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Abstract

This thesis presents a study of Surface Plasmon Polaritons (SPPs) in

hybrid metal-dielectric waveguides. The embedding of metal in nanos-

tructured photonic components allows for manipulating and guiding

light at the subwavelength scale. Such an extreme confinement en-

hances the nonlinear response of the dielectric medium, which is im-

portant for applications in optical processing of information, but is

paid in terms of considerable ohmic loss in the metal. It is, however,

possible to embed externally pumped active inclusions in the dielec-

tric in order to compensate for the metal loss. A novel perturbative

theory for Maxwell equations is introduced and applied to various

nonlinear metal-dielectric structures, deriving the propagation equa-

tion for the optical field. The nonlinear dispersion law for amplified

SPPs, filamentation and dissipative plasmon-soliton formation have

been studied, revealing intrinsic core and tail instabilities that pre-

vent solitons to propagate over long distances. Stable propagation of

plasmon-solitons can be achieved in insulator-metal-insulator struc-

tures with active and passive interfaces. The active SPP is coupled

with the passive SPP, which absorbs the perturbations destabilising

the zero background of the soliton. Theoretical modelling of optical

propagation in metal-dielectric stacks predicts a modified two-band

structure, allowing for gap/discrete plasmon-soliton formation. Loss

and nonlinear parameters in subwavelength nanowire waveguides are

evaluated and compared to the results obtained by other research

groups. In all calculations, particular attention is paid in consider-

ing boundary conditions accounting for loss and nonlinear corrections,

which contribute to the propagation equation with a surface term that

becomes significant in the subwavelength regime.
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Chapter 1

Introduction

Recent advances in nanotechnology have enabled possibilities for the fabrication

and characterisation of nano-sized photonic components, which can be used for

controlling and manipulating light at the nano-scale. This thesis is fundamentally

about nano-optics, a newly emerging research area that aims at understanding op-

tical phenomena in the subwavelength regime, i.e. near or beyond the diffraction

limit of light [Novotny and Hect, 2006]. Plasmonics is a subfield of nanophoton-

ics that has received considerable attention by the scientific community in recent

years, mainly motivated by its striking nanometric applications in sensing [Ho-

mola, 2006], optical circuits [Bozhevolnyi, 2008] and active devices [Shalaev and

Kawata, 2007].

Basically, the main ingredient exploited in plasmonics is the use of metallic

components in the design of photonic structures. Common experience through

everyday life tells us that light does not propagate in metals, but is reflected from

the surface. Thus, using metals to handle light it may look weird in the eyes of

the reader. However, it will be shown that, close to the metal surface, the light

can couple with free electrons oscillating in the metal and can be confined across

the interface with an external dielectric; the resulting electromagnetic surface

wave is commonly named Surface Plasmon Polariton (SPP) [Maier, 2007]. SPPs

exhibit the intrinsic property of being exponentially localised across the metal-

dielectric interface, and under certain conditions depending on geometric and

optical properties of the structure, they can get tightly bound to the surface.
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Early description of Surface Plasmon Polaritons (SPPs) has been theoretically

established in the context of radio waves [Sommerfeld, 1899; Zenneck, 1907].

Initial measurements of reflection/absorption spectra of visible light incident on

metallic gratings reported an anomalous behaviour [Wood, 1902], which was later

explained in terms of SPP excitation in Ref. [Fano, 1941]. From then on, the

investigation of SPPs has rapidly increased, becoming of great interest in the last

decade with the development of the nanofabrication techniques [Barnes et al.,

2003; Bozhevolnyi et al., 2006b; Ozbay, 2006].

The tight confinement of SPPs is entirely due to the metal components and is

paid in terms of considerable ohmic loss, which quenches off the peculiarly striking

SPP properties. In turn, scientists put effort in trying to overcome the metal

loss by embedding externally pumped gain materials in plasmonic components

[Ambati et al., 2008; Noginov et al., 2008a; Zheludev et al., 2008]. In this context,

relevant applications in optical processing of information have been developed,

e.g., ultrafast all-optical modulation of SPPs [MacDonald et al., 2009; Pacifici

et al., 2007].

The very unique benefit provided by SPPs resides in the strong field enhance-

ment close to the metal surface, which is responsible for relevant surface-enhanced

optical phenomena such as Raman Scattering (SERS) [LeRu and Etchegoin, 2009]

and Second Harmonic Generation (SHG) [Zayats and Richards, 2009]. In general,

the high intensity of SPPs boosts all nonlinear effects, which can be exploited,

e.g., in plasmonic all-optical switching active devices [Wurtz et al., 2006]. In turn,

the research area of nonlinear plasmonics has become of great interest both from

experimental and theoretical perspectives. Theoretical modelling of SPP propa-

gation in nonlinear nanostructures is still lacking of a shared unified understand-

ing. One of the open questions concerns the physical origin of the extremely high

optical nonlinearity of metals measured in experiments [Nie and Emory, 1997;

Ricard et al., 1985]; recent approaches taking account of nonlocal ponderomotive

nonlinearity [Ginzburg et al., 2010] predict an enhancement of nonlinear effects.

Undoubtedly, the electromagnetic field enhancement at the metal surface plays

a major role in this context. Imperfections and roughness of the metal surface

lead to a further increasing of nonlinearity, constituting the leading contribution

in SERS [LeRu and Etchegoin, 2009].
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Light propagation in nonlinear systems is subject to peculiar physical mech-

anisms, such as self-focusing/self-defocusing [Boyd, 2003]. In particular, the fo-

cusing nonlinearity is able to compensate for diffraction, enabling the possibility

to achieve localised non-diffracting light beams, named spatial solitons [Kivshar

and Agrawal, 2003]. The occurrence of plasmon soliton formation in plasmonic

systems has been reported recently [Feigenbaum and Orenstein, 2007; Ye et al.,

2010]. Plasmon-solitons are receiving attention by the scientific community for

their localised self-sustained nature, which can be used to obtain miniaturised

optical channels.

Besides, fundamental research in plasmonics is directly linked to a novel class

of hydrid metal-dielectric nanostructured materials, commonly named metama-

terials, which exhibit unusual optical properties [Engheta and Ziolkowski, 2006;

Ramakrishna and Grzegorczyk, 2009]. One of the most peculiar features of meta-

materials is negative refraction [Veselago, 1968], which is responsible for super-

lensing [Pendry, 2000] and cloaking [Schurig et al., 2006] applications. In this

context, plasmonic Negative Index Materials (NIMs), allowing for negative re-

fraction [Dionne et al., 2008], can be exploited for super-imaging applications

[Shalaev, 2007].

In conclusion, the embedding of metals in photonic components gives rise to

a completely new phenomenology, which is creating space for several nano-scaled

applications. In this context, the study of fundamental physics plays an im-

portant role in supporting and suggesting novel potential applications. Further,

in order to describe electromagnetic fields highly confined in the subwavelength

scale, the devolopment of adequate theoretical tools is needed. In this thesis, a

novel perturbative theory for Maxwell equations is derived and applied to var-

ious nonlinear and active plasmonic structures. Such an analytical technique,

accounting for nonlinear corrections at the boundaries between metal and dielec-

tric structures, predicts a nonlinearity enhancement coming from surface effects.

The dispersion law of nonlinear SPPs and plasmon-soliton formation at a sin-

gle interface between a metal and a nonlinear active dielectric are investigated,

revealing that intrinsic instabilities prevent the solitons to propagate over long

distances. In turn, a method to stabilise solitons by exploiting the coupling
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1.1 Outline

with a passive SPP is proposed and described. Theoretical modelling of non-

linear propagation in one dimensional SPP arrays predicts a modified two-band

structure due to the negative coupling in the metallic stripes and the existence of

gap/discrete plasmon-solitons. The bifurcation of the discrete soliton family from

the antisymmetric branch is also predicted, finding confirmation in a numerical

study done by another research group and published in a recent paper [Salgueiro

and Kivshar, 2010]. Theoretical modelling of light propagation in cylindrical sil-

ver nanowires allows calculating the loss and nonlinearity enhancement around

the surface plasmon frequency. We demonstrate that the enhancement of loss

and nonlinearity is due to surface-induced effects, which become relevant in the

subwavelength regime.

1.1 Outline

This thesis is specifically focused on the theoretical modelling of light propagation

in gaining and nonlinear plasmonic nanostructures. This chapter introduces the

general concepts and background theories of nonlinear optics that are used in the

following chapters. Section 1.2 reviews the basic concepts of light propagation in

dielectric structures. After introducing the macroscopic Maxwell equations and

the constitutive relations, paraxial optics in dielectric bulks is briefly discussed

and light propagation in optical fibres, silicon on insulator (SOI) waveguides and

photonic crystals is introduced. Nonlinearity, generalised constitutive relations,

paraxial propagation of light in nonlinear dielectrics and soliton formation are

described in section 1.3.

Chapter 2 is aimed at reviewing SPPs and their properties in the linear regime,

where nonlinear effects are neglected. In section 2.1, the basic optical proper-

ties of metals are briefly described: dielectric susceptibility, plasma frequency

and volume plasmons. In sections 2.2, 2.3, the propagation of SPPs in single

metal-dielectric interfaces and in Insulator-Metal-Insulator (IMI) waveguides are

considered, respectively. The possibility to excite long-range SPPs in IMI waveg-

uides and the inherent trade-off between confinement and loss are discussed in

these sections. The experimental methods to excite SPPs are briefly reviewed in

section 2.4, while applications of SPPs for optical interconnection in miniaturised
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1.1 Outline

photonic circuitry are discussed in section 2.5. Section 2.6 reviews SPP amplifi-

cation in various settings, describing the electromagnetic energy transfer and the

possibility to use SPPs for miniaturised active devices.

The nonlinear propagation of amplified SPPs is theoretically modelled in chap-

ter 3. In section 3.1, we derive a semi-analytical expression for the dispersion law

of nonlinear SPP waves neglecting the metal loss. In section 3.2, the lossy case

is considered and the dispersion law for stationary amplified and nonlinear SPPs

is derived by a perturbative expansion of Maxwell equations. In section 3.3, we

derive the Ginzburg-Landau equation for SPPs propagating along a single active

interface and use it to describe filamentation and dissipative plasmon-soliton for-

mation. We demonstrate that plasmon-solitons suffer from intrinsic core and tail

instabilities, which prevent them to propagate over long distances. The disper-

sion law for stationary SPPs and the Ginzburg-Landau propagation equation are

achieved through the direct calculation of the electric field corrections due to lin-

ear and nonlinear perturbations and the imposition of boundary conditions. The

perturbative expansion is performed around the gain threshold where the metal

loss is exactly compensated by the amplifying medium. Hence, in this approach

the metal loss and the dielectric gain are not assumed small.

In chapter 4, we develop an alternative theory to model optical propagation

of SPPs in one-dimensional subwavelength structures. In first place, in this alter-

native approach the metal loss is considered as a small perturbation of the same

order of nonlinearity. Further, the propagation equation is obtained as a scalar

product solvability condition for the perturbative expansion, without calculating

the field corrections. Such an approach is more flexible and allows modelling

optical propagation in more complex structures. The accounting of linear and

nonlinear corrections in the boundary conditions affects the propagation equa-

tion with the surface term η. In this chapter we demonstrate that such a term

is responsible for the enhancement of loss and nonlinearity in the subwavelength

regime observed in Refs. [Afshar and Monro, 2009; Afshar et al., 2009]. The

traditional averaging approach [Agrawal, 2001b; Davoyan et al., 2010b; Feigen-

baum and Orenstein, 2007], neglects the linear and nonlinear corrections to the

boundary conditions, which become significant in the subwavelength regime.
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1.1 Outline

Figure 1.1: Schematic map of the thesis outline.

In chapter 5, we introduce the general concepts of optical propagation in

waveguide arrays and apply the multiple-scale expansion derived in the previous

chapter to model optical propagation of SPPs along a metal-dielectric stack. A

system of discrete nonlinear Schrödinger equations (DNLSEs) for the SPP am-

plitudes is derived assuming that the coupling between SPPs propagating along

the single metal-dielectric interfaces is small. We observe alternate positive and

negative coupling in dielectric and metallic regions, respectively. The alternate

couplings are responsible for the modified two-band dispersion, allowing for the

formation of gap and discrete plasmon-soliton families.

A method to stabilise plasmon-solitons is described in chapter 6. Here, we con-

sider an insulator-metal-insulator (IMI) structure, composed of a gain material,

a metal and a dielectric. If the coupling between the active and passive interfaces

is small, Maxwell equations can be reduced to a system of two coupled Ginzburg-

Landau (GL) equations for the SPP amplitudes. The coupling of the active SPP

with the passive interface affects the bifurcation of the homogeneous nonlinear

modes with the trivial zero background. Indeed, such a bifurcation becomes sub-

critical and we demonstrate the possibility to achieve stable plasmon-solitons in

the subcritical region.

6
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1.2 Propagation of light in dielectrics

Loss and nonlinearity enhancement in metallic and dielectric nanowires are

evaluated in chapter 7. We generalise the one-dimensional perturbative theory

developed in chapter 4 to the two-dimensional case of cylindrical waveguides, ob-

taining a nonlinear Schrödinger equation (NLSE) for the SPP amplitude. In this

chapter, we also describe the Reciprocity Theorem Approach (LRT), showing that

it perfectly coincides with our results. Hence, analogously to the one-dimensional

case developed in chapter 4, we are able to identify the enhancement of non-

linearity observed in Refs. [Afshar and Monro, 2009; Afshar et al., 2009] as a

surface-induced effect that becomes dominant in the subwavelength regime. A

schematic map of the thesis outline and of the links between the chapters is

illustrated in Fig. 1.1.

1.2 Propagation of light in dielectrics

In this section, some basic concepts of light propagation in dielectrics are briefly

reviewed. Macroscopic Maxwell equations and linear constitutive relation for the

polarisation and the electric field are introduced in section 1.2.1. Section 1.2.2 is

focused on the standard modelling of optical diffraction in the paraxial approxi-

mation. Such a well known theoretical approach is based on the scalar approxi-

mation, which is valid in the limit of weak confinement [Yariv, 1985], and is used

to derive the propagation equation for an optical fibre with small index step in

section 1.2.3. However, in order to describe optical propagation in subwavelength

photonic structures in the following chapters of this thesis, a vectorial approach is

required [Daniel and Agrawal, 2010; Feigenbaum and Orenstein, 2007], since the

scalar approximation is not adequate in this regime. Subwavelength confinement

can be achieved in silicon on insulator (SOI) waveguides, which are characterised

by the high index step and are briefly reviewed in section 1.2.4. Finally, section

1.2.5 introduces some basic concepts of photonic crystal theory, which will be

used in chapter 5 to describe optical propagation in arrays of SPPs. Although

the theoretical background presented in this section is known to an expert reader,

it is necessary to introduce such general concepts in order to provide a complete

insight of the topic and to highlight the peculiarites concerning surface plasmon

polaritons.
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1.2 Propagation of light in dielectrics

1.2.1 Macroscopic Maxwell equations

At optical frequencies, the propagation of light in dielectrics is well described

in the framework of macroscopic Maxwell equations in the absence of external

charges and currents [Jackson, 1999]:

∇ · ~D = 0, (1.1)

∇ · ~B = 0, (1.2)

∇× ~E = −∂t~B, (1.3)

∇× ~H = ∂t~D. (1.4)

For non-magnetic materials, electric displacement ~D and magnetic induction ~B

depend on electric ~E and magnetic ~H fields through the relations

~D = ε0~E + ~P, (1.5)

~B = µ0
~H, (1.6)

where ~P is the induced polarisation, and ε0, µ0 are the electric permittivity and

magnetic permeability of vacuum, respectively. Within the framework of lin-

ear response, for homogeneous isotropic materials the induced polarisation ~P is

modelled as

~P(~r, t) = ε0

∫ +∞

−∞

dt′χ(t− t′)~E(~r, t′), (1.7)

where χ(t− t′) is the temporal response function of the system [Stratton, 1941].

In this expression, spatially local response is assumed, i.e. the induced polarisa-

tion ~P(~r, t) depends only on the electric field ~E(~r, t′) at the position ~r; non-local

contributions to the induced polarisation ~P(~r, t) from electric fields ~E(r̄′, t′) in

different positions r̄′ 6= ~r are not taken into account. Since the material is also

assumed homogeneous and isotropic, the temporal response function χ(t− t′) is

position independent.

Expressing the quantities F(τ) = ~P(τ), ~E(τ), χ(τ) in terms of their correspon-

dent Fourier integrals

F(τ) =
1

2π

∫ +∞

−∞

dωF (ω)exp(−iωt), (1.8)

8



1.2 Propagation of light in dielectrics

and applying the convolution theorem [Folland, 1992], one gets

~P (~r, ω) = ε0χ(ω) ~E(~r, ω), (1.9)

which inserted in Eq. (1.5) provides the constitutive relation

~D(~r, ω) = ε0ε(ω) ~E(~r, ω). (1.10)

χ(ω) is the electrical susceptibility and ε(ω) = 1 + χ(ω) is the relative dielectric

constant of the medium. From the reality condition of the electric displacement ~D

and of the electric field ~E, it follows that ε∗(−ω) = ε(ω), meaning that ε′(ω), ε′′(ω)

are even and odd functions of ω, respectively. Note that the integral in Eq.

(1.7) runs from −∞ to +∞. In turn, it is necessary that χ(t − t′) = 0 for

t′ > t in order to fulfil the causality connection between the polarisation and the

electric field; such a requirement is responsible for some peculiar properties of

the electric susceptibility χ(ω), which are commonly known as Kramers-Kronig

relations [Jackson, 1999]. In general, χ(ω) = χ′(ω)+ iχ′′(ω) is a complex function

of the angular frequency ω, which provides useful information on the dispersion

and loss/gain properties of the medium. Kramers-Kronig relations directly link

real χ′(ω) and imaginary χ′′(ω) parts of the dielectric susceptibility

χ′(ω) =
1

π
P

∫ +∞

−∞

dω′χ
′′(ω′)

ω′ − ω , (1.11)

χ′′(ω) =
1

π
P

∫ +∞

−∞

dω′ χ
′(ω′)

ω − ω′
, (1.12)

where P represents the Cauchy principal value of the integral [Arfken and Weber,

2001]. For monochromatic fields ~E(~r, t) = ~E(~r)e−iωt, it is possible to demonstrate

that ε′′ is responsible for dissipation or gain [Landau and Lifshitz, 1984]; indeed,

the energy absorbed by the medium per unit volume and time is

Q =
1

2
ωε0ε

′′| ~E|2. (1.13)

Within the framework of macroscopical Maxwell equations, dissipative media are

described by a complex dielectric constant ε(ω) = ε′(ω) + iε′′(ω) with positive

imaginary part ε′′; on the other hand, gaining media are characterised by a neg-

ative imaginary part ε′′. A remarkable application of Kramers-Kronig relation is

found in absorption spectroscopy, where the measurement of ε′′(ω) allows for a

direct calculation of ε′(ω) by using Eq. (1.11).
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1.2 Propagation of light in dielectrics

1.2.2 Paraxial optics and diffraction

In this paragraph, the standard paraxial approximation for optical beams prop-

agating in a lossless homogeneous medium is briefly reviewed. For a generic

monochromatic field ~E(~r, t) = ~E(~r)e−iωt, it is possible to derive a scalar wave

equation directly from Maxwell equations. Taking the curl of both sides of Eqs.

(1.3,1.4) and combining them, one reaches the Hemholtz equation for the electric

field ~E(~r)

∇2 ~E +
ω2

c2
ε(ω) ~E = 0. (1.14)

Elementary solutions of the Hemholtz equation are plane waves ~E(~k)ei
~k·~r, where

k2 = ω2ε(ω)/c2; the general solution, which is a direct consequence of the super-

position principle [Jackson, 1999], is given by the Fourier envelope

~E(~r) =

∫

S

d2k ~E(~k)ei
~k·~r, (1.15)

where the integral is performed over the iso-frequency surface k2 = ω2ε(ω)/c2. In

general, for a given field distribution ~E(~r), the electromagnetic field propagates

in all directions with wavevector ~k. For a very collimated optical beam propa-

gating in the z-direction, it is possible to perform the Slowly Varying Envelope

Approximation (SVEA), where the electric field is expressed as the product

~E(~r) = A(~r⊥, z)e
ikzn̂. (1.16)

~r⊥ = (x, y) is the transverse position vector, n̂ is the polarisation unit vector

lying in the x− y plane and the envelope A(~r⊥, z) slowly depends on z compared

to λ = 2π/k. Inserting the ansatz above into Eq. (1.14) and neglecting ∂2
zA

(|∂2
zA| << |2ik∂zA|) one reaches

2ik∂zA+∇2
⊥A = 0, (1.17)

where ∇2
⊥ = ∂2

x + ∂2
y is the transverse Laplace operator. Such a scalar equa-

tion is often referred to as parabolic equation because of its mathematical struc-

ture [Boyce and DiPrima, 1997] and describes with good accuracy paraxial optics

[Yariv, 1985]. The polarisation n̂ is arbitrary in the transverse plane perpendic-

ular to ẑ, meaning that the electric field has no longitudinal component. Trivial

10
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Figure 1.2: Diffraction of a gaussian beam.

solutions are plane waves A = A0 propagating in the ẑ direction; however, it is

impossible to excite plane waves since they have infinite energy. For confined op-

tical beams, the parabolic equation describes the phenomenon of diffraction: for

every given field distribution A(x, y) at z = 0, the electromagnetic field spreads

out in propagation with a characteristic length-scale, called diffraction length LD,

which depends on the wavelength and on the size of the optical beam.

For an input Gaussian beam

A(r, 0) = A0e
−r2/2w2

0 , (1.18)

where r =
√

x2 + y2, it is possible to solve exactly Eq. (1.17) [Saleh and Teich,

2007], which provides us with the result

A(r, z) = A0
kw2

0

iq(z)
exp

(

ik
r2

2q(z)

)

, (1.19)

where q(z) = z − ikw2
0. For the squared modulus of the amplitude one gets

|A(r, z)|2 = |A0|2
w2

0

w2(z)
exp

(

− r2

w2(z)

)

, (1.20)

which is a Gaussian of half width at half maximum HWHM =
√
ln2w(z), where

w2(z) = w2
0 + z2/(k2w2

0). It is possible to define the diffraction length LD = kw2
0,

as the distance of propagation where w(LD) =
√

2w0; LD provides us with the

typical length-scale where diffraction occurs. Such a parameter is important
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1.2 Propagation of light in dielectrics

in the theoretical modelling of soliton formation, which is described in section

1.3.2, and will be exploited in the following chapters, where plasmon-solitons are

derived. Note that LD is inversely proportional to the wavelength and directly

proportional to the square of the beam width w0. In Figs. 1.2a,b, it is plotted

the spreading of an input Gaussian beam of width kw0 = 10 (kLD=100); in Fig.

1.2b, red and blue curves correspond to the Gaussian input (kz = 0) and output

(kz = 200), respectively.

1.2.3 Confining light in dielectric structures

As pointed out in the preceding paragraph, the confinement of light is substan-

tially limited by diffraction. However, it is possible to engineer and structure the

dielectric geometry in order to suppress diffraction. Indeed, for an inhomogeneous

dielectric structure, a region with high dielectric constant is an attractive basin of

light [Yariv, 1985]. In what follows, we assume that the dielectric inhomogeneity

δε(~r⊥) occurs only in the transverse x − y plane and is small compared to the

background dielectric susceptibility εb. For a monochromatic field in the paraxial

approximation
~E(~r, t) = A(~r⊥, z)n̂e

ikz−iωt, (1.21)

optical propagation is determined by the scalar equation

2ik∂zA +∇2
⊥A+ δε(~r⊥)A = 0, (1.22)

where k2 = ω2εb/c
2. In order to understand the effect of dielectric inhomogeneities

on the propagation of light, a simple analogue with quantum mechanics can

be exploited. Indeed, if one substitutes the longitudinal position z with time t

(z → t), the field amplitude A with the wavefunction ψ (A→ ψ) and the dielectric

inhomogeneity δε with the potential energy opposite in sign −V (δε→ −V ), then

the parabolic equation is thoroughly equivalent to the Schrödinger equation.

In turn, traditional quantum mechanical concepts such as energy eigenvalues

and wavefunction eigenvectors can be directly bridged to optics. The optical

analogue of hamiltonian eigenvectors and eigenvalues is represented by modes

and propagation constants.

12



1.2 Propagation of light in dielectrics

Figure 1.3: Light rays trapped in an optical fibre.

A mode of a dielectric structure is an electromagnetic field pattern that changes

only its global phase φ as it propagates; the spatial phase change rate β = dφ/dz

is called propagation constant of the mode.

Hence, a minimum of −δε plays the role of an effective potential, which at-

tracts light and can trap it under some conditions. In this context, within the

limits of the paraxial approximation, the problem of light propagation in a cylin-

drical waveguide [Marcuse, 1982] is completely equivalent to the finite potential

well problem in quantum mechanics [Cohen-Tannoudji et al., 1977].

Light trapping can also be explained qualitatively in the framework of geomet-

rical optics, resulting from total internal reflection of rays striking at the interface

between the core and the cladding, as depicted in Fig. 1.3. Only a small number

of discrete modes can be excited, depending on the geometry of the dielectric

structure; if only one mode exists, the optical fibre is known as single mode.

Fibre optic communication has become of practical reality in the last decade;

the main advantage provided by optical fibres lies in the high frequency of light

(ν ≈ 102 − 103THz), which enables modulation at high rates (≈ 100Gbit/sec).

Practical optical fibres have a geometry that is more complex than the cylindrical

dielectric wire: the silica core is typically cladded with another dielectric medium,

surrounded by a buffer and a jacket.

Within the paraxial approximation, the longitudinal component of the elec-

tric field Ez is neglected. Such an approximation works well for optical fibres

with small dielectric step ∆ε ≈ 10−3−10−2 and with a core diameter much larger

than wavelength and is exact for plane waves in homogeneous media. However, as

confinement increases, the longitudinal electric field component Ez increases ac-

cordingly and non-paraxial effects need to be included for an adequate description

13
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1.2 Propagation of light in dielectrics

of light propagation. For an optical fibre, Maxwell equations for a monochromatic

field ~E(~r, t) = ~E(~r)e−iωt in the linear response regime provide

∇ · [ε ~E] = 0, (1.23)

∇×∇× ~E =
ω2

c2
ε(~r) ~E. (1.24)

If one wants to include non-paraxial effects, the vectorial identity

∇×∇× ~E = −∇2 ~E +∇(∇ · ~E) (1.25)

can not be reduced to −∇2 ~E. Indeed, the dielectric profile ε(~r) is not homoge-

neous and

∇ · ~E = −~E · ∇(lnε) 6= 0. (1.26)

Nevertheless, the linear modes of Eq. (1.24) can be directly calculated by perform-

ing the ansatz ~E(~r) = ~A(~r⊥)eiβz. Eq. (1.24) can be solved exactly in both media,

and after imposing boundary conditions of tangential electric field ~E// continuity

and normal electric displacement ~D⊥ continuity at the boundaries [Jackson, 1999],

one achieves the mode dispersion β = β(ω). From a mathematical perspective,

the optical problem of calculating the modes and the corresponding dispersion

law is a part of the general theory of partial differential equations, commonly

called Boundary Value Problem (or Sturm Liouville problem) [Arfken and We-

ber, 2001]. In chapter 7, the modes of a cylindrical wire, made either of metallic

or dielectric core, are calculated exactly and such a mathematical procedure is

explained with more detail.

The mode dispersion β = β(ω) basically depends on two contributions: mate-

rial ε(ω) and geometric dispersion. The material dispersion is due to the frequency

dependent dielectric response of the media. On the other hand, the geometric

dispersion ensues from the spatial characteristics of the dielectric structure, and

in principle it can be tailored and engineered. The dispersion affects the mode

phase velocity ω/β(ω), which depends on the angular frequency ω. Thus, for

a temporal pulse propagating in the fibre, every frequency contribution travels

with a different velocity; as a result, the pulse is dispersed during propagation,

with a characteristic length-scale called dispersion length. The pulse dispersion is

the temporal analogue of diffraction and limits the modulation rate achievable in

14



1.2 Propagation of light in dielectrics

optical communications. Theoretical modelling of ultrashort pulse propagation,

taking account of the interplay between the dispersion and various nonlinear ef-

fects, is an interesting research area that has been extensively studied in recent

years [Agrawal, 2001b; Boyd, 2003]; however, an accurate description of temporal

effects on the propagation of electromagnetic pulses goes beyond the scope of this

introduction and will not be examined in this dissertation.

1.2.4 Silicon on insulator (SOI) waveguides

Silicon on insulator (SOI) waveguides are photonic components made of a silicon

wire sitting on the top of a silica base. Typically, they operate in the transparency

region of silicon in the infrared, at wavelengths around 1.55µm. SOI waveguides

are receiving great interest by the scientific community because of the tight con-

finement they can provide, which can be exploited to fabricate miniaturised all-

optical circuits [Almeida et al., 2004a]. Indeed, silicon is characterised by a high

refractive index, approximately nSi ' 3.5 in the band of interest [Edwards, 1985].

The high index step between silicon and air provides a much stronger confine-

ment with respect to standard optical waveguides. Further, the strong geometric

dispersion resulting from the tight confinement allows for dispersion tailoring by

altering the geometry of the waveguide. An important advantage of embedding

nano-sized silicon components in dielectric structures lies in the well-developed

manifacturing techniques, which are based on the silicon technology, e.g., deep

ultraviolet (DUV) and electron beam (EBM) lithography [DeLaRue et al., 2006].

However, SOI photonic devices suffer from considerable loss; the leading con-

tribution to loss is provided by the roughness of silicon edges and can be limited

by smoothing the surface [Lee et al., 2001]. Other contributions come from the

coupling to the substrate [Grillot et al., 2006] and the two-photon absorption

(TPA) [Baehr-Jones et al., 2005]. It is possible to reduce the effective TPA by

engineering the geometry of the waveguide; an example is represented by the slot

waveguide, depicted in Fig. 1.4. Such a geometry consists of two parallel silicon

wires separated by a small gap of 50nm surrounded by silica [Almeida et al.,

2004b]. In this case, the electromagnetic intensity is peaked within the silica

glass between the two silicon wires; hence, only the small intensity tales residing
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1.2 Propagation of light in dielectrics

Figure 1.4: Transverse component of the electric field for the TM mode of a slot

SOI waveguide. Image from [Almeida et al., 2004b].

in the silicon wires suffer from the high TPA and the effective nonlinear loss is

reduced.

Further, the tight confinement of the electromagnetic field within the slot

enhances the optical nonlinear processes, which are described in the following

section. Novel geometries embedding a highly nonlinear polymer between the

two silicon wires have been proposed and realised, demonstrating the possibility

to exploit SOI slot waveguides for miniaturised ultrafast all-optical switching

applications [Koos et al., 2009]. Theoretical modelling of light propagation in

nonlinear SOI slot waveguides and silicon nanowires is described in chapters 4

and 7, respectively.

1.2.5 Photonic crystals

For optical fibres, the physical mechanism leading to the electromagnetic field

confinement is the dielectric step between core and cladding media, as discussed in

the previous paragraphs. However, the light confinement in dielectric structures

can be achieved by means of different optical processes. Indeed, in the last two

decades, the research in optical fibres has been revolutionised by the advent of

photonic crystals [Russell, 2003].

Atoms or molecules constituting a crystal are arranged in highly ordered pe-

riodical patterns, called lattices. The optical, conductive and thermodynamic
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1.2 Propagation of light in dielectrics

Figure 1.5: Two-dimensional photonic crystal with square lattice and cylindrical

unit cell. Image from [Joannopoulos et al., 2008].

properties of solids stem from the lattice structure and from the unit cell, which

is the atom or molecule corresponding to a single lattice point. Indeed, an elec-

tron bound or free to propagate through a crystal is subject to a periodic po-

tential, determined both by the lattice pattern and by the unit cell constituent.

In this context, it is known from solid state physics that energy bands and gaps

are formed, and the conductive properties of the medium depend on the Fermi

energy level [Kittel, 1996].

Photonic crystals are the optical analogues of crystals in solid state physics

[Joannopoulos et al., 2008]. Important concepts such as the unit cell, the Bravais

and the reciprocal lattices are naturally bridged to optics, where the counterpart

of the molecular lattice periodic potential is represented by a periodic dielec-

tric profile ε(~r). Practical photonic crystals are made by arranging media with

different dielectric constants in periodic patterns, as depicted in Fig. 1.5.

Remarkable phenomena occurring in solid state physics such as, e.g., Bloch

oscillations and Zener tunnelling, have been reported also for photonic crystals

[Sapienza et al., 2003; Trompeter et al., 2006a]. Important theoretical tools such

as the Bloch theorem and group theory [Ashcroft and Mermin, 1976] have an

optical counterpart. The Bloch theorem in solid state physics states that the

wavefunction ψ of a particle in a periodic potential can be expressed as the

product of a plane wave and a periodic function that has the same periodicity of

the potential

ψn~k = ei
~k·~run~k(~r), (1.27)
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1.2 Propagation of light in dielectrics

Figure 1.6: Scanning electron micrograph of a state-of-the-art HCPCF. Image

from [Welch et al., 2009].

where un~k(~r) = un~k(~r+ ~R) is the unit cell wavefunction and ~R is a generic vector

spanning the Bravais lattice points. The corresponding energy eigenvalues are

periodic En(~k) = En(~k + ~K), where ~K is a generic reciprocal lattice vector.

Thus, for a complete analysis of Bloch modes, it is sufficient to limit the ~k values

within the first Brillouin zone of the reciprocal lattice, which depends on the real

lattice structure [Kittel, 1996].

In the same way, the electromagnetic modes of a photonic crystal are Bloch

modes
~En~k = ei

~k·~r~en~k(~r), (1.28)

where the unit cell electric field ~en~k(~r) = ~en~k(~r + ~R) and the mode dispersion

ωn(~k) = ωn(~k + ~K) are periodic. Like in solid state physics, also for photonic

crystals bands and gaps are formed and the band structure can be engineered by

tailoring the dielectric pattern.

Within a complete photonic bandgap [Joannopoulos et al., 2008], in anal-

ogy with solid state physics, light is not allowed to propagate since destructive

interference by Bragg reflection occurs. Thus, monochromatic light impinging

on a photonic crystal penetrates very short distances and is reflected back if its

frequency lies within a complete photonic bandgap. Such a mechanism can be

exploited for confining light in lattice defects, and is commonly called bandgap

guidance.
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Hollow Core Photonic Crystal Fibres (HCPCFs) rely on bandgap guidance

to confine light in a hollow fibre core surrounded by a glass lattice, a mechanism

that is completely different from the refractive index step guidance. The large

index contrast and complex structure of HCPCFs make it difficult to treat math-

ematically, and most of theoretical modelling is done numerically. An important

advantage provided by HCPCFs, relies on its flexibility in engineering the disper-

sion β(ω) by tailoring the dielectric pattern. A micrograph of a state-of-the-art

HCPCF is depicted in Fig. 1.6.

Research in photonic crystals is still receiving a lot of interest, which overlaps

with plasmonics if the photonic structure of the lattice is hybrid metal-dielectric.

In chapter 5, the optical propagation in nonlinear surface-plasmon-polaritonic

crystals is examined and general concepts coming from the theory of photonic

crystals are exploited.

1.3 Nonlinear optical processes in dielectrics

In this paragraph, we briefly review some basic concepts of nonlinear optics,

which are used in the following chapters of this thesis. In the linear regime, the

electric polarisation ~P (ω) is assumed proportional to the electric field ~E(ω) in

the Fourier domain. In this limit, the superposition principle holds, meaning that

a superposition of different electromagnetic waves
∫ +∞

−∞
d3k ~E(~k, ω)ei

~k·~r−iω(k)t does

not affect the propagation of each singular wave ~E(~k, ω)ei
~k·~r−iω(k)t. In this context,

as described in paragraph 1.2.1, the presence of bound oscillating charges within

the dielectric medium is taken into account by the dielectric constant ε(ω). From

a classical perspective, neglecting the damping, the motion of bound electrons of

mass m and charge −e in the linear response regime is described by the equation

~̈r(t) + ω2
0~r(t) = −(e/m) ~E(t), (1.29)

where ~E(t) is an externally applied electric field and ~r, ω0 are the position and the

natural oscillation frequency of a single electron, respectively [Shen, 1984]. In this

model, it is assumed the linear restoring force ~F = −mω2
0~r corresponding to the

harmonic potential V = (1/2)mω2
0r

2, which is an approximation of the molecular

potential. In general, the potential V is a complex function of ~r; however, for
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1.3 Nonlinear optical processes in dielectrics

small electromagnetic field amplitudes | ~E|, the harmonic approximation works

well and Eq. (1.29) can be solved straightforwardly in the Fourier domain:

~r(ω) =
e/m

ω2 − ω2
0

~E(ω). (1.30)

In turn, the electric polarisation is proportional to the electric field: ~P (ω) =

−ne~r(ω) ∝ ~E(ω), where n is the electron density.

If the electromagnetic field intensity increases, the motion of electrons ex-

periences anharmonic terms of the molecular potential V (~r); thus, the electric

polarisation ~P (ω) becomes a nonlinear function of the electric field ~E(ω) depend-

ing on the molecular structure details. Such a classical argument was used to

grasp the physical origin of optical nonlinearity; however, for an accurate de-

scription of nonlinear processes, one needs to resort to a quantum-mechanical

approach [Boyd, 2003; Shen, 1984].

When the optical nonlinearity is taken into account, the superposition princi-

ple does not hold and the electromagnetic waves can mix or self-interact. Remark-

able nonlinear phenomena include second harmonic generation [Franken et al.,

1961], four wave mixing [Inoue, 1992] and stimulated Raman scattering [Eckhardt

et al., 1962]. The family of optical nonlinear effects can be split in two sub-groups,

namely parametric and non-parametric processes, which involve electronic tran-

sitions to virtual and real states, respectively. In other words, for parametric

processes, the electrons oscillating in response to the optical field experience only

virtual transitions. Conversely, for non-parametric processes, the external electro-

magnetic field is resonant with the electronic transitions, which involve emission

or absorption of photons.

In this thesis, we describe the effect of the nonresonant electronic and two-

level atom nonlinearities on light propagation in plasmonic waveguides. The

two-level atom nonlinearity is a non-parametric process arising from the resonant

absorption or emission of a photon by the dielectric medium [Boyd, 2003], as

depicted in Fig. 1.7; such an effect is considered in the theoretical modelling

of amplified surface plasmons in chapters 3 and 6. In this case, the electric

polarisation is

~P = ε0α
δ − i

1 + δ2 + |E/ES|2
~E, (1.31)
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Figure 1.7: Electromagnetic excitation of electrons in a two-level system close to

resonance.

where α is a dimensionless parameter describing gain (α > 0) or loss (α < 0), δ is

the renormalized detuning with respect to the resonance frequency and ES is the

resonance saturation field; the derivation of the two-level nonlinearity is reported

in appendix A. Such a saturated nonlinearity can be expanded in Taylor series

only if | ~E| << ES:

~P ' ε0α
δ − i
1 + δ2

[

1− (1 + δ2)−2|E/ES|2 + o (|E/ES|)4
]

~E. (1.32)

The nonresonant electronic nonlinearity is a parametric process resulting from

two mechanisms: one-photon and two-photon processes [Boyd, 2003], which are

depicted in the energy level diagrams a,b of Fig. 1.8. The electric polarisation can

be expressed as the sum of two terms ~P (ω) = ~PL(ω) + ~PNL(ω), where ~PL(ω) =

ε0χ(ω) ~E(ω) is the linear contribution and ~PNL(ω) is the nonlinear counterpart.

For an isotropic nonresonant electronic process (Kerr nonlinearity), the nonlinear

polarisation is provided by

~PNL =
1

2
ε0χ3

[

| ~E|2 ~E +
1

2
( ~E · ~E) ~E∗

]

. (1.33)

It can be demonstrated that the one-photon processes contribute only to the

first term | ~E|2 ~E, while the two-photon processes contribute to both terms [Boyd,

2003]. Phenomenologically, the effect of the nonlinear polarisation ~PNL is de-

scribed by an intensity-dependence of the refractive index n = n0 + n2I, where

n2 =
3χ3

4ε0cn2
0

, and is commonly referred to as optical Kerr effect.
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1.3 Nonlinear optical processes in dielectrics

Figure 1.8: Energy level diagram for (a) one-photon and (b) two-photon nonlinear

processes.

Typical values of Kerr nonlinear susceptibilities range from χ3 ' 2×10−22m2V −2

for silica glass to χ3 ' 2×10−19m2V −2 for highly nonlinear polymers (DDMEBT)

[Michinobu et al., 2005; Vallaitis et al., 2009].

1.3.1 Nonlinear Schrödinger equation (NLSE)

For a monochromatic electromagnetic wave ~E(~r, t) = ~E(~r, ω)e−iωt propagating in

a nonlinear medium, Maxwell equations are

∇ ·
[

ε0ε(ω) ~E(~r, ω) + ~PNL(~r, ω)
]

= 0, (1.34)

∇ · ~H(~r, ω) = 0, (1.35)

∇× ~E(~r, ω) = iµ0ω ~H(~r, ω), (1.36)

∇× ~H(~r, ω) = −iωε0ε(ω) ~E(~r, ω)− iω ~PNL(~r, ω). (1.37)

Combining the curl equations and using Eq. (1.34) one gets a vectorial equation

for the electric field ~E and the nonlinear part of the polarisation ~PNL

∇2 ~E +
ω2

c2
ε(ω) ~E + µ0ω

2 ~PNL +
1

ε0ε(ω)
∇(∇ · ~PNL) = 0, (1.38)

where ~PNL is a nonlinear function of ~E. Here, we consider the specific case of

isotropic nonresonant electronic nonlinearity described in the previous paragraph,

where ~PNL is given by Eq. (1.33). In the framework of paraxial optics, the electric

field is given by the product of a slowly-varying field envelope and a plane wave
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1.3 Nonlinear optical processes in dielectrics

~E(~r, ω) = ~A(~r⊥, z)e
ikzn̂, where k2(ω) = ω2ε(ω)/c2 and n̂ is the polarisation unit

vector. In the limit where |~PNL/ε0| is a small quantity of the same order of

|k−1∂zA|, |k−2∇2
⊥A|, the term ∇(∇· ~PNL) can be neglected. In turn, for a linearly

polarised electromagnetic wave, one gets the scalar propagation equation

2ik∂zA+∇2
⊥A+

3

4
k2χ3|A|2A = 0, (1.39)

which is commonly referred to as nonlinear Schrödinger equation (NLSE) [Sulem

and Sulem, 1999]. Such a scalar equation is very useful to grasp nonlinear

phenomena like self-action, but its application is limited by the paraxial ap-

proximation. In the two-dimensional case, renormalizing the field amplitude to

(3|χ3|/8)−1/2, one reaches

i∂zA+
1

2k
∂2
xA + kγ|A|2A = 0, (1.40)

where γ = sign(χ3). Plane wave solutions are readily found by substituting the

ansatz

A = A0e
ipz+iqx (1.41)

in Eq. (1.40), obtaining the nonlinear dispersion:

p+
q2

2k
= kγ|A0|2. (1.42)

The nonlinear dispersion is a typical property of nonlinear systems, where the

phase shift p depends on the field intensity |A0|2 and the transverse momentum

q. Hence, conversely to linear optics where the field amplitude remains arbitrary,

here plane waves with different optical amplitudes propagate with modified prop-

agation constants. Note that Eq. (1.40) is left invariant by an arbitrary phase

shift A → Aeiφ. Such a symmetry of the NLSE is reflected onto its solutions

A0 → A0e
iφ, which global phase is left arbitrary.

The nonlinear propagation of a generic input profile A(x, z) is involved and

is generally modelled by resorting to computational methods, like, e.g., the split-

step beam propagation method, which is reported in appendix C. However, it

is possible to grasp the role played by nonlinearity from a simple analogue with

quantum-mechanics. Indeed, by substituting

V (kx) = γ|A(kx)|2, (1.43)

23



1.3 Nonlinear optical processes in dielectrics

−20 −10 0 10 20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

kx

|A
|2  (

a.
u.

)

(a)

−20 −10 0 10 20
−1

−0.5

0

0.5

1

kx

V
(k

x)
 (

a.
u.

)

(b)

Figure 1.9: (a) One-dimensional optical beam squared amplitude experiencing an

effective potential (b) for focusing (blue line) and defocusing (red line) nonlinear-

ities.

the NLSE resembles the Schrödinger equation. In turn, the nonlinearity rep-

resents an effective potential acting on the optical field, which depends on the

optical field itself; for this reason, such a mechanism is named self-action and

can lead to different effects, the most remarkable being self-focusing and self-

defocusing [Boyd et al., 2009]. Focusing (defocusing) nonlinearity is characterised

by a positive (negative) nonlinear susceptibility χ3. A one-dimensional optical

beam propagating in a nonlinear medium, see Fig. 1.9a, generates an effective

potential that depends on the transverse beam profile, see Fig. 1.9b. For focus-

ing nonlinearity (blue curve), such a potential attracts the beam tails towards

the centre, countering diffraction; conversely, for defocusing nonlinearity, the ef-

fective potential repels light from the beam centre towards the tails, together

with diffraction. From the stability analysis, it can be demonstrated that plane-

wave solutions A = A0e
ipz+iqx are absolutely stable for defocusing nonlinearity

(γ = −1, χ3 < 0), and unstable for focusing nonlinear media (γ = 1, χ3 > 0)

[Kivshar and Agrawal, 2003]. The instability occurs only if the transverse mo-

mentum is smaller than a particular threshold, |q| < 2k|A0|; such an effect is

commonly named modulation instability, since it breaks up plane-waves in peri-

odic patterns [Agrawal, 2001b]. The NLSE is a general model that has found

application in other ambits of nonlinear optics, like, e.g., optical propagation in

nonlinear lattices, which is modelled by a discrete NLSE [Christodoulides and
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1.3 Nonlinear optical processes in dielectrics

Joseph, 1988]. In chapter 5, the propagation of light in nonlinear arrays of SPPs

is considered and the discrete NLSE is described with more detail. Another rele-

vant application of the NLSE is found in ultrashort pulse propagation in optical

fibres [Hasegawa and Tappert, 1973]; here, however, higher order dispersion and

different nonlinear effects such as self-steepening, Raman scattering and Stokes

losses play an important role [Mamyshev and Chernikov, 1990].

1.3.2 Solitons

A soliton is a non-diffracting self-sustaining wave that can arise in numerous

nonlinear systems. From a historical perspective, a remarkable example of solitary

wave is the “wave of translation” observed by John Scott Russell in 1834. He

observed that if a boat moving along a canal suddenly stopped, the surge of

water at its bow continued to move, and “assumed the form of a large solitary

elevation, a rounded, smooth and well-defined heap of water, which continued

its course along the channel apparently without change of form or diminution of

speed” [Russell, 1844].

Optical spatial solitons are self-trapped non-diffractive beams of finite spatial

cross section [Chiao et al., 1964; Segev and Stegeman, 1998]. The occurrence of

soliton formation ensues from the nonlinear self-action of light, which basically

creates its own waveguide. The striking peculiarity of soliton dynamics manifests

when different solitons are made to interact [Stegeman and Segev, 1999]. In this

context, solitons exhibit a unique particle-like behaviour, exerting attractive or

repulsive forces on each other, depending on their relative phase [Gordon, 1983].

Further, soliton collisions are elastic, i.e. power and momentum are conserved,

since nonlinear dynamics restores the initial soliton profiles after the collision

[Zabusky and Kruskal, 1965]. From a relativistic quantum field theory perspec-

tive, solitons possess many of the basic attributes of particles, such as mass, charge

and spin [Manton, 2008]. In this paragraph, bright and dark soliton formation in

a Kerr medium is reviewed, preparing a solid background for the description of

plasmon solitons, which is developed in chapters 3 and 6.

In analogy with linear modes, a nonlinear mode of the NLSE is a solution that

changes only its global phase φ as it propagates; the spatial phase change rate
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Figure 1.10: (a) Kerr bright soliton profile for α = 0.1 and (b) its homoclinic

trajectory in the phase space portrait.

dφ/dz is the propagation constant of the nonlinear mode. Kerr bright solitons are

a family of nonlinear modes of the NLSE that remain confined and preserve their

shape. The soliton existence is strictly related to the occurrence of modulational

instability [Hasegawa, 1984]. Indeed, the NLSE is exactly integrable through

the inverse scattering transform [Zakharov and Shabat, 1972], providing an exact

analytical expression for the bright soliton solution (γ = 1)

A(x, z) = αsech(αkx)exp
(

ikα2z/2
)

. (1.44)

As for the case of the homogeneous Kerr nonlinear solutions, the soliton propaga-

tion constant µ = kα2/2 depends on the amplitude α. Thus, Eq. (1.44) describes

a soliton family, parametrized by the amplitude α. In the phase space, bright

solitons are characterised by a homoclinic trajectory [Boyce and DiPrima, 1997],

as depicted in Fig. 1.10.

For defocusing Kerr nonlinearity (γ = −1), the homogeneous nonlinear plane

waves A = A0e
ipz+iqx are always stable against small perturbations; in turn, soli-

tons can exist only in the form of localised dark spots emerging from a plane-wave

background [Luther-Davies and Kivshar, 1998]. In this case, the inverse scatter-

ing method with boundary conditions |A(kx)| → A0 for kx → ±∞, provides us

with the analytical expression for dark solitons

A(x, z) = αtanh(αkx)exp
(

−ikα2z
)

. (1.45)
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Figure 1.11: (a) Kerr dark soliton profile for α = 0.1 and (b) its heteroclinic

trajectory in the phase space portrait.

The dark soliton field profile and its trajectory in the phase space are depicted

in Fig. 1.11. Note that the dark solitons undergo a π phase change at x = 0

where the field amplitude is null, mathematically described by the odd function

tanh(αkx).

The stability analysis reveals that both bright and dark solitons are stable

solutions of the NLSE [Kivshar and Agrawal, 2003]. However, it can be demon-

strated that even relatively small perturbations due to non-Kerr nonlinearities

generate instabilities [Pelinovsky et al., 1996]. The description of non-Kerr non-

linearities goes beyond the aim of this introduction, and only the cubic nonlin-

earity is considered in this thesis.

1.4 Concluding remarks

In this introductory chapter, some basic concepts of optical propagation in pho-

tonic devices have been briefly described. Light diffraction becomes relevant

when the size of the optical beam is comparable with the wavelength, but can

be suppressed by using optical fibres, silicon on insulator waveguides or bandgap

guidance in photonic crystal defects. Alternatively to structuring the dielectric

properties of the medium, it is possible to use the nonlinear self-focusing to com-

pensate for the diffraction and achieve a localised self-sustaining wave: the optical
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soliton. Important quantities like the diffraction length and the nonlinear length

will be used in the following chapters.

The mechanisms presented in this chapter are not sufficient to achieve locali-

sation at the nanoscale. In the next chapter we introduce some basic properties

of surface plasmon polaritons (SPPs), which provide a much tighter confinement

and constitute the most promising candidate to confine light in the subwavelength

scale.
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Chapter 2

Surface plasmon polaritons

A Surface Plasmon Polariton (SPP) is an exponentially localised electromag-

netic wave propagating along a planar interface between a metal and a dielectric

medium [Agranovich and Mills, 1982; Boardman, 1982; Raether, 1988]. Such a

confined surface wave arises via the coupling of the optical field with free electrons

oscillating in the metal, allowing for tight localisation and enhanced electromag-

netic field intensity close to the metal surface. From a quantum-mechanical per-

spective, a SPP is a quasi-particle ensuing from the coupling of plasmons, plasma

oscillation quanta, and photons. Despite their quantum mechanical nature, SPPs

in common plasmonic structures can be described in the framework of classical

electrodynamics. Because of their intrinsic surface nature, SPPs are very sensitive

to the dielectric properties of the media at the interface and have been exten-

sively used in biosensor devices [Anker et al., 2008; Homola, 2006; Raschke et al.,

2003]. Further, the electromagnetic field enhancement close to the metal surface

can be exploited for optical detection and spectroscopy of single molecules and

single nanoparticles [Kneipp et al., 1997; Lal et al., 2007; Nie and Emory, 1997].

Besides, the subwavelength confinement achievable with SPPs can be exploited

to scale down optical devices to nanometric dimensions. Such a tight localisation

promises advanced control of light in miniaturised photonic circuits [Bozhevolnyi

et al., 2006a; Maier et al., 2001; Shalaev and Kawata, 2007] and SPP-based opti-

cal interconnects have been proposed and realised [Ebbesen et al., 2008; Ozbay,

2006].
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Propagation of SPPs is fundamentally limited by ohmic loss in the metal. SPP

attenuation lengths range from LA = 10−100µm, for visible light, to LA ≈ 1mm

in the near-infrared light spectrum [Barnes et al., 2003]. In the terahertz region,

the attenuation length increases considerably LA ≈ 1km; however, such a reduced

attenuation is paid in terms of much weaker confinement [Jeon and Grischkowsky,

2006]. Optical propagation in resonant metallic nanoparticle chains, where light is

transmitted by electrodynamic interparticle coupling [Citrin, 2004; Maier et al.,

2003], has been proposed in order to increase the attenuation length LA. The

reduced use of metal lowers the losses due to metal absorption; however, the

coupling to radiative modes due to scattering from the nanoparticles increases

the effective loss [Quinten et al., 1998].

In turn, several methods have been proposed in order to reduce the metal

loss and to optimise the SPP propagation length. A remarkable and successful

method relies on the excitation of long-range SPPs in thin metallic films [Berini,

2009; Burke et al., 1986; Quail et al., 1983; Sarid, 1981], where the field pene-

tration in the metal stripe is reduced, lowering the effective loss. However, the

smaller penetration within the metal stripe implies weaker localisation in the

dielectric medium and the reduced loss is paid in terms of the smaller confine-

ment [Berini, 2001]. Hence, the inherent trade-off between confinement and loss

in plasmonic guiding structures can be completely overcome only by embedding

gaining dielectrics [Ambati et al., 2008; Bergman and Stockman, 2003; Noginov

et al., 2008a; Seidel et al., 2005].

In this chapter, the SPP formation in various settings is reviewed. In section

2.1 we describe the dielectric response of metals to optical fields: metallic sus-

ceptibility, volume plasmons and light dispersion in metals are briefly discussed.

Dispersion and loss for SPPs excited at a single metal-dielectric interface and in

Insulator-Metal-Insulator (IMI) waveguides are described in sections 2.2, 2.3, re-

spectively. Here, the propagation of long-range SPPs is reviewed and the intrinsic

trade-off between confinement and loss is pointed out. Experimental methods for

exciting SPPs are described in section 2.4, while the application of SPPs as op-

tical interconnects in miniaturised photonic circuitry is discussed in section 2.5.

Finally, in section 2.6, the SPP amplification in various settings is reviewed and
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2.1 Optical properties of metals

the power flow at a single interface between a metal and a gaining dielectric is

described.

2.1 Optical properties of metals

The optical properties of metals have been studied extensively in the turning of

the last century [Drude, 1900] and are discussed in most of the solid state physics

textbooks [Ashcroft and Mermin, 1976]. In this section, we provide a brief review

of the relevant aspects of optics in metals. To grasp the basic behaviour of

the metal response to electromagnetic fields at optical frequencies, we can rely

on classical electrodynamics, without the need to resort to quantum mechanics.

Metals have a high density of free electrons in the conduction band, which can be

considered as a continuum of states [Kittel, 1996]; indeed, at room temperature,

the thermal energy of electrons is much higher than the separation of the energy

levels in the conduction band and the electrons are free to move within the energy

band.

From a phenomenological perspective, it is well known that in the electro-

static regime, for low electromagnetic frequencies ranging from microwaves to

far-infrared, metals are opaque and highly reflective. In this limit, only a negligi-

ble part of the electromagnetic field penetrates into the metal and the resulting

ohmic dissipation is small. For visible frequencies, the field penetration and dis-

sipation increase significantly. Finally, for ultraviolet frequencies (or higher),

metals become almost transparent except for some particular frequencies reso-

nant with the electronic interband transitions. Accurate measurements of ε(ω)

via reflection experiments have been carried out for noble metals [Johnson and

Christy, 1972; Palik, 1998; Rakic et al., 1998].

The basic properties of the dielectric constant ε(ω) for metals can be derived

within the plasma approximation [Fox, 2001], which assumes the metal as a gas

of free electrons moving against a fixed background of positive ion cores, as il-

lustrated in Fig. 2.1. The electrons with effective mass m [Kittel, 1996] oscillate

in response to the optical field propagating within the medium. Their motion

is damped by the collisions occurring with the characteristic frequency γ = 1/τ ,
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2.1 Optical properties of metals

Figure 2.1: Gas of free electrons e oscillating on a fixed background of positive

ion cores C.

where τ is the relaxation time of the electron gas. The Newton equation of motion

for a generic electron is given by

m~̈r(t) +mγ~̇r(t) = −e ~E(t), (2.1)

where e, ~r(t) are the electron charge and position and ~E(t) is the electric field

of light propagating in the medium. The Lorentz force on the electron charge

is neglected in the non-relativistic regime [Jackson, 1999]. For a monochromatic

plane wave, the temporal dependence is harmonic ~E(t) = ~E0e
−iωt and Eq. (2.1)

can be solved by assuming ~r(t) = ~r0e
−iωt, which yields

~r(t) =
e

m

1

ω2 + iγω
~E(t). (2.2)

The macroscopic polarisation ~P induced by the displacements of the electrons

can be directly calculated by ~P = −ne~r, where n is the density of free electrons

of the medium. In turn, the electric displacement ~D is given by

~D = ε0

(

1−
ω2
p

ω2 + iγω

)

~E, (2.3)

where ωp =
√

ne2/ε0m is called the plasma frequency of the free electron gas,

which is usually in the ultraviolet (ωp ≈ 1.45 × 1016rad/sec, λp ≈ 130nm for
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Figure 2.2: Plane-wave dispersion of light propagating in the metal bulk.

silver). As a result, the dielectric constant of the medium is

ε(ω) = 1−
ω2
p

ω2 + iγω
. (2.4)

For ω = ωp, the longitudinal collective oscillations of electrons, commonly named

volume plasmons, are excited [Kittel, 1996]. Indeed, if we neglect the damping γ,

for ω = ωp the induced polarisation ~P is equal in modulus and opposite in sign to

ε0 ~E. In turn, the electric displacement ~D = 0 does not respond to the external

electric field ~E and the transverse oscillations are quenched off. Further, such

collective oscillations of electrons are called electrostatic modes, since no magnetic

field is produced (∇ × ~B = −(iω/c2) ~D = 0). From a quantum mechanical

perspective, a volume plasmon is a quantum of plasma oscillation: it can not be

excited by an electromagnetic wave because the mode is purely longitudinal, but

it may be excited by particle impact.

In this simplified model, metals are opaque for ω < ωp and transparent for

ω > ωp, where plane waves ~E(~r, t) = ~E0e
i~k·~r−iωt can propagate through the

medium. Combining Eqs. (1.3,1.4) and substituting the expression for ~E(~r, t),

one gets the dispersion of plane waves propagating within the metal

ω2 = ω2
p + k2c2, (2.5)

where c = 1/
√
ε0µ0 is the speed of light in vacuum. For ω < ωp, the wave vector

k is purely imaginary and plane waves do not propagate. Conversely, for ω ≥ ωp,

the transverse plane waves propagate through the metal (loss is neglected) and
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Figure 2.3: (a) Real and (b) imaginary parts of the dielectric constant of silver.

their dispersion is plotted in Fig. 2.2. Note that for ω >> ωp, the dispersion of

plane-waves tends to the lightline ω = ck, which corresponds to the dispersion

of light in vacuum. This simplified model helps to grasp the basic properties of

the optical response of metals. However, it completely disregards the effect of

interband transitions, which can be included by modelling the dielectric constant

as a weighted sum of multiple oscillators

ε(ω) = ε∞ +
N
∑

n=0

fnω
2
p

ω2
n − ω2 + iγnω

. (2.6)

ε∞ is the background dielectric constant of the ion cores, ωn, γn are the angular

frequency and the damping coefficient of the nth interband resonance and fn is

a dimensionless weight. Such parameters can be computed by fitting the exper-

imental data [Rakic et al., 1998] with Eq. (2.6) [Ung and Sheng, 2007]. The

dielectric constant of silver computed by this procedure is depicted in Fig. 2.3.

Note that the plasma resonance is λp = 320nm (the free-electron model provides

λp = 130nm). Within the wavelength range λ = 100nm − 1.5µm, the real part

ε′ changes by two orders of magnitude and the imaginary part ε′′ is peaked for

the wavelengths resonant with the interband transitions. Such a model for the

dielectric constant of metals is often referred to as Lorentz-Drude model and will

be used in the numerical computations of plasmonic modes.
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Figure 2.4: Single interface between a metal and air.

2.2 SPPs at a single metal-dielectric interface

In this section, we derive the plasmonic linear modes of a single metal-air interface,

depicted in Fig. 2.4. The dielectric response of the metal is described by the

frequency dependent dielectric constant εm(ω) in the Lorentz-Drude model, as

discussed in the previous section, while the dielectric constant of air is εd =

1. Here, we assume that the structure is infinitely extended in the y-direction.

Hence, the dielectric profile ε = ε(x, ω) is a function of x and ω only. In the

monochromatic case, the electric and magnetic fields are harmonic functions of

time

~E(x, z, t) = ~E(x, z)e−iωt, (2.7)

~H(x, z, t) = ~H(x, z)e−iωt. (2.8)

The time-independent curl Maxwell equations for the fields ~E, ~H are

∇× ~E = icµ0
~H, (2.9)

∇× ~H = −icε0ε ~E, (2.10)

where ∂x, ∂y, ∂z derivatives are taken with respect to the dimensionless spatial

variables x, y, z, rescaled to 1/k (k = ω/c). For the single interface geometry, the

dielectric profile is provided by

ε(x, ω) = εm(ω)θ(−x) + εdθ(x), (2.11)
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Figure 2.5: SPP dispersion for an ideal metal described by the free electron gas

model in the absence of damping.

where θ(x) is the Heaviside step function [Arfken and Weber, 2001]. The linear

modes are derived by assuming the harmonic z-dependence

~E(x, z) = ~e(x)eiβz, (2.12)

~H(x, z) = ~h(x)eiβz, (2.13)

where β is the dimensionless mode propagation constant, rescaled to k = ω/c. In

general, for one-dimensional geometries, Maxwell equations provide two indepen-

dent sets of solutions, namely transverse magnetic (TM) and transverse electric

(TE) modes [Jackson, 1999].

SPP modes are TM-polarised waves: the magnetic field ~h is purely transverse

polarised in the y-direction and the electric field ~e lies in the x-z plane. From a

mathematical perspective, the determination of plasmonic modes is a Boundary

Value Problem (BVP) [Boyce and DiPrima, 1997]. The modes can be determined

by solving Maxwell equations in both sides of the interface x > 0, x < 0 and

applying Boundary Conditions (BCs) for the continuity of the longitudinal electric

field Ez and of the normal electric displacement Dx = εEx at x=0. Note that

the discontinuity of the dielectric profile ε(x) at x = 0 implies that the transverse

component of the electric field Ex is also discontinuous. Inserting Eqs. (2.12,2.13)

into Maxwell equations and combining them, one reaches

∂2
xxez + (εj − β2)ez = 0, (2.14)
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ex = − iβ

β2 − εj
∂xez, (2.15)

hy =
i

cµ0
(∂xez − iβex), (2.16)

where the index j = d,m labels the dielectric and metal regions, respectively.

For confined modes, it is implied that electric and magnetic fields ~e,~h → 0 as

x→ ±∞. Hence, the plasmonic mode solutions are provided by the exponential

functions

ez = A
[

eqmxθ(−x) + e−qdxθ(x)
]

, (2.17)

ex = −iβA
[

1

qm
eqmxθ(−x)− 1

qd
e−qdxθ(x)

]

, (2.18)

hy =
1

icµ0

A

[

εm
qm
eqmxθ(−x)− εd

qd
e−qdxθ(x)

]

, (2.19)

where q2
d,m = β2−εd,m and A is an arbitrary constant representing the longitudinal

field amplitude at x = 0. The propagation constant β can be readily calculated

from the BCs

ez(0
−) = ez(0

+), (2.20)

εmex(0
−) = εdex(0

+), (2.21)

hy(0
−) = hy(0

+). (2.22)

Note that the BCs for ex, ez, hy are not independent. Indeed, the continuity

of the magnetic field hy is ensured by the continuity of εex, ez [Jackson, 1999].

Thus, inserting the expressions for the electric fields ex, ez in Eqs. (2.20,2.21),

one reaches the mode dispersion

β(ω) =

√

εdεm(ω)

εd + εm(ω)
. (2.23)

It is worthwhile noting that such a derivation is generally valid for the complex

dielectric susceptibility εm = ε′m + iε′′m. If the metal loss ε′′m is neglected, the

metal dielectric susceptibility εm is approximated by the real part ε′m and the

propagation constant β is purely real.

The plasmonic mode dispersion β(ω) is plotted in Fig. 2.5, where we have

used the Lorentz model for the dielectric response of the metal εm(ω) = 1−ω2
p/ω

2
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Figure 2.6: SPP mode profiles for (a) transverse ex and (b) longitudinal ez electric

field components. Red, green and blue curves correspond to ω/ωp = 0.1, 0.2, 0.5,

respectively. The field amplitudes are rescaled to the arbitrary longitudinal field

amplitude A.

(the damping γ is neglected). In such a plot, the angular frequency ω is rescaled

to the plasma frequency ωp and the dimensional propagation constant ωβ/c is

rescaled to ωp/c. The blue curve corresponds to the SPP dispersion, while the

black dashed line corresponds to the lightline β =
√
εd. In the low frequency

regime, SPPs are weakly localised and assume the shape of grazing light field (in

this regime SPPs are also known as Sommerfeld-Zenneck waves [Goubau, 1950;

Maier, 2007]). The localisation increases with frequency, diverging at the surface

plasmon resonance

ωsp =
ωp√

1 + εd
, (2.24)

where εm(ωsp) = −εd and β →∞. Note that, in the limit β → +∞, the SPP field

is completely squeezed at the interface since qd, qm → +∞. Besides, as the angu-

lar frequency ω increases, the group velocity vg = dω/dβ̃ lowers (β̃ = ωβ/c) and

tends to zero in the limiting case ω → ωsp, where SPPs acquire an electrostatic be-

haviour and are known as Surface Plasmons (SPs) [Maier, 2007]. The amplitude

A = ez(0) is arbitrary in modulus and phase and can be set as a real quantity.

Hence, the longitudinal electric field component ez is purely real while the trans-

verse component ex is purely imaginary. The mode profiles ex, ez are plotted

in Fig. 2.6 for several ratios ω/ωp. Note that, for low frequency ω/ωp = 0.1,

38

Chapter2/Chapter2Figs/EPS/SPP_Ex_Linear_Profile.eps
Chapter2/Chapter2Figs/EPS/SPP_Ez_Linear_Profile.eps


2.2 SPPs at a single metal-dielectric interface

0.1 0.2 0.3 0.4 0.5 0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ω/ω
p

|e
z(0

)/
e x(0

+
)|

Figure 2.7: Field amplitudes ratio |ez(0)/ex(0
+)| as function of rescaled frequency

ω/ωp.

the electromagnetic field basically resides only in the dielectric medium, while for

higher frequencies ω/ωp = 0.2, 0.5 the field penetration within the metal increases

and the SPP mode gets more localised.

Note also that the ratio |ez(0)/ex(0
+)| = qd/β increases with the frequency,

see Figs. 2.6, 2.7. For low frequencies, the plasmonic dispersion β(ω) tends to the

lightline β = εd. Hence, in this limit qd → 0 and plane waves propagating in the

dielectric medium are perturbed only slightly by the presence of the metal sur-

face. Thus, |ez(0)/ex(0
+)| → 0 and the plasmonic mode is practically transverse

polarised. As the frequency increases, the longitudinal field component ez be-

comes more significant, becoming equal in modulus to the transverse component

ex at the surface plasmon frequency ωsp, where |ez(0)/ex(0
+)| → 1.

Up to now, the optical response of the metal was approximated by the free

electron model in the absence of damping. However, the realistic dielectric prop-

erties of metals are more involved, as discussed in section 2.1, being described

by a complex dielectric constant εm = ε′m + iε′′m. If the metal loss is considered,

then the mode dispersion becomes complex β(ω) = β ′(ω)+ iβ ′′(ω). The real part

β ′ represents the phase shift rate due to mode propagation, while the imaginary

part β ′′ accounts for absorption. The spectral behaviour of β ′, β ′′ is plotted in

Fig. 2.8 for a silver-air single interface. The dielectric properties of silver are

modelled by the Lorentz-Drude model, a multiple oscillator fit of experimental
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Figure 2.8: (a) SPP dispersion ωβ ′/c and (b) loss ωβ ′′/c as functions of vacuum

wavelength λ for silver.

data [Ung and Sheng, 2007], as discussed in section 2.1.

For long wavelengths λ, the imaginary part of the propagation constant β ′′

stays relatively small with respect to the real part β ′ since the silver is highly re-

flective and the electromagnetic field propagates mostly in the dielectric medium.

As the wavelength λ is reduced, the field penetration within the metal increases

and the ohmic losses become more significant. In particular, for wavelengths

around the surface plasmon resonance, the metal loss becomes dominant. The

transverse confinement of the plasmonic mode is determined by the coefficients

qd, qm and can be estimated by

LC = k−1 (1/2q′d + 1/2q′m) . (2.25)

Besides, the characteristic attenuation length where travelling SPPs are damped

off, is defined as

LA = k−1/2β ′′. (2.26)

The dependence of LC , LA on the vacuum wavelength λ is depicted in Fig. 2.9.

Note that, at λ = 500nm, the subwavelength mode confinement is LC ' 100nm

and the attenuation length is LA ' 10µm. The tight confinement provided

by SPPs does not come at zero price, but is paid in terms of enhanced losses,

which quench off the functionality of SPPs as nano-scaled waveguides. The time-

dependent Poynting vector

~S(x, z, t) = Re~E× Re~H =
1

2
Re
[

~e×~he2iβz−2iωt
]

+
1

2
Re
[

~e×~h∗
]

e−2β′′z (2.27)
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Figure 2.9: (a) SPP mode confinement LC and (b) attenuation length LA as

functions of vacuum wavelength λ.

provides a remarkable physical insight in the SPP energy flow and dynamics. The

first term is a harmonic time-dependent contribution, while the second term is

time-independent. An analytical expression for ~S can be obtained by substituting

the mode fields ex, ez, hy in Eq. (2.27); however, such a cumbersome expression

is not included here. A qualitative schematic of the spatial orientation of ~S at a

fixed instant of time t = t0 is depicted in Fig. 2.10. The SPP propagation occurs

in the form of energy vortices travelling along the z-direction [Wuenschell and

Kim, 2006], resulting from the tight coupling of the radiation with the electrons

oscillating in the metal. Note that the time-averaged Poynting vector is directed

onwards (ẑ) in the dielectric medium (x > 0) and backwards (−ẑ) in the metal

(x < 0).

The energy transfer properties can be understood by calculating the power

densities

Px =
1

k

∫ +∞

−∞

dx〈Sx〉t =
|A|2
4ωµ0

(

q′′mε
′
m − q′mε′′m
q′m|qm|2

− q′′dεd
q′d|qd|2

)

e−2β′′z, (2.28)

Pz =
1

k

∫ +∞

−∞

dx〈Sz〉t =
|A|2
4ωµ0

(

β ′ε′m + β ′′ε′′m
q′m|qm|2

+
β ′εd
q′d|qd|2

)

e−2β′′z, (2.29)

where 〈Sx〉t, 〈Sz〉t are the temporal averaged Poynting vector components. In such

equations, the prime and double prime superscripts of parameters correspond to

their real and imaginary parts, respectively. In general, if the metal loss ε′′m 6= 0 is

not neglected, the electromagnetic field energy is attenuated with the exponential
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2.3 SPPs in IMI photonic structures

Figure 2.10: Schematic of SPP mode Poynting vector ~S spatial orientation at a

fixed instant of time.

law e−2β′′

z . In this case, the non-zero transverse power density Px 6= 0 bridges the

electromagnetic energy within the metal, which absorbs it and convert it into

heat by Joule effect. Conversely, in the ideal case where ε′′m = 0, all quantities

are real and Px = 0. Hence, in this limit the electromagnetic field propagates in

the z-direction without attenuation and Pz is a conserved quantity.

2.3 SPPs in IMI photonic structures

In this section, we describe the optical propagation of SPPs in Insulator-Metal-

Insulator (IMI) photonic structures. In general, a multilayer structure consisting

of alternating metallic and dielectric films sustains SPPs propagating at every

interface. If the separation between the adjacent interfaces is comparable with

the penetration depth, the SPPs at different metal surfaces interact tightly with

each other [Prade et al., 1991]. In this case, it is not possible to distinguish

the SPPs of the single interfaces and the optical propagation is well described in

terms of the supermodes of the entire photonic structure [Yariv, 1985], which can

be considered as a waveguide on its own. A generic IMI structure is composed

of a metal stripe surrounded by two different dielectric media [Boardman, 1982;

Economou, 1969]. For the purpose of this section, we consider only the symmetric

case where the dielectric media surrounding the metal stripe are identical, as

depicted in Fig. 2.11.
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2.3 SPPs in IMI photonic structures

Figure 2.11: Symmetric IMI photonic structure composed of a metal stripe sur-

rounded by a dielectric medium.

As for the case of the single interface described in the previous section, the TM

modes propagating in the z-direction are solutions of Eqs. (2.14-2.16) in every

medium of the photonic structure. Here, however, the calculation of the SPP

modes is more involved, since there exist two solutions with different symmetries.

The analytical expressions for the electric and magnetic field components ex, ez, hy

of the two SPP modes are provided by

ez,α = A
[

eqd(x+w/2)θ(−w/2− x) + αe−qd(x−w/2)θ(x− w/2)
]

+

+B
[

e−qmx + αeqmx
]

[θ(x+ w/2)− θ(x− w/2)] , (2.30)

ex,α = −iβ
qd
A
[

eqd(x+w/2)θ(−w/2− x)− αe−qd(x−w/2)θ(x− w/2)
]

+

+
iβ

qm
B
[

e−qmx − αeqmx
]

[θ(x+ w/2)− θ(x− w/2)] , (2.31)

hy,α = − iεd
cµ0qd

A
[

eqd(x+w/2)θ(−w/2− x)− αe−qd(x−w/2)θ(x− w/2)
]

+

+
iεm
cµ0qm

B
[

e−qmx − αeqmx
]

[θ(x+ w/2)− θ(x− w/2)] , (2.32)

where q2
d,m = β2 − εd,m, θ(x) is the Heaviside step function and α = ±1 is a

dimensionless parameter. For α = 1, Eqs. (2.30-2.32) provide the electromagnetic

field pattern for TM modes with symmetric longitudinal electric field component

ez. Conversely, for α = −1, Eqs. (2.30-2.32) correspond to the TM modes
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2.3 SPPs in IMI photonic structures

with antisymmetric longitudinal component ez. Note that the symmetry of hy, ex

fields is opposite to the symmetry of ez. In this dissertation, the denomination

symmetric/antisymmetric mode is referred to the longitudinal component ez. The

BCs for the continuity of the transverse electric displacement Dx = ε(x)Ex and

of the longitudinal electric field Ez at the interfaces x = ±w/2 yield a system of

four algebraic equations

εdex(−w−/2) = εmex(−w+/2), (2.33)

ez(−w−/2) = ez(−w+/2), (2.34)

εmex(w
−/2) = εdex(w

+/2), (2.35)

ez(w
−/2) = ez(w

+/2). (2.36)

As described in the previous paragraph, the BCs for the continuity of the magnetic

field hy are automatically satisfied if the BCs for ex, ez are imposed. Inserting

the expressions of the mode profiles ex, ez into Eqs. (2.33,2.36), one reaches

e−qmw + α
qmεd + qdεm
qmεd − qdεm

= 0, (2.37)

B =
1

2qdεm
(qdεm − qmεd)Ae−qmw/2. (2.38)

Eq. (2.37) is the mode dispersion for symmetric (α = 1) and antisymmetric

(α = −1) modes. The constants B,A are not independent, but are related each

other through Eq. (2.38). The amplitude A is left arbitrary and represents the

electric field component ez at x = −w/2 (A = ez(−w/2)). It is worthwhile noting

that, because of the symmetry of the linear modes, it is sufficient to impose

the BCs only at one of the two boundaries x = ±w/2 in order to reach Eqs.

(2.37,2.38). Indeed, the BCs at the remaining interface are automatically satisfied

by the requirement that SPP modes are either symmetric or antisymmetric.

Fig. 2.12a plots the mode dispersion for a silver stripe of dimensional width

d = 50nm embedded in air (εd = 1). Note that the dimensionless stripe width

w = ωd/c is frequency dependent. The dielectric constant of silver is modelled

through the Lorentz-Drude model, neglecting the imaginary part. Red and blue

curves correspond to antisymmetric and symmetric (ez) modes respectively, see

Fig. 2.12b. The dispersion of the symmetric mode (blue curve) appears qualita-

tively pretty similar to the single interface dispersion. For small frequencies, the
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Figure 2.12: (a) Mode dispersion and (b) schematic representation of ez for sym-

metric (blue lines) and antisymmetric (red lines) modes. The structure considered

is a silver stripe of width d = 50nm embedded in air.

light propagates mainly in the dielectric medium and the confinement is weak.

For frequencies around the surface plasmon resonance ωsp, the mode profile gets

squeezed across the metal-dielectric interfaces and the confinement increases.

Conversely, the antisymmetric mode dispersion (red curve) presents qualita-

tively new features with respect to the single interface case. In particular, the

mode dispersion is not monotonic: maximum and minimum points of zero group-

velocity vg = dω/dβ̃ = 0 (β̃ = ωβ/c) and a range of negative group velocity

vg < 0 arise [Dionne et al., 2008; Fedyanin et al., 2010; Rosenblatt et al., 2010].

A similar scenario occurs in Metal-Insulator-Metal (MIM) plasmonic waveguides

[Davoyan et al., 2010a, 2008]. Materials having group velocity vg and phase ve-

locity vf = c/β with opposite signs are named negative index materials (NIMs).

Negative refraction in the y − z plane has been observed in MIM waveguides

[Dionne et al., 2008].

Maximum and minimum points in the mode dispersion for antisymmetric

modes arise only if the stripe width w is smaller than a certain threshold. Indeed,

if the separation between the two metal-dielectric interfaces is large, the coupling

between SPPs propagating at every metal surface is small. Hence, the mode

dispersion tends to the single-interface dispersion if w >> 1 [Maier, 2007]. For

symmetric and antisymmetric modes, the function

Fα [β, ω(β)] = e−qmw + α
qmεd + qdεm
qmεd − qdεm

(2.39)
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2.3 SPPs in IMI photonic structures

Figure 2.13: Schematic plot of power flow in an IMI structure.

is identically null at every point of the mode dispersion curve, identified by the

pair β, ω(β). An analytical expression for the group velocity of symmetric and

antisymmetric modes can be obtained by calculating the derivative dFα/dβ

dFα
dβ

= ∂βFα + ω−1w∂wFα
dω

dβ
+ ∂εmFα

dεm
dω

dω

dβ
, (2.40)

which is exactly null, since Fα = 0 for every pair β, ω(β). Thus, the group velocity

vg = dω/dβ̃ (β̃ = ωβ/c) is

vg =

dω

dβ
β

c

dω

dβ
+
ωβ

c

, (2.41)

where
dω

dβ
= − ∂βFα

ω−1w∂wFα + ∂εmFα
dεm
dω

. (2.42)

The term ω−1w∂wFα accounts for the geometric dispersion of the photonic

structure, while the term ∂εmFα
dεm
dω

accounts for the metal dispersion εm(ω). In

such a calculation, the dielectric medium was assumed non-dispersive. The ex-

plicit calculation of vg shows that for symmetric modes (α = 1), vg → 0 only if

β → +∞. Conversely, for antisymmetric modes (α = −1), the group velocity can

become null also for a finite propagation constant β̄, identified by the condition

∂βF−1 = 0, explicitly given by

w(qmεd + qdεm) +
2εdεm(εd − εm)

qd(qmεd − qdεm)
= 0. (2.43)
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2.3 SPPs in IMI photonic structures

A better understanding of the physical mechanisms occurring at the zero group-

velocity points can be grasped by calculating the time-averaged Poynting vector

~S =
1

2
Re(~E× ~H∗) (2.44)

and the power density

Pz = k−1

∫ +∞

−∞

dxSz. (2.45)

The explicit expression for the Poynting vector is cumbersome and is not reported.

Neglecting the metal loss, the power density of symmetric and antisymmetric

modes is given by

Pz,α =
β

2µ0ωq2
d

|A|2
[

εd
qd

+
q2
mε

2
d − q2

dε
2
m

2q3
mεm

[qmw − αsinh(qmw)]

]

. (2.46)

For antisymmetric modes, corresponding to α = −1, it can be demonstrated that

the total power density Pz is null at the zero group velocity points. Here, the

forward power density bridged in the dielectric media is exactly compensated by

the backward power density carried within the metal stripe, as depicted in Fig.

2.13, yielding a null total power density Pz. Such an effect is identified by the

condition Pz = 0:

εd
qd

+
q2
mε

2
d − q2

dε
2
m

2q3
mεm

[qmw + sinh(qmw)] = 0, (2.47)

which coincides with the zero group-velocity condition expressed in Eq. (2.43).

Indeed, if one substitutes in the hyperbolic sine sinh(qmw) = (1/2)(eqmw−e−qmw)

the dispersion relation e−qmw = (qmεd + qdεm)/(qmεd− qdεm), Eq. (2.47) coincides

to Eq. (2.43).

The dispersion is so strong that the group velocity becomes negative in a par-

ticular range of angular frequencies, see Fig. 2.12a. However, such a description

completely disregards the metal loss, which changes substantially the scenario.

Indeed, in the region where vg/c << 1, the metal loss is not negligible and it can

not be disregarded. In absorptive materials the group velocity is not an adequate

quantity to describe the velocity of energy [Loudon, 1970], which is defined by

vE =
S

u
, (2.48)
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Figure 2.14: (a) Phase shift rate ωβ ′/c and (b) absorption rate ωβ ′/c for lossy

modes of a silver stripe of 50nm embedded in air (εd = 1).

where S is the time-averaged power flow in the waveguide and u is the time-

averaged energy density [Ruppin, 2002]. If one takes into account the metal

loss, the dispersion relation expressed in Eq. (2.37) becomes complex. Hence,

as described in the previous section for the single interface geometry, also the

propagation constant β = β ′ + iβ ′′ is complex. The sign of the velocity of energy

is basically determined by the imaginary part of the propagation constant β ′′.

In Fig. 2.14, the phase shift rate ωβ ′/c and the absorption rate ωβ ′′/c are

plotted for lossy modes of an IMI structure composed of a silver stripe (d = 50nm)

embedded in air (εd = 1). The Lorentz-Drude model is used for the dielectric

constant of silver εm(ω), as described in section 2.1. Blue curves correspond to the

symmetric mode (ez), while dashed green and full/dashed red curves correspond

to three antisymmetric modes (ez). Note that the non-monotonic behaviour of

the antisymmetric modes observed in the lossless case is reflected on the splitting

in three separate antisymmetric modes in the lossy case. In particular, the mode

labelled by the red dashed line resembles the range of negative group velocity.

Indeed, the sign of the velocity of energy, determined by β ′′ > 0, is opposite to the

sign of phase velocity, determined by β ′ < 0. On the other hand, the dashed green

line corresponds to the positive group velocity region of the lossless dispersion of

antisymmetric modes occuring for large β. Such modes exhibit huge loss and are

not helpful to deliver electromagnetic energy in miniaturised optical channels.
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Figure 2.15: (a) Confinement length LC and (b) attenuation length LA as func-

tions of λ for Long-Range SPPs.

Conversely, the antisymmetric branch labelled by the red curve is charac-

terised by a very small absorption rate β ′′. For this reason, such SPP anti-

symmetric modes are named Long-Range Surface Plasmon Polaritons (LRSPPs)

[Berini, 2009; Burke et al., 1986; Quail et al., 1983; Sarid, 1981]. The transverse

confinement of the linear modes of an IMI structure can be estimated by

LC = d+ 1/kq′d, (2.49)

where d is the width of the metal stripe. On the other hand, the attenuation

length is defined by

LA = 1/2kβ ′′. (2.50)

In Fig. 2.15a,b the confinement length LC and the attenuation length LA are

plotted as functions of the vacuum wavelength λ for a silver stripe of 50nm

embedded in air εd = 1. Note that, at λ = 500nm, LC ≈ 350nm and LA ≈ 50µm.

Thus, the propagation length increases considerably with respect to the single

interface geometry. However, such a reduced effective loss is paid in terms of the

weaker confinement (≈ 350nm instead of ≈ 100nm).

Estimates of the attenuation and confinement lengths in several configura-

tions have been calculated in Refs. [Berini, 2009; Quail et al., 1983], suggesting

that LRSPPs can propagate over long distances (compared to the single-interface

SPPs). Such theoretical predictions have also been confirmed experimentally

[Charbonneau et al., 2000, 2005a; Lamprecht et al., 2001]. Detailed studies of
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LRSPPs in two-dimensional IMI structures were also conducted [Berini, 1999,

2000, 2001; Leosson et al., 2006; Veronis and Fan, 2005], revealing the possibil-

ity to use LRSPPs in miniaturised photonic devices. At telecom wavelengths

λ ' 1.55µm, achievable propagation lengths are of the order of centimetres.

2.4 Excitation of SPPs

An important feature of SPPs is that, for every given angular frequency ω, their

wave vector βSPP is always larger than the wave vector of light in free space βLight,

if losses are neglected. Such a circumstance results from the intrinsic bound

nature of SPPs, since the physical reason for the increased SPP momentum lies

in the strong coupling between light and surface charges.

In general, a TM polarised electromagnetic plane wave impinging on a metal

surface from an external dielectric medium does not excite SPPs. Indeed, for

the excitation to occur, the wavevector of the incident light needs to match the

wavevector of the single interface SPP mode. Such an occurrence is verified only

for ω → 0, see Fig. 2.5, since the SPP dispersion asymptotically approaches the

light line only for small angular frequencies. Thus, SPPs on a single interface can

not be excited by light of any frequency that propagates in the bulk dielectric

unless special phase-matching techniques, such as prism or grating coupling, are

adopted [Boardman, 1982; Kretschmann and Raether, 1968; Otto, 1968; Raether,

1988]. Other methods used to excite SPPs are based on the end-fire coupling

[Stegeman et al., 1983], which relies on the spatial-mode matching instead of

the phase-matching. It is also worthwhile to mention that, from an historical

perspective, first attempts to excite SPPs involved the collision of low energy

electron beams into thin metallic films [Pettit et al., 1975; Ritchie, 1957; Vincent

and Silcox, 1973].

2.4.1 Prism coupling

The most common approach used to excite SPPs is based on the attenuated

total reflection method (ATR). Mainly, there are two configurations of the ATR
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Figure 2.16: Excitation of SPPs: (a) Kretschmann and (b) Otto configurations.

method: the Kretschmann geometry [Kretschmann and Raether, 1968] and the

Otto geometry [Otto, 1968], depicted in Figs. 2.16a,b, respectively.

In the Kretschmann geometry of the ATR method (Fig. 2.16a), a prism with

high dielectric constant εp lies on an interface with a metal-dielectric waveguide

consisting of a thin metal film and air, characterised by the dielectric constants

εm, εd (εd < εp). When an electromagnetic wave propagating in the prism impinges

on the metal film, it is reflected back. At optical frequencies, the light partially

penetrates the metal film in the form of an evanescent electromagnetic wave

[Stratton, 1941], exponentially decaying in the direction of propagation. If the

metal film is sufficiently thin (≈ 100nm) with respect to the optical wavelength,

the evanescent tails are coupled with the SPP mode at the other boundary.

Fig. 2.17 plots the SPP dispersions for the two single metal-air (blue curve)

and metal-prism (red curve) interfaces. The dielectric response of the metal is

modelled by the free electron model in the absence of damping εm = 1− ω2
p/ω

2,

as described in section 2.1. For the dielectric constant of the prism we assumed

εp = 2.25. Dashed blue and red lines represent the light dispersion in air and prism

bulk, respectively. Note that the dashed red line intersects the dispersion of the

metal-air SPP mode (blue curve), allowing for the SPP excitation. Conversely,

the SPP mode at the prism-metal interface (red curve) can not be excited since its

dispersion lies outside the prism light cone (See Fig. 2.17). The phase-matching
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Figure 2.17: SPP dispersion for metal-air (blue curve) and metal-prism (red

curve) interfaces.

condition is expressed by
√
εpsinθ = βSPP , (2.51)

where

βSPP =
√

εdεm/(εd + εm), (2.52)

and θ is the angle of incidence. In Fig. 2.17, the phase matching is achieved

for θ = π/2, which provides the maximum angular frequency ωMAX that can be

excited in this configuration. By varying the angle of incidence θ and the angular

frequency ω of the impinging electromagnetic wave, it is possible to excite SPP

modes with lower frequencies ω < ωMAX .

Typically, in experiments using the ATR configuration, the signature of the

SPP excitation is found by measuring the metal reflectivity R as a function of the

angle of incidence θ. For most angles θ, the metal is highly reflective since the

phase-matching condition is not satisfied and R ' 1. The reflectivity suddenly

drops for the particular angle θ = θ̄, where the SPPs are excited [Novotny and

Hect, 2006]. An accurate estimate of the reflectivity R as a function of θ can be

calculated by using the Fresnel theory for multilayer structures [Jackson, 1999],

but is not presented here.

In the Otto geometry, depicted in Fig. 2.16b, a prism with dielectric constant

εp lies on the top of a dielectric-metal waveguide consisting of a thin dielectric
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layer and a metal, characterised by the dielectric constants εd, εm (εd < εp). Here,

an electromagnetic wave propagating inside the prism impinges on the interface

with the air layer and is totally reflected back if the angle of incidence is larger

than the critical angle of total internal reflection [Stratton, 1941]. Hence, if

the thickness of the air layer is comparable with the optical wavelength, the

evanescent field produced by the impinging electromagnetic wave penetrates in

the underlying metal. Efficient coupling with SPP modes occurs if the phase-

matching between the evanescent field and the SPP holds:
√
εpsinθ = βSPP , as

explained above. By tuning the angle of incidence, the matching of the parallel

wave vector components can be achieved and SPPs can be excited. As for the

case of Kretschmann geometry, the signature of SPP excitation is manifested in

a dip of the reflectivity curve R− θ. If the thickness of the air layer is very small

with respect to the wavelength, the resonance is broadened and shifted owing to

the radiation damping of SPPs [Novotny and Hect, 2006]. Such an effect ensues

from the coupling of SPPs with the radiative modes in the prism. On the other

hand, if the thickness of the air layer is too large, SPPs are not excited efficiently.

For such reasons, the Otto configuration is experimentally inconvenient and the

Kretschmann configuration is desirable. The Otto configuration is preferable

only in two cases: for the excitation of SPPs in thick metal slabs where the

Kretschmann geometry is not suitable and when the direct contact with the

metal surface is undesired.

In the mentioned prism coupling geometries, the excited SPPs are inherently

leaky waves: the light impinging from the prism is coupled with the SPP mode

and viceversa. Hence, in addition to the intrinsic metal loss, the radiative modes

also contribute to the effective loss by the leakage of power into the prism. In

turn, the dip in the reflection curve R − θ arise from two separate mechanisms:

the coupling to SPP modes and the destructive interference resulting from the

leakage of SPP modes.

2.4.2 Grating coupling

Another technique used to compensate the momentum mismatch between the

impinging radiation and SPP modes, relies on diffraction effects due to a grating
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Figure 2.18: Phase-matching of incident light to SPPs by grating coupling.

pattern in the metallic surface [Offerhaus et al., 2005; Park et al., 2003]. However,

as a drawback, the use of gratings for exciting SPP modes introduces perturba-

tions on the flat interface that can change significantly the dispersion [Hooper

and Sambles, 2004].

As an example, in Fig. 2.18 is depicted a grating structure made of grooves

on a metal surface with period d. The phase-matching occurs if the condition

βSPP =
√
εdsinθ + nD (2.53)

is satisfied. In such an expression, βSPP =
√

εdεm/(εd + εm) is the dimensionless

SPP propagation constant (rescaled to ω/c), θ is the angle of incidence, D =

2πc/ωd is the step of the reciprocal lattice rescaled to ω/c and |n| is an arbitrary

integer number. As described in the previous paragraph, the signature of the SPP

excitation is characterised by a dip in the reflectivity curve R− θ. Note that also

the inverse process of out-coupling occurs [Devaux et al., 2003], where SPPs are

coupled with radiative modes through the grating. The coupling efficiency can be

estimated by measuring the radiation leaked [Ditlbacher et al., 2002]. In general,

SPPs can be excited by nonresonant scattering from a rough surface or a localised

defect. In addition, similarly to grating coupling mechanisms, excitation of SPP

modes can be achieved also by light diffraction from periodic patterns [Salomon

et al., 2002].
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Figure 2.19: Schematic representation of a metallic nanoparticle chain.

2.5 SPP-based optical circuitry

The delivery of energy at the nano-scale is one of the primary tasks for the re-

search in nanophotonics. The transmission of high-capacity digital information

by means of optical interconnection is considered as a promising technology to

overcome the transport limit of 2.5 Gbps for copper lines on integrated circuits

[Haurylau et al., 2006]. In this context, SPPs are identified as the best candi-

dates for the fabrication of nano-scaled optical interconnects [Ebbesen et al., 2008;

Ozbay, 2006]. Indeed, the integration of optical components in electronic circuits

is mostly limited by their respective sizes. While the fabrication of electronic

circuits with dimensions below 100nm is achievable, the wavelength of light for

telecom applications (≈ 1µm) limits the scaling down of photonic components.

As discussed in section 1.2.2, when the dimensions of an optical component be-

come close to the wavelength of light, the optical propagation is limited by the

diffraction, which poses a threshold for the minimum size of optical integrated

circuits.

The subwavelength confinement provided by SPPs constitutes an ideal so-

lution for such a problem. Indeed, in materials with a negative real part of

the dielectric constant, such as metals, there is no cut-off length scale, since

the transverse wavevector components become imaginary. In recent years, SPP

optical components of various geometries have been proposed and realised exper-

imentally [Maier and Atwater, 2005]. As discussed in the previous paragraphs,

the ohmic losses of the metal limit the potentially striking applications provided
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by SPP excitation. Light transport along plasmonic nanowires occurs over a dis-

tance of a few micrometers (λ = 800nm) [Ditlbacher et al., 2005; Krenn, 2003;

Krenn et al., 2002; Takahara et al., 1997]. Long-Range SPPs, discussed in section

2.3, provide a partial solution to this problem. They offer the longest propagation

for plasmon-based waveguides (LA ≈ 10mm at λ = 1550nm), with localisation

of the order of few micrometers [Charbonneau et al., 2005b], allowing for high

speed signal transmission (≈ 40 Gbit/s) [Ju et al., 2007].

In order to reduce the ohmic losses, the optical propagation in nanoparticle

chains by the resonant electrodynamic interparticle coupling, schematically de-

picted in Fig. 2.19, has been theoretically [Brongersma et al., 2000; Citrin, 2004;

Quinten et al., 1998] and experimentally [Maier et al., 2002, 2003] investigated.

In order to reduce the radiative losses, the excitation near the plasmon resonance

is necessary for the achievement of tight confinement to the submicron nanopar-

ticles. The reduced metallic volume of the nanoparticle chain with respect to

the metallic nanowires implies a reduction of the effective absorption from the

metal. However, the coupling to radiative modes arising via the scattering from

the metallic nanoparticle enhances the effective loss, which remains of the same

order of the loss in metallic nanowires ≈ 1µm−1. Scattering processes can be lim-

ited by embedding the metal nanoparticle chain in a periodic plasmonic structure

[Maier et al., 2004], where radiative losses are limited by the destructive inter-

ference and the resonant inter-particle coupling is not required. Here, the energy

attenuation is mainly determined by the ohmic losses in the metal (LA ≈ 300µm

at λ = 1.6µm).

Novel plasmonic structures such as wedge [Eguiluz and Maradudin, 1976;

Yatsui et al., 2001] and groove [Bozhevolnyi et al., 2005; Novikov and Maradudin,

2002; Pile et al., 2005] waveguides, schematically depicted in Fig. 2.20, have

been proposed and realised experimentaly. Here, guidance occurs only if the

angle of the wedge/V groove with respect to the normal to the surface is smaller

than a certain critical angle. In particular, silver V-groove plasmonic waveguides

exhibit tight subwavelength localisation (LC ≈ 300µm), relatively low dissipation

(LA ≈ 2µm at λ = 633nm), 100% transmission through sharp bends and high

tolerance to structural imperfections [Pile and Gramotnev, 2004]. Improvement

on propagation distance with V groove waveguides has been extended to LA ≈
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Figure 2.20: Schematic representation of plasmonic (a) wedge and (b) groove

waveguides.

250µm, with a lateral confinement of LC ≈ 1µm (at λ = 1620nm) [Bozhevolnyi

et al., 2005].

Remarkable progress in active control of SPPs has been reported for plasmonic

signals propagating in a gold-on-silica waveguide containing a few microns long

gallium section [Krasavin et al., 2004, 2005]. Here, the transmission properties

can be effectively controlled by switching the structural phase of gallium. The

gallium phase transition occurs by either an induced change of temperature or

by electron-hole excitation. The signal modulation depth is of the order of 80%

and the switching times are in the picosecond time-scale.

2.6 Amplified SPPs and active plasmonics

As described in the previous sections, SPPs provide interesting tools for numerous

applications ranging from spectroscopy to highly integrated photonic circuitry,

which exploitation is limited by ohmic losses of metals. Excitation of long range

SPPs provides a significant reduction of effective losses, but is paid in terms of

weaker localisation. In turn, in order to take full advantage of the striking sub-

wavelength SPP features, the inherent trade-off between confinement and loss can

be overcome only by embedding gaining media in plasmonic structures [Sudarkin

and Demkovich, 1989]. Besides, the use of plasmonic components as optical inter-

connects in miniaturised optoelectronic circuits requires the ability to manipulate

and control SPPs at the nanoscale. The general term active plasmonics has been
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coined to collect all of the mechanisms under study to achieve active control of

SPPs, ranging from signal switching and modulation to amplification.

Early study of amplified SPPs dates back in 1979, when Plotz and cowork-

ers investigated the enhanced total internal reflection arising in a homogeneous

amplifying medium in contact with a thin silver film, evaporated on a high-index

prism [Plotz et al., 1979]. Here, the thickness of the gaining medium was as-

sumed infinite. At the specific angle of incidence resonant with SPP excitation,

the reflectance was found considerably enhanced to values higher than unity if

the gain of the amplifying medium exceeded a certain threshold value, basically

determined by the absorption of the metallic film. The authors suggested that

the threshold condition might have been overcome in the near infrared λ ≈ 1µm,

where the silver absorption is small and gaining dyes providing sufficient ampli-

fication were available [Hansch et al., 1971].

From then on, the study of amplified SPPs did not receive much attention

until 1998, when Sirtori and coworkers came up with the idea of exploiting plas-

monic modes to confine the radiation emitted in semiconductor lasers [Sirtori

et al., 1998]. The possibility to realize laser waveguides based on SPPs at a

metal-semiconductor interface was experimentally demonstrated by using quan-

tum cascade (QC) lasers emitting in the 8 − 11.5µm wavelength range. Such a

structure, exhibited high confinement factor in the laser-active region and strong

coupling to the active material with respect to a conventional layered semicon-

ductor waveguide. A peak output power exceeding 25mW at the temperature

90K was measured for a QC laser with an emission wavelength λ ≈ 8µm. Such an

approach in realizing SPP-based semiconductor lasers was later assumed also by

Tredicucci et al., who demonstrated the possibility of achieving single-wavelength

emission at λ ≈ 17µm [Tredicucci et al., 2000a]. Record-breakingly laser action

at long wavelength λ ≈ 19µm was also demonstrated [Tredicucci et al., 2000b].

The study of localised surface plasmons [Maier, 2007], which are not described

with detail in this thesis, has also received considerable attention in the field of

active plasmonics. Surface Plasmon Stimulated Emission of Radiation (SPASER)

from a gaining medium surrounding a metal nanoparticle was described from a

quantum perspective [Bergman and Stockman, 2003]. Here, the authors found
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that two-level emitters surrounding a metallic nanoparticle can undergo radia-

tionless transitions transferring their excitation energy into the quasistatic elec-

tric field energy of localised surface plasmons. Later on, it was discovered that

the localised surface plasmon resonance of metallic nanostructures exhibits a sin-

gularity when the amplification provided by the surrounding medium is equal to

a certain critical gain threshold [Lawandy, 2004]. In the presence of gain satura-

tion such a singularity is suppressed, but is still manifested in high local fields.

Dipole lasing of metallic nanoparticles coupled with quantum dots was also in-

vestigated [Protsenko et al., 2005]. Such a nanolaser exploited near field coupling

between a resonant transition of an active particle and the plasmon resonance of

a metallic nanoparticle. Indeed, under certain conditions, metallic nanoparticles

can act as optical antennas for active atoms [Taminiau et al., 2008], leading to

an amplification enhancement. Enhanced scattering induced by the excitation

of surface plasmons in random lasers [Popov et al., 2006], and nanoscaled laser

cavities with subwavelength confinement have also been claimed [Hill et al., 2009;

Noginov et al., 2009; Oulton et al., 2009]. A further development of the SPASER

was achieved in the context of metamaterials [Zheludev et al., 2008]; here, a two

dimensional array of particular plasmonic resonators supports coherent current

excitations that can act as a planar source of spatially and temporally coherent

radiation [Stockman, 2008].

Preliminary demonstration of active control on SPP propagation was found in

the realisation of an active plasmonic device consisting of a thin silver film sand-

wiched between two polymer layers [Andrew and Barnes, 2004]. The two polymer

layers contained donor chromophore and acceptor fluorophore molecules, respec-

tively. It was demonstrated that SPPs can mediate an effective transfer of exci-

tation energy from donor to acceptor molecules on the opposite sides of a 120nm

thick metallic film. Further developments in active plasmonics were focused on the

use of nanoscale structural phase transformation in gallium plasmon waveguides

[Krasavin and Zheludev, 2004] for all-optical modulation of SPPs [Krasavin et al.,

2005]. Here, SPP signals in a metal-dielectric waveguide, containing a gallium

section a few microns long, were effectively controlled by switching the structural

phase of gallium. The switching was achieved by either changing the waveguide

temperature or by external optical excitation with a controlling beam. The signal
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modulation depth exceeded 80% and picosecond switching times were predicted.

Active control of SPP signals was also demonstrated by using reversible changes

in waveguide media caused by heating [Lereu et al., 2005; Nikolajsen et al., 2004],

optical excitation of photochromic molecules [Pala et al., 2008] and interactions

mediated by quantum dots [Pacifici et al., 2007]. Ultrafast all-optical modulation

has also been achieved in arrays of subwavelength holes [Dintinger et al., 2006;

Hendry et al., 2008], metallic films [Wiederrecht et al., 2007] and gold gratings

[Rotenberg et al., 2008] by means of Enhanced Optical Transmission (EOT) and

induced shifting of Wood anomalies. Devices with switching times of the order of

femtoseconds were ultimately demonstrated by means of direct ultrafast nonlinear

optical excitation of the metal [MacDonald et al., 2009].

The theoretical modelling of gain-assisted SPP modes on planar metallic

waveguides was established by Nezhad et al., who perturbatively derived the

gain threshold condition for SPPs propagating on a single interface and on metal-

insulator-metal (MIM)/insulator-metal-insulator (IMI) plasmonic waveguides [Nezhad

et al., 2004]. In principle, such a derivation does not require a perturbative

approach. As described in section 2.2, the dimensionless propagation constant

(rescaled to the wavevector k = ω/c) of SPPs propagating at a single interface is

provided by

β =

√

εdεm
εd + εm

, (2.54)

where εm, εd are the dielectric responses of the metal and of the dielectric media

composing the interface, respectively. Such an expression is generally valid for

lossy metals and gaining dielectrics, described by complex dielectric constants

εm = ε′m + iε′′m, (2.55)

εd = ε′d + iε′′d. (2.56)

In turn, also the propagation constant β = β ′ + iβ ′′ is complex, where the real

part β ′ accounts for the SPP phase shift and the imaginary part β ′′ for the SPP

attenuation. Note that, in the formalism used in this thesis, the plasmonic mode

dependence is set proportional to eiβz−iωt. Hence, ε′′m > 0 corresponds to the

metal loss and ε′′d < 0 to the dielectric gain (signs are inverted if the mode is set

proportional to eiωt−iβz). The gain threshold condition is easily found by setting
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Figure 2.21: Real (a) and imaginary (b) parts of the propagation constant β

as functions of dielectric gain ε′′d. Blue, green and red curves correspond to λ =

400, 450, 500nm, respectively. The dashed black line corresponds to the threshold

condition β ′′ = 0. The dielectric constant of silver is calculated by Drude-Lorentz

model, while for the dielectric constant of the gaining medium it is assumed

ε′d = 2.25.

the imaginary part of the propagation constant to zero β ′′ = 0, which yields the

condition

ε′′m(ε′′d)
2 + |εm|2(ε′′d) + (ε′d)

2ε′′m = 0. (2.57)

Such a second order algebraic equation for ε′′d provides two solutions for the

gain threshold ε′′d = T , but one of them corresponds to the unphysical limit

T → +∞ as ε′′m → 0. Conversely, the other solution tends to the physically

correct limit T → 0 as ε′′m → 0, and represents the gain threshold T , explicitly

provided by

T =
|εm|2
2ε′′m

[

−1 +

√

1− 4
(ε′dε

′′
m)2

|εm|4

]

. (2.58)

For ε′′d > T , the metal losses are compensated only partially by the amplifying

medium and the SPPs are damped with a reduced rate β ′′ > 0. On the other hand,

for ε′′d < T , the metal losses are over-compensated and the SPPs are amplified

β ′′ < 0 (note, that ε′′d, T < 0). The gain threshold ε′′d = T , where the metal losses

are thoroughly compensated by the gain in the adjacent medium, depends on the

dielectric and dissipation properties of the plasmonic structure ε′m(ω), ε′′m(ω), ε′d,

which are frequency dependent. In Figs. 2.21a,b, (a) real and (b) imaginary
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Figure 2.22: Spectral behaviour of real (a) and imaginary (b) parts of the

propagation constant β. Blue, green and red curves correspond to ε′d =

−0.001,−0.2,−0.4, respectively. The dashed black line corresponds to the thresh-

old condition β ′′ = 0. The dielectric constant of silver is calculated by Drude-

Lorentz model, while for the dielectric constant of the gaining medium it is as-

sumed ε′d = 2.25.

parts of the propagation constant β are plotted as functions of dielectric gain ε′′d
for SPPs propagating at a single interface between silver and a gaining dielectric.

Blue, green and red curves correspond to λ = 400, 450, 500 nm, respectively. The

dashed black line corresponds to the threshold condition β ′′ = 0, where the metal

loss is exactly compensated by the gain material. The dielectric susceptibility of

silver is modelled by the Drude-Lorentz fit of experimental data, as described in

section 2.1, while for the dielectric constant of the gaining medium it is assumed

εd = 2.25. Such a simplified picture helps to grasp the physical mechanisms

leading to SPP amplification, although in principle a change in the imaginary part

of the dielectric constant ε′′d implies a change of the real part ε′d (as a consequence

of Kramers-Kronig relations) [Jackson, 1999]. In addition, for emitters close

to a metal surface, it is an approximation to consider the resulting dielectric

gain ε′′d as a position independent optical constant. Indeed, for amplified SPPs,

the presence of the metal surface modifies the gain properties of the amplifying

medium [DeLeon and Berini, 2008, 2009]. In this respect, two factors affect the

amplification process close to a metal surface: the position-dependent lifetime

of the emitter and the irradiance distribution of the pump signal. Basically,
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Figure 2.23: (a) Intensity gain threshold g and the corresponding (b) dimensional

propagation constant β̃ = ωβ/c as functions of wavelength λ.

pump and emission processes suffer from interference effects due to the radiation

reflected from the metal surface [Barnes, 1998; Ford and Weber, 1984]. As a result,

a uniform gain picture is not sufficient to thoroughly describe the amplification

in the vicinity of a metallic surface. Such an effect will not be considered in this

thesis for the theoretical modelling of amplified SPPs since the simplified picture

of uniform gain is useful to describe the fundamental energy transport phenomena

occurring in plasmonic structures and will be used to model soliton propagation.

Figs. 2.22a,b plot the spectral dependence of the real (a) and the imaginary

(b) parts of the propagation constant β. Here, blue, green and red curves corre-

spond to ε′d = −0.001,−0.2,−0.4, respectively, while other parameters coincide

with Fig. 2.21. The dashed black line corresponds to the threshold condition

β ′′ = 0, where the metal loss is exactly compensated by the dielectric gain.

For different fixed values of ε′′d, there exist different wavelength thresholds λth.

Long-wavelength modes (λ > λth) are amplified (β ′′ < 0), while short-wavelength

modes (λ < λth) are attenuated (β ′′ > 0), see Fig. 2.22b.

The spectral dependence of the gain threshold is plotted in Fig. 2.23a. Here,

the gain coefficient (measured in µm−1) is defined by

g = −ω
c

ε′′d
√

ε′d
. (2.59)

g represents the increase rate of the Poynting vector flow for plane waves propagat-

ing in the bulk gaining dielectric I = I0e
gz in the approximation |ε′′d| << |ε′d|. In
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Fig. 2.23b, the purely real propagation constant at the gain threshold β̃ = ωβ/c

(rescaled back to physical units) is plotted as a function of the vacuum wavelength

λ. At the wavelength λ ≈ 400nm, very close to the surface plasmon resonance,

the gain threshold is of the order g ≈ 1µm−1 and the confinement length LC ,

defined in section 2.2, is LC ≈ 10nm.

The achievement of lossless propagation with such an extreme confinement

(LC ≈ 10nm) requires a considerably high gain (g ≈ 1µm−1), which can not be

provided by the present active materials. Quantum dots exhibit a maximum gain

g ≈ 0.05µm−1 [Klimov et al., 2000], while rhodamine 6G dyes in PMMA provide

g ≈ 0.04µm−1 [Noginov et al., 2006a,b], which was used to demonstrate loss com-

pensation [Noginov et al., 2008a] and stimulated emission of SPPs at λ = 594nm

[Noginov et al., 2008b] and λ = 633nm [Seidel et al., 2005]. Besides, SPP-based

lasing has been demonstrated at λ = 594nm by using Dielectric-Metal-Dielectric

(DMD) waveguides [Kumar et al., 2008]. Here, by introducing optical gain on

one side of the dielectric layers, provided by R6G doped polymer, amplification

of SPP modes was obtained. Further, by embedding scatter inclusions in the

opposite side of the waveguide, random lasing action was achieved [Kumar et al.,

2009]. A structure to compensate SPP loss by using multiple quantum wells as

gain medium has also been proposed [Alam et al., 2007]; AlGaInAs quantum

wells with gain g ≈ 0.2µm−1 at wavelength λ = 1.55µm [Akram et al., 2004]

were suggested to overcome the losses in plasmonic structures with the current

technology. Finally, amplified spontaneous emission using erbium ions [Ambati

et al., 2008], PbS (Lead sulfide) quantum dots [Bolger et al., 2010; Grandidier

et al., 2009] and hybrid organic-inorganic polymer [Gather et al., 2011, 2010] have

recently been reported at λ ≈ 600nm.

SPP energy flow in the presence of dielectric gain and metallic loss can be

understood from the time averaged Poynting vector 〈~S〉t = 1
2
Re
[

~E× ~H∗
]

. In

the following, we calculate the Poynting vector for a single interface between a

lossy metal and a gaining dielectric. Plasmonic modes for such a geometry are

provided by Eqs. (2.17-2.19), with the only difference that here εd = ε′d + iε′′d is a

complex optical constant. Explicit expressions for time averaged Poynting vector
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Figure 2.24: Schematical representation of the power flow for SPPs propagating

at a single interface between a gaining dielectric and a metal.

x, z components 〈Sx〉t , 〈Sz〉t are given by

〈Sx〉t = − |A|
2

2cµ0

[

q′mε
′′
m − q′′mε′m
|qm|2

e2q
′

mxθ(−x) +
q′′dε

′
d − q′dε′′d
|qd|2

e−2q′
d
xθ(x)

]

e−2β′′z,

〈Sz〉t =
|A|2
2cµ0

[

β ′ε′m + β ′′ε′′m
|qm|2

e2q
′

mxθ(−x) +
β ′ε′d + β ′′ε′′d
|qd|2

e−2q′
d
xθ(x)

]

e−2β′′z.

Here, the prime and double prime superscripts indicate real and imaginary

parts, respectively. The complex propagation constant β is provided by Eq.

(2.57), q2
d,m = β2 − εd,m, θ(x) represents the Heaviside step function and A is an

arbitrary complex constant, representing the electric field z-component amplitude

at x = 0 (A = ez(0)). As described in section 2.2, in the absence of gain and

loss (ε′′m = ε′′d = 0), the Poynting vector x-component is null 〈Sx〉t = 0 and the

SPPs propagate in the z-direction without attenuation. On the other hand, for

an interface between a lossy metal and a gaining dielectric, the transverse power

flow is non null 〈Sx〉t 6= 0 and the propagation is tilted. The power density

components Px,z = k−1
∫ +∞

−∞
dx〈Sx,z〉t are explicitly provided by

Px = − |A|
2

4µ0ω

[

q′mε
′′
m − q′′mε′m
q′m|qm|2

+
q′′dε

′
d − q′dε′′d
q′d|qd|2

]

e−2β′′z, (2.60)

Pz =
|A|2
4µ0ω

[

β ′ε′m + β ′′ε′′m
q′m|qm|2

+
β ′ε′d + β ′′ε′′d
q′d|qd|2

]

e−2β′′z. (2.61)
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Figure 2.25: (a) Tilt angle ϕ of the power flow as a function of dielectric gain ε′′d.

Blue and red curves correspond to λ = 400, 500nm, respectively. (b) Tilt angle ϕ

of the power flow as a function of wavelength λ. Blue and red curves correspond

to ε′′d = −0.4,−0.8, respectively. In both figures, the dielectric properties of silver

are calculated by the Lorentz-Drude model, while for the gaining dielectric it is

assumed ε′d = 2.25.

The time-averaged optical energy is absorbed/amplified at rate 2β ′′ and travels

with a tilted angle ϕ (see Fig. 2.24), which is provided by

tanϕ =
Px
Pz
. (2.62)

The tilt angle ϕ depends on the dielectric properties of the media εm(ω), εd. In

Fig. 2.25a, ϕ is plotted as a function of the dielectric gain ε′′d for two fixed

wavelengths λ = 400, 500nm, corresponding to blue and red curves, respectively.

For the calculation of ϕ, we considered a single interface between silver and a

gaining dielectric with ε′d = 2.25. The dielectric properties of silver are modelled

by the Drude-Lorentz fit of experimental data, as described in section 2.2. For

small values (in modulus) of gain ε′′d, the SPPs are attenuated and the optical

propagation is tilted towards the metal (ϕ < 0). As gain increases (in modulus),

overcoming the gain threshold determined by Eq. (2.58), the SPPs are amplified

and the optical propagation is tilted towards the metal. The tilt direction changes

at the point ε′′d = −ε′′m, where Px = 0. For higher values of gain |ε′′d| > ε′′m, the

transverse power Px becomes positive and the energy flows towards the dielectric

medium with a positive tilt angle φ > 0. In Fig. 2.25b, the tilt angle ϕ is
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plotted as a function of the vacuum wavelength λ for two fixed gain values ε′′d =

−0.4,−0.8, identified by blue and red curves, respectively. For the blue curve,

corresponding to ε′′d = −0.4, the power flow is always tilted towards the metal;

conversely, for the red curve corresponding to ε′′d = −0.8, the tilt direction changes

at the particular wavelength λ̄ where ε′′m(λ̄) = 0.4.

2.7 Concluding remarks

In this chapter we have reviewed the scientific literature concerning surface plas-

mon polaritons (SPPs) in the linear regime. SPPs propagating at a single in-

terface and in an Insulator-Metal-Insulator (IMI) structure have been described

and the dispersion curve has been derived for such geometries. The tight sub-

wavelength confinement of SPPs around the surface plasmon resonance is paid

in terms of enhanced loss, which limits their use as miniaturised optical chan-

nels. In turn, the embedding of gain materials is needed in order to lengthen

the propagation of SPPs and overcome the inherent trade-off between loss and

localisation. The amplification of SPPs has been reviewed, discussing the results

of some recent experiments that report the amplified spontaneous emission of

SPPs using erbium ions [Ambati et al., 2008], PbS (Lead sulfide) quantum dots

[Bolger et al., 2010; Grandidier et al., 2009] and hybrid organic-inorganic polymer

[Gather et al., 2011, 2010].
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Chapter 3

Nonlinear plasmonic waves at a

single interface

The enhancement of nonlinear optical phenomena mediated by a metallic sur-

face has been a matter of study and research in the turn of the century [Ponath

and Stegeman, 1991; Zayats et al., 2005]. Nonlinear effects are boosted by the

electromagnetic field enhancement on the metal surface. The main responsible

for the field enhancement is the localisation of electromagnetic energy in small

gaps and voids. If the effects of metal imperfections are neglected, the electro-

magnetic field enhancement is due to the excitation of surface plasmon polaritons

(SPPs) in ideal surfaces and of localised surface plasmons in metallic nanoparti-

cles. Relevant examples of surface-enhanced nonlinear processes include Surface

Enhanced Raman Scattering (SERS) [LeRu and Etchegoin, 2009], Kerr nonlinear-

ity [Agranovich et al., 1980; Stegeman et al., 1985], Second Harmonic Generation

(SHG) [Antoine et al., 1998; Davoyan et al., 2009a; Kroo et al., 2008], Third-

Harmonic Generation (THG) [Lamprecht et al., 1999] and Four Wave Mixing

(FWM) [Palomba and Novotny, 2008].

In this chapter, we introduce a perturbative theory to model amplification

of SPPs propagating on a single interface between a metal and a gain material.

Gain is modelled through the two-level atom model [Boyd, 2003], described in ap-

pendix A, which is characterised by the cubic nonlinear polarisation ~PNL ∝ | ~E|2 ~E
for field intensities I much smaller than the saturation intensity: I << IS. The

chapter is organised as follows: section 3.1 reviews the principal achievements in
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3.1 Nonlinear propagation of SPPs

Figure 3.1: Schematic representation of the single interface between a metal and

a nonlinear dielectric, which is considered in Ref. [Mihalache et al., 1987].

the theoretical modelling of nonlinear SPPs; in section 3.2, we derive the disper-

sion relation for a single interface between a metal and a nonlinear amplifying

medium and section 3.3 describes the plasmon-soliton formation at an active

metal-dielectric interface and the inherent instabilities arising in such a system.

3.1 Nonlinear propagation of SPPs

Early study of nonlinear plasmonic waves was focused on the reflectivity proper-

ties of a silver film adjacent to a Kerr material in the Kretschmann configuration

[Wysin et al., 1981]. The nonlinear optical properties of the Kerr material lead

to an intensity-dependent reflection coefficient R, which exhibits a bistable be-

haviour [Zhou et al., 2008]. Such an effect is potentially useful for designing

novel optical devices such as optical switches or high resolution sensors [Yin and

Hesselink, 2006].

At the same time, the propagation of nonlinear SPPs on an interface between

a metal and a Kerr dielectric received attention by the scientific community [Agra-

novich et al., 1980; Boardman et al., 1987; Mihalache et al., 1987; Stegeman et al.,

1985]. Maxwell equations accounting for the Kerr nonlinearity involve the cou-

pling of the two components (transverse and longitudinal) of the TM plasmonic

mode. A simplification of the generally coupled nonlinear problem is provided
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3.1 Nonlinear propagation of SPPs

by the uniaxial approximation, where nonlinearity is approximated as dependent

only on the longitudinal [Agranovich et al., 1980] or transverse [Stegeman et al.,

1985] components of the electric field. Such uniaxial assumptions are satisfactory

only in specific cases, while the problem of determining the nonlinear SPP modes

of a generic plasmonic structure requires a more general vectorial approach.

In 1987, Mihalache et al. published a seminal paper for the theoretical mod-

elling of nonlinear SPPs [Mihalache et al., 1987]. They considered a single in-

terface between a metal and a Kerr material neglecting loss, as schematically

depicted in Fig. 3.1. Using the ansatz ~E(~r, t) = [iEx(z)x̂ + Ez(z)ẑ] e
iωt−iβx,

Maxwell equations for TM modes are

dEx
dz

=
1

β

[

εzz − β2
]

Ez, (3.1)

d

dz
(εzzEz) = −βεxxEx, (3.2)

Hy = −ε0c
β
εzzEz, (3.3)

where z is the dimensionless transverse variable (rescaled to k−1 = c/ω) and

εxx, εzz are the nonlinear susceptibility components

εxx = εL(z) + (α1E
2
x + α2E

2
z )θ(z), (3.4)

εzz = εL(z) + (α1E
2
z + α2E

2
x)θ(z). (3.5)

Eqs. (3.1-3.3) are subject to the boundary conditions

εzz(0
−)Ez(0

−) = εzz(0
+)Ez(0

+), (3.6)

Ex(0
−) = Ex(0

+), (3.7)

Hy(0
−) = Hy(0

+). (3.8)

The step-like function

εL(z) = εmθ(−z) + εdθ(z) (3.9)

is the linear susceptibility profile, where εm, εd are the dielectric constants of the

metal and of the Kerr materials, respectively. θ(z) is the Heaviside step function

and α1 = 3α2 = 3χ3/4, where χ3 is the Kerr nonlinear susceptibility. In the

manuscript by Mihalache et al., anisotropic linear effects were also considered

70



3.1 Nonlinear propagation of SPPs

[Mihalache et al., 1987]. Such effects are not included here since they are not

relevant for the purpose of this section. The basic assumption of the analysis

made by Mihalache et al. is the neglecting of loss. Indeed, in the absence of

loss, the Maxwell equations have a first integral [Berkhoer and Zakharov, 1970;

Boardman et al., 1987; Ciattoni et al., 2005] that can be written as

I = (β2−εL)E2
z−εLE2

x−
[

α2(ExEz)
2 +

α1

2
(E4

x + E4
z )
]

θ(z)−
(

dEx
dz

)2

= 0. (3.10)

The metallic optical response is assumed linear. Hence, the mode profile within

the metal is shaped by the exponential function

Ex = E0xe
qmz (z < 0), (3.11)

where q2
m = β2− εm. From the boundary conditions for the continuity of Ex and

εzzEz one gets

E0x = − qm
βεm

(εd + α1E
2
0z + α2E

2
0x)E0z, (3.12)

where E0z is the transverse field amplitude in the nonlinear medium at z = 0+:

E0z = Ez(0
+). On the other hand, the first integral yields another equation for

E0x, E0z, β

1

2
α1E

4
0x +

[

εd +
ε2m
q2
m

]

E2
0x +

βεm
qm

E0xE0z −
1

2
α1E

4
0z = 0. (3.13)

The numerical solution of Eqs. (3.12,3.13) by the Newton-Raphson method,

which is presented in appendix B, provides the nonlinear dispersion of the plas-

monic modes for the geometry considered. The dimensionless propagation con-

stant β (rescaled to k = ω/c) depends on the SPP field intensity, which is a

characteristic feature of nonlinear systems, as discussed in section 1.3. Such a

semi-analytical approach allows calculating the constants E0x, E0z for the family

of solutions parametrized by the propagation constant β. Once having deter-

mined such constants, the nonlinear mode profile can be numerically computed

integrating Eqs. (3.1,3.2) by Runge-Kutta method, which is described in ap-

pendix D.

Results are plotted in Figs. 3.2a,b: (a) the nonlinear Ex mode profile and (b)

the trajectory in the Ex − Ez space for an interface between silver (εm = −15)
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Figure 3.2: (a) Plasmonic mode Ex profile and (b) trajectory in the Ex − Ez

space for an interface between silver (εm = −15) and silica glass (εd = 2.1) at

wavelength λ = 650nm. In both figures the nonlinear parameter of silica glass is

assumed χ3 = 2× 10−22m2/V 2. Blue (red) curves correspond to β = 2 (β = 5).

and silica glass (εd = 2.1, χ3 = 2× 10−22) at the vacuum wavelength λ = 650nm.

Blue and red curves correspond to β = 2, 5, respectively. For focusing nonlinearity

(χ3 > 0), nonlinear modes exist if β > βL, where βL is the linear propagation

constant βL =
√

εdεm/(εd + εm).

The time averaged Poynting vector is

~S = −(1/2)HyEzx̂. (3.14)

Hy, Ez are real quantities and the total power density carried in the x-direction

is given by the flux

P =
ε0c

2kβ

∫ +∞

−∞

dzεzzE
2
z . (3.15)

Since the metal loss is neglected, the total power density P is a conserved

quantity in this approximation. For every fixed β, we numerically solved Eqs.

(3.12,3.13) by the Newton Raphson algorithm, used the two solutions Ex0, Ez0 as

initial values for the Runge-Kutta integration of Eqs. (3.1,3.2) and determined

the total power density P by numerically computing the integral of Eq. (3.15).

Results of such a procedure are plotted in Figs. 3.3a,b, which represent the power

vs β plots for a single interface between silver and (a) silica glass, (b) chalcogenite

glass As2Se3. For the numerical computations we considered (a) εm = −15, εd =
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Figure 3.3: Nonlinear dispersion relation for a single interface between (a) silver

(εm = −15) and silica glass (εd = 2.1, χ3 = 2× 10−22m2/V 2) at wavelength λ =

650nm, (b) silver (εm = −8.25) and chalcogenite glass As2Se3 (εd = 7.84, χ3 =

1.4× 10−18m2/V 2) at wavelength λ = 480nm.

2.1, χ3 = 2× 10−22m2/V 2 and (b) εm = −8.25, εd = 7.84, χ3 = 1.4× 10−18m2/V 2

[Asobe et al., 1993].

The role played by the focusing Kerr nonlinearity is to squeeze the SPP field

profile, as can be understood from Fig. 3.2a. The P vs β curve, depicted in Fig.

3.3, exhibits a non monotonic behaviour. In particular, a maximum (Pmax) and

a point of zero power density appear P = 0. For the particular condition where

P = 0, the onward power density carried within the Kerr medium is thoroughly

balanced by the backward power density carried within the metal. For every

fixed positive power density P < Pmax there exist two nonlinear modes with

different propagation constants. Note that, in Fig. 3.3b, the peak power density

Pmax ≈ 104W/m is much smaller than in Fig. 3.3a. This is mainly due to the

large linear susceptibility of chalcogenite glass εd ≈ −εm, which is responsible

for the tight confinement of the SPP linear mode βL ≈ 12. For P < 0, the

backward power carried within the metal overcomes the onward power carried

in the Kerr dielectric and thus the phase velocity is opposite in sign with the

velocity of energy. Such a derivation is valid only if the metal loss ε′′m is neglected

and the results are in line with the ones reported in Refs. [Huang et al., 2009;

Mihalache et al., 1987]. Similar results have also been obtained for a nonlinear

insulator-metal-insulator (IMI) geometry without considering the first integral,
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3.2 Dispersion law for nonlinear and amplified SPPs

but by resorting to the shooting method to derive the P vs β curve [Davoyan

et al., 2008].

If one wants to include the effect of metal loss, the approach described in this

section is not applicable. Indeed, the first integral does not exist in this case

and it is impossible to achieve the dispersion relation. To consider simultane-

ously nonlinearity and loss one can rely on perturbative methods, treating loss

and nonlinearity as small quantities and achieving a propagation equation for the

SPP amplitude. Such methods have been used to describe plasmon-soliton for-

mation [Davoyan et al., 2009b; Feigenbaum and Orenstein, 2007] and nonlinear

nano-focusing in tapered waveguides [Davoyan et al., 2010b]. In the following

sections we perturbatively derive the dispersion law for amplified SPPs and the

propagation equation for dissipative plasmon-solitons.

3.2 Dispersion law for nonlinear and amplified

SPPs

As discussed in chapter 2, the optical propagation in plasmonic structures is

damped by the large intrinsic ohmic loss of the metal, which limits the use of SPPs

for nonlinear applications. The SPP propagation on a single interface between

a metal and an amplifying dielectric material has been described in section 2.6,

reproducing the results of Ref. [Nezhad et al., 2004]. In section 2.6, we also

modelled the amplification of SPPs in the linear regime [Bergman and Stockman,

2003; Nezhad et al., 2004; Noginov et al., 2006b; Winter et al., 2006], where the

nonlinear saturation of gain is neglected. The gain threshold condition, where the

metal loss is exactly balanced by the gain of the amplifying dielectric medium,

is mathematically expressed by the requirement that the propagation constant is

purely real.

The gain vs loss balance can also be achieved above the linear threshold, if the

nonlinear saturation of gain is considered. Experimental demonstration of SPP

amplification using optically pumped dyes [Noginov et al., 2006b; Seidel et al.,

2005; Winter et al., 2006] and erbium doped glass [Ambati et al., 2008] has been

reported. Signature of amplification is found in the gain threshold for the output
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Figure 3.4: Schematic representation of the single interface between metal and

an externally pumped amplifying medium.

SPP intensity and the correspondent narrowing of its spectrum [Gather et al.,

2010; Noginov et al., 2006b].

In this section, we derive a perturbative theory accounting for the nonlinear

saturation of gain, describing the formation of stationary nonlinear SPP modes

above the linear gain threshold. In what follows, we consider a single interface

between a metal and an amplifying dielectric medium, which is schematically

depicted in Fig. 3.4. We start our analysis from the time independent Maxwell

equations for TM waves

∂zxEz − ∂zzEx = Dx, (3.16)

∂zxEx − ∂xxEz = Dz, (3.17)

where x, z are the transverse and longitudinal coordinates, which are perpendic-

ular and parallel to the propagation direction respectively, as represented in Fig.

3.4. Both coordinates are rescaled to dimensionless variables: scaling back to

physical units can be achieved by multiplying x, z with 1/k = λ/2π, where λ

is the vacuum wavelength. Amplification in the dielectric medium is modelled

through the two-level model [Boyd, 2003], which is reported in appendix A. In
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3.2 Dispersion law for nonlinear and amplified SPPs

the limit of relatively small SPP intensities, the saturated optical susceptibility

χ(δ) = α
δ − i

1 + δ2 + |~E|2/|ES|2
(3.18)

can be approximated by the sum of a linear term and a cubic correction

χ(δ) ≈ α
δ − i
1 + δ2

+ α
i− δ

(1 + δ2)2

∣

∣

∣

∣

∣

~E

ES

∣

∣

∣

∣

∣

2

, (3.19)

where δ is the detuning of the SPP angular frequency ω from the atomic resonance

ωba = ωb−ωa normalized to the dephasing rate 1/T2, α is the dimensionless gain

parameter and ES is the saturation field.

Such an approximation is valid only in the limit |~E| << |ES|. The particular

value of the saturation field ES, dependent on the material used, is not crucial

for the derivation below, where ES plays the mere role of a scaling factor for the

electric field ~E. For α > 0, the two-level model provides a linear gain and a non-

linear absorption that are maximal at the resonance δ = 0. Linear and nonlinear

corrections due to the two-level active inclusions in the dielectric medium enter

the constitutive relation
~D = ε0(ε+ γ|~E|2)~E, (3.20)

where ε = ε′ + iε′′ is the linear dielectric profile and γ = γ′ + iγ′′ is the nonlinear

susceptibility. With εd,m we indicate the susceptibility of dielectric (x > 0) and

metallic (x < 0) media, respectively. The metal is assumed linear (γm = 0) and

nonlinear effects are assumed to take place only in the dielectric medium:

γd = α
i− δ

(1 + δ2)2
. (3.21)

We seek solutions of Eqs. (3.16-3.17) in the form

~E(x, z) = ES ~E(x) exp(iβz), (3.22)

where β is the dimensionless propagation constant rescaled to k = ω/c. As

explained above, the saturation field ES plays the mere role of a scaling factor

for the electric field ~E. The particular value of the saturation field ES does not
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affect the calculations below, which depend on the rescaled electric field ~E. The

linear susceptibility of the amplifying medium is

εd = εb + α
δ − i
1 + δ2

, (3.23)

where εb is the dielectric constant of the background material hosting the two-level

active inclusions. In the linear limit (γd = 0), the perturbative theory developed

below provides us with a complex β, representing the dispersion law of amplified

(β ′′ = Imβ < 0) or damped (β ′′ = Imβ > 0) SPPs. Conversely, nonlinear

results derived below (γd 6= 0) require the SPP intensity to be stationary with

respect to the propagation coordinate z. Such a condition is achieved when the

amplification in the dielectric medium perfectly balances the metal loss, providing

β ′′ = Imβ = 0. For x < 0, the boundary value problem is linear and the solutions

are exponential functions:

Ex = Beqmx, (3.24)

Ez =
iqm
β
Beqmx, (3.25)

where q2
m = β2 − εm (q′m = Reqm > 0) and B is the Ex field component on the

metal side of the interface x = 0−. For x > 0, Maxwell equations provide us with

the nonlinear system of differential equations

β2Ex + iβ∂xEz =
[

εd + γd
(

|Ex|2 + |Ez|2
)]

Ex, (3.26)

iβ∂xEx − ∂xxEz =
[

εd + γd
(

|Ex|2 + |Ez|2
)]

Ez. (3.27)

The boundary conditions for the continuity of Ez, Dx at x = 0 provide two

equations for the constants B,Ex0, Ez0

εmB =
[

εd + γd
(

|Ex0|2 + |Ez0|2
)]

Ex0, (3.28)

iqm
β
B = Ez0, (3.29)

where Ex0, Ez0 are the field amplitudes in the dielectric side of the interface

x = 0+. The two boundary conditions can be reduced to a single equation for

the amplitudes Ex0, Ez0

βεmEz0 = iqm
[

εd + γd
(

|Ex0|2 + |Ez0|2
)]

Ex0. (3.30)
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3.2 Dispersion law for nonlinear and amplified SPPs

Eqs. (3.26,3.27) can be solved perturbatively under the assumption that nonlinear

terms γd| ~E|2 are small. In the linear approximation (γd = 0) the plasmonic mode

is given by

E(0)
x = Ae−qdx, (3.31)

E(0)
z =

qd
iβ
Ae−qdx, (3.32)

where q2
d = β2 − εd, q

′
d = Reqd > 0 and A represents the linear amplitude of

the SPP Ex field on the dielectric side of the interface x = 0+, which remains

arbitrary in the linear regime. At the next order, nonlinear terms are considered

as small perturbations depending on the linear modes. Hence, nonlinear Maxwell

equations are reduced to an inhomogeneous system of differential equations

(β2 − εd)E(1)
x + iβ∂xE

(1)
z = γd

(

|E(0)
x |2 + |E(0)

z |2
)

E(0)
x , (3.33)

iβ∂xE
(1)
x − εdE(1)

z − ∂xxE(1)
z = γd

(

|E(0)
x |2 + |E(0)

z |2
)

E(0)
z . (3.34)

The electric field corrections of the order o(|γd|) can be calculated straightfor-

wardly

E(1)
x = −γd|A|2Awxe−qdx−2q′

d
x, (3.35)

E(1)
z =

iqd
β
γd|A|2Awze−qdx−2q′

d
x, (3.36)

where the constants wx, wz are given by

wx =

(

1 +
|qd|2
β2

)

εd + 2q′d(2q
′
d + qd)

4εdq
′
d(q

′
d + qd)

, (3.37)

wz =

(

1 +
|qd|2
β2

)

εd + 2β2q′d/qd
4εdq′d(q

′
d + qd)

. (3.38)

The general solution is expressed as the sum of the linear modes with the nonlinear

corrections

Ex = Ae−qdx{1− wxγd|A|2e−2q′
d
x + o(|γd|2)}, (3.39)

Ez =
qd
iβ
Ae−qdx{1− wzγd|A|2e−2q′

d
x + o(|γd|2)}. (3.40)

Substituting Eqs. (3.39,3.40) into Eq. (3.30), one finds the nonlinear dispersion

law for the amplified SPPs

εmqd + εdqm = γd|A|2F + o(|γd|2), (3.41)
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where the constant F is given by

F =

(

1 +
|qd|2
β2

)

qdεm + qmεd − 2q′d(qmqd − β2εm/εd)

4q′d(q
′
d + qd)

. (3.42)

The dispersion of nonlinear SPPs in the absence of gain and loss has been derived

in the previous section, following the procedure of Ref. [Mihalache et al., 1987].

For A = 0, Eq. (3.41) provides us with the well known linear dispersion law

for SPPs at a single metal-dielectric interface β = βL =
√

εdεm/(εd + εm). For

εb = 1.8 and εm = −15+0.4i (silver at λ = 530 nm), the SPP attenuation length is

LA = (2kβ ′′
L)

−1 ' 15µm. Neglecting nonlinearity, the threshold condition β ′′
L = 0

allowing for stationary propagation of SPPs is achieved at α = α0, where the

threshold gain α0 is

α0 =
1

2ε′′m

[

|εm|2 − 2ε′′mεbδ −
√

(|εm|2 − 2ε′′mεbδ)
2 − 4(ε′′m)2(εb)2 (1 + δ2)

]

. (3.43)

The minimum gain α0 = αmin required for the stationary SPP propagation cor-

responds to the resonance δ = 0: αmin ' 0.00575. Above the gain threshold, for

α = 1.5αmin, 2αmin, the characteristic SPP gain lengths are LG = (2kβ ′′
L)

−1 '
30µm, 15µm, respectively.

Since nonlinearity is considered small γd|A|2 << 1, the nonlinear SPP phase

shift |∆β| << |βL| can be derived by setting β = βL + ∆β; Eq. (3.41) can be

linearized retaining only the first order ∆β corrections and can be solved with

respect to ∆β:

∆β = γd|A|2
βLqd(|qd|2 + β2

L)

2ε2d(q
′
d + qd)

, (3.44)

where qd,m are calculated for β = βL. Above the gain threshold (α > αmin),

the metal loss and the nonlinear saturation are perfectly balanced by the linear

gain, allowing for the stationary propagation of SPPs. The equation above is

valid only if the condition β ′′ = 0 holds, providing the existence condition for

stationary SPPs. In the linear approximation, the condition β ′′
L = 0 implies

α = α0, where α0 is given by Eq. (3.43), and the corresponding real propagation

constant is βL(α0) = β0. The Taylor series expansion of β in terms of (α − α0)

yields

β = β0 + ∂αβL(α− α0) + βNL|A|2, (3.45)
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Figure 3.5: Stationary SPP intensity Is vs the gain parameter α/αmin. Line 1

corresponds to δ = 0, Line 2 to δ = 0.4 and Line 3 to δ = 0.8.

where

βNL =
γdβLqd(|qd|2 + β2

L)

2ε2d(q
′
d + qd)

, (3.46)

and qd,m are calculated for β = β0.

Hence, in the proximity of the gain threshold, the existence condition for the

stationary propagation of SPPs (β ′′ = 0) is satisfied by the intensity

|A|2 = Is = (α0 − α)
Im∂αβL
ImβNL

, (3.47)

where ∂αβL and βNL are calculated for α = α0. Fig. 3.5 depicts the stationary

intensity Is as a function of the rescaled gain α/αmin for δ = 0, 0.4, 0.8 (lines

1,2,3, respectively). The purely real propagation constant of the stationary SPPs

above the gain threshold is given by

β = βs = β0 + Re∂αβL(α− α0) + ReβNLIs. (3.48)

Fig. 3.6(a,b) plots the real β ′ and imaginary β ′′ parts of βs, βL. The stationary

mode (βs) arises at the threshold crossover (β ′′
L = 0) where it bifurcates with the

linear amplified and damped solutions. Note that, for α < αmin, the stationary
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Figure 3.6: (a) Real (β ′) and (b) imaginary (β ′′) parts of the SPP propagation

constant β vs the normalized gain parameter α/αmin for δ = 0. The solid red

lines represent the stationary nonlinear SPPs (βs) and the dashed black lines the

linear SPPs (βL).

solution does not exist. For α > αmin, the nonlinear stationary SPP is char-

acterised by the real propagation constant βs (β ′′
s = 0), which is reduced with

respect to the propagation constant of the linear amplified SPP βs < β ′
L.

3.3 Propagation equation for amplified SPPs at

a single interface

In the previous section, we have considered the nonlinear optical propagation

in one-dimensional amplifying plasmonic structures, which enable tight confine-

ment of the electromagnetic field only in the transverse direction perpendicular

to the metal surface. In the absence of lateral boundaries, the SPPs diffract in

the direction parallel to the metal-dielectric interface and perpendicular to the

propagation direction. The application of SPPs for optical interconnection [Ebbe-

sen et al., 2008; Ozbay, 2006] requires the tight spatial confinement in both of

the transverse directions. In order to suppress diffraction one needs to resort to

two-dimensionally structured plasmonic waveguides [Bozhevolnyi et al., 2006b].

Several geometries have been proposed and realised: metal films [Leosson et al.,
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2006], triangular wedges [Yatsui et al., 2001] and grooves [Bozhevolnyi et al., 2005;

Novikov and Maradudin, 2002; Pile and Gramotnev, 2004], cylindrical wires with

rectangular [Jung et al., 2007] and circular [Schmidt and Russell, 2008; Schroter

and Dereux, 2001; Takahara et al., 1997] cross-section, where the confinement is

achieved in both of the transverse directions.

Alternatively, the nonlinear optical properties of the dielectric medium can

be used to enable the propagation of spatial plasmon-solitons, which are lo-

calised self-sustaining nonlinear modes that do not diffract in the lateral direction

[Davoyan et al., 2009b; Feigenbaum and Orenstein, 2007]. Other transverse non-

linear effects, such as self-focusing and filamentation of SPPs [Lin et al., 2009],

are important in frequency conversion and switching experiments. Filamentation

is a mechanism analogous to the modulational instability, which was briefly in-

troduced in section 1.3, and has received significant attention in nonlinear optics

[Abraham and Firth, 1990; Kivshar and Agrawal, 2003].

As described in the previous chapter, the use of SPP nonlinear functionali-

ties [MacDonald et al., 2009; Wurtz et al., 2006] is considerably limited by the

ohmic losses of the metallic components. The amplification of SPPs by doping

and pumping the dielectric has been proposed and demonstrated [Ambati et al.,

2008; Gather et al., 2010; Noginov et al., 2008b]. Nonlinear Schrödinger mod-

els have been recently proposed for SPPs propagating in a metal-insulator-metal

(MIM) waveguide [Feigenbaum and Orenstein, 2007] and at a single interface

[Davoyan et al., 2009b]. The perturbative theory adopted in such approaches,

the averaging method, is a traditional theory extensively used in the context of

dielectric waveguides [Agrawal, 2001b]. Such a perturbative approach develops in

three steps. In the first step, the nonlinearity is neglected and the linear modes

of Maxwell equations are derived: ~E0 = A~F (x)eiβz, where β is the propaga-

tion constant, A is the arbitrary field amplitude and x, z are the transverse and

longitudinal directions, perpendicular and parallel to the propagation direction,

respectively. In the second step, the nonlinear terms are considered as small per-

turbations dependent only on the zero order mode ~E0 and the amplitude A is

set as a slowly varying function of y, z: A = A(y, z). In the ultimate step, the

first order expansion of Maxwell equations is averaged in x by taking the scalar
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product with the zero order mode ~E0, providing us with the propagation equation

for the amplitude A [Davoyan et al., 2009b; Feigenbaum and Orenstein, 2007].

A problem of this approach is that the boundary condition for the continuity

of the displacement component Dx is satisfied only in the linear approximation

and the nonlinear corrections at the boundaries are neglected. In dielectric waveg-

uides the above approach works well since the light intensity is peaked within the

dielectric core and the nonlinear surface contributions are small. On the other

hand, for plasmonic structures the SPP intensity is peaked at the metal surface

and surface effects are crucial. Hence, the development of a rigorous perturbative

theory accounting for surface effects through the explicit use of boundary condi-

tions is important to describe the nonlinear propagation of SPPs with improved

accuracy. A general perturbative approach accounting for surface effects is de-

rived in chapter 4, where the averaging method and the importance of surface

contributions are described with more detail.

In what follows, we develop a multiple scale asymptotic expansion of Maxwell

equations to describe the propagation of amplified and nonlinear SPPs at a single

interface between a metal and an active gain material. As in the previous section,

the nonlinear effects result from the two-level active inclusions embedded in the

dielectric medium [Boyd, 2003]. In the calculations below, the first order expan-

sion of Maxwell equations around the gain threshold α0 is solved analytically.

The metal loss (ε′′m), the gain deviation from the stationary threshold (α − α0)

and the nonlinearity of the two-level active inclusions are treated as small pertur-

bations. Boundary conditions (BCs) accounting for the first order corrections are

imposed. The result of such a mathematical procedure is the complex Ginzburg-

Landau propagation equation for the amplitude A, which takes account of the

lateral diffraction in the interface plane, the metallic loss, the gain and the non-

linearity of the dielectric medium. The nonlinearity enhancement factor of the

Ginzburg-Landau model derived below is intrinsically complex, while the averag-

ing approach provides us with a real enhancement factor. The SPP nonlinearity

enhancements predicted by the two theories are in good agreement in the long-

wavelength range, where SPP localisation is weak; the difference between the two

approaches increases in the short wavelength limit, where SPPs get tightly con-
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fined at the interface and the nonlinear part of the boundary condition provides

a significant contribution.

The geometry considered for the calculations below is the same of the previous

section and is depicted in Fig. 3.4. The interface between the metal (x < 0) and

the gain material (x > 0) is located at x = 0, while the SPP beam is assumed

to propagate in the z direction and to diffract in the y direction. We start our

analysis from the time independent Maxwell equations for the harmonic fields

~E(x, y, z, t) = ~E(x, y, z)e−iωt, (3.49)

~H(x, y, z, t) = ~H(x, y, z)e−iωt. (3.50)

Combining the curl equations for the electric ~E and magnetic ~H fields, one

reaches a system of partial differential equations for the electric field components

Ex, Ey, Ez

∂2
xyEy − ∂2

yyEx − ∂2
zzEx + ∂2

zxEz = εEx, (3.51)

∂2
yzEz − ∂2

zzEy − ∂2
xxEy + ∂2

xyEx = εEy, (3.52)

∂2
xzEx − ∂2

xxEz − ∂2
yyEz + ∂2

zyEy = εEz. (3.53)

The partial derivatives ∂x, ∂y, ∂z are taken with respect to the dimensionless spa-

tial coordinates x, y, z normalized to k−1 = λ/2π, where λ is the vacuum wave-

length. The permittivity on the dielectric side of the interface (x > 0) is

ε = εd + χ(|Ex|2 + |Ey|2 + |Ez|2), (3.54)

where εd = ε′d + iε′′d is the linear dielectric constant and χ = χ′ + iχ′′ is the

nonlinear susceptibility. As done in the previous section, the amplification in the

gain material is modelled by the two-level susceptibility in the limit where the

light intensity is much smaller than the transition saturation intensity IS [Boyd,

2003]:

εd = εb − α
i− δ
1 + δ2

, (3.55)

χ = α
i− δ

(1 + δ2)2
. (3.56)
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Figure 3.7: (a) Threshold gain α0 as a function of the detuning δ for two different

atomic resonances: λba = 400nm (blue line) and λba = 700nm (red line). (b) β0

vs δ, the parameters are the same of (a). The full (dashed) line corresponds to

the minus (plus) in Eq. (3.59).

εb is the dielectric constant of the background material hosting the two-level

active inclusions, δ = (ω − ωba)T2 is the dimensionless detuning from the atomic

resonance ωba = ωb − ωa = 2πc/λba normalized to the dephasing rate T−1
2 and α

is the dimensionless gain at the line centre. The electric field is normalized to the

saturation field ES =
√
Is, which plays the mere role of a scaling factor for the

electric field in the calculations developed below.

On the other hand, the permittivity on the metal side (x < 0) is

ε = εm = ε′m + iε′′m. (3.57)

The propagation constant β of the linear SPP is

β =

√

εdεm
εd + εm

. (3.58)

In the previous section, we derived the gain threshold condition α = α0

α0(ω) =
1

2ε′′m

(

|εm|2 − 2ε′′mεbδ
)

± 1

2ε′′m

√

|εm|4 − 4ε′′mεb
(

ε′′mεb + δ |εm|2
)

, (3.59)

where β becomes real [Nezhad et al., 2004]:

β(α0) = β0, (3.60)

Imβ0 = β ′′
0 = 0. (3.61)
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The linear and nonlinear susceptibilities of the gain material for α = α0 are

εd(α0) = εd0 and χ(α0) = χ0. The stationary propagation of SPPs is not enabled

if the detuning δ is larger than the critical value δ = δlim, which is determined

by the condition that the square root in Eq. (3.59) becomes zero. At this point,

the two solutions for α0 are degenerate, see Fig. 3.7. δlim does not coincide

with the plasmon resonance frequency δspp, which corresponds to the zero of the

denominator of β0. The upper branch of the α0 solution, corresponding to the

dashed lines in Fig. 3.7, is characterised by an extremely high gain coefficient

(α0 ≈ 100) corresponding to a refractive index of the order n ≈ 10. Such gain

values are not very practical and in our subsequent numerical examples we focus

our attention on the relatively small δ range, corresponding to the lower branch

of α0 represented by the solution with minus sign in front of the square root in

Eq. (3.59). Note that εm(ω) = εm(ωba + δ/T2) is frequency dependent. Hence,

the threshold gain α0 is a function of both δ and ωba.

3.3.1 Multiple-scale expansion of Maxwell equations

In the multiple scale expansion developed below, we assume small deviations of

the gain coefficient from the stationary threshold value α0:

α− α0 = α0g, (3.62)

where |g| � 1. The ansatz for the field components is

Ex,j =
[

A
(0)
x,j + A

(1)
x,j + o(|g|5/2)

]

eiβ0z, (3.63)

Ey,j =
[

A
(0)
y,j + o(|g|2)

]

eiβ0z, (3.64)

Ez,j =
[

A
(0)
z,j + A

(1)
z,j + o(|g|5/2)

]

eiβ0z, (3.65)

where j = d,m labels dielectric and magnetic regions respectively and

A
(0)
x,j, A

(0)
z,j ∼ |g|1/2, (3.66)

A
(0)
y,j ∼ |g|, (3.67)

A
(1)
x,j, A

(1)
z,j ∼ |g|3/2, (3.68)
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are functions of x, y, z. Their dependence on y, z is assumed slow relative to the

fast oscillations of eiβ0z:

∂y ∼ |g|1/2, (3.69)

∂z ∼ |g|. (3.70)

The order of of the x, z field components (A
(0)
x,j, A

(0)
z,j ∼ |g|1/2) is set in such a way

that both the linear (α − α0) and nonlinear (χ| ~E|2) correction terms are of the

same order (|g|3/2).
The y field component A

(0)
y,j ∼ |g| is non-null when the field has finite size

along y, but it is assumed to stay relatively small with respect to A
(0)
x,j, A

(0)
z,j . The

dielectric susceptibility is expanded into the g-series

εd = εd0 + εd1, (3.71)

where εd1 = gα0∂αεd. Since nonlinearity is small, the dependence of the nonlinear

coefficient χ on the linear gain α is a higher order term and in the calculations

below χ is taken exactly at the gain threshold χ0 = χ(α0).

At |g|1/2 order, substituting Eqs. (3.63) into Eqs. (3.51-3.53) one finds

M̂j

[

A
(0)
x,j

A
(0)
z,j

]

= 0, (3.72)

where j = d,m labels dielectric and metal regions, respectively. The linear M̂j

operator is given by

M̂j =

(

q2
j iβ0∂x
0 ∂2

xx − q2
j

)

, (3.73)

where

q2
d = β2

0 − εd0, (3.74)

q2
m = β2

0 − εm. (3.75)

Eq. (3.72) is a linear homogeneous system of differential equations for the SPP

modes, where the nonlinear and transverse (y-dependent) effects are disregarded.
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The SPP solution of Eqs. (3.72) is

A
(0)
x,d =

iβ0

qd
A(y, z)e−qdx, (3.76)

A
(0)
z,d = A(y, z)e−qdx, (3.77)

A(0)
x,m = −iβ0

qm
A(y, z)eqmx, (3.78)

A(0)
z,m = A(y, z)eqmx, (3.79)

where A(y, z) is the arbitrary linear SPP amplitude of the z field component at

x = 0: A(y, z) = A
(0)
z,m(0) = A

(0)
z,d(0). Eqs. (3.76-3.79) satisfy the continuity of the

normal component of the displacement and of the tangential components of the

electric field

εd0A
(0)
x,d(0) = εmA

(0)
x,m(0), (3.80)

A(0)
z,m(0) = A

(0)
z,d(0). (3.81)

The BCs above imply εd0qm = −εmqd, giving (after some algebra) the expression

for the linear propagation constant

β0 =

√

εdεm
εd + εm

. (3.82)

At |g|1 order, one finds the linear equations for the y component of the electric

field

q2
jA

(0)
y,j − ∂2

xxA
(0)
y,j = 0, (3.83)

which are readily solved

A
(0)
y,d = B(y, z)e−qdx (3.84)

A(0)
y,m = B(y, z)eqmx. (3.85)

To determine the unknown functions A(y, z) (|A| ∼ |g|1/2) and B(y, z) (|B| ∼ |g|)
one needs to proceed to the higher orders of the perturbation expansion.

At |g|3/2 order, the Maxwell equations provide an inhomogeneous system of

differential equations for the field corrections to the linear SPP solution. The

correction equations on the metal side are

M̂m

[

A
(1)
x,m

A
(1)
z,m

]

=

[

Kx

Kz

]

eqmx, (3.86)
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where

Kx =
β2

0 + εm
qm

∂zA− qm∂yB −
iβ0

qm
∂2
yyA, (3.87)

Kz = −2iβ0∂zA− ∂2
yyA. (3.88)

The general solution of Eqs. (3.86) is the sum of a particular solution of the

inhomogeneous problem and the solution of the homogeneous system (achieved

by setting Kx,z = 0)

A(1)
x,m =

1

2q3
m

[−iβ0Kz(1 + qmx) + 2qmKx] e
qmx − C iβ0

qm
eqmx, (3.89)

A(1)
z,m =

Kz

2qm
xeqmx + Ceqmx, (3.90)

where C is a constant that can be determined from the boundary conditions. The

righthand side of the |g|3/2 order correction equations in the dielectric include the

nonlinear terms Nx, Nz and are more cumbersome

M̂d

[

A
(1)
x,d

A
(1)
z,d

]

=

[

Lx
Lz

]

e−qdx +

[

Nx

Nz

]

e−(2q′
d
+qd)x, (3.91)

where q′d = Reqd and

Lx = − 1

qd
(β2

0 + εd0)∂zA+
iβ0

qd
εd1A+ qd∂yB +

iβ0

qd
∂2
yyA, (3.92)

Lz = −2iβ0∂zA− εd1A− ∂2
yyA, (3.93)

Nx =
iβ0

qd

(

β2
0

|qd|2
+ 1

)

χ0|A|2A, (3.94)

Nz = −(εd0qd + 2β2
0q

′
d) (|qd|2 + β2

0)

εd0qd|qd|2
χ0|A|2A. (3.95)

The solutions of Eqs. (3.91) are

A
(1)
x,d =

1

2q3
d

[iβ0Lz(1− qdx) + 2qdLx] e
−qdx +

+
1

q2
d

[

Nx +
iβ0

4q′d

2q′d + qd
q′d + qd

Nz

]

e−(2q′
d
+qd)x, (3.96)

A
(1)
z,d = − 1

2qd
Lzxe

−qdx +
1

4q′d(q
′
d + qd)

Nze
−(2q′

d
+qd)x. (3.97)
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Without any loss of generality, the solution of the homogeneous system has not

been included in Eqs. (3.96,3.97). The BCs accounting for the linear (εd1) and

nonlinear (χ0| ~E|2) corrections at |g|3/2 order require that

A(1)
z,m(0) = A

(1)
z,d(0), (3.98)

εmA
(1)
x,m(0) = εd0A

(1)
x,d(0) + εd1A

(0)
x,d(0) +

+χ0(|A(0)
x,d(0)|2 + |A(0)

z,d(0)|2)A(0)
x,d(0), (3.99)

where A
(0)
x,d, A

(0)
z,d, A

(0)
x,m, A

(0)
z,m are given by Eqs. (3.76-3.79) andA

(1)
x,m, A

(1)
z,m, A

(1)
x,d, A

(1)
z,d

are given by Eqs. (3.89,3.90,3.96,3.97). By solving Eqs. (3.98,3.99) one finds that

the constant C is given by

C =
1

4(q′d + qd)q′d
Nz, (3.100)

and that the amplitude A satisfies the complex Ginzburg-Landau equation

2iβ0∂zA+ ∂2
yyA+ fA+ Υ|A|2A = 0, (3.101)

where Υ = hχ0 and

f = g
α0ε

2
m∂αεd

(εd0 + εm)2
, (3.102)

h =
β4

0

ε2d0

qd(|qd|2 + β2
0)

(q′d + qd)|qd|2
. (3.103)

All the terms containing B(y, z) cancel out. The particular value of the amplitude

B(y, z) can be determined by considering the magnetic field

~H =
1

icµ0
∇× ~E, (3.104)

which was completely ignored up to now. At |g|1/2 order, the magnetic field is

polarised in the y direction: ~Hj = H
(0)
y,j ŷ,

H
(0)
y,j =

1

icµ0
(iβ0A

(0)
x,j − ∂xA

(0)
z,j)e

iβ0z. (3.105)

At this order, the BC for the continuity of H
(0)
y,j at the interface x = 0 is ensured

by the BCs for A
(0)
x,j, A

(0)
z,j . At the |g|1 order, the magnetic field acquires a z-

component and lies in the y − z plane: ~Hj = H
(0)
y,j ŷ +H

(1)
z,j ẑ,

H
(1)
z,j =

1

icµ0

(∂xA
(0)
y,j − ∂yA

(0)
z,j)e

iβ0z. (3.106)
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At this order, the BC for the continuity of H
(1)
y,j at the interface x = 0 fixes the

amplitude B(y, z) to

B(y, z) =
1

iβ0

∂yA(y, z). (3.107)

It is worthwhile noting that, in such a derivation of the Ginzburg-Landau (GL)

equation, the nonlinear boundary conditions are satisfied at the |g|3/2 order.

f ′ = Ref is the linear phase shift term due to the gain deviation from the

threshold and f ′′ = Imf is the SPP effective amplification (α > α0) or damping

(α < α0) coefficient. The nonlinear term is complex, providing the nonlinear

phase shift Υ′|A|2 (Υ′ = ReΥ) and the nonlinear loss Υ′′|A|2 (Υ′′ = ImΥ).

The complex nature of the nonlinearity enhancement h introduces some un-

physical effects. The effective complex nonlinear coefficient Υ is characterised by

the real part Υ′ = h′χ′
0 − h′′χ′′

0, which is responsible for self-focusing (Υ′ > 0)

or self-defocusing (Υ′ < 0), and by the imaginary part Υ′′ = h′χ′′
0 + h′′χ′

0, which

describes the nonlinear absorption Υ′′ > 0. However, in the particular case where

h′′χ′
0 − h′χ′′

0 < 0 the GL model predicts a nonlinear gain.

In this case, the perturbative expansion of the two-level susceptibility up to

the second order

χ ≈ εd + χ0|~E|2, (3.108)

it is not sufficient to describe adequately the nonlinear saturation of gain, and

the higher order terms (like χ ≈ Γ|~E|4) need to be included:

χ ≈ εd + χ0|~E|2 + Γ|~E|4. (3.109)

In the numerical computations below we consider the case h′′χ′
0−h′χ′′

0 > 0, where

the perturbative expansion adopted is physically meaningful.

3.3.2 Comparison with the averaging approach

The nonlinearity enhancement factor h is a complex number that depends on

the geometric and on the optical properties of the plasmonic structure. Such a

parameter accounts for the modified optical nonlinear response experienced by

the propagating SPPs with respect to plane waves in the nonlinear dielectric

bulk. These findings are in contrast with the ones provided by the averaging
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Figure 3.8: Nonlinearity enhancement coefficients: (a) h′ (solid line) and h̃′

(dashed line) calculated using two different approaches vs λba. (b) h′′ vs λba.

Varying δ inside the transition linewidth leads only to small difference in h. The

graphs shown correspond to δ = −0.5. The short wavelength boundary of the

both plots corresponds to the point where β0 becomes imaginary.

approach [Agrawal, 2001b; Davoyan et al., 2009b; Feigenbaum and Orenstein,

2007], where the nonlinearity enhancement factor is purely real. The averaging

approach gives a different expression for the effective nonlinearity experienced by

SPPs. Following this method, the geometric nonlinearity enhancement h̃ is

h̃ =

∫ +∞

0
dx
∣

∣

∣

~F
∣

∣

∣

4

∫ +∞

−∞
dx
∣

∣

∣

~F
∣

∣

∣

2 . (3.110)

In the above integral expression, the vector ~F is the |g|1/2 plasmonic field:

~F =

(

A
(0)
x,d

A
(0)
z,d

)

θ(x) +

(

A
(0)
x,m

A
(0)
z,m

)

θ(−x). (3.111)

In chapter 4, we derive an integral expression for the nonlinear parameter Υ,

explaining with more detail the role played by the surface terms in the boundary

conditions. In Fig. 3.8, h and h̃ are plotted as functions of the resonance wave-

length λba for the fixed detuning δ = −0.5. The two approaches yield qualitatively

similar results for the enhancement coefficients h, h̃ in the long wavelength limit,

where h′′ is negligible and h is almost real. However, for shorter wavelengths,

our approach accounting for the nonlinear contributions in the BCs predicts a
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Figure 3.9: The characteristic filament size w (scaled back to physical units) as

a function of λba for δ = −0.5. The gain parameters g = 0.1, 0.3, 0.5 correspond

to the blue, green and red curves, respectively.

considerably increased nonlinearity enhancement h with respect to the averaging

approach h̃. h′, h̃ increase with the resonance wavelength λba since the metal

becomes highly reflective: εm → −∞ as λba → +∞ (electrostatic limit). Thus,

the SPP intensity mainly resides in the nonlinear dielectric and the effective non-

linearity is enhanced (since the optical response of the metal is assumed linear

in our model). On the other hand, for short wavelengths, the SPP profile gets

squeezed at the interface and the nonlinear contribution in the BCs becomes

relevant. In this limit, the nonlinear surface contribution provides an increased

difference between h′ and h̃.

3.3.3 Filamentation of SPPs

The plane wave solution of Eq. (3.101) is

A0 = ρeiηz , (3.112)

where

η =
1

2β0

(f ′ − ρ2Υ′), (3.113)
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Figure 3.10: Instability growth rate κ (scaled back to physical units) as a function

of the transverse momentum (p). The parameters used to plot the figure are λba =

594 nm, δ = −0.3, α0 = 0.0063. Gain parameters g = 0.4, 0.5, 0.6 correspond to

the red, green and blue curves, respectively.

ρ2 = − f
′′

Υ′′
. (3.114)

The solution above exists only if the condition ρ2 > 0 holds. Such a condition

is satisfied for −f ′′,Υ′′ > 0 and implies that the linear gain provided by the

amplifying dielectric overcomes the threshold (α > α0), being saturated by the

absorptive nonlinearity Υ′′|A0|2. The amplitude ρ diverges if the nonlinear ab-

sorption is null. In this case, the quintic nonlinearity needs to be taken into

account in order to achieve stationary nonlinear plane waves. This case will not

be discussed in this dissertation.

As discussed in section 1.3.1, plane waves constitute a family of solutions for

the Nonlinear Schrödinger Equation (NLSE) and are parametrized either by the

field amplitude or by the propagation constant. Conversely, in the dissipative

case considered in this section, the plane wave solution of the Ginzburg-Landau

equation is unique. The stationary plane waves propagating without distortion

(amplification or damping) exist only for the particular amplitude |A| = ρ, where

the amplification deviation from the stationary threshold is exactly compensated

by the nonlinear absorption Υ′′|A|2. Hence, the nonlinear plane waves can be

unstable with respect to a specific perturbation pattern forming filamentation
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Figure 3.11: Lossless SPPs exist above the full line corresponding to α = α0.

SPPs are unstable on the left from the dashed vertical line, which corresponds to

Υ′ = 0. The resonance wavelength was set to λba = 400 nm.

instability [Aranson and Kramer, 2002]. In order to study the stability of plane

waves expressed by Eq. 3.112, one needs to perturb the solution A = A0 with

small amplitude waves modulated with transverse momentum p:

A = (1 + q+e
κz+ipy + q∗−e

κ∗z−ipy)A0. (3.115)

Inserting Eq.(3.115) into Eq.(3.101) and linearizing the resulting equations for

small amplitude corrections |q±|, one finds the following expression for the eigen-

value κ

2β0κ = f ′′ +
√

(f ′′)2 − p2(p2 − 2p2
max). (3.116)

The onset condition enabling filamentation instability is provided by κ′ >

0. κ′ is a function of the transverse momentum p and has a typical two peak

dependence, see Fig. 3.10. The maximum instability growth rate is achieved for

p = ±pmax, where

p2
max = ρΥ′. (3.117)

From the maximum transverse momentum (pmax) it is possible to evaluate the

typical filament length

w ' λ/pmax. (3.118)

The dependence of the filament width (w) on the resonance wavelength (λba) is

depicted in Fig. 3.9. The instability domain in the (δ, α)-plane is represented in
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3.3 Propagation equation for amplified SPPs at a single interface

Figure 3.12: Filamentation of nonlinear SPPs: λba = 594nm, δ = −0.3, α =

0.0183, α0 = 0.0063.

Fig. 3.11. Filamentation occurs only for self-focusing nonlinearity (Υ′ > 0). In

the long wavelength limit, where the nonlinearity enhancement factor is almost

real (|h′′| << |h′|), the instability onset Υ′ = 0 is achieved at the line centre δ = 0.

For smaller wavelengths, the imaginary part of the nonlinearity enhancement

factor h′′ 6= 0 implies a shift of the instability onset from δ = 0, as depicted in

Fig. 3.11. In Fig. 3.12, the filamentation of plane waves in periodic patterns

is depicted for λba = 594nm, δ = −0.3, α = 0.0183, α0 = 0.0063. The typical

lengthscale for filament formation is LF ≈ 1mm. To model the propagation of

nonlinear SPP waves we used the split-step beam propagation method, which is

described in appendix C.

3.3.4 Bright and dark plasmon-solitons

Analogously to the Nonlinear Schrödinger Equation (NLSE), introduced in sec-

tion 1.3, also the Ginzburg-Landau (GL) equation admits solitary wave solutions

[Akhmediev and Ankiewicz, 1997; Aranson and Kramer, 2002]. The existence of

such solutions is suggested by the bistability of the trivial zero solution A = 0
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3.3 Propagation equation for amplified SPPs at a single interface

Figure 3.13: Propagation of a bright localised solution and instability of its back-

ground: λa = 594 nm, δ = −0.3, α = 0.0183, α0 = 0.0063.

and the plane wave solution A0 = ρeiηz .

There is a fundamental difference between solitary waves in conservative and

dissipative systems. Indeed, the existence of the bright Pereira-Stenflo [Pereira

and Stenflo, 1977] and of the dark Nozaki-Bekki [Nozaki and Bekki, 1984] solitons

implies a dynamical transfer of energy. In this sense, the nonlinearity vs diffrac-

tion balance is completed with the nonlinear absorption vs gain equilibrium in

dissipative systems described by the GL equation.

Both bright and dark localised solutions exist under the same conditions:

f ′′ < 0, (3.119)

Υ′′ > 0, (3.120)

Υ′ 6= 0. (3.121)

The expression for the bright plasmon-soliton is

A(y, z) = ρ

√

3

2
[sech(Ky)]1+ia exp(iuz), (3.122)

while for the the dark plasmon-soliton:

A(y, z) = ρ
tanh(sy)

[cosh(sy)]ib
exp(ivz), (3.123)
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3.3 Propagation equation for amplified SPPs at a single interface

Figure 3.14: Destabilisation of the dark soliton due to the core instability: λa =

594 nm, δ = −0.3, α = 0.0183, α0 = 0.0063.

where

a = − 3Υ′

2Υ′′
+

√

2 +

(

3Υ′

2Υ′′

)2

, (3.124)

b = − 3Υ′

2Υ′′
−

√

2 +

(

3Υ′

2Υ′′

)2

, (3.125)

K2 = − 1

2a
f ′′, (3.126)

s2 =
1

3b
f ′′, (3.127)

u =
1

2β0

f ′ +
a2 − 1

4β0a
f ′′, (3.128)

v =
1

2β0
f ′ − 1

3bβ0
f ′′. (3.129)

In the limit |y| → ∞ the dark soliton tends to the plane wave solution,

expressed by Eq. (3.112). The bright soliton is unstable because the zero back-

ground A = 0 is unstable above the threshold. This instability is relatively slow

and bright SPP solitons can propagate for distances of approximately ≈ 100µm,

as depicted in Fig. 3.13. On the other hand, the dark soliton is unstable with

respect to the core instability and the filamentation of the background [Chate
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and Manneville, 1992], as shown in Fig. 3.14. Such instabilities prevent plasmon-

solitons to propagate over long distances, disabling their striking application as

miniaturised optical channels. Nevertheless, it is possible to stabilise SPP soli-

tons by using the coupling with a purely passive interface [Malomed and Winful,

1996]. The stabilisation of plasmon-solitons is explained in detail in chapter 6.

3.4 Concluding remarks

The tight electromagnetic field enhancement provided by SPPs can be used in

nonlinear active devices, which have been reviewed in the beginning of this chap-

ter. We have described the effect of Kerr nonlinearity on the optical propaga-

tion of SPPs along a single interface, reproducing the results reported in Ref.

[Mihalache et al., 1987]. The nonlinear modes in such a configuration can be

determined by a semi-analytical approach if the metal loss is neglected. Such an

approach relies on the use of the first integral of the nonlinear dynamical system

for TM modes [Berkhoer and Zakharov, 1970; Boardman et al., 1987; Ciattoni

et al., 2005]. However, if the metal loss is not neglected, such an approach is not

applicable since the first integral does not exist.

In turn, we have developed a novel perturbative theory accounting for the

metal loss, the amplification and the nonlinearity of a gain material embedded

in the plasmonic structure. Such an analytical approach allowed us to derive the

nonlinear dispersion law for the homogeneous stationary SPPs and the Ginzburg-

Landau (GL) propagation equation for the SPP beams with a finite width on the

transverse direction. The study of the GL propagation equation predicted the

filamentation of the homogeneous nonlinear waves and the formation of bright and

dark plasmon-solitons. However, the stability analysis revealed the presence of

substantial instabilities preventing the solitons to propagate over long distances.

The original results reported in this chapter have been published in Refs. [Marini

et al., 2009; Marini and Skryabin, 2010].
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Chapter 4

Nonlinear TM waves in 1D

subwavelength structures

The delivery of electromagnetic energy at the subwavelength scale has been

achieved both by using silicon on insulator (SOI) slot waveguides [Almeida et al.,

2004a,b], which have been briefly introduced in section 1.2.4, and surface plasmon

polaritons (SPPs) [Ozbay, 2006]. Promising practical applications of nonlinear

SOI slot waveguides include frequency conversion and ultrafast all-optical signal

processing [DiFalco et al., 2008; Koos et al., 2009]. Other more fundamental ap-

plications of metal and dielectric slot waveguides involve self-focusing and optical

solitons [Davoyan et al., 2008, 2009b; Feigenbaum and Orenstein, 2007; Gorbach

and Skryabin, 2009]. Optical fibres with subwavelength core diameter [Tong et al.,

2003; Wiederhecker et al., 2007] and plasmonic cylindrical waveguides [Schmidt

and Russell, 2008; Schroter and Dereux, 2001; Takahara et al., 1997] have also

been developed to guide electromagnetic energy on the subwavelength scale and

are described in detail in chapter 7.

In a recent work, Afshar et al. derived the propagation equation for subwave-

length optical fibres by using the Lorentz Reciprocity Theorem (LRT) [Afshar

and Monro, 2009; Afshar et al., 2009]. They demonstrated that the nonlinear

parameter achieved by such a procedure fits the experimental measurements in

the subwavelength regime with an improved accuracy with respect to the averag-

ing approach. The traditional averaging approach dates back to the scalar wave
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equation [Agrawal, 2001b] and it has been extended to the vectorial case recently

[Daniel and Agrawal, 2010].

The tight confinement of light in one dimensional photonic and plasmonic

structures intrinsically implies non-paraxiality, i.e. that TM modes have signif-

icant non-zero longitudinal component of the electric field, as discussed in sec-

tion 1.2.3. Existing theories deriving the nonlinear parameter of photonic and

plasmonic waveguides use either the averaging approach [Davoyan et al., 2009b;

Feigenbaum and Orenstein, 2007] or the reciprocity theorem [Afshar and Monro,

2009; Koos et al., 2007; Osgood et al., 2009].

In the previous chapter, we have derived from the first principles the com-

plex Ginzburg-Landau (GL) equation by a multiple scale expansion of Maxwell

Equations. The GL propagation equation is obtained by calculating the field

corrections and by imposing boundary conditions accounting for nonlinearity, di-

electric gain and metal loss. This derivation is rigorous but does not provide an

insightful understanding of the underpinning physical mechanisms inducing the

modified nonlinear response. In addition, the calculations are cumbersome and

strongly depend on the photonic structure under examination. Similarly, also the

reciprocity theorem approach does not shed much light on the physical origin of

the enhanced nonlinear response in subwavelength photonic structures [Afshar

et al., 2009; Koos et al., 2009].

In this chapter we develop a more transparent asymptotic theory, demon-

strating that the enhancement of the nonlinear response of TM-modes in planar

subwavelength waveguides ensues from surface effects. The surface enhancement

factor depends on the product of the transverse field component discontinuity at

the boundary of the waveguide with the surface value of the longitudinal field

component and can be summed up over the boundaries of the photonic struc-

ture. In the multiple scale expansion presented below, the propagation equation

is achieved without calculating explicitly the field corrections, but is derived as a

scalar product equation that represents the solvability condition in the respective

order. For this reason, such a theory is more flexible and suitable to obtain the

propagation equation in complex one-dimensional geometries.

We emphasise that, conversely to the previous chapter where the perturbative

theory was developed around the stationary threshold (where the amplification
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4.1 Multiple scale expansion of Maxwell equations

Figure 4.1: Schematic representation of a planar subwavelength photonic struc-

ture.

perfectly compensates for the metal loss), here the imaginary part of the di-

electric susceptibility profile (accounting for gain/loss) is considered as a small

perturbation. A generalised version of this one-dimensional (1D) theory to the

two-dimensional (2D) case of subwavelength cylindrical waveguides is presented

in chapter 7.

4.1 Multiple scale expansion of Maxwell equa-

tions

In what follows, we consider a generic planar subwavelength photonic structure,

which is schematically depicted in Fig. 4.1. x is the direction perpendicular

to the interfaces, z is the propagation direction and y is the unbound transverse

direction, where light can diffract along. For monochromatic fields ~Ee−iωt, ~He−iωt,

the macroscopic Maxwell equations in the absence of free charges and currents

can be combined to achieve the equation for the electric field

~∇× ~∇× ~E =
1

ε0
~D, (4.1)
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4.1 Multiple scale expansion of Maxwell equations

subject to the boundary conditions (BCs) at the interfaces x1, x2, ..., xj, ..., xN

(see below). In the complex formalism, the physical electric field and displace-

ment vectors are represented by the real parts Re~Ee−iωt, Re~De−iωt. ε0 is the

vacuum susceptibility and the coordinates x, y, z are normalized to the inverse

wavenumber k−1 = λ/2π, where λ is the vacuum wavelength. ε(x) is the dielec-

tric susceptibility profile, which varies sharply at the interfaces x1, x2, ..., xj, ..., xN

between different materials. The constitutive relation is given by

~D = ε0ε~E + ε0~N, (4.2)

where ~N is the nonlinear part of the displacement. The solution of Eq. (4.1) is

sought in the form

~E = ~E(x, y, z)eiβz, (4.3)

~H = ~H(x, y, z)eiβz, (4.4)

~N = ~Neiβz, (4.5)

where β is the normalized propagation constant, rescaled to k = ω/c. In the

perturbative expansion derived below, we assume that the dielectric susceptibil-

ity profile can be expressed as the sum ε = εa + εb, where εa(x) is the leading

term and εb(x) is the susceptibility correction, accounting for linear absorbtion

or amplification (for gain materials). In what follows, we derive a multiple scale

expansion for the TM modes of the photonic structure depicted in Fig. 4.1,

which are characterised by the two field components Ex (perpendicular to the

interfaces) and Ez (parallel to the propagation direction). The linear TM modes

are unbound in the y direction. Hence, as an optical beam with a finite width

impinges on the photonic structure, it diffracts along the transverse direction y,

implying that Hz, Ey are nonzero. However, if the beam width w is much larger

than the wavelength w >> λ, the field components Hz, Ey stay relatively small

|Hz| << |Hy|, (4.6)

|Ey| << |Ex|, |Ez|. (4.7)

Basically, the diffraction introduces new directions of propagation in the y − z

plane and it is impossible to talk strictly about TM polarised optical beams, i.e.

103



4.1 Multiple scale expansion of Maxwell equations

that the magnetic field is perpendicular to the direction of propagation. Instead,

the optical beam is quasi TM-polarised since it is given by a superposition of

TM modes with respect to every propagation direction lying in the y-z plane.

Since diffraction is assumed weak, the optical field practically propagates along

the z-direction.

The magnetic field ~H is related to the electric field components Ex, Ey, Ez

through the curl equation

~H =
1

iµ0c
e−iβz∇× [ ~Eeiβz]. (4.8)

Generic boundary conditions at the interfaces x1, x2, ..., xj , ...xN can be derived

directly from Maxwell equations [Jackson, 1999], providing that the tangential

component of ~E, the normal component of the displacement ε ~E + ~N and all

components of the magnetic field ~H are continuous:

Ex : ∆j [εEx +Nx] = 0, (4.9)

Ey : ∆j [Ey] = 0, (4.10)

Ez : ∆j [Ez] = 0, (4.11)

Hy : ∆j [∂xEz − e−iβz∂z(Exeiβz)] = 0, (4.12)

Hz : ∆j [∂xEy − ∂yEx] = 0. (4.13)

The operator ∆j [f ] acting on the generic function f(x) is defined as

∆j [f ] = lim
δ→0

[f(xj − δ)− f(xj + δ)] , (4.14)

where xj are the interface coordinates. BCs on Hy, Hz are redundant and in prin-

ciple can be eliminated for the exact linear modes of Maxwell equations [Jackson,

1999]. However, for the approximate solution of nonlinear Maxwell equations by

the asymptotic expansion, it is convenient to retain the boundary condition for

Hz.

For Kerr materials the nonlinear part of the displacement is given by

~N(Ex, Ey, Ez) =
1

2
χ3(| ~E|2 ~E +

1

2
( ~E · ~E) ~E∗), (4.15)
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4.1 Multiple scale expansion of Maxwell equations

where χ3(x) is the nonlinear susceptibility. The x-dependence is kept in order

to describe a photonic structure composed by layers of different materials. We

assume that the exponential factor eiβz varies in z much faster than ~E(z):

|∂z ~E| � β| ~E|. (4.16)

Further, it is assumed that

|√χ3Ex,z| ∼ o(s1/2), (4.17)

|εb| , |
√
χ3Ey| ∼ o(s), (4.18)

|√χ3∂zEx,z| ,
∣

∣

√
χ3∂

2
yEx,z

∣

∣ , |εb
√
χ3Ex,z| , |

√
χ3Nx,z| ∼ o(s3/2), (4.19)

where s � 1 is a small dummy parameter. For the electric field ~E we use the

following ansatz

Ex = Ax(ψ, x) +Bx(ψ, x) + o(s5/2), (4.20)

Ey = C(ψ, x) + o(s2), (4.21)

Ez = Az(ψ, x) +Bz(ψ, x) + o(s5/2), (4.22)

where

Ax,z ∼ o(s1/2), (4.23)

C ∼ o(s), (4.24)

Bx,z ∼ o(s3/2). (4.25)

The fields Ax,z, Bx,z, C do not depend on y, z explicitly, but only by means of the

slowly varying function ψ(z, y).

At the o(s1/2) order, Maxwell equations provide the linear system of differen-

tial equations

L̂ ~A = 0, (4.26)

subject to the BCs

Ex : ∆j[εaAx] = 0, (4.27)

Ez : ∆j[Az] = 0, (4.28)
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4.1 Multiple scale expansion of Maxwell equations

where

L̂ =

(

β2 − εa iβ∂x
iβ∂x −∂2

xx − εa

)

, (4.29)

and

~A =

(

Ax
Az

)

. (4.30)

For Imεa = 0, the linear Boundary Value Problem (BVP) above is self-adjoint

[Boyce and DiPrima, 1997]. We assume that the solution of such a BVP is a

non-degenerate bound mode ~A = I1/2ψ(z, y)~e, where

lim
x→±∞

|~e| = 0, (4.31)

L̂~e = 0, (4.32)

~e(x) = (ex, ez)
T and ψ is the arbitrary amplitude of the linear mode (|ψ| ∼

o(s1/2)). Without any loss of generality the linear mode profile ~e can be assumed

dimensionless if the physical units are carried by the free amplitude I1/2ψ. The

magnetic field component Hy can be expressed in terms of the linear mode ~A =

I1/2ψ(z, y)~e through Eq. (4.8), which gives

Hy =
εa
β
ε0cI

1/2ψex. (4.33)

The power density (measured in W/m) bridged in the z-direction can be calcu-

lated as the flux of the z-component of the Poynting vector

Pz =
1

4k

∫ +∞

−∞

(AxH
∗
y + A∗

xHy)dx = I|ψ|2 ε0c
2βk

Q, (4.34)

where

Q =

∫ +∞

−∞

εa|ex|2dx. (4.35)

The normalization factor I is fixed in such a way that |ψ|2 represents the power

density carried in z direction Pz = |ψ|2:

I =
2βk

ε0cQ
. (4.36)

Hence, the squared amplitude |ψ|2 is measured in the units of the power density

(W/m).
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4.1 Multiple scale expansion of Maxwell equations

In the following o(s) order of the multiple scale expansion, one finds the BVP

for the transvere field component Ey = C(ψ, x):

∂2
xxC − (β2 − εa)C = 0, (4.37)

with the BC

Ey : ∆j [C] = 0. (4.38)

The z-component of the magnetic field Hz (Hz ∼ o(s)) can be calculated from

Eq. (4.8):

Hz =
1

iµ0c

(

∂xC − I1/2∂yψex
)

. (4.39)

The continuity of Hz requires that ∆j [∂xC] = I1/2∂yψ∆j [ex]. In general the

solution of the BVP is

C = I1/2∂yψey, (4.40)

where ey(x) is bound (|ey| → 0 as x → ±∞), continuous and solves the above

BVP with the BCs

∆j [ey] = 0, (4.41)

∆j [∂xey] = ∆j[ex]. (4.42)

The requirement for the mode to be quasi TM polarised at the o(s) order is

expressed through the condition

Hx =
1

iµ0c
I1/2∂yψ(ez − iβey) = 0, (4.43)

which is satisfied by ey = ez/iβ. Indeed, manipulating Eq. (4.26) it is straight-

forward to demonstrate that ez satisfies the same BVP of ey. In addition, by

setting ey = ez/iβ Eq. (4.42) is automatically satisfied. The identity ey = ez/iβ

couples the diffraction induced transverse field ey with the longitudinal field ez

and enables the possibility to eliminate ey from the following calculations.

At the o(s3/2) order, Maxwell equations provide an inhomogeneous system of

differential equations

L̂ ~B = I1/2 ~J, (4.44)
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4.2 Nonlinear Schrödinger equation (NLSE)

with the BCs

Ex : ∆j[εaBx] = −∆j [εbAx]− I1/2ψ|ψ|2∆j[nx], (4.45)

Ez : ∆[Bz] = 0. (4.46)

~B = (Bx, Bz)
T and ~J = (Jx, Jz)

T is the displacement induced by the perturba-

tions

Jx = ∂zψ(2iβex − ∂xez) + ∂2
yyψ(ex − ∂xey) + ψεbex +

+ψ|ψ|2INx(ex, 0, ez), (4.47)

Jz = −∂zψ∂xex + ψεbez + ψ|ψ|2INz(ex, 0, ez), (4.48)

where the functions Nx,z(ex, 0, ez) are provided by Eq. (4.15).

4.2 Nonlinear Schrödinger equation (NLSE)

Unlike done in the the previous chapter, where we directly calculated the field cor-

rections ( ~B) and imposed the BCs, here the propagation equation is determined

by projecting Eq. (4.44) onto the linear TM-mode ~e = (ex ex)
T :

∫ ∞

−∞

(~e∗ · L̂ ~B)dx = I1/2

∫ ∞

−∞

(~e∗ · ~J)dx. (4.49)

The scalar product condition above constitutes the solvability condition for the

multiple scale expansion and guarantees the absence of secular terms in the so-

lution for the field correction ~B. We emphasise an important aspect of the pro-

jection procedure, which is the application of integration by parts

∫ ∞

−∞

f ′gdx =

N
∑

j=1

∆j [fg]−
∫ +∞

−∞

fg′dx. (4.50)

Such an aspect is important since it allows using boundary conditions accounting

for both the linear and nonlinear corrections to evaluate the off-integral terms.

Importantly, both right and left hand sides of Eq. (4.49) yield non-zero contri-

butions:
∫ ∞

−∞

(~e∗ · L̂ ~B)dx = −iβηPI1/2∂zψ, (4.51)
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4.2 Nonlinear Schrödinger equation (NLSE)

∫ ∞

−∞

(~e∗ · ~J)dx = iβ(2 + η)P∂zψ + (1 + η)P∂2
yyψ + ψ

∫ ∞

−∞

εb|~e|2dx+

+ψ|ψ|2I
∫ ∞

−∞

[e∗xNx(ex, 0, ez) + e∗zNz(ex, 0, ez)] dx, (4.52)

where

η =
1

βP

∑

j

(iez(xj))
∗∆j [ex] (4.53)

and

P =

∫ ∞

−∞

|~e|2dx. (4.54)

The resulting nonlinear Schrödinger equation (NLSE) for the field amplitude ψ

is

i
∂ψ

∂(z/k)
+

1

2βk

∂2ψ

∂(y/k)2
+ αψ + Υ|ψ|2ψ = 0, (4.55)

where the linear parameter α is

α =
√
gl, (4.56)

l =
k
√
g

2Pβ

∫ ∞

−∞

εb|~e|2dx, (4.57)

and the nonlinear parameter Υ can be expressed as

Υ = gγ, (4.58)

γ =
2k2

3β2P 2

∫ ∞

−∞

εan2

[

|~e|4 +
1

2
|~e2|2

]

dx. (4.59)

In the equation above we expressed the nonlinear susceptibility χ3 = (4/3)n2ε0εac

in terms of the Kerr coefficient n2.

We emphasise that BCs enter Eqs. (4.51,4.52) through the surface term η,

given by Eq. (4.53), affecting both the linear and nonlinear terms in the resulting

NLSE. Importantly, the nonlinear coefficient Υ differs from γ by the factor g

g =
1

(1 + η)2
, (4.60)

which we call the surface induced nonlinearity enhancement factor. The units of

n2 are m2/W , while the units of γ and Υ in the one dimensional geometry are
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4.3 Comparison with other approaches

1/W since |ψ|2 represents the power density carried in the z-direction (measured

in W/m).

The effective nonlinear parameter Υ = gγ is significantly enhanced (g > 1) if

η deviates from η = 0. The surface term η is given by Eq. (4.53) and depends

on the product of the longitudinal field component at the boundaries ez(xj) with

the discontinuities of the transverse field component ∆j [ex] summed over all the

interfaces xj (j = 1, 2, ...N). Note that the divergence condition for linear TM

modes

∇ ·
[

εa~E
]

= 0 (4.61)

links the field components ex, ez through the equation

∂xεaex = −iβεaez. (4.62)

Hence, the transverse (ex) and longitudinal (ez) field components are charac-

terised by a π/2 phase shift and as a consequence the surface term is purely

real:

η = (1/βP )
∑

j

(iez(xj))
∗∆j[ex] ∈ <. (4.63)

We calculated η for different metallic and dielectric waveguides, finding that

−1 < η < 0. This implies that g > 1 and as a consequence the surface term η,

depending on the transverse field discontinuities and on the longitudinal fields at

the boundaries x1, x2, ...xN , leads to the enhancement of the nonlinear response of

the TM guided modes. Note that, together with the effective nonlinear response,

also the effective linear coefficient α (accounting for loss/gain) is enhanced: α =
√
gl.

4.3 Comparison with other approaches

If the surface term is neglected (η = 0, g = 1), the left hand side contribution to

the NLSE is null
∫ ∞

−∞

(~e∗ · L̂ ~B)dx = 0, (4.64)

since the linear mode (~e) is eigenvector of the linear operator (L̂) with zero

eigenvalue: L̂~e = 0.
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4.3 Comparison with other approaches

The resulting nonlinear parameter γ coincides with the averaging approach

dating back to the use of the scalar wave equation [Agrawal, 2001b] later extended

to the vectorial case in order to model propagation of SPPs [Davoyan et al., 2009b,

2010b; Feigenbaum and Orenstein, 2007]. Further, in the weakly guiding limit of

quasi-transverse modes

ez → 0, (4.65)

β2 → εa, (4.66)

the nonlinear parameter γ reduces to

γ ' n2k

Lx
, (4.67)

where

Lx = k−1

(∫

|ex|2dx
)2

∫

|ex|4dx
(4.68)

is the characteristic modal length along the x-direction. Such an expression per-

fectly coincides with the one dimensional analogue of the nonlinear parameter γ

calculated in the scalar approximation [Agrawal, 2001b].

In addition, by substituting the linear Maxwell equations in Eq. (4.34) and

by applying the integration by parts, it is straightforward to demonstrate that

Q = (1 + η)β2P = β

∫ +∞

−∞

Re
[

~e×~h∗
]

· ẑdx, (4.69)

where Q,P are given by Eqs. (4.35,4.54) and

~h = hy ŷ, (4.70)

hy(x) =
εa
β
ex(x), (4.71)

Hy = ε0cI
1/2ψhy(x). (4.72)

In turn, the nonlinear parameter Υ accounting for the surface term η can be

reduced to

Υ =
k2

3

∫∞

−∞
εan2 [2|~e|4 + |~e2|2] dx

(

∫ +∞

−∞
Re
[

~e×~h∗
]

· ẑdx
)2 . (4.73)
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4.4 Nonlinearity enhancement in basic waveguide geometries

Note that the expression above does not contain explicitly the surface term η,

which has been used in the integration by parts to get Re
[

~e×~h∗
]

from P . Such

an expression for Υ thoroughly coincides with the one-dimensional analogue of

the nonlinear coefficient provided by the approach based on the Lorentz Reci-

procity Theorem (LRT) for two dimensional subwavelength waveguides [Afshar

and Monro, 2009; Koos et al., 2007; Osgood et al., 2009]. To the best of our

knowledge, the application of the LRT approach to one-dimensional photonic

structures, where diffraction in the transverse direction y is considered as a per-

turbation, has not been developed. Hence, a complete comparison between our

method and the LRT approach is not possible at this stage. A thorough equiva-

lence is demonstrated in chapter 7, where the multiple scale expansion is applied

to subwavelength cylindrical waveguides.

In view of the above observations, the nonlinearity enhancement observed

in Ref. [Koos et al., 2007] is completely explained in terms of surface effects

originating from the boundaries, which are relevant in the subwavelength regime.

Such effects are automatically taken into account in the LRT approach, while they

are neglected in the averaging perturbative methods [Agrawal, 2001b; Davoyan

et al., 2009b, 2010b; Feigenbaum and Orenstein, 2007].

The propagation operator in the NLSE derived by us is given by

i∂z +
1

2β
∂2
yy (4.74)

and is characterised by the diffraction coefficient 1/2β, finding confirmation in

Ref. [DellaValle and Longhi, 2010]. Conversely, in other studies focused on

the diffraction and self-focusing of SPPs [Davoyan et al., 2009b], the diffraction

coefficient is affected by a geometry-dependent correction.

4.4 Nonlinearity enhancement in basic waveg-

uide geometries

In this section, we calculate explicitly the surface term η given by Eq. (4.53) for

several one-dimensional photonic structures. Figs. 4.2(d-f) depict the surface-

induced nonlinearity enhancement factor g = (1 + η)−2 for the three geometries
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Figure 4.2: (a-c) Surface induced nonlinearity enhancement factor g for three

different waveguide geometries. The corresponding waveguides and the electric

field profiles are depicted in (d-f). (a,d) Single dielectric waveguide of width

w. (b,e) Dielectric slot waveguide: two dielectric waveguides separated by the

distance d. (c,f) Metal slot waveguide: two metal interfaces separated by distance

d. This figure is a courtesy of A. Gorbach.
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4.4 Nonlinearity enhancement in basic waveguide geometries

shown in Figs. 4.2(a-c). The surface term η is determined directly from the

analytical expressions of the linear modes and of the corresponding dispersion

relations. In what follows, we focus our attention only on the TM modes with

symmetric transverse field (ex) component (and antisymmetric longitudinal ez

field component), which exhibit the extreme field enhancement observed in slot

dielectric waveguides [Almeida et al., 2004b].

4.4.1 Slab dielectric waveguide

In the first place, we consider an optical waveguide composed of a high-index

dielectric slab (n2
w = εw) of width w (rescaled to k−1 where k = ω/c) embedded

in a low-index cladding material (n2
d = εd < εw). The TM mode of this waveguide

is solution of Eq. (4.32):

ex =











iβ

κ
cos(κx) |x| < w/2 ,

iβ

q
sin(κw/2)e−q(|x|−w/2) |x| > w/2 ,

(4.75)

ez =

{

sin(κx) |x| < w/2 ,
x

|x| sin(κw/2)e−q(|x|−w/2) |x| > w/2 , (4.76)

where κ2 = εw−β2, q2 = β2−εd. The modal field components above automatically

solve the BCs given by Eqs. (4.27,4.28), providing that the propagation constant

β satisfies the dispersion relation

qεw = κεd tan(κw/2). (4.77)

Inserting Eqs. (4.75,4.76) into Eq. (4.53) one achieves the following analytical

expression for the surface term η

η =
2(1− εw/εd)

(εw/εd)(1 + β2/q2)− (1− β2/κ2) + wκ(1 + β2/κ2)/ sin(κw)
.

Such a surface term is always negative and becomes negligible |η| << 1 in both

limits w >> 1 and w << 1. As a consequence, the nonlinearity enhancement

g = (1 + η)−2 deviates significantly from g = 1 only for the optimal width

w ≈ 1, where the nonlinear response of the slab waveguide is resonant. Fig.
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4.4 Nonlinearity enhancement in basic waveguide geometries

4.2a depicts the nonlinearity enhancement g for a silicon slab surrounded by air

(εw = 10, εd = 1, black curve), where the resonant peak reaches g ' 4, and for

a silica slab surrounded by air (εw = 2, εd = 1, red curve), where the resonant

peak reaches g ' 0.2. In turn, surface effects are considerably relevant for slab

waveguides with high index-step, where the field discontinuities at the boundaries

are significant.

The equations of this section are courtesy of A. Gorbach.

4.4.2 Dielectric slot waveguide

A dielectric slot waveguide is composed of two identical high-index n2
w = εw

dielectric slabs of width w separated by a small gap d (both rescaled to k−1)

and surrounded by a low-index dielectric medium n2
d = εd < εw (see Fig. 4.2e)

[Almeida et al., 2004b]. The TM mode with symmetric transverse field (ex(x) =

ex(−x)) gets tightly confined within the low-index slot, as shown in Fig. 4.2e.

The ex, ez field profiles are:

ex =



























−iβ
qd

Πe−qd(|x|−s) |x| > s ,

iβ

qw
Π sin[qw(|x| − s)] +

iβ

qw
Λ cos[qw(|x| − s)] d/2 < |x| < s ,

−iβ
qd

cosh(qdx) |x| < d/2 ,

ez =



















− x

|x|Πe
−qd(|x|−s) |x| > s ,

− x

|x|Π cos[qw(|x| − s)] +
x

|x|Λ sin[qw(|x| − s)] d/2 < |x| < s ,

sinh(qdx) |x| < d/2 ,

where q2
d,w = β2 − εd,w, s = w + d/2, the constants Π,Λ are given by

Π =
qwεd cosh(qdd/2)

qdεw sin(qww) + qwεdcos(qww)
, (4.78)

Λ = −qwεd
qdεw

Π, (4.79)

and the propagation constant satisfies the dispersion relation

tanh(qdd/2) =
qwεd
qdεw

qwεd tan(qww)− qdεw
qdεw tan(qww) + qwεd

. (4.80)
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Figure 4.3: Comparison between γ/Ly (dashed lines) and the surface enhanced

Υ/Ly (solid lines) nonlinear parameters for the silicon (a) and metal (b) slot

waveguides with the polymer filled slot. n2 for silicon and polymer are assumed

to be the same 4 · 10−18m2/W, while the dielectric constants are εw = 12 and

εd = 3.2, respectively. w = 0.7, λ = 1.5µm and Ly = 100nm. In (b), the metal is

assumed linear and εm = −25, εd = 4, λ = 0.8µm. This figure is a courtesy of A.

Gorbach.

Note that the mode dispersion converges to the dispersion of dielectric slab waveg-

uides of width w and 2w in the limits d >> 1 and d << 1, respectively. An

explicit analytic expression for the surface term η can be calculated straightfor-

wardly by substituting the mode profiles ex, ez into Eq. (4.53). However, such an

expression is cumbersome and is not included here. The dependence of the non-

linearity enhancement g = (1+η)−2 on the slot width for a silicon slot waveguide

(εw = 10, εd = 1) is depicted in Fig. 4.2b for several slab widths: w = 0.5, 0.7, 1.

The position of the maximum of the nonlinearity enhancement g varies with the

slab width w, but it remains around d ≈ 0.1.

The nonlinear parameters γ/Ly,Υ/Ly (in W−1m−1 physical units) are plotted

as functions of the slot spacing d in Fig. 4.3a, where Ly = 100nm is the typical

length scale of silicon slot waveguides in the y-direction [Koos et al., 2007]. For

the numerical computations we considered a hybrid silicon-organic polymer slot

waveguide [Koos et al., 2009]. The nonlinear parameters of the silicon and of

the polymer are assumed to be the same n2 = 4 · 10−18m2/W, while the dielec-

116

Chapter4/Chapter4Figs/EPS/fig2a.eps
Chapter4/Chapter4Figs/EPS/fig2b.eps


4.4 Nonlinearity enhancement in basic waveguide geometries

tric susceptibilities are εw = 12 (silicon) and εd = 3.2 (organic polymer). The

two nonlinear parameters γ/Ly,Υ/Ly differ considerably at d ≈ 0.1, where the

effective nonlinear response of the slot waveguide is resonant.

4.4.3 Metal-Insulator-Metal (MIM) slot waveguide

In this section we consider the Metal-Insulator-Metal (MIM) slot waveguide de-

picted in Fig. 4.2f. Such a plasmonic structure is composed of two metals (εm < 0)

with planar interfaces that sandwich a dielectric slot of width d (εd > 0). The

plasmonic mode with symmetric transverse field component ex(x) = ex(−x) and

antisymmetric longitudinal field component ez(x) = −ez(−x) is

ex =











−iβ
qd

cosh(qdx) |x| < d/2 ,

iβ

qm
sinh(qdd/2)e−qm(|x|−d/2) |x| > d/2 ,

(4.81)

ez =

{

sinh(qdx) |x| < d/2 ,
x

|x| sinh(qdd/2)e−qm(|x|−d/2) |x| > d/2 , (4.82)

where q2
d,m = β2 − εd,m and the propagation constant β solves the dispersion law

tanh(qdd/2) = −qmεd
qdεm

. (4.83)

The surface term η in this case is given by

η =
2(1− εd/εm)

(εd/εm)(1 + β2/q2
m)− (1 + β2/q2

d) + qdd(1− β2/q2
d)/ sinh(qdd)

. (4.84)

The equations above are courtesy of A. Gorbach.

The nonlinearity enhancement g = (1 + η)−2 is plotted as a function of the

slot width d in Fig. 4.2c for εd = 1, εm = −2 (red line) and εd = 1, εm = −10

(black line). The metal loss ε′′m is considered as a small perturbation, which is

taken into account by the damping parameter α. Note that for this geometry

the nonlinear enhancement is considerably high g ' 20 − 50 and diverges as it

approaches the plasmon resonance. As the slot width d tends to zero, the surface

term η converges to

lim
d→0

η = −1, (4.85)
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4.4 Nonlinearity enhancement in basic waveguide geometries

and the nonlinearity enhancement g = (1+η)−1 diverges sharply with the typical

power law g ∼ 1/d2. Thus, conversely to dielectric slot waveguide where g, γ,Υ

tend to zero in the limit d << 1, here the nonlinear parameters Υ, γ behave in a

completely different manner. Indeed, in the limit d→ 0, the nonlinear parameter

γ resulting from the averaging approach tends to zero

lim
d→0

γ = 0, (4.86)

while the nonlinear parameter Υ accounting for surface effects diverges

lim
d→0

Υ =∞. (4.87)

Hence, for narrow metallic slot waveguides, the surface-induced nonlinearity en-

hancement originating from the boundaries affects dramatically the effective non-

linear response. In turn, approaches neglecting the surface contribution [Davoyan

et al., 2009b, 2010b; Feigenbaum and Orenstein, 2007] are not appropriate to

model optical propagation in this regime.

In the opposite limiting case d >> 1, the SPPs at the single planar interfaces

x = ±d/2 are weakly coupled and the dispersion of the metallic slot waveguide

tends to the single interface one

lim
d→+∞

β =
εdεm
εd + εm

. (4.88)

The plasmonic mode profiles are well approximated by

ex =
iβ

qd
e−qd(x+d/2)θ(x+ d/2)− iβ

qm
eqm(x+d/2)θ(−d/2− x) +

− iβ
qm
e−qm(x−d/2)θ(x− d/2) +

iβ

qd
eqd(x−d/2)θ(d/2− x), (4.89)

ez = e−qd(x+d/2)θ(x+ d/2) + eqm(x+d/2)θ(−d/2− x) +

−e−qm(x−d/2)θ(x− d/2)− eqd(x−d/2)θ(d/2− x), (4.90)

where θ(x) is the Heaviside function. The surface term η is

η =
2εdεm
ε2d + ε2m

, (4.91)

118



4.5 Concluding remarks

and the nonlinearity enhancement factor g = (1 + η)−2 assumes the simple form

gSPP =
(ε2d + ε2m)2

(εd + εm)4
. (4.92)

The nonlinearity enhancement gSPP diverges at the surface plasmon resonance

wavelength λSPP , characterised by the condition εm(λSPP ) = −εd. An explicit

form of the nonlinear parameter γ resulting from the averaging approach for SPPs

at a single interface is

γ =
2

3
k2n2εdε

2
m

(εd + εm)2

(ε2m + ε2d)
2

[

1 +
1

2

(

εd + εm
εd − εm

)2
]

. (4.93)

Note that γ tends to zero at the surface plasmon resonance: limεd→εm γ = 0.

Conversely, the nonlinear parameter Υ including surface effects originating from

the boundaries

Υspp =
2

3
k2n2

εdε
2
m

(εd + εm)2

[

1 +
1

2

(

εd + εm
εd − εm

)2
]

(4.94)

diverges to infinity in the surface plasmon resonance limit

lim
εd→εm

Υ =∞, (4.95)

since the enhancement factor gspp ' (εd + εm)−4 grows at a rate faster than

(1/γ) ' (εd + εm)−2.

4.5 Concluding remarks

In this chapter we have developed a novel perturbative approach to model the

nonlinear propagation of TM waves in generic one-dimensional plasmonic struc-

tures. In such an approach the propagation equation is achieved as the solvability

condition of the multiple scale expansion. Indeed, it is not necessary to calcu-

late the residual field corrections due to loss, gain and nonlinearity in order to

achieve the equation of propagation for the field amplitude. For this reason such

a perturbative theory is more flexible and suitable to model optical propagation

in complex plasmonic geometries. Besides, such a perturbative approach is more
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transparent since it allows to identify the physical origin of the modified effective

loss and nonlinear response: surface-effects. Such contributions in the boundary

conditions are neglected in the traditional perturbative theory used to model the

propagation in optical fibres [Agrawal, 2001a]. As a consequence, the nonlinear

Schrödinger equation (NLSE) for the field amplitude is modified by the surface

term η. We observe a nonlinearity enhancement g = (1 + η)−2 and a loss en-

hancement
√
g with respect to the traditional approach [Davoyan et al., 2009b;

Feigenbaum and Orenstein, 2007]. The original results reported in this chapter

have been published in Ref. [Skryabin et al., 2011].
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Chapter 5

Coupled mode theory for SPP

arrays

Research in optics in the last two decades has been revolutionised by the advent

of photonic crystals [John, 1987; Yablonovitch, 1987], which have been briefly

introduced in section 1.2.5. Optical propagation in layered structures has been

studied extensively since the end of the nineteenth century [Rayleigh, 1888], dis-

covering that the reflective properties of such systems are strongly dependent on

the optical wavelength and can be described in terms of photonic bands and gaps

[Joannopoulos et al., 2008]. Two-dimensional photonic crystals with complete

photonic bandgaps have been exploited for guiding light in Hollow Core Photonic

Crystal Fibres (HCPCFs), which find enormous applications in optical communi-

cations, nonlinear devices, fibre-based lasers and gas sensing [Cregan et al., 1999;

Knight et al., 1996; Russell, 2003].

In general, if two optical waveguides lie in close proximity, the optical power is

transferred from one waveguide to the other (and viceversa) owing to the evanes-

cent overlap of the electromagnetic field tails. Such a passive device is commonly

named directional coupler and has found useful applications in trasmission lines

[Bergh et al., 1980; Trinh et al., 1995]. In principle, a directional coupler can be

thought of as a waveguide on its own possessing two principal modes with dif-

ferent propagation constants, named supermodes; if the coupled waveguides are

identical, supermodes are either symmetric or antisymmetric. Hence, if a generic

superposition of the two modes is excited, the beating between symmetric and
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antisymmetric supermodes occurs owing to propagation-dependent cycles of con-

structive and destructive interference [Agrawal, 2001a]. If the two waveguides

are nonlinear, it is possible to use the nonlinear coupler for all-optical switching

[Jensen, 1982], which has been demonstrated both theoretically and experimen-

tally [Friberg et al., 1988; LiKamWa et al., 1985; Stegeman and Seaton, 1985].

In waveguide arrays, the optical field can be expressed in terms of a generic

superposition of Floquet-Bloch modes of the entire structure. In the tight bind-

ing approximation, the electromagnetic coupling between the single modes of

neighbouring waveguides is responsible for discrete diffraction, which was first

considered by Allan Jones in the study of optical coupling mechanisms [Jones,

1965] and later observed in GaAs waveguide arrays [Somekh et al., 1973]. Unlike

isotropic materials, where diffraction is a constant, for waveguide arrays it has

been demonstrated that it is possible to manipulate discrete refraction [Locatelli

et al., 2006; Rosberg et al., 2005] and diffraction [Eisenberg et al., 2000; Pertsch

et al., 2002], which can be reduced, canceled or reversed in the proximity of the

edge of the Brillouin zone. Further, in inhomogeneous arrays where the propaga-

tion constants of every waveguide change linearly with respect to the transverse

position in the array, Bloch oscillations [Morandotti et al., 1999b; Pertsch et al.,

1999; Peschel et al., 1998] and Landau-Zener tunnelling [Longhi, 2008; Trompeter

et al., 2006a,b] have been observed.

For arrays of nonlinear waveguides, it is possible to suppress the discrete

diffraction by exciting particular electromagnetic field patterns: optical discrete

solitons [Christodoulides and Joseph, 1988; Eisenberg et al., 1998]. Basically, an

array of coupled nonlinear waveguides can be modelled by a coupled system of

nonlinear oscillators and the discrete solitons represent the localised collective

oscillations of the nonlinear chain.

Analogously to the Kerr solitons in homogeneous media, discrete solitons re-

sult from the perfect balance between nonlinearity and discrete diffraction. Hence,

the power flow remains confined only in few waveguides, and the discrete soliton

pattern propagates without distorting and diffracting.

Another interpretation of discrete soliton formation borrows ideas from pho-

tonic crystal theory. On-site nonlinearity can be interpreted as a defect that

breaks the perfect periodicity, since it is responsible for the local propagation
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constant shifts at every site of the waveguide array. From this perspective,

a discrete soliton can be thought of as a confined defect state induced by the

nonlinearity [Lederer et al., 2008]. Discrete self-focusing can be achieved in ar-

rays of nonlinearly coupled defocusing waveguides within the momentum space

bandgap [Kivshar, 1993], analogously to spatio-temporal gap solitons that arise

within the frequency bandgap [Aceves and Wabnitz, 1989; Chen and Mills, 1987;

Christodoulides and Joseph, 1989]. Conversely to solitons in continuous and

isotropic media that are invariant under rotation and translation symmetries, for

discrete solitons the rotational symmetry is broken and the translational sym-

metry becomes discrete. Nevertheless, discrete solitons can propagate with a

tilted angle ϕ under certain conditions depending on the optical power and on

the ϕ-dependent Peierls-Nabarro barrier [Kivshar and Campbell, 1993].

Linear and nonlinear effects in waveguide arrays are still receiving attention by

the scientific community, but a complete description of such effects goes beyond

the extent of this thesis. In this chapter, we derive a coupled mode theory in order

to describe SPP propagation in arrays of plasmonic waveguides and discrete/gap

plasmon soliton formation. We will demonstrate that the inclusion of metallic

components introduces a new quantitative and qualitative phenomenology both

in the linear and nonlinear regimes.

The intrinsic subwavelength nature of SPPs attracts interest for potential ap-

plications, since the tight confinement of SPPs enhances nonlinear effects that can

be exploited for frequency conversion, nonlinear switching and soliton formation.

In chapter 3, we demonstrated that the embedding of gain and nonlinearity can

balance the diffraction and loss of SPPs, allowing for plasmon-soliton formation

[Davoyan et al., 2009b; Feigenbaum and Orenstein, 2007]. On the other hand,

as mentioned above, diffraction can be controlled also by using periodic struc-

tures [Eisenberg et al., 2000; Pertsch et al., 2002], which are responsible for the

formation of bands and gaps [Lederer et al., 2008].

Optical propagation in coupled plasmonic waveguides is receiving a consid-

erable interest by the scientific community. Indeed, the interplay between the

subwavelength nature of SPP waves with the periodic modulation of the plas-

monic structure can lead to relevant results. One of these results concerns the

possibility to achieve negative coupling in plasmonic arrays [Guasoni et al., 2010;
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5.1 Discrete nonlinear Schrödinger equation for SPP arrays

Xu and Aitchison, 2009], which can lead to Tamm-like and Shockley-like surface

mode formation [Nam et al., 2010b], conical-like diffraction [Nam et al., 2010a]

and negative refraction [Fan et al., 2006], which has been also observed in two-

dimensional arrays of metallic nanowires [Liu et al., 2008]. Negative refraction

has been investigated since the 1960s [Veselago, 1968] and has recently found an

experimental implementation in metamaterials [Dolling et al., 2006, 2007; Shelby

et al., 2001; Zhang et al., 2005]. Applications of negative refraction include su-

perlensing [Pendry, 2000] and cloaking devices [Leonhardt, 2006; Schurig et al.,

2006; Valentine et al., 2009].

Theoretical modelling of optical propagation in nonlinear metamaterials has

been investigated recently; steplike optical transmission [Husakou and Herrmann,

2007] and giant nonlinear response in epsilon-near-zero (ENZ) metamaterials

[Ciattoni et al., 2010a,b,c, 2011] have been reported. The effective optical re-

sponse εeff of metamaterials is determined through the long-wavelength limit of

the exact dispersion of Bloch modes [Elser et al., 2007; Yang et al., 2010, 2011;

Yannopapas and Vanakaras, 2011]. Nonlinear propagation of SPPs in plasmonic

couplers [Davoyan et al., 2011; Salgueiro and Kivshar, 2010] and arrays [Davoyan

et al., 2008; Liu et al., 2007; Wang et al., 2008; Ye et al., 2010, 2011] has been

studied by first principle numerical solution of nonlinear Maxwell equations. Such

an approach for solving nonlinear Maxwell equations in subwavelength plasmonic

structures yields accurate results but provides a limited understanding of the un-

derpinning physical mechanisms leading to the modified phenomenology. Thus,

the development of reliable analytical models for the description of SPP propa-

gation in plasmonic waveguide arrays is an important task to address.

In what follows, we develop a coupled mode theory for nonlinear SPPs propa-

gating along the interfaces of a metal-dielectric stack, predicting the existence of a

plasmonic band-gap structure and reporting families of discrete and gap solitons.
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5.1 Discrete nonlinear Schrödinger equation for SPP arrays

Figure 5.1: Schematic representation of an array of plasmonic waveguides, com-

posed of a dielectric-metal stack. Dielectric and metallic slabs of width ad, am

(normalized to k−1) and dielectric susceptibilities εd, εm are labelled by D,M, re-

spectively. The integer n labels the nth metallic stripe.

5.1 Discrete nonlinear Schrödinger equation for

SPP arrays

In this section, we derive the discrete nonlinear Schrödinger equation (DNLSE) for

SPPs propagating in a metal-dielectric stack, which is schematically depicted in

Fig. 5.1. Such a one-dimensional structure is homogeneous in the y, z directions,

periodic in the x-direction and consists of alternating metal and dielectric slabs

of widths ad,m, respectively. Without any loss of generality, we assume that SPP

waves propagate in the z-direction along every metal-dielectric interface and are

infinitely extended in the y-direction. As done in chapter 4, we start our analysis

from the Maxwell equations for the monochromatic fields ~Ee−iωt, ~He−iωt:

∇×∇× ~E =
1

ε0
~D, (5.1)

subject to boundary conditions at the interfaces x = x
(L)
n , x

(R)
n (−∞ < n < +∞,

|n| ∈ N). x, y, z coordinates are dimensionless and normalized to the inverse

wave vector k−1 = λ/2π, where λ is the vacuum wavelength. Like in the previous
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5.1 Discrete nonlinear Schrödinger equation for SPP arrays

chapter, the physical electric and magnetic fields are provided by the real parts

Re[~Ee−iωt], Re[~He−iωt] and the vector ~D is the electric displacement

~D = ε0(ε~E + ~N), (5.2)

where the nonlinear part ~N is assumed Kerr-like

~N =
1

2
χ3

[

|~E|2~E +
1

2
(~E · ~E)~E∗

]

. (5.3)

The linear dielectric susceptibility profile ε(x) is periodic, corresponding to ε =

ε′m + iε′′m and ε = εd in metal (M) and dielectric (D) regions, respectively. The

nonlinear parameter χ3 = (4/3)ε0cεdn2 represents the Kerr susceptibility and

is measured in m2V −2. In what follows, we assume that the nonlinear processes

occur only in the dielectric medium and we neglect the metal nonlinearity. Hence,

the nonlinear susceptibility profile χ3(x) is null within the metallic slabs and a

non-zero constant in the dielectric regions. Since the electric and magnetic fields

are assumed infinitely extended along the y-direction, ∂y derivatives in Eq. (5.2)

are null and it is possible to achieve a system of differential equations for the

Ex,Ez field components of plasmonic TM waves (Ey = 0)

∂2
xzEz − ∂2

zzEx =
1

ε0
Dx, (5.4)

∂2
xzEx − ∂2

xxEz =
1

ε0
Dz. (5.5)

The magnetic field ~H = Hy ŷ is determined by

~H =
1

iµ0c
∇× ~E. (5.6)

The geometrical parameters ad,m of the metal-dielectric stack are assumed such

that the SPPs propagating along the single interfaces x = x
(R)
n−1, x

(L)
n , x

(R)
n , x

(L)
n+1 are

weakly interacting and are not affected by the presence of the neighbouring SPPs

at the lowest order of the multiple scale expansion. For example, if λ = 550nm,

εd = 1.8 and ε′m = −15 (silver), the SPP amplitude is reduced by a factor e for the

typical distances ld ' 170nm on the dielectric side and lm ' 20nm on the metal

side, corresponding to kld ' 2 and klm ' 0.24 in dimensionless units. Hence, if
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5.1 Discrete nonlinear Schrödinger equation for SPP arrays

we set the interface spacings to ad = 5 (dielectric width) and am = 0.5 (metal

width), the effective coupling between SPPs propagating along different planar

interfaces is considerably small and a coupled mode approach is justified.

Before proceeding with the perturbative expansion, we note that SPPs propa-

gating in the metal-dielectric stack can be separated in two classes with opposite

chirality. The first class is composed by Dielectric-Metal (DM) SPPs propagating

along the left interface of the nth metallic stripe (represented by the amplitude

Ln, see Fig. 5.1). On the other hand, the second class is constituted by Metal-

Dielectric (MD) SPPs propagating along the right interface of the nth metallic

stripe (represented by the amplitude Rn, see Fig. 5.1).

Following the same mathematical procedure described in chapter 4, we make

the assumption

ε = εa + εb, (5.7)

where εa is ε′m, εd in metal and dielectric regions, respectively (see Fig. 5.2), while

εb is non-zero only in the metallic regions and accounts for the metallic loss iε′′m.

Introducing the small dummy variable s, we make the following ansatz

Ex(x, z) = I
1/2

+∞
∑

n=−∞

[

Ln(z)e
(L)
x (x− x(L)

n ) +Rn(z)e
(R)
x (x− x(R)

n )
]

eiβ0z +

+δExe
iβ0z + o(s5/2), (5.8)

Ez(x, z) = I
1/2

+∞
∑

n=−∞

[

Ln(z)e
(L)
z (x− x(L)

n ) +Rn(z)e
(R)
z (x− x(R)

n )
]

eiβ0z +

+δEze
iβ0z + o(s5/2), (5.9)

and assume that

∣

∣

∣

√

χ3ILne
(L,R)
x,z

∣

∣

∣
,
∣

∣

∣

√

χ3IRne
(L,R)
x,z

∣

∣

∣
∼ o(s1/2), (5.10)

|εb| , e−qdad , e−qmam ∼ o(s), (5.11)
∣

∣

∣

√

χ3I∂zLne
(L,R)
x,z

∣

∣

∣
,
∣

∣

∣

√

χ3I∂zRne
(L,R)
x,z

∣

∣

∣
, |√χ3Nx,z| ∼ o(s3/2), (5.12)

where q2
d = β2

0 − εd, q
2
m = β2

0 − ε′m and x
(L)
n , x

(R)
n are the positions of the left

and right interfaces of the nth metallic stripe, respectively. The SPP amplitudes
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5.1 Discrete nonlinear Schrödinger equation for SPP arrays

Ln(z), Rn(z) and the mode profiles ~eL,R are dimensionless. The physical dimen-

sions are carried by the constant I1/2 (measured in V/m) that will be determined

later. At the o(s1/2) order, for every nth metal stripe, Maxwell equations provide

L̂k~ek = 0, (5.13)

where ~ek are the uncoupled linear mode profiles ~ek = (e
(k)
x e

(k)
z )T , the labels

k = L,R represent the left (DM) and right (MD) SPPs, respectively, and

L̂k =

(

β2
0 − εk iβ0∂x
iβ0∂x −εk − ∂2

xx

)

. (5.14)

The dielectric susceptibility profiles εk = εL,R, schematically depicted in Fig. 5.2,

are explicitly given by

εL = ε′mθ
(

x− x(L)
n

)

+ εdθ
(

x(L)
n − x

)

, (5.15)

εR = ε′mθ
(

x(R)
n − x

)

+ εdθ
(

x− x(R)
n

)

, (5.16)

where θ(x) is the Heaviside step function. BCs at o(s1/2) order require the con-

tinuity of e
(k)
z (x− x(k)

n ) and εke
(k)
x (x− x(k)

n ) at x = x
(k)
n (k = L,R):

εde
(L)
x (0−) = ε′me

(L)
x (0+), (5.17)

e(L)
z (0−) = e(L)

z (0+), (5.18)

ε′me
(R)
x (0−) = εde

(R)
x (0+), (5.19)

e(R)
z (0−) = e(R)

z (0+). (5.20)

Note that ~eL, ~eR are defined as functions of x̃ = x−x(L)
n and x̃ = x−x(R)

n , re-

spectively. Thus, BCs for the continuity of εaEx,Ez at the interfaces x = x
(L)
n , x =

x
(R)
n correspond to the continuity of the mode components εLe

(L)
x (x̃), εRe

(R)
x (x̃),

e
(L)
z (x̃), e

(R)
z (x̃) at x̃ = 0. Eq. (5.13) can be solved straightforwardly, yielding the

mode profiles ~eL,R:

~eL(x− x(L)
n ) =





−iβ0

qd
1



 eqd(x−x
(L)
n )θ

(

x(L)
n − x

)

+

+





iβ0

qm
1



 e−qm(x−x
(L)
n )θ

(

x− x(L)
n

)

, (5.21)
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Figure 5.2: Schematic representation of the single interface dielectric suscepti-

bility profiles: (a) εL (DM: x = x
(L)
n interface, blue step profile) and (b) εR

(MD: x = x
(R)
n interface, red step profile). In both figures, the dashed black line

corresponds to the periodic dielectric susceptibility profile εa.

~eR(x− x(R)
n ) =





−iβ0

qm
1



 eqm(x−x
(R)
n )θ

(

x(R)
n − x

)

+

+





iβ0

qd
1



 e−qd(x−x
(R)
n )θ

(

x− x(R)
n

)

. (5.22)

Further, inserting Eqs. (5.21,5.22) into Eqs. (5.17-5.20), one achieves the linear

dispersion law for SPPs at a generic single interface (DM/MD)

β0 =

√

εdε′m
εd + ε′m

. (5.23)

At the o(s3/2) order, the linearized Maxwell equations for the residual field δ ~E =

(δEx δEz)
T of the nth metallic stripe yield

L̂aδ ~E + I
1/2

L̂a

[

Rn−1~eR(x− x(R)
n−1) + Ln~eL(x− x(L)

n ) +Rn~eR(x− x(R)
n )+

+Ln+1~eL(x− x(L)
n+1)

]

+ I
1/2F̂

[

Ln~eL(x− x(L)
n ) +Rn~eR(x− x(R)

n )
]

+

−I
3/2|Ln|2Ln ~N [~eL(x− x(L)

n )]− I
3/2|Rn|2Rn

~N [~eR(x− x(R)
n )] = 0, (5.24)

where

F̂ =

(

−εb − 2iβ0∂z ∂2
xz

∂2
xz −εb

)

, (5.25)
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5.1 Discrete nonlinear Schrödinger equation for SPP arrays

~N [~e ] =
1

2
χ3

[

|~e |2~e+
1

2
(~e · ~e )~e ∗

]

. (5.26)

In the derivation of this equation for the residual field δ ~E of the nth metal stripe,

only the contributions from nearest SPP neighbours were considered. Note also

that the linear operator

L̂a =

(

β2
0 − εa iβ0∂x
iβ0∂x −εa − ∂2

xx

)

(5.27)

is different from L̂L,R. Indeed, L̂a depends on the complete dielectric suscepti-

bility profile εa instead of the single interface profiles εL,R, see Fig. 5.2. As a

result, the linear o(s1/2) order modes ~eL, ~eR are not eigenvectors of the operator

L̂a, which accounts for the coupling terms.

Following the same procedure described in chapter 4, we take the scalar prod-

uct of Eq. (5.24) with the single interface linear modes ~eL, ~eR. The nonlinear

BCs accounting for the nearest neighbours coupling, loss and nonlinearity are

explicitly given by

εdδEx(x
(L)−

n ) + I
1/2Rn−1e

(R)
x (ad) + I

3/2|Ln|2LnNx[~eL(0−)] = ε′mδEx(x
(L)+

n ) +

+I
1/2Rne

(R)
x (−am) + iε′′mI

1/2Lne
(L)
x (0+), (5.28)

ε′mδEx(x
(R)−

n ) + I
1/2Lne

(R)
x (am) + iε′′mI

1/2Rne
(R)
x (0−) = εdδEx(x

(R)+

n ) +

+I
1/2Ln+1e

(R)
x (−ad) + I

3/2|Rn|2RnNx[~eL(0+)], (5.29)

δEz(x
(L)−

n ) + I
1/2Rn−1e

(R)
z (ad) = δEz(x

(L)+

n ) + I
1/2Rne

(R)
z (−am), (5.30)

δEz(x
(R)−

n ) + I
1/2Lne

(L)
z (am) = δEz(x

(R)+

n ) + I
1/2Ln+1e

(L)
z (−ad). (5.31)

Eqs. (5.28-5.31) enter the off-integral terms arising from integration by parts,

which is applied to calculate the scalar products, as explained in detail in chapter

4. Note that while the residual field δ ~E(x) is defined as a function of x, the

left and right linear modes ~eL(x − x(L)
n ), ~eR(x − x(R)

n ) are defined as functions of

x − x(L)
n and x − x(R)

n , respectively. The coupling coefficients through dielectric

κd and metallic κm media ensue from the overlap integrals

Od =

∫ +∞

−∞

dx~e∗R(x− x(R)
n−1) · L̂a~eL(x− x(L)

n ) =
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=

∫ +∞

−∞

dx∆εL~e
∗
R(x− x(R)

n−1) · ~eL(x− x(L)
n ), (5.32)

Om =

∫ +∞

−∞

dx~e∗L(x− x(L)
n ) · L̂a~eR(x− x(R)

n ) =

=

∫ +∞

−∞

dx∆εR~e
∗
L(x− x(L)

n ) · ~eR(x− x(R)
n ), (5.33)

where ∆εL,R = εa − εL,R. The integral expression for the coupling coefficients

κd, κm is given by

κd =
1

2
Od ×

{
∫ +∞

−∞

dxRe[~eL ×~h∗L]
}−1

, (5.34)

−κm =
1

2
Om ×

{
∫ +∞

−∞

dxRe[~eR ×~h∗R]

}−1

. (5.35)

After taking the scalar products one achieves the propagation equations for left

Ln and right Rn amplitudes of the nth metallic stripe

i∂zLn + iαLn = κdRn−1 − κmRn − fΥ|Ln|2Ln, (5.36)

i∂zRn + iαRn = κdLn+1 − κmLn − fΥ|Rn|2Rn, (5.37)

where f is the scaling factor f = P/khy, so that |Ln|2 = 1, |Rn|2 = 1 correspond

to the peak power P and the constant I is set to I = P/(ε0ckhy). hy is the

characteristic length of the layered structure along the y-direction and has been

introduced only for the scaling purposes. For the derivation to be valid, hy

is assumed much longer than the characteristic mode width in the x-direction.

Other parameters of Eqs. (5.36,5.37) are given by

α =
β3

0ε
′′
m

2(ε′m)2
, (5.38)

κd =
2β3

0

εd − ε′m
e−qdad , (5.39)

κm =
2β3

0

εd − ε′m
e−qmam , (5.40)

Υ =
2

3
k2n2εd

[

(ε′m)2

(εd + ε′m)2
+

(ε′m)2

2(εd − ε′m)2

]

. (5.41)

For the parameters chosen, the attenuation coefficient is α ' 0.0026 and cor-

responds to the damping length la ' 33µm. The coupling coefficients through
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Figure 5.3: Band structure of the periodic metal-dielectric stack. Dashed lines

correspond to κd = κm.

the metallic and dielectric media are κd ' 0.029 and κm ' 0.044 and the corre-

sponding coupling lengths are ldc ' 9.4µm and lmc ' 6.2µm, respectively. Υ is the

effective nonlinear coefficient of SPPs propagating along a single interface, which

coincides with the one derived in section 4.4.3. Continuity of the displacement

transverse component Dx at the metal-dielectric interfaces implies a π phase jump

for the transverse electric field Ex, which is discontinuous. Hence, the couplings

through metallic and dielectric media are characterised by opposite signs in front

of κm,d in Eqs. (5.36,5.37) [Guasoni et al., 2010; Nam et al., 2010a,b].

5.2 Floquet-Bloch modes and band structure

Eqs. (5.36,5.37) constitute the propagation equations resulting from the perturba-

tive coupled mode approach for the optical field in a metal-dielectric stack. Such

a set of equations, named Discrete Nonlinear Schrödinger Equations (DNLSEs),

belongs to a class of models for diatomic lattices that are known to have a linear

spectrum composed of two bands separated by the gap [Efremidis et al., 2010;

Nam et al., 2010a; Vicencio and Johansson, 2009]. Linear Floquet-Bloch modes

and the corresponding two-band structure are determined by setting Υ = 0 and
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Figure 5.4: Linear Bloch modes. Letters on the panels correspond to the respec-

tively marked points in the band structure diagram in Fig. 5.3.

making the ansatz

Ln = leiqn+iδz−αz , (5.42)

Rn = reiqn+iδz−αz, (5.43)

where q is the quasi-momentum in the x-direction. The secular equation of

Floquet-Bloch modes is found by inserting Eqs. (5.42,5.43) into Eqs. (5.36,5.37)

and requiring that the 2 × 2 coefficient matrix M̂ of the system of algebraic

equations for the constants l, r is singular (detM̂ = 0):

δ(q) = ±
√

κ2
m + κ2

d − 2κmκdcosq. (5.44)

The shift of the propagation constant δ(q) constitutes the diffraction law for

plasmons and is depicted in Fig. 5.3. The signs +/− correspond to the upper and
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lower bands, respectively, separated by the gap around δ = 0. The Floquet-Bloch

modes are explicitly given by Eqs. (5.42,5.43), where the constant r is

r = l(κm − κdeiq)/δ(q), (5.45)

and the constant l is arbitrary. The inherent structure of such linear modes can

be understood by considering the two limiting cases κm >> κd, κm << κd.

In the first case (κm >> κd), the metal-dielectric stack is composed of thin

metallic stripes of width am embedded in a dielectric medium and separated by

the distance ad >> am. The averaged susceptibility is positive, since the amount

of metal inclusion is limited. Hence, the plasmonic structure is dielectric-like

and can be thought of as a system of weakly coupled insulator-metal-insulator

(IMI) (or dielectric-metal-dielectric DMD) waveguides. Every IMI waveguide

supports symmetric Sn and antisymmetric An modes, which can be expressed

as superpositions of left and right single interface SPPs in the coupled mode

approach:

Sn =
1

2
(Ln +Rn), (5.46)

An =
1

2
(Ln −Rn). (5.47)

In Fig. 5.3, the coupling through the metal is assumed larger than the coupling

through the dielectric, like in the case we are considering. The q = 0 points

in the band structure correspond to the minimum δ = κm − κd for the upper

band and the maximum δ = κd − κm for the lower band. Note that in the

limiting case κd → 0 the two bands become flat: the upper δ ' κm and the lower

δ ' −κm branches represent the symmetric Sn and the antisymmetric An modes,

respectively. If κd 6= 0, but still κm >> κd, the modes of the upper and of the

lower bands resemble the symmetric and antisymmetric modes

Sn '
1

2
(l + r)eiqn+iδsz−αz, (5.48)

An '
1

2
(l − r)eiqn+iδaz−αz, (5.49)

with dispersions

δs ' κm − κd cos q, (5.50)

δa ' −κm + κd cos q. (5.51)
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Figure 5.5: Discrete diffraction of the SPP array for (a) κm = 0.044, κd = 0.029

and (b) κm = κd = 0.05.

For the upper branch, the symmetric modes are in phase at q = 0 and are π out

of phase at q = π, see Figs. 5.4a,b. As for the upper branch, also for the lower

branch the antisymmetric modes are in phase at q = 0 and are π out of phase at

q = π, see Figs. 5.4c,d.

The above considerations remain practical for κm > κd upto κm = κd, where

they lose validity. Indeed, as can be understood from Fig. 5.3, if κm = κd the

maximum of the lower band (δmax = κd − κm) and the minimum of the upper

band (δmin = κm − κd) fold up at q = 0 and the gap closes (δmax = δmin = 0).

Such a case corresponds to the condition where the averaged susceptibility in

the x direction is null [Ciattoni et al., 2010a,b,c, 2011] and discrete diffraction is

conical-like [Efremidis et al., 2010; Nam et al., 2010a]. In Fig. 5.5a,b, discrete

diffraction of SPPs propagating in the metal-dielectric stack is depicted for (a)

κm = 0.044, κd = 0.029 and (b) κm = κd = 0.05. Such figures represent the

dynamical propagation of the intensities |Ln(z)|2, |Rn(z)|2 corresponding to the

four-channel excitation at z = 0: L−1(0) = R−1(0) = L1(0) = R1(0) = 1 and

Ln(0), Rn(0) = 0 for n 6= ±1. As reported in Ref. [Nam et al., 2010a], we also

observe conical-like discrete diffraction in the degenerate regime κm = κd, see

Fig. 5.5b.

In the opposite case κm << κd, the metal-dielectric stack is represented by

narrow dielectric slots of width ad embedded in a metallic medium and separated

by the distance am >> ad. The averaged susceptibility is negative, since the
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5.3 Discrete and gap soliton families

amount of dielectric inclusion is limited. Thus, the plasmonic structure is metal-

like and can be thought of as a system of weakly coupled metal-insulator-metal

(MIM) (or dielectric-metal-dielectric DMD) waveguides. Every MIM waveguide

supports symmetric Sn and antisymmetric An modes, which can be expressed

as superpositions of left and right single interface SPPs in the coupled mode

approach:

Sn =
1

2
(Rn + Ln+1), (5.52)

An =
1

2
(Rn − Ln+1). (5.53)

Note that in the limiting case κm → 0 the two bands become flat and the upper

δ ' κd and lower δ ' −κd bands characterise symmetric Sn and antisymmetric

An modes, respectively. If κm 6= 0, but still κm << κd, the modes of the upper

and of the lower bands resemble the symmetric and antisymmetric modes

Sn '
1

2
(r + l)eiqn+iδsz−αz, (5.54)

An '
1

2
(r − l)eiqn+iδaz−αz, (5.55)

with dispersions

δs ' κd − κm cos q, (5.56)

δa ' −κd + κm cos q. (5.57)

Note that, in the case κm < κd, the symmetric and antisymmetric modes are

defined in terms of a different unit cell (dielectric slot Rn, Ln+1) with respect to

the case κm > κd (metal stripe Ln, Rn). Note also that the modes with κd > κm

can be straightforwarldy achieved by making the substitution κm ←→ κd, which

satisfies Eqs. (5.36,5.37) for the staggered mode (Ln, Rn) → (−Rn−1, Ln). In

what follows, we consider only the case κm > κd, where the amount of metal is

limited and the effective optical response is dielectric-like.

5.3 Discrete and gap soliton families

In this section, we study the localised solutions of Eqs. (5.36,5.37) for Υ > 0

(n2 > 0). Since the self-focusing nonlinearity increases the propagation constant
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5.3 Discrete and gap soliton families

Figure 5.6: Normalized intensity I =
∑

n(|Rn|2 + |Ln|2) vs δ for the families of

discrete and gap solitons. (a), (e) and (g) families are symmetric with respect

to the centre of a metal stripe and can be considered as the on-site solitons in

the case κm > κd. Conversely, the (b), (d) and (f) soliton branches represent

the off-site families centred on a dielectric stripe. The (c) branch represents the

asymmetric solitons without any centre of symmetry.

of SPP waves, the formation of discrete soliton and gap soliton families is expected

above the upper band and inside the bandgap, respectively.

In the analysis of discrete and gap soliton modes, we disregard the effect of the

metal loss by setting α = 0. In order to find soliton solutions of Eqs. (5.36,5.37),

we substitute the ansatz

Ln = lne
iδz , (5.58)

Rn = rne
iδz, (5.59)

reaching a system of algebraic equations for the constants ln, rn

δln − κmrn + κdrn−1 − fΥ|ln|2ln = 0, (5.60)

δrn − κmln + κdln+1 − fΥ|rn|2rn = 0. (5.61)

Such an algebraic system can be numerically solved by using the Newton-

Raphson method, which is described in appendix B. In Fig. 5.6, the normalized
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Figure 5.7: Spatial profiles of the discrete and gap solitons. Letters on the panels

correspond to the respectively marked soliton branches in Fig. 5.6. δ = 0.114 for

solitons in (a)-(d), and δ = 0 in (e) and (f).
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5.3 Discrete and gap soliton families

intensity I =
∑

n(|Rn|2 + |Ln|2) is plotted as a function of the phase shift δ in the

regime κm > κd for different families of discrete and gap solitons, which profiles

are depicted in Fig. 5.7.

Two primary branches of discrete solitons (a, b) bifurcate from the edge of

the top band at q = π and δ = κm + κd, inheriting the structure of the corre-

sponding Floquet-Bloch modes. The a-branch soliton envelopes are symmetric

with respect to the centre of a fixed metal stripe, while the b-branch envelopes

are antisymmetric with respect to the centre of a dielectric slot, see Figs. 5.7a,b.

Hence, since for κm > κd the unit cell is the metal stripe, the a-branch represents

the on-site soliton family, while the b-branch represents the off-site soliton family.

Indeed, the a-branch is immediately stable after it ensues from the top of the

upper linear band, while the b-branch is always unstable, as will be demonstrated

in section 5.3.1. For the critical value of the total power corresponding to the

point of symmetry breaking, the a-branch loses its stability in favour of the stable

asymmetric soliton family (represented by the c-branch), which bifurcates from

the on-site soliton family (a-branch).

The d, g soliton families have large threshold powers and their spatial structure

resemble the linear Floquet-Bloch modes of the lower band. Stability properties

of these families are more involved and they can be either stable or oscillatory

unstable. In the unstable case, discrete solitons of the d, g families collapse to the

stable asymmetric discrete soliton of the c-branch in the dynamical propagation.

Gap solitons ensue from the top of the lower band, inheriting the symmetry of

the corresponding Floquet-Bloch modes. The e-branch solitons depicted in Fig.

5.7e are stable for δ . 0, becoming unstable in the phase shift range 0 . δ <

δmin, where δmin = κm − κd is the bottom phase shift of the linear upper band.

Gap solitons from the f -family, shown in Fig. 5.7f, are always unstable in their

existence domain κd − κm < δ < κm − κd. The maximum confinement of both

the gap soliton e, f -branches is achieved at the gap centre δ = 0.

The bifurcation picture explained above changes if the condition κm > κd

ceases to be valid. Indeed, discrete and gap soliton families corresponding to the

case κm < κd can be obtained by substituting

κm → κd, (5.62)
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5.3 Discrete and gap soliton families

Figure 5.8: Propagation of a gap soliton for δ = −0.014 and transverse momentum

(a) q = 0 and (b) q = 0.1.

κd → κm, (5.63)

Ln → −Rn−1, (5.64)

Rn → Ln. (5.65)

In this case the bifurcation diagram coincides with the one depicted in Fig. 5.6,

with the difference that the linear modes of the upper band correspond to the

ones of the lower band in the κm > κd case, i.e. the staggered mode.

In Fig. 5.8a, the propagation of the gap soliton Ln, Rn = ξn, ζn is depicted

for δ = −0.014. Note that, for such a δ-value, the on-site and off-site e, f -soliton

branches merge together, so that for a fixed power I =
∑

n(|Rn|2 + |Ln|2) they

are characterised by a practically identical propagation constant δ (see Fig. 5.6).

Hence, the Peierls-Nabarro barrier [Kivshar, 1993; Krolikowski and Kivshar, 1996;

Morandotti et al., 1999a] is relatively small and the gap soliton can propagate in

a tilted direction. Fig. 5.8b plots tilted propagation of the gap soliton Ln, Rn =

ξne
iqn, ζne

iqn for δ = −0.014 and q = 0.1. Note that tilted propagation can be

achieved also for discrete solitons in the range where a, b families merge together.

5.3.1 Stability

The stability properties of discrete and gap soliton families, which have been

discussed qualitatively in the previous section, can be quantitatively determined

by perturbing every soliton solution Ln, Rn = ξn, ζn with small amplitude waves
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Figure 5.9: Instability eigenvalues µ for the discrete soliton branches: (a,b) a-

branch, (c,d) b-branch and (e,f) c-branch. Figures on the left (a,c,e) represent

the growth rates µ′, while figures on the right (b,d,f) show the imaginary parts

µ′′.
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Figure 5.10: Real (a,c) (µ′) and imaginary (b,d) (µ′′) parts of the unstable eigen-

value µ for (a,b) d-branch and (c,d) g-branch of discrete solitons.

an, bn, cn, dn:

Ln =
[

ξn + ane
µz + b∗ne

µ∗z
]

eiδz, (5.66)

Rn =
[

ζn + cne
µz + d∗ne

µ∗z
]

eiδz , (5.67)

where

|an|, |bn| << |ξn|, (5.68)

|cn|, |dn| << |ζn|, (5.69)

and the real part of the µ parameter (µ′ = Reµ) determines the growth rate of

small perturbations.

Inserting Eqs.(5.66,5.67) into Eqs.(5.36,5.37) (α = 0) one gets a homogeneous

system of linearized algebraic equations for the small amplitudes an, bn, cn, dn.

Non-trivial solutions exist only if the determinant of the coefficient matrix Ĉ is

null:

detĈ = 0. (5.70)
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Figure 5.11: Real (a,c) (µ′) and imaginary (b,d) (µ′′) parts of the unstable eigen-

value µ for (a,b) e-branch and (c,d) f -branch of gap solitons.

Solving the above secular equation by the Newton-Raphson method allows for

the determination of the instability eigenvalues µ. If such eigenvalues are purely

imaginary, then the gap/discrete soliton is stable, otherwise it is unstable.

Results of the stability analysis in the κm > κd regime are plotted in Figs.

5.9, 5.10, 5.11.

Figs. 5.9a,b depict the real µ′ and imaginary µ′′ parts of the instability eigen-

values for the discrete solitons belonging to the a-branch. Note that for δ . 0.1

the growth rate is null max[µ′] = 0, while for δ & 0.1 a distinct eigenvalue is

characterised by the positive real part µ′ > 0.

As a result, the a-branch is stable for δ . 0.1 and loses its stability for δ & 0.1

in favour of the c-branch family, which bifurcates from the a-branch at δ ' 0.1

(see Fig. 5.6). The real µ′ and imaginary µ′′ parts of the instability eigenvalues

for the c-branch are plotted in Figs. 5.9e,f. Note that for this branch the growth
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5.4 Concluding remarks

rate is null max[µ′] = 0 and, as a consequence, the discrete solitons of the c-family

are always stable.

The stability picture of the b-family is represented in Figs. 5.9c,d. This family

is always unstable in its existence domain, since for every δ there exists an eigen-

value µ with non-zero real part: max[µ′] = g > 0. Indeed, the b-branch discrete

solitons represent off-site soliton solutions, which are centred on the dielectric slot

(the unit cell is the metal stripe in the case considered κm > κd).

Figs. 5.10 depict the stability analysis of discrete solitons from the d, g-

families, respectively. Discrete solitons from such branches inherit the spatial

structure of the lower linear band and arise after a certain threshold δth (see

Fig. 5.6). In turn, their stability properties are more involved and depend on

the particular value of the coupling coefficients κm, κd. For the values chosen

(κd = 0.029, κm = 0.044) one can observe the presence of the stability and insta-

bility regions in both of the d, g-branches.

The instability picture for the gap solitons of e, f -branches is represented in

Fig. 5.11. Gap solitons from the e-family retain the structure of the lower linear

band (see Fig. 5.7e) and are centred on a metal stripe. Thus, they constitute

the on-site soliton solutions and are stable in the lower half of the gap δ . 0,

becoming unstable for 0 . δ < κm − κd. Conversely, the f -branch corresponds

to the off-site soliton solutions and is always unstable.

5.4 Concluding remarks

In this chapter we have used the perturbative theory derived in chapter 4 to

model the optical propagation of SPPs in a metal-dielectric stack in the tight

binding approximation. The coupled mode theory allows predicting a character-

istic two-band structure ensuing from the different couplings through metallic and

dielectric regions. Importantly, the coupling coefficients through the metal and

the dielectric layers are not only different in modulus but also in sign, confirm-

ing the results reported in Refs. [Guasoni et al., 2010; Xu and Aitchison, 2009].

Using the coupled mode theory, we have been able to demonstrate conical-like

diffraction, which finds confirmation in Ref. [Nam et al., 2010a]. The various

families of discrete and gap plasmon-solitons have been numerically calculated
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and their stability properties have been analysed. We have been able to identify

two main regimes: the dielectric-like regime (where the coupling through the di-

electric layer is much stronger than the coupling through the metallic layer) and

the metallic-like regime (where the coupling through the dielectric layer is much

weaker than the coupling through the metallic layer). In the metallic-like regime,

the asymmetric discrete soliton bifurcates from the antisymmetric branch, finding

confirmation in Ref. [Salgueiro and Kivshar, 2010]. The original results reported

in this chapter have been published in Ref. [Marini et al., 2010].
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Chapter 6

Stable plasmon-solitons in

metallic stripes

As discussed in the previous chapters, the diffraction of light constitutes a funda-

mental barrier for the realisation of nano-scaled all-optical devices in the subwave-

length regime. In the second chapter, we described the optical propagation in

basic plasmonic structures, highlighting the importance of the metal loss [Gramot-

nev and Bozhevolnyi, 2010; Maier, 2007] and reviewing the literature on amplified

SPPs [Gather et al., 2010; Nezhad et al., 2004; Noginov et al., 2008a]. Further,

in chapter 3, we have considered the nonlinear propagation of amplified SPPs,

deriving the nonlinear dispersion law for the SPP plane waves unbound in the

transverse direction and the Ginzburg-Landau (GL) equation for the dynamical

propagation of SPPs.

Although the SPPs are inherently confined in the transverse x-direction per-

pendicular to the y−z metal-dielectric interface, they can diffract in the in-plane

y-direction perpendicular to the z propagation axis [Gramotnev and Bozhevol-

nyi, 2010]. In order to achieve localised light beams in both of the transverse x, y

directions, several two-dimensional geometries have been proposed and realised

[Bozhevolnyi, 2008; Bozhevolnyi et al., 2005, 2006a; Pile and Gramotnev, 2004;

Pile et al., 2005; Yatsui et al., 2001].

An interesting alternative to such two-dimensional approaches is to use plasmon-

solitons in one-dimensional geometries, where the in-plane diffraction is sup-

pressed by the nonlinear self-focusing [Davoyan et al., 2009b; Feigenbaum and
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Orenstein, 2007]. However, ohmic losses from metallic components are respon-

sible for the soliton attenuation, which occurs over a very short lengthscale

(LA ≈ 20µm at optical wavelengths). Nevertheless, by embedding amplifying

inclusions in the dielectric medium, it is possible to achieve plasmon-solitons

where the diffraction vs nonlinearity balance is complemented with the gain vs

loss compensation [Akhmediev and Ankiewicz, 1997]. Such dissipative plasmon

solitons inherently stem from the bistability of two spatially homogeneous solu-

tions: the zero backround and the nonlinear plane wave solutions. The explicit

expressions for the plasmon-solitons have been derived in chapter 3, demonstrat-

ing that substantial instabilities develop both in the core and in the background.

These instabilities are common in the third order GL systems, which are charac-

terised by a super-critical transition from the trivial zero-solution to the nonlinear

plane wave solution [Akhmediev and Ankiewicz, 1997].

Accounting for the higher order nonlinearities in generalized GL models can

lead to different behaviours. For example, the transition can become sub-critical

if the complex quintic nonlinearity is included [Akhmediev and Ankiewicz, 1997;

Fauve and Thual, 1990; Malomed, 1987]. In this case, the subcritical bifurcation

ensues from the competition of the third-order nonlinear gain with the quintic

nonlinear loss, which ensures the stability of the system [Fauve and Thual, 1990].

However, the two-level atom nonlinearity for amplifying dielectrics [Boyd, 2003]

(see appendix A) provides always a third-order nonlinear loss and the approach

above is not viable.

Alternatively, the core and background instabilities can be drained by coupling

the active system with a purely passive waveguide [Atai and Malomed, 1996; Firth

and Paulau, 2010; Malomed and Winful, 1996]. In this case, the coupling with

the passive waveguide shifts the instability threshold and the bifurcation point

with respect to the uncoupled case. As a consequence, it is possible to achieve the

sub-critical bifurcation also for the third-order coupled GL system, characterised

by the linear gain and the nonlinear loss.

In what follows, we model the optical propagation in an active dielectric-

metal-dielectric structure, which is schematically depicted in Fig. 6.1. SPPs at

the two active dielectric-metal (DM) and passive metal-dielectric (MD) single

interfaces are assumed weakly interacting; as a consequence, the coupled mode
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6.1 Coupled mode derivation of the Ginzburg-Landau system

Figure 6.1: Schematic representation of a dielectric-metal-dielectric structure

composed of a metal stripe and two active and passive dielectric media.

approach described in chapter 5 can be adopted. In such an active geometry,

the system of discrete nonlinear Schrödinger equations (DNLSEs) derived in the

previous chapter transforms into two coupled Ginzburg-Landau (GL) equations

for the weakly coupled SPPs propagating at the interfaces x = ±w/2. The

analysis of the transition from the zero background to the spatially homogeneous

solution reveals the existence of a sub-critical region where stable propagation of

SPP solitons is achievable.

6.1 Coupled mode derivation of the Ginzburg-

Landau system

As done in the previous chapters, we start our analysis from the time independent

Maxwell equations for the monochromatic fields ~Ee−iωt, ~He−iωt. In the complex

formalism, the physical electric and magnetic fields are provided by the real parts

Re[~Ee−iωt], Re[~He−iωt]. Combining the curl equations one gets

∇×∇× ~E = ε(x)~E, (6.1)
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6.1 Coupled mode derivation of the Ginzburg-Landau system

where the spatial coordinates are rescaled to k−1 = λ/2π and λ is the vac-

uum wavelength. We assume that the SPPs at every metal-dielectric interface

x = ±w/2 propagate in the z-direction and diffract in the transverse in-plane

y-direction (see Fig. 6.1). The dielectric susceptibility profile is

ε(x) = εP θ(−x− w/2) + εm [θ(x+ w/2)− θ(x− w/2)] + εAθ(x− w/2), (6.2)

where θ(x) is the Heaviside step function and εm = ε′m + iε′′m is the dielectric

constant inside the metal (ε′m < 0, ε′′m > 0). The optical response of the gain

material lying on the top of the metal stripe is modelled through the two-level

system in the small-saturation limit

εA = (εd + α/2) + iε′′a + χ3|~E|2, (6.3)

which was introduced in chapter 1 and is described with more detail in appendix

A. In the expression above, ε′′a < 0 represents the linear gain of the amplifying

medium and χ3 = χ′
3 + iχ′′

3 is the complex nonlinear susceptibility, characterised

by the nonlinear absorption χ′′
3 > 0 and the self-focusing/self-defocusing term χ′

3

that can be either positive or negative, depending on the sign of the detuning δ.

On the other hand, εP is the real dielectric susceptibility of the passive medium

εP = εd − α/2. (6.4)

The asymmetric parameter α is assumed small and the IMI structure depicted

in Fig. 6.1 is symmetric in the leading order of our perturbation theory. Correc-

tions due to asymmetry |α| << εd are accounted for in the first order. Such an

assumption is not essential for the derivation below, but simplifies considerably

the analytical calculations.

Introducing the small dummy parameter s, we assume that

ε′′m, |α|, |ε′′a|, |χ3
~E|2 ∼ o(s). (6.5)

In addition, we also assume that the width w of the metal stripe is much longer

than the electromagnetic field penetration, so that we can apply the coupled mode

theory developed in the previous chapter. Neglecting the dielectric asymmetry
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(α), gain (ε′′a), nonlinearity (χ3|~E|2) and metal loss (ε′′m), one obtains straightfor-

wardly the uncoupled mode profiles for the linear SPPs propagating at the two

interfaces x = ±w/2:

~ea =

(

eax
eaz

)

=





i
β

qm
1



 e−qm(x+w/2)θ(x+ w/2) +

−





i
β

qd
−1



 eqd(x+w/2)θ(−x− w/2), (6.6)

~ep =

(

epx
epz

)

=





i
β

qd
1



 e−qd(x−w/2)θ(x− w/2) +

−





i
β0

qm
−1



 eqm(x−w/2)θ(−x + w/2), (6.7)

where q2
d = β2 − εd, q2

m = β2 − ε′m and a, p label the metal surfaces adjacent to

active and passive media, respectively. Such linear modes are characterised by

the single-interface SPP dispersion

β =

√

εdε′m
εd + ε′m

. (6.8)

In the coupled mode approach, in order to solve Eq. (6.1), one takes the ansatz

Ex =
[

ψp(y, z)e
p
x(x) + ψa(y, z)e

a
x(x) + δEx + o(s5/2)

]

eiβz, (6.9)

Ey =
[

φp(y, z)e
p
y(x) + φa(y, z)e

a
y(x) + o(s2)

]

eiβz, (6.10)

Ez =
[

ψp(y, z)e
p
z(x) + ψa(y, z)e

a
z(x) + δEz + o(s5/2)

]

eiβz, (6.11)

where the amplitudes ψp,a ∼ o(s1/2) and φp,a ∼ o(s) are slow functions of y, z,

such that ∂z ∼ o(s), ∂y ∼ o(s1/2). In addition to the coupled mode approach

derived in chapter 5, we here include also diffraction as done in chapters 3,4.

Hence, the transverse Ey ∼ o(s) amplitude due to the finite beam size is non-

zero, but it is assumed much smaller than the Ex,z ∼ o(s1/2) amplitudes. We do

not provide here all the details of the derivation, which can be found in chapters
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6.1 Coupled mode derivation of the Ginzburg-Landau system

4,5. Equations for the o(s3/2) order residual field δ ~E = (δEx δEz)
T accounting

for gain, loss and nonlinearity are given by

L̂δ ~E = (F̂ − L̂)(ψp~ep + ψa~ea)−~b, (6.12)

where ~ep,a = (ep,ax ep,ax )T and

L̂ =

(

β2 − ε(0) iβ∂x
iβ∂x −ε(0) − ∂2

xx

)

, (6.13)

F̂ =

(

2iβ∂z + ∂2
yy + δε −∂2

xz

−∂2
xz ∂2

yy + δε

)

, (6.14)

~b =

(

∂yφp∂xe
p
y + ∂yφa∂xe

a
y

iβ∂yφpe
p
y + iβ∂yφae

a
y

)

. (6.15)

In the expressions above, the dielectric susceptibility profile was set to ε = ε(0)+δε,

where

ε(0) = ε′m [θ(x+ w/2)− θ(x− w/2)] +

+εd [θ(−x− w/2) + θ(x− w/2)] , (6.16)

δε = iε′′m [θ(x+ w/2)− θ(x− w/2)] +
[

iε′′a + χ3|ψa|2|~ea|2
]

θ(x− w/2) +

+
α

2
[θ(x− w/2)− θ(−x − w/2)] . (6.17)

Note that the linear operator L̂ depends on the complete dielectric profile ε(0).

The linear modes ~ep, ~ea are eigenvectors of the single-interface operators L̂p, L̂a,

which dielectric susceptibility profiles ε(p), ε(a) do not coincide with ε(0), as de-

scribed in chapter 5. Hence, ~ep, ~ea are not the exact, but the approximate eigen-

vectors of L̂. This fact gives rise to the coupling terms in Eqs. (6.18,6.19).

The propagation equations for the field amplitudes ψp, ψa are derived by tak-

ing the scalar product of Eq. (6.12) with the linear modes ~ep, ~ea. Coupling terms

arise via the overlap integral Om, which is written explicitly in section 5.1. In the

calculation of the scalar products we use the boundary conditions (BCs) account-

ing for linear ε′′m, ε
′′
a and nonlinear χ3|ψa|2 corrections, which are responsible for

the surface enhancement η of effective gain, loss and nonlinearity, as discussed in

chapter 4. As a result of the scalar product operation, one finds that the complex
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6.2 Bistability and subcritical bifurcation of SPPs

amplitudes ψp, ψa satisfy the two coupled complex GL equations

i∂zψp +
1

2β
∂2
yyψp + (il −∆β)ψp + κψa = 0, (6.18)

i∂zψa +
1

2β
∂2
yyψa + [i(l − g) + ∆β]ψa + fΥ|ψa|2ψa + κψp = 0, (6.19)

where

∆β =
β3

2ε2d
α, (6.20)

l =
β3

2(ε′m)2
ε′′m, (6.21)

g = − β
3

2ε2d
ε′′a, (6.22)

κ =
2β3

εd − ε′m
e−qmw. (6.23)

The parameters l, g, κ are the dimensionless loss, gain and coupling coefficients,

respectively. Transition to physical quantities like attenuation, amplification and

coupling rates is achieved by multiplying l, g, κ with k = 2π/λ. ∆β is the shift be-

tween the propagation constants of the single-interface SPPs (~ep, ~ea) and depends

on the asymmetry constant α. The scaling factor f is set to f = P/k, so that

the field amplitudes ψp,a are dimensionless and |ψp,a|2 = 1 represents the linear

power density P (measured in Watts/m). The nonlinear parameter Υ = Υ′ + iΥ′′

entering Eqs. (6.18,6.19) is given by

Υ = k2n2
β3

2ε2d
(εd − ε′m), (6.24)

and is measured in W−1. In order to achieve such a relation, we expressed the

complex nonlinear susceptibility χ3 = χ′
3+iχ

′′
3 = 2cn2ε0εd in terms of the complex

Kerr coefficient n2, which is measured in m2W−1.

6.2 Bistability and subcritical bifurcation of SPPs

If the coupling between the SPPs propagating along the x = ±w/2 interfaces

is neglected (w >> 1, κ = 0), then Eqs. (6.18,6.19) reduce to the uncoupled
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6.2 Bistability and subcritical bifurcation of SPPs

equations

i∂zψp +
1

2β
∂2
yyψp + (il −∆β)ψp = 0, (6.25)

i∂zψa +
1

2β
∂2
yyψa + [i(l − g) + ∆β]ψa + fΥ|ψa|2ψa = 0. (6.26)

Eq. (6.25) describes the optical propagation in a linear absorbing medium and

the solutions are exponentially decaying functions ψp ∼ e−(l+i∆β)z . On the other

hand, Eq. (6.26) provides the trivial solution ψa = 0 and the spatially homoge-

neous plane wave |ψa| = A:

A =

√

g − l
fΥ′′

, (6.27)

which exists only for g ≥ l. Note that, conversely to the conservative case where

the plane waves constitute a family of solutions parametrized either by the prop-

agation constant or the amplitude, in the dissipative case the spatially homoge-

neous plane wave solution is unique [Akhmediev and Ankiewicz, 1997; Aranson

and Kramer, 2002]. The stability analysis of the trivial zero solution reveals that

it is stable for g < l, becoming unstable at g = l, where it bifurcates with the

plane wave solution provided by Eq. (6.27). A schematic representation of such

a supercritical bifurcation is shown in Fig. 6.2.

For g > l, the bistability is responsible for the formation of the Pereira-Stenflo

plasmon-solitons of Eq. (6.26) [Pereira and Stenflo, 1977], which are explicitly

given by

ψa =

√

3

2
A [sech(νy)]1+ia eiµz , (6.28)

where

a = − 3Υ′

2Υ′′
+

√

2 +

(

3Υ′

2Υ′′

)2

, (6.29)

ν2 =
g − l
2a

, (6.30)

µ = ∆β + (1− a2)ν2. (6.31)

Plasmon-solitons exist on the zero background ψa = 0, which is unstable in the

soliton existence domain g > l, as demonstrated in chapter 3.
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6.2 Bistability and subcritical bifurcation of SPPs

g

|ψ
a|2

g=l

Figure 6.2: Schematic representation of the supercritical bifurcation between the

trivial solution ψa = 0 and the plane wave ψa = A in the uncoupled case κ = 0.

In the coupled case κ 6= 0, the bifurcation behaviour is more involved. In this

case, the stability of the trivial solution ψa = ψp = 0 can be analysed by studying

the effect of the small perturbations ξp, ξa (ξp, ξa << 1):

ψp = ξpe
σz , (6.32)

ψa = ξae
σz . (6.33)

Inserting Eqs. (6.32,6.33) into Eqs. (6.18,6.19) and linearizing the following

system one gets

Ẑ~ξ = 0, (6.34)

where ~ξ = (ξp ξa)
T and

Ẑ =

(

i(l + σ)−∆β κ
κ i(l − g + σ) + ∆β

)

. (6.35)

The homogeneous system (6.34) provides non-zero solutions if the determinant

of the coefficient matrix Ẑ is null:

σ2 + (2l − g)σ + [l(l − g) + κ2 − ig∆β + ∆β2] = 0. (6.36)

For every fixed gain and loss coefficients g, l, the solution of the equation above

provides us with the instability growth rate σ. The instability threshold is found
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6.2 Bistability and subcritical bifurcation of SPPs
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Figure 6.3: The coexistence domain of the stable zero and nonzero spatially

homogeneous SPPs in the (g,∆β)-plane. gth is indicated with the blue lines

and g0 with the red one. Other parameters are β = 1.43, l = 0.0026, fΥ =

3.5× 10−3(1 + 0.1i), κ = 0.0028 (dimensional stripe width: k−1w = 98nm).

by setting σ′ = Reσ = 0, achieving the third order algebraic equation for the

gain threshold gth:
(

gth − l −
κ2

l

)

(gth − 2l)2 = 4∆β2(l − gth). (6.37)

The non-zero spatially homogeneous plane wave solution is obtained by taking

the ansatz

ψp = Seiµz, (6.38)

ψa = Reiµz. (6.39)

Inserting the equations above into Eqs. (6.18,6.19) one gets the solution

S =
κR

µ+ ∆β − il , (6.40)

|R|2 =
1

fΥ′′

[

g − l − κ2l

(µ+ ∆β)2 + l2

]

, (6.41)

where the propagation constant µ is determined by the solution of the nonlinear

algebraic equation

µ−∆β − κ2(µ+ ∆β)

(µ+ ∆β)2 + l2
− fΥ′|R|2 = 0. (6.42)
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6.2 Bistability and subcritical bifurcation of SPPs

3.5 4 4.5 5 5.5
x 10

−3

0

2

4

6

8

g

|R
|2

STABLE UNSTABLE

Figure 6.4: Squared amplitude |R|2 of the spatially homogeneous SPP vs gain

g showing subcritical transitions between the zero to nonzero states for ∆β =

−2.5×10−4. Other parameters are β = 1.43, l = 0.0026, fΥ = 3.5×10−3(1+0.1i),

κ = 0.0028 (dimensional stripe width: k−1w = 98nm).

Conversely to the uncoupled case κ = 0, the plane wave solution exists not

only for g > gth, but also in the subcritical region g0 < g < gth. The analytical

calculation of the subcritical edge g0 is cumbersome and is not included here.

Fig. 6.3 depicts the range of g and ∆β values allowing for the existence of the

subcritical bifurcation. Blue curves correspond to the instability threshold gth,

while the red curve represent the lower edge g0. Note that the subcritical range

∆g = gth − g0 is maximum for symmetric IMI structures: ∆β = 0. For non-zero

phase shift ∆β, the subcritical range ∆g shrinks, becoming null for a critical

phase shift threshold ∆βth.

An example of the subcritical dependence of |R|2 vs g is shown in Fig. 6.4.

The bistability of the stable zero background and the plane wave solution sug-

gests the possibility of achieving stable propagation of plasmon-solitons [Atai and

Malomed, 1996; Malomed and Winful, 1996].

In our numerical computations we assumed that both the active and passive

dielectric media are characterised by the dielectric susceptibility εd = 1.8. The

metal is assumed silver at wavelength λ = 530nm, so that ε′m = −15, ε′′m =
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6.2 Bistability and subcritical bifurcation of SPPs

Figure 6.5: Propagation plot for the amplitudes (a,c) |ψp| and (b,d) |ψa|. Input

was set to the slightly perturbed trivial solution |ψp| = |ψa| = 0. Gain values

correspond to (a,b) subcritical g = 0.0045 and (c,d) supercritical g = 0.006 values.

Other parameters used for the simulation are: β = 1.43, ∆β = 0, l = 0.0026,

fΥ = 3.5×10−3(1+0.1i), κ = 0.0028 (dimensional stripe width: k−1w = 98nm).

0.4. The dimensionless gain values used can be scaled back to physical units by

multiplying them with the constant factor F ∼ 12µm−1.

Hence, the physical amplification length at the threshold gain is LA ∼ 20µm.

The amplification length achieved in experiments with dye organic molecules

[Noginov et al., 2008a] is of the order LA ∼ 20 µm (corresponding to the gain

coefficient Fgth ∼ 420 cm−1) while for quantum dots [Bolger et al., 2010] it

is LA ∼ 500 µm (corresponding to the gain coefficient Fgth ∼ 17cm−1). The

intensity plot shown in Fig. 6.4 is achieved for fΥ = 3.5× 10−3(1 + 0.1i).

In Figs. 6.5, the propagation of the slightly perturbed trivial solution |ψp| =
|ψa| = 0 is depicted. Figs. 6.5a,b show subcritical (g < gth) optical propagation
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6.2 Bistability and subcritical bifurcation of SPPs

Figure 6.6: Propagation plot for the amplitudes (a,c) |ψp| and (b,d) |ψa|. Input

was set to the slightly perturbed spatially homogeneous solution ψp = S, ψa = R

for (a,b) the upper and (c,d) the lower branches, respectively. Parameters used

for the simulation are: β = 1.43, ∆β = 0, l = 0.0026, fΥ = 3.5× 10−3(1 + 0.1i),

κ = 0.0028 (dimensional stripe width: k−1w = 98nm).

for (a) ψp and (b) ψa, respectively. As predicted by the stability analysis, the

zero background is stable for g < gth and small perturbations are exponentially

absorbed. SPP propagation dynamics has been computed by using the split-step

Fast Fourier Transform (FFT) described in appendix C. Figs. 6.5c,d show the

supercritical (g > gth) optical propagation for (c) ψp and (d) ψa, respectively. In

this case, the zero background becomes unstable and the arbitrarily small per-

turbations grow exponentially ∼ eσz . The parameters used for the computations

are provided in the figure captions.

Figs. 6.6a,b show the subcritical propagation of the slightly perturbed spa-

tially homogeneous solutions (a) |ψp| = |S| and (b) |ψa| = |R| correponding to
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6.3 Stable plasmon-solitons

the upper branch of Fig. 6.4. Such a propagation plot suggests that the SPP

plane waves from the upper branch are unstable and are destroyed by arbitrarily

small perturbations. SPPs are gradually absorbed and converge to the stable

trivial solution ψp = ψa = 0 for long propagation distances. Figs. 6.6c,d depict

the subcritical propagation of the slightly perturbed spatially homogeneous solu-

tions (c) |ψp| = |S| and (d) |ψa| = |R| correponding to the lower branch of Fig.

6.4. The propagation dynamics of this SPP plane wave is more involved. Indeed,

it appears to converge to a stable confined solution, suggesting the existence of

stable SPP solitons.

6.3 Stable plasmon-solitons

In this section, we analyse the existence of the subcritical solitons by using an ap-

proximate semi-analytical theory and a numerical approach based on the Newton-

Raphson iterations. The stability is studied by the numerical propagation of the

plasmon-solitons.

The semi-analytical approach is borrowed from Refs. [Atai and Malomed,

1996; Malomed and Winful, 1996]. The total power N carried by the coupled

SPPs is given by

N(z) =

∫ +∞

−∞

dy
[

|ψa(y, z)|2 + |ψp(y, z)|2
]

. (6.43)

For the plasmon-soliton solutions

ψa(y, z) = ua(y)e
iφz, (6.44)

ψp(y, z) = up(y)e
iφz, (6.45)

where φ ∈ <, the total power N is a conserved quantity.

In general, for the arbitrary input amplitude profiles ψa(y, 0), ψp(y, 0), the

dynamical propagation of the total power N is governed by the differential equa-

tion

dN

dz
+

∫ +∞

−∞

dy
[

2l|ψp|2 − 2(g − l)|ψa|2 + 2fΥ′′|ψa|4
]

= 0, (6.46)
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6.3 Stable plasmon-solitons

which represents the energy balance for the optical field. Such a balance equation

is achieved by differentiating Eq. (6.43) with respect to z and by using Eqs.

(6.18,6.19). In the limiting case g = l = Υ′′ = 0, the above balance equation

reduces to dN/dz = 0, describing the conservation of power in the absence of

gain and loss.

Assuming that ∆β = 0 and neglecting all the dissipative (g = l = Υ′′ = 0)

and coupling (κ = 0) terms, Eq. (6.19) reduces to the NLSE, which provides the

exact analytical soliton solution

ψa = ηBsech(ηy)eiφz, (6.47)

where

φ =
η2

2β
, (6.48)

B =

√

1

βfΥ′
. (6.49)

In this uncoupled conservative case, at the passive interface x = −w/2 the am-

plitude ψp is null, while at the active interface x = w/2 the amplitude ψa is a

Kerr plasmon-soliton. In the limit where g ∼ l ∼ κ ∼ fΥ′′|ψa|2, the soliton in

the second core ψp ∼ κ is assumed of the form

ψp(y, z) = u(y)eiφz. (6.50)

Inserting the expression above and Eq. (6.47) into Eq. (6.18) and neglecting the

loss term, one gets a differential equation for the u amplitude

d2u

dy2
− η2u = −κη

√

4β

fΥ′
sech(ηy), (6.51)

which can be solved by the Fourier transform method [Boyce and DiPrima, 1997]:

ψp =
2κ

η

√

β

fΥ′
{cosh(ηy) ln [2 cosh(ηy)]− ηy sinh(ηy)} eiφz, (6.52)

where φ = η2/2β and η > 0 parameterizes the soliton family. Inserting Eqs.(6.47,6.52)

into Eq. (6.46), one finds the evolution equation for the soliton family η param-

eter:
dη

dz
+ β2κ2lCη−3 − 2(g − l)η +

4Υ′′

3βΥ′
η3 = 0, (6.53)
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Figure 6.7: Maximum of the soliton intensity, max |ψa|2 vs gain g. The crosses

correspond to the Newton-Raphson method, while the full line corresponds to

the analytical results. The dotted line correspond to the spatially homogeneous

SPPs. The other parameters are as in Fig. 6.4.

where

C =

∫ +∞

−∞

dξ
{

e−ξln
[

1 + e2ξ
]

+ eξln
[

1 + e−2ξ
]}2 ' 5.694. (6.54)

The stationary η-solutions (dη/dz = 0) satisfy the cubic equation for η2

β2κ2lC − 2(g − l)η4 +
4Υ′′

3βΥ′
η6 = 0, (6.55)

which roots provide the family parameter η for the approximate dissipative plasmon-

soliton, given by Eqs. (6.47,6.52). Within the subcritical range ∆g = gth− g0 we

have found two positive roots η2 of Eq. (6.55), which provide the approximate

profiles for two separate plasmon-soliton solutions. In Fig. 6.7, the maximum of

|ψa|2 corresponding to the two η-roots is plotted as a function of the gain parame-

ter g with the full red lines. The soliton profiles ψp, ψa corresponding to the upper

amplitude-branch are plotted with the full lines in Figs. 6.8a,b, respectively.

The soliton perturbative theory provides accurate predictions in the limit

Υ′′ << Υ′ and ∆β = 0. However, it is not able to provide approximate soliton
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Figure 6.8: Star markers mark the numerically computed soliton profiles (a) |ψp|
and (b) |ψa|. Full lines represent the soliton profiles predicted by the perturbation

theory. The solitons shown correspond to the large amplitude branch: g = 0.0042

and the other parameters as in Fig. 6.4 |ψp| and |ψa| are shown in Figs. 6.8a,b,

respectively.

profiles for the case ∆β 6= 0, which needs the use of numerical methods. Solitons

are sought in the form

ψa = va(yn)e
iφz, (6.56)

ψp = vp(yn)e
iφz, (6.57)

where yn = n∆y (n = 0,±1,±2, ...) and ∆y is the numerical grid spacing. Insert-

ing the equations above into Eqs. (6.18,6.19) and approximating ∂2
yy derivatives

with the second order finite differences one achieves a nonlinear system of al-

gebraic equations for the variables va(yn), vp(yn), φ, which can be solved by the

Newton-Raphson method described in appendix B. The soliton propagation con-

stant φ is treated as one of the unknowns and the perturbation theory provides

an initial guess for the iterative procedure. Note that, since φ is an unknown, the

system formally contains N equations and N + 1 unknowns. However, the num-

ber of variables can be reduced by one fixing Imψa(0) = 0. Such an operation

is possible since Eqs. (6.18,6.19) are left invariant by an arbitrary phase shift

ψp, ψa → ψpe
iϕ, ψae

iϕ. Hence ϕ can be chosen in such a way that Imψae
iϕ = 0.

The numerical soliton branches are plotted in Fig. 6.7 and are represented by

the red cross markers. The corresponding numerical soliton profiles |ψp| and |ψa|
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6.3 Stable plasmon-solitons

Figure 6.9: Split-step FFT propagation of the optical amplitudes (a,c) |ψp| and

(b,d) |ψa|. The initial condition ψp(y, 0), ψa(y, 0) was set to the perturbative

prediction of the (a,b) upper and (c,d) lower soliton branches, respectively. Pa-

rameters used: β = 1.43, ∆β = 0, g = 0.0042, l = 0.0026, κ = 0.0028,

fΥ = 3.5× 10−3(1 + 0.1i).

are shown in Figs. 6.8a,b, respectively. We find excellent quantitative agreement

between numerical and analytical approaches. The perturbative theory predicts

the existence of the smaller amplitude soliton branch solitons both in the subcrit-

ical (g < gth) and supercritical (g > gth) ranges. Conversely, numerical results

show that the smaller plasmon-soliton amplitude goes to zero as g → gth and for

g > gth only one solution exists. The large amplitude solitons exist on both sides

g0 < g < gth, g > gth but their tails are stable only for g < gth.

Eqs. (6.18,6.19) can also be solved directly by using the split step FFT

method. We set the inital input ψp(y, 0), ψa(y, 0) to the perturbative approxi-

mation of the large and small amplitude soliton branches in the subcritical region

g = 0.0042 < gth and used the split step FFT to propagate it. Figs. 6.9a,b
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6.4 Concluding remarks

show the optical propagation of initial field profiles ψp(y, 0), ψa(y, 0) correspond-

ing to the large amplitude soliton branch. Note that, although the perturbative

plasmon-soliton solution is not exact, it converges rapidly to the exact solution

oscillating around it. Such propagation plots confirm the possibility to achieve

stable soliton propagation for the large amplitude branch in the subcritical region.

Figs. 6.9c,d depict the optical propagation of the initial field profiles ψp(y, 0),

ψa(y, 0) corresponding to the small amplitude soliton branch. The instability of

such solitons is not unexpected, since the small amplitude solitons separate the

attraction basins of the stable zero solution and of the stable large-amplitude

soliton.

6.4 Concluding remarks

In this chapter we have proposed and described a method to stabilise plasmon-

solitons in an Insulator-Metal-Insulator (IMI) structure. The IMI geometry is

composed of a metal slab sandwiched between a passive dielectric and a nonlin-

ear amplifying material. In the limit where the metal slab is infinitely thick, the

SPPs propagating at the active and the passive interfaces are completely uncou-

pled and the propagation dynamics is determined by the Ginzburg-Landau (GL)

equation derived in chapter 3. In this limit, the dark and bright plasmon-solitons

ensue from an overcritical bifurcation from the zero-background and suffer from

the intrinsic instability of the background itself, as discussed in chapter 3. How-

ever, if the thickness of the metal slab lies in a particular range, the coupling

of the active nonlinear interface with the passive one modifies the bifurcation

picture, which becomes subcritical. In this regime, it is possible to achieve the

bistability of the nonlinear homogeneous wave with a stable zero-background,

opening the possibility for the formation of stable bright plasmon-solitons. Basi-

cally, the role played by the passive interface is to absorb the perturbations that

would otherwise destabilise the zero-background. We developed a semi-analytical

perturbative approach to approximate the plasmon-soliton profiles and compared

the results with the fully numerical Newton-Raphson approach. The stability has

been verified in propagation by using the split-step beam propagation method.
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6.4 Concluding remarks

The original results reported in this chapter have been published in Ref. [Marini

et al., 2011b].
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Chapter 7

Optical propagation in nonlinear

subwavelength nanowires

In order to achieve two-dimensional (2D) confinement, several plasmonic geome-

tries have been proposed and realised: metal films [Leosson et al., 2006], tri-

angular wedges [Eguiluz and Maradudin, 1976; Yatsui et al., 2001] and grooves

[Bozhevolnyi et al., 2005; Novikov and Maradudin, 2002; Pile and Gramotnev,

2004], cylindrical wires with rectangular [Jung et al., 2007] and circular cross-

section [Prade and Vinet, 1994; Schmidt and Russell, 2008; Schroter and Dereux,

2001; Takahara et al., 1997; Ung and Skorobogatiy, 2011; Zhang et al., 2011].

In what follows, we extend the multiple scale approach derived in chapter 4

to the two-dimensional case of cylindrical waveguides and calculate nonlinearity

enhancement in different metallic, and dielectric/semiconductor setups. Results

are thoroughly coincident with previously reported experimental and theoretical

findings based on the reciprocity theorem approach [Afshar and Monro, 2009;

Afshar et al., 2009].

7.1 Multiple scale expansion of Maxwell equa-

tions

The optical propagation of a monochromatic electromagnetic field ~Ee−iωt, ~He−iωt

in a photonic nanowire, which is schematically depicted in Fig. 7.1, is determined
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7.1 Multiple scale expansion of Maxwell equations

Figure 7.1: Schematic representation of cylindrical nanowire.

by the time-independent Maxwell equations

∇× ~E = icµ0
~H, (7.1)

∇× ~H = −icε0(εa + iεb)~E− ic~DNL. (7.2)

∂x, ∂y, ∂z derivatives are taken with respect to the dimensionless spatial coordi-

nates x, y, z rescaled to k−1 = ω/c, where ω is the angular frequency and c is the

speed of light.

For the geometry considered, it is natural to work in cylindrical coordinates

(ρ, φ, z), where

ρ =
√

x2 + y2, (7.3)

φ = tan−1(y/x). (7.4)

In terms of cylindrical coordinates, the optical response of the nanowire is given

by the real-valued dielectric susceptibility function

εa(ρ) = εIθ(r − ρ) + εOθ(ρ− r), (7.5)
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7.1 Multiple scale expansion of Maxwell equations

where θ(x) is the Heaviside step function, r is the dimensionless core radius

rescaled to k−1 = λ/2π (r = kR) and εI , εO are the dielectric constants of the

core and cladding materials, respectively. εb(ρ) accounts for losses, while ~DNL is

the nonlinear contribution to the displacement vector. For isotropic Kerr nonlin-

earity:

~DNL(~E) =
1

2
ε0χ3(ρ)

[

|~E|2~E +
1

2
~E2~E∗

]

. (7.6)

Combining Eqs. (7.1,7.2) it is possible to achieve the single equation for the

electric field ~E

∇×∇× ~E = (εa + iεb)~E +
1

ε0
~DNL. (7.7)

The M̂ = ∇×∇× differential operator can be expressed in cylindrical coordinates

in the ρ̂, φ̂, ẑ basis:

M̂ =
1

ρ2





−ρ2∂2
z − ∂2

φ ρ∂2
ρφ + ∂φ ρ2∂2

ρz

ρ∂2
ρφ − ∂φ 1− ρ2∂2

z − ρ2∂2
ρ − ρ∂ρ ρ∂2

φz

ρ2∂2
ρz + ρ∂z ρ∂2

φz −ρ2∂2
ρ − ρ∂ρ − ∂2

φ



 . (7.8)

Introducing a small dummy variable s� 1, in what follows we assume that losses

and nonlinearity are small quantities of the order o(s3/2): |εb~E|, |~DNL| ∼ o(s3/2).

In order to solve Eqs. (7.1,7.2) we use the ansatz:

~E =
[

I1/2ψ(z)~e(ρ) +~j(ρ, φ, z) + o(s5/2)
]

eiβz+imφ, (7.9)

~H = ε0c
[

I1/2ψ(z)~h(ρ) +~l(ρ, φ, z) + o(s5/2)
]

eiβz+imφ, (7.10)

where

|ψ| ∼ o(s1/2), (7.11)

|~j|, |~l|, |∂zψ| ∼ o(s3/2). (7.12)

~e = (eρ, eφ, ez)
T ,~h = (hρ, hφ, hz)

T are the linear guided mode profiles, β is the

mode propagation constant and m ∈ Z is the winding number.

Boundary Conditions (BCs) at the interface ρ = r can be derived directly from

Maxwell equations [Jackson, 1999], providing that the tangential component of ~E,
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7.1 Multiple scale expansion of Maxwell equations

the normal component of the displacement ~D and all components of the magnetic

field ~H are continuous:

eρ : [(εa + iεb)eρ + (1/ε0)D
NL
ρ (~e)]r

+

r− = 0, (7.13)

eφ : [ey]
r+

r− = 0, (7.14)

ez : [ez]
r+

r− = 0, (7.15)

hρ : [hρ]
r+

r− = 0, (7.16)

hφ : [hφ]
r+

r− = 0, (7.17)

hz : [hz]
r+

r− = 0, (7.18)

where we have used the notation

[f(ρ)]r
+

r− = lim
δ→0

[f(r + δ)− f(r − δ)]. (7.19)

Without any loss of generality, the linear mode profiles ~e,~h can be assumed

dimensionless, so that the field units are carried by I1/2ψ. The normalization

factor I is chosen below in such a way that |ψ|2 is the power (measured in Watts)

carried in the z-direction, see Eq. (7.37).

Substituting the ansatz (7.9,7.10) into Maxwell equations (7.1,7.2) and collect-

ing terms of the order o(s1/2), one obtains a homogeneous system of differential

equations for the linear mode components eρ, eφ, ez. By solving this system and

applying the o(s1/2) order BCs one gets the linear mode profile ~e,~h. o(s3/2) order

terms provide an inhomogeneous system of differential equations for the residual

field components jρ, jφ, jz. Analogously to the one-dimensional case, the propa-

gation equation for the field amplitude ψ(z) is found as a solvability condition

for the multiple scale expansion.

7.1.1 Linear guided modes

Solving the linear system of differential equations

M̂[eiβz+imφ~e] = εae
iβz+imφ~e (7.20)

is not a task that can be accomplished straightforwardly. Indeed, the differential

equations for the transverse field components eρ, eφ, hρ, hφ are coupled and finding
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7.1 Multiple scale expansion of Maxwell equations

the recurrence relation in the solution by power series is troublesome [Arfken and

Weber, 2001]. Such a calculation is greatly simplified by expressing the transverse

field components eρ, eφ, hρ, hφ in terms of the longitudinal ones ez, hz. Combining

the curl equations [Marcuse, 1982]:

eρ = − i

q2
[im(1/ρ)hz + β∂ρez] , (7.21)

eφ =
i

q2
[∂ρhz − imβ(1/ρ)ez] , (7.22)

hρ =
i

q2
[imεa(1/ρ)ez − β∂ρhz] , (7.23)

hφ = − i

q2
[εa∂ρez + imβ(1/ρ)hz] , (7.24)

where q2 = β2−εa. The longitudinal field components ez, hz satisfy two uncoupled

Bessel equations:

∂2
ρez + (1/ρ)∂ρez −

[

q2 +m2/ρ2
]

ez = 0, (7.25)

∂2
ρhz + (1/ρ)∂ρhz −

[

q2 +m2/ρ2
]

hz = 0. (7.26)

Generally, each of the above second order linear differential equations admits two

independent solutions, namely Bessel functions of first Jm and second Ym kind,

which can be calculated by power series [Arfken and Weber, 2001]. The Bessel

functions of first kind Jm remain finite at ρ = 0 and characterise the mode profile

inside the core.

On the other hand, the Bessel functions of second kind Ym tend to infinity as

ρ→ 0. Another pair of solutions, which constitutes a different basis, is provided

by the Hankel functions of first Hm = Jm+ iYm and second kind H
(2)
m = Jm−iYm.

The Hankel function of first kind Hm tends to zero as ρ→∞ (when its argument

is imaginary) and represents the mode profile in the cladding medium.

Thus, the longitudinal mode components ez, hz are expressed in terms of

Bessel and Hankel functions:

ez = A
Jm(iqIρ)

Jm(iqIr)
θ(r − ρ) + C

Hm(iqOρ)

Hm(iqOr)
θ(ρ− r), (7.27)

hz = B
Jm(iqIρ)

Jm(iqIr)
θ(r − ρ) +D

Hm(iqOρ)

Hm(iqOr)
θ(ρ− r), (7.28)
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7.1 Multiple scale expansion of Maxwell equations

where qI,O =
√

β2 − εI,O. Boundary conditions provide a homogeneous system

of four algebraic equations for the constants A,B,C,D:

eρ :
q2
O

q2
I

[

im

r
B + iqIβ

J ′
m(iqIr)

Jm(iqIr)
A

]

=

[

im

r
D + iqOβ

H ′
m(iqOr)

Hm(iqOr)
C

]

, (7.29)

eφ :
q2
O

q2
I

[

iqIB
J ′
m(iqIr)

Jm(iqIr)
− imβ

r
A

]

=

[

iqOD
H ′
m(iqOr)

Hm(iqOr)
− imβ

r
C

]

, (7.30)

ez : A = C, (7.31)

hz : B = D. (7.32)

The BCs for hρ, hφ are automatically satisfied if the conditions above are set. The

solution of the homogeneous system above is non-trivial only if the determinant

of the coefficient matrix is null [Stratton, 1941]:

[

qIεO
H ′
m(iqOr)

Hm(iqOr)
− qOεI

J ′
m(iqIr)

Jm(iqIr)

]

× (7.33)

×
[

qO
J ′
m(iqIr)

Jm(iqIr)
− qI

H ′
m(iqOr)

Hm(iqOr)

]

=

[

mβ(εO − εI)
qOqIr

]2

.

The prime superscript of functions J ′
m, H

′
m denotes the derivative with respect

to the argument of functions Jm, Hm. The solution of the above transcendental

equation for every fixed m gives the mode propagation constant β, which is then

used to calculate the coefficients A−D and thus the corresponding mode profile.

Note that the localised modes are cut-off when q2
O becomes negative and that

modes with the same |m| have equal propagation constants β. For m = 0, the

dispersion relation can be factorised as the product of two β-functions. The roots

of these functions provide Transverse Electric (TE, ez = eρ = 0, eφ 6= 0) and

Transverse Magnetic (TM, hz = hρ = 0, hφ 6= 0) modes. For every m > 0 there

are, generally, two types of modes (HE and EH modes) where all of the electric

field components are non-zero [Marcuse, 1982]. However, for metallic nanowires

(εI < 0), only one mode exists for every fixed |m| [Takahara et al., 1997]. At

o(s1/2) order, the z-component of the Poynting vector is given by

Pz = (π/k2)

∫ +∞

0

ρRe
[

EρH
∗
φ − EφH∗

ρ

]

dρ =

=
ε0c

2k2
βI|ψ|2(1 + η)P, (7.34)
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7.1 Multiple scale expansion of Maxwell equations

where

P = 2π

∫ +∞

0

ρ|~e|2dρ, (7.35)

η =
2πr

βP
Im[e∗ρez]

r+

r−. (7.36)

The scaling constant I can be fixed in such a way that |ψ|2 = Pz:

I = 2k2/(βε0c(1 + η)P ). (7.37)

Note that η is generally non-zero since eρ is discontinuous across the boundary.

7.1.2 Propagation equation

At o(s3/2) order, Eq. (7.7) provides an inhomogeneous system of equations for

the residual field correction ~j:

L̂m
~j = I1/2(iεbψ − ∂zψD̂

(m)
z )~e+

1

ε0
~Dnl(I

1/2ψ~e), (7.38)

where

L̂m =
1

ρ2











q2ρ2 +m2 im∂ρρ iβρ2∂ρ

imρ2∂ρ
1

ρ
q2ρ2 − ρ2∂ρ

1

ρ
∂ρρ −mβρ

iβρ∂ρρ −mβρ p2ρ2 − ρ2∂ρ
1

ρ
∂ρρ











(7.39)

is the linear Maxwell operator in cylindrical coordinates, p2 = (m2 − 1)/ρ2 − εa,
and

D̂
(m)
z =

1

ρ





−2iβρ 0 ρ∂ρ
0 −2iβρ im
∂ρρ im 0



 . (7.40)

The propagation equation can be determined by taking the scalar product of both

sides of Eq. (7.38) with the linear mode ~e:

〈~e|L̂m|~j〉 = −I1/2∂zψ〈~e|D̂(m)
z |~e〉+ iI1/2ψ〈~e|εb|~e〉+

1

ε0
〈~e|~DNL〉. (7.41)

If one neglects corrections due to loss and nonlinearity in the BCs [Agrawal,

2001b; Davoyan et al., 2009b; Feigenbaum and Orenstein, 2007], then

〈~e|L̂m|~j〉 = 0, (7.42)
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7.1 Multiple scale expansion of Maxwell equations

since ~e is an eigenvector of the self-adjoint operator L̂m with zero eigenvalue.

However, the account of linear and nonlinear corrections in the BCs removes the

self-adjoint property in the o(s3/2) order:

〈~e|L̂m|~j〉 6= 〈~j|L̂m|~e〉∗ 6= 0. (7.43)

The full set of BCs for the electric field ~E is:

[Ez]
R+

R− = 0, (7.44)

[Eφ]
R+

R− = 0, (7.45)
[

(εa + iεb)Eρ +
1

ε0
DNL,ρ

]R+

R−

= 0 . (7.46)

In the calculations below we also use the boundary condition for Hz:

[Hz]
R+

R− = 0. (7.47)

Calculating the integral 〈~e|L̂m|~j〉 by parts and applying the above BCs, at o(s3/2)

order one gets

〈~e|L̂m|~j〉 = 2πRI1/2∂zψ [e∗zeρ]
R+

R− . (7.48)

Note that ~e satisfies the BCs (7.44-7.46) at o(s1/2) order, hence eφ, ez are con-

tinuous, while eρ is discontinuous at the waveguide interface ρ = r = kR. As a

result, the right hand side of Eq. (7.48) is generally non-zero. The approxima-

tion 〈~e|L̂m|~j〉 ' 0 is well satisfied for optical fibres with a small index step and

a large core radius R >> kλ. Indeed, in this regime the longitudinal component

of the electric field (ez) is generally small, while the discountinuity of the normal

component eρ is proportional to |εI − εO| and is also small. However, for sub-

wavelength waveguides with large refractive index contrast and small core sizes

this approximation is no longer valid, and the surface term in Eq. (7.48) becomes

essential.

Direct calculation of 〈~e|D̂(m)
z |~e〉 reveals another contribution from the surface:

〈~e|D̂(m)
z |~e〉 = −2iβP − 2πR

[

eze
∗
ρ

]R+

R−
. (7.49)

where the quantity P is given by Eq. (7.35). Substituting Eqs. (7.48,7.49) into

Eq. (7.41) and calculating the other scalar product integrals, one finally achieves
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7.1 Multiple scale expansion of Maxwell equations

the propagation equation for the slowly varying amplitude ψ(z):

i∂zψ + iαψ + Υ|ψ|2ψ = 0, (7.50)

where Υ = gγ, α =
√
ga and

a =
π

βP

∫ +∞

0

ρεb|~e|2dρ, (7.51)

γ =
4πk2

3β2P 2

∫ +∞

0

ρεan2

[

|~e|4 +
1

2
|~e2|2

]

dρ. (7.52)

Here, we used χ3 = (4/3)n2ε0cεa, where n2 is the Kerr coefficient. The parameter

γ is defined to be similar to the one derived in the approaches dating back to

the use of the scalar wave equation [Agrawal, 2001b]. Analogously to planar

geometries described in chapter 4, the nonlinear coefficient Υ differs from γ by

the surface-induced enhancement factor g:

g =
1

(1 + η)2
, (7.53)

where η is given by Eq. (7.36). On the other hand, also the effective loss coefficient

α is enhanced by the square root of g: α =
√
ga. Note that the rigorous account

of surface terms in both sides of Eq. (7.38) eventually leads to the correct real-

valued nonlinearity enhancement factor g. Conversely, neglecting the surface

contribution in the left hand side of Eq. (7.35)

〈~e|L̂m|~j〉 ' 0, (7.54)

one gets an unphysical complex enhancement factor g for m 6= 0 modes. The

surface term η, provided by Eq. (7.36), is determined by the product of the

longitudinal field component ez and the radial component eρ discontinuity jump

at the waveguide interface. For linear modes ~e, the amplitude is left arbitrary; for

convenience, we can fix the linear mode amplitude in such a way that ez(r) = 1.

The units of n2 are m2W−1 and the units of γ,Υ are W−1. If one considers

the physical longitudinal coordinate Z = z/k instead of the dimensionless z, the

resulting nonlinear coefficient is kΥ, which is measured in m−1W−1. Neglecting

the surface contribution η, the expression for the nonlinear parameter coincides
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7.1 Multiple scale expansion of Maxwell equations

to the one achieved with traditional methods [Agrawal, 2001b; Davoyan et al.,

2009b; Feigenbaum and Orenstein, 2007].

It is worthwhile noting that our results thoroughly coincide with the theoret-

ical modelling of nonlinear optical propagation based on the reciprocal theorem

[Afshar and Monro, 2009; Afshar et al., 2009; Ye et al., 2010]. Indeed, from Eq.

(7.34), it is straightforward to obtain the analytical expression

P = (1 + η)−1

∫ ∫

ρRe
[

~e×~h∗
]

· ẑdρdφ, (7.55)

where ẑ is the z-direction unit vector and the integration is performed across the

entire waveguide cross-section. Thus, the nonlinear parameter Υ can be expressed

as

Υ =
k2

3β2

∫ ∫

ρεan2 [2|~e|4 + |~e2|2] dρdφ
(

∫ ∫

ρRe
[

~e×~h∗
]

· ẑdρdφ
)2 . (7.56)

Hence, the nonlinearity enhancement observed in Refs. [Afshar and Monro, 2009;

Afshar et al., 2009] is entirely due to the surface contribution η, which is neglected

in other approaches but becomes significant in the subwavelength regime.

7.1.3 Lorentz Reciprocity Theorem

The Lorentz Reciprocity Theorem (LRT) is a relevant theorem of electromagnetic

theory [Snyder and Love, 1983], stating that

∂z

∫

S

~FC · ẑdS =

∫

S

∇ · ~FCdS, (7.57)

where the integral is taken over the entire transverse plane S = x− y of a generic

two dimensional waveguide and ẑ is the longitudinal unit vector. The vector field
~FC is constructed with two arbitrary guided electromagnetic fields ~E0, ~H0 and
~E1, ~H1:

~FC = ~E∗
0 × ~H1 + ~E1 × ~H∗

0. (7.58)

The electric and magnetic fields

~E0 = I1/2ψ~e(~r⊥)eiβz−iωt, (7.59)

~H0 = ε0cI
1/2ψ~h(~r⊥)eiβz−iωt, (7.60)
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7.1 Multiple scale expansion of Maxwell equations

constitute the linear mode of the unperturbed waveguide with dielectric suscep-

tibility profile εa where ~r⊥ = (x, y). The scaling factor I can be fixed in such

a way that the squared amplitude |ψ|2 represents the power carried by the two

dimensional waveguide

Pz =
1

2k2

∫

S

Re
[

~E0 × ~H∗
0

]

· ẑdS = |ψ|2. (7.61)

On the other hand, the electric and magnetic fields ~E1, ~H1 correspond to the

perturbed electromagnetic field accounting for linear εb~E0 and nonlinear ~DNL

corrections. Taking the divergence of the vector field ~FC

∇ · ~FC = ∇ ·
(

~E∗
0 × ~H1

)

+∇ ·
(

~E1 × ~H∗
0

)

=

=
(

∇× ~E∗
0

)

· ~H1 − ~E∗
0 ·
(

∇× ~H1

)

+

+
(

∇× ~E1

)

· ~H∗
0 − ~E1 ·

(

∇× ~H∗
0

)

, (7.62)

and using the curl Maxwell equations one obtains

∂z

∫

S

(~E∗
0 × ~H1 + ~E1 × ~H∗

0) · ẑdS = ic

∫

S

δ~P · ~E0dS, (7.63)

where

δ~P = ε0εb~E0 + ~DNL. (7.64)

It is assumed that linear and nonlinear polarisation corrections are small and

therefore the perturbed modes are approximated by the unperturbed ones in the

right hand side of Eq. (7.63). Conversely, in the left hand side, the perturbed

electric and magnetic fields are expressed as

~E1 = I1/2ψ(z)~e(~r⊥)eiβz−iωt, (7.65)

~H1 = ε0cI
1/2ψ(z)~h(~r⊥)eiβz−iωt, (7.66)

where the mode amplitude ψ becomes z-dependent: ψ(z).

Inserting Eqs. (7.59,7.60,7.65,7.66) into Eq. (7.63) one gets

∂zψ + αψ + Υ|ψ|2ψ = 0, (7.67)

where the parameters α,Υ thoroughly coincide with the expressions derived by us

and the equivalence between our results and the LRT approach is demonstrated.

In the following sections, we evaluate the surface-induced contributions to the

effective loss and nonlinearity parameters α and Υ in different setups.

176



7.2 Plasmonic waveguide

0.4 0.45 0.5 0.55
0

500

1000

1500

λ (µm)

 (
m

 W
)−

1  

λ
SPP

kγ

kϒ

(b)

0.4 0.45 0.5 0.55
0

0.2

0.4

0.6

0.8

λ (µm)

α,
 a

, β
i

λ
SPP

(c)

a

α, β
i

0.1 0.2 0.3 0.4 0.5

5

10

15

20

25

30

R/k (µm)

(m
 W

)−
1  

(d)

kγ

kϒ

Figure 7.2: (a) TM mode of a metallic wire (r/k = 100nm, λ = 500nm) made

of silver and surrounded by silica glass. (b,c) Nonlinear and loss coefficients as

function of λ (r/k = 100nm). (d) kΥ, kγ vs r/k for λ = 500nm.

7.2 Plasmonic waveguide

In this section we report the results for the loss and nonlinearity enhancements

of a silver rod waveguide surrounded by silica glass.

We modelled the metal susceptibility εI(ω) by the Drude-Lorentz fit of the

experimental data [Ung and Sheng, 2007], and the silica glass susceptibility εO(ω)

by the Sellmeier expansion [Agrawal, 2001b]. The nonlinear Kerr coefficient of

silica glass was fixed to n2 = 3 × 10−20m2/W . In Fig. 7.2, the results are

presented for the m = 0 TM guided mode. Modes with higher winding number

|m| > 0 exhibit a similar behaviour. The inset in Fig. 7.2 shows the cross-section

of the z-component of the Poynting vector. For the case of metallic nanowires,

only the TM guided modes with non-zero ez and eρ components exist. Both

electric field components have peak amplitudes at the waveguide interface, and
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7.2 Plasmonic waveguide

the discontinuity in eρ is significant due to the opposite signs of εI and εO. ez

and eρ are characterised by a π/2 phase shift, so that the surface coefficient η

provided by Eq. (7.36) is always negative:

− 1 < η < 0. (7.68)

As a result, the surface term enhances both nonlinearity and loss:

g = (1 + η)−2 > 1. (7.69)

In Figs. 7.2b,c, we compare the nonlinear kΥ (red star markers in Fig. 7.2b),

kγ (blue circle markers in Fig. 7.2b) and loss α (red star markers in Fig. 7.2c),

a (blue circle markers in Fig. 7.2c), βi (black curve in Fig. 7.2c) coefficients as

functions of the wavelength λ for a fixed waveguide radius R = r/k = 100nm. The

discrepancy between the two theories becomes significant as wavelength decreases.

As the wavelength approaches the surface plasmon resonance λ = λSPP ≈ 370nm

(|εI(λSPP )| = εO(λSPP ) [Boardman, 1982]), the mode gets tightly localised at the

interface and the enhancement factor g diverges (η → −1). In order to validate

our theory, we calculated the loss parameter βi directly through the dispersion

relation, see Eq. (7.33. Indeed, by substituting the complex-valued dielectric

susceptibility εI of metal in Eq. (7.33), one gets the corresponding complex-

valued propagation constant β = βr+ iβi. The imaginary part of the propagation

constant βi provides us with the decay rate of the corresponding quasi-guided

mode and is plotted in Fig. 7.2c with the black solid curve. Note that the

perturbative loss coefficients accounting for the surface contribution α perfectly

match the exact loss parameter βi calculated through the dispersion relation.

Fig. 7.2d depicts the nonlinear parameters kΥ (red star markers), kγ (blue

cricle markers) as functions of the rod radius R = r/k for the fixed wavelength

λ = 500nm. The surface-induced enhancement factor grows as the waveguide

radius is reduced, analogously to the results reported in chapter 4 for the metal

slot planar geometry. Note that there is no cut-off radius for the plasmonic

nanowire modes, which opens the opportunity to tune the effective nonlinear

parameter to any high value at the expense of an increasing loss.
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7.3 Dielectric waveguide

7.3 Dielectric waveguide

In this section, we consider a dielectric rod waveguide surrounded by air cladding

(εO = 1). Fig. 7.3 summarises the analysis of TM modes of waveguides com-

posed of silica glass and silicon cores, which dielectric susceptibilities εI(ω) =

εSiO2(ω), εSi(ω) were modelled through Sellmeier [Agrawal, 2001b] and Herzberger

expansions [Edwards and Ochoa, 1980], while Kerr coefficients were fixed to

n2 = 3× 10−20m2/W (silica glass SiO2), n2 = 4.5× 10−18m2/W (silicon Si).

Similar to the previous case of plasmonic waveguides, the TM modes of dielec-

tric waveguides have non-zero transverse field component eρ with discontinuity at

the waveguide interface, see Figs. 7.3a,b, ensuring non-zero surface contribution

g = (1 + η)−2 to the effective nonlinearity coefficient. For the case of silica glass

waveguide, the dielectric susceptibility step is relatively weak εI− εO ∼ 1 (εI ∼ 2,

εO = 1). As a result, the surface contribution η stays small for a wide range of

wavelengths, see Fig. 7.3c. Hence, the use of traditional perturbative theories is

justified, as expected.

For silicon nanowires, the dielectric susceptibility jump increases εI − εO ∼ 10

(εI ∼ 12, εO = 1), the mode becomes more localised and the surface-induced

enhancement factor g = (1 + η)−2 increases. Remarkably, the nonlinearity en-

hancement exhibits a resonant behaviour. The difference between kγ and kΥ

is negligible for long λ → ∞ and short wavelengths λ → λCO, where λCO is

the cut-off wavelength. The difference between the two perturbation theories be-

comes significant around a certain critical wavelength λ ≈ 3µm (see Fig. 7.3d),

where the enhancement factor reaches its maximum (g ∼ 3). This resonant-like

nonlinearity enhancement is confirmed in Figs. 7.3e,f, where the nonlinear co-

efficients for silica glass and silicon waveguides are plotted as functions of the

waveguide radius at a fixed wavelength. In both cases, g reaches its maximum

when the waveguide diameter becomes comparable with the wavelength inside

the dielectric core: r0/k ∼ λ/(2
√
εI) (r0/k ∼ 300nm for silica glass SiO2 waveg-

uide at wavelength λ = 540nm and r0/k ∼ 600nm for silicon Si waveguide at

wavelength λ = 3µm).

Similar resonant behaviour of the nonlinearity enhancement is observed for

modes with m 6= 0. Fig. 7.4 summarises the results for m = 1 modes of a silicon
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Figure 7.3: TM guided modes of (a,c,e) silica glass (SiO2) and (b,d,f) silicon (Si)

rod waveguides with air cladding. (a,b) Mode profiles with insets showing cross-

section of the z-component of the Poynting vector for (a) R = r/k = 300nm,

λ = 540nm and (b) R = r/k = 600nm, λ = 3µm. (c,d) Nonlinear coefficients

vs wavelength λ corresponding to (a) and (b) modes, respectively. (e,f) Nonlin-

ear coefficients vs waveguide radius R = r/k corresponding to the modes (a,b),

respectively, and for fixed wavelengths (e) λ = 540nm and (f) λ = 3µm.
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Figure 7.4: Figure equivalent to Fig. 7.3, but corresponding to m = 1 modes of

the silicon (Si) waveguide: (a,c,e) HE11 and (b,d,f) EH11 modes.

181

Chapter7/Chapter7Figs/EPS/Fig6a_edit_with_insert.eps
Chapter7/Chapter7Figs/EPS/Fig7a_edit_with_insert.eps
Chapter7/Chapter7Figs/EPS/Fig6c_edit.eps
Chapter7/Chapter7Figs/EPS/Fig7c_edit.eps
Chapter7/Chapter7Figs/EPS/Fig6d_edit.eps
Chapter7/Chapter7Figs/EPS/Fig7d_edit.eps


7.4 Concluding remarks

nanowire: HE11 (which is the fundamental mode with no cut-off) and EH11. The

surface effect is much stronger for the HE11 mode, since this mode has stronger

eρ and ez components and is more localised than the EH11 mode. The resonant

enhancement of nonlinearity for m = 1 modes occurs at a larger wavelength

(for fixed waveguide radius) and a smaller radius (for fixed wavelength) than for

m = 0 modes, see. Figs. 7.4c,f.

7.4 Concluding remarks

In this chapter we have extended the one-dimensional perturbative theory de-

veloped in chapter 4 to the case of dielectric and metallic cylindrical nanowires.

The propagation equation is determined as the scalar product solvability condi-

tion for the multiple scale expansion. Our approach accounts for the loss and

the nonlinearity corrections in the boundary conditions, which affect the prop-

agation equation with a surface term η. Such a contribution from the surface

is neglected in the traditional approach developed in the theory of optical fibres

[Agrawal, 2001b], which has been used also to model the optical propagation of

nonlinear SPPs [Davoyan et al., 2009b; Feigenbaum and Orenstein, 2007]. We

demonstrated the complete equivalence of our perturbative approach with the

Lorentz Reciprocity Theorem (LRT) approach, which has been used to model

the optical propagation in both dielectric and metallic subwavelength nanowires

[Afshar and Monro, 2009; Afshar et al., 2009; Ye et al., 2010]. We also demon-

strated that the surface-induced contribution to the effective loss and nonlinearity

becomes the leading term in the subwavelength regime both for metallic and sili-

con nanowires. Thus, we uncovered the physical origin of the modified prediction

provided by the LRT approach [Afshar and Monro, 2009; Afshar et al., 2009;

Ye et al., 2010] with respect to the traditional theory [Agrawal, 2001b; Davoyan

et al., 2009b; Feigenbaum and Orenstein, 2007]. The original results reported in

this chapter have been published in Ref. [Marini et al., 2011a].
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Chapter 8

Conclusions

This thesis is focused on the theoretical modelling of the optical propagation

in photonic nanostructures. The delivery of electromagnetic energy on the sub-

wavelength scale is one of the primary tasks for the research in nano-optics. The

embedding of metallic components in photonic structures can provide a tight con-

finement of light, owing to the excitation of surface plasmon polaritons (SPPs).

SPPs constitute one of the most promising candidates for the realisation of minia-

turised optical interconnection in optoelectronic circuitry. The inherent subwave-

length nature of SPPs provides a tight localisation that enhances the nonlinear

optical processes. Such an enhanced nonlinear response is important for the re-

alisation of active plasmonic components. The tight localisation of light in the

subwavelength scale is paid in terms of an enhanced dissipation due to the ohmic

loss of the metal components. Although several geometries have been proposed

for the reduction of the dissipation, the inherent trade-off between loss and lo-

calisation can be overcome only by embedding gain materials in the plasmonic

structure.

In summary, we have developed some analytical and numerical tools to model

the propagation of light in subwavelength photonic structures. The analytical

technique is a novel perturbative theory for the Maxwell equations, accounting

for the surface contribution in the boundary conditions due to the loss and the

nonlinearity. Such a contribution affects the propagation equation of the SPPs

with the surface term η, which enhances both the effective loss and nonlinear

coefficients.
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The numerical techniques involved the use of the Newton-Raphson routine, the

split-step beam propagation method and the Runge-Kutta algorithm to solve the

nonlinear equations derived by the analytical methods and to study the stability

of the solutions.

The original results achieved can be summarised as follows:

• Nonlinear dispersion law for amplified SPPs. By using a perturbative the-

ory accounting for the gain deviation from the amplification threshold and

the complex two-level atom nonlinearity, we have been able to derive the

dispersion law of the homogeneous nonlinear SPPs at a single interface be-

tween a metal and an active dielectric. In such a perturbative approach, we

explicitly calculated the residual field corrections due to the nonlinearity

and the gain deviation from the amplification threshold. Then, we imposed

the boundary conditions that accounted for the linear and nonlinear cor-

rections, achieving the dispersion law of the nonlinear eigenvalue problem.

The physical origin of the formation of the homogeneous nonlinear SPPs

resides in the exact balance between the metal loss, the linear amplification

and the nonlinear saturation of gain. Such a result is reported in section

3.2 and has been published in Ref. [Marini et al., 2009].

• Ginzburg-Landau propagation equation for amplified SPPs. By using the

same perturbative approach, we have been able to derive the Ginzburg-

Landau (GL) propagation equation for the SPP beams at a single interface

between a metal and an active dielectric. If the diffraction is included in

the derivation, the GL equation naturally arises from the imposition of the

boundary conditions. The dispersion law of the homogeneous nonlinear

SPPs is recovered in the limit where the SPP beam width tends to infinity.

On the other hand, if the SPP beam width is finite, the propagation dynam-

ics involves the interplay of metal loss, dielectric amplification, diffraction

and complex nonlinearity. It is well known for the GL systems that there

exist some dissipative soliton solutions that ensue from the bistability of

the zero-background and the homogeneous nonlinear wave. For such spe-

cial SPP beams, the diffraction vs self-focusing equilibrium is complemented

with the effective amplification vs nonlinear gain saturation balance. The
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stability analysis of the dark and bright plasmon-solitons revealed an intrin-

sic instability that limits the propagation of plasmon-solitons. Such results

are described in section 3.3 and have been published in Ref. [Marini and

Skryabin, 2010].

• Physical origin of the enhanced nonlinearity. The explicit calculation of

the residual field corrections due to diffraction, loss and nonlinearity does

not allow an insightful understanding of the underpinning physical mech-

anisms providing the modified effective nonlinearity. For this reason, we

have developed a general perturbative theory that is suitable for every TM

wave propagating in a generic nonlinear subwavelength photonic structure.

Such a theory does not involve the explicit calculation of the field cor-

rections. In this case the propagation equation is achieved as the scalar

product solvability condition for the multiple scale expansion. The surface

contributions to the effective loss and nonlinearity enter the propagation

equation through the term η, which results from the off-integral terms after

the projection on the linear mode is carried out. Such a term is generally

disregarded in the traditional approach used to model the propagation of

light in optical fibres. Indeed, for the case of optical fibres, the intensity

profile is peaked within the fibre core and the contribution to the effective

nonlinearity coming from the boundary is relatively small. However, in the

case of subwavelength photonic structures like silicon on insulator (SOI) or

plasmonic waveguides the surface contribution is relevant. For SPPs around

the plasma frequency, we demonstrated that the surface-induced nonlinear-

ity is the leading term. Indeed, in the extreme subwavelength plasmonic

regime, the surface nonlinearity becomes crucial since the light gets tightly

confined at the interface between the metal and the dielectric. Such findings

are described in chapter 4 and have been published in Ref. [Skryabin et al.,

2011].

• Two-band dispersion and discrete/gap plasmon-soliton formation in metal-

dielectric stacks. The effective refraction and diffraction properties of mate-

rials can be managed by using concepts of photonic crystal theory. We have

developed a coupled-mode perturbative theory for the propagation of SPPs
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in metal-dielectric stacks. Our perturbative approach allowed us to de-

rive a system of coupled discrete nonlinear Schrödinger equations (NLSEs)

for the SPPs propagating at every metal-dielectric interface. The different

couplings through the metal and dielectric layers are responsible for the

formation of a characteristic two-band dispersion, which allows the forma-

tion of various gap and discrete plasmon-soliton families. Such results are

reported in chapter 5 and have been published in Ref. [Marini et al., 2010].

• Stabilisation of amplified plasmon-solitons. The bright and dark dissipative

plasmon-solitons propagating along an interface between a metal and an

active dielectric are unstable. Hence, they can not be used to deliver opti-

cal energy at the nanoscale. Such solitary waves ensue from the overcritical

bifurcation of the homogeneous nonlinear SPPs from the zero-background

and suffer from the inherent instability of the background. In turn, we

proposed and developed a method to stabilise such localised self-sustaining

optical beams by exploiting the coupling with a passive interface in an

Insulator-Metal-Insulator (IMI) plasmonic structure. For such a geometry,

we demonstrated the existence of a subcritical bifurcation of the homoge-

neous nonlinear SPP waves from the zero background, which allows the

propagation of stable bright plasmon-solitons. Basically, the role played by

the passive interface is to absorb the perturbations that would otherwise

destabilise the plasmon-soliton. We calculated the approximated soliton

profiles by a semi-analytical perturbative approach and compared the re-

sults with the fully numerical Newton-Raphson approach. The stability

has been verified by perturbing the soliton field and propagating it by the

split-step beam propagation method. Such a result is reported in chapter 6

and has been published in Ref. [Marini et al., 2011b].

• Explanation of the nonlinearity enhancement in subwavelength nanowires

predicted by the Lorentz reciprocity approach. We extended the one dimen-

sional perturbative theory to the case of cylindrical nanowires. Calculating

explicitly the effective loss and nonlinear parameters, we found complete

agreement with the results achieved by the Lorentz reciprocity approach.
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8.1 List of publications

Our perturbative theory predicted the nonlinearity enhancement in sub-

wavelength nanowires reported in Refs. [Afshar and Monro, 2009; Afshar

et al., 2009], which can then be identified as the surface nonlinearity that

is not accounted for in the traditional approach [Agrawal, 2001a]. Such a

result is described in chapter 7 and has been published un Ref. [Marini

et al., 2011a].
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Appendix A

The two-level atom model

For the nonresonant electronic nonlinearity, which was introduced in section 1.3,

it is possible to expand the nonlinear polarisation in terms of powers of the

electric field ~E; the Kerr nonlinearity includes the third order terms of such

an expansion. However, in some circumstances, the Taylor expansion of ~PNL

does not converge. In particular, when the electronic transitions are resonantly

excited by the optical field, the expansion of the polarization in terms of the

Taylor series is not appropriate to describe the dielectric response. In such cases,

it is a good approximation to treat the material as a two-level system, accounting

for absorption/emission and saturation effects [Boyd, 2003].

If an electronic transition is resonant with the external field, it is usually

adequate to consider the system as composed only by the two resonant states, as

depicted in Fig. 1.7. Even though this simplified two-level model ignores other

effects occurring in real systems, it is very advantageous for the description of the

physical process of saturable absorption/emission.

The Hamiltonian of a two-level system can be expressed as the sum Ĥ =

Ĥ0 + V̂ (t), where Ĥ0 is the unperturbed atomic Hamiltonian and V̂ (t) is the

Hamiltonian of interaction between the atom and the external electromagnetic

field. The unperturbed Hamiltonian can be expressed in the diadic representation

Ĥ0 = ~ωa|a〉〈a|+ ~ωb|b〉〈b|, (A.1)
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where ~ωa, ~ωb (ωb > ωa) are the energy levels of states a, b corresponding to the

Hamiltonian eigenvectors |a〉, |b〉 [Cohen-Tannoudji et al., 1977].

In the electric dipole approximation, the interaction Hamiltonian is provided

by

V̂ (t) = − [µba|b〉〈a|+ µ∗
ba|a〉〈b|]E(t), (A.2)

where µba is the atomic dipole moment and E(t) is the external electric field.

The state of the system is described by means of the density matrix ρ̂, which

representation in the orthonormal basis |a〉, |b〉 is provided by

ρ̂ =

(

ρaa ρ∗ba
ρba ρbb

)

. (A.3)

In the Heisenberg picture [Cohen-Tannoudji et al., 1977], the temporal evolution

of ρ̂ is governed by
d

dt
ρ̂ =

i

~
[Ĥ, ρ̂]. (A.4)

If the decay rate of the upper level b due to spontaneous emission (Γba = 1/T1)

and the dephasing rate of the atomic dipole moment (γba = 1/T2) are taken into

account, the time evolution of the density matrix elements is determined by

ρ̇ba = −(iωba + 1/T2)ρba − (i/~)µba(ρbb − ρaa)E(t), (A.5)

ρ̇bb = −ρbb/T1 + (i/~)(µbaρ
∗
ba − µ∗

baρba)E(t), (A.6)

ρ̇aa = ρbb/T1 + (i/~)(µ∗
baρba − µbaρ∗ba)E(t), (A.7)

where ωba = ωb − ωa [Boyd, 2003]. Note that the condition

ρ̇aa + ρ̇bb = 0, (A.8)

is implicitly satisfied, representing the conservation of total number of electrons

ρaa + ρbb = 1. Since the equation for the off-diagonal element ρba depends only

on the difference ρbb − ρaa, it is convenient to introduce the evolution equation

for the difference of population (ρbb − ρaa):

ρ̇bb − ρ̇aa = − [1 + (ρbb − ρaa)] /T1 − (2i/~)(µ∗
baρba − µbaρ∗ba)E(t). (A.9)
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Such an equation, in the absence of the external electromagnetic field (E(t) =

0), yields the steady state solution (ρbb − ρaa)eq = −1. Hence, combining the

unperturbed steady-state solution with the conservation of the total number of

electrons, one gets the equilibrium population densities

(ρbb)eq = 0, (A.10)

(ρaa)eq = 1. (A.11)

At the equilibrium, the electrons reside only in the state with lower energy (a).

For externally pumped active media, the inversion of population is achievable

and Eq. (A.9) is generalized to

ρ̇bb − ρ̇aa =
1

T1
[(ρbb − ρaa)eq − (ρbb − ρaa)]−

2i

~
(µ∗

baρba − µbaρ∗ba)E(t), (A.12)

where (ρbb − ρaa)eq 6= −1. For a harmonic optical field

E(t) = Ee−iωt + E∗eiωt, (A.13)

Eqs. (A.5,A.12) can not be solved analytically. However, an exact analytical

solution can be determined in the rotating wave approximation. In the absence of

the driving field E(t), ρba evolves in time as e−iωbat. Thus, in the near-resonance

regime ω ' ωba, the part of the electric field oscillating as e−iωt constitutes a

driving term much more effecient with respect to the part oscillating as eiωt. By

substituting ρba = rbae
−iωt into Eqs. (A.5,A.12), one gets the system of equations

ṙba = i(ω − ωba)rba −
1

T2
rba −

i

~
µbaE(ρbb − ρaa), (A.14)

ρ̇bb − ρ̇aa =
1

T1
[(ρbb − ρaa)eq − (ρbb − ρaa)] +

2i

~
(µbaEr

∗
ba − µ∗

baE
∗rba).(A.15)

Stationary solutions are found by setting

ṙba = ρ̇bb − ρ̇aa = 0. (A.16)

Thus, in this steady-state model, for ρba it is assumed the harmonic temporal

dependence e−iωt, while the population difference ρbb − ρaa is assumed time in-

dependent. The resulting analytical expressions for ρbb − ρaa, ρba are provided
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by

ρba =
µbaE(ρbb − ρaa)

~(ω − ωba + i/T2)
e−iωt, (A.17)

ρbb − ρaa =
(ρbb − ρaa)eq [1 + (ω − ωba)2T 2

2 ]

1 + (ω − ωba)2T 2
2 + (4/~2)|µba|2|E|2T1T2

. (A.18)

The average two-level induced polarisation, in the density matrix formalism, is

provided by the trace

P (t) = NTr(ρ̂µ̂) = N(µ∗
baρba + µbaρ

∗
ba), (A.19)

where N is the two-level atom density. Hence, the two-level susceptibility can be

readily calculated:

χ =
N |µba|2T 2

2

ε0~
(ρbb − ρaa)eq

ω − ωba − i/T2

1 + (ω − ωba)2T 2
2 + (4/~2)|µba|2T1T2|E|2

. (A.20)

Introducing the renormalized detuning frequency δ = (ω − ωba)T2, the two-level

susceptibility is expressed as

χ = α
δ − i

1 + δ2 + |E/ES|2
, (A.21)

where

|ES|2 = (~2/4)|µba|−2(T1T2)
−1, (A.22)

α =
N |µba|2T2

ε0~
(ρbb − ρaa)eq. (A.23)

α is a dimensionless parameter, which sign depends on the equilibrium popula-

tion difference (ρbb−ρaa)eq, while ES is the resonant saturation field [Boyd, 2003].

If (ρbb − ρaa)eq > 0, such a model describes the dielectric response of a gaining

material. In conclusion, in the two-level atom approximation, a saturated non-

linearity naturally arises from near-resonance stimulated absorption or emission,

and the Taylor series expansion in terms of |E/ES|2 can be performed only in the

limit |E| << ES:

χ ' α
δ − i
1 + δ2

+ α
i− δ

(1 + δ2)2
|E/ES|2 + o(|E/ES|5). (A.24)
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Appendix B

The Newton-Raphson method

In numerical analysis, the Newton-Raphson method is a procedure to find approx-

imate solutions of a generic (N×N) nonlinear real-valued system of continuously

differentiable equations

f̄(x̄) = 0, (B.1)

where f̄ : <N → <N ,

f̄ =









f1

f2

...
fN









, x̄ =









x1

x2

...
xN









. (B.2)

We assume that such a system admits the real solution x̄ = x̄0. For x̄∗ 6= x̄0, Eq.

(B.1) is not satisfied:

f̄(x̄∗) = f∗ 6= 0. (B.3)

Assuming also that |x̄∗−x̄0| << |x̄0|, under the hypothesis that f̄ is a continuously

differentiable function, Eq. (B.1) can be approximated by

f̄ ' f̄∗ + Ĵ(x̄∗)(x̄− x̄∗) = 0, (B.4)

where Ĵ(x̄∗) is the Jacobian matrix evaluated in x̄ = x̄∗:

Ĵ(x̄∗) =











∂x1f1(x̄∗) ∂x1f2(x̄∗) · · · ∂x1fN(x̄∗)
∂x2f1(x̄∗) ∂x2f2(x̄∗) · · · ∂x2fN(x̄∗)

... · · · . . .
...

∂xN
f1(x̄∗) ∂xN

f2(x̄∗) · · · ∂xN
fN(x̄∗)











. (B.5)
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By solving Eq. (B.4) one gets

x̄∗∗ = x̄∗ − Ĵ−1(x̄∗)f̄∗. (B.6)

Note that such an operation is possible only if the Jacobian matrix Ĵ−1(x̄∗) is not

singular, depending on the behaviour of the function f̄ around the initial guess

x̄∗. If x̄∗ is close enough to the exact solution x̄0, then x̄∗∗ constitutes a better

approximation of Eq. (B.1) and the iterative procedure [Hamming, 1986]

x̄n = x̄n−1 − Ĵ−1(x̄n−1)f̄(x̄n−1), (B.7)

where

Ĵ(x̄n) =











∂x1f1(x̄n) ∂x1f2(x̄n) · · · ∂x1fN(x̄n)
∂x2f1(x̄n) ∂x2f2(x̄n) · · · ∂x2fN(x̄n)

... · · · . . .
...

∂xN
f1(x̄n) ∂xN

f2(x̄n) · · · ∂xN
fN (x̄n)











, (B.8)

converges to the true solution x̄0 within the desired accuracy for an according

number of iterations.
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Appendix C

The split-step beam propagation

method

The split-step beam propagation method (BPM) is a numerical procedure for the

solution of a generic nonlinear differential equation

i∂ζψ + D̂ξψ + N̂(ψ)ψ = 0, (C.1)

with the initial condition

ψ(ξ, ζ0) = ψ0(ξ). (C.2)

D̂ξ is a linear differential operator acting on the two-variable function ψ(ζ, ξ) and

N̂(ψ) is a nonlinear operator dependent on the function ψ.

In the numerical simulations of this thesis, ζ, ξ represent the propagation

distance (z) and the transverse direction of diffraction (y), respectively. The

differential operator D̂ξ = (1/2β)∂2
ξξ accounts for the linear diffraction and we

considered only the case of third-order isotropic nonlinearity N̂(ψ)ψ = γ|ψ|2ψ.

Neglecting the nonlinear terms, Eq. (C.1) can be solved in the Fourier k-

domain of the ξ variable, as the linear differential operator D̂ξ becomes a simple

multiplication factor. On the other hand, the nonlinear terms are more easy to

handle in the real domain ξ.
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The numerical solution to this problem is the split-step method, where a

Fourier transform and an inverse Fourier transform are taken at every step in ζ .

The split-step method provides approximate solutions by assuming that, within

the small step h, the linear and nonlinear parts of Eq. (C.1) act independently

(ζ = ζ0 + nh, n ∈ N). The propagation from ζ to ζ + h is carried out in three

steps: in the first and third steps N = 0 and D̂ acts alone, while in the middle

step D̂ = 0 and the nonlinearity is assumed as a constant [Agrawal, 2001b]

ψ(ζ + h, ξ) ≈ ei
h

2
D̂eihN̂[ψ(ζ,ξ)]ei

h

2
D̂ψ(ζ, ξ). (C.3)

The operator ei
h

2
D̂ is evaluated in the Fourier k-domain of the ξ variable, acting as

the multiplying k-function ei
h

2
D̃(k), where D̃(k) = −k2/2β in the case considered

by us. Denoting the Fourier transform operator by F and the inverse Fourier

transform by F−1, the BPM provides us with

ψ(ζ + h, ξ) ≈ F
−1{eih

2
D̃(k)

F[eihN̂[ψ(ζ,ξ)]Φ(ξ)]}, (C.4)

where

Φ(ξ) = F
−1[ei

h

2
D̃(k)

Fψ(ζ, ξ)]. (C.5)

The linear propagation eihN̂(ψ)Φ(ξ) from ζ to ζ+h, where the nonlinear contribu-

tion is approximated by the constant N̂[ψ(ζ, ξ)] at the beginning of the step, can

be performed by several methods, e.g. by the fourth-order Runge-Kutta method,

which is described in appendix D. The Fourier transformations used in the BPM

were implemented by the Fast Fourier Transform (FFT) routine in MATLAB.
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Appendix D

The explicit Runge-Kutta

method

In numerical analysis, the Runge-Kutta method is an iterative procedure for the

approximate solution of an ordinary differential equation

dȳ

dt
= f̄(t, ȳ), (D.1)

with the inital value

ȳ(t0) = ȳ0. (D.2)

The dynamical system f̄(t, ȳ) : <N → <N is a linear and continuously differen-

tiable function of ȳ, t.

An approximate solution of Eq. (D.1) can be calculated by introducing the

discrete time (n ∈ N)

t→ t0 + n∆t, (D.3)

ȳ(t)→ ȳn = ȳ(tn). (D.4)

The explicit fourth-order Runge Kutta method [Hamming, 1986] provides the

approximate solution

ȳn+1 = ȳn +
1

6
(k̄1 + 2k̄2 + 2k̄3 + k̄4), (D.5)
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where

k̄1 = ∆tf̄(tn, ȳn), (D.6)

k̄2 = ∆tf̄(tn +
1

2
∆t, ȳn +

1

2
k̄1), (D.7)

k̄3 = ∆tf̄(tn +
1

2
∆t, ȳn +

1

2
k̄2), (D.8)

k̄4 = ∆tf̄(tn + ∆t, ȳn + k̄3). (D.9)
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