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Abstract 


Under the deregulated and privatized environment, network pricing is playing two 

crucial roles in electric power industry: 1) to recover network investment costs by 

operators, 2) to provide economic incentives to influence where and when network 

users will use and connect to the networks. It is desirable that network charging 

methodologies are able to truly reflect the degree of the use of systems by network 

users and price them accordingly. The aim is to influence the behaviors of prospective 

users especially distributed generators (DGs) so as to incentivize efficient utilization 

of existing networks thus minimize the investment cost for its future development.  

Since 1980s, a vast number of pricing methodologies have been proposed.  Most of 

them work at the transmission level to reflect the distance certain transactions have to 

travel from sources to sinkers and accordingly attribute the network cost. They are 

limited to how to attribute the existing network to existing customers, but do not look 

ahead of time to actively reduce the future network investment cost. In the UK, the 

distribution reinforcement model (DRM) has been the foundation for distribution 

charging since its introduction. It is based on year-ahead network investment from 

historical projection and allocates this to network users based on postage stamp, i.e. 

the same yardstick for the same voltage level. This approach is no longer able to 

effectively cope with increasing distributed generation and responsive demand. 

Hence, a revolutionary charging model for distribution networks pricing, long-run 

incremental cost pricing (LRIC), was proposed by University of Bath (UoB) in 

conjunction with the office of gas and electricity markets (Ofgem) in the UK and 

Western Power Distribution (WPD).  

It is expected that network charging should be cost-reflective so as to price users in 

accordance with their actual use-of-system extent and thus, produce forward-looking 

signals to influence users’ prospective behaviors to benefit network efficiency, 

security and reduce its costs. Network security, as a major driver for network 

investment, however, has not been well recognized in charging models.  
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Therefore, this work has carried out intensive research in this area based on the 

existing LRIC charging model utilized in extra-high voltage (EHV) distribution 

networks in the UK. As noted by Ofgem, it represents the best available model to 

incentive appropriate connection of distributed generation and demand responses. The 

target of this work is to improve the cost-reflectivity of this original LRIC model in 

two accounts: 1) reflecting the impact that customers place on network security; 2) 

reflecting the impact that network security placed on network investment. The major 

work can be summarized as 

� Improve the computational efficiency of the existing LRIC model;  

� Examine customers’ impact on network components in contingencies and 

incorporate it into network charging;  

� Devise a new model that can price customers according to their different 

security preference; 

� Improve the existing LRIC model to make it able to capture the probabilistic 

characteristic of networks and nodal unreliability tolerance.  

These concepts are firstly illustrated on simple two-busbar or three-bushar systems for 

simplicity and clarity. They are then demonstrated on practical distribution systems 

taken from the UK networks and compared with the original LRIC model in terms of 

cost-reflectivity, transparency and their potential impact on customer behaviors and 

on the network security and reliability. Test system demonstrations prove the 

effectiveness of the new philosophies and their advantages in better reflecting 

customers’ impact on networks and their potential in influencing users’ activities for 

enhancing network security and reducing the otherwise needed investment.  
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Chapter 1 Introduction 

Chapter 1 

Introduction


T HIS chapter briefly describes the background, motivation, 
objectives, and contribution of this work. It also provides an 
overview of the thesis. 
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Chapter 1 	 Introduction 

1.1 New Environment for Electric Power Systems 

1.1.1 Deregulation and Privatization  

Electric power is vital to human daily life and social development in that it provides 

energy for people not only to cook food, power machines, but also to light up 

darkness and warm coldness. Until early 1990s, all power industries around the world 

had been state-owned and centrally-controlled by government or authorized agencies, 

in which customers’ prices were regulated as well. Under the circumstances, network 

utilities could also own generators and by making use of them, they can achieve their 

targets such as maximizing profits and reducing costs.  

The characteristic of the traditional vertically integrated utility model was that a utility 

plans and builds its own generating plants, transmission, and distribution facilities in a 

manner that minimizes the overall cost of operating its electric system [1]. It was also 

a local monopoly, in the sense that in any areas one company or government agency 

sold electric power and services to all customers [2]. The traditional power industry 

had several characteristics [3]: 

�	 Monopoly franchise: only the national or local electric utility was permitted to 

produce, transmit, distribute and sell commercial electric power within its 

service territory;  

�	 Obligation to serve: the utility had to provide electricity for the needs of all 

consumers in its service area, not just those that were profitable; 

�	 Regulatory oversight: the utility’s business and operating practices had to 

conform to guidelines and rules set by government regulators; 

�	 Regulated rates: the electric utility’s rates were either set or regulated in 

accordance with government regulatory rules and guidelines; 

�	 Guaranteed rate of return (the definition of rate of return is given in Appendix. 

B): the government guaranteed that regulated rates would provide the electric 

utility with a reasonable or fair profit margin on top of its cost; 
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Chapter 1 Introduction 

� Least cost operation: the electric utility was required to operate in a manner that 

minimized overall revenue requirements. 

Figure 1-1 UK network scheme and its customers [4] 

Although this naturally monopoly regime worked fine then, it impeded competition 

and efficiency promotion in the sector and failed to meet generation technology 

progress and other new social requirement for more open and efficient networks. 

In order to enhance its efficiency and promote competition in it, privatization and 

deregulation was introduced into the England and Wales networks in early 1990s as 

well as some other networks worldwide. Since then, market forces have been playing 

a vital role in network operation and planning. Government’s intervention in this new 

environment is reduced to the minimum extent so that generation and demand can to 

the maximum degree rely on market economic signals to make decisions.  

In general, the open access refers to the regulatory constructions (e.g., rights, 

obligations, operational procedures, economic conditions) enable two or more parties 

to use a network, belonging totally or in part to another party or parties, for electric 

power transfer [5]. This reform makes it important to calculate the contributions of 

individual generators and loads to line flows and the real power transfers between 

individual generators and loads [6]. The tangible benefits are not only in lowering 
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users’ electricity prices but also in incentivizing other types of generation to play 

increasingly important roles in providing energy especially to load centers so as to 

defer potential network reinforcement.  

On the other hand, however, uncertainties might emerge from generation and demand 

growth in addition to other aspects under this open market. Unfortunately, network 

utilities have no control as well as precise information concerning them. These 

uncertainties could impose tremendous challenges on network expansion and 

operation for operators; whereas they can rely on economic signals to minimize the 

uncertainties by sending economical signals to influence customers’ behaviors.  

1.1.2 Climate Change and Renewable Generation 

Over the past decade, the problem of global climate change has stimulated all 

countries to limit and reduce their greenhouse gas emissions.  

In 1997, most of the counties met in Kyoto to discuss and seek possible ways to fight 

the global warming problem, which led to the development of “Kyoto Protocol”. 

Under the Protocol, 39 industrialized countries and the European Union( EU) commit 

themselves to a reduction of four greenhouse gases (GHG) (carbon dioxide, methane, 

nitrous oxide, sulphur hexafluoride) and two groups of gases (hydrofluorocarbons and 

perfluorocarbons) produced by them, and all member countries give general 

commitments [7]. 

In 2002, the EU ratified the “Kyoto protocol” as a shared effort with other countries to 

reduce global greenhouse gases emissions in order to mitigate climate change. The “a 

practical guide to a prosperous, low-carbon Europe” project is based on European 

leaders’ commitment to a 80-95% reduction in CO2 emissions by 2050. According to 

the 'roadmap 2050', 80% CO2 reduction overall implies 90-95% reduction in power, 

road transport and buildings. This could be achieved by maximum abatement within 

and across sectors. The most influential sector will be power and vehicle 

transportation. This level of decarbonization is dependent on achieving aggressive 2% 

year on year energy efficiency savings, without which this level of 

abatement is not possible in this model [8, 9]. 
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Chapter 1 Introduction 

The UK government has also committed to emission reduction targets at both EU and 

international levels. 

Figure 1-2 UK renewable target [10] 

The government has promised to cut CO2 emission 18% in 2020 on 2008 levels and 

80% by 2050. In order to meet this target, the government has to increase the amount 

of energy generated from renewable sources from the rate of 2% to 15% by 2020 and 

probably 100% by 2050 [11]. 

In 2009, the government published the white paper “The UK Low Carbon Transition 

Plan –National Strategy for Climate and Energy”, outlining a broad number of 

polices, targets and principles that will allow the UK to deliver its plan [12]. The lead 

scenarios in Renewable Energy Strategy suggest that by 2020: 1) more than 30% of 

electricity generated from renewables, up from the current level of 5.5%; 2) 12% of 

heat generated from renewables, up from the current very low level; and 3) 10% 

transport energy from renewables, up from the current level of 2.6% [10]. It also sets 

out the role that everyone can have in promoting renewable energy, from individuals 

to communities to businesses.  

In order to assist the delivery of the target, a substantial number of distributed 

generators (DGs) especially those green-resource-powered ones have emerged. DGs 
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are small-size generators connected to or near load centres to meet demand. They 

have lots of economic and technical merits for network operation and planning (the 

detailed aspects are discussed in section 2.1.1) and, most importantly, those 

renewable-powered DGs can dramatically reduce CO2 emission. Another recent 

significant progress is the appearance of smart grid (the detailed discussion is in 

section 2.1.1), which can also help to deliver the target. Smart grid refers to the 

modernization of power systems by integrating new information technologies and 

providing more service choices in order to promote the interaction between 

generators, networks and consumers, and to accommodate different generation 

options. Its merits exist in many aspects, from reducing greenhouse gas emissions to 

cutting customers’ bills and to improving network security. 

Apart from these benefits, DGs and smart grid also bring great challenges for network 

planning, in terms of intermittence of renewable resources, the restructure of networks 

and the increasing participation of customers. Network planning philosophy thus 

should evolve accordingly to cope with these challenges. 

1.1.3 Network Security of Supply  

Although the new environment drives network utilities and other participants to seek 

maximum benefits, network users’ security of supply cannot be degraded at all. The 

happened blackouts worldwide in the past led to a huge amount of monetary loss 

along with social chaos, which have alerted common public and network utilities the 

importance of security of supply. All regulated utilities have to follow certain security 

standards that are approved by market regulators. In the UK, the GB Security and 

Quality of Supply Standards (GB SQSS), which came out in 2004, sets out the 

minimum requirements for the planning and operation of GB transmission system 

[13]. For distribution network planning, the new Engineering Recommendation P2/6 

(ER P2/6) outlines the standard of security of supply for distribution network 

operators (DNOs) to comply with [14].  

Conceptually, network users would favor high security levels, as their supply is less 

likely to be interrupted and the overall resultant costs (electricity cost and the cost of 

loss of supply) could be lower. But, security is not free. In order to maintain an 

acceptable level of security, network utilities need to ensure enough investment in 
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their networks, such as building new lines and transformers or upgrading existing 

components to provide sufficient availability of network capacity. This might comes 

at excessive investment cost, which sometimes could be even higher than the loss 

from network insecurity. Theoretically, an ideal network expansion philosophy is not 

to make unconstrained investment, but to find the right balance between investment 

cost and network insecurity cost. Although the balance is often hard to reach, network 

operators can rely on supplementary approaches to guide users’ behaviors for the sake 

of security so as to avoid overinvestment.  

1.2 Research Motivation 

Under the new circumstances, the relationship between network utilities and users, i.e. 

generation, and demand, is commercial. The utilities provide networks to generation 

and demand to transfer their energy supply and demand, and in turn generation and 

demand pay for their use of the systems. The payment comes in the form of use-of­

system (UoS) charge, which appears at both transmission and distribution levels, 

defined as transmission use-of-system (TUoS) charge and distribution use-of-system 

(DUoS) charge respectively. Presently, the two major types of network charging 

models utilized by utilities to recover their reinforcement and refurbishment costs are: 

long-run incremental cost (LRIC) pricing and long-run marginal cost (LRMC) 

pricing. Their embedded concept is the same and the only difference is in their 

implementation: LRIC is implemented in an incremental way by assessing users’ 

impact on networks with and without them; whereas LRMC works in a marginal way, 

which first finds out the impact on networks from a unit generation or demand and it 

then enlarges the unit cost to users by multiplying it with their actual sizes. 

The importance of long-run network charging has never been deemed as before since 

privatization and deregulation was introduced into power industry. It is desirable that 

network charges could discriminate between users who incur additional operating 

costs or network reinforcement and expansion, and those who reduce or delay the 

needed network upgrades. This feature requires that charging models are able to 

produce cost-reflective locational messages to reflect users’ impact on network and to 

influence their prospective behaviors. 
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The LRIC pricing model proposed by the University of Bath (UoB) in conjunction 

with the Office of Gas and Electricity Markets (Ofgem) and Western Power 

Distribution (WPD) is the first charging model that directly links nodal injections and 

network investment. It makes use of the spare capacity of an existing network to 

reflect the costs of advancing or deferring future investment consequent upon the 

addition of generation or demand at each study node [15]. The produced locational 

and cost-reflective charges can influence potential network users. Based on the 

profound benefit analysis of applying this model to the UK distribution network, 

Ofgem has urged all DNOs to overhaul their present charging models. By now, the 

core of this charging model has been adopted by three major DNOs in their extra-high 

voltage (EHV) distribution networks in the UK [16]. 

The cost to maintain network security could take up a large proportion of investment, 

and hence network charging models should be able to reflect network security and 

allocate the related cost among customers. A great deal of transaction-based pricing 

methodologies (the detailed discussion is in section 2.5.1) for this purpose can be 

found at transmission level. But they can hardly be employed to distribution networks 

because they are transaction-based, unable to handle a large number of customers 

simultaneously and also because their calculation is based on the existing system 

status, generating no forward-looking signals to influence customers’ behaviors. The 

LRIC model does respect network security of supply by introducing a contingency 

factor for components to reshape their maximum available capacity. But it fails in 

differentiating the importance of the components in contingencies to different users, 

which therefore needs to be improved.  

1.3 Problem Statement 

Although the LRIC model is quite advanced, it still has disadvantages concerning its 

efficiency and treatment of network security in charge evaluation. The following are 

four major issues.  

1.3.1 Heavy Computational Burden 

The impact of a nodal increment on network components in LRIC model can be 

divided into three interrelated parts: its impact on their flows, the impact of their 
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flows on their reinforcement horizons, and the impact of the horizons on their present 

value of reinforcement costs (the definition of present value is given in Appendix. B). 

In order to assess the three components, the original LRIC model needs to run power 

flow analysis twice for each studied node. Such simulation approach is rather easy to 

implement but might cause heavy computational burden especially for large-scale 

systems [17, 18]. For a large-scale system with 2000 nodes, it takes the LRIC around 

12 seconds to calculate LRIC charge for a single node and approximately 6 hours and 

40minutes in total. This calculation burden is rather bothering if network operators 

need to run the LRIC several times to assess the impacts from nodal injections 

connecting to different locations. In addition, it is very difficult to rely on it to detect 

implementation errors, as the three components are combined together and 

determined through a single run of simulation. It is unable to directly provide 

additional informative messages for explaining issues such as why charge is high for a 

particular customer. 

1.3.2 Improper Treatment of Network Contingencies 

In order to reflect the costs from ensuring network security on network charges, 

contingency analysis is carried out along with the LRIC model to determine the 

maximum contingency flow along each component. A contingency factor therefore is 

defined for each component as its maximum contingency flow over its normal case 

flow and thereby utilized to reshape its maximum available capacity. In the LRIC 

model, the impact from a nodal injection on network components is only assessed in 

normal conditions with the range of components’ maximum available capacity, but 

not in contingencies. This philosophy tries to capture the contingency case impact by 

resizing components’ normal case available capacity. In reality, however, an injection 

could also bring forward or delay components’ investment horizons in contingencies. 

This cannot be properly reflected simply with the strategy taken in the original model. 

1.3.3 Unable to Respect Customers’ Security Preference 

Traditionally, network users at the same busbars are supplied with the same security 

levels and they have no other options to choose. Network expansion is also based on 

this principle. But, in this deregulated environment in the future, customers are 

granted with more freedom to choose different levels of security in line with their own 
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need with the assistance of smart grid. Network utilities also have to react to more 

customer participation concerning network security to make their networks more 

flexible. Thus, charging models are expected to be able to differentiate users’ 

preference for different security levels and price them accordingly. The existing 

charging models can hardly respect this, not to mention to actively influence users’ 

activities. The LRIC model also fails in this aspect, but its capability of being able to 

produce locational economic signals makes it possible to be extended to respect users’ 

different security requirement and price them.  

1.3.4 Ignoring Probabilistic Characteristics of Power Systems  

The present LRIC model uses deterministic criterion (such as, N-1, N-2 or even 

higher level security) to measure network security and then reflect it in charge 

assessment. It assumes that all components would definitely fail in charge evaluation 

period and all demand must be secured against certain level of contingencies. This 

philosophy, however, cannot recognize components’ probabilistic characteristics but 

also the unreliability tolerance of demand set out by security standards, as both of 

them might have great influence on components’ maximum available capacity and in 

turn the final charges. Network charging models thus should take both factors into 

account to actually recognize customers’ impact.  

1.4 Objectives and Contributions of This Study 

In this thesis, the existing LRIC charging utilized at the EHV distribution networks in 

the UK is enhanced. Further improvement has been made to cater for the requirements 

from DNOs and users in this new environment concerning network security issue. 

The main objectives and contributions are outlined as:  

�	 To improve the efficiency of the existing LRIC charging model and reduce its 

computational time through adopting alternative equivalent and easily 

implemented approaches. New proposed methods should not sacrifice accuracy 

for computational speed.  

In so doing, a novel analytical based LRMC pricing model for revenue 

reconciliation by inheriting the merits of the original LRIC model is proposed. It 
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not only dramatically reduces computational time without sacrificing precision, 

but also provides further insights into factors that influence charges. (This part 

of work has been utilized by the DNOs in the UK.) 

�	 To enhance the LRIC model by incorporating the impact of users on 

components in contingencies. Such impact should also be reflected in network 

investment cost and the final nodal charges.  

In so doing, the LRIC model is improved by taking users’ impact on network 

components in both normal and contingency situations into account, which is 

translated into their reinforcement horizon variation. The comparison of the two 

new horizons is studied and the smaller one is chosen to derive final charges. 

The model can actually represent the change in network security and the related 

costs due to network users. (This part of work is only theoretical research.) 

�	 To extend the LRIC model to price customers according to their security 

preference. The new model should be able to not only recognize their different 

security preference, but also respect their choices and price them accordingly. 

The produced charges are supposed to be cost-reflective to encourage users to 

go for different security levels. 

In so doing, a new charging concept for customers’ security preference is 

introduced on the base of the original LRIC model. The new model works by 

categorizing demand at each busbar into interruptible part, which can be 

interrupted in contingencies, and uninterruptible part, which should be secured 

all times. Charges levied on them are derived by examining their impact on 

components in both normal and contingency situations. (This part of work is 

only theoretical research.) 

�	 To extend the LRIC model by respecting both the probabilistic characteristics of 

network components and nodal unreliability tolerance mandated by network 

security standards. The new model should take both factors into account at the 

stages of components’ reinforcement horizon evaluation and charge assessment. 

The resultant charges should be able to reflect the impact of the two factors.  
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In so doing, the LRIC model is extended by considering components’ reliability 

characteristics as well as nodal unreliability tolerance. They are combined 

together and translated into yearly tolerable loss of load, which is then respected 

in component’s maximum available capacity assessment. Unlike the original 

LRIC charging model working based on the outcome of the worst-case 

contingencies, this new model relies on the most serious risk contingencies, 

considering both their outcome and occurrence probability. (This part of work is 

only theoretical research.) 

1.5 Thesis Outline 

The rest of this thesis is organized as follows: 

Chapter two provides a comprehensive literature review of challenges for 

network planning and charging in the new environment. It also introduces the widely 

utilized charging models, their basic concept, difference and limitations, with special 

attention paid to the models utilized in the UK. Further, it briefly goes through several 

charging models reported to recover investment cost with the consideration of 

network security or reliability at both transmission and distribution levels. This 

chapter also addresses the drivers behind network charging reform.   

Chapter three proposes a novel LRMC pricing model based on analytical 

method for revenue reconciliation. It utilizes sensitivity analysis to work out the 

impact from a nodal injection on its supporting components’ flow, on their 

reinforcement horizons, and finally on their present value of future reinforcement 

cost. It is tested and compared with the original LRIC model on an actual system and 

a two-busbar system in terms of charges and tariffs to demonstrate its effectiveness 

and applicability to actual systems.  

Chapter four enhances the existing LRIC model by considering the impact from 

a nodal injection on components in contingencies. It firstly analyzes the impact from 

an injection on components in contingencies on a two-busbar network and a three­

busbar meshed network to derive contingency case horizons for each component. 

Afterwards, the two new horizons from normal and contingency situations are 
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compared and the smaller one is utilized to derive charges. In order to save 

computational effort, sensitivity analysis is used to work out the impact of the tiny 

injection on components’ flow. This new model is finally compared with the original 

charging model by being applied to the practical system used in chapter three. 

Chapter five proposes a new security-oriented charging model according to 

users’ security preference. Demand at each busbar is firstly classified into 

interruptible and uninterruptible parts according to their different security preference. 

The approach then examines their impact on components’ reinforcement horizons in 

both normal and contingency conditions and translates it into change of their present 

value of future reinforcement. This model is also tested and compared with the 

original security-oriented LRIC model on the actual test system. 

Chapter six proposes a charging approach for network security considering 

components’ stochastic characteristics as well as nodal unreliability tolerance. It 

investigates the impact from customers’ unreliability tolerance and components’ 

reliability levels on components’ future reinforcement horizons on three typical 

networks: a single-circuit system, a parallel-circuit system and a meshed system. 

Based upon this, a reliability-based charging model is introduced. Charges are derived 

by examining the influence from components’ mean time to repair and failure rate as 

well as nodal unreliability tolerance. Lastly, this model is demonstrated on the 

distribution system used in the foregoing chapters.  

Chapter seven summarizes the key findings from the research and the major 

contributions of the work. 

Chapter eight provides some potential research topics in network charging. 
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Chapter 2 

Network Security and 
Pricing in New Environment 

HIS chapter summarizes network planning security in the new 
environment. It also introduces the existing charging methods T and discusses the interaction between security and charging. 
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2.1 Network Planning and Pricing 

Since deregulation and privatization were introduced into the electric power industry, 

power generation, transmission and distribution have undergone dramatic change. In 

this deregulated context, transmission and distribution systems should not only be 

able to transport energy from sources to consumers with acceptable security and 

quality standards, but also to fulfill other tasks, such as  accommodating increasing 

DGs and providing open access to market participants, etc. These requirements 

impose great challenges on network planning, especially at distribution level. 

2.1.1 Challenges for Distribution Network Planning 

The challenges for distribution network planning come from several aspects, the 

major three of which are from the uncertainties in demand and generation, growth in 

renewable-powered DGs due to CO2 emission reduction, and the requirement for 

desirable security levels. 

Uncertainties and Conflictive Objectives in Network Expansion 

Traditionally, power systems were entirely owned and operated by government or 

authorized agency and they had the full access to the information concerning every 

aspect of the systems. In this new environment, however, networks are deregulated 

and privatized and their owners and operators would face numerous uncertainties in 

terms of [19]: 1) load forecast [20]; 2) availabilities of generators, transmission and 

distribution lines, and other network facilities: 3) energy at risk; 4) expected unserved 

energy (EUE) cost, etc. 

These uncertainties significantly challenge the traditional reliability-driven least-cost 

network expansion philosophy. The reason is that it relies on the knowledge of 

potential pattern of demand and generation and expands networks with the minimum 

expense in line with security requirement. It is, however, unable to properly handle 

the emerging uncertainties. Another disadvantage impedes the use of the concept in 

this new environment is that it designs networks with one single target, least cost, 

which might violate the real practice. The new context requires that network planning 
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to be able to cope with multi conflictive objectives simultaneously, such as [19, 21]: 

1) facilitating competition among market participants; 2) providing non­

discriminatory access to all generation resources for all customers including 

renewables; 3) minimizing investment risk; 4) enhancing network reliability, etc. 

New planning methodologies thus have to be robust and flexible to recognize those 

uncertainties as well as to find an acceptable balance between those conflictive 

objectives. A potential expansion plan devised by this type of approach needs to be 

assessed in two dimensions: one is the traditional technical analysis to examine 

network reliability, security, feasibility and environmental impact, etc; and the other is 

to evaluate network economic impact on society [22]. 

Growth of DGs and Emergence of Smart Grid  

Under the pressure to reduce CO2 emission, the UK government is emphasizing the 

necessity of generating electricity from renewables. As a result of the stimulation 

effect of the government policy to encourage renewable generation, a great number of 

renewable-powered DGs have emerged. DGs have short a construction time, lower 

capital cost and quick payback periods. Their benefits exist in various aspects for 

network planning and operation, such as improving network reliability, deferring 

potential network development, and reducing power loss, etc. The general 

classification of the benefits of DGs are listed below [23, 24]. 

Major technical benefits include: 

� Reduced line losses 

� Voltage profile improvement 

� Reduced emissions of pollutants 

� Increased overall energy efficiency 

� Enhanced system reliability and security 

� Improved power quality 
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� Decongestioning transmission and distribution systems 

� Increased security for critical loads 

Major economic benefits are: 

� Deferred investments for circuits upgrades or replacements 

� Reduced Operations and Maintenance (O&M) costs of some DG technologies 

� Enhanced productivity 

� Reduced fuel costs due to increased overall efficiency 

� Reduced reserve requirements and the associated costs 

� Lower operating costs due to peak shaving 

Apart from these benefits, they also bring great challenges to network planning. Their 

output is to a great extent dependent on the availability of resources, such as wind 

power, solar energy, which change with time, weather, locations, and other factors. 

This intermittent output makes it rather difficult to carry out network capacity 

expansion that exactly matches the needed capacity to accommodate them. A 

conservative expansion scheme could become a bottleneck to impede the increasing 

renewable generation, whereas an enthusiastic scheme would cause overinvestment. 

There should be equilibrium between investment cost and cost from insecurity to 

assist to devise cost-effective network expansion plans 

In order to help the delivery of CO2 reduction target and accommodation of increasing 

renewable-powered DGs, the smart grid concept had been introduced in many 

countries around the world. Its merits are broad, from improving grid reliability, 

promoting network operation efficiency to offering new products and services that 

give consumers greater flexibility in energy consumption.  

According to the United States Department of Energy's “Modern Grid Initiative 

Report”, a modern smart grid must [26]: 
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� Be able to heal itself 

� Motivate consumers to actively participate in operations of the grid 

� Resist attack 

� Provide higher quality power that will save money wasted from outages 

� Accommodate all generation and storage options 

� Enable electricity markets to flourish 

� Run more efficiently 

� Enable higher penetration of intermittent power generation sources 

In the UK, an industry led policy advisory committee co-chaired by the Department of 

Energy and Climate Change (DECC) and Ofgem, The Electricity Networks Strategy 

Group (ENSG) published “A Smart Grid Vision” to examine what an UK smart grid 

might look like and the challenges it would help to address. It also published “A 

Smart Grid Route Map” for delivery of this version. According to it, in the near term 

up to 2020, the route map phases into two stages[25]: 1) present-2015, this stage 

mainly focuses on the proof of the concept, learning and development of desired 

technologies, whose major tasks including: network focused technologies, smart 

metering / smart grid integration, development of common standards, and security / 

privacy & testing / development, etc ; 2) 2015-2020, smart grid will be deployed in 

full scale. At this stage, the major works are to: apply the available smart grid 

solutions on electricity network where economic, fully integrate low carbon solutions, 

integrate commercial and market structures operating at scale (ongoing development 

and layering), etc. During the whole stage, the public should be engaged. The detailed 

information is given in Figure 2-1 [25]. In long term of 2025 onwards, it is the stage 

for delivering, when the power systems will have changed enormously by this time 

and the regulatory and commercial arrangements for the networks must support the 

ongoing progress towards a fully decarbonization future [27].   
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Figure 2-1 Integrated UK smart grid route map out to 2020 [25] 
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As smart grid continues supporting traditional loads, it can also facilitate the great use 

of fuel cells, renewables, micro turbines, and other DG technologies at local and 

regional levels and provides customers with more choices for supply. Apart from 

these benefits, it also brings problems, such as a need for network restructure, reverse 

power flow, and the increasing participation of customers to networks, which should 

be coped with by network expansion schemes.  

Network Security and Investment 

Since the foundation of the power industry, network security is vital to users. A higher 

level of security means that users’ supply is less likely to be interrupted and hence the 

resultant cost from loss of supply is consequently low. On the contrary, if their 

security level is low, their supply is more likely to be interrupted, which could result 

in enormous monetary loss from loss of load [28, 29].  

The importance of network security was recognized by network regulators a long time 

ago and they have also published some security standards to guide network planning. 

In the UK, the “Engineering Recommendation (ER) P2/5 – Security of Supply” 

coming into effect in 1978 is a distribution planning standard. Compliance with its 

provisions, it was an obligation imposed through distribution licenses upon DNOs 

since privatization [30]. It requires DNOs to provide enough assets and redundancy to 

meet minimum outage time. To date, the ER P2/5 has been replaced by the 

“Engineering Recommendation (ER) P2/6” which came into effect in 2006 to adapt to 

the new changes in power industry. Apart from outlining the security standard for 

different size customers, it also advises that DNOs can rely on the utilization of new 

type of DGs, especially those renewable-powered ones, as an alternative to network 

reinforcement as long as network security is satisfied.  

Conceptually, higher security level is more preferable for users, but not for utilities. In 

order to maintain certain levels of security, network planners have to ensure enough 

investment in their networks, such as building new lines and transformers and 

upgrading existing components to provide sufficient spare capacity for catering for 

contingencies. Such scheme could come at excessive costs, which are eventually 

levied on network users [32-35]. 
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Figure 2-2 Trade-off between utility cost and consumer cost [31] 

Figure 2-2 [31] demonstrates the basic concept of reliability-cost evaluation between 

utility cost and consumer cost. As shown, investment cost increases with the rise of 

reliability level and on the contrary, customers’ interruption cost decreases as 

reliability increases. The total social cost is the sum of the two individual costs. 

Apparently, too higher and lower reliability levels are not cost-effective, but a 

minimum of the total cost can be achieved as demonstrated [36, 37]. It provides a 

useful concept for network planning. Although in reality such optimum is almost 

impossible to reach, suboptimal solutions might be attained. 

2.1.2 The Roles of Network Charging  

In this new environment, the only certainty that network utilities have is their existing 

networks and the spare capacity their networks have to accommodate potential 

generation and demand. Although utilities cannot force generation and demand to 

connect to specific locations, they can employ locational financial incentives to guide 

them to the locations that have enough network spare capacity so that least network 

upgrades are required. These incentives can be embodied in the form of network UoS 

charges [38] generated by pricing models. 

The primary purpose of network pricing is to allocate the investment cost of network 

components among users who rely on them to withdraw or supply electrical energy. It 

is expected that pricing methodologies can effectively recover the costs, such as 

capital, operation and maintenance, etc, as depicted in Figure 2-3 [39].  
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Figure 2-3 Identified key cost drivers 

Network charge is not only important for utilities, but also for users especially those 

at distribution networks. As demonstrated in Figure 2-4 [39], for every 10 pence bill, 

customers in the UK need to pay approximately 2.1 p/kWh distribution charges and 

0.3 p/kWh transmission charge, which take up about 21% and 3% of the total bill. 

Supplies cost 
1.5 p/kWh 

Distribution cost Generation cost 
2.1 p/kWh 6.1 p/kWh 

Transmission

cost


0.3 p/kWh 

Figure 2-4 Cost components for every 10 pence electricity bill in the UK 

Charges are set by network operators based on their assessment of system costs and 

fed into the charging models they adopt to determine the costs to accommodate the 

additional demand or generation at each level of systems. An appropriate cost 

recovery is then split among customers or customer groups. So, the output of charging 

models is the cost-reflective charge for each customer or group of customers. The 

revenue recovered from the charges may not exactly match with the allowed revenue 

(the definition of allowed revenue is given in Appendix. B). Therefore, these charges 

are then scaled up or down with fixed adder or fixed multiplier or other methods to 

allow operators to recover their cost plus a certain level of return. The allowed 
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revenue needs to consider forecast capital and operational spending, growth in 

customer numbers and distributed units. 

It is desirable that network charging models should not only be able to recover the 

investment in networks, but also provide forward-looking and economic guidance to 

the existing and prospective users to influence their activities in sitting and sizing so 

as to encourage efficient utilization of the existing networks.   

2.2 Network Charging Methodologies 

Over the past decade, a large number of charging methodologies have been proposed 

worldwide, most of which are utilized on transmission systems. According to the 

embedded concept behind them, they can be generally categorized into two 

categories: embedded pricing paradigm and incremental/marginal pricing paradigm. 

2.2.1 Embedded Cost Pricing 

Embedded cost pricing approaches include: 1) postage stamp methodology [40]; 2) 

contract path methodology [41]; 3) distance based MW-mile methodology [42]; and 

4) power flow based MW-mile methodology [43]. These types of approach sum up all 

existing transmission system cost and the new cost from system operation and 

expansion for accommodating new comers into a single value. The cost is then 

divided among all users, including both old and new users, according to their extent of 

use of system [44]. Figure 2-5 demonstrates the base concept behind the models. 

Figure 2-5 Schematic concept of embedded charging paradigm 

Under this paradigm, network users need to pay the revenue recovered for all existing 

facilities plus the new facilities added during their contract period. The shortcomings 
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of these embedded approaches are prominent: 1) postage stamp might suffer from the 

cases that energy is transmitted across several networks as it would accumulate high 

wheeling costs; 2) contract path method is unable to reflect the actual flows among 

the firm transmission service users; 3) distance-based MW-mile methodology can 

only reflect the distance that energy needs to travel, but fails in recognizing the 

utilization levels of components.; 4) power flow based MW-mile methodology only 

works on the existing system status, but is unable to recognize the demand and 

generation growth. These usage-based approaches are fairly easy to implement, but 

not economically efficient. They are unable to differentiate customers who incur 

additional operating costs or network reinforcement and expansion and those who 

reduce them need. Consequently, they can hardly reflect network resource scarcity. 

2.2.2 Incremental and Marginal Cost Pricing 

In order to overcome the disadvantages of embedded charging models, 

incremental/marginal cost pricing models are thereby proposed. This sort of 

methodologies only consider the new transmission costs incurred by new customers 

and then allocate the costs among them, with the existing costs still being the 

responsibility of existing customers. Figure 2-6 shows their schematic concept [44]. 

Figure 2-6 Schematic concept of incremental/marginal paradigm 

There are two major factors associated with this kind of approach: 1) the span of time 

period, short-run or long-run and 2) the way the new transactions evaluated, 

incrementally or marginally. By taking different combinations of the two factors, the 

existing incremental/marginal cost pricing approaches fall into the following four 

categories: short-run incremental cost pricing (SRIC) [45], long-run incremental cost 
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pricing (LRIC) [41], short-run marginal cost pricing (SRMC) [46], and long-run 

marginal cost pricing (LRMC) [47, 48]. 

The major difference between incremental and marginal pricing is in how they 

evaluate the cost due to additional transactions. Incremental approaches are carried 

out by comparing the cost with and without transactions. Marginal approaches, on the 

other hand, evaluate the cost needed to accommodate a unit additional transaction and 

then multiply the unit cost with the actual size of additional transaction. LRIC 

methodologies are fairly easy to implement but take longer computational time for 

large-scale systems, as two runs of simulation are needed to work out a transaction’s 

impact. By contrast, marginal methods use analytical equations to evaluate the impact 

caused by a transaction on network development costs [49]. These equations usually 

are the functions depicting how network transactions would affect networks and 

eventually network investment costs [50, 51]. 

This type of approach is computationally efficient but based on the assumption that 

the relationship resulted from small injections can be extrapolated to large injections. 

Inaccuracies might be caused, as the relationship between nodal injections and 

network development costs is not linear. 

The difference between short-run and long-run pricing approaches is that they focus 

on different part of cost incurred by an additional transaction. Short-run approaches 

evaluate the additional operating cost associated with a new transmission transaction 

and assign it to that transaction. By contrast, Long-run methods entail all evaluated 

long-run cost including maintenance and reinforcement cost necessary to 

accommodate a transaction and allocate the cost to that transaction. 

2.2.3 International Experience of Network Charging  

It should be noted that in practice, transmission and distribution network pricing has 

become an important issue since the deregulation and privatization of the sector in 

many countries. In Brazil, the Investment Cost-related Pricing (ICRP), which is going 

to be discussed in the following part (section 2.2.4), is utilized to calculate marginal 

costs for network users. Based on the historical data collected by network operators, 

the relation between load growth in one area and the increment of investments made 
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in the past is investigated. The relation can be obtained and used to reflect the 

investments in the following years [52, 53].  

The Locational Marginal Pricing (LMP), mainly utilized in the United States, is a 

market-pricing approach used to manage the efficient use of the transmission system 

when congestion occurs on the bulk power grid.  In electricity, LMP recognizes that 

marginal prices may vary at different times and locations based on transmission 

congestion. LMP is quite efficient approach to achieve short- and long-term efficiency 

in wholesale electricity markets [54]. With LMP price, market participants will know 

the price of hundreds of locations on the system [55]. LMP can; 1) increase 

transparency of the true costs of serving load by location; 2) provide a consistent 

methodology to price transmission and energy across market time frames; 3) provide 

price signals for developing new generation and transmission resources in the best 

locations [56]. But, the LMP methodology has only been the dominant approach in 

power markets to calculate electricity prices and to manage transmission congestion, 

but it does not recover the investment in networks [57].  

Table 2-1 Latin American Pricing Schemes [61] 

In Norway, the tariffs in the central grid consist of four elements: two dependent on 

the short-run utilization of the grid and the other two are fixed on an annual basis. The 

tariff element covering losses is based on spot market prices of electricity and an 

approximation to the marginal loss caused by injection and consumption in a region 

for three typical load situations. This element covers approximately 25% of the total 

costs [58]. In Spain, its network pricing provides short-run signals by pricing losses 
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and congestions. In the case that grid is less available than a determined reference 

level, the grid owner is penalized [59]. In New Zealand, electricity spot prices are 

equal to nodal marginal costs, and system expansions are justified if the difference in 

prices with and without a scheme equals the cost of the scheme [60]. For reference, 

the Table 2-1 summarizes the network pricing in Latin America [61]. 

2.2.4 Charging Models in the UK before 2007 

In the UK, network charging models have also been utilized at both transmission and 

distribution levels after the reform in its power industry. Originally, ICRP is utilized 

at transmission network, which is then improved to a new DC load flow based ICRP 

(DCLF ICRP) [62] version by National Grid, UK, and Distribution Reinforcement 

Model (DRM) [16] is employed at distribution system. 

Investment Cost-related Pricing 

The ICRP model consists of two parts. The first one is the varying locational element 

from the DCLF ICRP transport model to reflect the cost from capital investment, 

maintenance and operation and the second part is the non-locational varying element 

related to the provision of residual revenue recovery [62]. In the basic ICRP model, 

power is assumed to flow to users along the shortest path whereas in the new model it 

is calculated with DC load flow analysis. Thereafter, the model assesses the marginal 

reinforcement cost required as the consequence of an increment in generation or 

demand at each studied busbar [63].  

This model enables the differentiation in nodal cost to be determined and facilitates 

sensitivity analysis concerning alternative development of generation and demand to 

be taken. Although it seems applicable to EHV distribution networks, it could provide 

perverse signals for the locations of generation and demand under certain 

circumstances when applied to reference networks. The perverse signals in it 

encourage load to sites at the nodes that have the least distance from the associated 

GSP without reference to the utilization of the associated assets, causing these loads 

to require the most investment for the connection [64]. 
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It may also sometimes produce unstable charges that “flip flop” between debit and 

credit for generation and demand for the locations that are relatively distant from grid 

supply point. Hence, it is not suitable to be used at distribution networks [16].  

Distribution Reinforcement Model 

DRM was proposed by Electricity Council in the UK in 1982 as an approach for cost 

allocation for DNOs. Since then, DRM has been the foundation for distribution tariff 

setting in England and Wales. Over the time, it has been revised by DNOs to facilitate 

the changes in policy [16]. 

This model measures the cost of connecting an additional 500MW capacity at the 

time of peak demand at each voltage levels. This 500MW injection has no particular 

technical significance (i.e. this 500MW is not the actually predicted load growth in 

each DNO’s network) but to be large enough to have great impact on all voltage 

levels. It then averages the cost across users at each voltage level [65]. Generally, 

DRM has the following three step procedures [16]: 

�	 Cost evaluation: cost of accommodating a 500MW injection at system peak. 

�	 Cost allocation: yardsticks (the definition of yardstick is given in Appendix. B) 

at different voltage levels based on their use of upstream assets. Customers at 

the same voltage levels are considered to use the same level of upstream assets. 

�	 Revenue reconciliation: any shortfalls between the recovered revenue and the 

allowed revenue are proportionally allocated among all network users through 

charge control techniques. 

DRM is a simple postage stamp cost allocation approach, examining a nodal 

increment’s impact by indentifying the distance the increment has to travel along its 

supporting components. It is rather transparent and very simple to implement, but the 

produced charges are neither locational nor cost-reflective.  

Page 28 



                    Chapter 2 Network Security and Pricing in New Environment 

2.3 Rationales for Change in Long-run Charging 

Until early 1980s, almost every utility worldwide had integrated generation, 

transmission and distribution systems together with one price for consumers. The 

actual price must depend on the average cost to the utility of producing and delivering 

this energy, so differential prices for large, medium and small customers was the 

norm [66]. 

2.3.1 Reforms in Distribution Networks 

Since the structure of electricity distribution charges was set by Electricity Council in 

the UK, it has not changed significantly, but UK’s distribution network especially 

EHV network have undergone dramatic change.  

One change is due to the pressure from climate change. Facing this issue, network 

utilities are also required to take the lead and responsibility to fight against it. Usually, 

the output of these renewable-powered generators changes greatly with the 

availability of the resources, such as wind and solar power, which in turn varies with 

time and weather. The intermittency of their output make it rather difficult for 

network planners to design their networks right to deliver the output, as they need to 

ensure sufficient network capacity to accommodate the energy as well as ensure 

security without too radical investment. Further, these renewable generators mainly 

locate in rural areas or far from load center, and thus enough circuits need to be built 

to transmit the increasing sustainable energy. DNOs in the UK have projected that 

significant capacity investment would be needed to accommodate the increase, 

costing about £5billion-£6billion for 2010-2015 [39]. On the other hand, the need to 

maximize benefits with minimum input urges DNOs to operate their networks quite 

closely to their limits. But, demand and generation still grows rapidly and their 

growth patterns are out of DNOs’ control and they should be secured against certain 

network contingencies. 

Structurally, to meet these challenges, distribution networks have changed from the 

traditional passive format to an actively dynamic format to accommodate the 

increasing demand. Further, as power generation becomes increasingly distributed 

and even more power is generated from renewable resources due to the pressure of 
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CO2 reducing, distribution systems will need to facilitate more fluctuations in power 

quality, two-way power flow, and also be more responsive to changes in consumer 

demand.  It could also include the connection of smart grid in homes, such as washing 

machines, refrigerators and freezers, with the possibility that they can be managed by 

local DNOs to provide active and reactive load control in the local network, taking 

smart metering to a new level of sophistication [67].  

2.3.2 Disadvantages of the Existing Long-run Charging  

The forgoing mentioned charging models, however, are no longer able to cope with 

the reforms recently appearing in distribution networks. It is against this background 

that Ofgem commissioned a study to investigate the benefits coming from moving to 

an alternative more economic charging model in terms of the cost in long-term 

network development [64].  

One disadvantage with most of the existing approaches is that they require a least-cost 

future network planning in order to determine the cost of future network expansion 

with potential generation and demand growth pattern. It is impractical for LRIC 

pricing approaches to evaluate the cost associated with generation and demand 

injections at every studied node, as most of them calculate incremental cost for 

catering for the injections under a projected demand and generation pattern. Under the 

deregulated environment, the knowledge of future generation and demand is far from 

certain and not under the control of network utilities [15].  

Another disadvantage is that these LRIC pricing models can only passively react to a 

set of projected patterns of future generation and demand, unable to actively influence 

the patterns with economic signals [15]. This incapability would bring great 

difficulties for utilities when they are planning networks with increasing customer 

participation and other responsive demand that are willing to react to the economical 

signals. 

DRM is also no longer fit for the purpose anymore, as it fails to recognize the 

significant benefits potentially brought by DGs. The averaged charge for each voltage 

level tends to discourage the demand side management as well. Therefore, it needs to 
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be improved somehow or other new distribution network charging models should be 

proposed in order to facilitate the changes. 

2.3.3 Desirable Features of New Distribution Charging Models 

In order to assist in tackling these new challenges, pricing objectives in this new 

environment should conform to the following guidelines [66]: 

�	 Prices should be based on economic efficiency, costing resources in terms of 

fuel, conversion costs, and effects on the environment, not just in purely 

monetary terms; 

�	 Prices should be firmly set in accordance with cost; 

�	 Prices should ensure commercial viability; 

�	 Equity between different classes of consumers should be maintained; 

�	 Tariffs should be as simple as possible and transparent to all customers. 

Thus, in order to deliver these objectives, network charging models utilized at 

distribution networks should contain the following features as required by Ofgem [66]: 

�	 Cost reflectivity: charges should be levied on users in line with network cost 

drivers and able to reflect their use-of-system; 

�	 Simplicity: charging methodologies should be as simple as possible to evaluate; 

�	 Transparency: charging methodologies should be transparent to all participants, 

including network operators and users, and probably other interested parties;   

�	 Predictability: charges should be based on long-run cost on a forward-looking 

basis to account for future potential reinforcement and be easily predicted; 

�	 Facilitation of competition: charges should serve the purpose to influence 

prospective users’ investment behaviors. 
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It is clear that in practice both trade-offs and complementarities exist between these 

different high-level charging principles. The principles of predictability, simplicity, 

transparency and the promotion of competition are strong complements in this 

respect, but will often be at odds with the objectives of cost reflectivity [66].  

2.4 New Progress in Distribution Charging in the UK 

In the UK, two new charging models, Forward Cost Pricing (FCP) methodology and 

Long-run Incremental Cost Pricing (LRIC) methodology have emerged and replaced 

DRM for EHV distribution network pricing.  

2.4.1 Forward Cost Pricing Methodology 

FCP methodology was initially developed by Scottish and Southern (SSE), Central 

Networks (CN), and Scottish Power (SP) for pricing users connected to EHV 

distribution networks [68, 69]. It treats generation and demand separately while 

evaluating their impact. 

FCP demand price is calculated by assessing network reinforcement cost to support a 

maximum of 15% demand increment for each network group over the next 10 years 

rather than assets’ lifetime [39]. The actual demand growth is from the forecast in 

each network group. Potential reinforcement cost is calculated and averaged at each 

voltage level within the same network group such that the total revenue recovered 

equals to the forecasted reinforcement cost plus a certain level of investment return.  

Figure 2-7 FCP charging for demand 

FCP generation price consists of two parts: reinforcement cost and generation benefit. 

Reinforcement cost is evaluated by aggregating the cost of the total present value of 

the reinforcement project required to accommodate potential generators over 10 years. 
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The size of the test generator for each voltage level is 85th percentile of the existing 

generation size at that level [70]. Generation benefit comes because generators can 

reduce the needed reinforcement caused by demand increase. The benefit on a 

distribution network at each voltage level is set equal to the corresponding demand 

costs, scaled down by a factor that reflects the reliability of the generation technology 

suggested in ER P2/6 [68, 70]. Total FCP generation charge is generation cost minus 

generation benefit. 

Reinforcement A Reinforcement B Reinforcement C Year 1 Year 10 

Test-size generator 

Figure 2-8 FCP charging for generation 

Although FCP demand price is based on LRIC charging model, the locational signals 

are still weak as the nodal prices in the same network groups are the same. As for 

generation price, it is quite sensitive to the size of test generator and the forecasted 

new generation, so the resultant charges can vary significantly if different sizes of test 

generators are employed. Additionally, FCP is unable to recognize the interaction 

between demand and generation as it treats them separately in network planning. 

2.4.2 Long-run Incremental Cost Pricing 

This LRIC model was originally proposed by UoB in conjunction with Ofgem and 

WPD [15]. Unlike FCP, LRIC considers the impact of generation and demand 

together. It assumes that for components in networks affected by a nodal injection, 

either demand or generation, there will be a cost associated for the injection if a 

component’s reinforcement horizon is accelerated or a credit if it is deferred. It works 

by examining the change in components’ future reinforcement horizons affected by 

nodal injections and translating the change into the variation of the components’ 

present value of future reinforcement. In it, components’ investment horizons are 

decided by their present loading conditions, the predicted load growth rate and their 
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available spare capacity. The final charge for a busbar is the summation of the price 

from all its supporting components calculated under a given discount rate.   

Figure 2-9 Principle of long-run incremental cost pricing 

Generally, the LRIC model has the following three major implementation steps. 

Step 1: Present Value of Future Investment 

If a circuit l has a maximum allowed power flow of Cl supporting a flow of Pl, the 

number of years takes Pl to grow to Cl under a given load growth rate, r, can be 

determined with 

Cl = Pl ⋅ (1+ r)nl (2-1) 

Rearranging (2-1) and taking the logarithm of it gives  

logC − log P nl = 
log 

l 

(1+ r) 
l (2-2) 

Assume that investment will occur in year nl when the circuit utilization reaches Cl. 

Under a chosen discount rate of d, the circuit’s present value of future investment is 

Cost
PV l = (1 + d )

l
nl 

(2-3) 

Where, Costl is the modern equivalent asset cost of the circuit. 
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Step 2: Cost Associated with Power Increment 

If power flow change along circuit l is ΔPl as a result of a nodal injection, its future 

reinforcement horizon will change from year nl to year nlnew, decided by 

nCl = (Pl + ΔPl )⋅ (1+ r) ln ew (2-4) 

Equation (2-4) presents the new investment horizon nlnew 

logCl − log(Pl + ΔPl )nln ew = 
log(1+ r) (2-5) 

Consequently, the new present value of future reinforcement becomes to, 

PV = 
Costl (2-6)ln ew (1+ d )nln ew 

The change in the circuits’ present value as a result of the injection is given by  

( ) = ΔPVl =Costl ⋅ ⎜
⎝

⎛
⎜
(1 + d 

1 
)n ew 

−
(1 + 

1 
d )n ⎟

⎠

⎞
⎟ (2-7)g r 

ln l 

The incremental cost for the circuit is the annuitized change in its present value of 

future investment over its life span, given as 

ΔICl = ΔPVl ⋅ AnnuityFactor (2-8) 

Where, ΔICl is the increment cost of circuit l due to the nodal injection. The definition 

of annuity factor can be found in Appendix. B. 

Step 3: Long-run Incremental Cost 

The nodal LRIC charge for a busbar is the summation of the all incremental costs 

from its supporting circuits, given by 

∑ΔICl 
lLRICl = (2-9)
ΔPIl 
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Where, ΔPIi is the size of power injection at the bus.  

This LRIC model has the attribute of producing charges that are:  

�	 Forward-looking; 

�	 Able to reflect the extent of use of networks by a connectee;  

�	 Able to reflect the degree of components’ utilization; 

�	 Respecting the discrete sizing of network components and their inherent 

indivisibility. 

The Figure 2-10 demonstrates the implementation steps of the LRIC model 

Figure 2-10 The implementation of the LRIC model 

Its drawback is that so far it only works for network thermal constraints, and in some 

extreme cases with extreme small load growth rates and high loading levels, it would 

produce excessively high prices. 

2.4.3 Present Charging Framework in the UK 

Currently, Ofgem allows DNOs to use either LRIC or FCP in their EHV distribution 

networks to recover investment, but they need to submit their final selection to Ofgem 

for approval by 2011. By now, the core of the LRIC charging model has been adopted 
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by three major distributors in the UK, WPD, Électricité de France (EDF) and CE 

Electric whereas other DNOs are applying FCP instead.  

ICRP is still utilized on UK transmission system by National Grid and DRM is 

employed by DNOs on their High Voltage (HV) and Low Voltage (LV) distribution 

systems. Figure 2-11 shows the charging models utilized in the UK networks 

presently [39]. 

Substation 

Large Power Station 

415V system 

132kV system Substation 
33kV system 

Substation 

11kV system 
Factory 

Homes 

Transformer 

LRIC/FCP 

ICRP 

DRM 

Figure 2-11 Charging methodologies in the UK after 2007 

2.5 Network Charging for Security 

As discussed in the foregoing sections, network investment to ensure security takes a 

very large portion of the total cost and should also be allocated reasonably among 

users. Thus, network charging methodologies are also expected to fulfill this task. 

They need to reflect users’ different levels of security of supply and allocate the 

related cost among them [71, 72]. Theoretically, users with higher security levels 

should pay more for their priority whereas others with lower levels are responsible for 

less payment.  

By now, many charging methodologies for security or reliability at transmission level 

have been published over the past decades, but few approaches have investigated the 

problems at distribution level.  
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2.5.1 Pricing for Security and Reliability at Transmission Level 

Usually, this type of charging methodology divides the total cost associated with 

transmission service into two general categories: 

� Transmission-use charge evaluated based on the extent of use of transmission 

networks by users in normal conditions;  

� Transmission security or reliability margin benefit which is calculated in 

contingencies. 

Here, the most important issue is to determine a reasonable ratio between capacity use 

charge and reliability/security benefit charge. According to the different indices they 

use to examine customers’ security, the present pricing approaches for network 

security are categorized into the following two groups: pricing bases on network 

security and pricing based on network reliability. 

Pricing based on Network Security 

This category of approaches examines security benefits for transactions under the 

most serious contingencies, ignoring the occurring probabilities of these 

contingencies. Although some of them do consider occurring probability of 

contingencies, they are theoretically not actual reliability-oriented pricing since they 

do not consider the change in reliability levels of the whole systems due to the 

transactions. 

In paper [73], the authors presents a reliability-based charging model, in which the 

ratio between capacity-use and reliability benefit components split is 80%-20%. 

Although it seems reasonable as demonstrated in the example, it could be a 

challenging task for transmission owners to choose the suitable ratios. In paper [74], 

the ratio between allocation of transmission line capacity-use and allocation of 

reliability benefits is calculated based on a devised reliability index. But the example 

shows that only a relatively small portion of reliability embedded cost is allocated to 

reliability benefits. Its weak signals can not greatly reflect users’ different reliability 

benefits and influence their prospective behaviors.  
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Paper [75] proposes a new approach, in which the share of capacity use cost is in 

proportion to the sum of the absolute value of flows caused by transactions in normal 

states. Components’ reliability margin for transactions is calculated through 

introducing a probabilistic index that is evaluated under N-1 contingencies. In this 

approach, counter flow can be a big problem, as it leads to the net circuit flow caused 

by the flows due to all transactions not being equal to the sum of absolute values. 

Further, it is highly dependent on the number of transactions, which in reality is very 

hard to predict. 

The ICRP model does not factor network security. As implemented by NGC,  it relies 

on post-processing through a full-contingency analysis to give an average security 

factor of 1.8 for components, which is utilized to reshape components’ maximum 

available capacity [76]. The security factor is derived based on an average from a 

number of studies conducted by NGC to account for future network developments and 

reviewed for each price control period and fixed for the duration [63].  

The selection of contingencies is based on an average from a number of studies 

conducted by National Grid to account for future network development. The security 

factor is reviewed for each price control period and fixed for the duration [63]. This 

uniform security factor, however, could be misleading, as it is unable to differentiate 

the importance of the same components to different users. 

Pricing based on Network Reliability 

Some other approaches price users by simulating the change in reliability margin with 

and without network users and then allocate the related costs from the decrease in 

reliability or the investment cost to ensure the same reliability levels among the users. 

In paper [77], the regulated fixed charge is calculated with traditional transmission 

price. The reliability cost charge is evaluated by converting reliability indices, such as 

expected unserved energy, to a cost assessed with and without the wheeling 

transactions. The difference between the two costs is system reliability effect. Users 

are responsible for the total transmission price and transmission grid owners receive 

the regulated fixed charges. The reliability cost charge is held by regulatory agency to 

be granted to users who invest in transmission systems and cause the reliability levels 
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to be improved. The major incentives in this approach are to encourage network 

utilities to expand their networks, but the benefits or incentives to network users are 

not apparent especially to demand users.  

Papers [78, 79] present a method to incorporate reliability component in transmission 

service pricing with the consideration of load growth. In this approach, all customers 

are included to account for their effect on system reliability levels and share the 

responsibility of system reliability. It can quantify the negative or positive impact 

from customers on system risk and provide them with charges or credits. But, the rate 

design in this method is based on the system planning projects and several system 

planning alternatives should be studied. Additionally, the charge rate is from the 

average cost of future investment and hence cannot reflect the incremental cost of 

every component incurred by different customers.  

In paper [80], a novel pricing approach for reliability is proposed.  It considers that 

each circuit has two functions: to allow power to be transmitted between two points 

and to assure the system reliability. Thus, the revenue of each circuit is obtained from 

two parts: the part considering the system use under normal states and the other part 

considering the system use under contingencies. The cost of the first part is priced 

based on MW-mile methodology. The unrecovered cost of circuits is then allocated 

among transactions according to a reliability index calculated with and without them. 

It could provide very low use-of-system cost and high reliability cost if systems are 

lightly used, devaluating the importance of network components in normal cases.  

2.5.2 Pricing for Security at Distribution Level 

Present planning standard in the UK requires that large users or user groups at 

distribution networks should be secured against N-1 contingencies [14], which should 

be captured by DNOs’ distribution network charging  models. Network security has 

also been reflected in some distribution system pricing models in the UK. 

In FCP, both N-1 and N-2 level contingency analysis is carried out to assess the 

impact of all credible outages on DNOs’ networks. It identifies which circuits and at 

what capacity need to be reinforced over the next 10 years through the analyses. This 

modeling approach is static and not updated if a reinforcement is required [81].  
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The LRIC model reported in [15] discussed in section 2.4.2 still does not elaborate the 

network security issue well, as it assumes that a branch needs to be reinforced when it 

is loaded up to 50%.  

In the improved LRIC model in [76], each component is assigned with a contingency 

factor to reflect the amount of reserved capacity for contingencies, which is defined as 

the ratio of its maximum contingency flow in contingencies over its base flow in 

normal condition. Thus, the maximum allowed power flow each circuit can carry in 

normal conditions is computed as its rated capacity divided by its contingency factor  

C = 
RatedCapacity (2-10)

ContingencyFactor 

2.6 Drivers for Change of Pricing for Security 

Under the privatized context, both customers and network utilities seek to maximize 

their own profits. Thus, network customers might want to have, and utilities might be 

willing to provide, various security levels. This progress is stimulated by the 

advancement of smart grid.  

2.6.1 Customers’ Preference for Different Security Levels 

Previously, users at the same busbar were supplied with uniform security levels and 

they had no other options. Although load shedding and shifting techniques can be 

utilized to create different security levels for users in contingencies according to their 

priorities, it is difficult to translate the different security levels into the needed 

network investment.  

Under the new circumstances, customers would prefer diversified security levels to 

accommodate their own needs rather than being supplied with one overall security 

level [82]. Besides, in order to make electricity service security and reliability more of 

a private good, it is necessary to provide correct signals that reflect locational cost and 

enable customers to response to these prices through direct load response or through 

the choice of service levels [83]. Thus, the provision of one uniform security or 

reliability level for users and forcing them to pay for that is no longer acceptable.  
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As the advancement in control and communication technologies particularly due to 

the emergence of smart grid, it is possible for individuals to have different reliability 

levels and pay accordingly. Technically, it can be achieved by adopting load 

management techniques to increase the security or reliability demanded by some users 

and to decrease that of others. 

This preference for different security can tremendously affect network planning, 

operation, and users’ prospective behaviors. Hopefully, by encouraging more 

participation from them, network utilities can spare their potential investment and 

operate their networks more flexibly. For customers, they can have low prices for 

having less secure or reliable supply and get some sort of benefits in return for 

improving system security or reliability. Therefore, it is required that network pricing 

can reflect customers’ preference and provide forward-looking to incentive their 

different choices. 

2.6.2 Probabilistic Characteristics of Power Systems 

Traditionally, network security recognized in pricing models for security is based on 

deterministic criteria, determined by assessing anticipated or unanticipated 

contingency events specified in the contingency lists produced by network planners or 

operators. This approach depends on the application of two criteria[84]: 

�	 Credibility: the network configuration, outage events and operating conditions 

should be reasonably likely to occur;  

�	 Severity: the outage event, network configuration and operating conditions on 

which the decision is based, should result in the most severe system 

performance.  

This philosophy has served transmission and distribution system planning and 

operation well for a long period to ensure network security as it can provide higher 

reliability levels without too much calculation effort. The disadvantage with 

deterministic criterion is in that it can result in overly conservative decisions due to 

the emphasis on the most serious events. Those existing facilities driven by the most 
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serious events might not be fully utilized from long-run perspective. Thus, networks 

can be overbuilt, leading to imprudent capital expenditure in network expansion.  

Prudent capital expenditure should involve the application of risk management 

techniques, which are expected to include both the probability of an occurring event 

and its consequence. This leads to the probabilistic criteria which can recognize the 

probabilistic nature of power systems and alleviate the drawbacks of deterministic 

approaches as [85]: 

�	 It considers the occurring probability of possible outages:  

�	 It captures the increased risk caused by multiple constraints as it sums risk 

associated with all contingencies and problems;  

�	 It can reflect the risk associated with the insecure regions;  

�	 It considers the uncertainty under near future operating conditions. 

Despite their merits, the progress of accepting probabilistic approaches is rather slow, 

mainly because they have not acquired the level of credibility compared with 

deterministic approaches which can provide much simpler and more transparent 

information. It would be preferable if the two criteria could be combined together to 

form a compromising criterion so that both of their merits are maintained.  

2.6.3 Desirable Features of Pricing for Security 

Most of the existing security/reliability oriented approaches are no longer fit for the 

new environment, as they only focus on network present status and passively reflect 

and allocate investment cost users among. They are unable to include potential 

investment to accommodate new customers and actively influence their behaviors.  

The major disadvantage with FCP and LRIC for network security is that they treat all 

users equally for their use of the same piece of network component in contingencies, 

unable to discriminate the impact that contingencies have on different users. This is 

unfair for some users, who appreciate less security from particular components, but 

have to pay excessive charge. On the other hand, both the FCP model and the LRIC 
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model are still based on deterministic criterion to examine customers’ impact on 

network and determine prospective network investment. They are still unable to 

reflect the occurring probability of network contingencies and nodal unreliability 

tolerance. 

Conceptually, network pricing models for security or reliability should not only have 

the features of long-run charging models outlined by Ofgem, but also have the 

features of being able to: 

� Differentiate users’ security preference;  

� Price users based on their security levels;  

� Actively influence customers’ behaviors in favor of network security;  

� Respect users’ preference for different security levels; 

� Reflect the probabilistic features of power systems. 

2.7 Chapter Summary 


This chapter firstly addresses the major arising changes that influence and drive 

network planning activities and the role of network charging is thereby introduced.  

It then reviews a large number of existing pricing methodologies, including SRIC, 

SRMC, LRIC, and LRMC, with special attention paid to the charging models utilized 

in the UK. These models, however, are no longer fit for this new environment where a 

vast number of DGs emerge and customers are more willing to be interactive with 

networks. So, this chapter clarifies the major drivers for the reform in network 

charging especially for EHV distribution systems and introduces two newly proposed 

approaches - LRIC and FCP - for pricing EHV distribution networks in the UK to 

accommodate the new changes.  

This chapter also addresses the importance of security in network planning and 

stresses that the related part of investment costs should be properly allocated among 
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users. This standpoint is supported by a few pricing methodologies for security and 

reliability reported at transmission level.  

This chapter finally outlines the rationale for change in charging for security at 

distribution level as those discussed models are not applicable to distribution systems 

any more. It also describes the desirable features of prospective distribution level 

pricing approaches for security. 
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Chapter 3 

Network Pricing 
Using Marginal Approach 

HIS chapter proposes a new long‐run marginal cost pricing 
using sensitivity analysis for revenue reconciliation to directly T work out the impact from nodal injections on components. 
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3.1 Introduction 


In this chapter, a novel long-run marginal cost (LRMC) charging method is proposed 

following the same principle of the model given in [15] mentioned in section 2.4.2, 

but utilizing sensitivity analysis to reduce the computational burden for large systems 

and provide a supplement to the original LRIC model. In the proposed LRMC 

approach, the change of present value of future reinforcement of a network 

component with respect to a nodal power increment is represented by three partial 

components:  

� Sensitivity of components’  loading levels with regard to nodal injections;  

� Sensitivity of their reinforcement horizons with respect to their loading levels;  

� Sensitivity of their present value of future reinforcement with respect to their 

reinforcement horizons.  

By using this sensitivity approach, the LRMC model can produce charges through 

combining the three sensitivities. A simple test system is utilized to demonstrate the 

basic concept and an actual system taken from UK network is employed to test it. The 

research is carried out under different load growth rates (LGRs), loading levels and 

with different sizes of injections. The comparison shows the boundary conditions in 

which the two methods conform well, and in which the two depart and the LRMC 

model is no longer appropriate to be applied. In addition, in order to compare the 

economical signals provided by the two charging models to network users, tariffs 

reconciled from the LRIC and LRMC charges with two reconciliation methods, fixed 

adder and fixed multiplier, are also discussed. 

3.2 Long-run Marginal Cost Pricing Model 

The core of the LRIC method, which is also utilized in the new model, is to reflect:  

�	 How a nodal injection might affect the level of spare capacity of network assets 

that support this injection;  
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�	 How the change in spare capacity would influence their investment horizons; 

�	 How their change in investment horizon would impact their present value of 

future reinforcement of these assets.  

These impacts can be approximated through three-step partial differentiations, which 

form the core of the LRMC model, given as 

∂PVl ∂PVl ∂nl ∂Pl


∂PIn 

=
∂nl 

⋅
∂Pl 

⋅
∂PIn 

(3-1)


Where, Pl is the power flow along a circuit l linking nodes i and j, nl is the circuit’s 

reinforcement horizon, PIn is the size of nodal injection at busbar n and PVl is its 

present value of future reinforcement. 

Mathematically, the LRMC pricing can be implemented through the following steps. 

3.2.1 Sensitivity of Circuit Power Flow to Nodal Injection    

Equation (3-2) represents active power flow along a circuit from bus i to bus j. 

Pij = Vi 
2 ⋅ Gij −Vi ⋅V j ⋅ (Gij ⋅ cosθ ij + Bij ⋅ sinϑij )	 (3-2) 

When a small injection PIn connectes at node n, its effect on Pij can be obtained by 

∂Pij =
∂Pij ⋅

∂Vi + ⋅
∂Pij ⋅

∂V j +
∂Pij ⋅ 

∂θ i +
∂Pij ⋅ 

∂θ j (3-3)
∂PIn ∂Vi ∂PIn ∂V j ∂PIn ∂θ i ∂PIn ∂θ j ∂PIn 

∂Pij	 ∂Pij ∂Pij ∂PijWhere, , , , and  can be calculated from (3-2) by calculating its partial 
∂Vi	 ∂Vj ∂θi ∂θ j 

derivates with regard to Vi, Vj, θi, θj. 

In order to obtain the remaining parts in (3-3), sensitivity analysis is employed to 

represent the relationships between a change in nodal power and changes in voltage 

magnitudes and angles.  
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⎡ ∂P ∂P ⎤ 
⎡ΔP⎤ ⎢ ∂θ ∂V ⎥ ⎡Δθ ⎤ ⎡Δθ ⎤ 
⎢ ⎥ = ⎢∂Q ∂Q ⋅ ⎥ = [ ]⋅ ⎥	 (3-4)⎥ ⎢ J ⎢
⎣ΔQ⎦	 ⎢ ⎥ ⎣ΔV ⎦ ⎣ΔV ⎦ 

⎣ ∂θ ∂V ⎦ 

The analysis is based on the Jacobian matrix given in (3-4), which is obtained in the 

last iteration of power flow analysis. Finally, the effect from a power injection on 

circuits’ power flows can be easily evaluated by applying (3-2)-(3-4). 

3.2.2 Sensitivity of Time Horizon to Circuit Power Flow 

Taking derivate of a circuit’s original reinforcement horizon given in (2-2) with 

respect to circuit power flow gives 

∂nl 1


∂Pl 

= −
Pl ⋅ log(1+ r) (3-5)


Apparently, for a given fixed LGR, the only factor that influences the sensitivity is the 

circuit’s loading level: the negative sign implies that an increase in loading level 

reduces or brings forward time to reinforce and, a decrease in loading level increases 

or defers time to reinforce.  

3.2.3 Sensitivity of Present Value to Time Horizon 

Similarly, taking derivative of the circuit’s present value in (2-3) with respect to its 

reinforcement horizon gives 

∂PVl = −
Assetl ⋅ log(1+ d )	

(3-6)nl∂nl log(1+ r)

This formula represents how the change of its investment horizon affects its present 

value of future reinforcement. Because both asset cost and discount rate are fixed, the 

only factor influencing the level of sensitivity is the horizon. The negative sign 

indicates that a rise in the horizon lowers its present value of future reinforcement, 

and a fall in the horizon increases it. 
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3.2.4 Sensitivity of Present Value to Nodal Injection 

Combining (3-3), (3-5) and (3-6) and replacing nl with (2-2) leads to the sensitivity of 

present value of future reinforcement of a circuit with respect to the nodal injection  

log(1+d ) 
∂PVl PVl log(1+ d ) ⎛ Pl ⎞ log(1+r ) ∂Pl 

∂PIn 

= − 
Pl 

⋅ 
log(1+ r) ⋅ ⎜

⎜
⎝ Cl 

⎟⎟
⎠ 

⋅
∂PIn 

(3-7) 

For a supporting circuit, its cost, the LGR, and the chosen discount rate are fixed. The 

factors that influence the change in its present value of future reinforcement as a result 

of the nodal injection are the circuit’s loading level, the sensitivity of the circuit’s 

loading level to the nodal injection. For circuits with low sensitivities of the flow 

change to the nodal injection, even if they are heavily loaded, they will still produce 

low charges, as the nodal injection causes very little change in their horizons. On the 

other hand, for lightly loaded circuits, if their sensitivities of flow change to the nodal 

injection are high, they will see larger charges for the node as the nodal injection 

triggers big change in their horizons. The predicted LGR is another factor affecting 

the calculated LRMC charges: a low LGR can lead to high charges and a high LGR, 

by contrast, can result in low charges, with the amount depending on the level of the 

circuit’s utilization. 

3.2.5 Long-run Marginal Cost 

The LRMC charge for node n is the sum of costs over all circuits that support it 

multiplied by an annuity factor, given by,  

LRMCn =∑ ∂PVl ⋅ AnnuityFactor (3-8) 
l ∂PIn 

3.3 Revenue Reconciliation 

It should be noted that neither incremental nor marginal charges may be able to 

recover the revenue allowed for DNOs. Revenue reconciliation process is therefore 

generally required to adjust the nodal incremental or marginal prices so that the 

revenue recovered from network charges can meet the target revenue. The 

mechanisms used by DNOs are equally important due to the fact that in practice, a 
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large proportion of their revenue may be recovered through such scaling mechanism 

and it may have a significant impact on the relative level of nodal tariffs.  

There are two commonly adopted revenue reconciliation approaches to adjust the 

nodal prices, namely "fixed adder" and "fixed multiplier" [86]. The fixed adder 

method adds/subtracts a constant amount to/from the nodal charges to make up for the 

revenue shortfall/surplus. The multiplier method scales the nodal charges by a 

constant factor corresponding to the ratio of the target revenue to the recovered 

revenue. Equations (3-9) and (3-10) describe how they adjust nodal charges. 

Tariff = Charge + Adder (3-9)i i 

Tariff = Ch arge ⋅ (1+ Multiplier) (3-10)i i 

In the following two sections, the two methods are used to examine how the LRIC 

and LRMC models affect the tariffs. 

3.4 Demonstration on a Two-busbar System 

The comparison of the two long-run charging methods is firstly carried out on a 

simple network shown in Figure 3-1. It is supposed that the rating of Lf is 45MW after 

security redundancy and its cost is £3,193,400, which includes both asset cost and 

construction cost [15].Taking 6.9% discount rate and 40 years life span leads to its 

annuity cost as £236,760/yr. 

Figure 3-1 Layout of a two-busbar test system 

As expected, the LRMC yields similar results with LRIC in both low and high LGR 

cases and at both low and high circuit loading levels, when LRIC charges are 

calculated with a small injection - 0.1MW. 

Figures 3-2 and 3-3 compare the results with 1MW nodal injection for the LRIC 

model under two underlying growth rates, 1.5% and 5% respectively. Generally, the 
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two kinds of charges are quite close at the most loading levels, with few exceptions. 

In the small LGR case, the charge difference grows with the increasing circuit’s 

utilization. In the high LGR case, the charge difference decreases with the increase of 

loading level.  

Figure 3-2 Charge comparison with 1MW injection for LRIC-1.5% LGR 

Figure 3-3 Charge comparison with 1MW injection for LRIC-5% LGR 

The apparent difference in charges can be explained by the different calculation 

concepts of the two approaches, demonstrated in Figure 3-4. LRIC is achieved 

through simulating the difference in the present value of future reinforcement with 

and without an injection, whereas LRMC charge is calculated through a single 

function representing three partial differentiations initiated by the nodal injection. If 
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the LRIC/LRMC cost function is not steep with respect to circuits’ utilization, the 

difference between the two types of charges should be very small.  

Figure 3-4 Different calculation concepts of LRIC and LRMC 

Two three-dimensional Figures 3-5 and 3-6 demonstrate the charge difference under 

various LGR and circuit’s loading level. As seen from, the large difference is seen 

when the LGR is lower than 1% and its utilization is higher than 70%.  

Figure 3-5 Difference in charges from the two methods-0.1MW injection 

Figures 3-7 and 3-8 show the difference by varying the size of the nodal injection and 

the level utilization level of the circuit under two LGRs, 1.5% and 5%. Figure 3-7 

shows that in the case of 1.5% LGR, the size of the nodal injection for LRIC has little 

influence on the difference when the circuit utilization is low, especially if it is 

smaller than 0.5MW. However, the difference grows apparent with the increasing 
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nodal injection when the circuit’s utilization is high. It is because that a big nodal 

injection can greatly bring forward the circuit’s investment horizon. In the high LGR 

case given in Figure 3-8, big difference only appears when the injection is greater 

than about 0.5MW and the circuit’s utilization is low. It is caused by the steep slope 

of the LRMC cost function with respect to component’s loading level in Figure 3-4.  

Figure 3-6 Difference in charges from the two methods-1MW injection 

Figure 3-7 Difference in charges from the two methods-1.5% LGR 
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Figure 3-8 Difference in charges from the two methods-5% LGR 

3.5 Demonstration on a Practical System 

In this section, the comparison of the LRIC and LRMC pricing methods is carried out 

on a practical grid supply point area given in Appendix. A.  

The rationale in comparing the two methods on a practical system is that a nodal 

increment is likely to impact many circuits in the network. The difference between the 

two methods for each circuit might be modest, but accumulating these differences 

over all supporting circuits for a node could potentially produces large difference. The 

comparison is carried out in two conditions:  

� Two underlying LGRs: 1% and 5%; 

� Two loading levels: base loading level and scaled-up level (by 20%).  

An injection of 1MW is employed for the LRIC model. The comparisons are in terms 

of nodal LRIC and LRMC charges and tariffs. 

As for time efficiency of evaluating this practical system, it takes the LRIC model 157 

milliseconds to calculate the nodal charges for every single node in the network. But 

for the LRMC model, it only takes 51milliseconds on the same computer - 1/3 of the 

computational effort of the LRIC. For a large-scale system with 2000 nodes, it takes 

Page 55 



                                   Chapter 3 Network Pricing Using Marginal Approach 

the computer 12 seconds to calculate LRIC charge for a single node and 

approximately 6 hours and 40minutes in total. In contrast, it takes only 0.5 second to 

compute LRMC charges for a single node and takes barely 17 minutes in total. 

3.5.1 Base Loading Level Case 

In the UK, system winter peak demand is higher than summer peak demand and it 

triggers network reinforcement. Therefore, the demand in this case is chosen as 

system peak in winter, without any scaling. 

Table 3-1 gives the nodal charges from LRIC and LRMC approaches under the base 

loading level. To assist analysis, Figure 3-9 depicts the utilization levels of the 

branches in base loading case. As seen, the most heavily loaded circuit is line No. 4 

linking bus 1008 and bus 1006. Transformers 12-17 also have high loading levels. 
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Figure 3-9 Circuit utilization in base loading level case 

It can be seen from Table 3-1, when LGR is at 1%, the charge differences are large 

for nodes 1001-1007, as they are supported by relatively highly utilized circuits. It 

can, also be observed that nodes 1009-1015 have nearly 0 charges, as they are 

supported by lightly loaded circuits. In the 5% LGR case, the charges at nodes 1009­

1015 become significantly larger because when the underlying LGR is higher, the 

investment horizons of their supporting components become nearer and therefore a 

nodal injection would have greater impact on their present value of future investment. 

In comparison, nodes 1003-1006 are supported by heavily utilized circuits, their 
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charges decrease as the LGR increases. Generally, the conclusions from the simple 

example are still applicable here: cases with small LGRs and high loading levels 

would see big a difference. 

Table 3-1 Comparison of charges under two load growth rates (£/kW/yr) 

Bus No. 
LGR=1% LGR=5% 

LRIC LRMC Difference LRIC LRMC Difference 

1001 4.265 3.82 0.444 5.886 5.84 0.042 

1002 0.607 0.546 0.061 4.419 4.39 0.03 

1003 20.21 19.06 1.149 10.14 10.10 0.049 

1004 18.61 17.61 1.001 9.04 8.997 0.04 

1005 1.963 1.75 0.211 1.285 1.275 0.01 

1006 18.16 17.18 0.979 6.698 6.66 0.039 

1007 1.963 1.752 0.211 1.285 1.275 0.01 

1009 0.122 0.097 0.025 10.16 10.02 0.143 

1010 0.025 0.019 0.006 6.116 5.974 0.142 

1011 0.245 0.16 0.085 12.94 12.61 0.329 

1012 0.241 0.157 0.084 11.43 11.14 0.292 

1013 0 0 0 2.053 1.961 0.092 

1014 0 0 0 1.242 1.15 0.092 

1015 0 0 0 2.3 2.121 0.179 

The adder and fixed multiplier are employed here to demonstrate the degree of 

adjustments required to meet the target revenue, their relative merits and impacts on 

LRIC and LRMC charges. The resultant tariffs are given in Tables 3-2 and 3-3. 
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Table 3-2 Comparison of tariffs using fixed adder method (£/kW/yr) 

Bus 
No. 

LGR=1% LGR=5% 

LRIC LRMC Difference LRIC LRMC Difference 

1001 6.659 6.806 -0.147 11.073 11.073 0 

1002 3.001 3.532 -0.531 9.606 9.623 -0.017 

1003 22.604 22.046 0.558 15.327 15.333 -0.006 

1004 21.004 20.596 0.408 14.227 14.230 -0.003 

1005 4.357 4.736 -0.379 6.472 6.508 -0.036 

1006 20.554 20.166 0.388 11.885 11.893 -0.008 

1007 4.357 4.738 -0.381 6.472 6.508 -0.036 

1009 2.516 3.083 -0.567 15.347 15.253 0.094 

1010 2.419 3.005 -0.586 11.303 11.207 0.096 

1011 2.639 3.146 -0.507 18.127 17.843 0.284 

1012 2.635 3.143 -0.508 16.617 16.373 0.244 

1013 2.394 2.986 -0.592 7.240 7.194 0.046 

1014 2.394 2.986 -0.592 6.429 6.383 0.046 

1015 2.394 2.986 -0.592 7.487 7.354 0.133 

From Table 3-2 the largest difference in LRIC and LRMC tariffs is 0.592£/kW/yr for 

nodes 1013-1015, when LGR is 1%,. It is because that although these nodes have zero 

charges, fixed adder allocates the under-recovered revenue equally to all network 

nodes, thus resulting in the fixed adder of £2.394/kW/yr for LRIC and £2.986/kW/yr 

for LRMC. When LGR increases to 5%, the largest difference decreases to 

0.284£/kW/yr (for node 1011). For all other nodes, the charges from the LRIC and 

LRMC approaches yield quite similar tariffs. Compared with 1% LGR case, tariffs in 

this case are much higher, because rapid load growth can bring the components’ 

reinforcement horizons nearer, thus leading to high charges. From the Table, it can 

also be seen that the fixed adder approach maintains the relative differences in nodal 

tariffs the same as the nodal charges, therefore minimizing the potential distortion to 

the economic signals.  
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Table 3-3 Comparison of tariffs using fixed multiplier method (£/kW/yr) 

Bus No. 
LGR=1% LGR=5% 

LRIC LRMC Difference LRIC LRMC Difference 

1001 5.342 5.134 0.208 10.600 10.592 0.008 

1002 0.760 0.734 0.026 7.958 7.962 -0.004 

1003 25.315 25.617 -0.302 18.261 18.318 -0.057 

1004 23.311 23.668 -0.357 16.280 16.318 -0.038 

1005 2.459 2.352 0.107 2.314 2.312 0.002 

1006 22.747 23.090 -0.343 12.062 12.079 -0.017 

1007 2.459 2.355 0.104 2.314 2.312 0.002 

1009 0.153 0.130 0.023 18.297 18.173 0.124 

1010 0.031 0.026 0.005 11.014 10.835 0.179 

1011 0.307 0.215 0.092 23.303 22.871 0.432 

1012 0.302 0.211 0.091 20.584 20.204 0.38 

1013 0.000 0.000 0 3.697 3.557 0.14 

1014 0.000 0.000 0 2.237 2.086 0.151 

1015 0.000 0.000 0 4.142 3.847 0.295 

As for the fixed multiplier method, it amplifies the relative difference of nodal 

charges; as a result, higher charges getting even higher tariffs and 0 charges remaining 

0, as shown in Table 3-3. For the low LGR case, the biggest difference in LRIC and 

LRMC tariff is 0.357 £/kW/yr for node 1004, which has been reduced from the 

original difference of 1.001£/kW/yr in charge, as LRIC and LRMC methods see 

different multipliers, 0.25 for LRIC and 0.34 for LRMC. When it comes to the high 

LGR case, the tariffs reconciled from LRIC and LRMC charges are quite close and 

the biggest difference is 0.433£/kW/yr for node 1011. Compared with the difference 

of 0.329£/kW/yr in charges (in Table 3-1), this tariff difference is amplified by the 

multiplier. Potentially, if there are few excessively high nodal charges, a modest 

multiplier would lead to extremely high tariffs for the few nodes. 

3.5.2 Higher Loading Level Case 

In this part, all loads are scaled up by 20%, thus increasing all circuits’ utilization by 

approximately 20%. All branches’ scaled up loading levels are given in Figure 3-10. 
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Figure 3-10 Circuit utilization in scaling loading level case 

Table 3-4 summarizes the charges from the two charging approaches under two LGR 

cases. Obviously, charges follow the same patterns as the base case, but they are 

much higher caused by the increased circuit utilization levels. Compared with results 

given in Table 3-1, the increments in charges are similar for both approaches: lower 

LGRs case sees greater increments in charges and high LGRs scenario witnesses 

smaller charge increments. 

Table 3-4 Comparison of charges under two load growth rates (£/kW/yr) 

Bus No. 
LGR=1% LGR=5% 

LRIC LRMC Diff. LRIC LRMC Diff. 
1001 12.52 11.43 1.087 6.29 6.25 0.037 
1002 1.757 1.61 0.146 4.70 4.68 0.026 
1003 60.19 57.35 2.836 10.87 10.83 0.044 
1004 55.21 52.76 2.451 9.66 9.62 0.036 
1005 5.39 4.894 0.496 1.38 1.38 0.008 
1006 53.87 51.47 2.398 7.16 7.12 0.035 
1007 5.39 4.89 0.496 1.38 1.36 0.008 
1009 0.39 0.32 0.068 11.21 11.08 0.134 
1010 0.076 0.06 0.014 6.57 6.45 0.125 
1011 0.78 0.54 0.237 14.45 14.14 0.314 
1012 0.77 0.53 0.233 12.85 12.56 0.282 
1013 0 0 0.000 2.18 2.10 0.082 
1014 0 0 0.000 1.31 1.23 0.083 
1015 0 0 0.000 2.43 2.27 0.162 
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As for the tariffs from the fixed multiplier method given by Table 3-6, they become a 

little smaller for all nodes because of the increased demand, by comparison with the 

results in Table 3-3. Unlike the fixed adder approach, this method produces no 

negative tariff in the 1% LGR case. All tariffs reconciled by this approach are smaller 

than the charges provided in Table 3-3 as smaller fixed multipliers scale down all 

charges proportionally.   

Table 3-5 provides tariffs calculated using fixed adder method. In the low LGR case, 

the fixed adder approach gives negative tariffs for some nodes. It is due to that 

charges are dominated by the high charges at buses 1003, 1004 and 1006. The 

revenue recovered from these three nodes alone already exceeds the allowed revenue. 

Consequently, a negative adder is obtained, leading to negative tariffs for the majority 

of other nodes in the system. When the LGR rises up to 5%, tariffs for all nodes are 

positive because of the calculated positive adder and the difference in tariffs also 

becomes small compared with the 1% LGR case. 

Table 3-5 Comparison of tariffs using fixed adder method (£/kW/yr) 

Bus No. 
LGR=1% LGR=5% 

LRIC LRMC Difference LRIC LRMC Difference 

1001 -5.196 -4.834 -0.362 9.036 9.042 -0.006 

1002 -15.959 -14.654 -1.305 7.446 7.472 -0.026 

1003 42.474 41.086 1.388 13.616 13.622 -0.006 

1004 37.494 36.496 0.998 12.406 12.412 -0.006 

1005 -12.326 -11.370 -0.956 4.126 4.172 -0.046 

1006 36.154 35.206 0.948 9.906 9.912 -0.006 

1007 -12.326 -11.374 -0.952 4.126 4.152 -0.026 

1009 -17.326 -15.944 -1.382 13.956 13.872 0.084 

1010 -17.640 -16.204 -1.436 9.316 9.242 0.074 

1011 -16.936 -15.724 -1.212 17.196 16.932 0.264 

1012 -16.946 -15.734 -1.212 15.596 15.352 0.244 

1013 -17.716 -16.264 -1.452 4.926 4.892 0.034 

1014 -17.716 -16.264 -1.452 4.056 4.022 0.034 

1015 -17.716 -16.264 -1.452 5.176 5.062 0.114 
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The revenue reconciliation mechanism used by a DNO is very important as it decides 

how LRIC or LRMC charges should be shaped into tariffs seen by network users. In 

practice, a large proportion of DNOs’ revenue may be recovered through the 

mechanism. The fixed adder approach can maintain the same level of differentiation 

between nodal tariffs, thus minimizing any distortion over the pure 

incremental/marginal costs. In contrast, the fixed multiplier approach maintains the 

relativity between nodal tariffs, but the relativity is proportionally amplified by the 

same level. This could be considered as the distortion of the cost signals that network 

customers would see. Thus, the fixed adder approach is preferred by the majority of 

DNOs in the UK [68].  

Table 3-6 Comparison of tariffs using fixed multiplier method (£/kW/yr) 

Bus 
No. 

LGR=1% LGR=5% 

LRIC LRMC Difference LRIC LRMC Difference 

1001 4.436 4.276 0.16 8.767 8.769 -0.002 

1002 0.622 0.602 0.02 6.551 6.566 -0.015 

1003 21.325 21.454 -0.129 15.150 15.194 -0.044 

1004 19.560 19.737 -0.177 13.464 13.497 -0.033 

1005 1.910 1.831 0.079 1.923 1.936 -0.013 

1006 19.086 19.254 -0.168 9.979 9.989 -0.01 

1007 1.910 1.829 0.081 1.923 1.908 0.015 

1009 0.138 0.120 0.018 15.624 15.545 0.079 

1010 0.027 0.022 0.005 9.157 9.049 0.108 

1011 0.276 0.202 0.074 20.140 19.838 0.302 

1012 0.273 0.198 0.075 17.910 17.621 0.289 

1013 0.000 0.000 0 3.038 2.946 0.092 

1014 0.000 0.000 0 1.826 1.726 0.1 

1015 0.000 0.000 0 3.387 3.185 0.202 

3.6 Chapter Summary 


In this chapter, a novel LRMC charging method based on analytical approach is 

proposed, which directly relates the nodal power increment to the change in 

components’ present value of future network investment. Results of two systems 
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using the proposed method are compared and contrasted with those from the LRIC 

approach. Based on the extensive analysis, the following key findings can be listed:  

� In terms of accuracy, the LRIC and LRMC approaches yield quite similar results 

when the sizes of the nodal injections for LRIC are small. The biggest difference 

appears when circuits are highly loaded and LGR is small. When injections 

become large, the discrepancies between the two approaches become apparent 

and the biggest difference shows up when circuits are lightly loaded and LGR is 

high. As for tariffs, they are highly dependant on charges, and largely follow the 

same pattern of charges.  

� In terms of speed, the LRIC needs to run power flow analysis twice for each 

nodal injection in order to examine the effects of an injection on the long-term 

development costs. For a large system, the computational burden grows 

exponentially with the increase in the size of networks. The proposed LRMC, on 

the other hand, saves significant computational time for large-scale networks by 

utilizing sensitivity analysis, avoiding running power flow analysis for every 

nodal injection. 

� In terms of flexibility, the LRIC model, working through simulation approach, 

can examine the impact imposed on a network by any size of injection. But, the 

proposed LRMC can only accurately represent a very small change. For large 

injections, the charges obtained with LRMC can deviate from those calculated 

with the LRIC. 

� Finally, revenue reconciliation process is very important in how it might shape 

the relative difference in LRIC and LRMC charges. The fixed adder approach 

uniformly scales up/down all nodal charges, hence preserving the absolute 

difference in nodal charges. The fixed multiplier, on the other hand, amplifies 

the nodal relativity. If the amplification becomes significant, it could 

considerably distort the impact that a nodal power injection might have on 

network development cost. As a consequence, the industry in general favors the 

fixed adder approach over the fixed multiplier.   
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Chapter 4 

Network Pricing 
Considering Impact of Security 

HIS chapter examines the impact of security of supply on 
network charging by recognizing how an injection would affect T components in network contingencies. 
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4.1 Introduction 

The LRIC model given in section 2.4.2 calculates charges by reflecting the change in 

assets’ spare capacity due to a nodal increment and then translating it into changes of 

assets’ annuitized cost. It assumes that a component needs to be reinforced when it is 

50% loaded, as the left spare capacity is reserved for coping with network 

contingencies. The improved LRIC approach in [76] also recognizes the importance 

of network security in charging by reshaping components’ maximum available 

capacity with contingency factor. The shortcoming of this model is that it only 

examines the impact from the injection on system assets in normal conditions, 

ignoring contingency cases, regardless how great the impact could be. This cannot 

truly reflect the reality, since in contingencies the injection could also bring forward 

or defer components’ investment horizons and influence the final charges.  

This chapter also stresses the impact of contingencies on components and it should be 

reflected in network charging. It tries to capture the impact of nodal injections on 

components in both normal and contingency situations. This chapter first examines 

the impact of a nodal injection on an asset’s investment horizon in both normal and 

contingency situations for three typical networks. The smaller one from the two 

conditions is selected as the actual investment horizon. Sensitivity analysis is also 

introduced to save computational burden. The proposed approach is finally 

demonstrated and compared with the original charging model in [76]. 

4.2 Reinforcement Horizons in Normal Conditions 

This section introduces the determination of components’ reinforcement horizons in 

normal cases without and with injections for three typical networks. 
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4.2.1 Original Reinforcement Horizon without Injections  

Figure 4-1 Two-busbar radial system framework 

For a simple network in Figure 4-1, if either of the two identical circuits fails, D at 

busbar 2 can still be secured by the other working circuit. There is no need to 

reinforce it as long as the curtailed load amount from D does not exceed its rated 

capacity under a given load growth rate, r. In N-1 contingency, such as L2 fails, L1 

needs to pick up L2’s normal case flow to avoid any load curtailment. It means that 

L1’s normal case flow can only increase on top of the capacity reserved for catering 

for the flow along L2, which is reflected by reshaping its capacity with its 

contingency factor [76]. Thus, L1’s reinforcement horizon can be identified by 

examining the time taking the load flow along it to grow from current loading level to 

its maximum available capacity,  

RC 
= Dl ⋅ (1+ r)n (4-1)

CF 

where, RC is L1’ rated capacity, CF is its contingency factor and Dl is its current 

loading level.  

Rearranging and taking logarithm of it gives, 

log(RC
CF )− log(Dl )

= 
log C − log Dl (4-2)n = 

log(1+ r) log(1+ r) 

Where, C is its maximum available capacity. 

4.2.2 New Reinforcement Horizon with Nodal Injections  

When a new nodal increment comes to busbar 2, the two circuits’ new horizons 

change, which can be obtained by replacing log Dl in (4-2) with log(Dl + ΔP) 
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logC − log(Dl + ΔP)nnew == 
log(1+ r) (4-3) 

where, ΔP is the normal flow change along each of the circuits due to the increment. 

4.3 Reinforcement Horizons in Contingencies 

In contingencies, network connectees’ impact on components can also be assessed 

similarly by examining the change in components’ spare capacity due to the 

connections and then translating it into the change of their investment horizons. 

4.3.1 Original Reinforcement Horizon without Injections 

For the simple two-busbar system given in Figure 4-1, if no new connectee is 

connected to bus 2, L1’s investment horizon when L2 fails, can be determined with 

log RC − log Dcontncont = 
log(1+ r) (4-4) 

where, Dcont is L1’s maximum contingency flow. 

Rearranging (4-4) gives 

⎛ RC ⎞
⎜ ⎟ 

log⎜ CF 
D ⎟ 

log⎛⎜RC ⎞⎟ ⎜⎜ cont ⎟⎟ log⎛⎜C ⎟⎞ (4-5) 
⎝ Dcont ⎠ = ⎝ CF ⎠ = ⎝ Dl ⎠ncont = 
log(1+ r) log(1+ r) log(1+ r) 

Obviously, this formula is the same as (4-2), indicating that a component’s original 

horizon under contingencies without any injections is equal to its normal case one. 

4.3.2 New Reinforcement Horizon with Nodal Injections 

When a new connectee comes to busbar 2, there will be an incremental contingency 

flow along L1, supposed to be ΔPcont . Under this condition, L1’s new reinforcement 

horizon will change to 

Page 67 



                        Chapter 4 Network Pricing Considering Impact of Security 

log RC − log(Dcont + ΔPcont )ncont ,new = 
log(1 + r) (4-6) 

Rearranging above formula gives, 

⎛ ΔP ⎞logC − log⎜ D + cont ⎟ 
⎝ 

1 CF ⎠ (4-7)ncont ,new = 
log(1+ r) 

By comparison (4-3) and (4-7), it is noticed that only when the circuit’s normal flow 

change is equal to its contingency flow change divided by its contingency factor are 

the same the two new reinforcement horizons. 

4.4 Comparison of the Two New Horizons 

In order to investigate the difference between the two new horizons from normal and 

contingency conditions, an extensive comparison is carried out on three typical 

network frameworks: single component, parallel components and meshed networks.  

4.4.1 Demand Supported by a Single Component 

If a load is supported by a single component, its supply will be interrupted when the 

component fails, leading to a contingency factor of 1 for the component. So, its new 

reinforcement horizon from both normal and contingencies are the same.  

4.4.2 Demand Supported by Parallel Components 

For a load supported by two identical parallel components as depicted in Figure 4-1, if 

DC load flow is used and power loss along the circuits are ignored, their new 

reinforcement horizons from the two conditions should be the same. It is because the 

contingency case flow increment is 2 times of that in normal case, which is thereafter 

scaled down by their contingency factors of 2. 

In practice, however, the parallel components might be not necessarily identical and 

even if they are identical, their contingency factors might not be 2 if the power loss 

along them is considered. Thus, their new horizons from the two cases would differ 
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from each other, decided by their normal case and contingency case loading 

conditions, and contingency factors. 

4.4.3 Demand Supported by Meshed Networks 

For the case that loads are supported by a meshed network, such as given in Figure 4­

2, the situation becomes complex. In order to simplify analysis, the three circuits and 

the two loads are assumed to be the same respectively. Here, only L1’s new horizons 

due to an injection at busbar 2 are analyzed. 

Figure 4-2 Three-busbar meshed system framework 

In normal conditions, L1’s future reinforcement is only triggered by the load growth 

at bus 2, as the load growth at bus 3 has no impact on it. Its most serious contingency 

is L2’s failure, which doubles its loading level as load D2 is transferred to it.  

Figure 4-3 Difference in time horizon for L1 
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Figure 4-3 depicts the difference of L1’s two new reinforcement horizons with the 

rise in its loading level: normal case horizon minus contingency case horizon. As 

seen, when it is lightly loaded, the normal case horizon is bigger than the contingency 

one, and the difference decreases with increasing loading level. It means that in low 

loading conditions, L1’s future reinforcement is driven by contingency situations. 

With the rise in its loading level, a cross point is reached at a loading level of 15%, 

beyond which the contingency becomes bigger than the normal case one. It indicates 

that at higher loading levels, L1’s reinforcement is triggered by normal situations. 

One particular case should be pointed out is the change of L3’s horizon when load D1 

and D2 are not with the same size. If D2 is bigger than D1, L3’s normal case flow 

moves from busbar 2 to busbar 3 and an injection at busbar 2 could decrease the flow. 

So, L3’s new normal case reinforcement horizon driven by injection busbar 2 is 

deferred. When its most serious contingency happens, i.e. L2 fails, an injection at 

busbar 2 has no impact on L3 at all. Hence, L3’s contingency case horizon due to the 

connectees at busbar 2 is always smaller than its normal case one. This special case, 

however, cannot be properly recognized by the original model, as it only investigates 

a connectee’s impact in normal case. 

It is seen that a component’s normal and contingency reinforcement horizons would 

be dramatically different in meshed networks. The proposed concept can capture and 

differentiate connectee’s impact in both conditions, so it should be able to improve 

charge assessment in distribution networks especially EHV distribution networks, 

where a large umber of meshed networks exist. 

4.5 New Charging Model 

4.5.1 New Charging Model Framework 

This charging framework takes components’ new reinforcement horizons under both 

normal and contingency situations into consideration so as to more precisely capture 

users’ impact. The smaller one between the two is chosen as their actual horizons. The 

main procedures of this charging model are outlined below: 
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Base Case Analysis 

Base case flow analysis is to determine components’ base status without any 

injections and feed the results into horizon evaluation. Their original horizons can be 

determined with either (4-2) or (4-4), as they generate the same results. 

Incremental Flow Analysis 

Incremental normal case flow analysis seeks to calculate flow changes along all 

components due to small injections and then to calculate their normal case horizons. 

The new reinforcement horizons with nodal injections in normal conditions are 

determined with (4-3). Their new horizons in contingencies are calculated with (4-7). 

Here, for each component, the injections’ impact should be assessed in the most 

serious contingency events that drivers their future investment. Hence, a large number 

of contingencies should be analyzed in order to find the most serious ones. 

Unit price calculation 

Once the old and new horizons are indentified for each circuit, they are submitted into 

the following steps to derive unit charges.  

The present value of future reinforcement of a component is  

CostPV = 
(1+ d )n (4-8) 

where, d is the chosen discount rate, and n is the component’s investment horizon. 

The change in present value as a result of a nodal increment for the component is  

⎛ 1 ⎞
ΔPV = Cost ⋅ ⎜⎜

⎝ (1+ d ) − (1+ d )n ⎟⎟
⎠ 

(4-9)nnew 

The incremental cost of the component will be the annuitized change in its present 

value of future investment 

ΔIC = ΔPV ⋅ AnnuityFactor (4-10) 
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The nodal incremental cost for a node is the accumulation of the present values of 

incremental cost of all its supporting components, given as  

∑ΔIC
LRIC = (4-10)

ΔPI 

where, ΔPI is the injection size at the node. 

4.5.2 Sensitivity Analysis to Determine Flow Difference 

As seen from part 4.5.1, a large number of runs of incremental power flow and 

incremental contingency flow analysis should be carried out in order to decide in 

whether normal or contingency situations connectees have greater impact on 

components. It is immensely time-consuming for large-scale systems. An alternative 

approach is to adopt sensitivity analysis to determine how a tiny injection would 

change components’ flow in both conditions, which has been utilized in Chapter 3. 

This approach is not only time-saving but also able to provide quite satisfactory 

results especially when the injection is vey small [17]. In normal conditions, 

sensitivity analysis is executed based on the base case power flow, and in 

contingencies, sensitivity analysis is carried out based on each selected contingency 

case. 

4.6 Three-busbar System Demonstration 

4.6.1 Charge Assessment 

In this section, the enhanced model is demonstrated and compared with the original 

security-oriented model on the simple network given in Figure 4-2. The three circuits 

are assumed to be identical, each with the rated capacity and cost of 45 MW and 

£1,596,700 respectively. D1 and D2 are chosen as 10 MW and 20MW, both of which 

have a growth rate of 2.0%. An injection of 1MW is utilized. The calculated results 

under N-1 contingencies for the three circuits with and without an injection are 

provided in Table 4-1. 

As seen, although the three circuits are identical, their contingency factors and 

maximum allowed capacity vary dramatically. L2 has the smallest contingency factor, 
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1.8, leading to the biggest allowed capacity of 25MW. L3’s contingency factor is the 

biggest, 6.0, which scales its maximum allowed capacity down to merely 7.5MW. Big 

contingency factors mean that they should carry a large volume of contingency flow, 

which in turn leads to small capacity available in normal conditions. 

Table 4-1 Results of the three-busbar system 
Circuit No. L1 L2 L3 

Normal flow (MW) 13.33 16.67 3.33 
Maximum contingency flow (MW) 30 30 20 

Most serious contingency L2 out L1 out L2 out 
Contingency factor 2.25 1.80 6.0 

Maximum allowed capacity (MW) 20 25 7.5 
Biggest contingency flow change over 

contingency factor (injection at bus 2) (MW) 0.44 0.56 0.0 

Normal flow change (injection at bus 2) (MW) 0.67 0.33 -0.33 
Biggest contingency flow change over 

contingency factor (injection at bus 3) (MW) 0.44 0.56 0.17 

Normal flow change (injection at bus 3) (MW) 0.33 0.67 0.33 

When an injection connects to busbar2 or busbar 3, its impact on the three circuits are 

quite different in both normal and contingency conditions. When it connects to either 

bus 2 or bus 3, all circuits’ maximum contingency flow increments are 1MW in their 

most contingencies. For example, when L2 fails, the injection at busbar 2 will 

increase both L1 and L3’s contingency flow by 1MW. In normal conditions, however, 

an injection at busbar 2 causes the three circuits’ normal flow rise by 0.67MW, 

0.33MW and -0.33MW respectively. The negative increment means that the injection 

can reduce L3’s flow. In contingencies, by contrast, the contingency flow increments 

along the circuits over their contingency factors become to 0.44MW, 0.56MW and 

0.0MW respectively. By comparison, the injection has greater impact on L1 in normal 

conditions, which is exactly reverse for L2. As regard to L3, the power increment has 

no impact on it in contingencies, whereas it brings down its flow in normal conditions. 

To further elaborate the difference in the results from the two approaches, the three 

circuits’ reinforcement horizons are provided in Table 4-2.  

As expected, the two approaches produce the same new results when no injections are 

connected. With new injections considered, the changes in the circuits’ reinforcement 

horizons are decided by the changes in their loading levels: bigger positive increment 
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brings down components’ reinforcement horizons even further. For example, when an 

injection is at busbar 2, L1’s normal case and contingency case horizons are changed 

to 35.85yrs and 37.45yrs respectively. By contrast, L1’ normal case horizon is 

38.27yrs when an injection is at busbar 3, but it is brought down to 37.45yrs in 

contingencies. One point should be noted is that when an injection connects to busbar 

2, L3’s contingency horizon is equal to its original horizon, 81.50yrs, smaller than the 

normal horizon of 92.09yrs. It means that the injection does not affect L3 in 

contingencies but defers its horizon in normal conditions.  

Table 4-2 Reinforcement horizons considering both conditions (yr) 
Circuit No. L1 L2 L3 

No injection 
Normal case 

Contingency case 
40.75 
40.75 

40.75 
40.75 

81.50 
81.50 

Injection at Bus 2 
Normal case 

Contingency case 
35.85 
37.45 

38.76 
37.45 

92.09 
81.50 

Injection at Bus 3 
Normal case 

Contingency case 
38.27 
37.45 

36.81 
37.45 

71.92 
76.59 

The details of cost and total charge for the two load busbars derived using the 

horizons in Table 4-2 are outlined in Table 4-3. 

Table 4-3 Results of the three-busbar system (£/MW/yr) 
Cost from 

L1 
Cost from 

L2 
Cost from 

L3 
Total 

charge 

Proposed 
approach 

Bus 2 3019.87 1918.78 0.00 4938.66 

Bus 3 1918.78 2347.17 460.42 4726.37 

Original 
approach 

Bus 2 3019.87 1108.01 -260.69 3867.19 

Bus 3 1405.06 2347.17 460.42 4212.65 

For both approaches, a large proportion of the charge for busbar 2 is from the cost of 

L1, and for busbar 3, it mainly comes from the cost of L2, as injections at the two 

buses greatly bring up their loading levels, in whatever normal or contingency 

situations. One interesting point is that the cost from L3 on busbar 2 is zero in the 

proposed approach, as an injection at busbar 2 does not change L3’s reinforcement 

horizon. The original model, however, produces a cost of -260.69£/MW/yr, from L3 
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for busbar 2. It is unreasonable as although an injection at busbar 2 can bring down 

L3’s normal case horizon, it has on impact on L3’s reinforcement in the contingency 

that drives it future reinforcement, i.e. L2 fails. 

As the new model chooses the smaller new horizons to derive the cost, it produces 

bigger cost from all three circuits and consequently the final total charges for the two 

busbars compared with original model. The ultimate nodal charges are 

4938.66£/MW/yr at bus 2 and 4726.37£/MW/yr at bus 3 from the new model, higher 

than 38.67.19£/MW/yr and 4212.65£/MW/yr from the original model respectively.  

4.6.2 The Impact of Different Influencing Factors 

Three major factors that affect final charges are, loading level, load growth and nodal 

injection size, and the impact of them on the charge difference is examined 

intensively in this part. In order to simplify analysis, the load at busbar 3 is assumed 

to be 2 times of that at busbar 2 and only the charge for busbar 2 is investigated.  

Figure 4-4 shows that with the increase of system loading conditions, the charge 

difference widens gradually. When the load amount at busbar 1 is over 11MW, the 

difference grows bigger than 1837.628 £/MW/yr, which becomes even large with the 

rise in loading level. The cause is that higher loading levels produce nearer 

reinforcement horizons, hence leading to higher charges and greater difference. 
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Figure 4-4 Charge comparison under different loading levels 
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Figure 4-5 demonstrates the change in the difference with respect to the rise of load 

growth rate. The difference is relatively small when the load growth rate is smaller 

than about 0.4%, while it grows steadily when load growth rate is over 1%. One 

important point is that when the load growth rate is approximately 1.6%, the charges 

from the original model decrease after a summit is reached. It is because the load at 

busbar 2 would have even greater negative cost, i.e. reward, for using L3, and beyond 

that rate, the total charges are gradually reduced. By contrast, the proposed model 

produces consistent increasing charges with the rise of load growth rate, as no costs 

from circuits are negative.  
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With regard to the injection size for the LRIC model, it also influences the difference 

as demonstrated in Figure 4-6. When the injection size is small, the difference tends to 

be small as well and it grows slightly when the injection becomes bigger. 

4.7 Demonstration on an actual network 

In this section, the demonstration of the new model is carried out on a practical 

system taken from the UK network, given in Appendix. A. The discount rate and load 

growth rate are chosen as 2.0% and 6.9% respectively. The system is also supposed to 

withstand N-1 contingencies. An injection of 0.01MW size is selected. The circuit No. 

11 linking busbars 1005 and 1007 is not going to be accounted in charge evaluation, 

as it is owned by the generator at busbar 1002.  

Table 4-4 Contingency factors and maximum allowed capacity of all circuits 

No. Contingency 
factor 

Maximum 
allowed capacity 

(MVA) 
No. Contingency 

factor 

Maximum 
allowed capacity 

(MVA) 
L1 1.99 24.95 L12 2.05 14.04 

L2 2.01 24.71 L13 2.05 14.04 
L3 2.05 26.77 L14 2.04 19.59 
L4 1.98 27.66 L15 2.07 19.33 

L5 3.77 16.21 L16 1.95 16.06 

L6 2.04 17.95 L17 2.12 14.76 

L7 1.93 12.32 L18 2.00 19.97 

L8 2.05 9.31 L19 2.04 19.65 

L9 2.05 9.30 L20 2.02 14.21 

L10 2.07 17.49 L21 2.03 14.19 

All components’ contingency factors and their reshaped maximum allowed capacity 

from the original model are given in Table 4-4. As noticed, the contingency factors 

for those parallel components are not necessarily 2 as they are not exactly identical 

and the loss along them is also considered. Circuit No.5 has the biggest contingency 

factor of 3.77, which consequently cuts its maximum allowed capacity is cut from 

61.16MVA down to merely 16.21MVA. The maximum allowed capacity of all other 

branches is also brought down in proportion to their contingency factors.  
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To assist analysis, Figure 4-7 provides all branches’ utilization levels. The most 

heavily loaded circuit is L2 linking buses 1004 and 1006, and by contrast, L3 has the 

smallest loading level, merely approximately 14%. These loading conditions are 

calculated on the base of the circuits’ rated capacity and they might be even higher if 

assessed on the basis of their maximum available capacity. 
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Figure 4-7 Base case circuit utilization levels 

Table 4-5 gives the active power change along all branches in normal conditions and 

the change in most contingency situations over their contingency factors (in order to 

simplify quotation, this part of change is referred as contingency flow change in the 

following parts). 

When an injection connects to busbar 1001, its three supporting branches, L1, L13 

and L14 have bigger normal case flow changes than the changes in their contingency 

flow. One exception is L2, which has a bigger extra contingency flow change, 

counted as 5.0377×10-3MW. An injection at busbar 1003 can cause greater normal 

case flow changes for its supporting circuits, L3, L5, L14, and L15. For example, L5’s 

normal flow change is 5.0345×10-3MW, which is almost 2 times of the contingency 

flow change, 2.6852×10-3MW. The reason is that although L5’s biggest extra 

contingency flow change is approximately 0.01MW when L3 fails, it has a quite 

bigger contingency factor, 3.77, which can dramatically bring down the contingency 

flow change. One point should be noted is that an injection at busbar 1006 can reduce 
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L5’ normal case flow by -4.7285×10-3MW, but it has no impact on it in contingencies. 

Big extra power flows can bring components’ reinforcement horizons closer, zero 

extra flows cause no impact at all, and negative extra flows mean that components’ 

reinforcement horizons are deferred. Generally, small difference between the two case 

flow changes means that they are more likely to generate similar components’ 

reinforcement new horizons, whereas big difference would widen them.  

Table 4-5 Comparison of active power flow change (10-3/MW) 

1001 
Circuit No. L1 L2 L13 L14 

Normal case 5.0854 5.0332 5.0260 5.0261 -
Contingency case 5.0847 5.0377 4.9353 4.9355 -

Circuit No. L3 L4 L5 L14 L15 
1003 Normal case 5.1206 5.0648 5.0345 5.0624 4.9988 

Contingency case 5.0077 5.1724 2.6852 4.9620 4.8961 
Circuit No. L3 L4 L5 

1006 Normal case 4.7548 5.2983 -4.7285 - -
Contingency case 4.9403 5.0951 0.0000 - -

Circuit No. L16 L17 
1007 Normal case 5.2271 4.8116 - - -

Contingency case 5.1856 4.7644 - - -
Circuit No. L6 L7 L10 L18 L19 

1009 Normal case 5.0390 5.0062 4.9926 5.0242 4.9865 
Contingency case 4.9530 5.2393 4.8583 5.0059 4.9267 

Circuit No. L8 L9 L20 L21 
1013 Normal case 5.0185 5.0098 5.0087 5.0000 -

Contingency case 4.9138 4.9049 4.9562 4.9473 -

The power flow changes along a branch due to a nodal injection in both conditions are 

decided by several factors, such as system topologies, component parameters, system 

loading levels, contingency types, as well as injection sizes. Although the difference 

of the results in Table 4-5 is not huge, more complex networks could have quite 

diversified results. A load that withdraws power at a busbar which is located far from 

power sources can have greater impact on the components closer to the sources as the 

power loss along all supporting circuits accumulates gradually. However, it is not 

easy to tell directly in which situations an injection could have greater impact on a 
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component. Therefore, simulation approach needs to be carried out to determine the 

impact and it is undoubtedly time-consuming.  

As proposed, it could be more easily to carry out sensitivity analysis to capture 

injections’ impact to save computational effort. The sensitivity coefficients from 

normal and contingency cases that reflect how an injection affects components’ flow 

are given in Table 4-6. 

Table 4-6 Sensitivity analysis under the two conditions (10-3/MW) 
Circuit No. L1 L2 L13 L14 

Normal case 5.085 5.033 5.025 5.025 -

Contingency case 5.084 5.038 4.938 4.938 -

1003 
Circuit No. L3 L4 L5 L14 L15 

Normal case 5.121 5.065 5.035 5.062 4.999 

Contingency case 5.010 5.172 2.685 4.967 4.900 

1006 
Circuit No. L3 L4 L5 

Normal case 4.755 5.298 -4.728 - -

Contingency case 4.941 5.095 0.000 - -

1007 
Circuit No. L16 L17 

Normal case 5.226 4.810 - - -

Contingency case 5.186 4.764 - - -

1009 
Circuit No. L6 L7 L10 L18 L19 

Normal case 5.039 5.006 4.993 5.024 4.986 

Contingency case 4.953 5.239 4.858 5.005 4.926 

1013 
Circuit No. L8 L9 L20 L21 

Normal case 5.019 5.010 5.008 4.999 -

Contingency case 4.914 4.905 4.956 4.947 -

The sensitivities reflect circuits’ flow changes caused by one unit nodal injection at 

the studied busbars. By comparing, sensitivity analysis produces quite close results 

with those in Table 4-5 from simulation method. For example, the sensitivities at 

busbar 1003 also demonstrate that an injection connection to this bus can have greater 

impact on L1, L13 and L14 in normal conditions, but less on L2 in normal cases. The 

contingency case sensitivity for L5 seen from busbar 1003 is 2.685×10-3MW and the 

normal case one is 5.035×10-3MW, showing the same pattern as given in Table 4-5. 

Further, the impact from an injection at busbar 1006 on L5 can also be captured by 
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the sensitivities: it reduces L5’s normal flow, but causes no impact on it in 

contingencies. Although it cannot provide results as precise as simulation approach, 

sensitivity analysis is able to produce very closer results especially when injection 

size is small.  

By using the power changes in Tables 4-5 or 4-6, all components’ new reinforcement 

horizons under the two conditions can be easily derived, given in Table 4-7. 

Table 4-7 Components' new horizons from the two conditions (yr) 
Circuit No. L1 L2 L13 L14 

1001 Normal case 34.7316 34.7036 6.9729 6.9697 -
Contingency case 34.7317 34.7035 6.9733 6.9701 -

Circuit No. L3 L4 L5 L14 L15 
1003 Normal case 7.3565 7.3818 34.4117 12.7984 12.7535 

Contingency case 7.3567 7.3816 34.4262 12.7987 12.7539 
Circuit No. L3 L4 L5 

1006 Normal case 7.3573 7.3813 34.4719 - -
Contingency case 7.3569 7.3818 34.4427 - -

Circuit No. L16 L17 
1007 Normal case 7.8986 7.7886 - - -

Contingency case 7.8988 7.7888 - - -
Circuit No. L6 L7 L10 L18 L19 

1009 Normal case 52.8960 33.5071 53.0635 57.8360 57.8374 
Contingency case 52.8967 33.5053 53.0646 57.8361 57.8379 

Circuit No. L8 L9 L20 L21 
1013 Normal case 36.5565 36.5513 58.5115 58.5087 -

Contingency case 36.5577 36.5525 58.5121 58.5093 -

The difference in the two new horizons is highly dependent on the flow difference 

given in Table 4-5 or 4-6. Bigger flow difference causes greater difference. One 

interesting point is that the load at busbar 1006 can defer L5’s horizon from 

34.4427yrs to 34.4719yrs in normal conditions, leading to a negative cost ­

0.7048£/kW/yr, i.e. a reward, for using L5, whereas in contingencies, the cost 

becomes to zero.   

The accumulated charges for the six load busbars from the two approaches are 

outlined in Table 4-8. 
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Table 4-8 Charges obtained using the two methods (£/kW/yr) 

Busbar No. 1001 1003 1006 1007 1009 1013 

Original method 6.372 18.860 15.515 2.461 8.938 6.638 

Proposed method 6.373 19.013 16.559 2.461 9.256 6.638 

For busbars 1001, 1007 and 1013, they are supported by two groups of similar parallel 

branches and the two approaches produce almost the same charges. It is because that 

an injection connecting to them tends to produce similar impact on them in normal 

and contingency situations. As for busbar 1009 which is supported by non-similar 

parallel components, its charge difference grows to 0.318£/kW/yr. Busbars 1003 and 

1006 supported by meshed networks witness even greater charge difference: 

0.157£/kW/yr for bus 1003 and 1.04£/kW/yr for bus 1006.  

Generally, the charges from the proposed approach are always not smaller than those 

from the original model. The charge difference tends to grow even bigger, with the 

increase in loading conditions and the decrease in load growth rate. 

4.8 Chapter Summary 

This chapter proposes an enhanced charging model over the existing security-oriented 

LRIC by considering an injection’s impact on network components in both normal 

and contingency conditions. The smaller new horizons from the two situations are 

selected to derive charges. Based on the intensive analysis, the following key 

observations can be outlined: 

� In terms of reflectivity, the original LRIC charging model reflects the impact 

from network users on network components in contingencies by introducing 

contingency factor to shape components’ maximum available capacity. Its scope 

is rather narrow as it only considers the impact in normal conditions. The 

proposed approach, on the other hand, can recognize the impact in contingencies 

and thus, it should be able to even truly reflect the impact from network users on 

components and allocate the cost.  

� In term of difference, results vary dramatically, depending on many factors, 

such as the topology and operation conditions of the networks. The original 
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model only chooses the normal case horizons to derive charges, whereas the 

proposed method chooses the smaller calculated new horizons from the two 

conditions to calculate nodal charges. Thus, the charges from this new approach 

are always not smaller than those from the original model. 

�	 In terms of simplicity, the original model needs one run power flow analysis, 

one full contingency analysis, and N runs of  incremental power flow analysis 

(the number of which is decided by the number of studied busbars) to assess 

injections’ impact. Apart from these calculations, the proposed approach still 

needs to run full incremental contingency analysis to capture injections’ impact 

in contingencies. Sensitivity analysis in both normal and contingency situations 

can be harnessed to assist analysis. Its advantage is in that it can directly work 

out the extent to which a tiny injection would affect network components 

instead of running power flow and incremental contingency flow repeatedly. It 

produces quite similar results with those from the simulation approach as long 

as the injection size is small for the simulation approach. 

�	 As for influencing factors, loading level, load growth rate, and injection size are 

three major factors affecting the charge difference from the original and the 

proposed approaches. Higher loading levels, larger load growth rates and bigger 

injection sizes can enlarge the difference. It also means that the original model 

could produce misleading charges under these circumstances that cannot truly 

reflect users’ impact. 
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Chapter 5 

Network Pricing 
For Different Security Levels 

HIS chapter proposes a new charging model for security of 
supply by dividing demand at each busbar into interruptible T and uninterruptible parts to assess their impact on components. 
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5.1 Introduction 


In a deregulated environment, network customers may prefer higher or lower security 

level rather than the uniform levels provided by network utilities [82]. In order to 

make electricity service reliability more of a private good, it is also necessary to 

provide correct signals that reflect locational and temporal cost and enable customers 

response to these prices through direct load response or through the choice of service 

levels [83]. Therefore, security-oriented charging models should be cost-effective not 

only in terms of being able to reflect the extent of the use of the network by customers 

but also in terms of respecting their security preference.  

This chapter proposes a new long-run pricing model to price users according to their 

security preference. Loads at all busbars are first classified into interruptible and 

uninterruptible compositions: the interruptible part should be secured in normal 

conditions, but can be curtailed in contingencies; on the contrary, the uninterruptible 

part should be secured under contingencies. By examining the impact from the two 

load compositions on the future network investment cost over time, the long-run 

incremental cost for each node can be calculated based on the extent to which they 

defer or bring forward the time horizon of network components. The proposed 

approach is able to reflect and respect users’ security level preference. The generated 

locational charges can thus serve as economic messages to influence users’ behaviors 

in: 1) the choice of security levels of supply, 2) connections sizes and 3) connection 

sites. The approach is demonstrated and compared with the original security-based 

charging model [76] on two test systems in terms of magnitude of charges for the two 

types of load. 

5.2 Load Composition Classification 

With regard to security levels of supply to users, some of them might prefer securer 

supply to reduce the probability of loss of load; some, on the contrary, might want 

less secure supply in order to spare expense; others might prefer that part of their 

demand can be interrupted in contingencies, but the rest is secured. Network charging 

models should be able to respect network users’ choices and treat them properly. 
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According to this philosophy, demand connected at each busbar can be categorized 

into uninterruptible part and interruptible part:  

�	 The uninterruptible load composition is the part of demand that must be secured 

during any contingencies, regardless of whether the contingency is unanticipated 

component’s failure or anticipated planned maintenance. In normal conditions, 

this part should be satisfied as well. This definition is also applicable to the 

prospective growth of this type of load. 

�	 The interruptible load composition is the part of demand that can be interrupted 

in contingencies, but must be secured in normal conditions. It is also applicable 

to the future growth of this part demand. 

The role and importance of interruptible demand has already been recognized in [87, 

88] in order to promote network security and flexible operation. By adopting this 

scheme, DNOs can resort to interruptible demand not only in contingencies 

circumstances but also under alert circumstances to make more flexible operation so 

as to defer potential reinforcement along with increasing economic and social benefit. 

Furthermore, by introducing this concept into network charging, users’ are provided 

with the options to different security levels of supply. 

5.3 Charging for Different Load Compositions 

According to the classification of load composition, in order to truly recognize users’ 

different preference for security level of supply, not only normal conditions but also 

contingency conditions should be taken into consideration. The role and importance 

of component’s spare capacity to the two compositions under both normal and 

contingency circumstances is first elaborated. Then, a novel charging strategy is 

proposed accordingly to price users based on their different security level preference 

by examining their impact on network components in two situations. It seeks to reflect 

the variation in present value of future reinforcement of network assets due to the 

connection of interruptible and uninterruptible loads.  
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Figure 5-1 Layout of a two two-busbar test system 

5.3.1 Original Investment Horizon without Injection 

For a simple two-busbar system given in Figure 5-1, it is supposed that the two 

circuits are identical. Each carries a flow of D, which can be classified into two parts: 

interruptible part, Dinter, and uninterruptible part, Dunint. In normal conditions, their 

investment horizon under a given load growth rate can be indentified with 

RC = D ⋅ (1+ r)nnew = (Dun int + Dint er )⋅ (1+ r)nnew (5-1) 

where, RC is their rating and r is the chosen load growth rate. 

Rearranging and taking logarithm of it gives 

n = 
log(RC )− log(Dun int + Dint er ) 

norm log(1+ r) (5-2) 

Under an N-1 contingency event, such as L2 fails, L1 only needs to accommodate the 

uninterruptible load along the two circuits as the interruptible load can be curtailed. 

Hence, L1’s investment horizon is calculated with 

log(RC)− log(Dun int,cont )ncont = 
log(1+ r) (5-3) 

where, Dunint,cont is the maximum uninterruptible flow along L1 in the contingency, 

which should be 2 times of Dunint here. 

As seen, in normal conditions, the circuit’s investment horizon is driven by both 

interruptible and uninterruptible flows along it, whereas only triggered by the 

uninterruptible flow in contingencies. As each component can have only one original 

investment horizon, the smaller one between the above two horizons is selected as its 

actual one. 
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5.3.2 New Investment Horizon due to Interruptible Injection 

If an interruptible injection is connected to busbar 2, its impact on the circuits can be 

reflected through examining the change in their investment horizons as well.  

In normal conditions, if ΔP is the incremental flow along L1 due to the new 

interruptible connectee, the two circuits’ new horizons can be determined with  

n norm ,newRC = (D + ΔP)⋅ (1+ r) (5-4) 

Rearranging above formula and taking logarithm of it gives 

log(RC)− log(D + ΔP)n = norm,new log(1+ r) (5-5) 

In normal conditions, L1 also needs to take up the uninterruptible flow part along L2 

when L2 fails. It means that L1 should be able to accommodate the maximum 

uninterruptible flow along it in the case that L2 fails. Thereby, the new injection can 

only increase on top of the potential maximum contingency flow, leading to their new 

reinforcement horizon determined by replacing D in (5-5) with Dunint,cont 

log(RC)− log(Dun int,cont + ΔP)
=ncont ,new log(1+ r) (5-6) 

For the two components, their new reinforcement horizons with the incorporation of 

the interruptible injection should be the smaller one between (5-5) and (5-6). 

5.3.3 New Investment Horizon due to Uninterruptible Injection 

If a new uninterruptible connectee comes to busbar 2, it also impacts the two circuits 

in both normal and contingency situations. In normal conditions, its influence is the 

same as an interruptible connectee, leading to the two circuits’ new horizons which 

can be evaluated with (5-5). When L2 fails, L1 only needs to accommodate the 

uninterruptible flow along it, which leads to its new reinforcement horizon  

ncont ,newRC = (Dun int,cont + ΔPcont )⋅ (1+ r) (5-7) 
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where, ΔPcont is the incremental uninterruptible flow change along L1 due to the 

uninterruptible connection in contingency situations. 

Similarly, (5-7) can be rewritten as 

ncont ,new 

log(RC)− log(Dun int,cont + ΔPcont ) (5-8)= 
log(1+ r) 

Their new horizons with an interruptible injection connected are the smaller one 

between (5-5) and (5-8). 

5.3.4 Unit Price for New Connectees 

Unit price for different load compositions is evaluated by assessing the change in 

components’ present value of future reinforcement.  

The present value of future reinforcement of a component is calculated as 

CostPV =
(1+ r)n (5-9) 

where, d is discount rate, n is its original reinforcement horizon without any nodal 

injection.  

By replacing n with new investment horizon,  nnew, its new present value of future 

investment is obtained, which leas to its change in present value  

⎛ 1 1 ⎞
ΔPV = Cost ⋅ ⎜⎜ (1 + d )n −

(1 + d )n ⎟⎟ (5-10)
⎝ new ⎠ 

The incremental cost of the component will be the annuitized change in its present 

value of future investment horizon as a result of the injection, given by 

ΔIC = ΔPV ⋅ AnnuityFactor (5-11) 

The LRIC charge for a studied node, i, is evaluated by reviewing the change in 

annuitized present value of future reinforcement cost of all its supporting components  
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∑ ICLRICi =	 (5-12)
ΔPIi 

where, ΔPIi is the injection size at node i. 

5.3.5 Implementation Procedures 

This new charging model seeks to reflect and differentiate customer’s different 

preference and price them according to their different impact in both normal and 

contingency situations. The overall detailed implementation procedures are 

summarized as follows.  

�	 Determine original flows in normal conditions and maximum uninterruptible 

contingency flows under all considered contingencies along all components in 

the case without any injection. The original normal flows are obtained by 

running power flow analysis; the maximum uninterruptible contingency flows 

are evaluated by removing all interruptible load parts and then running 

contingency analysis. 

�	 Determine incremental flows along all components due to new interruptible and 

uninterruptible connectees in normal and contingency circumstances. In normal 

conditions, the increment flows caused by the interruptible and uninterruptible 

injections can be easily obtained by running power flow by connecting a tiny 

increment connected to the studied nodes. Uninterruptible increment’s effect in 

contingencies is determined by: 1) first removing all interruptible loads; 2) and 

then running incremental contingency flow under all contingency events with a 

tiny uninterruptible injection connected to the studied nodes.  

�	 Calculate all components’ original reinforcement horizons, which are the 

smaller between (5-2) and (5-3).  

�	 Calculate all components’ new reinforcement horizons with nodal injections. 

With an interruptible increment connection, their new horizons are the smaller 

one between (5-5) and (5-6); and for the case with an uninterruptible load 

connection, their new horizons are the smaller one between (5-5) and (5-8).  
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�	 Calculate unit prices for all studied nodes. Once the two time horizons are 

indentified for each circuit, their unit prices for both the interruptible and 

uninterruptible loads can be assessed by submitting the horizons obtained in 

above steps into (5-9)-(5-12).  

Unlike the original charging model which produces one charge at each busbar, this 

method produces two nodal charges at each studied busbar: one is for interruptible 

loads and the other is for uninterruptible loads. The diversified charges should be able 

to differentiate users’ security preferences and reflect their prospective behaviors. 

5.4  Demonstration on a Small System 

In this section, the two-busbar system in Figure 5-1 is utilized to demonstrate the 

proposed concept. It is assumed that the two circuits are identical, each with the rated 

capacity of 45MW and cost of £1596700. A discount rate of 6.9% is taken, which is 

commonly accepted as minimum acceptable rate of return by DNOs in the UK Load 

growth is set as the project long-term rate in the U.K, 1%. The proportions of 

interruptible and uninterruptible loads at busbar 2 are 20% and 80% respectively, 

leading to the same proportions of interruptible and uninterruptible flows along the 

two circuits under normal conditions.  

5.4.1  Charge Evaluation under Different Loading Levels 

In normal conditions, either circuit can be maximally loaded up to their full capacity, 

45MW, leading to a sum of 90MW loading capability. Under N-1 contingency, the 

only one circuit’s rated capacity can be utilized to accommodate the uninterruptible 

load, whose maximum size is only 45MW. By adopting the proposed model, the 

original reinforcement horizons of the two circuits at four different loading levels are 

valuated, given in Table 5-1. 

In both situations, the two circuits’ reinforcement horizons become small with the 

increase in demand. At each loading level, network contingencies can even greatly 

bring forward the horizons as each circuit needs to pick up extra contingency flows. 

At 40MW loading case, the normal case horizon is 81.50yrs, which is dramatically 
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brought down to merely 34.26yrs. Hence, the circuits’ actual original reinforcement 

horizons are those obtained in contingency situations. 

Table 5-1 Original horizons without injection 
Size of D (MW) 

10 

Horizon (normal)  (yr) 

220.82 

Horizon (contingency) (yr) 

173.58 

20 151.16 103.92 

30 110.41 63.17 

40 81.50 34.26 

Table 5-2 provides the circuits’ new investment horizons and the resultant charges for 

the interruptible load at busbar 2 with an interruptible injection at it under the two 

conditions. Compared with normal conditions, contingencies could dramatically 

reduce the circuits’ new horizons, especially at higher loading levels. For example, at 

40MW loading level with 8MW interruptible load, the normal case investment 

horizon is 79.02yrs, which decreases to 32.71yrs under contingencies. As for the 

charges outlined in the last column, they are rather low when loading conditions are 

light: merely 1.04£/MW/yr when interruptible load is 2MW. They increase 

exponentially with the rise in circuit loading level, soaring to 2454.14£/MW/yr at 

8MW interruptible loading level.  

Table 5-2 Results for interruptible load composition 

Size of D 
(MW) 

Interruptible 
part of D 

(MW) 

New Horizon 
(normal) (yr) 

New Horizon 
(contingency) 

(yr) 

Annual charge 
(£/MW/yr) 

10 2 211.24 167.49 1.04 
20 4 146.26 100.83 49.18 
30 6 107.11 61.10 482.54 
40 8 79.02 32.71 2454.14 

The two circuits’ new investment horizons along with the calculated charges in the 

case with an uninterruptible injection connected to busbar 2 at four loading levels are 

shown in Table 5-3. Similarly to the previous case, heavy loading cases lead to nearer 

horizons in the two conditions with contingency horizons even lower. The generated 

charge is merely 2.48£/MW/yr when the uninterruptible load is 8MW, but jumps to 

5133.48£/MW/yr when the uninterruptible load grows to 32MW. 
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Table 5-3 Results for uninterruptible load composition 

Size of D 
(MW) 

Uninterruptible  
part of D (MW) New Horizon 

(normal ) (yr) 

New Horizon 
(contingency) 

(yr) 

Annual charge 
(£/MW/yr) 

10 8 211.24 161.75 2.48 
20 16 146.26 97.83 107.64 
30 24 107.11 59.07 1024.64 
40 32 79.02 31.17 5133.48 

By comparison charges in Tables 5-2 and 5-3, it is noticed that at all loading levels, 

charges for interruptible loads are smaller than those for uninterruptible loads and the 

difference widens with rising loading levels. 

In order to elaborate charge difference and compare them with those from the original 

security-orientated LRIC model, results from it are outlined in Table 5-4.  

Table 5-4 Results from the original charging model 
Size of D 

(MW) 
New Horizon 
(normal) (yr) 

New Horizon 
(contingency) (yr) 

Annual charge 
(£/MW/yr) 

5 151.16 141.58 8.22 
10 81.50 76.59 370.88 
15 40.75 37.45 3573.5 
20 11.84 9.36 18011.54 

In the original model, one circuit can only maximum loaded to 22.5MW, with a total 

of 45MW, as the two circuits’ capacity is halved with a contingency factor of 2. In 

both normal and contingency conditions, new horizons are smaller than those from 

the previous two cases, leading to even higher charges. At 10MW loading level (total 

supported load by the two circuits is 20MW), the charge is 370.88£/MW/yr, 

approximately 370 times of the charge for interruptible load (1.04£/MW/yr) and 150 

time of the charge for the uninterruptible load (2.48£/MW/yr). At 20MW loading 

level (total supported load is 40MW), the difference soars even extremely higher.  

As seen from Tables 5-2 to 5-4, charges at the same loading levels for the 

interruptible loads are always the smallest, followed by charges for the uninterruptible 

loads, and the charges generated by the original approach are the highest. The 

different charges for interruptible and uninterruptible loads can reflect their security 

levels. 
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As seen from this example, the maximum amount of load supported in the original 

model is only 45MW, smaller than that in the proposed model, as the two circuits’ 

rated capacity is halved by the contingency factor of 2, leaving 50% of capacity 

unused. The new model, by contrast, can maximally support 45MW uninterruptible 

load and a certain amount of interruptible, depending on the two load compositions. 

5.4.2 Charge Comparison under Different Load Compositions 

This section compares the charges from the two approaches under various load 

compositions under different scenarios.  

Figure 5-2 Charges for interruptible load under different scenarios 

Figure 5-2 compares charges for interruptible loads under four scenarios with 

different interruptible load proportions: scenario 1: 50%, scenario 2: 30%, scenario 3: 

10% and scenario 4: 0% (this is the case of the original model). As seen, charges 

increase exponentially with the rise in circuits’ loading levels in all four scenarios. 

When the interruptible load proportion is high, its charge is fairly low, as 

demonstrated in scenario 1. However, the decrease of its proportion tremendously 

propels the charges, as shown in scenario 3, which produces greater charges than 

scenarios 1 and 2 at the same loading levels. Yet, scenario 4 generates the highest 

charges, in which the proportion of interruptible load is zero. 

The actual maximum load amount at busbar 2 the two circuits can support is quite 

different in the four scenarios. In all four cases, the maximum uninterruptible load 
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which can be supported is 45MW, i.e. the capacity of one circuit. But the maximum 

supported interruptible load diversifies: scenario 1:  45MW, scenario 2: 19.3MW, 

scenario 3: 6MW, and scenario 4: 0MW. It is because less spare capacity can be 

utilized by interruptible loads, with the rising proportion of uninterruptible loads. The 

proposed model allows more interruptible load to be served, unlike the original model 

which assumes all loads are uninterruptible. 

Figure 5-3 Charges for uninterruptible load under different scenarios 

Charge comparison for uninterruptible loads in the foregoing mentioned four 

scenarios is demonstrated in Figure 5-3. The lines show the similar patterns as given 

in Figure 5-2. Charges increase exponentially with the increase in loading levels and 

the increasing proportion of uninterruptible load. Compared with the results from the 

original model in scenario 4, charges from the first three scenarios are fairly small.  

Figure 5-4 carries out charge comparison for interruptible and uninterruptible loads in 

two scenarios: scenario 1: 40% interruptible load and 60% uninterruptible load, and 

scenario 2: 20% interruptible load and 80% uninterruptible load. 

In both scenarios, charges for uninterruptible loads are constantly higher than those 

for interruptible loads at the same loading levels. One noticeable point is that charges 

for interruptible loads in scenario 2 are even higher than both two types of charges in 

scenario 1 at the same loading conditions, because that less circuits’ capacity is 

available as much of the capacity is reserved for uninterruptible loads.  
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Figure 5-4 Charges comparison under two different scenarios 

Based on this simple example, it can be said that the charging concept according to 

the division of load into interruptible and uninterruptible loads can effectively 

differentiate the security levels required by demand. Moreover, it can bring down 

charges dramatically in all loading conditions for both interruptible and 

uninterruptible loads, especially at higher levels. Further, the proposed model can 

effectively accommodate more interruptible loads compared with the original model 

when accommodating the same size of uninterruptible loads, the amount of which 

depends on the proportions of the two types of load. 

5.5 Demonstration on a Practical Network 

In this section, the proposed pricing model is demonstrated and compared with the 

original model on a practical grid supply point area taken from the UK network, given 

in Appendix. A. The network has three voltage levels, 66kV, 22kV, and 11kV, 

consisting of 11 circuits, 9 transformers, 6 loads and 1 generator.  

The proportions of interruptible and uninterruptible loads are also assumed to be 20% 

and 80%. Circuit No.11 is not taken into consideration here as it is owned by the 

generator connected to busbar 1005. All branches’ capacity is provided in Table 5-5. 
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Table 5-5 Capacity of all branches 
Branch No. 

L1 
Capacity (MVA) 

49.73 
Branch No. 

L12 
Capacity (MVA) 

28.75 
L2 49.70 L13 28.75 
L3 54.87 L14 40.00 
L4 54.87 L15 40.00 
L5 61.16 L16 31.25 
L6 36.58 L17 31.25 
L7 23.78 L18 40.00 
L8 19.09 L19 40.00 
L9 19.09 L20 28.75 
L10 36.20 L21 28.75 

5.5.1 Charge Evaluation 

To assist analysis, Figure 5-5 depicts all branches’ utilization levels. As seen, the most 

heavily loaded circuit is line No.4 linking bus 1008 and bus 1006. Circuit No.3 and 

transformers 12-17 also have relatively high loading levels.  
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Figure 5-5 Branch utilization levels 

In order to elaborate the impact from the interruptible and uninterruptible loads on 

network components, Figure 5-6 depicts the change in reinforcement horizons of the 

components supporting load at busbar 1003 caused by the injections connecting to 

them. As seen, L5 has the largest investment horizon, approximately 91yrs, and L3 

and L4 have the smallest about 37yrs. The transposed “T” signifies how the 

connectees drag down the reinforcement horizons. As seen, for all components, an 

uninterruptible injection can even further bring down their horizons compared with an 
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interruptible injection at the same busbar. The nearer new horizons tend to generate 

higher changes in components’ annuitized present value of future reinforcement. 

The computed charges for the two types of loads at all load busbars are provided in 

Table 5-6. Apparently, busbar 1003 has the biggest charges: 3.11£/kW/yr for the 

interruptible load and 6.361£/kW/yr for the uninterruptible load. It is because its 

supporting branches: No. 3-5 and 14-15, all are with relatively high loading levels. 

The smallest charges appear at busbar 1013, 0.19£/kW/yr for the interruptible load 

and 0.47£/kW/yr for the uninterruptible load, as their supporting branches are fairly 

lightly loaded.  
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Figure 5-6 Time horizon comparison


Table 5-6 Charges from the proposed model (£/kW/yr) 


Charge type 

Interruptible 

1001 

0.61 

1003 

3.11 

1006 

2.52 

1007 

0.32 

1009 

0.27 

1013 

0.19 

Uninterruptible 1.98 6.36 5.96 0.69 0.62 0.47 

5.5.2 Comparison with the Original Model 

This part thoroughly compares the proposed approach with the original model in 

terms of charges for interruptible and uninterruptible loads. 

The original LRIC model reshapes components’ maximum available capacity with 

their contingency factors, given in Table 5-7. Bigger contingency factor of a 
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component means that more of its rated capacity should be reserved for contingencies, 

vice versa. As noticed, circuit No.5 has the maximum contingency factor of 3.77. 

Consequently, its maximum allowed capacity is axed from 61.16MVA, down to 

merely 16.21MVA. The maximum allowed capacity of all other branches is also 

brought down in proportion to their contingency factors. 

Table 5-7 Contingency factor and maximum available capacity 

No. Contingency 
factor 

Maximum 
 allowed capacity 

(MVA) 
No. Contingency 

factor 

Maximum 
allowed capacity 

(MVA) 
L1 1.99 24.95 L12 2.05 14.04 
L2 2.01 24.71 L13 2.05 14.04 
L3 2.05 26.77 L14 2.04 19.59 
L4 1.98 27.66 L15 2.07 19.33 
L5 3.77 16.21 L16 1.94 16.08 
L6 2.04 17.95 L17 2.11 14.78 
L7 1.93 12.32 L18 2.00 19.97 
L8 2.05 9.31 L19 2.04 19.65 
L9 2.05 9.30 L20 2.02 14.21 
L10 2.07 17.49 L21 2.03 14.19 
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Figure 5-7 Investment horizons from the original model 

Figure 5-7 depicts the investment horizons of the components supporting load at 

busbar 1003 evaluated with the original model with and without a nodal injection. 

Compared with the results demonstrated in Figure 5-6, all the original reinforcement 

horizons are here small. The biggest horizon is about 68yrs for No.5, which is 

approximately 91yrs in the new model; the horizons of L3 and L4 are merely 15yrs, 
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which are 37yrs in the proposed model. The transposed “T” signifies that the horizons 

are slightly brought down, which are not obvious compared with results in Figure 5-6  

The calculated charges from the original model are given in Table 5-8. Compared 

with the results given in Table 5-6, charges here are all greater at the same busbar. 

The highest is 19.44£/kW/yr at busbar 1003, which is approximately 3 times of the 

charge for uninterruptible loads and 6 times of the charge for interruptible loads at the 

same busbar. The lowest charge is 0.89£/kW/yr at busbar 1013, and it is also greater 

than charges at the same busbar given in Table 5-6. 

Table 5-8 Charges from the original charging model (£/kW/yr) 
Bus No. 1001 1003 1006 1007 1009 1013 

Charge 3.87 19.44 17.43 1.68 1.53 0.89 
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Figure 5-8 Charge comparison 

Figure 5-8 graphically compares the nodal UoS charges provided in Tables 5-6 and 5­

8. At all busbars, charges diversify from each other, depending on the locations in the 

network. At the same busbars, charges for interruptible loads are lower than those for 

uninterruptible loads, indicating the charges can differentiate and reflect their 

different security preference. On the other hand, charges for both of the loads are 

smaller than those from the original model at the same busbar. Further, the proposed 

approach can still produce charges that maintain the patterns of the original charges.  
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5.6 Chapter Summary 


A novel charging methodology according to users’ different security preference is 

proposed in this chapter. It works by dividing the load at each busbar into 

interruptible and uninterruptible parts and then prices them according to their impact 

on networks under both normal and contingency situations. Based on the extensive 

analysis, the following observations can be summarized: 

�	 The new approach addresses the network work security issue in network pricing 

through close examining the impact from different types of users on network 

components under contingencies. It differentiates and respects users’ security 

preference rather than deliver the same security levels for all. Charges are 

evaluated and levied on interruptible and uninterruptible loads based on their 

impact on investments under both normal and contingency circumstances.  

�	 By dividing loads and pricing them differently, the overall network development 

cost in accommodating the same level of load growth is reduced, this had led to 

the marginal prices for either interruptible loads and uninterruptable loads are 

significantly smaller than those from the original model. Charges for 

interruptible loads are significantly lower compared with those for 

uninterruptible loads for they have less secure supply. The resultant locational 

cost-reflective charges can influence potential users’ behaviors for the sake of 

system security. Users can also be financially rewarded if they choose lower 

security levels and thus reduce the otherwise needed network investment. 

�	 This new approach provides a new economic tool to both DNOs and network 

users to encourage diversified security levels of supply, which can benefit both 

network utilities and their users. It should be pointed out that the proportions of 

interruptible and uninterruptible loads are crucial in this model. Although users 

can reduce their UoS charges by increasing their interruptible load, the risk of 

their supply lost might increase consequently. Therefore, in order to assist users 

to make the most beneficial decision, risk analysis should be carried out in the 

future to find the balance between network charges and the risk. 
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Chapter 6 

Network Pricing 
For Customer Reliability 

T HIS chapter proposes a novel network pricing model for 
security of supply by incorporating nodal unreliability tolerance 
and components’ reliability characteristics. 
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6.1 Introduction 


The present planning standard in the UK requires that large users or user groups at 

distribution networks should be secured against N-1 or even higher level 

contingencies [14]. Meanwhile, it also mandates that customers’ supply can be 

partially interrupted in contingencies for a period of time with a certain amount. This 

philosophy is not properly reflected by the original security-oriented LRIC charging 

model, as it assumes that all customers should be secured against N-1 or higher level 

contingencies without any load loss, no matter how serious these contingency could 

be and how often they could happen. Consequently, it might produce over tightened 

security levels, leading to excessive network expansion. 

Considering the drawbacks of this worst-case oriented deterministic security criterion, 

some utilities have turn to probabilistic criteria, which include both the occurring 

probability and outcome of contingencies. Undoubtedly, they can well capture the 

stochastic features of power systems. A compromising approach to reflect security of 

supply probably is to combine the merits of the two criteria together by considering 

both the output and occurring probability of contingencies. That is the philosophy 

behind the proposed approach in this chapter. 

In this chapter, a charging model for network security considering both nodal 

unreliability tolerance and contingency occurring probability is proposed. It examines 

the change in network ability to deliver power due to the connection of new customers 

under certain security levels. The combination nodal tolerable expected energy not 

supplied (EENS) and the occurring probability of contingencies is translated into 

nodal tolerable loss of load, which can be interrupted during contingencies. The 

impact of the tolerable loss of load is then recognized in assessing components’ 

reinforcement horizon change. This approach is testified and compared with the 

original model on two networks under different scenarios, in which the impact of 

different reliability levels on network charges is also investigated.  
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6.2 Impact of Different Reliability Components 


Provided that a node’s allowed EENS is EENS and a failed component’s mean time to 

repair (MTTR) and failure rate (FR) that would lead to a loss of load at the node are 

MTTR and FR respectively, thus the tolerable loss of load can be evaluated with 

EENSTLoL = (6-1)
MTTR ⋅FR 

In the following part, the impact of components’ reliability and nodal unreliability 

tolerance on components’ investment horizons is investigated for three typical 

networks in two scenarios: with and without an injection. 

6.2.1 Single-circuit Case Analysis 

Figure 6-1 shows a simple two-busbar system supporting a single demand group of P0 

via a circuit L1.  

Figure 6-1 A two bus-bar test system 

When L1 fails, the total demand at busbar 2 will be interrupted. Supposed that the 

tolerable EENS at busbar 2 is EENS0, L1’s future reinforcement horizon under a given 

load growth rate, r, can be assessed with 

EENS0 nTLoL = 
MTTR ⋅FR 

= P0 ⋅ (  )1+ r (6-2) 
1 1 

where, MTTR1 and FR1 are L1’s MTTR and FR.  

Rearranging and taking logarithm of it produces 

0log⎜
⎛ EENS ⎞

− ( )⎜ ⎟⎟ log P0 
⎝ MTTR1 ⋅ FR1 ⎠ (6-3)

n = ( )log 1+ r 
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A tiny nodal increment connecting to bus 2 will bring forward L1’s investment 

horizon. Suppose that the nodal reliability requirement does not change with the new 

injection, L1’s new horizon can be identified by 

EENS0 = (P + ΔP) (  1 + )nnew 

MTTR1 ⋅ FR1
0 ⋅ r (6-4) 

Where, ΔP  is the extra flow along L1 due to the injection. 

Rearranging it gives 

log
⎛
⎜⎜ 

EENS0 ⎞
⎟⎟ − log(P + ΔP)

⎝ MTTR1 ⋅ FR1 ⎠ 
0 (6-5)

n = new log(1 + r) 

6.2.2 Parallel-circuit Case Analysis 

Figure 6-2 presents a demand group supported by two identical parallel circuits and 

the following analysis only focuses on L1. L1’s future reinforcement is driven by the 

demand growth under L2’s failure, as it has to accommodate the extra flow carried by 

L2 in normal conditions. It is assumed that L2’s MTTR is MTTR2, failure rate is FR2 

and rated capacity is RC2, and the nodal tolerable EESN is EENS1. L1’s reinforcement 

horizon can be determined by assessing the impact of load growth on its spare 

capacity while L2 fails. 

Figure 6-2 Two-circuit radial system framework 

With the demand increasing, the surpassing part should be curtailed, if it exceeds L1’s 

rated capacity. L1 can still support the demand group as long as the surpassing load 

part that needs be curtailed to resolve L1’s overloading does not exceed the tolerance 

at busbar 2. Therefore, its investment horizon can be identified with 
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TLoL = 
EENS0 = P0 ⋅ (  )  1+ r n − RC (6-6)MTTR2 ⋅FR2 

Taking logarithm of it produces  

log⎜
⎛ EENS0 ⎞

− P0⎜ MTTR ⋅FR 
+ RC ⎟⎟ log( )  

(6-7)⎝ 2 2 ⎠n = ( )log 1+ r 

When a new injection comes to busbar 2, L1’s new investment horizon can be 

calculated by replacing P0 in above formula with (P0+ ΔP) 

0log
⎛
⎜⎜

EENS 
+ RC 

⎞
⎟⎟ − log(P0 + ΔP)

⎝ MTTR1 ⋅FR1 ⎠ (6-8)
n = new ( )log 1+ r 

Where, ΔP is the extra contingency flow along L1 triggered by the injection. 

L2’s reinforcement horizons can be calculated in the same way by examining the 

injection’s impact on it when L1 fails.  

6.2.3 Meshed Network Case Analysis 

For a simple meshed network given in Figure 6-3, it is supposed that the failure of L1 

can cause the maximum contingency flow along L2 and L3. It means that L2 and L3’s 

future reinforcements are triggered by the demand increase when L1 fails. 

Figure 6-3 A simple meshed network 

Suppose that the tolerable EENS at busbars 2 and 3 are EENS1 and EENS2 

respectively, and the corresponding tolerable loss of load for P1 and P2 when L1 fails 

can be calculated with (6-1). 
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When L1 fails, L2 can still support P1 and P2 as long as the allowed curtailed load is 

within the tolerance and its reinforcement horizon can be identified with 

TLoL1 +TLoL2 = (P1 + P2 )⋅ (1+ r)n − RC2 (6-9) 

Where, TLoL1 and TLoL2 are the tolerable loss of load of P1 and P2. 

Rearranging it gives  

⎛ EENS1 + EENS2 ⎞
log⎜⎜

⎝ MTTR1 ⋅FR1 

+ RC2 ⎟⎟
⎠
− log(P1 + P2 ) (6-10)

n = ( )log 1+ r 

When an injection connects to either bus 2 or bus 3, L2’s new investment horizon will 

change. Compared with the existing demand, the nodal injection is usually very small, 

so it is safe to assume that the circuit’s future reinforcement is still triggered by the 

original contingency event, i.e. L1 fails. Thus, L2’s new horizon will be 

log⎜
⎛ EENS1 + EENS2 + RC ⎟

⎞
− log(P + P + ΔP)⎜ MTTR ⋅ FR 2 ⎟ 1 2 (6-11)⎝ 1 1 ⎠n = new log(1 + r) 

where ΔP is L2’s flow change due to the injection. 

When L1 fails, L3’s reinforcement horizon can be identified by taking the tolerable 

loss of load at busabr 2 into consideration, 

TLoL1 = P1 (1+ r)n − RC3 (6-12) 

Rearranging it gives  

⎛ EENS1 + RC ⎟
⎞ 

log( )log⎜⎜ MTTR ⋅ FR 3 ⎟ − P1 (6-13)⎝ 1 1 ⎠n = 
log(1 + r) 

When a tiny injection comes to busbar 2, its new investment horizon changes to 
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1log⎜⎜
⎛ EENS 

+ RC ⎟⎟
⎞
− log(P + ΔP)

⎝ MTTR1 ⋅ FR1
3 
⎠ 

1 (6-14)
n = new log(1+ r) 

where ΔP is its contingency flow change due to the injection.  

L1’s future reinforcement horizons are driven by the load growth under the failure of 

L2 and they can be obtained in the similar way. 

It is worth pointing out that the tolerable curtailed power that a component can endure 

during its most serious contingency is the sum of all part of load that could be 

curtailed it supports. A component only needs to be reinforced when it can no longer 

support the total demand minus the curtailed part. Components’ reinforcement 

horizons under contingencies are not only decided by their rated capacity and load 

growth rate, but also their maximum contingency flow and the tolerable loss of load 

they support, i.e. the nodal reliability level. 

6.3  Reinforcement Horizon in Normal Case 

Component’s future reinforcement can be triggered by demand increase in either 

normal or contingency situations. Under normal context, its old horizon is 

log(RC) − log(Pl )n = 
log(1 + r) (6-15) 

where P1 is its normal case power flow.  

Its new reinforcement horizon with an injection can be easily obtained by replacing P1 

with (P1+ΔP) in (6-15), given by 

log(RC)− log(Pl + ΔP)nnew = 
log(1+ r) (6-16) 

where ΔP is the extra normal case flow along it due to the injection.  

Obviously, components’ normal case reinforcement horizons are only decided by 

their component’s rated capacity, load growth rate, their loading levels and the 

additional normal case flow increment along them.  
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6.4 Charging Incorporating Reliability Standard 


The core of this charging model is to determine components’ reinforcement horizons 

under contingencies considering their reliability levels. It also follows the principle 

that a component needs to be reinforced if it can no longer support demand in normal 

conditions. By comparing the horizons from normal and contingency situations, the 

smaller one between the two is chosen to derive charges. The major implementation 

concept can be summarized as follows. 

6.4.1 Components’ Tolerable Loss of Load 

Under N-1 or higher security level, all nodal tolerable loss of load can be easily 

determined using (6-1) when one circuit fails, decided by nodal tolerable EENS and 

the failed component’s MTTR and FR. In order to determine how the tolerable loss of 

load would affect components’ flow, sensitivity analysis can be adopted to directly 

relate nodal load to components’ flow change [17]. Thus, their loading levels under 

all credible contingencies with all tolerable loss of load reduced from the original load 

can be calculated. Their actual contingency reinforcement horizons are calculated 

under their highest loading level cases. 

It should be noted that although sensitivity analysis only provides approximate 

relationship between nodal demand and components’ flow changes, it still can 

produce acceptable results. A more precise approach is to simulate how components’ 

actual loading levels change with all tolerable loss of load curtailed under all 

contingences. But, such approach could be extremely time-consuming for big systems. 

If more than one component fails at the same time, the MTTR and FR used to derive 

nodal tolerable loss of load should take all of these components into consideration. 

combined MTTR and FR can be determined respectively, the sizes of which depend 

on the failed circuits’ characteristics, the contingencies’ types, etc [31]. This is 

beyond the scope of this chapter and not discussed here. 
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6.4.2   Components’ Original Horizons without Injections 

All components’ original normal case horizons are determined by running normal 

case power flow analysis, without considering any security criteria. Their original 

contingency case horizons are derived in their most serious contingencies with the 

tolerable loss of load considered. Components’ actual original time horizons are 

selected as the smaller between the two. 

6.4.3 Components’ New Horizons with Injections 

Components’ new normal case horizons are calculated by running incremental flow 

analysis without considering security requirement with tiny power injections 

connected to the studied busbars. Their new contingency case horizons are assessed 

by running incremental contingency flow analysis to find their maximum loading 

levels, in which the nodal tolerable loss of load is curtailed from each busbar. They 

are then compared with the normal case new horizons and the smaller ones are chosen 

as actual new horizons. 

6.4.4 Unit Price Assessment 

Once all components’ old and new reinforcement horizons are indentified, the unit 

price for each studied busbar can be assessed by implementing unit price evaluation.  

The present value of future reinforcement of a component is 

CostPV = 
(1+ d )n (6-17) 

where, d is the chosen discount rate and n is its investment horizon. 

The change in its present value as a result of a nodal increment is  

⎛ 1 1 ⎞
ΔPV = Cost ⋅ ⎜⎜

⎝ (1 + d ) 
−
(1 + d )n ⎟⎟

⎠ 
(6-18)nnew 

The incremental cost of the component is the annuitized change in its present value of 

future investment 
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ΔIC = ΔPV ⋅ AnnuityFactor (6-19) 

The incremental price for a node is the accumulation of the present values of the 

incremental cost from all components supporting it  

∑ ICLRIC = (6-20)
ΔPI 

where, ΔPI is the injection at the node. 

6.5 DC Load Flow Demonstration on a Small System 

In this section, the new approach is demonstrated and compared with the original 

LRIC charging model on the simple network given in Figure 6-3 using DC load flow. 

D1 and D2 are chosen as 10 MW and 20MW respectively, each with a growth rate of 

1.0%. In order to simplify analysis, the three circuits are assumed to be identical. 

Their capacity, cost, mean repair time, and failure rate are selected as 45MW, 

£1,596,700, 7.5hour/time and 0.5time/year respectively. So, their failure period is 

calculated as 3.75 hour/year. The allowed nodal loss of load under N-1 contingencies 

is supposed to 1MW within 3 hours for busbar 1 and 3MW within 3 hours for busbar 

2, producing a tolerable EENS of 3MWh for bus 1 and 9MWh for bus 2.  

6.5.1 Charge Evaluation 

The three circuits’ base states can be determined with load flow and contingency flow 

analysis, the results from which are provided in Table 6-1. As shown, the maximum 

contingency flows along L1 and L3 are caused by the failure of L2. L2’s maximum 

contingency flow appears when L1 fails, which is the summation of P1 and P2, 

counted as 30MW.  

Table 6-1 Results of the three-busbar system 
Circuit No. L1 L2 L3 

Normal power flow (MW) 13.33 16.67 3.33 
Maximum contingency power flow (MW) 30 30 20 

Most serious contingency event L2 out L1 out L2 out 
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Table 6-2 Horizons of the three circuits considering EENS tolerance (yr) 
Injection location 

No injection 
Bus 2 

L1 
47.65 
44.36 

L2 
47.65 
44.36 

L3 
88.40 
88.40 

Bus 3 44.36 44.36 83.50 

The contingency case horizons evaluation for the three circuits considers the tolerable 

loss of load from their supporting busbars. By comparing with their normal case 

horizons, it is found they have bigger contingency horizons in both cases with and 

without an injection, given in Table 6-2. 

In the case without any injections, L1 and L2 have the same reinforcement horizons, 

47.65yrs. An injection at busbar 2 or 3 also has the same effect on them, producing 

new investment horizon of 44.36yrs for them. Noticeably, an injection at busbar 2 

does not affect L3’s investment horizon, as it triggers not extra flow along L3 when 

L2 fails, whereas an injection at busbar 3 can bring L3’ horizon down to 83.50yrs. 

Table 6-3 Results of the three-busbar system (£/MW/yr) 
Cost from L1 Cost from  L2 Cost from  L3 Total charge 

Bus 2 1211.17 1211.17 0.00 2422.34 

Bus 3 1211.17 1211.17 125.70 2548.05 

The derived costs from each circuit and the total nodal charges for the two load 

busbars are given in Table 6-3. The cost from L1 and L2 for demand at busbars 2 and 

3 is the same, 1211.17£/MW/yr, as the injections cause the same effect on them. The 

cost from L3 is zero for demand at busbar 2, whereas it becomes to 125.70£/MW/yr 

for customers at busbar 3. The total nodal charge for each node is the summation of 

the cost from all their supporting circuits, which is 2422.34£/MW/yr at busbar 2 and 

2548.05£/MW/yr at busbar 3. 

6.5.2 Comparison with the Original Model 

The original LRIC model reshapes the three circuits’ maximum available capacity 

with their contingency factors down to 20MW, 25MW and 7.5MW respectively for 

catering for network contingencies. Their reinforcement horizons calculated with and 

without a nodal injection based on the reshaped capacity are outlined in Table 6-4. 
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Table 6-4 Reinforcement horizons of the three circuits without EENS (yr) 

Injection location 

No injection 

L1 

40.75 

L2 

40.75 

L3 

81.50 

Bus 2 35.85 38.76 92.09 

Bus 3 38.27 36.81 71.92 

Compared with the results in Table 6-2, most of the horizons here are smaller, as the 

circuits’ maximum available capacity is scaled down and the tolerable loss of load at 

each load busbar is not considered. One exception is for L3 when an injection is at 

busbar 2, whose investment horizon is deferred to 92.09yrs, as its normal case flow is 

reduced by the injection. 

Table 6-5 Results of the three busbar system (£/MW/yr) 

Cost from L1 Cost from  L2 Cost from  L3 Total charge 

Bus 2 3019.59 1108.24 -260.76 3867.07 

Bus 3 1404.94 2347.28 460.41 4212.63 

Table 6-5 provides the cost from each component for the two load busbars and the 

final charges. As seen, most of them are higher than those from the proposed 

approach due to their relatively high equivalent utilization levels. One exception is 

that an injection connects to busbar 2 can gain a reward of -260.76£kW/yr for using 

L3 rather than a cost. The reality is that the injection at busbar 2 has no impact on L3 

in the contingency that drives L3’s future reinforcement. Thus, it maintains L3’s 

horizon as the same as the original one, leading to not reward at all. The proposed 

model, as demonstrated in the previous section, can capture the actuality, producing 

no cost from L3 for users at busbar 2. 

The final charges are 3.67.07£/MW/yr for busbar 2 and 4212.63£/MW/yr for busbar 3, 

both of which are bigger than those from the proposed model. By taking nodal 

tolerable loss of load and circuits’ reliability into consideration, the proposed method 

can dramatically reduce nodal charges.  
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6.6 Demonstration on a Practical Network 


In order to further elaborate their difference, this section carries out the comparison of 

the two approaches on a practical grid supply point area taken from the UK network, 

depicted in Appendix. A. The discount rate and load growth rate are chosen as 1.0% 

and 6.9% respectively. All branches are supposed to have the same repair time of 

4hour/time and failure rate of 0.5time/year, the combination of which lead to a failure 

period of 2 hour/year. For each component, as its MTTR and FR have the same effect 

on nodal tolerable loss of load depicted in (6-1), the following analysis only forces on 

the impact caused by its failure rate. 

Table 6-6 outlines all load busbars’ allowed loss of load and the tolerable EENS. 

Busbar 1001 has the smallest EENS of 3.5MWh, followed by other four busbars that 

have the same EENS. Busbar 1003’s EENS is the biggest, 4.5MWh.  

Table 6-6 Nodal reliability indices 
Busbar 1001 1003 1006 1007 1009 1013 

Allowed loss of load (MW) 7.0 9.0 2.0 8.0 2.0 2.0 

Duration (hour) 0.5 0.5 2.0 0.5 2.0 2.0 

EENS (MWh) 3.5 4.5 4.0 4.0 4.0 4.0 

6.6.1 Low Utilization Level Analysis  

In this part, calculations are carried out at system base loading level in three different 

scenarios, in which the network is assumed to be with different reliability levels:  

� Scenario 1: use the base case nodal reliability levels given in Table 6-6; 

� Scenario 2: increase nodal reliability levels by decreasing nodal allowed loss of 

load down to the half of the original values, thus causing nodal tolerable EENS 

and in turn the tolerable loss of load to be halved as well.  

� Scenario 3: increase nodal reliability levels by decreasing assets’ failure rates to 

the half of the original ones, causing the tolerable loss of load doubled. 

Page 114 



                                       Chapter 6 Network Pricing for Customer Reliability 

Table 6-7 provides the calculated nodal charges from the three scenarios as well as 

those from the original model.  

Table 6-7 Nodal charge comparison in four scenarios (£/kW/yr) 

Busbar 1001 1003 1006 1007 1009 1013 

Scenario 1: base case 4.08 20.22 16.66 1.46 0.18 0.91 

Scenario 2: lower LoL 4.90 25.74 21.29 1.79 0.21 1.26 

Scenario3: smaller FR 2.88 12.80 10.46 0.98 0.13 0.50 

Original approach 5.59 32.59 26.80 2.14 0.24 1.71 

Compared with scenarios 1 and 3, scenario 2 produces the highest charges for all 6 

busbars. The reason behind is that that lower allowed loss of load means that less 

demand can be interrupted in contingencies and hence more of assets’ spare capacity 

should be reserved to accommodate potential extra contingency flow. This, in turn, 

reduces assets’ maximum available capacity. The highest charge is 25.74£/kW/yr at 

busbar 1003 and the lowest charge is at busbar 1009, 0.21£/kW/yr. Scenario 3 

produces the lowest charges for all load busbars. It is because smaller assets’ failure 

rates mean that they are less likely to fail, so less of their spare capacity needs to be 

reserved for catering for contingencies. By contrast, the original model generates the 

highest charges for all load busbars than those from the previous 3 scenarios and the 

highest charge also appears at busbar 1003, counted as 32.59£/kW/yr. 
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Figure 6-4 Charge comparison in lower loading condition 
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Figure 6.4 graphically compares the results in Table 6-7. As seen, charges from the 

proposed approach in all three scenarios maintain the charge pattern produced by the 

original model: charges produced by the original model are the highest, followed by 

charges from scenario 2, and charges from scenario 3 are the smallest.  

6.6.2 High Utilization Level Analysis 

In this part, the comparison is carried out in the same three scenarios but with higher 

components’ utilization levels. The calculated results are given in Table 6-8.  

Table 6-8 Nodal charge comparison (£/kW/yr) 

Busbar 1001 1003 1006 1007 1009 1013 

Scenario 1: base case 8.44 41.99 34.08 2.95 0.41 1.85 
Scenario 2: lower loss of load 10.13 53.45 43.56 3.62 0.49 2.56 
Scenario3: smaller failure rate 5.96 26.59 21.40 1.99 0.29 1.01 

Original approach 11.53 67.70 54.95 4.28 0.52 3.49 

Obviously, charges for all studied busbars grow dramatically in all four cases 

compared those in the previous part. Particularly, the highest charge rises to 

67.70£/kW/yr at busbar 1003 from the original model, followed by 53.45£/kW/yr 

from scenario 3 at the same busbar. The high charges come out because all 

components’ loading levels increase, which in turn greatly bring forward their future 

reinforcement horizons.  
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Figure 6-5 Charge comparison in higher loading condition 
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The graphical demonstration of the results by Figure 6-6 has a similar pattern depicted 

in Figure 6-5: charges from the original model are the biggest, followed by those in 

scenarios 2, 1 and 3. 

6.6.3 Impact of Nodal unreliability and Asset Reliability Levels  

In this part, the impact of nodal unreliability tolerance and assets’ failure rates on 

nodal charges are investigated. 

Figure 6-6 demonstrates the charge variation at busbar 1003 with respect to the 

decrease in its nodal unreliability tolerance, i.e. the allowed loss of load. The results 

from the proposed model are depicted with the solid line and those produced by the 

original model are represented by the dashed line. As seen, when the allowed loss of 

load is about 30% of the load at busbar 1003, charge from the new model is about 

25.5£/kW/yr, which increases gradually with the decline in the tolerance. It reaches 

about 33.0£/kW/yr when the nodal allowed loss of load is zero. Charges from the 

original model, however, do not change with the variation in the tolerable loss of load 

at all, persisting at 32.59£/kW/yr. 
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Figure 6-6 Charge variation with respect to the allowed loss of load 

It should be noted that when the allowed loss of load is close to zero, the two lines 

cross at a point, and beyond it, charges from the proposed model exceed those from 

the original model. It is because the original model considers that an injection at 1003 

can defer L5’s investment horizon and therefore produce a negative cost for users at 

busbar 1003. By contrast, the proposed model produces no cost from L5 for users at 
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the busbar. So, the total charges from the new model should be bigger than those 

produced by the old model when the allowed loss of load is zero. 
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Figure 6-7 Charge variation with respect to failure rate 

In Figure 6-7, the impact of components’ reliability on the resultant charges at busbar 

1003 is presented and compared with those from the original model. Obviously, the 

proposed model produces charges decreasing gradually with the decline in circuits’ 

failure rate. When they are 1.0 time/yr, the computed charge is approximately 

25£/kW/yr. It decreases steadily and reaches merely about 4£/kW/yr with a failure 

rate of 0.1time/yr. The reason is that when their failure rates are small, they rarely fail 

and hence, less of their capacity needs to be reserved for catering for contingencies.  

In the extreme cases that all components’ failure rates are zero, they do not fail at all 

and hence there is no difference between contingency cases and normal cases. In such 

situation, charges are evaluated by only considering how load growth would affect 

components’ rated capacity, and there is no need to consider contingency flows and 

nodal allowed loss of load. 

As observed in this example, nodal charges are brought down by considering the 

unreliability tolerance at each load busbar, the degree of which depends on nodal 

allowed loss of load and components’ reliability level. More reliable components and 

less nodal reliability requirement tend to generate low charges, vice versa. Although 

both approaches of increasing components’ reliability levels and reducing nodal 

unreliability tolerance can increase reliability level, the former seems more 
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economical as it can produce even lower charges. But, improving component 

reliability is not an easy task and could be costly.  

6.7 Chapter Summary 

In order to address the issue of security of supply in network charging, a novel 

charging model is proposed by including nodal unreliability tolerance and 

components’ reliability levels in assessing the impact of nodal injections on network 

components. Their impact is recognized by reflecting how they would affect 

components’ ability to deliver energy in line with certain reliability levels. Based on 

the intensive analysis and the comparison with the original model on two test systems, 

the following observations can be reached: 

�	 The original model deals with network security by reshaping components’ rated 

capacity with contingency factors to reflect the maximum contingency flow they 

need to carry in contingencies. It is based on a deterministic criterion and 

assumes that those contingencies which cause components’ maximum 

contingency flows definitely happen. The nodal tolerable unreliability level is 

not considered in it at all. The proposed model overcomes the disadvantages by 

taking both nodal unreliability tolerance and contingency occurring probability 

into account while evaluating injections’ impact on components. 

�	 The major factors influencing nodal reliability levels are the reliability levels of 

components and the allowed nodal loss of load amount and its duration, which 

together form EENS. They can significantly affect the nodal charges. More 

reliable components and bigger unreliability tolerance would lead to smaller 

charges, vice versa. The proposed approach can produce prolonged investment 

horizons, indicating that network components can be utilized for longer period 

so that potential reinforcement is deferred. Charges are consequently brought 

down especially when system loading level is high. The resultant charges can 

effectively reflect users’ unreliability tolerance and components’ reliability. 

�	 Further, the charges from the new model still maintain the merits of the charges 

from the original model of being locational and cost-reflective, so that they can 

influence users’ prospective behaviors. The only problem is that the new model 
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would need great computational effort to analyze contingencies. But it should 

not impede its application as some time-efficient approximation approaches can 

be employed to spare computational burden.  

Generally, this new model works well in accordance with network planning guides for 

network charging by taking nodal unreliability and components’ reliability levels into 

consideration and can effectively reflect the practical planning philosophy. 
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Chapter 7 

Conclusion


T HIS chapter summarizes the thesis by outlining the major 
contributions and findings from the research. It also presents 
further work around the four main research areas. 

Page 121 



Chapter 7	  Conclusion 

Network charging models, as a measure to recover investment in networks from users, 

play a vital role in the deregulated and privatized environment. Due to the challenges 

brought forward by the stress on the increasing DGs and the uncertainties in demand 

and the promotion in efficiency, charging models therefore need to evolve to cope 

with them appropriately.  

It is expected that network charging should not only be able to recover revenue 

allowed by the regulator, but also be cost-reflective so as to price users in accordance 

with the degree of their use-of-system. Cost-reflective pricing can produce forward-

looking signals to influence their behavior and improve network efficiency. Network 

security, as a major drive for network investment, however, has not been well 

recognized in network charging models. Thus, this work has carried out intensive 

research in this area, proposed a number of new concepts on pricing security and 

implemented them on an existing LRIC charging model utilized in EHV distribution 

networks in the UK, extending the basic model to properly capture the nature of 

network planning. From the resultant charges, tariffs and impact analysis, the 

following conclusions can be drawn. 

Network Pricing Using Marginal Approach 
In order to assess the impact from a nodal injection on network components, the 

original LRIC model needs two runs of power flow analysis. Such technique is fairly 

easy to implement but extremely time-consuming especially for large scale systems, 

for which computational time might increase exponentially with the rise in busbar 

numbers. To improve the computational efficiency this model, a new LRMC charging 

model based on analytical approach is proposed, which can directly relate nodal 

power increments to changes in components’ present value of future investment by 

using three partial derivatives.  

�	 As demonstrated, the proposed LRMC can save significant computational time 

for large-scale networks by utilizing analytical approach, as it avoids running 

power flow analysis for every nodal injection. Despite this, it can produce 

similar results to those from the original LRIC model when the nodal injection 

for LRIC is small. The biggest difference appears when circuits are highly 

loaded and load growth rate is small.  
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�	 On the other hand, the LRIC model can examine the impact imposed on 

networks by any size injections by incorporating them into simulations. The 

proposed LRMC, however, can only accurately represent a very small injection.  

�	 This work also examines the impact of the charges on the final revenue. As seen 

in the example, tariff difference is highly dependent on the difference in 

charges. Bigger charge difference tends to cause greater tariff difference. The 

work also demonstrates that the fixed adder approach is favored over the fixed 

multiplier approach as it can maintain the relativity of the pure economic 

signals. The fixed multiplier approach, as it scales up or down all charges to 

meet the target revenue, could amplify or reduce the relativities in the signals. 

�	 The proposed LRMC is a good supplement to the original LRIC method not 

only because of its computational efficiency but also because of the additional 

insights from the interim results. It provides further insights into potential 

charge and tariff problems. The information, however, is hidden in the 

simulation based LRIC model. 

Network Pricing Considering Security of Supply 
In order to incorporate network security into pricing, the original LRIC approach 

works by reshaping components’ maximum available capacity with a contingency 

factor to reflect the impact from contingencies. Charge evaluation for users is 

assessed on the basis of the new capacity. The effectiveness of this philosophy is 

limited as it can only reflect incremental impact on components under normal 

conditions, but not in contingencies. Hence, an enhanced model is proposed, 

considering the impact of nodal injections on components in both conditions.  

�	 This new model evaluates users’ impact on network components in 

contingencies through determining the change in components’ investment 

horizon in contingencies due to a new user. Unlike the original model to resize 

components’ maximum available capacity with contingency factors, this model 

thinks that part of network components’ capacity should be reserved for catering 

for contingencies. Injections could also bring forward or defer assets’ horizons 
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under contingencies, not only in normal cases. It therefore chooses the smaller 

new horizons from the two situations to derive charges.  

�	 As seen in the demonstrations, charges from this new approach are not always 

smaller than those from the original charging model. Three major factors: 

loading level, load growth rate, and injection size, can tremendously affect the 

difference in charges produced by the original and new approaches. Higher 

loading level, larger load growth rate and bigger injection sizes tend to enlarge 

the difference. 

�	 The only downside with the proposed model is that it needs more computational 

time to evaluate connectees’ impact on network components in contingencies, 

especially for large-scale systems and higher level of security. In order to save 

computational effort, sensitivity analysis is carried out to directly work out to 

what extent a tiny injection would affect network components under both 

normal and contingency conditions. This avoids running power flow and 

contingency flow analysis for each injection. It produces quite similar results as 

long as the injection size is small for the simulation approach.  

Network Pricing to Meet Users’ Security Preference 
The old philosophy of network planning is to provide users at the same locations with 

the same level of security. This is how the original LRIC model is implemented. In 

reality, users might prefer different security levels to meet their own needs. 

Consequently, their impact on the same components could vary greatly and should be 

reflected in network charging. So, a security-oriented charging methodology is 

proposed to price users according to their security preference.  

�	 The model first divides demand at each busbar into interruptible and 

uninterruptible parts and then evaluates their different impact on components in 

both normal and contingency situations. For each demand composition, the 

smaller horizons of every component are selected to derive charges for them. 

Thereby, there are two types of charges at each busbar: charges for interruptible 

load composition and charge for uninterruptible load composition. 
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�	 As demonstrated in the examples, charges for interruptible load composition are 

smaller compared with those for the uninterruptible composition at the same 

busbar, as uninterruptible one needs to be secured in contingencies when more 

spare capacity is required. Their cost for using the same components can also 

diversify. 

�	 The network charges considering customer with different security preference 

still maintain the relative strength of locational charges from the original model, 

they are locational, cost-reflective and respect consumer choices. They thus can 

be utilized to guide potential users to the sites where sufficient spare capacity is 

available in normal and contingency situations respectively.  Consequently, 

users can be encouraged to choose different security levels of supply as well in 

accordance with their own requirement. 

Network Pricing for Reliability 
The network security that is recognized in the original LRIC model is based on 

deterministic criterion. It determines the amount of components’ spare capacity to 

cater for contingencies based on the worst case. It assumes that all demand at all 

busbars needs to be secured under any contingencies and these contingencies will 

happen in the investment horizon considered. Such a philosophy, however, does not 

comply with the actual planning concept which allows partial interruptible load under 

contingencies. Thus, a new model for pricing for network reliability is proposed, by 

considering both nodal unreliability tolerance and components reliability levels.  

�	 In the model, nodal allowed loss of load, components’ mean time to repair and 

failure rate are combined together to produce a new index: nodal tolerable loss 

of load, which can have enormous influence on components’ maximum 

available capacity. Components’ contingency horizons are evaluated by 

examining how nodal injections can influence the capacity in contingencies with 

the tolerable loss of load at their supporting busbars reduced. The smaller 

horizons from normal and contingency situations are adopted to derive charges.    

�	 The proposed approach can produce significantly lower charges compared with 

the original model. The major factors influencing the final charges are 
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components’ reliability levels, decided by their mean time to repair and failure 

rate, and the nodal tolerable loss of load and the duration. Users supported by 

more reliable components have smaller charges, but if they prefer less allowed 

loss of load, their charges tend to shoot up.  

�	 The charges can effectively reflect users’ and network components’ reliability 

levels. They can be utilized to encourage users to have different reliability levels 

with different measures rather than to demand the same reliability levels. 

Further, the examples also show that components’ reinforcement horizons are 

deferred. It means that they can be utilized for a longer period so that potential 

reinforcement can be postponed. This will translated into lower use of system 

charges for network users. 
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Chapter 8 

Future Work


HIS chapter presents future works that can be done to improve 
LRIC charging methodology as well as its interaction with other T considerations in network planning. 
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Pricing for Reliability with Customers’ Interaction 
Under the competitive environment, users might prefer different reliability levels due 

to economic or social concerns. By adopting interruptible and uninterruptible scheme, 

they are granted with the freedom to choose the reliability levels they prefer. In 

implementing this scheme, the proportion between interruptible and uninterruptible 

loads becomes a vital issue as different proportion can lead to quite diversified UoS 

charges as well as value from loss of load. The impact of different proportions varies 

for customers in different sectors, such as industrial, commercial and residential; they 

will have profound impact on the system development.  

Further, users’ reliability levels not only depend on the operation strategies adopted 

by network operator to deal with the alert and contingency situations, such as load 

shedding or load shifting, but also on components’ reliability levels, which depend on 

their own characteristics and other factors, such as performance of staff, locations, 

weather, etc. A reliability-oriented charging model should not only reflect the 

reliability systems supply but also respect the reliability levels that users choose. They 

can opt to different load shedding schemes so as to be encouraged to interact with 

networks. Risk-benefit analysis for end users should be further carried out to find the 

right balance between network UoS charges and value from lost load.  

Interaction between Long-run and Short-run Pricing 
It should be noted that locational charges set by either LRIC or LRMC are to recover 

the network fixed costs. This is of paramount importance to DNOs at the moment 

when they are expecting to connect substantial amount of DGs. Efficient locational 

messages will incentivise the prospective DGs to connect to appropriate sites so as to 

minimise the network development costs.   

The long-run marginal and incremental cost pricing models provide locational 

messages to minimise the network development costs. The long-run and short-run 

pricing should be complementary and interactive. Efficient long-run messages should 

encourage prospective network customers to better utilize the existing network, thus 

reducing congestion and losses in the long run. The short-run locational marginal 

pricing aims to minimize congestion and loss in order to improve the efficiency of the 
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existing network and delay the needed network upgrades. Network operators should 

strike the right balance between network investment cost and congestion and losses 

cost, which should be reflected in the interaction between the two pricing schemes.  

Load Growth rate, Inflation Rate and Discount Rate 
Work to date of LRIC model assumes that the cost of network reinforcement does not 

change over time, i.e. the cost of purchasing a piece of network equipment in the 

future is the same as it is today. The charging model as it stands today does not 

account for the potential price increase in network components or its decline in 

purchasing power of currency caused by economic inflation. In reality, however, the 

price of goods continuously increases in the long run due to varying factors such as 

price increase of resources, man power, technologies, etc, which comes into the form 

of inflation rate. Therefore, there is a degree of inflation existing in the economy 

reflecting the rise in the general level of prices of goods and services. This inflation in 

economy should be reflected in the present value of the future reinforcement in LRIC 

pricing. 

On the other hand, future load growth in the LRIC model is derived from load 

prediction for a period of time and then annuitized whereas discount rate is decided by 

Ofgem based on interest rate and rate of return for DNOs. The selection of inflation 

rate, discount rate and load growth rate are very important to the end results of LRIC 

pricing and the original model assumes they are independent of each other. In reality, 

they are interdependent and intertwined. A change in one factor will affect the other 

two and over time it will feed back to itself. The underlying relationships between the 

three parameters therefore should be justified by companies who put forward their 

projected load growth and network investment. 

Pricing Considering More Influencing Factors 
Presently, the LRIC charging model only takes thermal limit into consideration to 

decide the investment horizon of a component, disregarding the impact of other 

influencing factors. The work that has been done in this thesis still only focuses on the 

thermal and reliability constraints.  
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It is know the future network investment should be able to reflect the reality in power 

systems and their true drivers. As noted in the previously considered large volume of 

references, voltage stability, fault current, network dynamic stability, etc, can also 

drive network future reinforcement. The LRIC model therefore should take them into 

consideration during the procedure of assessing the impact from users on the existing 

network components. By using available transfer capacity to measure the true impact 

from network users, charging models can therefore identify the actual investment 

horizon of their supporting components, and thereafter to derive charges. 

Pricing to Accommodate Increasing Renewables 
With the vast volume of renewable generation connected to networks especially wind 

power, their impact on networks is enormous. Due to the stochastic nature of their 

resources, the intermittent generation imposes great difficulty on network planning, 

such as the selection of circuit’s capacity. In this context, network capacity can be a 

bottleneck for the connection of increasing renewable capacity. Although this issue 

can be easily solved by ensuring enough investment in networks, it could be a waste 

of money to build excessive circuits.  

Network charging models need to recognize the intermittent characteristics of 

renewables and project their impact into circuits’ capacity. These renewables could 

drive future reinforcement quite differently compared with traditional fossil-fired 

generation as their outputs vary with the availability of the resources, such as wind 

solar power, etc, which in turn is decided by time, weather, etc. Therefore, the 

reasonable expansion in network capacity is vital for renewable connection and 

should be reflected in network charging. On the other hand, charging models should 

also be able to produce charges levied on renewable generation which are not only 

cost-reflective, but also able to take account of their prospective behaviors.  
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Appendix. A 

A.1 Network Configuration 

Figure. Appendix-1 An actual grid supply point area test system 

A.2 Typical Asset Cost 
Note: due to confidential reason, the detailed date of the test system cannot be 

provided, but a list of typical asset cost is given in Table Appendix-1. 
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Table. Appendix-1 Unit Costs for Modelled Asset Replacement [89] 
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Appendix. B


Present value: is the value on a given date of a future payment or series of future 

payments, discounted to reflect the time value of money and other factors such as 

investment risk [90]. 

Allowed revenue: is the sum of the base rate returns and the operation and 

maintenance (O&M) costs. The base rate is determined based on a bottom-up 

approach where all the assets are evaluated using the acquisition value minus the 

depreciation. The O&M costs are also set by the regulator, which is based on the 

model adjusted to the distribution company profile [89, 91]. 

Rate of return: in finance, rate of return (ROR), also known as return on investment 

(ROI), rate of profit or sometimes just return, is the ratio of money gained or lost 

(whether realized or unrealized) on an investment relative to the amount of money 

invested [92]. 

Yardstick: is utilized to reflect the investment costs of accommodating extra 500MW 

in DRM model, which also means the benchmark of costs at different voltage or 

transformation levels. The annuitized yardstick over expected useful lives at an 

appropriate cost of capital is [93] 

∑(500MW Model ×Unit Cost)
Yardstick = × Annuity Factor (Appendix.1)

Diversity Factor 

More details of DRM model can be found in [93] 

Annuity factor: is used in finance theory to refer to any terminating stream of fixed 

payments over a specified period of time. This usage is most commonly seen in 

discussions of finance, usually in connection with the valuation of the stream of 

payments, taking into account time value of money concepts such as interest rate and 

future value [94]. 
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Appendix. C 
C.1 Matlab-based Code of LRIC model 
Note: due to confidential reason, the detailed code of the LRIC model cannot be 

provided, but the simple Matlab-based LRIC code is provided in this part.   

%------------------------------------------------------------

%-------------------------Code Starts------------------------

%------------------------------------------------------------


format long;


C=45;

p=1;

d=0.069;

asset=3193400;

annuity_factor=0.0741+0.009;

r=0.01;

D=5:1:45; 


n=(log10(C)-log10(D))./log10(1+r);

PV=asset./(1+d).^n; 


n_new=(log10(C)-log10(D+p))./log10(1+r);

PV_new=asset./(1+d).^n_new;

%--------simulation resutls---------

delta_u = ((PV_new-PV).*annuity_factor)./p

plot(D/C,delta_u,'black','LineWidth',2);

hold on;


% %---------analytical results------

delta_u_analytical=(asset./C).*(log10(1+d)./log10(1+r)).*((D/C).^(log

10(1+d)./log10(1+r)-1));

delta_u_analytical= delta_u_analytical .* annuity_factor./p


% %----------------------------------------------------------------

% %-------------the following is for fixed adder and multiplier----

% %-----------------------------------------------------------------

% %-----------for simulation-------

adder=(allowed_revenue - (delta_u.*D+delta_u2.*D2))./(D+D2);

adder_charge=adder+delta_u; %adder charge of line1

adder_charge2=adder+delta_u2; %adder charge of line2

multiplier=(allowed_revenue./(delta_u.*D+delta_u2.*D2))-1;

multiplier_charge=delta_u.*(1+multiplier);%multiplier charge of line1

multiplier_charge2=delta_u2.*(1+multiplier);%multiplier charge of

line2

%----------for analytical--------

adder_analytical=(allowed_revenue -

(delta_u_analytical.*D+delta_u_analytical2.*D2))./(D+D2);

adder_analytical_charge=delta_u_analytical+adder_analytical;

%adder charge of line1
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adder_analytical_charge2=delta_u_analytical2+adder_analytical;
%adder charge of line2
multiplier_analytical=(allowed_revenue./(delta_u_analytical.*D+delta_

u_analytical2.*D2))-1;

multiplier_analytical_charge=delta_u_analytical.*(1+multiplier_analyt

ical);%multiplier charge of line1

multiplier_analytical_charge2=delta_u_analytical2.*(1+multiplier_anal

ytical);%multiplier charge of line2


plot(D/C,adder_charge,'black','LineWidth',2);

hold on;

plot(D/C,adder_analytical_charge,'red','LineWidth',2);

hold on;

plot(D/C,adder_charge2,'blue','LineWidth',2);

hold on;

plot(D/C,adder_analytical_charge2,'green','LineWidth',2);

hold on;

plot(D/C,multiplier_charge,'black','LineWidth',2);

hold on;

plot(D/C,multiplier_analytical_charge,'red','LineWidth',2);

hold on;

plot(D/C,multiplier_charge2,'blue','LineWidth',2);

hold on;

plot(D/C,multiplier_analytical_charge2,'green','LineWidth',2);

hold on;


% %-------the following is for 3-D figure-------------------------

clear;

C=45;

p=1;

d=0.069;

asset=3193400;

annuity_factor= 10/3;

r=0.0050:0.001:0.045;

D=5:1:45;

allowed_revenue=asset*annuity_factor;

[r,D]=meshgrid(r,D);

n=(log10(C)-log10(D))./log10(1+r);

PV=asset./(1+d).^n;

U=PV/C; 


n_new=(log10(C)-log10(D+p))./log10(1+r);

PV_new=asset./(1+d).^n_new;

U_new=PV_new./C;

delta_u = ((U_new-U).*annuity_factor)/p;

adder=(allowed_revenue - delta_u.*D)./D;

multiplier=(allowed_revenue./(delta_u.*D))-1;

%---------the following is for analytical analysis

delta_u_analytical=(asset./C).*(log10(1+d)./log10(1+r)).*((D/C).^(log

10(1+d)./log10(1+r)-1));

delta_u_analytical= delta_u_analytical .* annuity_factor./C ;

adder_analytical=(allowed_revenue - delta_u_analytical.*D)./D;

multiplier_analytical=(allowed_revenue./(delta_u_analytical.*D))-1;


colormap hsv;

surfc(r,D/C,multiplier-multiplier_analytical);

%------------------------------------------------------------

%-------------------------Code Ends------------------------

%------------------------------------------------------------
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