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Abstract   

Achieving the reductions in carbon dioxide emissions which are necessary will require 

improvements in the way in which domestic space heating is supplied. Air Source Heat Pumps 

and micro-Combined Heat and Power units both have the potential to reduce emissions while 

using primary energy resources more efficiently. The performance which these technologies can 

achieve is fundamental to fulfilling this potential and yet it is still subject to some uncertainty. 

This thesis analyses the performance of Air Source Heat Pumps and micro-Combined Heat and 

Power units in terms of their energy and exergy requirements and in terms of the carbon dioxide 

emissions associated with their operation.  

A review of the literature identified that it was appropriate to develop a novel modelling 

approach. Models of many components currently exist and these are adopted and extended 

wherever possible within this modelling approach. However, it is the unique way in which this 

research combines these models and adds additional components which delivers performance 

data relating to a wider range of conditions at a greater level of detail than that which was 

previously available. The model which was developed can dynamically simulate the heating and 

power demands in many dwellings simultaneously, facilitating meaningful study of effects 

which are dependent upon the sum of their power flows. Consideration of the effect of operating 

conditions includes permutations of climate, control systems (including those which engage 

with demand side management), grid generation mixes and building properties. 

Efficient Air Source Heat Pumps units have the potential to make energy and carbon emissions 

savings at present but their performance is sensitive to the conditions studied. In particular, 

appropriate control of the units can yield energy savings of around 25%. Additionally, the 

carbon emissions intensity of the grid is an important consideration which is explored in depth. 

Currently, energy requirements and carbon emissions can be reduced by the use of micro-

Combined Heat and Power units. Their potential to further reduce carbon emissions diminishes 

if the grid is predominantly decarbonised but units with high electrical efficiencies can still save 

energy. The effect of the control approach which is adopted is also significant and has different 

effects on fuel-cell based units compared to combustion-based units.  

The key contribution of this work is the analysis of performance data for a selection of units 

operating under a range of conditions, calculated with a consistent, accurate methodology. 

Comparison is made between the technologies and between the effects of different operating 

conditions. A second significant contribution of this work is the development of the model 

which was used to generate the performance results. These advances allow more detailed 

comparative analysis of performance data in a wider range of conditions than previously 

possible.  
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1. Introduction 

1.1 Analysis of Air Source Heat Pumps and micro 

Combined Heat and Power units. 

There is a clear requirement to reduce Carbon Dioxide (CO2) emissions (IPCC 2007; Stern 

2006). In the UK this requirement has been formalised as a legislative obligation to achieve an 

80% reduction in CO2 emissions rates (relative to 1990 rates) by 2050 (HM Government 2008). 

Achieving this will require a substantial change to the way in which domestic space heating is 

provided. Although options such as the use of biomass and improvements in the insulation of 

dwellings are likely to fulfil some of this requirement, most proposals include the electrification 

of heating with decarbonised electricity (DECC 2012; Boardman 2007b; DECC 2009b). 

Air Source Heat Pumps (ASHP) and micro-Combined Heat and Power (mCHP) units both have 

the potential to contribute to achieving a low-carbon society and so it is necessary to understand 

the ways in which operating conditions may affect their performance. Their performance 

characteristics are of particular interest given that both technologies have significant electrical 

power flows associated with them in addition to heat flows. Field trials (e.g. Carbon Trust 2011; 

Lipp 2012; Energy Saving Trust 2010) and modelling (e.g. Kelly & Cockroft 2011; Dorer & 

Weber 2009) have demonstrated that a range of performances might be achieved by the units, 

depending upon both the characteristics of the units themselves but also the conditions in which 

they are operated. A wider study of the relative effect that these factors have is therefore 

justified. A range of technologies is available and so it will be more relevant to investigate the 

trends which occur rather than the performance of specific devices under specific 

circumstances. In particular, as it is possible that the technologies will see much wider adoption 

in the future, the conditions in which the units may operate in the future are arguably more 

relevant. Consideration of these conditions should include both the factors seen at present (e.g. 

variations in climate) and those not (e.g. the potential influence of demand side management 

systems).  

1.2 Preliminary Aim 

The general aim of this study is therefore to evaluate the thermodynamic and CO2 emissions 

performance of ASHP and mCHP units in the context of the range of conditions they may 

experience over the period of the next 40 years. The specific range of conditions to be 

considered and the ways in which this should be achieved are explained in more detail in the 

Aims (page 66). 
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1.3 Layout of thesis 

The background to the study (chapter 2) will review the literature and introduce the technologies 

being analysed (Figure 1). It starts by demonstrating that there is a significant need for low 

carbon domestic heating and that both ASHP and mCHP units have the potential to make 

important contributions. ASHP and mCHP systems are then described in more detail and the 

state of the current development of each technology is examined. The chapter goes on to 

provide some considerations which are relevant regarding the metrics used to analyse the 

performance of the technologies (energy, exergy and CO2 emissions). Finally, the relevant 

comparable modelling studies which are documented in the literature are reviewed; in 

particular, the approaches taken are discussed and additional needs are identified. 

The aims of this work are then presented in chapter 3; in light of the potential significance of 

these systems, which aspects of their performance does this research seek to explore? 

This leads to a full description of the modelling approach developed within this research 

(chapter 4); aiming to address these requirements and enable analysis of the performance of the 

units in a way which fulfills the objectives of the study. 

Results are presented in chapter 5; considering and discussing the effect of each aspect of the 

scenarios in which the units may operate. Key observations are then summarised and 

conclusions are drawn regarding their relevance and application in chapter 6. The ways in which 

these findings address the objectives of the study and contribute to the field of knowledge are 

highlighted at the end of the chapter. The thesis ends with recommendations and suggestions for 

further research (chapter 7). 

 

Figure 1: Layout of thesis  
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 Recommendations for future study 

 The need for low-carbon heating 

 Introducing the technologies 
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generate results 

 Results, illustrating the effect of different parameters and operating 
conditions on the performance of the selected units 

 Detailed, identified aims of this research. Parameters to consider when 
generating results and requirements for modelling 
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Aims 
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2. Background to study 
This chapter firstly considers the need for low carbon domestic heating and demonstrates that it 

is appropriate to consider the role which ASHP and mCHP units may play in fulfilling this need. 

The technologies are then examined before a description of the way in which metrics of their 

performance are used in this study. Previous modelling work is reviewed leading to conclusions 

regarding the requirements for modelling if it is to contribute to this field of knowledge. 

2.1 The need for low carbon domestic heating 

2.1.1 Emissions reductions requirements 

By 2050, the UK will need to reduce emissions of CO2 by 80% in order to fulfil obligations laid 

out under the Climate Change Act (HM Government 2008). In the shorter term, a reduction of 

34% is required by 2020 (both relative to 1990 emissions). In addition, 15% of our energy will 

need to be supplied from renewable resources and it is intended that part of this obligation will 

be met by a tenfold increase in the supply of renewable heating (DECC 2007). 

The imperative to reduce CO2 emissions is firmly established. The Intergovernmental Panel on 

Climate Change’s Fourth Assessment report (AR4) (IPCC 2007) builds upon previous studies in 

presenting evidence for anthropogenic climate change, noting that current CO2 concentration is 

almost 40% higher than before the Industrial Revolution and that there has been an average 

temperature rise of approximately 0.75ºC since 1900. In order to have a 50% probability of 

temperatures not rising more than 2ºC above pre-industrial levels, a maximum atmospheric CO2 

concentration of 450ppm is suggested, implying a worldwide reduction in the rate of CO2 

emissions before 2020 and a reduction to 50% of 1990 emissions rates by 2050. 

At the same time, economic studies have presented the potential costs of climate change to the 

economy. It is estimated that, without mitigation, a 5ºC average temperature rise is feasible over 

the next century and that this will cost the world economy the equivalent of 5% – 20% of its 

gross product (Stern 2006). Given that the cost of stabilising CO2 concentration at 450 – 

550ppm is estimated at 1% - 2% of gross global product, there is a clear impetus for action.  

Depleting conventional fossil fuel reserves may lead to reduced energy security and the 

potential for higher and more volatile fuel prices (Sorrell et al. 2010; Fantazzini et al. 2011). 

The extent to which the increasing use of unconventional reserves is likely to alleviate this is 

not yet clear. In any case there is motivation to reduce dependence on fossil fuels, through 

substitution or improved efficiency, especially in roles such as space heating where high quality 

energy vectors are not inherently necessary. 
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The UK Low Carbon Transition Plan (DECC 2009b) presents the policies that are intended to 

deliver the shorter term emissions targets. Principally, it is intended that there will be an 

increase in the share of electricity generated from low carbon sources to 40%, driven by 

extensions to the Renewables Obligations (Secretary of State 2010) and the retirement of some 

coal plant in 2016 due to the Large Combustion Plant Directive (EC 2001). This is likely to 

reduce the carbon emissions factor (CEF) of grid supplied electricity to around 340 gCO2/kWh to 

360gCO2/kWh. This analysis has recently been supplemented by the 2050 Pathways analysis 

(DECC 2010a) looking further ahead to consider possible scenarios. 

In parallel, the EU directive on use of Renewable Energy (EC 2009) commits to 20% of energy 

in the EU being supplied by renewables by 2020. In response to this, the UK is committed to 

15% of energy being supplied by renewables. Interim targets are 7.5% by 2016 and then 10% 

by 2018. In addition to electrical generation and transport, it is intended that a large part of this 

will be met by a tenfold increase of renewable heating from 7.7TWh in 2008 to 72TWh in 2020 

(DECC 2007). 

Various scenarios have been investigated by different academic groups in support of this 

planning. The UKERC “Pathways to a Low Carbon Economy” project has modelled possible 

scenarios using the MARKAL economic optimisation modelling tool (Anandarajah et al. 2009). 

Under the SUPERGEN consortium, supply side modelling has been combined with the UK 

Domestic Carbon Model demand side model to produce scenarios for use in exploring the effect 

of extensive penetration of decentralised generation (Supergen HDPS 2006; Jardine & Ault 

2008). The EPSRC “Transition Pathways to a Low Carbon Economy” project considers the 

ways in which this transition may take place (Foxon 2013; Foxon et al. 2010). Because of the 

detail available on these “Transition Pathways” scenarios, they are used as background to some 

of the analysis presented later in this work (see chapter 4, section 4.6.3). Although the various 

scenarios vary in details and in underlying assumptions, they all include significant 

decarbonisation of the supply of heat to the domestic sector. This is mainly achieved through 

decarbonisation of the electricity sector along with increased electrification of heating. 

2.1.2 Overview of domestic energy use and carbon emissions 

The Low Carbon Transition Plan (DECC 2009b) aims for a 29% reduction in the direct CO2 

emissions from the domestic sector by 2020. This is necessary given that 12% of the UK’s CO2 

emissions are direct emissions from domestic space heating and hot water (DHW) systems with 

an additional 10% attributable to the generation of the electricity used in homes (Figure 2 

illustrates the proportions of these emissions within the domestic sector). Every realistic 

proposed scenario for achieving a significant reduction in CO2 emissions includes a reduction in 

the emissions associated with both of these energy demands. In fact, to achieve an 80% 
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reduction in CO2 emissions, domestic heat demand may need to be entirely decarbonised 

(DECC 2012).  

 

Figure 2: CO2 emissions associated with domestic sector by fuel. Adapted from  Palmer & Cooper (2011) 

& DECC (2009b) 

Figure 3 illustrates the proportions of average energy consumption relating to each type of 

domestic demand. 

 

Figure 3: Average energy use in 2009 dwellings. Adapted from  Palmer &  Cooper (2011) 
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In 2009, energy use in the 25.6 million dwellings of the domestic sector was 500TWh, just over 

28% of UK end-use consumption (Palmer & Cooper 2011). Although this is an increase of 

around 17% since the 1970s, the housing stock has increased and so there has been a slight 

reduction in the energy use per household from over 22,200kWh/yr in 1970 to just under 

19,690kWh/year in 2009 but the annual variation is relatively high compared to this (up to 

almost 1,000kWh/year). Space heating dominates the end-use consumption; in fact even though 

it has reduced by about 10% since 2004 it is still slightly higher (per dwelling) than it was in 

1970.  

2.1.3 Proposals for reducing domestic energy demand and 

associated emissions. 

A range of proposals have been suggested in the literature, each aiming to demonstrate how 

some or all of the required reductions in CO2 emissions associated with the domestic sector 

might be achieved. These proposals invariably involve a combination of energy demand 

reduction (improving the efficiency of appliances and insulation in buildings) and 

decarbonisation of the energy sources (i.e. low carbon generation of electricity and heat). 

However, the balance between these approaches and the technologies preferred for low carbon 

heating varies somewhat between proposals. This section will provide an overview of some of 

these proposals before considering some of the specific suggestions in more detail in the 

following sections. It should be noted that each proposal includes some use of electrified 

heating (i.e. using Air Source Heat Pumps, ASHP) with decarbonised electricity and several 

proposals include the use of micro-Combined Heat and Power (mCHP) units. 

The potential reduction in domestic heating demand which could be achieved by 2020 by 

continuing to improve insulation levels (using newer technologies such as solid wall insulation 

alongside established technologies) has been assessed to be 27TWh/yr by DECC (2012). 

Although significant, this saving is only 6.6% of current domestic heating demand. It was 

therefore assumed that some form of low carbon heating will be required across the building 

stock in order to meet future decarbonisation targets. A variety of sources of low carbon heating 

including district heating networks (DHNs), biogas injection and individual dwelling solutions 

(e.g. ASHP, mCHP and biomass) have the potential to form part of the solution. This is 

supported by earlier analysis by Radov et al. (2009) on the potential supply of renewable 

heating in the UK.  Their study concluded that 25TWh/yr of renewable heating could be 

available to the UK by 2020 with no additional cost and that this increases to between 

46TWh/yr and 66TWh/yr if an additional cost of £0.10/kWh is accepted (including both 

domestic and non-domestic heat). Because the study found supply-side limitations to be a key 

constraint in the period up to 2020, it was suggested that it is unlikely that this supply of 
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renewable heating could be significantly increased, even at much higher costs. The large share 

of biomass heating which was suggested is sensitive to the low potential costs given by E4Tech 

(2009). The proposed mix of heating sources also included a significant contribution from 

ASHPs (in both domestic and non-domestic buildings) and a slightly smaller contribution from 

Ground Source Heat Pumps (GSHP), (mostly in non-domestic properties). Public responses to 

the DECC consultation report highlighted the need to consider the infrastructure required to 

meet the implied electrical demands; accurate assessment of this challenge is clearly still 

required.  

In an earlier study, Shorrock et al. (2005) investigated the effect of applying a series of 

efficiency measures to the dwellings they are applicable to and concluded that savings of around 

81MtCO2/yr are technically feasible, with reductions of between 33MtCO2/yr and 64MtCO2/yr 

(24% to 46% relative to 2001 emissions) possible at no net cost. The measures considered were 

all based around reducing energy demand (with addition of solar PV) rather than using low 

carbon heating systems; however the implication is that both approaches will be necessary in 

order to achieve the more extensive emissions reductions which are required. Both the Royal 

Academy of Engineering (2012) and Clarke et al. (2008) acknowledged the need for a range of 

approaches in reducing emissions from domestic heating. They suggested that improved 

insulation and construction, heat pumps, CHP with district heating networks, mCHP and 

biomass heating all have a part to play but no quantitative analysis of their relative contributions 

was presented.  

Boardman (2007b) built upon earlier work (Boardman et al. 2005; Boardman 2007a) to propose 

strategies to reduce domestic carbon emissions by 80% by 2050 across the domestic sector. The 

study considered sociological aspects of changes, improvements in appliance and lighting 

efficiency, building fabric improvements and the use of low carbon technologies. Relatively 

limited decarbonisation of grid supplied electricity (with the CEF remaining at 440g/kWh after 

2020) was conservatively assumed. This lead to a preference for mCHP devices over heat 

pumps although the use of both was suggested and low carbon technologies contribute around 

one third of the overall savings proposed. Controversially, a fourfold increase in the demolition 

rate (currently less than 0.1%) of the worst performing stock was proposed in order to reduce 

the average space heating demand in dwellings, given that the retrofit options considered 

feasible would not achieve the required reduction on their own. Even with this rate of 

demolition, the reports concluded that between 80% and 87% of the housing stock in 2050 

would consist of buildings that have already been built. The analysis indicated that an average 

heat demand of 6,800kWh/yr should then be feasible by reducing heat demand in pre-1996 

dwellings to around 9,000kWh/yr and achieving an average heat demand of 2,000kWh/yr in 

dwellings built between 1996 and 2050. This is around seven times the 27TWh/yr saving by 

2020 suggested by DECC (2012). CO2 emissions associated with the current in-use phase of 
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current buildings’ lives were shown to be considerably higher than the embodied CO2 

attributable to their construction (it is suggested that the CO2 emissions avoided by an efficient 

new home compared to the current stock average outweigh the CO2 released due to the new 

construction after around 13 years).  

Conversely, Lowe (2007) summarised and built upon modelling work described by Johnston et 

al. (2005) to present a set of options for decarbonisation and argued that extensive demolition is 

not necessary. The studies made slightly more optimistic assumptions about the reduction in 

space heating that is possible and assumed more extensive decarbonisation of the electricity grid 

(with the CEF reduced to around half the present levels).  They proposed that a mixture of 

internal and external insulation could be used on solid wall properties as the majority of their 

exposed wall area is actually at the back of them (making external insulation more aesthetically 

acceptable). In combination with measures such as upgrading doors and windows, this could 

reduce heat demand to between 33% and 50% of current levels. A large role for low carbon 

heating was envisioned with a preference for heat pumps over mCHP units as the CEF of grid 

generated electricity decreases. The Sustainable Development Commission (2006) made a 

similar case against demolition, with analysis indicating that it is possible to reduce carbon 

emissions from the domestic sector by 33 to 73MtCO2/yr by 2020 (i.e. 24% to 52% relative to 

2006).  

The significance of occupant behaviour and appropriate control systems is noted in many of 

these studies and should not be underestimated, given the wide range of energy consumptions 

observed in otherwise similar properties with occupants from similar demographic groups. For 

example, annual gas consumption was found to range from 7,450kWh to 15,644kWh in 12 

almost identical properties within the same housing development using the same heating (in this 

case a mCHP unit as part of a Carbon Trust (2007) field trial). The Royal Academy of 

Engineering (2012) reported that ranges of three-to-one have been observed elsewhere. 

In order to achieve the proposed reduction in CO2 emissions, the CO2 emissions from the 

domestic sector will need to be drastically reduced. A combination of approaches including 

energy reduction and the adoption of low carbon energy resources is likely to be required in 

order to achieve this. 
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2.1.4 Contribution from building fabric improvements 

Most suggestions for the reduction of CO2 emissions from the domestic sector have involved 

some improvement of the average performance of the building stock. This typically involves 

both better standards for future construction and improvements to current buildings. 

The Department For Communities And Local Government’s (DCLG) (2007c) green paper: 

“Homes for the future: more affordable, more sustainable” presented policy for future building 

stock. Plans are laid out in order to comply with the EU directive on the Energy Performance of 

Buildings (EC 2002) in the 240,000 new homes per year that the government aims to see built 

(i.e. three million in the period to 2020). Building Regulations will be systematically improved 

until 2016 (DCLG 2007a), using energy performance standards given in the Code for 

Sustainable Homes (DCLG 2009). The criteria for compliance with the Building Regulations is 

expressed as a Target Emissions Rate (TER) which the actual Dwelling Emission Rate (DER) 

must be lower than. Table 1 summarises the relationship between the year that these standards 

are due to be implemented, the Code for Sustainable Homes level and the relative change to the 

TER: 

Table 1: Building emissions reductions requirements 

Year TER relative to 2006 Code for Sustainable Homes level  

2002 +25% (i.e. 2006 is 20% lower) N/A 

2006 0 N/A 

- -10% 1 

- -18% 2 

2010 -25% 3 

2013 -44% 4  

- -100% 5 

2016 NZC (approx. -150%) 6 

The TER and DER are calculated using the Standard Assessment Procedure (SAP) 2009 (BRE 

2010); a methodology adopted from BRE’s Domestic Energy Model. The SAP2009 

methodology is used with the dimensions of the dwelling and either reference values supplied in 

SAP2009 Appendix R to calculate the TER (for 2002) or the actual property values in order to 

calculate the DER. From 2016, all new housing will have to achieve net zero carbon emissions 

(NZC). This includes emissions associated with electrical appliances (which are not included in 

the DER) so actually represents a reduction of approximately 150% relative to the 2006 

standard. 
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Buildings built to standards equivalent to Code for Sustainable Homes level 4 are not 

unprecedented. Many buildings have been constructed in continental Europe meeting the 

Passivhaus Standard; this requires that space heating demand is less than 15kWh/year per m² of 

useable floor area and that total non-renewable demand is less than 120kWh/year-m². Similarly, 

the BEDZED development in London includes 82 homes built using Passivhaus concepts with a 

130kWe wood-chip burning CHP unit rather than individual boilers (though this has 

subsequently ceased operating) and 700m² of solar photovoltaic (PV) panels (Marsh 2002). An 

extensive refurbishment in a conservation area was reported on by Parker (2009). The terraced 

property in London was refurbished with much improved airtightness, insulation, mechanical 

ventilation and heat recovery, and solar PV reducing its overall energy demand by 80% (space 

heating demand reduced from 24,000kWh/yr to 2,160kWh/yr). Carbon emissions were reduced 

from 6,542kgCO2/yr to 2,146kgCO2/yr (or 1,630kgCO2/yr including the emissions offset by the use 

of PV panels). Although the home would achieve Code for Sustainable Homes level 4, the 

refurbishment undertaken was extensive and unlikely to fall into the “cost effective” category of 

broader studies referred to earlier. A case study of 14 new build homes in Norfolk was used by 

Monahan & Powell (2010) in order to compare the energy and carbon implications of different 

energy systems in them. The most successful measures were solar thermal and solar photo-

voltaic (PV) panels. Solar thermal panels provided 65% - 89% of the domestic hot water 

demand and PV panels 14% - 41% of the electrical demand at the homes to which they were 

fitted, achieving a carbon payback period of approximately 3 years.  

However, economically achieving the Code for Sustainable Homes level 5 and especially the 

level 6 standards are likely to be much harder. Banfill & Peacock (2007) have expressed 

concern about the 2016 net-zero carbon requirement, arguing that efforts to reduce the energy 

consumption of existing stock may be more cost effective. In particular, although effective 

technological solutions exist for low carbon heating, economic net-zero carbon electricity 

generation through solar PV panels or micro-wind turbines is much more problematic and likely 

to incur significant costs. They recommended that the low-carbon generation of heat and 

electricity are treated separately.  

Significantly, the policy only affects current building stock when extensive refurbishment is 

carried out. Boardman (2007b) estimated that at least 80% of the 2050 housing stock is already 

built and also suggested policy to target emissions associated with these. As noted in the 

previous section, there is debate over the extent to which reductions in heat demand of current 

stock can be economically achieved but estimates vary between one-third and two-thirds. It is 

appropriate that these studies do not hypothesise the use of materials and methods which have 

not been proved. However, it should also be noted that several materials are under development 

which are likely to facilitate the upgrade of “hard-to-treat” dwellings and may make even 
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greater savings feasible (Jelle 2011). Vacuum insulation materials and nano-insulation materials 

are being developed that demonstrate thermal conductivities of 4-5mW/mK, around a quarter 

that of polyurethane panels (which are twice as effective as rock wool). Unlike vacuum 

insulated panels, they are sufficiently robust for construction use and show potential for good 

longevity. On the other hand, Dowson et al. (2012) pointed out that in practice there are 

challenges in encouraging sufficient uptake of measures to building fabric and that the actual 

savings achieved are often overestimated; it appears unlikely that the current incentives in the 

UK will achieve all of the improvements that are technically feasible. 

In considering the future performance of low carbon heating systems, it is important to consider 

the effect of building fabric improvements on the mix of the types of energy demanded. Borg et 

al. (2010) presented work in support of the SUPERGEN HiDEF consortia’s research, focussing 

on the probable characteristics of the energy demands of future building stock. Notably, (and 

consistent with Johnston et al., 2005) the effect of measures to reduce energy consumption were 

shown to considerably reduce the space heating load but are less effective in reducing the 

domestic hot water (DHW)  load or electrical demands, see Figure 4. For example the 

consistency of DHW heating demand compared to the seasonal fluctuation in space heating 

demand may prove to be favourable to mCHP if suitably sized units with a sufficiently high 

power to heat ratio become available. 

 

Figure 4: Relative energy demands for base case (2010) building and zero carbon (2016) building. 

Adapted from Borg et al. (2010) 

Although improvements to the fabric of buildings are likely to reduce their heat demand, low-

carbon heating will be needed in order to achieve the reductions in CO2 emissions which are 

required. 
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2.1.5 Other low carbon approaches to heating  

A range of low carbon micro-generation technologies are available for integration with 

buildings including solar PV panels, solar thermal panels, micro-wind generators, mCHP units, 

biomass boilers and heat pumps (Staffell et al. 2010). Of these, heat pumps and mCHP units are 

the two micro-generation technologies which have both significant thermal and significant 

electrical characteristics to consider. This work focuses on the performance of mCHP and 

ASHP units, complementing Allen's (2009) study which focussed on solar and wind micro-

generation technologies. Solar thermal panels have the potential to make an energy efficient 

contribution to domestic heating demands (Allen & Hammond 2010) but demonstrate somewhat 

seasonal performance in the UK and are generally considered to be a secondary heating source.  

Before considering the performance of ASHP and mCHP units in more detail, district heating 

and biomass heating will be briefly discussed. 

2.1.5.1 District heating networks 

District heating networks (DHNs) are used to supply a large proportion of heat demand in many 

northern European cities and there are some smaller schemes in larger cities in the UK. Analysis 

by Davies and Woods (2009) indicated that DHNs are likely to be economically viable in 

locations with a heat demand density greater than 3,000kWh/km
2
yr. Although subsequent heat 

demand mapping produced by DECC indicated that this criteria currently applies to almost 50% 

of heat demand in England (DECC 2012), additional barriers limit the likely uptake of DHNs to 

far less than this. The main barriers identified by Davies and Woods (2009) were the high 

capital cost of such schemes and the variety of project risks involved in their development. If a 

discount rate of 3.5% is assumed (i.e. developments are effectively de-risked) and the shadow 

cost of carbon is fully accounted for then they suggested that DHNs have the potential to supply 

between approximately 3 and 8 million households and a total of 5.8% to 13.9% of the UK’s 

building heating demand. However, if a more realistic rate of 6% is used, then this potential 

drops to 300,000 households and 0.6% of the UK’s building heat demand. Although the analysis 

took account of the potential for reductions in domestic space heating in terms of demand, it is 

not clear whether the possible reduction in heat distribution efficiency associated with this was 

considered. Given the sensitivity of the economic potential of DHN future capacity to the 

selection of an appropriate discount rate (effectively representing the perceived risk in projects), 

it is likely that their widespread development would require government-led initiatives rather 

than relying on a solely market based approach.  

DHN have a key advantage in terms of flexibility. Once the infrastructure is in place, heat can 

be generated from a variety of sources; optimising the best source of heat as conditions change 
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and potentially replacing heat sources as lower carbon options become available. DHNs act as 

an enabler for low-carbon technologies including large scale heat pumps, CHP plants, waste 

heat from other processes, geothermal plants and biomass boilers (DECC 2010b). Speirs et al. 

(2010) developed this argument to suggest some reconsideration of the extent to which CHP 

plant should be considered as potential future generation (in contrast to the extensive 

electrification of domestic heating typical in most current low-carbon energy scenarios). Their 

analysis suggested that if DNHs are constructed to supply 14% of UK building heat demand 

then a 5% reduction in primary energy requirements could be achieved by using conventional 

CHP plant as an intermediate solution before replacing it with CHP with carbon capture and 

storage (CCS) in place of other fossil plant with CCS.  

If the barriers to their development can be overcome, it is possible that DHNs will supply a 

significant part of domestic heat demand in the UK. However, heating systems for individual 

dwellings are almost certain to dominate the total domestic heat supply, especially in areas with 

lower heat demand density. 

2.1.5.2 Biomass 

Biomass has the potential to supply a large quantity of energy. The potential supply from the 

UK is estimated to be just over 110TWh/yr at present (i.e. equivalent to over a quarter of current 

domestic heating demand). The potential supply has been forecast to rise to between 

140TWh/yr and 210TWh/yr by 2030 depending upon the price which is available and the extent 

to which constraints which are overcome (AEA Consulting et al. 2011). If 10% of 

internationally traded biomass is assumed to be available, a high price (£0.036/kWh) is accepted 

and most constraints are overcome then the potential supply was estimated to increase from 

around 300TWh/yr at present to 1800TWh/yr by 2030. The majority of the current UK biomass 

potential is in the form of landfill gas and waste wood residues. It is likely that landfill gas 

availability will decrease but that the supply from waste wood residues, anaerobic digestion, 

energy and biofuel crops, and dry agricultural residues can increase between now and 2030. The 

majority of the additional fuel available from international markets is likely to be woody 

biomass. 

Although there is relatively little competition between energy sectors for these energy resources 

at present (as they tend to use different feedstocks) this is likely to change. For example, the 

development of technologies to create biofuels from lignocellulose opens a range of the solid 

feedstocks to potential use in the transport sector. Bio-methane (from either landfill gas or 

anaerobic digestion) could be used in Combined Cycle Gas Turbine (CCGT) power plants, 

injected into the gas grid or used in the transport sector (as either liquefied compressed gas or 

processed to liquid fuel).  
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Solid biomass from wood waste, forest residues and energy crops could be used to generate 

electricity. There are several options available for this (Pihl et al. 2010). The fuels can be fired 

to supply heat to a steam cycle although high temperature corrosion issues usually limit the 

maximum cycle temperature and correspondingly the efficiency to around 25% to 30% (relative 

to net calorific value, NCV of fuel). To relieve this constraint, biomass is more commonly co-

fired with coal (10% to 15% biomass), achieving efficiencies of around 39% to 40% (NCV). 

CCGT configurations can be used in different ways. For example, the biomass could either 

supply heat to the bottoming cycle of the power plant, or, a gasifier could be used with the 

biomass in order to feed the products directly into the CCGT (as a mixture with at least 35% to 

50% natural gas). Comparing these options, Pihl et al. (2010) found that the gasification option 

is likely to achieve the highest overall efficiency (around 45% in a CCGT conventionally 

achieving 52% efficiency, GCV). The hybrid combined cycle option could also achieve a higher 

efficiency than a stand-alone biomass fired steam plant (up to 37%, GCV, compared to 34%). 

However, the marginal efficiency of the energy supplied by the biomass is fairly consistent 

across the options at around 28% to 33% and, in fact, slightly better in the stand-alone plants. 

Waste heat from these power plants could be used to supply other heat demands but is also well 

suited to the drying of additional biomass, saving energy upstream. 

In order to supply domestic heating, this electricity could be used to drive heat pumps. 

However, it is probably simpler for the fuels to be burnt, supplying the heat directly. This could 

be done in either individual burners or a remote biomass fired boiler connected to a DHN.  The 

prominence of biomass fuelled heating in DECC's (2012) proposals demonstrates that it has 

potential to meet a large proportion of future domestic heating demand, despite the competing 

demands outlined above. However, it is unlikely to fulfill all heating demands. The combustion 

and emissions characteristics of several fuel types make them less suitable to domestic heating 

(see, for example, Rabaçal et al., 2013). It is possible that poorly designed burners will emit 

methane with large implications for their global warming potential (Johansson et al. 2004). 

Additionally, other constraints such as fuel supply and storage logistics may limit their 

application in densely populated areas. 

Biomass and District Heating Networks have the technical potential to supply a significant 

proportion of domestic heating. However, given the constraints upon their application, it is 

highly unlikely that they will supply all of it. Technologies to provide heating at an individual 

dwelling level with convenient supply logistics (to the consumer) will almost certainly be 

needed and could continue to dominate the sector. 
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2.1.6 Demand side management of electrical loads and distributed 

power generation 

Demand Side Management (DSM) is the process of influencing consumers’ electrical demands 

(and possibly generation) rather than varying only central generation in order to balance the 

generation and consumption of electricity. For example, electrical heating could be co-ordinated 

to operate at times when other electrical demands are low rather than matching the peak demand 

with additional generation. DSM has several potential advantages and was suggested as a part of 

the “Smart Grid” envisioned by DECC (2009b) and the Electricity Networks Strategy Group, 

(2009). More efficient plant could be operated with a higher load factor, a lower plant margin 

might be acceptable (decreasing the need for generating plant to meet peaks), investment in 

network infrastructure could be used more efficiently, the integration of both intermittent large 

scale renewable generation and distributed micro-generation could be facilitated (Strbac 2008).  

Interest in DSM is closely linked to the possible extensive deployment of distributed micro-

generation (which might or might not be centrally coordinated). Micro-generation has attracted 

widespread attention (e.g. Degner et al., 2006), primarily because of its potential to reduce 

transmission and distribution losses and to reduce the requirement for additional network 

infrastructure investment.  

Many hypothetical scenarios of the future electrical power system in the UK anticipate that 

DSM could affect a significant proportion of domestic electrical demands and a large number of 

micro-generation systems. For example, Barton et al., (2012a) calculated that DSM has the 

potential to achieve a 10GW reduction in the peak dispatchable electrical demand experienced 

in each of the scenarios generated by the Transition Pathways project. It should be noted that 

there is a significant difference between measures to alter peaks in demand (which generally 

follow a diurnal pattern) and measures to maximise the use of intermittent renewable generation 

(which has a less regular profile and often a period of several days). Pudjianto et al., (2013) used 

a different method to generate demand profiles based upon the same scenarios and considered 

the relative reduction in distribution infrastructure which could be achieved through the use of 

DSM applied to heat pumps and electric vehicles. Measured heat demand data was used as the 

counterfactual case and it was suggested that a reduction in the peak electrical demand of 

around 39GW could be achieved relative to it by rescheduling the heating and electric vehicle 

charging. It was estimated that this would result in a saving of £20 billion to £25 billion in the 

cost of network reinforcements between now and 2050. In addition, it was suggested that DSM 

of micro-generation could provide ancillary support services such as system reserve, secondary 

frequency control and voltage control; in a scenario investigated by Pudjianto & Strbac (2012) 

these services generated revenues worth 20% of the value of the electricity generated. 
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Several studies consider the effect on local distribution infrastructure that different quantities of 

mCHP units might have if used to supply domestic heating. Peacock & Newborough (2006) 

compared the impacts that different penetrations of two generic mCHP units (representing a SE-

mCHP unit and a SOFC-mCHP unit) might have on local power flows when they are not 

centrally coordinated. It was concluded that if all dwellings used the SE-mCHP unit modelled, 

peak winter demand could be reduced by around 44%. Using the SOFC-mCHP unit, however, 

reverse power flows occur in winter when more than 15% of dwellings are fitted with them.  

This work was developed by Peacock & Newborough (2007) to include the effect on local 

power flows when DSM is used. The study assumed that Whispergen SE-mCHP units were 

fitted in all dwellings. The analysis suggested that the peak demand per dwelling could be 

reduced from 2kW to 1.2kW without DSM control and down to 0.9kW if DSM control is used.  

Modelling by Burt et al. (2008) investigated the power flows which might be expected in a 

distribution system with a variety of mCHP, micro-wind and solar PV micro generation feeding 

into it. In some of the circumstances considered, exports of a few tens of kW were observed 

from the 11kV to the 33kV network but it was concluded that the scenarios presented are 

unlikely to pose significant problems. The study modelled dwellings with the various types of 

micro generation for a typical week in spring using ESP-r and then the resulting demand 

profiles were transformed (in time and amplitude) to generate a diversified set of profiles. 

Network branches supplying various combinations of dwellings were then modelled by using 

these profiles. Thomson & Infield (2008) reached a similar conclusion; even if all dwellings are 

fitted with SE-mCHP units (generically modelled as 1kW electrical and 9kW thermal output) it 

is unlikely that power export from a network (modelled as 1262 dwellings) will occur. If mCHP 

units with 1kW electrical and 3kW thermal output are fitted in all houses (representative in this 

case of ICE-mCHP units though PEMFC units could share similar characteristics) then power 

export might occur but is unlikely to cause any problems. However, if units with a higher 

electrical output (e.g. larger ICE-mCHP units or SOFC-mCHP units) are used then significant 

(potentially problematic) reverse power flows will occur. The modelling required a diverse set 

of mCHP operating profiles which were derived by applying a distribution to an average heat 

demand profile. Sulka & Jenkins (2008) reported power exports of up to 50kW from a modelled 

housing estate of 150 dwellings using mCHP units. A simple thermal model was used with a 

mix of occupancy patterns and two models of non-modulating SE-mCHP units shared between 

them (10% electrical efficiency). The on-off switching pattern of the units was then determined 

along with the net power flow in the system. If ASHPs are using in combination with mCHP 

units, net power demands can be reduced as electrical generation and demand will both increase 

with heat demand. Indicative analysis by Hawkes et al. (2011) suggested that a 50:50 mix of 

ASHP and SOFC-mCHP has the potential to reduce peak power demands associated with their 

operation by around 80%. 
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More recently, the modelling developed as part of this work was used to investigate the 

coincidence of the additional generation and demand caused at a neighbourhood level by 

combinations of ASHP and mCHP units operating without DSM control (Rogers et al. 2013). 

The study showed that the number of units which can be installed in a neighbourhood supplied 

by the existing distribution infrastructure increases when a combination of devices is used and 

that this reduces the total associated CO2 emissions more than is possible with just one type of 

micro-generation. However, imbalances still occur and so it is likely that yet more micro-

generation could be installed if DSM is employed. 

The concepts of micro-grids, cells, and virtual power plants have been developed by several 

research groups in order to assist with the planning and control of distributed generation 

(Pudjianto et al. 2008). Aggregating the control attributes and output of groups of micro-

generators brings several advantages. Control can be decentralised and lends itself to an agent 

based approach, reducing communication overheads and improving flexibility. The aggregated 

output of a cell might feasibly participate in the electricity market.  It is possible that other 

electrical supply services can be provided, including frequency response and regulation, 

immediate reserve, peak lopping and local voltage support. Roossien et al. (2008) described a 

field trial demonstrating the virtual power plant concept with 10 mCHP units in which electrical 

demand peak was reduced by 30% to 50% when the control mechanism was in operation. A 

similar concept for DSM control of heat pumps has also been demonstrated in field trials 

(Warmer et al. 2007). An agent based control system (“PowerMatcher”) was used to minimise 

the cost of running heat pumps primarily supplied by a wind farm with exposure to the Dutch 

balancing market. Underproduction from the wind farm (compared to the contracted, predicted 

output) could usually be partially compensated for but there were periods in which it could not 

be compensated for at all. Overproduction could generally be completely compensated for. 

The suitability of direct electric heating and electric heat pumps for participation in DSM has 

been investigated by several researchers. Hong et al. (2012) assessed the flexibility of heat 

pump operation using detailed thermal models created in ESP-r. Time shifts of one or two hours 

in the operation of heating are possible without seriously impacting the thermal comfort of 

residents in current average housing. However, in improved housing with thermal buffering, this 

could be extended to around six hours. In the study, heat pumps were controlled using an on-off 

function aiming to achieve thermal comfort at specific times of active occupancy in the dwelling 

rather than controlled using a modulating function. Moreau (2011) concluded that (in the 

context of Canada) the electric demands associated with domestic hot water heating can be 

largely shifted away from times of peak electrical demand.   

DSM may be used to facilitate the successful integration of any future deployment of large 

numbers of low carbon domestic heating systems if they have significant supply electrical 
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implications. It is also feasible that any electrical demands or potential generation which can be 

time shifted to some extent (for example, those providing heat to systems with significant 

thermal inertia) could be used to assist in the integration of intermittent renewable generation 

onto the electrical grid. Any consideration of the future performance of ASHP and mCHP units 

should therefore consider the effect that interaction with DSM might bring. 
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2.2 Heat Pumps 

2.2.1 Introduction to heat pumps 

Heat pumps take heat from a low temperature source such as the outside air, ground or water 

and deliver it to heat emitters at a higher temperature (Berntsson 2002). In the domestic setting, 

this is usually achieved through a vapour compression cycle with an electrically driven 

compressor (see Figure 5).  

 

Figure 5: Heat Pump Vapour Compression Cycle 

Carnot and Kelvin both devised the concept of a heat pump but the first patent for a practical 

device was issued to TGN Haldane in 1927. Heat Pumps were installed in the Equitable 

Building, Portland, Oregon, as early as 1948  but have only been widely commercially available 

since the 1970’s (Hepbasli & Kalinci 2009).  

The majority of the analysis presented here will relate to ASHPs. Ground Source Heat Pumps 

(GSHPs, heat pumps using the ground as a heat source) tend to perform more efficiently than 

ASHPs because the ground offers a more stable heat source temperature (Rawlings & Sykulski 

1999). However, they are more constrained than ASHPs in terms of appropriate locations for 

installation (Energy Saving Trust 2007), requiring up to 600m
2
 for a heat collector (Berntsson 

2002). ASHPs are considered to be an easier retrofit option, replacing boilers (Cockroft & Kelly 

2006). Additionally, the capital costs of GSHPs are usually higher, the Energy Saving Trust 

(2012) suggests prices of £6,000 to £10,000 for an installed ASHP compared to £9,000 to 

£17,000 for a GSHP. Excluding installation costs, low quality ASHP units can be purchased for 

around £1,000 or around £2,500 for a small mid-range unit (AirconWarehouse Ltd 2012).  
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Modern ASHP usually use either rotary or scroll compressors, typically operating between 

around 0.6MPa and 2.5MPa. Historically, chlorofluorocarbon (CFC) or 

hydrochlorofluorocarbon (HCFC) based refrigerants such as R22 (CHClF2) have been used but 

these are being phased out in favour of hydrofluorocarbon (HFC) based refrigerants such as R32 

(CH2F2) and R134a (CH2FCF3) due to their lower ozone depletion potential. Mixtures of HFCs 

are commonly used in order to improve their properties (e.g. R410A, an almost-azeotropic 

mixture of R32 and R125 or R407C, a mixture of 23% R32, 25% R125 and 52% R134a). 

Propane (R290) has reasonable properties as a refrigerant and low global warming potential but 

there are concerns regarding its flammability. R744 (CO2) is used in some heat pumps but 

employs a different thermodynamic cycle (the Lorentzen cycle) in which most of the heat 

rejection takes place with the refrigerant in the supercritical state. 

2.2.2 Performance of heat pumps 

Heat pumps use work, typically supplied by electricity, to drive compressors and other ancillary 

components. Depending upon their performance and the efficiency of the electrical generation, 

the primary energy consumed may be more or less than alternative heating options. The 

coefficient of performance (COP),    , for a heat pump is given by: 

     
   

  
 

Equation 1 

where     is heat delivered and    is the electrical energy consumed. 

The COP of heat pumps varies with operating conditions; notably the performance decreases as 

the difference between the source and sink temperatures that it operates between increases (see 

Figure 6). In addition to thermodynamic constraints requiring a greater work input as the 

temperature difference increases, frost can form on the air heat exchanger / evaporator 

component of an ASHP if its temperature drops below the local dew point. This further reduces 

performance as the thermal conduction of the heat exchanger is temporarily reduced and 

defrosting is required (Hepbasli & Kalinci 2009). Measures such as larger or more effective heat 

emitters and improved insulation in a building will decrease the outlet flow temperature which 

the heating system needs to supply and thereby improve the performance of a heat pump; these 

effects are studied further in the Modelling and Results chapters. 

Heat pump performance measurement is standardised in BS EN14511:2007. This supersedes 

BS EN255-2:1997 for space heating applications but BS EN255-3:1997 is still valid for the 

heating of domestic hot water (DHW). Power input to pumps only includes that used within the 

unit (e.g. power supplied to circulate hot water outside the pump is excluded). The standard has 
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been adapted by European Heat Pump Association (2009) for testing to achieve their quality 

label. The testing procedure defined by BS EN255-3:1997 includes measurement of COP but 

the conditions and method are different to those in BS EN14511:2007. Significantly, the hot 

water temperature is generally higher (at least 40ºC) and the water inlet temperature is lower so 

the heat exchanger potentially operates with a greater temperature range. 

Testing to BS EN14511:2007 is conducted at defined operating conditions, including ambient 

air and outlet temperatures, as defined by tables provided in BS EN14511-2:2007 (see Table 2). 

The standard rating of ASHPs is determined with a dry-bulb air temperature of 7ºC and 

supplying heat to water with a flow temperature of 35ºC and a return temperature of 30ºC. 

Additional test conditions use the same flow rate as the standard test (i.e. the ambient air and the 

heat exchanger’s inlet temperatures are defined and the water return temperature varies 

accordingly).  

Table 2: ASHP test conditions to EN14511-2:2007 

Test condition Air temperature Water temperature 

A-15/W35 -15°C 35°C 

A-7/W35 -7°C 35°C 

A2/W35 2°C 35°C 

A-15/W45 -15°C 45°C 

A-7/W45 -7°C 45°C 

A2/W45 2°C 45°C 

A-7/W55 -7°C 55°C 

A7/W55 7°C 55°C 

The test has initial precondition and equilibrium periods before the data collection period used 

to determine the heat pump’s performance. If the heat pump operates within tolerances and 

without a defrost cycle, it is defined as “steady state operation” and the data collection period 

lasts 35 minutes. If the heat pump’s performance varies outside tolerances or it undergoes 

defrost cycles under the defined operating conditions, it is defined as “transient operation”, the 

test is extended to at least 3 hours and the average performance (including defrost cycles) is 

taken into account. 

Performance data for seven ASHP units is given in Table 3. Modelling results in this study will 

relate to these units and a hypothetical eighth unit (ASHP H) achieving a performance around 

10% higher than ASHP A, representing what may be the state-of-the-art in a few years. For the 

first four of these units, the variation in the COP with temperature difference is illustrated in 

Figure 6: 
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Figure 6: ASHP performance with variation in operating temperature. Data adapted from Butler & Hyde 

2007; Warmepumpen-Testzentrum 2013; Energimyndigheten 2012. 
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Table 3: ASHP COPs measured under test conditions 

 ASHP A ASHP B ASHP C ASHP D ASHP E ASHP F ASHP G ASHP H 

Reference 
for data: 

1 3 2 2 1 1 3 N/A 

Air / 
water 

temp. (°C) 

Heliotherm 
HP10L-

WEB  

Mitsubishi  
Ecodan 

W85 

Viessman  
Vitocal 
300-A 

Bosch 
 EHP 8 AW 

Daikin  
ERHQ014 

Oscher  
GMLW14 

Mitsubishi  
Ecodan 
W140 

Future 
model  

A-15/W35 2.80 1.77   2.20 2.80 1.97  

A-15/W45  1.41 2.00 1.80    1.40  

A-7/W35 3.40 2.41   2.70 3.60 2.32  

A-7/W45  1.90 2.40 2.20    1.95  

A-7/W55  1.46 2.00 1.80 1.50 2.50 1.62  

A2/W35 4.20 2.97 3.60 3.50 3.40 4.40 2.70 4.6 

A2/W45  2.27 3.10 2.40    2.27  

A2/W55  1.82      1.80  

A7/W35 5.20 3.90 4.20 3.50 4.50 5.00 4.22  

A7/W45 3.90 3.05 3.30 2.90 3.50 4.10 3.20  

A7/W55 2.90 2.28 2.90 2.50 2.60 3.30 2.36  

A10/W35 5.50     5.30   

A12/W35  4.89        

A12/W45  3.58        

A12/W55  2.71        

A20/W55  4.00       3.30 4.00   

Rated 
thermal 

output at 
A7/W35 

12.5kW 9.0kW 9.9kW 7.1kW 14.9kW 15.1kW 14.0kW  

Thermal 
output at 
A2/W35 

10kW 8.5kW 8.3kW 5.8kW 10.3kW 13.2kW 14.0kW 10kW 

(References, 1: Warmepumpen-Testzentrum 2010; 2: Energimyndigheten 2012; 3: Butler & Hyde 2007) 

Major field-trials of heat pumps have been conducted in Germany (Miara 2008) and the UK 

(Energy Saving Trust 2010), demonstrating a wide range of performances and the importance of 

appropriate installation practice.  

The German field trial was conducted by the Fraunhofer Institute for Solar Energy Systems in 

Germany, involving 78 heat pump installations (56 GSHP, 15 ASHP, 7 Water source heat 
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pumps) and was run over a period of two heating seasons. For the GSHPs, a seasonal average 

system COP of 3.72 was calculated with 87% of the output being used for space heating and 3% 

of the electricity consumed by electric backup heaters. For the ASHPS, an average COP of 2.99 

was calculated with 72% of output used for space heating (remainder used for hot water). Only 

1% of electricity consumed was used in backup electrical resistive heaters.  

The Energy Saving Trust (EST) (2010) trial included approximately 80 ASHP and GSHP units 

representing  15 different heat pump manufacturers, installed at sites across the UK. Six ASHPs 

were installed and tested by a manufacturer and achieved an average COP of 2.75 with a range 

of COPs (averaged across the year) from 2.4 to 3.0. The remaining 22 ASHPs achieved an 

average COP of 1.82 with a range from 1.2 to 2.2 observed between installations. Further 

analysis was undertaken by DECC and EST to investigate the reasons for this large variation in 

the COP which was observed (Dunbabin & Wickins 2012). The largest factor in causing 

underperformance was found to be under-sizing of some of the units; this caused a large 

proportion of heat demand to be met by backup electrical resistive heating. In other cases, the 

units were over-sized and not capable of modulated operation (i.e. they had one output level). A 

third, significant issue was that the flow temperatures which were used were higher than 

necessary with “weather compensated” control being disabled in one case. The relative 

influence of this last issue is explored further in the Modelling and Results chapters, below. 

A trend for improvement in the performance of heat pump units being manufactured was noted 

by Rawlings and Sykulski, (1999) and can be observed by looking at actual test data. Figure 7 

shows the COP of various heat pumps against the year in which they were tested (Butler & 

Hyde 2007; DeLonghi n.d.; Warmepumpen-Testzentrum 2010; Warmepumpen-Testzentrum 

2013; Danfoss 2012; Viessmann 2009; Energimyndigheten 2012). The COPs are given for air at 

2°C and with a flow temperature of 35°C. Because earlier data was measured with a larger heat 

exchanger temperature difference (in accordance with EN255-3:1997), these COPs have been 

reduced by 7.5%; this is the difference in COP which a Carnot cycle would exhibit between the 

conditions and approximately compensates for the difference but direct comparison is not 

possible. Despite some variation, there is a trend in the COP of the best performing units. The 

four labelled ASHPs (“A”, “B”, “C” and “D”) relate to the units in Figure 6 and Table 3. 
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Figure 7: Representative COP of ASHPs Adapted from data by Butler & Hyde 2007; DeLonghi n.d.; 

Warmepumpen-Testzentrum 2010; Warmepumpen-Testzentrum 2013; Danfoss 2012; Viessmann 2009; 

Energimyndigheten 2012 

2.2.3 Developments in heat pumps 

Other improvements in the performance of heat pumps are possible. Exergy analyses of heat 

pumps completed by Hepbasli & Akdemir (2004) and Bi et al. (2009) identified the motor-

compressor sub-system as the main source of exergy loss and therefore potential for 

improvement in heat pump designs. There are several ways in which this can be accomplished. 

The introduction of scroll compressors (made possible by improved manufacturing tolerances) 

achieves approximately 10% higher efficiency than the reciprocating piston compressors they 

replace. Suction and discharge processes are separate (reducing heat transfer to incoming 

refrigerant), the process is much smoother (i.e. less torque fluctuation) and does not require the 

use of valves. Additionally, cooling the compressor and motor assembly to a constant 

temperature has been shown to reduce compression work by about 16% (Chua et al. 2010). 

Scroll compressors are now used by many manufacturers (Energimyndigheten 2012; 

Warmepumpen-Testzentrum 2013).  

Multistage compressors can be used to optimise designs for fixed pressure ratios, reduce 

pressure ratios and also improve heat recovery. In an experimental study of an ASHP with a 

two-stage compressor, Wu et al. (2012) found that overall performance can be improved (by 
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around 8%) by using both compressor stages when the temperature difference between source to 

sink is high and then switching to just one stage as the temperature difference decreases. Many 

manufacturers now use inverter driven motors, providing soft-start and stepped operation 

(Mitsubishi Electric Europe 2008; Viessmann 2009; Energimyndigheten 2012). 

The second largest source of exergy losses is generally the heat exchanger. Two-stage 

evaporators have been suggested as they can extract heat from air more effectively (35% more 

effectively in one study, Chua et al., 2010). Operating at two pressures and therefore two 

temperatures, the evaporators are arranged such that warm air first passes the high pressure 

evaporator and then passes the low pressure evaporator. 

Although the exergy losses in the expander are proportionally small in a conventional heat 

pump cycle, it is possible to reduce them. Various improvements to the expansion valve 

assembly are used to optimise the flow characteristics and some manufacturers use capillary 

tubes for this function. A more significant improvement could be achieved through the use of an 

expander turbine or similar device but the additional complexity involved means that this does 

not appear to have been pursued to date. A simpler alternative is the use of an ejector and gas-

liquid separator in place of the expansion valve. The ejector allows a higher pressure to be 

maintained at the inlet to the compressor while the evaporator still operates at a lower pressure 

such that adequate evaporation (and associated heat transfer) can occur. In reviewing their use, 

Sarkar (2012) noted that studies have indicated that COP improvements between 7% and 24% 

could be expected through the use of an ejector compression cycle. Although the design details 

of the highest performing domestic ASHPs are not publically available, promotional material 

hints that some recovery of the energy loss in the expander takes place so it is possible that 

ejector compression cycles are already used. 

At low ambient temperatures, frost can accumulate on the outside heat exchanger of an ASHP. 

This inhibits the transfer of heat from the outside air and is typically removed using a defrost 

cycle which uses a reversal of the heat flows in the heating cycle. Alternatives configurations 

have been suggested in order to expedite this process (e.g. by bypassing hot gasses from the 

compressor, Choi et al., 2011) or to better control it in order to reduce energy consumption 

(Wang et al., 2011). The hot gas bypass defrosting method is used in some commercially 

available ASHPs. 

Changes in refrigerant can improve performance. Compressors using R410A tend to run cooler 

and use less power. R433A has recently been shown to offer further improvement potential 

(order of 5 – 7% improvement in COP over equivalent R22 system) (Chua et al. 2010).  
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Perhaps more significantly, the use of R744 (CO2) has been suggested as a replacement for HFC 

based refrigerants, primarily because of its lower global warming potential (Austin & Sumathy 

2011). However, CO2’s relatively low critical temperature (31.1ºC) makes it more suited to a 

trans-critical compression cycle. The critical pressure of CO2 is 7.37MPa so heat pumps 

operating with this cycle (the Lorentzen cycle) require higher operating pressures (typically 

8MPa to 13MPa for isobaric supercritical heat rejection and around 2MPa to 4MPa in 

evaporator). That is, heat is primarily rejected as sensible cooling of the working fluid (with 

associated temperature glide) rather than primarily as it condenses (relatively limited 

temperature glide). It is therefore more suited to applications in which the heat sink has a large 

temperature differential, such as domestic hot water brought up to temperature from a cold 

mains inlet (Austin & Sumathy 2011; Tian et al. 2009). This is an advantage in dwellings in 

which improved insulation has significantly reduced the space heating demand and Stene (2007) 

observed that heat pumps using CO2 tend to outperform their HFC equivalents when the fraction 

of heat used for domestic hot water is above 50% to 60%.  

Compressor efficiency is reduced with an increased pressure ratio (Jingying et al. 2010) and has 

been a limiting factor in the performance of these units. However, on-going improvements in 

scroll compressor design and manufacturing tolerances will inevitably improve performance. 

Exergy analysis by Sarkar et al. (2005) indicated that expansion losses are significant; they are 

proportionally higher in a transcritical cycle than a subcritical cycle. This suggests that there is 

more merit in using an ejector compression cycle to recover some of the work which is available 

(Sarkar 2012). A study by Yari and Sirousazar, (2007) suggested a 21% improvement in the 

COP is possible in this way (cooling of compression stage was also used) and that further 

improvements can be expected if two-stage compression is also used. Even if an expander is not 

used, it is likely that using capillary tube expansion can result in performance improvements in 

the order of 10% to 20% (Austin & Sumathy 2011) or that improvements in the order of 10% 

can be achieved by using an additional heat exchanger before the expansion valve (Fernandez et 

al. 2010). 

Because the performance of a transcritical heat pump depends not only on the temperature of 

the heat source and sink used but also on the configuration of the heat exchangers used, it is not 

appropriate to use the same model as that employed for subcritical heat pumps. A new model 

would need to be developed. It is likely that heat pumps using R744 will become increasingly 

significant but the relative resistance to change in the overall energy demand profile of the 

building stock makes it likely that HFC based heat pumps will remain dominant. Because of 

this, this research will focus on the performance of HFC based, subcritical heat pumps but it is 

recommended that further work should include R744 based transcritical heat pumps. 
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2.2.4 Alternative heat pump configurations 

Several studies have undertaken to consider the effect of combining a heat pump with other 

renewables such as solar collectors. The heat pump’s evaporator can be coupled to a solar 

collector in order to increase the temperature of the evaporator and therefore improve the heat 

pump’s performance. The coupling can either be indirect (e.g. hot water is generated by the 

solar collector and this is used as heat source) or direct (in which case the evaporator and solar 

collector are a single unit). Using an experimental direct expansion unit, Ito et al. (1999) 

achieved a COP of 5.3 (ambient air temperature 8ºC, heating water from 25ºC to 40ºC) but the 

insolation level was higher (Japan) than that likely to be experienced in the UK. Various 

modelling exercises (Freeman et al. 1979; Biaou & Bernier 2008; Chandrashekar et al. 1982) 

and experimental work (Comakli et al. 1993; Ozgener & Hepbasli 2005; 2007) have considered 

the effect of using different configurations when using solar collectors. In most cases, a simpler 

“parallel” configuration (i.e. the solar collector and heat pump supply hot water independently) 

achieved greater efficiency than the “series” configuration described above.  

An interesting alternative is to couple the heat pump’s evaporator to a solar PV array, given that 

the efficiency of PV units decreases when their temperature increases. Chow et al. (2010) 

described such a system being trialled and achieving an average COP of 5.4, while improving 

modelled PV efficiency from 8.7% to 12.1% in Hong Kong. However, again, it is unlikely that 

this could be achieved in the UK given the lower solar insolation experienced. 

For larger applications, Lian et al. (2005) demonstrated that there is potential for large 

improvements in primary energy efficiency by using an internal combustion engine to drive the 

compressor of the heat pump (and, of course, recovering “waste” heat from it). However, given 

the scale the systems available (multi-MW in the example considered but 100kW to 1MW in 

other systems (Hepbasli et al. 2009)) it seems that the concept has limited scope for application 

to the UK domestic sector, unless combined with a district heating network. 

Adsorption and absorption heat pumps are driven by higher temperature heat flows (rather than 

a compressor) in order to supply more heat at a lower temperature. This potentially makes them 

an attractive option as a replacement for gas boilers as the high temperature heat can be supplied 

by burning gas; only minimal electrical power flows are required (Critoph & Metcalf 2012). 

Although some emissions are inevitable unless the gas supply is decarbonised, their operation 

will emit less CO2 than a conventional boiler. However, the performance which can be achieved 

with them is currently limited to COPs below 1.4 (with zeolite adsorbent / water as working 

fluid, Demir et al., 2008) and so although some units have been developed (e.g. Viessmann 

2011), they have not attracted the same attention as other devices for this application, being 
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used primarily in applications where waste heat is available but cooling is required (e.g. 

industrial processes and trigeneration plants).   

The operation of the two types of heat pump are similar in principle but vary in the selection of 

either a solid (e.g. zeolite) that absorbs the refrigerant (e.g. water) in an adsorption cycle or a 

fluid (e.g. water) which the refrigerant (e.g. ammonia) is soluble in, in an absorption cycle. In its 

simplest conceptual form, the cycle is as follows: 

1. The process of the vaporised refrigerant being absorbed is exothermic and occurs at low 

pressure (e.g. 6 – 10mbar(a) for water / ammonia mix), rejecting heat which can be 

used.  

2. Higher temperature heat is then applied to the absorbent causing the refrigerant to be 

released as a vapour at a higher pressure (e.g. 40 – 80mbar(a) for water / ammonia mix) 

and move to a second volume. The absorbent remains in the first volume. 

3. The refrigerant vapour condenses in the second volume, rejecting heat which can be 

used (still at the higher pressure with high temperature heat continuing to be applied to 

the absorbent).  

4. The higher temperature heat source is removed from the absorbent and the pressure 

drops. This causes the refrigerant to evaporate; cooling and receiving heat in the second 

volume (supplied from either the environment or a volume to be chilled). 

5. The low pressure, vaporised refrigerant is then reabsorbed by the absorbent and the 

cycle repeats. 

In a practical arrangement, the two volumes could each be split into a volume for receiving heat 

and a volume for rejecting heat. This could be achieved by introducing a pump between the 

volumes in which the absorbent / refrigerant mixture rejects and receives heat and an expansion 

valve between the volumes in which the refrigerant rejects and receives heat.  

In a hypothetical grid mix with a large proportion of wind generation, it is possible that an 

adsorption heat pump could be combined with electrical storage heating as its high temperature 

heat source in order to store energy at times that the wind generation would otherwise need to 

be constrained. This system is somewhat more hypothetical than those being analysed in this 

study but remains an interesting possibility. 
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2.3 Micro Combined Heat and Power  

2.3.1 Introduction to micro Combined Heat and Power units 

Combined Heat and Power (CHP) units combine the generation of power (typically electrical 

generation) with provision of heat. Because the heat supplied is generally that rejected during 

the power generation and would otherwise be wasted, CHP units can achieve high total 

efficiencies. Although any CHP plant with an electrical output of less than 50kW is defined as 

micro-CHP (mCHP) (EC 2004), in practice mCHP usually refers to CHP plant with an electrical 

output of less than 15kW as these can be realistically installed in a single dwelling (Simader et 

al. 2006).  

Various types of mCHP unit can be categorised by the way they generate electricity. This is 

either with a heat engine driving an electrical generator or a fuel cell. The heat engines used, to 

date, in commercialised units are Stirling engines (SE), internal combustion engines (ICE) and 

gas turbines (GT). The fuel cells used in commercialised units are either polymer electrolyte (or 

“proton exchange”) membrane fuel cells (PEMFC) or solid oxide fuel cells (SOFC). 

Internal Combustion Engine (ICE) mCHP units have seen the most commercial success to date. 

They achieve reasonable electrical efficiencies (typically 20% to 30%, more detail on 

performance is given in the next section) and a rapid electrical response (De Paepe et al. 2006). 

The Senertec Dachs is widely used for small commercial baseload heating but with a 5.5kW 

electrical output (HKA5.5 model) and a 12.5kW thermal output, it is too large for most 

dwellings. Its cost is reported to be around  £10,000 to £14,000 (Staffell et al. 2010) or €13,750 

(De Paepe et al. 2006). Yanmar Energy Systems Co. have developed 5kW, 10kW and 35kW 

electrical output ICE units. Kinoshita (2011) has suggested various operating strategies based 

upon these units operating together in order to achieve maximum cost effectiveness and 

efficiency but their size makes this more appropriate for small to medium commercial 

applications. The Valliant EcoPower (also marketed as PowerPlus or Marathon) unit has a 

similar capacity and price as the Dachs HKA5 (1.3kW to 4.7kW electrical, 4kW to 12.5kW 

thermal, around £11,000 (Staffell et al. 2010) or €11,750 (De Paepe et al. 2006)). However, its 

ability to modulate generation increases its flexibility and makes it more suitable to domestic 

heating. The EcoWill ICE-mCHP (branded as FreeWatt in the USA) uses a smaller, 163cc ICE 

manufactured by Honda and has an electrical output of around 1kW with 2.8kW heat output but 

does not modulate in order to avoid operating at lower efficiency (Roselli et al. 2011). Over 

50,000 had been sold by July 2007 (Honda Motor Co. Ltd. 2007) with a list price of 900,000 

yen (i.e. around £6,000, Nichi Gas 2012).  

 



 31 

Stirling Engines (SE) have the potential to provide reliable operation, fuel flexibility, good 

emission characteristics and quiet operation. Solo Stirling 161 microKWK units have a similar 

capacity to the Senertec and EcoPower ICE units and are capable of modulating their output 

from 2kW to 9.5kW electrical output with 8kW to 26kW thermal output. They operate with 

helium as their working fluid, pressurised to between 30bar and 130bar. De Paepe et al. (2006) 

report their installed price to be around €25,000.  The Whispergen and Baxi EcoGen SE-mCHP 

units are smaller and, being more suited to individual dwellings, have attracted more attention in 

the UK. The Baxi Ecogen also uses helium as its working fluid but at lower pressure than the 

Solo Stirling unit (up to 23bar). It is capable of varying its electrical output from 300W to 1kW 

output and its thermal output between 3.4kW and 6.4kW. The Whispergen uses Nitrogen as its 

working fluid (Aliabadi et al. 2010) and costs around €9000 installed. It has an electrical output 

of around 750W with a thermal output of just over 7kW (De Paepe et al. 2006). The 

Whispergen has a standby power consumption of around 9W, increasing to 100W when 

operating (Whispergen Ltd 2006). 

Although GT-mCHP units are currently limited to lower electrical efficiencies than ICE units, it 

is likely that they have the potential to achieve lower CO and NOx emissions and greater 

reliability (Simader et al. 2006). At local district heat network scale, GT-CHP units with 

reasonable electrical efficiencies are possible; for example Ristic et al. (2008) consider the 

optimum dispatch profile for a 635kWe GT-CHP unit achieving 31% electrical efficiency. GT-

mCHP units that could achieve 15% mechanical efficiency with less than 1kW output, have 

been suggested (e.g. Clay & Tansley 2010) but apparently not yet commercialised. A GT-

mCHP with 3kW electrical output and 15kW thermal output has been developed (Visser et al. 

2011) and is due to enter field trials in early 2013 with commercialisation planned for 2014 

(MTT 2013).   

Fuel Cells have several advantages over other prime movers including high electrical efficiency, 

quiet operation and low emissions (Hawkes et al. 2011). Cruden et al. (2008) also noted their 

relatively modular nature (that is, their efficiency is not as dependent upon their size as it is for 

other prime movers). Fuel cells operate by combining reactants across an electrolyte, directly 

creating an electrical current.  Ions migrate across the electrolyte to complete the reaction whilst 

electrons carrying the same charge are released at the anode to generate the current.  Depending 

upon the nature of the electrolyte either positive ions (e.g. H
+
 ions) are transferred from the 

anode to the cathode or negative ions (e.g. O
2-

 ions) are transferred from the cathode to the 

anode.  Because electrons flow to the cathode (the same as in electrolysis), it is the positive 

terminal relative to external measurement (unlike electrolysis). The reactants most commonly 

used are hydrogen (to the anode) and oxygen (to the cathode) producing water as the product, 

see Figure 8.   
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Figure 8: Introduction to fuel cells 

Each cell produces a voltage of typically 0.8V and so cells are arranged in series in a stack, 

separated by bipolar plates in order to provide more useful voltages. Larminie & Dicks (2003) 

described three losses that reduce the voltage across cells (proportional to efficiency as current 

is directly related to fuel consumption rate): activation losses, ohmic losses and concentration 

losses. Activation losses occur due to the energy required for the electrochemical reaction to 

start; lower losses occur at higher temperatures, higher losses occur as the logarithm of the 

current density (i.e. the rate of reaction) increases. Ohmic losses are due to the resistance of the 

electrodes, electrolyte, bipolar plates and interconnections. Concentration (Nernstian) losses are 

due to an effective reduction in the partial pressure of the reactants due to insufficient flow of 

fuel relative to the current density.  As these losses increase with current density the maximum 

power output occurs at less than the maximum current density of the stack.  

Several different types of fuel cells can be distinguished depending upon the electrolyte used. 

PEMFCs and SOFCs are the ones which have attracted most interest for application as mCHP. 

Other types include alkaline fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells 

and methanol fuel cells.  

PEMFCs use a polymer electrolyte that transfers H+ ions.  Advantages include low temperature 

(70ºC) operation, compact and relatively rugged construction with no corrosive fluids.  The 
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polymer most commonly used is nafion (sulphonated PTFE). In order to operate at lower 

temperatures, a catalyst (platinum) is deposited on the electrodes. Electrodes are either 

constructed from a porous conductive sheet such as carbon paper with carbon particles 

supporting the platinum, or the carbon particles are fixed directly to the polymer electrolyte.  

Operation of the electrolyte depends upon the presence of some humidity but too much will 

adversely affect the overall operation and so this must be maintained between 80% and 100% 

relative humidity.  The Balance of Plant (BoP) for a PEMFC is relatively complex, especially in 

the case that the fuel is not hydrogen (methane being the most convenient fuel for domestic 

applications). This BoP would typically include fuel reforming to hydrogen and scrubbing to 

remove carbon monoxide and other compounds as these poison the catalyst. A 700W electrical 

output PEMFC-mCHP unit has been listed for 3.5M Yen (i.e. around £25,000 excluding 

installation, Nichi Gas 2012) with an observed learning rate of (i.e. decrease in costs associated 

with doubling of production) around 20% (Staffell 2009). 

SOFCs use a ceramic oxide electrolyte that transfers cations.  Steam reforming of methane 

occurs can occur internally at the operating temperatures within a SOFC stack. Although this 

reduces the BoP required, it still usually includes pre-heating of reactants to reduce thermal 

loading, the removal of sulphur compounds and either an afterburner or alternative use for fuel 

which has not been utilised in the stack (fuel utilisation rates of around 80% are typical). Yttria-

stabilised zirconia oxide (YSZ) has been used as the electrolyte but in order to conduct the 

oxygen ions it must be maintained at above 800ºC and thin.  In order to reduce stack 

temperature from 1000ºC to 800ºC  the electrolyte thickness must be reduced from 200µm to 

20µm (Milewski & Miller 2006), alternative electrolyte materials at this thickness can 

theoretically improve the stack efficiency by over 15% (e.g. 45% to 60%). Intermediate 

temperature SOFC units (operating at 500°C to 750°C) have attracted attention at this scale as 

they have several advantages: below 600ºC, stainless steels can be used for elements of the 

construction, start-up times are reduced and thermal stresses are reduced (Bove 2007). For these 

intermediate temperatures, ceria-gandolinium oxide (CGO) is an option for the electrolyte if it is 

thin enough (15µm) but must be supported. Within a SOFC, excess air is generally supplied to 

the cathode side in order to provide cooling. A 1.5kW – 2kW electrical output SOFC-mCHP is 

listed at £19,950 excluding installation (Fuel Cell Today 2012) and it has been suggested that 

the learning rate may be as high as 35% for similar SOFC units (Rivera-Tinoco et al. 2012). 

The open cell voltage of the cell is proportional to the Gibbs energy of the reaction which 

occurs. The Gibbs energy of the reaction is a function of the relative concentration of the 

reactants and products and of the temperature at which the reaction occurs (shown in Figure 9 

for the formation of water). This means that the open cell voltage of a SOFC will be lower than 

that of a PEMFC (as it is at a higher temperature). In practice, however, the reduction in 
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activation losses more than compensates for this and so the electrical efficiency of a SOFC is 

typically higher than that of a PEMFC.  

 

Figure 9: Variation in Gibbs free energy of formation of water. Data from Larminie & Dicks (2003). N.B. 

below 100°C, water is condensed. 

Despite the optimum stack efficiency occurring at less than full load, the response of the fuel 

reformer often results in lower fuel utilisation and therefore system efficiency. Vijay et al. 

(2010) observed that maintaining constant fuel utilisation achieves a good approximation to 

optimum efficiency; effectively maintaining the fuel mass inlet rate proportional to the current 

density from the cells.  SOFC stacks are sensitive to thermal cycling and have typical warm up 

and cool down cycles of 12 – 24h with operational ramp rates of around 0.05kW/min. PEMFC 

units can react faster but still require at least one hour to warm up and exhibit a typical 

maximum ramp rate of around 0.2kW/min (Hawkes et al. 2009). Both PEMFC and SOFC units 

have a practical minimum turn-down ratio (typically around 20%) as below this, the parasitic 

loads from auxiliary systems and the need to maintain the temperature of the unit require the 

majority of the energy output. 

2.3.2 mCHP performance 

The potential efficiency of mCHP units has attracted considerable attention and so performance 

data is available from several sources including laboratory testing and field trials. A range of 

efficiency data is presented in Figure 10. The data is intended to illustrate the range of 

performances which are generally achieved by these technologies. Most data points relate to 

steady-state operation of the units but the approximate range of efficiencies encountered in field 

trials is also illustrated by the three ellipses. Efficiencies are relative to the Gross Calorific 
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Value (GCV) of the fuel. Some data points relate to the same unit under different conditions or 

test facilities. 

 

Figure 10: Energy efficiency of mCHP units. (Data adapted from Carbon Trust 2011; Thomas 2008; 

Yamada & Nishizaki 2009; Aliabadi et al. 2010; De Paepe et al. 2006; Bianchi et al. 2011; Beausoleil-

Morrison, Arndt, et al. 2007; Dorer & A. Weber 2009; Thorsteinson et al. 2011; Payne et al. 2009; Love 

et al. 2009; Magri et al. 2012; Roselli et al. 2011; Staffell 2009) 

Almost all total efficiencies exceed 60% and are, of course, limited to less than 100% although 

some SE-mCHP units can approach this. The total efficiency tends to increase in the units with 

a higher heat to power ratio. Changing the temperature that heat is supplied at affects thermal 

efficiency primarily as a function of whether heat can be recovered through the condensing of 

exhaust gasses. The electrical efficiency of SE-mCHP is generally more affected by the 

temperature of heat recovery than ICE-mCHP units; for example the Solo’s electrical efficiency 

decreases from 26.8% to about 24.5% when the flow temperature is increased from 40ºC to 

65ºC (Thomas 2008). 
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The high performance of the BlueGen SOFC-mCHP unit manufactured by Ceramic Fuel Cells 

Ltd (2008) merits further description. The unit is apparently capable of achieving a net electrical 

efficiency of 54% (GCV). This is achieved at an electrical output of 75% of its rated power (i.e. 

at 1.5kW electrical output), with 77% total efficiency. The unit’s output can be varied from 0 – 

100% but requires relatively long start-up and cool-down periods (20hr & 36hr respectively). 

Payne et al. (2009) and Love et al. (2009) describe the unit in more detail. Achieving a high fuel 

utilisation rate (85%) is a key enabler of the performance and therefore a driver for the careful 

design of the stack components. At this fuel utilisation, the stack layer voltage is 0.83V and DC 

efficiency is 61% (GCV). The majority of voltage drop is due to polarisation at the anode-

electrolyte interface and ohmic losses; relatively small (~10mV) losses are due to concentration 

despite the high fuel utilisation. Other aspects of the design such as the balance of plant also 

require care in order to minimise heat losses (to 200W in this unit). 

The Carbon Trust (2007) reported on a large scale field trial of mCHP units conducted in the 

UK. 87 mCHP units were monitored in detail for periods between 2005 and 2007. Most of these 

(72) were SE-mCHP units in domestic dwellings (mostly Whispergen Mk4 & Mk5 units), but 

the trial also included 15 larger ICE-mCHP units in commercial buildings. In the winter, 85% of 

the SE-mCHP units achieved a thermal efficiency of 64% - 76%, with 38% in the centre band of 

68 – 72% (GCV, including parasitic losses while in standby). Electrical efficiencies ranged from 

about 3% to 8% with a mode of about 6% in the heating season but were typically 3 – 4% lower 

in the summer. The importance of a large consistent heat load to the performance of these units 

is a consistent theme also seen in studies using modelling and so merits the further exploration 

given it in the modelling chapter. A smaller trial of four Baxi Ecogen SE-mCHP units 

demonstrated higher efficiencies but used dwellings with large heat demands (around 

30,000kWh/ year) and large buffer tanks (Lipp 2012). 

The largest trials of mCHP units, to date, have taken place in Japan under the ENEFARM 

programme. This primarily involved ICE-mCHP and PEMFC-mCHP units with more limited 

testing of other types such as SOFC-mCHP units. Tokyo Gas conducted a field trial of 166 

PEMFC-mCHP units from 2008, making them commercially available from May 2009 

(Yamada & Nishizaki 2009). The units can generate 300W to 1kW electricity and have design 

efficiencies of 33% for electricity and 47% for heat (both relative to GCV). However, in 

operation some units performed slightly better (exceeding 36% electrical efficiency in some 

cases). The electrical output is variable from 300W to 1kW. Heat is supplied at 60ºC and the 

units are generally supplied with a 200 litre hot water tank. Ecowill 1kWe ICE-mCHP units 

were tested in 70 dwellings between 2001 and 2003 (Iwata 2004). The units were controlled by 

a predictive, heat-led algorithm, using excess electricity to increase heating when it is not 

needed locally. Run times of 1,327 to 3,160 hours / year were observed with carbon emissions 
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savings of up to 1,220kg /year (against a grid carbon emissions factor of 0.69kgCO2/kWh). 

Because electrical export is not permitted in Japan, Maeda et al. (2010) suggested an improved 

control logic based on this including the use of excess electricity for heating. 

The performance characteristics of 12 mCHP units are used in the main modelling exercise 

conducted during this research. A summary of the main characteristics of these units is provided 

in Table 4. The units have been selected to represent the range of performance and capacities 

which are available. In particular, this included modulating and non-modulating heat engine 

units as well as undersized and oversized units. Because of the high performance but small size 

of the CFCL unit (“SOFC A”), a second hypothetical unit (“SOFC B”), comprising three SOFC 

A units in parallel, has been considered. This is modelled as a hypothetical, larger unit rather 

than three smaller units; that is, the potential to achieve high efficiency at low loads by turning 

off two of the units has not been considered here. Although some of the units have auxiliary gas 

burner modules, these are considered separately in the modelling so that the contribution from 

each subsystem is apparent. 
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Table 4: Characteristics of mCHP units investigated 

Unit 
designation 

Based upon Electrical 
capacity 

Thermal 
capacity 

Electrical 
efficiency

1
 

Thermal 
efficiency

1
 

SE- mCHP A Whispergen Mk0 0.75W
2
 6.5kW

2
 10.8%

3
 76%

3
 

SE- mCHP B Baxi Ecogen 0.17kW – 
1kW

4
 

3.5kW – 
6.8kW

4, 5
 

4.2% - 12%
4
 88% - 80%

4
 

SE- mCHP C Solo Stirling 161 1.3kW – 8kW
2
 6.9kW – 

24.3kW
2
 

12% - 21%
2
 64%

2
 

ICE- mCHP A Senertec Dachs HKA 5.5 5.5kW
6
 12.5kW

6
 25%

6
 55%

6, 7
 

ICE- mCHP B Powerplus EcoPower e4.7 1.2kW – 
4.4kW

2
 

3.8kW – 
12.1kW

2
 

20% - 22%
2
 62% - 60%

2
 

ICE-mCHP C EcoWill / FreeWatt 1kW
3
 2.8kW

3
 20%

3
 57%

3
 

PEMFC A (Confidential) 1.5kW – 
4.6kW

2
 

3.0kW – 
9.1kw

2
 

17% - 24%
2
 61% - 45%

2
 

PEMFC B (Confidential) 1.1kW - 
4.5kW

2
 

1.6kW – 
7.7kW

2
 

17% - 24%
2
 30% - 45%

2
 

PEMFC C Hyteon prototype 0.54kW - 1kW
8
 0.69kW – 

1.5kW
8
 

46% - 42%
8
 29% - 32%

8
 

SOFC A CFCL Bluegen 0.5kW - 2kW
9
 0.3kW - 1kW

9
 37% - 54% - 

51%
9
 

25% - 21% - 
29%

9
 

SOFC B 3 x CFCL Bluegen units   1.5kW - 6kW
9
 0.9kW - 3kW

9
 37% - 54% - 

51%
9
 

25% - 21% - 
29%

9
 

SOFC C FCT 3kW – 3.7kW
2
 4.6kW – 

6.1kW
2, 10

 
24%

2
 50% - 52%

2, 10
 

Notes. Ranges relate to modulating behaviour of units. 1: Efficiencies relative to GCV of fuel; 2:Beausoleil-
Morrison, Arndt, et al. (2007); 3: Roselli et al. (2011); 4: Magri et al. (2012); 5: excludes auxiliary burner; 6: Thomas 

(2008); 7: Without additional condenser unit; 8: Thorsteinson et al. (2011); 9: Payne et al. (2009); 10: Thermal 
output based upon assumption of 100% effective heat recovery rather than measured data. 

2.3.3 Alternative configurations 

The use of other sources of heat in mCHP units has been suggested by several researchers. The 

use of biomass has the potential to reduce overall CO2 emissions and could be achieved with 

various prime movers: a gasifier with an IC engine, an Organic Rankine cycle (ORC), an 

indirectly fired gas turbine, a Stirling engine or biofuel IC engines. These systems are feasible at 

the  30kW – 1MW electrical output, with analysis suggesting that a 100kW gas turbine unit 

could achieve around 20% electrical efficiency (Wood & Rowley 2011). ORC devices have 

been proposed due to the relatively high output that they can achieve from heat supplied at 

moderate temperatures; a 2kW electrical output device achieving a theoretical efficiency of 

almost 17% has been modelled by H. Liu et al. (2011). Several ORC-based biomass CHP units 
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are commercially available with sizes of around 400kW electrical output and typically achieving 

20% electrical efficiency but there do not appear to be any commercially available at mCHP 

scales (Dong et al. 2009). An interesting alternative to biomass is the use of a solar collector in 

combination with a gas boiler to supply heat to an ORC, as reported by Yagoub et al. (2006). A 

unit was developed and installed in an office building in the UK. A 25kW solar thermal 

collector was used with a gas boiler to drive a 1.5kW turbine operating using an ORC cycle. An 

electrical efficiency of 7.5% was achieved, feeding into an average daily demand of 28kWh; 

however the solar fraction of the heat supplied was estimated to be only 14%.  

An alternative form of biomass supply is the combination of a fuel cell CHP with an anaerobic 

digester. The potential market for this is clearly smaller and units would probably not be 

feasible at mCHP scales but the concept has still attracted some interest. For example, the 

Greenhouse Gas Technology Centre Southern Research Institute (2004) reported on the 

operational performance of a 200kW Phosphoric Acid Fuel Cell CHP unit combined with an 

anaerobic digester. The unit achieved 35% - 40% (average 37.5%) efficiency with anaerobic 

digester gas which is processed to remove hydrogen sulphide, other sulphur and volatile organic 

compounds. 

Increasing the pressure of reactants in a fuel cell increases its efficiency and power output (e.g. 

increasing the pressure from 1bar to 3bar caused a 15% increase in output in an example 

described by Singhal 2000). In the case of SOFC units, this leads to a potential synergy with gas 

turbines; the SOFC and afterburner are used in place of the combustion chamber (Choudhury et 

al. 2013). The performance of hybrid systems based upon available GT and SOFC units (30kW 

to 100kW and 160kW to 260kW outputs, respectively) has been modelled by Bakalis & 

Stamatis (2012) with results suggesting that electrical efficiency could be improved from 49% 

to 60% in some configurations. 

Larger SOFC units could be combined with coal gasification and provision for carbon capture. 

In fact, several synergies are possible, minimising the performance penalty (Li et al. 2011): hot, 

decarbonised and humidified anode exhaust gas can be recycled back to the hydro-gasifier; the 

gasifier can produce methane-rich syngas rather than hydrogen as this will be reformed within 

the SOFC; pressurisation necessary for the operation of the gasifier also increases SOFC 

efficiency and allows the use of an additional gas turbine  
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2.4 Performance metrics 

2.4.1 Energy analysis 

The energy flows which are considered in this analysis are notionally illustrated by Figure 11. 

Energy flows will occur at each of the four stages. In most cases, the Primary Energy 

Requirement (PER, stage 1 in Figure 11) and the end use energy demand (stage 4) will be most 

relevant. However, comparison with the energy delivered to the unit (stage 2) and delivered by 

the unit (stage 3) will sometimes yield interesting observations, for example in the cases where 

supplementary burners are used with mCHP units. 

 

Figure 11: Whole system energy flows associated with ASHP and mCHP units 
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Upstream energy use associated with the extraction and processing of fuels is not included; that 

is the initial boundary is delivery to power stations for primary energy supplied for the 

generation of electricity. The renewable energy consumption of renewable generation is not 

included in their PER but life-cycle energy requirements associated with construction, operation 

and maintenance are. Energy associated with the construction, operation and maintenance of 

other types of power generation are included but are relatively low in the case of fossil fuel 

plant; around 1.5% in the case of CCGT (Spath & Mann 2000; Odeh & Cockerill 2008). All 

values of fuel energy content (enthalpy of combustion,  ) are converted to gross calorific value 

(GCV, i.e. higher heating value, including the latent heat of vaporisation of water formed during 

combustion).  

The values for Energy Requirement for Energy given in Table 5 are used to calculate PERs (see 

chapter 4, section 4.6.5). 

For nuclear power stations, the convention for thermal efficiency employed by DECC (2011) 

has been followed with additional allowance for construction energy. It should be noted that 

reliable figures for this were difficult to obtain. The figure of 2.62 consists of a thermal energy 

input of 2.56 (DECC 2011) and an additional 0.06 corresponding to construction (AEA Energy 

& Environment 2008). 

The figures for biomass and CHP are sensitive to assumptions made regarding the mix of 

generation technologies, the fuel for the CHP plant and the source of the biomass. However, the 

contribution from them is low in the Transition Pathways scenarios used as background to this 

study apart from in the “Thousand Flowers” scenario which postulates high penetration of CHP 

(see Table 18). The selected values reflect those selected for LCA work within the project 

(O’Grady 2012, personal communication) consistent with the assumption of primarily thermal-

based CHP using low carbon biomass. 

Losses from natural gas pumping, leakage and other operator activities amounted to 2% of the 

total natural gas energy input in 2010 with a resultant PER for natural gas supplied to mCHP 

units of 1.02 per unit of energy (i.e. GCV of fuel) supplied (DECC 2011). Losses upstream from 

input to the national transmissions system (e.g. extraction and processing) are not included in 

this study. 
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Table 5: Average energy requirement for energy associated with different generating plant types 

Generating plant type,   Energy Requirement for 
Energy 

Notes 

Gas CCGT 2.22 (Odeh & Cockerill 2008) 

Gas CCGT with CCS 2.59 (Odeh & Cockerill 2008) 

Subcritical pulverised coal 2.98 (Odeh & Cockerill 2008) 

Coal IGCC 2.83 (Odeh & Cockerill 2008) 

Coal IGCC with CCS 3.29 (Odeh & Cockerill 2008) 

CHP 3.31 (Ecoinvent 2010) 

Thermal renewables (e.g. biomass) 1.64 (Ecoinvent 2010) 

Wind 0.13 (Ecoinvent 2010) 

Tidal 0.06 (Douglas et al. 2008) 

Nuclear 2.62  (increased by 0.05 in 2010 due to 
maintenance) (AEA Energy & 

Environment 2008; DECC 2011). 

Hydro 0.07 (Ecoinvent 2010) 

Figures considering only energy content of fuel: 

Coal 2.77  (2.79 in 2009) (DECC 2011)  

Gas (CCGT) 2.10  (2.15 in 2009)(DECC 2011)  

CCGT 2.02 (Hammond & Ondo Akwe 2007) 

CCGT with CCS 2.56 (Hammond & Ondo Akwe 2007) 

State of art CCGT 1.85 (Siemens AG 2010) 

Other non-renewable thermals 3.13 (DECC 2011) 

 

2.4.2 Exergy analysis 

Exergy analysis is concerned with the quality of the energy flows in a system (in terms of the 

theoretical work which could be extracted from them). As such, exergy has been suggested as a 

measure of the value and potential environmental impact of a process or activity. Rosen & 

Dincer (2001) argued that “a thorough understanding of exergy and the insights it can provide 

into the efficiency, environmental impact and sustainability of energy systems, are required for 

the engineer or scientist working in the area of energy systems and the environment”. Szargut 

(2007) discusses the use of the “Cumulative Exergy Consumption” as an alternative to 
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Cumulative Energy Consumption when considering the impact of a product or service. 

However, in terms of sustainability, exergy analysis does not provide the whole picture and 

other measures such as LCA are also required (Hammond 2004b).  

As a measure of the irreversibilities in a process, exergy analysis is more widely used to identify 

the potential improvement in a system and the components or sub-systems which might show 

the greatest efficiency gains when they are improved. This has been applied to various heat 

pump systems, generally resulting in the motor-compressor sub-assembly being identified as the 

largest source of exergy destruction (e.g. 56% in a study of GSHPs by Hepbasli & Akdemir 

(2004), 36% in a study by Bi et al. (2009)). Although some authors (Hepbasli 2008, Koroneos et 

al. 2003) have analysed the exergy efficiency of renewable systems, most take the approach of 

considering the exergy output of these systems to be the same as their input when analysing the 

overall energy system.  

Because exergy recognises that work and heat can have different values, it has been used as a 

performance metric for the comparison of CHP plant with other technologies. This has been 

applied to mCHP units but is not perfect and other concepts such as marginal efficiency may be 

useful, depending upon the scenario under analysis (Aliabadi et al. 2010). 

The boundaries for the exergy analysis in this study will be the same as those used with the 

energy analysis. However, the property is perhaps less familiar than energy and additional 

processes are required in order to calculate its value. A more thorough discussion of exergy is 

therefore included here.  

For a heat engine, the exergy (i.e. the potential work) which can be extracted from a heat flow 

between two fixed temperatures is limited by the requirement that the total entropy of the 

(isolated) system cannot decrease, that is: 

   
  

  
 

    

  
   

Equation 2 

where    is the change of entropy within the engine occurring during the (cyclic) process,    is 

the heat entering the system at absolute temperature    and      is the minimum heat which 

must leave the system at absolute temperature   . This constrains the minimum value of     . 

Rearranging Equation 2 and substituting it into the equation for the conservation of energy leads 

to Carnot’s familiar expression for the maximum amount of work which can be extracted,  : 

                    
  

  
       

  

  
  

Equation 3 
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This has the effect of decreasing the exergy content of thermal energy as the temperature at 

which the energy is supplied decreases relative to the ambient temperature (Figure 12). 

 

Figure 12: Variation of exergy content of heat flow with temperature 

In applying exergy techniques to the UK’s energy system, Hammond & Stapleton (2001) 

discussed the effect of employing different reference ambient temperatures, noting that the 

different conventions used by various authors (e.g. 25ºC, 10ºC, -1ºC) will have a large effect on 

any exergy analysis of low-temperature heat demands. In order to address this potential 

ambiguity, the approach used in the present study is to calculate all exergy flows during each 

time-step using the temperatures which occur during that time-step. The low exergy value of 

thermal energy used for space heating generally results in poor exergy efficiencies for domestic 

heating systems; for example, Hepbasli & Akdemir (2004) found an overall exergy efficiency of 

approximately 4% when analysing a heating system. This is recognised by Schmidt (2009) who 

discusses the importance and application of the exergy concept to domestic energy 

consumption. Schmidt has described the work within the International Energy Agency Energy 

Conservation in Buildings and Community Systems (IEA ECBCS) Annex 49 on the “LowEx” 

approach. This suggests that energy saving measures should be prioritised according to exergy 

saved rather than just energy.  

The exergy value of heat transferred across a boundary for which temperature is not constant (as 

is the case in a heat exchanger in which the temperature of the receiving working fluid increases 

as it absorbs heat) is given by integrating the exergy value at each temperature. Equation 3 

becomes: 
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Equation 4 

where     is the return absolute temperature. For a domestic heating system, the fluid receiving 

heat is typically water. Given that the heat capacity of water remains approximately constant for 

the temperature range encountered (20ºC to 85ºC), Equation 4 can be evaluated to: 
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)] 

Equation 5 

The exergy efficiency ( ) of a process or system is given as the ratio of useful exergy outputs to 

exergy inputs (Kotas et al. 1995), that is: 

   
∑    

∑   
 

Equation 6 

Figure 13 illustrates the same underlying heat pump performance data as those plotted in Figure 

6 but using exergy efficiency rather than COP to measure performance. Although Figure 6 

shows that the COP decreases with an increasing temperature difference between the heat 

source and heat sink, it is clear that the exergy efficiency does not vary as much (the average 

standard deviation per unit is only 2.1% of the mean). This is a useful result which is used to 

facilitate the modelling of the units (see section 4.4.4.2 on page 97). 

 

Figure 13: ASHP exergy efficiency with variation in operating temperatures. Data adapted from Butler & 

Hyde 2007; Warmepumpen-Testzentrum 2013; Energimyndigheten 2012. 
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For domestic systems involving both electricity (work) and space heating (e.g. heat pumps and 

combined heat and power units), the system exergy efficiency will depend upon the ratio 

between heat and electricity being demanded, the efficiency of electrical generation and also the 

exergy value of the space heating which will depend upon the temperature of the dwelling and 

the ambient temperature. This is illustrated in Figure 14 which shows the relationship between a 

system’s total exergy efficiency, total energy efficiency, electrical (or other work) efficiency 

and its power fraction (that is, the proportion of useful output that is in the form of electrical 

energy). In this example, the dwelling is heated to 20ºC with an ambient (outside) temperature 

of 10ºC. If the power fraction is low (i.e. the heat to electrical energy ratio is high) then the 

exergy efficiency of the system will be limited to low values unless its energy efficiency 

exceeds 100%. 

 

Figure 14: Effect on exergy efficiency of variation in power fraction 

It is convenient to consider the exergy content of a substance as the sum of its kinetic and 

potential energy (    and    , both interchangeable with work), its physical exergy (i.e. related 

to temperature and pressure,    ) and its chemical exergy,   : 



 47 

                   Equation 7 

This form is used by Kotas (1986). The value of the physical and chemical exergy components 

can be evaluated separately by considering hypothetical reversible processes that extract work 

as the substance is returned first to ambient conditions and then to reference substances. For 

steady flow conditions, the physical exergy rate is given by: 

   
̇   ̇[               ] Equation 8 

where   and   are the specific enthalpy and entropy of the substance and  ̇ is its mass flow rate 

(assuming all are measured in consistent units). The subscript,  , denotes values at ambient 

conditions. 

Kotas (1980) noted that the chemical exergy of a substance,   , is the sum of both the work 

available as the substance is reacted isothermally to form reference compounds at standard 

conditions and also the work available as it is reduced to the partial pressure which reflects its 

normal concentration in the environment. By comparison with the equivalent expressions for the 

chemical exergy of the elements that make up the substance, it can be shown that this is the 

same as the sum of the Gibbs function of formation for the substance(s) and the sum of the 

chemical exergies of the constituent elements: 

where    is the standard chemical exergy of element e,    is the number of moles of reactant 

substance   (i.e. the substances being evaluated),  ̃   is the molar Gibbs function of formation 

for substance   at standard conditions. Equation 9 is a useful result as, for gaseous reactions, 

certain elements (C, O2, H2) will appear for a large number of reactant substances and it is 

convenient to tabulate the value of their standard chemical exergies, facilitating the calculation 

of the standard chemical exergy of other substances. 

Van Gool (1998) has discussed the selection of reference substances; criticising previous 

methodologies for the variation in the exergy of a gas with its concentration in the air and 

suggesting an alternative methodology for deriving the chemical exergy of elements. The 

methodology presented by Van Gool does provide more consistency than others but, in practice, 

the difference in values obtained for common substances is small. The molar chemical exergy 

value for methane is found to vary from 836kJ/kmol (Kotas 1980) to 831kJ/kmol for a source 

    ∑   ̃   ∑      
  

 Equation 9 
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quoted by Van Gool to 815kJ/kmol using Van Gool’s methodology. This is almost entirely 

attributable to the reduction in chemical exergy associated with the concentration of CO2. 

Additionally, for fuels which comprise a mixture of chemical compounds, it is difficult to 

determine an exact exergy content using the analytical methods above. Kotas (1986) notes that 

Szargut and Styrylska determined the ratio between chemical exergy and net calorific value for 

hydrocarbon fuels, finding good correlation for fuels with similar atomic ratios. Similar values 

are adapted from Kotas and supplied by Allen (2009) in order to compare the exergy 

performance of micro-generators with the fossil fuel based systems that they could replace. 

Table 6 gives typical ratios of exergy to gross calorific value for fossil fuels (     ⁄  where 

  is the Higher Heating Value, i.e. the Gross Calorific Value of the fuel). 

Table 6: Exergy content of fossil fuels relative to gross calorific value (adapted from Allen 2009) 

Fuel   

Coal 1.027 

Fuel Oil 1.009 

Natural Gas 0.937 

 

The Gibbs function for a reaction is the maximum work that can be extracted from it (for 

isothermal, isobaric conditions). As the entropy of reactants and products is generally different 

for a fixed state, the ordered energy (e.g. work) available from the reaction will vary from the 

enthalpy of the reaction by the heat rejection required to maintain the total entropy of the 

system. That is: 

Note that, by convention, the change in Gibbs function is negative for a reaction in which work 

is available (i.e. it actually represents the energy which is absorbed by the reaction). For a 

reaction in which the entropy of products is less than the entropy of reactants, the Gibbs 

function will therefore have a lower magnitude than the enthalpy of reaction (in gaseous 

reactions, this will usually occur if there are less moles of product than reactant, e.g. 2H2 + O2 

 2H2O). The quantity     could be thought of as the minimum quantity of heat that must be 

rejected by the reaction (and is therefore unavailable to perform work) in order to maintain the 

total entropy of the system. For such a reaction, the maximum work output is available when 

     . This is significant for the design of fuel cells operating with hydrogen as fuel; their 

theoretical maximum work output reduces as temperature increases (Larminie & Dicks 2003). 

            Equation 10 
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However, as the temperature increases the work which can be performed by a heat engine using 

the rejected heat increases and so the total work theoretically available from the fuel remains the 

same: 

           

            (  
  

 
) 

               

Equation 11 

Finally, of significance to the analysis of fuel cells, it should be noted that the molar Gibbs 

function for a substance is also known as its chemical potential,     . Chemical potential, 

measured in Volts, is a third driving force with pressure and temperature. A substance in a 

mixture in membrane equilibrium with its surroundings will have the same partial chemical 

potential as the substance on its own outside. 

 

2.4.3 Environmental analysis 

This work focuses upon the energetic, exergy and CO2 emissions performance of ASHP and 

mCHP units. However, it is important that results are considered in conjunction with other 

aspects of the relative merits of the units in order to form a complete assessment of their 

sustainability and suitability (Hammond 2004a; Hammond 2004b). Although it is necessary to 

give consideration to environmental impacts from each life stage of the units (not just the in-use 

stage), previous Life Cycle Assessment studies have shown that the majority of impacts 

associated with ASHP and mCHP units occur during their operation.  

Using Ecoinvent2007 data, Johnson (2010) concluded that the production of ASHP units 

accounts for between 2% and 4% of their global warming impacts. Although Rey Martínez et al. 

(2011) have suggested a higher proportion (around 9%), this was due to the fact that the heat 

pump was assumed to supply a small cooling load requiring less than 20% of the electrical 

consumption typical in comparable studies. The study found that the most significant impacts 

are those to human health, associated with the emission of respiratory inorganics due to 

electricity generation. This was using the Eco-indicator‘99 methodology and is clearly specific 

to the source of the electricity. An LCA conducted by Blom et al. (2010) found that the impacts 

from an ASHP are higher than those from a gas boiler system. Fresh water toxicity and 

terrestrial toxicity were indicated to be the largest impacts, around five times as significant as 

other impact categories. The terrestrial toxicity is largely associated with the supply of 
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electricity while the fresh water toxicity is associated with the manufacture of the ASHP units; 

unfortunately the sources of these impacts were not identified or discussed further.  

The total equivalent warming impact (developed at Oak Ridge National Laboratory) concept is 

used in the “Der blaue engel” standard to include the effect of HFCs released during the life and 

disposal of heat pumps (Forsen 2005). They have a significant effect; Johnson (2010) concluded 

that the global warming potential (GWP) of the refrigerants released during the manufacture, 

use and maintenance of ASHPs probably contributes around 15% to 18% of the total GWP 

impacts associated with them. If the generation of electricity is decarbonised or the average 

COP is improved, this proportion will increase. It is possible that this will further drive the 

adoption of R744 (CO2) as a refrigerant given the high GWP of HFCs; R407C has a GWP of 

1610 CO2-equivalent, slightly less than  R410A with a GWP of 2088 CO2e (IPCC 2007). 

The proportion of GWP impacts associated with manufacturing is even lower for mCHP units. 

Cradle to grave LCAs on SOFC units (Karakoussis et al. 2001) and on a range of mCHP units 

(Pehnt 2008) both concluded that the impacts from manufacturing are around 1% of total in-use 

impacts. The relative contribution to other environmental impact categories from the 

manufacturing stage of the SOFC lifecycle is higher but this reflects the fact that operational 

impacts are low; emissions associated with manufacturing the BoP are likely to be higher than 

those from manufacturing the actual stack. Pehnt (2008) noted that the effect of unburnt 

methane emissions is unknown; estimates of emissions vary from 20mg to 500mg per MJ of 

fuel consumed with the higher estimates relating to ICE-mCHP units. Emissions of NOx were 

also observed to be considerably higher for ICE-mCHP units compared to other mCHP units or 

centralised power plants (due to better emission control) but are unlikely to be sufficient to 

cause local air quality issues. 

Any unburnt methane will increase the GWP associated with the operation of a unit. Given that 

methane has a 100yr-GWP of 25 CO2e (IPCC 2007) the 500mg/MJ estimate for ICE-mCHP 

units is equivalent to around 15gCO2/kWh. Perhaps a more significant problem, overall, is the 

leakage of gas from the national transmission system. This is officially estimated at 

approximately 0.5% but other studies have suggested it could be much more and potentially up 

to 10% (Mitchell et al. 1990). It is not clear how this may have changed over the last 20 years or 

how this should be attributed to natural gas use (marginal changes in natural gas use will not 

cause same change in leakage rate). However, even if only 0.5% leakage were attributed to the 

operation of devices using natural gas it would increase the GWP associated with them by 

almost 5% (remembering that burning 1kg of CH4 will release 2.75kg of CO2). Taking this 

effect into account along with the energy requirement for energy of 1.02 for natural gas 

distribution referred to in section 2.4.1, leads to a carbon emission factor of 190gCO2/kWh for 

gas at the point of use (relative to GCV of fuel). 
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Various grid average carbon emissions factors (CEF) are available (Table 7) and could be 

applied by multiplying by the relevant electrical consumption to approximate the associated 

carbon emissions. However, given the sensitivity in any assessment of the relative 

environmental impacts of mCHP and ASHP units to the CEF (Dorer & Weber 2009; Healy 

2012), a more detailed approach has been taken in this research, using the CEF for each 

generating plant type given in Table 8. The methodologies are described in chapter 4, section 

4.6 

Table 7: Selection of UK average carbon emissions factors (CEF) 

CEF gCO2/kWh Notes Source 

485 2009, five year rolling average of 
523gCO2/kWh excluding indirect 

emissions 

(DEFRA 2011) 

594 Five year rolling average including 
indirect emissions 

(DEFRA 2011) 

545 Point of use, five year rolling 
average from data similar to (DEFRA 

2011) 

(Carbon Trust 2010a) 

517 Electricity supplied SAP 2009 (BRE 2010) 

529 Electricity displaced SAP 2009 (BRE 2010) 

568 Electricity displaced SAP 2005 (BRE 2010) 

458 “Supplied” (i.e. excluding 
transmission & distribution losses) 

DUKES 2011 (DECC 2011) 

356 CCGT achieving 60% (NCV) efficiency 
with 7% transmission and 

distribution losses 

(Siemens AG 2010) 

690 marginal factor, 2002 to 2009 (Hawkes 2010) 

 

In this context, a marginal impact factor (e.g. CO2 emissions or PER) at a given instant is the 

impact factor that can be attributed to an increase or decrease in demand for electricity at that 

moment. If the marginal impact factor is consistent, it is usually the appropriate factor to use in 

considering the effect of using one technology relative to an alternative (i.e. appropriate to 

consequential LCA studies). However, an average impact factor is usually more appropriate for 

attributional LCA studies. That is, in comparing the effect of an action in the context of the 

range of concurrent activities, it is generally appropriate to assign each of them the mean impact 

factor, given that they all contribute towards the impact and that increasing or decreasing the 

demand from any of them will have the same effect.  
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Under the marginal methodology, the emissions associated with the use of the ASHPs are taken 

to be those from the generating plant which is likely to be operated to meet the additional 

demand due to the operation of the ASHPs. Conversely, the avoided emissions attributed to the 

electricity generated by the mCHP units are also assumed to be those which would have been 

emitted by the generating plant which is likely to cease operating. Large increases in the 

baseload demand which would occur, for example, if there were widespread adoption of ASHPs 

are likely to affect the case for investment in different generating plant types it is not clear that it 

would be appropriate to use the marginal emissions factors under all scenarios. Similarly, the 

effect of widespread mCHP adoption (especially if it is operated continuously as SOFC-mCHP 

units might be) is likely to affect the generation mix in the longer term. 
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Table 8: Carbon emissions factors (CEF) by fuel type. 

Generating plant type,   
CEF [

 ̇

 ̇
]
 
 / g.kWh

-1
 

Notes 

Gas CCGT 488 (Odeh & Cockerill 2008) 

Gas CCGT with CCS 200 (Odeh & Cockerill 2008) 

Subcritical pulverised coal 984 (Odeh & Cockerill 2008) 

Coal IGCC 861 (Odeh & Cockerill 2008) 

Coal IGCC with CCS 167 (Odeh & Cockerill 2008) 

CHP 30 (Ecoinvent 2010) 

Thermal renewables (e.g. biomass) 38 (Ecoinvent 2010) 

Wind 13 (Ecoinvent 2010) 

Tidal 15 (Douglas et al. 2008) 

Nuclear 7 (AEA Consulting 2009) 

Estimates of direct emissions for comparison: 

Coal 909  (DECC 2011)  

Gas (CCGT) 398 (DECC 2011)  

CCGT 397 (Hammond & Ondo Akwe 2007) 

CCGT with CCS 51 (Hammond & Ondo Akwe 2007) 

State of art CCGT 356 (Siemens AG 2010) 

Other non-renewable thermals 653 (DECC 2011) 

Comparison to carbon emissions factor for burning natural gas directly 

Natural gas (typical UK 
composition) 

190 Assumptions outlined above  
(section 2.4.1) 

 

The figures relating to biomass and CHP in Table 8 are very sensitive to assumptions made 

regarding the mix of generation technologies, the fuel for the CHP plant and the source of the 

biomass. However, the contribution from them is low in the Transition Pathways scenarios used 

as background to this study apart from in the “Thousand Flowers” scenario which postulates 

high penetration of CHP (see Table 18, page 118). The selected values reflect those selected for 

LCA work within the project (O’Grady 2012, personal communication) consistent with the 

assumption of largely thermal based CHP using low carbon biomass. 
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2.5 Limitations in previous modelling 

Various modelling studies from the literature were reviewed and several models were created by 

the author during preliminary studies as part of this research. In each case, the modelling 

approach which was selected was chosen in order to investigate a specific question or problem. 

However, limitations (either in the level of detail, the scope of study or the accuracy and 

reliability of the results) were identified in each case. This motivated the development of the 

model used to calculate the majority of results presented in this thesis.  The main modelling 

approach is described in chapter 4 below, but the preliminary research undertaken by the author 

and the modelling approaches found in the literature will be reviewed first. 

2.5.1 Case study: The Old Schoolhouse 

The performance of an installed ASHP was investigated by the author as a case study. Although 

this provided useful information regarding the operation of the unit, it was not possible to draw 

general conclusions from the study. The lack of control over operating conditions highlighted 

the potential usefulness of a modelling approach. 

Electricity and fuel consumption data were recorded by the residents of a property near to Bath, 

UK (Figure 15). These data were recorded for a period of over 14 years, including a period of 

approximately 12 years in which oil-fired heating was used and then two years after it was 

replaced by an ASHP. In order to account for fluctuations in the heating demand at the property 

it was necessary to correlate it with historic climate records. It was assumed that the heating 

demand was proportional to the degree-days experienced (Carbon Trust 2010b). However, 

several factors made it unlikely that the conventional balance point temperature for UK 

residential properties (15.5°C) would be appropriate (Layberry 2008; 2009). The property is 

relatively old, has a high thermal inertia, a secondary solar hot water system, an open fire and an 

AGA stove that heats some of the rooms. The best fit between recorded monthly heating oil 

consumption and the degree-days in that month was found with a balance point temperature of 

14.5°C. This was used to estimate the heat supplied by the ASHP since its installation and the 

oil which would have been consumed to generate it. 



 55 

 

Figure 15: The Old Schoolhouse 

The electrical consumption of the ASHP was estimated in two ways. Firstly, by considering the 

difference in monthly electrical consumption relative to the average for those months before the 

installation of the ASHP (although this was based on less than 2 years of data). Secondly, as the 

sum of the heat demand at each outside air temperature encountered divided by the COP at that 

temperature. The performance of the ASHP at each outside air temperature (divided into finite 

intervals of 1°C) was found by interpolating from performance data (from Butler & Hyde 2007) 

measured under standardised test conditions (BSI 2007a). The latter method suggested larger 

savings with the introduction of the ASHP; a 40% reduction in the CO2 emissions associated 

with the heating. 

The study provided a useful illustration of the practical working of an ASHP and the methods 

which can be used to calculate their power consumption if steady-state assumptions are made. 

However, with relatively low-resolution data and a large number of uncontrolled variables it 

was not possible to draw clear conclusions regarding the actual performance of the unit. In order 

to gain useful insights regarding the performance of the ASHP it must be possible to control and 

vary the conditions under which it operates. This is a task which modelling is well suited to. The 

following sections will consider the level of detail which is appropriate.  

2.5.2 Steady-state modelling. 

The primary factors affecting the energy flows associated with the ASHP and mCHP units do 

not vary dynamically; for example the steady-state performance of the units and the temperature 

of the ambient air used as a heat source by ASHPs. Additionally, although the accuracy of 
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steady-state methods for calculating the heating demands of dwellings is subject to 

simplifications, these methods have been noted to produce consistent results (Kokogiannakis et 

al. 2008). Therefore, for some applications, the performance of the units can be determined to 

an acceptable level of accuracy by considering their performance under a finite set of conditions 

and then weighting this performance by the heat demand which occurs under each condition. 

This approach can be easily applied to a wide range of conditions and has a low computational 

overhead. It is therefore suited to providing a comparison between units operating under a wide 

range of conditions or scenarios.  

For example, Young & Henderson (2008) used the “Standard Assessment Procedure” (SAP), 

(BRE 2010) to compare a wide range of heating options including biomass, mCHP, ASHP and 

GSHP as well as more conventional units by applying standard performance factors from 

SAP2005. A range of results were reported including the possibility that a 13% - 28% increase 

in CO2 emissions could result from the use of ASHP units. Although the accuracy of SAP has 

been questioned (see Kelly et al., (2012) for a discussion of issues which have been raised), it 

does provide a recognised benchmark for comparative studies. It is difficult to draw firm 

conclusions from Young & Henderson's study because the assumptions inherent in the 

calculations are quite specific and not necessarily appropriate but their approach does give a 

broad overview of the heating options available. 

Within SAP, the performance of the heat pumps considered is characterised as a Seasonal 

Performance Factor. This has been suggested as a benchmark for comparing ASHP performance 

by IEA Heat Pump Programme Annex 28; it is similar to the COP but is an annual average 

figure and includes some additional optional consumption such as electric-resistive backup 

heaters. The group’s final report (IEA Heat Pump Programme Annex28 2006) and associated 

publications, such as (Wemhoener et al. 2008), outline their proposed methodology which has 

since been taken forward to form the basis of BS EN15316-4-2:2008. Hayton (2010) has 

explained the “SAP2009 Appendix Q” approved procedure for assessing the performance of 

heat pumps for inclusion in the calculation of SAP ratings, based upon BS EN15316-4-2:2008 

but with small changes to some definitions. Standardised methods for assessing the average 

performance of heat pumps can be inaccurate (for example, where actual domestic hot water 

demand is more than allowed for, Bourke & Bansal 2010) but they do provide  convenient and 

well used metrics for comparison between units. 

Despite its limitations, the Seasonal Performance Factor is a useful tool for assessing the 

relative heat pump performance which has been used in several comparative studies and so the 

method for calculating it will be described in more detail here. The main factor influencing 

ASHP performance which is considered is the ambient air temperature. Additionally, the system 

boundary is extended relative to BS EN14511:2007 (i.e. standardised definition of COP) to 



 57 

include circulation pumps / fans for heat collectors (e.g. ground heat exchanger), backup 

heaters, DHW storage and thermal buffers used by the heat pump, but does not include 

circulation pumps for the heat emitter system. Performance variation with ambient air 

temperature is accounted for by using temperature “bins”. Hourly climate data representative of 

the heat pump’s location is used to calculate the number of hours within temperature “bins” of, 

ideally, 1°C. That is, the number of hours in the year when the temperature is between 1ºC and 

2ºC, the number of hours between 2ºC and 3ºC, between 3ºC and 4ºC and so on (see Figure 16).  

 

Figure 16: Example of 1°C bins for three UK locations 

Space heating demand is assumed to follow a Time-Temperature Difference model, i.e. the rate 

of heat loss is assumed to be proportional to the difference between ambient air temperature and 

the balance point temperature for the building. DHW heating demand is assumed to be constant 

and is added to the space heating demand. For each of the “bins”, a COP is assigned to the heat 

pump based upon the midpoint temperature and operating temperature for the heat emitter 

system at that ambient temperature. If the heat demand within the “bin” is higher than the rated 

capacity of the heat pump in those conditions, a backup electric heater is assumed to be used, 

reducing the effective system COP. From the rate of heat demand in each bin, the number of 

hours within each bin and the representative COP for that bin, electrical power consumption can 

be calculated and summed to give a total for the year. See Equation 12. 
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Equation 12 

Where    is the average outside air temperature for each bin,     is the balance-point 

temperature being assumed,     is the effective total heat loss coefficient for the building 

(though assuming that it is a constant, it drops out of the calculation),       is the total time in 

the year when the temperature is within the bin and         is COP of the ASHP as a function 

of ambient temperature,    (note that the COP will also depend upon its outlet flow temperature 

which is a function of both    and of the heat emitter system used).  

An alternative to SAP is the Tarbase Domestic Model (Jenkins et al. 2012) which has been 

developed as a tool for the assessment of the energy performance of buildings and measures to 

improve it.  A steady-state modelling approach is employed because of the identified need to 

assess the performance of a range of buildings but the limitations are also discussed. Additional 

modelling at a higher level of detail was required in order to accurately assess the performance 

of mCHP and ASHP units, prior to their inclusion.   

Similar methodology was used by the author to analyse a range of ASHP and mCHP units 

(Cooper et al. 2011a; 2011b). The use of this methodology allowed a large number of units to be 

modelled under a relatively wide range of conditions. By adapting the SPF methodology 

detailed above, it was possible to calculate the average (weighted by heat demand) exergy 

efficiency of the units; enabling consideration of their performance potential and the usefulness 

of the energy processes within the units. Additionally, by selecting synthetic climate data which 

includes the modelled effect of climate change (Eames et al. 2010), the range of future potential 

performances could be estimated. Although it cannot provide reliable prediction of the heat or 

power demands of a specific installation, the approach does facilitate comparison across the 

range of units and conditions; highlighting the factors which have the greatest influence on the 

energetic performance of the units. 

2.5.3 Static performance maps with dynamic load profiles. 

A more detailed approach was used by Peacock & Newborough (2005) in order to investigate 

the effect that using SE-mCHP and FC-mCHP units might have on CO2 emissions from the 

domestic sector. An elegant, hybrid approach was adopted where measured demand profiles 
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were taken as the demand, fixed performance characteristics were assumed for the heating units 

and a buffer tank was used as the intermediate supply / demand for the loads. This approach 

facilitates efficient study of the overall performance of the units at a reasonable level of detail, 

making it feasible to consider the effect on performance of a larger number of permutations.  

Similar methodology was used by Jenkins et al. (2009) to model the performance of a GSHP. 

The model was quite detailed, including measured demand profiles and a performance map for 

the GSHP (as Peacock & Newborough 2005) but also allowing for the variation in ground 

temperature, brine temperature and the part-load performance of the GSHP.  The effect of flow 

temperature, the GSHP capacity and the CEF of the grid were all considered but the study 

focused on the effect that defined variations in these parameters would have, rather than 

providing a broader exploration of what would be necessary to cause them. 

A variation on this approach was used in Cockroft & Kelly's (2006) study comparing the 

performance of an ASHP unit with SE-mCHP, ICE-mCHP and SOFC-mCHP units. Rather than 

using measured demand profiles, detailed models of three dwelling types were created using 

ESP-r for 2005 and 2020 scenarios (involving reduction of UK grid CEF and improvement to 

the insulation levels in the dwellings). Some predictions such as the need for large heat loads for 

effective SE-mCHP operation have subsequently been observed elsewhere (e.g. Carbon Trust 

2011). However, the study was not able to investigate effects associated with the dynamic 

behaviour of the units as only static performance maps were available. Additionally, it was 

noted that without a clear understanding of the way in which grid electrical generation is 

dispatched, it is hard to assess the impacts associated with the export of surplus electricity 

generated by mCHP units. Lohani & Schmidt (2010) took a similar approach in comparing 

ASHP and GSHP units to a gas boiler but focussed on the exergy flows involved rather than the 

change of conditions which is expected. Detailed thermal modelling was used with fixed 

temperature emitters and performance maps of the heat pumps. The exergy analysis illustrates 

the need for the appropriate use of energy vectors at each stage of the energy system but does 

not explore the ways in which the results could change under a wider range of scenarios. 

Although the methodology adopted by Barbieri et al. (2011) assumed dynamic operation of the 

heating units, the simplifications used (no thermal dissipation, on-off operation, heat-led 

operation) mean that the main contribution relative to steady-state modelling is the use of the 

auxiliary heating system. Comparisons between a good range of units (representing ICE-mCHP, 

SE-mCHP, mGT-mCHP, Organic Rankine Cycle and Thermo-Photovoltaic technologies) were 

made but the analysis of the factors affecting the energetic performance is not extensive. 

Similarly, although Dorer et al. (2005) used dynamic thermal building models in evaluating the 

performance of SOFC-mCHP and PEMFC-mCHP units, the dynamics of the units are assumed 
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to be limited. However, the study did investigate a wider range of configurations including grid 

mix, building insulation levels and the addition of solar thermal water heating.  

The accuracy of these studies is adequate as a standard comparison between units but it can be 

improved upon. In particular, the performance indicated by simulations of mCHP units is 

dependent upon the time-step used being sufficiently fine; it should be less than 10 minutes 

(Hawkes & Leach 2005). The effect of this limitation can be overcome to some extent by 

assuming ideal installation conditions and thermal buffering but in doing so, the effect of 

varying these important factors is ignored. Another factor which is ignored to some extent by 

steady-state modelling assumptions is the control methodology used by the heating system. This 

is an important aspect of the system performance but requires consideration of the dynamic 

interactions between the heating unit and the building it is installed in and within the heating 

units itself. There is clearly merit in using more detailed, dynamic models to investigate these 

effects. 

2.5.4 Detailed thermal modelling of units 

Several researchers have developed models of mCHP and ASHP units based upon the 

fundamental principles governing each component. The models are useful for incorporating into 

other studies or to inform the design of other models but in most cases the studies reporting 

them stop short of using the models to assess the way that the performance of the units will vary 

in actual use. Component type models have been developed for a heat pump with buffer tank ( 

Kim et al. 2004), a gas-engine heat pump (Yang et al. 2013), an ASHP (Fardoun et al. 2011), an 

ICE-mCHP unit (Yun et al. 2013) and a PEMFC-mCHP unit (Barelli et al. 2011); no doubt 

amongst many more. These models can identify effects which are relevant to modelling the 

systems in their wider context; for example it was indicated that the PEMFC-mCHP is likely to 

require around 25 seconds to respond to a change in electrical loading and that the average 

performance of the ASHP is likely to be better if it is heating a larger reservoir. However, 

without empirical results to compare these findings to and to calibrate them, their usefulness in 

this regard is limited. They are well suited to investigations refining design proposals or 

exploring the ways in which the performance of a unit can be improved but a modelling 

approach based on empirically derived performance characteristics is likely to be more 

appropriate for investigations in which the objective is to determine the performance which is 

likely to be achieved. 

To evaluate the performance of a Senertec Dachs ICE-mCHP unit, Voorspools & D’haeseleer 

(2002) used data obtained from experimental testing of the transient behaviour of the unit in 

order to model it through the year. Although the unit operates at full electrical output almost 

immediately, there is a considerable thermal lag. From cold, the unit takes 5 to 10 minutes 
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before heat is produced, 30 minutes to achieve 65% of the rated heat output and 60 minutes to 

achieve 80% of the rated thermal output. This delay will vary depending upon the temperature 

of the engine block at the point that it starts operating so the use of an effective thermal inertia 

seems appropriate. 

This approach has been adopted by Annex 42 of the International Energy Agency (IEA) Energy 

Conservation in Buildings and Community Systems (ECBCS) Programme, in order to formalise 

a modelling structure for mCHP units. In fact, the model specification (Beausoleil-Morrison, 

Weber, et al. 2007) includes tnetswo thermal capacitances in order to capture the fast thermal 

transients and the slower transfers to other systems which can occur. The model is designed to 

be suitable for detailed modelling of housing; more precise than average efficiencies but not too 

computationally complex for year-long simulations. The model was calibrated and validated 

against experimental data from a 2003 Canadian Centre for Housing Technology (CCHT) 

evaluation of a Whispergen SE-mCHP unit and a 2006, Forschungsstelle f¨ur Energiewirtschaft 

(FfE) evaluation of a Dachs ICE-mCHP unit. The group’s report (Beausoleil-Morrison, Arndt, 

et al. 2007) included details of these two calibrations along with information regarding testing 

of other mCHP units including Whispergen SE, Solo Stirling 161, Power Plus Ecopower, 

Senertec Dachs and prototype PEMFC and SOFC devices.  

IEA ECBCS Annex 42’s research provides a well-established prototype for modelling mCHP 

units at an appropriate level of detail and valuable data to apply it to some units. ASHP units 

can be simulated with the same model structure but a different set of performance characteristics 

(e.g. a performance map of COP can be used to determine power demand as a function of heat 

generation for a given set of conditions). However, in order to gain insights into the real world 

performance of the units and how this could vary under different circumstances, it is necessary 

to use these models within thermal models relating to building thermal demands in defined 

scenarios. 

2.5.5 Studies incorporating thermal models of heat demands. 

The SE-mCHP unit model developed by IEA ECBCS Annex 42 has been used by Kelly et al. 

(2008) to investigate its performance in different dwellings. With increased insulation, the 

mCHP efficiency tended to decrease (although overall energy consumption reduced) with 

parasitic and cycling losses becoming more significant. The modelling also indicated that the 

unit would be able to react to an external on-off signal (and therefore contribute to a DSM 

system) for over 90% of the time. With a 200l tank, the unit could be turned “on” for 1 to 200 

minutes or “off” for 1 minute to 800 minutes without affecting occupant comfort. Similar 

analysis was presented by Beyer & Kelly (2008) to include an ICE-mCHP unit. The 

performances of the two units were simulated with four building types, different occupancy 
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patterns, and four thermal buffer sizes (nil, 200l, 500l and 750l). A lack of thermal buffering 

resulted in thermal efficiency penalties of up to 15% for the ICE-mCHP unit and up to 25% for 

the SE-mCHP unit. However, this was mostly thermal efficiency; electrical efficiency was 

largely unaffected. The performance of two SE-mCHP units, two ICE-mCHP units, a PEMFC-

mCHP unit and a SOFC-mCHP unit were modelled by Dorer & Weber (2009) using the IEA 

ECBCS Annex 42 models and experimental data. The study actually involved a reasonably 

wide range of parameters; two building types (each with three levels of demand) were 

considered in the context of two grid mixes. However, the importance of the time-varying CEF 

of the grid was noted and the suggestion made that further work should take this into account. 

Similar modelling approaches based on alternative data sources have been taken by some 

researchers. Boait et al. (2011) used data from a field trial to calibrate a simple dynamic model 

of a heat pump in a dwelling and use it to investigate the effect of incorporating night-time set-

back into the programmed temperature profile. The approach taken is actually similar to that 

taken within this research, albeit on a smaller scale and with less variation in the options 

considered. Peacock & Newborough (2008) expanded upon the method used in their 2005 study 

in order to consider the effect of reduced heat demands on the performance of mCHP units. 

Rather than using a thermal inertia approach to take delays in heat production into account, a 

start / stop delay was incorporated into the models of the heating units and (as before) a 

predetermined demand profile was used and then adapted. This method appears to be effective 

and efficient, facilitating the use of a large number of simulations to cover the permutations 

considered, though it is not clear that it would cope as well with modulating heating units. To 

compare the performance of several mCHP units, De Paepe et al. (2006) also used models of the 

mCHP units with time functions rather than relying on a thermal inertia approach. However, in 

contrast to Peacock & Newborough (2008), they used dynamic simulation of the buildings (a 

terraced dwelling and a detached dwelling, both modelled in DOE2.5) in order to derive the heat 

demands that the mCHP units satisfy. Recognising the significance of the CEF of the grid, 

results were presented for three generation options (CCGT, average Belgian mix and average 

Belgian fossil fuel plant mix). 

The performance of ASHPs in buildings has been the subject of numerous studies using detailed 

thermal modelling. Jenkins et al., (2008) used ESP-r to analyse the performance of an ASHP in 

an office block with conditions (gains, climate and insulation) typical of 2005 and 2030. Kelly 

and Cockroft, (2011) also used ESP-r to model the performance of an ASHP unit but this time 

in a terraced dwelling.  Good agreement was achieved between the simulation results and those 

from a field trial of eight installed units (once appropriate controllers were employed). These 

studies present results which are likely to be representative of real conditions (e.g. Energy 

Saving Trust 2010). However, they do not necessarily identify the relative contribution that 
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different changes in conditions have on the ASHP performances. For example, Kelly and 

Cockroft, (2011) noted that not using weather-compensated control probably reduced the COP 

from around 3.5 to 3.0 when the ambient air temperature was 10°C but did not explore the 

sensitivity of this interesting observation. In each case, mean emissions factors (CEFs) are used 

rather than marginal carbon emissions factors (MEFs). 

These studies provide a detailed level of modelling and it is expected that their results will 

exhibit good fidelity to the systems which they simulate. However, the results are generally 

specific to the particular cases being considered; although there are general trends, there is also 

some variation between studies reflecting the range of input variables which are assumed. 

Because the detailed models are computationally intense, it would be hard to repeat them with 

the wide range of parameters necessary to understand the sensitivity of the results to the range 

of conditions that the units might operate within. Additionally, the models are designed to 

provide detailed simulation of the conditions within each building and heating unit but are not 

designed to simulate changing electrical grid conditions. This limitation prevents them from 

being used to consider the effect of dynamically changing grid conditions (relating, for example 

to variations in MEFs as intermittent renewable generation occurs) or to the effect of DSM 

measures which might be applied in a hypothetical future scenario. The CEF and MEF of the 

grid-supplied electricity used to power heat pumps is significant to the results and varies 

considerably across Europe. Even within the UK, a range of CEFs have been used (see, for 

example, Table 8, page 53) so a good understanding of this effect is important.  

2.5.6 Network modelling 

In addition to the performance and impacts associated with the use of individual mCHP or 

ASHP units, there is interest in the effect that the operation of large numbers of these units may 

have on network electrical power flows. Studies of these power flows have been undertaken and 

are reviewed in chapter 2, page 15, (Burt et al. 2008; Peacock & Newborough 2006; 2007; 

Sulka & Jenkins 2008; Thomson & Infield 2008). There are several ways in which this work 

can be extended, however. In some studies the number of dwellings simulated was unlikely to 

model the diversity which should be expected, in other cases no DSM of loads was attempted 

(i.e. the study relates to the flows which would be expected without DSM). Various 

combinations of unit types and the control methodologies which best suit them (for example if 

they are capable of modulated output) should be analysed.  Additionally, the effect that any such 

interventions on the performance of the units has not been investigated elsewhere. 
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2.5.7 Simplified dynamic modelling approach 

In order to address these limitations and to facilitate the study of the effect of factors such as the 

control methodology on the performance of the heating units, a dynamic model was developed 

in a preliminary study as part of this research (Cooper et al. 2012b).  

The dynamic model uses a single lumped-capacitance approach for thermal flows, similar to 

that taken by others (e.g. Danov et al. 2012; Sulka & Jenkins 2008; Boait et al. 2011). 

Additionally, a dynamic model of the electrical grid was developed based upon historic grid 

generation data for the UK (Elexon 2012). This allowed consideration of the effect of different 

levels of non-dispatchable renewables to be considered.  

Building thermal characteristics were estimated based upon the average dimensions and thermal 

properties of the building stock in the UK (Utley & Shorrock 2008; Hong et al. 2010). This 

simplification was considered to be acceptable for the preliminary study for two reasons. 

Primarily, because the objective of the study was to investigate the relative effect of measures 

on the performance of the heating units rather than the absolute heat and power demands. 

Secondarily, because in practice, a wide variation in energy consumption is observed even for 

identical dwellings; attributable to occupant behaviour and preferences (e.g. more than a factor 

of two for similar buildings (Hiller 2012; Carbon Trust 2007)). However, the accuracy of these 

characteristics was subsequently refined for the final modelling approach used (see below).  

This model was also used to investigate the effect of changing the control algorithm on the 

performance of the heating unit. Results were used to inform the selection of test conditions 

used with the final model. A general trend for improved performance with consistent but 

accurate control of ASHPs was observed.  This suggests that it may be hard to achieve 

reductions in CO2 emissions by adjusting the operation of the unit to be weighted towards times 

when grid MEF is lower or external air temperature is higher and so this was investigated 

further in the main body of research (see chapter 5.11). 

The model was then developed by the author to include the consideration of DHW demand (this 

affects the flow minimum temperature requirements) and the adoption of a model for the 

heating units which was compatible with that suggested by IEA ECBCS Annex 42 (Beausoleil-

Morrison, Arndt, et al. 2007). In this form, the model was used to produce a set of results 

comparing the performance of a range of ASHP and mCHP units (Cooper et al. 2012a), 

reproduced in Appendix C. 

In this state, the integrated approach within the model facilitated studying the effect of a wide 

range of factors which are dependent upon each other and vary dynamically; an improvement on 
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other approaches which focus detail on a few aspects of the system and assume that other 

aspects are independent or steady-state. However, it still lacked any consideration of either local 

electrical demands, network constraints or of the thermal comfort of occupants; limiting some 

of the investigations which could be performed with it. Adding these elements and improving 

the accuracy of the other elements resulted in the final model described in chapter 4. 
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2.6 Conclusion to background - the significance of ASHP 

and mCHP performance 

Reducing the CO2 emissions with the UK domestic sector will require a range of actions 

including the reduction of heating and power demand and also the provision of low carbon, 

efficient heating. This low-carbon heating requirement will be met by a combination of different 

technologies but it is likely that ASHP and mCHP units will have a role to play.  

The widespread installation of either of these types of units will have significant implications in 

terms of both energy consumption and CO2 emissions and in terms of the demands placed upon 

electrical distribution infrastructure. In order to inform decisions regarding these technologies 

and to direct future research, it is necessary to understand not just the performance of the units 

under specific circumstances but also the trends that could be expected under a range of 

scenarios representative of the present and the future. 

The relative performance of mCHP and ASHP units is therefore of interest and value in terms of 

planning future energy systems and in furthering the field of knowledge. Although many studies 

have investigated the performance of these technologies under specific conditions or as an 

overview, it is possible to identify a need for a consistent comparison of the technologies under 

a range of operating conditions and at a suitable level of detail.   
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3. Aims 
The general aim of this research is to evaluate the thermodynamic and CO2 emissions 

performance of ASHP and mCHP units. However, specific aims can now be identified. There 

are two overall aims; the first aim is to derive the results which are necessary to assess the 

performance of the technologies. The second aim is to develop a suitable model which both 

facilitates the first aim but also forms a contribution in its own right as a tool to enable further 

research.  

3.1 Investigation of effect of various factors on 

performance of units. 

This research will analyse the effect of the following list of factors on the performance of the 

heating technologies. A consistent approach will be taken in analysing the effect of these 

factors. Some of the individual factors have been investigated elsewhere, but a unique 

contribution of this research will be to present analysis which is comprehensive and comparable 

across all the factors. Where appropriate, the mean and marginal PER, exergy and CO2 

emissions associated with the units will be used as metrics to assess their performance. The 

factors to be varied are: 

1. The heating unit and its properties. The eight ASHPs detailed in Table 3 and the 12 

mCHP units detailed in Table 4 will be considered. These cover the range of types of 

unit and the range of nominal performances which are available. Some will use 

supplementary gas burners whereas others will not. 

2. The properties of the buildings which are being heated. Analysis will include the effect 

of varying the nominal heat load and relative gains of the dwelling as well as the 

effectiveness of the heat emitter system within the building. Several sizes of buffer tank 

will be considered for some permutations.  

3. The control system used by the heating system. Investigation will be given to the effect 

of the methodologies used to determine the heat output from the units, the effect of 

different temperature programmes and the effect of any alternative control system 

methodologies which are suggested during the course of the investigation. 

4. The climate which the units operate within. This will be varied spatially across locations 

in the UK and temporally across historic climate data and future modelled climate 

datasets. 
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5. The electrical supply mix. The performance of the units in the context of both the 

present supply mix and modelled future mixes will be analysed. 

6. Alterations to the operating profile which may result from DSM interventions will be 

investigated. This will include different levels of DSM interventions based upon both 

grid generation considerations (e.g. the MEF of generation at a given instant) and upon 

local distribution considerations (e.g. limiting total power flows).  
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3.2 Development of a model which enables results to be 

generated and which facilitates future research 

A model will be developed to enable this research and to facilitate future research. It will: 

 Include dynamic and appropriately detailed models of the ASHP and mCHP units, 

calibrated to a range of real units which represent the current range which is 

commercially available. 

 Generate data regarding the energy and exergy flows at each point, including electrical 

power, heat and fuel flows. Grid generation data should be disaggregated by plant type 

to enable impacts such as CO2 emissions and PER relating to grid generated electricity 

to be calculated. This data will be calculated using both mean and marginal 

methodologies. 

 Include thermal models of dwellings. As different operating regimes will be used with 

the heating units, it is not sufficient to use static heating profiles. The models need to be 

sufficiently detailed and calibrated to provide realistic heating demands to the heating 

system models but do not need to be extremely accurate in calculating the absolute 

value of total heating demands. If possible, the models should not present a large 

computational overhead on the simulations. 

 Allow the range of factors listed in section 3.1 (above) to be varied and to respond 

realistically to these different conditions. For example, temperatures which form part of 

a control algorithm need to be explicitly, dynamically modelled; elements such as heat 

emitters which affect flow temperatures need to be modelled in sufficient detail; 

requirements such as DHW demand which limit low temperature operation of the 

heating need to be considered. 

 Model the diversity of heating demands and local electrical demands as the sums of the 

demands from multiple, independent, simultaneously simulated dwellings. 

 Simulate a DSM system. The architecture of this system does not have to be modelled 

realistically but the effect which it has on the operation of the devices should possess 

magnitude and temporal properties which are representative of a realistic system. 

 Be constructed in a way which is as transparent as possible in order to facilitate future 

development or adaptation by other researchers. 
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4. Modelling 
A modular approach has been adopted in order to deal with the complexity of the modelling in a 

way that facilitated improvement as it became possible or necessary. Various systems are 

modelled along with the interactions between them (see Figure 17, page 72). In this way, the 

modelling of each system can be refined as appropriate. The choice of systems selected for 

modelling was dependent upon the parameters to be varied, as listed in the aims. 

Although models are available to analyse most of these aspects individually, it was necessary to 

construct a model which takes consideration of all of them in order to investigate the 

interactions which may take place. In particular, calculating the sum of power flows within a 

network necessitates summing the power flows from individually modelled dwellings (rather 

than simply applying a multiplier). If the effect of control feedback based on this sum of power 

flows is to be considered then the model must contain detail of each heating system and their 

interactions.  

The first section of this chapter outlines the overall structure and flow within the model before 

subsequent sections describe each element in more detail. Where appropriate, the suitability of 

the model selected for each component is discussed within its subsection but additional 

examples of the outputs from the model are given in section 4.9.2 to verify that the model has 

been implemented appropriately. 
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4.1 Overview: Top level flows 

A time-step approach is used; the majority of the processes iterate once per time-step and update 

their respective properties. By default the time-step is set at 60 seconds as this ensures 

modelling stability of the building temperatures. A 60 second time-step was also used in the 

active occupancy model adopted as this resolution captures the use of electrical appliances such 

as kettles. This is well below the maximum time-step of 5 to 10 minutes suggested by Hawkes 

and Leach, (2005). To ensure modelling stability, a much shorter time-step (0.5 seconds) is used 

when modelling the heat transfers within the heating units. 

 

Figure 17: Top level flows in model 

Within each time-step, there are several iterations of the grid model, heating control models and 

heating systems models (that is, the darker shaded systems in Figure 17, see Figure 29, page 

108) in order to establish the level of demand side management (DSM) intervention that best 

suits the grid conditions and to establish the associated heating system power flows.  

Once values for the “electricity price” and the associated heat and power demands are 

established by the iterations (see 4.6.2), the other flows and processes within that time-step take 

place, appropriate values are recorded and the model moves to the next time-step. 
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The model can be run for any period of time. For most of the results presented in this study, the 

model is run for a year, recording the values of the total energy and exergy flows within each 

dwelling, the total electrical generation required by each dwelling and metrics of thermal 

comfort within each dwelling. For one or more selected dwelling, values of the flows at each 

time-step (or averages for a longer recording period, e.g. hourly) can be recorded in order to 

study the interaction of the various systems.  

It is important to take the diversity of demands into account. To achieve this, a number of 

dwellings are defined. Each dwelling definition consists of identifying the climate, heating 

system, heating control system, building type (i.e. thermal characteristics), appliance and 

lighting configuration, number of residents, domestic hot water (DHW) system and occupant 

behaviour characteristics associated with that dwelling. In this way, a collection of dwellings 

can be defined with a good level of diversity from a relatively small number of definitions of the 

relevant sub-systems. For example, 32 dwelling permutations would be possible with four 

building type definitions, four heating system definitions and two heating control system 

definitions (i.e.          ). Additional diversity is built into most of the sub-system models as 

explained in their detailed descriptions.  

Total grid-side power flows are assumed to be the sum of the power flows from all the 

dwellings; reactive power flows are not considered. The model is intended to enable the 

consideration of local network power flows (i.e. associated with approximately 100 to 200 

dwellings) as a possible driver for demand side management (DSM) interventions (e.g. limiting 

power flows to the capacity of the local transformer). However, by using a large number of 

dwellings definitions and associating a multiplier with each definition it is possible to calculate 

indicative power demands for the whole domestic sector (Strbac, (2008) suggests that there are 

only minimal decreases in the coincidence factor of loads above 1000 dwellings). This enables 

DSM interventions associated with generation objectives (e.g. maximizing the use of power 

with a low MEF) to be considered.  

The following sections describe the model components relating to the building thermal 

characteristics, the heating control system, the heating system, DHW consumption, the 

characteristics of the electrical grid, occupancy and appliance use and, finally, climate. 
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4.2 Building thermal model 

4.2.1 Heat flows within building 

The building thermal model is simplified to a lumped capacitance model. That is, it is assumed 

that the inside air and the building fabric can each be treated as a single thermal inertia with a 

mean temperature which is sufficiently representative of the entire mass. This is common in 

similar studies (e.g. Sulka & Jenkins 2008; Boait et al. 2011) where it is often justified by the 

large number of dwellings being considered. However, other studies have shown that good 

approximations to more detailed models can be achieved (Ramallo-González et al. 2013).  

Here, additional justification for the simplification is found in the fact that the results of interest 

are the relative performances of the heating systems under investigation, not the absolute energy 

flows within the building at a given time. The air temperature is the parameter which is of most 

interest as it is the main input to the heating control system; it is the dynamics of a single 

temperature which determine when and relatively how much heating is required. Although little 

confidence should be placed in the ability of the model to produce accurate predictions of the 

total amount of heat required, this is of less significance as we are interested in the factors which 

affect the relative performance of the heating system in delivering it.  The model cannot 

simulate the heat flows between different spaces within the building but this is unnecessary if 

parameters can be selected that produce equivalent dynamics at the point where the control 

system would measure its input temperature. In practice, the simplified model will not 

demonstrate fully equivalent dynamics but a good approximation can be achieved (see section 

4.2.2).   

 The heat flows considered by the thermal model are presented in Figure 18.  



 75 

 

Figure 18: Representation of heat flows modelled 

The heat flows and temperatures within the heating system are described in section 4.4. The 

heat flow rates and temperatures outside the heating system are as follows: 
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Equation 17 

            
( ̇    ̇    ̇  ) 

    
 

Equation 18 

where: 

 ̇   is the heat flow rate (all heat flow rates measured in Watts) from the inside air to the 

outside air due to infiltration rate  ̇  (kg/s),  ̇   is the heat flow rate from the building fabric to 

the outside air with heat transfer coefficient     (W/K) and   ̇   is the heat flow rate from 

inside air to building fabric across heat transfer coefficient     (W/K) 

 ̇   is the rate of heat gains due to irradiation intensity   (W/m
2
), acting on an effective solar 

area of     (m
2
).  

 ̇  ,  ̇  ,  ̇  and  ̇   are the rates of internal gains to the inside air from appliances, 

occupants, and heat losses from the buffer tank and DHW tank. These are described in their 

relevant sections, below. 

     is the mean temperature of the inside air (all temperature in degrees Kelvin) at time-step  ,   

seconds after     and       is the mean temperature of the building fabric at time-step  .    

and    are the effective thermal masses of the inside air and building fabric respectively (kg), 

   and    are the mean specific heat capacities of the inside air (at constant pressure) and 

building fabric respectively (J/(kgK)). 

The rate of heat transfer from the emitter system into the inside air,  ̇  , varies with the 

temperature difference between the heat emitters and the inside air. For the range of conditions 

encountered by domestic heat emitters (i.e. Rayleigh numbers less than 10
9
), the heat transfer 

coefficient  varies in proportion to the temperature difference to the power of 0.25 (Incropera & 

DeWitt 1985). To account for this, the heat transfer rate is expressed in terms of a nominal heat 

transfer coefficient      (W/K), which occurs at a specified temperature difference,    , (in this 

case, the characteristic temperature difference is 29K for radiator systems and 14K for enhanced 

/ underfloor systems, see section 4.2.2). 
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Equation 19 

 

4.2.2 Selection of building parameters 

Values for the heat transfer coefficients, effective irradiation area, inside air mass and building 

fabric thermal inertia for three different building types were derived by calibrating the results 

from the model against temperature profiles generated using ESP-r by Dr. Nick Kelly and Dr. 

Jun Hong at ESRU, University of Strathclyde. Although preliminary modelling work used 

values for these building properties calculated from real materials data, it is the effective heat 

transfers and thermal inertias which are of interest and so more accurate results are obtained 

using the calibrated properties. 

The three buildings selected were based upon work previously conducted within the 

SUPERGEN HiDEF consortium to identify representative building types for the UK (Hong et 

al. 2010), based primarily upon work by DCLG (2007b) and Utley & Shorrock (2008), see 

Table 9.  

Table 9: Typical building types 

Building type Floor area Fraction of UK 
building stock 

Average heat loss 

 m
2
 % W / K 

Semi-detached 87 28 265 

Flat 56 16 167 

Terraced 58 19 235 

The resulting building characteristics are given in Table 10. 
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Table 10: Modelled building properties 

Building Index mAcp mBcB kB0 kAB kIB 

# kJ / K kJ / K W / K W / K m
2
 

1 (Semi-detached) 701 16570 386 339 13.0 

2 (Flat) 748 15340 106 251 11.2 

3 (Terraced) 785 13020 153 179 10.4 

4 (Semi-detached with 
improved insulation) 

701 16570 232 339 13.0 

The modelled buildings were constructed with an assumed air infiltration rate of 0.5 air changes 

per hour. Examples of the resulting modelled temperature profiles are given in Figure 19 along 

with the temperature profiles generated by ESP-r that the building parameters were calibrated 

against. The overall fit is good with root mean squared errors of 0.45K, 0.59K and 0.52K for the 

three building types (less than 2% of the temperature range in the profiles).  

To investigate the effect of improved insulation levels, a fourth building type was used with the 

same inertia properties but the external heat transfer coefficient reduced to 60% of the original 

value and the air infiltration rate reduced to 0.25 air changes per hour.  

Notably, the best fit is in winter (when the majority of heat demand takes place) and so the 

effective error is actually less significant. The characteristic overshoot in the temperature profile 

for the heated periods produced by the simplified model (in contrast to the flat profile produced 

by ESP-r) is likely to be due to the lack of additional materials in each house providing a range 

of heat transfers as the heating is backed off. Additionally, the simplified model does not take 

account of orientation with respect to solar irradiation and so there is a larger midday effect 

from south facing windows in the ESP-r models. Both of these effects are specific to the detail 

of the buildings being modelled and so it is unlikely that a single set of parameters could 

adequately describe them for the population of dwellings. 
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Figure 19: Modelled temperature profile in semi-detached house from ESP-r and simplified model 

The nominal heat transfer coefficients for the emitter systems in the buildings (   ) were 

selected such that the rate of heat loss from the building (i.e.  ̇   ̇ ) when the outside air 

temperature is -1°C and inside air temperature is 21°C is matched by the rate of heat delivered 

by emitters operating with a flow temperature of either 50°C (i.e.     = 29K) in the case that 

“conventional” heat emitters are being modelled or 35°C (i.e.     = 14K) if “enhanced” heat 

emitters (effectively, underfloor) are being modelled. Both of these ratings are calculated with 

an assumed return temperature 5°C lower than the flow temperature. 
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4.2.3 Exergy content of heat flows in building 

In addition to the various energy (heat) flows, the exergy content of the energy flows into the 

heat emitter system and into the inside air are calculated and recorded at each time-step. It is 

assumed that the changes in the emitter temperature and the inside air temperature during each 

time-step are sufficiently small that Equation 3 can be used to calculate the exergy flows.  

 ̇    ̇      
  

  
  

Equation 20 

 ̇    ̇      
  

  
  

Equation 21 

where  ̇   and  ̇   are the exergy flow rates (W) entering the emitter system and the inside air 

respectively. Here, the outside air temperature,   , (K) at that time is selected as the reference 

temperature. Given the sensitivity to changes in the selection of the ambient temperature it 

would be problematic to use an annual mean value of outside air temperature in this context. 
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4.3 Heating Control System 

4.3.1 Control system temperature program 

In the model, a programme of temperatures,    , are preselected for each dwelling. In the 

simulations conducted, three programmes are used:  

 21°C continuously  

 21°C during the day, set back to 16°C between 22:00 and 07:00.  

 18°C continuously 

The normal temperature (21°C) was selected to provide almost neutral thermal comfort levels 

and for consistency with SAP2009. 

4.3.2 Thermal comfort – predicted mean vote 

Occupant comfort is a complex subject which is not fully understood (De Dear 2011). It 

involves far more than just the air temperature; with practitioners moving away from the 

paradigm of still, dry air within an acceptable temperature range in the last decade (Borgeson & 

Brager 2011). Factors such as perceived air quality affect the acceptability of temperature 

variations and it is noted that occupant comfort tends to be fairly equal across a range of 

temperatures before reducing rapidly outside of it (Zhang et al. 2011). The range of acceptable 

temperatures can be extended considerably (in the order of 2ºC) by personal heating or cooling 

systems (for example, fans, radiating heating) before space heating or cooling is necessary. It is 

possible that alternative heating systems may provide the same comfort at lower temperatures, 

reducing energy requirements.  

Given the large effect that the temperature of the building has on its heat demand, this 

temperature must be controlled for in some way. In order to provide some metric for 

comparison between buildings in different scenarios, a modified version of the “predicted mean 

vote” (PMV), a measure of thermal comfort proposed by Fanger (1973) is used. Despite the 

limitations outlined above, PMV is well used and the method for calculating it is formalised 

(ISO 7730:2005). The PMV can be related to the average thermal sensation experienced by a 

group of people on a seven-point thermal sensation scale (Table 11): 
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Table 11: Thermal sensation scale. From ISO 7730:2005 

Vote Sensation 

+ 3 Hot 

+ 2 Warm 

+ 1 Slightly warm 

0 Neutral 

- 1 Slightly cool 

- 2 Cool 

- 3 Cold 

Calculating the PMV requires the metabolic and work rates of the individual(s), the air 

temperature and effective radiant temperature, the level of clothing worn by the individual(s) 

and the vapour partial pressure of moisture in the atmosphere. The calculation requires iteration 

as it involves heat transfer coefficients and temperature which are functions of each other. 

However, if the other conditions are fixed, the function relating air temperature to PMV is 

effectively linear (Figure 20). These simplifications are adopted on the basis that the objective is 

to provide a metric which can be used to determine when comparison between the performance 

of units is being performed with approximately equivalent thermal comfort in each case. The 

objective is not to provide an exact measure of thermal comfort but rather one which is 

approximately consistent between simulations. This “pseudo-PMV” is calculated for each 

dwelling during each time-step. These are summed for each dwelling in each scenario. Because 

a PMV either side of 0 represents increasing thermal discomfort, only the negative values are 

summed as a measure of the total thermal discomfort due to cold.  
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Figure 20: Predicted mean vote as function of air temperature 

The conditions used for all calculation of the pseudo-PMV by the model are fixed and given in 

Table 12.  

Table 12: Conditions used in calculation of pseudo-PMV 

Effective radiant temperature: 3°C below air temperature 

Level of clothing: 0.155m
2
K/W (i.e. 1 “clo”) 

Metabolic rate:  69.8W/m
2 

(i.e. 1.2 “met”) 

Work rate: nil 

Partial pressure of moisture: 2kPa 

The resulting equation to calculate pseudo-PMV (  ) is: 

                           Equation 22 

4.3.3 Deviation from temperature program because of DSM signal 

For the purposes of this model, it is necessary to assume that some relationship exists between 

occupant preference for thermal comfort and the price of achieving certain air conditions. It is 

assumed that occupants will accept some deviation from the program temperature and that this 

will depend upon both their preferences and the price of electricity at that instant. A two-part 
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sigmoid shaped function is used in order to provide a continuous function but also to reflect the 

reducing acceptability of temperature variations outside of a central range, noted above: 

            
 

 
                Equation 23 

              
 

 
                        Equation 24 

where     is the change in the control system target temperature relative to the program 

temperature (K) and   is the normalised price of electricity.     is the temperature change when 

electricity is free and       is the temperature change when the normalised price of electricity 

is     . For the sake of simplicity, it is assumed that   is constrained to the range     

     where      is taken to be 4. 

For dwellings with ASHPs (i.e. where high electricity prices incentivise lower temperatures), 

the values of     and       will be, respectively, the maximum increase (     ) and decrease 

(      ) to the target inside air temperatures which the occupants find acceptable. For dwellings 

with mCHP units (i.e. where high electricity prices incentivise higher temperatures), this is 

reversed; the values of     and       will be, respectively, the minimum and maximum 

changes to target inside air temperatures which the occupants find acceptable.  

The model is not designed to model the actual variation in price that would occur but rather the 

variation in heating demand that could reasonably be achieved by some signal such as price. 

Such a relationship is implicit in field trials reported by Warmer et al. (2007) and further work 

might better identify its characteristics but it is sufficient here to assume that some deviation 

from the program temperature could be incentivised. Some people will accept larger variations 

of temperature for a given incentive than others.  

Nine different levels of flexibility are considered in this study; their associated values of       

and        are given in Table 13. Four of these are illustrated by Figure 21.  
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Table 13: Resident temperature flexibility 

Resident Flexibility              

A – no flexibility 0°C 0°C 

B 0°C -1°C 

C 0°C -2°C 

D +1°C -1°C 

E +1°C -2°C 

F +1°C -3°C 

G +2°C -2°C 

H +2°C -3°C 

I +3°C -3°C 

 

Figure 21: Variations in acceptable temperature deviation with price of electricity assumed in model 

The target inside air temperature that the control system attempts to maintain,    , is then given 

by Equation 25: 

             Equation 25 

Using a signal to adjust the temperature at which the control system is aiming to maintain the 

inside air is a more robust system than attempting to adjust the electrical power demand of the 

heating system directly as the implications can be more readily understood and the non-linear 
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responses of heating system power demands to changes in heating demands do not need to be 

explicitly modelled in the control system.  

It is important to maintain the temperature within a range which is still comfortable to the 

occupants. If the temperature were to drop too much because of direct control of the heating 

system (i.e. to reduce electrical demand) then it is likely that occupants would resort to using 

appliances which are not subject to direct DSM control to heat their homes. These would 

inevitably be less efficient and so the problem would be exacerbated as the direct DSM control 

becomes progressively tighter as a result. 

4.3.4 Target heat generation 

The model includes four algorithms for calculating the target heat generation. The first three 

relate to three different control methodologies, only one of these will be implemented in a 

particular dwelling. The fourth relates to the condition when the DHW tank temperature is too 

low.  

4.3.4.1 Control system 1: Proportional control.  

This is used without a buffer tank. The target heat generation is calculated using Equation 26.  

 ̇              Equation 26 

where  ̇  is the target heat generation (W),    is the inside air temperature and     is the target 

inside air temperature calculated using Equation 25.    is the control coefficient (W/K). To 

facilitate meaningful adjustment of the model parameters, this is given as the product of an 

adjustment factor,   , and the coefficient which would create a steady state inside air 

temperature of 20°C (i.e. 1°C below target of 21°C) when outside air temperature is -1°C. 

Although proportional controllers are used in some heating systems, this particular system has 

not been observed and is included to investigate the possible improvements in performance that 

may be reasonably expected by matching the flow temperature to the minimum which is needed 

as closely as possible. 

4.3.4.2  Control system 2: Variable temperature (“weather-compensated”) 

control. 

This is used with a buffer tank. It can be used with both units that are capable of modulating and 

those that are not. The control system aims to maintain the buffer tank at a temperature which is 

a function of the outside air temperature. In this study, for dwellings using conventional 
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radiators, the target buffer tank temperature is 55°C when the outside air temperature is -2°C, 

decreasing linearly to 25°C when the outside air temperature is 15°C. For dwellings using 

enhanced heat emitters (effectively equivalent to an underfloor system), the flow temperature 

when the outside air temperature is -2°C is reduced to 40°C (see Figure 22). 

 

Figure 22: Variable-temperature control, target flow temperature 

 This system is used in several commercially available heat pump systems; it reduces the flow 

temperature when a lower rate of heat delivery is required. 

The target buffer tank temperature (   ) is adjusted by the DSM signal in the same way as the 

target inside air temperature but with the range increased threefold relative to the ranges in 

Table 13. In the case that a modulating heating unit is used, a proportional controller is used to 

determine the target heat generation. 

 ̇              Equation 27 

where     is the actual buffer tank temperature. 

In the case that a fixed-output heating unit is used, a dead-band (   ) of +4K / -4K (selected 

according to whether the heating system operated in the last time-period) is used relative to the 

target temperature to determine whether the heating unit is off or operating at full capacity 

( ̇    ). 
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 ̇    ̇    〈           〉
  Equation 28 

Flow from the buffer tank to the heat emitters is controlled by a secondary thermostat system 

(see section 4.4.6). 

4.3.4.3 Control system 3: Fixed Temperature, Flow control 

This control system is similar to control system 2, but the system aims for a consistent buffer 

tank temperature rather than the weather-compensated temperature. In the case of this study, the 

target buffer tank temperature is 55°C in buildings which have conventional heat emitters and 

40°C in buildings which have enhanced heat emitters. This control system is functionally 

similar to that used on the majority of condensing gas boilers and so the majority of consumers 

and installers are familiar with it. 

4.3.4.4 DHW heating 

Heat is delivered to the DHW tank according to Equation 48 whenever the heater heat-

exchanger temperature is high enough, regardless of the heating control system. However, if the 

DHW tank temperature drops below its minimum acceptable temperature (in this study, 40°C), 

the control system stops heat from being fed to the heat emitters or buffer tanks so that the 

heater heat-exchanger temperature is increased and the rate of heat delivery to the DHW tank is 

increased. A dead-band (   ) of +5°C / -0°C is used to prevent unstable behaviour. 

In this case, the target heat generation is calculated as: 

 ̇   ̇                          Equation 29 

where     is the nominal time for heat to be diverted solely to the DHW tank, set at 120 

seconds by default. 
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4.4 Heating unit model 

4.4.1 Heating system overview 

Readers are referred to Table 3 and Table 4 for a list of the 8 ASHP units and 12 mCHP units 

referred to here as “ASHP x”, “SE-mCHP y” and so on. The model is based on the standard 

model specifications for combustion-based mCHP units suggested by IEA ECBCS Annex 42 

(Beausoleil-Morrison, Arndt, et al. 2007) and is illustrated in Figure 23 (a subset of the flows 

illustrated in Figure 18). This model has been shown to have good fidelity to measured 

performance where suitable calibration has taken place. Parameters for three units (SE-mCHP, 

ICE-mCHP and SOFC-mCHP) are available in the Annex’s final report, with the possible 

caveat that condensing behaviour was not fully explored during the experimental testing used. 

Additional performance data are also included to facilitate calibration of appropriate parameters 

to other units. The same set of elements are also used for the ASHP units, following Kelly and 

Cockroft, (2011) and to facilitate comparison between them. 

 

Figure 23: Heating system thermal flows 
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The heat flows and temperatures assume a lumped-capacitance model. The heat flows within the 

heating system are calculated as follows: 

 ̇              Equation 30 

 ̇              Equation 31 

            
( ̇   ̇    ̇  ) 

    
 

Equation 32 

            
( ̇    ̇    ̇    ̇  ) 

    
 

Equation 33 

where  ̇   is the heat flow rate (W) from heater block to the heater heat exchanger through heat 

transfer coefficient     (W/K) and  ̇   is the heat flow rate from heater block to the outside air 

through heat transfer coefficient    .  ̇   (heat flow to DHW tank) is described in section 4.5. 

4.4.2 Actual heat generation 

The heating control system will request the target heat generation ( ̇ ) from the heating system 

but the actual heat generated ( ̇ ) will also depend upon the performance of the heating system. 

In addition to limitations on the heat generation imposed by the performance of the heating 

system, the heat transferred to each component of the heating system (e.g. the DHW tank, buffer 

tank and / or heat emitter system) will depend upon the relative temperatures and thermal 

inertias of the elements within each component.  

These two aspects (restrictions on the heat generated and the way that the heat generated is 

delivered) are treated separately. This has the advantage that the second, dynamic, part can be 

based upon the standard Annex 42 model specification. It also makes the code more efficient as 

the calculation of heat generated affects the power demanded from the grid and so needs to be 

included in the iterations of the price of electricity whereas the calculation of heat flows can 

happen once per time-step with the other heat flows. 

The restrictions on heat generation applied to the heating systems are: 

 Minimum heat generation. In the case of some SOFC-mCHP systems, the unit cannot 

be turned off as part of their usual operation.  
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 Minimum operational heat generation. In the case of other units, there is usually a 

minimum operating heat generation; that is, they cannot be operated with a lower heat 

output. 

 Maximum heat generation. The maximum heating capacity of the unit. Some mCHP 

have an auxiliary gas boiler unit. The heat generation from these components is treated 

separately in this model. 

 Modulation steps. Some units have only one operating level, (i.e. their minimum and 

maximum operational heat generation levels are the same). However, other units are 

capable of varying (modulating) their output between their minimum and maximum 

levels.  Some of these can achieve continuously variable output between these extremes 

(e.g. (Heliotherm n.d.)) whereas other units have discrete operating steps (i.e. they can 

modulate between the minimum and maximum operating levels but only at predefined 

steps, e.g. some units have 8 modulation levels (Daikin n.d.). In the case of units with 

discrete operating levels, the heat output step equal to or above the target heat 

generation is selected. 

 Maximum rate-of-change. Some units are constrained to a maximum rate-of-change of 

output. This is typical of high temperature SOFC-mCHP units and, to a lesser extent, 

PEMFC-mCHP units. The limitation is usually enforced by the unit’s control system to 

prevent thermal fatigue of the stack components. If this limit is applied in the model, it 

is necessary to ensure that there is not a “minimum operating level” specified for the 

unit (or, if it is, that it is the same as the minimum heat generation level). Otherwise, the 

unit would be unable to turn on if a step increase from off to “minimum” is greater than 

the permitted rate-of-change. 

 A supplementary burner is available within the model. This is modelled as a fixed 

efficiency unit, burning natural gas and supplying the heat generated ( ̇  ) directly to 

the buffer tank. This additional heating is only used with the units which have a thermal 

capacity of less than 4kW (i.e. ICE-mCHP B, PEMFC B, SOFC A, SOFC B and SOFC 

C). When operated, the supplementary heat generated is assumed to match any shortfall 

in the heat generated by the unit ( ̇ ) relative to the target heat generation ( ̇ ). That is, 

it behaves “perfectly” with no thermal lag and continuously variable output. The energy 

flows associated with this supplementary heat are accounted for separately in the 

results. Treating the supplementary heat separately means that the results can 

distinguish the performance of the heating unit from the system performance achieved 

with it. 
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The maximum heat output of a unit and its ability to modulate is generally given in its 

specification (see Table 3 and Table 4 for details of the 20 units considered in this research). For 

ASHPs with the ability to modulate, the minimum output level is assumed to 25% of the 

maximum output for ASHP units (consistent with that claimed by Mitsubishi Electric Europe, 

2008b) unless it is specified. The maximum turn-down ratio for mCHP units is usually specified 

or can be inferred from test data and it is assumed that their modulation is continuous (i.e. not in 

discrete steps). Most of the ASHP units have stepped modulation and it is assumed that eight 

modulation steps are available unless further information is available. Sensitivity analysis was 

conducted with the model to determine whether the number of modulation steps used has a 

significant effect on the results from the model. Several ASHP units were simulated for a three-

month period with different numbers of modulation steps available to them; the resulting 

performances are presented in Figure 24. 

 

Figure 24: Sensitivity of modelled ASHP COP to number of modulation steps modelled (each plot relates 

to a different ASHP model) 

The modelled performances of the ASHP units are insensitive to the number of modulation 

steps. The bottom four plots actually relate to cases with more buffering and so (unsurprisingly) 

the number of modulation steps has even less effect on them. There is usually a slight increase 

in performance as the number of modulation steps increases (i.e. at the lower values on the 

reciprocal x-axis scale) but there is minimal improvement (and, curiously, one case of minor 

performance degradation) when more than five steps are used (i.e. when the relative step size is 

less than 0.2). 
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4.4.3 Heating system fuel demand 

4.4.3.1 Gas boilers  

For both the gas boilers and the mCHP units, the fuel used is assumed to be natural gas with 

standard composition for the UK. In the case of gas boilers (including any supplementary 

heating systems), the thermal efficiency is assumed to remain constant at 90% (GCV). It is 

likely that the efficiency would vary (in particular, the flow temperature affects the viability of 

the condensing function) but the simplification has been used as condensing gas boilers are only 

included as a readily understandable benchmark to compare other results against. 

4.4.3.2 mCHP 

Because the model assumes some thermal losses from the heater block ( ̇  , see Figure 23) 

thermal efficiency coefficients (   ) are used to characterise the relationship between heat 

generation within the units and fuel use. The values of these coefficients are slightly higher than 

the measured thermal efficiency of the units. They are calculated such that, under steady-state 

conditions, the useful heat flow from the heater (i.e. heat generation minus heat losses) 

corresponds to the steady-state thermal efficiency of the units.  

The thermal efficiency for ICE-mCHP units is considered to be almost constant in the IEA 

ECBCS Annex 42 model, based upon the ICE-mCHP units used for calibration. However, other 

(generally, modulating) devices do show some variation in steady-state thermal efficiency 

between different heat outputs and so an additional linear interpolation is used in this model 

between the coefficients corresponding to the nearest conditions. Thermal efficiency 

coefficients are listed in Table 14. Thermal losses coefficients (i.e.    ) are listed with the other 

thermal characteristics of the units in Table 16. 

Below its nominal operating temperature,    , the Annex 42 model assumes that the thermal 

efficiency of SE-mCHP units is a function of their temperature as described by Equation 34: 

 ̇    
 ̇ 

   
 (    

      

     
) 

Equation 34 

where  ̇  and    are the fuel mass flow rate and specific enthalpy of combustion (in kg/s and 

J/kg).    is an empirically derived constant and    is the temperature of the heater block. For 

SE-mCHP A, the values of    and     were empirically derived by Beausoleil-Morrison, 

Arndt, et al. (2007) to be 0.04 and 257°C respectively. 
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The other two SE-mCHP units considered are capable of modulating their power output (unlike 

SE-mCHP A) and so the function relating thermal efficiency to heater block temperature is not 

used. More accurate modelling of their characteristics can be achieved by adopting the 

interpolation approach used with ICE-mCHP units. 

The Annex 42 model for FC- mCHP takes a different approach and models the energy content 

of the fuel, air and water flows through the stack, heat exchanger and ancillary systems. This 

approach has enabled a high fidelity model of a SOFC-mCHP to be calibrated but it is harder to 

implement within the overall model used here. This is for two reasons; firstly, because heat 

generation is a function of several other factors, it is not possible to use heat generation as a 

control variable. Secondly, although coefficients are available for the calibrated SOFC-mCHP 

unit, deriving them from the data available on other FC- mCHP units is unlikely to be possible. 

The interpolation approach has therefore been taken for both types of FC- mCHP as well as the 

combustion based units. Variations in the steady-state thermal performance of some FC-mCHP 

units with the flow temperature have been accounted for by appropriate selection of heat loss 

coefficients. SOFC-mCHP C is the unit for which a calibrated model is provided by Beausoleil-

Morrison, Arndt, et al. (2007); for this unit the maximum heat recovery which could be 

achieved by a perfect heat exchanger (after heat losses are accounted for) has been calculated 

for each performance point and these data are used to calculate the effective thermal efficiency 

coefficients. This is an optimistic approach but as the thermal efficiency for this unit does not 

represent the limit of the performance envelope under any conditions, it is considered a 

reasonable simplification. 
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Table 14: mCHP thermal efficiency coefficients 

Unit Thermal efficiency coefficients,    .  

The heat generation rate ( ̇ ) that each coefficient relates to is given below the coefficient. 

 1 2 3 4 5 6 7 

SE- mCHP A 87.4% 

7.29kW 

      

SE- mCHP B 100% 

3.5kW 

100% 

3.7kw 

92% 

4kW 

91% 

4.3kW 

92% 

5.6kW 

92% 

6.8kW 

 

SE- mCHP C 70.5% 

6.9kW 

70.0% 

24.3kW 

     

ICE- mCHP A 59.5% 

13.45kW 

      

ICE- mCHP B 73.6% 

3.8kW 

65.7% 

7.9kW 

62.8% 

12.1kW 

    

ICE-mCHP C 56.8% 

2.8kw 

      

PEMFC A 75.3% 

7.1kW 

69.7% 

8.4kW 

70.9% 

10.4kW 

73.2% 

12.7kW 

69.4% 

13.4kW 

  

PEMFC B 62.8% 

1kW 

63.9% 

1.3kW 

57.7% 

1.9kW 

    

PEMFC C 42.9% 

3.4kW 

44.5% 

4.7kW 

47.7% 

6.9kW 

50.2% 

8.9kW 

   

SOFC A 20.2% 

320W 

22.7% 

370W 

20.0% 

400W 

18.7% 

520W 

25.7% 

1000W 

  

SOFC B 20.2% 

960W 

22.7% 

1.1kW 

20.0% 

1.2kW 

18.7% 

1.5kW 

25.7% 

3kW 

  

SOFC C 49.8% 

4.6kW 

50.3% 

4.8kW 

50.7% 

5.1kW 

51.1% 

5.3kW 

52.0% 

5.5kW 

51.7% 

5.7kW 

52.1% 

6.1kW 

4.4.4 Heating system power flows 

The heating systems will have electrical power flows (potentially negative, i.e. net generation, 

in the case of mCHP systems) associated with their operation. 
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Each unit has a standby power when not operating and an additional pumping power when 

operating. In most cases, the standby power is not specified and is assumed to be 10W, around 

the same as SE-mCHP A (Whispergen Ltd 2006). 

4.4.4.1 mCHP units 

The electrical efficiency of mCHP units is affected by their output power level, typically 

varying by +/- 5% across the operating range for an ICE-mCHP but by more for other types. 

The efficiency is linearly interpolated from known data points. These are given in Table 15. 

Table 15: mCHP electrical efficiencies 

Unit Net Electrical Efficiency,   .  

The heat generation rate ( ̇ ) that each efficiency relates to is given below it. 

 1 2 3 4 5 6 7 

SE- mCHP A 8.4% 

7.29kW 

      

SE- mCHP B 4.2% 

3.5kW 

7.4% 

3.7kw 

9.0% 

4kW 

10.1% 

4.3kW 

11.9% 

5.6kW 

12.1% 

6.8kW 

 

SE- mCHP C 12.4% 

6.9kW 

21.3% 

24.3kW 

     

ICE- mCHP A 24.3% 

13.45kW 

      

ICE- mCHP B 19.7% 

3.8kW 

22.0% 

7.9kW 

22.3% 

12.1kW 

    

ICE-mCHP C 20.3% 

2.8kw 

      

PEMFC A 15.9% 

7.1kW 

20.9% 

8.4kW 

20.4% 

10.4kW 

20.2% 

12.7kW 

23.2% 

13.4kW 

  

PEMFC B 32.0% 

1kW 

32.0% 

1.3kW 

29.0% 

1.9kW 

    

PEMFC C 17.5% 

3.4kW 

22.0% 

4.7kW 

24.5% 

6.9kW 

24.4% 

8.9kW 

   

SOFC A 12.6% 

320W 

36.9% 

370W 

45.1% 

400W 

54.1% 

520W 

51.4% 

1000W 

  

SOFC B 12.6% 

960W 

36.9% 

1.1kW 

45.1% 

1.2kW 

54.1% 

1.5kW 

51.4% 

3kW 

  

SOFC C 24.4% 

4.6kW 

24.2% 

4.8kW 

24.1% 

5.1kW 

24.0% 

5.3kW 

23.8% 

5.5kW 

23.8% 

5.7kW 

23.6% 

6.1kW 

As with thermal efficiency, the Annex 42 model for SE-mCHP power generation during unit 

warm-up is given as a function of the temperature of the heater engine block,   : 



 97 

 ̇     ̇    (
     
      

) 
Equation 35 

For SE-mCHP A, the maximum net power generation,  ̇    , is 698W. The unit also has an 

average power consumption of 57.5W for 1500s after fuel supply is ceased (Beausoleil-

Morrison, Arndt, et al. 2007).  

The other two SE-mCHP units considered are both capable of modulating their output and so it 

is again more appropriate to model their power output independently of engine temperature, 

relying instead on interpolation of measured performance points (as per Magri et al. 2012). The 

potential inaccuracy of this approach is the overestimation of power generation during the unit’s 

warm-up period (Beausoleil-Morrison, Weber, et al. 2007). However, testing of SE-mCHP B 

demonstrated that it is capable of achieving full power generation within around two minutes 

and that the overestimation of generation (around 10Wh) which would occur from assuming 

instantaneous production is almost exactly balanced by the power generation which continues to 

occur as the unit cools down after fuel supply ceases (Lipp 2012). 

4.4.4.2 Heat Pumps 

In order to calculate the power demand of the heat pump it is necessary to know its Coefficient 

of Performance (COP,    ) under the conditions it is operating under (primarily the outside air 

temperature (  ) and outlet flow temperature (  ), both measured here in K) at that moment. As 

it is unlikely that these temperatures will match the temperatures that the unit has been tested 

under, the COP is calculated by interpolating from the COP measured under test conditions 

(specified by BS EN14511-2 2007), see Table 3. The interpolation is performed in four stages: 

1. Four test conditions fulfilling different criteria are selected; one with a higher outside air 

temperature, one with a lower outside air temperature, one with a higher outlet flow temperature 

and one with a lower outlet flow temperature than the modelled conditions at that moment. The 

test conditions fulfilling each criteria with the lowest summed-square temperature difference 

(  ) to the modelled conditions are selected (see Figure 25). If a test condition meeting one of 

these criteria is not available, the remaining test condition performances are used. 
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Figure 25: Selection and weighting of test COP measurements 

2. The exergy efficiency of the ASHP under each test condition,  , is calculated, e.g.: 

        (  
   

   
) 

Equation 36 

3. The weighted average of these exergy efficiencies is calculated using the summed-squared 

differences: 

 ̅   
∑ 

 
   

∑ 
 
   

 

Equation 37 

4. The average exergy efficiency is converted back into a COP: 

       ̅ (  
  

  

)⁄  
Equation 38 

By using the exergy efficiency in this way it is possible to more accurately calculate the 

performance of ASHP units where fewer test measurements are known and extrapolation is 

therefore necessary. A similar comparison between COP and exergy efficiency is used by 

Ertesvåg (2011) to study the uncertainty in the performance measurement of ASHPs, 

concluding that the flow temperature tolerances permitted under testing can result in an error of 

up to 9% in the recorded COP. A 9% error is significant when attempting to predict the 
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performance of an individual specific unit but not when considering the range of performances 

available or the effect of different conditions on the performance of that ASHP. 

The part-load efficiency of ASHP compressors is generally slightly higher than their full-load 

efficiency (Energimyndigheten 2012). This can be seen in specific test results (e.g. Butler & 

Hyde 2007) and it has been suggested that it may have been exploited to inflate the nominal 

performance achieved by an ASHP under standard test conditions (Ertesvåg 2011).  Bettanini et 

al. (2003) suggest a modelling approach based upon results obtained from monitoring of the 

performance of a range of air chillers. A wide range of results are noted; however, the average 

performance above 40% load factor has a consistent range and an average value close to the 

full-load performance. Part-load factors are therefore not considered specifically in the model; it 

is assumed that the majority of the effect (if any) is accounted for in the range of standard test 

conditions tabulated above.  

4.4.4.3 Exergy of power flows 

By definition, the energy and exergy flows associated with electrical power flows are the same 

as each other. 

4.4.5 Heating system thermal inertia 

The thermal characteristics of the heating units are given in Table 16. For SE-mCHP A and 

ICE-mCHP A, these are taken directly from the values supplied by Beausoleil-Morrison, Arndt, 

et al. (2007). For other devices they were estimated from the available data as described below. 

In the case of SE-mCHP B, the loss coefficient was selected to be the same as that for SE-

mCHP A and then the other coefficients were adjusted in order to replicate the heat flow profile 

provided by Lipp (2012). A similar process was repeated for SE-mCHP C; heat losses were 

scaled up and then the thermal efficiency coefficients were determined at the appropriate flow 

temperatures before thermal inertias were determined by comparison with heat and temperature 

profiles in Beausoleil-Morrison, Arndt, et al. (2007). 

The ICE-mCHP units were slightly harder to calibrate. Because no heat flow profiles relating to 

ICE-mCHP B could be obtained, the engine block thermal inertia and heat transfer coefficients 

for it were estimated based upon the properties of ICE-mCHP A. These were scaled by the 

engine volume for inertia and by the engine cross-sectional area for the heat transfer. For ICE-

mCHP C, thermal efficiency coefficients were calculated at the three known operating 

conditions, based on a lower estimate for the heat loss coefficient than that for ICE-mCHP A as 

the total efficiency implied would otherwise exceed 100% in some cases. Although heat flow 

and temperature traces are available (again from Beausoleil-Morrison, Arndt, et al. 2007) there 
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is clearly internal control occurring as the unit waits until it can provide flow at a reasonable 

temperature before delivering any heat. This makes it hard to estimate the effective thermal 

properties. Instead, the engine block thermal inertia has been selected such that the energy 

content released after fuel flow ceases approximately matches between the model and the data 

available. Heat exchanger properties similar to those for an ASHP (see below) seem appropriate 

given the relatively rapid secondary fluctuations in heat delivery which occur. 

As noted earlier, the dynamics of FC-mCHP units are dealt with differently by the Annex 42 

model. The rate of change of output is usually constrained in these units by their control system 

to reduce the premature degradation of the stack and so the effect of the thermal inertia of the 

units on their dynamic behaviour is much less significant. Here, the limits on the rate of change 

of electrical generation are converted into limits regarding the rate of change of heat generation. 

Although the Annex 42 model does not take the thermal inertia of the FC-mCHP units into 

account, large thermal inertias are still used for the FC-mCHP units in this work in order to use 

a consistent heat flow model in each case. These are notionally based on the actual mass of the 

units (which would usually provide an upper limit on the effective thermal inertia) but the 

constraints on the rate of change of the output from the units renders their performance 

insensitive to this value. 

ASHPs typically use plate heat exchangers. The properties of these were based upon the 4.6kg 

stainless steel heat exchanger used by ASHP B with surrounding structure bringing the total 

heated mass to around 8kg. At rated output, there is a 2°C temperature drop between the 

condenser  and flow temperature of this device; as the return temperature is 5°C lower than the 

outlet flow temperature under these conditions, the average temperature difference across the 

heat exchanger is approximately 4.5°C (Mitsubishi Electric Europe 2008). The effective inertia 

and heat transfer coefficient for each unit is calculated based upon these conditions, scaled to 

the rated thermal output of the unit. The structure of ASHPs does not lend itself as well to the 

two lumped-capacitances model used with the mCHP units; heat transfers occur continuously 

within the working fluid as it moves around the cycle. However, by using the same thermal 

inertia and transfer coefficients as the heat exchanger component, the initial transient was found 

to be around two minutes which is consistent with observations (during defrost cycles, for 

example). In fact, the sensitivity of the model to variations in the values for the ASHP thermal 

inertias is limited. Figure 26 shows the effect of varying the thermal inertia of components from 

37% to 400% of the values used on the average performance of two ASHPs operating under 

various conditions. It can be seen that there is little effect on the average performance of the 

units apart from some (still relatively minor) variation at low inertias. 
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Figure 26: Sensitivity of ASHP model to assumptions regarding thermal inertia (each plot relates to a 

different ASHP unit). 

Similarly, Figure 27 shows the sensitivity of the performance of two of the mCHP models to 

changes in their thermal inertia, under a range of different conditions. The graph shows that the 

effect of changing the thermal inertia is negligible in these cases. The sensitivity is lower than in 

the case of the ASHP units primarily because the nominal inertias are much higher. It should be 

noted that SE-mCHP A is likely to demonstrate a higher sensitivity given the additional 

equations governing its energy flows but this is of less concern as its characteristics are taken 

directly from the detailed calibration described by Beausoleil-Morrison, Arndt, et al. (2007). 

 

Figure 27: Sensitivity of mCHP model to assumptions regarding thermal inertia (each plot relates to a 

mCHP unit). 
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Table 16: Thermal properties of all modelled units 

Unit Heater Block 
Thermal 
Inertia  

     

J / K 

Block to Heat 
Exchanger 

Heat 
Transfer 

Coefficient 

    

W / K 

Heat 
Exchanger 
Thermal 
Inertia 

     

J / K 

Heat 
Exchanger 

Heat 
Transfer 

Coefficient 

    

W / K 

Thermal 
losses 

coefficient 

    

W / K 

Heat 
generation 
maximum 

rate of 
change 

W / s 

ASHP A 2260 890 2260 890 1 N/A 

ASHP B 4800 1890 4800 1890 1 N/A 

ASHP C 4690 1840 4690 1840 1 N/A 

ASHP D 3280 1290 3280 1290 1 N/A 

ASHP E 5820 2290 5820 2290 1 N/A 

ASHP F 7450 2930 7450 2930 1 N/A 

ASHP G 7900 3110 7900 3110 1 N/A 

ASHP H 5650 2220 5650 2220 1 N/A 

SE- mCHP A 18500 32 28100 1600 4.6 N/A 

SE- mCHP B 7000 40 7000 1200 4.5 N/A 

SE- mCHP C 30000 220 10000 2000 14 N/A 

ICE- mCHP A 63606 741 1000 1600 13.7 N/A 

ICE- mCHP B 45000 500 4000 1600 4 N/A 

ICE-mCHP C 17906 318 4000 1600 0 N/A 

PEMFC A 200000 1200 4800 1150 67 5 

PEMFC B 100000 500 4800 500 15 1.6 

PEMFC C 200000 250 4800 850 24 5 

SOFC A 100000 1000 4800 1600 0 0.06 

SOFC B 300000 1000 4800 1600 0 0.17 

SOFC C 200000 1000 4800 1600 5 0.4 
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4.4.6 Heat transfers to heat emitter system and buffer tank 

Some heating systems operate with a buffer tank whereas others feed heat directly to the heat 

emitters. For those with a buffer tank: 

 ̇                Equation 39 

if the heating thermostat is open. If the thermostat is closed: 

 ̇     Equation 40 

where  ̇   is the heat flow rate from the buffer tank to the to the heat emitters system through 

heat transfer coefficient    . A thermostat turns the supply of heat from the buffer tank to the 

heat emitters on or off  if the temperature of the inside air is less or more (respectively) than the 

target temperature (taking DSM temperature adjustment into account as appropriate). A dead-

band (   ) of +1K/-1K is used to prevent unstable operation. The temperature of the emitter 

system is given by: 

            
( ̇    ̇  ) 

    
 

Equation 41 

where the thermal inertia of the emitter system,     , is based upon an estimated requirement 

of 14 litres per kW of rated capacity.  

The heat flows to the buffer tank are given by: 

 ̇                       Equation 42 

 ̇               Equation 43 

where  ̇   is the heat flow rate from heater heat exchanger to the buffer tank through heat 

transfer coefficient    . In order to calculate the average temperature differences, it is necessary 

to know the return temperatures to the heat exchanger (   ). This is selected as the maximum of 

either the sink temperature (i.e.   ) or the flow temperature minus the normal operating 

temperature difference across the heat exchanger (   , taken here to be 5K).  ̇   is the rate of 

heat loss from the buffer tank through heat transfer coefficient     to the inside air.     and 

    are selected to be consistent with the Hot Water Association’s Thermal Store Specification 

(Hot Water Association 2010, p.49). 
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The temperature of the buffer tank,   , is given by: 

            
( ̇    ̇    ̇    ̇  ) 

    
 

Equation 44 

where  ̇   is any heat generated by a supplementary system and fed to the buffer tank (see 

section 4.4.2). 

For systems without a buffer tank,  ̇  ,  ̇   and  ̇   are all zero. In this case, the heat transfer 

to the emitter system ( ̇  ) is given by: 

  ̇                        Equation 45 

where the return temperature from the heat emitters to the heater heat exchanger,    , is again 

determined as the maximum of either the emitter temperature (  ) or the heat exchanger flow 

temperature (  ) minus the normal operating temperature difference across it (5K). 

Because the systems without buffer tanks use a proportional control system (see section 4.3.4), 

no thermostat on-off function is necessary. 
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4.5 Domestic Hot Water Demand 

Average Domestic Hot Water (DHW) demand,   , is taken to be (Energy Saving Trust 2008): 

           Equation 46 

where    is measured in litres per day and    is the number of occupants in the dwelling. 

In the model, the 28 litres per person component is assumed to be distributed throughout the day 

with the weightings in Figure 28 multiplied by the active occupancy at that time. The additional 

40 litres are assumed to be spread equally across the 24 hours.  

 

Figure 28: DHW demand weighting 

The heat balance for the DHW tank is given by: 

            
( ̇    ̇    ̇  ) 

    
 

Equation 47 

where      is the tank temperature at time  ,  ̇   is rate of heat delivered to the tank,  ̇   is 

the rate of thermal energy leaving the DHW tank in hot water drawn by residents and  ̇   is the 

rate of heat loss from the tank to the inside air.      is the thermal inertia of the tank (i.e. 

product of the mass of water and the specific heat capacity of water, J/K). Variation in the size 

of the DHW tanks was not considered in this study; all DHW tanks were assumed to contain 

70kg of water. 

The heat flows are calculated as follows: 
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 ̇                      Equation 48 

where    is the heating system outlet flow temperature and     is the return temperature. The 

return temperature is found as the maximum of either the tank temperature or the outlet flow 

temperature minus the normal temperature difference across the heat exchanger (   , 5K by 

default). The DHW tank heat exchanger coefficient,    , is taken to be 550W/K, consistent 

with the minimum in the Hot Water Association’s Thermal Store Specification (Hot Water 

Association 2010). 

 ̇             ̇    Equation 49 

where  ̇  is the rate of DHW demand in kg/s. Cold water inlet temperature,     is taken to be 

10°C. 

 ̇              Equation 50 

The heat loss from the DHW tanks,    , is taken to be equivalent to 2.8W/K consistent with 

the same Thermal Store Specification (Hot Water Association 2010).  
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4.6 Grid model 

4.6.1 Overview 

The grid model has two main functions that are carried out during each time period: 

 Iterate the “price” signal in order to adjust net demand, aiming for certain objectives.  

 Calculate the generation from each type of generating plant (e.g. coal or gas) that is 

used to supply the demand due to the operation of the heating systems. Two sets of 

figures are derived; firstly using a methodology to calculate generation using the mean 

mix and, secondly, with a methodology using the marginal mix. For the mean 

generation mix, the mix of generation types meeting the demand is assumed to be the 

same as the total generation mix during that period. For the marginal generation mix, 

the change in the electricity generated from each plant type due to heating system 

demands is calculated, assuming the generation mix supplying all heating systems is the 

same.  

These generation totals are given by: 

    ∑ ̇    

 ̇   

 ̇   

 

   

   
Equation 51 

    ∑ ̇    

  ̇   

  ̇   

 

   

  
Equation 52 

          is total generation (in J) from plant type  , calculated with the mean generation 

methodology and     is the corresponding total with the marginal methodology.  ̇     is the 

power generation (in W) required to satisfy the heating power demand,  ̇    is the total power 

generation and  ̇    is the power generation by plant type  , during time period,  , 

The total generation from each generating plant type (using both the “marginal” and the “mean” 

methodologies) is then used to calculate the PER, exergy and CO2 emissions associated with the 

operation of the heating system. This is in contrast to calculating and recording the impacts 

across all the generating plants during each time-step and then summing them. This calculation 

order is used as it facilitates the consideration of additional environmental impacts or different 

emissions rates which are known for each generating plant type. Additional environmental 

impacts (e.g. metal resources depletion) have been considered in collaborative work using 

results based upon this model (McKenna et al. 2013). 
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4.6.2 Price Iteration 

To model the implications of DSM signals on the performance and power flows associated with 

the heating systems, it is necessary to generate a realistic signal that will, in turn, be affected by 

the resulting changes in power demands. Rather than use a direct control signal (i.e. associated 

with a hypothetical system in which loads are directly, centrally, controlled), this model 

assumes that a signal representing the grid operators’ intention that demands should reduce is 

used. Different systems such as heating can then react as appropriate to this signal. This signal 

is referred to here as “price” as it will follow the same approximate pattern as a price signal but 

it is stressed that the model does not represent actual prices, rather the relative strength that any 

such signal would need to take in one time period relative to another. 

The model attempts to set a price which maximises the “profit” for the grid operator for that 

time period. This is calculated based upon the “cost” (to the operator) of electricity, the “price” 

to the consumer and the electrical demand during that time period. The maximum “profit” per 

unit of electricity is limited to prevent a situation where the overall maximum profit is achieved 

by combining a very high price and consequent low demand (in reality such a situation could 

occur if there was neither regulation nor a competitive market). For any given power demand, a 

representative cost to the grid operators can be calculated based upon factors such as the total 

dispatchable power demand at that time, the rate of change in dispatchable power demand, fuel 

and CO2 emissions costs and local network power distribution constraints. These cost functions 

will be specific to the scenarios being simulated. The demand response to changes in price is 

described in section 4.3.3 above, but it is sufficient here to note that the magnitude of the effect 

will increase in some way as price increases (see Figure 29). This means that for the set of 

conditions during a particular time-period, there will be an optimum “price” that can be 

associated with achieving certain DSM objectives, expressed as the “cost” function.  

 

Figure 29: Iteration to determine price / power demand 
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Iterations are used within the time-period to determine this optimum “price” and the power 

demand associated with it: 

 An initial price is assumed. For each dwelling, the occupants will have a particular 

reaction to the price of electricity in terms of the temperature that they would like their 

dwelling to be maintained at. For example, in some cases the occupants will be relative 

flexible and might accept a 2°C decrease in the target temperature if electricity is 

expensive while others might be less flexible (see section 4.3.1).  

 Depending upon the other conditions associated with the dwelling during that time 

period and the control parameters relevant to the dwelling, a hypothetical heat demand 

is generated. The heating system signals a hypothetical power demand (potentially 

negative in the case of mCHP) relating to that heat demand but also constrained by the 

heating system performance. 

 The sum of the hypothetical power demands from the heating systems of the population 

of dwellings being considered is fed back and the consequent cost and profit are 

calculated. 

 The price signal is adjusted to attempt to improve the profit and the iteration is repeated.  

Several iterative methods were tried. It was surprisingly problematic to find a method which 

worked consistently, reliably and efficiently. A bisection method is used (requiring 12 steps to 

achieve reasonable accuracy). The gradient of profit against price for each proposed price (and 

that price plus a small increase) is used to determine whether that price represents the minimum 

or maximum bound for the next bisection. 

4.6.3 Grid generation scenarios 

In performing these functions, the grid model can use either current UK grid generation data or 

a dispatch model that considers the situation for a hypothetical mix of generation plant. In this 

study, the hypothetical grid generation mixes which were considered were those proposed by 

the Transition Pathways project (Foxon 2013; Foxon et al. 2010). The Transition Pathways 

project provides three hypothetical scenarios (based on three sets of assumptions regarding the 

development of the grid). Detail on the sources of generation and demand for each of the three 

scenarios is provided for intervals between the present and 2050 (see Table 18, page 118). 

The “Seven Year Statement” (National Grid Plc 2011) provides perhaps the best indication of 

proposed changes to generation plant capacity (used by Hawkes (2010) to estimate future 

MEFs) but does not indicate how the generating companies may change their dispatch patterns 
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and does not suggest the generation mix which may be in operation beyond 2020 so cannot be 

used to investigate the effect of more radical changes to the grid.  

Several scenarios are available from other projects. Some are broader and consider the electrical 

grid within the context of the whole energy system but do not cover the detail required for 

considering specifics of electrical dispatch (DECC 2009b; 2010a). Other scenarios include more 

detail (Ault et al. 2008; Jardine & Ault 2008) but the categories used within the Transition 

Pathways descriptions are more convenient for adaptation to this model. Other work considering 

the potential effect of DSM has used the context of the Transition Pathways scenarios so their 

selection also facilitated comparison with these studies (Pudjianto et al. 2013; Barton et al. 

2013). Finally, the accessibility of colleagues working on the Transitions Pathways project 

made it easier to identify and clarify the assumptions made.  

Electrical losses were applied in calculating the generation required to supply a particular 

demand using Equation 53. 

 ̇      ̇            Equation 53 

where  ̇    is the generation required to supply a demand of  ̇   . The fraction of electricity 

lost,    , is taken to be 7.0% for consideration of the current grid (DECC 2011) and is given as 

7.4% for the future hypothetical grid considered (Foxon 2013). Electrical losses occur primarily 

(74%) in the distribution system, with 22% occurring in the transmission system and non-

technical losses such as meter theft accounting for the remaining 4%. 

Of the electricity generated in 2010, 4.13% was used by the electricity industry (excluding the 

1.28% of electricity used for pumping in pumped storage systems) (DECC, 2011 Table 5.6). 

This consumption is accounted for by using the “net” electricity generated for each plant type in 

Table 8 and Table 5.  

4.6.4 Carbon emissions factors 

The generation totals from each type of generating plant are used with carbon emissions factors 

for each plant type to calculate the total CO2 emissions. The mass of CO2 emissions resulting 

from the generation of electricity to supply the heating system,    , (in kg) is calculated as the 

sum (across the types of generating plant) of the products of the generation required and the 

emissions factor for that generation type ( [
 ̇

 ̇
]
 
). For the average mix assumption, that is: 
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Equation 54 

For the CO2 emissions based upon the marginal mix assumption (   ), the appropriate 

generation (   ) is used (instead of    ). 

4.6.5 Energy and exergy requirements 

Mean energy (   ) and exergy (   ) requirements are calculated in a similar way to carbon 

emissions, but considering the average energy requirement for energy of each plant type (Table 

5) and the ratios between the enthalpy and exergy content of fuels given in Table 6, 

respectively. For the average mix assumption, these are calculated as: 

    ∑   

 

     
Equation 55 

    ∑     

 

    
Equation 56 

For the marginal mix assumption, the appropriate generation (   ) is used to calculate the 

energy (   ) and exergy (   ) requirements.  

4.6.6 Historic UK grid generation mix 

Historic data on generation in the UK is made available by Elexon (2012). This consists of 

generation totals (in MW) for each type of generation plant, measured every five minutes. Data 

for 2009, 2010 and 2011 is used; three years are used to decrease the effect of anomalies (e.g. 

Sizewell B was closed for 6 months in 2010). Generation data for just under 0.3% of the time-

steps was either missing or discarded because of either an irregular timestamp or unreported 

generation data. The missing generation totals for these time-steps (typically in the order of an 

hour at a time) were reconstructed by linear interpolation from the nearest known generation 

totals. Some small generating units are omitted from the balancing mechanism reports and so 

are not included in these data (e.g. small scale wind) but these units are not considered 

dispatchable and are unlikely to affect the results. 

Considering the historical case (in this case, data are for 2009), illustrated in Figure 30; as total 

electrical demand increases, the share of this demand being met by generation from coal power 

plants increases. This resulted in a higher mean carbon emissions factor (CEF) for electricity 

generated at times when demand was higher but a higher marginal carbon emissions factor 
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(MEF) when demand is mid-range (corresponding to a higher gradient for the coal generation 

plot at these times). 

 

Figure 30: Relative contribution from coal and gas generating plant to meet demand, 30 minute periods 

through 2009. Data from Elexon 2012 

4.6.6.1 Generating plant responsiveness 

The gradients of the average plots in Figure 30 are the average responsivenesses of coal plant 

and CCGT plant. That is, the ratios between the changes in generation from each plant type and 

the total change in generation. Notably, the responsiveness of coal plant is higher for the middle 

range of total electrical demands. This may be due to a combination of factors such as the 

relatively slow ramp rate of coal plant, the need to maintain some flexibility and the variation in 

the relative costs of the fuels. However, it is clear that these responsivenesses are not constant 

with time and accurate calculation of the associated marginal emissions factors and primary 

energy requirements will therefore need to take this variation into account. 

For each time period, the responsiveness of each generating plant type was calculated as the 

change in generation from that plant type divided by the change in total generation over the 

same period. Overall, these ratios will indicate the extent to which each generating plant type is 

used to meet changes in electrical demand. However, at times there will be uncharacteristically 

high or low responsiveness for particular plant types due to generating companies switching 
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from one plant type to another (e.g. for operational reasons). If total generation increases only 

very slightly but a CCGT plant is ramped up to replace a coal fired plant, the apparent 

responsiveness of the CCGT plant would be very high for that period. To compensate for this 

effect, the average responsiveness across several time periods is calculated, weighted according 

to the absolute value of the total change in generation in each time period, Equation 57: 

(
  ̇ 

  ̇ 

)
 

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 ∑[(

  ̇   

  ̇   

) 
|  ̇   |

∑ |  ̇   |
 
   

]

 

   

  

Equation 57 

where (
  ̇ 

  ̇ 
)
 

̅̅ ̅̅ ̅̅ ̅̅ ̅
 is the weighted average responsiveness of plant type   for the set of time-periods 

 , in  .   ̇    is the change in power generated by generating plant type   and   ̇    is the 

change in total power generation in the same period. ∑ |  ̇   |
 
    is the sum of the absolute 

value of all changes in total generation. For this study, the sets of time periods used were 

grouped according to the total generation demand at each time. The range of generation 

demands within each group was varied to ensure a comparable number of data points within 

each group. The resulting weighted average responsiveness figures are presented in Table 17 

and Figure 31. 

 

Figure 31: Variation of plant responsiveness with total demand, 5 minute periods 
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Table 17: Current responsiveness of different generating plant types to changes in demand (grouped by 

total demand) 

Generation demand 
range / GW 

Weighted average responsiveness of generating plant types (MW / MW) 

min max CCGT Coal 
Inter-

connecto
r 

Hydro 
(flow) 

Nuclear Oil 
Pumped 
storage 

18.0 24.0 0.505 0.247 -0.004 0.005 0.012 0.000 0.226 

24.0 26.0 0.466 0.308 -0.030 0.005 0.005 0.000 0.243 

26.0 27.0 0.434 0.346 -0.020 0.005 0.003 0.000 0.230 

27.0 28.0 0.400 0.371 -0.004 0.004 0.002 0.000 0.224 

28.0 29.0 0.389 0.417 -0.010 0.008 0.002 0.000 0.191 

29.0 30.0 0.379 0.447 -0.022 0.009 0.004 0.000 0.181 

30.0 31.0 0.359 0.470 -0.008 0.011 0.001 0.000 0.165 

31.0 32.0 0.339 0.476 -0.009 0.012 0.000 0.000 0.179 

32.0 33.0 0.316 0.482 0.006 0.014 0.000 0.000 0.177 

33.0 34.0 0.302 0.485 0.008 0.014 0.000 0.000 0.186 

34.0 35.0 0.296 0.469 0.019 0.012 0.001 0.000 0.197 

35.0 36.0 0.295 0.470 0.018 0.010 0.001 0.000 0.201 

36.0 37.0 0.296 0.498 0.009 0.012 -0.001 0.000 0.182 

37.0 38.0 0.285 0.498 0.016 0.014 0.002 0.000 0.167 

38.0 39.0 0.270 0.487 0.043 0.019 0.001 0.001 0.171 

39.0 40.0 0.254 0.436 0.075 0.018 0.003 0.001 0.201 

40.0 41.0 0.239 0.395 0.088 0.019 0.004 0.002 0.245 

41.0 42.0 0.272 0.398 0.084 0.019 0.000 0.003 0.220 

42.0 44.0 0.279 0.390 0.094 0.016 0.002 0.004 0.210 

44.0 46.0 0.304 0.375 0.102 0.017 0.003 0.006 0.192 

46.0 48.0 0.296 0.341 0.119 0.021 0.001 0.012 0.207 

48.0 51.0 0.276 0.284 0.148 0.023 0.002 0.017 0.243 

51.0 53.0 0.248 0.213 0.209 0.029 0.001 0.021 0.269 

53.0 57.0 0.216 0.137 0.268 0.037 0.000 0.041 0.295 

57.0 62.0 0.202 0.107 0.134 0.071 0.006 0.068 0.373 
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This shows a general trend for the responsiveness of CCGT plant to reduce as total electrical 

demand increases with the responsiveness of coal-fired plant increasing to a peak at around 35 – 

40GW total demand before decreasing. Pumped storage shows a reasonably high 

responsiveness across the range of total electrical demands. However, the overall supply from 

and to pumped storage is relatively low, it is likely that this responsiveness is due to the way in 

which the grid is balanced rather than representing a longer term response to changes in 

demand. Hawkes (2010) accounts for this effect by attributing the supply from pumped storage 

to the plant mix used to store electricity. Here, a simpler method is used; the responsiveness 

values are normalised such that their sum (i.e. the total responsiveness) is always one, see 

Figure 32.  

 

Figure 32: Variation in plant responsiveness, excluding pumped storage and normalised to unity. 

4.6.7 Hypothetical dispatch model 

To consider alternative grid mixes, a hypothetical dispatch model is required. The dispatch 

model used takes a modified merit order approach, similar to the FESA model (Barton et al. 

2013; Barnacle et al. 2013).  
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4.6.7.1 Calculating total generation demand 

Firstly, the total required generation for that time period ( ̇   ) is calculated. This is calculated 

as the sum of the generation required to supply the demand at that time. In this study, three 

demands are considered; that from electric heating ( ̇    ), electric vehicle (EV) charging 

( ̇    ) and that other uses of electricity ( ̇    ).  

 ̇     ̇      ̇      ̇     Equation 58 

Electric heating demand is calculated as the sum of the heating power demand across all 

dwellings. The associated generation requirement is calculated from demand by taking 

transmission and distribution (T&D) losses into account. 

 ̇     (  ̇ )
 
         Equation 59 

where (  ̇ )
 
 is the sum (across the population of dwellings) of heating system power 

demands during time period   and     is the fraction of electricity generated which is lost 

during transmission and distribution. 

Although it is not a focus of this study, EV charging demand is considered separately as there is 

clear rationale to assume that it will follow a daily profile which is different from that of historic 

generation demands.  In this study, it is assumed to follow the daily profile which is shown in 

Figure 33. The peak charging level is calculated such that the total EV charging demand through 

the year corresponds with the scenario being considered. The real charging profile will, of 

course, vary dynamically but this profile is considered to provide a good compromise which 

takes the change in the overall shape of the demand profile into some consideration without 

excessive complication. Transmission and distribution losses are taken into account in the same 

way as for heating. 
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Figure 33: Assumed EV daily charging profile 

The generation required to meet other demands ( ̇  ) is assumed to follow the same pattern as 

present (i.e. 2009 - 2011) generation ( ̇  ).  

The factor,    , is the ratio of modelled future generation (excluding heating and EV) to 

current generation: 

where the yearly totals (e.g.  ∑  ̇   
 
   ) are given in the scenario. Note that   ̇   is the total 

generation demand due to heating which is predicted in the scenario that the model uses, not the 

amount which is actually calculated by the model. The yearly totals for the Transition Pathways 

scenarios are presented in Table 18. 

 ̇         ̇     Equation 60 
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Equation 61 
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Table 18: Electricity generation and demand in Transition Pathways scenarios. Data from Foxon et al. 

2008; Foxon 2012. 

Supply / 
Demand 

Scenario (totals given in TWh/yr) 

MR2020 MR2035 MR2050 TF2020 TF2035 TF2050 CC2020 CC2035 CC2050 

Nuclear 48.85 88.75 125.07 21.87 21.61 19.69 53.38 118.37 146.38 

Hydro 5.57 5.57 5.57 5.57 5.57 5.57 5.57 5.57 5.57 

Tidal & Wave
 
 3.42 29.78 29.78 2.4 24 24 2.4 24 24 

Wind 50.37 112.11 170.96 44.68 63.07 84.1 57.82 86.72 115.63 

Connector 20.6 23.58 20.64 21.18 21.79 14.63 19.91 25.59 21.09 

CHP 28.12 28.22 28.34 73.23 130.96 134.63 28.8 28.86 28.89 

Biomass 9.93 7.37 5.73 9.04 3.8 2.37 9.04 6.08 4.66 

Coal CCS 18.16 81.3 84.34 15.76 21.07 11.86 15.77 31.54 31.18 

Gas CCS 0 87.3 84.34 0 24.36 12.78 0 89.35 63.3 

CCGT 144.24 23.74 0.77 82.83 0 0 118.22 0 0 

Coal 68.60 0.00 0.00 49.96 0 0 62.48 0 0 

Generation 
exc. pumped 

storage 
397.86 487.72 555.54 326.52 316.23 309.63 373.39 416.08 440.7 

Supply (after 
T&D losses) 

369.61 450.22 511.64 309.4 308.4 309.5 347.9 392 409.5 

E heating 
demand 

32.42 60.58 73.47 12.7 13.3 12.7 29.1 52.2 59.9 

E Vehicle 
demand 

2.33 22.58 37.78 2.1 33.9 37.4 2.2 29.4 32.8 

 

4.6.7.2 How generation demand is satisfied 

A modified merit-order dispatch model is assumed: 

A. Generation from nuclear and hydro are assumed to follow the same pattern as present, scaled 

to match the totals in the scenario. An example of historic output from nuclear power plants (in 

January 2009) is given in Figure 34. 
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Figure 34: Example of historic generation from nuclear power plants. Data from Elexon 2012. 

B. Tidal generation is assumed to follow a sinusoidal pattern, varying with an amplitude of 25% 

over a 28 day period and with an amplitude of 100% over a 12.4 hour period. 

 

C. Wind generation is modelled using algorithms developed by Sturt (Sturt & Strbac 2011; Sturt 

2011) for the purpose of assessing the balancing requirements that the intermittency associated 

with wind generation brings. The model is designed to capture both the short term transitional 

characteristics as well as the longer term statistical parameters of the aggregate output of wind 

farms across the UK. It takes into account the varied generating patterns which are likely with a 

mix of on-shore and off-shore wind farms. The model uses a second-order auto-regressive 

function with time-steps (here) of 30 minutes. Different parameters are used to calibrate the 

model for each season. The model produces “wind generation factors”. The total output is 

calculated as the product of these factors and the total wind farm generation capacity. This 

capacity is sized to match the total wind output in the scenario. An example of the output from 

the model is given in Figure 35. 
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Figure 35: Example of modelled wind generation profile (model by Sturt 2011) 

D. Interconnectors are assumed to export electricity when dispatchable generation (i.e. 

excluding nuclear, hydro, tidal and wind in this case) would otherwise be less than 3GW so that 

some control is maintained. If export would exceed the interconnector capacity then generation 

is constrained. If the required dispatchable generation is more than 3GW then the interconnector 

imports a fraction of this power. The fraction is fixed and selected so that the total net imports 

match the scenario. 

E. Unless constrained, generation from CHP is assumed to be from large scale industrial 

applications and follows a diurnal sinusoidal output, varying by +/- 25%.  

F. Generation from biomass is assumed to contribute a fraction of demand remaining after these 

generators, up to its maximum capacity. 

G. Generation from coal plant with carbon capture and storage (CCS) is assumed to form a 

fraction of remaining demand (typically 50% but adjusted to fit total Coal CCS generation in the 

scenario). When generating at above 75% of total generating capacity, the fraction is reduced 

(typically to around 25%), up to the maximum plant capacity. 

H. Gas CCS plant is assumed to follow a similar pattern, taking the remaining generation 

demand.  

I. Gas CCGT plant without CCS meets the remaining demand (i.e. when the CCS plant is 

operating at above 75% generating capacity).  

Using this hypothetical grid, the marginal contribution from each plant type to meet a particular 

change in demand is calculated as the difference between their generation calculated with and 

without the additional generation to meet that demand. However, for comparison with Figure 
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31, the variation in the plant responsivenesses for the hypothetical grid model is shown in 

Figure 36. 

 

Figure 36: Variation in plant responsiveness with total demand (modelled for MR2035 scenario) 
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4.7 Occupancy and Appliance models 

The CREST Active occupancy model has been adopted (Richardson et al. 2008). Because the 

implementation of the model which is available (in VBA) is for a single day and a single 

dwelling, it was necessary to adapt it. Rather than generating a use pattern for the whole day for 

each appliance in turn, the status of each appliance is modelled and then the model moves to the 

next time-step. 

4.7.1 Active Occupancy model 

This uses “Transition probability matrices”. Two matrices are used for each possible number of 

residents in a dwelling (i.e. one to five in this case); one for days in the weekend and one for 

days in the week. Each matrix describes the probability, during each 10-minute period, of 

moving from a current number of active occupants to each of the other possible numbers of 

active occupants. Once every 10 minutes, for each dwelling, these probabilities are used with a 

random number generator to select a transition to a new number of active occupants. 

 

 

Figure 37: Example of active occupancy profile. Modelled by Richardson et al. (2008) 

The heat gains from the occupants,  ̇  , are calculated by assuming that each active occupant 

generates 147W of heat and that each dormant occupant generates 84W of heat (i.e. 1.4 met and 

0.8 met, respectively, over an assumed body area of 1.8m
2
 (ISO 2005)). It is assumed that there 

are no dormant occupants between 06:00 and 21:00. Between 21:00 and 06:00, it is assumed 

that the number of dormant occupants is the total number of residents minus any who are active. 
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4.7.2 Appliance model 

Appliances are assigned to each dwelling based on a probability distribution for each type of 

appliance. Different operating regimes are available to determine their on-off characteristics of 

each appliance: 

 Most appliances have a probability of starting that is dependent upon the probability of 

an activity happening. This is in turn dependent upon the active occupancy in the 

dwelling and is calculated in a similar way.  

 Appliances such as fridges operate on a fixed cycle of a period of operation and then a 

period of inactivity.  

The length of time for which the appliance will operate is determined when it is turned on. If the 

active occupancy falls to zero while it is “on”, the operation of appliances which generally 

involve user interaction is effectively paused. Most appliances have fixed operating and standby 

power consumptions, the exceptions are washing machines and tumble dryers which have a 

predefined cycle that determines variations in power demand. 

Lighting is based on a set of bulbs for each dwelling. For each time period when a given 

irradiance threshold is met, there is a probability distribution for each bulb turning on which is 

also a function of the number of active occupants. At the time that it is turned on, the duration 

for which it will be illuminated is determined from another probability distribution. 

Electric storage heaters and bar heaters are included as a possible appliance in the CREST 

model but are excluded from this model as each heating system is modelled separately in more 

detail. Heat gains from appliance operation are based upon the electrical consumption of the 

appliance scaled by a factor depending upon an estimate of the heat which remains within the 

building (e.g.100% for light bulbs and TVs, 20% for dish washers and washing machines). 

Graphs of typical power demand profiles over a 48 hour period for a single dwelling, 12 

dwellings and 140 dwellings are given in Figure 38: 
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Figure 38: Example electrical demands for dwellings over 48 hour period. 
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4.8 Climate 

4.8.1 Background to climate data for building simulation 

Several sources of climate data were used during the development of the model. Initially, actual 

metrological recorded data was used. This is appropriate when studying the measured heat 

demand at a specific location but does not provide any indication of how typical that demand 

might be. International Weather for Energy Calculations data (ASHRAE 2001) was therefore 

used for earlier studies (Cooper et al. 2011b). These data were generated by selecting typical 

data from a set of DATSAV3 hourly weather data collected between 1982 and 1999.  

More recently, probabilistic models of UK future climate have been made available; as the UK 

Climate Projections 2009, UKCP09, (Jones et al. 2009; DEFRA 2009). This has been used to 

generate Test Reference Year (TRY) climate data for various UK locations, at different levels of 

probability under medium and high emissions scenarios under the “PROMETHEUS” project 

(Eames et al. 2010). The TRY data consists of the “average” month selected from each set of 30 

years. The data was selected to provide representative temperature and solar irradiation data, 

matching the overall means but also the hour by hour variance that is typical. This means that 

TRY data is suitable for assessing the average heating requirements in a building but not for 

assessing the extreme demands that may occur. Although the datasets contain information on 

other parameters such as wind speed, it is possible that these aspects of the data are not as 

representative.  

The use of modelled future climate data to consider the effect of climate change on building and 

heating performance has some precedent. Kharseh et al. (2011) investigated the effect of linear 

temperature increases for Sweden, Syria and Saudi Arabia (i.e. considerable cooling loads) on 

the performance of a GSHP, plotting the conditions under which average power consumption 

increases and decreases. Jenkins et al. (2008) study of ASHP performance relating to an office 

block used TRY data, adapted using morphing algorithms to match the parameters suggested in 

2002 by the UK Climate Impacts Program (Belcher et al. 2005). However, more recent work 

(for example, Jenkins et al. 2011) has tended to use the PROMETHEUS datasets based on the 

UKCP09 model. 

4.8.2 Climate data used in this study 

Given the potential discrepancy in results from using different datasets (Bhandari et al. 2012), 

these datasets are used for all of the modelling in this study, not just those relating to future 

conditions. Datasets for four UK locations (Cardiff, Leicester, Central London and Glasgow) 

were selected (see Figure 39). These have been selected as representative of inland and coastal 
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locations with a range of latitudes. The datasets relating to the medium emissions scenario 

(“a1b”) and the 50% (median) probability level were selected. The air temperature variation 

throughout the year is shown in Figure 40 for Heathrow modelled in the period 1961 – 1990 and 

2020 – 2049. 

 

Figure 39: Climate locations selected 

 

 

Figure 40: Typical outside air temperature variation throughout year for Central London 

Within the model, the values for outside air temperature and solar irradiation are calculated by 

linear interpolation between the two adjacent hourly values. The hourly values are offset by a 

London Cardiff 

Glasgow 

Leicester 
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random time of up to 10 minutes in order to simulate some of the variance which might occur 

over a neighbourhood. 

If an additional solar PV system were to be added to the model, it would be necessary to add 

additional stochastic variation to the irradiance profile if minute by minute changes in 

generation are to be captured (e.g. to study net local electrical demand as per Richardson & 

Thomson, 2012) .  

  



128 

4.9 Implementation of model 

4.9.1 Use of Visual Basic for Applications 

The model was written using Microsoft Excel 2010 Visual Basic for Applications (VBA). VBA 

was selected for several reasons: 

 Earlier models were created in Excel and so it was a natural progression from 

automating some processes using VBA through to implementing the main functions 

using it. 

 Easy input / output streams. Keeping all data on the spreadsheet facilitated rapid 

development and verification that functions were operating correctly. 

 Compatibility with other models. Several of the component models already used VBA 

(e.g. the occupancy model). 

 Functional accessibility. Given the large user base for Excel, there are fewer barriers to 

others using or continuing development of the model. 

 Sufficient support for objects to enable them to be used to represent each sub-system. 

This makes the structure of the code easier to read and more logical. 

To facilitate any future addition of modules (for example a solar PV system), all calls to 

functions relating to individual dwellings are made by the dwelling class rather than directly 

from the main procedure or from other objects relating to that dwelling. For example, the 

“dwelling” object calls the “target heat generation” function from the “heating control” object 

and then passes this as an argument to the “heating system” object, rather than the “heating 

system” object calling it directly. 
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4.9.2 Verification of implementation 

In addition to selecting appropriate models for the various components of the systems being 

simulated, it is necessary to confirm that they have been correctly implemented. Several sets of 

results are presented in this subsection to demonstrate that the outputs from the implementation 

of the model appear to be as they should be. 

Figure 41 shows the profiles of the outside air temperature, the programme temperature, inside 

air temperature and building fabric temperature. In this case, the heating is disabled and there 

are no internal gains. Two profiles for the outside air temperature are shown, one from the input 

outside air temperature file and one after processing by the model; they are identical, 

demonstrating that the outside air temperature data is being correctly handled. Similarly, the 

temperature programme profile is as specified. The inside air and building fabric temperature 

profiles lag the outside air temperature profile as expected, with the inside air temperature 

remaining slightly lower and responding slightly quicker when the two are distinguishable. 

 

Figure 41: Temperature profiles, no heating 

Figure 42 shows the temperature profiles for the inside air, the heater heat exchanger and the 

building fabric along with the power consumed by an ASHP (“B” in this case) and the rate of 

heat generated by it. In this case, the target heat generation control is replaced with a function 

which linearly ramps the target heat generation from 0kW to 12kW over the first 24hr (i.e. hour 

48 to hour 72) and then ramps it back to 0kW over the next 24hr. DHW consumption is 

disabled. The minimum heat generation, eight modulation steps and maximum heat generation 

can be observed to match the specification of the heat pump. The electrical power consumption 

follows the general profile of the heat generation but increase as the heater heat exchanger 

temperature increases or the outside air temperature decreases. The temperature of the heat 
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exchanger responds rapidly to the increasing rate of heat generation but the thermal inertia of 

the heat emitter system is sufficient to smooth out the steps. The inside air temperature responds 

slightly slower and demonstrates further smoothing. The inside air achieves a maximum 

temperature of around 30°C just over three hours after the ASHP starts generating heat at it 

maximum capacity. This is around 40°C lower than the heater heat exchanger which is 

consistent with the steady-state heat transfer rates which should be expected.  

 

Figure 42: Temperature and energy flow profiles, ramped heat demand 

Figure 43 shows similar results obtained with ASHP A with DHW demand included. The 

smooth ramp in heat generation can be observed (i.e. reflecting the fact that the unit is capable 

of continuous modulation) along with the higher (10kW) maximum thermal output of the unit, 

resulting in slightly higher maximum heat exchanger and inside air temperatures. Until around 

hour 52, DHW heating takes priority until the upper bound of its desired tank temperature is 

reached. The system switches to “DHW-only” heating twice more before the temperature of the 

heat exchanger is hot enough (around hour 60) that heat transfer to the room and to the DHW 

tank occur simultaneously. Whenever heat is directed entirely to heating DHW, the heat 

delivered by the emitters decreases and the heat exchanger temperature subsequently increases. 

The COP of the unit at peak power output is around 2.5, consistent with the high flow 

temperature which occurs during this operation. 
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Figure 43: Temperature and energy flow profiles, ramped heat control with DHW 

In Figure 44 and Figure 45, results are shown for the ASHP when it is operated in a more 

representative fashion, maintaining a temperature profile of 21°C during the day and 16°C at 

night. Under these conditions, the unit switches to heating the DHW tank several times, as 

expected, and reasonable air temperatures and heat exchanger temperatures are observed. The 

electrical demand profile is consistent with the heat generated and the known performance of 

the unit at these approximate conditions. The unit appears to switch to DHW heating at 

appropriate points, during which heat is directed away from the heat emitters. The unit achieves 

a typical COP of just more than 3, accurately reflecting the lower flow temperatures which it 

needs to supply. 

 

Figure 44: Example temperature profiles associated with ASHP A 
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Figure 45: Example heat and power flows associated with operation of ASHP 

Figure 46 and Figure 47 show equivalent results for the same conditions but with a 160kg buffer 

tank installed. The temperature of the buffer tank is typically 3°C lower than heat exchanger 

when it’s being heated before dropping to around the same temperature when the heat flow 

between them is reduced. Exponential heating and cooling curves are discernable in the buffer 

tank temperature profile, with the heating occurring more rapidly. Because the buffer tank is 

used with on-off flow control to maintain room temperature, the air temperature can be 

observed to cycle above and below the programme set point within the 2°C deadband specified 

for it. As might be expected, the buffer tank results in fewer, longer cycles in which typically 

the unit completely shuts off for a period. An initial “spike” in the rate of heat delivery from the 

buffer tank to the emitters can be seen to occur and can be attributed to the initially high 

temperature difference between the buffer tank and emitter system / inside air. The rate of heat 

delivered then decreases as the flow temperature drops before stabilising as the ASHP brings 

the buffer tank temperature back up.  
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Figure 46: Example temperature profile with ASHP and buffer tank 

 

Figure 47: Example heat and power flows with ASHP and buffer tank 

Equivalent profiles are shown in Figure 48, Figure 49, Figure 50 and Figure 51 for SE-mCHP B 

without and then with a 160kg buffer tank. Similar characteristics can be observed but with 

generation (i.e. negative consumption) of electricity. As with the ASHP, the introduction of the 

buffer tank leads to fewer, longer cycles. 
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Figure 48: Example temperature profiles for SE-mCHP B 

 

Figure 49: Example heat and power flows for SE-mCHP B 

 

Figure 50: Example temperature profiles for SE-mCHP with buffer tank 
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Figure 51: Example heat and power flows for SE-mCHP with buffer tank 

Figure 52 and Figure 53 show the equivalent data for SOFC-mCHP A. This is operated 

continually around its peak electrical efficiency and a supplementary burner is employed to 

satisfy the additional heat demand. The operation of the supplementary burner and its fuel 

consumption are consistent. 

 

Figure 52: Example temperature profile for SOFC-mCHP A 
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Figure 53: Example heat and power flows for SOFC-mCHP A 

Active occupancy and appliance consumption models have been taken with relatively little 

modification. Typical profiles for two resident and four resident houses are given Figure 54 and 

Figure 55. These show the correct number of occupancy levels with transitions at times which 

might be expected. Baseline appliance use (i.e. fridges and freezers) can be observed with 

additional appliance use mainly dependent upon occupancy patterns.  

 

Figure 54: Example of active occupancy and appliance electrical demand for house with two residents 
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Figure 55: Example of active occupancy and appliance electrical demand for house with four residents 

The sum of appliance power demand across 128 dwellings is shown in Figure 56 along with the 

power demands for the same period if ASHPs are fitted in all dwellings. The diversity which 

occurs demonstrates that the model generates separate profiles for otherwise identical dwellings 

and sums them correctly. Temperature profiles are shown for one house in the neighbourhood 

for the same time period in Figure 57. The “cost” and “price” profiles match the general shape 

of the electrical demand profile and can be seen to correspond directly to adjustments in the 

target temperature profile relative to the original programme temperature profile. In this 

example, this can be seen to successfully limit the total power demands of the neighbourhood. 

In this example, all 128 dwellings used the same default temperature programme but with a 

random time offset of up to an hour. The effect of this can be seen in the fact that the target 

temperature profile for this dwelling is initially unaffected (as the heating systems in a 

significant number of the other dwellings have not yet switched on) but then progressively 

decreases over the next 30 minutes. 

 

Figure 56: Example of neighbourhood power demand 
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Figure 57: Example of temperature profiles and DSM control 

The profile of the grid generation mix can be produced by the model as an output from the 

module which calculates the mix which any electrical consumption is generated by. For the 

present day mix, this should be identical to the input data (it is, see Figure 58) demonstrating 

that the data is inputted and processed correctly. 

 

Figure 58: Example of grid generation mix, present day 
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Of course, there is nothing to compare the equivalent hypothetical future grid mix to but it 

follows the correct pattern in terms of the dispatch prioritisation and approximate magnitudes of 

the different generating plants (see Figure 59). The overall totals are consistent with those 

specified in the scenarios (see Table 18, page 118).  

 

Figure 59: Example of grid generation mix, MR2020 scenario 
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5. Results and Discussion 

5.1 Summary of factors investigated in results 

The results in section 5.2 to section 5.7 are concerned with investigating the first three sets of 

factors specified in the first aim of this study. The performance of the 8 ASHPs detailed in 

Table 3 and the 12 mCHP units detailed in Table 4 are considered before more detailed analysis 

is presented for selected units. The effects of varying the building type, the capacity of buffer 

tanks and the control methodologies listed in section 4.3.4 are discussed. 

Section 5.2 presents an overview of the performance of the ASHP units before considering the 

effect that the building characteristics, buffer tank and control methodology has on performance. 

These effects are explained, primarily by relating the factors to the flow temperature which is 

required. The energy and exergy requirements and CO2 emissions associated with two selected 

ASHPs are then compared to a condensing gas boiler in section 5.3. Section 5.4 provides an 

overview of the performance of the mCHP units under a similar set of operating conditions 

before the effect of each factor is considered in more detail in section 5.5.  

The third set of factors to be considered requires additional investigation of the effect of some of 

the variations in the control system which are possible; this is presented in sections 5.6 and 5.7. 

The performance results relating to some of the mCHP units suggest alternative operating 

methodologies and so these are explored in section 5.6. Results in section 5.7 then finish 

fulfilling the third aim by discussing the effect which three alternative temperature programmes 

may have on the performance of the units.  

Results in section 5.8 relate to the effect which changes in the climate may have on the 

performance of the units. Typical climate data obtained for four locations in the UK and 

modelled up to 2050 is used, covering the range of climate conditions which are relevant. 

Section 5.9 also considers future conditions but relating to the grid generation mix. The effects 

of generation mixes corresponding to three hypothetical scenarios in periods up to 2050 are 

compared to the current electrical grid. Section 5.8 and 5.9 address the requirements of the 

fourth and fifth aims of this study, respectively. 

Sections 5.10 and 5.11 continue the theme of the effect of grid characteristics but relating to the 

influence of DSM on the performance of the units, fulfilling the sixth aim of this study. Section 

5.10 considers DSM corresponding to network constraints in a neighbourhood of 128 dwellings 

heated by either a single type of heating unit or a combination of them. Section 5.11 considers 

the potential effect on ASHP performance of DSM signals which are influenced by MEF of 

electricity generation.  
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5.2 Effect of operating conditions on ASHP performance 

This section considers the effect on the performance of the 8 ASHP units listed in Table 3 (page 

23), when they supply heat to the four building types listed in Table 10 (page 78), using the 

three control methodologies listed in section 4.3.4 (page 86).   

For the two control methodologies which are used with a buffer tank (fixed temperature and 

variable temperature control), three buffer tank capacities (40kg, 80kg and 160kg) are used. 

Figure 60 shows the total heat delivered and electrical energy consumed by the ASHP units 

operating for a year in the 224 permutations derived from these options. Outside air temperature 

data representative of present-day Glasgow has been used and in each case the control system 

aims for a constant indoor temperature of 21°C. 

 

Figure 60: Heat delivered and electrical energy consumed by different ASHP units 

Figure 60 provides an overview of data which will be examined in greater detail in the pages to 

follow. However, it can be immediately noted that there is considerable spread from the average 

COP (that is the gradient of a linear line of best fit in Figure 60) of a given ASHP; this is 

illustrated with the lines of best fit for ASHP A and ASHP B which are representative of state-
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of-the-art and mid-range ASHPs which are available (Table 3, p23). When the full range of 

ASHPs which are available is considered, it is apparent that the range of performances which 

might be encountered is very wide; some installations will consume more than 150% more 

power than others supplying a similar quantity of heat. 

The data in Figure 60 are presented again in Figure 61, but categorised by building type rather 

than ASHP unit. It can be seen that the heat demand associated with the flat and the semi-

detached building with improved insulation are, in this case, quite similar. For each building 

type there is some variation in the heat delivered but large variation in the power consumption, 

as noted earlier. The enhanced heat emitter system slightly reduces the heat supplied to the 

dwellings (lower flow temperatures reduce storage losses) but considerably reduces the power 

consumption of the units. 

 

Figure 61: Heat delivered and electrical energy consumed by ASHPs in different building types 

The relative thermal comfort between systems is given some consideration in Figure 62. This 

shows the variation in the time-integral of the pseudo-PMV (divided by an assumed heating 

season of 120 days) for both ASHP A and a gas boiler operating with the seven different control 
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system and buffer tank configurations. The four columns within each group correspond to the 

four buildings. There appears to be a considerable spread between dwellings and between 

configurations, with the boiler providing superior thermal comfort. However, this impression is 

largely an effect of the unfamiliar units used. A PMV of -0.1 is equivalent to an average 

temperature drop of just under 0.8°C in these conditions and so it is unlikely that the differences 

noted here would be readily discernable.  

 

Figure 62: Variation in thermal comfort with ASHP A and a condensing gas boiler 

Figure 63 illustrates the range of average seasonal COPs which the ASHPs achieved under each 

set of conditions. The heat delivered is used to calculate the COP (i.e. any losses from buffer 

tanks are taken into account). The four columns of results within each main group correspond to 

the four building types. Within each grouping, the relative performance difference between the 
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ASHP units remains fairly constant; the best units achieve COPs up to 50% higher than the 

lowest performing units. The performance of ASHP B generally corresponds to the higher end 

of the larger (lower performing) group of ASHPs in the Energy Saving Trust (2010) field trial. 

 

Figure 63: Average COP achieved 

Although the COPs are slightly increased in some cases by larger buffer tanks, this is offset by 

increased demand for heat. To make the effect of the different control system and buffer tank 

combinations clearer, Figure 64 presents the PER for each configuration (calculated based upon 

mean generating plant mix and averaged across building types), relative to the PER using the 

proportional control system. 
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Figure 64: Primary Energy Requirements for ASHPs, relative to cases with proportional control 

The ASHPs all achieve a higher COP when using the proportional control methodology 

compared to the alternatives. The PER is increased by 20% - 30% when using variable 

temperature control (“weather-compensated”) rather than proportional control. The fixed 

temperature control system achieves the lowest performance. A similar reduction in 

performance associated with fixed temperature systems has been noted elsewhere (Kelly & 

Cockroft 2011; Dunbabin & Wickins 2012). 

In apparent contrast to other studies, some small improvement is observed in the COP of the 

systems in the dwellings with higher heat demands (i.e. the larger and less well insulated 

buildings). However, this can be explained by considering that they will demand heat at times of 

the year that the other buildings do not require heating; that is, they have a longer heating 

season that allows the ASHPs to operate more efficiently at times of higher air temperature, 

increasing their average COP. All things being equal, the performance of the heating system at a 

given point in the year will still be higher if the building has a lower heat demand. 

In each case, the most significant factor which can be varied by the operating conditions is the 

flow temperature. Some sample operating profiles for ASHP B will be discussed to illustrate 
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this (taken from simulations of the semi-detached building during the period from 48 hours to 

96 hours from the start of the year, with outside air temperatures representative of Glasgow and 

averaging 2.5°C for the period shown). Figure 65 provides a winter temperature plot when 

proportional control is used. 

 

Figure 65: Temperature profile for ASHP B, proportional control 

The short spikes in the temperature of the heat exchanger correspond to times at which the 

temperature of the domestic hot water (DHW) tank is too low and the heat pump raises its 

output to its full capacity in order to bring it back within tolerance (see Figure 66). Apart from 

these times, the temperature of the heat exchanger generally finds an equilibrium at around 

50°C with small variations either side which can be attributed primarily to the stepped 

modulations of the unit (see Figure 66). 

 

Figure 66: Heat flow profile for ASHP B, proportional control 
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The corresponding temperature profile, for the same conditions but using the variable-

temperature controller is shown in Figure 67 (with an 80kg buffer tank). The DHW tank 

temperature is not shown; generally the heat exchanger temperature remains hot enough that it 

is not necessary for the heat pump to enter “DHW only” operation. The inside air temperature 

fluctuates slightly more due to the 2°C dead-band of the thermostatic control of the heat emitter 

system but is, on average, higher than that with proportional control. 

 

Figure 67: Temperature profile for ASHP B, variable temperature control 

The on-off cycle of the heat emitters varies from around three hours on to one hour off during 

the night to around one hour on to one hour off during the day. Although a lower flow 

temperature could be used with continuous operation of the heat emitters, actually ensuring an 

acceptable level of thermal comfort would be problematic due to the additional gains that are 

not accounted for but which might not contribute during a particular period. The proportional 

control system can operate with the lower flow temperature primarily because it takes account 

of these other gains and can use a lower heat transfer rate. A significant secondary effect is the 

removal of the temperature losses across the buffer tank heat exchanger. 

If heat emitters with a greater capacity are used then the flow temperature can be reduced. 

Figure 68 and Figure 69 show the temperature profile with the same conditions (proportional 

and variable temperature control, respectively) but using enhanced heat emitters in the building. 
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Figure 68: Temperature profile for ASHP B, proportional control with enhanced heat emitters 

 

Figure 69: Temperature profile for ASHP B, variable temperature control with enhanced heat emitters 

The flow temperature is significantly reduced with the resultant improvement in performance 

noted in Figure 63. Although an even lower flow temperature is used by the proportional control 

system, the improvement in the COP which is achieved is greater with the variable-temperature 

system. This is partly due to the DHW having a relatively larger effect with the proportional 

control system and partly due to the fact that the absolute reduction in flow temperature is less 

with the proportional control system as it was already low.  
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The effect of the enhanced heat emitters is shown across the range of units for both proportional 

and variable-temperature control in Figure 70. 

 

Figure 70: Improvement in COP due to enhanced heat emitters 
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5.3 Comparison between ASHPs and boilers 

This section considers the results relating to ASHP A and ASHP B in more detail and compares 

them to a condensing gas boiler. PER, exergy and CO2 emissions are considered. The effect of 

the buffer tank size and building properties are also noted. 

The PERs associated with the operation of the three units are compared in Figure 71.  

 

Figure 71: Primary Energy Requirements for Gas Boiler, ASHP A & ASHP B 
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Improving the insulation level of the building approximately halves the PER in most cases. The 

PER associated with each ASHP is less than that associated with the condensing gas boiler in 

almost every case. However, the performance of the boiler is less affected by the buffer tank and 

control system configuration and so the PER is approximately equal between the boiler and 

ASHP B in the case that fixed-temperature operation is used with the 160kg buffer tank. As 

noted above, using a more effective heat emitter reduces the PER associated with the operation 

of the ASHP units when fixed-temperature or variable-temperature control is used and to a 

lesser extent when proportional control is used. The PER of the ASHPs is slightly less with the 

80kg buffer tank than with either the 40kg or 160kg buffer tank. 

ASHP A has less than half the PER of the gas boiler if proportional control is used with 

enhanced heat emitters.  

Because the CEF associated with energy from the grid are presently higher than those associated 

with natural gas, the comparison shifts in favour of the gas boiler if CO2 emissions are 

considered instead (Figure 72). The emissions associated with ASHP A are still considerably 

lower in each case (up to 40% lower) and those associated with ASHP B are lower than those 

from the gas boiler in all cases which use proportional control. However, when using variable-

temperature control, the emissions associated with ASHP B installed in the semi-detached house 

are similar to those from the gas boiler. When using fixed-temperature control, the CO2 

emissions associated with ASHP B are higher than those from the gas boiler in all three building 

types. 
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Figure 72: CO2 emissions associated with condensing gas boiler, ASHP A and ASHP B (mean grid mix 

method) 

The marginal emissions factor (MEF) is typically higher than the CEF. If a consequential study 

is being conducted to consider the effect of replacing condensing gas boilers with ASHPs then 

the MEF is arguably more relevant (Hawkes 2010). The emissions associated with the heating 

units when using this method are illustrated in Figure 73. 
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Figure 73: CO2 emissions associated with condensing gas boiler, ASHP A and ASHP B (marginal grid 

mix method) 

Although the emissions associated with ASHP A are still lower than those from the condensing 

gas boiler if a proportional control system is used, they are actually higher if fixed-temperature 

control is used within the semi-detached house. With the variable-temperature control system 

and a 40kg buffer tank, ASHP A will still result in lower emissions than the gas boiler if used 

with enhanced heat emitters but not if used with the conventional heat emitters in the semi-

detached house. The emissions associated with ASHP B are higher in almost all cases under 

these assumptions. 
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More generally, these results show that a range of performances may be achieved. In comparing 

the units, single figures to summarise the performance of the technologies will often be 

misleading. It is also clear that the nature of the study comparing the units will have a large 

bearing on the results. For example, whether the study is most concerned with the efficient use 

of energy resources, the CO2 emissions from a whole system perspective or the change in CO2 

emissions which would occur when replacing one type of unit with another. 

The exergy content of the energy flows at each stage in Figure 11 for the condensing gas boiler, 

ASHP A and ASHP B are shown in Figure 74. The reduction in the exergy content of the flow 

across each heating unit is most notable. In the cases with the ASHPs, the drop is much lower 

because the unit partially compensates for the low exergy content of the heat by supplying more 

of it. However, there is a larger drop between the primary exergy resource and the unit itself 

because of losses incurred in the generation of electricity.  

The final use exergy is similar in each case as the inside air temperature and DHW temperature 

are relatively consistent but the exergy content entering the emitter system is higher in the cases 

requiring higher temperature flows (e.g. those with conventional emitters). Most of the 

variations considered in these results so far have related to this exergy loss (i.e. the exergy 

destruction in the emitter system) as the exergy efficiency of each ASHP unit is quite consistent 

(see Figure 13). However, the losses relating to the generation of electricity are also significant.  
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Figure 74: Exergy flows associated with condensing gas boiler, ASHP A and ASHP B  
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5.4 Overview of mCHP performance 

This section provides an overview of the performance of the 12 mCHP units listed in Table 4 

(page 38). These have been modelled with the same four building types (Table 10, page 78) and 

control methodologies (section 4.3.4, page 86) but with six buffer tank sizes, ranging from 40kg 

to 1280kg. 

The average thermal and electrical efficiencies achieved by the units operating with these 

permutations are presented in Figure 75. The average efficiencies relate to the GCV of the fuel 

input to the units and the net electrical and thermal outputs from the units. 

 

Figure 75: Average thermal and electrical efficiency achieved by mCHP units 

The average total efficiency achieved by most of the units is between 60% and 80% but there 

are four units that do not achieve an average of 60% total efficiency. SE-mCHP B exceeds 90% 

total efficiency in some circumstances. In most cases, the average electrical efficiency achieved 

by each unit is relatively consistent but the thermal efficiency varies considerably with 
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operating conditions. The exceptions to this are units PEMFC A, PEMFC C and SOFC C which 

achieve a wider range of average electrical efficiencies. As they each have a relatively slow 

maximum rate-of-change of output, the nature of the loads that they supply has a large effect on 

the proportion of time spent ramping between different output levels (most of which are sub-

optimal for electrical efficiency). This effect is explored in more detail for PEMFC C in section 

5.6, below. Unit PEMFC B is smaller than the other PEMFC-mCHP units and so it operates at 

full capacity for a larger proportion of the time, achieving a more consistent electrical 

efficiency. Units SOFC A and SOFC B would demonstrate a similar range of average electrical 

efficiencies but in these simulations, their output has been constrained to a narrow range in 

order to optimise their performance; the effect of different operating regimes on their overall 

performance is also explored in more detail in section 5.6. 

Supplementary gas boilers were assumed to supply any unmet heating demand if it exceeded 

500W in the five units with thermal capacities of less than 4kW (i.e. ICE-mCHP B, PEMFC B, 

SOFC A, SOFC B and SOFC C). The use of this supplementary heating is shown by 

comparison between Figure 75 and Figure 76. Figure 76 illustrates the system thermal and 

electrical efficiencies, where the fuel input to both the mCHP unit and the supplementary burner 

are taken into account along with the heat delivered by the system (i.e. losses from buffer tanks 

are taken into account). 

For the units which are not used with supplementary burners (for example the SE-mCHP units 

in these simulations), the system electrical efficiencies shown in Figure 76 are the same as the 

unit efficiencies shown in Figure 75 but there will be some reduction in the thermal efficiencies 

due to the additional losses which are taken into account. These vary depending upon operating 

conditions and so tend to increase the range of the system thermal efficiencies, relative to the 

unit thermal efficiencies, as shown in Figure 76. 
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Figure 76: System efficiencies achieved with mCHP units 

Given that the supplementary burner is modelled with a high thermal efficiency (90%), the 

effect of using it is generally to increase the thermal efficiency, slightly increase the total 

efficiency and decrease the electrical efficiency of the systems relative to the efficiencies of the 

mCHP units themselves. This effect is more significant in systems where the mCHP unit has a 

relatively low thermal capacity. It is most noticeable in the case of SOFC A and SOFC B which 

now exhibit a discernable spread of efficiencies. The two groupings which appear for each unit 

are due to the different thermal demands of the building types and the corresponding different 

proportional contribution from the supplementary burner. In the cases of ICE-mCHP C and 

some scenarios involving PEMFC B, the system electrical efficiencies are reduced to be 

approximately the same as those achieved by SE-mCHP B. 

These effects can also be illustrated by comparison between the exergy efficiencies of the units 

and the systems. Figure 77 illustrates the exergy efficiency of four selected mCHP units and 

their corresponding systems under various conditions; these are plotted against the fraction of 

the total energy which is supplied as electrical power. 
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Figure 77: Exergy efficiency of selected mCHP units and systems 

SE-mCHP B does not need to use the supplementary burner so only a small reduction in the 

exergy efficiency between the unit and the system is observed. This is primarily due to the 

reduction in temperature at which heat is supplied (to the inside air rather than the buffer tank). 

The total energy efficiency of the system based on ICE-mCHP C is similar to that of the unit 

itself; however, because a lower power fraction (i.e. more heat) is required, there is no way to 

maintain the same exergy efficiency (to do so would require more than 100% energy 

efficiency). The smaller SOFC unit, SOFC A is more affected than SOFC B by the inclusion of 

the supplementary burner energy flows as it requires proportionally more heat from it. The 

systems operate with a high power fraction by exporting a large proportion of the electricity 

generated and so exergy efficiencies of 30% to 55% are still achieved. However, if the power 

fraction were reduced by either a larger heat demand or by restrictions on the export of 

electricity then it would be impossible to maintain the same system exergy efficiency. 
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5.5 Comparison between mCHP units  

This section uses the results from the simulations used for the overview in section 5.4 but 

presents more detail in terms of the CO2 emissions and PER associated with each mCHP unit 

and the way in which these vary as the building properties, buffer size and control methodology 

are altered.  

Figure 78 and Figure 79 show the range of performances of the mCHP systems, expressed in 

terms of the net PER associated with them.  

 

Figure 78: PER of SE-mCHP and ICE-mCHP systems 
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The net PER includes a reduction corresponding to the grid electrical generation displaced by 

electricity generated. In these results, this is calculated using the mean generation mix method. 

The scale on each y-axis is the same but the different range on the SOFC graphs should be 

noted. The proportional control system cannot be used with a supplementary burner in this 

model and so results are not presented for that configuration (i.e. “configuration 1”) with those 

units.  

Within this set of parameters, SE-mCHP A has a slightly higher PER associated with it than the 

gas boiler. SE-mCHP B, on the other hand, achieves a significant saving (in the order of 25%). 

This is surprising, given the similar nominal characteristics of SE-mCHP A and SE-mCHP B. 

There are four factors that contribute to the superior performance of SE-mCHP B in this 

modelling. Firstly, although the nominal efficiencies of the units are similar, SE-mCHP B does 

achieve a slightly better electrical and thermal efficiency. Secondly, SE-mCHP A requires 

significant power consumption (57W) for almost 30 minutes after being turned off. This is not 

reported for other units and so is not modelled for them; it may represent a deficiency in the 

model that overestimates the net electrical output from SE-mCHP B (and possibly other units) 

but this seems unlikely given the detailed nature of the data sources used (e.g. Lipp 2012). 

Another potential error is the absence of a reduced electrical efficiency during warm-up in the 

model of SE-mCHP B. Perhaps most significantly however, SE-mCHP B is capable of 

modulating its output and maintains an electrical efficiency comparable to SE-mCHP at much 

lower outputs. Similar explanations are appropriate to the PER associated with SE-mCHP C but 

this is a larger device and its relatively high electrical efficiency will be more significant. 

The performance characteristics of ICE-mCHP A and ICE-mCHP B are quite similar and so the 

PER associated with them are also similar. ICE-mCHP B has a slightly lower PER in some 

cases which is largely due to its capacity to modulate. Despite having only slightly lower 

thermal and electrical efficiencies, the PER associated with ICE-mCHP C is generally higher, 

due to the use of the supplementary burner. It still achieves savings relative to the conventional 

boiler but these are only in the order of 10%. The PER associated with the operation of the 

combustion-based units is not significantly affected by the size of the buffer which they are used 

with, it seems that the advantage of the improved operating characteristics (for example, longer 

run times) is offset by larger thermal losses from the larger tanks. Unit SE-CHP A has a PER 

1.2% lower when using the 640kg buffer tank compared to the 40kg buffer tank but this 

improvement is eliminated if a 1280kg tank is used. A similar effect is noted by Beyer & Kelly 

(2008).  

Despite achieving high electrical efficiencies under optimum conditions, several fuel cell based 

mCHP units have high PERs associated with them. To understand some of the reasons for this, 
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the effect of alternative operating regimes on the performance of PEMFC C, SOFC A and 

SOFC B are explored in more detail in the next section (5.6). 

The PERs associated with PEMFC A and PEMFC C can be seen to decrease (by approximately 

15% and 8% respectively) when used with the enhanced heat emitters (variable temperature 

control with 40kg buffer configuration). This is primarily due to the improved thermal 

efficiency of the units when operating at lower flow temperatures. It is possible that in practice a 

similar efficiency improvement would be observed with PEMFC B but insufficient data was 

available to calibrate the effect of a lower flow temperature on the thermal efficiency of the unit. 

However, the proportionally large contribution to heating from the supplementary burner used 

with PEMFC B is likely to reduce this effect. 

 

Figure 79: PER of PEMFC-mCHP and SOFC-mCHP systems  
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5.6 Fuel Cell mCHP alternative operating characteristics 

Given the variation in the performance achieved by the fuel cell units, several alternative 

operating regimes for SOFC A, SOFC B and PEMFC C have been investigated and the results 

are presented in this section. 

For SOFC A and SOFC B, five alternative operating regimes have been modelled. The resulting 

electrical efficiencies of the units and the systems (i.e. including supplementary burner fuel) are 

illustrated for SOFC A and SOFC B in Figure 80 and Figure 81, respectively. 

 

Figure 80: Electrical efficiency of SOFC A 

 

Figure 81: Electrical efficiency of SOFC B 

Four of the regimes consist of the units operating either with or without restrictions on the rate-

of-change of their output and either allowing them to operate across their full range or 

restricting their low output operation (i.e. the units are not allowed to operate with a heat output 

less than 50% of their capacity). The fifth modelled regime is running the units continuously at 
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their peak electrical efficiency. These permutations are modelled with the conventional semi-

detached building and six buffer sizes from 40kg to 1280kg.  

With either system, the main issue reducing the electrical efficiency of the unit is time warming 

up and cooling down at less than optimal electrical efficiency. This is mitigated by a large 

buffer tank as it requires less cycling of the unit or by hypothetically increasing the maximum 

rate of change that the unit can achieve as this results in less time being spent at the sub-optimal 

conditions. The best efficiency is, of course, achieved by running the unit consistently at its 

optimum efficiency. The system electrical efficiency is reduced by the additional fuel used by 

the supplementary burner. In the case of SOFC A, a system electrical efficiency of just over 

30% can still be achieved with the smallest buffer. The system electrical efficiency of a system 

with a large buffer tank could feasibly exceed this as less fuel is needed by the supplementary 

burner; alternatively if the rate-of-change of output of the unit is unrestricted, a system electrical 

efficiency of around 35% might be achieved. In the case of SOFC B, the smaller supplementary 

heating requirement results in a higher system electrical efficiency; in the case of unit being 

operated continuously the system electrical efficiency just exceeds 45%. With buffer tank sizes 

greater than 320kg, it appears that the units with a lower maximum rate-of-change achieve a 

higher efficiency than those with an unrestricted rate of change. This is perhaps due to the 

slower units not leaving their optimal output range before a greater or lesser heat demand 

changes the direction in which their output is trending. It illustrates that in practice, the units 

may require complex operating logic that does not only consider the optimum performance of 

the unit but also how its output affects other systems. 

The high electrical efficiency of these SOFC-mCHP units makes the overall impact of their 

operation sensitive to the way in which electricity is generated by the grid. Figure 82 shows the 

PER and CO2 emissions associated with each of the devices in each configuration if it were 

operating within the current grid, and the “Transition Pathways Thousand Flowers” scenarios 

for 2020 (TF2020), 2035 (TF2035) and 2050 (TF2050) (see chapter 4, section 4.6.3).  

The results for the current grid follow a similar pattern to the system electrical efficiency results. 

By operating SOFC B continuously, the net PER and CO2 emissions are effectively negative as 

the PER and CO2 emissions saved due to the avoided grid electrical generation more than 

offsets the impacts due to the operation of the unit. In fact, all configurations of SOFC B result 

in negative net CO2 emissions and most configurations can achieve a negative net PER if the 

buffer tank is larger than 300kg. With SOFC A, very low net CO2 emissions can be achieved if 

it is operated continuously or if a large buffer tank is used. 
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Figure 82: PER & CO2 emissions from SOFC-mCHP systems 

TF2020 has a more efficient grid generation mix with lower emissions associated with it. The 

savings from each SOFC are reduced, with the units which operate continuously affected the 

most (as they rely on the savings associated with displacing the generation of electricity by the 

grid). The PERs of the SOFC A configurations are all quite consistent. SOFC B still achieves a 

significant negative net PER if operated continuously. Because of the reduced CEF for the grid, 

both units have approximately the same CO2 emissions associated with them in each 

configuration. These are comparable to those which would occur with a condensing gas boiler. 
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With the TF2035 grid, PER reductions still occur with SOFC B operating continuously but 

these configurations actually incur the highest CO2 emissions (now almost three times the 

emissions which would occur with a condensing gas boiler). The PER in the majority of the 

other configurations has increased relative to TF2020 but not significantly. The CO2 emissions 

from SOFC A are also significantly higher than those from a condensing boiler and are 

consistent across the different configurations. The grid PER and CO2 emissions factors are only 

slightly improved between TF2035 and TF2050 so the results for the SOFC units are slightly 

worse but follow the same general patterns. 

It seems that continuous operation is the best option (of those considered) for both SOFC units 

at the present. If operated in a context with a grid CEF lower than that in TF2020 (i.e. just under 

300gCO2/kWh), then other operating regimes have the potential to result in lower CO2 emissions 

but these will exceed those associated with a condensing gas boiler. The limit on the rate-of-

change imposed upon the SOFC units does not appear to be a constraint on their performance in 

the scenarios for which it is beneficial to use the units. 

PEMFC C was modelled with seven variations on its unit parameters in addition to its default 

properties, again supplying heat to the semi-detached building. Four increased maximum rates-

of-change were simulated (twice, five times, 10 times and 20 times the default rate). As PEMFC 

C achieves maximum electrical efficiency with a thermal output lower than its peak heat 

capacity, a simulation was conducted with output limited to the point at which peak efficiency 

occurs in the hope that the unit would operate at this point for a greater proportion of the time. 

The sixth variation simulated was to operate the unit continuously at its peak electrical 

efficiency and the seventh option was similar, allowing the output to decrease below this level 

but not to turn off completely. Resultant average electrical efficiencies, PER and CO2 emissions 

are shown in Figure 83, Figure 84 and Figure 85 respectively. 
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Figure 83: Electrical efficiency of PEMFC C with alternative unit parameters 

 

Figure 84: PER of PEMFC C with alternative unit parameters 
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Figure 85: CO2 emissions associated with PEMFC C with alternative unit parameters 

The operating modes in which the PEMFC-mCHP unit is not allowed to turn off are clearly 

ineffective, resulting in much higher PERs and CO2 emissions. The electrical efficiency of the 

PEMFC-mCHP units is not high enough to justify their use if the thermal energy produced 

cannot also be used effectively. Increasing the rate-of-change which the unit can accommodate 

does improve the overall performance of the system but there are relatively small returns for 

increasing the rate of change above 25W/s in this case (equivalent to ramping from minimum to 

maximum output in around four minutes) and only very small improvements above 50W/s. 

Using a larger buffer tank improves the performance of the system but not to the same extent as 

the hypothetical improvements in the rate-of-change. Using a larger buffer tank enables the 

PEMFC-mCHP units to operate at a reasonable output (i.e. achieving high electrical efficiency) 

for longer rather than cycling between high and low output levels (both of which entail lower 

electrical efficiencies). 

  



170 

5.7 Effect of alternative temperature programme profiles 

It is unlikely that all occupants will wish to maintain an inside air temperature of 21°C 

continuously. This section will look at the effect of using the three alternative temperature 

profiles listed in section 4.3.1 (page 81). The first profile is the default (continuous), the second 

profile considers a night-time setback and the third profile is continuous at 18°C.  

It may be that occupants find that a cooler air temperature with additional radiant or other local 

heating provides equivalent thermal comfort to air maintained at 21°C. The research to 

determine the parameters which might achieve this are well outside the scope of this study but it 

is hoped that identifying the effect of using the lower temperature programme (18°C) will 

indicate the scope for such a study. 

The performance of two ASHP units (ASHP B and ASHP H) and four mCHP units (SE-mCHP 

B, ICE-mCHP B, SOFC A and SOFC B) have been simulated as these cover the range of 

characteristics which are of most interest. These are modelled with the semi-detached house and 

the semi-detached house with improved insulation and heat emitters. The units which perform 

well with proportional control (the ASHPs and SE-mCHP) are modelled with proportional 

control and variable-temperature control with a 160kg buffer tank. The other units which are 

less suited to proportional control are modelled with both an 80kg buffer tank and a 320kg 

buffer tank. The SOFC units operate continuously at their optimum electrical efficiency while 

ICE-mCHP B and the supplementary burners for the SOFC units use variable-temperature 

control.  

Figure 86 shows the variation in heat supplied under each permutation. This is quite consistent 

between units apart from the SOFC units which generate a surplus of heat. In most cases, 

slightly more heat is generated when the larger buffer tank is installed. As might be expected, 

there is a reduction in the heating demand as the average air temperature is reduced. The houses 

with night-time setback have around 85% of the heat demand of the houses maintained at 21°C 

and the houses maintained at 18°C have around 75% of the heat demand. The saving is slightly 

less in the better insulated houses as DHW demand (which is unaffected) forms a larger 

proportion of demand. 
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Figure 86: Heat supplied under different temperature programmes 

The net PER and CO2 emissions associated with SOFC B are strongly negative (Figure 87). 

They both decrease (i.e. become more negative) as the average inside air temperature and 

associated heat demand decrease as this reduces the demand for the supplementary burner to 

operate. 

The PER and CO2 emissions associated with the other systems are shown in Figure 88 and 

Figure 89 respectively. 
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Figure 87: Effect of temperature programme on SOFC B performance 

 

Figure 88: Effect of temperature programme on PER of selected units 
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Figure 89: Effect of temperature programme on CO2 emissions from selected units 

The performance of SOFC A largely reflects that of SOFC B but with a proportionally greater 

effect from the supplementary burner which decreases in the better insulated house and in the 

scenarios with the lower average internal air temperatures. 

The CO2 emissions from the two combustion-based mCHP units also reduces as heat demand 

decreases but the effect is slightly less marked for the temperature profile with the night-time 

set-back compared to the other heating units. This may be due to additional heat losses as the 

temperature profile transitions to the cooler period. However, the effect is small and does not 

affect the overall trend. 

The power demand of the ASHPs decreases with the reduced heat demand. It is worth noting 

that even with the default, continuous warmer temperature programme, the ASHPs with the 
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proportional control system have lower PER and CO2 emissions than those with the cooler 

temperature programmes using variable-temperature control. Interestingly, the COP of the 

ASHPs operating in the improved buildings (i.e. improved insulation and heat emitters) 

decreases as the average inside air temperature decreases while the COP of the ASHPs 

operating in the standard buildings increases as the average inside air temperature decreases (see 

Figure 90). A lower internal air temperature will tend to improve the COP of ASHPs by 

decreasing the flow temperature which is required (as less heat is required and the flow 

temperature to achieve a reasonable temperature differential is reduced). However, the heating 

season will be shorter, covering a period in which the average outside air temperature is cooler, 

decreasing the COP of ASHPs. Another factor affecting the performance of an ASHP when 

night-time setback is used, is the period of typically an hour in which the heat delivery rate (and 

therefore flow temperature) is increased in order to achieve the increase in inside air 

temperature at 07:00.  

 

Figure 90: Effect of temperature programme on ASHP COPs 
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5.8 Effect of climate 

This section considers the effect that climate has on the performance of heating units by 

simulating them with Test Reference Year (TRY) data typical for Glasgow, London, Cardiff 

and Loughborough. TRY data representative of the present has been used along with data 

obtained which is modelled to be representative of median estimates of the climate in those 

locations in the 2030’s and the 2050’s. Eight units are considered: ASHP A, ASHP B, ASHP H, 

SE-mCHP B, ICE-mCHP B, SOFC A and SOFC B. Each simulation was repeated with the 

model of the conventional semi-detached house and the semi-detached house with improved 

insulation and enhanced heat emitters.  The PERs calculated in this section do not include the 

effect of changes to the grid generation mix between the present and 2050.  

The annual heat supplied by the units to the conventional semi-detached house is plotted in 

Figure 91 against the corresponding mean ambient air temperature. 

 

Figure 91: Effect of climate on heat delivered to semi-detached house 

As with previous results, the SOFC units generate surplus heat but there is a clear trend of 

warmer outside air temperatures leading to a decrease in the heat supplied. There are a few 

minor anomalies to this trend; the heat demand in Loughborough slightly exceeds that in 
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Glasgow despite a slightly warmer average air temperature. This is probably due to the 

distribution of temperatures being more even in Glasgow (a coastal city, see Figure 39, with a 

temperature standard deviation of 5.7°C to 5.9°C) than in Loughborough (temperature standard 

deviation of 6.2°C to 6.4°C). A location which experiences a greater range of temperatures will 

have more cold days and hot days for a given average temperature. This effect increases if the 

heat supplied to the semi-detached house with improved insulation is considered as its heating 

demand is proportionally more weighted to the coldest days, Figure 92: 

 

Figure 92: Effect of climate on heat delivered to improved house 

When considering the PER of SOFC B, this tendency for more consistent climates to have 

lower heating demands is amplified by the fact that the unit supplies constant baseload heat 

(Figure 93). The PER (in the conventional house) is 10% to 15% higher in Loughborough than 

Glasgow despite the average air temperature being typically slightly lower in Glasgow. 

Similarly, the PER in Cardiff (temperature standard deviation 5.6°C to 5.9°C) is consistently 
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lower than that in central London (temperature standard deviation 6.0°C to 6.4°C) despite lower 

average air temperatures in Cardiff.  

 

Figure 93: PER of SOFC B in different climates 

The same trend (but less pronounced) can be seen in the COP of ASHPs in conventional semi-

detached houses (Figure 94) but is not significant in ASHPs installed in houses with improved 

insulation and heat emitters (Figure 95). 

Interestingly, the average COP of the highest performing ASHP (the hypothetical ASHP H) 

actually decreases very slightly with increased ambient air temperatures. This is possibly due to 

the combination of little potential for reduction of the ASHP flow temperature along with the 

larger range of temperatures anticipated for the future climates. 

The PER of SE-mCHP B, ICE-mCHP B and SOFC A follows the same pattern as the heating 

demand for each location when used in the standard semi-detached house; there is no clear 

pattern regarding the actual performance of each unit (Figure 96). When used in the house with 

improved insulation, the increased variability of the heat demand is reflected in the PERs of the 

units (Figure 97). 
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Figure 94: Effect of climate on ASHP average COPs (standard house) 

 

Figure 95: Effect of climate on ASHP average COPs (improved house) 
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Figure 96: Effect of climate on PER of selected units (semi-detached house) 

 

Figure 97: Effect of climate on PER of selected units (improved house)  
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5.9 Effect of grid generation mix 

This section considers the effect of the electrical grid generation mix on the relative 

performance of the units. Six units have been simulated within the context of the grid generation 

mixes suggested by the Transition Pathways project’s “Central Co-ordination” (CC), “Market 

Rules” (MR) and “Thousand Flowers”(TF)  scenarios for 2020, 2035 and 2050 (see Table 18, 

page 118). The systems are ASHP B, ASHP H, SE-mCHP B, ICE-mCHP B, SOFC A and 

SOFC B. Each simulation was repeated with the model of the conventional semi-detached 

house and the semi-detached house with improved insulation and enhanced heat emitters.  

Figure 98 and Figure 99 show the different CO2 emissions associated with the units in the 

conventional semi-detached house and the improved building, respectively. If a comparison 

between the units is to be based upon the CO2 emissions which could be attributed to them, 

treating all electrical demands equally, then the “mean” methodology is appropriate for 

calculating the CO2 emissions. In this case, although the SOFC-mCHP units would provide the 

lowest CO2 emissions when operated with the current grid conditions and operation of ASHP B 

would be responsible for the highest emissions, the situation rapidly changes in all three 

scenarios. By 2020, the ASHPs provide the lowest carbon solution except in the case of the MR 

scenario where SOFC B still does. By 2035 it is likely that using a SOFC-mCHP unit 

continuously would result in much higher CO2 emissions than other solutions unless the gas 

used to fuel them is decarbonised. The CO2 emissions associated with SE-mCHP B and ICE-

mCHP B would remain comparable to those from a condensing gas boiler but would not 

provide the savings which are required. 

If the comparison between the units is intended to investigate the consequences of selecting one 

unit over another then it is more appropriate to use the “marginal” methodology for calculating 

the emissions. In this case, the mCHP units have more favourable performance. The option with 

the lowest CO2 emissions at the moment is the SOFC units, by a considerable margin (see 

Figure 100 and Figure 101). Selecting an ASHP would result in the highest CO2 emissions of 

these alternatives; ASHP B is actually likely to cause more CO2 emissions than a condensing 

gas boiler. The difference between the options is decreased in the 2020 scenarios but the SOFC 

units still offer the lowest CO2 emissions of the options considered with SOFC B still achieving 

significant negative net CO2 emissions. However, significant decarbonisation of the marginal 

plant between 2020 and 2035 (primarily CCS-equipped plant in these scenarios) reverses the 

situation in each 2035 scenario. The SE-mCHP B and ICE-mCHP units have emissions 

associated with them that are slightly lower than a condensing gas boiler in these cases. 
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Figure 98: Effect of grid mix on CO2 emissions, mean calculation method with semi-detached house 

 

Figure 99: Effect of grid mix on CO2 emissions, mean calculation method with improved house 
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Figure 100: Effect of grid mix on CO2 emissions, marginal calculation method with semi-detached house 

 

Figure 101: Effect of grid mix on CO2 emissions, marginal calculation method with improved house 
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The effect on the PER of the units is less dramatic as the use of nuclear and CCS-equipped 

power plants in the scenarios tends to reduce the CO2 emissions associated with them more than 

the PERs (see Figure 102 and Figure 103). After decreasing relative to the current situation, the 

PER of the ASHPs is consistently low but remains significant (in contrast to the CO2 emissions 

associated with them). The PER of SOFC B remains low throughout each scenario and is 

negative even in 2050 in the TF scenario due to the (on average) less efficient generating plant 

used in it. However, the PER of SOFC A increases with time and is amongst the highest in most 

of the scenarios. The PERs of the two combustion-based mCHP units tend to increase slightly 

with time as the electricity which they displace is generated with a lower PER but the effect is 

relatively small given the dominance of their heat output over electrical output.  

Although measures which reduce energy will generally cause a corresponding reduction in CO2 

emissions at present, this correlation will almost certainly weaken as the grid is decarbonised.  

The PER associated with the units in each scenario, calculated relative to the marginal PER of 

electrical generation (i.e. the change in PER caused by selecting one technology over another) is 

more interesting and is illustrated in Figure 104 and Figure 105. The PER calculated using this 

methodology is relatively consistent across the technologies across the scenarios. This is 

because despite the average efficiency (in terms of primary energy) improving across each 

scenario, the marginal plant in each case is invariably dominated by some form of combustion-

based plant (e.g. CCS-equipped plant or biomass CHP). These have relatively low efficiencies.  

In each scenario, the mean primary energy efficiency of the marginal generating plant slightly 

increases by 2020 relative to the present which has the effect of reducing the PER for the ASHP 

units and increasing the net PER for the mCHP units. However, between 2020 and 2035, this 

trend is reversed as more CCS-equipped plant is used, increasing the PER associated with the 

ASHPs and decreasing the PER associated with the mCHP units. 

In the CC and MR scenarios, the trend is reversed again between 2035 and 2050, with marginal 

PERs returning to similar values to those observed at present. However, in the case of the TF 

scenario, an increase in the use of low-efficiency biomass CHP units causes the average 

marginal efficiency to drop further, favouring the units with high electrical exports such as 

SOFC B. This finding is highly sensitive to the efficiency which is assumed for the biomass 

CHP in this scenario which is, in turn, sensitive to the way in which it is assumed that the fuel 

input is distributed between the generation of heat and electricity and also assumptions 

regarding the allocation of energy inputs for biomass. However, it does illustrate that despite 

decarbonisation of the grid making the SOFC-mCHP units almost inevitably unfavourable from 

an emissions perspective in the future, there are feasible scenarios in which they are arguably 

favourable from an energy perspective. 
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Figure 102: Effect of grid mix on unit PER, mean calculation method with semi-detached house 

 

Figure 103: Effect of grid mix on unit PER, mean calculation method with improved house 
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Figure 104: Effect of grid mix on PER, marginal calculation method with semi-detached house 

 

Figure 105: Effect of grid mix on PER, marginal calculation method with improved house  
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5.10 Demand Side Management based upon local 

grid constraints 

This section considers the effect of DSM control based upon local grid constraints on the 

performance of some of the units. A neighbourhood of 128 dwellings is modelled in each case. 

The dwellings are based upon the standard semi-detached house for the first set of results, 

illustrating the demand patterns which might currently occur. Subsequent results relate to the 

“improved house” (i.e. the semi-detached building with improved insulation and heat emitters) 

and grid electricity generation based upon the MR2035 scenario (see Table 18, page 118). Each 

simulation is run for a period of one month (representative of January) as the most extreme 

power flows are expected then; it is likely that the strength of any DSM signal based on local 

network constraints would be less in other months and that their effect on system performance 

would be correspondingly lower. Figure 106 illustrates the distribution of power flows which 

might reasonably be expected if all 128 semi-detached houses are fitted with the same heating 

unit. In the case with condensing gas boilers, the power demands range from a minimum of just 

under 15kW (i.e. each dwelling drawing around 100W for appliances such as refrigerators) to 

about 190kW with modal values of around 20kW for the night-time and around 90kW to 

125kW for the day-time. This is consistent with the capacity of the Low Voltage transformer 

which would be probably be specified for such a neighbourhood (200kVA, Haggis 2006).  

 

Figure 106: Distribution of local network power flows with different units. 
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SOFC A is operated continuously to achieve maximum efficiency (see section 5.6) and so the 

electrical demand distribution is almost identical to that with the gas boiler but translated to the 

left by 190kW (i.e. 1.5kW per unit) resulting in significant net exports for most of the time. The 

ASHP units increase the power consumption with a modal value of around 200kW for both 

units but also a much wider range; up to 600kW in the case of ASHP B or 400kW in the case of 

ASHP H. A large range of power flows are also observed with ICE-mCHP B but are mostly 

exports from the network. In some cases these would approach 400kW. The power flows 

associated with SE-mCHP share the characteristics seen with the boiler and the ICE-mCHP 

unit; power exports do occur but have a lower magnitude (around 100kW) and, although less 

pronounced, two modes occur again. These power flows can alternatively be illustrated as the 

power flow during each time period, ordered according to the size of the power demand rather 

than chronologically. This is shown in Figure 107 for the same data presented in Figure 106. 

Plotted in each way, the net electrical energy consumed by the neighbourhood is given as the 

net area above the x-axis.  

 

Figure 107: Net demand duration curves for neighbourhoods with standard semi-detached houses 

By improving the level of insulation and heat emitters within each building, the power flows are 

reduced in the majority of cases (Figure 108). The power flows associated with the systems 

using gas boilers and SOFC-A are unaffected. However, the additional power consumption 

associated with the ASHP units is still significant and would cause a 200kVA transformer 
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supplying the neighbourhood to be overloaded for around 20% to 35% of the time (during 

January). Although the power exports associated with ICE-mCHP B are reduced, they still 

exceed 200kW for around 2% of the month. 

 

Figure 108: Net demand duration curves for neighbourhoods with improved buildings 

Figure 109 illustrates the effect of including medium (160kg) buffer tanks in the systems. The 

power flows associated with ASHP B are shown for the case with the conventional semi-

detached house to illustrate the extent to which local power infrastructure would be overloaded 

under typical present day conditions if all houses were heated using a mid-range ASHP. The 

other three cases are shown for the case with the improved houses. The two combustion-based 

mCHP units demonstrate characteristics which are more favourable to the electrical grid 

infrastructure. Although total power exports from ICE-mCHP B are increased, the largest power 

flows are decreased, with exports which exceed 200kW occurring only half as often. The ICE-

mCHP B units are relatively large and so it is the longer, more diverse operation of the units 

which occurs with buffer tanks which causes this. However, diversification alone is not enough 

to smooth the peaks in generation from the units. 
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Figure 109: Net demand duration curves for neighbourhoods, houses with buffer tanks. 

In order to supply a neighbourhood with sufficient electricity to provide heating using ASHPs, it 

would be necessary to reinforce the local network infrastructure, initially by upgrading the local 

distribution transformer. However, it is possible that the use of DSM could reduce the extent to 

which this is necessary. Figure 110 (and detail in Figure 111) show the power flow distributions 

which might be expected if all residents in the neighbourhood are prepared to accept a given 

deviation in inside air temperature at times of peak demand. 

Reinforcement would be required in each case. However, if residents accept temperature 

deviations of +1°C to -3°C then the total supply capacity required could be reduced from around 

320kW to around 260kW. This is an illustration which is specific to the conditions assumed but 

demonstrates the order of the effect which might reasonably be achieved. Although using a 

buffer tank (160kg in this case) increases the power demand at most times (see section 5.2), it 

doesn’t affect the peak demand as significantly. However, it does not appear to offer the 

potential for reductions in the peak (under these constraints), either. 

Using this DSM system will reduce the inside air temperature of the dwellings at times. Figure 

112 illustrates the CO2 emissions which would occur due to the operation of ASHP H under 

these conditions, plotted against the average pseudo-PMV in each dwelling. Note that for this 
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set of results, CO2 emissions relate to one month only and were calculated using the mean 

emissions methodology. 

 

Figure 110: Net demand duration curves for neighbourhoods using ASHP H with DSM. 

 

Figure 111: Detail of demand duration curves for ASHP H with DSM 
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Figure 112: Average CO2 emissions associated with ASHP H with and without DSM 

In addition to the emissions and pseudo-PMV associated with the different levels of DSM 

intervention, results are plotted in Figure 112 for dwelling without any DSM intervention but 

with the control coefficient relaxed (in increments of 5%) in order that comparable thermal 

comfort is achieved. In each case, an approximately linear relationship is observed between the 

pseudo-PMV and CO2 emissions. This is primarily due to the reduction in heating required if a 

lower air temperature is accepted and, secondarily, a slight improvement in ASHP COP in some 

cases due to a lower requisite flow temperature. It is also interesting to note that the units 

operating with DSM are generally associated with slightly lower CO2 emissions for a given 

pseudo-PMV. This may be due to the coincidence of the peak demands (which are discouraged) 

and higher grid CEFs. Section 5.11 will explore the potential to take advantage of this effect in 

more detail. Although less electricity is required by the ASHPs when operating with a relaxed 

control coefficient, it does not appear to significantly reduce the peak power demand associated 

with them. Figure 110 and Figure 111 include the power demands of a unit operated without 

DSM but with a control coefficient relaxed by 30% (achieving a similar pseudo-PMV to that 

when DSM can alter the target temperature by +1°C to -3°C, Figure 112). 

Another approach to potentially reduce the need for local network reinforcement is to encourage 

the use of a mix of ASHP and mCHP units within the neighbourhood. Figure 113 and Figure 

114 illustrate the power flows which might occur with various mixtures of SOFC A and ASHP 

H. 
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Figure 113: Net demand duration curves for neighbourhoods with mixes of SOFC & ASHP units 

 

Figure 114: Detail of demand duration curves for mixes of SOFC & ASHP units. 
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In the circumstances modelled here, it is possible to support around 24 ASHP H units if DSM is 

not used and heat is supplied to the other dwellings using gas boilers. This increases to around 

40 ASHP H units is DSM (+1°C to -3°C) is used. However, if a mixture of SOFC A units are 

used with ASHP H units then 84 ASHP units can be supported without overloading the Low 

Voltage transformer. If DSM is used with the ASHP units then up to 104 ASHP H units could 

be supported. This reduces to around 96 ASHP H units if the temperature range available to the 

DSM system is changed to +2°C to -2°C. The average CO2 emissions (in the context of the 

MR2035 scenario) and the pseudo-PMV associated with these arrangements are given in Figure 

115.  

 

Figure 115: Average CO2 emissions associated with mixture of SOFC and ASHP units 

As noted earlier (section 5.9), in this grid generation context, the low CEF favours ASHPs while 

disadvantaging SOFC units with their relatively large gas consumption. This means that the 

scenarios in which there are more ASHP units tend to generate fewer CO2 emissions. Even 

though a dwelling with SOFC A would be associated with higher CO2 emissions than a 

dwelling with a gas boiler in this context, if the grid infrastructure cannot be reinforced then the 

combination of SOFC mCHP units with ASHPs offers the potential for greater overall 

emissions reductions than just the ASHPs with gas boilers. The emissions associated with the 

two scenarios in which there are 104 ASHP units and 24 SOFC-mCHP units are, unsurprisingly, 

similar. The difference in the temperature range available to the DSM systems (+2°C to -2°C 

compared to +1°C to -3°C) effectively trades a reduction in thermal comfort in order to limit 

maximum net power demand to 200kW. 
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A similar arrangement could be constructed from ASHPs and combustion-based mCHP units. 

Figure 116 and Figure 117 show the power flows, CO2 emissions and pseudo-PMVs associated 

with combinations of ASHP H and SE-mCHP B. 

 

Figure 116:Net demand duration curves for neighbourhoods with mixes of ASHP & SE-mCHP B units 

  

Figure 117: Average CO2 emissions associated with mixture of SE-mCHP and ASHP units 
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A reduction in emissions can be achieved by using the SE-mCHP unit in combination with 

ASHPs (relative to using the ASHPs with boilers with a fixed grid power constraint), but it is 

not quite as large as the improvement which can be achieved with the SOFC-mCHP units. 

Additionally, the lower number of ASHP units which can be supported decreases the usefulness 

of the DSM approach in this case. 

Of the three mCHP units considered in this section, only the ICE-mCHP B unit has the potential 

to create export power flows which exceed 200kW. The relatively large size of the unit means 

that it is more likely to operate for shorter periods and sometimes the diversity across the local 

network will smooth out these peaks. However, the diversity across 128 dwellings is insufficient 

to cover all of them and so some short periods of high power export are very hard to avoid 

without some form of active central coordination, even with a relatively low number of ICE-

mCHP B units installed in the neighbourhood. 

Figure 118, Figure 119 and Figure 120 show the power flows associated with a neighbourhood 

in which an ICE-mCHP B unit is installed in each dwelling, along with the pseudo-PMV and 

CO2 emissions. Using the ICE-mCHP units without buffer tanks, it appears that it would be 

possible to limit export power flows to less than 200kW in the conditions of the scenario 

modelled. 

Although the use of the buffer tank has some benefit when DSM is not used, it seems that in 

some of the circumstances here, the combination results in higher power generation with 

exports exceeding 200kW for about twice as long as they do when DSM is not used. This is 

partly due to a combination of the additional generation which occurs when buffer tanks are 

installed but is also due to the DSM algorithm tending to discourage generation too early and 

then having reduced scope to influence demand when the power export is even higher. It would, 

no doubt, be possible to develop a more sophisticated algorithm which could mitigate this effect 

but this demonstrates that it would not be trivial.  
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Figure 118: Net demand duration curves for neighbourhoods with ICE-mCHP B. 

 

Figure 119: Detail of demand duration curves for neighbourhoods with ICE-mCHP B. 
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Figure 120: Average CO2 emissions associated with neighbourhood with ICE-mCHP B units 

In contrast to the case with the ASHP (Figure 112), the CO2 emissions associated with the ICE-

mCHP with a relaxed control coefficient are slightly lower than those with equivalent thermal 

comfort but subject to DSM. Again, however, the difference is not large and the overall trend is 

for a reduction in CO2 emissions as the psuedo-PMV is reduced. There is relatively little effect 

associated with changes in the upper bound of the temperature range available to the DSM (i.e. 

little difference between the +1°C to -3°C and the +0°C to -3°C results). This is to be expected 

as the local network is exporting for almost half of the time and net imports rarely exceed 

120kW and so there is no reason for the DSM system to discourage generation within the 

parameters set for it. 
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5.11 Demand Side Management based upon marginal 

carbon emissions factors 

The effect of using a DSM signal to encourage the operation of ASHPs when the marginal 

carbon emissions factor (MEF) of the grid is low and to discourage it when the MEF is high is 

considered in this section. This was modelled with the current grid, the three “Market Rules” 

(MR) scenarios (see Table 18, page 118) and the MR2050 scenario but with the number of 

ASHPs increased (see Table 19). The DSM signal was based upon a DSM weighting factor for 

the cost of CO2 emissions and the MEF calculated during each iteration of each time-step. Each 

DSM weighting factor is selected such that a value of one is generated for the “price of 

electricity” (i.e. the signal is neutral) when the MEF is at its average (modal) value.  

Table 19: Grid scenarios used to investigate the effect of DSM based upon marginal emissions factors 

Scenario: 2010 2020 2035 2050 2050 
+ASHP* 

Number of dwellings with ASHPs: 50,000 2.56M 5.12M 6.14M 15.4M 

DSM weighting factor: 1.7 1.8 5 5 5 

* i.e. with additional ASHPs. 

Note that each of these scenarios is repeated with and without DSM. These figures (especially for last scenario) are 
indicative as the exact totals vary depending upon the dynamic nature of the simulation.  

Each of the simulations was run for a period of 120 days. 

Each of these five scenarios was repeated with and without the DSM signal applied. A network 

of 512 permutations of dwellings was modelled to achieve an acceptable level of diversity. 

These permutations were constructed using four building types (the three main types and the 

improved semi-detached house), four climates (Cardiff, Glasgow, London and Loughborough 

adjusted as before for the future scenarios), four temperature programmes and eight 

temperature-range options for the cases with DSM (given in Table 13) or eight variations on the 

proportional controller coefficient in the cases without DSM. The power demands from the 

network of 512 dwellings were multiplied by factors corresponding to the total number of 

dwellings in each scenario (Table 19) to give the total power demand. 

An overview of the CO2 emissions associated with each of the ASHPs is given in Figure 121. 

Clearly, there is a considerable range of results with both the thermal comfort and CO2 

emissions varying widely. The broadly left to right, linear groups within each scenario relate to 

the groups of scenarios differentiated by the building specification and climate. The variation 

within each of these groups of results (i.e. with wide variation in thermal comfort but relatively 



 199 

limited variation in CO2 emissions) relates to the different temperature profiles, control system 

responsiveness and level of DSM participation in each permutation.  

 

Figure 121: CO2 emissions with grid carbon emissions factor based DSM 

The effect of the different control systems on the performance of the ASHPs can be more 

clearly observed by taking the mean results across the four climates and by considering the grid 

scenarios separately. This is shown in Figure 122 to Figure 125 for the 2035 and 2050 (with 

additional ASHPs) scenarios. The results for the scenarios in which DSM is not used are 

presented as plots rather than individual data as their range reflects a continuous set of 

possibilities which is only dependent upon the control system coefficient which is used. In each 

scenario, the different building types have a large effect on the CO2 emissions associated with 

them but a similar trend in emissions with thermal comfort.  
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Figure 122: ASHP CO2 emissions in 2035 scenarios  

 

Figure 123: ASHP performance in 2035 scenarios. 



 201 

 

Figure 124: ASHP CO2 emissions in 2050 +ASHP scenarios 

 

Figure 125: ASHP performance in 2050 +ASHP scenarios 

In the 2035 scenarios, a slight reduction in CO2 emissions is observed (approximately 3%) with 

the cases in which DSM is used compared to the cases in which it isn’t (at the same level of 

thermal comfort). This underwhelming result can be partially explained by reference to the COP 

achieved by the ASHP in each scenario. In the cases in which DSM is used, a slight reduction in 
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COP occurs which partially offsets the advantage of preferentially operating at times when the 

marginal CO2 emissions factor is lower. The reduction in COP is due to the increase in average 

flow temperature which is required in order to deliver heat more rapidly at certain times in 

scenarios which involved DSM. 

The effect of the DSM is different in the 2050 (with additional ASHPs) scenario. Rather than 

decreasing the thermal comfort, the DSM signal actually increases it. The CO2 emissions 

slightly increase with this increase of thermal comfort but not at the same rate as they do with 

the non-DSM control system.  

Referring to the demand profiles illustrated in Figure 126 and Figure 127 helps to demonstrate 

why this is. These show the profile of net dispatchable demand after wind, nuclear and other 

non-dispatchable generation have been accounted for. 

  

Figure 126: Demand profile for 24 hours in 2020 (left) and 2035 (right) 

In the 2020 scenario, the DSM signal shows little fluctuation as the MEF remains fairly constant 

across the 24 hour period, most dispatchable generation is from CCGTs without CCS.  

In the 2035 scenario there is significantly more CCS equipped plant and so the main effect on 

the DSM signal is to increase (i.e. discouraging ASHP use) when dispatchable demand is high 

and a greater proportion of additional demand would come from CCGTs without CCS (e.g. 

hours 60 to 69). In the plots for both 2020 and 2035, there is no point at which the MEF drops 

below the level of CCS plant (i.e. dispatchable plant is always required) and so the DSM does 

not encourage higher temperatures (resulting in the three sets of data in each grouping observed 

in Figure 128, corresponding to the three lower temperature deviations, -1°C, -2°C or -3°C). 

The 2035 scenarios show the greatest variation in the MEF of electricity and is subsequently the 

only scenario in which some reduction in emissions is achieved by the DSM (Figure 122 and 

Figure 128). 
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Figure 127: Demand profile for 24 hours in 2050 (left) and in 2050 with additional ASHPs (right) 

Conversely, almost all dispatchable generation is met by CCS equipped plant in the 2050 

scenarios. The DSM signal therefore rarely discourages consumption. However, there are 

periods (e.g. hours 52 to 56) when there is no dispatchable generation demand (and so 

renewable generation will be constrained) and so the DSM signal encourages consumption with 

higher temperatures. This explains the relatively higher (i.e. less negative) groupings of pseudo-

PMV values relating to these scenarios in Figure 125 and Figure 128; the DSM rarely causes a 

decrease in the temperature within dwellings in these scenarios. Although the temperatures 

within the dwellings are increased at times using the low MEF electricity, this does not lead to a 

net reduction in electricity demand at other times and so the CO2 emissions are not reduced but 

neither are they significantly increased. This finding suggests that alternative storage methods 

such as phase change materials or thermal storage which can be bypassed during warmer 

periods may decrease the CO2 emissions resulting in these scenarios. 

By averaging across buildings as well as climate, all of the results can be compared (Figure 

128). The four groupings of data which can be observed for each scenario relate to the four 

temperature programmes used. In the 2010 to 2035 scenarios, the three sets of indistinguishable 

data points within each of these groups relate to the three values of maximum temperature 

decrease which the occupants of a dwelling will tolerate (-1°C, -2°C or -3°C). In the 2050 

scenarios, the sets relate to the four values of the maximum temperature increase which are 

available to the DSM system (+0°C, +1°C, +2°C or 3°C). 

Although the DSM signal had a limited net effect on emissions in these scenarios, in most cases 

it slightly decreased the COP of the ASHP relative to the equivalent conditions without DSM, 

(see Figure 129). This suggests that other types of DSM which might use a stronger signal 

without giving consideration to the MEF of the electricity might increase the CO2 emissions 

associated with the use of the ASHPs. This potential effect should be considered when 

evaluating the relative merits of such systems. 
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Figure 128: CO2 emissions averaged across building type and climate 

 

Figure 129: Effect of DSM signal on COP of ASHP 
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6. Conclusions 

6.1 Fulfilling the aims of this study 

A new model has been developed and applied successfully to fulfil the aims of this study 

(section 3.2). This model is described in chapter 4 and has been used to generate results which 

consider the effect of the six factors listed under the first aim (relating to results, section 3.1). 

An overview of these results is given in section 5.1 before they are detailed in sections 5.2 to 

5.11. The key findings are summarised in section 6.2, below. 

6.2 Key findings 

Several key findings have been made and are summarised below. Each of these findings is 

either more comprehensively covered than elsewhere in the literature or completely novel. 

Results relating to this research have been published in conference proceedings and a journal 

paper, as noted in Appendix C.  

For a given heat demand, a state-of-the-art ASHP could consume less than 40% of the power of 

a mid-range unit installed with sub-optimal control. 

The performance of the ASHP unit itself is responsible for around half of this range. Typically 

the state-of-the-art ASHP will require 65% to 75% as much power as a mid-range unit operating 

in the same conditions. 

If the proportional control methodology is used, it typically reduces the power demands of the 

ASHP to around 77% to 84% of the demand if variable-temperature control is used. Using 

fixed-temperature control is likely to increase power demands to around 108% to 115% of that 

when variable-temperature control is used. A 30% reduction in power consumption can be 

achieved simply by changing fixed-temperature control to proportional control in some cases!  

Enhancing the heat emitter system in a dwelling could improve the COP achieved by ASHPs by 

10% to 20% if variable-temperature control is used but offers less of an improvement (up to 

10%) if proportional control is used.  

Although improving the level of insulation in a building has the potential to drastically reduce 

the heating demand (and therefore the power consumed by an ASHP), it is likely to slightly 

decrease the average COP of an ASHP (contrary to conventional advice). The lower heating 

demands (which would improve the COP) are balanced against the shorter (and therefore 

relatively colder) heating season. 



206 

A suitably installed ASHP can reduce CO2 emissions by 40% relative to a good condensing gas 

boiler (if the mean grid carbon emissions factor is used). However, a mid-range ASHP will 

typically achieve very modest emissions savings relative to a condensing gas boiler and may 

cause an increase in CO2 emissions if the installation conditions are unfavourable. If the 

marginal carbon emissions factor is considered more relevant then although it is possible to 

reduce CO2 emissions with an ASHP, it is unlikely at present and mid-range ASHPs will 

typically increase emissions (by around 35% in the examples simulated here). 

Although mCHP with high electrical efficiencies are available, the use of supplementary gas 

boilers with them will significantly reduce their system electrical efficiency. Although over-

sizing is identified as a potential issue in the literature, it seems that under-sizing could have just 

as great a detrimental effect. 

The results support the finding found elsewhere that large heat loads which allow more 

consistent operation will improve the performance of the SE-mCHP units. However, it seems 

that this improvement can also be achieved by units which maintain reasonable efficiency at 

part-load. For most of the combustion-based units, there will be an optimum buffer tank 

capacity. This is typically between 160kg and 640kg depending upon the unit and 

circumstances. 

The unit electrical efficiency of SOFC A exceeds that of the electrical grid and has significantly 

lower CO2 emissions associated with it. If a large SOFC unit with the same characteristics (e.g. 

the hypothetical SOFC B) were used without any restriction on electrical exports, the 

displacement of electrical generation would result in a net reduction in CO2 emissions 

(“negative emissions”), even if none of the heat is used. This effect is amplified if marginal 

emissions are considered in place of mean emissions but it is not clear that this would be 

appropriate for larger penetrations of the technology. 

SOFC A and SOFC B can operate with lower PER and CO2 emissions if they are run 

continuously at the power output corresponding to their peak electrical output (compared to 

heat-led operation). The effect of electrical exports more than makes up for any wasted thermal 

output. This finding makes the restrictions on the rate-of-change exhibited by the units largely 

irrelevant. 

It is relatively hard to achieve the PER or CO2 emissions savings which might otherwise be 

assumed for the PEMFC-mCHP units. The control strategy for these units will need to be more 

advanced than that used here. In contrast to the SOFC units, a higher limit on the maximum 

rate-of-change which they can achieve would improve their overall performance. A large 
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capacity buffer tank is also likely to improve their performance but the CO2 emissions savings 

achieved were less than 20% in the circumstances simulated in this study. 

The savings associated with using different temperature programmes are largely correlated to 

the reduction in heat demand. Reducing the programme air temperature from 21°C to 18°C 

tends to reduce total heat demand (and associated impacts) by around 25%. 

When considering the effect of the climate, an additional complication is the effect of the 

variability of the outside air temperature. If the air temperature is more variable (for example 

inland locations or the modelled future climates) then the heating demand tends to be higher 

relative to a more consistent climate with the same mean air temperature. This effect is 

amplified in the case of the SOFC units which provide a baseload of heat. The average COP of 

ASHPs is likely to remain consistent despite increases in the average air temperature as the 

times at which they operate are, necessarily, when it is cooler. 

The marginal CO2 emissions factors do not decrease as rapidly as the mean CO2 emissions 

factors in the scenarios considered. If mean emissions are considered then the ASHP units tend 

to be favourable in most cases by 2020. However, if marginal CO2 emissions are considered 

more appropriate then the window in which mCHP units can offer emissions reductions is 

extended by several years after this time. Additionally, the marginal PER of electricity in the 

scenarios does not significantly reduce. It is possible that some of the mCHP units will be able 

to offer PER savings in some circumstances even in the later scenarios. 

Even with the use of DSM and optimistic assumptions regarding the installation of the units, 

local grid power infrastructure will need to be reinforced if the majority of dwellings within a 

neighbourhood are to have heat supplied by ASHPs. It is possible that the use of DSM could 

reduce and delay the level of reinforcement required but only a limited reduction in the required 

capacity is possible (e.g. from 320kW down to 260kW in these scenarios). 

If reinforcement of the local infrastructure is not possible and the alternative would be a lower 

number of ASHP units, then the use of a mixture of SOFC-mCHP units in combination with 

ASHPs and DSM can reduce CO2 emissions, even in the context of a relatively decarbonised 

grid in which the SOFC-mCHP units are unfavourable on their own. 

Attempts to use DSM to discourage operation of ASHPs when the MEF of electricity is high 

and encourage it when the MEF is low had little success; the emissions reduction was similar to 

that achieved with the DSM signal which considered only local network constraints and had a 

minimal effect in both cases. 
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Innovative steps have been used during the development of the model for this research. These 

include the use of exergy interpolation for the calculation of the momentary performance of the 

ASHPs, the use of different levels of detail in the model with different time-steps in order to 

perform efficient simulations which are sufficiently accurate, plotting exergy performance 

against power-fractions, and devising new control methodologies which simulate the potential 

nature of a DSM signal. 

6.3 Conclusions 

Efficient Air Source Heat Pumps units have the potential to make PER and CO2 emissions 

savings at present but, more significantly, as a contribution to a future low-carbon society. 

However, their performance is sensitive to the conditions studied. In particular, appropriate 

control of the units can yield energy savings of around 25%. Additionally, the carbon emissions 

intensity of the grid is an important consideration. These factors should be understood when 

assessing their relative merits. 

Similarly, mCHP units demonstrate a wide range of performances which should be understood 

but also have the potential to contribute to reducing PERs and CO2 emissions. Different 

approaches will be appropriate to the control of fuel cell based units compared to combustion-

based units. SOFC units with high electrical outputs offer the greatest potential savings during 

the next 10 to 15 years. If the grid is significantly decarbonised then their potential to reduce 

CO2 emissions is reduced but in most cases, they can still offer PER savings.  
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7. Recommendations 
This study suggests several avenues of additional research which are likely to be productive. 

7.1 Additional studies involving model 

A more complete picture of the environmental performance of the technologies could be 

achieved by applying a full Life Cycle Assessment methodology. The model provides data of 

energy flows and generation in disaggregated form in order to facilitate the calculation of other 

environmental impacts associated with the consumption of fuel and generation of electricity. 

However, a complete assessment should include the other life stages of the technologies.  

The optimum frequency at which DSM signals to dwellings could be updated in order to 

achieve certain aims could be readily investigated using the model if clear criteria for the 

objectives of the DSM system were established. 

7.2 Development of modelling 

The model could be expanded to include GSHPs and similar analysis performed to investigate 

the effect of the factors considered here on their performance. The main additional complexity 

involved in this would be the construction of a thermal model for soil which has already been 

achieved elsewhere. 

Given the potential fit observed between the properties of transcritical heat pumps and the heat 

demands of a well-insulated dwelling, equivalent analysis including one would be valuable. 

Achieving acceptable fidelity would require an alternative heat exchanger model that can 

accurately represent the temperature glide which occurs as well as the mean flow temperature. 

The ability to store more thermal energy at a lower temperature could reduce the energy penalty 

of using buffer tanks, increasing the flexibility which they could provide. Additional 

development of the model could include the option for phase-change materials in the buffer 

tanks or in the fabric of the buildings. 

The model currently uses the heat generation from the heating units to describe their status 

which is then used with other parameters (e.g. temperatures) in order to calculate other energy 

flows (e.g. fuel and power). Using the power or fuel flow to describe the status of the units may 

lead to models which more closely reflect real units. This could be weighed against the 

additional complexity which would be involved. 
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Clustering of micro-generation technologies has been shown to have some advantages but there 

are other potential synergies which could be explored. Solar thermal units could be used to 

reduce summer time operation of mCHP units (when either excessive cycling or dumping of 

heat might otherwise occur). Biomass burners could be used in series with the output of an 

ASHP (reducing the flow temperature which the ASHP needs to supply but still generating the 

majority of heat from it). Solar PV units could balance the reduction in output from mCHP units 

during the summer (when their potential generation is higher but that from heat-led mCHP is 

lower). Electricity generated by intermittent renewables which is surplus to requirements could 

be used to supply high temperature heat storage which may have synergies with an absorption 

heat pump.  

7.3 Larger studies 

The large performance improvement which can apparently be achieved through the use of the 

proportional control methodology with ASHPs should be investigated in more detail. This could 

include more detailed modelling but ideally experimental verification of the result should be 

pursued. 

Similarly, a cross-disciplinary study into the implications of achieving thermal comfort with 

lower air temperatures and the ways in which this could be achieved could result in the potential 

to reduce energy demands. 
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9. Appendix B: Nomenclature 
Note that although SI units are used wherever possible in equations, values are occasionally 

expressed in alternative units (e.g. °C or kWh) in the text when these units make the values 

clearer to the reader. These occurrences are clearly indicated in the text. 

Units used: 

 J Joules 

 kg kilogram 

 K degrees Kelvin 

 m metres 

 Pa  Pascals (N/m
2
) 

 W  Watts 

 

   Predicted mean vote – measure of thermal comfort 

   Building fabric mean specific heat capacity (J/kgK) 

   Heat emitter system mean specific heat capacity (J/kgK) 

   Heater block mean specific heat capacity (J/kgK) 

   Specific heat capacity of air at constant pressure (J/kgK) 

   Specific heat capacity of water (J/kgK) 

   Heater heat exchanger mean specific heat capacity (J/kgK) 

  CO2 emissions (kg) 

    CO2 emissions from electricity for heating (average mix assumption) (kg) 

    CO2 emissions from electricity for heating (marginal mix assumption) (kg) 

  Exergy (J) 

 ̇   Exergy flow rate entering inside air from emitter system (W) 

   Exergy content of fuel entering heating system (J) 

    Exergy requirement for electricity generated to supply heating (marginal mix assumption) (J) 

    Exergy requirement for electricity generated to supply heating (average mix assumption) (J) 

 ̇   Exergy flow rate entering heat emitter system (W) 

  Primary energy requirement (J) 

  Gibbs energy of reaction (J) 

  Enthalpy (J) 
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   Specific enthalpy of combustion of fuel (J/kg) 

   Enthalpy content of fuel entering heating system (J) 

    Energy requirement for electricity generated to supply heating (marginal mix assumption) (J) 

    Energy requirement for electricity generated to supply heating (average mix assumption) (J) 

   Enthalpy content of fuel entering supplementary (gas boiler) heating system (J) 

  Time step index 

  Irradiation intensity (W/m
2
) 

    Inside air to building fabric, heat transfer coefficient (W/K) 

    Building fabric to outside air, heat transfer coefficient (W/K) 

   Heating control coefficient (W/K) 

    
Heat emitters to inside air, heat transfer coefficient when temperature difference is  
    (W/K) 

   SE-mCHP fuel consumption adjustment coefficient 

    Fraction of electricity lost during transmission and distribution 

    Heater block heat loss coefficient (W/K) 

    
Thermal efficiency coefficient, i.e. effectively gross thermal efficiency before thermal losses from 
engine block are taken into account 

    Heater block to heater heat exchanger, heat transfer coefficient (W/K) 

    Effective solar area (“windows area”) (m
2
) 

    Ratio of modelled future demand to current generation (excluding heating and EV) 

    Buffer tank heat loss coefficient (W/K) 

    Buffer tank to heat emitter system heat transfer coefficient (W/K) 

    DHW tank heat loss coefficient (W/K) 

    Heat pump coefficient of performance 

    Heater heat exchanger to heat emitter system, heat transfer coefficient (W/K) 

    Heater heat exchanger to buffer tank, heat transfer coefficient (W/K) 

    Heater heat exchanger to DHW tank, heat transfer coefficient (W/K) 

   Heating control coefficient adjustment factor 

  used to denote different generating power plant types 

   Inside air mass (kg) 

 ̇  Air infiltration rate (kg/s) 

   Building fabric effective thermal mass (kg) 
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   Heat emitter system effective thermal  mass (kg) 

 ̇  Fuel mass flow rate (kg/s) 

   Heater block effective thermal mass (kg) 

   Buffer tank water mass (kg) 

   DHW water mass (kg) 

 ̇  DHW flow rate (kg/s) 

   Heater heat exchanger mass (kg) 

   Number of moles of substance   

   Number of occupants 

  Pressure (Pa) 

 ̇   Heat flow rate from inside air to outside air due to infiltration (W) 

 ̇   Heat flow rate from building fabric to outside air (W) 

 ̇   Heat flow rate from inside air to building fabric (W) 

 ̇   Heat flow rate from heat emitters to inside air (W) 

 ̇  Control system target heat generation (W) 

 ̇  Rate of heat generated / heat flow rate into heater block (W) 

 ̇     Maximum heat generation capacity of heating unit (W) 

 ̇   Rate of heat loss from heater block to atmosphere (W) 

 ̇   Heat flow rate from heater block into heater heat exchanger (W) 

 ̇   Heat flow rate from heater heat exchanger to heat emitters (W) 

 ̇   Heat flow rate from heater heat exchanger to buffer tank (W) 

 ̇   Heat flow rate from buffer tank to heat emitters (W) 

 ̇   Rate of building fabric gains from solar irradiation (W) 

 ̇   Heat flow rate into inside air from lighting and appliances (W) 

 ̇   Heat flow rate into inside air from occupants (W) 

 ̇   Rate of heat transfer from supplementary burner to buffer tank  (W) 

 ̇   Rate of heat loss from buffer tank (gains to inside air) (W) 

 ̇   Rate of heat loss from DHW tank (gains to inside air) (W) 

 ̇   Rate of thermal energy leaving DHW tank as hot water is replaced by cold (W) 

 ̇   Heat flow rate from heater heat exchanger to DHW tank (W) 
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  Universal gas constant (J/kgK) 

  Entropy (J/K) 

  Time-step length (s) 

    Default time to reheat DHW tank through     (s) 

   Outside air temperature (K) 

    Cold water inlet temperature (K) 

   Inside air temperature (K) 

   Building fabric temperature (K) 

    Control system target inside air temperature after DSM signal (K) 

    Target heat emitter flow temperature (K) 

    Design condition  temperature difference between heat emitter and inside air (K) 

    Nominal temperature difference across heater heat exchanger (K) 

   Average heat emitter temperature (K) 

    Thermostat temperature dead-band (K) 

    Heat emitters return temperature (to buffer tank) (K) 

    Heat emitters return temperature (to heater heat exchanger) (K) 

   Heater block temperature (K) 

    Program inside air temperature before DSM signal (K) 

       Maximum decrease in program temperature acceptable to occupants (K) 

      Maximum increase in program temperature acceptable to occupants (K) 

   Buffer tank temperature (K) 

    Buffer tank return temperature (to heater heat exchanger) (K) 

    Buffer tank temperature dead-band (K) 

   DHW tank temperature (K) 

    DHW tank return temperature (to heater heat exchanger) (K) 

    DHW tank temperature dead-band (K) 

   Heater heat exchanger flow temperature (K) 

    Change to target temperature which would result from free electricity (K) 

    Change in target temperature due to DSM price signal (K) 

      Change to target temperature which would result from electricity at price   (K) 

  Internal energy (J) 
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   Daily DHW demand (litre) 

 ̇ Rate of work or electrical power (W) 

 ̇  Power generated (by grid) (W) 

 ̇  Electrical power flow to heating system (positive is consumption, negative is generation) (W) 

 ̇     Maximum electrical power flow to heating system (W) 

 ̇  Power demand of appliances & lighting (W) 

 ̇  Power generated by plant type   (W) 

    
Electrical energy generated by plant type   to meet demand due to heating (calculated using 
marginal assumption) (J) 

    
Electrical energy generated by plant type   to meet demand due to heating (calculated using 
average mix assumption) (J) 

 ̇  Power supplied (by grid) (W) 

  Power fraction: proportion of energy supplied or consumed as electricity 

   “Cost” of electricity at time   

   “Price” of electricity at time   

     Maximum allowable “price” of electricity  

   Electrical efficiency 

    Thermal efficiency 

     Total energy efficiency of device (relative to gross calorific value of fuel) 

   Chemical potential of substance   (V) 

  Exergy efficiency of system 

  Ratio of exergy content of fuel to gross calorific value of fuel 

 

  



238 

 



 239 

10. Appendix C: Journal paper 
 

Thermodynamic efficiency of low-carbon domestic heating systems: heat pumps and micro-

cogeneration.  
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