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Abstract

This research complements and combines market microstructure theory and

mechanism design to optimize the market structure of financial markets sys-

tematically. We develop an agent-based model featuring near-zero-intelligence

traders operating in a call market with a wide range of trading rules gov-

erning the determination of prices, which orders are executed as well as a

range of parameters regarding market intervention by market makers and

the presence of informed traders. The market structure which generates the

best market performance is determined by applying the search technique

Population-based Incremental Learning, guided by a number of performance

measures, including maximizing trading volume or price, minimizing bid-ask

spread or return volatility.

We investigate the credibility of our model by observing the trading be-

havior of near-zero-intelligence traders with stylized facts in real markets.

Based on computer simulations, we confirm that the model is capable to

reproduce some of the most important stylized facts found in financial mar-

kets. Thereafter, we investigate the best found market structure using both

single-objective optimization and multi-objective optimization techniques.

Our results suggest that the best-found combination of trading rules used

to enhance trading volume may not be applied to achieve other objectives,

such as reducing bid-ask spread. The results of single-objective optimiza-

tion experiments show that significantly large tick sizes appear in the best

market structures in most cases, except for the case of maximizing trading

volume. The tick size is always correlated with the selection of multi-price

rules. Though there is no particular combination of priority rule and multi-

price rule achieving the best market performance, the time priority rule and
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the closest multi-price rule are the most frequently obtained rules. The level

of market transparency and the extend of market maker intervention show

ambiguous results as their representative parameter values change in a wide

range. We also find that the results of multi-objective optimization experi-

ments are much similar to those obtained in the single-objective optimization

experiments, except for the market transparency represented by the fraction

of informed trader, which shows a clear trend in the multi-objective opti-

mization. Using the results obtained from this research we can derive recom-

mendations for exchanges and regulators on establishing the optimal market

structure; for securities issuers on choosing the best exchange for their listing;

and for investors on choosing the most suitable exchange for trading.
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1. Introduction

1.1 Research background

Financial markets, in particular stock markets, have grown significantly in

both developed and developing countries over the last decades. Rising glob-

alization has aided in their growth. A large number of companies seek ad-

ditional foreign listings rather than merely choosing the stock exchange in

their country of incorporation, see Pagano et al. (2001), Pagano et al. (2001),

Karolyi (2006). Such foreign listings were often hindered by different regula-

tory regimes, most notably accounting standards and disclosure rules. The

requirement to present all documents in the local language will in many

cases also have put significant additional costs on such a listing, easily out-

weighing any benefits. The convergence of accounting standards, disclosure

rules and acceptance of documents in English have reduced the barriers of

overseas listings considerably. Additional listings abroad have become much

more common, further accelerated by improved communications technologies

that enable companies to disclose any information simultaneously at any ex-

change.

Similarly investors are no longer restricted to the exchange in the country in

which they are located. Liberalized investment restrictions for institutional

investors, especially pension funds, and improved communication technolo-

gies in combination with reduced brokerage costs have made trading on ex-

changes abroad much more attractive. Consequently the competition has

further increased through the creation of Electronic Communications Net-

works (ECNs) which have been set up by large investment banks to trade
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among themselves at lower costs than an exchange could offer, see Benhamou

and Serval (2000), Noia (2001), Ramos (2003) and Barclay et al. (2003).

Given the development and changes, exchanges have begun to compete for

both listings by companies and for trading by investors. They reacted to

this increased competition by investing into technology and allowing more

and more electronic trading as well as electronic access to the trading floor,

see Economides (1995), Barth III et al. (2002), Weber (2006). As reviewed

by Economides (1995), since its first application in stock exchange in 1977,

electronic trading system has been widely used in Tokyo (1982), Paris (1986),

Australia (1990), Germany (1991), Israel (1991), Mexico (1993), Switzerland

(1995), and elsewhere around the globe. While these changes were able to

make trading faster and more reliable, this was not enough to attract suffi-

cient trading volume. Market microstructure theory 1, which concerns the

detailed process and outcomes of how exchange occurs in markets, suggests

that the trading rules applied by a market affect determinants of prices,

quotes, transaction costs, volume, and trading bahavior, see O’Hara (1995)

and Madhavan (2000) for an overview. Changes to the market structure such

as reduced tick sizes, and changes to the handling of limit orders aimed to

reduced the costs of trading for investors. Thus, the market structure of

an exchange becomes increasingly important in a more competitive environ-

ment.

When conducting any adjustments to their market structures, exchanges

should be guided by theoretical as well as empirical research. However, the

ability of market microstructure theory to provide insights into the optimal

market structure is limited. First of all, the sizeable literature on auction

markets can not easily be transferred to the call auction or double auction

mechanisms used in financial markets. Inspired by the auction of 3G telecom-

munications licences the literature usually assumes the existence of a single

seller and a small number of potential buyers. The buyers are furthermore

assumed not only to compete in the auctions but use the acquired good from

1 See section 2.1 for a detailed review.
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the auction in competition outside the auction. Such a scenario is very differ-

ent from the financial stock markets and is thus of limited use. In addition,

as each market structure requires a slightly different model to allow it being

analyzed analytically, comparisons between two or more market structures

are limited. Given the large number of possible market structures, any opti-

mization procedure involving different models would be unattainable. More-

over, most of the models in the current microstructure theory investigate the

impact of a single or a small number of related trading rules on specific as-

pects of market performance, ignoring hybrid systems which are much more

difficult to model. Furthermore, when using different models for different

market structures it is even more difficult to distinguish between the effect

attributable to differences in the market structures and to different behaviors

of traders. These behavioral assumptions in those models make it even more

difficult to assess the impact the changed trading rules have on the outcome,

relative to behavioral influences. Therefore, if we seek to explore the optimal

market structure, it is essential to apply a single generalized framework for

all market structures considered with a wide range of trading rules applied

and minimum influence from the traders’ behavior.

1.2 Research aim

Although lots of stock exchanges are striving to improve their market struc-

ture, not many studies investigate the mechanism design with market mi-

crostructure theory in an integrated framework. The goal of this research is

to complement and combine market microstructure theory and mechanism

design in a first attempt to optimize the market structure of financial mar-

kets systematically across a wide range of trading rules. The optimal market

structure is determined not only for a variety of performance measures but

also a range of trader and market characteristics. We aim to evaluate the

robustness of the optimal market structure to changes in the environment

as well as the relevant performance measure. From these results valuable
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insights can be gained on the optimal market structure for financial markets

whose traders have given characteristics.

Thus far only very limited attention has been paid to the optimization of

financial markets in the agent-based literature. In a series of papers Phelps

et al. (2002), Phelps et al. (2003), Phelps et al. (2005), Niu et al. (2008), and

Phelps et al. (2010), amongst others, use genetic programming to search for

optimal trading rules in markets, but allow for trading strategies by at least

partially rational traders to evolve concurrently in a co-evolutionary process.

Optimal security design in a setting with adaptive agents has been investi-

gated by Noe et al. (2003) and Noe et al. (2006). The rationality of traders

and their learning in these models is, however, markedly different from the

approach taken in this paper with its ZI traders; these contributions fur-

thermore commonly investigate only the price setting behavior rather than

a full set of trading rules that are available in real markets and are the fo-

cus of our investigation here. Therefore, to develop a generalized framework

for determining the optimal market structure of financial markets, we con-

duct a research into the evolutionary design of a call auction mechanisms by

investigating a large number of trading rules simultaneously. Optimal mar-

ket structures for different market participants are obtained by applying the

search technique Population-based Incremental Learning (PBIL). PBIL is a

recently developed evolutionary optimization algorithm in which the geno-

type of the whole population is evolved rather than individual chromosomes.

This algorithm, proposed by Baluja (1994), has been found to be simpler

and to achieve better results than the standard genetic algorithm in many

circumstances, see, e.g., Baluja (1995). We investigate a wide range of trad-

ing rules that jointly establish the market structure, including the tick size,

degree of intervention by market markets, multi-price rules, priority rules,

and market transparency, the intention is to obtain the optimal combination

of these trading rules for a wide range of market characteristics.

In order to overcome the difficulties arising from conventional models in the

market microstructure literature, we develop an agent-based model in which

traders use a very simple trading algorithm which does not assume rational
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behavior or any other optimizing rule. Such zero-intelligence (ZI) traders

have been first introduced in Gode and Sunder (1993) with the explicit aim

to investigate the importance of the trading rules for the outcomes of trad-

ing. The strategic behavior has been considered to be a dominant influence

factor for the market dynamics in previous research. However, Gode and

Sunder (1993) find that many of the major properties of double auction mar-

kets including the high allocative efficiency are primarily derived from the

constraints imposed by the market mechanism, independent of traders’ be-

havior. In Cliff (2001) such traders have also been used to determine the

optimal type of auction market. The use of appropriate automatons would

allow us to focus on the influence the market structure, i.e., the set of trading

rules, has on the outcomes.

Market participants often value different aspects of an exchange and will thus

like to use different performance measure. Given that all types of market par-

ticipants will be active in the market, all their concerns have to be taken into

account when determining the optimal market structure. We intend to ad-

dress the problem by employing a wide range of performance measures as

objective functions for the optimization, including the volatility of prices,

market liquidity and trading costs, representing the different interests of var-

ious stakeholders. We investigate not only single-objective optimization but

also multi-objective optimization, which allows us to determine the most ap-

propriate sets of rules a market should consider without facing the need to

balance the different interests at this stage. Using computer simulations of

the trading behavior, the market performance can easily be determined for

a variety of performance measures.

The results we obtain will increase our knowledge of optimal market struc-

tures in financial markets, complementing the results obtained in market

microstructure theory and mechanism design. Using the results obtained

from this research it is possible to derive recommendations for exchanges,

regulators on establishing the optimal market structure, for securities issuers

to choose the best exchange for their listing and for investors to choose the

most suitable exchange for trading. While this research project will only
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be able to address generic scenarios and derive conclusions on the optimal

market structure from them, the developed framework will allow tailoring

the circumstances to the specific needs of an exchange as well as other stake-

holders and give specific recommendations to improve the market structure.

1.3 Thesis outline

Having presented the research background and the intention of the work, the

remainder of the thesis is organized as follows:

Chapter 2 provides an literature review of the market microstructure theory

and the market simulation techniques. In section 2.1, we will give a brief

overview of the trading process in stock markets, the market forms that

exist in the financial market, and various orders types and their submission

rules. This is followed by a review of a set of trading rules that are applied

in financial markets. We then review three common financial markets in

more details, namely the dealer market, auction market, and limit order

market. In section 2.2, we discuss some models applied in the financial market

simulation, including the agent-based models, zero-intelligence models, and

zero-intelligence-plus models.

Chapter 3 will give an overview of market mechanism design. At first We will

present a review of auction theory and auction design, followed by a discus-

sion of simulation studies in mechanism design. In section 3.4 we combine

market microstructure theory and mechanism design, and discuss several

market microstructural factors which need to be considered while optimizing

the market structure.

In chapter 4, we study the evolutionary optimization techniques for both

single-objective optimization and multi-objective optimization. For single-

objective optimization, population-based incremental learning is considered,

which is an evolutionary optimization algorithm that combines the concept of
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competitive learning and genetic algorithms. Before discussing the evolution-

ary multi-objective optimization algorithms and their empirical comparison,

some basic concepts and terminology of multi-objective optimization are in-

troduced, followed by a review of two traditional approaches, which are the

weighted-sum method and the normal constraint method.

In chapter 5, we propose an agent-based model featuring near-zero-intelligence

traders operating in a call market with a wide range of trading rules govern-

ing the formation of prices at which orders are executed, as well as a range

of parameters regarding market intervention by market makers and the pres-

ence of informed traders. After determining the credibility of our models by

reproducing several return properties that are commonly found in financial

markets, we attempt to optimize the applied trading rules using population-

based incremental learning approach seeking to obtain the optimal market

structure with both single-objective function and multi-objective functions.

Finally, chapter 6 summarize the research, the contributions and limitations,

and some suggestions for future study.



2. Literature review

This chapter is divided into two sections. The first section reviews the mar-

ket microstructure theory. Section 2.2 presents some simulated studies of

financial markets using agent-based models, zero-intelligence traders, and

zero-intelligence-plus traders.

2.1 Market microstructure theory

Garman (1976) first introduced the term “market microstructure”, as the

title of a study. In the research, Garman analyzed the effects of market

structures and trading behavior on the process of price formation in the

work. Market microstructure has then become a descriptive title for the

study of the trading mechanisms used for financial securities. It studies

trading process, and structure of markets defined by various trading rules

and trading systems, e.g., which agent can trade, at what time, in what

manner. As later described by (O’Hara, 1995, p 1),

“Market microstructure is the study of the process and out-

comes of exchanging assets under explicit trading rules. While

much of economics abstracts from the mechanics of trading, mi-

crostructure theory focuses on how specific trading mechanisms

affect the price formation process. These mechanisms may involve

a specific intermediary such as a stock specialist or an order clerk

(a saitori), employ a centralized location such as an exchange or

a futures pit, or be simply an electronic bulletin board in which
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buyers and sellers indicate an interest in trading. Whatever the

specific mechanism, however, prices emerge and buyers and sellers

trade.”

In the last two decades, there has been a tremendous growth in the academic

literature on market microstructure. Most research explores the impact of a

specific trading mechanism on price behavior, or compares the market per-

formances under different circumstances. It studies the market behavior to

explain issues, such as how trading prices are determined, what properties

the prices exhibit, why they emerge, and how trading rules evolve in mar-

kets, which have important implications for mechanism design and market

regulation. The microstructure of markets can directly affect the selection

criteria of investors when choosing a market, such as liquidity, return and

risk. To attract investors, markets should be more efficient and competitive:

allowing buyers to pay less, sellers to obtain more, and providing liquidity

inexpensively. In order to effectively design or optimize a market mechanism,

we need in the first step to understand the market structure, which provides

the framework within which the market operates. Therefore, a general mar-

ket design problem has become to design a market mechanism where agents

interact and trade.

This section reviews the literature on market microstructure theory. It is not

the aim to provide a complete survey of all models and trading systems, but

to explain the basic principles. After some preliminary definitions in the first

section, we will then describe several different forms of market structures in

section 2.1.2. Section 2.1.3 shows the order submission process and various

order types, followed by a discussion of impacts of a set of trading rules

applied in financial markets. Finally, three typical markets, including dealer

market, auction market, and limit order market, are reviewed in the rest of

this part.
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2.1.1 Definitions

In economics, a market is any place allowing buyers and sellers to exchange

any goods, services and information, while a financial market is a mechanism

allowing market participants to trade financial securities, commodities and

other transferable items at very low cost.

For the market participants, O’Hara (1995) shows that there are four main

categories1. First of all, there are traders who place orders in the market. An

order is an instruction from a customer to a broker to buy or sell a certain

quantity of assets. Next, there are brokers, who do not trade for themselves,

merely transmitting orders for customers. Thirdly, there are dealers who are

ready to buy and sell for their own account. Finally, there are market makers,

or specialists, who do not only take a position in the securities, but also quote

purchasing prices or selling prices. As noted by O’Hara (1995), “Since the

market maker generally takes a position in the security..., the market maker

also has a dealer function. The extent, however, to which the market maker

acts as a dealer can vary dramatically between markets.”

Securities are fungible and negotiable instrument with financial value or

rights with a sequence of future cash flows consisting of money or other

securities. They are categorized into debt securities such as equity, bonds

and debentures, banknotes, and derivatives. Bid price is the highest price at

which a buyer is willing to pay for a particular good. It is also referred to as

the “bid”. On the other hand, the best price that a seller is willing to sell

is the ask price. The difference between the bid price and ask price is called

bid-ask spread.

2.1.2 Market forms

Before reviewing issues of trading process in different market structures, it is

important to understand what market structures encompass and the major

1 see (O’Hara, 1995, p 8)
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types of market structure, even though most realistic financial markets are

mixed market structures.

As summarized by Madhavan (2000), market architecture, or market struc-

ture, is determined or distinguished by the selected set of rules applied during

trading in respect of (1) market type: with the consideration of the degree

of continuity of the trading system, reliance on market makers and the de-

gree of automation; (2) price discovery : which measures to what extent the

transaction price is discovered by an independent price formation process or

determined by another market; (3)order forms : such as market orders, limit

orders, and stop orders; (4)protocols or trading rules: for example, choice

of tick size and priority rules employed to determine the rationing of orders

in case an imbalance between buy and sell order exists at the transaction

price, and (5)transparency : the quantity and quality of trading information

disseminated in the market. This taxonomy of market structures will help

us distinguishing various market forms.

The Walrasian tâtonnement or Walrasian auction has been a fundamental

assumption in conventional financial theory since Leon Walras introduced the

general equilibrium theory in 1874. In this mechanism, each trader deter-

mines his demand or the amount he is willing to buy or sell at a stated price

and submits orders to the Walrasian auctioneer, who aggregates traders’ de-

mand and supply and determines the clearing price. After the auctioneer

suggests a potential price for trading, traders then revise their demand to

the optimal level at the stated price. This process continues until there is

no further revision and the aggregate demand is exactly the same as the

aggregate supply. The price at which each trader submits his optimal order

is called the equilibrium price. All the submitted orders are executed in a

single transaction at the equilibrium price.

In the Walrasian framework, the process of price formation is captured by

the representation of a Walrasian auctioneer, and the trading price proceeds

from a tatonnement, i.e., a series of revisions. No trading exists outside the

equilibrium price. This auction activity is costless as the process is assumed
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to be finished in an instant of time. However, the revision of orders and

the determination of clearing prices would take a long time in real world,

especially with more traders. This would definitely impose a cost during

trading. Moreover, it would be very difficult to find a clearing price that

balances the aggregate demand and supply. Because of these limitations the

Walrasian framework does not often exist in financial markets, instead, a

wide variety of some other market structures have been formed, see Krause

(2000) for more details of various market forms.

As stated by Krause (2000), “In all market forms orders can be submitted

to the market at any time, what differs is the time and way these orders are

executed.” A market with similar concept of an Walrasian auctioneer is the

call market or batch system. In this market, all the bid and ask orders are

aggregated and transacted at once at a predetermined point of time. The

price is set by the exchange based on the bid and ask orders so most orders

can be executed and the market will clear or almost clear.

Rather than executing orders in predetermined time intervals, in continuous

markets, trades can take place at any point of time. As explained by Krause

(2000),“For every submitted order it is immediately checked whether there

exists another order on the market, such that these orders can be executed

in a bilateral trade. If no such order exists, the order is stored and executed

with the next matching order arriving on the market.”

A dealer market is a widely used market form for financial assets transactions.

In this market, securities are traded through a network of dealers who provide

liquid by buying and selling securities with traders. The market maker set

prices at which he is willing to buy and sell the assets. In the United States,

for example, bonds and foreign exchange are traded almost exclusively in

dealer markets.

Another widely applied market structure is called auction market. It is a

system in which buying and selling financial assets take place on the floor of

an exchange, such as the New York Stock Exchange. The price is determined

through the open and free interaction between traders.



2. Literature review 13

In limit order book market all bids and asks submitted in the market are

gathered and kept in an order book. A trade occurs when two orders cross,

for example, if the limit price of an incoming ask order is less than the limit

price of a bid order, the orders are immediately traded.

Amihud et al. (1990) compare the performance at the opening of a continuous

auction market and a call auction market. The call auction has been found to

be more effective with lower volatility, and efficient prices which is determined

at the opening while information is highly asymmetric. Consistent with this

result, Madhavan (1992) also observes that a call auction mechanism “can

function where a continuous market fails” when the problems of information

asymmetry is severe.

Economides (1995) propose to apply an electronic call auction mechanism

three times a day in a market: at market open, at noon, and at market

close. The call market clears a bunch of orders at predetermined points

of time, which improves the liquidity. As a result, the transaction costs for

public participants are reduced and the market efficiency is improved. Similar

research has been done by Rhee et al. (2004) and Comerton-Forde et al.

(2005), who study the impact of call mechanism at the market open and close

on the Singapore Exchange. Rhee et al. (2004) argue that price discovery

process is improved, and market manipulation is decreased at the market

close with the introduction of call market. Comerton-Forde et al. (2005) find

that call auctions significantly increase the trade volume, and simultaneously

reduce the incidence of closing price manipulation. Pagano and Schwartz

(2003) report that the use of call auction mechanism at the market close

on the Paris Bourse improves price discovery and reduces execution costs

significantly.

2.1.3 Order submission and order type

An order is an instruction from traders to brokers to buy or sell in a market.

In markets, orders are not traded directly between investors. They are first
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submitted to a broker, who then transmits the orders to the market. When

the order is executed, the broker informs the investor about the fulfillment

and the transaction price of the order and settles the accounts of the cus-

tomer. In a dynamic market, the price paid or received may not always be

the last quoted price before the order was entered. Once the market order is

placed, the investor has no control over the price at which the transaction is

executed.

The order submission process might be different in various market struc-

tures. For example, in batch systems the broker transmits the order to a

match maker, who keeps the order book and matches the orders, instead of

transmitting them to an exchange. The order size is not fixed in markets with

the exception in board trading. A market order for a large number of shares

is normally divided into several small orders by the broker and executed over

a longer period, resulting in different prices for parts of the order.

There are several forms of orders. The simplest type is market order, which

is an order to buy or sell immediately at the current market price. The

advantage of a market order is that it is always guaranteed to be executed

as long as there are investors willing to trade. Another frequently observed

order type is limit order. It is an order to buy or sell a security at no

more or no less than a specific price. A buy limit order is executed at

the limit price or lower; while a sell limit order is executed at the limit

price or higher. It avoids buying or selling securities at a too high or low

price. Comparatively, it gives investors some control over the price at which

the transaction is taken. However, the transaction of limit orders is not

guaranteed as market orders. The price may surpass the limit before the

order can be executed. Furthermore, in some markets transactions between

market orders have higher priority than transactions between a market order

and a limit order. Because of the complexity, it may take quite a long time to

be settled. Apart from the market order and limit order, there are some other

rarely applied types of orders, such as the stop loss order, market-if-touched

order, one cancels other order, and tick sensitive order.
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2.1.4 Trading rules

Market microstructure theory as used in conventional finance suggests that

the trading rules applied by a market affect the market structure and market

performance, in particular the prices at which trades occur. This influence

on prices should also be visible in the statistical properties of returns such

as their distribution and autocorrelations. Intensive debate on how trading

systems should be designed and the impact of different design features has

been sparked. This section provides an overview of some important design

features, including tick size, priority rules, multi-price rules, the degree of

transparency and the intervention of a market maker.

2.1.4.1 Tick size

The tick size is the minimum differences between prices at which orders can

be submitted, usually determined by the exchange where the order placed.

On the New York Stock Exchange (NYSE), the tick size was 1/8 dollar

prior June 1997. Afterwards it was reduced to 1/16 in 1997 and further

dropped to one cent in 2001 in US equities markets. In dealer markets, a

standard tick size does not always exist. NASDAQ, as an example, does not

have a market-wide standard tick size. In futures markets, each contract

has a prescribed tick size that relies on the future contract value and its

variability. For instance, the S&P 500 future contract has a tick size of 25

dollar per contract or 0.10 index points.

The tick size has several impacts during trading. First of all, as it represents

the cost of getting inside other competitors’ quote, the tick size affects the

motivation of submitting limit orders.2 For example, if the tick size is 1/8

dollar or 12.5 cents, and the standing bid is 10 dollar, a trader must place

an order with the price 10.125 to compete and move in front of the standing

bid. If the tick size is one cent, the trader must place an order with the

2 First noted by Harris (1991).
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price of 10.01 to move in front of the standing bid. Since when the tick size

decreases, it becomes easier to be ahead of another limit order, fewer orders

are needed, which could have adverse impacts on liquidity. Therefore, the

decreased tick size reduces the depth of the market, measuring the size of

the best limit order, see Ricker (1999) and Huang and Stoll (1999). In this

case, traders placing small orders benefit from the small tick size while large

orders are traded at less favorable prices.

Some other papers, e.g., Harris (1994), Allaudeen and Eric (1998), and Chan

and yang Hwang (1998) study the impact of tick size on trading volume.

Harris (1994) find that the trading volume would be enhanced (by 34%)

with a decreased tick size (to one-sixteenth for NYSE stocks). Allaudeen

and Eric (1998) suggests that trading volume is more likely to increase with

a reduced tick size if the stock is actively traded. Besides, research, such as

Harris (1990a), Ronen and Weaver (1998), and Bessembinder (2000) confirms

that observed volatility decreases with a reduction in tick size.

In addition, the tick size has an impact on the spreads. If the tick size is 12.5

cents, the minimum spread between quotes is 12.5 cents. This spread may

surpass the equilibrium spread and cost more to pay. Harris (1994) and Ball

and Chordia (2001) investigate true spreads and price behavior with artificial

price increments imposed by the minimum price variation. As reported by

empirical investigation of NASD (1997), Ricker (1999), Goldstein and Kava-

jecz (2000), and Jones and Lipson (2001), the spread declined dramatically

by about 25% with the reduction of tick size from 1/8 to 1/16 dollar.

Tick size is an important variable of choice for mechanism designers. It ex-

plains why share price levels differ substantially across markets or countries.

It also affects the trading costs since it sets a lower limit on the minimum

size of the bid-ask spread. Angel (1997) investigates optimal relative tick

sizes and demonstrates that they are a function of firm size, visibility of the

firm, and its idiosyncratic risk. He argues that firms may split their stock

to move their share prices into the range where the mandated tick size is

optimal relative to the share price, which implies that firms would have an
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opportunity to choose their own tick size. In addition, he mentions that

“A wider tick size enhances liquidity by reducing bargaining and processing

costs and by providing more incentives for limit orders and market makers to

provide liquidity ...”, however, it “also increases the minimum quoted bid-ask

spread.”

Tick size in many stock markets has been lowered3. A large number of

empirical papers examine the influence of reduced tick sizes. Ahn et al.

(1996) and Bacidore (1997) study the reduction of tick size on the Toronto

Stock Exchange. They argue that a smaller tick size leads to narrow spreads

together with a decrease in quotation size. Consistent with this result, Lau

and McInish (1995) observe that a reduction of tick size from $0.5 to $0.1 for

shares at $25 or more on the Singapore Exchange lowers the bid-ask spread.

Ke et al. (2004) examine the adverse scenario where tick size rises from $0.1

to $0.5 for shares above $50 on Taiwan Stock Exchange. The result shows

that both spreads and volatility increase. Nevertheless, it is also found that

if tick sizes are too narrow market quality may be harmed, see Harris (1994)

and Demarchi and Foucault (2000). Harris (1996) argue that with a large

tick size limit order traders are protected against the free option problem and

traders are induced to post more orders with larger sizes. Similarly, Cordella

and Foucault (1999) find that more rapidly competitive orders are placed

with a larger tick size. Huang and Stoll (2001) indicate that the tick size

is interconnected with some other features like market depth and spreads

and together reveal the underling market design. They also suggest that in

order to provide more liquidity in auction markets, it is necessary to have

a minimum tick size, otherwise a limit order could easily step ahead of the

dealer’s quote or another limit order. For other related papers, see Darley

et al. (2000), Chiarella and Iori (2002), and Yeh (2003).

3 For example, the AMEX in 1992, the Singapore Exchange in 1994, the Toronto Stock
Exchange in 1995, and NYSE in 1997
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2.1.4.2 Priority rules

Another important design feature of trading systems is the enforcement of

priority rules, which determine the execution sequence of orders in the mar-

ket. Assume a trader wants to purchase 100 shares of stock and many sellers

are willing to sell in the market. The problem is which seller should get to

trade with the buy orders. In this case markets use a variety of priority rules

to match submitted bids and offers, see Domowitz (1993) and Weaver (2006)

for an overview of the different priority rules found in several markets.

On all major world markets, such as London Stock Exchange (LSE), the

NYSE and Euronext, price priority is enforced. With the price priority,

buyers who are willing to pay the highest price will be the first to buy and

sellers willing to sell at the lowest price will be the first to sell. However, it

is often found that more than one buyer is willing to buy at the same price.

We then distinguish between the unexecuted orders with secondary priority

rules.

The secondary trading priority rule 4 defines the sequence to be followed for

orders with the same price. The time priority rule, which represents first-

come, first-served, is the most commonly used rule. It ensures that the order

which is submitted earlier at a given price is executed first. Many exchange

markets, including Paris Bourse, Tokyo Stock Exchange, and the American

Stock exchange, apply some variation of this rule.

Another frequently used rule is size priority, which grants priority to orders

with the largest size. It has the advantage of promoting traders to place

larger orders. Alternatively, the order which matches the incoming order in

size could to executed with priority. A variation of this rule is applied on the

New York Stock Exchange and Toronto Stock Exchange (prior to 1996).

Pro rata priority is also a common practice on many financial markets such

as the Stock Exchange of Hong Kong and the old Toronto Stock Exchange

4 See (Schwartz, 1988, p 18)
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with floor-based trading system. It allocates equal shares to each order on

the larger side if there is an imbalance in the orders at a given price. This

rule could also be used in batch systems.

Another rationing rule is random priority which randomly selecting orders

at a certain price. Each trader willing to trade at that price has the same

probability of filling the order. This is similar to the “open outcry” method

in floor-based system such as the Chicago Board of Trade.

There are some other rules that are not applied very often. For example,

class priority rule selects orders based on the classes of traders, and exposure

priority rule gives priority to orders that are revealed to other market makers.

It has been found that the various priority rules applied have different im-

pact on trading costs, price and liquidity. Harris (1990b) and Angel (1997)

indicate that the choice of secondary priority rules is vital due to the im-

pact on market efficiency and traders’ motivation to provide liquidity. Harris

(1990b) argues that secondary time priority encourages price competition

among traders while secondary size priority discourages traders from provid-

ing liquidity. He argues that price should be the dominant priority, followed

by orders displaying broker identity and size, then orders based on their

arrival time. In line with Harris (1990b), Demarchi and Foucault (2000)

suggest to adopt price then time priority to support price competition, since

traders who submit late orders must offer better prices than existing quotes

to enhance the execution probability. By using a simulated queuing model,

Cohen et al. (1985) find that time priority leads to more price competition,

and bid-ask spreads in markets that employ time priority are smaller than

those that do not enforce time priority. With a theoretical model of dealer

competition, Cordella and Foucault (1996) find that spreads is narrower in

markets in which price/time priority rule is enforced than those under a

random selection rule.

Angel and Weaver (1998) and Panchapagesan (1997) study the differences of

market quality and trader behavior between markets under time priority and

under pro-rata priority rule. Both papers provide evidence that limit order
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traders compete more on prices if time priority rule is employed. In addition,

if priority is based on size instead of time, limit order traders would indulge in

gaming strategies such as submitting larger orders in an attempt to increase

the probability of execution. Panchapagesan (1997) further notices that lack

of price competition under sharing priority rule leads to wider spreads than

under time priority rule.

2.1.4.3 Multi-price rules

In some markets, the transaction price is determined where the demand and

supply curves intersect, i.e., the price at the maximal trading volume is chosen

as the transaction price. If there are multiple prices at which the trading

volume shows the same maximal value, multi-price rules will be employed

to determine which of the prices will be chosen. It could be either the price

closest to the previous price, the price furthest from the previous price, the

highest price, the lowest price, the price with the highest order volume, the

price with minimum order imbalance (the absolute difference between the

aggregate order size of buy and sell orders at the transaction price), the

price with maximum order imbalance or a randomly selected price. Each

market has its own multi-price rule. However, little attention has been paid

to the influence of different multi-price rules on the trading performance.

In the real world trading markets, for example, Frankfurter Wertpapierbörse

(FWB) enforces the multi-price rule of choosing the price which allows for the

greatest transaction volume (principle of maximum execution)5. Similarly,

Shanghai Stock Exchange (SSE) uses the price that minimize the unexecuted

volume as the execution price. If there are multiple prices that minimizes the

unexecuted volume, the mean price is calculated and applied as the execution

price.

5 See http : //deutsche−boerse.com/dbag/dispatch/en/kir/gdb navigation/info center
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2.1.4.4 Transparency

A large number of informational issues regarding market microstructure con-

cern information and disclosure. Market transparency, as defined by O’Hara

(1995), is “the ability of market participants to observe the information in the

trading process.” In this context, information refers to knowledge about the

prices, the size and direction of orders, the order form, and the identities of

market participants. Some developed automated trading markets display the

entire contents of the limit order book, which are totally transparent. Other

markets, on the other hand, permit lower degree of transparency. They dis-

play only quotations with the highest bid or lowest offer. In the real-world

markets, for example, the ECNs disclose information of the whole book, while

the NYSE only discloses information of orders at the top of the book, i.e.,

the best bid and ask.

Transparency in the markets can be divided into two discrete components:

pre-trade and post-trade transparency. Pre-trade transparency refers to the

information available to market participants ahead of trading, indicating the

price and size of prospective trading interest, such as bid and ask quotations,

depths, and resting limits orders, both at the best quotations and those

away from them, as well as other trade related information such as the order

imbalances. Post-trade transparency refers to the public dissemination of

information on past transactions, containing the execution time, trade price,

volume and probably the identifications of traders.

In a transparent market, traders are able to have access to information on

the order book. This could reduce the magnitude of adverse-selection prob-

lems, hence transparency is expected to increase profit for traders. A large

academic literature has studied the importance and the optimal amount of

information disclosure before trading. Biais (1993) argues that quotation

transparency enhances market efficiency and liquidity. Lyons (1994) shows

that little disclosure in foreign exchange markets causes a “hot potato” ef-

fect, which generate additional volatility. Pagano and Roell (1996) provide

a contrast of several different types of trading systems, and indicate that
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uninformed investors prefer transparent markets because of the higher liq-

uidity and lower trading costs. Flood et al. (1999) discover that the pre-trade

transparency can narrow the spreads. Boehmer et al. (2005) examine the in-

troduction of NYSE OpenBook, which make the Specialist’s limit order book

public to all traders. Similar findings of increased liquidity and returns, and

reduced execution costs have been obtained in a more transparent market. In

addition, increasing transparency leads to more aggressive limit order sub-

mission and enhancement of market depth. And, Hendershott and Jones

(2005) notice that a decrease in transparency increases trading costs and ex-

acerbates price discovery. As demonstrated by Goldstein et al. (2007), with

increased transparency, “Measures of trading activity, such as daily trading

volume and number of transactions per day, show no relative increase, indi-

cating that increased transparency does not lead to greater trading interest”.

In addition, Aitken et al. (2001) confirm that “the enhancement in pre-trade

transparency, through tightening the undisclosed order regulation in October

1994, resulted in a significant decline in trading volume.”

However, one can argue that transparency can make it difficult to supply

liquidity to large traders, who may be reluctant to submit limit orders, since

the disclosure may convey information which makes the price moves against

the traders’ position. Madhavan (1996) argues that greater transparency

raises price volatility, and reduces liquidity, which harms the market quality.

However, in a sufficiently large and liquid market, transparency has been

found to decrease volatility, increase market liquidity, and lead to more stable

prices, since traders in a very liquid market may not change their strategies

significantly based on order book disclosure. Porter and Weaver (1998b)

study the impact of a higher degree of transparency on the Toronto Stock

Exchange with the transmission of the best quotes and associated depth as

well as quotes for up to four levels away from the inside market in both

directions. They have found that both effective spreads and the percentage

bid and ask spread increase with the introduction of the system, i.e., pre-

trade transparency decreases liquidity. Furthermore, Madhavan et al. (2005)

report that increased transparency by providing order book disclosure on



2. Literature review 23

the Toronto Stock Exchange in 1990 induces higher trading costs and lower

liquidity.

Other studies such as Chowdhry and Nanda (1991), Baruch (1997), Bloom-

field and OHara (1999) and Flood et al. (1999) reach mixed conclusions

regarding the effects of transparency. For instance, Bloomfield and OHara

(1999) demonstrate that even though greater transparency leads to an in-

crease in the informational efficiency of trade prices, it enlarges spreads at

the same time.

Another issue of pre-trade transparency on whether to display brokers’ iden-

tity is still on debate. The degree of anonymity is critical because it can

influence the level of information dissemination to which informed traders

benefit from their informational advantages, and thus affect the adverse se-

lection costs. Moreover, the level of anonymity have effects on both price

formation and liquidity in trading systems.

Some theoretical papers tend to argue that more informed trading will be

induced in anonymous trading mechanisms, see Roell (1990), Fishman and

Longstaff (1992), and Forster and George (1992). Harris (1997) notices that

anonymity facilitates the management of order exposure risk by concealing

traders’ intentions. In particular, large anonymous orders are often con-

sidered to be placed by informed traders who prefer not to be identified

(Harris (1996)). This is empirically supported by Grammig et al. (2001),

Heidle and Huang (2002) and Barclay et al. (2003), who study investors’

decision of whether to select anonymous or non-anonymous trading systems.

In contrast, some academic literature on market transparency shows that un-

informed traders can benefit from a highly transparent market, yet at a cost

to informed traders. Forster and George (1992) show that higher pre-trade

transparency lowers transaction costs to investors who can identify liquidity-

motivated orders. Theissen (2003) suggests that broker identification should

be public, as adverse selection risk is higher in an anonymous market. That

is, uninformed traders are likely to suffer from adverse selection risk in an

anonymous market due to the lack of information of the identity of the party
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on the other side of the trade, which in turn may deter uninformed liquid-

ity. On the other hand, Foucault et al. (2003) examine the influence of a

shift to pre-trade anonymity on Euronext Paris. They find that the quoted

spreads and price informativeness significantly decline after the transforma-

tion. Similarly, Comerton-Forde and Tang (2009) investigate the impacts

of the removal of broker identifiers from the central limit order book of the

Australian Stock Exchange. They indicate that anonymity leads to smaller

spreads, higher order book depth, and lower order aggressiveness. Larger and

more actives shares tend to benefit more than small shares from anonymity.

The similar improvements in liquidity, quoted depth, and spreads after the

removal of broker mnemonics have also been found on the Sydney Futures

Exchange by Frino et al. (2008).

Apart from these, several papers, e.g., Naik et al. (1994), Gemmill (1996),

Board and Sutcliffe (1995), and Saporta et al. (1999) investigate the im-

pact of post-trade transparency on stock exchanges. Some resent papers,

see Bessembinder et al. (2006), Harris and Piwowar (2006) and Edwards

et al. (2007) explore the effect of post-trade transparency on bond markets.

Gemmill (1996) studies the impact of delayed reporting of block trades by

analyzing three different publication regimes on the London Stock Exchange.

Surprisingly, he finds that delayed reporting has little effect on block spreads,

speed of adjustment, volatility and even liquidity. Differing from the theo-

retical concept, market makers do not benefit from the delayed reporting

which they request vehemently for. Waisburd (2003) studies the effects of

post-trade anonymity in Paris Bourse. The result shows that liquidity in the

post-trade anonymous regime is much lower than the other one.

So far, the impact of market transparency is still rather vague. As discussed

above, the effects of pre-trade and post-trade transparency are different un-

der various conditions. Thus, the problem of deciding on the optimal level

of transparency is difficult to be solved considering the great differences in

market mechanisms (see O’Hara (2007)).
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2.1.4.5 Intervention of market maker

Except for the three design features above, a market maker would also in-

tervene or influence the prices such that he is prepared to trade a fraction of

the order imbalance at his own transaction price by submitting an offsetting

order. Market makers, who are willing to buy or sell shares on demand, are

essential in financial markets. They are not active to search for a matched

order, but wait for orders that need to be traded. They are accountable

to supply liquidity and support continuous trading by overcoming the asyn-

chronous timing of posted orders.

Stoll (1978), Amihud and Mendelson (1980), Ho and Stoll (1981), and Ho

and Stoll (1983) among others first analyze the pricing behavior of market

makers. They find a linear relationship between the price set by a market

maker and his/her current inventory position in pricing models of market-

making, i.e., the price quoted by a market maker is determined by his/her

inventory level. The general idea is that during the trade, the inventory

positions diverge and force the market maker to modify the price level. As

denoted by Biais et al. (2005), “Market makers with very long positions are

reluctant to add additional inventory and relatively inclined towards selling.

Consequently, their ask and bid prices will be relatively low. Similarly, mar-

ket makers with very short inventory positions will tend to post relatively

higher quotes and will tend to buy. Thus, market makers’ inventories will ex-

hibit mean reversion. Because of the central role of inventory considerations

in this analysis, it is often referred to as the inventory paradigm.” Therefore,

increases in inventory result in drop of prices, while decreases in inventory

lead to increase of prices.

A number of papers applied agent-based models6 to study the behavior of

market makers. Gu (1995) adopts the model used in Day and Huang (1990)

to analyze the market maker’s price adjustment rules and the profitability

6 Agent-based modeling is a computational modeling for simulating actions and inter-
actions of auonomous decision-making entities called agents. See section 2.2.2 for
detailed explanation.
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under different conditions. Gu argues that “to make a viable market the

specialist has to chum the market, and to behave optimally he may have

to sacrifice his affirmative obligation to maintain ‘a fair and orderly mar-

ket’”. Westerhoff (2003) investigates the influence of inventory position, and

argues that market maker adjust the price depending on the current inven-

tory position and excess demand or supply. Madhavan and Panchapagesan

(2000) discuss that a call auction with a dealer is more efficient than an

automated call auction without a dealer. Rust and Hall (2003) find that

a market trader’s expected profit will be increased with participation of a

market maker.

Some empirical papers discuss the role of market makers on a trading floor.

For example, Madhavan and Smidt (1993), Madhavan and Sofianos (1998),

Kavejecz (1999), and Madhavan and Panchapagesan (2000) explore the crit-

ical role of NYSE specialist. Academic literature on mechanism design also

discuss the benefits and importance of market makers. For instance, Brusco

and Jackson (1999) study the optimal design of trading rules in a two-period

market. They conclude that market makers, who can economize on fixed

trading costs across periods, play central roles in the optimal mechanisms.

To obtain Pareto efficiency, multiple market makers are required, and the

number of which is depending on factors, such as the level of risk aversion,

the asymmetric information, and the discount factor.

2.1.5 Dealer market

As reviewed in the section of alternative market mechanisms, a market maker

or dealer sets and electronically posts prices at which he is willing to buy or

sell the security, and wait for an offsetting order to arrive and trade immedi-

ately with an investor demanding it. However, there are risks of not knowing

when and at which price the market maker can clear his position. To cover

the costs imposed by the risks, the market maker quotes different bid and

ask prices for the security. As investors do not bear the risks, they are willing

to pay for the immediacy service by trading at a less favorable price as long
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as the costs from waiting an offsetting order at an unknown price equals the

costs imposed by the risk taken by the market maker.7 Therefore, a market

maker is compensated by charging a fee through the difference between the

ask and bid price, i.e., the spread for the services provided for enabling in-

vestors to trade immediately by forming the counterpart. The price-setting

behavior among multiple competing market makers is one of the prominent

features of dealer markets. The interaction of these market makers’ quotes

provide liquidity to investors and price formation to markets.

Due to the uncertainty that a market maker faces, concerning the future

security value and order flow, the bid and ask prices setting becomes a com-

plicated decision problem. This problem is analyzed in a multi-period frame-

work with the knowledge of a market maker’s risk preferences to determine

how each uncertainty of transaction and inventory value affect the trading

prices. As noted by O’Hara and Oldfield (1986), the market maker’s bid and

ask quotes spread is decomposed into three parts, which are a portion for

limit orders that have already submitted for execution at a specific price;

a risk-neutral adjustment for the submitted market orders for execution at

the current price; and a risk adjustment for inventory value and order flow

uncertainty.

Similarly, Stoll (1978) demonstrate that the cost of services provided by mar-

ket makers is the sum of three elementary costs: order-handling costs, i.e.,

opportunity cost of holding an order and the price uncertainty; inventory

costs, i.e., costs of recording, arranging and settling a transaction; and infor-

mation costs, i.e., costs incurred if investors trade with superior information.

2.1.5.1 Order-handling cost

To simplify the analysis of Stoll (1978), Biais et al. (2005) view it through

a simple synthetic model, in line with the work of Stoll (1978). Suppose

there are N liquidity suppliers in the market for a risky security. Let χ be

7 Waiting cost is first introduced by (Demsetz, 1968, p 37)



2. Literature review 28

the expectation of the fundamental value (ν), Ui be the utility function, Ii

be the information set, ςi be the cash endowment, and γi be the risky asset

endowment of liquidity provider i.

Biais et al. (2005) first study an instance in which market order M is sub-

mitted and then equilibrium achieved in a uniform-price auction. In this

auction, liquidity trader i optimize his limit order schedule by determining

the size he buys or sells si(ρ) at each possible price ρ:

(2.1) ∀ρ : Maxsi(ρ)EUi(ςi + γiν + (ν − ρ)si(ρ)|Ii).

Based on the market-clearing principle, the equilibrium price is then estab-

lished as:

(2.2) M +
∑

i=1,....,N

si(ρ) = 0.

In an alternative case, limit orders are placed first, and then matched with

a market order. This case is considered to study the order-handling costs.

Assume there are N risk-neutral market makers with the same cost (c/2)s2

to make a deal of s shares, which reveals order-handling costs. Assume an

uninformed trader has posted a market order to buy M shares. With the

uniform-price auction model 2.1and 2.2, each market maker would sell M/N

shares at the following ask price:

(2.3) α = χ+ (
c

N
)M,

which measure the marginal cost. Likewise, if the liquidity supplier intends

to sell, the bid price is then set as:

(2.4) β = χ− (
c

N
)M.
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The bid-ask spread is, therefore, 2( c
N

)M . Biais et al. (2005) also mention

that there would be a negative serial autocorrelation in returns with two

assumptions that market orders are independent and identically distributed,

and the fundamental value follows a random walk. This is caused by the

bouncing of execution prices between the bid and ask quotes.

2.1.5.2 Inventory-based models

Since market makers make quotes at which they are willing to trade, they

have direct influences on transaction prices. Most of the literature investi-

gates the behavior of market makers in two major types of models, which

are inventory-based models and information-based models. Inventory-based

models assume that a market maker is risk-averse. All investors in the mod-

els have the same information and an agreement on the fundamental value

implied by this information. On the other hand, information-based mod-

els assume that a market maker is risk-neutral. Investors in these models

are divided into two groups, namely informed and uninformed investors. In

both models traders are motivated by exploiting high liquidity. In addition,

traders in information-based models are also motivated to exploit informa-

tional advantages. We will fist review inventory-based models, followed by

the information-based models in the next part.

As first studied by Stoll (1978), the market makers are assumed to be risk

averse in inventory-based models. Biais et al. (2005) review the study by

simply focusing on CARA utility function and random variables from normal

distribution. They suppose that the market makers’ constant absolute risk

aversion index is δ, P is the average inventory position of the market makers

(P =
∑

i=1NPi/N), and σ2 is the variance of the final cash flow of the

security. Again if the liquidity supplier places a market order to purchase M

shares, the competitive market makers would sell the shares at the following

ask price set as the marginal valuation by using the uniform-price auction
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model (2.1 and 2.2):

(2.5) α = [χ− δσ2P ] + (
c+ δσ2

N
)M.

Similarly, the bid price is set as:

(2.6) β = [χ− δσ2P ]− (
c+ δσ2

N
)M.

As indicated by Biais et al. (2005), the midpoint of the bid-ask spread is

measured by subtracting a risk premium received by the market makers to

compensate for taking the risk of holding the initial inventory (δσ2P ) from

the fundamental value of the security (χ). The authors further explain that

if a market maker takes a considerable long position, he will tend to reduce

inventory instead of purchasing additional shares. As a result, the bid and

ask prices will be comparatively low. Moreover, a market maker with a

considerable short position will place buy orders with higher prices to build

up the inventory level. Therefore, inventory level of market makers is more

likely to exhibit mean reversion.

Amihud and Mendelson (1982) investigate the behavior of asset prices in a

dealership market with an inventory-based models. In this model, trading

prices are taking from the execution of randomly submitted orders at the

market maker’s buy or sell prices, which are quoted to move the level of

inventory toward a preferred position. According to the research, bid and

ask prices should be a decreasing function of an market maker’s inventory

position. They illustrate it with an example. If a market maker is at a short

position, he would induce public sell orders and discourage buy orders to

replenish his inventory by way of increasing bid price to increase the supply

function,and by increase the ask to reducing the demand function . It is

also found that the bid and ask prices quoted at the “preferred” inventory

position 8 is the closest to the equilibrium price at which aggregated supply

matches aggregated demand. In addition, the bid and ask spread is narrowed

8 See Logue (1975)
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to the least value at that position. The spread becomes increasing while the

inventory position of market maker diverges from the preferred level. Overall,

the quoted prices are found to be stabilized and changed moderately; and the

market is efficient since investors cannot obtain any profit without superior

information.

Roger and Eeckhoudt (1999) analyze the properties of bid and ask prices

quoted by a monopolistic market maker without parametric assumptions

about the utility function of the market maker or the probability distribu-

tion of the risky asset returns. Results show that the bid or ask price exhibits

a concave or convex function of the quantity traded relatively. They prove

that both prices can be higher or lower than the fundamental value of the se-

curity. Although there is not a clear shape for the bid-ask spread, the spread

narrows as the inventory position is high or the market maker has decreasing

absolute risk aversion, except for the situation while several market makers

are competing.

In line with the inventory control literature, Manaster and Mann (1996)

find that market makers do manage the inventory levels. They investigate a

unique data-set describing locals trading on the Chicago Mercantile Exchange

(CME). Surprisingly, the empirical evidence shows that the inventory-based

models, which suggest that the market makers’ quotes and the inventory

level are negatively correlated, cannot provide an accurate description of

behaviors of market makers, since the evidence shows a strong and consistent

positive correlations between reservation prices and inventory, i.e., market

makers with long inventory positions are tend to increase their prices and

sell aggressively.

Manaster and Mann (1996) identify two major weaknesses with their data-

set which could change their results significantly. First, the CME’s mutual

offset system with the Singapore International Monetary Exchange (SIMEX)

allows CME traders to unwind inventory positions on SIMEX overnight. Yet,

the SIMEX trades are not included in their data-set. Second, it is impossi-

ble to recognize cases that locals trade on their own account through other



2. Literature review 32

members. These are significant weaknesses given that locals normally trade

through other members when they intend to modify the inventory position

while attempting to conceal their activities from other investors. Thereofre,

Frino et al. (1999) re-examine the predictions of inventory-based models with

a new improved data-set provided by the Sydney Futures Exchange. In ac-

cordance with Manaster and Mann (1996), the authors also provide evidence

that the predictions of inventory-based models are consistently contradicted

by empirical results.

2.1.5.3 Information-based models

The inventory approach reviewed in the previous section provides some in-

sights into the pricing behavior, among them, one important point is that

the bid-ask spread is determined by transaction costs. Different from the in-

ventory models, a new approach developed which models the market prices

without relying on transaction costs, but on the influence of information.

As argued by Glosten and Milgrom (1985), Kyle (1985), Easly and OHara

(1987), even if no other costs incurred, the bid and ask spread can still arise

due to information-based trading.

The origin of the information-based models is credited to a short but insight-

ful paper by Bagehot (1971) with his distinction between market gains and

trading gains. A market gain is arising from price changes and any dividend

obtained from an asset during a given time period. Traders can either realize

the market gain by holding the asset or trade with each other. The gain from

the trading activity is called the trading gain. The concept of market gain is

that most investors get profit when market price goes up, if the prices goes

down, most investors face a loss. As prices move up and down over time,

investors are expected to receive a market rate of return. The concept of

trading gains, however, implies that the normal traders actually make a loss

comparing with the market return as a result of the information costs.

According to Bagehot (1971), trading is a game of “zero-sum”, in which one
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trader to win, another must lose. Therefore, traders with special information

tend to make a superior profit consistently at the expense of liquidity provider

and other traders. Liquidity provider, or market maker, is assumed to face

two types of traders in the market: informed traders and uninformed traders.

Informed trader knows or better estimates the fundamental value of assets

with some private information, uninformed or liquidity traders, on the other

hand, make transactions with any private information.

Since informed traders know the “true” value of an asset, they will sell only

if the market price is higher than its value and buy when it is lower. The

market maker, as a result, will always suffer a loss from trading with these

traders. In order to maintain the function of a market, the market maker’s

loss should be offset by making a gain from trading with uninformed traders.

As the difficulty of distinguishing between informed and uninformed traders

in an anonymous market, the market maker would charge a higher bid-ask

spread to everyone for breaking even. The trading cost is the price that

uninformed traders pay to compensate the losses of the market maker, which

is also called adverse selection costs, i.e., the losses of uninformed traders to

informed traders.

As the first to formalize the concept from Bagehot (1971), Copeland and

Galai (1983) develops a simple one-period model of market maker’s price

setting in an asymmetric information system to study the information ef-

fects on the bid-ask spread. In this framework, a single risk neutral market

maker trades with a population of investors. The stock price is a random

variable, denoted P , taken from a known distribution F with the density

functionf(P ). Informed traders are assumed to know the actual value of the

stock. Uninformed traders, who transact for exogenous reasons, know only

the price process not the true value. In this model, the probability of any

given trade with informed trader is πI and (1− πI) for uninformed trader.

Copeland and Galai (1983) also assume that the probability of an uninformed

trader to buy is πB, the probability to sell is πS, and the probability of no

trading is πN . The informed trader make the transaction which maximize the



2. Literature review 34

profit. The trade sizes are all fixed. And, the price-elastic demand functions

of traders are also considered in the price setting process. When the dealer

trades with informed, the expected loss for the market maker is

(2.7)

∫ ∞
PA

(P − PA)f(P )dP +

∫ PB

0

(PB − P )f(P )dP,

in which PA and PB are the dealer’s ask and bid prices. On the other hand,

if the trader is uninformed, the market maker’s expected profit is measured

as

(2.8) πB(PA − P ) + πS(P − PB) + πN(0).

The dealer does not know which type of investor he is trading with. There-

fore, he weights his expected loss and gain by the probability of πI and (1−πI)
respectively. Therefore, −πI times 2.7 plus (1 − πI) times 2.8 provides the

dealer’s objective function. By maximizing the objective function, the opti-

mal bid and ask prices (which are both positive) can then be derived. The

results show that the size of bid-ask spread is influenced by various market

parameters. It increases with higher price level and greater return variance;

it is also inversely related to market activity, depth, and continuity, and

finally it is negatively correlated with the degree of competition. Thus, a

monopolistic dealer will be more likely to establish a wider spread than will

perfectly competitive dealers.

2.1.6 Auction market

Different from dealer markets where traders buy assets at a dealer’s ask price

and sell at a dealer’s bid price, in an auction market, investors trade directly

with each other without relying on the dealer. In this market, buyers or sellers

submit competitive bids or offers at the same time. The trading prices, which

aggregated over a given period of time, represent the highest bid price that

a buyer is willing to pay and the lowest ask price which a seller is willing
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to sell at. Similar to the previous part, models applied in this market also

examine the informational content of prices. Most models of the auction

market in the market microstructure literature are Kyle type models which

follow the study of Kyle (1985), Kyle (1986a), and Kyle (1986b). Due to the

outstanding position, the work of Kyle (1985) is reviewed in this section.

A single asset, as an assumption of the particular model, is exchanged and

traded among three groups of traders, including insiders, or risk neutral

informed traders, who can access to a private information on the liquidation

value of the asset before trading, noise traders who have no information and

trade randomly based on exogenous needs for liquidity, and market makers

who set prices with information they have on aggregate net order flow or

order imbalance.

At each trading round, insiders and noise traders simultaneously submit mar-

ket orders with the quantities they will trade to a market maker. While an

insider’s choice is made with information on liquidation value of the asset

as well as the past prices and quantities he traded, noise trader places or-

ders with random quantities independently from any information or previous

trading record. After submitting orders, the market maker set a single trad-

ing price which is assumed to equal the expected asset value given the market

maker’s information consisting of the present and previous aggregate quanti-

ties traded by both insiders and noise traders. And, the aggregate quantities

cannot be separated into individual quantities traded by insiders or noise

traders due to the trading anonymous. Thus, the expected profit for a mar-

ket maker is zero. The risk neutral insider, as an intertemporal monopolist, is

assumed to maximize the objective function of expected profits by exploiting

the monopoly power over time.

By applying a simple linear structure, Kyle (1985) investigates a unique “se-

quential auction equilibrium” that prices and quantities follow linear func-

tions of trading observations. As the time interval between trading rounds

reduces to zero, the author indicates that the discrete sequential equilibrium

converges to a limit called continuous auction equilibrium. In both models,
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the superior information of insiders is incorporated into market prices slowly

at a constant rate. In addition, all of the private information in a contin-

uous auction equilibrium will be reflected from the prices before the end of

trading.

Kyle (1985) also defines the principal elements of a liquid market to be tight-

ness : the narrowness of the bid-ask spreads; depth: the influence of execution

price deterioration on the potential market order volume grows, and resilient :

the speed of prices recover from a random shock.

Based on the of the Kyle models, several extensions have been made. For

example, Bondarenko (2001) introduces a model with more than one market

maker who quote prices to maximize their own profits with some strategies.

As the number of market makers goes up to infinity, the results derived

from the new model are found to be hold. With the continuous-time Kyle

model, Back et al. (2000) denote that “the market would have been more

informationally efficient has there been a monopolist informed trader instead

of competing traders.” However, they also notice that if comparatively large

amount of private information remains near the end of trading, it would

impair the market liquidity severely.

2.1.7 Limit order market

The need for trading liquidity is different across traders, but the two parties,

buyers and sellers, have to trade simultaneously to clear orders in the market.

This inconvenience is addressed in one of the three broadly observed markets,

which are dealer markets, auction markets, and limit order markets. With

the intervention of a market maker, dealer markets provide a desired liquidity

to all traders at the same price. However, traders in auction markets need

to either wait or trade prior to the desired time. In a limit order market,

investors are allowed to decide immediacy with their choice of orders. Several

papers, such as Rock (1988), Harris and Hasbrouck (1996), Seppi (1997),
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Biais et al. (1999) and Foucault (1999), have studied the liquidity provision

of limit order market by analyzing the limit order book.

The continuous limit order market is totally composed of limit and market

orders. Market orders are executed at the best price available with a guaran-

tee of immediate clearance. Limit orders, on the contrary, are only executed

at a price meeting the requirements. A trader submitting a limit order sets

a maximum (minimum) price at which he is willing to buy (sell). Though

no immediacy and certainty of trading are provided, limit orders can help

traders to have a better execution price compare to the market order price.

Thus, the trade-off between the waiting costs and cost of immediacy, first

suggested by Demsetz (1968), becomes dominant on deciding the order type.

In an early paper Cohen et al. (1981) derive a “gravitational pull” model

to study a risk-neutral trader’s preference in limit orders and market orders.

The authors explain that more traders prefer to place market orders to ensure

the order execution rather than limit orders when bid-ask spread narrows,

as for the reason that the price benefits available to limit order traders are

less attractive. The change of order submission strategy would, however,

widen the spread, which in turn increases the potential benefits to limit order

traders. Therefore, when choosing between limit orders and market orders,

traders need to consider a dynamic balancing of the relative costs of execution

uncertainty and costs of price improvement. Some other studies, including

Kumar and Seppi (1994), Parlour (1998), Harris (1998), and Foucault (1999),

indicate that limit orders are more attractive than market orders as the

spread increases.

With dynamic models, Parlour (1998) studies how the order submission de-

cision is affected by the depth available at the inside quotes. It is shown that

depth on either side of the trading affects on order placement decisions. An

arriving selling order is more likely to be a market order if the size is very

large on the sell side, since a new limit sell order would be waiting at the end

of a long queue with a low probability of trading. Moreover, if the quantity of

purchasing is large, a new arriving ask order is more likely to be limit order.
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In accordance with this theoretical study, Biais et al. (1995) demonstrate

that traders are more willing to submit limit orders within the quotes when

the depth at the quotes is large. A resent study by Ellul et al. (2002) analyze

limit order submission strategies using data from New York Stock Exchange.

Their result is mostly consistent with Parlour (1998) suggestion that depth

on each side of the order book and the bid-ask spread are determinant.

The study of Foucault et al. (2005) investigate the influence of investors’

impatience on bid-ask spread, order submission strategies and market re-

siliency. The result shows that the limit order book dynamics are driven by

the proportion of patient investors and the order arrival rate. With a large

proportion of patient traders or a low order arrival rate, traders turn to place

more limit orders, and the market is therefore more resilient. In addition, a

reduction in the tick size is found to increase the average bid-ask spread, but

reduce the market resiliency.

To conclude, we provide a short review on market microstructure theory in

this section. In the next section, some models using zero-intelligence traders

applied to simulate the financial market are presented.

2.2 Market simulation

The traditional finance paradigm studies financial markets using models

based on the rational expectations hypothesis: traders in the markets are

assumed to be rational representative agents who continuously maximize

their expected utility in an inter-temporal framework without leaving any

profit unexploited. Traders compute the fundamental value of assets and

price them accordingly, and immediately incorporate new information in the

asset valuation. This conventional framework is appealing from a market-

level perspective, however, it necessitate an unrealistic burden on investor

behavior. In addition, it has been found that traditional framework based

on the rational expectations hypothesis fail to understand basis facts about
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the aggregate stock market and individual trading behavior (Barberis and

Thaler (2002)), and are unable to reproduce the stylized facts (Gaunersdorfer

and Hommes (2001) and Carceles-Poveda and Giannitsarou (2008)). Stylized

facts are statistical properties of financial time series, which are robust across

many instruments, markets and time periods. The common stylized facts in-

clude absence of autocorrelation of returns, volatility clustering, fat-tailed

distribution of returns, and multiscaling, see Cont (2001), Anirban et al.

(2011), and Sewell (2011). As mentioned by Sewell (2011), these general

properties are so consistent that they are considered as truth.

Different from the traditional paradigm, in modern behavioral finance, some

economists, such as Irving Fisher, Maynard Keynes and Harry Markowitz9,

argue that prices could be affected by individual psychology, and some finan-

cial phenomena could be better analyzed using models in which traders are

not fully rational. As stated by Hirshleifer (2001), “The basic paradigm of

asset pricing is in vibrant flux. The purely rational approach is being sub-

sumed by a broader approach based on the psychology of investors”. Other

research, for example, Daniel et al. (1998), Cross et al. (2005), and Lamba

and Seaman (2006) investigate the security prices with individual psychol-

ogy. However, it is found that this approach is also not able to replicate the

stylized facts adequately.

During the last few years, literature on financial markets has been focus-

ing on the influence of institutional structures on market dynamics, with the

consideration of traders’ heterogeneity and complex interactions, see Calamia

(1999). Heterogeneity could involve risk aversion, asset preferences, demand

for liquidity, information and learning process; while the interaction between

the heterogeneous behavior and institutional features could also affect im-

portant variables, for instance, the trading volume, transaction costs, price

volatility, information processing and so forth. Therefore, they have become

very crucial issues in the actual markets.

Decentralized financial markets consist of huge amounts of agents involved

9 See, respectively, Fisher (1930), Keynes (1936), and Markowitz (1952)
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in local repetitive competitive interactions which give rise to trading proto-

cols. A large number of models have been developed to simulate the financial

market and reproduce the observed stylized facts through the interactions of

individual traders. Although many models based on the rational expectations

hypothesis have good predictive power, it is argued that traders are unlikely

to exhibit rational behavior in real world as they may lack necessary informa-

tion or cognition. Over the last two decades the rational representative agent

analytical model of the economy has been gradually replaced by a bounded

rational heterogeneous agent computationally oriented evolutionary frame-

work, so-called agent-based modeling, which is a powerful individual based

computational simulation technique.

This section presents a brief overview of models used to study financial mar-

kets, including behavioral finance models, agent-based models, models with

zero-intelligence agents and zero-intelligence-plus agents.

2.2.1 Behavioral Finance

Behavioral finance, which combines individual behavior and market phe-

nomena, examine the impacts of social, cognitive and emotional factors on

psychological decision process and the subsequent consequences for trading

prices, returns and anomalies in financial markets. As defined by Frankfurter

and McGoun (2010),

Behavioral finance, as a part of behavioral economics, is that

branch of finance that, with the help of theories from other be-

havioral sciences, particularly psychology and sociology, tries to

discover and explain phenomena inconsistent with the paradigm

of the expected utility of wealth and narrowly defined rational

behavior. Behavioral economics is mostly experimental, using re-

search methods that are rarely applied in the traditional, main-

stream finance literature.
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There are a large number of books and surveys on behavioral finance, see

Shefrin (2000), Goldberg and von Nitzsch (2001), Barberis and Thaler (2003),

Camerer et al. (2004), Ritter (2003), Altman (2006), Peterson (2007), Bruce

(2010), Ackert and Deaves (2010), and Lovric (2011).

Behavioral finance has two building blocks: limits to arbitrage and cogni-

tive psychology (Shleifer and Summers (1990), Barberis and Thaler (2003)).

The limits to arbitrage10 discusses that rational investors may not be able to

exploit opportunities generated by less rational investors. In the traditional

framework where traders are rational and no frictions are considered, a se-

curity’s price equals its fundamental value, which is the discounted sum of

expected future cash flows. To obtain the expectations, investors accurately

process all available information. This is known as the the Efficient Market

Hypothesis (EMH), which suggests that market prices fully reflect all avail-

able information. As soon as there is a deviation from fundamental value, or

a mispricing, rational investors will immediately spot the arbitrage oppor-

tunity and make a positive profit with no risk, which in turn eliminate all

the arbitrage possibilities by correcting the mispricing through the process

of arbitrage. Thus, in an efficient market, no investment strategy can consis-

tently achieve returns in excess of average market returns on a risk-adjusted

basis. Behavioral finance, however, argues that when a mispricing, which

are created by irrational investors, emerges, it may be difficult for rational

traders to pursue the arbitrage strategies, due to the high cost, high risk and

various constraints that involve in real financial markets. Therefore, rational

traders may be unwilling to take arbitrage strategies, allowing the mispricing

to remain for a long period of time (Barberis and Thaler (2003) and Lovric

(2011)).

Cognitive psychology, the second building block of behavioral finance, refers

to how investors think. Much of the behavioral finance literature focuses on

individual investor psychology, and investigate how they aggregate across in-

dividuals, as well as its consequences for both investor performance and the

10 For detailed discussion of the theoretical and empirical study of limits to arbitrage,
see Shefrin (2000).
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market dynamics. As early as 1960s, psychologists began to study economic

decisions, e.g., Oregon Psychology Professor Paul Slovic studied the invest-

ment process from a behavioral perspective in 1969 (Slovic (1969)). And, a

number of possible cognitive biases or deviations from rationality have been

widely discussed in behavioral finance literature. For instance, heuristics are

one of the most important concepts in behavioral finance. They are rules or

strategies that can be used to solve various problems, but they can some-

times generate suboptimal solutions. The 1/N rule11 is a simple heuristic

that many people use it when deciding the allocation of their retirement

money on various investment funds. Representativeness is another cognitive

bias which means investors are likely to put more weight on recent experience

rather than long-term averages. Moreover, it has been found that people are

always overconfident when making decisions, they are also loss aversion and

tend to avoid the pain and regret of having made a bad investment. For a

detailed review of the heuristics and biases, see Barberis and Thaler (2003),

Ritter (2003), and Lovric (2011).

Behavioral finance is a rapidly growing area that studies the influence of

psychology on financial decision making and financial markets. Bondt and

Thaler (1985) realize that investors are likely to overreact to unexpected and

dramatic news events, which leads to substantial weak-form inefficiencies in

stock markets. Daniel et al. (1998) examine the market under- and overreac-

tions with the proposed theory of securities market based on investor over-

confidence, and variations in confidence resulting from biased self-attribution.

They discover that overconfidence causes negative long-lag autocorrelations,

excess volatility. Biased self-attribution, on the other hand, results in positive

short-lag autocorrelations, short-run earnings drift, and negative correlation

between future returns and long-term past stock market and accounting per-

formance. Barberis et al. (1998) also use concepts from psychology to study

the empirical findings of overreaction and underreaction. They find that se-

curities with a long record of good news are likely to become overprices and

have lower average return subsequently. Hirshleifer (2001) provides a uni-

11 To invest equally across all N funds under consideration.
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fied explanation for most known judgement and decision biases on the basis

of investor psychology and security pricing. Barber and Odean (2001) find

that men trade more and get less profit on average because men are more

overconfident than women. People with more confidence tend to trade more

and, due to transaction costs, earn lower returns.

There are, however, several criticisms of behavioral finance. As stated by

Barberis and Thaler (2002), “In some behavioral finance models, agents fail

to update their beliefs correctly. In other models, agents apply Bayes’ law

properly but make choices that are normatively questionable, in that they

are incompatible with SEU12.” Another criticism is that by using which bias

to emphasize, one can predict either under- or overreaction. As explained by

Ritter (2003), “one can find a story to fit the facts to ex post explain some

puzzling phenomenon. But how does one make ex ante predictions about

which biases will dominate?” Some also argue that even if a small number of

investors behave irrationally, the majority of rational investors will prevent

security prices from shifting too much from the intrinsic value, Schindler

(2007).

2.2.2 Agent-based models of financial markets

A novel bottom-up approach to investigate stock markets comes from the area

of computational finance as artificial financial markets. Agent-based artificial

markets, which always consists of a number of heterogeneous and boundedly

rational traders, can be applied to study trading behavior, the influence of

market mechanism, price discovery process, and the stylized facts of real-

world financial time-series. The first modern agent-based model in finance is

developed by Kim and Markowitz (1989) who study the stock market crash

in 1987. As the emergence of new information could not explain the dramatic

decrease, Kim and Markowitz (1989) attempt to find out other determinants

of stock price volatility, such as hedging strategies and portfolio insurance. In

12 SEU refers to Subjective Expected Utility.
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this agent-based simulation, they explore the relationship between the agents

with portfolio insurance strategies and market volatility. The results show

that the market performance varies dramatically if the fraction of one type of

trader changes relative to another. A market with more portfolio insurance

related investors would be much more unstable. It is also found that trading

volume, price volatility, and the size of extraordinary price changes is rising

when the proportion of portfolio insurance investors increase.

More recently, Leigh Tesfatsion provides a large amount of literature on

agent-based computational economics (ACE)13, which is the portal to the

application of agent-based model in computational finance and economics.

In Tesfatsion (2002), she presents that ACE is a research framework that

relying on the power of computers to explore the evolution of decentralized

market economies with controlled experimental conditions. In the first place,

ACE modelers construct a financial market with a population of agents, and

specify the initial conditions of the market and the attributions of agents

such as behavioral norms and internally stored information. Then, the mar-

ket evolves over time without any further input or intervention from modelers.

All events occur during the time period are caused by the historical time-line

of agent interactions.

Another leading researcher in the field of agent-based model in finance,

LeBaron (2001) reviews several design issues on building artificial agent-

based financial markets. For the most important design question of agents

design, LeBaron presents three types of modeling. According to him, ”“The

simplest and most direct route is to model agents as well-defined dynamic

trading rules modeled more or less as strategies used in the real world.” Us-

ing this method, insights about the interactions and tractable precise results

are obtained with fewer costs. However, some criticize that markets may not

follow these trading strategies continuously without any modification, and

agents in these markets should trade with well-defined objective functions.

The second way of modeling agents is to assume that they behave randomly

13 See, for example, Tesfatsion (2001), Tesfatsion (2002), Tesfatsion (2003), and Tesfat-
sion (2006).
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as zero-intelligence subject to a budget constraint. Finally, LeBaron men-

tions that learning and adapting strategies as in markets, for example, the

Santa Fe artificial market14, could be applied to model agents.

Schulenburg and Ross (2000) explore the reliability of artificially intelligent

agents when applied to real markets with a simple adaptive agent based

model. They discover that artificial agents, by both adaptive and non-

adaptive simulations over ten year’s real stock market data, are able to design

successful market strategies to outperform the basic strategies such as buy-

and-hold or saving money in a bank.

As indicated by Hommes (2005), interpretations of stylized facts observed in

the financial market data provide an important motivation for agent-based

models. Stylized facts are a set of properties, such as absence of autocorre-

lation, fat tails, volatility clustering, etc.15, that have been widely observed

across various instruments, markets and time periods. A large amount of lit-

erature investigates the stylized facts in financial markets with agent-based

models, such as Hommes (2002), Cincotti and Pastore (2005), and Iori (2002).

LeBaron et al. (1999) analyze the time series properties of asset returns us-

ing an experimental simulation with artificial intelligent traders who predict

about the future risk and return to make decisions on buying or selling stocks.

The simulated market and model are able to replicate several real-market

features, which include volatility persistence, fundamental and technical pre-

dictability and leptokurtosis. A common way to quantify the divergence from

the normal distribution is using the kurtosis of the distribution. The kur-

tosis equals three for a normal distribution, while a positive value of excess

kurtosis indicates the existence of heavy tail. In this research, they find that

the agent behavior is consistent with these properties.

Lux and Marchesi (2000) investigate three uni-variate properties of the fi-

nancial assets, unit roots in levels, fat tails of the distribution and volatility

14 The Santa Fe artificial market is a computer-based model with heterogeneously learn-
ing traders, see Arthur et al. (1997), Lebaron (2002), and Ehrentreich (2007).

15 See Cont (2001) for a set of stylized facts that are commonly observed in various types
of financial markets.
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clustering. Using an agent-based model, they find these stylized facts in

the artificial market, and present an explanation of the volatility clustering.

Both chartist and fundamentalist strategies are considered in the research

where traders are free from switching between the behavioural modes based

on the observed payoffs. The result shows an efficient and stable market at

most of times. Clustered volatility occurs if the proportion of chartist traders

surpasses a threshold value. And, it is explained that occasional temporary

instability of the market results in the volatility clustering.

Rabertoa et al. (2001) develop a simulated agent-based model in an at-

tempt to perform computational experiments with different types of artificial

traders. In the model, agents are endowed with finite resources in terms of

cash and portfolio of assets. They randomly buy and sell in each period

subject to limited resources, clustering and the volatility of previous periods.

The developed model is capable to exhibit key properties of financial time

series, i.e. volatility clustering and fat tails.

To construct a more sophisticated model that is consistent with many ob-

served stylized facts in financial markets, Shimokawa et al. (2007) propose an

agent-based equilibrium model with loss-averse features of traders, which is

based on psychological study on decision making under uncertainty. Prices

generated through the model are consistent with the equity premium puz-

zle, volatility clustering, asymmetry of distribution of returns, and cross-

correlation between return volatility and trading volume. The model also

shows that the market liquidity emphasizes these properties. Finally, they

summarize the effects of factors forming equilibrium prices are loss-aversion

parameter, the precision of private information and the reference point selec-

tion. An increase in loss-aversion and a drop of information precision magnify

the price distortions, and the price properties, especially the strength of au-

tocorrelations, are crucially influenced by the reference point selection.

In a recent paper, Martinez-Jaramillo and Tsang (2009) modeled a very sim-

ple financial market with sophisticated agents to investigate the co-evolution

of the agents and the impacts of their strategic behavior on the price. The au-
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thors also examine under what conditions the endogenously generated price

would reproduce the statistical properties of real prices. Three different types

of traders are studied, including technical, fundamental and noise traders.

Technical traders, who believe that all the market information is already

reflected in the price movement which shows patterns and trends, use pre-

vious trading information and mathematical indicators to make the trading

decisions. Fundamental traders, on the other hand, attempt to evaluate a

security’s intrinsic value by studying related economic, financial and other

factors. If the price departs from the intrinsic value, the fundamental traders

will decide what position to take with that security, either buy or sell. Noise

traders, whose decisions to buy, sell, or hold are irrational and erratic, are

included in the research to represent a source of noise. The experimental

results indicate that when learning happens, it helps not only in improving

the traders’ wealth, but also for producing more closely the stylized facts.

In addition, heterogeneity has also been found important to reproduce the

statistical properties of the price and the returns.

2.2.3 Zero-intelligence

It has become popular in recent years to use traders following very sim-

ple trading protocols that do not resemble rational behavior as assumed in

most models in market microstructure theory as well as mechanism design.

The zero-intelligence and zero-intelligence-plus traders are extreme forms of

traders used in these models by assuming nearly random behaviour. The

use of the simple algorithmic trader allows to investigate properties which

are attributable to various forms of market mechanisms, regardless any im-

pact from the traders’ behavior. It also helps to replicate realistic statistical

properties of prices which are otherwise very elusive in models of financial

markets as well as the modeling and explanation of crashes in stock markets.

Smith (1962) reports on experiments performed in his simple classroom mar-

kets after the double auction of stock and commodity exchanges, which con-

sist of a group of human traders who are entitled to buy or sell with a
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limit price. His research is one of the first to indicate that small groups of

traders can rapidly approach the rational equilibrium price. At the same

time, Becker (1962) shows that agents’ random choice behavior and budget

constraint are sufficient to generate several basic economic features such as

the proper slopes of demand and supply curves.

Traders in Smith’s experiment are motivated by seeking 100 percent of the

maximum exploitable profits; Becker assumes that the equilibrium results

from supply and demand function are yielded through the traditional Wal-

rasian tatonnement mechanism. To synthesize the generalizations by Smith

and Becker, Gode and Sunder (1993) run a computer experiment to ex-

amine the market behavior with both constrained and unconstrained zero-

intelligence traders (represented by ZI-C and ZI-U) who do not learn, but

are almost random in the trading behavior. ZI-C traders are subject to the

budget constraint, i.e., the money-losing transactions are not permitted. On

the contrary, ZI-U traders are free from the budget constraint, and they are

allowed to place a bid above their redemption value or an ask below the cost.

The authors demonstrate that a non-Walrasian mechanism, a double auction

market, can be allocationally efficient even traders without any sophisticated

strategies to seek profit. In a double auction market, buyers can submit bids

or raise existing bids; while sellers can enter offers or lower existing offer.

Transactions take place at a match or cross of bid and offer.

Three notable features of the ZI-C trading behavior are found. First of all,

there is no learning from day to day as expected from traders who have no

memory. And, the volatility of ZI-C trading prices is lying between the stable

prices set by human traders and the high volatility of ZI-U prices. Evidence

shows that the presence of a budget constraint tends to move the trading

behavior of ZI towards human behavior. Finally, the ZI-C prices are found

to converge slowly to the equilibrium level during each trading day.

In Gode and Sunder (1993) the market discipline imposed on traders is largely

responsible for achieving high levels of allocative efficiency, and it is also

an important determination in the convergence of the transaction prices to
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the theoretical equilibrium level, regardless of the intelligence, motivation

or learning of the traders in the market, as the absence of rationality and

motivation tend to be offset by the market structure.

Another research applying zero-intelligence agents is provided by Cincotti

et al. (2005). This paper presents a multi-assets artificial financial mar-

ket characterized by different kinds of stocks. With limited resources, zero-

intelligence traders are designed to follow a random allocation strategy. Within

the framework, several stylized facts are recovered in this paper, such as the

volatility clustering, reversion to the mean, and fat-tail distribution of re-

turns.

In another research, Krause (2006) explores return properties of a limit order

market using ”“near-zero-intelligence” agents, who do rely on calculations

with a minimal set of trading rules. Each trader can only hold one unit

of the asset and submit limit orders for one unit. No budget constraint

is included, but the restriction for holding only one unit of asset could be

viewed as a soft budget constraint limiting the demand. The limit prices of

buy orders are random and following the distribution lnBi ∼ iidN(µt, σ
2
buy),

where µt is the average asset price in long term. The limit prices of sell orders

are also randomly taken from the distribution lnSi ∼ iidN(lnPi, σ
2
sell), which

indicates the selling price depends on the price Pi the trader paid for in his

last buy. Transactions take place at a price when the trading volume is

maximal. After the order is matched and cleared in the market, a buyer

switches to a seller and vice versa. If orders are not cleared after a long

period, they are replaced by new limit orders with the same submission way.

The result of Krause (2006) shows that minimal intelligent traders, submit-

ting random limit orders in the double auction market, are capable to gen-

erate the stylized facts of fat tail distribution of returns and multi-scaling.

However, they failed to replicate the long term memory of volatility and the

correlation between trading volume and volatility.
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2.2.4 Zero-intelligence-plus

Cliff and Bruten (1997) review the early experimental work of Smith (1962)

and Gode and Sunder (1993) and criticize their central argument that the

convergence of transaction price to the equilibrium price is primarily de-

termined by the market structure. If this is true, they state that develop-

ing markets for trading agents would be irrelevant. However, this research

demonstrates that the average trading prices of zero-intelligence traders are

only close to the equilibrium level in very specific circumstances when the

supply and demand curves are symmetric, i.e. the magnitude of the gradient

is roughly equal. Furthermore, they replicate Gode and Sunder (1993) obser-

vation of convergence of trading prices towards the equilibrium price within

a trading day in two markets in which the supply and demand curves are

symmetric or the supply curve is flat, but such convergence is not observed

in the “box design” markets where the supply and demand curves are both

flat with either excess supply or excess demand.

From Cliff and Bruten (1997) it is apparent that zero intelligence is not

enough to account for the equilibrium convergence, some ”“intelligence” in

the form of sensitivity to current and previous market events is necessary.

Consequently, Cliff and Bruten further investigate and introduce simple trad-

ing agents with adaptive capabilities, so-called zero-intelligence-plus (ZIP)

traders, as a solution to the pathological failures of ZI traders. On the ba-

sis of ZI traders, ZIP traders, with the employment of elementary machine

learning, systematically change their current bids and offers based on the in-

formation about the bid and offer levels accepted in the last round of trading.

Experimental result shows that interacting of ZIP traders is similar to those

used in Smith (1962) and Gode and Sunder (1993), but the performance of

ZIP traders is significantly closer to the human experimental data than the

performance of ZI-C traders in terms of equilibration and profit dispersion.

Following the introduction of ZIP strategy, Das et al. (2001) examine the

performance of ZIP agents and present the result that the ZIP traders con-

sistently outperforms human traders in a series of laboratory experiments.
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The ZIP traders are found to “consistently obtain significantly larger gains

from trade than their human counterparts.”

2.3 Market mechanism design

2.3.1 Introduction

Mechanism design, as a sub-field of game theory and microeconomics, ad-

dresses the problem of decision making in distributed systems involving vari-

ous self-interested agents with private information about preferences and ca-

pabilities. In a mechanism design problem, the essential goal of the designer

is to find good system-wide solutions to distribute resources efficiently, i.e.,

to choose the optimal rules of the market so that the designer’s objectives

are achieved when market participants play their best strategies (see Parkes

(2008) and Phelps et al. (2010)).

In recent years, market design has significantly broadened the scope of its ap-

plication in computer science and operations studies; new attention has been

given to the design of electricity markets (Bower et al. (2001), Sun and Tes-

fatsion (2007)), and online markets (Cliff (2003), Duffy and Unver (2008)); in

solving the problem of distributed planning (Hunsberger and Grosz (2000),

Bererton et al. (2003)), and the problem of combinatorial resource allocation

(de Vries and Vohra (2003), Cramton et al. (2006)). Economists have investi-

gate similar design problems in the context of auction theory (see Klemperer

(2004) and Krishna (2002)) and mechanism design (see Varian (1995) and

Jackson (2003).

Auction theory can be considered as an alternative approach to general equi-

librium theory, in which an advanced and sophisticated micro-model of the

marketplace can be built. As illustrated by Phelps et al. (2005), “Auction-

theorists typically analyze a proposed market institution by defining a set of

design objectives, and then proceed to show that these design objectives are
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brought about when rational agents follow their best strategies according to a

game-theoretic analysis. The task of choosing the rules of the market institu-

tion so that these objectives are brought about is called mechanism design.”.

However, there is no uniform standard by which we judge the “optimality”

of an outcome. Instead, market designers will make the decision based on

various settings. For example, in a market of assets auctioning, two different

criteria can be applied for judgement: whether the revenue is maximized; or

whether the allocation is efficient. The typical design objectives include, for

example, allocative efficiency, budget balance, incentive compatibility, etc.

A large number of studies related to mechanism design have been emerging.

For instance, Phelps et al. (2002), Phelps et al. (2003) and Cliff (2001) employ

evolutionary algorithms to the mechanism design of double-auction markets.

Byde (2002) investigates the auction mechanism design by using evolutionary

game theory. David et al. (2005) study the optimal auction design for an

English auction with discrete bid levels. Other studies, such as Mas-Colell

et al. (1995), Marks (2006) and Phelps et al. (2010), provide accessible survey

of mechanism design.

This section is to provide a brief overview of mechanism design. Auctions, as

one of the simplest mechanisms to allocate resource and the most common

types of financial markets, are the most popular market forms used when

examining a mechanism design problem. Thus, in section 2.3.2 we provide a

brief review of the auction theory and auction design. In the next section we

discuss a number of simulation research on mechanism design, in particular

with the application of zero-intelligence-plus strategies, agent-based models,

and evolutionary search techniques.

2.3.2 Auction and auction design

As explained by Krishna (2002), “The word auction itself is derived from

the Latin augēre, which means ‘to increase’ (or ‘augment’), via the participle
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auctus (‘increasing’)”. Economists use the word “auction” to refer to a mar-

ket institution in which resource allocation and trading price are determined

by a set of explicit rules through the interaction between buyers and sellers.

Auctions have been used to exchange a diversity of objects since ancient times

as early as 500 BC, as recorded by Herodotus.16 The Babylonians auctioned

women for marriage annually; in the ancient Greek slave were auctioned; the

Romans auctioned to liquidate the debtors’ property which had been con-

fiscated. In modern times auctions have been publicly and privately used

to conduct a mass of economic transactions in numerous kinds of contexts,

ranging from agricultural produce, livestock, tobacco, and fresh flowers to

large tracts of vacant land, houses, art and antiques. In addition, govern-

ments become very keen on using auctions to sell everything such as treasury

bills, oil drilling rights and other assets such as firms to be privatized. Today,

the development of the internet, however, have greatly expanded the range

of items sold by auctions, and raised the use of auctions with a great range

of auctioneers. Almost anything can be traded by means of auctions. During

the past decade, new auction markets have been set up to trade some special

assets, such as transport, energy, and pollution permits, among which the

mobile phone licenses auctions are the most famous new auction markets.

Auctions have become extremely important, not only because of its extensive

use of allocating economic resources, but also the increasingly realized im-

portance of auction theory, which has become the basis of much fundamental

theoretical study, see Klemperer (2004). The auction theory investigates how

traders act in an auction market and the properties of auction markets. It

provides insights into many practical issues. The auction theory had been

increasingly applied in practice since 1993, with the initial design and op-

eration of the radio spectrum auctions in the United States, and the most

notably one-hundred-billion dollar mobile-phone license auctions designed

in 2000s. Another reason of the widely recognized importance of auction

theory stated by Klemperer (2004) is that “by carefully analyzing very sim-

ple trading models, auction theory is developing the fundamental building

16 See Krishna (2002)
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blocks for our understanding of more complex environments”. Moreover,

Klemperer states that “auctions provide a very valuable testing-ground for

economic theory-especially of game theory with incomplete information...and

there has also been an upsurge of interest in experimental work on auctions.”

And, Milgrom (2004) demonstrates that “the qualitative predictions of auc-

tion theory have been strikingly successful in explaining patterns of bidding

for oil and gas and have fared well in other empirical studies as well.”

This section briefly considers some elementary auction theory, including the

common types of auction, basic auctions models, and the celebrated Revenue

Equivalence Theorem, followed by an overview of auction design, including

electricity market design, mobile-phone license auction design, and on-line

auction design.

2.3.2.1 Auction forms

Auctions can be classified in accordance with several distinct aspects. For

instance, we can differentiate between open and sealed-bid auctions. All bids

in the former auction form are open to the public, contrast to the latter one

in which bids are not revealed publicly. In addition, we can also discriminate

auctions based on the order submission process, i.e. either starting at a

low price that increases progressively until no higher bids offer, or starting

at a high price which then declines to a price that a bidder is willing to

accept. Four standard auction forms that are widely used are described

below, including the ascending-bid auction, the descending-bid auction, the

first-price sealed-bid auction, and the second-price sealed-bid auction17. For

simplicity, each auction type is interpreted based on a sale of a single product.

The open ascending price auction, also known as English auction, is the oldest

and arguably the most prevalent type of auction in use. In this auction, the

seller may announce prices, and bidders may call out prices themselves, or

17 See Krishna (2002), Klemperer (2004), and Menezes and Monteiro (2008) for an
overview.
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bids with the highest current quote may be submitted electronically. Partic-

ipants bid freely against one another with a successively raising price. The

auction ends when only one bidder remains and no other participants are

willing to submit a higher bid. The product is then sold to the remaining

bidder at the final price at which the second-last bidder quit.

The open descending-bid auction is also named “Dutch auction” since it is

widely used in the flower auction in the Netherlands. This auction form works

in a contrary way to the English auction. The auctioneer starts with a high

asking price at which no bidder is willing to buy. The price is continuously

lowered until one bidder is willing to accept the offer. The winning bidder

purchases the product at the last announced price.

Another common type of auction is the first-price sealed-bid auction. In this

form of auction all bidders submit sealed bid simultaneously without seeing

other participants’ bids. In contrast to the English auction, a bidder in the

first-price sealed-bid auction is only allowed to place a single bid. The object

is sold to the bidder with the highest bid. The outcome in this auction form

is identical to the one in the Dutch auction.

Finally, the second-price sealed-bid auction, also known as Vickrey auction,

is similar to the first-price sealed-bid auction. However, instead of paying the

highest bid, the winning bidder pays the second highest bid. This system

is much alike the proxy bidding system applied by eBay, that the winner

purchase the product at the second highest price plus a bidding increment.

Apart from these prevalent forms of auction, there are some other auction

types. For example, a reverse auction is an auction type with an inverse role

of buyers and sellers, contrast to the ordinary auction. In a reverse auction,

several sellers offer their goods or services for bidding, and compete for the

price at which a buyer is willing to accept. Another well-known market form

is the continuous double auction (CDA), in which groups of buyers, who

announce increasing bid prices, and sellers, who announce decreasing ask

prices, submit orders simultaneously and asynchronously; a buyer is free to

accept an offer, and a seller is free to accept a bid at any time. The CDA
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is of particular interest in much academic studies, since it is the basis of

most of the major financial markets. In addition, a Walrasian auction is

an auction in which an auctioneer takes bids from both buyers and sellers

of multiple objects, and determines the price and adjusts it over time based

on the demand and supply. Furthermore, an auction in which a buyer can

purchase more than one unit of the items is called a multi unit auction. If

each of the items are sold at the same price, this auction is referred as uniform

price auction; otherwise, it is referred to discriminatory price auction.

2.3.2.2 Basic auction models

One of the inherent features of auctions is the presence of asymmetric in-

formation. For example, sellers are uncertain about the values that buyers

are willing to accept. If the seller knew the buyers’ information, he could

simply offer the item to the buyer with the highest price at or just below

the maximum amount the buyer is willing to take. Models of auctions are

generally classified into either of the following three categories based on the

knowledge of information in the auctions, see Krishna (2002) and Menezes

and Monteiro (2008).

In the private-value model, the value of the object is only known to each

bidder himself. This information is privately held that bidders are unsure

about the values attached by other bidders. And, the valuation of a specific

bidder would not be affected by the knowledge of other competing bidders’

value.

On the contrary, in the common-value model, the actual value of the object

is the same for every participant, but it is unknown at the time of bidding.

However, each bidder may have different information on the object’s value.

An example is the lease of a stretch of land with unknown amount of oil

underground. A bidder would appraise the value depends on his estimates

of the amount of oil underground. The privately known “signals” may be

obtained from a self-conducted test, or an estimation from an expert. The
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bidder would change his evaluation if he gets other bidders’ signals, different

from the private-value model where other participants’ private information

has no effect on a bidder’s valuation. Wilson (1967), Ortega-Reichert (1968),

and Wilson (1969) were the first to study common-value model.

Finally, Milgrom and Weber (1982) introduced the affiliated value model,

which includes both private-value and common-value models as special cases.

It assumes that each bidder has a private information, and a bidder’s valua-

tion is affected by others’ private information. For example, valuation of an

artwork may depend on the personal opinion of the value as well as others’

private information since it would impact on the resale value and how easily

it would be resold in the future.

2.3.2.3 Revenue Equivalence Theorem

A very common question in the economic analysis of auctions is whether two

distinct auction markets could generate the same expected sales revenue. If

one auction could achieve a higher selling price, then this auction type is much

preferred by the seller. One of the most celebrated findings of auction theory,

found by Vickrey in 1961, is the Revenue Equivalence Theorem, which states

that the four standard auction types yield the same expected revenue to

participants under certain conditions. The literature following Vickrey study

the robustness of his result to the introduction of another bidding setups, e.g.,

Myerson (1981) and Riley and Samuelson (1981) verify that Vickrey’s finding

applied very broadly, and generalize his results. (Klemperer, 2004, p 17) gives

a complete description regarding the Revenue Equivalence Theorem that:

“Assume each of a given number of risk-neutral potential buy-

ers of an object has a privately known signal independently drawn

from a common, strictly increasing, atomless distribution. Then

any auction mechanism in which (i) the object always goes to

the buyer with the highest signal, and (ii) any bidder with the
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lowest-feasible signal expects zero surplus, yields the same ex-

pected revenue (and results in each bidder making the same ex-

pected payment as a function of her signal).”

2.3.2.4 Auction design

With the development of auction theory, various modern auctions, including

spectrum auctions, mobile-phone license auctions, electric power auctions,

timber auctions, emission markets, on-line markets, and various asset auc-

tions, have been designed using different approaches. This section reviews

the design of three popular markets, namely the electricity markets, mobile-

phone license auctions, and online markets.

The design of electricity market has become an interesting topic since the

liberalization of energy markets. The privatization of state electric power

system took place in the 1980s in Chile and the United Kingdom18. The trend

of electricity deregulation spreads subsequently to other countries such as

New Zealand, Australia, and the United States. The deregulated electricity

markets can be viewed as auctions 19, in which infinitely divisible quantities

of homogeneous items are traded.

There is a large amount of academic literature on electricity market design.

In 1992, a pioneering work by Talukdara and Ramesh (1992) suggests to

use software to control electricity generation under the rapidly changed op-

erating environment. Rasanen et al. (1994), for the first time, develop an

object-oriented model of electricity demand-side load to study the electricity

market design. Subsequently, Hamalainen et al. (1997) generate an “agent-

based modeling framework” to examine both demand and supply side of

the electricity markets. Lane et al. (2000) extend the previous work by in-

troducing learning process using a genetic algorithm to the adaptive agents

in a discriminatory-price k-double auction. For other research, see Maifeld

18 See Klemperer and Meyer (1989) and Littlechild (1995) for an earlier study of UK
electricity markets.

19 See von der Fehr and Harbord (1993).
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and Sheble (1996), Richter et al. (1999), MacGill and Kaye (1999), Talukdar

(2002), and Cau and Anderson (2002).

In addition, many economists are interested in studying the design of electric-

ity markets. Bunn and Day (1998) develop an agent-based model to study

the generators’s behavior and examine whether implicit collusion leads to

high prices. Nicolaisen et al. (2000) conduct an experimental and simulation-

based investigation of a double auction electricity market to evaluate market

power and efficiency relating to mechanism microstructure. Bower and Bunn

(2000) study the wholesale electricity market in England and Wales, and ex-

amine the impact of different auction formats on market prices. In particular,

daily versus hourly bidding, and uniform versus discriminatory pricing auc-

tion forms are considered. Generators are represented by autonomous and

adaptive computerized agents. A simple reinforcement learning algorithm is

used to attain the goal of simultaneously maximizing profits and approaching

a target utilization rate of the power plant portfolio. The bidding strategies

of agents are modified at each round depending on the performance of in the

last round. For other studies on electricity market design, see Bower et al.

(2001), Petrov and Sheble (2001), Bunn and Oliveira (2003), Cau (2003),

Bin et al. (2004), and Sun and Tesfatsion (2007).

The auctions of the third generation (3G) mobile spectrum license were some

of the biggest and most complicated in history. The mobile license auction

generated lots of debate. Remarkable attention has been intrigued by the sig-

nificant amounts of money involved, and the huge differences in the amounts

paid across countries are of particular interest, see van Damme (2002), Bin-

more and Klemperer (2002), Borgers and Dustmann (2002), Klemperer (2004),

Seifert and Ehrhart (2005), and Hoppe et al. (2006).

The 3G auctions in most European countries, except for Denmark, were of the

“simultaneous multiple-round ascending” type, which had been introduced

and widely employed in the US, see Milgrom (2004) for details. The United

Kingdom ran the world’s first 3G auction, which was later described as the

“biggest auction ever” (Binmore and Klemperer (2002)). In the UK auction,
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bidders were fully informed and the auction market was very transparent.

Bidders, who place the highest bid, became the “current price bidder” in

the next round; and bidders who were not the current highest bidder could

either place a valid bid, ask for a total of three waivers, or withdraw from

the auction. If there were multiple bidders having the same highest price,

the “current price bidder” was then randomly selected among these bidders.

The auction ended when there were no other new bids.

The German and Austrian auctions, which had the same complex design,

were less transparent with limited information. Two consecutive auctions

were involved in the design. As described by Jehiel et al. (2003): “ The first

auction allocated licenses together with so called ‘duplex’ or ‘paired’ spec-

trum frequencies. The second auction allocated paired spectrum that has not

been sold at the first auction, together with additional ‘unpaired’ spectrum.

Both auctions were of the ‘simultaneous multiple-round ascending’ type.” In

Italian auction, a maximum of five spectrum licenses were auctioned. In each

round bidders were ranked based on their bids. Bidders who did not sub-

mit the five current highest bids would either leave the auction or improve

their bids. The Denmark auction was the last one amongst the 2000-2001

European 3G auctions. To stimulate entry the Danish regulator adopted a

sealed-bid auction, and those with the highest four bids obtained a license.

The Danish auction was discriminatory as bidders paying their own bid in-

stead of paying the highest losing bid. A number of studies have described

the 3G Europe auctions in details. Jehiel and Moldovanu (2000), van Damme

(2002), Jehiel et al. (2003), and Klemperer (2004) provide insightful review

of the 2000-2001 European 3G license auctions. Seifert and Ehrhart (2005)

conduct a laboratory experiment to compare the performance under the UK

and Germany auctions in terms of revenues and bidder surplus.

Since the advent of the Internet, an increasing number of transactions are

carried out using online auctions. Some popular internet auction sites, like

eBay and Amazon, are emerging and having a great success. Various forms

of auction mechanism have been implemented by the different web-based

auction sites, among which, the most common and widely used formats stated
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in Duffy and Unver (2008) are ascending-bid format, second-price format, and

a hybrid of the ascending-bid English auction and the second-price sealed bid

auction.

Different from the traditional auctions, online auctions allow bidders to bid

anywhere in the world at any time with Internet. Some online auctions run

many days, providing a good chance for more bidders to notice and enter the

auction. Lucking-Reiley et al. (1999) and Hasker et al. (2004) express that

the longer online auction runs, the more bidders are attracted with higher

prices. As found by Lucking-Reiley et al. (1999), prices are 24% higher, on

average, in 7-day online auctions than in short period auctions. However,

auctions with longer duration raise the question of the optimal timing of the

bid. An interesting phenomenon is that of “late” bidding, which is placed

very close to the end of the auction, gives other bidders little time to respond.

Another design question is whether bids in online auctions should be sealed

or open, i.e., whether a bidder has a chance to observe how others’ bidding

activities evolve, and reacts to their bidding strategies during the auction

process. Ivanova-Stenzel and Salmon (2004) show that in a private-value

environment open bidding is much preferred by laboratory subjects. In ad-

dition, Ariely et al. (2005) conduct a laboratory human subject experiment

which shows that the speed of learning the optimal bidding strategy is much

faster in open auctions than in sealed-bid auctions. However, there are some

other argument against the superior of open format. Cramton (1998) re-

ports that open bidding fails to generate high revenues when bidders are

risk-averse and competition is low. Moreover, Klemperer (2004) finds that

collusion among bidders in open auctions may reduce the revenue.

2.3.2.5 Limitations of classic mechanism design

The traditional mechanism design and auction theory produce clear-cut re-

sults in many situations. However, the underlying assumptions of the theory

may not be fulfilled in many real-world situations. The traditional approach
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of mechanism design seeks closed-form solutions to evaluate the performance

of economic institutions. As discussed by Marks (2006), under this approach,

“Economic actors have been assumed to be perfectly rational, with the means

to solve for equilibria outcomes in complex situations. Economists have

sought to characterize the equilibria of economic interactions in terms of

their existence, uniqueness, and stability, under this assumption. When the

interactions among economic actors are strategic, the equilibria become Nash

equilibria.” In the real-world markets, however, not only the equilibrium char-

acterization should be considered, but also the continual shocks which might

hamper the system to approach the equilibrium. Marks (2006) lists four

reasons of considering other techniques rather than the traditional approach.

Firstly, it would be difficult to get solutions for the design of several markets,

for instance, the continuous double auctions. And, the dynamic behavior or

out-of-equilibrium behavior of an changing market environment cannot be

characterized. Another reason is that “the assumption of perfect rationality

and unlimited computational ability on the part of human traders is unre-

alistic”. Economists tend to use game theory to describe the sophisticated

behavior of the participants, which has been criticized for its ‘hyper-rational’

view of human behavior (see Varian (1995)). Finally, Marks (2006) suggests

to include the learning process, since “a model without learning is not as

realistic as one incorporating learning. Bunn and Oliveira (2003) note that

many researchers [including Erev and Roth (1998)] have shown that learning

models predict peoples behavior better than do Nash equilibria.”

Apart from the above limitations, the ability of traditional market microstruc-

ture theory to provide insights into the optimal market structure or the mech-

anism design is limited. As each market structure requires a slightly different

model to allow it being studied analytically, so far, no general framework ex-

ists, and comparisons between two or more market structures are limited.

As noted by Kittsteiner and Ockenfels (2006), “One of the important lessons

that can be learned from theoretical and empirical research is that there

is generally no one-fits-it-all design. Every market environment is different

and has its own particularities.” Given the large number of possible market
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structure, any optimization procedure involving different models would be

unattainable.

Furthermore, when using different models for different market structures it is

even more difficult to distinguish between the effect attributable to differences

in the market structure and to different behaviors of traders. The results of

conventional models are often dominated by the behavior of the agents and it

proves difficult to distinguish their impact from that of the market structure.

With classical market microstructure theory developed to analyze trading

behavior in a given market structure, it is in its current form not suitable to

be applied in optimizing market structures.

Moreover, Phelps et al. (2010) disclose another problem of using classical

mechanism design to study the existing market institutions, such as the Lon-

don Stock Exchange, which has been established far before the proposal of

auction theory and game theory. Since trading rules applied in the market

institutions may not be based on traditional auction theory, thereby, it would

be difficult to analyze the mechanism design using the traditional approach.

In addition, most of the models in the current microstructure theory inves-

tigate the impact of a single or a small number of related trading rules on

specific aspects of market performance, ignoring hybrid systems such as the

specialist system of the NYSE which are much more difficult to model. And,

in order to evaluate whether one market structure is superior to another it

is necessary to use a measure of market performance. Unfortunately these

does not exist a single measure which is generally accepted; depending on the

context of the research the use of measure will vary. Apart from the prob-

lem of measuring market performance, the research on the optimal market

structure is also hampered by the complexity of the models used, allowing

only focusing on optimizing a single trading rule or a small set of closely

related trading rules. Given that the trading rules are usually showing non-

trivial interdependencies in their influence on the market performance, it

cannot be derived from such isolated research how the optimal market struc-

ture will be found. Phelps et al. (2010) denotes that “In designing market
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places...we often need to make such trade-offs between different objectives

depending on the exact requirements and scenario at hand. We can often

satisfactorily solve such multi-objective optimization problems, provided that

we have some kind of quantitative assessment of each objective, yet classical

auction-theory provides only a binary yes or no indication of whether each

of its limited design objectives is achievable, making it extremely difficult to

compare the different trade-offs.”

To address these problems, a large number of design features or trading rules

should be considered to provide a full picture of the rules auction markets

should be designed to in a sufficient number of realistic circumstances. To

represent the different interests of various market participants, the best way

is to conduct the optimization of the trading rules evolutionary using a wide

range of performance functions by employing multi-objective optimization.

This allows us to determine the most appropriate sets of rules a market should

consider without facing the need to balance the different interests of market

participants. Finally, to investigate the market structure and its impact

on the market performance, we need to eliminate the influence of trading

behavior on the market performance. Thus, the traders in the market should

be automaton traders following very simple trading protocols that do not

resemble rational behavior. The use of appropriate automatons allows us to

focus on the influence the market structure, i.e. set of trading rules, has on

the outcomes.

2.3.3 Simulation techniques and experiments

As mentioned by Kittsteiner and Ockenfels (2006), “theoretical considera-

tions alone typically do not guarantee a sensible market design. This is true

in particular in those cases in which reality is too complex to be solved ana-

lytically...typically, theory needs to be complemented with other tools such as

computational, empirical and experimental methods (see Roth (2002), Ariely

et al. (2005)).” Therefore, when conducting any adjustment on the market

structure, it should be guided by theoretical as well as empirical research.
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Research using simulation has been growing as computing techniques become

more powerful. “In particular, laboratory experiments can be used to test

the validity of various economic theories, to test hypotheses that cannot be

investigated with the help of field data, and to test new market mechanisms

that do not yet exist.”, indicated by Kittsteiner and Ockenfels (2006). This

section reviews the empirical simulation and experiments on the mechanism

design with the application of Cliff’s zero intelligence plus traders, agent-

based models, and evolutionary search techniques.

2.3.3.1 Zero-Intelligence-Plus strategy in mechanism design

As discussed by Marks (2006), “Market performance may depend on the de-

gree of ‘intelligence’ or ‘rationality’ of the agents buying and selling, which

has led to computer experiments in which trading occurs between artificial

agents of limited or bounded rationality”. An alternative approach to evalu-

ate market structure has been introduced by Gode and Sunder (1993). They

developed a model in which traders submit random orders, the only con-

straint on their behavior being that they do not make a loss. Simulating the

outcome of a market with such traders, they found that it was close to the

equilibrium, despite traders not learning in their model. This very simplistic

behavior of traders led them to be called zero-intelligent (ZI) traders and the

resulting efficiency of the market is attributed to the market structure. As re-

viewed in section 2.2, Gode and Sunder (1993) indicate that “zero-intelligence

agents can exhibit human-like behavior in CDA markets.” However, Cliff and

Bruten (1997) argue that “Gode and Sunder’s result only holds in very spe-

cific circumstances and that, in general, some intelligence in the form of

adaptivity or sensitivity to previous and current events in the market is nec-

essary.” Consequently, Cliff and Bruten (1997) propose a more sophisticated

and robust algorithm refers to Zero-Intelligence-Plus traders (abbreviation

ZIP) to solve the pathological failures of ZI traders. ZIP traders are simple

autonomous artificial trading agents with adaptive capabilities to operate as

buyers or sellers in auction market environments. These agents results in a
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good performance on several measures of trading activity, such as allocative

efficiency and profit dispersion.

Following the introduction of ZIP strategy, Das et al. (2001) examine the

performance of ZIP agents and present the result that the ZIP traders con-

sistently outperform human traders in a series of laboratory experiments.

The ZIP traders are found to “consistently obtain significantly larger gains

from trade than their human counterparts.” Because of the favorable results

and its usability in every market structure, ZIP traders have a good potential

as trading agents in a mechanism design problem.

Although the use of computational simulated approaches for the agent deci-

sion problem has a relatively long history, the field of computational-mechanism

design is an emerging area of research. As before it is very hard to design

a new market, especially with a vast searching space of possible mechanism.

Therefore, the application of automated search algorithms of the space of

possible market types is very attractive. To explain how to design a market

using computerized artificial agents, Walia (2002) states that

“To automate the process of market design we need to param-

eterise the description of a given market type. Once we have a

complete parametric description of a market mechanism, the de-

sign process can be looked at as a parameter optimisation problem

with the optimum parameter values specifying the best design.”

After the development of ZIP strategy, Dave Cliff began to make a line of

research on the evolution design of auction markets mechanism using com-

puter simulations, see Cliff (2001), Cliff (2002a), Cliff (2002b), Cliff (2003).

In this section, we will briefly review the series of work by Dave Cliff, and

some other related research with the application of ZIP algorithm.

Prior to the work of Cliff (2001), the auction mechanism in which traders

participate has been specified in advance of any investigation in all market

studies using artificial agents. Cliff (2001), for the first time, develops a
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complete system for automated mechanism design. He uses the Genetic

Algorithm (GA)20 to optimize both the parameters of the ZIP agents, and

the mechanism parameter, which is Qs in the paper, denoting the probability

that a seller will be chosen to make an offer in any given round of a continuous

double auction. Once the Qs is specified, the probability that a buyer will

be chosen to make a bid, Qb, can be easily obtained as Qb = 1−Qs.

In a standard CDA with the assumption of only one quote occurs at a unique

time, Qs = 0.5, which means, at any time, the probability of the next order

submitted by a seller is 50%. Similarly, the probability of receiving a quote

from a buyer for the next shout is 0.5 as well. In this case, buyers and sellers

have an equal opportunity to quote in CDA. In English auctions, Qs = 0

since only buyers can quote while sellers stay silent in this framework; in

Dutch auctions, on the other hand, Qs = 1 as only sellers are able to quote.

For other values, e.g., in a mechanism with Qs = 0.2, it can be thought of

that there will be 2 quotes from sellers and 8 quotes from buyers for every 10

shouts. Nevertheless, this type of market is never found in human-designed

market, and it is not clear whether the hybrid mechanisms with value of Qs

other than 0, 0.5 or 1 are superior to any other well-known market types.

Cliff (2001) proposes a model to define the market mechanism using the

inventive parameter Qs. The Qs with values of 0, 0.5 and 1 are not regarded

as three different forms of market in this paper, but rather considered as

two end points and one midpoint in a continuous mechanism space. To

explore the evolution of market mechanism, he defines the searching space,

including the continuous double auction and one-sided auctions similar to the

English auction and the Dutch auction. In spite of this, Cliff points out that

“this space is continuously variable, allowing for any of an infinite number of

peculiar hybrids of these auction types to be evolved, which have to known

correlate in naturally occurring market mechanisms.”

Cliff (2001) conducts three tests with different markets M1, M2 and M3.

These markets have the same number of traders, but with different supply

20 A genetic algorithm is an automated search algorithm, reviewed in section 3.2.1
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and demand schedule. Through a GA search, the optimum value of Qs

for the evolved mechanisms are approximately 0.0001, 0.0714, and 0.1666,

respectively. Cliff further compares the performance of evolved mechanisms

with a standard CDA market. The results show that the evolved “hybrid”

mechanisms outperform the normal CDA market. As described by Cliff:

“While there is nothing to prevent the GA from settling on

solutions that correspond to the known CDA auction type or the

EA-like or DFA-like one-sided mechanisms, we repeatedly find

that hybrid solutions are found to lead to the most desirable

market dynamics. Although the hybrid mechanisms could easily

be implemented in online electronic marketplaces, they have not

been designed by humans; rather they are the product of evo-

lutionary search through a continuous space of possible auction

types. Thus, the results in this paper are the first demonstration

that radically new market mechanisms for artificial traders may

be designed by automatic means.”

To extend the work of Cliff (2001), in which a single fixed market schedule

is used to evaluate the optimum solutions, in a following paper, Cliff (2002a)

modifies the supply and demand schedule by inflicting “shock changes” through

the evaluation process, i.e., switching from one schedule to another. The mar-

ket shock is imposed to reflect the situation where unexpected events occur

in financial markets, leading to a dramatic change in trading behavior. The

experimental result, again, reveals that new “hybrid” market mechanisms

with Qs = 0.25 is more efficient than the well-known CDA markets. Another

evolutionary mechanism with the optimum value of Qs = 0.45, which is close

to the parameter value of a standard CDA, is found to be “no better but

also no worse than the CDA”. 21

Subsequently, Robinson (2002) and Qin (2002) replicate and test Cliff’s ex-

periments. Both of them have found a similar results, and therefore confirmed

21 A series of related studies of exploring continuous market space by genetic algorithms
with ZIP traders has been conducted by Cliff, such as Cliff (2002a) and Cliff (2003).
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the reliability of the results on evolving market mechanism. Preist and van

Tol (2003) introduce a variant of Cliff’s ZIP strategy which can be applied

in persistent-shout auctions. Walia (2002) question the robustness of Cliff’s

results, with concerns of the exclusive use of the ZIP strategy in the work.

They apply an alternative algorithm, a self-adaptive Evolutionary Strategy

(ES), to investigate the space of possible mechanism types in a CDA pop-

ulated by the zero-intelligence-constrained(ZIC) agents developed by Gode

and Sunder (1993). With similar results, they confirm that hybrid markets

are more desirable than the standard market forms, regardless of the trading

algorithms used.

2.3.3.2 Agent-based models in mechanism design

As reviewed in section 2.2.4, zero-intelligence-plus (ZIP), proposed by Cliff

and Bruten (1997), is one typical example of the agent-based models. In-

stead of using ZIP, the automated search algorithm has also been applied

to various market mechanisms design problems with alternative agent-based

models. As discussed by LeBaron (2005), agent-based models are well suited

to mechanism design and market microstructure questions not merely be-

cause of a large amount of data, but also the desirable testing environment

of market design with heterogeneous, adaptive strategies. “With several

design trade-offs and the possible emergence of unforeseen performance in

the system, agent-based analysis and design, in which the market system

can be modeled as ‘evolving systems of autonomous, interacting agents with

learning capabilities’ [Koesrindartoto and Tesfatsion (2004)], is increasingly

employed.”, stated by Marks (2006).

As discussed by Davidson and McArthur (2005), Sun and Tesfatsion (2007),

and Weidlich and Veit (2008), a growing number of researchers have devel-

oped variety of agent-based models for the study of electricity market, see,

for example, Bower and Bunn (2000), Nicolaisen et al. (2001), and Veit et al.

(2006),
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Nicolaisen et al. (2001) examines the exercise of market power and efficiency

of a wholesale electricity market by using an agent-based computational

model. They present a new auction mechanism, which is simulated applying

experimental traders and reinforcement learning, a modified version of the

Roth-Erev learning algorithm, referred to as MRE algorithm. This paper

provides some insight into the sensitivity of market efficiency to the MRE re-

inforcement learning algorithm, which characterizes the learning behavior of

the trading agents. They disclose that when trading agents refrain from bad

judgement, market efficiency would be higher. However, the result may not

be robust with the exercise of inappropriate learning process or bad judge-

ment. Some other work, for instance, Koesrindartoto and Tesfatsion (2004),

Koesrindartoto et al. (2005), and Sun and Tesfatsion (2007), investigate the

potential use of agent-based computational methods for the study of the

Wholesale Power Market Platform (WPMP), a complicated market design

proposed by the U.S. Federal Energy Regulatory Commission as a widely

adoption by U.S. wholesale power markets.

Hailu and Schilizzi (2004) conduct an agent-based computational experiment

to study the performance of conservation auctions with the assumption that

bidders are allowed to learn from previous experience. Bidders in this model

are farmers or landholders bidding for environmental conservation contracts.

On the other hand, a government agent with a fixed budget selects and

awards contracts to the winning bidder. The results show that the efficiency

advantages of the auction dissipate with repetition and learning, making the

auction mechanism less attractive compare to simpler mechanisms like fixed

payment schemes.

Chen and Chie (2008) set up an agent-based model to examine the evolu-

tionary mechanism design of lottery markets with genetic algorithms. Two

conclusions are made based on the results. First of all, the Laffer curve in

economics is observed, which confirms the existence of an optimal lottery tax

rate, in this case it is 40%. Secondly, the optimal tax rate from the simula-

tion is very close to the empirical tax rate of 42 %, averaged over 25 lottery

markets.
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Hailu and Thoyer (2006) investigate the mechanisms design of multi-unit

auctions using an agent-based model. They compare performance of three

auction forms, including Vickrey, uniform, and discriminatory forms, based

on two criteria, namely the budgetary outlay and social opportunity costs.

The experimental results show that “the relative social cost efficiency of the

three auction formats ... depends on the level of competition. For high levels

of competition, the three auction formats perform identically. As competi-

tion declines, the efficiency of the discriminatory auction becomes inferior to

the efficiency of the uniform and the Vickrey, which remain similar ... In

terms of budgetary performance, the uniform and Vickrey auctions perform

equivalently for high levels of competition ... the uniform auction induces

slightly lower outlays than the Vickrey at high demand levels. More impor-

tant, both loose their advantage over the discriminatory which becomes the

least expensive procurement auction at high demand levels.”

Marks (2006) first provides a lengthy survey of the emerging practice of mech-

anism design using both evolutionary and agent-based techniques. A large

number of papers are reviewed, with special reference to the design of electric-

ity markets and online markets using agent-based evolutionary techniques.

Furthermore, he summarizes several possible design criteria or the objective

to be optimized in the evolutionary process used in previous research. The

possible criteria listed in the paper consist of maximizing seller revenue (one

of the major criteria in the spectrum auctions design, see Milgrom (2004));

maximizing market allocative efficiency (which means the performance of

the mechanism should be optimal under certain sense); discouraging collu-

sion; discouraging predatory behavior; discouraging entry-deterring behav-

ior; budget balance (the total payment made by traders equals zero, i.e., no

money injected into or removed out from a system); individual rationality

(the expected net gain to each trader in the mechanism should match at

least the net gain of any other systems), and strategy-proofness (“partici-

pants should not be able to gain from non-truth-telling behavior”, explained

by Marks (2006)). Marks suggests that there are trade-offs between several

design criteria applied in a computer simulation, which has been proved by
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Myerson and Satterthwaite (1983), as “no double-sided auction mechanism

with discriminatory pricing can be simultaneously efficient, budget-balanced,

and individually rational.” Marks (2006) explains it with a simple example:

if a seller has an influential power, his revenue can be maximized, but at the

loss of market efficiency, since the sum of buyer surplus and seller surplus is

reduced. Therefore, the author suggests either to weigh all the criteria to de-

rive a single objective, or to rank the market designs based on the remaining

criterion that are all above a target level.

For other research in the area of market design applying agent-based models,

see Bunn and Day (1998), Campbell et al. (1999), Hailu and Schilizzi (2004),

Koersrindartoto (2005), and Choi et al. (2010).

2.3.3.3 Evolutionary mechanism design

Evolutionary computation, which uses ideas from natural evolution and learn-

ing, has been widely applied to the study of mechanism design. Evolution

can be considered as a dynamic search through a continuous space of pos-

sible market designs to obtain the market structure that results in better

performance. For example, the optimal tick size for an exchange to maxi-

mize the trading volume can be investigated using evolutionary computation.

Evolutionary algorithms have two distinct features relative to other search

algorithms. As explained by Sarker and Ray (2010), “they are all popula-

tion based (consider a set of possible solution points in contrast to single

solution in conventional optimization). Second, there is communications and

information exchange among individuals in a population.”

We have discussed in section 2.3.2.5 that the traditional approach of mech-

anism design fails to characterize the intermediate behavior of a dynamic

interaction. In addition, when the search-space is very large, exhaustive

search is very difficult to implement. Therefore, other techniques of learn-

ing and evolution in strategic environments should be applied for analysis of
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mechanism design, which makes evolutionary algorithms superior than con-

ventional techniques for studying the interaction between different strategies

by systematically sampling the search space, see Phelps et al. (2010).

With the development of agent-based modeling and optimization techniques

such as Genetic Algorithms, evolutionary simulation techniques have been

widely applied in the mechanism design problems.22 Cliff (2001) is the first

to employ evolutionary computing to the double auction mechanism design

problems, reviewed in section 2.3.3.1. Because of the successful operation of

evolutionary algorithms employed in Cliff’s experiments, use of evolutionary

algorithms for mechanism design becomes prevalent in the related research.

A similar study of exploring the evolution of economic market mechanisms

is conducted by Phelps et al. (2002). With application of genetic program-

ming (GP), they co-evolve agents’ trading strategies to analyze the devel-

opment of auction pricing rules. This is followed by Byde (2002), in which

an evolutionary-based method is applied to examine the mechanisms of stan-

dard first-price and second-price sealed bid auctions. The result presented by

Byde shows that a new form of sealed-bid auction mechanism is more supe-

rior than the standards auction forms, and is optimal for a range of realistic

scenarios. Other papers, such as Cliff (2002a), Cliff (2003), Robinson (2002)

and Qin (2002) Walia (2002), Chen and Chie (2008), apply the evolutionary

search techniques for the mechanism design problems as well. These papers

have been reviewed in the previous sections. In addition, Marks (2006) and

Phelps et al. (2010) provide a good review of the evolutionary simulation of

mechanism design.

22 Chapter 4 presents the evolutionary optimization algorithms.



3. An overview of evolutionary

optimization algorithms

The term evolutionary algorithms (EAs) refers to a class of stochastic op-

timization search methods that are inspired by biological evolution such as

mutation, recombination, reproduction, and natural selection applied to op-

timize a specific system within certain constraints. Different from traditional

optimization techniques, EAs search a “population” of solutions instead of

a single point. Eiben et al. (2003) describe the evolutionary algorithm as

follows:

“Given a quality function to be maximised we can randomly cre-

ate a set of candidate solutions, i.e., elements of the function’s

domain, and apply the quality function as an abstract fitness

measure - the higher the better. Based on this fitness, some of

the better candidates are chosen to seed the next generation by

applying recombination and/or mutation to them. ... Execut-

ing recombination and mutation leads to a set of new candidates

(the offspring) that compete - based on their fitness (and possibly

age) - with the old ones for a place in the next generation. This

process can be iterated until a candidate with sufficient quality

(a solution) is found or a previously set computational limit is

reached.”

Many different evolutionary techniques have been proposed, most notably

Genetic Algorithms (GA), Genetic Programming (GP), Evolutionary Pro-
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gramming (EP), evolution strategies (ES), and Estimation of Distribution

Algorithms (EDAs), with similar underlying concept behind all these algo-

rithms: see Fogel (1994), Back et al. (1997) and Eiben et al. (2003) for an

introductory survey of evolutionary algorithms, and the working principles

of the various algorithms.

Evolutionary algorithms have been widely applied in financial research, see

e.g. Chen (2002), Day (2006) and Fernandez-Blanco et al. (2008). A wide

range of evolutionary algorithms have been used in this research area, in-

cluding Genetic Algorithms (Yuret and Maza (1994), Cliff (2001) and Cliff

(2003)); Genetic Programming (Li and Tsang (1999) and Potvin et al. (2004));

Grammatical Evolution (O’Neill et al. (2001), Brabazon and O’Neill (2003b)

and Brabazon and O’Neill (2003a)); Simulated Annealing (Ingber (1996), In-

gber (1999)), and the Population-based Incremental Learning ( Alexandrova-

Kabadjova et al. (2006) and Alexandrova-Kabadjova et al. (2011)), which is

a type of Estimation of Distribution Algorithm recently developed by Baluja

(1994). In this chapter, we will first present a brief review of single ob-

jective optimization techniques, in the context of estimation of distribution

algorithms, genetic algorithms, competitive learning, population-based in-

cremental learning, further development and application of PBIL, and the

empirical comparisons of different optimization algorithms. Finally, algo-

rithms for multi-objective optimization problems are reviewed in section 3.3.

3.1 Estimation of distribution algorithms

Estimation of distribution algorithms (EDAs), also known as the probabilistic

model-building genetic algorithms (PMBGA), are a recently developed set of

evolutionary optimization algorithms (see Pelikan et al. (1999) and Larranaga

and Lozano (2001) for a brief review). EDAs, which are first introduced by

Muhlenbein et al. (1996), maintain a set of candidate solutions throughout

the search. These solutions are randomly generated at the first iteration,

which are then evaluated based on the objective function. Solutions with
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better function values are selected. After the selection, a probabilistic model

of the chosen solutions is generated, and a set of new candidate solutions,

which replace part of the old ones in the original population, is sampled

based on the probability model. This process is continued until the optimum

is achieved or the termination criterion is fulfilled.

There is no traditional crossover and mutation process in EDAs. EDAs re-

place them with sampling new elements and learning from the probability

distribution of the best gene of the population at each generation. Through

this repetitive process of constructing a new generation based on the distri-

bution model, and a following modification of the distribution model, the

quality of the population is improving over time. Since new candidate pop-

ulation is sampled with a probability distribution, Zhang (2003) argues that

“EDAs are promising methods for capturing the structure of variable in-

teractions, identifying and manipulating crucial building blocks, and hence

efficiently solving hard optimization and search problems with interactions

among the variables.” In addition, EDAs can also be applied efficiently in

some complex problems where important interactions exist between the vari-

ables of solutions. These problems are, however, difficult to be solved by

some evolutionary algorithms that do not employ models, such as genetic

algorithms.

Many EDA-like algorithms have been developed, which can be categorized

into three groups according to the interdependencies between the variables

of solutions: univariate, bivariate or multivariate models. The univariate

models are the simplest way to estimate the distribution of selected so-

lutions by assuming the variables are independent, examples of univariate

algorithms include population-based incremental learning (PBIL) (Baluja

(1994), and Baluja and Caruana (1995)), univariate marginal distribution

algorithm (UMDA) (Muhlenbein et al. (1996)), compact genetic algorithm

(cGA) (Harik et al. (1999)) and learning automata based estimation of distri-

bution algorithm (LAEDA) (Rastegar and Meybodi (2005)). The bivariate

algorithms, which do not have the assumption of independency between vari-

ables, consider some pairwise interactions, examples of such algorithm are
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mutual information maximization for input clustering (MIMIC) (De Bonet

et al. (1997)), bivariate marginal distribution algorithm (BMDA) (Pelikan

and Muhlenbein (1999)) and combining optimizer with mutual information

trees (COMIT) (Baluja and Davies (1997)). Algorithms that cover multivari-

ate interactions include factorized distribution algorithm (FDA) (Mhlenbein

and Mahnig (1999)), Bayesian optimization algorithm (BOA) (Pelikan et al.

(2000) and Larranaga et al. (1999)) and extended compact genetic algorithm

(ECGA) (Harik (1999)). In the next section, the population-based incremen-

tal learning, which is the first developed and most widely applied EDA, is

reviewed in detail.

3.2 Population-based incremental learning

As described by Baluja (1994), population-based incremental learning is “a

method of combining genetic algorithms and competitive learning for func-

tion optimization”. Therefore, in this section, we first present genetic algo-

rithms and competitive learning, followed by a review of PBIL algorithm.

3.2.1 Genetic algorithm

Genetic algorithms (GA), initially developed by Holland (1975), are a class

of automated optimization algorithms based upon the principles of natural

selection and genetic recombination. They are usually applied to solve prob-

lems that the solutions can be represented by fixed-length strings with finite

alphabet.

Genetic algorithms maintain a group of potential solutions, so called a pop-

ulation, which is randomly generated at the initial round. Each population

member is referred to as a chromosome, which defines a potential solution to

an optimization problem. The chromosome is often represented by a string

of binary alphabet. In each generation, the fitness of each chromosome or
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potential solution is evaluated, in other words, it measures how well each

solution optimizes the objective function. The higher the fitness, the better

the candidate solution.

Three operators of the simple genetic algorithm, namely, reproduction, crossover

and mutation, make GA an effective technique to generate favorable results

in many practical problems. According to Goldberg (1989), “Reproduction

is a process in which individual strings are copied according to their objec-

tive function values, f (biologists call this function the fitness function) ...

In natural populations fitness is determined by a creature’s ability to survive

predators, pestilence, and the other obstacles to adulthood and subsequent

reproduction. In our unabashedly artificial setting, the objective function is

the final arbiter of the string-creature’s life or death”. Therefore, the fitness

function can be considered as a type of objective function which measures

the optimality of a solution or a chromosome in an algorithm. In financial

research, the objective function can be, for instance, a measure of trading

volume, share price, trading cost, profit or utility that we want to minimize or

maximize. Copying strings in accordance with the fitness function represents

that the population with high fitness values will have a higher probability

of being selected as a “parent”. This artificial form of natural selection is a

typical “Darwinian survival of the fittest among string creatures.”

After reproduction, the chromosome of ”child” may be slightly different

through the process of crossover. First of all, all the reproduced strings

in the mating pool are paired at random with each other to merge the infor-

mation and characteristics of both parents into the subsequent generation.

Goldberg (1989) describes the process that ”each pair of strings undergoes

crossing over as follows: an integer position k along the string is selected uni-

formly at random between 1 and the string length less one [1, l−1]. Two new

strings are created by swapping all characters between positions k + 1 and l

inclusively.” The crossover rate specifies the percentage of the time that the

crossover operator occurs when two population are selected to reproduce. If

there is no crossover, the two parents pass their entire gene directly into the

next generation.
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Fig. 3.1: Crossover operators used in simple GAs. Modified based on Ap-
pendix A of Baluja (1994)

Various crossover methods have been employed for different data structures.

And, the crossover type specifies what information is merged between par-

ents. Figure 3.1 shows samples of four crossover techniques: one-point

crossover, two-point crossover, uniform crossover and finally the ”cut and

splice” approach, see Schaffer and Morishima (1987) and Baluja (1994). One-

point crossover : Given two parent chromosomes, a single crossover point on

both parents’ strings is randomly chosen. All data beyond the chosen point

is swapped between the two parent chromosomes. Two-point crossover : Two

random crossover points are selected, and the contents of the parents chromo-

somes between these points are swapped. In the uniform crossover schemes,

two parents are combined randomly, and each bit position is swapped with

a specific probability of 0.5. On the other hand, in the ”cut and splice” ap-

proach, each parent string has a separate selection of crossover point, which

may cause a variation in length of the offspring strings.
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Mutation is another genetic operator used to preserve diversity from one

generation to the following. As explained by Goldberg (1989), ”In the simple

GA, mutation is the occasional (with small probability) random alteration of

the value of a string position. In the binary coding of the black box problem,

this simply means changing a 1 to a 0 and vice versa”. The mutation rate

is the probability of changing each arbitrary bit from its original state at

each generation. The main intention of mutation is to avoid local minima by

preventing the chromosomes from being too similar to each other. It, as a

result, generates random changes into the offspring chromosomes.

Since parents with higher fitness are more likely to pass their characteristics

on to the child, the average fitness would generally increase over a number

of generations. Therefore, the potential solutions in the last generation are

expected to be the best solution ever found during the optimization process,

and the overall trend gets towards fitter solutions. However, due to random

factors involved in reproduction, the children may or may not have higher

fitness values than their parents.

Though GAs have been applied successfully in many different problem sce-

narios, see Cliff (2001), Machado et al. (2002), and Cliff (2003), there are

still issues that need to be resolved, such as efficient problem representation

and adequate scaling of functions to make sure the good genes pass down to

the subsequent generation. Among a fixed number of generations, it is diffi-

cult for GAs to return the optimal solution due to the randomized searching

and the inability of comparing the very small difference between good and

optimal solutions. Moreover, due to the mutation and crossover, some char-

acteristics from good solutions may be destroyed as passing to the subsequent

generation. And, these solutions may not be found again.

3.2.2 Competitive learning

Competitive learning (CL), clustering a number of unlabeled points into dif-

ferent groups based on the similarity of points, is often used in the field
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Fig. 3.2: A competitive learning network. Modified based on Figure 1 of
Baluja (1994).

of artificial neural networks, see Baluja (1994). Figure 3.2 shows a simple

competitive learning network containing three inputs cells and two output

neurons. The input neuron, in this network, represents the feature vector for

each point. And, the outputs represent the group where the point has been

allocated into.

With random initial weights, the activation of the output neuron i is com-

puted during learning with the following formula

(3.1) outputi =
∑
j

wij × inputj

where wij is the weight of the connection between input unit i and output

unit j. The weights of the output unit with the highest activation, i.e. the

winning neuron, are modified to represent the current input better:

(3.2) ∆wij = η × (inputj − wij)

where η is the learning rate. The learning process repeats until the network

is stabilized. In this framework, all input units get the same signal, while
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only the winning neuron with the highest output signal is allowed to fire,

and represent the current input. Through interaction within the network,

output neurons learns to represent different groups of the input signal space.

After the learning process, which is called Competitive Learning, is complete,

the weights of each output neuron can be viewed as a prototype vector for a

cluster represented by this neuron.

3.2.3 Population-based incremental learning

As a combination of genetic algorithms and competitive learning, population-

based incremental learning, which is classified as an estimation of distribu-

tion algorithm (EDA), is based on binary searching space to seek the opti-

mum solution using the technique of probability estimation and sampling.

In analogy to GAs, the population-based incremental learning (PBIL) algo-

rithm maintains a population of potential solutions evolving over a number

of generations. However, the PBIL attempts to create a probability vector

specifying the probability of each bit position containing a ‘1’ in a binary

string to define the population, see, for example, figure 3.3. As shown in the

figure, although population 1 and population 3 having the same probability

representation, the solution vectors of the two population are totally differ-

ent from each other. Thus, this algorithm is capable to maintain diversity in

search as the same probability vector could generate distinct population

Instead of transforming each individual into a probability vector used for

generating and recombination, the probability vector is moved towards rep-

resenting the high evaluation vector with a similar manner to the competitive

learning process. The probability vector is updated based on the following

rule

(3.3) πt = (1− η)πt−1 + ηbi

where πt denotes the probability of containing a 1 in bit position i, η is the

learning rate, and bi represents the i-th bit value of the best solution in the
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Population 1 Population 2 Population 3
0 1 0 1 0 1 1 0 0 1 1 0 1 1 0
1 1 0 0 1 0 1 1 0 0 0 1 0 0 0
0 1 1 0 1 1 1 0 0 0 1 1 1 0 1
1 0 1 0 0 1 1 1 0 0 0 1 0 0 1

Representation Representation Representation
0.5 0.75 0.5 0.25 0.5 0.75 1.0 0.5 0.0 0.25 0.5 0.75 0.5 0.25 0.5

Fig. 3.3: The probability representation of 3 populations of 5 bit solution
vectors. This is modified from original figures provided by Baluja
(1994)

current generation according to the fitness function of the optimization.

At the beginning, information about values of solution vectors is not avail-

able, hence, the initial probability of each bit position is considered as 0.5,

which means at each bit position, either 1 or 0 is randomly created with

equal probability. However, the values of the probability continuously vary

towards values representing better evaluation solutions through an evolution

process over T generational cycles. At each generation, after sampling a set

of n candidate solutions by the current probability vector, each solution is

evaluated according to the fitness function, and the best solution among the

samples is selected. At the next iteration, the probability at each bit posi-

tion in the probability vector is pushed towards the best solution with the

highest fitness from the previous generation, using formula 3.4, to ensure the

best solution during the search is retained. The distance that the probability

changed is determined by the learning rate.

To maintain the diversity, mutation is operated in PBIL in an analogous

manner as it is applied in GA. Baluja (1994) introduces two ways to perform

the mutation before sampling to the next generation. One is to directly

mutate the vectors obtained, while the other is to mutate the probability

vector, with the following formula

(3.4) πt = (1− ε)πt + ωε
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where ε represents the mutation rate, and ω is either 0 or 1 in Baluja (1994).

New samples of the solutions are generated after updating the probability

vector. And, the whole process repeats insistently. As it continues, the

probabilities change from the initial set up of 0.5 towards either 0 or 1. When

the searching loop stops, either the convergence is satisfied which implies that

there is no more improvement in the solutions, or the maximum number of

iterations is reached, or values in the probability vector are either 0 or 1. The

result in the final iteration is therefore considered to be the best solution of

the optimization problem.

3.2.4 Further developments of population-based

incremental learning

3.2.4.1 Multiple populations

Following the research of Branke et al. (2000), which confirm that using

multiple-populations rather than one population works effectively to improve

the performance of Evolutionary Algorithms on dynamic optimization prob-

lems, Yang and Yao (2003) introduce multiple-populations into population-

based incremental learning, and propose two variations of PBIL by employing

multiple probability vectors. The first variation is Parallel Population-Based

Incremental Learning, which has two parallel probability vectors. In order to

make a comparison, one probability vector, applying the same rules as in the

original PBIL, is initialized with probability 0.5, while the other probability

vector is randomly generated. Both are sampled and updated independently.

The sample sizes for both test are equal at the initial iteration, which is half

of the total population. Then, the sample sizes would be adjusted accord-

ingly based on the respective performance of each test, i.e., the sample size

would be increased if the test performs better than the other one, and the

sample size of the other test would be reduced by the same amount.

Another proposed variant is Dual Population-based Incremental Learning,

inspired by the nature of complementarity mechanism. Different from the
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Parellel PBIL where two probability vectors are updated independently, this

approach consists of a pair of dual probability vectors P = (P1, ..., PL) and

P
′

= dual(P ) = (1 − P1, ..., 1 − PL). The two probability vectors are “dual

to each other with respect to the central point in the search space”. As the

principle of dualism, only one probability vector P is updated from learning

the best solution, while P
′

changes automatically. By introducing dualism

into PBIL, samples are widely diversified and a higher robustness towards a

significant environment changes.

3.2.4.2 Continuous search space

The standard PBIL is proposed for a binary search space or using binary

variables. Some recent papers have suggested to extent its application to

continuous search space or using a real-coded variant. Two approaches of

extensions are reviewed in this section. One approach, proposed by Servet

et al. (1997), is to replace the binary strings with an interval [Low,Up]. Each

gene or variable in the function optimization X contains a “continuous and

bounded definition set”. Three parameters are specified to determine the

value of X , namely, the lower boundary Low, the upper boundary Up, and

a probability P interpreted as P (X > Low+Up
2

), which means the probability

of X is uniformly chosen from (Low+Up
2

, Up]. The probability vector updating

rule is same as in the binary version, but with an additional updating of the

intervals. Servet et al. (1997) describe the updating rule as following: If

the i − th component of P is smaller than 0.1 or larger than 0.9, the Upi

is updated to Lowi+Upi
2

, or the Loweri is updated to Lowi+Upi
2

respectively,

and the probability Pi is re-initialized at 0.5. Hence, the new bound of the

search interval becomes (Low, Low+Up
2

] or (Low+Up
2

, Up] correspondingly. This

mechanism starts from a most general model and gradually focuses on a small

region of the whole search space which contains the best solution in most

cases. However, several limitations exist within this framework, such that

the sampling is restricted within the bound, and the changes of boundary is

irreversible.



3. An overview of evolutionary optimization algorithms 86

Another version of PBIL with continuous search spaces is extended by using

Gaussian distributions N(X, σ) to model the distribution of the population,

and applying the selected solutions to update the distribution, see Sebag

and Ducoulombier (1998). The mean of the normal distribution vector, X,

is initially set at the center of the search space, and updated iteratively by

learning from the two best and the worst solutions at the current generation,

see equation 3.5.

(3.5) X t+1 = (1− α) ·X t + α · (Xbest,1 +Xbest,2 −Xworst)

Except for the mean, the standard deviation σ, which measures the diversity

of the population, is updated through different ways of incremental learning.

Even though the assumptions of a normal distribution can be justified in

many circumstances, it may not be accurate in all cases. In this case, the

application of this approach is rather limited.

3.2.5 Applications of PBIL and comparison with

other algorithms

The population-based incremental learning has been successfully applied in

many optimization problems. Baluja (1994) uses PBIL to resolve twelve

problems that can be divided into three categories: the NP-complete prob-

lems (including Jobshop Scheduling, Traveling Salesman, and Bin Packing

problems)1; Standard Numerical Optimization Problems (which are usually

used to assess the performance of GA in literature), and finally the Strong Lo-

cal Optima Problems. Based on the empirical findings, Baluja denotes that

the population-based incremental learning is capable to solve a wide range of

problems. In addition, by comparing the performance of a standard genetic

algorithm with a simple PBIL, he indicates that “The simple population-

based incremental learner performs better than a standard genetic algorithm

in the problems empirically compared in this paper. The results achieved

1 See Baluja (1994) for details.
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by PBIL are more accurate and are attained faster than a standard genetic

algorithm, both in terms of the number of evaluations performed and the

clock speed.”

Following the research of Baluja (1994), many studies have been conducted to

explore the PBIL evolutionary algorithm. For instance, Southey and Karray

(1999) show that a variant of PBIL, which is developed with floating-point

representations rather than bit-strings, achieve better results than a standard

genetic algorithm in evolving a neural networks-based controller for robotic

agents. The studies of Baluja and Caruana (1995) and Larranaga and Lozano

(2002) also confirm that the PBIL outperforms on a large number of real-

word problems.

A recent study of Yang and Yao (2005) evaluates and compares the per-

formance of a traditional GA and PBILs, which include the basic PBIL,

Parallel PBIL, and Dual PBIL. They carry out experimental tests with a set

of stationary and dynamic optimization problems. Based on the results, they

indicate that the performance of all three PBIL variants have been found to

achieve superior performance compared to the standard GA on the stationary

problem. However, with the mutation process, the diversity in the population

improves the SGA performance on dynamic problems. Besides, although the

use of multi-population into PBIL may not improve the performance on sta-

tionary problems, it does significantly improve the performance on dynamic

problems. The introduction of dualism into PBIL also leads to an enhanced

adaptability, and better performance in a dynamic environment.

To examine the performance and adaptability of evolutionary optimization

algorithms, Gosling et al. (2004) conduct a comparative study on the per-

formance of a simple genetic algorithm and population-based incremental

learning involving the Iterated Prisoners Dilemma (IPD), which is initially

studied in Axelrod (1987). In contrast, this experimental result suggests

that a GA approach is slightly outperform to a PBIL approach when both

framework are stabilized. Although increasing the PBIL population size or

reducing GA population size could improve the performance of PBIL com-
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paring with GA, employing mutation or a high learning rate seems not useful

to close any perceived performance gap.

3.3 Multi-objective optimization

In the previous sections, we have presented a review of evolutionary algo-

rithms for single objective optimization. Although some real-world problems

can be solved in a matter of a single objective, quite often it is difficult to

measure the quality of the performance based on one objective function since

the design may require different features which may be competing to each

other. Thus, most of real world optimization problems involve simultaneous

optimization of multiple incommensurable and often competing objectives,

or measures of performance. To maintain the design quality, all of these

objective functions should be considered. For example, financial market par-

ticipants often value different aspects of an exchange market and will thus

likely to use different performance measures, requiring the use of various ob-

jective functions to optimize the market structure. These performance mea-

sures can include the volatility of prices, market liquidity, bid-ask spread,

trading costs, the information efficiency of prices, allocational efficiency of

the market, the profitability of trading, etc. Given that all types of mar-

ket participants will be active in the market, all their concerns have to be

taken into account when determining the optimal market structure. Instead

of considering only one aspect of performance such as maximizing trading

volume in the market, other aspects of performance functions are required

to be optimized simultaneously to represent the different interests of various

stakeholders.

The notion of applying evolutionary computation techniques to solve mul-

ticriteria optimization problems (MOP) dates back to the pioneer work by

Rosenberg (1967). The so called evolutionary multiobjective optimization

is very important. It has been used by engineers, computer scientists, biol-

ogists, and operations researchers alike. Its application in real-world prob-
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lems is continuously increasing, which can be found in various fields: finance,

product and process design, automobile design, the oil and gas industry, or

wherever multiple conflicting objectives need to be optimized for decision

making, such as maximizing profit while minimizing the production cost, see

Coello Coello et al. (2002).

Issues related to the multi-objective optimization (MO) are discussed in this

part. Section 3.3.1 provides some basic concepts and terminology. Tradi-

tional approaches to approximate the set of Parato-optimal solutions are

listed in section 3.3.2. This is followed by a discussion of various multi-

objective evolutionary algorithms in section 3.3.3. Section 3.3.4 presents

the population-based incremental learning for multiobjective optimization,

including its methodology and empirical application. In section 3.3.5 the

convergence of MO is discussed. Finally, section 3.3.6 shows some empirical

comparison of various evolutionary algorithms of multiobjective optimiza-

tion.

3.3.1 Basic concepts and terminology

General MOP. The multiobjective optimization problem2, which is also

called multi-criteria, multi-performance, multi-attribute or vector optimiza-

tion problem, is defined by Steuer (1986) and Sawaragi et al. (1985) as a

problem of optimizing two or more conflicting objectives simultaneously with

certain constraints. Osyczka (1985) describes it in details that MOP is the

process of findings:

“a vector of decision variables which satisfies constraints and op-

timizes a vector function whose elements represent the objective

functions. These functions form a mathematical description of

performance criteria which are usually in conflict with each other.

Hence, the term ‘optimize’ means finding such a solution which

2 Note that the terms “multi-objective” and “multiobjective” are used interchangeably
in this thesis
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would give the values of all the objective function acceptable to

the designer.”

As presented by Zitzler (1999) and Coello Coello et al. (2002) , the mul-

tiobjective problem contains n parameters or decision variables, a set of k

objective functions, and several equality and inequality constrains. Both

objective functions and constraints are functions of the decision variables.

Without loss of generality, a MOP can be written in the following form:

(3.6)

maximize y = f(x) = (f1(x), f2(x), ..., fk(x))

subject to gi(x) ≥ 0 i = 1, 2, ...,m

hi(x) = 0 i = 1, 2, ..., p

where x = (x1,x2,...,xn) ∈ X

y = (y1,y2,...,yk) ∈ Y,

in which x represents the decision or parameter vector, g(i) and h(i) are

constraints, y denotes the objective vector, X is the decision space, and

Y is the objective space. In general, these objectives cannot be optimized

at the same time due to the trade-off 3 relationship between them. As a

consequence, the main task of a multiobjective optimization is to find a set

of Pareto-optimal solutions. We explain these concepts in details in the

following part.

Decision variables. The decision variables are described by Coello Coello

et al. (2002) as the ”numerical quantities for which values are to be chosen in

an optimization problem”. In mathematical terms, each numerical quantity

is represented by xj, j = 1, ..., n. The vector of decision variables can be

3 The term “trade-off” in this thesis implies that improvement in one objective function
cannot be achieved without worsening another one.
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written as:

(3.7) X =



x1

x2

.

.

.

xn


or

(3.8) X = [x1, x2, ..., xn]T ,

where T denotes the transposition of the column vector to the row vector.

Objective functions. To determine how “good” a specific solution is, we

need some criteria or measurement to evaluate it. These criteria, specified

as computable functions of the decision variables, are referred to as objective

functions. The term objective space or objective function space indicates

the coordinate space within which vectors resulting from assessing possible

solutions are plotted. A number of objective functions are involved in most

real-world multi-objective optimization problems. Sometimes, they may be

in conflict with each other, in addition, while some objective functions are

maximized others may be minimized at the same time. Keeney and Raiffa

(1976) reveal a number of desirable characteristics of the objective functions.

Tan et al. (2005) summarize them in the following points: “the objective

functions should be

1. Complete so that all pertinent aspects of the decision problem are pre-

sented.

2. Operational in that they can be used in a meaningful manner.

3. Decomposable if desegregation of objective functions is required or it

is desirable.
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Fig. 3.4: Example of Pareto-optimal solutions in objective space. A modi-
fied figure from Zitzler (1999).

4. Nonredundant so that no aspect of the decision problem is considered

twice.

5. Minimal such that there is no other set of objective functions capable

of representing the problem with a smaller number of elements.”

Constrains. In most optimization problems a number of constraints or re-

strictions, which must be fulfilled to consider a feasible solution, are imposed

in consideration of certain characteristics of the environment, such as time

restrictions, resources limitations, etc. They can be expressed in form of

either inequalities or equalities:

(3.9)
gi(x) ≤ 0 i = 1, ...,m

hj(x) = 0 j = 1, ..., p

The number of equality constraints should not exceed the number of decision

variables, otherwise, it is overconstrained, as there would be more unknown

variables than equations.



3. An overview of evolutionary optimization algorithms 93

Feasible set. The feasible set Xf is defined as a set of decision vectors x

that satisfy the constraints g(x) and h(x):

(3.10) Xf = {x ∈ X | g(x) ≤ 0 ∧ h(x) = 0}

For single objective optimization problems, the feasible set is sorted based

on the only objective function f : for any two solutions a, b ∈ Xf , either

f(a) ≥ f(b) or f(b) ≥ f(a). Therefore, the goal is simply to find the solution

with the maximum (or minimum) value of f . However, for multi-objective

optimization, Xf is partially sorted. It is difficult to obtain a single solu-

tion which simultaneously optimizes all the objective functions. Here is an

example: consider the sale of items, the seller always wants to sell more at

the highest price. In this case, two objective functions, price and trading

volume, are maximized simultaneously, see Figure 3.4. The solution denoted

by point C is better than the one denoted by point D, as the former solution

sells more items at a higher price. To compare D and B, despite almost

equal trading volume, D outperforms at a much higher price. However, it is

difficult to compare A and C, since neither one is superior than the other.

Even though the solution represented by A sells more products, it sells at

lower price than the one associated with C. Similar to the single objective,

the comparison can be expressed mathematically using the relations ≥, >,

and =. In this example, it hold that C > D, D > B, as a result, we can

say that C > B. As illustrated by Zitzler (1999), for a general situation two

objective vectors u and v follow the rules4 that

(3.11)

u = v iff ∀i ∈ {1, 2, ..., k} : ui = vi

u ≥ v iff ∀i ∈ {1, 2, ..., k} : ui ≥ vi

u > v iff u ≥ v ∧ u 6= v

Instead of achieving a single optimum solution, the aim of the multiobjec-

tive optimization is to find good compromises or a set of optimal trade-offs.

4 The relations for a minimization problem(≤, <) are analogical.
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The most commonly adopted notion of “optimality” is originally proposed by

Francis Ysidro Edgeworth in 1881 Edgeworth (1881), in 1896 it was further

generalized by Vilfredo Pareto Pareto (1896). This notion is commonly re-

ferred to as Pareto optimality. Its related concepts such as Pareto dominance,

Pareto optimality, Pareto optimal set, and Pareto front have been widely ap-

plied and reviewed by researchers, see Zitzler (1999), Van Veldhuizen (1999),

and Coello Coello et al. (2002). These terminologies are formally defined as

follows (assuming maximization in all objectives).

Pareto dominance. With no available information on the preference of ob-

jectives, Pareto dominance is applied to evaluate the relative fitness between

any two potential solutions in MOPs. This concept together with Pareto

optimality have been widely applied. A vector a = (a1, ..., ak) is said to dom-

inate vector b = (b1, ..., bk) if and only if a is partially more than b. For any

two decision vectors a and b in a MOP, there are three possible relations (see

Zitzler (1999)):

(3.12)

a � b (a dominates b) iff f(a) > f(b)

a � b (a weakly dominates b) iff f(a) ≥ f(b)

a ∼ b (a is indifferent to b) iff f(a) 6≥ f(b) ∧ f(b) 6≥ f(a)

Pareto optimality. A solution x ∈ Xf is considered to be Pareto optimal

with respect to a set A ⊆ Xf if and only if there does not exist another

x? ∈ Xf such that fi(x
?) ≥ fi(x) for all i = 1, ...k and fj(x

?) > fj(x) for

at least one j, see Abraham and Goldberg (2005). The “Pareto optimal

set” is considered regarding the entire decision space unless otherwise spec-

ified. In other words, a solution is Pareto-optimal if there exists no feasible

vector which can improve the performance without causing a simultaneous

degradation in at least one other objective.

Still referring to the above example and Figure 3.4, we notice that the deci-

sion vector represented by C dominates solutions associated with points B

and D, and it is indifferent from solution A, yet it is dominated by solution
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E. Different from solution A,B,C and D, decision vector of E is not domi-

nated by any other decision vector, i.e., the decision vector is optimal that it

cannot be improved without sacrificing another objective. Therefore, all the

solutions represented by unfilled circles in Figure 3.4, including point E, are

Pareto-optimal, and there are no differences among them.

Pareto optimal set and front. As illustrated by Zitzler (1999), the func-

tion p(A) provides the set of Pareto-optimal vectors in A:

(3.13) p(A) = {a ∈ A | a is nondominated regarding A},

with A ⊆ Xf . Pareto optimal solutions are those solutions whose objec-

tive vector components cannot be all improved at the same time within the

decision space. These solutions are also known as non-inferior, admissible,

or efficient solutions, while the vectors corresponding to the solutions in

the Pareto-optimal set are also referred to as nondominated. The entire set

formed by all solutions whose associated vectors are nondominated is Pareto

optimal set. And, the curve generated by joining the Pareto optimal set

under the objective function is called Pareto optimal front, see figure 3.4.

3.3.2 Traditional approaches

Relative few algorithms have been employed for multiobjective optimization

compared to the techniques available for single objective optimization. Tra-

ditional approaches usually linearly combine the multiple objectives into a

single objective using a particular aggregating function to implement the

search for optimal solutions, see Coello Coello (1998), Zitzler (1999) for a

brief review. In this section, two conventional approaches for MOPs are

discussed, including the weighted-sum method and the constraint method.
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3.3.2.1 Weighted-sum method

This is possibly the most intuitive and most frequently applied traditional

approach for multiobjective optimization problems. Marglin (1967) and Ma-

jor (1969) were the first to recommend the use of weighting in multiobjective

investment problems. In this approach, the MOP is transformed into a sin-

gle objective optimization problem, by employing a scalar weight to each

objective in order to construct a single aggregate objective function:

(3.14)
maximize y = f(x) = w1 · f1(x) + w2 · f2(x) + ...+ wk · fk(x)

subject to x ∈ Xf

where wi are the weighting coefficients indicating the relative importance of

the objectives. The total weight is always assumed to be:

(3.15)
k∑
i=1

wi = 1

Clearly, the solution of a MOP solved by equation 3.14 significantly depends

on the relative values of the weight specified to each objective. With very

little knowledge on how to choose the weights, the designer has to select the

most appropriate weights based on his/her intuition. This technique is hence

essentially subjective, and any optimal solution obtained is a function of the

coefficients applied to combine the objectives. Furthermore, this method can-

not identify all the Pareto-optimal solutions. As reviewed by Coello Coello

(1998), “This approach is very simple and easy to implement, but it has

the disadvantage of missing concave portions of the trade-off curve (in other

words, the approach does not generate proper Pareto optimal solutions in

the presence of non-convex search spaces), which is a serious drawback in

most real-world applications”
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3.3.2.2 Normal constraint method

The normal constraint approach5, proposed by Marglin (1967) to solve multi-

objective problems, maximizes the single most preferred or primary objective

function, and transforms the remaining m− 1 of the m objectives into con-

strains:

(3.16)

maximize y = f(x) = fh(x)

subject to ei(x) = fi(x) ≥ εi (1 ≤ i ≤ m, i 6= h)

x ∈ Xf

The εi specifies the lower bounds, which are adjusted by the decision maker

in order to obtain the multiple nondominated solutions. If the defined lower

bounds are not appropriate, there might be no solution to the transformed

single optimization problem. To prevent this, a proper range of values for

the εi needs to be chosen. However, the required knowledge may not be

available. Another weakness of this approach is that if there are too many

objectives, the coding of the MOPs may be difficult or impossible to write.

In addition, solutions obtained by this approach are more likely to be weakly

non-dominated solutions, which may be unsuitable in certain applications.

3.3.3 Evolutionary multi-objective optimization

algorithms

Conventional optimization techniques often have difficulties in solving mul-

tiobjective optimization problems, e.g., losing the optimal solutions at the

concave portions of a tradeoff curve, see Coello Coello (1996). The weak-

ness of traditional methods has motivated researchers to develop alternative

methods to find Pareto optimal solutions. Evolutionary algorithms have been

recognized to be very efficient and effective for solving sophisticated multi-

objective optimization problems where conventional optimization techniques

5 This is also referred to as ε-constraint approach,
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fail to work well. A multi-objective evolutionary algorithm (MOEA), incor-

porating the concept of Pareto optimality, evaluates performance of a set of

possible solutions at multiple points simultaneously. It allows to obtain the

whole set of Pareto optimal solutions in a single simulation run instead of

performing a series of separate runs in conventional methods. Evolutionary

algorithms have been applied to MOPs for more than two decades. The nu-

merous applications and the rapidly growing interest in the multiobjective

evolutionary algorithms have been gaining an increasing attention, see Fon-

seca and Fleming (1995b), Coello Coello (1998), Zitzler (1999), Tan et al.

(2005), and Zhang and Li (2007). We have reviewed evolutionary algorithms

for single objective problems in the preceding section. This section briefly

reviews some of the most popular evolutionary approaches to multiobjective

optimization.

3.3.3.1 Vector Evaluated Genetic Algorithm

Schaffer (1985) is generally considered the first implementation of a multiob-

jective optimization evolutionary algorithm. Schaffer proposes vector evalu-

ated genetic algorithm (VEGA) by extending the Grefenstette’s GENESIS

program which is based on a Simple Genetic Algorithm (SGA). The VEGA

considers the multiple objectives individually during the evolution. It repeats

the selection procedure for each separate objective to obtain a fraction of each

succeeding populations to fill up the mating pool6. For example, in a MOP

with k objectives and a population size of P , k subpopulations each consists

of P/k individuals would be generated. Every individual in subpopulation is

evaluated, and selected based on one of the k objective functions to fill up a

fraction of the mating pool. All the subpopulations are shuffled together to

generate a new population, which is then followed by the genetic operations

of crossover and mutation. This process is repeated until a predetermined

stopping criterion is met.

6 As described by Deb (2008), the mating pool is “an intermediate population (usually
created by the selection operator) used for creating new solutions by crossover and
mutation operators.”
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3.3.3.2 Multiobjective Genetic Algorithm

Fonseca and Fleming (1993) propose a variation of Goldberg’s Genetic Algo-

rithm, called Multi-objective Genetic Algorithm (MOGA). In this approach,

all nondominated individuals are assigned the same smallest rank value of

one; while other population members are ranked according to the number of

chromosomes by which they are dominated in the current generation. For

example, an individual mi at generation t is dominated by qi individuals in

the objective domain. The current rank of individual mi is thus assigned by

the following rule

(3.17) rank(mi) = 1 + qi

After all population members are ranked, a raw fitness is assigned to each

individual by interpolating from the best (rank=1) to the worst (rank ≤ N)

with a certain function (usually linearly). The fitness value is then calculated

by averaging and sharing the raw fitness values among population members

with the same rank. This is followed by the selection process based on the

ranks to form the mating pool using stochastic universal sampling.

3.3.3.3 Niched Pareto Genetic Algorithm

Niched Pareto Genetic Algorithm (NPGA), which combines a tournament

selection scheme and the concept of Pareto dominance, is introduced by Horn

and Nafpliotis (1993). In this approach, two randomly selected individuals

are compared against a subset from the population (usually about 10% of

the entire population). If one of them is dominated by the members of the

comparison set and the other is non-dominated, then the non-dominated

solution wins. If both are either dominated or nondominated, fitness sharing

will be utilized to further differentiate between them. Each solution’s niche

count is the number of individuals that are located within a certain distance
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from the evaluated solution in the variable space. The individual with least

niche count is then selected for reproduction.

3.3.3.4 Nondominated Sorting Genetic Algorithm

Srinivas and Deb (1994) established Nondominated Sorting Genetic Algo-

rithm (NSGA), in which the only operation varied from simple genetic algo-

rithm is the selection assignment. All the nondominated solutions in the pop-

ulation are first of all classified into one category with a large assigned dummy

fitness value. In order to maintain the diversity, sharing is then achieved by

performing selection procedure using degraded fitness values computed by

dividing the assigned fitness by the niche-count or the number of individuals

around it within a distance. After that, the nondominated individuals in the

first class are ignored and the second class of nondominated individuals are

identified in the same way, but with a smaller assigned dummy fitness value.

The process continues until all individuals are classified with a fitness value.

The entire population is then reproduced based on the fitness value.

3.3.3.5 Strength Pareto Evolutionary Algorithms

Strength Pareto Evolutionary Algorithm (SPEA), which integrates different

MOEAs, is proposed in Zitzler and Thiele (1999). They suggest to maintain

an an external set (archive) storing nondominated individuals of each gener-

ation. A strength value, similar to the ranking value in MOGA, is estimated

for each solution in the external set. In SPEA, the fitness of each individual

is measured by the strengths of all external non-dominated solutions that

dominate it. The effectiveness of this method, as a result, depend on the

size of the external nondominated set. If the size is too large, the selection

pressure and thus the searching speed might be reduced. Therefore, the pro-

posers apply a clustering technique called average linkage method to ensure

the size below a certain level.
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3.3.3.6 Multiobjective Evolutionary Algorithm Based on

Decomposition

Multiobjective Evolutionary Algorithm Based on Decomposition (MOEA/D),

introduced by Zhang and Li (2007), is a recently developed novel evolutionary

algorithm for multiobjective optimization. In this approach, a multiobjec-

tive optimization problem is decomposed into a finite number of optimiza-

tion subproblems. These subproblems are then optimized simultaneously by

evolving a population of solutions, while each of them is optimized by using

information only from its neighboring subproblems. The population, at each

generation, consists of the optimal solution found since the beginning of the

run of the algorithm for each subproblem. The neighborhood relations are

determined by the distances between their aggregation coefficient vectors.

3.3.4 Multiobjective Population-based Incremental

Learning

Another evolutionary algorithm, the population-based incremental learning,

has been presented in section 3.2.3 for solving single objective problems. The

application of this approach, however, has been further extended by Bureerat

and Sriworamas (2007) to multi-objective criteria. In this section, we will

review the use of population-based incremental learning in multiobjective

optimization problems.

3.3.4.1 Methodology

The standard population-based incremental learning, based upon binary

searching space, is developed by Baluja (1994) for single objective design. It

has been found to produce better results than a standard genetic algorithm

in many cases. Subsequently, it has been further extended by Bureerat and

Sriworamas (2007) as a multiobjective optimizer, referred to multiobjective
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population-based incremental learning (MOPBIL). Instead of a single proba-

bility vector used in the simple PBIL, a probability matrix, which comprises

more probability vectors with initial values of ‘0.5’, is created in the MOPBIL

in order to diversify the population. As explained by Bureerat and Sriwora-

mas (2007), “Each row of the probability matrix is a probability vector that

will be used to create a sub-population. Let, N be the number of design

solutions in a population, l be the number of probability vectors and nb be

the number of binary bits. The probability matrix, therefore, has the size

of l × nb where each row of the matrix results in approximately N/l design

solutions as one subpopulation.” Having the probability matrix, the binary

population is then generated based on the matrix.

Similar to SPEA, an empty external Pareto set is also created in MOPBIL

to store the old and current nondominated solutions from the population.

The non-dominated solutions obtained from the union set of the current

population and former external Pareto set based on their objective values

are used to replace non-dominated members in the previous external Pareto

set. If the size of the Pareto set exceeds the predefined maximum size, the set

will be reduced by removing some solutions using the adaptive grid algorithm.

As illustrated by Bureerat and Sriworamas (2007), “By using the adaptive

grid algorithm, one of the members in the most crowded region is removed

from the archive. The crowded regions are updated and the member in the

most crowed region is removed iteratively until the number of non-dominated

solutions is equal to the size of the archive.”

Having revised the external Pareto set, the probability matrix is then updated

based on the nondominated solutions in the Pareto set, and a new population

is subsequently generated according to the updated probability matrix. The

external Pareto set and probability matrix are improved iteratively till the

termination criterion is met.

To update the probability matrix, each row vector of probability matrix is
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revised using the same rule applied in the original PBIL

(3.18) πnewi = (1− η)πoldi + ηbi

where η is the learning rate and bi is the ith bit of the best binary solution.

Different from the PBIL for single objective optimization where bi can be

found straightway, for multiobjective optimization, it is difficult to find the

best solution. Two updating schemes are presented by Bureerat and Sri-

woramas (2007) in order to obtain a suitable value for bi. To begin with the

first scheme, n0 < N binary solutions are randomly chosen from the current

Pareto set. The average value of each bit position of the chosen binary solu-

tions is calculated and utilized as bi to update the probability matrix. The

second scheme uses the weighted-sum method, where weighting factors are

randomly created with the condition of
∑
wi = 1. The weighted-sum

(3.19) fw(b) =
m∑
i=1

wifi

function (3.19) is used to evaluate each binary solution from the union set of

the Pareto achieve and the current population. The solution with the mini-

mum value of the weighted-sum function is selected to update the probability

matrix. For both updating schemes, the mutation is also executed following

the same procedure as in the standard PBIL approach, which is reviewed in

section 3.2.3.

3.3.4.2 Application of Multiobjective Population-based

Incremental Learning

The multiobjective population-based incremental learning has been described

by Kunakote and Bureerat (2008) as “one of the most powerful and robust

multiobjective evolutionary algorithms (MOEAs)”. However, Applications

of multi-objective optimization using the PBIL algorithm are rare thus far

as its development is relatively new.
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Kanyakam and Bureerat (2007) apply MOPBIL on vibration design prob-

lem of a walking tractor handlebar structure. The results show that “the

simple but effective strategy of passive vibration control of the structure”

has been obtained using the algorithms. Kunakote and Bureerat (2008) em-

ploy MOPBIL to solve a multiobjective optimization problem of an uncon-

ventional topological design problem for cantilever plate. The optimization

results show that “MOPBIL is a powerful tool for multiobjective topology

optimisation although its convergence rate is not as good as OCM7. With

the use of MOPBIL, an unconventional design problem can be dealt with”.

Another experimental study of Kim et al. (2009) confirms that “solutions

from MOPBIL were closer to Pareto optimal front than those from NSGA-

II. In real experiments, the proposed MOPBIL algorithm efficiently provided

better solutions with respect to the multi-objectives of the path planner.”

3.3.5 Convergence of evolutionary multiobjective

algorithms

In multiobjective design, no single optimum solution typically exists but in

most cases a set of optimum solutions which represents trade-offs between

the different objective functions is observed. Therefore, guiding the search

towards the true Pareto optimum front is one of the tasks that a evolutionary

multiobjective algorithms should fulfill. In recent years, the convergence to

the global Pareto-optimal front becomes an interesting topic investigated

by some researchers, see, for example, Hanne (1999), Rudolph and Agapie

(2000), Marti et al. (2009) and Goel and Stander (2009).

As denoted by Aittokoski and Miettinen (2008), “It seems not to be widely

fathomed that often referred EMOs, such as Pareto Archived Evolution Strat-

egy (PAES), Strength Pareto Evolutionary Algorithm (SPEA) or Elitist Non-

Dominated Sorting Genetic Algorithm (NSGA-II) are not guaranteed to con-

verge (Laumanns et al. (2002)). Rather, at some point of the solution process

7 OCM represents optimality criteria method.
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the populations start to oscillate ... this behavior has been recognized dur-

ing the last decade, for example, by Deb (2001) (S. 6.2.5), Hanne (1999),

Laumanns et al. (2002), Rudolph (1998), Rudolph (1999) and Rudolph and

Agapie (2000)”

Goel and Stander (2009) indicate the difficulty of achieving the convergence

in multiobjective optimization by demonstrating that “the GA requires tens

of thousands of simulations to converge to the global Pareto optimal front”.

And, Deb (1999) discusses four features presented in a multiobjective design

problem that may cause difficulties in converging to the true Pareto-optimal

front, which include multi-modality, deception, isolated optimum, and collat-

eral noise (see Deb (1999) for detailed explanation). In addition, Laumanns

et al. (2002) argue that the missing operator for elite preservation is the

reason that three MOEAs, namely MOGA, NSGA, and NPGA, could not

achieve the convergence to the global Pareto-optimal set.

Some other papers, such as Costa and Oliveira (2002), Abido and Bakhash-

wain (2003), Kazancioglu et al. (2003), Lee et al. (2004), Costa and Oliveira

(2004), Mostaghim and Teich (2004), Kanyakam and Bureerat (2007), Ku-

nakote and Bureerat (2008), Ayala and dos Santos Coelho (2008), Wang et al.

(2009), and Kim (2010) simply determine a fixed number of generations after

which the optimization experiments are stopped and the results treated as if

convergence had been achieved. For instance, the stopping criterion of Costa

and Oliveira (2002) is to stop the execution after 250 generations. Lee et al.

(2004) terminates the algorithm if the number of the generation reaches 300.

3.3.6 Empirical comparison of evolutionary

multiobjective optimization algorithms

A variety of evolutionary algorithms have been developed in solving mul-

ticriteria optimization problems for the past two decades. And, the ques-

tion of which method is superior than others is consequently raised. Many

researchers evaluate and compare the performance of different MOEAs to
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answer the question. For instance, Van Veldhuizen (1999) measure the per-

formance of four MOEAs with six test functions and a set of performance

metrics. And, Knowles and Corne (2000) evaluate the performance of NPGA,

NSGA, and PAES (Pareto Archived Evolution Strategy, which is an MOEA

proposed by the authors).

Zitzler et al. (2000) provide a systematic comparison of eight evolutionary al-

gorithms for MOPs on six test functions. These algorithms include: VEGA,

NPGA, NSGA, SPEA, HLGA (Hajela and Lin’s weighted-sum based ap-

proach), RAND (a random search algorithm), SOEA (a single-objective evo-

lutionary algorithm using weighted-sum aggregation) and FFGA (Fonseca

and Fleming’s multiobjective EA). Based on the results, a ranking of MOEAs

with respect to the distance to the Pareto optimal front is presented in de-

scending order of merit: 1. SPEA. 2. NSGA. 3. VEGA. 4. HLGA. 5.

NPGA. 6. FFGA. This is much consistent with the findings of Zitzler and

Thiele (1999).

After developing population-based incremental learning for multiobjective

optimisation, Bureerat and Sriworamas (2007) compare the performances

of two PBIL algorithms using different updating schemes with another four

MOEAs, namely the NPGA, NSGA-II, SPEA-II and PAES. Based upon the

experimental results, the multiobjective PBIL is said to be “one of the pow-

erful tools for multiobjective optimisation”. Two MOPBILs with different

updating schemes are found as equally good. In most cases, MOPBIL is com-

parable to the previously developed MOEAs in terms of convergence rate,

while the MOPBIL has superior capability in providing population diversity.

Kanyakam and Bureerat (2007) employ three well-known multiobjective evo-

lutionary optimizers, namely NSGA-II, PAES, and SPEA-II to measure the

performance of MOPBIL. They observe that the Pareto optimal front ob-

tained from MOPBIL is superior than the others. And, PBIL is considered

as the “best multiobjective optimiser for the proposed design problems.”

Kim et al. (2009) compare the performance of MOPBIL to that of NSGA-

II. The results show that “solutions from MOPBIL were closer to Pareto
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optimal front than those from NSGA-II. In real experiments, the proposed

MOPBIL algorithm efficiently provided better solutions with respect to the

multi-objectives of the path planner.” To get the comparative performance

of PBIL, SPEA and MPSO (multi-objective particle swarm optimization),

a recent paper by Bureerat and Srisomporn (2010) explores three multiob-

jective design problems. Based on the results, PBIL and SPEA are superior

than MPSO. PBIL significantly outperform SPEA in one design problem,

while SPEA and PBIL are found to be equally good in the other two design

problems.



4. Agent-based computational model

of artificial financial market

4.1 Introduction

As we saw in Chapter 2, it is extremely difficult to use traditional methods

from behavioral finance and auction theory to analyse the complicated finan-

cial market mechanism. To overcome the limitations this research develops a

new approach through the use of automatons, a large number of design fea-

tures, a wide range of performance functions and evolutionary optimization

algorithms to study and obtain the best found market structure of financial

markets. In addition, we aim to develop a generalized framework which can

be used to analyse various market structures with the single model.

We develop an agent-based model in which traders use a very simple trading

algorithm that does not assume rational behavior or any other optimizing

rule. Such zero-intelligence (ZI) traders have been first introduced in Gode

and Sunder (1993) with the explicit aim to investigate the importance of the

trading rules for the outcomes of trading. The use of appropriate automa-

tons would allow us to focus on the influence the market structure, i.e., set

of trading rules, has on the outcomes without any influence from traders’

behavior. Using computer simulations of the trading behavior the market

performance can easily be determined for a variety of performance measures.

With traders essentially behaving randomly with minimal restrictions, we

are able to investigate a wide range of trading rules, e.g., the tick size, degree
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of intervention by market makers, priority rules, and market transparency,

commonly found in financial markets and conduct research into the design

of a call market to obtain the optimal combination of the trading rules. By

investigating a large number of design features, we can build markets that

are much closer to reality than is usually possible, enabling us to evaluate

the optimal market structures under much more realistic conditions than an

analytical model would enable us to do.

In this chapter I give an overview of the simulation framework which was used

to conduct the experiments that are reported on in later chapters. In section

4.2, I discuss how the artificial market is constructed with an overview of the

traders, trading process and trading rules used in the market. In order to

prove the credibility of our model, we then test its ability to generate some

well-known stylized facts of asset returns in financial markets in section 4.3.

4.2 Simulation framework

In this research we use a call market as an approximation of continuous

double auction market. The most common continuous double auction mar-

kets are financial markets which also provide the background to this research

project. In this market we batch all orders in each time step, where a time

step consists of the submission and revision of orders as well as the batch-

ing of orders, the determination of the transaction price and execution of the

trades. All the matched orders are executed in a single trade. In the following

sections, we explain the four elements that compose our model, which include

the traders’ behavior, determination of transaction prices, cancelation and

revision of orders, and trading rules considered.

4.2.1 The behavior of traders

The traders used in Krause (2006) submit random limit buy or sell orders

which have a distribution around the long-term fundamental trend for buy
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orders or around the price at which the asset has previously been bought for

sell orders. This trading behavior was able to reproduce the fat tails and

multi-scaling, but failing for other stylized facts. We intend to develop these

traders further by integrating elements of the learning process used by the

ZIP-traders from Cliff and Bruten (1997), and including a simple feedback

mechanism which in other models often generates additional stylized facts,

see e.g. Iori (2002).

Different from Krause (2006) in which all trades are executed in a double

auction market, we investigate a market in which a fixed number of N traders

trade a single asset in a call market. We use such a market structure as an

approximation for the double auction market that can be found in most

markets; consequently we do not cancel orders left unexecuted in the order

book but carry these over for consideration in the next trade.

At any time each trader is either a buyer or seller of the asset. Whether a

trader is a buyer or a seller is determined as follows: if his last transaction

was to buy the asset he becomes a seller and if his last transaction was to sell

the asset he becomes a buyer. A change from buyer to seller or vice versa

for a trader only occurs if this particular trader has no orders remaining in

the order book, i.e., his entire order has been executed. In the initialization

of the experiments buyers and sellers are determined randomly with equal

probability.

A buyer Bi submits bid orders Bt
i , i = 1, ..., N at time t with the bid price

randomly taken from a log-normal distribution:

(4.1) lnBt
i ∼ N

(
lnV t + µbuy, σ

2
buy

)
,

where V t is the long-term fundamental value in time period t, and here as-

sume to be equal to the initial price P0
1. All traders in this market perceive

the same fundamental value of the asset V . Keeping the fundamental value

1 We could also introduce a positive long-term trend of the fundamental value without
changing the results of our model.



4. Agent-based computational model of artificial financial market 111

constant does provide a good approximation in the short time frame we con-

sider here and exogenous changes to the fundamental value are of no interest

in our investigation given that market participants, being zero-intelligence

traders, are assumed not to have any information they can trade on. µbuy

denotes the average amount by which the bid price exceeds the fundamental

value, and σ2
buy represents the variance of bid prices around the mean. With

µbuy < 0 the limit bid price will on average be below the fundamental value,

although traders may well submit orders with limit prices above the funda-

mental value given the random nature of the limit price in our model. We

might interpret this either as uncertainty about the fundamental value to

which traders pay limited attention, different opinions about the true funda-

mental value or the fact that many traders will ignore the fundamental value

to a large degree in their decision-making. While experiments have shown

that the exact specification of the decision-making process is not affecting

results, we require a minimal amount of information which traders use as a

common anchor for their decision; this is necessary to avoid the limit prices

and thereby transaction prices to evolve such that an infinitely large bubble

emerges. This constraint on the behavior of traders thus implicitly acts as a

budget constraint as too large limit prices are not permitted thereby limiting

the amount that can be invested. Similarly, too small limit prices will not

be observed, acting as a minimum size requirement for entering the market.

If we denote by P̂ t−1
i the price at which a trader bought the asset the last

time, the ask price quoted by seller Si at time t is then randomly chosen from

the following distribution

(4.2) lnSti ∼ N
(

ln P̂ t−1
i + µsell, σ

2
sell

)
,

in which µsell denotes the average amount by which the ask price exceeds

the price previously paid by the trader, and σ2
sell represents the variance of

ask prices. A trader will only be able to sell those shares he actually holds,

i.e. we do not allow for any short sales, thereby acting implicitly as a budget

constraint on the behavior of traders.
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The order size for a sell order is always equal to the number of shares held,

i.e. a seller must sell all the securities he has in the next round of trading.

Therefore,

(4.3) lnQ(sell)ti = Inv(sell)ti,

where Inv(sell)ti represents the remaining number of shares held by seller i.

However, the order size for buy orders Q(buy)ti is a random variable with

(4.4) lnQ(buy)ti ∼ iidN
(
µsize, σ

2
size

)
,

where µsize denotes the average of the order size, and σ2
size is the variance of

the order size.

4.2.2 Determination of transaction prices

Following the price formation approach applied in Gode and Sunder (1993)

and Cliff and Bruten (1997), the transaction price is determined where the

demand and supply curves intersect, i.e., the price at the maximal trading

volume is chosen as the transaction price. In this market, limit orders with

the highest bid prices are first traded and cleared in the market; oppositely,

the cheapest sell orders are traded with priority. If we find that there are

multiple prices at which the trading volume shows the same maximal value,

we employ trading rules to determine which of the prices will be chosen. As

shown in Figure 4.1, when demand and supply curve intersect at the quantity

Q, the possible trading prices are P1 and P2. Moreover, any imbalances

between buy and sell orders at the transaction price will lead to the need for

rationing, see figure 4.2, where D1 is different from S1; how this rationing of

buy or sell orders is conducted will depend on the trading rules as outlined

below.
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Fig. 4.1: Demand and supply schedules for the case of multiple prices. The
downward sloping curve represents the demand function and the
upward sloping curve represents the supply function. This is re-
drawn and modified from Cliff and Bruten (1997) Figure 3.

Fig. 4.2: Demand and supply schedules for the case of order imbalance.
The downward sloping curve represents the demand function, and
the upward sloping curve represents the supply function. This is
redrawn and modified from Cliff and Bruten (1997) Figure 3.
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4.2.3 Cancelation and revision of orders

After the completion of each transaction, all the trading information is

recorded. The executed orders are canceled from the order book, which

contains the traders’ ID number, whether they are buying or selling, their

limit price, order size, order submission time and length until the order is to

be revised. Before the next trading, new limit orders taken from the following

distributions are submitted to replace the canceled orders :

lnBt
i ∼ N

(
lnV t + µbuy, σ

2
buy

)
,(4.5)

lnSti ∼ N
(
lnP t−1

i + µsell, σ
2
sell

)
,

where P t
i denotes the market price at time t.

An order remains in the order book until it is filled or canceled; for partially

filled orders the remainder of the order remains in the order book. An order

not filled after T ti time steps is canceled, where

(4.6) lnT ti ∼ iidN
(
τ, σ2

τ

)
,

in which τ is the average time of order remains in the order book, and σ2
τ

denotes the variance of this time. There are at least two reasons for the re-

placement. Traders after a period of time may change their initial decision if

their orders have not been cleared. The revision of orders could help them to

reevaluate and revise their submitted orders. In addition, resubmission could

improve the liquidity by traders who need to trade urgently and re-assess

their orders to meet their demands. After the cancelation and replacement,

the new order book would consist of the remaining orders together with the

resubmitted new orders.
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4.2.4 Trading rules considered

4.2.4.1 Tick size

In the market we are able to vary a wide range of trading rules. We will

firstly investigate different tick sizes, i.e. minimum differences between prices

at which orders can be submitted. The tick size has several impacts during

trading. As it represents the cost of getting inside other competitors’ quote,

the tick size affects the motivation of submitting limit orders and bid-ask

spreads. The empirical literature has been provided in section 2.1.4.1. In

order to make limit prices to comply to the tick size, we will lower any limit

price of buy orders as determined in (4.1) and (4.5) to the next permissible

price and similarly raise the limit price of sell orders determined by (4.2) and

(4.5) to the next permissible price.

4.2.4.2 Priority rules

Secondly, different priority rules are employed to determine the rationing

of orders in the case of an imbalance between buy and sell orders at the

transaction price. The enforcement of priority rules, as the primary difference

between market structures, is another important design feature of trading

systems. We use in particular time priority, which is the most commonly

used rule. It adheres to the principle of first-come first-served, and ensures

that orders submitted earlier will be filled first; reverse time priority in which

orders submitted later will receive priority to be filled; another frequently

used rule to promote traders to place larger orders is size priority in which

larger orders receive priority; random selection in which the orders to be

filled are selected randomly and with pro-rata selection in which all orders

get filled partially to the same fraction.
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4.2.4.3 Multiple prices

Thirdly, for the case of multiple prices at which the trading volume is maxi-

mal we determine the transaction price to be either the price closest to the

previous price, the price furthest from the previous price, the highest price,

the lowest price, the price with the minimum order imbalance (the absolute

value of the difference between the volume of buy and sell orders at the

transaction price), the price with maximum order imbalance or a randomly

selected price.

4.2.4.4 Market transparency

Fourthly, we also consider market transparency. In a transparent market,

traders are able to have access to information on the order book and react

to any orders submitted by other traders. In order to replicate this aspect

of the market we assume that a fraction γ of the traders has access to the

order book and can observe the potential transaction price as well as the

ensuing order imbalance if the trades were to happen instantly. They use

this information to revise their own order size according to the size of the

order imbalance (the difference between the size of buy and sell orders at the

transaction price) δ for a buy and sell order, respectively:

Q̂t
i = Qt

i − αδ,(4.7)

Q̂t
i = Qt

i + αδ,

where α represents the fraction of the order size revised, Qt
i is the order size

before revision, and Q̂t
i is the order size after revision. For instance, if there

are excessive buy orders at the transaction price, i.e., δ > 0, an informed

buyer will decrease his order size to reduce the order imbalance while an

informed seller will increase the order size to absorb the unfilled orders. The

revised size is then used to determine the transaction price.
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4.2.4.5 Market making

As a final aspect we consider the intervention of a market maker into the

trading process. A market maker would intervene or influence the prices such

that he is prepared to trade a fraction θ of the order imbalance at any time

in the market with the existence of imbalance between demand and supply

at the transaction price by submitting an offsetting order with price

(4.8)
̂̂
P
t

= P t − λI t,

where I t denotes the inventory of the market maker, i.e., the number of shares

held by him, λ is a coefficient representing the price adjustment of market

maker. Holding a volume of shares as inventory, the I t is a positive number;

in contrast, the I t is a negative value representing a purchasing position. For

instance, if the market maker is holding a certain amount of securities, then

I t > 0 and the price quoted by market maker can be rewritten as

(4.9)
̂̂
P
t

= P t − λ|I t|,

where |I t| is the absolute value of I t. In this case, the market maker is willing

to set a price lower than market price to stimulate purchasing activity in order

to reduce the inventory. On the other hand, if the market maker needs to

buy securities to fill up the inventory, then I t < 0 and the price set by market

maker would be

(4.10)
̂̂
P
t

= P t + λ|I t|.

In this case, the quote by market maker is higher than the market price in

order to attract more sellers to enter the market and add additional inventory.

To sum up, increases in inventory lead to drop of prices, while inventory

reductions result in increase of prices. Such a linear relationship between the

price and inventory has been established in the inventory-based models of

market-making, see section 2.1.5.2 for an overview.
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In line with the behavior of the other traders, we do not assume that the mar-

ket maker is employing a sophisticated optimization procedure but merely

applies a different behavioral rule than other traders. The linear adjustment

rule from equation (4.8) as proposed for pure dealer markets does not allow

for any strategic interactions of market makers with limit order traders, nor

does the price setting ensure that the order imbalance is actually reduced by

a fraction θ. Furthermore, we assume that the market maker only submits

either a bid or an ask price, depending on which side the order imbalance

occurs. In that sense the market maker we introduce here is not directly

comparable to those in pure dealer markets but more like those of the spe-

cialists of the NYSE who only intervene actively by taking positions in cases

of market imbalances, e.g. a significantly larger amount of buy than sell or-

ders (or vice versa) within a given period of time, a comparable situation to

the order imbalances in our model.

4.3 Comparison of market structures

The stylized facts of financial assets, including volatility clustering, reversion

to the mean, multi-scaling, and fat-tail distribution of returns, which are em-

pirical findings that are robust across a wide range of instruments, markets

and time periods, are so widespread that they have become an important

benchmark to test any models of trading behavior against their ability to

generate these properties. When developing a model of trading which we use

to evaluate market structures in this research, it is thus reasonable to inves-

tigate its ability to generate the stylized facts through the traders’ behavior.

Therefore, in this section, we analyze three stylized facts generated by our

model, including the long memory of return volatility; fat tails of the return,

and multi-scaling of returns. Log return of the asset prices is used as the

“return” or the basis for obtaining the stylized facts. For volatility cluster-

ing, we suggest to calculate the autocorrelation of absolute returns instead

of squared returns. For distribution of returns, we investigate the cumulative
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distribution of absolute logarithmic returns on a log-log plot. Finally, we ap-

plied the method used in Krause (2006) to analyze the fact of multi-scaling.

With various trading rules applied, we can then compare the properties of

the resulting asset prices under different market structures.

4.3.1 Parameter constellations considered

We consider a market with 100 traders, which consists of 50 buyers and 50

sellers in the first round. The order book contains the traders’ ID number,

whether they are buying or selling, their limit price, order size, order submis-

sion time and length until the order is to be revised. The initial order book

is constructed randomly by determining 50 buy orders with a randomly se-

lected limit price and order quantity using V t = 100; similarly we determine

50 sell orders in the same manner with P̂i
t−1

= 100. The other parameters

chosen are described in table 4.1. We assume that the trading price equals

the previous price if there is no trading.

Each simulation is run for 51,000 time steps, where the first 1,000 data is

eliminated from the investigation to avoid the influence arising from the

initial conditions. To evaluate the effect of various parameter values and

priority rules, we analyze the time series with different trading rules. For

each simulation only one parameter value or trading rule is changed, while

the others remain at the default value.

4.3.2 Price and trading volume

We first present some features of price and volume data obtained from a

typical simulation, in which all the trading rules are randomly selected. It

is clearly shown in Figure 4.3 that in the simulated market, asset prices

fluctuate around the long-term fundamental value of 100. We observe that

both high and low prices are temporary and that prices tend to move back

towards the average over time, which is consistent with the theory of mean
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Parameter Description Value
µbuy Mean of bid exceeding fundamental value -0.1
µsell Mean of ask exceeding fundamental value 0.1
σbuy Standard deviation of bid 0.3
σsell Standard deviation of ask 0.3
τ Mean time of order in order book 1+ln100
στ Standard deviation of time in order book 1
µsize Mean of order sizes 1
σsize Standard deviation of order sizes 1
t Tick size 0*, 0.1, 0.2, 0.5
α Fraction of order size revised 0*, 0.02, 0.2, 0.5
λ Price adjustment of market maker 0*, 0.1, 0.2, 0.5
γ Fraction of informed traders 0*, 0.2, 0.5, 0.99
θ Imbalance traded by market maker 0*, 0.2, 0.5, 0.99

* denotes the default value for the experiments.

Tab. 4.1: Parameter values considered in the experiments of comparison of
market structures

reversion. In addition, we find that in some regions, prices tend to move

slowly and steadily, while in other periods, the amplitude of price fluctuation

becomes much higher. It indicates that small price variations are more likely

to be followed by small price variations, while large price variations tend to

cluster together, which proves the volatility clustering to a certain extent.

We also notice that during certain time periods prices remain stable, i.e.,

the line is flat, which indicates that no trading occurs. This may happen

if there are no agreed prices matching between buy orders and sell orders.

However, it does not last long as unfilled old orders would be revised to meet

the current demand of traders, which may accelerate a matching between the

bids and asks.

For trading volume, it is hard to observe a clear trend in Figure 4.4; it

seems to move continuously without any pattern. However, compare with

the price series, we can see that if the price change, or the absolute value of

price increment is large, the market will experience a high trading volume.

In accordance with the theory, higher absolute value of price change would

increase the volatility, which has a positive correlation with trading volume.
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Fig. 4.3: Price series obtained from a typical simulation

Fig. 4.4: Volume series obtained from a typical simulation
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In addition, the trading volume is zero when there is no matching between

bids and asks.

4.3.3 Volatility clustering

The autocorrelation function of absolute returns decays only slowly, thus

providing evidence for the existence of volatility clustering. The strength of

the decay can be measured through the autocorrelation function γ:

(4.11) γ ∝ ∆tb,

where ∆t is the lag and b denotes the exponent determining the decay which

is empirically smaller and equally to 0.5, (Cont et al. (1997), Breidt et al.

(1998)). Based on our results, for most trading rules the exponent takes a

value of approximately 0.5 for the investigated parameter settings. However,

when we use certain rules to determine the transaction price in cases where

multiple prices are feasible, this picture can change. If we choose the price

at which the order imbalance is minimal, the exponent will be significantly

higher and sensitive to the other parameters. On the other hand, if the price

is randomly selected the resulting exponent will be significantly lower, in some

instances the obtained exponents are lower than 0.3. This is consistent with

?, who indicates that “While GARCH models give rise to exponential decay

in autocorrelations of absolute or squared returns, the empirical autocorrela-

tions are similar to a power law...with an exponent β ≤ 0.5, which suggests

the presence of ‘long-range’ dependence in amplitudes of returns...”.Figure

4.5 illustrates the size of this exponent for representative trading rules. We

find that the results are largely stable for a wide range of trading rules and

only very few constellations - usually trading rules not commonly found in

real markets - give rise to different outcomes.
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Fig. 4.5: Volatility clustering coefficient
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Fig. 4.5: Volatility clustering coefficient (ctd.)
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4.3.4 Fat tails of the return distribution

One property nearly all financial time series exhibit is fat tails of returns rt,

which manifest themselves in a power law distribution at the tails, showing

a tail exponent of α ≈ 3:

(4.12) 1− CDF ∝ |rt|−α,

where CDF denotes the distribution function of returns. We find that for

most trading rules the tail exponent is approximately 3, and only when the

multiple price rule states that the price is determined either randomly or

where the minimum order imbalance is, do we find even fatter tails with

a tail exponent closer to 1. Figure 4.6 provides representative examples of

these findings.

4.3.5 Multiscaling

Another property returns commonly exhibit is multi-scaling. We estimate

(4.13) E [|rt (∆t)|q] ∝ ∆tϕ(q),

where rt (∆t) denotes the return over ∆t time periods and ϕ(q) is a function

of the moment q. In the absence of multi-scaling we find ϕ(q) = qH, with H

being the Hurst coefficient, where H = 1
2

for normally distributed variables.

Multi-scaling emerges for a non-linear function ϕ(q). To investigate the non-

linearity of ϕ(q) we run the following regression:

ϕ(q) = a+ bq + cq2.(4.14)
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Fig. 4.7: Multi-scaling of returns
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If we find that c 6= 0, we can conclude that ϕ(q) is non-linear and thus the

returns exhibit multi-scaling. We find a very mixed picture regarding multi-

scaling, for some trading rules evidence of multi-scaling is very significant

while for others it seems to be absent. For the multiple price rule choosing

the price with the maximal order imbalance or a random price will produce

a convex function ϕ(q). When using priority rules that allocate orders pro

rata we tend to find a convex function, while a range of other trading rules

do not produce multi-scaling. Figure 4.7 illustrates typical examples of these

findings.

4.3.6 Evaluation of computer experiments

Overall we observe that the market mechanism we developed in this paper

does reproduce a number of statistical properties that are found in real asset

markets, which provides some evidence on the credibility of our model. These

properties are found to be robust over a wide range of trading rules and

parameter settings. We find that in particular changes in the multiple price

rule towards determining the transaction price randomly or choosing the price

with the lowest order imbalance seem to change the observed properties of

the times series.

We thus can infer that the auction mechanism generates realistic time series

properties which are not arising from the complex behavior of agents trading

the assets but are rather the result of the market structure itself. It has

been found empirically that the properties generated are very stable across

asset classes, trading arrangements and time; the robustness of the results

in our model with respect to different trading rules are well in line with this

result. It suggests that the empirically observed properties are all generated

by the auction mechanism and the detailed trading rules employed are only

of limited relevance for the observed outcomes.



5. Optimization of market structures

with single objective function

Having an appropriate model of simulating financial markets, it is now capa-

ble to carry out the investigation of the optimal market structure, i.e. the set

of trading rules that provide the best performance. The methodology used

to optimize the market structure is a computer experiment in which trad-

ing is simulated over a given number of time periods with a given market

structure. The optimal trading rules are found evolutionary by population-

based incremental learning. As a combination of genetic algorithms and

competitive learning it makes PBIL a successful and efficient search mecha-

nism employed in such complex optimization problems as the one presented

in this research. Furthermore, in order to consider the different interests of

various market participants we employ a number of performance measures

as our performance functions, including the trading volume, trading price,

return volatility, and bid-ask spread. Using different measures of market per-

formance as objective functions to evaluate market structures we can then

analyze the best market structure for various market participants.

In this chapter, section 5.1 describes the optimization framework used for sin-

gle objective optimization. This is followed by the evaluation of experimental

results of simulations with four different objective functions in section 5.2.

Finally, section 5.3 concludes the findings of the best-found market structure

with single objective function.
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5.1 Population-based incremental learning

for single objective optimization

In analogy to GAs, the population-based incremental learning algorithm

maintains a population of potential solutions evolving over a number of gener-

ations. To define a population, PBIL attempts to create a probability vector,

measuring the probability of each bit position having a “1” in a binary solu-

tion string. Instead of transforming each individual into a probability vector

used for generating populations and recombination, the probability vector is

moved towards the vector that shows the best performance in a similar man-

ner to a competitive learning process. The probability vector πt is updated

based on the following rule

(5.1) πt = (1− η)π∗t−1 + ηv̂

where π∗t−1 denotes the probability of containing a 1 in each bit position

that was used in the previous generation, and v̂ represents the best solution

in the previous generation, selected according to the fitness function of the

optimization and η the learning rate. This algorithm is capable to maintain

diversity in search as the same probability vector could generate distinct

populations.

To employ the PBIL algorithm, we first create a probability vector specifying

the probability of each bit having the value one. All initial values for the

PBIL process are determined randomly, i.e. the initial probability of each

bit is 0.5. With the probability vector thus determined, a population will be

produced from this vector according to those probabilities. In each generation

we determine the fitness of each potential solution and the best solution in

the current generation is selected and used to update the probability vector

for the subsequent generation using equation 5.1.

In each time step we determine 100 different parameter constellations using πt

and then determine the best performing parameter constellation from these
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100 different market simulations, giving v̂.

Each trading rule is coded into a vector v, where the precision of the con-

tinuous variables α, λ, γ, θ is such that each variable is divided into 17 bits

each, the tick size t into 20 bits, and the discrete variables (priority rules,

multiple prices) are coded such that all rules are covered.

We let this process continue until no changes to v̂ are found, thus the prob-

abilities in πt are either 1 or 0, giving identical results for all 100 parameter

constellations. Therefore, the resulting market structure established by the

last remaining set in the process is then the best-found market structure.

Each simulation is run for 2,000 time steps, where the first 1,000 data points

are eliminated from our analysis to avoid the influence arising from the initial

conditions. The single-objective PBIL optimization is conducted using a

population size of 100 over 200 generations with a learning rate of 0.2. We

repeat each optimization experiment for 20 times with the same parameter

constellation to observe the best-found set of trading rules.

We now investigate the optimal market structure by applying the above

single objective PBIL optimization algorithm with four different performance

functions. The first objective function is to maximize trading volume, as the

higher trading volume, the more liquidity in the market, and orders can be

more quickly traded. We also use bid-ask spread as a fitness function. As a

measure of the liquidity of the market and of the size of the transaction cost,

bid-ask spread is minimised to obtain the optimal market structure. Another

objective function is to maximise trading price. For companies going Initial

Public Offering, they all wish to be listed in a market where prices keep

rising. The last performance measurement we use is return volatility, which

is minimised in order to find the best market structure with less risk and

uncertainty.

To obtain the optimal market structure with single fitness function, the mar-

ket and initial order book are constructed based on the same rules and pa-

rameter values in section 4.3.1, except that the trading rules are selected
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randomly from a specified range rather than choosing from a pool of four

different values. The parameters chosen are described in table 5.1 and the

initial price P0 set at 100.

Parameter Description Value
µbuy Mean of bid exceeding fundamental value -0.01
µsell Mean of ask exceeding fundamental value 0.01
σbuy Standard deviation of bid 0.3
σsell Standard deviation of ask 0.3
τ Mean time of order in order book 1+ln100
στ Standard deviation of time in order book 1
µsize Mean of order sizes 1
σsize Standard deviation of order sizes 1
µ Trend of the fundamental value 0
t Tick size [0,10]*
α Fraction of order size revised [0,1]*
λ Price adjustment of market maker [0,1]*
γ Fraction of informed traders [0,1]*
θ Imbalance traded by market maker [0,1]*

* denotes the parameter range used in the optimization.

Tab. 5.1: Parameter values considered in the computer experiments of
single-objective optimization

5.2 Evaluation of computer experiments

The results achieved by PBIL are converged fast, normally achieved within

120 generations for all simulations. The convergence is determined based on

the criterion that all the probability vector values go to either 1 or 0, which

mean there will be no further changes in the results. The experimental results

with the objective function of maximizing trading volume are discussed in

the following. Results for the remaining experiments with the other objective

functions are discussed in Appendix A.
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5.2.1 Maximization of trading volume

We first investigate the optimal market structure with the objective function

of maximizing trading volume. Trading volume, as an indication of market

liquidity, represents the total number of shares or assets traded in a market

for a given period of time. Market participants have a preference of markets

with higher volume, since the higher the volume, the easier it is to get in and

out of a position quickly; the more liquidity is present, and the more com-

petitive the market is. Table 5.2 summarizes the best-found trading rules,

as well as the maximal trading volume from the 20 simulation experiments.

Due to the stochastic nature of the trading process, even if we use the same

combination of trading rules, the resulting trading volume is still different

in each run. Thus, to make them more comparable between results from 20

simulations, we use the maximum of the trading volumes that are generated

after the results of desirable trading rules converge. The table is sorted by

the first column, the trading volume, from smallest to largest. The second

column contains “Fraction specialist”, which represents the fraction of imbal-

ance traded by market maker. This is denoted as Theta in section 4.2.4.5 on

page 117. “Fraction revised” in third column refers to the fraction of order

size revised by informed trader. This is denoted as Alpha in section 4.2.4.4.

“Price adjustment” in forth column is the coefficient used to get the mar-

ket maker’s quotes, see equation 4.8 in section 4.2.4.5. “Fraction informed”

in fifth column denotes the fraction of informed traders in the market, see

section 4.2.4.4 for detailed explanation. The sixth column contains the best-

found tick size, while the last two column present the best-found multi-price

rule and priority rule. All the symbols used here are shown in table 5.1.

After obtaining the best-found market structure, we present the results, the

observations and the conclusions of the experiment in the following section.

We analyze each of the best-found trading rules individually, including tick

size, priority rules and multi-price rules, transparency and the intervention

of market maker.
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5.2.1.1 Tick size

As revealed in table 5.2, the values of tick size fluctuate widely between the

minimum value of 0.057 and the maximum value of 5.300. The mean value of

the best-found tick size from the 20 simulations is 2.738, which is significantly

higher than the tick size of one-sixteenth dollar previously applied on the

NYSE. Therefore, not only the small tick sizes, which are normally applied

in most of the stock exchanges, can generate high trading volume; large tick

sizes can also be employed to maximize the trading volume.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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Fig. 5.1: Simulation results of the best-found tick size for maximising trad-
ing volume

In figure 5.1, we report the simulation results of the best-found tick size for

maximizing trading volume. Since the results are sorted based on the trading

volume, the first observed tick size in the figure corresponds to the lowest

volume generated, while the last tick size corresponds to the highest trading

volume. It is shown in figure 5.1 that the best-found tick sizes disperse in two

regions. When trading volumes are comparatively higher (trading volumes

of simulations 14 to 20 in table 5.2), the corresponding tick sizes are smaller

than one. While volume are relatively lower (trading volumes of simulations
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1 to 13 in table 5.2), the tick sizes are, on the contrary, very high. The result

is suggesting that small tick size leads to higher trading volume, and large

tick size generates lower trading volume.

While tick size has been set small, any two submitted quotes would be very

close to each other. This leads to the case that the submitted orders will

overlap more easily, which would then help to match the buy and sell orders.

In other words, the closer the submitted quotes, the easier buy and sell orders

would be matched up. It naturally increases the chances of trading when

new incoming orders are submitted. Consequently, it leads to an increase

in trading volume. On the contrary, if the tick size has been set too large,

the gap between order quotes from different traders would be very wide,

which may increase the difficulties of matching buy and sell orders, and hence

decrease the chances of trading. As a result of this, the trading volume would

decrease. Therefore, our results suggest that small tick sizes lead to higher

trading volume, and large tick sizes tend to generate lower trading volume.

This result is also consistent with the literature, e.g., see Harris (1994), Al-

laudeen and Eric (1998), and Chan and yang Hwang (1998). Harris (1994)

find that the trading volume would be enhanced with a decreased tick size.

Allaudeen and Eric (1998) suggests that trading volume is more likely to be

increased with a reduced tick size if the stock is actively traded. As discussed

by Allaudeen and Eric (1998), this result is consistent with the price reso-

lution hypothesis. In addition, they explain that “Direct trading costs are

lower when the tick size is reduced and may, as a result, increase trading vol-

ume. However, higher negotiation costs may dampen the increase in trading

volume due to lower direct trading costs. Hence, a reduction in tick size may

not always lead to increased volume.”

Observation 1: From table 5.2 and figure 5.1, it follows that smaller tick size

will lead to a higher trading volume and vice versa.
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5.2.1.2 Priority rules and multi-price rules

Based on the experimental results shown in table 5.2, we do not observe a

specific priority rule that maximize the trading volume. Moreover, there is no

clear pattern relating the priority rules to the trading volume or other rules

selection. All the potential priority rules, except for the rule of pro-rata, can

be applied to maximize the trading volume. However, the time priority rule

is the most commonly obtained rule from the simulations. This is also the

most common rule used in real markets.
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Fig. 5.2: the best-found tick size and multi-price rule for maximizing trad-
ing volume

The bar charts represent the different multi-price rules. They do not refer to any values.

Different heights are assigned to different bars to indicate the difference of rules.

For multi-price rules, three potential rules could be used to achieve the desir-

able result, which are to choose the highest or lowest price, or the one closest

to the previous price. Among these, the most frequently obtained multi-price

rules are the lowest and closest price rules. In addition, we find a connection

between the tick size and the multiple price rule, see figure 5.2. For instance,

when the closest multi-price rule is obtained to maximize the trading vol-

ume, the best-found tick size is smaller than 1; with the multi-price rule that
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highest price is selected, the tick size increases to the range of 2.77 to 3.70

(see table 5.2 for the data); and it further increases with the multi-price rule

that the lowest price is selected. This result indicates a trade-off between

the size of the bid-ask spread and the multi-price rule that would become

relevant should the bid-ask spread be used as an alternative or additional

performance indicator for the market.

From our results, when small tick size is found to be desirable to maximize the

trading volume, the best-found multi-price rule is the closest price rule. When

tick size is small, the submitted quotes are easily to get closer together within

a comparatively small range. In this case, in order to enhance the trading

volume, sell order prices should be around a price at which more trades would

occur1. With the closest price rule, we select the closest potential price to

the previous market price as the market price2. Sell order prices in the next

round of trading, which depends on the market price in this round, would

then be close to not only the market price at which the trading volume is

maximal in the previous round, but also the market price in the two rounds

before. Thus, the probability of matching with buy orders would be much

higher, and the trading volume would be enhanced as well. Orders in the

middle part of the order book would be executed, leaving orders with extreme

prices remaining in the order book for future trade.

On the other hand, when large tick sizes are desirable to maximize the trading

volume, the best-found multi-price rules are either the highest price rule or

the lowest price rule. While tick size is large, the submitted quotes are further

1 Buy order prices do not move much from time to time as they are randomly chosen
from the distribution based on the fundamental price, whereas sell order prices al-
ways change according to the last purchasing price, which is the market price in this
auction market, see section 4.2. Thus, the sell order prices are an important factor in
influencing the trading volume because if they can easily match with bid prices the
trading volume will be higher, otherwise it is lower. Sell order prices are hence our
main concern here.

2 The market price is always chosen at which the trading volume is maximal, see section
4.2.4. In some cases, there might be multiple prices at which the trading volume shows
the same maximal value. Thus, multi-price rules are adopted to determine which of
the potential prices to be the market price. In this case, it is the price which is the
closest to the previous market price.
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apart from each other, and the range of the prices are comparatively larger

to the case when tick size is small. In this case, if we still use the closest

price rule and focus on the central part of the order book, it would make less

matching between buy and sell orders, which in turn reduces trading volume.

As large tick sizes pushes submitted quotes away from each other, there would

be more orders waiting to be traded at both ends of the order book rather

than in the center of the order book. Thus, more trading would be executed

if we focus on both ends of the order book. With the highest/lowest price

rule, the sell orders (with prices based on the previous market price: either

the highest potential price or the lowest potential price) in the next round

are moved away from the middle to some extreme areas in the order book

where orders have been left unfilled from previous trading rounds. Hence,

apart from the matching between new orders, the remaining orders from

previous rounds can also be matched and traded with the new submitted

orders. Therefore, the trading volume is enhanced.

From figure 5.2, we also observe that when the best-found tick sizes are

the largest, the lowest multi-price rule is desirable to maximize the trading

volume; while the best-found tick sizes are comparatively lower, the highest

price rule is found to be the best multi-price rule. If the tick size is very large

and the highest price rule is used, the sell order prices might have too much

movement, which then may lead very high prices and make it difficult to

find buy orders to match, i.e., few buyers are willing to accept and trade at

such high prices. This asymmetry of the orders would consequently reduce

the trading volume. However, if the lowest price rule is adopted, though

the large tick sizes lead to a large spread of prices, the sell order prices, in

this case, are comparatively lower, and hence there would be comparatively

more matching between buy and sell orders than the case that the highest

price rule is adopted. Once the tick size reduces, the lowest price rule could

only make a small movement of the ask prices that not much orders could

be matched. Instead, the highest price rule should be employed, whereas the

movement is large enough to induce more orders to be matched and hence

the trading volume is maximized.
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Observation 2: As apparent from figure 5.2, a relation between tick sizes and

multi-price rules emerges while obtaining the best market structure.

5.2.1.3 Transparency

As discussed in section 4.2.4, in a transparent market, traders can observe

information on the order book and revise their own order size based on the

market information of order imbalance. With respect to market transparency,

the best-found market structure indicates that in order to maximize trading

volume a very small fraction of 2.2%, on average, of traders should be able

to access information on the order book and react to any ensuing order

imbalance if the trades are to happen immediately. The parameter values,

with a small dispersion, as shown in figure 5.3(a), does not change much from

the mean in different simulations.

Our results show that the low transparency, as represented by a small fraction

of traders are able to access information on the order imbalance, does not

necessarily reduce trading volume but rather the reverse (i.e. less traders

informed on the order book information, more orders would be traded). Since

transparency allows traders to observe information about the imbalances

between current market supply and demand from the order book, as well as

to revise their orders before the trading is taking place, the higher the level of

transparency the wider the discrepancy between the revised cumulative buy

and sell order sizes (i.e. if more traders revise their orders accordingly based

on their observation on the order imbalance, the cumulative order sizes for

buy and sell would be further apart from each other). For instance, if the

order imbalance is greater than zero - that is when buy order sizes is greater

than sell order sizes at the transaction price, all informed traders would revise

down(up) their buy(sell) order sizes not only at the transaction prices but

also at all the other price levels, and hence increases the gap between the

cumulative order sizes for buy and sell. Although the order revision may

reduce the order imbalance between the supply and demand from the order

book, the level of trading volume is only dependent on the number of the
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(b) the best-found fraction of order size revised

Fig. 5.3: Simulation results of market transparency for maximizing trading
volume

most possible matched orders between the supply and demand sides of the

order book, which are obtained by using the cumulative buy and sell order

sizes. As a result of the large gap between the revised order sizes induced by
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high level of transparency, the trading volume would reduce to a level lower

than in the case where fewer traders are informed on the order imbalance.

This result is consistent with the literature. As demonstrated by Goldstein

et al. (2007), with increased transparency, “Measures of trading activity,

such as daily trading volume and number of transactions per day, show no

relative increase, indicating that increased transparency does not lead to

greater trading interest”. In addition, Aitken et al. (2001) confirm that “the

enhancement in pre-trade transparency, through tightening the undisclosed

order regulation in October 1994, resulted in a significant decline in trading

volume.”

Moreover, based on the results, the informed traders are suggested to revise

their order sizes with the adjustment of, on average, 77.3% of the order

imbalance. Except for two values (of simulation 5 and 7), all other resulting

parameter values are above 60%, see figure 5.3(b). Intuitively, the impact

of the revisions would be bigger if a large fraction of order size has been

revised. Yet, our previous findings suggest that very large would deteriorate

trading volume. However, when taking into account our previous results

that on average only 2.2% of the investors are informed (i.e. only a small

fraction of investors would access the information and revise their order sizes

accordingly), the overall impact of the order size revision is significantly

diminished. In other words, although the best-found order size fraction to

be revised is large (77.3%), the impact of this revision is small for the reason

that only limited number of investors who are able to revise their orders.

Observation 3: Following figure 5.3(a), it is found that to increase trading

activities markets should provide less transparency.

5.2.1.4 The intervention of market maker

Lastly, we analyze how trading volume can be maximized with the interven-

tion of market maker. As shown in table 5.2 and figure 5.4(a) the average

value of the fraction of order imbalances traded by market maker from the
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(a) the best-found fraction of order imbalance traded by market maker
for maximizing trading volume

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.2

0.4

0.6

0.8

1

Simulations

Pr
ic

e 
ad

ju
st

m
en

t o
f m

ar
ke

t m
ak

er
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Fig. 5.4: Simulation results of intervention of market maker for maximizing
trading volume

experimental simulations is very high (at 93.5%), while most of the values

are around 90%. It thus follows that market maker should be more active to
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trade in the market in order to increase the trading volume. This is compati-

ble with the common belief and common knowledge. If market maker trades

more in the market, more unfilled orders can be traded and cleared, which

in turn increase trading volume.

Similar to the priority rules, we do not observe a clear pattern for the desir-

able value of price adjustment of market maker to reach the maximal trading

volume, i.e. we observe maximum trading volume under either high or low

price settings by the market maker. This is due to the fact that it is very dif-

ficult to identify a particular value of the price adjustment of market maker.

The transaction price submitted by the specialist is formed using equation

4.8, where λ is averaged at 0.533, with a quite broad range from 0.024 to

0.924, see table 5.2 and figure 5.4(b). Consequently, as our results suggested

the price setting of the market maker does not affect the trading volume.

This may because that when the market maker is intervening the market by

trading a part of the order imbalance (either as a buyer or a seller), his price

setting depends on its own inventory levels rather than the current order

imbalance, therefore the impact of the price setting by the market makers on

the trading volume is vague.

Observation 4: From table 5.2 and figure 5.2.1.4, it follow that the inter-

vention of market maker stimulates trading activities and leads to a higher

trading volume.

5.2.1.5 Summary of results

The main results of the optimization of market structure with the fitness

function of trading volume can be summarized as follows. In order to achieve

the maximal volume, the stock exchange should implement a tick size of

either from the range of 0 to 1 or from the range of 2.77 to 5.30, depending

the selection of multi-price rule; allow only a very small proportion (about

2%) of traders access to information in the order book, but a high fraction of

order imbalance should be traded by market maker. The use of priority rules,
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on the other hand, does not show any correlation to the trading volume. Our

results are consistent with real market observations, except for the selection of

tick size. We can therefore conclude that the main effect on trading volume

arises from the tick size, multi-price rule, access to the order book, and

intervention of market maker.

5.3 Summary of single-objective

optimization experiments results

We have analyzed the best-found trading rules for each optimization experi-

ment with a different objective function (see section 5.2.1 and A. This section

summarizes the main results found from the experiments.

Apart from the small ticks used in real markets, significantly large tick sizes

have also been found to be desirable in most of the optimization cases inves-

tigated in this research. Our results suggest that smaller tick sizes lead to a

higher trading volume while larger tick sizes reduce volume, see Observation

1 on page 138. In addition, a higher tick size, instead of a smaller tick, should

be implemented in order to minimize the bid-ask spread, which differs from

previous research, see Appendix A.

A special connection between the best-found tick sizes and multi-price rules

has been observed in all the experiments with various fitness functions, see

Observation 2. For example, when the best-found tick size of maximizing

trading volume is smaller than 1, the closest multi-price rule is selected;

when the tick size increases to the range of 2.77 to 3.70, the multi-price

rule that highest price is obtained; and if the tick size further increases, the

multi-price rule that selecting the lowest price is employed.

We do not observe a unique combination of priority rule and multi-price rule.

The time priority rule and the closest multi-price rule are the most frequently

obtained rules. However, all the other rules, except for the rule of pro-rata,
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have been attained in the optimization experiments. Similarly, as the result

for the market transparency and the extend of market maker intervention

vary in wide ranges, it is hard to identify a particular desirable value.

Finally, we find that the results of the best-found trading rules differ signifi-

cantly with different objective functions, e.g., the best-found combination of

trading rules that maximizes the trading volume is unable to minimize the

bid-ask spread. For market transparency, it has been found that in a less

transparent market trading volume is much higher, see Observation 3. How-

ever, it is not always true that a low degree of market transparency would

achieve the best market structure with different objective functions, e.g., the

influence of market transparency are vague on trading price and volatility,

see Appendix A. Similarly, while intervention of market maker stimulates

trading activities and increases trading volume, see Observation 4, it, how-

ever, suggests to be maintained at a lower level to minimize market volatility,

see Appendix A. Given that market participants often value different aspects

of an exchange and use different performance measures simultaneously, we

need to employ multiple objectives when optimizing the market structure in

order to consider the various concerns of market participants.



6. Optimization of market structures

with multiple objective functions

The single-objective optimization of market structures has been conducted

using trading-volume, trading-price, bid-ask spread or return volatility as

the performance measurement. In this section, we extend the framework

to a multi-objective setting to evaluate how any conflicts between different

interests in market characteristics might be resolved. For simplicity this

research will only consider cases consisting of two objective functions, e.g.,

maximizing trading volume while minimizing the bid-ask spread. Though

the developed framework is also valid for higher dimension cases, the use

of only two objectives ensures a straightforward visualization of the results

obtained.

6.1 Population-based incremental learning

for multiobjective optimization

Applications of multi-objective optimization using the PBIL algorithm are

rare thus far, e.g., Bureerat and Sriworamas (2007), and this paper is one of

the few applications in this field. Instead of a single probability vector used in

the PBIL for single objective optimization, a probability matrix containing

numerous probability vectors is created in the MOPBIL. Each probability

vector is used to generate a sub-population, and updated, similar to the
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single-objective optimization, using equation 5.1. In addition, the probabil-

ities are subject to mutation at a mutation rate ξ and the actually chosen

probability π∗t will be

(6.1) π∗t = (1− ξ)πt + ξε

with ε ∼ U [−1; 1] and π∗t restricted between 1 and 0. This algorithm is

capable to maintain diversity in search as the same probability vector could

generate distinct populations.

To employ the multi-objective PBIL algorithm, we first create a probability

vector specifying the probability of each bit position having the value one. All

the initial value for the PBIL process is determined randomly, i.e., the initial

probability of each bit position is considered as 0.5. With this probability

vector a population is produced according with its values. In each generation

we determine the fitness of each potential solution and the best set in the

current generation is selected and used to update the probability vector for

the subsequent generation using (5.1) and (6.1).

In each time step we determine 100 different parameter constellations using

π∗t and then determine the best performing parameter constellation from

these 100 different market simulations that then makes v̂. Each trading rule

is coded by the same method we applied in the single-objective optimization.

As is common with multi-objective optimization, we do not observe an easy

convergence of results (even after 5,000 generations no convergence towards

a clearly identifiable Pareto-efficient frontier was observed), see section 3.3.5

for examples and discussion of these issues. For this reason we run the

optimization for 500 generations and use the entire population of the resulting

final generation to analyze our results. Investigating the evolution of the

Pareto-efficient frontier we observe that using more generations does not

improve the solutions presented here as the Pareto-efficient frontier does not

move any further. During the last few hundred generations we only observe

an oscillation of the efficient frontier without any significant improvements.

The number of generations used is about 4 times the length it took the
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single-objective optimization in section 5.1 to converge and should therefore

represent an adequate time length for the evolutionary algorithm to evolve.

As reviewed in section 3.3.5, it is common in multi-objective optimizations

to determine a fixed number of generations after which the optimizations is

stopped. Thus, our approach is very much in line with the literature.

To obtain the optimal market structure with multiple performance functions,

we apply the same parameter values used in the single objective optimiza-

tion simulations, see section 5.1. However, instead of 200 generations for the

single-objective optimization, the multi-objective PBIL optimization is con-

ducted over 500 generations with learning rate of 0.2 and a mutation rate of

0.01 for the reason discussed in section 3.3.5. We repeat the multi-objective

optimization 30 times, which are 10 times more for the single-objective opti-

mization simulations, with the same parameter constellation to obtain more

data and reduce the amount of noise remaining from the lack of convergence.

6.2 Evaluation of computer experiments

Four experiments are conducted to investigate the optimal market structures

using multi-objective PBIL algorithm. Each experiment seeks to obtain the

best combination of trading rules which can optimize two specific objective

functions simultaneously, e.g., maximizing trading volume while minimiz-

ing bid-ask spread; maximizing trading price and minimizing bid-ask spread;

maximizing trading volume and minimizing return volatility, and finally min-

imizing bid-ask spread while minimizing return volatility. The experimental

results of the best-found market structure with the objective functions of

maximizing trading volume and minimizing bid-ask spread are presented in

the following part. The other experimental results are discussed in Appendix

B.
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6.2.1 Trading volume and bid-ask spread

First of all, we only consider two objective functions namely: trading volume

and bid-ask spread. The aim is to find the Pareto front which consists of

the best combination of trading rules that maximize trading volume and

minimize bid-ask spread. In figure 6.1 we show the maximized trading volume

and minimized bid-ask spread of the final generation for the entire population

for all 30 runs of our computer experiments restricted to the area close to

the Pareto-efficient frontier. All the points in the figure are solutions found

from the simulations. We have identified nine markets that approximately

determine the Pareto-efficient frontier, these points are identified as large

points and associated with numbers. We observe a trade-off between the

maximal trading volume and the minimal spread, the approximate location

of the Pareto-efficient frontier is sketched by the line to the lower right.

This figure clearly shows that a small spread will be associated with a low

trading volume while a high trading volume will necessitate a large spread.

As shown in figure 6.1, market 1 has the smallest trading volume and bid-

ask spread, while market 9 has the highest trading volume and spread. This

positive relationship is very pronounced; such results are commonly found

for Pareto-efficient frontiers not only for multi-objective optimizations but

also portfolio selection theory. The desirable combination between trading

volume and spread will depend on the preferences of the decision-maker and

how he values the importance of these two aspects; if the preferences are

such that concerns about the bid-ask spread dominates, small changes to

these preferences will result in a very different location of the optimal market

structure on the Pareto-efficient frontier.

Observation 5: As shown in figure 6.1, a trade-off between the maximal trad-

ing volume and minimal bid-ask spread has been observed. A small trading

volume is always associated with a small spread, while a higher trading vol-

ume is associated with a higher spread.
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Fig. 6.1: Market performance of maximizing trading volume and minimiz-
ing bid-ask spread after 500 generations

6.2.1.1 Tick size

Figure 6.2 presents the best-found tick size of the obtained nine market struc-

tures that approximate the pareto-efficient frontier. It shows that when con-

cerns about the bid-ask spread are dominating (e.g., in market 1 where spread

is the minimal), a large tick size should be chosen and a small tick size if

concerns about trading volume are more important (e.g., in market 9 where

trading volume is the highest). The results are consistent with the finding in

the the single-objective optimization experiments for maximizing the trading

volume and minimizing bid-ask spread: when maximizing trading volume a

small tick size would be desirable; when minimizing inside spread a large tick

size would be more favorable.

This finding is analogous to that discovered in the single-objective optimiza-

tion. As explained in appendix A.1, when tick size is large, quotes of many

orders might be centered around a few ticks. As a result, the bid-ask spread

after trading would be narrowed. On the other hand, a smaller tick size leads

to order quotes being closer together. Hence, an incoming order is more likely
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to be matched and executed rather than remaining stored in the order book,

awaiting another order to be submitted before trade occurs. Consequently,

the trading volume increases with the lower tick size, see section 5.2.1.1.

Observation 6: The best-found tick size found in the multi-objective opti-

mization experiment of maximizing trading volume and minimizing bid-ask

spread follows the similar trend that has been observed in the single-objective

optimization experiments. As shown in figure 6.2, a large tick size is preferred

when concerns about spread are dominating, and a small tick size should be

used if concerns about trading volume are dominating.
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Fig. 6.2: the best-found tick sizes for maximizing trading volume and min-
imizing spread

6.2.1.2 Multi-price rules and priority rules

The best-found multi-price rule is to choose the nearest price to the previous

price, except for the first two markets where the best-found multi-price rule

is to select the lowest price in case of multiple prices, see figure 6.3. Again,

the relation between the selection of multi-price rules and the best-found tick
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Fig. 6.3: the best-found multi-price rules for maximizing trading volume
and minimizing spread

sizes, which has been observed in the single-objective optimization simula-

tions in section 5.2.1.2, has also been found in this experiment, see figure 6.2

and 6.3. When the best-found tick size is less than 1, the closest multi-price

rule is found to be the desirable rule to maximize trading volume and min-

imize the inside spread. When the tick size is larger (around 5), the lowest

multi-price rule is the best-found rule. Order prices tend to close together

when tick size is small. In order to increase the volume, sell order prices

should be around the price at which maximal trades occur. The closest price

rule is thus selected as it choose the closest potential price to the previous

trading price as the market price in this round. With this rule, sell order

prices in the next round would be close to not only this round’s market price

but also the previous round’s market price at which the maximal trading vol-

ume exists. Consequently, the probability of matching between buy and sell

orders are higher. On the other hand, when tick size is large, the submitted

quotes spread widely in the order book, which causes more orders waiting to

be traded at both ends of the order book. Hence, the lowest price rule, which

allows the sell orders moving away from the middle to some extreme areas
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in the order book, is selected (for detailed explanations, see section 5.2.1.2).

Three priority rules are found capable to maximize the trading volume and

minimize the inside spread, see figure 6.4. The best-found rules include

selecting the orders randomly, or based on their submission time (i.e., first in

first out), or based on the reverse time selection rule (i.e., last in first out),

of which the time priority is always selected especially when trading volume

is considered as the main aim by the decision maker.

Observation 7: The relation between the best-found tick size and the selection

of multi-price rules has also been observed in the multi-objective optimization

experiments.

1 2 3 4 5 6 7 8 9

Pareto-efficient points

Pr
io

rit
y 

ru
le

s

Reverse Time Priority

Random Selection

Time Priority

Fig. 6.4: the best-found priority rules for maximizing trading volume and
minimizing spread

6.2.1.3 Transparency

As displayed in figure 6.5(a), the results indicate that a very small fraction

of approximately 2% of traders are suggested to access information on the

order book and revise their order size based on the order imbalance. In
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(a) the best-found fraction of informed traders for maximizing trading
volume and minimizing spread
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(b) the best-found fraction of order size revised for maximizing trading
volume and minimizing spread

Fig. 6.5: Simulation results of market transparency for maximizing trading
volume and minimizing spread

general, we observe that a decreasing fraction of informed traders leads to

a higher trading volume (and associated with a larger bid-ask spread). For

instance, in market 1 where trading volume is very low compare to the other
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8 markets, the best-found fraction of informed trader is very high at 4.79%;

when trading volume increases to 89.6 in market 9, the best-found fraction

decreases to 1.56%.

This is consistent with the single-objective simulation results of maximizing

trading volume that trading volume would increase if the fraction of informed

traders maintained at a low level. This is because that if more traders are

informed, the discrepancy between the revised cumulative buy and sell order

sizes would be wider as all informed traders would revise their order sizes

according to the order imbalance. This would then lead to a smaller trading

volume as the matching orders between the supply and demand are reducing,

see 5.2.1.3 for more detailed explanations.

Similar to the results of single-objective optimizations of maximizing trading

volume and minimizing bid-ask spread, no clear pattern has been observed for

the fraction of the order imbalance revised by informed traders. Figure 6.5(b)

reveals that the best-found fraction revised by informed traders seems to be

independent of the location on the Pareto-efficient frontier at approximately

44%, and it fluctuates between 10% to 0.7%.

Observation 8: Following figure 6.5(a), it is found that a decreasing fraction

of informed traders stimulates trading volume and enlarges bid-ask spread.

6.2.1.4 The intervention of market maker

We notice that unless the decision maker puts great emphasis on a large

trading volume at the expense of the spread, the fraction of order imbalance

traded by market maker should be very small as can be observed from figure

6.6(a). It increases dramatically with more concerns on trading volume. The

intervention of a market maker obviously increases the trading volume as

he trades otherwise unfilled orders. However, results are ambiguous for the

price adjustment of market maker, here no clear pattern can be identified

for different points along the Pareto-efficient frontier, but, all the values are

very low, less than 0.06.
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(b) the best-found price adjustment of market maker

Fig. 6.6: Simulation results of intervention of market maker for maximizing
trading volume and minimizing spread

These results are much in agreement with the experimental results of max-

imizing trading volume. The intervention of market maker do increase the

trading volume as he trades orders which cannot be filled in the market.

On the other hand, the price setting of market maker, which correlates to
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the market maker’s inventory levels instead of the current order imbalance,

shows no clear impact on the trading volume.

Observation 9: As shown in figure 6.6(a), the best-found fraction of imbalance

traded by market maker is comparatively higher when trading volume is the

main concern, instead of the bid-ask spread.

6.2.1.5 Summary of results

We have analyzed experimental results of maximizing trading volume and

minimizing bid-ask spread. A trade-off has been found between the two

objective functions: while trading volume is higher, the corresponding bid-

ask spread is lower, and vice versa. The main results from our computer

experiments as outlined above are that for solutions requiring a larger trading

volume (and associated higher bid-ask spreads) smaller tick sizes are required,

the best-found degree of market maker intervention should be high, while the

best-found fraction of informed traders should be maintained at low level.

Time priority rule and the multi-price rule of choosing the nearest price from

the previous price are the most applied rules when concerns about the trading

volume dominates. The relation between the tick size and multi-price rule has

again been observed in the multi-objective optimization simulations. We also

notice that most of the results obtained in this section are much consistent

with the results obtained in the single-objective optimization simulations of

maximizing trading volume and minimizing bid-ask spread.

6.3 Summary of multi-objective

optimization experiments results

The main results from our computer experiments of multi-objective opti-

mization as outlined above are that only large tick sizes are required for
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maximizing price and minimizing bid-ask spread; for other objective func-

tions, the best-found tick sizes are distributed widely from 0 to 6. Our result

that a larger tick size is required is not in accordance with the tick sizes used

in real markets, but it is consistent with findings in single objective opti-

mizations in section 5.1. Moreover, most of the priority rules and multi-price

rules have been attained to achieve the best market structure, except for the

farthest multi-price rule and the rule of selecting the price based on order

imbalances; and pro-rate and size priority rules. And, the most often ob-

tained rules are the lowest multi-price rule and time priority. For the market

transparency, we find that, in general, only small fraction of traders should

be informed in order to get the best market performance with different fit-

ness functions. This result is the only one that remains unchanged in various

experiments. Besides, the best-found intervention of market maker shows

ambiguous results. Finally, analogous to the previous results, we do not find

a particular combination of trading rules that could be applied to optimize

the market structure with different pairs of objective functions.

Comparing these results with those in section 5.1 in which the same model

and optimization technique are used for single objective function, we find

that our results here are largely consistent with those obtained in the last

section. Most of the best-found trading rules obtained here are much similar

to those obtained in the single-objective optimization, or observe the same

trend to achieve the desirable market structure, where many were found to

be very variable when running different experiments. For example, similar

to the results from single-objective optimization, most of the best-found tick

sizes attained here remain significantly higher than the tick size employed

in real markets. In addition, the connection between the best-found tick

sizes and multi-price rule selection observed in single-objective optimization

experiments has also been found in the multi-objective optimization simula-

tions, see Observation 7. Also, the most frequently obtained priority rules

is the time priority in both single and multiple objective function optimiza-

tions. This rule has been applied in many real markets. Different from the

single-objective optimization, the market transparency shows a clear trend in
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the multi-objective optimization in which a small number of informed traders

are much preferred.



7. Conclusions and discussion

We investigated evolutionary mechanism design of stock markets though the

use of automatons and evolutionary optimization algorithm. This final chap-

ter concludes the work by summarizing the research, considering the main

contributions, and discussing its limitations and suggestions for future work.

7.1 Research summary

Stock exchanges today face increasing competition due to the powerful trends

of migration of trading and listings abroad. To attract more companies for

listing their stocks and investors for trading, exchanges require to offer an

efficient, fair and competitive trading environment. They have begun to

improve their market structures or change their trading characteristics to

become more competitive. Market design is therefore taking on new impor-

tance that markets need to compete (O’Hara (2001)).

To provide insights into the optimal market structure, this research explores

the evolutionary design of call markets in which orders of traders batched,

i.e., order submissions collected over a short period of time and then executed

in a single trade. The most common call markets are financial markets which

provide the background to this research project. This work relates the market

microstructure theory to the mechanism design problems by investigating

a wide range of potential trading rules, including tick size, priority rules,

multi-price rules, market transparency, and intervention of market maker,

commonly found in financial markets to determine the optimal combination

of these rules to enhance the market performance.
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In order to overcome the drawbacks of conventional models in the market

microstructure literature, we develop an agent-based model featuring near-

zero-intelligence traders. In this approach, traders follow very simple trading

rules which does not assume rational behavior or any other optimizing rule.

Introducing heterogeneous traders along various aspects also enable us to gen-

erate realistic market characteristics. The main objective of this research is

to investigate optimal market structure. It has been proved that the primary

cause of the high allocative efficiency of auction markets and the convergence

of transaction prices to equilibrium levels is the market discipline imposed

on traders; intelligence or profit motivation is not necessary (see Gode and

Sunder (1993)). The use of zero-intelligent traders in this research allows us

to focus on the influence the market structure has on the outcomes without

any impacts from traders’ behaviors. In addition, it has been found that the

use of zero-intelligence traders closely mimics stock market and generates

realistic and efficient results, see section 2.2.3. In contrast to our approach,

the results of conventional models are often dominated by the behavior of

the agents and it proves difficult to distinguish their impact from that of the

market structure.

Having developed an appropriate model, we investigate the credibility of our

model by reproducing stylized facts through the trading behavior of near-

zero intelligence traders. Based on computer simulations, we confirm that

our model is capable to reproduce some of the most important stylized facts

found in financial markets, including the long memory of return volatility;

fat tails of the return distribution; and multi-scaling of returns. We also

study the stylized facts under various market structures. It has been found

that the properties observed do not vary significantly with the trading rules

applied; only with a small number of trading rules did we observe a change

in properties. This outcome is in agreement with the observation that the

stylized facts are observed in most asset markets, regardless of trading rules

applied.

After confirming the credibility of our model, exploring the optimal market

structures, which is the main objective of this research, is then conducted evo-
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lutionary using population-based incremental learning as an efficient search

algorithm in this complex problem. Market participants often value different

aspects of an exchange and will thus likely to use different performance mea-

sures, requiring the use of different objective functions to find the optimal

market structure. Therefore, a wide range of objective functions, which are

commonly believed as of traders’ interests, is used in this research, including

maximizing trading price or trading volume, minimizing bid-ask spread or

volatility of returns.

We aim to optimize the market structure based on both single objective

function and multiple objective functions. From the experiments with single

objective, we find a quick convergence of the trading rules towards their best-

found combination. We have analyzed the combination of trading rules for

each experiment with various fitness function. And, the best-found set of

trading rules differ significantly if objective function changes.

This framework is then extended to a multi-objective setting to evaluate

how any conflicts between different interests in market characteristics might

be resolved. In order to identify the best possible market structure we use

multi-objective population-based incremental learning algorithm to derive

the Pareto-optimal set of market structures. In order to choose the market

structure that should be implemented, the market structures of those markets

close to the Pareto-efficient frontier have been investigated further. Based

on the results, we can determine the desirable market structure for each

objective function, which would have direct consequences for the optimal

design of financial markets in terms of each objective function. Our results

could inform any market reforms considered by stock, bond or derivatives

markets.

The results of single-objective optimization show that significantly large tick

sizes contribute to most of the optimization cases, except for the case of max-

imizing trading volume. In addition, the tick size always correlated with the

selection of multi-price rules. Though there is no particular combination of

priority rule and multi-price rule are desirable, the time priority rule and the
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closest multi-price rule are the most frequently obtained rules. The market

transparency and the extend of market maker intervention show ambiguous

results as their representative parameter values change in a wide range. Fi-

nally, we do not obtain a specific combination of trading rules that could

be employed to achieve the best market performance no matter what the

objective function is.

For the multi-objective optimization, we find that the results are much sim-

ilar to those obtained in the single-objective optimization, such as the large

tick sizes, the connection between tick sizes and multi-price rules, and the

most often obtained time priority rule. Similar to the single-objective opti-

mization results, the best-found trading rules differ significantly with various

pairs of objective functions. There is, however, a difference that the market

transparency shows a clear trend in the multi-objective optimization, while it

only presents ambiguous results in single-objective optimization experiments.

7.2 Policy implication

As we only concentrate on how the market structure would impact market

performance, and the primary cause of the market efficiency is the mar-

ket discipline imposed on traders rather than traders behavior, we employ

near-zero-intelligence traders. Though traders in financial markets may not

be the same as the near-zero-intelligence traders, the model developed in

this research could closely mimic the real markets and generate realistic and

efficient results. Based on our results, we can practically provide some sug-

gestions on market structure to exchanges or policy makers.

From the results of single-objective optimization experiments, a small tick

size, which is currently applied by most of the exchanges, should be applied

to stimulate trading activities and increase trading volume. However, in

order to reduce the bid-ask spread or return volatility, the tick size should be

comparatively larger. In addition, a connection between the tick sizes and
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multi-price rules has been found. Thus, we suggest exchanges to employ a

tick size which suits best to their concern and consider the relation between

the tick size and multi-price rule while designing their market structure.

Although there is no particular priority rule and multi-price rule that are

desirable for all exchanges with different performance measures, the time

priority and the closest multi-price rule are the most frequently obtained

rules in the various experiments. The time priority rule, in conjunction with

price priority rule, is always enforced in many real markets, however, the

closest multi-price rule is rarely seen. Most of the exchanges select the price

which minimize the unexecuted volume as the trading price. Therefore, we

suggest exchanges to adopt the closest multi-price rule to improve the market

performance.

Other trading rules, such as the intervention of market maker and market

transparency, show ambiguous results in different experiments. We, there-

fore, suggest that these rules do not have a significant influence on exchanges’

performance.

In order to consider the various concerns of market participants, exchanges

should also employ multiple objective functions when designing their market

structure. According to our results, most of the best-found trading rules

obtained in the multi-objective optimization experiments are much consistent

with those attained in the single-objective optimization. For instance, a large

tick size is still recommended; the relation between the tick size and multi-

price rule remains unchanged; and the time priority is, again, found to be

the most often attained priority rule. However, different from the ambiguous

results discussed above, we recommend exchanges to have a small faction

of informed traders in order to achieve the best performance when multiple

objectives are used.

These are the recommendations for exchanges to improve their market struc-

tures based on our experimental results. However, as the best-found combi-

nation of trading rules differ significantly with various performance measures,



7. Conclusions and discussion 168

we suggest exchanges to investigate the best market structures based on their

own concerns using our methodology and results.

7.3 Research contributions

From an academic perspective the research does contribute to the growing

literature on agent-based modelling related to mechanism design. Interest

in mechanism design has been sparked by the recent auction of 3G telecom-

munications licences, but also applications to procurement processes in the

public sector and the greater involvement of private companies in the opera-

tion of public services, e.g. railways, schools or computing facilities, require

efficient mechanisms to ensure efficient outcomes.

The current market microstructure theory does mostly not offer direct ad-

vice on the optimal market structure and where it can be inferred from other

results. Given the often complex interactions between trading rules as well

as the strong behavioral assumptions made in these models, it is difficult to

determine the optimal market design from these results. In addition, the tra-

ditional approach of mechanism design seeks closed-form solutions to evaluate

the performance of economic institutions. It fails to measure the dynamic

behavior in the real-world markets. In addition, most of the current litera-

ture on mechanism design uses game theoretic concepts to compare market

structures, which is appropriate in cases where only a few market partici-

pants interact. However, the financial markets contain a very large number

of traders buying and selling, which makes the situation much more com-

plicated. Therefore, mechanism design which uses game theory to evaluate

market structures is in most cases not able to address the complex problems

faces by exchanges. Moreover, the research on mechanism design usually

addresses a very specific problem, no general framework exists, and compar-

isons between two or more market structures are limited. Furthermore, the

current agent-based models used in mechanism design studies only focus on a
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single or a small number of related trading rules on specific aspects of market

performance given a very narrowly defined model.

To the best of our knowledge this is the first study that complements and

combines market microstructure theory and mechanism design using agent-

based model. The model developed in this study overcomes the above limi-

tations of current models in mechanism design though the use of near-zero-

intelligence traders and evolutionary optimization algorithm. This research

provides a first step towards determining optimal market structure by using

a wide range of trading rules simultaneously, including the tick size, degree of

intervention by market markets, priority rules, multi-price rules, and market

transparency, presenting a picture of the rules exchange markets should be

designed to in a sufficient number of realistic circumstances. Another ma-

jor advantage of using our approach, besides its ability to evaluate different

market structure, is that it allows to modify the traders themselves and let

a heterogeneous population of traders interact, which in the case of using

analytical models as in the market microstructure literature is only difficult

to achieve, if at all. By changing these characteristics we can build mar-

kets that are much closer to reality than is usually possible, allowing us to

evaluate the market structures under much more realistic conditions that an

analytical model would enable us to do. Thus this research would provide a

first insight into this important field, hopefully triggering more interest and

establishing a wider research agenda.

This research is also relevant from an applied point of view as well as an

academic perspective. On the applied side, we note that the market struc-

ture of an exchange becomes increasingly important in a more competitive

environment. Access by companies to efficient financial markets, of which

exchanges are important elements, provides companies access to cheap funds

that can be used for further wealth creation and contributes significantly to

economic growth in developing as well as developed countries. This research

provides exchanges with an insight into how to develop their market structure

to become more attractive to investors and companies alike. It attempts to

optimize the market structure of financial markets systematically. No other
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research agenda does currently offer a systematic approach for exchanges to

improve all aspects of their market structure.

Furthermore, while this research only addresses generic scenarios and derives

conclusions on the near-optimal market structure from them, the developed

framework can be easily extended to allow tailoring the circumstances to

the specific needs of an exchange as well as other stake holders and give

specific recommendations to improve the market structure to attract more

companies and traders. In addition, the results of this research could also be

used to derive recommendations to regulators on establishing the desirable

market structure, make suggestions to securities issuers on choosing the best

exchange for their listing and guide investors on deciding the most suitable

exchange for trading.

Therefore, the results we obtain in this project will increase our knowledge

of optimal financial market structure, complementing the results obtained

in market microstructure theory and mechanism design. In addition, it will

be of obvious use for exchanges to improve their market structure in or-

der to enhance their competitiveness and by companies seeking a listing of

their securities as well as traders deciding which exchange to use for their

investments.

7.4 Limitations and future work

Although this research has successfully explored the evolutionary mechanism

design of call auction markets, there are still some limitations. This section

discusses the limitations of the research, and provides some suggestions for

future study.

First of all, due to the limitation of time and computing resources, we only re-

peat each computer experiment 20 times. With a larger sample size, we might

possibly have slightly different findings with more data, and the Pareto-

efficient frontier could be more obvious and contain more points.
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In this research, we assume that each trader is allowed to submit orders with

a random order size. In future research, it would be worth considering traders

submitting different order sizes with considerations given to wealth through

trading. In addition, we only have a single type of asset, which could be

extended to assets with different risks in future. Some other assumptions

used in this work could also be relaxed in future work. For instance, short

sales could be allowed, and a trader can be both a buyer and a seller simul-

taneously, i.e., to buy and to sell items at the same time. In addition, the

agents could employ some learning techniques, for example, by considering

some form of communication across agents, or transferring information across

individuals from generation to generation.

Except for the trading rules we have applied, other trading rules, such as the

market segmentation, size of block trades, trading frequency etc. might be

employed in future studies. Some other factors affecting the performance of

an exchange can also be employed, for example, price informativeness, broker

commissions, recurrent reporting costs, transaction taxes, clearing fees, and

listing costs.

In future research the proposed framework can easily be extended to include

other objective functions, like maximizing the trading profits to traders. Re-

search with more objective functions would balance a wider range of interest

in the market and investigate the sensitivity of the optimal trading rules to

the different preferences of decision-makers, thereby giving a more complete

picture of the influences on market performance. In addition, some traders’

behavior, such as investor preferences and psychology, could also be employed

into our generalized framework to analyze the impact of traders’ behavior on

market performance in future research.



Appendix



A. Optimization of market structure

with single objective function

We have discussed the best-found market structure for maximizing the trad-

ing volume in section 5.2.1. In this section, we will analyze the best-found

set of trading rules with other objective functions, including bid-ask spread,

trading price and volatility, with the same analysis procedures used in section

5.2.1.

A.1 Minimization of bid-ask spread

The second computer experiment of the market structure optimization is

conducted using the quoted bid-ask spread, also named as inside spread, as

performance measure. It computes the amount by which the best ask price

exceeds the best bid price, which is the difference between the highest price

that a buyer is willing to pay and the lowest price that a seller is willing

to sell an asset. As the most common measure of trading costs and market

quality in market microstructure theory 1, bid-ask spreads can be used to

assess the market liquidity and trading costs for investors. Table A.1 shows

the resulting value of the spread and trading rules in 20 simulations.

1 See O’Hara (1995)
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A.1.1 Tick size

Tick size has several impacts during trading, see section 2.1.4.1. As it repre-

sents the cost of getting inside other competitors quote, the tick size affects

the motivation of submitting limit orders. In addition, the tick size has

an impact on the spreads. As reported in many empirical investigations,

e.g. Goldstein and Kavajecz (2000) and Jones and Lipson (2001), amongst

others, the bid-ask spread declined dramatically by about 25% with the re-

duction of tick size from 1/8 to 1/16 dollar on the New York Stock Exchange

(NYSE). However, our simulation results suggest that in order to minimize

the bid-ask spread the best-found tick size should be in the range from 2.4

to 5.469. This is significantly higher than the current tick adopted in the

markets. Therefore, instead of reducing tick size on the stock exchange, it

is suggested to be increased to minimize the inside spread. This might be

because when tick size is large, quotes of many orders might be centered or

close to each other around a few ticks. So, after completion of trading, the

bid-ask spread of the remaining orders would be small.
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Fig. A.1: the best-found tick size for minimizing bid-ask spread
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A.1.2 Priority rules and multi-price rules

From the computer experiments, we do not observe a unique combination of

priority rule and multi-price rule that could apply to minimize the bid-ask

spread. The most frequently used priority rule is the one to select orders

randomly; while the most frequently obtained multi-price rule is the one to

choose the lowest price. Similar to the results of maximizing trading volume,

the only priority rule that cannot be applied to minimize the spread is the

rule of pro-rata. For multi-price rules, three rules could not achieve the

desirable structure, including choosing the price both closest and furthest

to the previous one, and the price with maximum order imbalance. Like

the results of maximizing trading volume, we find a similar pattern between

the multi-price rule and tick size. While the optimum tick size is minimum,

the multi-price rule of selecting the highest price is applied; when tick size

increases, the the multi-price rule of selecting the lowest price is obtained;

with even higher the best-found tick sizes, the random selection rule is used,

and finally, the multi-price rule of selecting the price with minimum order

imbalance is desirable with the largest tick size to minimize the spread.
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Fig. A.2: the best-found priority rule for minimizing bid-ask spread
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Fig. A.3: the best-found multi-price rule for minimizing bid-ask spread

A.1.3 Transparency

With respect to market transparency, the best-found market structure indi-

cates that approximately 14% traders should be able to access information

on the order book. All the obtained the best-found fractions of informed

traders are below 20%, except for one case having the maximum fraction of

informed traders of 57.7%, which is associated with the highest best-found

fraction of order imbalance traded by market maker. The informed traders

are allowed to revise their own order size with the average adjustment fraction

of 65.4% of the order imbalance, suggesting a rather large revision. However,

the adjustment fraction varies with a quite large dispersion, suggesting that

no particular desirable value exists. This result implies that information on

the order book should not be disseminated too widely in order to ensure

a small bid-ask spread. Moreover, we observe that while the fraction of in-

formed traders is minimum, the fraction of order size revised by the informed

traders is the smallest as well. However, this relation does not hold when the

fraction of informed traders is maximum. Empirically, Flood and Mahieu

(1999) discover that the pre-trade transparency can narrow spreads. How-
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ever, one can argue that transparency can make it difficult to supply liquidity,

because traders may be reluctant to submit limit orders, as the disclosure

may convey information in the market which makes the price move against

the trader’s position.

A.1.4 The intervention of market maker

According to the simulation results, a small fraction of only 1.9%, on average,

of order imbalance should be traded by market maker, with a low dispersion.

The parameter value is found to be associated with the fraction of informed

traders: the more the informed traders, the higher fraction of imbalance

traded by market maker, e.g., with the maximum fraction of informed traders,

the highest fraction of order imbalance should be traded by market maker.

Similar to the results of maximizing volume, it is hard to obtain a particular

optimum value of price adjustment of market maker to minimize bid-ask

spread. The price adjustment factor λ widely spreads between 0.001 and

0.957. Thus, we could not determine the importance of inventory held by

the market maker for the consideration of his price setting based on the

results.

A.1.5 Summary of results

To sum up, in order to obtain the minimal inside spread, the stock exchange

should allow only a small proportion (about 14%) of traders access to infor-

mation in the order book, and permit a low fraction (about 1.9%) of order

imbalance traded by market maker. The use of priority rules and multi-price

rules, however, does not show any relationship to the inside spread. Tick size

is also found to be ambiguous in the best-found market structure. We can

thus conclude that only the fraction of informed traders and the extend of

market making seems to have significant impacts on bid-ask spread.
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Fig. A.4: Simulation results of market transparency for minimizing bid-ask
spread

A.2 Maximization of trading price

Trading price, one of the most important factors in trading activities, is

another objective function used to study the optimal market structure. A
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Fig. A.5: Simulation results of intervention of market maker for minimizing
bid-ask spread

market trader would realize more profit in markets with increasing prices.

Therefore, we intend to obtain the best combination of trading rules to max-

imize the trading price. Table A.2 shows the the best-found trading rules in
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20 experimental simulations.

A.2.1 Tick size

Table A.2 shows that the best-found tick sizes from the simulation fluctuate

between 0.057 and 1.623. Most of the tick sizes distribute in the region

of 0 to 0.3, while others are ranging from 0.3 to 1.623, see figure A.6. In

accordance with the results of maximizing volume and minimizing spread,

the best-found tick sizes for maximizing the price are correlated with the

selection of the multi-price rule. If the tick size is smaller than one, multi-

price rules of choosing the closest price to the previous price is applied; while

the multi-price rule of choosing the furthest price to the previous price is

obtained if tick size is larger than one. However, we do not observe a clear

trend of the trading price variation with different tick sizes.
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Fig. A.6: the best-found tick size for maximizing trading price
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A.2.2 Priority rules and multi-price rules

We do not obtain a specific combination of the best-found priority rule and

multi-price rule. Almost all of the obtained multi-price rules are to choose

the price closest to the previous price. In one particular case mentioned

above that when the best-found tick size is larger than 1, the multi-price rule

of selecting the price furthest from the previous price is applied. For the case

of imbalance between buy and sell orders at the transaction price, there are

three desirable rules could be used to maximizing the trading price, namely

the time priority, reverse time priority, and random selection, of which the

time priority rule in which orders submitted earlier will receive priority to be

filled is the most frequently obtained.
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Fig. A.7: the best-found priority rule for maximizing trading price

A.2.3 Transparency

Different from the above results where a small fraction of traders should

access information of the order book to maximize volume or minimize spread,
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Fig. A.8: the best-found multi-price rule for maximizing trading price

the fraction of informed traders shows an ambiguous impact on trading prices.

On average, 60.4% of traders are suggested to be informed, however, this

fraction varies in a wide range from 10.3% to 97%. Moreover, the fraction of

order size revised by informed traders is also widespread, showing no clear

pattern.

A.2.4 The intervention of market maker

Based on the 20 simulation results, we notice that while the fraction of im-

balance traded by market maker is increasing, the trading price is increasing

as well for most cases, see A.10(a). For instance, when the smallest fraction

of imbalance is traded by market maker is applied, the corresponding price is

minimal. On the other hand, while the highest fraction of imbalance is traded

by market maker, the price raises to the maximum. However, it is difficult

to identify a particular trend or desirable value for the price adjustment of

market maker, due to the wide range of fluctuation.
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(a) the best-found fraction of informed traders
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(b) the best-found fraction of order size revised

Fig. A.9: Simulation results of market transparency for maximizing trading
price

A.2.5 Summary of results

In summary, we find that a tick size of approximately 0.355 should be em-

ployed to achieve the maximal trading price; the selection of tick size is in
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(a) the best-found fraction of order imbalance traded by market maker
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(b) the best-found price adjustment of market maker

Fig. A.10: Simulation results of intervention of market maker for maximiz-
ing trading price

connection with the choice of multi-price rule, and the intervention of market

making has a positive influence on trading price; the impacts of transparency

and priority rule are, however, uncertain to the trading price. Therefore, the
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main effect on trading price arises from the tick size, multi-price rule, and

intervention of market maker.

A.3 Minimization of return volatility

Volatility, which is frequently referred to as the standard deviation of the

returns within a specific time period, is often used to measure the risk of a

financial instrument over a period as well as the liquidity of the market. Most

of market participants consider the volatility as a negative in that it signifies

risk and uncertainty. Therefore, the last objective function we employed

for the single objective optimization experiments is to minimize the return

volatility, see table A.3 for the results.

A.3.1 Tick size

The best-found tick size is selected from a widespread range (from 0.007 to

3.451), which is correlated with the choice of multi-price rule. Most of the ob-

tained tick sizes, see figure A.11, are quite small. Under these circumstances,

choosing the price closest to the previous price is always been applied as the

multi-price rule. When the best-found tick size increases to 1.832, the multi-

price rule of choosing the price furthest from the previous price is found to

minimize the volatility. And, finally, when the best-found tick size reaches

its maximum of 3.451 in this simulation, the multi-price rule of choosing the

highest price is then selected. Meanwhile, with the highest tick size the frac-

tion of imbalance traded by market maker would achieve the maximal value.

However, there is no correlation while tick size is minimum based on the re-

sults. Furthermore, we find that the volatilities observed from the simulation

experiments are, to a certain extent, related to the tick size. Based on our re-

sults, the stock returns are more volatile while tick size increases. As tick size

increases, liquidity supply could be reduced, which is associated with higher

volatility, since larger tick size would lead to market participants’ reluctance
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of supplying liquidity. Although the theoretical predictions regarding the

influence of tick reduction on volatility are mixed, e.g., Ronen and Weaver

(1998) reviews the two different opinions: ”The first argument, which pre-

dicts an increase in observed volatility is based on the premise the depths

will decrease as a result of the tick reduction ... Conversely, theoretical jus-

tification exists in support of volatility decreases (following a reduction in

tick size)”, some research, such as Harris (1990a), Ronen and Weaver (1998),

and Bessembinder (2000) confirm that observed volatility decreases with a

reduction on tick size, which is consistent with our result.
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Fig. A.11: Simulation results of tick size for minimizing volatility

A.3.2 Priority rules and multi-price rules

Similar from the results of maximizing trading volume, it is difficult to iden-

tify a specific priority rule to achieve the best-found market structure of

minimizing volatility. All the various priority rules, exclusive of the pro-rata

rule, are obtained to achieve the optimum result, and the most frequently

obtained is time priority rule. For the case of multiple prices at which the
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trading volume is maximal, the multi-price rules that choosing the price

both closest and farthest to the previous price, and selecting the highest

price could be used to achieve the optimum market structure in terms of

minimized volatility. And, the always observed best-found multi-price rule

is selecting the price closest to the previous price. In addition, we find a re-

lationship between the tick size and the multiple price rule, which has been

discussed above.
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Fig. A.12: the best-found priority rule for minimizing volatility

A.3.3 Transparency

From the computer experiments, we could not find a particular desirable

fraction of traders who can access pre-trade information on the order book.

With the mean value of 67.7%, the best-found fraction of informed traders

ranges from 25.4% to 99.3%. Moreover, these informed traders are allowed to

revise their own order size with the adjustment of an average fraction, 56.2%

of the order imbalance. This parameter value, with a dispersion of 22.1%, as
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Fig. A.13: the best-found multi-price rule for minimizing volatility

shown in table A.3, varies widely from the average value in different simula-

tions. Thus, we could not determine the importance of market transparency

for the consideration of volatility minimization.

A.3.4 The intervention of market maker

In respect of the intervention of market maker, the best-found market struc-

ture with the objective function of volatility minimization indicates that a

very small fraction ( 0.4% on average) of imbalance should be traded by mar-

ket maker in order to achieve the optimum results. The resulting parameter

values change little from the average. However, the transaction price forma-

tion factor of market maker fluctuates from a broad range (between 0.195

and 0.923).
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(a) the best-found fraction of informed traders

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.2

0.4

0.6

0.8

1

Simulations

Fr
ac

tio
n 

of
 o

rd
er

 s
iz

e 
re

vi
se

d

(b) the best-found fraction of order size revised

Fig. A.14: Simulation results of market transparency for minimizing volatil-
ity

A.3.5 Summary of results

The main results of this experiment can be concluded as follows. It is difficult

to find a clear trend of the best-found fraction of informed traders. On
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(a) the best-found fraction of order imbalance traded by market maker for
minimizing volatility
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(b) the best-found price adjustment of market maker

Fig. A.15: Simulation results of intervention of market maker for minimiz-
ing volatility

the other hand, we observe that a very small proportion (about 0.4%) of

imbalance should be traded by market maker. Most of the best-found tick
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sizes are small. All the various priority rules, apart from the pro-rata rule,

are obtained to achieve the optimum result. And, the selection of multi-price

rule is correlated with the value of tick size. In most of the best-found market

structures, the multi-price rule of selecting the price closest to the previous

price is adopted.



B. Optimization of market structure

with multi-objective functions

We have discussed the best-found market structure for maximizing the trad-

ing volume and minimizing bid-ask spread in section 6.2.1. In this section,

we will analyze the the best-found set of trading rules with other pairs of ob-

jective functions, including maximizing trading price and minimizing bid-ask

spread; maximizing trading volume and minimizing volatility, and minimiz-

ing spread and volatility.

B.1 Trading price and bid-ask spread

Figure B.1 shows the maximized trading price and the minimized bid-ask

spread at the final generation for the entire population for all 30 runs of our

computer experiments focusing on the region containing the Pareto-efficient

frontier. We, once again, notice a trade-off between the maximal trading

price and the minimal spread, the approximate location of the Pareto-efficient

frontier is sketched by the line to the lower right. This figure clearly shows

that a low spread will be associated with a low trading price while a high

trading price will impose a large spread. The best combination of trading

price and spread will depend on the preferences of the decision-maker and the

relative importance of these two aspects. We have identified eight markets

that approximately determine the Pareto-efficient frontier, similarly, these

points are identified as large points and associated with numbers; the market

structures of the eight markets are shown in the following sections.



B. Optimization of market structure with multi-objective functions 196

Fig. B.1: Market performance of maximizing trading price and minimizing
bid-ask spread after 500 generations

B.1.1 Tick size

The best-found tick sizes seem to be more stable, see figure B.2 floating

around the mean value of 3. Compare to the results of single-objective op-

timization with fitness function of maximizing price, and minimizing spread

respectively, the mean value in this experiment is between the average of the

best-found tick sizes from the two single-objective optimization experiments

(0.355 and 4.174, respectively).

B.1.2 Priority rules and multi-price rules

For all the eight cases the best-found multi-price rule is to select the low-

est price, see figure B.3. In the single-objective optimization simulations,

the lowest multi-price rule has been obtained in the experiment with fitness

function of minimizing bid-ask spread, but never attained in the experiment

of maximizing trading price. There are three obtained best-found priority

rules, see figure B.4 which are reverse time priority rule, size priority rule,
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Fig. B.2: the best-found tick sizes for maximizing trading price and mini-
mizing spread
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Fig. B.3: the best-found multi-price rules for maximizing trading price and
minimizing spread

and time priority rule. Another priority rule, which is the random selection,

has also been observed in the two single-objective optimization experiments.
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Fig. B.4: the best-found priority rules for maximizing trading price and
minimizing spread

B.1.3 Transparency

The best-found fraction of informed traders shows ambiguous results. It is

unable to identify a clear trend in the parameter values as we move along

the efficient frontier. The best-found fraction of informed traders is gen-

erally small, varying from 2.54% to 12.5%, but comparatively higher than

the range obtained in the two single-objective optimization experiments, see

figure B.1.3.

B.1.4 The intervention of market maker

Similarly, the best-found market structure with respect to the intervention of

market makers is also ambiguous. The degree of intervention by the market
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(a) the best-found fraction of informed traders for maximizing trading
price and minimizing spread
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(b) the best-found fraction of order size revised for maximizing trading
price and minimizing spread

Fig. B.5: Simulation results of market transparency for maximizing trading
price and minimizing spread
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maker is very small, since the maximum fraction of order imbalance traded

by market maker is only 0.048%, see figure B.1.4.
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(a) the best-found fraction of order imbalance traded by market maker
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(b) the best-found price adjustment of market maker

Fig. B.6: Simulation results of intervention of market maker for maximizing
trading price and minimizing spread
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Fig. B.7: Market performance of maximizing trading volume and minimiz-
ing volatility after 500 generations

B.1.5 Summary of results

We can summarize our results in stating that to attain the best market

structure with the objective functions of maximize trading price and minimize

bid-ask spread, both extent of intervention of market makers and degree

of market transparency are suggested to be low; in all cases the market

should employ the multi-price rule of selecting the lowest price, and the tick

size should be around 3. In the single-objective optimization experiment of

minimizing inside spread, we notice that the most obtained multi-price rule

is to select the lowest price, and the extent of market maker intervention is

generally low, which are much consistent with our results here, but others

such as tick size and priority rules are showing ambiguous results.

B.2 Trading volume and return volatility

We further study the best-found market structure by employing the fitness

function of maximizing trading volume and minimizing return volatility. Fig-
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ure B.7 displays the best-found trading rules that are evolved after 500 gen-

erations in 30 simulations restricted to the area close to the Pareto-efficient

frontier, which is plotted by the line. The trade-off relationship between

the maximal trading volume and the minimal volatility has been clearly dis-

played on the figure: high trading volume is associated with high volatility;

while low trading volume, on the other hand, is associated with low return

volatility.

Similar to the previous analysis, we identified eight markets from the Pareto-

efficient frontier, highlighted by large points associated with numbers. The

following sections present the selection of trading rules of the eight best-found

market structure.

B.2.1 Tick size

Except for the two market structures with high trading volume and large

volatility, the best-found tick size is usually very large (ranging from 2.5 to

5), see B.8. Again, consistent with results of the single-objective optimization

experiments, the selection of tick size is related to the use of multi-price rules.

For instance, when the tick size is very low, the multi-price rule of selecting

the nearest price is obtained; while the tick size is very large, the multi-price

of selecting the lowest price is employed.

B.2.2 Priority rules and multi-price rules

Different from results of the two respective single-objective optimization ex-

periments (of maximizing trading volume and minimizing volatility), where

all priority rules, except for the random selection rule, can be applied to

achieve the optimum, in this experiment, we only observe a single best-found

priority rule, which is time priority rule, used in the eight best-found market

structures, see B.10. Nevertheless, we obtain three best-found multi-price
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Fig. B.8: the best-found tick sizes for maximizing trading volume and min-
imizing volatility
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Fig. B.9: the best-found multi-price rules for maximizing trading volume
and minimizing volatility

rules, including choosing the lowest price, the highest price, and the price

closest to the previous price, see B.9
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Fig. B.10: the best-found priority rules for maximizing trading volume and
minimizing volatility

B.2.3 Transparency

Results of the fraction of informed traders indicate that less traders should

be able to access information on the order book to optimizing the trading vol-

ume, while more traders should be informed if the decision maker puts great

emphasis on small volatility. Overall, the average of the best-found fraction

of informed traders is about 2%. As shown in figure B.11(a), when trading

volume is the main concern, the fraction of informed traders is comparatively

lower. This is consistent with the results of single-objective optimization ex-

periment of maximizing trading volume. However, the fraction of order size

used to revise the order by those informed traders seems to be independent

of the location on the Pareto-efficient frontier, see B.11(b).

B.2.4 The intervention of market maker

The results shown in figure B.12(a) indicate that the degree of the market

maker’s intervention should be low, in particular, the market maker should
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volume and minimizing volatility

Fig. B.11: Simulation results of market transparency for maximizing trad-
ing volume and minimizing volatility
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trade a very small portion of the order imbalance. We find that the fraction

of order imbalance traded by market maker should be comparatively higher

to stimulate the trading activities if the main concern of the decision maker

is trading volume. If the main intention is to reduce the return volatility,

the fraction traded by market maker is then comparatively lower. This re-

sult is in consistent with the results of two single-objective experiments of

maximizing trading volume, and minimizing return volatility. However, the

price adjustment of market maker, shown in figure B.12(b), shows no clear

pattern for different market structures.

B.2.5 Summary of results

In summary, in order to achieve higher trading volumes (at the cost of higher

volatility), a smaller tick size and fraction of informed traders are desirable,

and a larger fraction of order imbalances should be traded by market makers.

In all cases time priority is applied. Three multi-price rules are found desir-

able, and the selection between them is correlated with the tick size. Other

trading factors, such as the price adjustment of the market maker and the

fraction of order size revised by informed traders have ambiguous influences

on the outcomes.

B.3 Bid-ask spread and return volatility

Finally, we investigate the optimal market structure using the fitness function

of minimizing return volatility and minimizing bid-ask spread. The volatility

and inside spread of the final generation for the entire population for all 30

runs of our computer experiments restricted to the region close to the Pareto-

efficient frontier are shown in figure B.13. Based on the Pareto-efficient

frontier, which is sketched by the line to the lower right, we observe a trade-off

relationship between the two objective functions. While the return volatility

is low, the corresponding bid-ask spread is large, on the contrary, while the
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(b) the best-found price adjustment of market maker

Fig. B.12: Simulation results of intervention of market maker for maximiz-
ing trading volume and minimizing volatility

return volatility is high, the spread would be small. Due to the lack of

efficient results, we only observe five markets which approximately determine

the Pareto-efficient frontier, these points are identified as large points and
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Fig. B.13: Market performance of minimizing bid-ask spread and volatility
of returns after 500 generations

associated with numbers; the market structures of these four markets are

discussed in the following section.

B.3.1 Tick size

As shown in figure B.14, for the market structures with low volatility and

large spread, the best-found tick size is relatively larger at about 3.3, and it

declines dramatically for the market structure with high volatility and narrow

spread identified by point 4. Surprisingly, this result is not consistent with

the findings from single-objective optimization experiments, in which a large

tick size is required to minimize the bid-ask spread, and a comparatively

small tick is desirable to minimize the return volatility.

B.3.2 Priority rules and multi-price rules

For the three best-found market structures having relatively low volatility

and large spread, which are represented by points 1 to 3, in case of multiple
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Fig. B.15: the best-found multi-price rules for minimizing spread and
volatility

prices, the rules of selecting the lowest price should be applied, and the

random selection priority rule is most preferred, see figure B.15 and B.16.

For the market structure with small spread and high volatility, the multi-



B. Optimization of market structure with multi-objective functions 210

price rule of choosing the nearest price to the previous price is obtained, and

the time priority rules is used to determine the rationing of orders.
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Fig. B.16: the best-found priority rules for minimizing spread and volatility

B.3.3 Transparency

Although ambiguous results of the influence of the number of informed

traders on the best-found market structure have been found in the single-

objective optimization experiments with objective of either minimizing spread

or minimizing volatility, in this test, we find that unless the decision maker

puts more emphasis on a small volatility at the expense of the spread (where

only about 10% of traders are informed), the fraction of informed traders

should be comparatively large that about half of traders should be informed

and react immediately on any order imbalance. However, the fraction of the

order size revised by those informed traders shows a decreasing trend, see

figure B.3.3.
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Fig. B.17: Simulation results of market transparency for minimizing spread
and volatility
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B.3.4 The intervention of market maker

Results, shown in figure B.3.4, disclose that when concerns about the bid-

ask spread are dominating a relatively higher fraction of order imbalance

(about 0.39%) compared with the other best-found market structures should

be traded by market maker and a smaller intervention of market maker if

concerns about return volatility are more important. However, for either case,

the best-found fraction is very small with an average value of approximately

0.1%. This result is consistent with the one from the previous experiments

applying only a single objective function - the return volatility and bid-

ask spread, respectively. In addition, we notice that while the best-found

fraction traded by market maker is the highest, the price adjustment factor

is maximal. It decreases significantly with less amount traded by market

maker.

B.3.5 Summary of results

The main results from this computer experiment can be summarized that for

market with small spread (and associated high volatility), relatively small

fraction of order imbalance should be traded by market maker; larger fraction

of traders should get pre-trade information; the multi-price rule of selecting

price closest to the previous price and the time priority rule are applied, and

a smaller tick size is required.
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Fig. B.18: Simulation results of intervention of market maker for minimiz-
ing spread and volatility
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