manufacturing of 

complex parts, has been presented in chapter 6. In this chapter, FDL is investigated, 

enabling existing parts to be further manufactured, which is considered to be another 

distinct advantage of the iAtractive process. Existing parts are classified into a series of 

groups based on features and a number of available manufacturing strategies are then 

proposed to utilise these existing parts. 

7.2 The Overview of Feature-based Decision-making Logic 

7.2.1 The definitions of material reuse and existing part 

As identified in section 2.4 and Table 2.1, both FFF and CNC machining processes are 

constrained by raw materials in terms of shape and size. In general, additive processes start 

producing parts from zero, adding material layer by layer until the parts are fully generated. 

On the other hand, CNC machining is a subtractive process, requiring a block of material 

that must be at least as big as the part that is to be made. Neither of these types of 

manufacturing processes is able to utilise existing parts. 

Referring to existing part/material, it is defined as a part/object that has already been 

produced, used, worn or abandoned. A finished part can be seen as an existing part; an 

abandoned finished part of which the dimensions are out of tolerance is also considered as 

an existing part; a block or an object with arbitrary shape is an existing part as well. In 

broad terms, an existing part may be of any shape and size. For the iAtractive process, 

existing parts are considered as raw material to be further manufactured and transformed 

into final parts. The features on the final parts are different from the features on the 

existing parts. This essentially means the existing parts are utilised as part of the final parts 

and are thus considered as being reused. It should be noted that all the existing parts in this 

chapter are solid objects rather than hollow. 
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7.2.2 An overall view of Feature-based Decision-making Logic 

An existing part is first inspected on a CMM in order to obtain its dimensional and 

geometric information, which is the input for FDL. By considering the geometry and the 

dimensions of the existing part as well as the designed features on the final part, feasible 

manufacturing strategies are selected, specifying available operations for remanufacturing 

the existing part. The existing part will then be further manufactured by using the additive, 

subtractive and inspection processes interchangeably. By doing so, the final part is 

obtained. It is noted that each manufacturing strategy can be applied to a number of 

existing parts with various features and in turn, there are a number of manufacturing 

strategies available for the same existing part. 

7.3 Classification of Existing Parts 

7.3.1 Final and non-final features 

Prior to defining final and non-final features, the definitions of ‘qualified’ and ‘unqualified’ 

part/feature are first specified. ‘Qualified’ represents the manufactured part/feature that 

achieves the designed requirements in terms of accuracy and surface quality. ‘Unqualified’ 

indicates the part/feature requires further manufacturing as it does not meet the tolerance 

and surface quality requirements. 

Qualified final features are features that the iAtractive process aims to produce. Every 

feature on the finished part is a final feature. If the dimensions of the features on the final 

part are out of tolerance, they are considered as unqualified final features. 

Non-final features are features on the existing part, but are not the desired features on the 

final qualified part. Non-final features require further processing by either removing and/or 

adding more material. By doing so, they can be transformed into the final features. In 

terms of dimensions, a feature, of which the dimensional deviation is more than 1mm 

compared to the nominal, is regarded as a non-final features. In addition, the maximum 

allowance of the positioning error of a final feature is defined as less than 1mm. Figure 

7.1(a) shows a final feature (8×12×5mm
3
) located in the designed location. However, the 

boss (12×14×5mm
3
) shown in Figure 7.1(b) is considered to be a non-final feature. 

Furthermore, in Figure 7.1(c), despite the fact that the dimensions of the boss (8×12×5mm
3
) 
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are exactly the same as the dimensions of the boss in Figure 7.1(a), it is still a non-final 

feature due to the positioning error being beyond the maximum allowance. 

The sacrificial features on a subpart can be seen as semi-final features. For example, the 

support material on a subpart has to be created and then removed. In this scenario the 

support material is classified as a semi-final feature required to be created when producing 

the subpart (see Figures 6.29 and 6.30). 

   

(a) (b) (c) 

Figure 7.1 – A final feature and non-final features 

7.3.2 Existing parts classification 

Existing parts are classified into three types, namely, existing part with non-final features, 

with final features, and with both non-final and final features. As this research is only 

focused on prismatic part manufacture, six types of features are considered in FDL, namely, 

boss, pocket, step, slot, hole and planar face. Thus, each of these six types of existing parts 

is further classified based on features, which are existing part with a single feature, and 

with combinations of any of these single features. In terms of feature combination, it can 

be categorised as combinations of interacting features, and combination of separate 

individual features. The existing part in Figure 7.1(a) is an example of an existing part with 

a single feature. Figure 7.2 shows an existing part with a separate pocket and a boss. Figure 

7.3(a) shows an existing part with a pocket containing a boss. To avoid confusion, for 

representing interacting features, the first feature contains the second feature. For example, 

an existing part with an interacting boss and pocket is shown in Figure 7.3(b). Furthermore, 

for a feature that contains two separate individual features, the notation is: an existing part 

with interacting [1
st
 feature] and ([2

nd
 feature] and [3

rd
 feature]), e.g. an existing part with 

an interacting pocket and (a boss and a hole) in Figure 7.3(c). 
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Figure 7.2 – An existing part with a separate boss and a pocket 

   

(a) (b) (c) 

Figure 7.3 – Existing parts with interacting features 

7.4 Manufacturing Strategies for Producing Parts Based on Existing Parts 

This section presents a series of manufacturing strategies capable of transforming various 

existing parts into final parts. The global and local constraints are specified, which are used 

to select appropriate manufacturing strategies based on the geometries of the existing and 

final parts. 

7.4.1 Global and local constraints 

Prior to developing manufacturing strategies for reusing existing parts, the differing 

constraints have to be specified. Two types of constraints, namely global and local 

constraints that affect the selection of manufacturing strategies are defined as follows. 

(i) Local constraints 

Local constraints are referred to geometrical and positioning dimensions of the features on 

both the existing and final parts. Local constraints only deal with the selection of 

manufacturing strategies based on the dimensions of the features on the existing part 

identified in the initial inspection operation. The initial inspection operation, as shown in 
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Figure 4.4, is the first operation to be conducted, which measures the given existing part 

and thus identifies the geometrical attributes. 

A typical example of local constraints is as follows: an existing part is given as shown in 

Figure 7.4. The final part is a rectangular block, of which the length and width are the 

same as the existing part on the XY plane. The height of the block is higher than that of the 

existing part. It is assumed that the pocket width (Wp) is shorter than the pocket length (Lp), 

i.e. Wp < Lp. Thus, when 2 pW ≤ 23mm, (23mm is the longest bridge length that can be 

produced, as identified in Table 5.2), one of the available strategies is to directly add 

material onto the top face of the existing part until the near-net shape of the block is built. 

On the other hand, when 2 pW > 23mm, the above strategy cannot be used since the 

deposition process will fail while attempting to deposit material upon the pocket. This 

example demonstrates that the local constraints primarily determine feasible manufacturing 

strategies for remanufacturing existing parts. 

 

Figure 7.4 – An existing part with a pocket 

(ii) Global constraints 

Global constraints focus on application requirements (in terms of tolerances and surface 

quality), production time, material consumption and positions of negative features in part 

designs. Global constraints significantly restrict the number of manufacturing strategies to 

be used. They are applied at the end of the decision-making process to finally determine 

the feasible manufacturing strategies. 

For instance, for a component – which can be both manufactured by the FFF process only, 

and by the FFF process followed by a finishing operation – cannot be solely fabricated by 

the FFF process in certain application areas where high dimensional accuracy is required. 
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For simplifying the number of options in FDL, none of the features can be purely produced 

by the FFF process since high part accuracy has been specified in the scope of this research. 

Determination of the final manufacturing strategy depends on the actual requirements. If 

the first priority is production time, the manufacturing strategy, where the least amount of 

production time is achievable, should be selected. Similarly, if material consumption or 

production costs is the most important factor, the manufacturing strategy that matches this 

factor should be chosen accordingly. 

Further to positions of negative features in part designs, it is explained as follows: Figure 

7.5 shows a final part with two through holes (negative features). If the existing part in 

Figure 7.4 is going to be reused and 2 pW ≤ 23mm, two examples of manufacturing 

strategies are: 

(I) Directly add material onto the top of the existing part until the near-net shape of the 

final part is built; then finish machine the entire part (including drilling two holes 

and finish machining all the surfaces of the final part). 

(II) Remove the existing pocket on the exiting part in a machining operation; 

continuously deposit layers onto the top of the machined surface until the near-net 

shape of the final part is built; then finish machine the entire part (including drilling 

two holes and finish machining all the surfaces of the final part). 

hole 1hole 2

 

Figure 7.5 – Positions of holes in a part design 

Both manufacturing strategies would have been feasible if hole 2 was not designed in the 

position shown in Figure 7.5. As hole 2 (on the final part) and the pocket (on the existing 
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part) are overlapping in the Z axis and the pocket is bigger than hole 2, the first 

manufacturing strategy is not feasible in this scenario. Figure 7.6 shows the final part 

produced using strategy I. The transparent view reveals that hole 2 cannot be fully created 

in the overlapping area of hole 2 and the pocket. The red lines highlight the profiles of the 

two holes. As a result, only strategy II is available. It is also noted that the existence of 

hole 1 does not affect the manufacturing strategy selection in this example. 

X

Y
Z

X

Y
Z

 

Figure 7.6 – The final part is manufactured using an inappropriate manufacturing strategy 

7.4.2 Deposition nozzle constraints 

In fact, the deposition nozzle constraints are included in the local constraints. The reason 

that the deposition nozzle constraints are emphasised is that, unlike the traditional AM 

methods which create physical models from zero on a build platform (in which case no 

deposition nozzle collision occurs), in this scenario material is directly added onto existing 

parts. As a result, the potential deposition nozzle collisions in this first instance need to be 

considered. Nozzle collisions are likely to occur between the deposition nozzle and the 

existing features. 

The deposition nozzle is shown in Figure 6.11. Due to the nozzle configuration, existing 

pockets, holes, slots and steps cannot be completely filled by depositing new melted 

material. However, the deposition nozzle can still access pockets and holes, and then 

deposit material providing their dimensions are greater than the nozzle’s dimensions. For 

deep pockets and blind holes, the current nozzle may not be able to access their surfaces 

because of the limited length of the deposition tool used. 
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7.4.3 Manufacturing strategies for remanufacturing existing part 

This section introduces eight available manufacturing strategies that can be used to further 

manufacture existing parts. These strategies are outlined in Table 7.1. 

Table 7.1 – Available manufacturing strategies for material reuse 

Strategy 

number 
Available manufacturing strategy 

① 
Directly add material onto the existing part, then interchangeably add & 

subtract & inspect (iASI) until the part is finished. 

② Remove the existing feature(s), then iASI. 

③ 
For an existing feature that is included in another existing feature, remove 

the outer feature, then iASI. 

④ 
For an existing feature that is included in another existing feature, remove 

the inner feature, then iASI. 

⑤ Machine the existing features to the final dimensions directly. 

⑥ 
Add material inside the existing feature until the height of the newly 

deposited material reaches the same height as the existing feature, then iASI. 

⑦ 
Add material outside the existing feature until the height of the newly 

deposited material reaches the same height as the existing feature, then iASI. 

⑧ 
Produce a mating part separately, which matches the features on the existing 

part; assemble the mating part and the existing part, then iASI. 

Strategies ② and ⑧ are considered as universal manufacturing strategies since they can 

be applied to all kinds of existing parts with various features. The above eight strategies by 

no means cover all the available manufacturing strategies and it is likely that more 

strategies exist, which will be discussed in sections 9.7 and 10.4.3. 

The aim of the manufacturing strategies is to provide feasible manufacturing operations to 

further manufacture the given existing part, transforming it into the final part. If the final 

part contains internal features, the manufacturing strategy will only focus on the first few 

operations to transform the existing part into the i
th
 subpart identified in GRP

2
A (assuming 

that the (i+1)
th
 subpart leads to a cutting tool inaccessibility issue). Regarding the 

following operations (i.e. iASI), they should be the same as the operations specified in 

GRP
2
A. The number of ‘first few operations’ depends on existing part geometry, which 

will be described in the proceeding sections. 



 

Chapter 7 – Investigation of feature-based decision-making logic for material reuse 

 

207 

 
 

For example, a rectangular block is given as an existing part and the final part to be 

produced is shown in Figure 6.25. The operation sequence generated by GRP
2
A is as 

follows: 

(i) build subpart 1; 

(ii) measure subpart 1; 

(iii) finish machine the blind pocket on subpart 1; 

(iv) build subpart 2; 

(v) measure the produced subpart 1&2; 

(vi) machine the other pockets in subpart 1&2; 

(vii) measure the finish machined pockets on subpart 1&2; 

(viii) build subpart 3; 

(ix) finish machine the exposed pockets; 

(x) measure the finish part and the exposed pockets. 

It is virtually impossible to directly machine the existing part to the combined subpart 1&2 

(the subpart 1&2 is produced in operation vi) because the cutting tool cannot access the 

blind pocket. As a result, the existing part has to be transformed into subpart 1 first no 

matter what the shape and size the existing part is. The following iASI operations should 

follow the operations defined in (ii) – (x). In addition, subpart 2 is the (i+1)
th
 subpart that 

causes cutting tool inaccessibility. 

Another consideration that makes the first few operations very important arises from 

deposition nozzle collisions as well as the FFF process capability in producing overhangs. 

Figure 7.7(a) shows an existing part with a boss. The deposition nozzle collisions should 

be avoided when printing material (green part) onto the existing part (blue part), as shown 

in Figure 7.7(b). This is because the absolute height of the green part being printed in 

Figure 7.7(b) is lower than that of the existing boss. Once the height of the green part 

reaches the same height as the existing boss as shown in Figure 7.7(c), no tool collisions 

will occur and the printing process becomes the same as that of the traditional FFF process, 

namely printing from bottom to top. Therefore, subsequent operations may follow the 

operations generated from GRP
2
A if there are other subparts to be manufactured. 

In addition, due to cutting tool and deposition nozzle accessibility that is also taken into 

consideration in GRP
2
A, subsequent subparts can be produced and there is no need for 
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FDL to provide further manufacturing strategies. Moreover, if the deposition nozzle is 

printing a bridge as shown in Figure 7.7(d), the bridge length should not exceed the longest 

length that FFF is capable of producing. This factor has been considered in FDL before 

starting to produce the green part in Figure 7.7(b). Thus, the FFF process capability is 

taken into account before remanufacturing the existing part and the highest risk of 

deposition nozzle collisions is most likely to occur in the first few operations. 

  

(a) (b) 

  

(c) (d) 

Figure 7.7 – Depositing material onto an existing part with a boss 

In order to concentrate on the manufacturing strategies themselves, in this chapter, no 

internal features are designed in the final parts. That means the final parts do not have to be 

decomposed and there is only one subpart for each final part, which is actually the final 

part itself. FDL will provide feasible manufacturing strategies to further manufacture the 

existing parts, reincarnating them into final parts. 

7.4.4 Existing part with single non-final feature 

Sections 7.4.4 to 7.4.8 illustrate the selection of manufacturing strategies based on existing 

parts with various features by applying the local constraints. In this section, the available 
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strategies for manufacturing existing parts consisting of a wide range of combinations of 

non-final features are described. The notations for the dimensional parameters are 

summarised in Table 7.2. These parameters will be explained along with the 

manufacturing strategies in the subsequent sections. 

Table 7.2 – Notations of the dimensional parameters in manufacture of existing parts 

Parameter Notation Parameter Notation 

Length (in the X axis) L Slot s 

Width (in the Y axis) W Hole h 

Depth (in the Z axis) D Step st 

Height (in the Z axis) H Existing part e 

Diameter of the hole ϕ 
Positioning dimension in 

X axis 
PL 

Nominal dimension Nd 
Positioning dimension in 

Y axis 
PW 

Boss b 

Vertical distance between 

the existing feature to its 

adjacent final feature 

Df 

Pocket p 
Total thickness of all the 

recovery layers 
Dr 

Both final and non-final features are further split into two groups, namely positive and 

negative features. Boss is considered to be a positive feature. Negative features are pocket, 

slot, step and hole. For the classification of positive and negative features, readers are 

referred to section 5.3. 

The final part P is shown in Figure 7.8, which is modified from test part C in Figure 5.10, 

consisting of a boss, a closed pocket and a step. The reason that the two holes in test part C 

are ignored is that the positions of holes are global constraints, which do not affect the 

initial stage of manufacturing strategy selection. 
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Figure 7.8 – Final part P to be produced from different existing parts 

The typical combinations of non-final features together with the manufacturing strategies 

are illustrated in section 7.4.5 and Table 7.4. 

7.4.4.1 Block 

A block is considered as a single boss (non-final feature). The local constraints are: the 

total length, width and height of the final part (L, W and H), and the length, width and 

height of the block (Le, We and He). 

(i) Le ≥ L, We ≥ W and He ≥ H 

This means the block size is bigger than that of the final part P. Thus, strategy ⑤ can be 

used to directly machine the block to the final part. This scenario is exactly the same as the 

scenario where a part is solely CNC machined. 

(ii) Le ≥ L, We ≥ W and He < H 

This means the block height is lower than the total height of the final part P. Therefore, 

strategy ① can be used to directly add material onto the block until the near-net shape of 

the final part is built (see Figure 7.9) followed by a finishing operation. 
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The existing 
part (block)

Newly 
deposited part

 

Figure 7.9 – Further manufacture a block 

(iii) Le < L, We < W and He < H 

This scenario is similar to other relevant scenarios which will be introduced in proceeding 

sections. 

7.4.4.2 Existing part with a boss 

Figure 7.10 shows an existing part with a boss. In this scenario, the existing boss is located 

in the centre of the existing part on the horizontal plane. In order to focus on the scenario 

of having a boss, the total length and width of the existing part (Le and Wb) are assumed to 

be equivalent to the total length and width of the final part (L and W), respectively. In 

addition, the final part is higher than the existing part (i.e. H > He). 

Thus, the local constraints are: the length, width and height of the boss (Lb, Wb and Hb), 

and the position of the boss (PL and PW). 

 

Le

We

Lb

Wb

Le

He

 

Figure 7.10 – An existing part with a boss 
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(i) The universal manufacturing strategy ② 

This strategy can be used to remove the boss. By doing so, the existing part becomes a 

rectangular block as shown in Figure 7.9. Subsequently, more material will be added until 

the near-net shape of the final part P is generated. A machining operation will then be 

conducted to obtain the desired dimensional accuracy and surface quality. It is noted that, 

in order to reduce machining times whilst obtaining a surface with acceptable surface 

roughness (i.e. Ra < 12µm) to act as a build platform for further depositing material, the 

machining parameters can be determined by referring to Table 5.5. Feed 3000mm/min, 

speed 4000rpm and DoC 2mm are recommended for removing the existing boss. 

(ii) The universal manufacturing strategy ⑧ 

As illustrated in Figure 7.11, a mating part (black) is first produced, consisting of final 

features and a female feature (i.e. a pocket) against the male feature (i.e. the boss) on the 

existing part. The existing part and the mating part are then assembled followed by a 

finishing operation. However, given that assembly operations have to be carried out, this 

strategy is not recommended unless there are no other methods to process the existing part. 

 

Figure 7.11 – Assemble a mating feature and an existing part 

(iii) 9
2

e bL L
 mm and 15

2

e bW W
 mm, Df > Dr 

The material (newly deposited part_1) is added around the boss until the height of the 

newly deposited material reaches the same height of the existing boss, as shown in Figure 

7.12(a). More material (i.e. newly deposited part_2 and 3) will be continuously added, 

producing the near-net shape of the final part (see Figure 7.12(b)). This is manufacturing 

strategy ⑦. Figure 7.12(c) shows a real existing part with a boss; the combined existing 

part and newly deposited part_1 is shown in Figure 7.12(d); in Figure 7.12(e), the newly 
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deposited part_2 is being printed. Figure 7.12(f) shows the first recovery layer printed on 

part_1 and the finished combined existing part, part_1 and 2 is shown in Figure 7.12(g). As 

the top surface of the combined existing part, part_1 and 2 is flat, part_3 can then be built. 

Newly deposited 
part_1

The existing 
part

The existing 
part

Newly deposited 
part_1 Newly deposited 

part_2

Newly deposited 
part_3

 
(a) add part_1                 (b) overview of adding new parts 

       

                           (c) the existing part                (d) the combined existing part&part_1 

 

(e) newly deposited part_2 is being printed 

       

       (f) a few layers of part_2 has been printed    (g) the combined existing part&part_1&2 

Figure 7.12 – Manufacturing strategy (7) for manufacturing an existing part with a boss 
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The local constraint relationships (i.e. 9
2

e bL L
 mm and 15

2

e bW W
 mm, Df > Dr) are 

used to determine whether the newly deposited part_1 can be produced by taking the 

potential deposition nozzle collisions into consideration (see Figures 6.11 and 6.12). The 

newly deposited part_2 is the recovery layers since the iAtractive process is actually 

producing bridges while part_2 is being printed. In this example, the step on newly 

deposited part_3 can be fully generated, whereas the pocket cannot be fully produced. The 

depth of the pocket (Dp = 6mm) is deeper than the depth of the step (Ds = 2mm). However, 

the print quality has not come back to normal when the bottom surface of the pocket is 

required to be created. In here, ‘normal print quality’ refers to the print quality illustrated 

in Figure 5.22. 

Figure 7.13 illustrates the relationship between the recovery layers and the most adjacent 

final feature. The pocket in this example is the most adjacent final feature since its bottom 

surface is the surface closest to the existing boss in terms of vertical distance. Given that 

the recovery layers are of poor quality (porous), high surface quality (Ra < 1µm) cannot be 

obtained even though the recovery layers are finish machined. Therefore, manufacturing 

strategy ⑦ is only feasible when Df > Dr. Alternatively, the existing part can be face 

milled with a certain depth of material removed in order to get Df greater than Dr. 

Recovery 
layers

Newly deposited 
part_3

The bottom surface 
of the pocket

DrDf

 
Figure 7.13 – Recovery layers and the most adjacent final feature 

For more general scenarios where the boss is located in a random area on the surface as 

shown in Figure 7.7(a), the local constrains (i.e. PLb_1 ≥ 9mm, PLb_2 ≥ 9mm, PWb_1 ≥ 

9mm, PWb_2 ≥ 15mm, and Df > Dr) should be applied. Figure 7.14 is the top view of the 

existing part, which shows the positioning dimensions of the boss in the X and Y axes, 

respectively. In order to deposit material around the boss and avoid nozzle collision, the 

positioning dimensions of the boss need to meet the requirements of the local constraints. 
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PLb_1 PLb_2

PWb_2

PWb_1

X

Y

Le

LbWe

 

Figure 7.14 – Positioning dimensions of an existing boss 

7.4.4.3 Existing part with a pocket 

Figure 7.4 shows an existing part with a non-final pocket. In order to focus on the situation 

of having a pocket, the total length and width of the existing part (Le and We) are assumed 

to be equivalent to the total length and width of the final part (L and W), respectively. 

Additionally, the final part is higher than the existing part (i.e. H > He). Thus, the local 

constraints are: the length and width of the pocket (Lp and Wp). 

(i) 2 pW ≤ 23mm and Df > Dr 

The manufacturing strategy that can be used in this scenario has been briefly introduced in 

section 7.4.1. The material can be directly printed onto the top surface of the existing part. 

The deposition nozzle moves across the pocket whilst extruding material. This additive 

operation is the same as printing a bridge. The reason for requiring Df > Dr is similar to 

that of the scenario described in section 7.4.4.2(iii). 

(ii) 2 pW > 23mm and Df > Dr 

Manufacturing strategy ⑥ is feasible for this scenario. A boss (the newly deposited part_1) 

is first added in a layer by layer manner inside the pocket, as shown in Figure 7.15(a). The 

height of the boss should be the same as the depth of the pocket. The length and width of 

the boss are dependent on the size of the pocket as well as the configuration of the heated 

block as shown in Figure 6.11. The priority is to ensure the deposition nozzle does not hit 

the existing pocket. Further material is deposited as depicted in Figure 7.15(b). The newly 

deposited part_2 is the recovery layers. The existing part with a pocket, and the combined 
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existing part & part_1 are shown in Figure 7.15(c) and Figure 7.15(d), respectively. The 

combined existing part & part_1 & 2 is shown in Figure 7.15(e). Subsequently, part_3 was 

continuously built on the combined existing part & part_1 & 2. 

Newly deposited 
part_1

The existing 
part The existing 

part

Newly deposited 
part_1

Newly deposited 
part_2

Newly deposited 
part_3

 
(a) add part_1      (b) overview of adding new parts 

   

(c) the existing part (d) the combined existing 

part & part_1 

(e) the combined existing 

part & part_1 & 2 

Figure 7.15 – Manufacturing strategy (6) for manufacturing an existing part with a pocket 

7.4.4.4 Existing part with a through hole 

It is assumed that the existing part’s length and width (Le and We) are no shorter than the 

final part’s length and width (L and W), i.e. Le ≥ L and We ≥ W. The final part is higher than 

the existing part, i.e. H > He. The existing part is shown in Figure 7.16. The local 

constraints are the diameter of the hole (ϕ) and the position of the hole (PLh and PWh). The 

positioning dimensions of the hole are illustrated in Figure 7.17, which is the top view of 

the existing part. 
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Figure 7.16 – An existing part with a through hole 

PLh_1

PLh_2

PWh_2

PWh_1

X

Y

Le

We

R

 

Figure 7.17 – Positioning dimensions of an existing hole 

(i) ϕ > 23mm 

In this case, the hole has to be removed first since the bridge cannot be created upon the 

existing hole. Figure 7.18(a) shows that the grey part is machined off from the existing part. 

More material is then added onto the machined existing part as illustrated in Figure 7.18(b). 

By doing so, the near-net shape of the final part is produced. It is noted that the 

manufacturing strategy ② for the scenario shown in Figure 7.18(b) can be applied to 

existing blocks with the local constraints (Le < L, We < W and He < H) in section 7.4.4.1(iii). 

remove the grey part

      

Machined 
existing part

Newly deposited 
part_1

Newly deposited 
part_2

 
               (a) remove the existing hole                             (b) more material is added 

Figure 7.18 – Manufacturing strategy (2) for manufacturing an existing part with a hole 
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(ii) ϕ ≤ 23mm, ϕ < W < L and 2f rD D  

A hole diameter of less than 23mm indicates that the new material can be directly 

deposited onto the existing part without support. Hence, the material is deposited on both 

top and bottom faces of the existing part in order to cover the existing hole, as depicted in 

Figure 7.19, where Le = L, We = W and He < H .The newly deposited part_1 is first added 

onto the existing part. The thickness of part_1 should be thicker than that of the recovery 

layers since it will be finished machined. The newly deposited part_2 and 3 are then added 

onto the other side of the existing part. 

The existing 
part

Newly deposited 
part_1

Newly deposited 
part_2

Newly deposited 
part_3

 

Figure 7.19 – Manufacturing strategy (1) for manufacturing an 

existing part with a through hole 

Figure 7.20 shows the application of strategy ① in a more general scenario where Le < L, 

We < W and He < H. In Figure 7.20(b) and (c), the purple dashed lines represent the newly 

deposited part_1 to be printed. The considerations that should be addressed in positioning 

of the deposition nozzle to create the newly deposited part_1 are: 

• Firstly, it would be ideal if the newly deposited part_1 can be fully printed on the 

existing part whilst not covering the existing hole, as illustrated in Figure 7.20(a). 

• Secondly, if the first condition cannot be achieved, the newly deposited part should 

cover the existing hole, as shown in Figure 7.20(b). The position of the newly 

deposited part_1 in Figure 7.20(c) is not acceptable and the reason will be expanded in 

section 7.4.4.4(iii). 
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• In the above conditions, the existing part is first machined to obtain the length and 

width that are slightly bigger than those of the final part, i.e. Le = L + 2 and We = W + 2, 

unit: mm. 

• Finally, for the scenario shown in Figure 7.20(b), the global constraints (i.e. the 

positions of negative features) have to be considered, ensuring that the existing hole 

and the final negative features do not overlap (see Figure 7.6). Then, the existing part 

can be remanufactured using manufacturing strategy ① as illustrated in Figure 7.19. 

The existing 
part

Newly deposited 
part_1

 
(a) add part_1 onto the existing part 

X

Y

Le

We

 
X

Y

Le

We

 
(b) feasible location of part_1 (c) infeasible location of part_1 

Figure 7.20 – Positioning deposition nozzle for printing the newly deposited part_1 

(iii) L ≤ ϕ ≤ 23mm, and none of the constraints meets the following relationships:

1
_1

2
e hL PL L   , 

1
_ 2

2
e hL PL L   , 

1
_1

2
e hW PW W    and

1
_ 2

2
e hW PW W   . 

In this scenario, the lengths and widths of the existing and final parts are shown in Figure 

7.21. The red dashed lines represent the total length and width of the final part. No matter 

where the deposition nozzle is positioned to start depositing new material on the XY plane, 

the final part P overlaps the existing hole in the Z direction. In this case, the existing hole 

will appear when finish machining the final part. Therefore, the first operation is to remove 

the existing hole using strategy ② as demonstrated in Figure 7.18. 
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X
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Figure 7.21 – The positions of the existing hole and the final part’s length and width 

7.4.4.5 Existing part with a blind hole 

For a simplified demonstration it is assumed that the existing part’s length and width are 

equivalent to the final part’s length and width, respectively, i.e. Le = L and We = W. The 

final part is higher than the existing part, i.e. H > He. For the constraints and manufacturing 

strategies specified in the scenarios where Le > L and We > W, readers are referred to 

section 7.4.4.4. A blind hole can be further classified as a blind hole with a flat bottom face 

and with a sharp bottom face. 

(1) A blind hole with a flat bottom face 

This type of hole is normally produced using a slot mill cutter. The local constraint is the 

diameter of the hole (ϕ). 

• ϕ ≤ 23mm and Df > Dr. New layers can be directly laid down upon the existing part 

until the near-net shape of the final part P is obtained (strategy ①). This scenario is 

similar to the scenario introduced in section 7.4.4.3 (i). If Df ≤ Dr, the existing hole will 

have to be removed (strategy ②), as demonstrated in section 7.4.4.2 (i) and section 

7.4.4.4 (i). 

• ϕ > 23mm. This means the gap (the existing hole) is too big to afford a bridge hanging 

upon it. As the bottom face of the hole is flat, new material can be extruded onto it as 

long as the deposition nozzle does not collide with the hole. However, this requires 

further design improvement and a specific tool path generation approach to be 

conducted as part of the future work, which will be discussed in sections 10.4.3 and 

10.4.5. 
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(2) A blind hole with a sharp bottom face (see Figure 7.22) 

Y

X

Z

  

Le

He

X

Z

 

Figure 7.22 – An existing blind hole with a sharp bottom face 

This type of holes is normally produced using a drill. The local constraint is the diameter 

of the hole (ϕ). 

• ϕ ≤ 23mm and Df > Dr. The manufacturing strategies used to remanufacture an existing 

hole (ϕ < 23mm) with a flat bottom face can be applied to these two scenarios. 

• ϕ ≤ 23mm and Df ≤ Dr or ϕ > 23mm. Restricted by the FFF process capability and in 

particular current nozzle design, new material cannot be directly deposited on the 

sharp face. As a result, manufacturing strategy ② is chosen to remove the existing 

hole and produce a planar face. Removing the hole from the XY plane (as illustrated in 

section 7.4.4.2 (i)) or from the YZ plane (as illustrated in section 7.4.4.4 (i) and Figure 

7.18) depends on the production times. 

7.4.4.6 Existing part with a slot 

The existing part is shown in Figure 7.23. If the part dimensions are: the existing part’s 

length and width (Le and We) are not shorter than the final part’s length and width (L and 

W), respectively, only the two universal manufacturing strategies (i.e. ② and ⑧) are 

feasible for further processing the existing part. 

 
Figure 7.23 – An existing part with a slot 
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If the part dimensions are: L > Le, W > We, and H > He, the local constraints will be the 

width of the slot (Ws), Df and Dr. Two scenarios are discussed below: 

(i) 2 sW > 23mm; or 2 sW ≤ 23mm and Df ≤ Dr (in the Z axis); or 2 sW ≤ 23mm and 

We + 2Dr'< W (on the XY plane) 

In this scenario, the strategies ② and ⑧ can be used to produce the final part P. 

(ii) 2 sW ≤ 23mm, Df > Dr (in the Z axis) and We + 2Dr' < W (on the XY plane) 

The material will be deposited onto the both side faces of the existing part as shown in 

Figure 7.24(a). The widths of both newly deposited part_1 and 2 (in the Y axis) should be 

thicker than the recovery layers since they will be subject to finishing operations. In the 

meantime, for the same reason, the sum of widths of the existing part, part_1 and 2 should 

not be greater than the final part width (W). Having generated part_1 and 2, part_3 and 4 

are then added onto the combined existing part & part_1 & 2. Figure 7.24(b) depicts the 

four new parts to be added onto the existing part. Part_3 and 4 are actually one newly 

deposited part. For demonstrating the recovery layers in the Z axis, part_3 and 4 are shown 

separately. 

The existing 
part

Newly deposited 
part_1

Newly deposited 
part_2

Y

X
The existing 

part
Newly deposited 

part_1

Newly deposited 
part_2

Newly deposited 
part_3

Newly deposited 
part_4

 
                                  (a)                                                                     (b) 

Figure 7.24 – Manufacturing strategy (1) for manufacturing an existing part with a slot 

It is worth mentioning that these four new parts cannot be directly added onto the existing 

part one by one in consecutive operations. The rules in operation sequencing (presented in 

sections 6.5.2 and 6.5.5), which specify the circumstances where machining operations are 
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required, are still valid for the remanufacture of existing parts. For the above example in 

Figure 7.24, part_1 should be finish machined after it is built. Then the other side face of 

the existing part on which part_2 is about to be built, should also be machined to remove 

built up part distortions which have occurred while creating part_1. Part_2 requires 

machining prior to printing part_3. 

7.4.4.7 Existing part with a step 

For this type of existing part, due to deposition nozzle collisions, the existing step cannot 

be fully filled to obtain a planar face. As a result, the step has to be removed first. More 

material will then be added onto the machined existing part (strategy ②). Alternatively, a 

mating part can be produced to match the existing part geometry (strategy ⑧). 

7.4.4.8 Existing part with a feature located on a vertical plane (XZ or YZ plane) 

In fact, the manufacturing strategies for existing parts with features located on a vertical 

plane are similar to the ones presented in the foregoing sections for the existing parts with 

features on a horizontal plane. This is because the existing parts can be rotated, by which 

the horizontal planes may become vertical planes and vice versa. An example is given 

below to demonstrate the available manufacturing strategies for this type of existing parts. 

Figure 7.25 shows an existing part with a slot on the vertical plane (i.e. the YZ plane), of 

which the length (Le, in the X axis) is shorter than the final part length (L), the width and 

height (We and He) are not shorter than the final part width and height (W and H). Thus, the 

local constraints are the slot width (Ws), Df and Dr. 

Y

X

Z

 

Figure 7.25 – An existing part with a slot on the vertical plane 
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(i) 2 sW > 23mm; or 2 sW ≤ 23mm and Df ≤ Dr. 

The relationship (i.e. 2 sW  > 23mm) implies that the FFF process cannot directly deposit 

material onto the top of the slot on the YZ plane. The relationship (i.e. 2 sW  ≤ 23mm) 

demonstrates that the material can be deposited on the XY plane without the need for 

support. The relationship (i.e. Df ≤ Dr) indicates that, even though the material can be 

deposited on the YZ and XY planes, the porous structure is still widely distributed in the 

most adjacent final feature. As a result, the slot has to be removed first, which is similar to 

the scenario illustrated in Figure 7.18. Alternatively, a mating feature can be manufactured 

to match the existing part and more material is subsequently added, as shown in Figure 

7.26. 

The existing 
part

Newly deposited 
part_1

The mating 
feature

 

Figure 7.26 – Manufacturing strategy (8) for manufacturing an existing part with a slot 

(ii) 2 sW ≤ 23mm and Df > Dr. 

Manufacturing strategy (1) can be applied to this scenario. The newly deposited part_1 is 

built onto the top of the slot on the YZ plane (as shown in Figure 7.27) followed by a 

machining operation. The subsequent operations can be referred to the example in section 

7.4.4.4(ii) and Figure 7.19. 
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The existing 
part

Newly deposited 
part_1

 

Figure 7.27 – Build a part onto the top of a slot 

7.4.5 Existing part with multiple separate non-final features 

This type of existing part is the combination of the separate non-final features. Therefore, 

the local constraints for existing parts with multiple separate non-final features are similar 

to the local constraints for the existing parts with single non-final features. The available 

manufacturing strategies are the combinations of the individual strategies. 

The existing part with a separate boss and a pocket in Figure 7.2 is used as an example. 

Assume that Le > L, We > W, He < H. The local constraints for the boss are: PLb_1, PLb_2, 

PWb_1, PWb_2, Df_b and Dr_b; the local constraints for the pocket are: Wp, Df_p and Dr_p. 

Df_b is the vertical distance between the existing boss to its adjacent final feature. In this 

example, the adjacent final feature is the final pocket on the final part P. Df_p is the vertical 

distance between the existing pocket to the final pocket on the final part P. Dr_b and Dr_p 

are the total thickness of all the recovery layers for the existing boss and pocket, 

respectively, which will be explained in the proceeding section. 

As strategy ⑦ is only feasible when PLb_1 ≥ 9mm, PLb_2 ≥ 9mm, PWb_1 ≥ 9mm, PWb_2 

≥ 15mm and Df_b > Dr_b, the local constraints which do not meet the above relationships 

will lead to strategy ⑦ becoming invalid. If all the constraints for the boss meet the 

relationships, it is denoted as ‘√’ in Table 7.3. Otherwise, it is denoted as ‘×’. Similarly, 

strategy ⑥ can only applied to the existing part if 2 pW > 23mm and Df_p > Dr_p. The 

available manufacturing strategies for this existing part are listed in Table 7.3, which 

classifies a number of scenarios based on the local constraints. In this table, the symbol ‘+’ 

(e.g. ⑥+⑦) represents that both manufacturing strategies have to be used in sequence. 
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Table 7.3 – Available manufacturing strategies for an existing part with 

a separate boss and a pocket 

 
whether or not the local constraints meet the relationships 

Boss √ √ × × 

Pocket √ × √ × 

 

Manufacturing 

strategy 

⑥p+⑦b, ②, 

⑧, 

①p+⑦b, ②, 

⑧ 

②b+⑥p, ②, 

⑧, 
②, ⑧, 

Example 

see Figure 7.28, 

Figure 7.9, 

Figure 7.11 

see Figure 7.12, 

Figure 7.9, 

Figure 7.11 

see Figure 7.15, 

Figure 7.9, 

Figure 7.11 

see Figure 7.9, 

Figure 7.11 

In addition, in Table 7.3, ⑥p represents that strategy ⑥ is only applied to the existing 

pocket, and ⑦b represents that material is added outside the existing boss. If there is no 

subscript, it means that the manufacturing strategies are applied to the entire existing part. 

For an existing part in Table 7.3 where the combination of the strategies ⑥p + ⑦b is 

feasible, it can be manufactured in the way depicted in Figure 7.28. As 2 pW > 23mm, the 

newly deposited part_1 can be created inside the pocket (⑥p). The newly deposited part_2 

will then be added around the boss (⑦b), as shown in Figure 7.28(a). Subsequently, part_3 

and 4 are built on part_2 to create the near-net shape of the final part P. The entire 

deposition operations are demonstrated in Figure 7.28(b). In here, Dr_b is the total thickness 

of the recovery layers printed on the newly deposited part_2. Similarly, Dr_p is the total 

thickness of the recovery layers printed on the newly deposited part_1. 

It should be noted that, for an existing part with a single non-final pocket, the position of 

the pocket does not affect the selection of manufacturing strategies when Le = L and We = 

W. However, the pocket’s positions on the existing part with multiple separate non-final 

features determine the available strategies to be used. More generally, the selection of 

manufacturing strategies for existing parts with multiple separate non-final positive and 

negative features is also dependent on the positions of non-final negative features. 
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Newly deposited 
part_2
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part

Newly deposited 
part_1

Newly deposited 
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Newly deposited 
part_4

Newly deposited 
part_3

 
                                (a)                                                                      (b) 

Figure 7.28 – Manufacturing strategy (6) and (7) for further manufacturing an existing part 

with a separate boss and a pocket 

For example, a non-final pocket (e.g. Lp = 50mm and Wp = 10mm) is located in a position 

shown in Figure 7.29(a). Due to deposition nozzle collision, no material can be deposited 

inside the pocket. The newly deposited part_1 is built as shown in Figure 7.29(b). However, 

one of its edges has to be produced without support, as highlighted in Figure 7.29(c). As a 

result, print failure is highly likely to occur, and therefore strategy ⑦ cannot be applied to 

this existing part. It is advisable to remove the boss (strategy ②) followed by depositing 

material onto the machined surface whilst not filling in the pocket (strategy ①). 

 

(a) the existing part with a separate boss and a pocket 
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The existing 
part

Newly deposited 
part_1

Overhanging 
edge

 

X

Y

Overhanging 
edge

The existing pocket

 
(b) add part_1 (c) top view of the combined 

existing part & part_1 

Figure 7.29 – The position of a pocket on an existing part 

In addition, the manufacturing strategies for existing parts with single non-final features 

can also be used in the scenarios, in which existing parts with separate non-final features 

on different planes are required to be remanufactured. In Figure 7.30, there are two non-

final features i.e. a boss and a slot located on a horizontal and a vertical plane (i.e. the XY 

and YZ planes), respectively. A possible method to transform this existing part into the 

final part P is to use strategy ① to directly add material onto the top of the slot on the YZ 

plane, which is similar to the existing part shown in Figure 7.27. Subsequently, strategy ⑦ 

is applied to building a pocket around the boss, which is similar to the existing part shown 

in Figure 7.12 and Figure 7.28. More material will then be deposited onto the bottom 

surface of the existing part (this bottom surface is opposite to the horizontal surface on 

which the existing boss is located). This is similar to the newly deposited part_1 added 

onto the existing part shown in Figure 7.19. It is noted that strategy ① for existing parts 

with holes is available when ϕ ≤ 23mm and Df_h > 2Dr_h. However, for the existing part in 

this example, strategy ① is valid when ϕ ≤ 23mm and Df_s > Dr_s. 

Y

X

Z

 

Figure 7.30 – An existing part with a boss and a slot located on different planes 
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From the two examples illustrated above, it can be identified that the methods to further 

manufacture this type of existing part are to utilise the manufacturing strategies for existing 

parts with single non-final features. Thus, the details of the available manufacturing 

strategies for this type of existing parts will not be elaborated on and they are summarised 

in Table 7.4. Since there are no other ways to deal with existing steps except removing 

them, this table only includes the existing part with combinations of boss, pocket, slot and 

hole. The examples of using these manufacturing strategies can be found from Figure 7.9 

to Figure 7.28. 

As stated in section 7.4.3, strategies ② and ⑧ are universal manufacturing strategies. As 

a result, they can be applied to every type of existing part in Table 7.4. A typical example 

of using strategy ⑧ can be found in Figure 7.31, where an existing part (red) with a non-

final boss and four holes is given. A mating part (white) was produced, of which the 

features match the existing boss and holes. Thus, the existing and mating parts can be 

assembled and then finish machined. 

 

Figure 7.31 – An existing part and a mating part 

7.4.6 Existing part with interacting non-final features 

This section describes manufacturing strategies ③ and ④, which can be used to transform 

existing parts with interacting non-final features into final parts. 
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Table 7.4 – Manufacturing strategies for further manufacturing existing parts with multiple 

separate non-final features 

Features on the 

existing part 

Example 

part 

Local 

constraint 

Available 

manufacturing 

strategy 

Boss and pocket 

 

For boss: 

Lb, Wb, PLb_1, 

PWb_1, Df_b, Dr_b 

 

For pocket: 

Lp, Wp, PLp_1, 

PWp_1, Df_p, Dr_p, 

②b + ②p, 

⑥p + ⑦b, 

②b + ⑥p, 

⑧, 

Boss and slot 

 

For boss: 

Lb, Wb, PLb_1, 

PWb_1, Df_b, Dr_b 

 

For slot: 

Le, We, Ws, Df_s, 

Dr_s, PLs_1, PWs_1 

②b + ②s, 

②b + ①s, 

①s + ⑦b, 

⑧ 

Boss and hole 

 

For boss: 

Lb, Wb, PLb_1, 

PWb_1, Df_b, Dr_b 

 

For hole: 

ϕ, PLh_1, PWh_1, 

Df_h, Dr_h 

①h + ⑦b, 

②b + ①h, 

②h + ⑦b, 

②b + ②h, 

⑧ 

Pocket and slot 

 

For pocket: 

We, Ws, Df_p, Dr_p 

 

For slot: 

Le, We, Ws, Df_s, 

Dr_s 

⑥p + ①s, 

②p + ②s, 

②p + ①s, 

②s + ⑥p, 

⑧ 

Pocket and hole 

 

For pocket: 

We, Ws, Df_p, Dr_p 

 

For hole: 

ϕ, Df_h, Dr_h 

①h + ⑥p, 

②p + ①h, 

②h + ⑥p, 

②p + ②h, 

⑧ 

Slot and hole 

 

For slot: 

Le, We, Ws, Df_s, 

Dr_s 

 

For hole: 

ϕ, Df_h, Dr_h 

②s + ①h, 

①s + ①h, 

②h + ①s, 

②s + ②h, 

⑧ 
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Features that interact introduce more local constraints to be taken into consideration. For 

example, the pocket depth is a constraint, which does not have to be considered when there 

are only separate non-final features on the existing part. Moreover, there are a large 

number of combinations of non-final features in terms of feature dimensions and quantities. 

As a result, more manufacturing strategies are potentially available to deal with these 

existing parts, and further investigations are needed, which will be presented in sections 

9.7 and 10.4.3. In addition, advances in the FFF process, in particular nozzle designs will 

also contribute to the development of new manufacturing strategies. Therefore, in this 

section, only existing parts that can be manufactured by using manufacturing ③ and ④, 

or the combinations of strategies in Table 7.1 are discussed. 

7.4.6.1 Interacting positive and negative features 

An existing part with an interacting boss and pocket is shown Figure 7.3(b). Assume that 

Le > L, We > W, He < H. The local constraints for the boss are: Hb, PLb_1, PLb_2, PWb_1, 

PWb_2, Df_b and Dr_b; the local constraints for the pocket are: Lp, Wp, Dp, Df_p and Dr_p. To 

avoid repetitive discussion, it is considered that Df_b > Dr_b and Df_p > Dr_p. 

(i) Constraints do not meet the relationships: PLb_1 ≥ 9mm, PLb_2 ≥ 9mm, PWb_1 ≥ 

9mm, PWb_2 ≥ 15mm 

The manufacturing strategy ⑦ is not applicable in this scenario because the edges of the 

existing boss are close to the edges of the existing part leading to deposition nozzle 

collisions if attempting to deposit material around the existing boss. Thus, the existing boss 

has to be removed (using strategy ③). After removing the boss, the existing part becomes 

a rectangular block or a rectangular block with a pocket, depending on the depth of the 

pocket (Dp). 

• If Dp > Hb, the machined existing part will be a rectangular block with a pocket, which 

is similar to the part shown in Figure 7.4. The new pocket depth (Dp') will be

'p p bD D H  . According to the criteria stated in section 7.4.4.3(i) and (ii), it can be 

determined whether to add material inside the pocket (strategy ⑥) or directly add 

material onto the top surface of the machined existing part whilst not filling in the 

pocket (strategy ①). 
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• If Dp ≤ Hb, after machining the boss, the existing part will become a rectangular block. 

The strategy ① can be applied as illustrated in Figure 7.9, by which the near-net 

shape of the final part P is obtained. 

(ii) Constraints meet the relationships: PLb_1 ≥ 9mm, PLb_2 ≥ 9mm, PWb_1 ≥ 9mm, 

PWb_2 ≥ 15mm 

This indicates the material can be deposited around the existing boss (strategy ⑦). This is 

similar to the scenario in section 7.4.4.2 and Figure 7.12. If the pocket size meets the local 

constraints relationship i.e. 2 pW > 23mm, strategy ⑥ can be used to deposit a boss inside 

the existing pocket, as depicted in Figure 7.32 below. 

Figure 7.32(a) and (b) illustrates the use of combining strategy ⑦ and ⑥ to 

remanufacture an existing part. The newly deposited part_1 and 2 are successively added 

outside the boss and inside the pocket, respectively. It does not matter which part is created 

first since the production times and the following operation sequences are identical. In 

other words, the order of strategy ⑦ and ⑥ can be interchanged. The newly deposited 

parts_3 and 4 are built until the approximate geometry of the final part P is generated. 

Figure 7.32(c), (d), (e) and (f) provide a real example. An existing part with an interacting 

boss and a pocket is shown in Figure 7.32(c). Part_1 and 2 were built on the existing part 

as shown in Figure 7.32(d). In Figure 7.32(e), the deposition of the 4
th
 layer of part_3 has 

been completed. As material was continuously deposited, the near-net shape of the final 

part P was obtained (see Figure 7.32(f)). In addition, if 2 pW ≤ 23mm, part_2 will not 

have to be produced since the pocket is small enough to allow the features to be directly 

created without support. 

7.4.6.2 Interacting negative and positive features 

An example of existing parts with interacting negative and positive features can be found 

in Figure 7.3(a), which shows a boss that is included inside an existing pocket. The 

position of the existing pocket is described by the four parameters (i.e. PLp_1, PLp_2, 

PWp_1 and PWp_2). The description of these four parameters is similar to that of the 

position of an existing boss, and readers can be referred to Figure 7.14. 
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The existing 
part

Newly deposited 
part_1

Newly deposited 
part_2

  

Newly deposited 
part_3

The existing 
part

Newly deposited 
part_2 Newly deposited 

part_1

Newly deposited 
part_4

 
            (a) add part_1 and 2       (b) overview of adding new parts 

 

Newly deposited 
part_1

Newly deposited 
part_2

 

(c) the existing part (d) the combined existing part & part_1 & 2 

  

(e) a few layers of part_3 

has been deposited 

(f) the near-net shape of 

the final part P 

Figure 7.32 – Manufacturing strategy (7) and (6) for further manufacturing an existing part 

with an interacting boss and a pocket 
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It is assumed that the pocket depth is equivalent to the boss height, i.e. Hb = Dp. Other 

assumptions are referred to in section 7.4.6.1. 

(i) 2 2( _1 _1) ( _1 _1) 23b p b pPL PL PW PW    mm or 

2 2( _ 2 _ 2) ( _ 2 _ 2) 23b p b pPL PL PW PW    mm 

In this scenario, the existing boss is not big enough for the FFF process to produce a bridge 

that crosses the pocket and the boss. As a result, the original existing boss has to be 

removed (strategy ④, see Figure 7.33(a) and (b)) and a new boss will then be added inside 

the pocket (strategy ⑥, see Figure 7.33(c) and (d)). Subsequently, more material will be 

deposited, which is similar to the scenario depicted in Figure 7.15(b). 

 

The existing 
part

Original existing 
boss

 

remove the 
existing boss

 
(a) the existing part (b) remove the existing boss 

Machined 
existing part

A new boss

 

Machined 
existing part

A new boss

 
(c) add a new boss (d) a new boss has been deposited 

Figure 7.33 – Manufacturing strategy (4) and (6) for further manufacturing an existing part 

with an interacting pocket and a boss 
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(ii) 2 2( _1 _1) ( _1 _1) 23b p b pPL PL PW PW    mm and 

2 2( _ 2 _ 2) ( _ 2 _ 2) 23b p b pPL PL PW PW    mm 

This means the distance between each two side faces of the existing boss and pocket does 

not exceed the longest bridge length that can be produced. As a result, material is directly 

added onto the top surface of the existing part, as illustrated in Figure 7.15(b) (strategy ①). 

For the scenario where Hb > Dp or Hb < Dp, according to the positions of the existing boss 

and pocket discussed above, available manufacturing strategies can be found in Figure 

7.35. 

It is noted that there are other types of interacting features, which are: 

 Existing parts with interacting negative features, e.g. an interacting pocket and a hole. 

 Existing parts with interacting positive features, e.g. multiple interacting bosses. 

 Existing parts with interacting features and individual features, e.g. an existing part 

with an interacting pocket and (a boss and a hole) in Figure 7.3(c). 

7.4.7 Existing part with final features 

It is assumed that the final features on the existing parts in this section are out of tolerance. 

If they are in the desired tolerance, no action is needed. This type of existing part is also 

classified into three groups, i.e. existing parts with final positive features; with final 

negative features; and with combination of final positive and negative features. The 

manufacturing strategies for the first two groups can be directly applied to existing parts 

with both final positive and negative features. 

7.4.7.1 Existing part with final positive features 

The strategies ② and ⑤ can be used to deal with the scenarios where the existing parts 

contain a number of final bosses. Assume that the height of the existing boss is equivalent 

to its nominal height. Referring to Figure 7.14, the nominal positioning dimensions of a 

boss in the X and Y axes are denoted as PLb_1_n, PLb_2_n, PWb_1_n and PWb_2_n. These 

nominal dimensions together with the actual dimensions are the local constraints. 
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(i) Constraints meet the relationships: 

PLb_1_n ≥ PLb_1, PLb_2_n ≥ PLb_2, PWb_1_n ≥ PWb_1, and PWb_2_n ≥ PWb_2. 

This scenario is depicted in Figure 7.34(a), which shows an existing part with a final boss 

(top view). The blue lines represent the actual position of the boss and the red dashed lines 

represent the nominal position of the boss. In this figure, only one of the positioning 

dimensions in the X axis (i.e. PLb_1_n and PLb_1) is shown but the principle can be 

applied to other positioning dimensional parameters (e.g. PLb_2_n and PLb_2). Only when 

all the actual positioning dimensions are smaller than the nominal ones, strategy ⑤ can be 

employed to directly machine the existing boss to its final dimensions. 

Y

X

PLb_1

PLb_1_n

 

Y

X

PLb_1

PLb_1_n

 

(a) (b) 

Figure 7.34 – The position of a boss on an existing part (top view) 

(ii) Constraints do not meet the relationships: 

PLb_1_n ≥ PLb_1, PLb_2_n ≥ PLb_2, PWb_1_n ≥ PWb_1, and PWb_2_n ≥ PWb_2. 

Figure 7.34(b) shows an example in which all the actual positioning dimensions are 

smaller than the nominal ones. In fact, the boss has to be removed (strategy ②) as long as 

one of the actual positioning dimensions is smaller than the nominal one. This is because 

deposition nozzle collisions will occur when trying to directly add material onto the boss’s 

side faces to increase the boss’s size. As a result, the boss has to be first removed followed 

by an additive operation to create a new boss which will be subsequently finish machined. 
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7.4.7.2 Existing part with final negative features 

The aforementioned strategy ② and ⑤ are also available for existing parts with final 

negative features. However, the constraints relationships for these two strategies are 

slightly different to those of existing parts with positive features. The positive features, 

which are larger than they should be, can be directly machined to their final dimensions, 

whereas, the negative features which are larger than the nominal sizes cannot be machined. 

(i) Using an existing final pocket as an example, strategy ② can be used if the local 

constraints do not meet the relationships below: 

PLp_1_n ≤ PLp_1, PLp_2_n ≤ PLp_2, PWp_1_n ≤ PWp_1, 

PWp_2_n ≤ PWp_2, Dp ≤ Dp_n 

Referring to Figure 7.34(a), one or more edges of the existing pocket cannot be machined 

as the pocket is bigger than its designed size. Again, material cannot be added along the 

pocket’s side faces owing to deposition nozzle collisions. As a result, strategy ② is 

applied, by which the entire existing pocket is taken off and the thickness of the material 

removed is equivalent to the pocket depth. Thus, a planar face is obtained. The succeeding 

operations are to print a new pocket as well as other features that were removed together 

with the existing pocket. For the subsequent operations, readers are referred to section 

7.4.4.1(ii) and Figure 7.9. 

(ii) Strategy ⑤ can be applied is all the local constraints meet the relationships below: 

PLp_1_n ≤ PLp_1, PLp_2_n ≤ PLp_2, PWp_1_n ≤ PWp_1, 

PWp_2_n ≤ PWp_2, Dp ≤ Dp_n 

The pocket is smaller than the required size, which means it can be directly finish 

machined to obtain the final dimensions. 

For other final negative features, the conditions to which strategy ② can be applied are: 

the local constraints do not meet the relationships as listed in Table 7.5 below. By contrast, 

strategy ⑤ can be used when all the local constraints meet the relationships. 
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Table 7.5 – The local constraints relationships for using strategy (2) and (5) for existing 

parts with final negative features 

Feature Local constraint relationship 

Slot PLs_1_n ≤ PLs_1, PLs_2_n ≤ PLs_2, Ds ≤ Ds_n, or 

PWs_1_n ≤ PWs_1, PWs_2_n ≤ PWs_2, Ds ≤ Ds_n 

Through hole ϕ_n> ϕ, the position of the hole centre in the X and Y axes: 

PLh_n = PLh or PWh_n = PWh 

Blind hole ϕ_n> ϕ, Ds ≤ Ds_n, PLh_n = PLh or PWh_n = PWh 

Step PLst_n ≤ PLst, PWst_n ≤ PWst and Dst ≤ Dst_n 

7.4.7.3 Existing part with both final positive and negative features 

The local constraints relationships and the corresponding manufacturing strategies 

introduced in sections 7.4.7.1 and 7.4.7.2 can be applied to this type of existing part, 

including multiple separate and interacting final features. It should be mentioned that the 

strategy ② is not recognised as a time-effective strategy since existing features have to be 

removed and added back again. 

7.4.8 Existing part with final and non-final features 

Due to the limitations of the FFF process, particularly the deposition nozzle accessibility, 

non-final features on the existing part have to be removed (i.e. using strategy ②). Again, 

this strategy is time-ineffective and is not recommended since a large amount of material 

has to be removed and subsequently added back just because of the existence of the 

undesired non-final features. Further discussion for these types of existing part is not 

highly valuable until the iAtractive process integrates other AM techniques whilst 

improving the extrusion nozzle designs. Therefore, this section only classifies this type of 

existing part into 7 groups, and aims to provide the basis for the development and 

discussion of manufacturing strategies that can be potentially employed in the future. 

These 7 groups of existing parts with final and non-final features are summarised in Table 

7.6. 
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Table 7.6 – The classification of existing parts with final and non-final features 

Existing part 

classification 

Example part 

demonstration 

Existing part 

classification 

Example part 

demonstration 

Positive (final) 

and positive 

(non-final) 

features 

final feature

non-final 
feature

 

Negative 

(final) and 

positive (non-

final) features 

final

non-final

 

Positive (final) 

and negative 

(non-final) 

features 

final

non-final

 

Negative 

(final), and 

positive & 

negative (non-

final) features 

final

non-final

 

Negative (final) 

and negative 

(non-final) 

features 

final

non-final

 

Positive (final), 

and positive & 

negative (non-

final) features 

final

non-final

 

Interacting final 

negative feature 

and non-final 

negative 

features 

final 
pocket

non-final 
hole

 

Interacting 

final negative 

feature and 

non-final 

positive 

features 

final 
pocket

non-final 
boss  

7.5 Decision Tree for Material Reuse 

A decision tree has been developed, as shown in Figure 7.35. The root is the existing part 

geometry and dimensions which are obtained from the initial inspection. Each branch 

carries expressions (i.e. local constraints relationships). The manufacturing strategies that 

are feasible to further manufacture the existing part are listed at the junction of each 

terminal branch. 
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A full representation of the decision tree is not constructed because certain scenarios only 

increase the complexity of the decision tree, but do not introduce new strategies for 

producing final parts. In Figure 7.35, it is assumed that Df > Dr and all the units are in mm. 

7.6 Summary 

This chapter defined existing parts and features under the background of material reuse. 

Features are classified into three types, namely, final, semi-final and non-final features. 

Based on this feature classification as well as prismatic feature types, existing parts are 

categorised into a number of groups. FDL has been developed, including 8 manufacturing 

strategies. Global and local constraints were specified and are used to select feasible 

manufacturing strategies. These strategies interchangeably utilise FFF, CNC machining 

and inspection to further manufacture the existing parts based on the features and 

dimensions of the existing and final parts. 
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Figure 7.35 – The decision tree for remanufacturing existing parts 



 

Chapter 8 – Evaluation of the hybrid manufacturing process 

 

242 

 
 

8 Evaluation of the hybrid manufacturing process 

8.1 Introduction 

In order to evaluate the iAtractive process together with GRP
2
A and FDL, a series of case 

studies have been developed. This chapter documents a number of case study examples 

manufactured using the iAtractive process. The process plans implemented in this chapter 

were generated from GRP
2
A and FDL, demonstrating the efficacy of GRP

2
A and FDL in 

the manufacture of complex part geometries and the remanufacture of existing parts, 

respectively. 

8.2 Case Study 1 

8.2.1 Design of test part I 

This case study aims to evaluate the capability of the iAtractive process in the manufacture 

of difficult to machine structures, which are virtually impossible to machine due to cutting 

tool inaccessibility. Thus, a test part (test part I) consisting of four connected pockets and a 

hole, was designed and is shown in Figure 8.1(a). 

  
(a) (b) 

Figure 8.1 – The CAD model of test part I 

Figure 8.1(b) shows the internal view of test part I. All corners (except the corner where 

the hole is located) are round corners with 3mm radii. Among these four pockets, only two 

of them are exposed features. These two exposed pockets can be directly machined. 

However, the other two unexposed pockets and the hole are internal features that cannot be 

solely produced by the CNC machining process. For better representation, the round 
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corners are intentionally ignored in Figure 8.2. All surfaces required finish machining in 

order to achieve the correct surface quality and tolerances. 

 

Figure 8.2 – The internal view of test part I without round corners 

8.2.2 Part decomposition results 

As the internal features cannot be machined from a block, the part has to be decomposed in 

order to accurately create the two internal pockets and the hole. One possible 

decomposition result is shown in Figure 8.3(a) and Figure 8.3(b). Test part I has been 

decomposed into 5 subparts and a sectional view is shown in Figure 8.4. It is noted that the 

decomposition results may vary depending on the decomposition methods employed. 

Subpart 1

Subpart 2Subpart 3

Subpart 4

Subpart 5

 
Subpart 1

Subpart 2Subpart 3

Subpart 4

Subpart 5

 

(a) (b) 

Figure 8.3 – The decomposed subparts for test part I 
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1

2

3

4

5

Pocket 1Pocket 2

Pocket 3

Pocket 4

 

Figure 8.4 – A sectional view of the decomposed subparts for test part I 

8.2.3 Determination of build directions of subparts 

Since test part I is comprised of internal features resulting in cutting tool inaccessibility, 

the part orientation is a dummy activity and every part orientation has to be used in order 

to identify all the available build directions for the different subparts. Figure 8.5 

demonstrates a partial representation of the complete subparts’ build directions starting 

from allocating a build direction for subpart 1 with the part orientation shown in Figure 8.3. 

The build direction of each subpart in the feasible set of build directions is also indicated in 

Figure 8.5. The cross (×) denotes that the failure of build direction allocation occurs in 

determining a build direction for the subpart. 

2 3 41

5

5

4 3
× 

4 5 2 3
× 

3 5 2
× 

3 2 5 4
× 

4 5 2
× 

1

2

3

4

5

 

Figure 8.5 – A partial representation of the complete sets of build directions starting from 

subpart 1 with a certain part orientation 
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In this example, the feasible set of subparts’ build directions (including allocation sequence 

of build directions) is subpart 1→2→3→4→5. Other build directions and allocation 

sequences are not available due to deposition nozzle collisions. 

Figure 8.6 and Figure 8.7 shows two example sets of build directions, in which the build 

directions of subpart 4 and 2 are determined first, respectively. The feasible sets of build 

directions are also indicated in Figure 8.6 and Figure 8.7, which are: subpart 

4→1→2→3→5, and subpart 2→1→3→4→5. 

It is noted that the identified three sets of build directions are only feasible in this stage. 

They might not be available when adding machining operations into them. This is because 

adding machining operations will introduce cutting tool accessibility constraints, which is 

likely to result in operation sequencing failure. 

1 2 34 5

5 3
× 

5 2 3
× 

3 2 5
× 

1

2

3

4

5

 

Figure 8.6 – A partial representation of the complete sets of build directions starting from 

subpart 4 with a certain part orientation 
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Figure 8.7 – A partial representation of the complete sets of build directions starting from 

subpart 2 with a certain part orientation 
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8.2.4 Sequencing additive and subtractive operations 

The machining operations are inserted into those three feasible sets of build directions 

identified in section 8.2.3. 

(i) Subpart 2→1→3→4→5 in Figure 8.7 

Given that test part I will be produced from zero, an additive operation is scheduled first to 

create subpart 2. The next subpart to be produced is subpart 1. However, the hole cannot be 

finished machined once subpart 1 is added onto subpart 2 since there are no available 

TADs, as illustrated in Figure 8.8. As a result, no viable additive and subtractive operation 

sequence can be obtained from this set of build directions. 

1

2

Add

           
1

2
TAD TAD

TADs

 

Figure 8.8 – The inaccessible hole 

(ii) Subpart 4→1→2→3→5 in Figure 8.6 

As shown in Figure 8.6, subpart 4 and subpart 1 have the same build direction. As a result, 

they are merged into one subpart, which is called the combined subpart 4&1. Similarly, 

subpart 2 is merged into the combined subpart 4&1 because they have the same build 

direction as well. Finally, all the subparts are merged together, which is subpart 

4&1&2&3&5. 

Machining all the features on subpart 4&1&2&3&5 will definitely lead to cutting tool 

collisions. As subpart 5 is the last merged subpart that results in regions of cutting tool 

inaccessibility, it is re-decomposed into the original subpart 5 as shown in Figure 8.9(a). 

However, the pocket on subpart 3 cannot be machined and thus, subpart 3 is re-
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decomposed as shown in Figure 8.9(b). In order to drill the hole on subpart 1, subpart 2 has 

to be re-decomposed back into its original shape. The final result is shown in Figure 8.9(c). 

Every feature is accessible for the cutting tool. 

1

2

3

4 5

Re-
decompose

 
(a) Re-decomposition step 1 

1

3

4 5

2

 

1

3

4 5

2

Pocket 2

Pocket 3

Pocket 4

Pocket 1

 

(b) Re-decomposition step 2 (c) Re-decomposition step 3 

Figure 8.9 – Re-decomposing merged subparts 

Based on the result as shown in Figure 8.9(c), subpart 4&1 is built first by using the FFF 

process. The pocket on subpart 4&1 (i.e. pocket 2) and the hole are finish machined. 

Pocket 4 will not be subject to finish machining because it is an exposed feature. Subpart 2 

is then added onto the machined subpart 4&1, by which subpart 4&1&2 is obtained. 

Nevertheless, subpart 3 cannot be created with the determined build direction (i.e. ↑) due to 

deposition nozzle collisions. This indicates that this set of build direction specified in the 

‘determination of build directions’ stage is no longer feasible. In addition, deposition 

nozzle collisions will occur if attempting to deposit subpart 5 with the build direction 

specified in Figure 8.9(c). 
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According to the rules of GRP
2
A as presented in section 6.5, a set of build directions is 

considered to be invalid as long as one subpart cannot be created by using either the 

additive or subtractive processes. Using subpart 5 as an example: as it cannot be created 

with the build direction (↑), this set of build directions is invalid and will be abandoned. 

The build direction of subpart 5 will not be re-determined. Using the build direction (→) 

can enable subpart 5 to be successfully built, but this build direction (→) does not belong 

to the current set of build directions (Subpart 4→1→2→3→5, shown in Figure 8.9(c)). 

The build direction of subpart 5 (→) belongs to another set of build directions illustrated in 

Figure 8.10, namely, subpart 4→1→2→3→5'. 

1

2

3

4

5

1 2 34 5

5'

 

Figure 8.10 – Another set of build directions for test part I 

(iii) Subpart 1→2→3→4→5 in Figure 8.5 

According to this additive operation sequence and the subparts’ build directions as shown 

in Figure 8.5, no deposition nozzle collision has been detected. In order to obtain high 

accuracy and surface quality, machining operations are inserted into the additive operation 

sequence. Figure 8.11 illustrates the sequencing of additive and subtractive operations, 

where the machining operations are added according to the rules and procedures presented 

in section 6.5.5 and Figure 6.27. The sequence for building the subparts is shown in the 

box with the blue dashed lines. The reasons that the machining operations are inserted will 

be explained in section 8.2.6. The CAD model of each subpart for the additive process is 

also modified accordingly. The modified subpart for the specific additive operation is 

denoted as ‘subpart nA’. For example, the modified CAD model of subpart 1 to be 

fabricated by the additive operation is called subpart 1A. 
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Build subpart 1A

Build subpart 2A

Build subpart 3A

Build subpart 4A

Build subpart 5A

Sequenced additive and 
subtractive operations

Drill the hole

Machine pocket 2

Face mill combined 
subpart 1&2A

Machine pocket 3

Subparts with the 
determined build directions 

and allocation sequence

Machine pocket 2

Face mill combined 
subpart 1&2A&3&4A

Machine pocket 1

Machine pocket 4

Build direction 
allocation sequence

 

Figure 8.11 – Inserting machining operations into the additive operation sequence 

8.2.5 Integration of inspection operations and generation of the static process plan 

Based on the procedures described in section 6.7.1 and Figure 6.31, the inspection 

operations were added into the developed additive and subtractive operation. The additive 

process parameters were determined according to the relationships depicted in Figure 6.32. 

The machining process parameters i.e. Feed, speed and DoC were selected from Table 5.5. 

To this end, the static process plan has been generated, which is outlined in Table 8.1. It is 

noted that for the drilling operation, the parameters used were obtained from the practical 
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machining tests. The tool paths for the additive operations were generated from slic3r 

software (Slic3r, 2013), and the machining tool paths were obtained from Delcam 

Powermill software (Delcam, 2012). It is also noted that, since deposition speed, 

deposition pattern and part density etc. were constant throughout the entire production, 

they are not listed for every additive operation. For the produced subparts, they are 

represented as ‘subpart n&(n+1)’. For instance, subpart 2A is added onto subpart 1, and 

thus, the finished subpart is called subpart 1&2A. If subpart 1&2A has been finished 

machined, it is then called subpart 1&2. 

Table 8.1 – The developed static process plan for manufacturing test part I 

Operation 

sequence 
Operation Process parameter 

1 Build subpart 1A by using the additive 

process 

Extrusion temperature: 205ºC 

Deposition speed: 35mm/s 

Layer thickness: 0.25mm 

Part density: 100% 

Deposition pattern: raster 45º 

Extrusion size: 0.5mm 

2 Measure the length, width and height of 

subpart 1A to obtain the dimensions of 

subpart 1A because subpart 1A is 

considered as raw material for the next 

operation 

N/A 

3 Machine pocket 2 on subpart 1A Feed: 2000mm/min 

Speed: 4000rpm 

DoC: 0.25mm 

4 Drill the hole on subpart 1A to obtain 

subpart 1 

Feed: 500mm/min 

Speed: 2000rpm 

DoC: 1mm 

5 Measure the dimensions of the hole on 

subpart 1 

N/A 

6 Build subpart 2A onto subpart 1 to obtain 

subpart 1&2A 

See operation 1 

7 Measure the length, width and height of 

subpart 1&2A to determine the amount of 

material to be removed in the next 

operation (face milling) 

N/A 

8 Face mill the combined subpart 1&2A Feed: 3000mm/min 

Speed: 4000rpm 

DoC: 2mm 

9 Build subpart 3A onto the face milled 

subpart 1&2A to obtain subpart 

1&2A&3A 

See operation 1 
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Table 8.1 – The developed static process plan for manufacturing test part I (continued) 

10 Finish machine pocket 3 on subpart 3A 

(note: subpart 3A is already included in 

subpart 1&2A&3A). By doing so, subpart 

1&2A&3 is produced 

Feed: 2000mm/min 

Speed: 4000rpm 

DoC: 0.25mm 

11 Measure the dimensions of pocket 3 as it 

will become inaccessible once subpart 4A 

is deposited onto subpart 1&2A&3 

N/A 

12 Build subpart 4A onto subpart 1&2A&3 

to obtain subpart 1&2A&3&4A 

See operation 1 

13 Measure the length, width and height of 

subpart 1&2A&3&4A to determine the 

amount of material to be removed in the 

next operation (face milling) 

N/A 

14 Face mill the combined subpart 

1&2A&3&4A 

Feed: 3000mm/min 

Speed: 4000rpm 

DoC: 2mm 

15 Finish machine pocket 2 on subpart 2A to 

obtain subpart 1&2&3&4A since 

machining pocket 2 will result in cutting 

tool inaccessibility issue if subpart 5A is 

produced 

Feed: 2000mm/min 

Speed: 4000rpm 

DoC: 0.25mm 

16 Measure the dimensions of pocket 2 on 

subpart 2 as it will become inaccessible 

after subpart 5A 

N/A 

17 Build subpart 5A onto subpart 

1&2&3&4A to obtain subpart 

1&2&3&4A&5A 

See operation 1 

18 Measure the length, width and height of 

subpart 1&2&3&4A&5A to determine the 

amount of material to be removed in the 

next operation 

N/A 

19 Finish machine pocket 1 on subpart 5A, 

including face milling of subpart 5A, to 

obtain subpart 1&2&3&4A&5 

For face milling: see operation 

13 

For finish machining: 

Feed: 2000mm/min 

Speed: 4000rpm 

DoC: 0.25mm 

20 Finish machine pocket 4 on subpart 4A to 

finally obtain subpart 1&2&3&4&5, 

which is test part I 

Feed: 2000mm/min 

Speed: 4000rpm 

DoC: 0.25mm 

21 Measure the final part size and pocket 1 

and 4 

N/A 
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8.2.6 Part production and the generation of the dynamic process plan 

This section describes some of the important operations in the static process plan and 

presents the generation of a dynamic process plan. 

(1) Operation 1: built subpart 1A 

Subpart 1A was built from zero, as shown in Figure 8.12. It was the first subpart to be 

created, and it can be seen that a finish machining operation was required to obtain high 

surface quality and part accuracy. 

 

Figure 8.12 – The fabricated subpart 1A 

(2) Operation 3 and 4: machined pocket 2 and drilled the hole to obtain subpart 1 

As the surface where the hole is located does not have round corners, it has to be vertically 

machined together with the hole, as shown in Figure 8.13(a). The finished subpart 1 can be 

found in Figure 8.13(b). 

  

(a) (b) 

Figure 8.13 – The finished subpart 1 
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(3) Operation 6: built subpart 2A onto subpart 1, by which subpart 1&2A was obtained 

Subpart 2A was directly added onto the machined subpart 1, as illustrated in Figure 8.14(a). 

As the FFF process was actually producing a bridge, the surface highlighted by the arrow 

in Figure 8.14(b) had to be finish machined afterwards. 

Subpart 1

Subpart 2

  

(a) (b) 

Figure 8.14 – The fabricated subpart 1&2A 

(4) Operation 8 and 9: face milled subpart 1&2A and then deposited subpart 3A onto the 

face milled subpart 1&2A to obtain subpart 1&2A&3A 

Subpart 3A was added onto subpart 1&2A as depicted in Figure 8.15(a). However, subpart 

2A had not been machined (see Figure 8.14(b)), which means subpart 3A cannot be 

directly deposited onto the un-machined surface indicated in Figure 8.15(a). As a result, 

subpart 1&2A was face machined followed by adding subpart 3A. The produced subpart 

1&2A&3A is shown in Figure 8.15(b). 

Subpart 1 Subpart 2A

Subpart 3A

Un-machined 
surface

 

Subpart 1
Subpart 2A

Subpart 3A

 
(a) (b) 

Figure 8.15 – The fabricated subpart 1&2A&3A 
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(5) Operation 10: finish machined pocket 3 on subpart 1&2A&3A to obtain subpart 

1&2A&3 

Since subpart 4A was about to be created, pocket 3 on subpart 1&2A&3A had to be finish 

machined otherwise the pocket would have been inaccessible if subpart 4A was built prior 

to finish machining pocket 3. Figure 8.16 shows the machined subpart1&2A&3. 

 

Figure 8.16 – The machined subpart 1&2A&3 

(6) Operation 12: built subpart 4A to obtain subpart 1&2A&3&4A, as illustrated in Figure 

8.17(a). The fabricated subpart 1&2A&3&4A is shown in Figure 8.17(b). 

Subpart 4A

Subpart 3 Subpart 2A

Subpart 1

 

Subpart 4A

 

(a) (b) 

Figure 8.17 – Illustration of adding subpart 4A onto subpart 1&2A&3 
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(7) Operation 15: finish machined pocket 2 on subpart 1&2A&3&4A to obtain subpart 

1&2&3&4A. 

The reason that pocket 2 was subject to finish machining again is that the surface 

highlighted in Figure 8.14(b) became rough when subpart 2A was added onto the 

machined subpart 1. 

(8) Operation 17: built subpart 5A (the red subpart in Figure 8.18(a)) on subpart 

1&2&3&4A. 

In this operation, subpart 1&2&3&4A&5A was created, as shown in Figure 8.18(b), where 

each subpart was indicated by the frame with the corresponding colour in Figure 8.18(a). 

  

(a) (b) 

Figure 8.18 – The manufactured subpart 1&2&3&4A&5A 

(9) Operation 18 and the generation of a dynamic process plan 

The aim of operation 18 was to determine the amount of material to be removed by 

measuring the length, width and height of subpart 1&2&3&4A&5A. As subpart 5A was 

just built by the additive process in operation 17, the degree of accuracy is much lower 

than that of an entirely CNC machined subpart. Subpart 5A was considered as the raw 

material to be finish machined. Thus, its dimensions had to be measured. However, it was 

identified that subpart 5A was not positioned correctly as shown in Figure 8.19. As a result, 

a dynamic process plan had to be generated. 
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Subpart 

5A

side 
face_5A

side face_4A
     

Subpart 5A

side 
face_5A

side face_4A
 

Figure 8.19 – The subpart 5A was not positioned correctly 

The author has identified two available dynamic process plans. The first one was to 

completely remove subpart 5A followed by adding a new subpart 5A, and then carry on 

operation 18 and onwards in the static process plan. Alternatively, the side face (called side 

face_5A) highlighted in Figure 8.19 and one of the side faces of subpart 4A (called side 

face_4A) can be face milled 2mm off, by which a planar face is obtained. This allows the 

4mm thick material to be added onto the machined side face_4A and 5A, and then 

operation 19 and onwards can be correctly conducted. At this stage, the second dynamic 

process plan was chosen since it required less production time. The operations added into 

the static process plan are depicted in Figure 8.20, where the operations included in the 

blue dashed lines are the sequenced operations in the static process plan. Four new 

operations were added into the static process plan, generating a dynamic process plan. 
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Operation 18: measure 
subpart 1&2&3&4A&5A

Operation 19: finish 
machine pocket 1

The update process plan

New operation 1: face 
mill side face_4A and 5A

New operation 2: 
add subpart 6A

Operation 17

Operation 1

…
...

Operation 20: finish 
machine pocket 2

Operation 21: final 
inspection

New operation 3: measure the 
length, width and height of 
subpart 1&2&3&4A&5A&6

New operation 4: face 
mill subpart 

1&2&3&4A&5A&6A

Static process plan

 

Figure 8.20 – Generation of the dynamic process plan 

Figure 8.21(a) shows subpart 1&2&3&4A&5A clamped on a 3-axis vertical machine tool. 

The side face_4A and side face_5A was face milled 2mm off, as shown in Figure 8.21(b). 
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side 
face_5A

side face_4A

 

machined 
side face_5A

machined 
side face_4A

 
(a) (b) 

Figure 8.21 – Machining side face_4A and side face_5A 

Figure 8.22(a) illustrates that the 4mm thick material (called subpart 6A, green) was added 

onto the machined side face_4A and 5A. The reason that subpart 6A with a 4mm thickness 

(rather than a 2mm thickness) was added was because more material was required to be 

removed in the finishing operations. The fabricated subpart 1&2&3&4A&5A&6A is 

shown in Figure 8.22(b). 

 

Subpart 6A

 
(a) (b) 

Figure 8.22 – Adding 4mm thick material onto the machined side face_4A and 5A 

(10) Finish machine pocket 1 and 4. 

Having completed the newly generated operations in the dynamic process plan, the 

iAtractive process returned to the static process plan and kept conducting the originally 
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scheduled operation 19 and 20, which were to finish machine pocket 1 and 4. These two 

machining operations were sequenced at the end of the process plan since they are exposed 

features and machining them will not lead to cutting tool inaccessibility. Finally, the 

dimensions of the finished part and pocket 1 and 4 were measured. The manufactured test 

part I is shown in Figure 8.23(a) (pocket 4 is in this figure) and Figure 8.23(b) (the upper 

pocket is pocket 1). For showing the internal features, the part has been sectioned (40% 

material was removed) in Figure 8.23(c). 

  

(a) pocket 4 (b) pocket 1 (on the top face) and pocket 4 

 

(c) sectioned view 

Figure 8.23 – The finished test part I 
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8.3 Case Study 2 

8.3.1 Design of test part II 

The aim of this case study was to demonstrate the capability of the iAtractive process in 

producing complex part geometries as defined in the research scope. Test part II has been 

designed and the part geometry is shown in Figure 8.24. The majority of the difficulty in 

manufacturing this part lies in the machining of the blind pocket. This test part consists of 

three pockets and one of them is a blind pocket. This pocket is likely to lead to cutting tool 

accessibility issues if attempting to machine it from a block. The internal view of the 

pockets is shown in Figure 8.25. 

       

Pocket 1

Pocket 2

 

Figure 8.24 – Test part II 

    

Figure 8.25 – The internal view of the pockets on test part II 
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8.3.2 Part decomposition results 

In order to machine the blind pocket shown in Figure 8.25, test part II was decomposed 

into three subparts, enabling the blind pocket (called pocket 3) to be accessible for the 

cutting tools in certain machining operations. These three subparts are shown in Figure 

8.26. 

Subpart 2

Subpart 3

Subpart 1

    

Subpart 1Subpart 2

Subpart 3

Pocket 1

Pocket 2

 

Figure 8.26 – The subparts decomposed from test part II 

8.3.3 Determination of build directions of subparts, sequencing of additive and 

subtractive operations and integration of inspection operations 

The full graph of build directions of subparts will not be elaborated upon in this section. 

Certain sets of build directions are discussed as follows: 

(1) Determine a build direction starting from subpart 2 

Assume that subpart 2 is the first subpart to be built in a possible build direction and then 

finish machined. Given that the blind pocket (i.e. pocket 3) is on subpart 1, it is still cutting 

tool inaccessible when subpart 1 is added onto subpart 2. Therefore, the build direction 

allocation sequence subpart 2→1→3 is not feasible. 

Regarding the sets of build directions in which the allocation sequence is subpart 2→3→1, 

assume that subpart 2 has already been fabricated in an additive operation in a possible 

build direction. Since adding subpart 3 does not lead to cutting tool inaccessibility of 

pocket 2, subpart 3 can be built onto subpart 1. However, having produced subpart 3 to 
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obtain subpart 2&3, subpart 1 cannot added onto subpart 2&3 due to deposition nozzle 

collisions. In other words, no feasible build direction can be identified for subpart 1. As a 

result, all the sets of subparts’ build directions where the allocation sequence is subpart 

2→3→1 are not valid. This indicates it is impossible to obtain a feasible set of build 

directions if determining a build direction starting from subpart 2. 

(2) Determine a build direction starting from subpart 3 

If subpart 3 is the first subpart to be fabricated, there are two possible build direction 

allocation sequences to be considered, which are subpart 3→1→2 and subpart 3→2→1. 

However, having built and finish machined subpart 1, subpart 2 cannot be built owing to 

deposition nozzle collisions. Similarly, subpart 1 cannot be created in the circumstances 

where subpart 2 has been generated. In addition, it is virtually impossible to finish machine 

pocket 3 if subpart 2 is manufactured prior to subpart 1 because the only available tool 

approach direction for pocket 3 is blocked by subpart 2. As a result, it can be concluded 

that feasible operation sequences cannot be identified when determining a build direction 

starting from subpart 3. 

(3) Determine a build direction starting from subpart 1 

There are two possible build direction allocation sequences to be considered. One of them 

is subpart 1→3→2. Nevertheless, for the same reason (i.e. deposition nozzle collisions), 

subpart 2 cannot be created if subpart 3 has already been produced. 

Another allocation sequence is subpart 1→2→3. The build directions for each subpart are 

indicated by the red arrow in Figure 8.27. Once subpart 1 is created, the build direction for 

subpart 2 has to be along the –X direction. As a result, the only option of build direction 

for printing subpart 3 is along the +Z direction. As for the build directions of subpart 1, 

there are six available directions (i.e. +X, –X, +Y, –Y, +Z and –Z). As a result, there are 

six sequences of additive, subtractive and inspection operations. These six operation 

sequences are almost identical and the majority of the difference lies in the build directions 

of subpart 1. In this case, the build time estimation model (developed in section 6.10) was 

applied to estimating the build times used in printing subpart 1 with different build 

directions. The results are listed in Table 8.2. The star (*) represents that support material 

is needed while printing subpart 1 along the –X and –Y directions. Additionally, the build 

directions of +Z and –Z do not make any difference when printing subpart 1 on the FFF 
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machine since subpart 1 is a symmetric part on the XY plane. This essentially means the 

sliced #n layers are identical to the #(N–n) when the subpart is sliced into N layers along 

+Z and –Z directions, respectively. As a result, the +Z direction was selected. 

X

Y

Z

Subpart 1

Subpart 2

Subpart 3

 

Figure 8.27 – The build directions of subparts 

Table 8.2 – Build times for manufacturing subpart 1 by the FFF process 

 +X –X +Y –Y +Z –Z 

Build times 

(h:m:s) 
1:50:30 2:11:24* 1:54:14 2:02:31* 1:46:39 1:46:39 

Upon consideration of cutting tool accessibility, the machining and inspection operations 

were inserted into the build direction allocation sequence. The overall operation sequence 

is shown in Table 8.3. 

 

 

 

 

 

 



 

Chapter 8 – Evaluation of the hybrid manufacturing process 

 

264 

 
 

Table 8.3 –The developed static process plan for manufacturing test part II 

Operation 

sequence 
Operation Process parameter 

1 Build subpart 1A by using the additive 

process 

Extrusion temperature: 205ºC 

Deposition speed: 35mm/s 

Layer thickness: 0.25mm 

Part density: 100% 

Deposition pattern: raster 45º 

Extrusion size: 0.5mm 

2 Measure subpart 1A to obtain its actual 

dimensions because subpart 1A is 

considered as raw material for the 

machining operations (i.e. operation 3, 4 

and 5) 

N/A 

3 Face mill subpart 1A Feed: 3000mm/min 

Speed: 4000rpm 

DoC: 2mm 

4 Finish machine pocket 1 Feed: 2000mm/min 

Speed: 4000rpm 

DoC: 0.25mm 

5 Finish machine pocket 3 (the blind 

pocket) to obtain subpart 1 

Feed: 2000mm/min 

Speed: 4000rpm 

DoC: 0.25mm 

7 Measure the dimensions of pocket 3 since 

it will become inaccessible once subpart 

2A is added 

N/A 

6 Build subpart 2A onto subpart 1 to obtain 

subpart 1&2A 

See operation 1 

7 Measure the length, width and height of 

subpart 1&2A 

N/A 

8 Face mill subpart 1&2A in order to obtain 

a planar face for depositing subpart 3A 

Feed: 3000mm/min 

Speed: 4000rpm 

DoC: 1mm 

9 Build subpart 3A onto subpart 1&2A, by 

which subpart 1&2A&3A is obtained 

See operation 1 

10 Measure the length, width and height of 

subpart 1&2A&3A 

N/A 

11 Finish machine subpart 3 to obtain subpart 

1&2A&3 

Feed: 2000mm/min 

Speed: 4000rpm 

DoC: 0.25mm 

12 Finish machine pocket 2 to finally obtain 

subpart 1&2&3, which is test part II 

Feed: 2000mm/min 

Speed: 4000rpm 

DoC: 0.25mm 

13 Measure the dimensions of the finished 

test part II 

N/A 
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The final test part II has been produced, as shown in Figure 8.28. 

          

                         (a) front view                                             (b) base view 

Figure 8.28 – The finished test part II 

8.4 Case Study 3 

8.4.1 Design of test part III 

This case study is aimed at demonstrating the feasibility of the iAtractive process together 

with FDL in reusing existing parts. Test part III was designed and is depicted in Figure 

8.29. It was modified from test part C as illustrated in Figure 5.10. Test part III consists of 

a boss, a pocket, a step and two holes, which are considered to be typical 2½D features. No 

internal features were designed, indicating that test part III does not have to be 

decomposed. There is only one subpart, which is test part III itself. 

 

Figure 8.29 – Test part III 
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Three existing parts were provided, which were a part with a boss (Figure 8.30) and a 

pocket (Figure 8.31), respectively, and a finished part. The finished part has been identified 

in the final inspection process as being out of tolerance since the actual dimensions of the 

boss feature was 24.2×17.8×8.3mm
3
, whereas the nominal values are 25×18×8mm

3
. 

Readers are referred to Appendix B for the drawings of test part III and the three given 

existing parts. 

 

Figure 8.30 – The existing part with a boss 

 

Figure 8.31 – The existing part with a pocket 

8.4.2 Global and local constraints 

(1) The global constraints for all the three existing parts are: 

• Tolerance and surface quality 

• Positions of the negative features (i.e. two holes, a pocket and a step) 

It is assumed that high surface quality and accuracy is required for test part III, indicating 

that every feature is required to be finish machined. Moreover, hollow structures and 

recovery layers that are overlapping with negative features are not allowed, as illustrated in 
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Figure 7.6 and Figure 7.13. It is noted that production time and material consumption are 

not considered in this case study, but they are recognised as important factors to be 

considered in the decision-making logic in the future. 

(2) The local constraints for the existing part with a boss: 

The total length (L), width (W) and height (H) of the final part (test part III); the total 

length (Le), width (We) and height (He) of the existing part; the length, width and height of 

the boss (Lb, Wb and Hb); the position of the boss (PL and PW); the total thickness of the 

recovery layers (Dr); the vertical distance between the existing boss to its adjacent final 

feature (Df). These notations are referred to Table 7.2 and section 7.4.4.2. 

(3) The local constraints for the existing part with a pocket: 

The total length (L), width (W) and height (H) of test part III; the total length (Le), width 

(We) and height (He) of the existing part; the length and width of the pocket (Lp and Wp); 

the total thickness of the recovery layers (Dr); the vertical distance between the existing 

pocket to its adjacent final feature (Df). These notations are referred to Table 7.2 and 

section 7.4.4.3. 

(4) The local constraints for the finished part where the dimensions of the boss are out of 

tolerance: 

The length, width and height of the boss (Lb, Wb and Hb); the position of the boss (PLb and 

PWb); 

These local constraints together with their values obtained from Appendix B are 

summarised in Table 8.4. 
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Table 8.4 – The local constraints for the given existing parts 

Existing part Local constraint (unit: mm) 

Existing part 

with a boss 

L = 60, W = 40, H = 28, Le = 62, We = 42, He = 14, Lb = 34, Wb = 22, 

Hb = 6, PLb_1 = 13, PLb_2 = 15, PWb_1 = 9, PWb_2 = 11, Df = 1 

Existing part 

with a pocket 

L = 60, W = 40, H = 28, Le = 62, We = 42, He = 10, Lp = 12, Wp = 7.5, 

Df = 5, Dr = 1 

Existing part 

with a final 

boss 

Nominal boss dimensions: Lb_n = 25, Wb_n = 18, Hb_n = 8, 

PLb_1_n = 5, PLb_2_n = 30, PWb_1_n = 11, PWb_2_n = 11 

Actual boss dimensions: Lb = 24.2, Wb = 17.8, Hb = 8.3, 

PLb_1 = 5, PLb_2 = 30.8, PWb_1 = 11.3, PWb_2 = 10.9 

8.4.3 The manufacturing strategies and the finished parts 

The manufacturing strategies used in this case study for further manufacturing the above 

three existing parts are presented as follows: 

(1) Manufacturing strategy ② for the existing part with a boss 

One of the local constraints, i.e. PWb_2 = 11mm, does not meet the local constraints 

relationships as specified in section 7.4.4.2 (i.e. PLb_1 ≥ 9mm, PLb_2 ≥ 9mm, PWb_1 ≥ 

9mm, PWb_2 ≥ 15mm, and Df > Dr). As a result, the manufacturing strategy ⑦ cannot be 

applied to this existing part and Dr is not applicable. 

In this case, the manufacturing strategy ② was used to further manufacture the existing 

part. The existing boss was first removed, by which a planar face was obtained. More 

material was added onto the machined existing part followed by a finishing operation to 

ensure that the dimensions of the final features were in the desired tolerances. The 

operations are illustrated in Figure 8.32. 

Removed boss

Existing part being 
machined   

Machined 
existing part

Newly deposited 
part

 

Figure 8.32 – Manufacturing strategy (2) used in case study 3 
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(2) Manufacturing strategy ① for the existing part with a pocket 

Given that 2 pW = 10.6mm < 23mm and Df = 5mm > Dr = 1mm, material can be directly 

deposited onto the top surface of the existing part. Figure 8.33 depicts the newly deposited 

part together with the recovery layers being added onto the existing part to create the near-

net shape of test part III, which was finish machined as part of the last operation. 

Existing part

Newly deposited 
part

Recovery 
layers

 

Figure 8.33 – Manufacturing strategy (1) used in case study 3 

(3) Manufacturing strategy ② for the existing part on which the dimensions of the final 

boss were out of tolerance 

Referring to section 7.4.7.1, the manufacturing strategy ⑤ (machine the existing features 

to the final dimensions directly) can be used when all the local constraints meet the 

relationships below: 

• PLb_1_n ≥ PLb_1, PLb_2_n ≥ PLb_2, PWb_1_n ≥ PWb_1, and PWb_2_n ≥ PWb_2 (see 

Figure 7.34) 

However, two of the positioning dimensions of the existing boss did not meet the 

relationships, which were: PLb_2 = 30.8mm > PLb_2_n = 30mm, PWb_1 = 11.3mm > 

PWb_1_n = 11mm. As illustrated in Figure 7.34, the existing boss had to be removed by 

using the subtractive process. Therefore, a new boss was added onto the machined existing 

part and the new boss was subsequently machined to its designed dimensions. 
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Three identical test part III have been produced from the three given existing parts, as 

shown in Figure 8.34. The blue material represents the existing parts and the white 

material represents the new material that was added and finish machined. 

iAtractive 
process

Existing 
part 1

Existing
part

Finished
part

Feature-based 

Decision-making 

Logic

Test part III 
manufactured from 

existing part 1

Test part III 
manufactured from 

existing part 2

Existing 
part 2

Existing 
part 3

Test part III 
manufactured from 

existing part 3  

Figure 8.34 – Further manufacturing existing parts to test part III 

8.5 Review of the Case Studies 

The present state of the art manufacturing processes are still significantly constrained by 

their capabilities either from technical limitations, such as complex part geometries, and 

raw materials. The iAtractive process together with GRP
2
A and FDL, has been proposed, 

developed and documented in this thesis. The three case studies have demonstrated the 

ability of the iAtractive process to: 

• Manufacture accurate complex part structures, which are traditionally impossible to 

produce by single individual manufacturing processes alone. 

• React promptly to quality changes to continuously manufacture the part until it 

achieves the designed requirements. In traditional manufacturing methods, the parts 

that do not meet the specified quality are scrapped. 
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• Reuse existing parts and transform them into new final parts, whereas, conventionally, 

CNC machining processes have to start with a block of which the size has to be bigger 

than the final part; additive processes are only designed to start manufacturing parts 

from zero. 



 

Chapter 9 – Concluding discussion 

 

272 

 
 

9 Concluding discussion 

9.1 Introduction 

This chapter presents a discussion of the areas related to the scope of this research and 

brings together a number of major issues of the research reported in this thesis. 

9.2 State-of-the-art in Hybrid Manufacturing Technology 

The author has identified that there is no consensus definition of hybrid manufacturing 

processes (see sections 3.6.1 and 3.6.8). The author has proposed a definition and the term 

‘hybrid processes’ is defined as an approach that combines two or more manufacturing 

processes, each of which is from different manufacturing technology. Through the review, 

it is also revealed that the most of the hybrid processes only focus on enhancing capability 

of the constituent processes, such as increasing tool life, improving surface quality and 

accuracy, and reducing production times. However, it has not been reported that complex 

features can be accurately produced by using any of the developed hybrid processes. The 

combination of additive and subtractive processes have been recognised as a potential 

candidate to manufacture complex parts, but no process planning approach has been 

developed to effectively utilise the capability of this type of hybrid process. The developed 

hybrid processes are only able to deal with very specific applications and their validity 

fails while applying these hybrid processes to manufacturing other parts with various 

structures. The review has also indicated that the current manufacturing processes are 

always constrained by the available raw materials in terms of shape and size. The 

application of such hybrid processes on the application of material reuse has not been 

thoroughly explored due to the lack of process planning techniques. These identified 

research gaps were the principle drivers to formulate the basis of the author’s research. 

9.3 The iAtractive Process and the Design of Experimental Methodology 

The hybrid process termed iAtractive, presented in chapter 4, has been proposed, which is 

aimed at accurately manufacturing complex part geometries as well as utilising existing 

parts. The overall workflow of the iAtractive process together with the major 

considerations as described in sections 4.3.1 and Figure 4.4, was used to design a 

structured experimental methodology to generate new knowledge on hybrid manufacturing 
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and process planning. The methodology consists of 3 stages, focusing on the following 

three major aspects: 

• Investigation of the part manufacturing strategy, in particular process interactions, 

when combining the capability of the additive, subtractive and inspection processes. 

• Development of GRP
2
A for manufacture of complex part geometries. Based on the 

part manufacture knowledge gained from the last stage, GRP
2
A has been explored and 

developed, which is able to generate static and dynamic process plans from given part 

designs. 

• Investigation of FDL for reusing of existing parts. The existing parts are classified 

based on features. Two types of constraints are proposed and considered in FDL, 

which are local and global constraints. Eight manufacturing strategies have been 

investigated, which can be used to further manufacture various types of existing parts 

with different constraints relationships. 

There is potential to further extend this experimental methodology to develop the 

knowledge for the iAtractive process that can incorporate more additive, subtractive and 

inspection units, such as multi-material deposition units, laser-based deposition units and 

optical scanning measurement devices. The capability and constraints of potentially 

incorporated units will be taken into consideration in GRP
2
A and FDL. 

9.4 The Part Manufacturing Strategy for the iAtractive Process 

The part manufacturing strategy (presented in chapter 5) was investigated, forming the 

basis for GRP
2
A and FDL. Manufacturing strategies for the individual FFF and CNC 

machining processes has been extensively researched. However, a number of new issues 

have arisen when these two processes are interacting. This investigation was conducted in 

the following four areas. 

9.4.1 Evaluation of dimensional and geometric accuracy of FFF manufactured 

parts 

It has been widely recognised that the accuracy of parts manufactured by FFF is much 

lower than that of CNC machined parts (Jones et al., 2011). Therefore, additively 

manufactured features require finish machining in the iAtractive process production. This 

requires that the printed positive features to be slightly bigger than their nominal sizes (e.g. 



 

Chapter 9 – Concluding discussion 

 

274 

 
 

the printed dimensions are 1 to 2mm greater than the nominal ones) and positioned in the 

correct location. In addition, the printed negative features are required to be slightly 

smaller than their nominal sizes (e.g. the printed dimensions are 1 to 2mm shorter than the 

nominal ones) and positioned in the correct location, as presented in section 5.4.4. An 

accuracy index for the FFF process has been developed, which is integrated in GRP
2
A and 

FDL, taking dimensional and positioning accuracy into account. The designed dimensions 

and coordinates for the additive operations are calculated and modified according to the 

accuracy index, enabling the FFF fabricated features to be finish machined. It should be 

noted that the experiments in the accuracy evaluation were specifically designed for 

developing the accuracy index for process planning of the iAtractive process. 

The geometric accuracy evaluation results indicate that face milling operations for each 

layer are not necessary for manufacturing fully dense parts. This finding is also used in the 

development of the elements (i.e. subpart merging and operation sequencing) in GRP
2
A. 

Thus, production times can be significantly reduced compared to the state of the art 

methods presented by Jeng and Lin (2001), and Karunakaran et al. (2010), since the 

redundant face milling operations for each layer have been removed. 

9.4.2 Investigation of FFF capability in producing overhanging features 

Overhanging features have been defined in section 5.3.4, which are classified as bridge and 

cantilever in section 5.5. The capability of the FFF process to produce overhangs has been 

investigated. A bridge length of 23mm and inclination angle of 60º has been identified as 

the longest length and smallest angle that the FFF process can create without support, 

respectively. Recovery layers have also been defined and explored. These establish the 

criteria for GRP
2
A to determine whether or not to use support structures, and to modify 

features for different operations. The FFF capability and recovery layers are also used in 

FDL to specify local constraints for selecting feasible manufacturing strategies. 

9.4.3 Machinability of plastic layered parts 

The machinability of FFF manufactured parts has been explored in section 5.6. A full 

factorial DoE strategy was employed to design the experiments. A number of slot milling 

experiments in both dry and wet cutting environments were conducted and the surface 

roughness was measured. The appropriate machining parameters and their combinations 

have been identified. The results indicate that selecting lower DoC (e.g. 0.25mm) is more 
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likely to obtain less surface roughness. Spindle speeds of between 4000 – 5000rpm are 

recommended alongside high feedrates for reducing machining times whilst not 

significantly diminishing surface quality. Different parameter combinations are provided in 

Table 5.5 for machining parts in various stages in the iAtractive process sequence, such as 

finish machining final parts and subparts, rough machining existing parts and support 

material. These identified combinations of process parameters are selected in the post-

processing stage of GRP
2
A. Moreover, it was found that friction induced heat is the major 

factor that affects surface roughness and thus using coolant in finishing operations is 

required. 

9.4.4 Analysis of part distortions 

The degree of part distortions has been significantly reduced in commercial additive 

machines. However, in the iAtractive process, due to temperature gradients involved in the 

deposition process, thermal stresses develop. These stresses arise from the contraction 

associated with the deposition of each layer, resulting in distortions or even failure of the 

deposition process. In addition, the heating and rapid cooling cycles of the material lead to 

non-uniform thermal gradients that cause continuous stress accumulations, leading to 

further distortions between the existing part and the part built upon it. The distorted parts 

require additional machining operations to eliminate the dimensional effects of distortions. 

The distortion behaviour was experimentally investigated. A mathematical model was first 

developed, identifying important process parameters related to warp deformation. A 

Taguchi DoE strategy was used to design the experiments. The experimental results reveal 

that: 

• The section length and the height of existing part as well as their interaction are of 

primary significance. 

• Long section length and thin existing part are detrimental to dimensional accuracy 

since a great degree of distortion was observed. 

• It is advisable to avoid decomposing long and thin subparts in the part decomposition 

stage. A layer thickness of 0.25mm if possible, is recommended as it produces the 

smallest amount of distortion. 

It is noted that the distortion behaviours of other materials, such as metals, requires further 

investigations. This enables GRP
2
A to be extended for other applications where the 
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iAtractive process is expected to be applied to. As the surface of the warped part has to be 

removed, the iAtractive process could be beneficial for developing a model, which is 

capable of predicting part distortion behaviour, enabling GRP
2
A to estimate the total 

amount of material to deposit. This model has the potential to reduce the number of 

manufacturing operations. 

9.5 The Generative Reactionary Process Planning Algorithm 

One of the key challenges in the development of GRP
2
A was to establish a method to 

sequence additive, subtractive and inspection operations, whilst taking into consideration, 

the constraints of the individual processes and production times. The developed algorithm, 

presented in chapter 6, contains two major phases, namely, generation of static and 

dynamic process plans. A specific static process plan is first generated based on the given 

part design. The algorithm addresses the cutting tool accessibility, deposition nozzle 

collisions and production times when generating operation sequences. The method that 

was proposed to sequence operations, considers individual additive, subtractive and 

inspection operations in sequence. The additive operations sequences are first determined 

followed by inserting subtractive operations. The inspection operations are finally added 

into the sequenced additive and subtractive operations. The three major stages formulate 

this process planning algorithm. 

(i) Pre-process stage. A CAD model is input into GRP
2
A and the part geometry is 

analysed, identifying the potential features that are likely to cause cutting tool 

collisions. 

(ii) Processing stage. The available operation sequences are scheduled in this stage, which 

can be further split into the following steps: 

• Part decomposition. It has been recognised that the part decomposition results 

may lead to completely different operation sequences. For example, if test part I 

in section 8.2 was decomposed into 3 subparts instead of 5, as shown in Figure 

9.1, the operation sequences would be different from the sequences generated in 

section 8.2.5. Part decomposition requires further investigations, which will be 

presented in section 10.4.2, future work. 
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Figure 9.1 – Another possible decomposition result for test part I in section 8.2 

• A number of sets of subparts’ build directions are determined and each set of 

build directions contains a unique combination of subparts’ build directions and 

the build direction allocation sequence. The machining operations will then be 

inserted to these allocation sequences. A valid set of build directions should not 

include any build directions that are likely to cause deposition nozzle collisions. 

However, it is noted that the valid sets of build directions may no longer be 

feasible after inserting machining operations into them. 

• Machining operations are required when the features are still accessible by the 

cutting tool. This enables the manufactured products to be achieved with a high 

level of accuracy and surface quality comparable to that of an entirely CNC 

machined parts. Whereas, certain features manufactured by adopting the method 

developed by Kerbrat et al. (2010), presented in section 3.4.4.1 could still remain 

inaccurate. As certain machined surfaces may require extra finishing operations 

when subsequent subparts are built, a feasible tool approach direction might not 

be found, in which case, the operation sequencing based on a certain set of build 

directions is considered to be failed. 

(iii) Post-processing stage. The major activities involved in this stage are outlined as 

follows: 

• Inspection operations are added into the scheduled additive and subtractive 

operations. As a result, the static operation sequences are obtained. 

• Inspection is also the enabler for transforming a static process plan into a dynamic 

process plan, responding promptly to quality changes during production. Therefore, 

GRP
2
A is reactionary. Each inspection operation is the start for the dynamic 
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process plan if the part is found to be out of tolerance. Implementing the dynamic 

process plan, which is generated during production, enables the part to be 

manufactured appropriately, allowing the final product to be achieved with the 

correct tolerances. Two methods for generating dynamic plans were proposed in 

section 6.8. It is unclear which method is better and further investigations are thus 

required. 

• Production time estimation. A number of feasible operation sequences to produce 

a part may exist. In this research, production time is considered to be the major 

factor that determines the final operation sequence. A build time estimation model 

has been developed and documented in section 6.10, utilising the most accessible 

geometrical information i.e. part volume, height, density and intermittent factor. 

The estimation accuracy can be further improved by involving more FFF process 

parameters, which will be discussed in the subsequent section. 

9.6 The Build Time Estimation Model 

A build time estimation model has been developed and it has been identified that the model 

is able to predict build times and the predicted results do not have a significant difference 

to the actual times. In comparison to other estimators (Han et al., 2003; Pham and Wang, 

2000; Kechagias et al., 2004; Campbell et al., 2008), this developed model offers a time-

saving method, which only requires the dimensions of the part, i.e. 2D drawings. This 

eliminates considerable time used in generating 3D CAD models for each decomposed 

subpart, generating STL files, slicing and post-processing them for build time calculations. 

Even though, the method has been applied solely to the FFF process at present, the basic 

principle of using a 2D drawing to estimate build times is equally applicable to all additive 

processes. 

However, certain issues should be addressed. Firstly, the model shows advantages only for 

parts in which all the features involved are prismatic features. It is currently not suitable 

for parts with sculptured surfaces because the intermittent factor cannot precisely represent 

properties of such structures. The dimensions in the horizontal plane may vary along with 

the vertical direction depending on the designed sculptured surface. As the iAtractive 

process is designed primarily for prismatic part production and the majority of engineering 

parts are prismatic or cylindrical, the estimated build times can be considered as being 

approximated to the actual times. It is also noted that two or three fully dense layers at the 
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bottom as well as on the top surface of a part are always required in the deposition process 

even though a non-fully dense part is specified. For simplifying the process in developing 

the estimation model, this factor is not taken into account, which, in theory, could lead to 

increase in incorrect predictions of build times. 

In addition, it is worth pointing out that the model is only valid for a particular set up in 

which the process parameters are kept constant. Any changes in the process parameters, 

such as increasing layer thickness, printing speed and road width, could result in 

significant errors since the new set up may require different factors and coefficient for 

achieving the optimal results. A possible solution to enhance the functionality and 

accuracy of the model is to employ a correction factor as used by Pham and Wang (2000), 

which is partly dependent upon the ratio of the part (or parts) volume to the volume of a 

bounding box around the STL file. The factor thus takes into consideration, part 

complexity, wall thickness and the number of parts being produced on a build platform. 

9.7 The Feature-based Decision-making Logic for Material Reuse 

One of the most distinctive advantages of the iAtractive process is that it is not constrained 

by raw material in terms of shape and size. FDL has been developed and presented in 

chapter 7, which provides a number of manufacturing strategies to further manufacture 

existing parts. Existing features are categorised as final features and non-final features. 

Existing parts are then classified into three types, namely, existing part with non-final 

features, with final features, and with both non-final and final features. Eight 

manufacturing strategies have been proposed and investigated, which aim to effectively 

utilise the given existing part, transforming it into the final part, rather than simply 

removing the existing features and adding new features onto the machined existing part. In 

other words, the priority of the first step is to deposit new material onto the existing part. 

The newly deposited features in conjunction with the existing features enable further 

material to be added. The existing features are first completely removed only under the 

circumstances where directly depositing new material onto the existing part leads to 

deposition nozzle collisions. New nozzle designs will provide further enhancement to the 

FFF process capability, enabling material to be added onto the existing part with reduced 

risks of deposition nozzle collisions, providing more manufacturing strategies for reusing 

existing parts. 
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Additionally, it is noted that there are potentially unlimited variations of existing parts. For 

example, for an existing part with a non-final boss as shown in Figure 7.2(a), the existing 

boss can be of any size located in any random position on any of the six surfaces. 

Moreover, there can also be two bosses, three bosses and even an arbitrary quantity of 

bosses. Furthermore, each boss could be at any possible distance. Therefore, a robust 

decision-making logic is expected to be developed to take this issue into consideration. 

Moreover, parts produced from existing parts may not have the same quality compared to 

the counterparts entirely produced by CNC machining or FFF in terms of part integrity. As 

discussed in section 6.5.3, the bonding strength between the two connected parts that were 

deposited in two individual additive operations respectively, is much lower than that of the 

part produced in one single additive operation. A potential solution to increase bonding 

strength is to apply the appropriate process parameters for depositing material onto 

existing parts or using chemical methods to enhance the bonding effect. This requires 

further investigations. 

9.8 Evaluation of the iAtractive Process 

The test parts in the case studies described in chapter 8 have been successfully produced by 

using the iAtractive process according to the process plans generated from GRP
2
A and 

FDL. This demonstrates that the iAtractive process together with the developed GRP
2
A 

and FDL is feasible for producing complex part geometries and reusing existing parts. 

9.9 Advantages of the iAtractive Process Consisting of Additive, 

Subtractive and Inspection Processes 

There are a number of advantages in relation to the iAtractive process. Among them, one 

of the principle advantages is that the iAtractive process is able to produce complex part 

geometries with high surface quality and accuracy. The iAtractive process is not 

constrained by the capabilities of the individual constituent processes. GRP
2
A is the only 

viable algorithm developed, facilitating difficult to machine structures to be accurately 

produced. 

Another principle advantage is that the iAtractive process is able to utilise existing parts, 

transforming them into final parts, which is virtually impossible to create by any other 

individual manufacturing process. The manufacturing strategies in FDL enable existing 
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parts to be fully utilised and the iAtractive process is thus not constrained by raw material 

in terms of shape and size. 

In addition, combining the inspection technique enables the iAtractive process to respond 

promptly to quality changes during production, generating dynamic process plans to 

further manufacture in-process parts (i.e. the parts during production). Whereas, products 

that are out of tolerances are simply abandoned, resulting in unnecessary waste and 

increased production costs. 

Moreover, the capabilities of FFF and CNC machining have been taken into consideration 

in GRP
2
A and FDL. There is potential that GRP

2
A and FDL can be extended by involving 

the capabilities of other additive processes if they are combined and utilised in the 

iAtractive process. Furthermore, the author believes that this novel concept of hybrid 

manufacturing, namely, combination of additive, subtractive and inspection processes can 

be applied to various application areas for manufacturing products made of a wide range of 

materials. 

9.10 Limitations of the iAtractive Process 

Despite the fact that the iAtractive process has shown a number of valuable advantages 

over individual processes, a number of limitations need to be addressed: 

• The iAtractive process is currently not applicable to manufacturing of free form 

sculptured surfaces and other non-prismatic shapes. As GRP
2
A and FDL have been 

developed based on prismatic part manufacture, further research needs to be carried 

out to extend them for manufacturing free form surfaces. 

• The current GRP
2
A still requires human intervention and thus a fully automatic 

process planning system needs to be developed, realising automatic part production. 

• The developed FDL for material reuse does not cover all the possible scenarios where 

more types of existing parts and variations may exist, as stated in section 9.7. Thus 

further investigations are required in order to develop a robust decision-making logic 

capable of dealing with a wide range of existing parts. 
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10 Conclusions and future work 

10.1 Introduction 

In this chapter, a series of conclusions that have been derived as a result of this research 

are provided. The contributions of this research to knowledge are highlighted together with 

future areas of investigation. 

10.2 Conclusions 

 Through reviewing the state-of-art hybrid manufacturing processes, the author has 

identified that although the capability of the individual manufacturing processes have 

been improved, the hybrid processes are still constrained by the capabilities of the 

constituent processes as well as raw materials in terms of shape and size. Very limited 

research has been reported on process planning for hybrid processes. 

 A novel concept of hybrid manufacturing process, termed iAtractive, which consists 

of additive, subtractive and inspection processes, has been proposed. It has been 

proved that it is not constrained by the capability of the individual constituent 

processes and raw material in terms of shape and size. 

 A structured experimental methodology for the iAtractive process has been designed 

and verified for generating new knowledge on hybrid manufacturing. 

 A Generative Reactionary Process Planning Algorithm (GRP
2
A) has been developed, 

capable of organising manufacturing operations and sequences, determining 

appropriate process parameters, generating static and dynamic process plans for 

manufacture of complex parts i.e. internal features. The core of GRP
2
A is the 

generation of operation sequences and a method was proposed for sequencing additive, 

subtractive and inspection operations. 

 An accuracy index of the FFF process has been developed, which is integrated in 

GRP
2
A. The modified dimensions and coordinates of the features to be additively 

produced can be calculated by applying the index. 
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 The capability of FFF process in producing overhanging features has been explored, 

establishing criteria for determining whether or not to construct support structures. 

 The machinability of plastic layered parts has been experimentally investigated, 

identifying a number of sets of appropriate machining parameters that can be used in 

different machining operations (i.e. roughing and finishing of subparts, existing and 

final parts) in the iAtractive process. 

 The part distortion behaviour has been explored, establishing the relationship related 

to existing and newly deposited parts. This provides the basis for GRP
2
A in the 

operation sequencing stage. 

 A build time estimation model has been specifically developed for the iAtractive 

process. It has been proved that the model is able to estimate build times based on the 

most accessible geometrical attributes which can be directly obtained from the CAD 

models or 2D drawings. This estimation model is included in the GRP
2
A to determine 

the most appropriate operation sequence in terms of production times. 

 Feature-based Decision-making Logic (FDL) has been developed, enabling existing 

parts to be further manufactured and reincarnated into final parts with desired shapes. 

It has also been identified that the decision-making logic is restricted by the capability 

of the FFF process and the current deposition nozzle design. 

 A series of case studies have been manufactured using the iAtractive process and the 

process plans generated by GRP
2
A and FDL. The designed test parts consisted of 

internal features and existing parts. The manufactured test parts have shown the 

successful ability of the iAtractive process in producing complex part geometries and 

reusing existing parts. 

10.3 Contributions to Knowledge 

The major contribution to knowledge is the new vision for a hybrid manufacturing process, 

powered by a Generative Reactionary Process Planning Algorithm and Feature-based 

Decision-making Logic. The hybrid process is not constrained by the capability of 

individual processes. The novelty of this research lies within the realisation of a hybrid 

process that can produce complex part geometries as well as provide the capability to 
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remanufacture existing parts from a wide range of given raw materials in terms of shape 

and size. 

New knowledge that has been generated in this research is: 

 A part manufacturing strategy for manufacturing parts in the hybrid process 

production scenario where process interaction is taken into consideration. 

 Development of a Generative Reactionary Process Planning Algorithm that enables 

the hybrid process to accurately manufacture complex parts whilst having the 

capability to respond promptly to quality changes during production. 

 Investigation of Feature-based Decision-making Logic that is able to provide viable 

manufacturing strategies for reusing existing parts and transforming them into final 

parts with desired shapes and tolerances. 

10.4 Future Work 

Throughout the course of this research a number of opportunities for extending the work 

further have been identified. 

10.4.1 Extending the application areas of the hybrid process 

The iAtractive process is focused on prismatic part production. Given that the 

manufacturing paradigm is shifting towards bespoke and customisation (Gibson et al., 

2009), the iAtractive process will benefit from producing various part geometries, 

particularly custom-designed geometries. This requires further investigation on intelligent 

process planning techniques, enabling parts with various structures including free-form 

sculptured structures to be produced based on more feasible process plans. 

10.4.2 Developing a fully automatic process planning system 

The current GRP
2
A still requires human intervention and thus a fully automatic process 

planning system needs to be developed, realising automatic part production. This can be 

achieved by the following: 

 A feature recognition method. The process planning system to be developed should be 

able to interpret the given part designs, normally in CAD formats. Due to the 
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fundamental differences between various manufacturing processes, the recognition 

methods that are available for one manufacturing process may no longer be feasible 

for other processes. As the iAtractive process integrates additive, subtractive and 

inspection processes, a unique feature interpretation approach may be advantageous, 

requiring further investigations. 

 A robust part decomposition approach. As discussed in section 9.5, the output of the 

part decomposition significantly determines the following steps, particularly the 

operations to be used and the sequences to be scheduled. Part decomposition requires 

significant investigation. An ideal part decomposition approach should be capable of 

decomposing a complex part into a number of subparts whilst taking into 

consideration the capability of the individual processes. The optimal operation 

sequences can be realised by scheduling operations for manufacturing these subparts. 

For instance, the results of the decomposed subparts depicted in Figure 9.1 are better 

compared with the results presented in Figure 8.4 in terms of production times. 

 An adaptive slicing method. An adaptive slicing method for the iAtractive process is 

needed, which allows varying thicknesses of layers to be deposited. Thick layers can 

be adopted for the area of the part where no high accuracy and surface quality is 

required (Kulkarni et al., 2000). Thus build times can be significantly reduced. A 

potential candidate to be modified is the slicing method proposed by Liou et al. 

(2007), which allows the hybrid process to be used on a 5-axis machining centre 

where parts can be built by rotating the work table whilst using the adaptive layer 

thickness. 

 Investigation of part distortion behaviour. As discussed in section 9.4.4, the process 

planning system will be beneficial for developing a model to predict part distortion 

behaviour. This will enable the process planning system to estimate the total amount 

of material to deposit and reduce the number of manufacturing operations to be 

conducted. For instance, in Figure 6.28, after the bottom surface of the parent subpart 

is machined, more material has to be added if the height of the machined parent 

subpart is shorter than its designed height. Having added the material onto the 

machined bottom surface, a finish machining operation is also needed. This 

significantly increases production time. 
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 Investigation of bonding strength between two subparts. Bonding strength between 

two subparts is much lower than one single subpart that is purely built in one additive 

operation. Parts that consist of two subparts were found to decouple when the cutting 

tool is close to the boundary where the two subparts are bonded to each other. 

Bonding strength significantly restricts the application areas of the iAtractive process, 

which also largely determines part decomposition results. Therefore, bonding strength 

should be considered in the process planning system and efforts should be made to 

seek feasible methods to increase bonding strength such as chemical methods. 

 A production time estimation model for sculptured surfaces manufacture. As the 

application areas of the iAtractive process will be further extended, there is a need to 

develop a production time estimation model capable of predicting production times 

for production of sculptured surface parts. There is potential to further extend the 

developed build time estimation model to enhance the functionality and accuracy of 

the model. This can be achieved by employing a correction factor as used by Pham 

and Wang (2000), as presented in section 9.6. In addition, the machining time 

estimation algorithms developed by Heo et al. (2006) and So et al. (2007) are 

potential candidates that can be modified for predicting machining times. 

 Generation of dynamic process plans. The iAtractive process will benefit from the 

exploration of a robust strategy for generating dynamic process plans. This strategy 

should be capable of dealing with quality changes during production. According to the 

different quality changes, corresponding operations will be implemented to ensure the 

part being manufactured meets the designed requirements in the least amount of time. 

This strategy can be applied to scenarios such as the one in section 8.2.6 and Figure 

8.19, determining the optimal dynamic process plan. 

10.4.3 Investigating robust decision-making logic for reusing materials 

As discussed in section 9.7, further efforts should be made on developing a complete 

decision-making logic, which is capable of generating appropriate operations for further 

manufacturing any given existing parts that are of arbitrary geometries. The decision-

making logic should include a number of criteria for making decisions on how to 

manufacture existing parts. At present, deposition nozzle accessibility, production time and 

material consumption are recognised as the three most important factors for consideration 
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in FDL. In the future, more factors can be included, such as production cost and part 

strength. Further research should be conducted on investigating bonding strength between 

existing and newly deposited parts in order to ensure the new part manufactured from the 

existing part can obtain the same or similar quality as that of a part entirely produced by 

CNC machining or the FFF process. This is because the bonding strength between the 

existing and newly deposited parts largely determines the application areas of the 

iAtractive process in material reuse. Furthermore, a specific deposition tool path 

generation approach is needed. This approach will be capable of generating tool paths by 

taking deposition nozzle collisions into account, enabling the nozzle to deposit material 

onto the existing part whilst not colliding with the existing features. 

10.4.4 Exploring a part dematerialisation method 

Part dematerialisation can be defined as manufacturing a product with the minimum 

amount of material possible, without compromising on part integrity or overall 

functionality. CNC machining is not capable of producing such parts due to limited tool 

accessibility. However, the iAtractive process enables new opportunities to dematerialise 

parts by using less material through material re-distribution and re-densification. The 

existing topology optimisation methods, such as Evolutionary Structural Optimisation 

(ESO) method (Huang and Xie, 2010) and Solid Isotropic Microstructure with Penalisation 

(SIMP) (Rozvany, 2009) are potential candidates to be adapted and modified to analyse 

part structures, identifying structurally efficient designs. For example, ESO is based on the 

concept of gradually removing inefficient material from a structure so that the residual 

shape evolves towards the optimum. By applying the ESO technique, the interior porous 

structure of the part can be obtained, consisting of different areas of material densification. 

This provides enhanced structural functionality and integrity only where it is actually 

required in the part. 

Figure 10.1 provides an example of the ESO optimised structure, where the interior 

structure of a solid block (bearing a force F downwards) is optimised to the structure as 

shown on the right hand side. This example indicates that the total amount of material can 

be significantly reduced by using the ESO method. The iAtractive process will create the 

internal structure of subparts by using the FFF process. CNC machining can be applied to 

finish machining the exterior structure of the dematerialised subparts. 
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Figure 10.1 – An ESO optimised structure for a rectangular block 

10.4.5 Hardware development 

The capability of the iAtractive process can be further enhanced with additional hardware 

development. An improved deposition nozzle design will enhance the iAtractive process 

capability. An example can be found in Figure 3.13 where material can be directly added 

onto any accessible surfaces (Lanzetta and Cutkosky, 2008). This enhanced capability will 

enable more feasible operation sequences to be realised in scheduling additive and 

subtractive operations as well as providing more manufacturing strategies to remanufacture 

existing parts. A machine prototype consisting of a number of additive (material deposition 

based and laser based), subtractive and inspection units is expected to be developed, 

realising automatic interchangeable additive, subtractive and inspection processes. Thus, 

the vision of the unconstrained hybrid process presented in this thesis can be realised. 
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The Existing Part with a Boss 
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The Existing Part with a Pocket 
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The Final Part with an Unqualified Boss 

 

 


