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Abstract

The aim of this work has been to use atomistic computer simulation methods to
calculate the thermal conductivity and investigate factors that will modify the behaviour
when applied to three different oxide materials: MgO, SiO; and SrTiO;. These were
chosen as they represent distinct classes of materials and are substrates for
thermoelectric devices, where one of the primary goals is to tailor the system to reduce

the thermal conductivity.

Chapter 1 introduces thermoelectric concepts, gives a background of the theory and a

review of various important thermoelectric materials.

In Chapter 2 an overview of the interatomic interactions is presented along with details

on the implementation of these interactions in a simulation of a 3D periodic crystal.

Chapter 3 outlines the importance of phonon processes in crystals and several
approaches to the calculation of thermal conductivity are presented.

MgO results are given in Chapter 4. Both the Green-Kubo and Boltzmann transport
equation (BTE) methods of calculating thermal conductivity were used. The effect on
thermal conductivity of two different grain boundary systems are then compared and
finally extended to MgO nanostructures, thus identifying the role of surfaces and

complex nanostructure architectures on thermal conductivity.

In Chapter 5 two different materials with the formula unit SiO, are considered. The two
materials are quartz and silicalite which show interesting negative thermal expansion

behaviour which may impact upon the thermal transport within the material.

Chapter 6 presents results on the promising thermoelectric material STO. Once again
the results from both Green-Kubo and BTE calculations are compared. Grain
boundaries are also studied and the effect of inter-boundary distance and boundary type
on the thermal conductivity is explored. Finally, a nanostructured STO system

(assembled nanocubes) with promising thermoelectric applications is studied.

Chapter 7 outlines the conclusions made from this work and suggests areas for future

study.

vii



1. Introduction

Many electricity generating systems are inefficient, losing much of their energy to their
surroundings in the form of heat. A simple strategy to boost efficiency in these systems
Is to recover the lost heat to generate electricity. One approach for recovering the lost
heat and converting it into useful electricity is to use thermoelectric (TE) devices.
Thermoelectric devices use a temperature difference to generate electricity directly,

without the need for any mechanical parts.

The potential applications of thermoelectric devices are widespread and diverse [2, 3],
being applicable in many high temperature industrial processes, vehicles [4], low-power
electronic devices as well as electricity generation [5]. Reduction of wasted energy in
these areas means less greenhouse gases are emitted at the power generation facility as

well as a reduction in the resources consumed.

Thermoelectric power generation offers many advantages over other power generation
techniques as thermoelectric devices are solid state and have no moving parts,
significantly reducing the need for periodic maintenance [6] and giving a potentially
long lifespan. Furthermore, thermoelectric devices produce no toxic waste/greenhouse
gases emissions during their operation which allows safe application in many areas [7-
9].

The range of applications for thermoelectric devices spans many orders of magnitude of

power usage, as shown in Figure 1.1.
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Figure 1.1 The range of applications for thermoelectric materials [10].

The major drawbacks preventing the widespread use of thermoelectric materials is that
their efficiencies remain low compared to other power generation systems [11], and the
materials currently used to make the best performing thermoelectric materials are often
toxic, expensive, unstable at high temperatures and prone to oxidation [12-14]. Despite
these limitations, thermoelectric devices are still used in niche applications such as
space exploration, where the advantages of simple operation and long lifetimes
significantly outweigh the drawbacks (such as the use of plutonium as a heat source)
[15].

The potential benefits of improved thermoelectric materials are so large that there is an
extensive literature covering the subject [12, 16-28]. The important applications, theory

and materials of thermoelectric will now be summarised.

1.1. Thermoelectric Devices and Applications

The construction of a working thermoelectric generator (TEG) requires both n-type and
p-type thermoelectric materials. In n-type materials the charge carriers are electrons and

in p-type materials they are electron-holes. These materials are combined thermally in



parallel but electrically in series. Charge carriers are driven to one side of the device and
a voltage difference is generated across the terminals. A schematic representation of a

TEG module is given in Figure 1.2.

N ||P
T

Figure 1.2 Schematic of a TEG [29].

TEGs may be applied in a number of different areas. Recovery of waste heat is of
significant interest due to the inefficiencies present in power generation systems. Power
generation systems are types of thermodynamic heat engines which convert thermal
energy into mechanical motion, and then on to electrical energy via an electric
generator. Thermoelectric devices are also heat engines and use electrons as their
working fluid [12].

Heat engines have a maximum theoretical efficiency imposed by the temperature

difference, known as the Carnot efficiency (or Carnot limit) [30], given by:

Nmax = Tn o

Equation 1.1

where 10,4 1S the Carnot efficiency, Ty is the high temperature part of the cycle and T¢
is the cold temperature part of the cycle. It must be noted that the Carnot efficiency is
for idealised systems only, but does establish an upper bound for all thermodynamic

heat engines.



Traditional fossil-fuel power facilities offer relatively high efficiencies in the region of
30-60% [31] and are close to the theoretical maximum of approximately 80%. These
efficiencies are based on modern power plants which use gas (either natural gas or
generated from coal) as a fuel and run by the use of gas turbines in combination with

steam turbines in a technique known as combined cycling.

Internal combustion engines made from steel usually have a theoretical maximum
efficiency of approximately 37%; however the real world average efficiency is usually
only approximately 18-20% [32]. Most of the additional inefficiencies stem from heat
loss to the exhaust gases. Combined cycling techniques are not applicable for internal
combustion engines due to the lower temperatures involved and the bulk of such
systems. Applying TEGs to the exhaust system instead would allow recovery of the
wasted heat to charge the battery or drive other electronics within the vehicle [33-35].
However the current low efficiencies, oxidative instability and toxicity of the best
performing thermoelectric materials mean they are not suitable for widespread

application.

Personal devices with very low energy requirements are another area of application.
Many portable electronic devices have very modest power requirements and may be
driven entirely by body heat [36]. For some time there have been wristwatches available
powered by small TEG devices [37]. Extension of this concept to more complex
wearable devices such as smart watches or medical sensors would be possible though

increased efficiency [38].

Thermoelectric materials may also be utilised as heat pumps. By applying an electrical
current to properly tuned thermoelectric materials a temperature difference can be
generated. This phenomenon is known as the Peltier effect [39] and a Peltier cooler is
schematically represented in Figure 1.3. Exploitation of the Peltier effect means
thermoelectric devices can be used in either small scale cooling (computer processors
etc.) or in general refrigeration. The advantage of solid state cooling devices is that they
may operate continuously for years with minimal need for replacement due to the lack
of moving parts [18, 40].



Figure 1.3 Schematic of a Peltier cooler [41].

Developing more efficient thermoelectric systems requires an understanding of the
underlying principles of thermoelectric materials. The next section introduces the
parameters which must be improved to increase the efficiency of thermoelectric devices.

1.2. Thermoelectric Theory

A measure of how well a material performs as a thermoelectric is given by the

thermoelectric figure of merit (ZT):

0S?
ZT = —T
K
Equation 1.2

where o is the electrical conductivity, S is the Seebeck coefficient, x is the thermal
conductivity and T is the average operating temperature. Thus a good thermoelectric has
high electrical conductivity, high Seebeck coefficient and low thermal conductivity.
These properties allow a large temperature gradient to be established (due to the low
thermal conductivity), a large conversion from thermal to electrical energy (due to the
large Seebeck coefficient) and easy transport of charge carriers (due to high electrical
conductivity). However, these properties are closely interrelated and cannot be modified

independently and so improving the ZT of a material is often difficult [42].



By combining the expression for the thermoelectric figure of merit with the expression
for Carnot efficiency, a new expression is derived which directly relates the operating

temperatures and the ZT at that temperature to the overall efficiency of the device:

Ty —Tc\[ VI+ZT -1
NMmax = ( T, ) T
h I\ VIFZT +48
H
Equation 1.3

Equation 1.3 allows a more direct comparison of thermoelectric devices with other

power generation techniques.
1.2.1. Power Factor

The power factor (P.F.) of a thermoelectric material describes the electronic

contributions and is defined by:

P.F.= ¢§?

Equation 1.4

The power factor is difficult to modify for a given bulk material as the electrical
conductivity and Seebeck coefficient are both very closely related to the electronic
structure of the material. An improvement in power factor thus requires extension
beyond bulk systems to more complex nanostructured systems [43] where the electronic

properties may be altered.

Additional problems occur for the power factor as many materials have a strong
correlation between thermal and electrical conductivity. For example metals have high
electrical conductivity and high thermal conductivity; conversely ceramics have low
electrical conductivity and low thermal conductivity [18]. TEGs require a high o, high S
but have the additional requirement of low k and so semiconductors are often the
material of choice where the thermal conductivity is low but the electronic properties

are tuneable.

Tuning of these parameters is possible via more complex systems and a good

understanding of each thermoelectric property.



1.2.2. Seebeck Coefficient

The Seebeck effect [44, 45] occurs due to the disparity in charge carrier transport when
a thermal gradient is applied. At the hot terminal, more charge carriers gain enough
energy to move to the conduction band than at the cold terminal. This concentration
disparity results in a net diffusion of charge carriers from the hot to cold terminals. The
unequal distribution of charge carriers creates a potential difference across the material
which can be harnessed to create an electrical current. The measure of the strength of
the voltage difference generated by the temperature gradient is given by the Seebeck
coefficient, S:

G A
AT
Equation 1.5

where AV and AT are the voltage and temperature differences respectively. In reality the
temperature gradient will drive both electrons and holes to diffuse across the material
and so the sign and strength of the Seebeck coefficient depends upon which
predominates and by how much. A negative Seebeck coefficient arises when the charge
carriers are electrons and a positive Seebeck arises when the charge carriers are

electron-holes.

The Seebeck coefficient tends to be highest in semiconductor materials that allow
limited movement of charge carriers [46]. In metals the Seebeck coefficient tends to be
very low due to the partially filled bands and lack of band gap, thus it is much easier for
charge carriers to diffuse against the temperature gradient. Superconductors have a
Seebeck coefficient of zero as by definition a superconductor has no electrical resistance
at all. However, in some higher temperature superconductors under strong magnetic

fields, large Seebeck coefficients have been reported [47].

By placing n-type and p-type thermoelectric materials electrically in series, the voltage
generated by a given temperature gradient can be increased. When arranged in this
manner it is important that the materials used are sufficiently compatible in order to

maximise the efficiency [48].



1.2.3. Electrical Conductivity

The electrical conductivity is closely related to the Seebeck coefficient and also depends
upon electronic structure of the material. The electrical conductivity is of the order of
~10° S/m in metallic systems and ~10® S/m in insulators. Semiconductors fall in
between this range and their electrical conductivity is highly dependent upon

temperature, which affects both carrier concentration and mean free paths.

1.2.4. Thermal Conductivity

Lattice vibrations (phonons) transport thermal energy and thus compete with energy
transport via charge carriers. A lower thermal conductivity therefore results in a higher

ZT. The thermal conductivity of a material, x, can be split into two main contributions:

K = Kelec T Klatt

Equation 1.6

where k¢jec IS the electrical contribution to the thermal conductivity and k), IS the
lattice contribution. More exotic mechanisms of heat transfer could also be included (for
example emission and reabsorption of infrared light at very high temperatures [49]) but

are generally negligible.

For semiconductor materials the lattice contribution to the thermal conductivity is much
larger than the electronic contribution [50]. In these materials the thermal conductivity
is normally related to the average atomic weight. A heavier average atomic weight often
leads to a denser material, a lower phonon propagation velocity, and thus a reduction in

thermal conductivity [51].

There are five main ways that the lattice thermal conductivity can be reduced in

thermoelectric materials [52]:

Use materials with complex crystal structures
Include heavy elements which are weakly bound
Addition of impurities

Formation of solid solutions

o~ w0 D

Generate a large numbers of grain boundaries



These techniques generally reduce the thermal conductivity by introducing new
scattering mechanisms via an increase in the number of environments. Nanostructuring
may be considered a combination of these approaches. An additional advantage of
nanostructures is that they allow different regions of the material to present different
properties to the electrons and phonons, approaching the idea first put forth by Slack
[44] of a Phonon-Glass Electron-Crystal (PGEC).

In a PGEC material the phonons experience the environment like a glass, scattering
frequently and so the thermal energy takes a random walk through the material.
Conversely the electrons would experience the environment as a crystal, being
transported rapidly and thus leading to high electrical conductivity. It is therefore

advantageous to develop nanostructured materials which approach this philosophy.

1.2.5. Wiedemann-Franz Law

Improving the figure of merit is further complicated due to a relationship known as the

Wiedemann-Franz law:

Kelec = LT
o
Equation 1.7

where L is a proportionality constant known as the Lorenz number. The relationship
outlined in Equation 1.7 implies it is not possible to improve the thermal or electrical
conductivity for TEGs without modifying the other in a detrimental manner.

The Wiedemann-Franz law often holds true for metals where the electronic thermal
conductivity is the dominating factor. In semiconductor materials the electronic thermal
conductivity is much less significant and a large number of other factors can change the
Lorenz number [10, 17] and therefore semiconductors are the materials of choice for

almost all thermoelectric applications.

1.3. Thermoelectric Materials

The main issue affecting application of thermoelectric devices is the low figure of merit,
ZT, of the materials used to construct them. These materials must have certain

properties if they are to function well as thermoelectric material.



The concentration of charge carriers is a particularly important property as it influences
both the Seebeck coefficient and the electrical conductivity [53]. Tuning the
concentration of charge carriers is most easily achieved by doping. However, the
optimisation of dopant levels must be done carefully as increasing the carrier
concentration increases conductivity, but reduces the Seebeck coefficient [54]. It has
been stated that the optimum concentration of charge carriers is between 10'° and 10%
per cm® [18, 55].

While there are many classes of thermoelectric material available, each has its own
advantages and disadvantages. Several classes are particularly popular due to their
inherent properties, some of which are outlined below. A very good review of many

types of thermoelectric material can be found in the review of Sootsman et al. [56].

1.3.1. Bismuth Telluride (Bi,Tes3)

The most used and studied thermoelectric material to date is bismuth telluride due to its
very high ZT values [57]. The high ZT values found in Bi,Tes originate from its high
power factor and very low thermal conductivities (~2 W/(m.K)) [58]. These properties
result from an unusual bonding arrangement in the bulk structure of bismuth telluride
which is comprised of distinct layers. A schematic diagram of the bonding in bismuth
telluride is provided in Figure 1.4, showing that the Te(1)-Bi-Te(2)-Bi-Te(1) layers are
held together by covalent-ionic type interactions whereas the inter-layer bonding is of

the van der Waals type.

10
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Figure 1.4 Schematic of bonding is bismuth telluride [59].

DFT calculations have also shown that the weakly bonded Te(1) type atoms contribute
the most to the electronic density of states near the valence band edge, suggesting it will
act as an electron donor, conversely bismuth atoms contribute most on the
corresponding edge at the bottom of the conduction band, showing their behaviour as
electron acceptors. This interesting effect of the bonding may go some way to reveal the

origin of high charge carrier concentrations found in bismuth telluride [60, 61].

Bismuth telluride may also be alloyed with other binary tellurides to optimise the
thermoelectric properties further and is an active area of research [62-64]. It has long
been known that the dominant effect of these high mass dopants does not result from the
electronic properties, but the different masses leading to increased phonon scattering

and hence lower thermal conductivity [65].

1.3.2. Bulk Phonon-Glass and Electron-Crystal materials

Some classes of bulk material approach the PGEC (Phonon-Glass and Electron-Crystal)
concept of the ideal thermoelectric material by splitting the requirements of PGEC
materials into separate parts of the material. The covalent superstructure provides
pathways for high electrical conductivity but contain cages holding ionic guest atoms.

The ionic guest atoms introduce rattling vibrational modes which act to reduce thermal

11



conductivity [66]. The reduction in thermal conductivity has only a very small impact

on the electrical properties as the superstructure is intact [67].

Clathrates are one such material that fulfils the PGEC requirements. The cages consist
of tetrahedral units and in some respects are similar to zeolite structures [68]. Within the
cages formed by the tetrahedral units are guest ions, which are usually metals [69]. The
use of heavy metals as guests in the structure generates localised low frequency modes
that overlap the acoustic branch and facilitate phonon scattering [70]. This arrangement
gives very low thermal conductivity while keeping the lattice intact to minimise the
charge carrier scattering.

Skutterudites are another PGEC material which innately have good electronic
conduction and high Seebeck coefficient, though they do suffer from high thermal
conductivity. The high thermal conductivity of skutterudites is mitigated by including

guest ions to scatter acoustic phonons in the same way as clathrates [71].

Half-Heuslers are three component systems of the MgAgAs type structure (Space group
F43m) [72]. The system usually contains two elements from the transitions metals and
the third a metal or metalloid. Half-Heuslers are promising because their high Seebeck
coefficient and extremely varied elemental combinations [73] allows for much

improvement via doping.

1.3.3. Oxides Materials

Metal oxides are a promising thermoelectric material as they are normally abundant,
cheap, have low toxicity (depending on the metal) [74] and are stable at high
temperatures [14]. The oxidative stability of oxides make them ideal for practical
applications, however they have poor charge carrier mobility and high thermal
conductivities. These drawbacks mean that they were generally not considered a
promising thermoelectric material until good thermoelectric performance was

demonstrated in the layered cobalt oxide NaCo,04 [75].

A further advantage of oxide type materials is the range of possible bulk structures. A
large variety of both n-type and p-type semiconductors are available containing oxides,
including: ZnO [76], Ca3Co409 [77] and NaCo,0, [78]. One particular class of oxides
that have many potential thermoelectric materials are the perovskites, including:
BaSnO; [79], BaPbO3; [80] and SrTiOz [81]. These materials generally have good
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transport properties and with potential for further improvement via doping or

nanostructuring.

As a result, oxide based thermoelectric materials are a very active area of research due
to their potential benefits [28]. A breakthrough in oxide thermoelectric materials could
both reduce the harmful elements currently used to produce thermoelectric materials
while simultaneously allowing more widespread application in high temperature,

oxidising environments.

The challenge faced by oxide thermoelectric materials is to increase the electrical
conductivity whilst simultaneously reducing thermal conductivity. A successful

approach to this in the past has been via the use of defective systems.
1.34. Defects

There are a wide variety of possible defects for any material [82]. These defects disrupt
the periodic structure of the material and impede phonon transmission, lowering thermal
conductivity. Since the size of a defect and its dimensionality result in interactions with
different wavelength phonons, a wide variety of defect sizes can lead to low thermal

conductivities, Figure 1.5 [21].

A\N\/\»  Short wavelength phonon Oy Hot EleCtron
M Mid/long wavelength phonon O Cold Electron

Figure 1.5 Scattering of different wavelength phonons in a thermoelectric material [21].
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1.3.4.1. Point defects

Doping a material with different elements is often used to introduce charge carriers or
otherwise tune the electronic structure of the material [27]. An additional impact of
doping is from the high mass of dopant atoms, which reduces the lattice thermal
conductivity in a number of ways [83]. Firstly, the mean phonon velocity is reduced as
adding heavy atoms introduces more optical vibrational modes, which have lower group
velocities [84]. Secondly, there is an enhancement of phonon scattering, which reduces

the amount of energy transported by phonons in a given time period [85].

The thermal conductivity is also impacted by the charge compensating vacancies
created by the introduction of dopant atoms. The vacancies also act as phonon scattering
sites and will reduce the thermal conductivity in addition to the dopant atoms
themselves [18]. The fact that vacancies also scatter phonons means that other materials
which can be atom deficient without the addition of dopants, such as the oxygen

deficient perovskites, can also be promising thermoelectric materials [86, 87].
1.3.4.2.  Surfaces

Surfaces can also have interesting effects on the thermoelectric properties of a material.
The surfaces of a material act in a similar way to a grain boundary except that
transmittance of phonons across the boundary is impossible and only scattering can
occur (except at very short inter-surface distances with very long range interactions).
Scattering of phonons from the surface can dramatically reduce thermal conductivity in
nanowires, with increased surface roughness reducing the thermal conductivity still
further [88]. The exact mechanisms involved are unclear but the presence of surfaces
close enough to the bulk in some nanostructured materials means this method could

become very important.

1.3.4.3. Grain Boundaries

Grain boundaries are an important type of defect which can have numerous different
and complex effects on the thermoelectric properties of a material and may be helpful or
detrimental in improving the figure of merit. The simplest way grain boundaries affect
the ZT of a material is by scattering phonons, lowering the thermal conductivity [89].
However, depending on the grain boundary and bulk material the presence of grain

boundaries can also prevent charge carriers from diffusing and thus lower the ZT.
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The importance of the boundary orientation/structure has been highlighted in work on
bismuth telluride by Deng et al.[89] which identified different figures of merit
depending on which surface is preferentially expressed and hence the packing
arrangement and grain boundaries. When bismuth telluride was grown on quartz under
different conditions the ratio of the expressed (001) and (015) surfaces changed, this
then altered the packing as shown in Figure 1.6. The overall result was that the film
with preferential growth on the (015) plane had a ZT of 0.14 and the film with growth
on the (001) film had a ZT of 0.54. It is interesting to note that the electrical properties
change much more than the thermal conductance between the two samples, revealing
how the different grain boundaries present can have different effects on the power

factor.

x-direction
x-direction

y-direction y-direction

(015) (001)

Figure 1.6 Alternative stacking arrangements of bismuth telluride grains [89].

The work by Deng et al.[89] demonstrates the effect of highly ordered grain boundaries
which may be considered a type of nanostructuring. A number of other studies have also
found that the ZT can be improved with an increase in the number and density of grain
boundaries. The studies reveal numerous materials and methods for applying this
techniques, including: Gd-doped CaMnO3; [90], lead telluride [91] and skutterudites
[92]. The wide selection of material classes within which increasing grain boundaries is

an effective technique to improve the figure of merit.

The presence of grain boundaries can also increase the ZT of a material in other ways
[93]. An unusual increase in the Seebeck coefficient sometimes occurs at grain
boundaries due to energy filtering of the charge carriers by a potential barrier that can
also be present [54]. Additionally the presence of randomly orientated grains can
improve mechanical properties as cleavage planes do not penetrate through large parts

of the material [94]. Caution must be applied when using polycrystalline materials
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because a reduction in density of only a few percent below the theoretical maximum can

lower the carrier mobility by a few orders of magnitude [95].

1.3.5. Nanostructures

Nanostructured materials use defects in a coherent manner to create larger structures
with modified and controllable properties. Much work has focused on the
nanostructuring of thermoelectric materials with very promising results [57, 96].

1.3.5.1.  Superlattices

Superlattice materials are a promising area of research and have displayed high ZT in
recent publications [97]. Superlattice materials are built from arranging grains or layers
of one or more materials in a coherent way. The different materials used may impart
specific properties to the superlattice; alternatively the boundaries themselves may

result impart unusual effects to the overall material.

Boundaries between materials in superlattices can be subtle and result in minimal
disruption to the lattice. In these cases the boundary may be considered a domain
boundary rather than a grain boundary. Two domains may be of the same material,
differing only in the type of atom present at a given site (i.e. the A site of perovskite
materials) or the orientation of different groups (tetrahedral tilting in quartz Dauphiné
twins). The boundaries between the regions may have unusual electronic properties such
as quantum confinement of charge carriers to the boundary plane, resulting in a large
increase in the Seebeck coefficient and electrical conductivity [98]. However,
superlattices are also capable of increasing the ZT of a material via increased phonon

scattering at the boundary, resulting in very high ZT's on the order of ~2 [99].

An example of the power of superlattices is demonstrated by the WSe,/W layered
system. In this structure the thermal conductivity is found to be extremely low at 0.02
W/(m.K) in the direction perpendicular to the layers [100]. An unusual effect was that
bombardment by ionic radiation resulted in an increase of thermal conductivity, despite

an apparent increase in disorder.

1.3.5.2.  Nano-inclusions

Nano-inclusions may be considered an extension of superlattices, differing in that the

second material is localised to a smaller area and the way they increase the ZT of the
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system. In these systems the electronic properties are slightly reduced but more than
compensated for by the enhanced phonon scattering [101]. Indeed, the thermal
conductivity is found to be below the alloy limit for many of these materials, indicating
the drastic differences that can be achieved compared to simple alloys and solid
solutions [101-103].

An early nano-inclusion system was the LAST-m (AgPbnSbTen.2) material which was
first studied in the 1950s. The LAST-m system was originally thought to be a solid-
solution type material [21], though later studies revealed the presence of nano-
inclusions [104, 105]. Nanoscale inclusions in the LAST-m thermoelectric material
display coherent interfaces with the matrix they are imbedded in [104], which has also
been observed in other systems [106, 107]. These coherent boundaries act in a similar
way to superlattice systems in that they scatter phonons without significantly affecting
the electronic properties. The presence of strain around the coherent interfaces seems to
be responsible for increased phonon scattering, reducing thermal conductivity well

below what is normally achieved by solid solutions alone.

The question of exactly why nano-inclusion materials are so good at scattering phonons
was tackled by considering the scattering processes [21, 108, 109]. Phonon scattering
around atomic scale defects, chiefly responsible for the reduction of thermal
conductivity in alloy systems, follows Rayleigh scattering:

d6
scattering « T

Equation 1.8

where d is the nano-inclusion diameter and A is the phonon wavelength. Hence point
defects such as dopants and vacancies are effective at scattering small wavelength
phonons while the introduction of nano-inclusions with coherent boundaries allows
scattering of much longer wavelength phonons. It is thus possible to have a system with
a wide range of defect sizes which can induce scattering in phonons of various

wavelengths, leading to a drastic reduction of thermal conductivity [110].
1.3.5.3.  Nanowires

Nanowires confine the conduction of both electrons and phonons to one dimension.

This reduction in dimensionality has a larger effect on the thermal transport properties
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than the electrical transport properties [96, 111]. One such system is bismuth telluride
one-dimensional heterostructures which display interesting properties dependent on the

stoichiometry.

It was shown that the length of a nanowire segment could be carefully controlled based
on the ionic concentrations of bismuth and tellurium in the electrolyte solution used
during growth [112], opening up routes for finely controlled one-dimensional phonon
scattering systems. The coherent boundaries between segments theoretically allow
undisrupted electrical conduction while the strain disrupts thermal conduction.
Calculations predict exceptional ZT values of up to 14 [113], though currently
synthesised materials only achieve a maximum ZT of approximately 1 at low

temperatures, possibly due to the polycrystalline nature of the wires synthesised [114].

1.4. Thermoelectric Simulations

Simulations can provide further information when studying thermoelectric materials as
well as guide future experimental research. Simulations allow access to the atomic scale
processes that generate that macroscale effects seen in experiments and give a deeper
understanding of their behaviour/properties [115]. Furthermore, the study of
thermoelectric materials in simulations can give indications of which particular features
of a material affect the thermoelectric properties and guide experimental design of

materials.

1.4.1. Ab Initio Simulations

Ab initio methods derive atomic interactions directly from first principles. There are
various levels of ab initio calculations of varying complexity and expense. Ab initio
calculations give information on the electronic structure of materials and thus are
necessary for calculating the properties pertaining to the power factor, i.e. electrical

conductivity and Seebeck coefficient [116].

The predictive power of simulations can be used to quickly and efficiently screen
potential thermoelectric materials. DFT calculations on a large range of half-Heusler
materials have been used to calculate the electrical properties and optimal doping levels,
resulting in candidates for thermoelectric materials [117]. Other DFT work on Mg,Si

looked at the effect of strain on the bulk system and what impact it had on the electrical
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properties [118]. In highly doped systems under strain it was found that the maximum in

power factor shifted to lower temperature.

The Green-Kubo method is rarely used in ab initio simulations due to the long-time
scales required and the difficulty of decomposing the energy into individual atomic
contributions, although some progress is being made in this area [119]. However, it is
possible to calculate the thermal conductivity via lattice dynamics and the finite
displacement method, using the Boltzmann transport equation (BTE). This approach
only approximates the anharmonic terms to some low order, whereas dynamic
approaches are in principle exact for a given model [120]. Additional problems arise
from the small size of the system under study, which makes calculation of thermal
conductivity in defective systems challenging. However, more simple systems can be
studied.

Work by Molinari et al. studied the oxygen deficient perovskite systems CaMnO .5
[116]. An interesting feature of this study was that all thermoelectric parameters were
calculated. The authors found that the Seebeck coefficient of partially reduced
CaMnO,. 75 increased with increasing temperature, whereas the reverse was found for
CaMnO3; and CaMnO,s. The authors also note the importance of differing defect
arrangements on the properties. Due to the computational expense the thermal
conductivity was only calculated for stoichiometric CaMnQj3 (using finite displacements
and the BTE equation as implemented in the Phonopy code [121, 122]). Although the
ZT did not appear to be improved over the stoichiometric case, this could very well be
down to the use of the bulk thermal conductivity in the calculation of the ZT for all

stoichiometries.

1.4.2. Classical Simulations

Rather than explicitly calculating electronic behaviour, classical methods approximate
interactions between atoms with parameterised equations. The interactions using these
potential equations are many orders of magnitude quicker to compute than with ab initio
methods, allowing extension to larger time and length scales. The larger scale of
classical simulations therefore allows study of thermal transport in the bulk systems as

well as systems with large defects and/or low dopant concentrations.
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There are several approaches to calculating the thermal conductivity of a system via
classical methods [123]. These methods can be broadly classified into static and
dynamic approaches. The static approaches generally aim to solve the Boltzmann
transport equation (BTE) via a systematic generation of force constants and thus phonon
frequencies and then phonon interactions. Dynamic approaches simulate the system at a
given temperature using molecular dynamics and measure the resultant thermal
conductivity. The dynamic approaches may be further subdivided into equilibrium and
non-equilibrium approaches. Equilibrium approaches use fluctuations in the system’s
heat-flux to calculate thermal conductivity via the Green-Kubo relations [124, 125],
whereas the non-equilibrium methods generate a temperature gradient and measure the
thermal conductivity directly [126]. A more detailed review of these methods is given in
Chapter 3.2.

Shukla et al. performed non-equilibrium molecular dynamics calculations on single
crystal and polycrystalline MgO and Nd,Zr,0O; [127]. The study aimed to determine the
applicability of an MgO and Nd,Zr,O; ceramic in an inert matrix fuel. Although not
motivated by thermoelectric applications, the study demonstrates the possibility of grain
boundaries and nanostructuring in general in reducing the lattice thermal conductivity.
By converting single crystal samples to polycrystalline samples, reductions in lattice
thermal conductivity by up to an order of magnitude were achieved for MgO at 300 K,
and a reduction of 60% for Nd,Zr,0- at 300 K.

Goh et al. used extensive data to fit interatomic potentials for SrTiO3 [128]. Obtaining
good potential parameters for perovskites can be difficult due to the complex nature of
the interactions of the transition metals. The thermal expansion of the potential matches
closely with experimental data and also has a marked improvement in isothermal
compressibility, heat capacity and indeed lattice thermal conductivity. However, the
charges used in the model are unusual and are not easily transferrable, making the study
of defects challenging. Additionally the RNEMD simulations used may suffer from a
small cell cross section [123, 129] and the Green-Kubo calculations may suffer from
being averaged over only 2 ns [123]. A further discussion of the importance of these

aspects can be found later in Chapter 3.2.
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1.4.3. Other Methods

Continuum methods are also available to model the thermoelectric properties of a
material. In a continuum model the specific structure of the material is ignored, instead
the phonon interactions are computed explicitly based on mathematical models and
parameters relating to the material of interest [130, 131]. These models are not
particularly suited to defective systems where the character of a point defect or grain

boundary is not particularly well captured.

1.5. Aim of this Work

One of the challenges for developing more efficient thermoelectric materials is to
identify ways of lowering the thermal conductivity in a reproducible and quantifiable
way. Thus there is a need to be able to reliably calculate the thermal conductivity and be

able to interpret the data in a way as to offer predictions and give some level of control.

Thus, along with the thermal conductivity, additional information is also sought in order
to gain an understanding of the underlying phonon processes. Therefore a dual approach
is used whereby thermal conductivity is calculated via both molecular dynamics and
lattice dynamics calculations. These approaches may give complementary information
about the phonon modes within the system and some indication of the modes most
important for thermal conductivity.

Three materials have been chosen which can exhibit various levels of nanostructuring
while being structurally distinct. The first system studied is MgO (Chapter 4) which is
an ionic material. The bulk thermal conductivity is calculated and compared to
experiments before the study is extended to two different grain boundary systems and
then finally two different nanostructured systems in order to understand how the

increasing complexity of the system impacts the thermal conductivity.

The work is then continued in the covalent silica system (SiO,) (Chapter 5). Silica may
exist in many polymorphs, the most common of which is quartz. The thermal
conductivity of quartz is calculated and compared to experiments. The phase change of
quartz is likely to impact the thermal conductivity of the material due to change in the
structure and therefore the available phonon modes. Further calculations are also

21



performed for silicalite. Silicalite is a low density zeolite with a large number of

environments, which should have a large impact on the thermal conductivity.

Finally the SrTiO3 (STO) system (Chapter 6) is studied which contains a mix of ionic
and covalent interactions. The bulk thermal conductivity is once again calculated and
then compared to a number of grain boundary systems with varying inter-boundary
distances. A series of complex nanostructures of STO are then generated out of ordered
arrays of nanocubes and the thermal conductivity is again calculated to determine the

effect of different orderings.

With the information obtained from all studies some understanding about the interaction
between nanostructure and thermal conductivity may be obtained. This understanding
will then allow new materials to be engineered with specific phonon modes which most
effectively reduce the thermal conductivity. First the methodologies employed and the

underlying theory for these studies will be discussed.
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2. Methodology

2.1. Potential Modelling

This work has been conducted using interatomic pair potentials. Pair potentials
approximate interatomic forces by using simple parameterised equations rather than
solving the full electronic structure of the system. While potential models are less
accurate than ab initio methods, larger systems and longer timescales can be simulated.
This section outlines the potential methodology that has been used throughout this

work.

2.1.1. Born Model of Solids

The Born model of solids considers a crystal lattice to be an infinite array of ions [132].

The lattice energy, U, is the sum of all the interactions between ions:

qi4;
U N Z 4‘7-[;0]71] + Z q)l](rl]) + z ¢l]k(rl]k)
Y ij ij

Equation 2.1

where 7y is the interatomic distance between atoms i and j with charges g; and q;; &, is
the vacuum permittivity. The first term represents the Coulombic interactions, which
remain significant even at large separations. The remaining terms represent the two-
body (e.g. van der Waals/bonds) and three-body short-ranged interactions respectively.
Higher terms are also possible but are often neglected due to their small contribution,

but can be important in molecular systems.

2.1.2. Coulombic Interactions

The Coulombic term in Equation 2.1 represents about 80% of the total interaction

energy. The energy of an infinite lattice of point charges, ¢, is given by:

N
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Equation 2.2
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where A represents the set of lattice vectors corresponding to the periodicity of the
lattice and n is a vector of integers used to generate the periodic images of the unit cell.
The first summation contains a prime to indicate that i = j is ignored in the summation

whenn = 0.

The r~1 nature of Equation 2.2 means that the Coulombic part of the lattice energy is
slow to converge and long range. A number of methods have been developed to ensure

the calculation is convergent.

2.1.2.1. Ewald Summation

The Ewald summation is the most widely implemented method for calculating the
Coulombic contribution to the lattice energy [133, 134]. In the Ewald method the
coulomb equation is split into long-range (¢,), short-range (¢,) and self-interaction

(¢3) components:

Q=@+t @2+ @3
Equation 2.3

With this approach each point charge is considered as being surrounded by a diffuse
charge of equal magnitude but opposite sign. A Gaussian charge density, p;(r), is often
used:

qa®

pi(1) = L5 exp(—a?r?)
2

Equation 2.4

where the diffusivity of the Gaussian is determined by the a parameter and 7 is the
point in space relative to the centre of the charge distribution. As the diffuse Gaussian
charge is of opposite sign, the interaction tends quickly to zero with increasing distance
and so the interaction has become short-ranged and may be calculated easily in real

space:

ii q:q; erfc(a|ry; +na|)
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Equation 2.5
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The interaction of each charge with its own Gaussian counterpart of opposite sign is

omitted. The complementary error function is given in Equation 2.6.

erfc(x) = jtf exp(—t?) dt
T

Equation 2.6

To compensate for the added Gaussian charge distribution of opposite sign, a second
Gaussian charge distribution of the same sign is added. In this case the interaction is
long-ranged, but the energy tends to a finite value as r;; tends to zero; thus it can be
represented as a Fourier series in reciprocal space. The value of ¢; can then be

determined by summing the Fourier components in reciprocal space:
N
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Equation 2.7

where V is the cell volume and k is a vector in reciprocal space, given by Equation 2.8

and Equation 2.9.

2mn

2
Equation 2.8

Equation 2.9

A more complete discussion of the reciprocal lattices may be found elsewhere [135]. A
visual representation of the Ewald method is shown in Figure 2.1.
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a) —original point charge b)
—gaussian charge

negative gaussian charge

Figure 2.1 a) The real space ¢, component of the calculation and b) the reciprocal ¢,

component of the calculation.

In Equation 2.7 (the long-ranged ¢, contribution) the term for k = 0 can be neglected if
the charge of the simulation cell is zero. Furthermore, it must be noted that the ¢, long-
ranged contribution to the summation includes an interaction of the point charge with its

own Gaussian counterpart; therefore a self-interaction correction is required:

N
2
a dk
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Equation 2.10

The net result of the Ewald summation is that the Coulombic interaction is split into a
short-range component which is rapidly convergent in real space, and a long-range
component which is rapidly convergent in reciprocal space. The splitting of work
between real and reciprocal components can be controlled by adjusting the diffusivity of
the compensating charge, @. A more diffuse charge screens more of the real space
interaction (which therefore converges more rapidly with distance) but requires a larger

Fourier series in reciprocal space.

The Ewald method may also be extended to include terms for charged cells, dipoles and
multipoles [136].
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2.1.2.2. FFT-Based Ewald Summation

The drawback of the Ewald method is the slow calculation of the Fourier transforms
[137], to speed calculation a number of methods have been developed: Particle-Particle
Particle-Mesh (PPPM/P3M) [138, 139], Particle Mesh Ewald (PME) [140] and Smooth
Particle Mesh Ewald (SPME) [141]. These accelerated methods are all based on the
premise of reassigning the long range component of the Coulombic interaction from the
particles to the nodes of a 3D mesh. The property of equally spaced nodes on the mesh

allows use of Fast Fourier Transforms (FFT), which greatly accelerates calculation.

2.1.2.3. Parry Summation

For systems with two-dimensional periodicity it is more common for the Parry
summation to be used than the Ewald summation. The Parry summation is a
modification of the Ewald summation that considers the crystal to be built from a series
of two-dimensional planes. Thus the vectors in the summation are split into in-plane and
cross-plane vectors and treated separately. With this approach it can no longer be
guaranteed that each plane is charge neutral and so the term involving k = 0 must also
be considered. A more complete overview of the Parry summation may be found
elsewhere [142-144].

2.1.3. Short-Range Interactions

Short-range must also be considered when evaluating the energy and forces. The short-
range contribution is dominated by two interactions. The first is Pauli repulsion which
arises from the overlap of electron clouds at small interatomic separations. As the
electron clouds overlap some are forced into higher energy states as no two electrons
can have identical quantum numbers, leading to a large repulsion at very short range.
The second dominating contribution is from the London dispersion forces, also known
as the instantaneous dipole-induced dipole forces, which tend to be attractive over
medium range. Both of these contributions tend quickly to zero with increasing

distance.

Often, short-range interactions are only included for anion-anion and anion-cation pairs,
with short range cation-cation interactions neglected. The reason for this is that the
electrons present on cations are very tightly bound and thus the short-range effects of

the anion-anion interaction will dominate [145].

27



A number of parameterised potential functions have been developed to describe these
interactions, usually containing an attractive term and a repulsive term. The differences
between the potential forms tends to be related to the curvature of the
attraction/repulsion, therefore no one potential form can be said to be better or worse
than the others as different functions may be more appropriate for different systems; i.e.

“hard” or “soft” repulsion.

The accuracy and reliability of any simulation is heavily dependent on the parameters
used in the potential equations. These may be fitted to experimental data or ab initio

simulations, which must also be accurate and reliable.

2.1.3.1. Lennard-Jones Potential

One of the earliest equations developed for short-range interatomic interactions was the
Lennard-Jones potential [146, 147]. This potential is fairly simple and has gained

widespread use due to its effectiveness and ease of computation:

12 6 12 6
Y Tij Tij Tij Tij
Equation 2.11

where 7y is the interatomic distance, ¢ is the energy at the minimum of the energy well,
T, 1S the position of the energy well minimum and o is the finite distance where the
potential energy is zero. These quantities are visualised on the potential curve in Figure
2.2.
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Figure 2.2 Lennard-Jones potential with parameters.

The Lennard-Jones potential may be recast into a repulsive term and an attractive term:

(rij) T iz 6
i ij

Equation 2.12
A;; and By are given by:

Ajj = erg? = 4eo'?

Equation 2.13

Bij = 287'n61 = 480'6

Equation 2.14

Al-j/ré-2 is repulsive and very short range due to the 12 term, whereas the —Bl-j/rg-
term is attractive and dominates at medium distances due to the r~° term. The r~¢
nature of the attractive term is justified as it arises out of the dipole-dipole dispersion
interaction of electron clouds [148] (higher terms are also possible such as =8 which
represents dipole-quadrupole interactions). There is no physical justification for the
r~12 term and it is simply a mathematically convenient way to model the repulsion as

r~12 is the square of r~°.
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The A;; and B;; parameters are fitted for different systems and are related to features in

the potential energy curve and are chosen to best reproduce the physical properties of

interest for any given material.

The Lennard-Jones potential has had great success for modelling simple neutral

particles such as the noble gases [149-152].
2.1.3.2.  Mie Potential

The Lennard-Jones potential is a particular case of a more general class of potentials

known as the Mie potential [153]:

) = ()@ (2) - (2) ]

t tj

Equation 2.15

where € is the well depth and o is the value of r;; where U(r;;) is zero. Thus the Mie
potential is equivalent to the conventional Lennard-Jones potential when n = 12 and

m = 6, but is much more flexible.

2.1.3.3.  Buckingham Potential

A slightly more complex potential equation which is commonly used is the Buckingham
potential [154] which replaces the inverse twelfth power repulsion with an exponential
repulsion which can better describe the Pauli repulsion:
Ty
U(ry) = Aije( i) - -

Equation 2.16
where 4;; is now different to the one used in the Lennard-Jones potential and along with

pij is related to the ionic size and “hardness” of the interacting species. Once again the

rif term is the attractive portion, controlled by the parameter C;;.

As the Buckingham potential has three adjustable parameters, as opposed to the two
parameters available to the 12-6 Lennard-Jones equation, it is more flexible and can be

applied to a larger range of systems. However, the exponential term is more
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computationally demanding to compute than the power term used in the Lennard-Jones

potential.

One property of the Buckingham potential to be aware of is that the rif term becomes
dominant at extremely short distances, causing the function to turn over and become
attractive where it should be purely repulsive. This is particularly problematic in high
temperature molecular dynamics simulations where particle collisions may overcome

the repulsive barrier resulting in unphysical particle fusion.

2.1.3.4. Morse Potential

The Morse potential [155] introduces a parameter related to the curvature of the energy

well:

U(r;) = D;(1— e[=Bij(rij=ro)ly2 _ Dy
Equation 2.17
where 7y is the interatomic separation at the energy well minimum, D;; is the well depth

and B;; is related to the curvature of the well. B;; can be calculated from the bond

vibrational frequency by:

U
B:i=w |—
U= 12p;

Equation 2.18

where u is the reduced mass and w is the bond vibrational frequency. w can also be

related to the spring constant, k, of the bond:

Equation 2.19

The Morse potential has historically been used to model covalent bonds as the
parameters required can be obtained from structural and spectroscopic data. As these
parameters contain within them contributions from all the interactions between the two

atoms, it is sometimes necessary to subtract some portion of the Coulombic contribution
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to retain the physical origin of the potential (which includes all interactions when

parameters are obtained from experiment).

2.1.3.5. Pedone Potential

A development of the Morse potential is the Pedone potential [156] which is simply the
Morse potential with the addition of Lennard-Jones type repulsion. The addition of the
extra repulsive term gives an extra parameter which can allow better tuning of the
repulsive properties of the potential at very short distances:

) = (g1 - 202 - p, ) + 2

12

Equation 2.20

2.1.3.6. Tabulated Potentials

All of the above potentials have varying complexity in terms of computation time.
However, by using tabulated energies and forces as a function of distance computed
beforehand, the computationally demanding exponential and/or power terms are

removed and replaced with a simple linear/spline interpolation.

The tabulated energies/forces need not necessarily be generated by the simulation code
itself. Externally generated tables can be made with more complex potential equations
not originally available within the code, or generated directly from ab initio simulations,

avoiding parameterised equations altogether.

While it is possible for tabulated potentials to bring great benefits in terms of
computational speed, one must be very careful when implementing this technique. To
avoid spurious interpolations (and hence energy/force) a high density of points must be
present in the table. However, having too many points will lead to excessive memory

usage and may in fact be detrimental.

2.1.3.7. Bonded Interactions

Bonded interactions occur where the interaction is between two specific atoms, and no
others. This type of interaction is most often used in molecular species in order to

reproduce covalent bonds, but can also appear in a mixed ionic-covalent system. For
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example, the CO5s* anion requires a bonded interaction between the carbon and oxygen

atoms, but not between the carbon and other oxygen atoms within the system.
The bonded interaction may take many forms. A simple form would be a harmonic
bond specified by:
U(rj) = %K(Tij —n)’
Equation 2.21
where K is the spring constant and ry, is the equilibrium bond distance.

2.1.3.8. Many-Body Interactions

In addition to the bonded interactions outlined above, covalently bonded systems may
require additional interactions involving three or more bodies to restrict structures to
their correct form. For example the carbonate (COs*) ion is planar due to the sp?

hybridisation.

To keep fragments in the correct conformation, an energy penalty is applied so as to
restore the structure to its equilibrium position. Many expressions for the energy penalty

are possible; a simple harmonic expression is given by:

1
U(6;j) = EKijk(Hijk - 90)2
Equation 2.22

where K;j;, is a spring constant related to the stiffness of the angle, 6;;,is the current

angle and 6y is the equilibrium angle. While a simple harmonic three-body interaction is
useful for keeping an equilibrium angle between three atoms, it is not very useful for
arrangements of four or more atoms, where a torsional term may be more appropriate.
Again there are many forms of torsional equations; one example is given in Equation
2.23.

U(dijir) = Kijra[1 — cos(Nepijir) |

Equation 2.23

where K;jy,; is twice the barrier height, ¢, j, is the torsion angle and N is the periodicity

of the torsion. When N is set to 2 this expression has minima at either 0° or 180°.
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Often many-body terms are present in systems with molecular units. However, the

interactions can also be represented to some degree by a system of pair potentials.

2.1.4. lonic Polarisability

The electron cloud of an atom is polarisable and can generate dipoles, which will have a
significant effect on the interatomic interactions. Many potential functions include terms
for the attractive dispersion forces that arise out of instantaneous dipole-induced dipole
interactions. It is also possible for a species to have a permanent dipole created by
neighbouring species with a large electronegativity disparity. These interactions may

also be treated in a classical framework by either the shell model or via partial charges.
2.1.4.1.  Shell Model

lons are often polarisable, and these effects should also be represented in simulation.
One of the most common method is the “shell model” of Dick and Overhauser [157]. In
the shell model the charged ion is divided into two components; a core carrying a
positive charge and all of the mass, and a massless shell with some negative charge. The
core and shell both carry a charge but are Coulombically screened from each other and

are instead permanently linked together by a simple spring:

— 2 4
U(rij) = EKzrcore—shell + EKll'rcore—shell

Equation 2.24

where the strength of the springs is governed by K, and K,. However the second term
can often be ignored except in rare cases where it is required to avoid unphysical core-
shell separations. Thus the spring constant is related to the free ion polarisability («) and
the charge on the shell (Y) by:
g 1 v?

dmtey K

Equation 2.25

It is most common for the shell model to be used on anions as their valence electrons
are less closely bound than in cations. In this case the shell can be thought of as the
polarisable electron cloud, with its position being allowed to deviate from that of the
core, as shown in Figure 2.3. As the shell represents the electron cloud it is usual to

34



have all the short-range van der Waals interactions attributed to the shell rather than the

core.

Spring Constant, K

Shell —

Core Charge, X

Shell Charge, Y

Figure 2.3 The shell model.

When using the shell model in molecular dynamics care must be taken to avoid the shell
obtaining unphysical velocities. There are two main approaches to doing this, either by
optimising the position of the shells at each step [158], or by assigning a small mass to
the shell [159, 160]. By dividing ions into two species the Coulombic calculation
becomes much more complex, and the addition of the spring between the core and shell
also adds a small calculation penalty.

2.1.4.2. Partial Charge Model

An alternative method to the shell model is to use partial charges on the ions, rather than
formal charges. This approach can give a collection of atoms the correct dipole moment
without the independent species being polarisable. This approach is popular for organic
systems which contain a large permanent dipole in their covalent bonds, but has also
been applied to inorganic systems where the bonding is also partially covalent. This
method requires no additional computational resource as it only requires a modification

to the atomic charges.

2.1.5. Potentials Used in this Work

The magnesium oxide potential used in this work was developed specifically for

thermal conductivity calculations [127] and is of the Buckingham form, Table 2.1.
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Species | Charge
Mg 17
O -1.7
Interaction | A (V) | p(A) |C (eV.A"6)
0-0 35686.18 | 0.201 32.0
Mg-O 929.69 | 0.29909 0.0

Table 2.1 MgO potential.

also of the Buckingham form, Table 2.2.

The potential used for silica calculations is the well-known BKS potential [161, 162],

Species | Charge

Si 24

O -1.2
Interaction | A (eV) p (A) | C (eV.A"6)
0-0 1388.7730 | 0.3623 175.0
Si-O 18003.7572 | 0.2052 | 133.5381

Table 2.2 SiO; potential.

Species | Charge
Sr 1.2
Ti 24
O -1.2

36

The potential used for STO is again of the Buckingham form and is known as the Teter
potential [163], Table 2.3.




Interaction | A (V) | p(A) |C (eV.A"6)
0-0 1844.7458 | 0.3436 192.58
Sr-O 14566.637 | 0.2450 81.773
Ti-O 23707.909 | 0.1856 14.513

Table 2.3 STO potential.

2.2. General Simulation Methodology

A number of general methodologies are often employed in the study of crystal systems

which make the calculations more tractable and/or accurate.

2.2.1. Periodic boundary conditions

Real crystals have finite bounds at surfaces/interfaces, but these are often far apart at the
atomic scale and thus a crystal may be considered as an infinite array of ordered atoms.
Calculating the properties of such a system is not tractable and thus techniques must be

used to simplify the problem.

Periodic Boundary Conditions (PBCs) exploit the translational symmetry found in
crystals by connecting the simulation cell to itself via its opposing faces, Figure 2.4.
This allows the periodic passage of both particles and interactions, thereby
approximating an infinite lattice. While an artificial periodicity is induced, the size of
the system inside the boundaries can be chosen to minimise the impact of the artificial
periodicity.
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Figure 2.4 Example of a system under 2D PBCs.

PBCs reproduce the environment at the centre of pure crystals where the effect of
surfaces and defects is negligible. In molecular dynamics simulations, a simulation cell
many times larger than a single unit cell is used to allow the system to explore more
disordered states introduced by the kinetic motion of particles. This is vitally important
for some properties such as diffusion, where diffusion mechanisms may require several

unit cells to operate correctly.

Other dynamical properties such as thermal expansion, heat capacity and thermal
conductivity are also better represented by larger simulation cells. The vibrational
modes present in a simulated system can be artificially limited by small simulation cells
as only the modes with wavelength smaller than the simulation cell are allowed, leading

to spurious values for these properties.

2.2.2. Short-Range Cutoffs

The short-range interactions detailed in Chapter 2.1.3 rapidly converge towards zero;
therefore it is unnecessary to evaluate the potential at long distances as the contribution

to the energy and force is negligible. When a simple cutoff is applied to the potential, all
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interactions above the cutoff are set to zero with no compensation for the sharp

discontinuity in energy and forces. This approach has been used throughout this work.

While it is usually acceptable to have a simple cutoff with a very small discontinuity,
some simulation artefacts may occur as atoms move in and out of the cutoff distance,
leading to spurious energy and force values. To compensate a number of methods have

been developed to make the discontinuity smooth.

2.2.2.1. Potential Shifting

The most obvious method of removing the discontinuity is to shift the function so that
the value at the cutoff is zero. If this is naively performed on just the energy function
then the first derivative will not be zero, and so must be performed initially on the first
derivative and then on the energy function [164]. An example for the Lennard-Jones
potential is given by:

Aij By
U(T'ij) = ?—T-F CZT'ij +ﬁ
ij ij

Equation 2.26

where «a is chosen so that the first derivative at the cutoff is zero and £ is chosen so that
the energy of the new function at the cutoff is also zero. Force and energy values above
the cutoff are then set to zero as before, but with the benefit that both now transition
smoothly to zero at the cutoff.

More advanced switching functions are also available, based on any function that can be
made to vary smoothly between one and zero over a given range. Potential shifting has

not been used in this work.

2.2.2.2. Minimum Image Convention

The minimum image convention states that the cutoff should be no larger than half the
shortest cell vector, displayed in Figure 2.5. The minimum image convention thus
prevents a particle interacting twice with another particle which may lead to spurious
vibrational effects.
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Figure 2.5 The minimum image convention within PBCs.

An additional advantage of the minimum image convention is that an algorithm for
generating interatomic distances need only check each pair once as it is guaranteed they

can only be within the cutoff in one direction.

2.3. Energy Minimisation

Energy minimisation seeks to find the lowest energy configuration of a system. While

energy minimisation is extremely useful, there are a few important points to consider:

1. Initial configuration — a starting configuration is required, preferably near the
global energy minimum.

2. Local minima — energy minimisation techniques typically locate the nearest
minima, which may not necessarily be the global minimum.

3. Vibrational modes — energy minimised structures can be considered to be at 0 K,
neglecting even zero point vibrations. This can cause difficulties when a

structure only present at high temperatures is to be studied.

This work has primarily used the METADISE code [165] for energy minimisation, but

under some situations the energy minimisation features of the molecular dynamics code
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LAMMPS [166] have also been used. The algorithms outlined below are general and

may also be applied when the interatomic forces are generated from other methods.

2.3.1. Lattice Enerqgy

All energy minimisation strategies function by moving the atoms until the total force

(F) acting on them is zero:

6U(r)
- or =0

Equation 2.27

F =

where U is the energy and r is the equilibrium coordinates. Energy minimisation is
often an iterative approach and seeks the energy minimum by reducing the energy at
each step. The energy of the system can be expressed as a Taylor expansion with respect
to atomic coordinates, r:

SU(r) 16%20(r)

or or + AR Y o

Equation 2.28

Ur+6ér)=U)+ 5r2 + 0(613)

where the first term is the lattice energy at the minimum, with subsequent terms
describing higher derivatives with respect to displacement. It is usual for energy
minimisation techniques to use the first and second derivatives. The higher derivatives,

denoted by 0(873), are often neglected.

In Equation 2.28 and those to follow, r is a 3 X N matrix where N is the number of
atoms and the 3 is due to the degrees of freedom. The use of a matrix here allows the
minimisation algorithms to act globally, ensuring all degrees of freedom are minimised

simultaneously.

2.3.2. Minimisation Algorithms

2.3.2.1. Steepest Descent

The steepest descent [134] (or gradient descent) method is the simplest algorithm to
both understand and implement. Steepest descent is based on using the gradient of the

energy function, which is related to the force:

41



U
gn - (51‘n

Equation 2.29

Fp,=-9x
Equation 2.30

Equation 2.32

where F is the force, F,,is the force unit vector, g,, is the gradient of the energy and n

denotes the iteration. In steepest descent the positions of the atoms are then updated by:

_

Thi =Ty +anFy

Equation 2.33

where a,, is the minimisation step size. The choice of a,, can be either a default scaling;
i.e. increase step size by a given factor if the step direction results in a decrease of
energy, or reduce the step size by another factor if the energy is found to increase. This
method is computationally inexpensive in calculating step size, but may require more
steps to find the minimum. An alternative method involves conducting computationally
expensive line searches to find the minimum in the given direction, but with the

advantage of taking fewer steps to converge.

Steepest descent is very efficient for systems where a few large interatomic forces
dominate the interactions, as this dictates the direction of the gradient. However, one
significant drawback of this method is that when line searches are used the new
direction of minimisation is orthogonal to the previous direction, making minimisation

in narrow valleys on the energy landscape highly inefficient.
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2.3.2.2. Conjugate Gradient

The conjugate gradient method [167] is a more advanced variant of the steepest descent
method, where the step size and direction is modified after the first iteration to include
information from previous iterations. In conjugate gradient minimisation, the direction

vector is given by:

Fo=—gn+vmFn1
Equation 2.34

Vi = In " Gn
" In-1"9n-1
Equation 2.35

here y,, is a scalar coefficient which is related to the proportion of the previous gradient
that should be used to correct the next gradient. Several variants exist for computing y,,

which may perform better under different conditions.

Equation 2.33 and Equation 2.34 are used again to update positions, where a, is
computed with a line search. This approach cannot be used for the first iteration, for

which standard steepest descent is used instead.

The advantage gained by the conjugate gradient method over steepest descent is that it
does not oscillate along narrow valleys. An additional property of the conjugate gradient
method is that for a quadratic function of M variables, the minimum value will be found
in M steps [167].

2.3.2.3. Newton-Raphson

Both steepest descent and conjugate gradient are considered first-order minimisation
algorithms as they only employ information about the gradient of the energy. By also
using second derivatives information about the change of gradient can also be included.

Such methods are called second-order, of which Newton-Raphson [168] is the simplest.

The Newton-Raphson method requires calculation of the second derivative matrix

(called the Hessian), which is then inverted:
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s2U\""
W, =
" <6r%>
Equation 2.36

The positions are then updated by:

Tni1 =Tp — GnWh

Equation 2.37

Due to the nature of quadratic equations (where the second derivative is a constant) the
Newton-Raphson method can locate the minimum in a single step. This is called the
harmonic approximation and holds near the energy minimum, but not far from the

minimum, where the Newton-Rapshon method may become unstable.

The Newton-Raphson method requires calculation and inversion of the Hessian matrix
at every iteration, which is a very computationally expensive operation. To counteract
these issues it is common to use a more robust minimiser to approach the minimum,

before Newton-Raphson is used to locate the minimum in one or two iterations.

2.3.2.4. Quasi-Newton Methods

Quasi-Newton methods [169] aim to accelerate the Newton-Raphson minimisation by
avoiding calculation of the inverse Hessian matrix at each iteration. Instead, the inverse

Hessian matrix is built over successive iterations:

52U\
JL‘E‘O W = <6r$l>

Equation 2.38

There exists a multitude of ways to perform the update including DFP [170] and BFGS
[171-174].

2.3.25. FIRE minimisation

Energy Minimisation has also been performed by molecular dynamics quenching where
the thermostat is set to zero Kelvin to remove all kinetic energy as it is converted from
potential energy. An advanced form of this type of minimisation is known as the FIRE

minimiser (Fast Inertial Relaxation Engine) [175].
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The FIRE minimiser calculates the forces on a per-atom basis and then allows the
positions to change based on a simple molecular dynamics time integrator, with a few

added conditions. The basic algorithm is outlined below:

1. Calculate r, F and v with any MD integrator. Check for convergence,

2. Calculate P =F -v

3. Setv— (1—a)v+aF|v|

4. If P >0 and the number of steps since P was negative is larger than Npin,
increase the timestep At — min(Atfi,c, Atmay), and decrease a = af,

5. If P <0, decrease the timestep At — Atfz.., remove velocities v — 0 and set

a = Ustart,

where F is the force, F is the unit vector of the force, v is the velocity and |v| denotes
the absolute value of the velocities. « is a scaling factor which balances the contribution
from the velocity and from the direction the force is acting in. When P is below zero the
minimisation has reached a minimum in that direction. Once this occurs the velocities
are reset to zero and a time latency of N,,;,, is allowed before the timestep and balancing
factor are allowed to be adjusted, ensuring some inertia is allowed to accumulate in the

minimising direction.

The recommended parameters for any simulation are Ny,i, = 5, fine = 1.1, fzec = 0.5,
Agrare = 0.1 and f, = 0.99. The adjustable parameter of At,,,,iS usually set at ~10x
the usual MD timestep. One issue to be careful of is that the algorithm assumes all
degrees of freedom to be comparable and hence the velocities should be on the same
scale; this can be approximated by setting all atom masses equal. The mass of the
species is unimportant for energy minimisation as it only has an effect on the

accelerations and not the forces or potential energy.

The FIRE minimiser gives advantages over steepest descent and conjugate gradient in
that it uses more of the previous information to guide the minimisation to the minimum.
The advantage over the Newton-Raphson method is a large reduction in storage

requirements and reduction in computation time as the inverse Hessian is not required.

In this work the FIRE minimiser has primarily been used to minimise large grain
boundary systems in conjunction with a few constant pressure Newton-Raphson

iterations.
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2.3.3. Constant Pressure Minimisation

As energy minimisation of atomic coordinates occurs it is also possible to minimise the
geometry of the simulation cell itself. Such a minimisation is called constant pressure
(as opposed to constant volume) as the forces acting on the cell can be considered
equivalent to pressure. In many cases a minimisation at constant volume is performed
first to allow the cell contents to find their preferred geometry with respect to each

other, and then minimise the whole system including the simulation cell geometry.

To perform a constant pressure energy minimisation the cell dimensions are treated as
additional variables in the minimisation. The bulk lattice strain according to Hooke’s
law is given by:

e=Clo

Equation 2.39

where €1 is the inverse second order derivative of lattice energy with respect to strain
(also called the elastic compliance matrix). o is the stress defined as the sum of the

static pressure, plus any applied pressure:

0 = Pgiqric + Papplied

Equation 2.40

1\ /16U
Pgatic = (V) (E)

Equation 2.41

where V is the volume, U is the lattice energy and € is the lattice strain. A more

complete overview of constant pressure minimisation is given in Leach (2001) [134].

The final configuration of a constant pressure energy minimisation often makes a good
starting point for molecular dynamics simulations as the atoms are at their equilibrium
positions. If an atom is some distance from its equilibrium position then a large velocity
may be generated on the first timestep, which could significantly interfere with the

structure or dynamics.
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2.3.4. Overcoming Local Minima

The configuration located by energy minimisation is not necessarily the global energy
minimum. Energy minimisation functions by iteratively seeking lower energy
configurations from a starting configuration. Thus it is possible for a configuration to
become trapped in a local energy minimum rather than the global minimum. As many
real materials exhibit several stable polymorphs (Titania, Silica etc.) the local minima

may also be viable structures.

However it is often preferable to locate the global minimum and several technigques can
be used to try and locate it. The simplest method is to try multiple starting
configurations and energy minimise them, searching for the lowest energy system.
Other techniques may search via Monte Carlo methods or molecular dynamics. A
remaining issue is that it is hard to be certain a given configuration is the global

minimum unless the entirety of the energy landscape has been explored.

2.4. Molecular Dynamics

Molecular dynamics is a technique that iteratively integrates Newton’s laws of motions
for a given system of particles by assigning velocities and stepping forward in time.
Small energy barriers may be overcome with molecular dynamics as the probability (P)
of overcoming an energy barrier is proportional to the height of the energy barrier and

the temperature of the system:

P « exp(—E,/kgT)
Equation 2.42

where E, is the height of the energy barrier relative to the current minimum, kg is
Boltzmann’s constant and T is the temperature. However this is rarely the most efficient
approach due to kinetic factors, whereas Monte Carlo techniques operate purely on the
thermodynamics of the system. A more detailed discussion of Monte Carlo simulations

may be found elsewhere [134].

Molecular dynamics can be employed to calculate properties of a system that are only
accurately measurable under the flow of time such as diffusion and thermal
conductivity. However, such calculations may require much simulation time to accrue

reasonable statistical accuracy.
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24.1. Calculation of Forces

The approach to force calculation in molecular dynamics is different to that in energy
minimisation. Below is an outline of functional, but perhaps not optimal, classical
potential molecular dynamics algorithms. First the distance between the atoms is
calculated from their Cartesian coordinates:

rij =rl-—rj

Equation 2.43

where r; and r; are the Cartesian coordinates of atom i and j respectively. The distance

between atoms i and j may also be written:

— _ 2.2 2 2
rj = |ry| = /xij +Yyi; + Zj;

Equation 2.44

where x;;, y;; and z;; are the difference in Cartesian coordinates in each dimension. It is
important to note that the vector r;; gives the distance of atom i with respect to atom j

and thus the calculated forces will also be of atom i with respect to atom j.
The distance is then used to calculate the force:

dUu

F:
. drij

j =
Equation 2.45

The force must next be decomposed into contributions from each dimension by using
the distance unit vector:
rij du

Fij :Fljlr__ _dr

gl ij

Equation 2.46
The force acting on atom j with respect to atom i can be obtained from Newton’s third

law. When one body exerts a force on a second body, the second body exerts a force of
equal and opposite magnitude on the first body:
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Fji = —F;

Equation 2.47

The total force acting upon an atom is the sum of the forces acting upon it from all other

atoms:

N
Fi =2FU

=1
*i

.

Equation 2.48

To convert the force to acceleration Newton’s second law is used, where t is time, a is
the acceleration and m is the mass:
F 5°r
=m-—=m-a
Ot?

Equation 2.49

24.2. Time Integration Algorithms

Once the force acting on an atom is obtained, it is possible to write equations to update
the positions and velocities of atoms based on the accelerations and the previous

positions and velocities:

a(t)At?
2

r(t + At) = r(t) + v(t)At +
Equation 2.50

v(t + At) = v(t) + a(t)At

Equation 2.51

where r is the position, v is the velocity and a is the acceleration of the atoms. Equation
2.50 and Equation 2.51 are only valid for continuous time and infinitesimally small
changes in the acceleration. However, time in molecular dynamics simulations is
discretised, which may remove the energy conservation properties of Newton’s

equations and therefore alternative algorithms are required.
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To compensate for the use of finite timesteps, time integration algorithms have been
developed based on the Taylor expansion in time. These are time-reversible algorithms

which in principle conserve a mean energy over the course of the simulation [176].

2.4.21. Stormer-Verlet

The Taylor series expanded about r(t + At) is given in Equation 2.52 and Equation
2.53.

r(t + At) = r(t) + v(t)At + a(t) %At2 + b(t) %Aﬁ + 0(At?)

Equation 2.52

1 1
r(t—At) = r(t) —v()At + a(t) EAtZ —b(t) aAt3 + 0(AtY)
Equation 2.53

where b is the third derivative of the position with respect to time, also known as the
jerk. O(At*) is the error due to neglecting higher order terms of the expansion. By

summing these two expressions and rearranging, Equation 2.54 is obtained:

r(t + At) = 2r(t) — r(t — At) + a(t)At? + 0(At?)
Equation 2.54

The advantage of Equation 2.54 is that the third order terms (the jerk) cancel, making
this a fourth order integrator. The velocity is not calculated explicitly but can be
computed by:

_r(t+At) —r(t—At)
B 2At

Equation 2.55

v(t) + 0(At?)

This approach is known as the Stormer-Verlet algorithm [177]. A significant drawback
of this method is that velocities can only be calculated one step behind the positions due
to the requirement of the r(t + At) term. While this does not directly affect the
dynamics, it does cause some issue for calculation of properties such as kinetic energy
and thus any thermostat applied to the system. Additionally, computational accuracy
may suffer by adding a small term, a(t)At?, to the difference between two very large

terms.
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2.4.2.2. Verlet Leap-Frog

Other algorithms have been developed which explicitly calculate the velocity. The
Verlet Leap-frog algorithm [139] is based on the basic Stérmer-Verlet algorithm but
calculates the velocities at the half-timestep. These can then be used to calculate the
velocities at the timestep without requiring the positions at the next timestep. In this
algorithm the half-timestep velocities are calculated by:
v(t+g> = v(t—g) + a(t)At
2 2
Equation 2.56

The velocities at the timestep can then be extrapolated by averaging the time adjacent

velocities:

v(t+%)+v(t—%)
2

Equation 2.57

v(t) =

The positions are then calculated from the half-timestep:

At
r(t +At) = 7(6) + v(t + 7) At
Equation 2.58

While an improvement over the Stérmer-Verlet method there remains a disadvantage in
that the positions and velocities are still not synchronised. In this work the Velocity
Verlet algorithm has been used which calculates the positions, velocities and

accelerations at the same timestep.

2.4.2.3. Velocity Verlet

The algorithm for the Velocity Verlet [178] method is:

1. Calculate the new positions from current positions, velocities and accelerations
by Equation 2.59.

a(t)At?
2

r(t+ At) =r(t) + v(t)At +

Equation 2.59
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2. Calculate the velocity at the half-timestep with Equation 2.60.

a(t)At
2

At
v(t+7) =v(t) +
Equation 2.60

3. Calculate new forces and thus accelerations using the new atom positions.
4. Calculate new velocities using velocities at the half-timestep and the new
accelerations using Equation 2.61.
v(t+ At) = v(t+%) +

Equation 2.61

a(t + At)At
2

At the expense of extra storage for accelerations, the Velocity Verlet method may be

shortened to:

1. Calculate the new positions from current positions, velocities and accelerations
using Equation 2.509.

2. Calculate new forces and thus accelerations using the new atom positions.

3. Calculate new velocities using current velocities, old accelerations and new
accelerations using Equation 2.62.

(a(®) + a(t + At))At
2

v(t+ At) =v(t) +
Equation 2.62

2.4.2.4. Predictor-Corrector Methods

A class of slightly more complex time integrators are also available which use the
Taylor expansion term for acceleration and compare it to the acceleration as predicted
from the potential acting upon the system. The difference can be used iteratively to

adjust the positions and velocities until the two accelerations match.

The predictor-corrector methods often follow the equations of motion very closely but
suffer from the requirement of repeated calculation of the accelerations and therefore
forces, which is usually the most expensive part of a molecular dynamics simulation.
Additionally, not all predictor-corrector methods are time reversible and conserve

energy [179].
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A more complete discussion of these methods is given by Leach [134].

24.3. Initial Velocities

The Velocity Verlet algorithm requires initial velocities as well as atomic coordinates
and thus the velocities must be assigned or carried over from a previous simulation.

Equation 2.63 is used to relate average atom velocities to a given temperature.

N
myv? = 3NkgT
i=1

Equation 2.63

In Equation 2.63 m; is the mass of each atom and v; is the velocity. N is the number of
atoms, kg is the Boltzmann constant. The linear momentum of the system is also

required to be zero to avoid translation of the simulation cell contents, Equation 2.64.

N
p= Zmivi =0
i=1
Equation 2.64

Additional constraints may also be placed to ensure there is no net angular momentum

either.

2.4.4. Choosing the Timestep

Time integration algorithms require a discrete timestep which is chosen as a balance
between simulation accuracy and computation time. A poorly chosen timestep can lead
to unphysical dynamics and highly unstable systems.

The timestep must be short enough to accurately reproduce the trajectory of fastest
atomic motion present in the system; this is particularly important in systems with light
atoms such as hydrogen, or in systems employing the shell model which can move at
very high frequencies. However, a timestep that is too small will take an unfeasibly long

time to accrue statistics and so a balance must be struck between the two.

Consider a diatomic system such as O,, when the atomic separation is small there is a
repulsive force and there is no initial velocity. The repulsive force felt between the

atoms results in movement away from each other. In the case of a reasonable timestep,
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the atoms will separate until an attractive force is felt, resulting in vibration. If the
timestep is too large the atoms may separate far enough that they bypass the attractive

part of the potential, resulting in an unphysical bond breaking.

2.4.5. Equilibration Period

Before any information can be gathered from a simulation, it is important to allow the
simulation to equilibrate first, so as to not include any effects from the initialisation.

A key example is that of system volume; when starting from an energy minimised
structure (equivalent to zero Kelvin) the structure often has the wrong volume for the

simulation temperature and this must be allowed to equilibrate before data collection.

The equilibration period is also the time where additional constraints can be applied to
ensure the correct dynamics are reproduced later. In the case of the diatomic of O,
molecule, if the atoms start too close together, a large force will be exerted within a very
short period of time. The large force will lead to a large acceleration and a separation of
the molecule. This means the system under study is no longer the O, molecule as
desired. By applying a maximum force limit during equilibration, the O, molecule may

remain intact. After the equilibration, the system may then be studied.

Other constraints which may be applied during equilibration include rapid temperature
rescaling to bring the system to the desired temperature faster, and repeated momentum
zeroing to prevent translation of the entire system.

2.4.6. Neighbour Lists and Verlet Lists

During molecular dynamics simulations all relevant interactions must be calculated at
every timestep. Instead of calculating all short-range particle-particle interactions,
cutoffs (discussed in Chapter 2.2.2) are used so that only relevant interactions are
calculated. To find all particles that are within the cutoff, a search over all particles can
be performed to generate a neighbour list. The generation of neighbour lists is very
computationally demanding, and scales poorly with number of particles, giving a
complexity of O(N?). A number of approaches have been developed to reduce the

computation time, one such approach is that of Verlet lists.

Verlet lists [177] serve as a data structure to keep track of which particles may be within

the short-range cutoff over the next few timesteps. Deciding which particles to include

54



in the Verlet list is done by adding an extra skin region to the surface of the cutoff
region; particles within the skin region are close enough to the central particle that it is

possible for them to move within the cutoff over the next few timesteps.

The choice of skin distance must be made carefully; a larger skin distance means less
frequent updates of the Verlet list, but an increase in the number of particles that must
be checked each timestep. The decision is largely system dependent; a low temperature
crystal would need only a moderate skin distance and have its Verlet list updated very
infrequently, if ever. Conversely a hot gaseous system would require a large skin

distance and still require frequent list rebuilds.

The use of Verlet lists in not infallible, a statistically rare high velocity particle could
theoretically move into the cutoff region between Verlet list builds and not be
recognised as potentially interacting. However it is relatively simple to check for atoms
with such high velocity and when they occur to trigger a rebuild of the Verlet list. A
deeper concern is that frequent occurrences of these high velocity particles may indicate

that the timestep is too large, leading to generally poor dynamics.
This work has used a skin distance of 2.0 A and an update interval of 10 timesteps.
2.4.7. Ensembles

Ensembles describe the conditions that molecular dynamics simulations are run under.
Each ensemble is represented by a different Hamiltonian, which describes the conserved
quantities of the system. The simplest ensemble that can be used in molecular dynamics

simulations is the microcanonical (NVE) ensemble.

2.4.7.1. Microcanonical (NVE) Ensemble

In the NVE ensemble the number of atoms (N), volume (V) and energy (E) are held
constant. The Hamiltonian of this system is simply the sum of the potential (U) and

Kinetic (K. E.) energies:

HNVE == U + KE
Equation 2.65
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In experiments it is not the total energy that is held constant, but the temperature. To
more accurately model these cases it is more appropriate to use a constant temperature

ensemble such as the canonical (NVT) ensemble.

2.4.7.2. Canonical (NVT) Ensemble

A number of different methods are available to control the temperature of a simulation.
One of the most commonly used methods is the Nosé—Hoover thermostat [180-182]
which is also used throughout this work. The Hamiltonian when using the Nosé—Hoover
thermostat is the Helmholtz free energy:

x*Q
HNVT = U+KE+T+3NkBT1nS

Equation 2.66

where y is a friction coefficient, s is a variable used to scale the particle momenta and Q
is the effective mass of the thermostat and governs the coupling of the system to the
thermostat. The update of particle positions proceeds in the same manner as for the
microcanonical ensemble:
dr _
dt
Equation 2.67

Vi

However, the accelerations now have an additional component which is coupled to the

thermostat:

dvi
dr T A

Equation 2.68
The friction coefficient, y, is updated by:

dx m;X|v;|* —3NkgT
dt Q

Equation 2.69

where m; is the mass of the particle and T is the desired temperature. The scaling factor,

s, Is then updated by:
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dins
dt

Equation 2.70

=X

2.4.7.3. Isobaric-isothermal (NPT) Ensemble

The NPT ensemble maintains the number of particles, pressure and temperature. The
temperature is maintained as before and a similar expression is used to maintain the
pressure, except that it is the cell dimensions which are adjusted. Several variations
exist depending on whether the cell dimensions are allowed to vary isotropically,

anisotropically and whether the angles between the cell vectors are allowed to change.
2.5. Defects

Crystal systems may contain many types of defects. The simplest type of defect is the
point defect which is a change to a single atomic site in the crystal, of which three basic

types are possible:

e Vacancies — An empty site that is usually occupied.
e Interstitials — An atom occupying a site that is usually vacant.

e Substitutions — A site that is occupied by a different type of atom than is usual.

More complex defect schemes can be built from these three basic types. A Schottky
defect is typically a group of vacancies that constitute one complete stoichiometric unit
of the material. A Frenkel defect is a combination of a vacancy and an interstitial such
that an atom has essentially moved to another position in the material. This work has
not studied point defects and a more complete discussion of their study may be found in
Leach [134].

Crystals also contain extended defects, including:

e Line defects.
o Edge dislocations.
o Screw dislocations.
e Planar defects.
o Surfaces.

o Grain boundaries.

57



o Stacking faults.

This work has looked at grain boundaries and nanostructured systems, which may also
contain internal surfaces. Therefore, in the next section an overview of extended defects

IS given.

25.1. Extended Defects

Extended defects are those which exist over large distances as opposed to localised
defects such as dopants and vacancies. Generating such defects is nontrivial and
requires several steps. In this work the METADISE code [165] has been used to

generate grain boundaries to study their effect on thermal conductivity.
2.5.1.1.  Miller Indices

A Miller index defines a normal to a plane in the lattice and consist of three integers
which indicate where in a given reciprocal cell the plane cuts the axes. For example the
{112} Miller index indicates a family of planes in the real space cell. This Miller index
includes the plane which cuts the X axis at 1.0, the Y axis at 1.0 and the Z axis at 0.5
and all parallel planes. Some example Miller indices and their corresponding planes are
given in Figure 2.6. The Miller index is a convenient way to describe surfaces; however
a single Miller index may give multiple surface geometries depending on where in the

crystal the plane is cut and the possible surface reconstructions.
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(100) (010)

(001) (101)

Figure 2.6 Possible planes for different Miller indices.
2.5.1.2.  Surfaces

When a crystal is cleaved, two surfaces are formed. The surface is primarily
characterised by its Miller index, secondarily by the termination pattern. These different
factors influence the stability of the surface. Depending on the termination of the

surface, problems relating to the dipole of the materials may arise.

It has been shown [183] that when a dipole perpendicular to the surface is present, the
energy of the surface diverges. Such surfaces are therefore unstable and require defects
to remove the dipole. These defects can either be adatoms, vacancies or large
reconstructions. There are in fact three different types of surface, as described by Tasker
[184] and shown in Figure 2.7.
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Figure 2.7 Diagram of the three types of surfaces possible when cutting a crystal: a)
Type 1, b) Type Il and c) Type I1l. The polar repeat units in the Type I11 surface result in

a reconstruction, one possible reconstruction is shown in d).

The three types of surface are defined as:

e Type | —Built from uncharged planes. Each plane contains a stoichiometric
amount of cations and anions and thus has no dipole.

e Type Il — Built from charged planes, stacked in a way as to produce no overall
dipole at the surface.

e Type Il — Built from charged planes, stacked in a way that generates a dipole at
the surface. It is this type of surface which requires modification to become

stable.

Several schemes have been proposed for the modification of Type Il surfaces. Oliver et
al. [185] suggested moving half of the atoms in the surface plane to the surface at the
bottom of the cell, neutralising the dipole. However, the arrangement of the half-filled
plane at the surfaces becomes another variable to investigate. A related approach is that
of micro-faceting, where rearrangement of the surface to give facets can remove the
dipole and lower the surface energy. Very large facets may simply be considered

different surfaces which are stepped, Figure 2.8.
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Figure 2.8 Two possible surface geometries generated by faceting of the (110) surface,
both using the (100) and (010) surfaces.

To model a surface one can use the approach developed by Tasker [184]. Here the
simulation cell consists of two-dimensional periodic charged planes, parallel to the
surface. A full crystal may contain millions of layers of charged planes between two
opposing surfaces. To overcome this problem Tasker developed the two-region
approach. When a surface is formed relaxation of ions occurs and continues several
layers into the bulk crystal until bulk like geometry is restored. Therefore the
surface/bulk system can be split into two regions; one containing atoms which are near
the surface and will explicitly relax (Region 1), the other far from the surface where the

effect is negligible and so the atoms can be held fixed (Region II).

To minimise the surface energy, a block is made consisting of the two regions (Figure
2.9). The ions in Region Il are held fixed at their equilibrium positions to approximate
the bulk crystal. The ions in Region | experience all the interactions associated with
Region Il and are allowed to relax to their favoured positions. The size of the two
regions must be tested so that they reach convergence. A small Region Il may result in
the surface not experience enough bulk-like effects while a small Region | may not be

large enough to return to bulk before meeting Region 1.
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Figure 2.9 Schematic of the two-region approach as used to simulate surfaces. PBCs

may be applied perpendicular to the surface.

To compare the energy of the surface to that of the bulk, two blocks instead of one can
be used. In this case, the surface is not exposed to vacuum but another surface in the
second block such that the two surfaces recover the bulk structure. From this

arrangement one can then calculate the bulk (Ug) and surface (Us) energies:

Usg = (ER,+ER )+ (ER_ +Ef_;)

Equation 2.71

Us = (E; + Ey) + (Ei—r + Efi—ur)
Equation 2.72
where the superscripts refer to either the energy of the bulk (EB) or the surface (ES) and
the subscripts refer to the components of different regions interacting. For example

E}_,, refers to the energy of interaction between ions in Regions | and Il for the surface
calculation.
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The energy of a given surface, y, is the excess in energy of the surface calculation as
compared to the bulk, for the same number of atoms per surface area:
Us — Ug
S
Equation 2.73

')/:

where S is the surface area. Using the reasonable approximation of ER_;, = E},_;; they

will cancel and thus their calculation can be avoided.

25.1.3. Crystal Morphology

Using the calculated surface energies it is possible to obtain the equilibrium
morphology of a given material. For a crystal of a given volume, the equilibrium
morphology will minimise the total surface energy and thus more stable surfaces will
have larger surface areas and vice versa. Thus, Equation 2.74 is minimised for a given
volume [186]:

Yy = Z_Visi
L

Equation 2.74

where y; is the surface energy per area and S; is the surface area of the corresponding
crystallographic face. i runs over all possible surfaces, however very high Miller index

surfaces tend to be unstable and contribute very little to the final morphology.

Building upon this, Wulff [187] proposed the crystal morphology could be calculated
based on the normal vector to a crystallographic face (h;) and the surface energy of that

face y;:

h; = Ay;
Equation 2.75

where A is a constant dependent upon the volume of the crystal. By constructing planes
at the end of these vectors, the inner surface gives the equilibrium morphology. This is
known as the Wulff construction, Figure 2.10.
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, (120}

Figure 2.10 The Wulff construction of a crystal. The (120) surface is not expressed due

to its high energy.

The Wulff construction only holds true for larger crystals grown in equilibrium. The
kinetic morphology may be very different due to the growth speeds of the different
surfaces. Additionally, growth of crystals in different mediums will also affect the
morphology and the surface calculations should include these effects for accurate

comparison to experiments.

25.1.4. Grain Boundaries

Extended defects within the bulk such as dislocations and grain boundaries can be
modelled by adapting the approach used for surfaces. Grain boundaries are generally
considered as the interface between two crystalline grains with differing orientations
[188], however dislocations can also be considered to be a special case of grain
boundary where no rotation of the grain has occurred, but only displacement.

There exist primarily two types of grain boundary:

e Tilt Grain Boundaries — These boundaries are created when the rotation axis is

parallel to the boundary plane.
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e Twist Grain Boundaries — These boundaries are created when the rotation axis is

perpendicular to the boundary plane.

The definition of grain boundaries follows the coincidence site lattice model which
assumes that low formation energy is achieved when there is a high degree of
coincidence of the atomic positions across the two grains. The reciprocal density of

coincidence sites, , is defined as the sum of the squares of the Miller indices (h, k and

l):
T=6(h*+k*+1%
Equation 2.76

where ¢ is 1 if sum of the squared indices is odd and 0.5 when they are even. Hence in
cubic systems X values are always expressed as an odd number. Low X values are
accepted as representing special boundaries (e.g. a  of 3 is a singular boundary. Further

details about the coincidence site lattice model may be found elsewhere[189].

Constructing a grain boundary initially follows the same procedure as constructing a
surface, diverging just prior to relaxation of the surface. Following the same approach
as in surface construction, a block is created containing two regions as before. To build
a grain boundary rather than a surface the block is reflected or rotated such that the

Region Is of the two blocks are adjacent, Figure 2.11.
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Figure 2.11 The two-region approach applied to a grain boundary (dislocation).

The choice of reflection or rotation must be made carefully depending on the type of
material and grain boundary being built. For centrosymmetric materials a reflection is

equivalent to a rotation; for non-centrosymmetric materials it is not.

One block is then scanned over the other to determine the displacement which will give
the lowest energy structure. In principle the scan could be done over rotations in
addition to displacements but for tilt grain boundaries only the displacement is required.
These scans are performed with the METADISE code [165].

The scans are conducted by defining a two-dimensional mesh over the surface and
displacing the second block to the different points on the mesh. The two Region Is of
the blocks are then minimised and the final energy taken. The finer the mesh the more
accurate the scan will be, at the expensive of more structures to evaluate. The scan may
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also be accelerated by skipping the minimisation but then the lowest energy structure

may not be found.

When the lowest energy displacement structure is found the simulation cell is converted
to a bulk-like cell and a second boundary half way along the simulation cell is created
such that it is the same as the first boundary. The amount of bulk between the two
boundaries can be varied to study the effects of inter-boundary distance, related to grain

size in real materials.

Two important energetic values can be calculated for grain boundaries. Cleavage energy
(E¢) is defined as the energy required to separate the boundary into two surfaces and is
representative of how tightly bound the two grains are. Formation energy (Er) is the
energy required to form the grain boundary from the bulk and is related to how likely

the boundary is to form. E is calculated by:

Egb - 2Esurf
A

Equation 2.77

EC:

where Egy, is the energy of the grain boundary, E,,( is the energy of the surface and A

is the area. Likewise Ep is obtained from:

E b Ebulk

EF = g A
Equation 2.78

where Ej,;. IS the energy of the bulk material. It is important that for both these

calculations the energy values are for the same number of atoms per area.
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3. Thermal Conductivity Methodology

The calculation of thermal conductivity in simulation may be conducted a number of
ways. In this chapter a brief overview of phonons is given followed by an outline of
three different approaches to the calculation of thermal conductivity. Each of the
approaches calculates the thermal conductivity in a different way and each has its

strengths and weaknesses.

3.1. Phonon Processes

A phonon is a quasiparticle which represents waves traversing materials via local
displacements of atoms. The thermodynamic properties of a material are directly
governed by the phonon processes occurring within the material. Heat capacity, thermal
expansion and thermal conductivity are just a few thermodynamic properties which are
explained by phonons. Heat capacity may be calculated using only the harmonic
approximation, but thermal expansion and thermal conductivity require that phonons
interact with each other and therefore anharmonic contributions must be included. An
initial starting point for anharmonic contributions is the harmonic approximation, which

may then be extended to include anharmonic terms.

3.1.1. The Harmonic Approximation

The energy of a material (U) may be described by a Taylor expansion of displacements

(u),4), Where j is the atom label and a is a particular dimension (x, y or z):

U= U+~ oy
= B) — U,y iU, !
072 ou., :0u.r .1 ¥ 7a
il a,] a’,j
1]
a,ar
L1 o"u )
n! U, ) ;@) U, ) i) +
| . cee . a '] a ']
' @, j aua(l),](l) au’a(n),](n)
a(l)’...’a(n)

Equation 3.1

where U, is the equilibrium lattice energy, the second-order term is the harmonic energy
and all higher terms (denoted by n) contribute to the anharmonic energy. The first-order

term is neglected as for a crystal at equilibrium the forces (negative of the first
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derivative of energy) are zero. The harmonic approximation is simply to neglect all

terms beyond the harmonic energy.

In the harmonic approximation the phonon frequencies can be calculated using the finite
displacement method, where the derivatives with respect to energy are calculated by
displacing an atom by a small distance and recording the forces on all other atoms. This
obtains a 3n X 3n matrix (where n is now the number of atoms) known as the harmonic
matrix. The Fourier transform of the harmonic matrix using a given k-vector (or g-
point) is known as the dynamical matrix [190, 191]. The dynamical matrix may be
diagonalised to yield the squared phonon frequencies as eigenvalues, with eigenvectors

corresponding to atomic motions.

This approach may be extended to include higher order terms and therefore some
anharmonic properties, including thermal expansion and conductivity. Including the
third-order term requires additional atomic displacements of other atoms so that all
possible pairs of atomic displacements are included [122]. Problems such as memory
requirements and numerical error on the forces rapidly make the approach intractable
above the third-order force constants. However the third-order force constants are
sufficient to allow phonon-phonon interactions to be calculated and thence thermal

expansion and conductivity.

3.1.2. Anharmonic Processes

The anharmonicity of the interactions between atoms are not accounted for in the
harmonic approximation. Including the anharmonic terms allows for both thermal
expansion and phonon-phonon interactions [192], which moderate the thermal
conductivity. This section is only intended as a brief overview, a more complete

explanation is given by Dove [192].

3.1.2.1. Thermal expansion

The thermal expansion of crystals is governed by the anharmonic part of the interaction.
In the harmonic approximation the average interatomic distance does not change with
temperature and thus the crystal does not expand. When the interaction is anharmonic

the bond lengths may change upon changing temperature, Figure 3.1.
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Figure 3.1 The equilibrium distance increases from r; to r, upon increasing

temperature.

The thermal conductivity of a material is also dependent upon anharmonic interactions.
In a harmonic system phonon-phonon interactions do not occur and thus the thermal

conductivity would be infinite as scattering does not occur.

If the thermal expansion is reproduced well by a potential model then it is likely the
potential model will also give good thermal conductivity values, although it is not

ensured.

3.1.2.2. Phonon Scattering

There are two possible types of phonon scattering process, Normal and Umklapp.

Normal type scattering processes occur when the interaction of two phonons (k, and
k,) results in a third phonon (k3) with the same total phonon momentum (p) of the

original two phonons:

Pk, + Pk, = Pk,

Equation 3.2
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Umklapp type scattering processes occur when the interaction of two phonons (k; and
k) results in a third phonon (k3) with less total phonon momentum (p) than the original

two phonons, but with some transfer of phonon momentum to the lattice (G):

Pk, * Pk, =P, + G
Equation 3.3
The reason behind this is that the k-vectors of the original two phonons push the
resultant phonon’s k-vector outside of the first Brillouin zone. k-vectors pointing

outside the first Brillouin zone can be remapped back into the first Brillouin zone by

addition or subtraction of a reciprocal lattice vector, shown schematically in Figure 3.2.

N-Process U-Process

Figure 3.2 Normal and Umklapp type scattering processes [193].

However the distinction between these processes depends upon the definition of the
basic cell of the reciprocal lattice [194]. Both phonons scattering processes are capable
of reducing the thermal conductivity of the system as the heat-flux of is given by the
product of the phonon’s energy and group velocity. Therefore as long as a scattering
event produces a phonon with a lesser or reversed group velocity the thermal
conductivity of the lattice will be reduced. A fuller discussion of these principles is

given by Maznev [194].

The thermal conductivity itself can be calculated via a number of methods, which can

be broadly categorised into two approaches. The first approach involves solving the
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Boltzmann transport equation using lattice dynamics and the other involves measuring

the thermal conductivity within molecular dynamics simulation.

The molecular dynamics approaches may be subdivided further into two approaches.
The first approach is based on non-equilibrium simulations where a temperature
gradient is imposed and the response measured. The second approach is an equilibrium

method and relies on obtaining the thermal conductivity the Green-Kubo relations.

3.2. Calculation of Thermal Conductivity

3.2.1. The Boltzmann Transport Equation

The calculation of thermal conductivity via the Boltzmann transport equation is very
complex and too extensive to cover here. In brief, the finite displacement method is
used to generate the third-order dynamical matrix. The harmonic phonon frequencies

(w,) are obtained from the second-order force constants as

discussed in Chapter 3.1.1. Additionally, the third-order force constants are used to
obtain the imaginary part of the phonon self-energy (I;). Next the phonon self-energy
and the harmonic phonon frequency (w;) are used to calculate lifetimes of the phonons

(t,), Equation 3.4.

1
T, =
AT 2N (wp)
Equation 3.4

It is also assumed that the phonon relaxation time is equivalent to the phonon lifetime

under the single mode relaxation time approximation (SMRT), Equation 3.5.
SMRT —

T/l =T,

Equation 3.5

Finally, the number of unit cells (N), system volume (V,), mode dependent heat
capacities (C;), group velocities (v;) and phonon lifetimes (t3"%") are used to calculate

the thermal conductivity (x), Equation 3.6.
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Equation 3.6
A more complete description of the method is given by Togo et al.[122].

3.2.2. The Direct Method

The direct method has been used extensively to calculate the thermal conductivity of
various systems [123, 195-198]. The direct method involves defining two regions in the
simulation cell as reservoirs which have thermostats applied to maintain a temperature
difference. The use of two thermostatted regions means the system is not in equilibrium,
and so this method is also known as the Non-Equilibrium Molecular Dynamics
(NEMD) method.

The reservoirs are thin layers, periodic in 2D and perpendicular to the X direction of the
simulation cell. They are positioned half the simulation cell apart in the X direction so

that they are equally spaced across the periodic boundaries as well, Figure 3.3.

X
Figure 3.3 Layout of a NEMD simulation cell. Hot slab in red, cold slab in blue.

The total energy removed and added to the system by the thermostats is monitored and
is equal to the heat-flux. Then by measuring a temperature profile the thermal

conductivity can be calculated using Equation 3.7.

_ ]
- 8T /6x

Equation 3.7
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where J is the heat-flux, 8T is the temperature difference between the reservoirs and &x
is the distance over which the thermal gradient is measured. These types of systems
must be large to ensure a diffusive regime is reached and avoid ballistic transport of

phonons between the reservoirs.

The effect of having hot and cold reservoirs means the phonon mean free path in the X
direction of the unit cell is limited. Therefore simulations of various lengths are often
conducted, with the value of thermal conductivity for an infinitely long simulation cell

extrapolated using Equation 3.8.

_ 1 «a
K, Keo L
Equation 3.8

where k; is the thermal conductivity for a given simulation cell length, L. a is a
coefficient independent of simulation cell length and k. is the bulk thermal
conductivity at infinite length. This expression holds well for most materials but for

some it fails to give reasonable values for thermal conductivity.

A general problem with direct methods is that of isotropy. For isotropic systems the
calculations need only be done once. However for anisotropic systems the series of
calculations must be repeated for each distinct direction.

Further problems are also introduced by the presence of the reservoirs. In the reservoir
regions the velocities of the atoms are being constantly adjusted and therefore the
reservoir acts much like a barrier to the phonons and hence thermal transport. In bulk
materials this is not so much an issue as the material is periodic over short distances and
the structure in the region of the reservoir will be repeated elsewhere. However, in
complex nanostructured systems there are likely to be large infrequent defects, and a

reservoir placed on these defects will exclude their effect on thermal transport.

Issues also arise from using thermostats on the reservoirs as the choice of thermostat
parameters can affect the rate of heat transport. Using a constant heat-flux regime where
the amount of energy added/removed to the reservoirs per timestep is constant can

mitigate this problem.
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In the constant heat-flux direct method it is important that the amount of energy
removed from the cold reservoir should match the amount of energy added to the hot
reservoir. This approach requires scaling of all velocities within the reservoir region; a
simpler approach involves swapping of velocities between the two regions, outlined

below.

3.2.2.1. The Reverse Non-Equilibrium Molecular Dynamics (RNEMD) Method

The reverse non-equilibrium molecular dynamics (RNEMD) method by Muller-Plathe
[126] is a variant of the direct method which is very similar to the constant heat-flux
regime as implemented in the standard direct method. The difference of the RNEMD
method is that it uses kinetic energy swapping between the hottest atom in the cold
reservoir and the coldest atom in the hot reservoir to generate the temperature gradient.
Thus the heat-flux between the two reservoirs is equal to the sum of the total energy

transferred.

The mechanics of this approach mean that the heat-flux can be finely controlled by

adjusting how often the kinetic energy swaps are performed.

The distribution of kinetic energies at the target temperature means that it is usual for
the hottest atom in the cold reservoir to have more kinetic energy than the coldest atom
in the hot reservoir. Even if this were not the case the swapping of kinetic energies
should ensure there is always some overlap between the kinetic energy distributions,

and hence a small temperature differential is ensured.

A significant advantage of this method is that the heat-flux is known exactly. The heat-
flux in the direct method is measured and subject to large fluctuations, making the value
slow to converge. Whereas in the RNEMD method the value to converge is the
temperature gradient, which is averaged over atoms and time and thus should be faster

to converge.

Despite these advantages the RNEMD method still requires calculation of multiple sizes
and orientations of the same system to obtain reasonable results while the issue of
reservoir location still remains for large nanostructures. Alternative schemes based on

similar principles have also been proposed [199].
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3.2.3. The Green-Kubo Method

The thermal conductivity can also be calculated from systems in equilibrium by using
the Green-Kubo relations [124, 125]. In the Green-Kubo method the heat-flux of the
system is calculated at intervals and the processed to give the thermal conductivity. The
advantages are that the system is always in a steady state regime with no artificial

boundaries and finite size effects are somewhat minimised.

First the heat-flux of the system is calculated using:

f

Equation 3.9

where J is the heat-flux, e; is the energy of atom i, v; is the velocity vector for atom i

and S; is the stress tensor. This may also be expanded to give:

J= Zeivi —Z(fij V)1

i<j
Equation 3.10
and further:

J= [Z ev; — %Z (fij (i + ”j)) Ty

i<j

Equation 3.11
where f;; represents the force and r;; the separation between atoms i and j.

A time averaged autocorrelation of the heat-flux is then taken and integrated, yielding a

value proportional to the thermal conductivity:

_ SAt
"~ VkgT?

K

j J(0) - J(O)AE
0

Equation 3.12

76



where s is the integer number of steps between heat-flux sampling, At is the timestep of
the simulation, V is the volume of the system, kg is Boltzmann’s constant and T is the

temperature of the system.

It is important to select the timestep such that the highest frequency vibration in the
system is accurately reproduced to ensure physical dynamics. Furthermore, the choice
of heat-flux sampling interval is important as it must accurately capture the highest

frequency mode which partakes in phonon scattering.

The Green-Kubo method gives a thermal conductivity tensor as a result, instead of a
single scalar value. The advantage gained over the direct method is that only one
calculation is required for any material, as opposed to multiple calculations at different
systems and lengths and in different directions. The advantage of the tensor output also
extends to anisotropic materials (such as quartz), extended defects (such as grain
boundaries) and highly nanostructured materials.

A drawback of the Green-Kubo method is that long simulations/multiple simulations are
required to properly sample the ensemble average. It may require tens of ns for the heat-
flux autocorrelation function to converge. Additionally, the point of convergence and

thus the error may be difficult to identify.

3.2.3.1. Deciding The Integral Cutoff

The autocorrelation function for a bulk ionic solid tends to be quite simple. It resembles

an exponential damped cosine wave, Figure 3.4 and Figure 3.5.
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Figure 3.4 Heat-flux autocorrelation.
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Figure 3.5 Heat-flux autocorrelation (fine detail).

Indeed, for simple systems fitting the data points to such an expression is possible, with

the integral then calculated analytically. However for more complex systems this type
of fitting becomes very difficult.
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The exponential decay component of the autocorrelation is related to the lifetime of the
acoustic modes and the sinusoidal component is related to optical phonons that are
transporting heat locally but not contributing to long range transport. The more complex
a system is, the more modes must be included to get a reasonable fit. For defective
systems the fit becomes more difficult still due to the large range of frequencies a defect

may operate over.

For the complex systems presented here a numerical integration must be used and
requires the choice of an integration cutoff. As there will always be some thermal noise
it is necessary to average over a portion of the integral [200]. The averaging aims to
remove random noise while preserving the signal underneath. The choice of parameters
is somewhat arbitrary and difficult to define with this method, and error calculation is
also difficult [201].

An example of a Green-Kubo integral is given in Figure 3.6 for the MgO system
detailed later in Chapter 4.2.2. The value at each time interval is the thermal

conductivity should the autocorrelation be integrated only up to that point.
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Figure 3.6 Example at 300 K with increasing integration. Example neck regime
highlighted.

In this work the method of McGaughey [202] has been used where the thermal

conductivity integral is averaged over a period called the neck regime. The neck regime
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occurs when the value for thermal conductivity plateaus and before statistical error
begins to contribute significantly to the thermal conductivity, Figure 3.6. The start and
finish of the neck regime itself may also change significantly between materials,
temperature and nanostructure. For this work, the neck regime has been defined for each
bulk material independently to simplify analysis, and kept the same for nanostructures

of the same material.

3.2.3.2.  Green-Kubo Error Analysis

The error on the thermal conductivity as calculated by the Green-Kubo method is very
hard to define [203, 204]. To ensure maximum accuracy the thermal conductivity is
calculated by passing heat-flux values as calculated by LAMMPS (Appendix C) to an
in-house code (Appendix D) which performs the autocorrelation and integration. This
code uses the heat-flux values from the entire data set rather than using windowed time-
frames as is done natively in LAMMPS. The advantage gained is that a shifting initial
timestep can be used in the autocorrelation calculation, boosting accuracy. Additionally,
the full cross-correlation tensor can be computed, giving access to the diagonal X, Y

and Z components as well as the off-diagonal values (which should be zero).

There are several sources of error on both the heat-flux values and originating within the

method itself. The contributing factors include:

e Error of autocorrelation point. Each point of the autocorrelation is generated by
averaging the correlation between a large number of time intervals and so the
accuracy of this value depends upon the number of time intervals available.

e The error of integration. The exact calculation of thermal conductivity from the
autocorrelation requires integration over continuous time. However only discrete
time is available in molecular dynamics and so errors are present stemming from
interpolation over the gaps in the data. This work has used a sampling frequency
of 10 fs and integration of the autocorrelation was performed using a running
trapezoidal rule.

e The cut-off time for the integration. The final value of thermal conductivity is
given by integrating up to a given time where the autocorrelation has completely
decayed. As the Green-Kubo method relies on sampling the thermal noise of the

system and relating it to thermal conductivity there is always some noise
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remaining in the autocorrelation. Thus deciding the point at which the
autocorrelation has fully decayed is extremely challenging as including values
after the decay point only serves to add error from random noise. Choosing the
cut-off point is not simple and varies from temperature to temperature, material

to material and between different nanostructures/defects.

The calculation of error is still not simple as each point within the neck regime is
dependent upon the previous points and influenced by the errors outlined above.
Therefore a simple standard error cannot be calculated and instead the error in this work
is represented as the difference between the maximum and minimum values within the
neck regime. With this approach some representation of the fluctuation in thermal

conductivity values is retained.

3.2.3.1. The Green-Kubo Spectrum

If the Fourier transform of the heat-flux autocorrelation function is taken, a spectrum is
yielded which relates to the periodic oscillations observable in the heat-flux

autocorrelation function [202].

These oscillations have been shown to arise from a certain subset of optical phonon
modes at the gamma point of the first Brillouin zone [115]. The subset of allowed
phonon modes in the Green-Kubo spectrum seems to be related to the symmetry of the
vibrational mode; modes which are symmetrical do not appear whereas the

asymmetrical modes do.

While these optical modes do not transport a significant portion of heat they are still
capable of interacting with the heat carrying acoustic modes and thus the heat-flux of
the system [115, 205].

3.2.3.2.  Serial and Parallel Heat-Flux Collection

The calculation of the heat-flux autocorrelation requires heat-flux data to be continuous
as the important property is the strength of the relation between the heat-flux at one time
and the heat-flux at another time. However, at longer intervals the heat-flux is not
expected to be strongly correlated and thus the simulation may be divided into several
different runs and then averaged later. By dividing the simulation into different runs,

each starting with different velocities, the amount of data available for smaller time
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intervals will also be reduced. An expression may be derived to predict the number of
fewer data points available at any given time interval within the autocorrelation by the

splitting of the calculation across several simulations.

The set of parallel simulations may be considered a single serial simulation with
discontinuities in the heat-flux data set. In this pseudo-serial run there will be n — 1

discontinuities in the heat-flux data set.

The total number of missing data points contributing to the autocorrelation in a set of
parallel simulations as compared to a serial simulation is a function of the interval

length and the number of discontinuities.

At a timestep interval of zero there are no missing data points in a set of parallel
simulations as compared to a serial simulation as there is no need to cross a
discontinuity. At a timestep interval of 1 the number of missing data points is 1 X
(n — 1) as there will be one missing autocorrelation values per discontinuity. Similarly
at a timestep interval of 2 timesteps the autocorrelation will have 2 x (n — 1) missing

values in the autocorrelation. The general expression is given by:

my, = p(n—1)
Equation 3.13

where m, is the number of missing heat-flux data points at point p of the
autocorrelation and n is the number of parallel simulations. The number of data points
contributing directly to any autocorrelation point in a sequential simulation can also be
stated:

S,=t—p

Equation 3.14

where s,, is the number of data points contributing to the autocorrelation at timestep
interval p and t is the total number of heat-flux data points in the data set. By dividing
my, by s, the fraction of missing values contributing to any autocorrelation point may

be derived.

As the fraction of missing data points increases linearly with the autocorrelation interval

these values remain insignificant well beyond the point of decay for simulations
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containing several ns of data collection for each parallel simulation. Additionally the

additional averaging over phase space may offset the introduced error entirely [206].

3.2.4. Finite Size Effects

Thermal conductivity calculations are particularly susceptible to finite size effects due
to their reliance on vibrational modes of the system. If the wavelength of the vibration is
limited (such as by periodic boundary conditions) then the number of heat conducting

modes is also limited.

An example of the extreme case is a single particle in a periodic box. As there is a
single particle in the primitive unit cell and the number of vibrational modes is 3N — 3,
no vibrational modes are present. Acoustic modes are technically present in the form of
lattice translations, however their frequency is imaginary. Clearly the thermal

conductivity of such a system makes no sense as heat cannot be transported internally.

It is by expanding the simulation cell for the system that vibrational modes become
accessible. These may be acoustic or optical, which may or may not interact with the
acoustic modes. Figure 3.7 shows various simulation cell sizes and their respective
lowest frequency optical mode. Note that expansion of the cell may lose modes allowed

in smaller systems (e.g. lowest frequency mode in a x2 expansion in the x3 expansion).
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Figure 3.7 The lowest frequency allowed optical modes in different simulation cell
expansions. Note that the wave of wavelength 2 is forbidden in the x3 expansion of the

cell and likewise the wave of wavelength 3 is forbidden in the x4 expansion of the cell.

The complex interaction of phonons in a small simulation cell can lead to spurious
effects where acoustic phonons do not scatter before crossing a region they have only
recently passed. The effect may result in constructive or destructive interference

depending on the size of the simulation cell and the wavelength of the phonons.

Finite size effects in defective materials are less important than in their bulk
counterparts. The scattering centres introduced by the defects lead to a much shorter
phonon mean free path and thus the limited size of the simulation may become less of
an issue. However different defects interact or scatter phonons to different degrees,

meaning some finite size effects may still remain.
3.24.1. BTE Methods

BTE methods employing lattice dynamics calculations are most susceptible to
neglecting longer wavelength phonons due to the large memory requirements of the
dynamical matrix, and thus small simulation cells. The problem of incommensurate
waves outlined in Figure 3.7 is also present but may be compensated for by using

multiple simulation cells of different sizes to better to describe the first Brillouin zone;
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however this leads to the risk of small simulation cells and thus spurious force

constants.

3.2.4.2. Direct Methods

Finite size effects are most important in direct method simulations where the
temperature gradient is sustained over a finite distance. The distance between the two
reservoir regions acts to limit the allowed wavelength of the phonons and thus multiple
simulations are often required. The calculated thermal conductivity of these systems is

then extrapolated to infinite length.

3.24.3. Green-Kubo Method

Green-Kubo calculations are performed at equilibrium and the lack of reservoirs allows
acoustic phonons to pass through the system multiple times before scattering, thus
reducing the problem of finite size. However, the maximum allowed wavelength of a
phonon is still limited by periodic boundary conditions and interference is now possible.
Therefore, convergence of the thermal conductivity with respect to system size must

still be ensured.
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4. The Effect of Nanostructuring on the Thermal

Conductivity of Magnesium Oxide (MgO)

The aim of the work in this chapter is to apply potential based techniques to calculate
the thermal conductivity of bulk MgO via the Green-Kubo method and investigate the
effect of extended defects and nanostructures. These systems are expected to give a
significant reduction in the thermal conductivity which depends upon the structure of

the boundary and nanostructure.

Before presenting the results, a brief overview of MgO is given discussing the
importance of MgO as a material and why its thermal conductivity is studied. Previous
computational work on the thermal conductivity of MgO is also discussed. Throughout
this work thermal conductivity is used to refer specifically to lattice thermal

conductivity, excluding electronic and radiative contributions.

4.1. MqgO Overview

Magnesium oxide (MgO) is one of the most abundant materials on the planet and
comprises a significant portion of the earth’s lower mantle [207, 208]. In this context
MgO is also known as periclase and when in conjunction with iron, ferropericlase. As
this material exists deep in the earth’s mantle it is subject to extreme temperature and
pressure conditions. These conditions are difficult to access experimentally but can be

simulated relatively easily.

In addition to being important geochemically, MgO and other binary metal oxides have
found many uses in industrial applications such as in ceramics and in refractory
materials [209-211] and as a potential component of immobilisation matrices for
nuclear fuels [212, 213]. Many of these applications involve high temperature
conditions and can benefit from a greater understanding of the thermal transport in these

materials.

MgO is a simple binary oxide compound with the rocksalt structure. The ionic nature of
bonding in MgO and its simple structure means that thermal transport processes and the
effect of defects can be understood more easily than in systems with complex structures

and bonding. Some materials structurally similar to MgO are NiO, FeO, MnO and CoO,
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which are of interest as possible thermoelectric materials [214], as they contain

relatively cheap transition metal cations. Thus, MgO is a good model system.

Previous work has been performed on MgO, both experimentally and computationally.
The thermal conductivity of MgO has been measured experimentally and has given
fairly consistent results [215-217]. The calculation of thermal conductivity
computationally is somewhat more challenging due to many factors such as simulation
size, timescale and most importantly accurate representation of interactions. Despite
these challenges, the thermal conductivity of MgO has been calculated using several
different techniques.

Ab initio techniques derive the interatomic interactions from first principles calculations
on the electronic structure. These types of calculations are computationally expensive
and so most often use lattice dynamics to solve the Boltzmann transport equation [121,
122, 218] using very small simulation cells. Other approaches to calculate the thermal
conductivity using ab initio methods have also been tried. Ab initio non-equilibrium
molecular dynamics (NEMD) simulations have also been used to calculate the thermal
conductivity of MgO and produced a good match to experimental values [219]. Hybrid
approaches using data from both ab initio molecular dynamics and ab initio lattice

dynamics have also been demonstrated [220].

Classical modelling has also been successfully applied to MgO as the simple ionic
interactions can be well described by pair potentials. There are many potential models
available [127, 145, 221, 222] which have been applied to calculate many bulk and
defect properties [165, 222, 223]. However, care must be taken when selecting a
potential model for calculation of the thermal conductivity as the anharmonic properties
of the potential [192] have a significant effect, meaning that it is important for the

potential model to be accurate away from equilibrium.

To date, there have been relatively few studies calculating the thermal conductivity of
MgO due to the long time and length scales required to achieve a converged and
accurate result. Despite these problems, some work has been done to calculate the
thermal conductivity of MgO using computational methods. Shukla et al. [127] used the
NEMD method to calculate the thermal conductivity of both bulk and polycrystalline
MgO to assess its possible inclusion with other materials as an inert matrix for nuclear

fuels. The high thermal conductivity of MgO is appealing in these circumstances but it
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must be mixed with other materials to reduce the solubility of the matrix in water [212,
213]. The same study also demonstrated an order of magnitude reduction in thermal
conductivity when a polycrystalline sample of MgO was simulated. However, the
polycrystalline system studied was a simple approximation constructed from a
collection of hexagonal grains, infinite in one direction and tiling in the other two.
Within each grain the bulk MgO material was randomly orientated around the {001}
axis, meaning the boundaries formed are likely far from the most energetically
favourable.

Thus a more systematic study of the effect of different grain boundaries on the thermal
conductivity is required. By studying individual boundaries more information can be
gained about the phonon scattering mechanisms at a specific interface. This knowledge

can then be used to generate materials with desirable thermal characteristics.

The potential model used in this work for MgO was developed by Shukla et al. [127]
and was chosen as it was specifically designed for accurate thermal conductivity
calculations. The model has been fitted against the structure, lattice parameter and
thermal expansion. As this model is rigid ion, there may be some small discrepancies

from experiment due to the non-polarisable nature of the ions.

Initially, the bulk properties of MgO will be calculated and compared against
experimental values, Chapter 4.2. This is important as both the potential model and the
approaches used to calculate thermal conductivity in this work must be verified.
Additional information will also be derived to explain the scattering mechanism in bulk
MgO.

The work will then be extended to study two different grain boundary systems in
Chapter 4.3. The two systems are expected to scatter phonons differently due to their
different structures and whether the difference in scattering mechanism leads to

significantly different thermal conductivities will be examined.

The same methods are finally applied to different complex nanostructures in Chapter
4.4. The nanostructures used in this work originate from Sayle et al. [224] and were
built by positioning molten MgO on crystallographic sites and then allowing them to
cool and form complex hierarchical nanostructures. This method is known as

amorphisation and recrystallisation.
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By using this hierarchical approach a more nuanced understanding of the phonon
scattering in MgO is obtained and can be used to guide the engineering of nanomaterials
to either enhance or reduce the thermal conductivity. These methods may then be
applied to more promising thermoelectric materials with similar structure to MgO.

4.2. Bulk MgO

MgO has a simple face-centred cubic structure with the space group Fm3m. Both
magnesium and oxygen atoms within the lattice are 6-fold coordinated. The calculated
lattice parameter and independent elastic constants have been calculated using the
potential model of Shukla et al. [127] using METADISE [165] and are compared to

experiment in Table 4.1.

Property | Calculated | Experiment | % Difference
a(A) 4.20 4.21 -0.24

ci1 (GPa) | 279.90 298.96 -6.37

ci2 (GPa) | 128.32 96.42 33.08

s (GPa) | 128.32 157.13 -18.34

Table 4.1 Calculated and experimental [225, 226] structural properties of MgO.

Some deviation from experimental values is expected due to the finite temperature at
which experiments are performed, whereas energy minimisation gives the values at
effectively zero Kelvin (excluding even zero-point motion). The lattice parameter and
c11 elastic constant are reproduced well but the ¢;, and c44 elastic constants deviate from
experimental values. This deviation is a well-known artefact of rigid-ion pair potentials

in the rocksalt structure and is caused by the Cauchy condition [227].

The Cauchy condition arises from the high symmetry found in some materials. For the
Cauchy condition to apply the material must be of cubic symmetry, there is no initial
stress, forces must be central and all atoms must be at a centre of symmetry. The reason
this does not arise experimentally is that the magnesium oxygen interaction is not
central due to the polarisability of the species, whereas the potential model here is rigid-

ion. A more complete discussion may be found in Kittel [135].
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Despite the limitations imposed by the Cauchy condition, the c;2 and cs4 lattice
constants are still acceptable as their value falls between those of the experimental c;,
and ca4 elastic constants. The elastic constants are an important property for a potential
model to reproduce well as they are dependent on the curvature of the potential
interactions which will have a significant impact on the thermal expansion and

conductivity.

As the property of interest in this work (thermal conductivity) is only available at finite
temperatures, having static lattice properties is not sufficient to determine the
applicability of the potential model. However, as a full thermal conductivity calculation
is computationally expensive, it is wise to explore other properties, which arise from
anharmonic interactions and which converge faster before proceeding with a full
thermal conductivity calculation. The thermal expansion is a good measure of the
potential models applicability as it derives directly from anharmonic phonon
interactions [127, 228] and is relatively quick to calculate from molecular dynamics

simulations.

42.1. Thermal Expansion

The thermal expansion of bulk MgO was calculated using molecular dynamics
simulations under an NPT ensemble (using a Nosé-Hoover thermostat and barostat)
within the LAMMPS [166] simulation code. A simulation cell of 10 x 10 x 10 eight
atom cubic unit cells (approximately 42 A along each side) was prepared, containing a
total of 8,000 atoms. The a, b and c lattice vectors were allowed to vary independently
while the angles a, B and y were held fixed at 90°. Six different temperatures (300 K,
500 K, 700 K, 900 K, 1100 K and 1300 K) were simulated for 0.5 ns and the lattice
vectors recorded every 10 timesteps. A timestep of 1.0 fs was used due to the potential
model being rigid-ion. The simulation was deemed to converge if the energy
fluctuations were consistently less than 0.1% of the average energy value and the
volume fluctuations were less than 0.5% of the average volume; these criteria are
applied to all NPT simulations in all materials. The converged lattice constant of MgO

is plotted alongside experimental data in Figure 4.1.
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Figure 4.1 Thermal expansion of a MgO supercell using the potential model of Shukla

et al. [127] compared to experiments [229, 230].

The experimental values of Dubrovinsky et al. [229] and Fiquet et al. [230] were both
obtained using X-Ray experiments. The values of Dubrovinsky et al. were estimated to
have an error of less than 5x10™ A at the temperatures presented here. The work of
Fiquet et al. demonstrated very similar results across many previous studies using

multiple techniques.

The thermal expansion is reproduced very well by the potential model and matches
experimental data very closely; the lattice parameter is within 1% of the experimental
values at all temperatures. Additionally the thermal expansion coefficients match
reasonably well over the temperature range of 300 K to 1300 K. A linear fit is made to
the values within the range of interest for all data sets. The gradient of the fit may then
be used to compare the calculated expansion of MgO. The calculated value of the
gradient in this work is 1.38x10° K™ which compares favourably with the values of
1.95x10” K™ for Dubrovinsky et al. and 1.66x10™ K™ for Fiquet et al..

As the thermal expansion is reproduced well by the potential model, it can be concluded
that the anharmonic interactions are reasonable and that an equally reasonable thermal

conductivity may be produced.
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422, Thermal Conductivity

The thermal conductivity of a material may be calculated in many ways. Two very
different approaches to calculating the thermal conductivity are via molecular dynamics
and lattice dynamics. The Green-Kubo method calculates the thermal conductivity from
heat-flux data generated via long timescale molecular dynamics simulations. The lattice
dynamics method utilises the Boltzmann transport equation (BTE) to calculate the
thermal conductivity from the dynamical matrix obtained via the finite displacement
method [122].

The results from the Green-Kubo calculations and the lattice dynamics calculations are
not expected to be identical. Where one method fails the other excels. Green-Kubo
calculations include all anharmonic terms whereas the lattice dynamics calculations tend
only to include up to the third-order force constants. While lattice dynamics calculations
are in principle exact within the approximations made, in Green-Kubo calculations it is
more difficult to know when a converged result is achieved (Chapter 3.2.3.1) although
there are methods available to assist in the determination [202].

Thus the Green-Kubo and lattice dynamics methods are expected to give complimentary
information. Furthermore lattice dynamics calculations are able to give additional

information on the phonon modes contributing to scattering.

4221. Green-Kubo Results

Molecular dynamics simulations to calculate thermal conductivity via the Green-Kubo
method were performed under the NVT ensemble (with a Nosé—Hoover thermostat) to
better control the temperature fluctuations in the finite sized cell. Early tests showed no
significant deviation in thermal conductivity from an NVE ensemble. The timestep used

was 1.0 fs.

The simulation cell used was the same as that for the thermal expansion calculation
(cubic supercell of 8,000 atoms), with the lattice vectors set to their average at each
temperature. A run of 0.5 ns of NVT equilibration was conducted to ensure thorough
thermalisation of the system and that the initial velocities had no spurious effect on the
final result. Subsequently, heat-flux data was collected for 10 ns with the heat-flux
being sampled every 10 fs. Due to the isotropic nature of magnesium oxide, further

averaging can also be done over the three independent directions X, Y and Z.
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As discussed in Chapter 3.2.3, the thermal conductivity will be extracted from the
integrated heat-flux autocorrelation by selecting a convergence region. This region is
known as the neck regime and has been chosen so that the maximum fluctuation within
the region is as small as possible. Figure 4.2 gives a plot of the average thermal
conductivity with fluctuations as a function of possible neck regime for the 500 K
simulation. Each possible regime spans 5,000 fs and each point is set to be at the

midpoint of the regime.
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Figure 4.2 The average value of thermal conductivity at 500 K within different possible
neck regimes. Each data point is set to the midpoint of a 5,000 fs window. Error bars

represent the size of the fluctuation.

The neck regime for this temperature is found to be between 20,000 and 25,000 fs as the
size of the fluctuations is minimised. The neck regime remains valid as long as the
autocorrelation lifetime is the same length or shorter, additionally significant deviations
should not arise at longer timescales. These requirements are fulfilled at higher
temperatures and in nanostructured materials. Thus the neck regime is kept fixed for all
MgO simulations across temperatures and nanostructures. Neck regimes for other
materials are likewise chosen based on the neck regime of the lowest temperature bulk

simulation.

While this approach simplifies analysis greatly, it must be applied carefully to avoid

spurious values appearing in other systems; however the thermal conductivity integral at
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lower temperatures tends to have larger fluctuations than at higher temperatures and so

having a non-optimal neck regime at higher temperatures causes less difficulties.

When this approach is used across all temperatures for bulk MgO a smooth curve for
the thermal conductivity is obtained, Figure 4.3. The smooth transition from one value
to another supports the approach outlined above as there is no significant deviation from

the expected inverse power law behaviour.
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Figure 4.3 Calculated [127] and experimental [215-217] thermal conductivity of bulk
MgO.

The thermal conductivity as calculated by the Green-Kubo method displays the
expected inverse power law behaviour [231] characteristic of materials with dominating
phonon-phonon processes. The values themselves match almost exactly with the values
previously calculated by Shukla et al. [127] using the same potential model but using
the NEMD approach. The values calculated in this work give a good match at low and
high temperatures but deviate slightly between 900 K and 1100 K. The deviation may
stem either from larger finite size effects found in the NEMD method or from the longer

convergence time required in the Green-Kubo method.

The experimental work of Slifka et al. [216] used samples with 93% theoretical density
and a grain size of 25 pum. Three MgO samples of various sizes were used in the

experiment to allow the effect of interfacial resistance of the equipment to be factored
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out. The different sized samples were combined in various ways to give the final values.
Combination a) used the thermal conductivity from the 2.59 mm and 5.04 mm samples,
b) used the 2.59 mm and 7.64mm samples while c¢) used data from the 5.04 mm and
7.64 mm samples. The thermal conductivity for each of these approaches was almost

identical and so only the a) combination has been presented.

Deviations in the experimental results of Slifka et al. found at ~1300 K are noted as
likely arising from failure of the experimental apparatus. The calculated thermal
conductivity using the potential model is higher than these values as may be expected
due to the perfect 100% density within the simulation.

The experimental work of Hofmeister [217] gave better agreement to calculated values
as a sample of 96% theoretical density was used and thus the measured thermal
conductivity values are higher and closer to the values calculated from simulation. This
result also shows the difficulty with comparing directly with experiment, as a 3%
change in density resulted in ~25% difference in the measured values at 500 K for
experimental values. In simulations the system is a 100% perfectly dense infinite single
crystal and it is thus expected that the calculated thermal conductivity will always be

higher than experimental values.

The overall trend of the thermal conductivity values calculated from simulation matches
very well to the standardised data from the TPRC Data Series [215] and the work of
Hofmeister [217]. This similarity indicates that the response to temperature is being
reproduced very well by the potential model and thus indicating that the phonon-phonon

scattering processes are being well represented.

Additional information can be gained from the molecular dynamics simulations by
applying a Fourier transform to the autocorrelation of the heat-flux. The frequencies
obtained are of the optical phonon modes which interact with the heat-flux; these modes
transport thermal energy locally but may also interact with the acoustic phonon modes

which transport heat non-locally.

The Fourier transform of the heat-flux is called by the name Green-Kubo spectrum
within this work but is known elsewhere as the spectrum of the heat-flux autocorrelation
function (HFACF) or the spectrum of the heat-current autocorrelation function

(HCACF). The Green-Kubo spectra for all temperatures are presented in Figure 4.4.
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Figure 4.4 The Fourier transform of the heat-flux autocorrelation function for each

temperature (Green-Kubo spectra).

It is clear from the Green-Kubo spectra that there is a single optical phonon mode with a
frequency slightly less than 10 THz which reduces in frequency as temperature
increases. The lowering of the frequency is partially due to the expansion of the lattice
as the temperature increases, making the wavelength of the phonon longer and hence the
frequency lower. The frequency shift also partially originates from the anharmonicity of

the potential.

As the frequency of the mode is reduced, the probability of scattering an acoustic
phonon increases due to the Bose-Einstein distribution (i.e. a greater population of
acoustic phonons at lower frequency). As the scattering of acoustic phonons is
increased, less thermal energy is being transported and thus the thermal conductivity

decreases. A more thorough discussion is given by Dove [192].

The shape of the peaks may be understood in terms of the lifetime of the phonon mode.
The autocorrelation function can be considered as a sine function (due to the optical
modes) multiplied by an exponential decay (due to the acoustic modes). The peaks in
the Green-Kubo spectra are thus Lorentzian (due to the exponential decay), centred at
the frequency of the sine function. As the decay of the exponential function becomes

shorter-lived the width of the Lorentzian increases. Thus, the width of the peaks in the
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spectra are inversely proportional to the lifetime of the phonon modes [192]. The
broadening of the peaks with increasing temperature is thus due to a reduction in the

lifetime of the associated phonon mode.

The motion of atoms associated with the modes appearing in the Green-Kubo spectrum
cannot be easily obtained directly but may be derived from lattice dynamics calculations

as will be demonstrated later in the next section (Chapter 4.2.2.2).

In the next section the thermal conductivity of magnesium oxide is calculated using the
same potential model but an alternative approach. The results from the two methods can

then be compared to highlight the advantages and deficiencies of each.

4.2.2.2. Lattice Dynamics Results

Calculation of the lattice thermal conductivity can also be performed using lattice
dynamics techniques. Phono3py [121, 122, 218] uses small finite displacements to
calculate phonon-phonon interactions lifetimes and then uses the relaxation time
approximation (RTA) within the Boltzmann transport equation (BTE) to calculate the

thermal conductivity.

The forces used to calculate the phonon-phonon interactions were calculated using the
METADISE code [165] and used the same potential model as in the Green-Kubo
calculations. Thus, convergence with the Green-Kubo calculations for a suitably sized
supercell and g-point sampling mesh is expected.

The following calculations were performed on a 3 x 3 x 3 expansion of the cubic unit
cell of magnesium oxide (a total of 216 atoms). Larger supercells were attempted but
problems were encountered involving excessive memory requirements exceeding the
limitations of the machine. The convergence of g-points was tested and plotted in

Figure 4.5 for some temperatures.
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Figure 4.5 Convergence of thermal conductivity for number of g-points (per

dimension).

The dynamical matrix as generated from the supercell gives the force constants at a
number of points within the first Brillouin zone. A Fourier interpolation to these points
can theoretically give the force constants at any point within the first Brillouin zone if
the force constants vary smoothly. By sampling these g-points for the thermal
conductivity calculation as opposed to just the explicitly calculated points a more exact
thermal conductivity can be obtained, though care must be taken to ensure the force
constants vary smoothly over the Brillouin zone (a large enough supercell is used).
Convergence with respect to g-points occurred in the region of 6 g-points per dimension

for this system.

The converged BTE results for all temperatures are compared against both the Green-
Kubo and experimental results are plotted in Figure 4.6 (only one experimental result

shown for clarity).
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Figure 4.6 Calculated thermal conductivity of bulk magnesium oxide via the Green-

Kubo and lattice dynamics methods compared with experiment.

The thermal conductivity values as calculated via lattice dynamics are shifted to higher
values than those calculated using the Green-Kubo method, but the overall trend
remains the same. The upwards shift of thermal conductivity values as given by lattice
dynamics calculation may have many sources. The simulation cell used was not
adjusted for volume expansion and the fourth-order and above anharmonic terms are not
computed, meaning the frequencies of the phonon modes do not change as a function of

temperature.

Another possible source of the shift is the small supercell size used in the calculation,
meaning longer wavelength acoustic phonons are by necessity excluded, reducing
acoustic-acoustic scattering. These problems are not apparent in the Green-Kubo
calculation where all anharmonic terms are included and much longer wavelength

phonons are allowed.

Lattice dynamics calculations can also be used to generate the phonon density of states
(DOS) which should show some similarity to the Green-Kubo spectrum as the thermal

conductivity is dependent upon phonon-phonon scattering.
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The calculation of the phonon DOS (gamma point) was performed on the primitive two
atom MgO unit cell with the lattice vectors were a=b=c=2.97 A and o=p=y=60° using
the Phonopy code [121].

Performing the calculation at the gamma point means the modes visible are strictly
optical modes and thus will not transport significant portions of heat. However, these

modes may still scatter acoustic modes and alter the heat-flux [205].

The phonon DOS spectrum of magnesium oxide is displayed in Figure 4.7. The
potential model used for the calculation was the same as for the Green-Kubo and BTE

calculations.
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Figure 4.7 Phonon density of states (DOS) for magnesium oxide at the gamma point.

The phonon DOS shows three identical modes at ~10 THz corresponding to optical
phonons in each of the three lattice directions. The equivalence of the frequencies is
expected due to the isotropic nature of magnesium oxide. An additional set of three
vibrational modes are also present at 0 THz corresponding to the translation of the entire

lattice, these have been removed for clarity from all phonon DOS spectra.

The atomic motions corresponding to the phonon mode of each frequency in the phonon
DOS may be obtained by examining the eigenvectors and mapping them to each atom.

The result for bulk magnesium oxide reveals the motion at ~10 THz is that of the
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magnesium and oxygen sublattices being displaced relative to each other. This type of
motion may be considered a simple rattling motion which is often theorised to reduce
thermal conductivity, especially when involving high mass substitutional defects or
guest species [232]. The motion of the ~10 THz mode is displayed schematically in
Figure 4.8.
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Figure 4.8 Schematic of the vibrational mode at 10 THz in a single layer of the MgO

lattice.

The lattice dynamics phonon DOS can be compared with those obtained from the

Green-Kubo calculations, Figure 4.9.
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Figure 4.9 Lattice dynamics phonon DOS and Green-Kubo spectra of bulk MgO.
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The frequency as calculated from lattice dynamics matches extremely well with those as
calculated from the Green-Kubo method. A shift to higher frequency is observed and is
expected due to the lattice dynamics calculation being performed at effectively zero
Kelvin. This effect has been noted previously in the literature as arising from

anharmonic effects at finite temperature [115].

The thermal conductivity of magnesium oxide has been calculated over a range of
temperatures by both the Green-Kubo method and lattice dynamics employing the BTE.
The BTE over predicts the thermal conductivity of magnesium oxide at all temperatures
but has highlighted deficiencies in the BTE method for magnesium oxide. Lattice
dynamics calculations also reveal which optical phonons can contribute to scattering

and their atomic motions within the material.

By applying these methods to more complex systems, an enhanced understanding of
scattering processes may be obtained. Thus in the next section two different grain
boundary systems are studied using the Green-Kubo method with additional

information coming from lattice dynamics calculations.

4.3. MgO Grain Boundaries

There are many types of grain boundaries in oxide materials, however this study only
accounts for two types, mirror tilt and twist. A mirror tilt boundary is constructed by
having two grains expressing the same surface joining together. A twist boundary is
constructed by rotating the mirrored surface to allow the formation of the boundary.
These two boundary types will thus have significantly different environments due to the
mismatch generated by the adjoining grains and may show different behaviours with

respect to thermal conductivity.

This work explores the £5{210}/[001]6=26.57° tilt boundary and the {100}36.87° twist
boundary (for simplicity referred to as £5{210} and {100}twist respectively), which are
both constructed using the methodology outlined in Chapter 2.5.1.4. Both grain

boundary systems have an inter-boundary distance of approximately 16 A.

The thermal conductivity of these systems is calculated using the Green-Kubo method
with additional information again being derived using lattice dynamics. This simple
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study acts as a proof of principle in distinguishing the effect of two very different grain

boundary systems on the thermal conductivity.

43.1. Mirror Tilt Grain Boundary

The X5{210} tilt grain boundary is fairly simple and representative of many other
magnesium oxide tilt grain boundaries [165]. The £5{210} boundary can be considered
as two stepped surfaces (the {210} surfaces) coming together to form a reduced density

layer, Figure 4.10.
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Figure 4.10 The energy minimised £5{210} boundary.

Previous work by Watson et al. found the £5{210} boundary to be the most stable of
the family of MgO grain boundaries [165] with the exception of the {110} boundary
which may be considered a special case of a stacking fault grain boundary. The
formation energy of this boundary has been calculated to be 1.33 Jm™. The potential
model of Lewis and Catlow [145] has also been used to calculate the formation energy

of this system and has given a value of 1.73 Jm™.

The simulation cell used for the Green-Kubo calculation comprised of 1,280 atoms in a
periodic cell of approximately 32 A x 21 A x 19 A with a 500 K density ~94% that of
bulk magnesium oxide. The simulation cell contains two identical £5{210} mirror tilt
boundaries lying parallel to the Y-Z plane and perpendicular to the X axis, running in

two opposite directions. The distance between the boundaries is much smaller than in a
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real system and should have a significant effect on thermal conductivity by limiting

allowed phonon frequencies.

As before the simulation cells underwent 0.5 ns of NPT equilibration to obtain the
averaged lattice vectors. A further 0.5 ns of NVT equilibration was then conducted to
ensure thorough thermalisation of the system. Data were collected as three sets of 5 ns
NVT simulations, whose autocorrelations are then averaged; this approach differs from
the bulk calculation but will only have a significant effect on very large sample
intervals, where the correlation should be negligible anyway. Additionally, the
convergence is improved by sampling a more varied region of phase space [206]. The
additional 5 ns of simulation time were added to improve convergence of the boundaries
due to their lower thermal conductivities. Despite the increased simulation time the 300
K simulation was dropped due to extremely poor convergence, as may have been
expected from observations of the error from the bulk calculations.

The average thermal conductivity at each temperature is calculated from the averaged

integrals and is displayed in Figure 4.11.
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Figure 4.11 Average thermal conductivity of the £5{210} tilt boundary.

Initial observations reveal the thermal conductivity is more than halved by introduction
of grain boundaries at intervals of ~16 A. The decrease in thermal conductivity with

temperature is now less steep.
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In the £5{210} system the X direction corresponds to the direction perpendicular to the
boundary plane, the Y direction corresponds to the direction of the pipes in the
boundary and the Z direction corresponds to the direction across the pipes. These three
directions are structurally different at the boundary and so a difference in thermal
conductivity is expected. The thermal conductivities for these three directions are

presented in Figure 4.12.
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Figure 4.12 Directional thermal conductivities of the £5{210} tilt boundary.

The inverse power law trend usually observed [231] in the bulk is no longer clear as the
primary scattering mechanism is no longer phonon-phonon and the system now contains

defects which also scatter phonons.

As expected the thermal conductivity in the X direction, which goes through the
boundary, is the lowest at ~4 W/(m.K) and shows effectively no sensitivity to
temperature. The insensitivity to temperature likely results from the domination of
phonon-boundary scattering up to 900 K and then increasing contribution of phonon-
phonon scattering at higher temperatures. The Y and Z direction are also reduced due to
oblique scattering off the boundaries, i.e. scattering of phonons with some X component
as well as other directions. The Z direction also has a noticeable behaviour change at
900 K where the gradient of the thermal conductivity changes. The Z direction may also

have a change in trend but it is less clear.
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The Green-Kubo spectra may also reveal how the scattering mode of bulk magnesium

oxide

has changed. The spectra for the X, Y and Z direction are plotted in Figure 4.13,

Figure 4.14and Figure 4.15.
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Figure 4.13 £5{210} tilt boundary Green-Kubo spectra in the X direction.
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Figure 4.14 £5{210} tilt boundary Green-Kubo spectra, Y direction.
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Figure 4.15 ¥5{210} tilt boundary Green-Kubo spectra, Z direction.

The most striking change to the spectra from the bulk is the very large number of
additional modes now present. While the bulk spectra only had a single mode
corresponding to vibration of the magnesium/oxygen sublattices, the grain boundary
spectra shows many more modes available for interaction with the acoustic phonons.
The increased number of modes results from the different environments created by the
introduction of the grain boundary, so although the primary scattering mechanism is

now phonon-boundary, it is via boundary vibrational modes that this occurs.

Some unusual features are presented by these spectra. There is an extremely large
additional mode in the X direction at ~11.5 THz which is equal in magnitude to the
primary 10 THz peak. A similar, but smaller peak appears in the Y direction at ~10.7
THz. The Z direction does not show an additional peak of very large magnitude but

does have very many smaller peaks and the main peak has been shifted to ~9 THz.

It is also noted that the usual shift to lower frequencies and broadening of the modes is
occurring with increased temperature. However, the additional boundary modes become
less distinct at higher temperatures, leaving only the optical mode inherent in the bulk
material. This type of behaviour indicates a return to bulk-like scattering at higher

temperatures as more phonons scatter via bulk optical modes before encountering
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boundary based optical modes. However, the thermal conductivity remains lower than

the bulk and so some effect of the grain boundary remains.

The phonon DOS for the £5{210} mirror tilt boundary can be calculated using lattice
dynamics methods implemented in the Phonopy code [121] to better analyse the modes
appearing in the Green-Kubo calculation. The phonon DOS was computed at the
gamma point and used the smallest symmetry reduced representation of the cell possible
(128 atom orthorhombic cell of a=32.05 A, b=4.16 A and ¢=9.49 A). The total phonon
DOS is displayed in Figure 4.16 (the peak centred at 0 THz is a set of three translational
modes).
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Figure 4.16 £5{210} tilt phonon DOS.

It is immediately clear that the phonon DOS is much more complex for the £5{210} tilt
boundary than the bulk material, although a series of strong mode are still present in the
region of ~10 THz. It is possible to simplify the interpretation of the phonon DOS by

removing all modes which should not appear in the Green-Kubo spectrum.

The simplest way of removing those modes which do not appear in the Green-Kubo
spectrum is to sum the non-mass-weighted eigenvectors produced for each frequency by
the lattice dynamics calculation. Any mode that has a non-zero sum of non-mass-
weighted eigenvectors is asymmetric and should therefore interact with the heat-flux

and appear in the Green-Kubo spectra.
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While not a rigorous treatment, this simple analysis makes it very easy to identify which
modes will interact with the acoustic modes of the system. A more rigorous analysis
method is given by Landry et al. [115] in “Complex superlattice unit cell designs for
reduced thermal conductivity”, Equation A13.

In practice, a lower bound cutoff of 0.1 (dimensionless units) is used on the sum of non-
mass-weighted eigenvectors in each direction so that only the most significant modes
are presented. A cutoff value of 0.1 will be used for all MgO calculations for

consistency.

An additional benefit is that this type of analysis gives directionally independent
spectra, which can be useful for complex defective structures. Once the participating
modes have been isolated, a Gaussian distribution is applied for easier comparison and

is meant only to serve as a guide to the eye, Equation 4.1.

F0) = aexp <_ M)

2c?

Equation 4.1

a is set to be the magnitude of the sum of eigenvectors for the mode, b is the frequency
of the mode and c is an arbitrary broadening parameter, set to 0.1 for all modes. The use
of a Gaussian distribution makes it easier to see where certain modes may overlap and
become difficult to distinguish. Comparison to the Green-Kubo calculations is now
possible in a more systematic way; the lowest temperature Green-Kubo calculations
(500 K in this case) are used for comparison as it should be the closest to the lattice
dynamics calculations (effectively 0 K). The separate dimension comparisons are
plotted in Figure 4.17, Figure 4.18 and Figure 4.19.
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Figure 4.17 Comparison of the Green-Kubo at 500 K and lattice dynamics spectra for
the £5{210} tilt boundary, X direction.
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Figure 4.18 Comparison of the Green-Kubo at 500 K and lattice dynamics spectra for
the £5{210} tilt boundary, Y direction.
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Figure 4.19 Comparison of the Green-Kubo at 500 K and lattice dynamics spectra for
the £5{210} tilt boundary, Z direction.

Once again the positions of the peaks match with the Green-Kubo calculations with
only a small shift to higher frequencies associated with the lattice dynamics calculation
being performed neglecting temperature. The relative heights of the peaks match very
well in some instances and poorly in others. The mismatch is likely due to more
complex factors affecting the probability of the optical phonon partaking in scattering
processes, such as the temperature. Indeed the peaks that show the greatest mismatch

are the ones that show the greatest temperature dependence in the Green-Kubo spectra.

Additional peaks appear at greater than 14 THz in the Z direction of the lattice
dynamics phonon DOS calculation which are not immediately apparent in the Green-
Kubo spectrum. By applying a logarithmic scale to the Green-Kubo spectrum the
additional peaks become apparent and their frequencies match very well with those in

the phonon DOS calculation, Figure 4.20.
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Figure 4.20 Comparison of the Green-Kubo at 500 K and lattice dynamics spectra for

the £5{210} tilt boundary, Z direction. Logo scale on Green-Kubo intensity.

The use of a logarithmic scale reveals several peaks that were not originally visible
(primarily above 13 THz) and most of these peaks now match with those observed in
the lattice dynamics calculations. A couple of the smaller peaks are also visible at very
high and at very low frequencies that do not to have a counterpart in the lattice
dynamics calculation, however this is as a result of the eigenvector cutoff used when

analysing the phonon DOS and the very low significance of these modes.

The changes to the modes present in the Green-Kubo spectra can now be understood by

examining the eigenvectors as applied to the structure as atomic motions.

The X direction spectrum shows many peaks, the majority of which are difficult to
categorise due to the complex motion of atoms within the structure. The only mode that
is easily described is at 9.34 THz where the oxygen atoms in the bulk portions of the
system are vibrating symmetrically in the Z direction. This motion is almost entirely
stopped at the boundary except for a small motion of magnesium atoms which makes

the mode asymmetric in the X direction.

In the Y direction only four modes are present and are easily categorised. The modes
appearing at 9.62 and 10.88 THz are complicated and involve motion of all ions within

the system. The mode appearing at 10.33 THz involves the vibration of ions within the
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boundary only (within ~5 A of the core of the boundary). The mode appearing at 11.06
THz only has vibration of ions outside of the boundary region. This result demonstrates
how local boundary structure can lead to new boundary modes that effectively scatter

acoustic phonons.

The strongest peak in the Z direction displays a significant shift and appears at 9.36
THz. This is the same mode which is easily categorised in the X direction, except the
motions of the grains are now concerted in the Z direction. The remaining modes are

once again too complex to describe.

4.3.2. Twist Grain Boundaries

Another type of grain boundary is a twist boundary. Here the second grain is reflected
across the cutting plane and then rotated about an axis perpendicular to the plane. The
grain boundary chosen for this work was the {100}36.87° twist boundary which has
been found to be extremely stable when the density at the boundary is reduced by
removal of Mg and O atoms which are in close proximity. The 36.87° rotation angle has
been frequently observed experimentally [234] and is very stable due to the good
coincidence of the lattice sites across the boundary [235]. The formation energy of this
system has been calculated as 1.51 Jm™, slightly higher than the £5{210} tilt boundary.
Once again the potential model of Lewis and Catlow has additionally been used to

calculate the formation energy of this system and gives a value of 2.00 Jm™.

Figure 4.21 shows the boundary layer to be very thin. Figure 4.22 shows the internal
structure of the grain boundary. The 8-fold and 4-fold interconnecting rings which

comprise the core of the boundary are highlighted.
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Figure 4.21 Side view of the relaxed {100}twist boundary.

Figure 4.22 Internal structure of the relaxed {100}twist boundary plane with 8-fold and
4-fold rings highlighted.

The simulation cell used in these calculations was a 2,808 atoms supercell with lattice
vectors of approximately 37 A x 28 A x 28 A with a 500 K density of ~97% that of bulk
magnesium oxide. Once again the system contains two grain boundaries running in
opposite directions to allow for periodic boundaries. The grain boundaries again lie
perpendicular to the X direction. The simulation procedure was the same as for the

114



>5{210} tilt boundary with 0.5 ns NPT equilibration, 0.5 ns NVT equilibration and
three sets of 5 ns NVT data collection. The average thermal conductivity results for the
{100}twist boundary are plotted in Figure 4.23.
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Figure 4.23 Average thermal conductivity of the {100} twist boundary.

The thermal conductivity of the {100}twist boundary shows remarkably similar
reduction in thermal conductivity as the £5{210} tilt boundary. However, it is unclear
whether the contribution from each direction is the same as from the X5{210} tilt
boundary. If some difference is present then it is expected that as the inter-grain
distance increases the Y and Z direction thermal conductivities will tend towards bulk
whereas the X direction thermal conductivity will diverge between the two boundary

types due to structural differences.

The structure of the {100} twist boundary is generally contained to a single atomic plane
with only minor disruption to the lattice in adjacent planes. This narrow boundary
means that the system is more dense than the £5{210} tilt boundary and only ~3% less
dense than the perfect bulk material. Thus a higher thermal conductivity in the X
direction compared to the £5{210} tilt boundary is expected as phonons are more likely
to transmit some thermal energy across the boundary as it is more dense. The Y and Z

directions in the {100}twist boundary are identical under symmetry and so it is expected
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they will have near identical thermal conductivities. The directionally independent

thermal conductivities are presented in Figure 4.24.
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Figure 4.24 Directional thermal conductivities of the {100}twist boundary.

As was the case for the tilt boundary the X direction (through boundary) vyields the
lowest thermal conductivity. The X direction values also descend almost linearly from
500 K to 1300 K, showing temperature dependence entirely absent from the tilt
boundary. The Y and Z directions exhibit almost identical values across the temperature
range as is expected as the two directions are symmetrically equivalent; this result also
indicates the real error is much smaller than the fluctuations in the autocorrelation. The
values in the Y and Z directions are also much reduced from the bulk values but not as

much as the X direction.

The spectra from these calculations are plotted in Figure 4.25, Figure 4.26 and Figure
4.27.
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Figure 4.25 {100}twist boundary Green-Kubo spectra, X direction.
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Figure 4.26 {100}twist boundary Green-Kubo spectra, Y direction.
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Figure 4.27 {100}twist boundary Green-Kubo spectra, Z direction.

The Green-Kubo spectra of the twist boundary show significantly less splitting of peaks
in all directions than the tilt boundary. The fewer extra peaks are a result of fewer
distinct environments at the boundary due to rotational symmetry as well as very little
reconstruction in the planes between the boundary and the bulk. The same shift to lower
frequency with higher temperature is still present.

The largest peak in the X direction shows a large shift in frequency from ~10 THz to ~8
THz, similar to the Z direction peak of the tilt boundary. The origins of this shift may

also be similar, being due to the boundary blocking the vibration.

Unlike the X5{210} tilt boundary, the Y and Z direction spectra for the {100}twist
boundary are essentially identical due to their relation by symmetry. The main peak has
remained at ~10 THz as the primary phonon vector is travelling through bulk, with edge
scattering possibly causing the extra peak at ~9 THz.

Performing the lattice dynamics analysis (using a 156 atom orthorhombic cell of
a=34.00 A and b=c=6.61 A) shows a reasonable match to the Green-Kubo spectra. The
results are plotted in Figure 4.28, Figure 4.29 and Figure 4.30.
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Figure 4.28 Comparison of the Green-Kubo at 500 K and lattice dynamics spectra for

the {100} twist boundary, X direction. Logso scale on Green-Kubo intensity.
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Figure 4.29 Comparison of the Green-Kubo at 500 K and lattice dynamics spectra for

the {100} twist boundary, Y direction. Logio scale on Green-Kubo intensity.
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Figure 4.30 Comparison of the Green-Kubo at 500 K and lattice dynamics spectra for

the {100} twist boundary, Z direction. Logso scale on Green-Kubo intensity.

The spectra show reasonably good agreement. Where the spectra diverge can be
explained by temperature effects and possibly the noise remaining in the Green-Kubo
spectra. Additionally, it becomes clear that the main peak at 8 THz in the X direction is
in fact a collection of several peaks of similar atomic motions; information which was

not available from the Green-Kubo calculation alone.

The large shift of the main peak to lower frequency in the X direction is a result of a
rotational twisting element now associated with the vibration of the sublattices. The
origin of this mode is at the boundary where the magnesium/oxygen sublattices in the
plane vibrates purely in the X direction, but the interactions with the surrounding atoms
induce an additional Y and Z movement.

In previous lattice dynamics calculations each vibrational mode was asymmetric in only
one direction. An unusual result for the twist boundary is that several frequencies now
contain asymmetry in more than one direction simultaneously. All the frequencies
showing this behaviour have peaks in both the Y and Z directions and never in the X
direction. These frequencies with asymmetry in two dimensions are plotted in Figure
4.31.
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Figure 4.31 Lattice dynamics frequencies with greatest magnitude in both the Y
direction and the Z direction for the {100}grain boundary. An identical set is found with

the directions reversed.

These additional contributions stem from the symmetry of the structure and partial
continuity of the structure across the grain boundary. Simply, the motion in the Y
direction of one grain is instigating a corresponding motion in the Z direction of the

other grain. Thus the dimensional contributions cannot be completely separated.

When considering only the X direction the £5{210} tilt boundary has a slightly lower
thermal conductivity across all temperatures than the {100} twist boundary, likely due to
the lower density of the £5{210} boundary (94% compared to 97%). The average
thermal conductivity for the whole system is however very similar indicating a strong
influence of the proximity of the boundaries at these sizes. Whether this relationship

holds at greater inter-boundary distance is unclear.

The simulations described here have demonstrated that the thermal conductivity is
significantly reduced in the direction perpendicular to the grain boundary and that the
structure of the grain boundary also has an impact on the thermal conductivity. The
thermal conductivity parallel to the grain boundaries is also affected due to confinement
of the phonons to the core of the grains, leading to a variation in thermal conductivity

along with grain size.
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By applying the same techniques to more complex polycrystalline systems the effect of

different grain boundaries, grain sizes, surfaces and disorder may be elucidated.

4.4, MgO Nanostructures

Nanostructures are a promising approach to improve the ZT of thermoelectric materials
as they can begin to approach the Phonon-Glass Electron-Crystal (PGEC) idea put forth
by Slack [21, 44]. By offering many scattering areas mixed with regions of unmodified
bulk it is possible to tune the scattering to affect primarily phonons and not electrons.
However, there is some evidence that energy filtering by grain boundaries can also be
beneficial to the power factor by boosting the Seebeck coefficient [54].

Rocksalt type nanostructures have been explored previously [224] and are produced via
amorphisation and recrystallisation. The nanostructures used in this work were chosen
to be geometrically distinct to each other. Thus one nanostructure is based on a

hexagonal superlattice and one on a cubic superlattice.

The large size and very low density of these systems pose a particular challenge for
molecular dynamics simulation. As the LAMMPS code [166] distributes the
calculations in a domain decomposition scheme, empty space can have a significantly
detrimental effect of calculation speed and efficiency, even after optimisation of the

domain sizes.

Thus the calculations were split into several shorter simulations rather than attempt a
single very long simulation. The splitting of the calculation into smaller runs will not
have a significant effect on the statistical accuracy as the autocorrelations are expected

to be short lived and thus longer correlation times are not statistically significant.

A complication arises for the Green-Kubo calculation with these low density systems.
In the grain boundary systems the density was near bulk levels (>90%), whereas this is
not the case for the nanostructures. The Green-Kubo method require a system volume to
calculate the thermal conductivity but it is somewhat unclear whether this volume
should be of the entire system, or just the occupied space. This work uses the volume of
the entire system as the nanostructure is the only object within the simulation cell and
therefore the thermal conductivity should be correct for the given region of space which

contains the nanostructure.
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The next section presents the morphology, density and thermal conductivity of the two
nanostructures. The Green-Kubo spectra are also discussed along with data from a

model slab system to assist interpretation of the spectra.

44.1. Nanostructure 1: Hexagonal Superlattice

The first nanostructure studied is based on a hexagonal superlattice and contains 50,400
atoms in a simulation cell approximately 96 A x 164 A x 68 A in size with a 500 K

density ~46% that of bulk magnesium oxide. The structure is presented in Figure 4.32.

Figure 4.32 Simulation cell of the hexagonal nanostructure.

A feature particular to this nanostructure is that the grain boundaries are only present
perpendicular to the X-Y plane and the structure is symmetrically similar in 6 directions
related by 60° rotations around the Z axis. Figure 4.33 shows a 3 x 3 x 3 expansion of
the simulation cell coloured to highlight different density environments, such as
surfaces and grain boundaries, which will act as scattering centres.
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Figure 4.33 The hexagonal nanostructure (expanded 3 x 3 x 3) coloured to highlight
different density environments. Blue is high density and red/white is low density. The
blue box highlights the original simulation cell.

The simulation was equilibrated at each temperature for 500,000 steps in an NPT
ensemble, next the lattice vectors of the systems were set to their average values for the
appropriate temperature. Subsequently 8 copies of the system were made and given new
random initial velocities and equilibrated briefly (100 fs) in an NVT ensemble to
remove any effect of initial conditions. The systems were then simulated in an NVT
ensemble for 0.6 ns to collect heat-flux data. The autocorrelation was calculated up to
100,000 steps. The averaging of the converged value was taken over the same region of
the autocorrelation integral as for previous magnesium oxide calculations. The results
are displayed in Figure 4.34 and Figure 4.35.
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Figure 4.34 The average thermal conductivity for the hexagonal nanostructure

compared to bulk.
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Figure 4.35 The directional thermal conductivity for the hexagonal nanostructure.

The thermal conductivities for the hexagonal nanostructure show no temperature

dependence, indicating a significant increase in scattering due to defects at all

temperatures. The X and Y direction thermal conductivities are all between 1 and 2

W/(m.K) and are essentially identical within the error, which is expected as the
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nanostructure is symmetrically equivalent in these directions. This effect was also
observed in the {100}twist boundary.

The Z direction thermal conductivity is distinctly higher than the X and Y directions
due to the grain boundaries being parallel to the Z direction instead of perpendicular.
However scattering still occurs off the parallel boundaries and accounts for the large

reduction in thermal conductivity.

One concern for these calculations is the limited size of the nanostructure motif. While
the simulation is large in terms of the magnesium oxide unit cell, the nanostructure itself
only contains two repeat units of its smallest representation. To accurately reproduce
extremely long wavelength, and thus low frequency, phonons relating to the movement
of the lattice itself would require several repeat units of the superlattice as a minimum.
However, it is not known for certain whether such low frequency phonons will

contribute significantly to the thermal conductivity of this structure.

The Green-Kubo spectra for hexagonal nanostructure are presented in Figure 4.36,
Figure 4.37 and Figure 4.38.
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Figure 4.36 Green-Kubo spectra for the hexagonal nanostructure in the X direction.

126



120

100
z
S so
=
= —Y 500 K
=
2 60 Y 700 K
3
Z e Y 00 K
w
g 40 ——Y 1100 K
<
- =Y 1300 K

20

0]

0] 5 10 15 20 25 30
Frequency (THz)

Figure 4.37 Green-Kubo spectra for the hexagonal nanostructure in the Y direction.
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Figure 4.38 Green-Kubo spectra for the hexagonal nanostructure in the Z direction.

The most obvious effect of nanostructuring is the broadening of the peaks. The broader
peaks generally mean a shorter phonon lifetime. However, it is also possible that the
increased variability of magnesium and oxygen environments has resulted in a large

number of very similar modes clustered around ~10 THz, as was seen in the grain
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boundary systems and discussed in Chapter 4.3. More intriguing is the additional peak

which appears around 25 THz in the X and Y directions.

The peak at ~25 THz in the X and Y directions is entirely missing from the Z direction
spectra and thus is related to a feature found specifically in the X and Y directions and
not the Z direction. Possible origins for the additional peak include the complex three
grain boundary intersection, the separate tilt grain boundaries or the numerous surfaces

(which are almost entirely <001> surfaces).

However, from the grain boundary calculation in Chapter 4.3 it is clear that most grain
boundary vibrational modes occur in the region of ~10 THz and so it is much more
likely that the new modes originate from the large <001> orientated surfaces found

perpendicular to the X and Y directions.

The full hexagonal nanostructure contains 50,400 atoms and is much too large to be
studied directly using lattice dynamics. Therefore a model system must be used to

determine whether <001> surfaces are the origin of the ~25 THz peak.

4.4.2. Model System

A series of magnesium oxide slabs were generated and energy minimised. Each slab is
made up of a number of layers (each layer is two atoms thick) with a surface
termination of {001}. The slabs are separated enough from their periodic images to
remove slab-slab interactions. The phonon DOS was calculated for each slab system
and then processed to remove modes that do not interact with the heat-flux, leaving a
spectrum which is directly comparable to the Green-Kubo spectrum. Figure 4.39 shows
the frequency with the largest magnitude in the direction perpendicular to the slab plane

as a function of slab thickness.
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Figure 4.39 Frequencies of a magnesium oxide slab in the X direction as a function of

slab thickness.

Figure 4.39 demonstrates that the {001} surface of MgO introduces an additional
scattering mode appearing above 20 THz, originating from the species at the surface
being undercoordinated. It can also be seen that the thickness of the slab also has an
effect on the frequency, converging to ~25 THz for thicker slabs. The thickness of
crystallites in the hexagonal nanostructure are on the order of ~25 A which is in the
middle of the converged region of Figure 4.39; thus it is reasonably certain that the
source of the new ~25 THz mode in the hexagonal nanostructure stems from surface

scattering.

Additional vibrational modes clustered around ~25 THz are also visible in the processed
phonon DOS and stem from the subtly varying environments present at increasing
distances from the surface. This result also goes some way to explaining the large

broadening of the peaks seen in the Green-Kubo spectra.

It is noted that the thickest slab in these calculation still did not recover any bulk-like
frequencies (i.e. ~10 THz) in the direction perpendicular to the slab, indicating the
dominance of surface scattering at these sizes. However, the Green-Kubo spectra retains
modes around 10 THz which likely stem from phonons travelling lengthways through

the grain and scattering at non-perpendicular surfaces or grain boundaries.
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Combined with the fact that the grain boundary calculations showed no significant
modes above ~20 THz it can be concluded that the additional ~25 THz peak appearing
in the X and Y direction spectra of the hexagonal nanostructure originate from surface
scattering rather than grain boundary scattering, which from the grain boundary

calculations tends to show peaks around ~10 THz, i.e. more bulk like.

4.4.3. Nanostructure 2: Cubic Superlattice

The second nanostructure chosen is constructed the same way as the hexagonal
nanostructure but on a cubic superlattice instead. The cell itself is comprised of 2,744
atoms in a cell 41 A x 39 A x 41 A in size with a 500 K density ~39% that of bulk
magnesium oxide, Figure 4.40.

Figure 4.40 Simulation cell of the cubic nanostructure.

During recrystallisation no grain boundaries were formed, leaving a continuous crystal
except for interconnected voids in a 3D grid arrangement; these voids lead to a large
number of surfaces. The 3 x 3 x 3 expanded crystal structure is shown in Figure 4.41
and shaded according to local density. The crystal-like core (blue) is surrounded by
lower coordinated surfaces (white).
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Figure 4.41 The cubic nanostructure (expanded 3 x 3 x 3) coloured to highlight different

density environments. Blue is high density and red/white is low density. The blue box

highlights the simulation cell.

in the first nanostructure. However, due

The same equilibration process was applied as

to the much smaller simulation cell than the hexagonal nanostructure the simulations

000 steps. The thermal conductivities are presented

000,

were split into three groups of 5

in Figure 4.42 and Figure 4.43.
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Figure 4.42 The average thermal conductivity for the cubic nanostructure compared to
bulk.
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Figure 4.43 The directional thermal conductivity for the cubic nanostructure.

The thermal conductivity in each direction for the cubic nanostructure is lower than that
of the hexagonal nanostructure. Once again there is little temperature dependence in the
thermal conductivities, having approximately the same thermal conductivity across the

range of temperatures studied.
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As for previous systems a strong peak at ~10 THz is observed corresponding to the
bulk-like vibrational mode. An additional peak is also visible which stems from the
large number of surfaces in the system and the extremely small channels of MgO,
leading to a large amount of scattering from surfaces. Due to the dominance of surface
scattering a peak is expected at approximately 25 THz in the Green-Kubo spectra,
Figure 4.44, Figure 4.45 and Figure 4.46.
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Figure 4.44 Green-Kubo spectra for the cubic nanostructure in the X direction.
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Figure 4.45 Green-Kubo spectra for the cubic nanostructure in the Y direction.
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Figure 4.46 Green-Kubo spectra for the cubic nanostructure in the Z direction.

The three spectra are similar to each other but vary in the magnitude of the peaks. Once
again a secondary peak occurs, but in this case at ~20 THz instead of ~25 THz. The
change in peak position can be related to the very small size magnesium oxide channels
and thus the very short surface-surface distance. The surface-surface distances in the

cubic nanostructure are on the order of 8 A to 15 A and correspond to a frequency of
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~24 THz in Figure 4.39, which is slightly higher than the values found in the Green-
Kubo spectra. However, other effects such as cross-sectional area and surface roughness

may also play a role in reducing the frequency further.

45. MgO Summary

The simulation of magnesium oxide has revealed that Green-Kubo calculations can give
well converged thermal conductivities and an estimate of the error. Furthermore, the
method gives access to phonon information that can be used to understand the scattering

process going on at different temperatures and in different systems.

Lattice dynamics and molecular dynamics calculations can be used to provide
complementary information. Using the Boltzmann transport equation provides an
alternative route to calculating thermal conductivity but very quickly becomes resource
intensive with respect to system size and is not applicable for nanostructured or large
defective systems. An additional issue arises for high thermal conductivity systems

where the phonon mean free path is long and hence larger supercells are required.

Lattice dynamics calculation of the phonon density of states (DOS) also provides
additional information to aid understanding of the vibrational modes appearing in the
Green-Kubo calculations. With this information it becomes clear which structural
features are contributing the most to phonon scattering and hence lowering thermal
conductivity. New nanostructures can then be designed with the most promising
features to either maximise or minimise the thermal conductivity depending upon the

application.

For magnesium oxide the type of boundary seems to have only a small effect on the
overall reduction in thermal conductivity. Both the tilt and twist boundary reduce the
thermal conductivity to between 5 and 10 W/(m.K). What seems to be important is the
disruption to the bulk by introduction of the grain boundary and limiting of allowed
frequencies between the two boundaries in each simulation cell. Work on SrTiO3 grain
boundary systems presented in Chapter 6.3 will explore the effect of different grain
sizes on the thermal conductivity. There is however an effect on the modes available for

scattering introduced by the boundaries.
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Complex nanostructures successfully reduce the thermal conductivity several orders of
magnitude, however a correction may have to be applied to account for the porosity of
the structures. Defects and grain boundaries will reduce the thermal conductivity but
surfaces play the largest role for nanostructures as seen from the peaks of the Green-
Kubo spectra. The exact positioning of the additional surface peak varies depending on
the characteristic size of the grains. While grains are rarely this small in experiments the
result may have important implications for other materials such as 2DEG materials

which tend to have extremely small layers [236].

An important result for both grain boundaries and nanostructures is that an increase in
defect scattering modifies the behavioural trend of thermal conductivity with respect to
temperature. Phonon-phonon scattering is the only scattering mechanism available for
pure materials and increases with temperature; however defect scattering is active at all
temperatures. Thus all defective structures display a reduced response as temperature
increases. The density of the system can also give a good indication of the thermal
conductivity reduction, with lower densities equalling lower thermal conductivity, but

no clear trend presents itself.

In summary, the results demonstrate that the thermal conductivity can be calculated
reliably for the ionic material, and that the modes that have the largest effect on the
thermal conductivity. Different boundaries and nanostructures have also been studied

and their influence on thermal conductivity evaluated.

Furthermore, the results suggest that if analogous oxide materials were used as part of a
thermoelectric device a reduction in the thermal conductivity (and hence an increase in
ZT) of a factor of ~30 could be achieved, which may mean the difference between the

device being usable or not.

In the following Chapter SiO; is considered. SiO, based materials offer a chance to
study the behaviour of thermal transport in a covalent system instead of the purely ionic
system presented by MgO.
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5.The Thermal Conductivity of Silica (SiO,)

Structures with Complex Vibrational Modes

The aim of this chapter is to extend the range of thermal conductivity simulations to
covalent materials. This study has opted to look at silica, SiO,, which is not only highly
abundant, being one of the most naturally abundant oxides, but is also used in a range of

devices and in its amorphous forms constitutes a major component of glasses.

Additionally, mesoporous silica has been used as an additive to Nb-doped SrTiO3,
which increased the ZT five fold via an increase in the electrical conductivity and
reduction of thermal conductivity caused by the growth of Sr,TiSi,Og at the grain
boundaries, while the Seebeck coefficient remained unchanged [237]. The reduction in
thermal conductivity and enhancement of electrical conductivity is of particular interest
as the system is now approaching the PGEC concept [44]. The PGEC-like behaviour of
the material may originate from the Sr,TiSi,Og phase found at the boundary which is
capable of rigid unit motion [238], leading to very low frequency RUMs which may be
highly effective at scattering acoustic phonons. Silica systems are also known to contain

rigid unit modes (RUMS) [239] and so can act as a model system.

Hence, a detailed analysis of heat transfer in silica materials is also of great
technological interest. Structurally, most silica polymorphs contain silicon atoms
tetrahedrally coordinated by oxygen atoms, although there are some exceptions [240],
such as the high pressure forms which may adopt octahedral coordination. These
tetrahedra are then corner linked to form a variety of different crystalline structures, the
most stable of which is quartz, but there are many other naturally occurring metastable
forms, such as cristobalite and tridymite [241]. A number of more complex silica
systems also exist, such as those synthesised within the zeolite community. One of these
zeolite materials is silicalite, which is the basis of an important class of acid catalysts

used for cracking hydrocarbons [242].

5.1. SiO, Overview

The wide variety of silica structures, which can undergo complex phase transitions, has
meant that the structural properties, including the effects of temperature, have been
studied extensively using computer simulation techniques [243-245]. One reason for the
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structural complexity, which makes the vibrational properties of silica structures
distinctive, is the presence of rigid unit modes (RUMSs) [246-248], which are vibrational
modes of silica frameworks with very low frequency. RUMs are often also associated
with negative Grlineisen parameters and can be used to explain the mechanisms for the
various phase transitions as well as the distinctive auxetic properties (negative Poisson’s
ratio), most notably the negative thermal expansion coefficient [249]. A further question

that then needs addressing is how this auxetic behaviour affect the thermal conductivity.

Thus, in this chapter two distinct structures will be considered. Firstly the thermal
conductivity of quartz will be studied with particular interest in effect of the phase
transition to B-quartz at higher temperatures. Secondly the thermal conductivity of a
microporous material, silicalite, will be studied. However, before modelling the thermal
conductivity of silica polymorphs a potential model must be identified that can
reproduce the vibrational and structural parameters with sufficient accuracy, which is
described in Chapter 5.2.

Reproducing the structural and vibrational properties of these different materials with a
single potential model is very important. There are many potential models available for
silica materials [250], including very complex reactive potentials [251]. However, a
relatively simple potential model is desirable for the calculation of thermal conductivity
due to the large system sizes and long simulation times required for a converged result.
Thus, the requirement is for a comparatively simple functional form that has been used

to model structural [252], elastic [253] and vibrational [254] properties.

The potential model of van Beest, Kramer and van Stanten (BKS) [161, 162] has been
selected for the work detailed here as it satisfies the requirement for a simple yet
accurate model. The BKS potential has been used frequently and has been applied to a
wide range of silicate materials. Examples showing the success of the BKS potential
include shock-wave compression of quartz [255], pressure induced amorphisation [256,
257], many amorphous glass studies [258-260] and the a-quartz to B-quartz transition
[261]. Additionally the phase diagram for SiO; using the BKS potential is at least
partially known [262].

The BKS potential uses a simple Buckingham form for the short range interactions
where the parameters were adjusted to reproduce the results of a number of electronic
structure calculations along with experimental structural data. As indicated, it has been
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used extensively in the calculation of many other properties and silicate systems.
Indeed, the convention of using the oxygen charge of -1.2 e has also been adopted by
the other potential models [156, 163].

More complex potential models than the BKS potential are available which include
additional terms such as a three-body interaction [263, 264] or the shell model [265].
While improving on some properties over the BKS potential, the additional complexity
will slow calculation significantly and make the potential unsuitable for thermal
conductivity calculations. Thus the BKS potential is used for all silica materials detailed
in this chapter.

5.2. Quartz

Quartz constitutes a significant proportion of the earth’s crust, coming second only to
feldspar in abundance. Quartz also has numerous industrial and commercial applications
due to its piezoelectric and pyroelectric properties, which arise out of the complex

structure of the material.

The quartz structure is complex due to the many types of symmetry present. Quartz is a
non-centrosymmetric material meaning there is not a centre of inversion. This in turn
gives rise to the piezoelectric and pyroelectric properties as dipoles may be formed
across the material under stress/heating. Additionally, this property means there exists
left and right handed polymorphs of quartz (Brazil twins) [266] related through a

mirroring of the structure (enantiomorphism).

Quartz may also exhibit further polymorphs related by the tilting of the SiO, tetrahedra.
At low temperatures quartz is in the form of a-quartz, where the tetrahedra are relaxed
and tilted by 16.3° [267]. The tetrahedral tilt angle found in a-quartz may be positive or
negative, giving rise to two polymorphs which are related through a 60° rotation about
the c¢ axis; when both forms are present in a single crystal the system is known as a

Dauphiné twin.

Upon heating above ~846 K [268], the a-quartz polymorph transforms into the higher
symmetry B-quartz polymorph. The difference between a-quartz and p-quartz is in the
average angle of tilt of the silicate tetrahedra. When the structure is a-quartz the
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tetrahedral are tilted by approximately 16.3° on average, transitioning to an average tilt

of 0° in B-quartz.

The vibrational mode involved in the phase transformation is thus known as a rigid unit
mode (RUM) [239]. RUMs have unusual vibrational properties [269-271] and leads to
the negative thermal expansion of quartz at higher temperatures [249]. The presence of
RUMs may also have some impact on the thermal conductivity of quartz and other

silica polymorphs.

Previous simulation work with the BKS potential model by Yoon et al. showed little
variation of thermal conductivity with respect to temperature [272] at around ~5
W/(m.K) between 500 K and 1100 K. The approach used was that of a NEMD
simulation with data collected over the course of 2-12 ns. The thermal conductivity is
then extrapolated from three different simulation sizes. The poor thermal conductivity
values can be attributed to the setup of the simulation which had only a small region of
diffusive thermal transport, the rest being dominated by ballistic transport introduced by
thermostated hot/cold regions. Additionally, the extrapolation to infinite size thermal
conductivity was only calculated with three system sizes, which is not enough to discern
a trend in the data. Thus, to obtain reasonable values larger bulk regions or a smaller

temperature difference are required in conjunction with more system sizes.

Work by McGaughey et al. on the thermal conductivity of quartz also used the BKS
potential but calculated the thermal conductivity with the Green-Kubo method instead
and gave results which were in much better agreement with experiments [200, 202] than

the NEMD work by Yoon et al., although at low temperatures only.

The work by McGaughey et al. [200, 202] used the Wolf method [273] for electrostatics
as it was found that the long range interactions were on the order of ~1% that of the
short range interactions; the advantage of this method is that the electrostatic
interactions are approximated as a medium range potential and hence the calculations
are significantly faster. The calculations were performed on temperatures between 100
K and 350 K at 50 K steps. Each temperature had five separate ~1 ns simulations
performed and averaged to better sample phase space (with the exception of the 100 K
series which required 10 separate ~1 ns simulations). The final thermal conductivity
was located by using overlapping averages on the integral to identify the point of

convergence. The results are very close to experimental values in both absolute value
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and trend, supporting the use of both the BKS potential and the Green-Kubo method in

calculating the thermal conductivity.

Thus, the aim of this component of the work was firstly to demonstrate that not only can
the thermal conductivity of a-quartz be calculated efficiently, but using the procedures
described in the previous chapter the extent to which the optical modes are involved in

heat transfer may be identified.

The second aim is to investigate whether the effect of the a-quartz to p-quartz phase
transition can be evaluated and if domains play a role in lowering the thermal
conductivity. However, before describing the results of the thermal conductivity
simulations, an assessment of the potential model in calculating more routine bulk

properties is discussed.

The structures of a-quartz and the high temperature polymorph -quartz have been well
determined experimentally [274] having the space groups P3,21 [274] and P6,22
[275] respectively. Images of the structures are given in Figure 5.1, which shows the

increased symmetry in f-quartz.

Figure 5.1 View down the ¢ axis of a-quartz (left) and B-quartz (right). a-quartz is
related to its Dauphiné twin by a 60°/180° rotation around the c axis. The hexagonal

unit cell is displayed in the blue box.

As already mentioned in the previous chapter the thermal conductivity depends directly
on the structure and lattice properties, including the elastic constants. The lattice
parameter and elastic constants of o-quartz have been calculated via energy
minimisation in the METADISE code [165] and are presented in Table 5.1.
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Property | Calculated | Experiment | % Difference
a(A) 4.922 4,913 0.18
c(A) 5.434 5.405 0.54

c11 (GPa) 89.5 86.8 3.11

33 (GPa) | 111.73 105.75 5.65

c12 (GPa) 1.01 7.04 -85.65

c3 (GPa) |  16.85 11.91 41.48

Ca4 (GPa) 50.6 58.2 -13.06

Ces (GPa) 39.69 39.88 -0.48

ci4 (GPa) | -16.87 -18.04 -6.49

Table 5.1 Calculated and experimental [276, 277] properties of a-quartz.

The agreement with experimental values is excellent. The lattice parameters are within
0.05 A of their experimental values. The elastic constants are also reproduced very well
which is to be expected considering the BKS potential has been developed with the
elastic constants as one of the fitting parameters. One further detail to note is that the
BKS potential over predicts the Si-O-Si bond angle by ~6° at room temperature, which

has been noted previously [278].

The temperature induced phase change present in quartz is closely linked to RUMs as
the difference between a-quartz and B-quartz is in the positioning of the tetrahedra.
Above the phase transition (~846 K) [268] the RUMs also play a role in the negative
thermal expansion. How well the BKS potential performs in reproducing the phase
change will also help indicate how well temperature dependent changes in the phonon

frequencies are being reproduced.

5.2.1. Thermal Expansion

The thermal expansion of quartz was calculated as for magnesium oxide. In these
simulations the BKS potential has been used due to the wealth of study and testing done
on it previously [161, 162, 202, 255, 258-261]. The simulation cell used wasa 7 x 4 x 6
expansion of the orthorhombic unit cell consisting of 18 atoms and measuring

approximately 4.9 A x 8.5 A x 5.4 A, giving a final simulation cell of 3,024 atoms and
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measuring approximately 34.5 A x 34.1 A x 32.6 A. The crystallographic ¢ direction of

quartz is aligned along the Z direction.

The thermal expansion was measured using the same procedure as for magnesium
oxide. A series of 5 different 0.5 ns anisotropic NPT (Nosé-Hoover thermostat and
barostat) molecular dynamics simulations were run on 6 different temperatures. A
timestep of 1.0 fs was again used. The lattice vectors were sampled every 10.0 fs and
averaged over the course of the simulations. Due to the anisotropic nature of the

underlying material the lattice vectors were averaged independently.

The resulting cell dimensions were converted back to the primitive hexagonal unit cell
for easier comparison with experiments. The calculated a and b lattice parameters were
found to be almost identical and that the maximum difference between them was less
than 5x10” A at high temperatures. Additionally the standard error between the 5
separate runs was also on the order of 5x10™* A. The final results are plotted in Figure

5.2, only the a and ¢ parameters are presented.
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Figure 5.2 Calculated and experimental [279, 280] lattice parameters of quartz.

The experimental ¢ parameters of Jay and Taylor are effectively identical and are
overlaid in Figure 5.2. However, the a parameter from the experiments of Jay (not
shown) is significantly lower than the calculated values (in the region of 4.25 A to 4.32
A). The discrepancy is because the a values of Jay were extrapolations based on the ¢
direction rather than measurements and so are not included. Due to the remarkable

143



similarity of the c lattice parameters and the untrustworthiness of the Jay a lattice

parameter only the experimental values of Taylor will be used from this point onwards.

The calculated lattice parameters of quartz are reproduced well with a deviation of less
than 3% compared to experiments. However, there is a consistent shift to higher values
in simulation as compared to experiments. The c lattice parameter is consistently shifted
upwards by 0.08 A compared to experimental values. The a direction has a more

variable shift of between 0.04 A and 0.08 A above experimental values.

The trends seen in both the a and c directions are relatively well reproduced. The phase
transition from a-quartz to 3-quartz appears to occur in the region of 700 K-900 K in the
calculations which matches well with the experimentally known value of 846 K [268].
The thermal expansion coefficient has been calculated for a-quartz and B-quartz
separately using the values presented above and split across the phase transition
temperature. The thermal expansion coefficients for a-quartz were calculated using the
lattice parameter at 300 K as a baseline for the calculated expansion and the lattice
parameter at 720 K as a baseline for the experimental expansion. Within these regions
the expansion is essentially linear and thus this difference in baseline is not expected to
cause much difficulty. The thermal expansion coefficients for a-quartz are presented in
Table 5.2 and those for B-quartz in Table 5.3.

Direction | This Work | Taylor
a=b (K™ | 2.613x10™ | 4.317x10”
c(Kh | 2.342x10™ | 2.675x10”

Table 5.2 Thermal expansion coefficients of a-quartz.

Direction | This Work | Taylor
a=b (K" [ -1.800x10° 0.0
c(K" |[-3575x10° | -2.819x10°

Table 5.3 Thermal expansion coefficients of $-quartz.

The thermal expansion coefficients are reasonably good matches to experimental
values. All calculated thermal expansion coefficient are within an order of magnitude of
the experimental values except for the a parameter of B-quartz where the experimental

differences were too small to give a valid expansion coefficient.
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The thermal expansion of quartz has also been calculated previously using the BKS

potential model and gave slightly different results [252], Figure 5.3.
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Figure 5.3 Volume expansion of quartz calculated with the BKS potential compared to

experiments [252].

Figure 5.3 clearly shows an increase in the volume as calculated by Miuser et al.,
although the expansion behaviour is essentially identical. The difference between the
two BKS calculations is attributed to the cutoff used in the simulations. In this work a
cutoff of 8.5 A has been used whereas in the work of Miiser et al. used a cutoff of 9.5 A.
The requirement to simulate large systems for long time periods means a compromise

must be made to accelerate the simulations and so a cutoff of 8.5 A will be used.

Both calculated data sets and the experimental data set indicate that the lattice
parameters begin to decrease in the region of 850 K, indicating transition to the -quartz
phase. The change in thermal expansion is a result of a change in the behaviour of

vibrational modes and thus could have a significant effect on the thermal conductivity.

The negative thermal expansion of -quartz at least partially originates from the tilting
of the rigid tetrahedra. A simple two-dimensional example using squares is given in
Figure 5.4 [249].
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a) b) c)

Figure 5.4 As the rigid units (blue squares) rotate the total area occupied by the system

decreases. The black box indicates the area required to hold one square in each motif.
The areain a) is 4, the area in b) is 3.5 and the areain c is 2.

Figure 5.4 b) may be considered a two-dimensional analogue of a-quartz and upon
heating may transform to B-quartz, most similar to Figure 5.4 a). The transformation is
accompanied by an increase in volume. The B-quartz structure is only stable
dynamically and exists as a time average of the rigid tetrahedra occupying many tilt
angles. By increasing the temperature further the system spends longer at one extreme
or another of tilt and the time averaged volume is less than the perfect B-quartz

structure.

5.2.2. Thermal Conductivity

Quartz is a complex material, constructed from a network of semi-rigid tetrahedra. The
changes in orientation of the tetrahedra give rise to a phase change at approximately 850
K, accompanied with a change to negative thermal expansion. These properties are also

likely to have an impact on the thermal conductivity.

5.2.2.1. Green-Kubo Results

The thermal conductivity of quartz was calculated by dividing the simulation into 5
individual sets. As discussed in Chapter 3.2.3.2 the calculation of thermal conductivity
will theoretically converge faster when using multiple simulations with different
starting velocities as a larger portion of phase space is sampled [206]. Each set of
simulations comprised 6 temperatures (with lattice vectors set to the corresponding
thermal expansion calculation values). The cell volume for each temperature was taken

from the averaged thermal expansion calculations, each system was then equilibrated
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for a further 0.5 ns in an NVT ensemble (with a Nosé-Hoover thermostat), followed by
3 ns NVT data collection, sampling the heat-flux every 10 fs (1 fs timestep was once
again used). Again, the crystallographic c direction of quartz is aligned along the Z
direction, the X direction is equivalent to the crystallographic a direction and the Y

direction is perpendicular to both the X and Z directions.

The collected heat-flux data is then treated in the usual manner as discussed in Chapter
3.2.3. It is autocorrelated, integrated and then averaged over all the sets for each
temperature to give thermal conductivity values with respect to integral length. For
simulations on SiO, based materials, it was found that the convergence regime has
occurred in the region of 20,000-25,000 steps for all temperatures. The values in the
convergence region are thus averaged to give the final thermal conductivity values with
half the difference between the maximum and minimum values used as a measure of the
noise in the autocorrelation. Again the error presented here is likely much larger than

the true error which is extremely difficult to calculate [201].

The experimental thermal conductivities for quartz are presented in Figure 5.5 and the

calculated thermal conductivities are presented in Figure 5.6.
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Figure 5.5 Experimental thermal conductivity of quartz [49, 215].
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Figure 5.6 Calculated thermal conductivity of quartz for the three directions.

The experimental thermal conductivities in Figure 5.5 show a clear splitting between the
a and c directions, with the c direction thermal conductivity being consistently higher.
An unusual trend is seen beyond the a-quartz to B-quartz at 846 K where the thermal
conductivity increases. The unusual increase may be either related to the negative
thermal expansion or to the presence of Dauphiné twins, discussed later in Chapter
52.2.2.

The calculated thermal conductivities in Figure 5.6 also show a clear split between the a
direction (X and Y directions in the simulation) and the ¢ direction (Z direction in the
simulation). The absolute values are also fairly similar, although a constant shift to
higher values is seen in the calculations, possibly due to the choice of cutoff as
discussed in Chapter 5.2.1. Alternatively the experimental samples may contain trace
defects not present in simulations, and would therefore have a lower thermal

conductivity.

The X and Z directions in the calculations correspond directly to the experimental a and
c directions respectively. However, the Y direction in the calculations does not
correspond directly to the b direction but does show effectively identical thermal
conductivity to the X direction. The reason for this is that the X and Y directions are

still related through symmetry, whereas the Z direction is not.

148



The minimum in the experimental thermal conductivities at 846 K is not observed in
simulation. It could be argued this minimum is related to the negative thermal
expansion above 846 K, however the negative thermal expansion is seen in both
experiments and calculations but the minimum in thermal conductivity is only seen in
experiments, making this explanation less likely. An alternative explanation is that of
Dauphiné twins, the effect of which is difficult to capture in a comparatively small

simulation cell.

The calculated thermal conductivity values presented here represents an improvement
on those calculated by Yoon et al. using the same potential model, but an alternative
method [272]. The values of Yoon et al. are consistently around 5 W/(m.K) +/-0.5
between 500 K and 1100 K. The thermal conductivity values calculated by Yoon et al.
do however match the values calculated here at temperatures above ~850 K, showing
the significance of the a-quartz to B-quartz transition and the possible presence of

Dauphiné twinning in the simulation cell that becomes possible with NEMD methods.

Green-Kubo methods preclude this possibility by having the entire simulation cell at
one temperature, which does not make Dauphiné twinning impossible, but much less
likely over the timescales simulated. Additionally the NEMD methods are known to be
more sensitive to finite size effects, especially at lower temperatures, where the phonon
mean free path is very long [281].

Other work by McGaughey et al. [202] using both the same potential model and
simulation methodology has resulted in close agreement with experimental values,
although at temperatures lower than presented here. The values calculated by
McGaughey et al. also match well with the values presented here within the small
region of overlap, Figure 5.7. The slight difference in values may be attributed to a
different potential cutoff (which was not specified) or the use of the Wolf method [273]

of solving electrostatic interactions.
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Figure 5.7 Calculated thermal conductivity of bulk quartz in this work and by
McGaughey et al. the a direction of McGaughey et al. is equivalent to the X and Y

directions in this work.

5.2.2.1.  Lattice Dynamics Results

Attempts to calculate the thermal conductivity of quartz via lattice dynamics failed to
give a converged result with respect to supercell size and g-points. Furthermore, the
phase change found in quartz is likely to complicate interpretation of any results.

The unconverged values are presented in Appendix A.

5.2.2.2.  The Effect of Dauphiné Twinning

Experimentally a minimum in the thermal conductivity is observed in the region of the
a-quartz to B-quartz transition temperature. The origin of the minimum in thermal
conductivity may be due to Dauphiné twinning found at temperatures near the a-quartz
to B-quartz transition and in this section the aim is to generate a twinned structure for
investigating whether they may cause the experimentally observed change in thermal

conductivity.

Dauphiné twins are related through a 60° rotation of the a-quartz structure. One
Dauphiné domain may transform into another via the B-quartz structure i.e. a

reorientation of the tetrahedra [282]. The boundaries between Dauphiné domains could
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result in additional scattering as the phonons move from one orientation of quartz to
another and therefore lower the thermal conductivity; additional scattering may also be

caused by the local structure of the boundary itself.

Dauphiné twins can only occur in a-quartz and not B-quartz, therefore it may be
expected that they will only impact the thermal conductivity at temperatures below the
a-quartz to B-quartz transition. At temperatures significantly above the a-quartz to -
quartz transition the domains will not occur and phonons will experience the lattice as

pure B-quartz.

Thus the thermal conductivity at temperature much below the a-quartz to B-quartz
transition is likely to be reduced by static Dauphiné twin domains. At temperatures
above the a-quartz to B-quartz transition the phonons experience the lattice as p-quartz,

resulting in less scattering.

This complex trend in thermal conductivity is not seen in the calculated thermal
conductivity (Figure 5.6) due to the relatively small system size. At larger sizes
Dauphiné twins are able to form below the transition temperature and act as additional
scattering centres.

The general approach for generating a simulation cell containing Dauphiné twins was to
first heat quartz above the transition temperature and then rapidly quench to low
temperatures. By doing this different regions of the crystal crystallise to a-quartz
independently and there is insufficient time for one orientation to exert dominance and
remove the other orientation. However, below the transition temperature in small
systems the twin boundaries are metastable and hence the simulation cell may simply

recrystallise into one form of a-quartz.

During creation of the Dauphiné twin system, it was found that the stability was
dependent upon the size of the system. At small system sizes Dauphiné twins were
unable to form as one orientation exerted dominance over the other, possibly due to
strain effects in a small system. At intermediate sizes the twin boundaries would
approach over time and anneal out of the structure. At large system sizes the twin
boundaries were at such large separation that they were effectively independent and did

not approach each other. Thus at the system sizes used for thermal conductivity
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calculation Dauphiné twins are not expected to form and therefore will not be able to

reduce the thermal conductivity in the region of the phase transition.

A large orthorhombic simulation cell of a-quartz measuring approximately 193 A x 22
A x 226 A and containing 74,160 atoms was created. The crystallographic ¢ direction
was orientated along the Y direction while the crystallographic a direction was slightly
misorientated from the X direction in an attempt to avoid spurious periodicity. The
system was heated to 2000 K and maintained at that temperature for 10 ps, using a
timestep of 1.0 fs in an NVT ensemble. The system is then rapidly cooled to 100 K over
the course of 20 ps. The system was then energy minimised to remove any residual

strain and thermal noise in the position of the atoms.

Analysis of such boundaries is challenging because of the subtle difference in
structures, i.e. tilting of tetrahedral, which distinguish the separate regions. To picture
the boundaries within the system the density of atoms within a 4.5 A radius of a silicon
atom is calculated and the tetrahedra centred on that silicon is coloured depending upon
that density. This system (expanded 2 x 2 x 2) is shown in Figure 5.8.

Figure 5.8 The 74,160 atom Dauphiné twin system (expanded 2 x 2 x 2). Domain

boundaries are coloured white.
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One twin region is entirely enclosed by the other and takes on a trapezoidal shape with
two ~60° and two ~120° angles, reflecting the symmetry of the a-quartz material.
Interestingly the domain boundaries do not align along the crystallographic a or b
directions and has a small misorientation angle of ~10°, an effect which has been noted
before experimentally [283] and is the subject of a joint experimental/computational
paper by Eder et al. [284]. This misorientation was observed in many systems regardless
of whether the crystallographic a direction was misorientated from the X direction or

not.

Annealing this system at 300 K resulted in the inner domain being annealed to the same
orientation as the outer domain. The reconstruction to one orientation of a-quartz is
likely expedited by the strain generated by the twin boundary on the underlying crystal.
By having the twin boundaries in close proximity there is a driving force for them to
approach as the strain between them is relieved until the boundaries meet and remove
the inner domain. In a sufficiently large system the boundaries should be so well
separated as to have no driving force to move in any given direction, thus the stability of

Dauphiné twins is expected to be extremely sensitive to system size.

In an attempt to create a dynamically stable Dauphiné twin system an even larger
system of approximately 386 A x 22 A x 452 A (c axis orientated along the Y direction)
containing 296,640 atoms was constructed and treated in the same manner as the 74,160
atom system. The calculation of local density was performed as before and the coloured

system is presented in Figure 5.9.
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Figure 5.9 The 296,640 atom Dauphiné twin system. Domain boundaries are coloured

white.

Once again the system displayed an abundance of ~60° and ~120° angles in the
boundary while the boundaries themselves are again slightly misorientated from the
crystallographic a and b directions. This system was further annealed for 20 ps at 300 K,
followed by 10 ps of cooling to 100 K and then energy minimised. The final system is

shown in Figure 5.10.
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Figure 5.10 The 296,640 atom Dauphiné twin system after annealing at 300 K. Domain

boundaries are coloured white.

Annealing at 300 K has resulted in longer and straighter twin boundaries, while
retaining six individual ~120° angles. This system is stable at 300 K for short time
periods due to the large distances between oppositely orientated boundaries; even larger
systems should remain stable for longer periods and higher temperatures.

A thermal conductivity calculation was attempted on this system but was not possible as
the Dauphiné twins annealed away at 500 K and longer timescales necessary for thermal
conductivity calculations. One possible solution is to increase the thickness (Y
direction) of the system so that there is a greater barrier to diffusion of the domain
boundary, however this would result in a system of more than a million atoms which
would take an unfeasibly long time to simulate in order to gain enough data for a

converged thermal conductivity.

The calculation of thermal conductivity in these systems is further complicated by the
changing geometry in these systems, meaning that the calculated thermal conductivity

can change over the course of the simulation.
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In summary, small scale (length and time) simulations have significant difficulty in
capturing the effect of domains on the thermal conductivity of quartz. If the simulation
cell is too small then two opposite domain boundaries may interact with each other,
approach and annihilate. Furthermore the correct concentration and orientation of
domains is exceptionally difficult to achieve, partially due to the constraints of periodic

boundary conditions and simulation cell geometry.

The magnitude of the impact of Dauphiné twins is thus still unknown. Future work may
concentrate on creating more ordered, and more stable Dauphiné twin system which are
capable of being simulated for the requisite amount of time. The concentration of
Dauphiné domains is also an important aspect to be studied but is expected to be

temperature sensitive and require even larger systems.

Experimental results must also be carefully considered as the thermal conductivity
should be dependent on the thermal history of the crystal, via Dauphiné twinning. If the
crystal is cooled slowly at temperatures below the transition, then there is a greater
amount of time for Dauphiné twins to be removed, conversely if the crystal is quenched
quickly then many Dauphiné twins are expected to form and the thermal conductivity

will consequently be lower.

As shown in the previous chapter, it is also possible to analyse the lattice dynamics to
identify the optical modes that interact with the acoustic and hence heat transport.
Clearly, this is not possible for the domain structures, but a-quartz and B-quartz can still

be considered.

5.2.2.3. Green-Kubo and Lattice Dynamics Spectra

The Green-Kubo spectra of quartz are expected to show significant changes with
temperature due to the phase transition from a-quartz to pB-quartz. The Green-Kubo

spectra are presented in Figure 5.11, Figure 5.12 and Figure 5.13.
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Figure 5.11 Green-Kubo spectra of quartz in the X direction, Logs, scale.
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Figure 5.12 Green-Kubo spectra of quartz in the Y direction, Logs, scale.
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Figure 5.13 Green-Kubo spectra of quartz in the Z direction, Logso scale.

The spectra show once again that the X and Y directions are equivalent. All peaks occur
between 10 THz and 40 THz and are in two main groups; those above ~25 THz and
those below. Some peaks move to lower frequency with increasing temperature as was
seen for MgO. Other peaks show the reverse trend, moving to higher frequency with
increasing temperature and eventually merge with other peaks. Furthermore, some
peaks disappear entirely with increasing temperature (~37 THz in X and Y, ~23 THz in
2).

The most unusual feature of the Green-Kubo spectra is that some peaks shift to higher
frequencies as temperature increase (a negative mode Grilineisen parameter), as opposed
to the previously observed decrease in frequency with higher temperatures (a positive
mode Grlineisen parameter). These frequencies are attributed to the transition from a-
quartz to B-quartz and the accompanying increase in symmetry. As the material changes
phase, several previously distinct environments become identical and thus many phonon
modes involving those environments also become identical. The increase in frequency
is likely due to the increasing lattice parameter removing slack from tetrahedral chains,

the chains thus become tighter and resulting in higher frequencies.

A secondary feature of the spectra transformation is that some peaks (X and Y
directions ~18 and ~23 THz and Z direction ~19 THz) which do shift to lower
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frequency with higher temperature cease moving somewhere between 700 K and 900 K
while other peaks (X,Y and Z direction ~33 THz) continue to shift towards lower

frequencies.

Additionally, the 36.6 THz peak in the X and Y directions and the 22.7 THz peak in the
Z direction decrease in magnitude with increasing temperature until disappearing
entirely in the region of 700 K to 900 K.

These phenomena occur in the region of the quartz transition temperature and show that
a-quartz and B-quartz present distinct systems with respect to thermal conductivity
calculation. Thus the spectra support the idea that the NEMD molecular dynamics
approach to calculating thermal conductivity may be unsuitable as the thermal
conductivity will depend strongly upon the temperature gradient i.e. there may be a-
quartz in one portion of the system but B-quartz in another. The Green-Kubo method
however maintains a single temperature throughout the system and may only experience
the problem of Dauphiné twinning in large systems and close to the phase transition

temperature.

Calculating the thermal conductivity via BTE methods may also fail as they cannot
directly account for the structural changes at the phase transition and thus a poor

representation of the phonon-phonon scattering processes.

The lattice dynamics phonon DOS can once again be used to give a physical
interpretation of the modes appearing in the Green-Kubo spectra. The phonon DOS for
a-quartz was calculated as previously, but now using a total eigenvector cutoff of 0.01.
The simulation cell used for this calculation contained 9 atoms with lattice vectors of
a=b=4.92 A, ¢c=5.43 A, a=p=90° and y=120°. The phonon DOS spectra of a-quartz and
the 300 K Green-Kubo spectra for quartz are presented in Figure 5.14, Figure 5.15 and
Figure 5.16.
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Figure 5.14 Comparison of the Green-Kubo at 300 K and lattice dynamics spectra for a-

quartz, X direction. Logio scale on Green-Kubo intensity.
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Figure 5.15 Comparison of the Green-Kubo at 300 K and lattice dynamics spectra for a-
quartz, Y direction. Logio scale on Green-Kubo intensity.
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Figure 5.16 Comparison of the Green-Kubo at 300 K and lattice dynamics spectra for a-

quartz, Z direction. Logso scale on Green-Kubo intensity.

The peaks arising from the Green-Kubo calculation at 300 K can now be indexed, Table
5.4.

Frequency (THz) | Direction Motion
5.104 XY Rigid Unit Mode (RUM)
14.03 XIY Tetrahedra distortion/Si-O bending
14.32 Z Tetrahedra distortion/Si-O bending
18.57 XY Tetrahedra distortion/Si-O bending
19.84 4 Tetrahedra distortion/Si-O bending
21.67 XIY Tetrahedra distortion/Si-O bending
22.84 Z Si rattling in tetrahedra/Si-O bending
23.05 XIY Tetrahedra distortion/Si-O bending
33.23 XY Tetrahedra distortion/Si-O stretching
33.58 Z Tetrahedra distortion/Si-O stretching
36.83 XIY Tetrahedra breathing and distortion/Si-O stretching

Table 5.4 Assigned vibrational modes of a-quartz.
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By indexing the peaks via lattice dynamics calculations it becomes clear that the modes
present above ~25 THz are related to Si-O bond stretching, the modes between ~10 THz
and ~25 THz are related to Si-O bond bending. An additional single mode appears
below 10 THz which is a rigid unit mode (RUM).

The vibrational frequencies for a-quartz as calculated by Green-Kubo and lattice
dynamics match almost exactly. One exception appears to be the very low magnitude
rigid unit mode (RUM) appearing at 5.1 THz in the X and Y directions of the lattice
dynamics calculation which initially appears to have no counterpart in the Green-Kubo
calculation. Closer inspection of the Green-Kubo spectra reveals this mode is indeed
present in the X and Y directions but at exceptionally low intensity, matching fairly well
with the relatively low magnitude found for this mode in the lattice dynamics

calculation, Figure 5.17.
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Figure 5.17 Low frequency RUM in the X direction of a-quartz. Green-Kubo values are
at 300 K.

This mode is unusual in that it is the only RUM to appear in the Green-Kubo spectra
and the lattice dynamics phonon DOS (after removing symmetric modes). However,
other RUMs may be present but do not appear because the sum of their non-mass-
weighted eigenvectors is less than the cutoff; indeed there may be some evidence of
further RUMSs between 1.0 THz and 5.1 THz in the Green-Kubo spectrum, but these are
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not conclusive. Furthermore the mode at 5.1 THz is absent from the B-quartz

calculations, indicating that this mode becomes symmetric during the phase transition.

The lattice dynamics phonon DOS is much harder to obtain for B-quartz as the structure
IS not stable to energy minimisation. Therefore a fictional B-quartz unit cell was created
using the cell volume as calculated from molecular dynamics at 1300 K and the
corresponding average atomic positions. The cell is then minimised under constant
volume using the same potential parameters. By being precisely on the saddle point
between the two possible orientations of a-quartz, relaxation to either state is avoided

and the B-quartz structure is maintained.

As B-quartz is not a stable structure at 0 K, imaginary modes are expected to appear in
the spectra; however the rest of the modes in the spectra may give some insight into the
vibrational modes interacting with the heat-flux. The B-quartz phonon DOS spectra and
the 1300 K Green-Kubo spectra for quartz are presented in Figure 5.18, Figure 5.19 and
Figure 5.20 and shows good agreement with the Green-Kubo spectra.
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Figure 5.18 Comparison of the Green-Kubo at 1300 K and lattice dynamics spectra for
B-quartz, X direction. Logio scale on Green-Kubo intensity.
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Figure 5.19 Comparison of the Green-Kubo at 1300 K and lattice dynamics spectra for

B-quartz, Y direction. Logso scale on Green-Kubo intensity.
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Figure 5.20 Comparison of the Green-Kubo at 1300 K and lattice dynamics spectra for

B-quartz, Z direction. Logs scale on Green-Kubo intensity.

There are many fewer peaks for B-quartz than a-quartz and a good match is achieved to
the Green-Kubo spectra. One exception is the overestimation of the highest frequency
peak which appears at 35 THz, a 3 THz overestimation on the Green-Kubo spectra.
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These peaks may now be indexed according to their atomic motions; the results are
displayed in Table 5.5.

Frequency (THz) | Direction Motion
16.28 XIY Tetrahedra distortion/Si-O bending
17.75 Z Tetrahedra distortion/Si-O bending
22.70 XIY Si rattling in tetrahedra/Si-O bending
34.97 Z Tetrahedra distortion/Si-O stretching
35.01 XY Tetrahedra distortion/Si-O stretching

Table 5.5 Assigned vibrational modes of B-quartz.

The expected imaginary frequency for B-quartz is present and appears at approximately
3.8i THz. The low frequency of the imaginary mode is due to the a-quartz to p-quartz
transition being based on changes in tetrahedral positioning, and is thus an imaginary
rigid unit mode (RUM). The imaginary frequency is symmetric and thus does not
appear in the treated phonon DOS and it is not expected to directly affect the thermal
conductivity. However, the existence of the phase transition itself is likely to lead to

secondary effects that do have an impact on the thermal conductivity.

The B-quartz structure shows a significant peak shift of the ~32 THz modes in the
Green-Kubo spectra to ~35 THz in the lattice dynamics phonon DOS spectra.
Additionally, the 21.5 THz mode in the X and Y directions of the Green-Kubo spectra is
overestimated to 22.5 THz in the lattice dynamics phonon DOS.

The shift of some modes to higher frequency in the lattice dynamics phonon DOS of -
quartz originates from the fact that B-quartz is not a stable structure at 0 K and only
exists as a dynamical average of many tetrahedral tilt angles. Thus at any given moment
in time the SiO, tetrahedra are not occupying the B-quartz average and the Si-O
distances are closer to their low temperature bond lengths (1.60 A). When the average
atomic coordinates of B-quartz are used the Si-O bonds must become shorter to allow
the tetrahedra to fit (1.59 A). The Si-O bond is thus strained and not at its 0 K
equilibrium distance, causing a slight change in the observed frequencies. The
remaining modes which do not involve a stretching of the Si-O bond show a much

better match to the Green-Kubo spectra.
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The lattice dynamics spectra of both a-quartz and B-quartz can also help reveal the
origin of changes in the Green-Kubo spectra as a function of temperature. The
frequency at 22.84 THz in the Z direction disappears as the structure transitions from o-
quartz to B-quartz. The lattice dynamics calculation shows that this mode originates
from the vibration of a Si atom within the tetrahedra, oscillating between two opposite
edges. The vibration of the Si occurs mainly in the X-Y plane but also has some small Z
component due to the tilt of the tetrahedra in a-quartz. The motion of all the tetrahedra
in the system results symmetric mode in the X-Y plane but a concerted asymmetric
motion in the Z direction, giving rise to the mode seen in the spectrum. At higher
temperatures, the edges of the tetrahedra align perfectly in the X-Y plane and the
concerted motion in the Z direction is removed, thus resulting in the mode reducing and
disappearing at higher temperatures.

The vibrational modes present at 14.32 THz and 19.84 THz in the Z direction of the a-
quartz spectrum (Figure 5.16) share identical motion of Si atoms, differing only in the
motions of the O atoms. The two distinct frequencies arise out of the tetrahedral tilt and
splitting of the vibrational environment. As the temperature increases and the
environments become identical in B-quartz the frequencies merge into a single
frequency at 17.75 THz in the Z direction of the B-quartz spectrum (Figure 5.20).
Similar processes are likely the cause of other peak merging seen in the X and Y
directions (14.03 THz with 18.57 THz and 21.67 THz with 23.05 THz) although the

exact mechanism is unclear.

The study of quartz has allowed a basic understanding of the thermal properties of silica
materials to be developed which can aid in the interpretation of data coming from a
more complex silica phase. In the next section a zeolite material, silicalite is studied,
which has a much greater variety of environments and is much lower in density, both of

which are factors which can greatly influence thermal conductivity.
5.3. Silicalite

The zeolites are a related class of silicate materials, which have a much lower density
than quartz. There are over 200 known zeolite structures [285], both natural and
synthetic. Their uses primarily stem from their highly porous structure, making them
suited to catalysis [286], gas separation [287, 288] and ion exchange [289, 290]; these
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process are often temperature dependent. Furthermore, zeolites are of interest for
nuclear waste remediation and hence knowledge of their thermal properties is of great
benefit [291].

The structure of zeolites also somewhat mirrors that of several promising thermoelectric
material classes such as clathrates [68] by having a porous frame with the possibility of
guest species. Thus the study of thermal transport in zeolite structures may give

guidance on other materials for thermoelectric applications.

Most zeolites incorporate aluminium into the structure and accommodate charge
balancing cations in the pores such as alkali metals [292], alkaline earth metals or rare
earth metals. It is however still possible for purely silicious versions of several zeolites

to be synthesised.

The thermal conductivity of zeolites has been studied computationally using the BKS
potential. The work by McGaughey et al. [202] which calculated the thermal
conductivity of quartz also calculated the thermal conductivity of a few zeolite
structures (SOD, FAU and LTA) using the same approach. They found that in zeolites

there are two primary mechanisms for heat transfer:

1. A short range mechanism linked to optical phonons and short wavelength
acoustic phonons and is heavily influenced by the geometry of the structure.
This mechanism is temperature insensitive.

2. A long range mechanism which is related to longer wavelength acoustic
phonons. This mechanism is temperature sensitive and accounts for a significant

portion of the thermal conductivity.

Other potential models have also been used to calculate the thermal conductivity of
zeolites. Schnell et al. [293] used a simplistic model [294, 295] in a NEMD simulation
similar to that of Muller-Plathe[126] but with some minor modifications. This work
found that the introduction of organic guest molecules into the zeolite structures had
little effect on the thermal conductivity, likely due to weak interactions of the guests
with the zeolite cages. This result gives an interesting contrast with clathrate materials
where the guest ions are included specifically to reduce thermal conductivity, indicating

the importance of both cage size and interaction strength. Therefore it may be expected
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that introducing highly interacting cations may have a larger impact on the thermal

conductivity.

Hudiono et al. [296] used a more complex potential model incorporating electrostatic
interactions, two-body interactions, three-body interactions and polarisation [297] to
calculate the thermal conductivity of MFI within a BTE calculation. This study found
increasing thermal conductivities with temperature between 150 K and 450 K, from
~1.0 W/(m.K) to ~1.4 W/(m.K) with varying Si/Al ratio, matching closely the values

from experiments conducted concurrently.

Silicalite is a purely silicious version of the zeolite commonly known as MFI or ZSM-5
[285]. The silicalite structure (Figure 5.21) contains large sinusoidal channels in the X
direction and large straight channels in the Y direction, forming a network through
which species may diffuse. This pore network is often used for catalysis, sequestration

etc.

- "o 0| g o, L J H

Figure 5.21 Silicalite framework. Expanded x2 in the Z direction for clarity. The

orthorhombic unit cell is displayed in the blue box.

The structure of silicalite used here has space group Pnma and is constructed from the
same tetrahedral units as quartz, but arranged in a more complex motif. The
crystallographic a, b and c directions correspond to the simulation X, Y and Z directions
respectively. To test how well the potential model reproduces silicalite, the lattice

parameters and elastic constants were calculated and are presented in Table 5.6.
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Property | Calculated | Experiment | % Difference

a(A) 20.286 19.963 1.62

b (A) 20.323 20.019 1.52

c(A) 13.655 13.388 1.99
c11 (GPa) 33.7 68.2 -50.59
C22 (GPa) 785 84.5 -7.10
C3 (GPa) 79.1 79.0 0.13
Ca4 (GPa) 18.8 23.5 -20.00
css (GPa) 19.9 22.6 -11.95
Ces (GPa) 20.3 21.2 -4.25
c12 (GPa) 14.2 -1.52 -1034.21
c13 (GPa) -3.42 10.3 -133.20
C23 (GPa) 24.4 19.9 22.61

Table 5.6 Calculated and experimental [298] properties of silicalite. The
crystallographic a and b directions used in this work have been swapped for this

comparison due to differences in space group definition.

The experimental values for the elastic constants come from a sample which still
contains the tetrapropylammonium (TPA) fluoride template. However, measuring the
elastic constants for synthetic zeolites is particularly challenging due to the difficulties
in growing sufficiently large crystals for analysis [298]. Thus, the values presented in
Table 5.6 are presented as a closest match, with some deviation expected from the

calculated values.

Overall the match with experiment is reasonable, although the calculated lattice
parameters are consistently ~0.3 A higher than experimental values. The c;; constant is
significantly underestimated compared to experiments, although this may be the result
of the TPA-F guests making the structure stiffer. The c;, and c;3 elastic constants also

show significant deviation.

To confirm whether the deviation from experiments is due to the presence of TPA-F in
the structure or whether the potential model is not accurate enough, higher levels of
theory may be applied in future to calculate the elastic constants, e.g. DFT.
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5.3.1. Thermal Expansion

The thermal expansion and conductivity of silicalite were calculated using the BKS
potential [161] to facilitate direct comparison with the quartz results. The simulation
cell used was a 2 x 2 x 3 expansion of the orthorhombic unit cell consisting of 288
atoms and measuring approximately 20.3 A x 20.3 A x 13.7 A, giving a final simulation
cell of 3,456 atoms, measuring approximately 40.8 A x 40.8 A x 41.0 A.

The thermal expansion was measured using the same procedure as for all other
materials in this work. A 0.5 ns anisotropic NPT molecular dynamics simulation was
run on 6 different temperatures with a timestep of 1 fs. The lattice vectors were again
sampled every 10 fs and averaged over the course of the simulation. The lattice vectors
were averaged independently due to the anisotropic structure. The final lattice

parameters are plotted against temperature in Figure 5.22.
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Figure 5.22 Calculated and experimental [299] lattice parameters.

The calculated lattice parameters are within 3% of the experimental values [299] across
the whole temperature range and in each direction. The thermal expansion coefficients
were calculated for each direction using the lattice parameter at 500 K as the baseline.

The thermal expansion values are presented in Table 5.7.
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Direction | This Work | Bhange et al.
a(Kh [-5.266x10°| -3.998x10°
b (K" [-5.232x10°| -3.427x10°
c (K" [-4.149x10° | -2.364x10°

Table 5.7 Thermal expansion coefficients of silicalite from 500 K to 1000 K.

The thermal expansion coefficients are reproduced within a factor of two in each
direction. A deviation occurs below 500 K where the expansion is positive in the b and

c directions.

5.3.2. Thermal Conductivity

The thermal conductivity of silicalite was calculated by dividing the simulations into a
set of 5 molecular dynamics calculations for each of the 6 temperatures and then
averaging the final Green-Kubo integrals for each temperature. Each temperature used
the averaged lattice vectors as computed by the thermal expansion calculation. The
simulations were given different random starting velocities and were equilibrated under
an NVT ensemble for 0.5 ns before heat-flux data was collected for 4 ns under an NVT
ensemble sampling every 10 timesteps (10 fs). The separate sets were then averaged

together to give the final integrals from which the thermal conductivity was extracted.

The thermal conductivity of silicalite with respect to temperature is presented in Figure
5.23.
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Figure 5.23 Average thermal conductivity of silicalite with respect to temperature.

The calculated thermal conductivities lie within a narrow band between 2 and 3
W/(m.K) and show essentially no response to temperature within the error.
Experimental values tend to have increasing thermal conductivity values up to ~400 K
and plateau at between 1 and 2 W/(m.K) [296, 300, 301]. As these experimental
samples are not purely crystalline the higher thermal conductivities found in simulation

are to be expected.

As silicalite is an anisotropic material the thermal conductivities in different directions
may be different, as was seen for quartz. The directionally dependent thermal

conductivities are presented in Figure 5.24.
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Figure 5.24 Directional thermal conductivities of silicalite with respect to temperature.

The three directions appear to have almost equivalent thermal conductivities despite the
structure being very different. The combination of these factors indicates that the main
scattering mechanism is via the internal surfaces of the structure and thus the phonon

mean free path is limited by surfaces and has very little variation with temperature.

Below are presented the Green-Kubo spectra for silicalite in Figure 5.25, Figure 5.26
and Figure 5.27.
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Figure 5.25 Green-Kubo spectra of silicalite in the X direction, Log;o scale.
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Figure 5.26 Green-Kubo spectra of silicalite in the Y direction, Log;o scale.
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Figure 5.27 Green-Kubo spectra of silicalite in the Z direction, Log;o scale.

Each of the three directions gives distinct spectra although the overall regions for
different types of modes match well with those of the spectra of quartz. The two regions
are centred on 10-27 THz and 30-40 THz respectively. The 10-27 THz region contains
Si-O bending modes while the 27-40 THz region contains Si-O stretching modes. The
bending region of the spectra shows many more vibrational modes than for the quartz
structures, with which acoustic phonons may interact. As was found for quartz the
stretching region shows a frequency shift at increasing temperatures but the bending
region does not. The very large widths of the peaks indicate short lived phonons as peak
width is inversely proportional to phonon lifetime [192].

As the temperature increases, the number of independent modes decreases. The
decrease in the apparent number of modes may stem from the same mechanism that
reduced the number of modes in quartz i.e. increase in symmetry. However, the
symmetry of the system (Pnma) remains the same for both the energy minimised
structure and the 1300 K average molecular dynamics structure. Therefore, it is more
likely that the reduction in modes is due to the broadening of the peaks leading to

overlap and obscuring the separate modes.

The lattice dynamics phonon DOS was calculated on the 288 atom orthorhombic cell
with lattice vectors a=20.3 A, b=20.3 A and ¢=13.7 A. The results provide an excellent
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match to the Green-Kubo spectra and are presented in Figure 5.28, Figure 5.29 and
Figure 5.30.
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Figure 5.28 Comparison of the Green-Kubo at 300 K and lattice dynamics spectra for

silicalite, X direction. Logio scale on Green-Kubo intensity.
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Figure 5.29 Comparison of the Green-Kubo at 300 K and lattice dynamics spectra for

silicalite, Y direction. Logio scale on Green-Kubo intensity.
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Figure 5.30 Comparison of the Green-Kubo at 300 K and lattice dynamics spectra for

silicalite, Z direction. Logso scale on Green-Kubo intensity.

The lattice dynamics phonon DOS spectra confirm that the higher frequency modes (30-
40 THz) are related to Si-O stretching and the middle frequency modes (10-25 THz) are
related to Si-O bending. Additionally, the lattice dynamics calculations show that
silicalite does have a small contribution from the low frequency RUM modes (<10

THz), similar to quartz.

Interestingly, the Z direction of silicalite is the high density direction, containing no
channels, and is distinct compared to the X and Y direction in having three main peaks
instead of two. The three main Z direction peaks also match well with the X and Y
direction peaks of the B-quartz spectra and share broadly similar atomic motions Table
5.8.
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B-quartz Frequency Silicalite Frequency Motion

(TH2) (TH2)

16.28 ~19 Tetrahedra distortion/Si-O
bending

22.70 ~24 Si rattling in tetrahedra/Si-O
bending

35.01 ~34 Tetrahedra distortion/Si-O

stretching

Table 5.8 Major vibrational modes in B-quartz (X/Y direction) compared to silicalite (Z

direction).

The B-quartz structure contains the silica tetrahedra fully expanded. Furthermore, the
silicalite structure does not undergo a phase transition and thus the similarity of the

dense direction to f-quartz may be expected.

Another feature of note is that the frequencies have generally increased in the silicalite
calculation, except for the stretching mode which reduced in frequency. The reduction
in frequency of the stretching mode is not real as the stretching mode in the f-quartz
was already an overestimation due to the calculation being conducted on a transition

structure.

Overall the silicalite structure displays exceptionally low thermal conductivities on the
order of 2.5 W/(m.K) and may be similar to a glass (Appendix B). However, the

structure retains some similarities in its vibrational modes to bulk quartz.

5.4. SiO, Summary

The effect of the phase transition seen in quartz can have a profound effect on the
thermal conductivity due to the significant changes to the phonon modes in the system.
While some modes display the expected shift to lower frequencies with increasing
temperature, some display the opposite behaviour, indicative of a negative mode
Grineisen parameter. As the distribution of acoustic phonons obeys a Bose-Einstein
distribution [192], optical modes at lower frequencies are expected to have a higher
probability of scattering the heat carrying acoustic phonons and lower thermal
conductivity. For the modes with a negative mode Griineisen parameter this results in

less scattering as temperature increases and therefore higher thermal conductivity due to
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these modes. However, there are still many modes which display positive mode
Grineisen parameters and these tend to dominate the thermal conductivity. Looking
back at Figure 5.5 it now seems possible that the minimum in thermal conductivity is at
least partially due to these modes, although the effect of Dauphiné twinning cannot be

discounted.

The tetrahedral units which make up the structure of quartz give rise to very low
frequency RUMs. However, most of these do not interact with the heat-flux and
therefore cannot scatter heat-carrying phonons. Some RUMs are able to interact with
the heat-flux at low temperatures within a-quartz but lose this ability as the temperature
increases and the structure transitions to f-quartz. This change would also result in an
increase of thermal conductivity if it was the only mode present, but is hidden by the

reduction in thermal conductivity caused by the majority of other vibrational modes.

The existence of RUMs in silicate materials results in interesting behaviour that can
have applications in tuning the thermal conductivity. The RUMs present in quartz leads
directly to the phase change and negative thermal expansion [249] which both alter the

number and frequency of phonon modes present in the material.

While the RUMs themselves do not significantly contribute to phonon scattering in the
silica materials studied here (except at very low temperatures in quartz), their existence
creates opportunities to scatter phonons by related mechanisms. Firstly, dynamic
Dauphiné domain formation and destruction below the phase transition temperature
may lead to the observed experimental thermal conductivity minimum seen in the work
of Kanamori et al. [49]. However, extremely large (physical and time scales) molecular
dynamics simulations would be required to capture these effects and lattice dynamics
calculations may never be able to reproduce such effects as the memory requirements

become unmanageable for large systems.

The use of other silica tetrahedra based materials such as silicalite or even mesoporous
silica offer many more opportunities for reducing thermal conductivity. The increased
number of environments in the unit cell combined with lower density leads to an
enormous reduction in thermal conductivity and hence may represent an excellent

substrate material for thermoelectric devices.
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The thermal conductivity of silicalite was found to be generally insensitive to
temperature with a low thermal conductivity of ~2.5 W/(m.K), which is very close to
preliminary calculations on silica glass (Appendix B). The primary differences in the
systems are that of density and disorder. The density in the glass system is much higher
as is the disorder. Therefore, density alone cannot be the only factor affecting thermal
conductivity. It is the diversity of environments which leads to many optical phonon
capable of interacting with the heat-flux and thus phonon scattering is greatly increased

in silicalite.

Although quartz and silicalite are not thermoelectric materials, the understanding gained
from their study can now be applied to thermoelectric materials. Searching for a
material with strong RUMs and/or which undergoes phase changes in the temperature
region of operation may significantly reduce thermal conductivity and boost

performance.

In the next chapter the promising thermoelectric material SrTiO3/STO is discussed
which combines a covalent framework with an ionic guest atom and may show
behaviour similar to either/both MgO and SiO,. The role of grain boundaries and

nanostructured materials in reducing thermal conductivity will also be explored further.
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6. The Thermal Conductivity of Systems Based on

the Thermoelectric Material Strontium Titanate
(SrTiO,4/STO)

Strontium titanate (SrTiO3/STO) is a perovskite type material which may have
applications in future high temperature thermoelectric devices. STO has advantages
over more traditional thermoelectric materials in that its constituent elements are non-
toxic, abundant, cheap and stable to oxidation. These properties make STO suitable for
use in high temperature applications as it is less likely to degrade in oxidising
conditions. The relatively low cost of STO combined with the use of non-toxic
elements, stability over a wide temperature range and its ready conversion to an n-type

semiconductor makes STO an attractive material for thermoelectric applications.

6.1. STO Overview

STO is a perovskite material and exists in two phases; below ~105 K, the structure is
tetragonal (I4/mcm) and above, the structure is cubic (Pm3m) [302]. This work is
concerned primarily with the high temperature thermal conductivity of STO and so only

the cubic phase is considered.

The cubic phase STO contains strontium atoms on the A sites coordinated by 12 oxygen
atoms and titanium atoms on the B sites and are coordinated by 6 oxygen atoms. At
room temperature, the perovskite structure is cubic with a lattice parameter of ~3.9 A.
The bonding arrangement in STO has a strong covalent interaction between titanium
and oxygen, while the strontium interaction with the Ti-O framework is ionic [303,
304], Figure 6.1.
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Figure 6.1 Perspective view of a cubic SrTiOs unit cell. The structure displayed contains
1x Sr atom, 8x 1/8 Ti atoms and 12x 1/4 O atoms.

While STO is an electrical insulator when stoichiometric, it can readily be made an n-
type semiconductor by introduction of defects. For example, by making the structure
oxygen deficient, i.e. SrTiOs., Ti** species are generated [305, 306]. The perovskite
structure has another notable feature, namely it can accommodate a wide range of guest
species while maintaining its structural integrity, normally by substitution. In general,
large low charged cations prefer to be at the Sr site while smaller higher charged cations
prefer to be at the Ti site [307].

Despite its attractive TE properties, the thermoelectric figure of merit (ZT) for STO
remains stubbornly low. Typical values of ZT for STO are on the order of ~0.37 [308,
309] at ~1000 K via doping with rare earth elements [310] or transition metals [311].
Lanthanum and niobium are particularly popular dopants [28, 312-315]. The low ZT

values are generally due to the high thermal conductivity found in oxide materials.

There have been several approaches adopted for reducing the lattice thermal
conductivity of STO, which include doping with heavy atoms and nanostructuring to
enhance phonon scattering. As STO systems are generally doped to improve the
electrical properties, further improvements in ZT are most likely to be gained via
nanostructuring [316]. Nanostructuring may take on many forms and can impact on
both the electrical and thermal properties and hence is a very active research area [316-
318].
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Introduction of grain boundaries is the most basic form of nanostructuring and are
inherently present in polycrystalline systems. The presence of grain boundaries can
greatly reduce the thermal conductivity by scattering phonons [319]. Unfortunately,
charge carriers may also be scattered, reducing electrical conductivity. Thus more
careful control of the grain boundary morphology and orientation may lead to more
efficient thermoelectric materials, particularly if experiment could be guided as to which

is the most effective microstructure.

Reducing the dimensionality of the system is another approach to nanostructuring.
Interesting quantum effects occur when STO is confined to a thin two dimensional layer
[236, 320], these effects are referred to as a two dimensional electron gas or 2DEG. A
significant increase in the absolute value of the Seebeck coefficient is obtained for a
system of niobium doped STO layers embedded in pure STO when the thickness of the
layers is less than 4 unit cells; achieving a maximum estimated ZT of 2.4 at 300 K using
the thermal conductivity of pure bulk STO. However, this value refers only to the

2DEG while the corresponding polycrystalline bulk ZT is only 0.24.

By combining the nanostructuring approaches of grain boundaries and 2DEG systems, a
promising approach to increasing the ZT of STO may be obtained. One such approach
is in the development of ordered arrays of nanoparticles. In the case of STO, these
would be nanocubes [318, 319]. Nanocube systems contain small STO crystals
connected by a 3D network of 2DEG planes; thus, the system has many scattering
planes for phonons while the scattering planes themselves increase the electrical

properties.

Nanocubes have been predicted to have a high theoretical ZT, approaching the values
required for commercial applications [316]. A theoretical model based on DFT derived
values was performed on assembled nanocubes. DFT calculations were used to obtain
parameters for the STO nanocubes which contained 10% lanthanum doping and were
held together by a variable sized “mortar” of 20% doped niobium STO. Calculations on
the transport coefficients found that a ZT of 1.2 at 300 K is possible when the minimum
thermal conductivity is used [321]. An alternative treatment of the thermal conductivity

gave an alternative value of 0.8 at 300 K [316].

Simulations may provide additional information about the atomic scale processes which

make STO a good thermoelectric material. A fundamental problem arises however as it
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is very difficult to calculate all relevant transport coefficients using a single method. Ab
initio methods are useful for calculating electronic properties as the electrons are
included explicitly; ab initio methods may also be used to calculate the thermal
conductivity, but are limited by system size and the approximations present in the BTE.
Conversely, atomistic methods can extend to large system sizes to calculate the thermal
conductivity via several methods, but have no accurate representation of the electronic

processes.

Atomistic methods are much more appropriate for studying thermal transport in STO as
much larger systems may be used. Additionally by using molecular dynamics rather
than lattice dynamics higher order anharmonicity may be included directly, however
due to the simulation cell size certain phonons may be forbidden, see Chapter 3.2.4 for
details. Therefore, lattice dynamics and molecular dynamics each have their own
strengths and weaknesses and the selection of a method must be made carefully. A
drawback of potential model techniques compared to ab initio methods is that they may
struggle to accurately represent the interactions between species, particularly away from

equilibrium and so care must be taken in their selection.

The Shell model is often used in the study of oxide materials to better represent the
ionic polarisability of the oxygen species. However, it has been found that for STO the
shell model brings no significant benefit for either bulk or grain boundaries in terms of
relative energies and structures [322]. Combined with the fact that shell model
calculations are much more computationally expensive most potential models used for

STO are rigid-ion, often containing partial charges.

A potential model developed by Tosawat et al. [323] appears to give exceptionally good
thermal conductivity values at first look. However, it has been pointed out by Goh et al.
[128] that the Sr-O interaction in particular has a spurious attraction at close distances,

which risks unphysical fusion of atoms at high temperatures.

Goh et al. also propose an alternative potential model which performs well for thermal
conductivity calculations, but has the issue of unequal charge distribution [128]. Most
potential models either use formal charges or uniformly scaled partial charges; the
model of Goh et al. uses partial charges of +2.0 for strontium, +2.2 for titanium and -1.4
for oxygen. These charges seem to have been chosen to mirror the covalent nature of the
Ti-O interaction and the ionic interaction of strontium atoms with the Ti-O network
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[304]. However this distribution of charges results in non-neutral partial Schottky
defects (i.e. SrO and TiO,) and renders the model almost unusable for any simulations
beyond the bulk as most surfaces, grain boundaries and nanostructures will be non-

stoichiometric.

Thus a potential model is required that is stable at high temperatures, can readily be
used to examine the defect chemistry of STO, and ideally has interaction parameters
available for a large range of dopant species. Such a potential model must also be able
accurately reproduce the thermal conductivity of bulk STO. With this potential model
the thermal conductivity of more defective structures can also be predicted.

Defects within STO reduce the thermal conductivity by scattering the heat transporting
acoustic phonons. Much work has been done experimentally to study the effect of grain
size on thermal conductivity. However, little is known about the impact of grain

boundary structure on the thermal conductivity.

Thus, the aim of this work study the effect of different grain boundary structures, grain
sizes and complex nanostructuring on the thermal conductivity of STO based materials.
The Teter potential model [163] will be used as it has been fitted to many materials and
has many interaction potentials available for future defect work. One drawback of this
model is that the interactions are based on Buckingham potentials and so still include
spurious attractions at small separations, however the energy barrier is high and thus
unphysical fusion is unlikely at the temperatures studied here.

The same techniques outlined and developed in previous chapters will be used again to
calculate not only the thermal conductivity of various grain boundary systems but also
their Green-Kubo spectra, which may be interpreted with help from lattice dynamics
calculations. Thus, information about the specific structural features of the boundaries

contributing most to scattering may be derived.
6.2. Bulk STO

The potential model used in this chapter was developed by Teter [163] (parameters are
given in Chapter 2.1.5). When applied to the STO structure the symmetry is retained

(space group Pm3m) along with the coordination environments of each of the atoms.
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The lattice parameter and independent elastic constants have been calculated using the

potential model and are compared to experimental values in Table 6.1.

Property | Calculated | Experiment | % Difference
a(A) 3.88 3.91 -0.77

cu1 (GPa) | 337.10 ~330 2.15

ci2 (GPa) | 133.69 ~105 27.32

Css (GPa) | 133.69 ~126 6.10

Table 6.1 Calculated and experimental [324, 325] properties of STO.

The lattice parameter differs from experiment by less than 1%. The c;; elastic constant
is very close to the experimental value, differing by only ~2%. The c¢;, and c44 are once
again identical due to the Cauchy condition and are slightly higher than the cu4
experimental elastic constant. It must be noted however that the experimental values

were obtained at 298 K for the lattice parameter and 133 K for the elastic constants.

As described in Chapter 3.1.2.1 the thermal expansion is an important property for a
potential model to reproduce and so the thermal expansion of STO has been evaluated

using the same procedure as for MgO and SiO,.

6.2.1. Thermal Expansion

A 12 x 12 x 12 supercell of the 5 atom STO cubic unit cell was generated containing a
total of 8,640 atoms. A 0.5 ns isotropic NPT (with a Nosé-Hoover thermostat and
barostat) molecular dynamics simulation was conducted; averaging the lattice vectors
every 10 timesteps. The final lattice vectors converted back to the single unit cell are

plotted as a function of temperature in Figure 6.2.
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Figure 6.2 Calculated thermal expansion of STO compared to experiment [326].

The lattice parameters stay within 2% of the experimental values across the range to be
studied. Additionally the calculated thermal expansion in the simulations is 1.13x10™ K~
! while the experimental thermal expansion is calculated to be 1.10x10®° K™, indicating
the potential model is reproducing the anharmonic interactions well and reasonable

thermal conductivity values may be expected.

6.2.2. Thermal Conductivity

The thermal conductivity of STO was calculated using the same procedure as the other
materials (see Chapter 3.2.3). The same supercells were used as for the thermal
expansion calculations with the lattice vectors set to their averaged value. A 0.5 ns NVT
equilibration period (with a Nosé—Hoover thermostat) was conducted followed by a 20
ns NVT heat-flux data collection period. The averaging window for STO was found to
be optimal between 50,000-55,000 timesteps, although large fluctuations in the integral
remained, leading to a large apparent error at low temperatures. The results are plotted

against experimental values in Figure 6.3.

187



25

< 20
£
=
2 X\
z 15
'S —4—This Work
]
é —l—Mutaet al.
T
S 10
O Yamanaka et al.
©
g —=\Nang et al.
(1]
c 5
|_ -
0 T T T T T 1
200 400 600 800 1000 1200 1400

Temperature (K)

Figure 6.3 Thermal conductivity of bulk STO compared to experiments [319, 327, 328].

The values calculated using the Green-Kubo method appear to be slightly higher than
those from experiments. The thermal conductivity values also obey the usual power law

indicating the primary scattering mechanism is phonon-phonon.

The thermal conductivity was also calculated via the BTE using the Phono3py code
[121, 122]. The Teter potential model [163] was used to calculate the forces within the
METADISE code [165]. Convergence was achieved with respect to supercell size and
g-point mesh. The final results using a 4 x 4 x 4 supercell and a 20 x 20 x 20 g-point

mesh are presented in Figure 6.4 compared to Green-Kubo calculation and experiment.
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Figure 6.4 Calculated thermal conductivity of bulk STO via two methods compared
with experiments [319, 327, 328].

An extremely good match to the Green-Kubo calculations is achieved. The match
indicates that the lattice dynamics calculations approximations hold well for STO (i.e.
there is no need to go above third order force constants and that the relaxation time
approximation holds well) and that a 4 x 4 x 4 supercell is sufficiently large to include

important long wavelength phonons in stoichiometric STO.

The close agreement between the lattice dynamics calculation and molecular dynamics
calculation indicates that the Green-Kubo results are indeed well converged. It can also
be concluded that the potential model is overestimating the thermal conductivity

compared to experimental values, particularly at lower temperatures.

To better understand the scattering processes involved in the thermal conductivity the
Fourier transform of the heat-flux autocorrelation can again be taken. Additionally, the
lattice dynamics phonon DOS at the gamma point can be calculated and treated to
obtain a more quantifiable frequency for each mode in addition to the motions of atoms

involved in that mode.
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6.2.3. Green-Kubo and Lattice Dynamics Spectra

Despite the large fluctuation in the autocorrelations, their Fourier transforms give well
resolved Green-Kubo spectra which are displayed in Figure 6.5. The well resolved
spectra indicate that the large fluctuations seen in the autocorrelations are consistent
long-lived optical modes, rather than random noise. As these optical phonon modes do
not transport a significant portion of heat themselves then their truncation in the

integration should not lead to a significant underestimation of the thermal conductivity.
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Figure 6.5 The Fourier transform of the heat-flux autocorrelation, Log;, scale.

The Green-Kubo spectra for STO display three modes at ~5.7 THz, ~13.9 THz and a
very small mode appearing at ~21.7 THz (depending on temperature). The mode
appearing at ~5.7 THz seems entirely insensitive to temperature whereas the other two
modes shift to lower frequencies with higher temperatures, as seen for previous bulk

materials (Chapters 4 and 5).

To index the peaks from the Green-Kubo spectra the total phonon DOS (gamma point)
is calculated using the Phonopy code [121] using the 5 atom cubic cell with lattice
vectors a=b=c=3.88 A. The full phonon DOS at the gamma point reveals four distinct
optical modes and is displayed in Figure 6.6 (a fifth mode of zero frequency has been

removed which corresponds to a translation of the entire lattice).
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Figure 6.6 Phonon density of states (DOS) for STO at the gamma point.

The DOS has an extra mode at 11.13 THz when compared to the Green-Kubo spectra.
This mode is expected to be symmetric and thus will be removed upon analysis. A
dimensionless eigenvector cutoff of 0.01 is used for STO to remove the symmetric
optical phonon modes. The cutoff value must be chosen carefully otherwise some
modes are missed which do appear in the Green-Kubo spectra. The value of 0.01 was

chosen to allow the mode at ~22.4 THz in the Green-Kubo spectra to be identified.

As the three directions of STO are equivalent, only the X direction is plotted and

compared with the low temperature Green-Kubo calculation in Figure 6.7.
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Figure 6.7 Lattice dynamics phonon DOS and Green-Kubo spectra at 300 K of bulk

STO. Logsg scale on Green-Kubo intensity.

The frequencies as calculated by lattice dynamics are almost identical to those as
calculated by Green-Kubo, with a relatively small deviation observed at ~14.1 THz and
~22.4 THz. These two modes displayed significant shift with temperature in the Green-
Kubo calculations and so it can be safely assumed that the deviation of the frequencies

is due to the lattice dynamics calculation not including temperature effects.

The relative heights of the peaks correlate quite well when the Green-Kubo spectrum is
plotted on a logarithmic scale. This indicates that there may be some exponential
function involved in the peak heights for the Green-Kubo calculations as opposed to the
lattice dynamics calculations; this is almost certainly down to Bose-Einstein statistics

and the increased population of acoustic phonons at lower frequencies.

Due to the low number of modes present in the gamma point phonon DOS, the

vibrational modes can be examined and motions assigned, given in Table 6.2.
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Frequency (THz) Motion
5.75 Sr atoms vibrating within cubic Ti-O cages
111 O tetrahedra distorting around Ti — SYMMETRIC MODE
14.1 Ti atoms vibrating in O tetrahedra with tetrahedra distortion
22.4 O atoms vibrating between Ti atoms

Table 6.2 Assigned vibrational modes of bulk STO.

The three modes, which are present in the Green-Kubo spectra, have motions which
may be considered rattling type modes. Low frequency rattling modes are often
introduced into thermoelectric materials via doping in order to reduce the thermal
conductivity [66, 70, 329]. The low frequency of these modes maximises interaction
with acoustic phonons due to the Bose-Einstein distribution of acoustic phonon
populations, making them very effective at scattering acoustic phonons and reducing
lattice thermal conductivity.

The vibrational mode at ~11.1 THz is a distortion of the oxygen tetrahedra around
titanium. The oxygen atoms distort in such a way that the centre of mass does not
change during the vibration, making the mode symmetric and explaining its absence

from the Green-Kubo spectra.

These modes are expected to be present within grain boundary systems in addition to
new modes created by new environments present at the boundary. The effect of the new
modes should be to lower the thermal conductivity as there will be more ways to scatter
acoustic phonons. Thus the thermal conductivities of three distinct grain boundaries,
with either a large (~100 A) or short (~15-20 A) separation, have been calculated in

order to understand the impact of varying system geometry.

6.3. STO Grain Boundaries

The results in Chapter 4.3 show that for magnesium oxide, the orientation of the grain
boundaries is important due to the differing atomic environments found at the boundary.
Whether or not the grain boundary will scatter a phonon will depend upon the
environments found at the grain boundary. If there are no environments suitable for
scattering a particular frequency then the phonon of that frequency may pass unimpeded
[330, 331].
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The existence of two grain boundaries parallel to each other will also act to limit the
allowed phonon wavelengths depending on the distance between them, and thus have

some impact on the thermal conductivity.

Three different grain boundaries, which have been identified in experimental studies on
STO, have been constructed using the methodology outlined in Chapter 2.5.1.4 and then
annealed at 1300 K for more than 5 ns. The boundaries are displayed in Figure 6.8

subsequent to annealing, each showing distinctly different environments.

a)Z3{111} b) 3{112} ¢) £5{310}

.

Figure 6.8 The a) £3{111}, b) £3{112} and c¢) £5{310} STO grain boundary structures.
Sr =yellow, Ti = pink, O = red.

The structure of the X3{111} boundary is known experimentally from HRTEM studies
[332]. DFT calculations [333] have shown that the Ti-O bonding network is partially
preserved across the boundary, indicating the possibility of good electrical conductivity
while effectively lowering the thermal conductivity. It has also been found that shear
stress can alter the structure of the £3{111} boundary [334], and may have significant

impact on the transport properties.

The X3{111} grain boundary used here is found to be identical to those found
experimentally and with DFT. The boundary itself is constructed from face sharing Ti-
O octahedra while the Sr atoms at the centre of the boundary remain 12-fold coordinate,
although in a slightly different arrangement (now at the centre of a HCP packed

polyhedra rather than the FCC packed polyhedra found in the bulk). The extent of
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relaxation into the bulk caused by the £3{111} boundary is minimal and the bulk lattice

is relatively unperturbed until very close to the centre of the boundary.

The X3{112} grain boundary has two proposed structures, one is mirror symmetric and
the other is mirror-glide symmetric. Both of these structures have been studied using
DFT and were found to have almost identical energy [322]. Other work has managed to
observe the mirror symmetric form experimentally using HRTEM [335]. This work has
used the mirror-glide form of the boundary for calculation of thermal conductivity,
which was found to remain stable after being annealed at temperatures greater than
1000 K for several ns and displayed no tendencies to reconstruct. The structure of the
mirror-glide symmetric 3 {112} boundary has a larger range of reconstruction into the
bulk material than the 3{111} boundary and contains square-based pyramidal Ti-O
groups and 8-fold coordinate strontium at the boundary.

Combined experimental work (scanning transmission electron microscopy) and first
principles calculations have also been conducted on the X5{310} boundary and
concluded that the structure is asymmetric [336]. It has also been found that the
structure of the X5{310} grain boundary demonstrates temperature dependent faceting
[337]. These complexities mean that there are a large number of candidate structures for
the £5{310} boundary. An atomistic study using interatomic potentials looked at many
possible structures and found many had similar energies [338].

The £5{310} structure used for these calculations has been annealed at 1300 K for 2 ns,
resulting in a structure that is at least metastable at the temperatures under study and
may be the most stable for this potential model. The Ti-O groups at the boundary adopt
a mixture of square-based pyramids and distorted square-based pyramids. An interesting
property of the X£5{310} boundary is that the strontium atoms within the boundary
display some disorder between two sites, which may give rise to interesting vibrational

effects.

Thus, the structures used for these calculations are either a match for experiment or are
local minima which may still exist experimentally under certain conditions.
Furthermore, due to the simplistic nature of interatomic potentials there is a reasonable
possibility that the £3{112} and X5{310} boundary structures used are the global
minima for this potential model, though determining this would require a full
enumeration of all possible boundary structures.
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While having accurate boundary structures is important, grain size is another factor
which is likely to have a significant effect of the thermal conductivity in polycrystalline
materials [339, 340]. For the systems under study, this is equivalent to the distance
between the two grain boundaries as the other two directions are effectively infinite.

The CPU time overhead for running these simulations meant that the effect of different
distances between grain boundaries was studied by considering two separations for each
grain boundary structure. The system with a large separation between the boundaries
was used to model the isolated case while the system with small separation between the
grain boundaries was used to study the interacting case. Thus, six systems in total were

generated.

Each system contains two identical grain boundaries (within symmetry) aligned
perpendicular to the simulation cells X direction. The isolated systems have
approximately 100 A of bulk between the boundaries (giving a system of ~200 A long);
the interacting systems contain ~15-20 A of bulk between the boundaries (~30-40 A

system total).

The deviations in distance originate with the structure of each boundary and the
thickness of the repeating bulk unit perpendicular to the boundary. The size of the
systems in the other dimensions was set to be at least 20 A. The small size deviations
between systems are expected to have negligible influence on the final thermal
conductivities as compared to the boundaries.

Each system was simulated at 5 temperatures, 500 K, 700 K, 900 K, 1100 K and 1300
K. The system was not simulated at 300 K due to large fluctuations and hence the
concern for the quality of the convergence of the autocorrelation for the bulk material at
this temperature. A timestep of 1.0 fs was once again used. Each temperature for each
system was equilibrated for 0.5 ns using an NPT ensemble to obtain the time averaged
lattice vectors. Subsequent NVT data collection simulations used these lattice vectors.
The data collection simulation used an NVT ensemble collecting heat-flux data every 10
fs for 20 ns.

6.3.1. The X3{111} Boundary

The X3{111} grain boundary has been studied at both long separation (isolated) and

short separation (interacting). These different arrangements are expected to give
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different thermal conductivities despite having the same structure due to the limiting of

phonon wavelengths between the boundaries.

The X3{111} grain boundary structure contains face sharing Ti-O octahedra and Sr
atoms in a different coordination environment to the bulk. While both the bulk and grain
boundary Sr atoms are 12-fold coordinate, in the bulk the packing is HCP and at the
boundary the packing is FCC. The arrangement of the simulation cell is such that the
grain boundary lies perpendicular to the X direction, while the Y and Z directions are
parallel. In the case of the £3{111} grain boundary, the Y and Z directions are
symmetrically equivalent and are expected to give equivalent thermal conductivities and

Green-Kubo spectra.

It must be noted that these simulations cannot be compared directly to polycrystalline
systems as they are infinite in the Y and Z directions and thus are much more similar to
multilayer thin film systems where two directions are effectively infinite bulk, while the

third direction contains multiple grain boundaries aligned in parallel.

The first simulation discussed is that where the grain boundaries are isolated (~100 A
apart), which is expected to have a thermal conductivity slightly less than bulk STO.
Additionally, by having the grain boundaries isolated it becomes easier to discern
whether distinct grain boundary structures have any significant individual effects. It is
expected that at large separations the distance between boundaries will dominate the
thermal conductivity, whereas at small grain sizes the types of boundary will become

more important due to boundary-boundary interactions.

6.3.1.1.  Thermal Conductivity of the X3{111} Boundary

The study of the isolated boundary gives a starting point for comparison of boundary-
boundary effects when studying interacting boundaries. Additionally, it may be possible
to infer whether the boundary has a significantly long range effect, or whether it is the

inter-boundary distance alone that is important.

The isolated £3{111} grain boundary system is orthorhombic and is approximately 203
A x 22 A x 19 A and contains 7,200 atoms. The formation energy is 0.894 J/m?,

calculated as outlined in Chapter 2.5.1.4.
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It is also possible to calculate the amount of additional length in the simulation cell
caused by the presence of the grain boundary. To calculate this value, first the volume
of an equivalent bulk unit cell is calculated and then divided by the cross-sectional area
of the grain boundary system (parallel to the grain boundary), which gives the length of
the grain boundary system should the grain boundaries be absent. This length is
subtracted from the true length of the grain boundary system and divided by two to give
the excess length per grain boundary. For the isolated £3{111} grain boundary the
excess length is found to be 0.265 A.

The thermal conductivity of the isolated X3{111} grain boundary has been calculated
using the Green-Kubo method as described above. The average thermal conductivity

compared to bulk is presented in Figure 6.9.
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Figure 6.9 Average thermal conductivity of the isolated £3{111} boundary.

The grain boundary thermal conductivities appear very close to the corresponding bulk
values, a result of the large amount of bulk between the boundaries and thus the average
thermal conductivity of the system is much closer to bulk. This effect is more
pronounced at higher temperatures, whereas low temperature thermal conductivities are
lower than bulk values by 1-2 W/(m.K).

As the £3{111} grain boundary system is anisotropic the thermal conductivity is again

expected to be anisotropic. The X direction passes directly through the grain boundary
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and is expected to display the lowest thermal conductivity; the Y and Z directions are
equivalent due to symmetry and are expected to have identical thermal conductivities,
Figure 6.10.
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Figure 6.10 Directional thermal conductivity of the isolated X3 {111} boundary.

Counter to what was expected, the X direction (through the boundary) has higher
thermal conductivity than the Y and Z directions as well as bulk, although the difference
is small and the fluctuations on the integral are large. One explanation for the possible
increase in thermal conductivity may be that the large degree of Ti-O cross-linking at
the boundary is facilitating thermal transport. Alternatively, the introduction of the
boundary may introduce new scattering modes but also remove other scattering modes

found in the bulk structure.

By studying the £3{111} at a much shorter separation (~15-20 A), the bulk component
of the thermal conductivity is reduced; additionally the two grain boundaries within the
system are more likely to interact with each other. By reducing the bulk component of
the autocorrelation the new modes introduced by the boundary become clearer; modes

created by boundary-boundary interactions may also be evident.

The interacting £3{111} grain boundary system is orthorhombic and is approximately
27 A x 22 A x 19 A and contains 960 atoms. The formation energy is 0.875 J/m?
indicating a slight stabilisation over the isolated £3{111} grain boundary (0.894 J/m?
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due to boundary-boundary interaction. Furthermore, the excess length of the interacting
¥3{111} grain boundary has also been increased to 0.270 A from 0.265 A.

The thermal conductivity of the interacting £3{111} grain boundary has also been
calculated using the Green-Kubo method as described above. The average thermal

conductivity compared to bulk is presented in Figure 6.11.
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Figure 6.11 Average thermal conductivity of the interacting £3{111} boundary.

The thermal conductivity for the interacting £3{111} boundary is lower compared to
bulk STO as may be expected for a system with a relatively high defect concentration
(grain boundaries). The overall trend with temperature is flat indicating phonon-defect
scattering is dominating over phonon-phonon scattering. To see whether the X direction
still displays a higher thermal conductivity than the Y and Z directions the thermal

conductivity is again split into directional components, Figure 6.12.
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Figure 6.12 Directional thermal conductivity of the interacting £3{111} boundary.

The X direction is now lower than the Y and Z directions, a reverse of the behaviour
seen in the isolated system. This is the expected behaviour as phonons travelling in the
X direction will have a shorter mean free path before interacting with the boundary than

phonons with a significant Y or Z component.

Thus, the origin of the increased X direction thermal conductivity in the isolated
boundary system is still unclear, though it may stem from boundary-boundary
interactions. Analysis of the Green-Kubo spectra for both the isolated and interacting

system may give some idea as to how this effect arose.

6.3.1.2.  Spectra of the X3{111} Boundary

The Green-Kubo spectra for the isolated £3{111} boundary at multiple temperatures are

presented in Figure 6.13 and Figure 6.14.
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Figure 6.13 Green-Kubo spectra of the isolated £3{111} boundary in the X direction,
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Figure 6.14 Green-Kubo spectra of the isolated 23 {111} boundary in the Y direction,

Logso scale.

The Y and Z direction spectra are identical and so only the Y direction is presented. The

Y/Z directions show almost no difference to the bulk spectra, whereas the X direction

shows a new set of peaks at frequencies below 5 THz as well as a splitting of the peak at
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~6 THz. It can be theorised that these changes are related to new vibrational modes
introduced by the boundary and may be related to strontium based vibrations (as the
new vibrational modes are in the region of the strontium peak) or to the vibration of the
two grains with respect to each other in the X direction. A third option is the

introduction of vibrational modes which are R