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Abstract 

The aim of this work has been to use atomistic computer simulation methods to 

calculate the thermal conductivity and investigate factors that will modify the behaviour 

when applied to three different oxide materials: MgO, SiO2 and SrTiO3. These were 

chosen as they represent distinct classes of materials and are substrates for 

thermoelectric devices, where one of the primary goals is to tailor the system to reduce 

the thermal conductivity. 

Chapter 1 introduces thermoelectric concepts, gives a background of the theory and a 

review of various important thermoelectric materials. 

In Chapter 2 an overview of the interatomic interactions is presented along with details 

on the implementation of these interactions in a simulation of a 3D periodic crystal. 

Chapter 3 outlines the importance of phonon processes in crystals and several 

approaches to the calculation of thermal conductivity are presented. 

MgO results are given in Chapter 4. Both the Green-Kubo and Boltzmann transport 

equation (BTE) methods of calculating thermal conductivity were used. The effect on 

thermal conductivity of two different grain boundary systems are then compared and 

finally extended to MgO nanostructures, thus identifying the role of surfaces and 

complex nanostructure architectures on thermal conductivity. 

In Chapter 5 two different materials with the formula unit SiO2 are considered. The two 

materials are quartz and silicalite which show interesting negative thermal expansion 

behaviour which may impact upon the thermal transport within the material. 

Chapter 6 presents results on the promising thermoelectric material STO. Once again 

the results from both Green-Kubo and BTE calculations are compared. Grain 

boundaries are also studied and the effect of inter-boundary distance and boundary type 

on the thermal conductivity is explored. Finally, a nanostructured STO system 

(assembled nanocubes) with promising thermoelectric applications is studied. 

Chapter 7 outlines the conclusions made from this work and suggests areas for future 

study. 
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1. Introduction 

Many electricity generating systems are inefficient, losing much of their energy to their 

surroundings in the form of heat. A simple strategy to boost efficiency in these systems 

is to recover the lost heat to generate electricity. One approach for recovering the lost 

heat and converting it into useful electricity is to use thermoelectric (TE) devices. 

Thermoelectric devices use a temperature difference to generate electricity directly, 

without the need for any mechanical parts. 

The potential applications of thermoelectric devices are widespread and diverse [2, 3], 

being applicable in many high temperature industrial processes, vehicles [4], low-power 

electronic devices as well as electricity generation [5]. Reduction of wasted energy in 

these areas means less greenhouse gases are emitted at the power generation facility as 

well as a reduction in the resources consumed. 

Thermoelectric power generation offers many advantages over other power generation 

techniques as thermoelectric devices are solid state and have no moving parts, 

significantly reducing the need for periodic maintenance [6] and giving a potentially 

long lifespan. Furthermore, thermoelectric devices produce no toxic waste/greenhouse 

gases emissions during their operation which allows safe application in many areas [7-

9]. 

The range of applications for thermoelectric devices spans many orders of magnitude of 

power usage, as shown in Figure 1.1. 
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Figure 1.1 The range of applications for thermoelectric materials [10]. 

The major drawbacks preventing the widespread use of thermoelectric materials is that 

their efficiencies remain low compared to other power generation systems [11], and the 

materials currently used to make the best performing thermoelectric materials are often 

toxic, expensive, unstable at high temperatures and prone to oxidation [12-14]. Despite 

these limitations, thermoelectric devices are still used in niche applications such as 

space exploration, where the advantages of simple operation and long lifetimes 

significantly outweigh the drawbacks (such as the use of plutonium as a heat source) 

[15].  

The potential benefits of improved thermoelectric materials are so large that there is an 

extensive literature covering the subject [12, 16-28]. The important applications, theory 

and materials of thermoelectric will now be summarised. 

1.1. Thermoelectric Devices and Applications 

The construction of a working thermoelectric generator (TEG) requires both n-type and 

p-type thermoelectric materials. In n-type materials the charge carriers are electrons and 

in p-type materials they are electron-holes. These materials are combined thermally in 
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parallel but electrically in series. Charge carriers are driven to one side of the device and 

a voltage difference is generated across the terminals. A schematic representation of a 

TEG module is given in Figure 1.2. 

 

Figure 1.2 Schematic of a TEG [29]. 

TEGs may be applied in a number of different areas. Recovery of waste heat is of 

significant interest due to the inefficiencies present in power generation systems. Power 

generation systems are types of thermodynamic heat engines which convert thermal 

energy into mechanical motion, and then on to electrical energy via an electric 

generator. Thermoelectric devices are also heat engines and use electrons as their 

working fluid [12].  

Heat engines have a maximum theoretical efficiency imposed by the temperature 

difference, known as the Carnot efficiency (or Carnot limit) [30], given by: 

     
     

  
   

  

  
 

Equation 1.1 

where      is the Carnot efficiency,    is the high temperature part of the cycle and    

is the cold temperature part of the cycle. It must be noted that the Carnot efficiency is 

for idealised systems only, but does establish an upper bound for all thermodynamic 

heat engines. 
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Traditional fossil-fuel power facilities offer relatively high efficiencies in the region of 

30-60% [31] and are close to the theoretical maximum of approximately 80%. These 

efficiencies are based on modern power plants which use gas (either natural gas or 

generated from coal) as a fuel and run by the use of gas turbines in combination with 

steam turbines in a technique known as combined cycling. 

Internal combustion engines made from steel usually have a theoretical maximum 

efficiency of approximately 37%; however the real world average efficiency is usually 

only approximately 18-20% [32]. Most of the additional inefficiencies stem from heat 

loss to the exhaust gases. Combined cycling techniques are not applicable for internal 

combustion engines due to the lower temperatures involved and the bulk of such 

systems. Applying TEGs to the exhaust system instead would allow recovery of the 

wasted heat to charge the battery or drive other electronics within the vehicle [33-35]. 

However the current low efficiencies, oxidative instability and toxicity of the best 

performing thermoelectric materials mean they are not suitable for widespread 

application. 

Personal devices with very low energy requirements are another area of application. 

Many portable electronic devices have very modest power requirements and may be 

driven entirely by body heat [36]. For some time there have been wristwatches available 

powered by small TEG devices [37]. Extension of this concept to more complex 

wearable devices such as smart watches or medical sensors would be possible though 

increased efficiency [38]. 

Thermoelectric materials may also be utilised as heat pumps. By applying an electrical 

current to properly tuned thermoelectric materials a temperature difference can be 

generated. This phenomenon is known as the Peltier effect [39] and a Peltier cooler is 

schematically represented in Figure 1.3. Exploitation of the Peltier effect means 

thermoelectric devices can be used in either small scale cooling (computer processors 

etc.) or in general refrigeration. The advantage of solid state cooling devices is that they 

may operate continuously for years with minimal need for replacement due to the lack 

of moving parts [18, 40]. 
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Figure 1.3 Schematic of a Peltier cooler [41]. 

Developing more efficient thermoelectric systems requires an understanding of the 

underlying principles of thermoelectric materials. The next section introduces the 

parameters which must be improved to increase the efficiency of thermoelectric devices. 

1.2. Thermoelectric Theory 

A measure of how well a material performs as a thermoelectric is given by the 

thermoelectric figure of merit (  ): 

    
   

 
  

Equation 1.2 

where   is the electrical conductivity,   is the Seebeck coefficient,   is the thermal 

conductivity and   is the average operating temperature. Thus a good thermoelectric has 

high electrical conductivity, high Seebeck coefficient and low thermal conductivity. 

These properties allow a large temperature gradient to be established (due to the low 

thermal conductivity), a large conversion from thermal to electrical energy (due to the 

large Seebeck coefficient) and easy transport of charge carriers (due to high electrical 

conductivity). However, these properties are closely interrelated and cannot be modified 

independently and so improving the    of a material is often difficult [42]. 
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By combining the expression for the thermoelectric figure of merit with the expression 

for Carnot efficiency, a new expression is derived which directly relates the operating 

temperatures and the    at that temperature to the overall efficiency of the device: 

     (
     

  
*(

√      

√     
  

  

) 

Equation 1.3 

Equation 1.3 allows a more direct comparison of thermoelectric devices with other 

power generation techniques. 

1.2.1. Power Factor 

The power factor (    ) of a thermoelectric material describes the electronic 

contributions and is defined by: 

          

Equation 1.4 

The power factor is difficult to modify for a given bulk material as the electrical 

conductivity and Seebeck coefficient are both very closely related to the electronic 

structure of the material. An improvement in power factor thus requires extension 

beyond bulk systems to more complex nanostructured systems [43] where the electronic 

properties may be altered. 

Additional problems occur for the power factor as many materials have a strong 

correlation between thermal and electrical conductivity. For example metals have high 

electrical conductivity and high thermal conductivity; conversely ceramics have low 

electrical conductivity and low thermal conductivity [18]. TEGs require a high  , high   

but have the additional requirement of low   and so semiconductors are often the 

material of choice where the thermal conductivity is low but the electronic properties 

are tuneable. 

Tuning of these parameters is possible via more complex systems and a good 

understanding of each thermoelectric property. 
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1.2.2. Seebeck Coefficient 

The Seebeck effect [44, 45] occurs due to the disparity in charge carrier transport when 

a thermal gradient is applied. At the hot terminal, more charge carriers gain enough 

energy to move to the conduction band than at the cold terminal. This concentration 

disparity results in a net diffusion of charge carriers from the hot to cold terminals. The 

unequal distribution of charge carriers creates a potential difference across the material 

which can be harnessed to create an electrical current. The measure of the strength of 

the voltage difference generated by the temperature gradient is given by the Seebeck 

coefficient,  : 

   
  

  
 

Equation 1.5 

where    and    are the voltage and temperature differences respectively. In reality the 

temperature gradient will drive both electrons and holes to diffuse across the material 

and so the sign and strength of the Seebeck coefficient depends upon which 

predominates and by how much. A negative Seebeck coefficient arises when the charge 

carriers are electrons and a positive Seebeck arises when the charge carriers are 

electron-holes. 

The Seebeck coefficient tends to be highest in semiconductor materials that allow 

limited movement of charge carriers [46]. In metals the Seebeck coefficient tends to be 

very low due to the partially filled bands and lack of band gap, thus it is much easier for 

charge carriers to diffuse against the temperature gradient. Superconductors have a 

Seebeck coefficient of zero as by definition a superconductor has no electrical resistance 

at all. However, in some higher temperature superconductors under strong magnetic 

fields, large Seebeck coefficients have been reported [47]. 

By placing n-type and p-type thermoelectric materials electrically in series, the voltage 

generated by a given temperature gradient can be increased. When arranged in this 

manner it is important that the materials used are sufficiently compatible in order to 

maximise the efficiency [48]. 
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1.2.3. Electrical Conductivity 

The electrical conductivity is closely related to the Seebeck coefficient and also depends 

upon electronic structure of the material. The electrical conductivity is of the order of 

~10
6
 S/m in metallic systems and ~10

-6
 S/m in insulators. Semiconductors fall in 

between this range and their electrical conductivity is highly dependent upon 

temperature, which affects both carrier concentration and mean free paths. 

1.2.4. Thermal Conductivity 

Lattice vibrations (phonons) transport thermal energy and thus compete with energy 

transport via charge carriers. A lower thermal conductivity therefore results in a higher 

  . The thermal conductivity of a material,  , can be split into two main contributions: 

              

Equation 1.6 

where       is the electrical contribution to the thermal conductivity and       is the 

lattice contribution. More exotic mechanisms of heat transfer could also be included (for 

example emission and reabsorption of infrared light at very high temperatures [49]) but 

are generally negligible. 

For semiconductor materials the lattice contribution to the thermal conductivity is much 

larger than the electronic contribution [50]. In these materials the thermal conductivity 

is normally related to the average atomic weight. A heavier average atomic weight often 

leads to a denser material, a lower phonon propagation velocity, and thus a reduction in 

thermal conductivity [51]. 

There are five main ways that the lattice thermal conductivity can be reduced in 

thermoelectric materials [52]: 

1. Use materials with complex crystal structures 

2. Include heavy elements which are weakly bound 

3. Addition of impurities 

4. Formation of solid solutions 

5. Generate a large numbers of grain boundaries 
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These techniques generally reduce the thermal conductivity by introducing new 

scattering mechanisms via an increase in the number of environments. Nanostructuring 

may be considered a combination of these approaches. An additional advantage of 

nanostructures is that they allow different regions of the material to present different 

properties to the electrons and phonons, approaching the idea first put forth by Slack 

[44] of a Phonon-Glass Electron-Crystal (PGEC). 

In a PGEC material the phonons experience the environment like a glass, scattering 

frequently and so the thermal energy takes a random walk through the material. 

Conversely the electrons would experience the environment as a crystal, being 

transported rapidly and thus leading to high electrical conductivity. It is therefore 

advantageous to develop nanostructured materials which approach this philosophy. 

1.2.5. Wiedemann-Franz Law 

Improving the figure of merit is further complicated due to a relationship known as the 

Wiedemann-Franz law: 

     

 
    

Equation 1.7 

where   is a proportionality constant known as the Lorenz number. The relationship 

outlined in Equation 1.7 implies it is not possible to improve the thermal or electrical 

conductivity for TEGs without modifying the other in a detrimental manner. 

The Wiedemann-Franz law often holds true for metals where the electronic thermal 

conductivity is the dominating factor. In semiconductor materials the electronic thermal 

conductivity is much less significant and a large number of other factors can change the 

Lorenz number [10, 17] and therefore semiconductors are the materials of choice for 

almost all thermoelectric applications. 

1.3. Thermoelectric Materials 

The main issue affecting application of thermoelectric devices is the low figure of merit, 

  , of the materials used to construct them. These materials must have certain 

properties if they are to function well as thermoelectric material. 
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The concentration of charge carriers is a particularly important property as it influences 

both the Seebeck coefficient and the electrical conductivity [53]. Tuning the 

concentration of charge carriers is most easily achieved by doping. However, the 

optimisation of dopant levels must be done carefully as increasing the carrier 

concentration increases conductivity, but reduces the Seebeck coefficient [54]. It has 

been stated that the optimum concentration of charge carriers is between 10
19

 and 10
21

 

per cm
3
 [18, 55]. 

While there are many classes of thermoelectric material available, each has its own 

advantages and disadvantages. Several classes are particularly popular due to their 

inherent properties, some of which are outlined below. A very good review of many 

types of thermoelectric material can be found in the review of Sootsman et al. [56]. 

1.3.1. Bismuth Telluride (Bi2Te3) 

The most used and studied thermoelectric material to date is bismuth telluride due to its 

very high    values [57]. The high    values found in Bi2Te3 originate from its high 

power factor and very low thermal conductivities (~2 W/(m.K)) [58]. These properties 

result from an unusual bonding arrangement in the bulk structure of bismuth telluride 

which is comprised of distinct layers. A schematic diagram of the bonding in bismuth 

telluride is provided in Figure 1.4, showing that the Te(1)-Bi-Te(2)-Bi-Te(1) layers are 

held together by covalent-ionic type interactions whereas the inter-layer bonding is of 

the van der Waals type. 
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Figure 1.4 Schematic of bonding is bismuth telluride [59]. 

DFT calculations have also shown that the weakly bonded Te(1) type atoms contribute 

the most to the electronic density of states near the valence band edge, suggesting it will 

act as an electron donor, conversely bismuth atoms contribute most on the 

corresponding edge at the bottom of the conduction band, showing their behaviour as 

electron acceptors. This interesting effect of the bonding may go some way to reveal the 

origin of high charge carrier concentrations found in bismuth telluride [60, 61]. 

Bismuth telluride may also be alloyed with other binary tellurides to optimise the 

thermoelectric properties further and is an active area of research [62-64]. It has long 

been known that the dominant effect of these high mass dopants does not result from the 

electronic properties, but the different masses leading to increased phonon scattering 

and hence lower thermal conductivity [65]. 

1.3.2. Bulk Phonon-Glass and Electron-Crystal materials 

Some classes of bulk material approach the PGEC (Phonon-Glass and Electron-Crystal) 

concept of the ideal thermoelectric material by splitting the requirements of PGEC 

materials into separate parts of the material. The covalent superstructure provides 

pathways for high electrical conductivity but contain cages holding ionic guest atoms. 

The ionic guest atoms introduce rattling vibrational modes which act to reduce thermal 
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conductivity [66]. The reduction in thermal conductivity has only a very small impact 

on the electrical properties as the superstructure is intact [67]. 

Clathrates are one such material that fulfils the PGEC requirements. The cages consist 

of tetrahedral units and in some respects are similar to zeolite structures [68]. Within the 

cages formed by the tetrahedral units are guest ions, which are usually metals [69]. The 

use of heavy metals as guests in the structure generates localised low frequency modes 

that overlap the acoustic branch and facilitate phonon scattering [70]. This arrangement 

gives very low thermal conductivity while keeping the lattice intact to minimise the 

charge carrier scattering. 

Skutterudites are another PGEC material which innately have good electronic 

conduction and high Seebeck coefficient, though they do suffer from high thermal 

conductivity. The high thermal conductivity of skutterudites is mitigated by including 

guest ions to scatter acoustic phonons in the same way as clathrates [71]. 

Half-Heuslers are three component systems of the MgAgAs type structure (space group 

  ̅  ) [72]. The system usually contains two elements from the transitions metals and 

the third a metal or metalloid. Half-Heuslers are promising because their high Seebeck 

coefficient and extremely varied elemental combinations [73] allows for much 

improvement via doping.  

1.3.3. Oxides Materials 

Metal oxides are a promising thermoelectric material as they are normally abundant, 

cheap, have low toxicity (depending on the metal) [74] and are stable at high 

temperatures [14]. The oxidative stability of oxides make them ideal for practical 

applications, however they have poor charge carrier mobility and high thermal 

conductivities. These drawbacks mean that they were generally not considered a 

promising thermoelectric material until good thermoelectric performance was 

demonstrated in the layered cobalt oxide NaCo2O4 [75]. 

A further advantage of oxide type materials is the range of possible bulk structures. A 

large variety of both n-type and p-type semiconductors are available containing oxides, 

including: ZnO [76], Ca3Co4O9 [77] and NaCo2O4 [78]. One particular class of oxides 

that have many potential thermoelectric materials are the perovskites, including: 

BaSnO3 [79], BaPbO3 [80] and SrTiO3 [81]. These materials generally have good 
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transport properties and with potential for further improvement via doping or 

nanostructuring. 

As a result, oxide based thermoelectric materials are a very active area of research due 

to their potential benefits [28]. A breakthrough in oxide thermoelectric materials could 

both reduce the harmful elements currently used to produce thermoelectric materials 

while simultaneously allowing more widespread application in high temperature, 

oxidising environments. 

The challenge faced by oxide thermoelectric materials is to increase the electrical 

conductivity whilst simultaneously reducing thermal conductivity. A successful 

approach to this in the past has been via the use of defective systems. 

1.3.4. Defects 

There are a wide variety of possible defects for any material [82]. These defects disrupt 

the periodic structure of the material and impede phonon transmission, lowering thermal 

conductivity. Since the size of a defect and its dimensionality result in interactions with 

different wavelength phonons, a wide variety of defect sizes can lead to low thermal 

conductivities, Figure 1.5 [21]. 

 

Figure 1.5 Scattering of different wavelength phonons in a thermoelectric material [21]. 
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1.3.4.1. Point defects 

Doping a material with different elements is often used to introduce charge carriers or 

otherwise tune the electronic structure of the material [27]. An additional impact of 

doping is from the high mass of dopant atoms, which reduces the lattice thermal 

conductivity in a number of ways [83]. Firstly, the mean phonon velocity is reduced as 

adding heavy atoms introduces more optical vibrational modes, which have lower group 

velocities [84]. Secondly, there is an enhancement of phonon scattering, which reduces 

the amount of energy transported by phonons in a given time period [85]. 

The thermal conductivity is also impacted by the charge compensating vacancies 

created by the introduction of dopant atoms. The vacancies also act as phonon scattering 

sites and will reduce the thermal conductivity in addition to the dopant atoms 

themselves [18]. The fact that vacancies also scatter phonons means that other materials 

which can be atom deficient without the addition of dopants, such as the oxygen 

deficient perovskites, can also be promising thermoelectric materials [86, 87]. 

1.3.4.2. Surfaces 

Surfaces can also have interesting effects on the thermoelectric properties of a material. 

The surfaces of a material act in a similar way to a grain boundary except that 

transmittance of phonons across the boundary is impossible and only scattering can 

occur (except at very short inter-surface distances with very long range interactions). 

Scattering of phonons from the surface can dramatically reduce thermal conductivity in 

nanowires, with increased surface roughness reducing the thermal conductivity still 

further [88]. The exact mechanisms involved are unclear but the presence of surfaces 

close enough to the bulk in some nanostructured materials means this method could 

become very important. 

1.3.4.3. Grain Boundaries 

Grain boundaries are an important type of defect which can have numerous different 

and complex effects on the thermoelectric properties of a material and may be helpful or 

detrimental in improving the figure of merit. The simplest way grain boundaries affect 

the    of a material is by scattering phonons, lowering the thermal conductivity [89]. 

However, depending on the grain boundary and bulk material the presence of grain 

boundaries can also prevent charge carriers from diffusing and thus lower the   . 
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The importance of the boundary orientation/structure has been highlighted in work on 

bismuth telluride by Deng et al.[89] which identified different figures of merit 

depending on which surface is preferentially expressed and hence the packing 

arrangement and grain boundaries. When bismuth telluride was grown on quartz under 

different conditions the ratio of the expressed (001) and (015) surfaces changed, this 

then altered the packing as shown in Figure 1.6. The overall result was that the film 

with preferential growth on the (015) plane had a    of 0.14 and the film with growth 

on the (001) film had a    of 0.54. It is interesting to note that the electrical properties 

change much more than the thermal conductance between the two samples, revealing 

how the different grain boundaries present can have different effects on the power 

factor. 

 

Figure 1.6 Alternative stacking arrangements of bismuth telluride grains [89]. 

The work by Deng et al.[89] demonstrates the effect of highly ordered grain boundaries 

which may be considered a type of nanostructuring. A number of other studies have also 

found that the    can be improved with an increase in the number and density of grain 

boundaries. The studies reveal numerous materials and methods for applying this 

techniques, including: Gd-doped CaMnO3 [90], lead telluride [91] and skutterudites 

[92]. The wide selection of material classes within which increasing grain boundaries is 

an effective technique to improve the figure of merit. 

The presence of grain boundaries can also increase the    of a material in other ways 

[93]. An unusual increase in the Seebeck coefficient sometimes occurs at grain 

boundaries due to energy filtering of the charge carriers by a potential barrier that can 

also be present [54]. Additionally the presence of randomly orientated grains can 

improve mechanical properties as cleavage planes do not penetrate through large parts 

of the material [94]. Caution must be applied when using polycrystalline materials 
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because a reduction in density of only a few percent below the theoretical maximum can 

lower the carrier mobility by a few orders of magnitude [95]. 

1.3.5. Nanostructures 

Nanostructured materials use defects in a coherent manner to create larger structures 

with modified and controllable properties. Much work has focused on the 

nanostructuring of thermoelectric materials with very promising results [57, 96]. 

1.3.5.1. Superlattices 

Superlattice materials are a promising area of research and have displayed high    in 

recent publications [97]. Superlattice materials are built from arranging grains or layers 

of one or more materials in a coherent way. The different materials used may impart 

specific properties to the superlattice; alternatively the boundaries themselves may 

result impart unusual effects to the overall material. 

Boundaries between materials in superlattices can be subtle and result in minimal 

disruption to the lattice. In these cases the boundary may be considered a domain 

boundary rather than a grain boundary. Two domains may be of the same material, 

differing only in the type of atom present at a given site (i.e. the A site of perovskite 

materials) or the orientation of different groups (tetrahedral tilting in quartz Dauphiné 

twins). The boundaries between the regions may have unusual electronic properties such 

as quantum confinement of charge carriers to the boundary plane, resulting in a large 

increase in the Seebeck coefficient and electrical conductivity [98]. However, 

superlattices are also capable of increasing the    of a material via increased phonon 

scattering at the boundary, resulting in very high   s on the order of ~2 [99]. 

An example of the power of superlattices is demonstrated by the WSe2/W layered 

system. In this structure the thermal conductivity is found to be extremely low at 0.02 

W/(m.K) in the direction perpendicular to the layers [100]. An unusual effect was that 

bombardment by ionic radiation resulted in an increase of thermal conductivity, despite 

an apparent increase in disorder. 

1.3.5.2. Nano-inclusions 

Nano-inclusions may be considered an extension of superlattices, differing in that the 

second material is localised to a smaller area and the way they increase the    of the 
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system. In these systems the electronic properties are slightly reduced but more than 

compensated for by the enhanced phonon scattering [101]. Indeed, the thermal 

conductivity is found to be below the alloy limit for many of these materials, indicating 

the drastic differences that can be achieved compared to simple alloys and solid 

solutions [101-103]. 

An early nano-inclusion system was the LAST-m (AgPbmSbTem+2) material which was 

first studied in the 1950s. The LAST-m system was originally thought to be a solid-

solution type material [21], though later studies revealed the presence of nano-

inclusions [104, 105]. Nanoscale inclusions in the LAST-m thermoelectric material 

display coherent interfaces with the matrix they are imbedded in [104], which has also 

been observed in other systems [106, 107]. These coherent boundaries act in a similar 

way to superlattice systems in that they scatter phonons without significantly affecting 

the electronic properties. The presence of strain around the coherent interfaces seems to 

be responsible for increased phonon scattering, reducing thermal conductivity well 

below what is normally achieved by solid solutions alone. 

The question of exactly why nano-inclusion materials are so good at scattering phonons 

was tackled by considering the scattering processes [21, 108, 109]. Phonon scattering 

around atomic scale defects, chiefly responsible for the reduction of thermal 

conductivity in alloy systems, follows Rayleigh scattering: 

           
  

  
 

Equation 1.8 

where   is the nano-inclusion diameter and   is the phonon wavelength. Hence point 

defects such as dopants and vacancies are effective at scattering small wavelength 

phonons while the introduction of nano-inclusions with coherent boundaries allows 

scattering of much longer wavelength phonons. It is thus possible to have a system with 

a wide range of defect sizes which can induce scattering in phonons of various 

wavelengths, leading to a drastic reduction of thermal conductivity [110]. 

1.3.5.3. Nanowires 

Nanowires confine the conduction of both electrons and phonons to one dimension. 

This reduction in dimensionality has a larger effect on the thermal transport properties 
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than the electrical transport properties [96, 111]. One such system is bismuth telluride 

one-dimensional heterostructures which display interesting properties dependent on the 

stoichiometry. 

It was shown that the length of a nanowire segment could be carefully controlled based 

on the ionic concentrations of bismuth and tellurium in the electrolyte solution used 

during growth [112], opening up routes for finely controlled one-dimensional phonon 

scattering systems. The coherent boundaries between segments theoretically allow 

undisrupted electrical conduction while the strain disrupts thermal conduction. 

Calculations predict exceptional    values of up to 14 [113], though currently 

synthesised materials only achieve a maximum    of approximately 1 at low 

temperatures, possibly due to the polycrystalline nature of the wires synthesised [114]. 

1.4. Thermoelectric Simulations 

Simulations can provide further information when studying thermoelectric materials as 

well as guide future experimental research. Simulations allow access to the atomic scale 

processes that generate that macroscale effects seen in experiments and give a deeper 

understanding of their behaviour/properties [115]. Furthermore, the study of 

thermoelectric materials in simulations can give indications of which particular features 

of a material affect the thermoelectric properties and guide experimental design of 

materials. 

1.4.1. Ab Initio Simulations 

Ab initio methods derive atomic interactions directly from first principles. There are 

various levels of ab initio calculations of varying complexity and expense. Ab initio 

calculations give information on the electronic structure of materials and thus are 

necessary for calculating the properties pertaining to the power factor, i.e. electrical 

conductivity and Seebeck coefficient [116]. 

The predictive power of simulations can be used to quickly and efficiently screen 

potential thermoelectric materials. DFT calculations on a large range of half-Heusler 

materials have been used to calculate the electrical properties and optimal doping levels, 

resulting in candidates for thermoelectric materials [117]. Other DFT work on Mg2Si 

looked at the effect of strain on the bulk system and what impact it had on the electrical 
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properties [118]. In highly doped systems under strain it was found that the maximum in 

power factor shifted to lower temperature. 

The Green-Kubo method is rarely used in ab initio simulations due to the long-time 

scales required and the difficulty of decomposing the energy into individual atomic 

contributions, although some progress is being made in this area [119]. However, it is 

possible to calculate the thermal conductivity via lattice dynamics and the finite 

displacement method, using the Boltzmann transport equation (BTE). This approach 

only approximates the anharmonic terms to some low order, whereas dynamic 

approaches are in principle exact for a given model [120]. Additional problems arise 

from the small size of the system under study, which makes calculation of thermal 

conductivity in defective systems challenging. However, more simple systems can be 

studied. 

Work by Molinari et al. studied the oxygen deficient perovskite systems CaMnO(3-δ) 

[116]. An interesting feature of this study was that all thermoelectric parameters were 

calculated. The authors found that the Seebeck coefficient of partially reduced 

CaMnO2.75 increased with increasing temperature, whereas the reverse was found for 

CaMnO3 and CaMnO2.5. The authors also note the importance of differing defect 

arrangements on the properties. Due to the computational expense the thermal 

conductivity was only calculated for stoichiometric CaMnO3 (using finite displacements 

and the BTE equation as implemented in the Phonopy code [121, 122]). Although the 

   did not appear to be improved over the stoichiometric case, this could very well be 

down to the use of the bulk thermal conductivity in the calculation of the    for all 

stoichiometries. 

1.4.2. Classical Simulations 

Rather than explicitly calculating electronic behaviour, classical methods approximate 

interactions between atoms with parameterised equations. The interactions using these 

potential equations are many orders of magnitude quicker to compute than with ab initio 

methods, allowing extension to larger time and length scales. The larger scale of 

classical simulations therefore allows study of thermal transport in the bulk systems as 

well as systems with large defects and/or low dopant concentrations. 
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There are several approaches to calculating the thermal conductivity of a system via 

classical methods [123]. These methods can be broadly classified into static and 

dynamic approaches. The static approaches generally aim to solve the Boltzmann 

transport equation (BTE) via a systematic generation of force constants and thus phonon 

frequencies and then phonon interactions. Dynamic approaches simulate the system at a 

given temperature using molecular dynamics and measure the resultant thermal 

conductivity. The dynamic approaches may be further subdivided into equilibrium and 

non-equilibrium approaches. Equilibrium approaches use fluctuations in the system’s 

heat-flux to calculate thermal conductivity via the Green-Kubo relations [124, 125], 

whereas the non-equilibrium methods generate a temperature gradient and measure the 

thermal conductivity directly [126]. A more detailed review of these methods is given in 

Chapter 3.2. 

Shukla et al. performed non-equilibrium molecular dynamics calculations on single 

crystal and polycrystalline MgO and Nd2Zr2O7 [127]. The study aimed to determine the 

applicability of an MgO and Nd2Zr2O7 ceramic in an inert matrix fuel. Although not 

motivated by thermoelectric applications, the study demonstrates the possibility of grain 

boundaries and nanostructuring in general in reducing the lattice thermal conductivity. 

By converting single crystal samples to polycrystalline samples, reductions in lattice 

thermal conductivity by up to an order of magnitude were achieved for MgO at 300 K, 

and a reduction of 60% for Nd2Zr2O7 at 300 K. 

Goh et al. used extensive data to fit interatomic potentials for SrTiO3 [128]. Obtaining 

good potential parameters for perovskites can be difficult due to the complex nature of 

the interactions of the transition metals. The thermal expansion of the potential matches 

closely with experimental data and also has a marked improvement in isothermal 

compressibility, heat capacity and indeed lattice thermal conductivity. However, the 

charges used in the model are unusual and are not easily transferrable, making the study 

of defects challenging. Additionally the RNEMD simulations used may suffer from a 

small cell cross section [123, 129] and the Green-Kubo calculations may suffer from 

being averaged over only 2 ns [123]. A further discussion of the importance of these 

aspects can be found later in Chapter 3.2. 
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1.4.3. Other Methods 

Continuum methods are also available to model the thermoelectric properties of a 

material. In a continuum model the specific structure of the material is ignored, instead 

the phonon interactions are computed explicitly based on mathematical models and 

parameters relating to the material of interest [130, 131]. These models are not 

particularly suited to defective systems where the character of a point defect or grain 

boundary is not particularly well captured. 

1.5. Aim of this Work 

One of the challenges for developing more efficient thermoelectric materials is to 

identify ways of lowering the thermal conductivity in a reproducible and quantifiable 

way. Thus there is a need to be able to reliably calculate the thermal conductivity and be 

able to interpret the data in a way as to offer predictions and give some level of control. 

Thus, along with the thermal conductivity, additional information is also sought in order 

to gain an understanding of the underlying phonon processes. Therefore a dual approach 

is used whereby thermal conductivity is calculated via both molecular dynamics and 

lattice dynamics calculations. These approaches may give complementary information 

about the phonon modes within the system and some indication of the modes most 

important for thermal conductivity. 

Three materials have been chosen which can exhibit various levels of nanostructuring 

while being structurally distinct. The first system studied is MgO (Chapter 4) which is 

an ionic material. The bulk thermal conductivity is calculated and compared to 

experiments before the study is extended to two different grain boundary systems and 

then finally two different nanostructured systems in order to understand how the 

increasing complexity of the system impacts the thermal conductivity. 

The work is then continued in the covalent silica system (SiO2) (Chapter 5). Silica may 

exist in many polymorphs, the most common of which is quartz. The thermal 

conductivity of quartz is calculated and compared to experiments. The phase change of 

quartz is likely to impact the thermal conductivity of the material due to change in the 

structure and therefore the available phonon modes. Further calculations are also 
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performed for silicalite. Silicalite is a low density zeolite with a large number of 

environments, which should have a large impact on the thermal conductivity. 

Finally the SrTiO3 (STO) system (Chapter 6) is studied which contains a mix of ionic 

and covalent interactions. The bulk thermal conductivity is once again calculated and 

then compared to a number of grain boundary systems with varying inter-boundary 

distances. A series of complex nanostructures of STO are then generated out of ordered 

arrays of nanocubes and the thermal conductivity is again calculated to determine the 

effect of different orderings. 

With the information obtained from all studies some understanding about the interaction 

between nanostructure and thermal conductivity may be obtained. This understanding 

will then allow new materials to be engineered with specific phonon modes which most 

effectively reduce the thermal conductivity. First the methodologies employed and the 

underlying theory for these studies will be discussed. 
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2. Methodology 

2.1. Potential Modelling 

This work has been conducted using interatomic pair potentials. Pair potentials 

approximate interatomic forces by using simple parameterised equations rather than 

solving the full electronic structure of the system. While potential models are less 

accurate than ab initio methods, larger systems and longer timescales can be simulated. 

This section outlines the potential methodology that has been used throughout this 

work. 

2.1.1. Born Model of Solids 

The Born model of solids considers a crystal lattice to be an infinite array of ions [132]. 

The lattice energy,  , is the sum of all the interactions between ions: 
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Equation 2.1 

where     is the interatomic distance between atoms   and   with charges    and   ;    is 

the vacuum permittivity. The first term represents the Coulombic interactions, which 

remain significant even at large separations. The remaining terms represent the two-

body (e.g. van der Waals/bonds) and three-body short-ranged interactions respectively. 

Higher terms are also possible but are often neglected due to their small contribution, 

but can be important in molecular systems. 

2.1.2. Coulombic Interactions 

The Coulombic term in Equation 2.1 represents about 80% of the total interaction 

energy. The energy of an infinite lattice of point charges,  , is given by: 
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Equation 2.2 
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where   represents the set of lattice vectors corresponding to the periodicity of the 

lattice and   is a vector of integers used to generate the periodic images of the unit cell. 

The first summation contains a prime to indicate that     is ignored in the summation 

when    . 

The     nature of Equation 2.2 means that the Coulombic part of the lattice energy is 

slow to converge and long range. A number of methods have been developed to ensure 

the calculation is convergent. 

2.1.2.1. Ewald Summation 

The Ewald summation is the most widely implemented method for calculating the 

Coulombic contribution to the lattice energy [133, 134]. In the Ewald method the 

coulomb equation is split into long-range (   , short-range (    and self-interaction 

(    components: 

           

Equation 2.3 

With this approach each point charge is considered as being surrounded by a diffuse 

charge of equal magnitude but opposite sign. A Gaussian charge density,   (  , is often 

used: 
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Equation 2.4 

where the diffusivity of the Gaussian is determined by the   parameter and   is the 

point in space relative to the centre of the charge distribution. As the diffuse Gaussian 

charge is of opposite sign, the interaction tends quickly to zero with increasing distance 

and so the interaction has become short-ranged and may be calculated easily in real 

space: 
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Equation 2.5 
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The interaction of each charge with its own Gaussian counterpart of opposite sign is 

omitted. The complementary error function is given in Equation 2.6. 
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Equation 2.6 

To compensate for the added Gaussian charge distribution of opposite sign, a second 

Gaussian charge distribution of the same sign is added. In this case the interaction is 

long-ranged, but the energy tends to a finite value as     tends to zero; thus it can be 

represented as a Fourier series in reciprocal space. The value of    can then be 

determined by summing the Fourier components in reciprocal space: 
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Equation 2.7 

where   is the cell volume and   is a vector in reciprocal space, given by Equation 2.8 

and Equation 2.9. 

  
   

 
 

Equation 2.8 
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Equation 2.9 

A more complete discussion of the reciprocal lattices may be found elsewhere [135]. A 

visual representation of the Ewald method is shown in Figure 2.1. 
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Figure 2.1 a) The real space    component of the calculation and b) the reciprocal    

component of the calculation. 

In Equation 2.7 (the long-ranged    contribution) the term for     can be neglected if 

the charge of the simulation cell is zero. Furthermore, it must be noted that the    long-

ranged contribution to the summation includes an interaction of the point charge with its 

own Gaussian counterpart; therefore a self-interaction correction is required: 
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Equation 2.10 

The net result of the Ewald summation is that the Coulombic interaction is split into a 

short-range component which is rapidly convergent in real space, and a long-range 

component which is rapidly convergent in reciprocal space. The splitting of work 

between real and reciprocal components can be controlled by adjusting the diffusivity of 

the compensating charge,  . A more diffuse charge screens more of the real space 

interaction (which therefore converges more rapidly with distance) but requires a larger 

Fourier series in reciprocal space. 

The Ewald method may also be extended to include terms for charged cells, dipoles and 

multipoles [136]. 
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2.1.2.2. FFT-Based Ewald Summation 

The drawback of the Ewald method is the slow calculation of the Fourier transforms 

[137], to speed calculation a number of methods have been developed: Particle-Particle 

Particle-Mesh (PPPM/P3M) [138, 139], Particle Mesh Ewald (PME) [140] and Smooth 

Particle Mesh Ewald (SPME) [141]. These accelerated methods are all based on the 

premise of reassigning the long range component of the Coulombic interaction from the 

particles to the nodes of a 3D mesh. The property of equally spaced nodes on the mesh 

allows use of Fast Fourier Transforms (FFT), which greatly accelerates calculation. 

2.1.2.3. Parry Summation 

For systems with two-dimensional periodicity it is more common for the Parry 

summation to be used than the Ewald summation. The Parry summation is a 

modification of the Ewald summation that considers the crystal to be built from a series 

of two-dimensional planes. Thus the vectors in the summation are split into in-plane and 

cross-plane vectors and treated separately. With this approach it can no longer be 

guaranteed that each plane is charge neutral and so the term involving     must also 

be considered. A more complete overview of the Parry summation may be found 

elsewhere [142-144]. 

2.1.3. Short-Range Interactions 

Short-range must also be considered when evaluating the energy and forces. The short-

range contribution is dominated by two interactions. The first is Pauli repulsion which 

arises from the overlap of electron clouds at small interatomic separations. As the 

electron clouds overlap some are forced into higher energy states as no two electrons 

can have identical quantum numbers, leading to a large repulsion at very short range. 

The second dominating contribution is from the London dispersion forces, also known 

as the instantaneous dipole-induced dipole forces, which tend to be attractive over 

medium range. Both of these contributions tend quickly to zero with increasing 

distance. 

Often, short-range interactions are only included for anion-anion and anion-cation pairs, 

with short range cation-cation interactions neglected. The reason for this is that the 

electrons present on cations are very tightly bound and thus the short-range effects of 

the anion-anion interaction will dominate [145]. 



28 

 

A number of parameterised potential functions have been developed to describe these 

interactions, usually containing an attractive term and a repulsive term. The differences 

between the potential forms tends to be related to the curvature of the 

attraction/repulsion, therefore no one potential form can be said to be better or worse 

than the others as different functions may be more appropriate for different systems; i.e. 

“hard” or “soft” repulsion. 

The accuracy and reliability of any simulation is heavily dependent on the parameters 

used in the potential equations. These may be fitted to experimental data or ab initio 

simulations, which must also be accurate and reliable. 

2.1.3.1. Lennard-Jones Potential 

One of the earliest equations developed for short-range interatomic interactions was the 

Lennard-Jones potential [146, 147]. This potential is fairly simple and has gained 

widespread use due to its effectiveness and ease of computation: 
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Equation 2.11 

where     is the interatomic distance,   is the energy at the minimum of the energy well, 

   is the position of the energy well minimum and   is the finite distance where the 

potential energy is zero. These quantities are visualised on the potential curve in Figure 

2.2. 
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Figure 2.2 Lennard-Jones potential with parameters. 

The Lennard-Jones potential may be recast into a repulsive term and an attractive term: 
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Equation 2.12 

    and     are given by: 
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Equation 2.14 

      
  ⁄  is repulsive and very short range due to the      term, whereas the        

 ⁄  

term is attractive and dominates at medium distances due to the     term. The     

nature of the attractive term is justified as it arises out of the dipole-dipole dispersion 

interaction of electron clouds [148] (higher terms are also possible such as     which 

represents dipole-quadrupole interactions). There is no physical justification for the 

     term and it is simply a mathematically convenient way to model the repulsion as 

     is the square of    . 
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The     and     parameters are fitted for different systems and are related to features in 

the potential energy curve and are chosen to best reproduce the physical properties of 

interest for any given material. 

The Lennard-Jones potential has had great success for modelling simple neutral 

particles such as the noble gases [149-152]. 

2.1.3.2. Mie Potential 

The Lennard-Jones potential is a particular case of a more general class of potentials 

known as the Mie potential [153]: 
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Equation 2.15 

where   is the well depth and   is the value of     where  (   ) is zero. Thus the Mie 

potential is equivalent to the conventional Lennard-Jones potential when      and 

   , but is much more flexible. 

2.1.3.3. Buckingham Potential 

A slightly more complex potential equation which is commonly used is the Buckingham 

potential [154] which replaces the inverse twelfth power repulsion with an exponential 

repulsion which can better describe the Pauli repulsion: 
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Equation 2.16 

where     is now different to the one used in the Lennard-Jones potential and along with 

    is related to the ionic size and “hardness” of the interacting species. Once again the 

   
   term is the attractive portion, controlled by the parameter    . 

As the Buckingham potential has three adjustable parameters, as opposed to the two 

parameters available to the 12-6 Lennard-Jones equation, it is more flexible and can be 

applied to a larger range of systems. However, the exponential term is more 
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computationally demanding to compute than the power term used in the Lennard-Jones 

potential. 

One property of the Buckingham potential to be aware of is that the    
   term becomes 

dominant at extremely short distances, causing the function to turn over and become 

attractive where it should be purely repulsive. This is particularly problematic in high 

temperature molecular dynamics simulations where particle collisions may overcome 

the repulsive barrier resulting in unphysical particle fusion.  

2.1.3.4. Morse Potential 

The Morse potential [155] introduces a parameter related to the curvature of the energy 

well: 

 (   )     (        (      )         

Equation 2.17 

where    is the interatomic separation at the energy well minimum,     is the well depth 

and     is related to the curvature of the well.     can be calculated from the bond 

vibrational frequency by: 
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Equation 2.18 

where   is the reduced mass and   is the bond vibrational frequency.   can also be 

related to the spring constant,  , of the bond: 
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Equation 2.19 

The Morse potential has historically been used to model covalent bonds as the 

parameters required can be obtained from structural and spectroscopic data. As these 

parameters contain within them contributions from all the interactions between the two 

atoms, it is sometimes necessary to subtract some portion of the Coulombic contribution 
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to retain the physical origin of the potential (which includes all interactions when 

parameters are obtained from experiment). 

2.1.3.5. Pedone Potential 

A development of the Morse potential is the Pedone potential [156] which is simply the 

Morse potential with the addition of Lennard-Jones type repulsion. The addition of the 

extra repulsive term gives an extra parameter which can allow better tuning of the 

repulsive properties of the potential at very short distances: 
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Equation 2.20 

2.1.3.6. Tabulated Potentials 

All of the above potentials have varying complexity in terms of computation time. 

However, by using tabulated energies and forces as a function of distance computed 

beforehand, the computationally demanding exponential and/or power terms are 

removed and replaced with a simple linear/spline interpolation. 

The tabulated energies/forces need not necessarily be generated by the simulation code 

itself. Externally generated tables can be made with more complex potential equations 

not originally available within the code, or generated directly from ab initio simulations, 

avoiding parameterised equations altogether. 

While it is possible for tabulated potentials to bring great benefits in terms of 

computational speed, one must be very careful when implementing this technique. To 

avoid spurious interpolations (and hence energy/force) a high density of points must be 

present in the table. However, having too many points will lead to excessive memory 

usage and may in fact be detrimental. 

2.1.3.7. Bonded Interactions 

Bonded interactions occur where the interaction is between two specific atoms, and no 

others. This type of interaction is most often used in molecular species in order to 

reproduce covalent bonds, but can also appear in a mixed ionic-covalent system. For 
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example, the CO3
2-

 anion requires a bonded interaction between the carbon and oxygen 

atoms, but not between the carbon and other oxygen atoms within the system. 

The bonded interaction may take many forms. A simple form would be a harmonic 

bond specified by: 
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Equation 2.21 

where   is the spring constant and    is the equilibrium bond distance. 

2.1.3.8. Many-Body Interactions 

In addition to the bonded interactions outlined above, covalently bonded systems may 

require additional interactions involving three or more bodies to restrict structures to 

their correct form. For example the carbonate (CO3
2-

) ion is planar due to the sp
2
 

hybridisation. 

To keep fragments in the correct conformation, an energy penalty is applied so as to 

restore the structure to its equilibrium position. Many expressions for the energy penalty 

are possible; a simple harmonic expression is given by: 
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Equation 2.22 

where      is a spring constant related to the stiffness of the angle,     is the current 

angle and θ0 is the equilibrium angle. While a simple harmonic three-body interaction is 

useful for keeping an equilibrium angle between three atoms, it is not very useful for 

arrangements of four or more atoms, where a torsional term may be more appropriate. 

Again there are many forms of torsional equations; one example is given in Equation 

2.23. 

 (     )       [     (      )] 

Equation 2.23 

where       is twice the barrier height,       is the torsion angle and N is the periodicity 

of the torsion. When N is set to 2 this expression has minima at either 0° or 180°. 
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Often many-body terms are present in systems with molecular units. However, the 

interactions can also be represented to some degree by a system of pair potentials. 

2.1.4. Ionic Polarisability 

The electron cloud of an atom is polarisable and can generate dipoles, which will have a 

significant effect on the interatomic interactions. Many potential functions include terms 

for the attractive dispersion forces that arise out of instantaneous dipole-induced dipole 

interactions. It is also possible for a species to have a permanent dipole created by 

neighbouring species with a large electronegativity disparity. These interactions may 

also be treated in a classical framework by either the shell model or via partial charges. 

2.1.4.1. Shell Model 

Ions are often polarisable, and these effects should also be represented in simulation. 

One of the most common method is the “shell model” of Dick and Overhauser [157]. In 

the shell model the charged ion is divided into two components; a core carrying a 

positive charge and all of the mass, and a massless shell with some negative charge. The 

core and shell both carry a charge but are Coulombically screened from each other and 

are instead permanently linked together by a simple spring: 

 (   )  
 

  
             

  
 

  
             

  

Equation 2.24 

where the strength of the springs is governed by    and   . However the second term 

can often be ignored except in rare cases where it is required to avoid unphysical core-

shell separations. Thus the spring constant is related to the free ion polarisability ( ) and 

the charge on the shell ( ) by: 

  
 

    

  

 
 

Equation 2.25 

It is most common for the shell model to be used on anions as their valence electrons 

are less closely bound than in cations. In this case the shell can be thought of as the 

polarisable electron cloud, with its position being allowed to deviate from that of the 

core, as shown in Figure 2.3. As the shell represents the electron cloud it is usual to 
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have all the short-range van der Waals interactions attributed to the shell rather than the 

core. 

 

Figure 2.3 The shell model. 

When using the shell model in molecular dynamics care must be taken to avoid the shell 

obtaining unphysical velocities. There are two main approaches to doing this, either by 

optimising the position of the shells at each step [158], or by assigning a small mass to 

the shell [159, 160]. By dividing ions into two species the Coulombic calculation 

becomes much more complex, and the addition of the spring between the core and shell 

also adds a small calculation penalty. 

2.1.4.2. Partial Charge Model 

An alternative method to the shell model is to use partial charges on the ions, rather than 

formal charges. This approach can give a collection of atoms the correct dipole moment 

without the independent species being polarisable. This approach is popular for organic 

systems which contain a large permanent dipole in their covalent bonds, but has also 

been applied to inorganic systems where the bonding is also partially covalent. This 

method requires no additional computational resource as it only requires a modification 

to the atomic charges. 

2.1.5. Potentials Used in this Work 

The magnesium oxide potential used in this work was developed specifically for 

thermal conductivity calculations [127] and is of the Buckingham form, Table 2.1. 
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Species Charge 

Mg 1.7 

O -1.7 

 

Interaction A (eV) ρ (Å) C (eV.Å^6) 

O-O 35686.18 0.201 32.0 

Mg-O 929.69 0.29909 0.0 

Table 2.1 MgO potential. 

The potential used for silica calculations is the well-known BKS potential [161, 162], 

also of the Buckingham form, Table 2.2. 

Species Charge 

Si 2.4 

O -1.2 

 

Interaction A (eV) ρ (Å) C (eV.Å^6) 

O-O 1388.7730 0.3623 175.0 

Si-O 18003.7572 0.2052 133.5381 

Table 2.2 SiO2 potential. 

The potential used for STO is again of the Buckingham form and is known as the Teter 

potential [163], Table 2.3. 

Species Charge 

Sr 1.2 

Ti 2.4 

O -1.2 
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Interaction A (eV) ρ (Å) C (eV.Å^6) 

O-O 1844.7458 0.3436 192.58 

Sr-O 14566.637 0.2450 81.773 

Ti-O 23707.909 0.1856 14.513 

Table 2.3 STO potential. 

2.2. General Simulation Methodology 

A number of general methodologies are often employed in the study of crystal systems 

which make the calculations more tractable and/or accurate. 

2.2.1. Periodic boundary conditions 

Real crystals have finite bounds at surfaces/interfaces, but these are often far apart at the 

atomic scale and thus a crystal may be considered as an infinite array of ordered atoms. 

Calculating the properties of such a system is not tractable and thus techniques must be 

used to simplify the problem. 

Periodic Boundary Conditions (PBCs) exploit the translational symmetry found in 

crystals by connecting the simulation cell to itself via its opposing faces, Figure 2.4. 

This allows the periodic passage of both particles and interactions, thereby 

approximating an infinite lattice. While an artificial periodicity is induced, the size of 

the system inside the boundaries can be chosen to minimise the impact of the artificial 

periodicity. 
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Figure 2.4 Example of a system under 2D PBCs. 

PBCs reproduce the environment at the centre of pure crystals where the effect of 

surfaces and defects is negligible. In molecular dynamics simulations, a simulation cell 

many times larger than a single unit cell is used to allow the system to explore more 

disordered states introduced by the kinetic motion of particles. This is vitally important 

for some properties such as diffusion, where diffusion mechanisms may require several 

unit cells to operate correctly. 

Other dynamical properties such as thermal expansion, heat capacity and thermal 

conductivity are also better represented by larger simulation cells. The vibrational 

modes present in a simulated system can be artificially limited by small simulation cells 

as only the modes with wavelength smaller than the simulation cell are allowed, leading 

to spurious values for these properties. 

2.2.2. Short-Range Cutoffs 

The short-range interactions detailed in Chapter 2.1.3 rapidly converge towards zero; 

therefore it is unnecessary to evaluate the potential at long distances as the contribution 

to the energy and force is negligible. When a simple cutoff is applied to the potential, all 
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interactions above the cutoff are set to zero with no compensation for the sharp 

discontinuity in energy and forces. This approach has been used throughout this work. 

While it is usually acceptable to have a simple cutoff with a very small discontinuity, 

some simulation artefacts may occur as atoms move in and out of the cutoff distance, 

leading to spurious energy and force values. To compensate a number of methods have 

been developed to make the discontinuity smooth. 

2.2.2.1. Potential Shifting 

The most obvious method of removing the discontinuity is to shift the function so that 

the value at the cutoff is zero. If this is naively performed on just the energy function 

then the first derivative will not be zero, and so must be performed initially on the first 

derivative and then on the energy function [164]. An example for the Lennard-Jones 

potential is given by: 

 (   )  
   

   
   

   

   
          

Equation 2.26 

where   is chosen so that the first derivative at the cutoff is zero and   is chosen so that 

the energy of the new function at the cutoff is also zero. Force and energy values above 

the cutoff are then set to zero as before, but with the benefit that both now transition 

smoothly to zero at the cutoff. 

More advanced switching functions are also available, based on any function that can be 

made to vary smoothly between one and zero over a given range. Potential shifting has 

not been used in this work. 

2.2.2.2. Minimum Image Convention 

The minimum image convention states that the cutoff should be no larger than half the 

shortest cell vector, displayed in Figure 2.5. The minimum image convention thus 

prevents a particle interacting twice with another particle which may lead to spurious 

vibrational effects. 
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Figure 2.5 The minimum image convention within PBCs. 

An additional advantage of the minimum image convention is that an algorithm for 

generating interatomic distances need only check each pair once as it is guaranteed they 

can only be within the cutoff in one direction. 

2.3. Energy Minimisation 

Energy minimisation seeks to find the lowest energy configuration of a system. While 

energy minimisation is extremely useful, there are a few important points to consider: 

1. Initial configuration – a starting configuration is required, preferably near the 

global energy minimum. 

2. Local minima – energy minimisation techniques typically locate the nearest 

minima, which may not necessarily be the global minimum. 

3. Vibrational modes – energy minimised structures can be considered to be at 0 K, 

neglecting even zero point vibrations. This can cause difficulties when a 

structure only present at high temperatures is to be studied. 

This work has primarily used the METADISE code [165] for energy minimisation, but 

under some situations the energy minimisation features of the molecular dynamics code 
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LAMMPS [166] have also been used. The algorithms outlined below are general and 

may also be applied when the interatomic forces are generated from other methods. 

2.3.1. Lattice Energy 

All energy minimisation strategies function by moving the atoms until the total force 

( ) acting on them is zero: 

   
  (  

  
     

Equation 2.27 

where   is the energy and   is the equilibrium coordinates. Energy minimisation is 

often an iterative approach and seeks the energy minimum by reducing the energy at 

each step. The energy of the system can be expressed as a Taylor expansion with respect 

to atomic coordinates,  : 

 (       (   
  (  
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      (     

Equation 2.28 

where the first term is the lattice energy at the minimum, with subsequent terms 

describing higher derivatives with respect to displacement. It is usual for energy 

minimisation techniques to use the first and second derivatives. The higher derivatives, 

denoted by  (    , are often neglected. 

In Equation 2.28 and those to follow,   is a     matrix where   is the number of 

atoms and the   is due to the degrees of freedom. The use of a matrix here allows the 

minimisation algorithms to act globally, ensuring all degrees of freedom are minimised 

simultaneously. 

2.3.2. Minimisation Algorithms 

2.3.2.1. Steepest Descent 

The steepest descent [134] (or gradient descent) method is the simplest algorithm to 

both understand and implement. Steepest descent is based on using the gradient of the 

energy function, which is related to the force: 
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Equation 2.29 

       

Equation 2.30 
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Equation 2.31 
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Equation 2.32 

where   is the force,  ̂ is the force unit vector,    is the gradient of the energy and   

denotes the iteration. In steepest descent the positions of the atoms are then updated by: 

           ̂  

Equation 2.33 

where    is the minimisation step size. The choice of    can be either a default scaling; 

i.e. increase step size by a given factor if the step direction results in a decrease of 

energy, or reduce the step size by another factor if the energy is found to increase. This 

method is computationally inexpensive in calculating step size, but may require more 

steps to find the minimum. An alternative method involves conducting computationally 

expensive line searches to find the minimum in the given direction, but with the 

advantage of taking fewer steps to converge. 

Steepest descent is very efficient for systems where a few large interatomic forces 

dominate the interactions, as this dictates the direction of the gradient. However, one 

significant drawback of this method is that when line searches are used the new 

direction of minimisation is orthogonal to the previous direction, making minimisation 

in narrow valleys on the energy landscape highly inefficient. 
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2.3.2.2. Conjugate Gradient 

The conjugate gradient method [167] is a more advanced variant of the steepest descent 

method, where the step size and direction is modified after the first iteration to include 

information from previous iterations. In conjugate gradient minimisation, the direction 

vector is given by: 

              

Equation 2.34 

   
     

         
 

Equation 2.35 

here    is a scalar coefficient which is related to the proportion of the previous gradient 

that should be used to correct the next gradient. Several variants exist for computing    

which may perform better under different conditions. 

Equation 2.33 and Equation 2.34 are used again to update positions, where    is 

computed with a line search. This approach cannot be used for the first iteration, for 

which standard steepest descent is used instead. 

The advantage gained by the conjugate gradient method over steepest descent is that it 

does not oscillate along narrow valleys. An additional property of the conjugate gradient 

method is that for a quadratic function of   variables, the minimum value will be found 

in   steps [167]. 

2.3.2.3. Newton-Raphson 

Both steepest descent and conjugate gradient are considered first-order minimisation 

algorithms as they only employ information about the gradient of the energy. By also 

using second derivatives information about the change of gradient can also be included. 

Such methods are called second-order, of which Newton-Raphson [168] is the simplest. 

The Newton-Raphson method requires calculation of the second derivative matrix 

(called the Hessian), which is then inverted: 
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Equation 2.36 

The positions are then updated by: 

             

Equation 2.37 

Due to the nature of quadratic equations (where the second derivative is a constant) the 

Newton-Raphson method can locate the minimum in a single step. This is called the 

harmonic approximation and holds near the energy minimum, but not far from the 

minimum, where the Newton-Rapshon method may become unstable. 

The Newton-Raphson method requires calculation and inversion of the Hessian matrix 

at every iteration, which is a very computationally expensive operation. To counteract 

these issues it is common to use a more robust minimiser to approach the minimum, 

before Newton-Raphson is used to locate the minimum in one or two iterations. 

2.3.2.4. Quasi-Newton Methods 

Quasi-Newton methods [169] aim to accelerate the Newton-Raphson minimisation by 

avoiding calculation of the inverse Hessian matrix at each iteration. Instead, the inverse 

Hessian matrix is built over successive iterations: 
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Equation 2.38 

There exists a multitude of ways to perform the update including DFP [170] and BFGS 

[171-174]. 

2.3.2.5. FIRE minimisation 

Energy Minimisation has also been performed by molecular dynamics quenching where 

the thermostat is set to zero Kelvin to remove all kinetic energy as it is converted from 

potential energy. An advanced form of this type of minimisation is known as the FIRE 

minimiser (Fast Inertial Relaxation Engine) [175]. 
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The FIRE minimiser calculates the forces on a per-atom basis and then allows the 

positions to change based on a simple molecular dynamics time integrator, with a few 

added conditions. The basic algorithm is outlined below: 

1. Calculate r, F and v with any MD integrator. Check for convergence, 

2. Calculate       

3. Set   (        ̂| | 

4. If     and the number of steps since P was negative is larger than Nmin, 

increase the timestep       (             , and decrease      , 

5. If    , decrease the timestep          , remove velocities     and set 

        , 

where   is the force,  ̂ is the unit vector of the force,   is the velocity and | | denotes 

the absolute value of the velocities.   is a scaling factor which balances the contribution 

from the velocity and from the direction the force is acting in. When   is below zero the 

minimisation has reached a minimum in that direction. Once this occurs the velocities 

are reset to zero and a time latency of      is allowed before the timestep and balancing 

factor are allowed to be adjusted, ensuring some inertia is allowed to accumulate in the 

minimising direction. 

The recommended parameters for any simulation are       ,         ,         , 

           and        . The adjustable parameter of      is usually set at ~10x 

the usual MD timestep. One issue to be careful of is that the algorithm assumes all 

degrees of freedom to be comparable and hence the velocities should be on the same 

scale; this can be approximated by setting all atom masses equal. The mass of the 

species is unimportant for energy minimisation as it only has an effect on the 

accelerations and not the forces or potential energy. 

The FIRE minimiser gives advantages over steepest descent and conjugate gradient in 

that it uses more of the previous information to guide the minimisation to the minimum. 

The advantage over the Newton-Raphson method is a large reduction in storage 

requirements and reduction in computation time as the inverse Hessian is not required. 

In this work the FIRE minimiser has primarily been used to minimise large grain 

boundary systems in conjunction with a few constant pressure Newton-Raphson 

iterations. 
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2.3.3. Constant Pressure Minimisation 

As energy minimisation of atomic coordinates occurs it is also possible to minimise the 

geometry of the simulation cell itself. Such a minimisation is called constant pressure 

(as opposed to constant volume) as the forces acting on the cell can be considered 

equivalent to pressure. In many cases a minimisation at constant volume is performed 

first to allow the cell contents to find their preferred geometry with respect to each 

other, and then minimise the whole system including the simulation cell geometry. 

To perform a constant pressure energy minimisation the cell dimensions are treated as 

additional variables in the minimisation. The bulk lattice strain according to Hooke’s 

law is given by: 

       

Equation 2.39 

where     is the inverse second order derivative of lattice energy with respect to strain 

(also called the elastic compliance matrix).   is the stress defined as the sum of the 

static pressure, plus any applied pressure: 

                   

Equation 2.40 

        (
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* 

Equation 2.41 

where   is the volume,   is the lattice energy and   is the lattice strain. A more 

complete overview of constant pressure minimisation is given in Leach (2001) [134]. 

The final configuration of a constant pressure energy minimisation often makes a good 

starting point for molecular dynamics simulations as the atoms are at their equilibrium 

positions. If an atom is some distance from its equilibrium position then a large velocity 

may be generated on the first timestep, which could significantly interfere with the 

structure or dynamics. 
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2.3.4. Overcoming Local Minima 

The configuration located by energy minimisation is not necessarily the global energy 

minimum. Energy minimisation functions by iteratively seeking lower energy 

configurations from a starting configuration. Thus it is possible for a configuration to 

become trapped in a local energy minimum rather than the global minimum. As many 

real materials exhibit several stable polymorphs (Titania, Silica etc.) the local minima 

may also be viable structures. 

However it is often preferable to locate the global minimum and several techniques can 

be used to try and locate it. The simplest method is to try multiple starting 

configurations and energy minimise them, searching for the lowest energy system. 

Other techniques may search via Monte Carlo methods or molecular dynamics. A 

remaining issue is that it is hard to be certain a given configuration is the global 

minimum unless the entirety of the energy landscape has been explored. 

2.4. Molecular Dynamics 

Molecular dynamics is a technique that iteratively integrates Newton’s laws of motions 

for a given system of particles by assigning velocities and stepping forward in time. 

Small energy barriers may be overcome with molecular dynamics as the probability ( ) 

of overcoming an energy barrier is proportional to the height of the energy barrier and 

the temperature of the system: 

     (      ⁄   

Equation 2.42 

where    is the height of the energy barrier relative to the current minimum,    is 

Boltzmann’s constant and   is the temperature. However this is rarely the most efficient 

approach due to kinetic factors, whereas Monte Carlo techniques operate purely on the 

thermodynamics of the system. A more detailed discussion of Monte Carlo simulations 

may be found elsewhere [134]. 

Molecular dynamics can be employed to calculate properties of a system that are only 

accurately measurable under the flow of time such as diffusion and thermal 

conductivity. However, such calculations may require much simulation time to accrue 

reasonable statistical accuracy. 
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2.4.1. Calculation of Forces 

The approach to force calculation in molecular dynamics is different to that in energy 

minimisation. Below is an outline of functional, but perhaps not optimal, classical 

potential molecular dynamics algorithms. First the distance between the atoms is 

calculated from their Cartesian coordinates: 

          

Equation 2.43 

where    and    are the Cartesian coordinates of atom   and   respectively. The distance 

between atoms   and   may also be written: 

    |   |  √   
     

     
  

 

Equation 2.44 

where    ,     and     are the difference in Cartesian coordinates in each dimension. It is 

important to note that the vector     gives the distance of atom   with respect to atom   

and thus the calculated forces will also be of atom   with respect to atom  . 

The distance is then used to calculate the force: 

     
  

    
 

Equation 2.45 

The force must next be decomposed into contributions from each dimension by using 

the distance unit vector: 

       

   

|   |
  

  

    
 

Equation 2.46 

The force acting on atom   with respect to atom   can be obtained from Newton’s third 

law. When one body exerts a force on a second body, the second body exerts a force of 

equal and opposite magnitude on the first body: 
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Equation 2.47 

The total force acting upon an atom is the sum of the forces acting upon it from all other 

atoms: 

   ∑   

 

   
   

 

Equation 2.48 

To convert the force to acceleration Newton’s second law is used, where   is time,   is 

the acceleration and   is the mass: 

    
   

   
     

Equation 2.49 

2.4.2. Time Integration Algorithms 

Once the force acting on an atom is obtained, it is possible to write equations to update 

the positions and velocities of atoms based on the accelerations and the previous 

positions and velocities: 

 (       (    (     
 (     

 
 

Equation 2.50 

 (       (    (     

Equation 2.51 

where   is the position,   is the velocity and   is the acceleration of the atoms. Equation 

2.50 and Equation 2.51 are only valid for continuous time and infinitesimally small 

changes in the acceleration. However, time in molecular dynamics simulations is 

discretised, which may remove the energy conservation properties of Newton’s 

equations and therefore alternative algorithms are required. 
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To compensate for the use of finite timesteps, time integration algorithms have been 

developed based on the Taylor expansion in time. These are time-reversible algorithms 

which in principle conserve a mean energy over the course of the simulation [176]. 

2.4.2.1. Störmer-Verlet 

The Taylor series expanded about  (      is given in Equation 2.52 and Equation 

2.53. 
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Equation 2.52 

 (       (    (      (  
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Equation 2.53 

where   is the third derivative of the position with respect to time, also known as the 

jerk.  (     is the error due to neglecting higher order terms of the expansion. By 

summing these two expressions and rearranging, Equation 2.54 is obtained: 

 (        (    (       (       (     

Equation 2.54 

The advantage of Equation 2.54 is that the third order terms (the jerk) cancel, making 

this a fourth order integrator. The velocity is not calculated explicitly but can be 

computed by: 

 (   
 (       (     

   
  (     

Equation 2.55 

This approach is known as the Störmer-Verlet algorithm [177]. A significant drawback 

of this method is that velocities can only be calculated one step behind the positions due 

to the requirement of the  (      term. While this does not directly affect the 

dynamics, it does cause some issue for calculation of properties such as kinetic energy 

and thus any thermostat applied to the system. Additionally, computational accuracy 

may suffer by adding a small term,  (     , to the difference between two very large 

terms. 
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2.4.2.2. Verlet Leap-Frog 

Other algorithms have been developed which explicitly calculate the velocity. The 

Verlet Leap-frog algorithm [139] is based on the basic Störmer-Verlet algorithm but 

calculates the velocities at the half-timestep. These can then be used to calculate the 

velocities at the timestep without requiring the positions at the next timestep. In this 

algorithm the half-timestep velocities are calculated by: 

 (  
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Equation 2.56 

The velocities at the timestep can then be extrapolated by averaging the time adjacent 

velocities: 

 (   
 (  
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Equation 2.57 

The positions are then calculated from the half-timestep: 

 (       (    (  
  

 
*    

Equation 2.58 

While an improvement over the Störmer-Verlet method there remains a disadvantage in 

that the positions and velocities are still not synchronised. In this work the Velocity 

Verlet algorithm has been used which calculates the positions, velocities and 

accelerations at the same timestep. 

2.4.2.3. Velocity Verlet 

The algorithm for the Velocity Verlet [178] method is: 

1. Calculate the new positions from current positions, velocities and accelerations 

by Equation 2.59. 

 (       (    (     
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Equation 2.59 
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2. Calculate the velocity at the half-timestep with Equation 2.60. 

 (  
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Equation 2.60 

3. Calculate new forces and thus accelerations using the new atom positions. 

4. Calculate new velocities using velocities at the half-timestep and the new 

accelerations using Equation 2.61. 

 (       (  
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Equation 2.61 

At the expense of extra storage for accelerations, the Velocity Verlet method may be 

shortened to: 

1. Calculate the new positions from current positions, velocities and accelerations 

using Equation 2.59.  

2. Calculate new forces and thus accelerations using the new atom positions. 

3. Calculate new velocities using current velocities, old accelerations and new 

accelerations using Equation 2.62. 

 (       (   
( (    (     )  

 
 

Equation 2.62 

2.4.2.4. Predictor-Corrector Methods 

A class of slightly more complex time integrators are also available which use the 

Taylor expansion term for acceleration and compare it to the acceleration as predicted 

from the potential acting upon the system. The difference can be used iteratively to 

adjust the positions and velocities until the two accelerations match. 

The predictor-corrector methods often follow the equations of motion very closely but 

suffer from the requirement of repeated calculation of the accelerations and therefore 

forces, which is usually the most expensive part of a molecular dynamics simulation. 

Additionally, not all predictor-corrector methods are time reversible and conserve 

energy [179]. 
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A more complete discussion of these methods is given by Leach [134]. 

2.4.3. Initial Velocities 

The Velocity Verlet algorithm requires initial velocities as well as atomic coordinates 

and thus the velocities must be assigned or carried over from a previous simulation. 

Equation 2.63 is used to relate average atom velocities to a given temperature. 

∑    
       

 

   

 

Equation 2.63 

In Equation 2.63    is the mass of each atom and    is the velocity.   is the number of 

atoms,    is the Boltzmann constant. The linear momentum of the system is also 

required to be zero to avoid translation of the simulation cell contents, Equation 2.64. 

  ∑      

 

   

 

Equation 2.64 

Additional constraints may also be placed to ensure there is no net angular momentum 

either. 

2.4.4. Choosing the Timestep 

Time integration algorithms require a discrete timestep which is chosen as a balance 

between simulation accuracy and computation time. A poorly chosen timestep can lead 

to unphysical dynamics and highly unstable systems. 

The timestep must be short enough to accurately reproduce the trajectory of fastest 

atomic motion present in the system; this is particularly important in systems with light 

atoms such as hydrogen, or in systems employing the shell model which can move at 

very high frequencies. However, a timestep that is too small will take an unfeasibly long 

time to accrue statistics and so a balance must be struck between the two. 

Consider a diatomic system such as O2, when the atomic separation is small there is a 

repulsive force and there is no initial velocity. The repulsive force felt between the 

atoms results in movement away from each other. In the case of a reasonable timestep, 
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the atoms will separate until an attractive force is felt, resulting in vibration. If the 

timestep is too large the atoms may separate far enough that they bypass the attractive 

part of the potential, resulting in an unphysical bond breaking. 

2.4.5. Equilibration Period 

Before any information can be gathered from a simulation, it is important to allow the 

simulation to equilibrate first, so as to not include any effects from the initialisation. 

A key example is that of system volume; when starting from an energy minimised 

structure (equivalent to zero Kelvin) the structure often has the wrong volume for the 

simulation temperature and this must be allowed to equilibrate before data collection. 

The equilibration period is also the time where additional constraints can be applied to 

ensure the correct dynamics are reproduced later. In the case of the diatomic of O2 

molecule, if the atoms start too close together, a large force will be exerted within a very 

short period of time. The large force will lead to a large acceleration and a separation of 

the molecule. This means the system under study is no longer the O2 molecule as 

desired. By applying a maximum force limit during equilibration, the O2 molecule may 

remain intact. After the equilibration, the system may then be studied. 

Other constraints which may be applied during equilibration include rapid temperature 

rescaling to bring the system to the desired temperature faster, and repeated momentum 

zeroing to prevent translation of the entire system. 

2.4.6. Neighbour Lists and Verlet Lists 

During molecular dynamics simulations all relevant interactions must be calculated at 

every timestep. Instead of calculating all short-range particle-particle interactions, 

cutoffs (discussed in Chapter 2.2.2) are used so that only relevant interactions are 

calculated. To find all particles that are within the cutoff, a search over all particles can 

be performed to generate a neighbour list. The generation of neighbour lists is very 

computationally demanding, and scales poorly with number of particles, giving a 

complexity of  (   . A number of approaches have been developed to reduce the 

computation time, one such approach is that of Verlet lists. 

Verlet lists [177] serve as a data structure to keep track of which particles may be within 

the short-range cutoff over the next few timesteps. Deciding which particles to include 
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in the Verlet list is done by adding an extra skin region to the surface of the cutoff 

region; particles within the skin region are close enough to the central particle that it is 

possible for them to move within the cutoff over the next few timesteps. 

The choice of skin distance must be made carefully; a larger skin distance means less 

frequent updates of the Verlet list, but an increase in the number of particles that must 

be checked each timestep. The decision is largely system dependent; a low temperature 

crystal would need only a moderate skin distance and have its Verlet list updated very 

infrequently, if ever. Conversely a hot gaseous system would require a large skin 

distance and still require frequent list rebuilds. 

The use of Verlet lists in not infallible, a statistically rare high velocity particle could 

theoretically move into the cutoff region between Verlet list builds and not be 

recognised as potentially interacting. However it is relatively simple to check for atoms 

with such high velocity and when they occur to trigger a rebuild of the Verlet list. A 

deeper concern is that frequent occurrences of these high velocity particles may indicate 

that the timestep is too large, leading to generally poor dynamics. 

This work has used a skin distance of 2.0 Å and an update interval of 10 timesteps.  

2.4.7. Ensembles 

Ensembles describe the conditions that molecular dynamics simulations are run under. 

Each ensemble is represented by a different Hamiltonian, which describes the conserved 

quantities of the system. The simplest ensemble that can be used in molecular dynamics 

simulations is the microcanonical (NVE) ensemble. 

2.4.7.1. Microcanonical (NVE) Ensemble 

In the NVE ensemble the number of atoms (N), volume (V) and energy (E) are held 

constant. The Hamiltonian of this system is simply the sum of the potential ( ) and 

kinetic (    ) energies: 

            

Equation 2.65 
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In experiments it is not the total energy that is held constant, but the temperature. To 

more accurately model these cases it is more appropriate to use a constant temperature 

ensemble such as the canonical (NVT) ensemble. 

2.4.7.2. Canonical (NVT) Ensemble 

A number of different methods are available to control the temperature of a simulation. 

One of the most commonly used methods is the Nosé–Hoover thermostat [180-182] 

which is also used throughout this work. The Hamiltonian when using the Nosé–Hoover 

thermostat is the Helmholtz free energy: 

            
   

 
          

Equation 2.66 

where   is a friction coefficient,   is a variable used to scale the particle momenta and   

is the effective mass of the thermostat and governs the coupling of the system to the 

thermostat. The update of particle positions proceeds in the same manner as for the 

microcanonical ensemble: 

   

  
    

Equation 2.67 

However, the accelerations now have an additional component which is coupled to the 

thermostat: 

   

  
        

Equation 2.68 

The friction coefficient,  , is updated by: 

  

  
 

  ∑|  |
       

 
 

Equation 2.69 

where    is the mass of the particle and   is the desired temperature. The scaling factor, 

 , is then updated by: 
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Equation 2.70 

2.4.7.3. Isobaric-isothermal (NPT) Ensemble 

The NPT ensemble maintains the number of particles, pressure and temperature. The 

temperature is maintained as before and a similar expression is used to maintain the 

pressure, except that it is the cell dimensions which are adjusted. Several variations 

exist depending on whether the cell dimensions are allowed to vary isotropically, 

anisotropically and whether the angles between the cell vectors are allowed to change. 

2.5. Defects 

Crystal systems may contain many types of defects. The simplest type of defect is the 

point defect which is a change to a single atomic site in the crystal, of which three basic 

types are possible: 

 Vacancies – An empty site that is usually occupied. 

 Interstitials – An atom occupying a site that is usually vacant. 

 Substitutions – A site that is occupied by a different type of atom than is usual. 

More complex defect schemes can be built from these three basic types. A Schottky 

defect is typically a group of vacancies that constitute one complete stoichiometric unit 

of the material. A Frenkel defect is a combination of a vacancy and an interstitial such 

that an atom has essentially moved to another position in the material. This work has 

not studied point defects and a more complete discussion of their study may be found in 

Leach [134]. 

Crystals also contain extended defects, including: 

 Line defects. 

o Edge dislocations. 

o Screw dislocations. 

 Planar defects. 

o Surfaces. 

o Grain boundaries. 
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o Stacking faults. 

This work has looked at grain boundaries and nanostructured systems, which may also 

contain internal surfaces. Therefore, in the next section an overview of extended defects 

is given.  

2.5.1. Extended Defects 

Extended defects are those which exist over large distances as opposed to localised 

defects such as dopants and vacancies. Generating such defects is nontrivial and 

requires several steps. In this work the METADISE code [165] has been used to 

generate grain boundaries to study their effect on thermal conductivity. 

2.5.1.1. Miller Indices 

A Miller index defines a normal to a plane in the lattice and consist of three integers 

which indicate where in a given reciprocal cell the plane cuts the axes. For example the 

{112} Miller index indicates a family of planes in the real space cell. This Miller index 

includes the plane which cuts the X axis at 1.0, the Y axis at 1.0 and the Z axis at 0.5 

and all parallel planes. Some example Miller indices and their corresponding planes are 

given in Figure 2.6. The Miller index is a convenient way to describe surfaces; however 

a single Miller index may give multiple surface geometries depending on where in the 

crystal the plane is cut and the possible surface reconstructions. 
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Figure 2.6 Possible planes for different Miller indices. 

2.5.1.2. Surfaces 

When a crystal is cleaved, two surfaces are formed. The surface is primarily 

characterised by its Miller index, secondarily by the termination pattern. These different 

factors influence the stability of the surface. Depending on the termination of the 

surface, problems relating to the dipole of the materials may arise. 

It has been shown [183] that when a dipole perpendicular to the surface is present, the 

energy of the surface diverges. Such surfaces are therefore unstable and require defects 

to remove the dipole. These defects can either be adatoms, vacancies or large 

reconstructions. There are in fact three different types of surface, as described by Tasker 

[184] and shown in Figure 2.7. 
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Figure 2.7 Diagram of the three types of surfaces possible when cutting a crystal: a) 

Type I, b) Type II and c) Type III. The polar repeat units in the Type III surface result in 

a reconstruction, one possible reconstruction is shown in d). 

The three types of surface are defined as: 

 Type I –Built from uncharged planes. Each plane contains a stoichiometric 

amount of cations and anions and thus has no dipole. 

 Type II – Built from charged planes, stacked in a way as to produce no overall 

dipole at the surface. 

 Type III – Built from charged planes, stacked in a way that generates a dipole at 

the surface. It is this type of surface which requires modification to become 

stable. 

Several schemes have been proposed for the modification of Type III surfaces. Oliver et 

al. [185] suggested moving half of the atoms in the surface plane to the surface at the 

bottom of the cell, neutralising the dipole. However, the arrangement of the half-filled 

plane at the surfaces becomes another variable to investigate. A related approach is that 

of micro-faceting, where rearrangement of the surface to give facets can remove the 

dipole and lower the surface energy. Very large facets may simply be considered 

different surfaces which are stepped, Figure 2.8. 
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Figure 2.8 Two possible surface geometries generated by faceting of the (110) surface, 

both using the (100) and (010) surfaces. 

To model a surface one can use the approach developed by Tasker [184]. Here the 

simulation cell consists of two-dimensional periodic charged planes, parallel to the 

surface. A full crystal may contain millions of layers of charged planes between two 

opposing surfaces. To overcome this problem Tasker developed the two-region 

approach. When a surface is formed relaxation of ions occurs and continues several 

layers into the bulk crystal until bulk like geometry is restored. Therefore the 

surface/bulk system can be split into two regions; one containing atoms which are near 

the surface and will explicitly relax (Region I), the other far from the surface where the 

effect is negligible and so the atoms can be held fixed (Region II). 

To minimise the surface energy, a block is made consisting of the two regions (Figure 

2.9). The ions in Region II are held fixed at their equilibrium positions to approximate 

the bulk crystal. The ions in Region I experience all the interactions associated with 

Region II and are allowed to relax to their favoured positions. The size of the two 

regions must be tested so that they reach convergence. A small Region II may result in 

the surface not experience enough bulk-like effects while a small Region I may not be 

large enough to return to bulk before meeting Region II. 
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Figure 2.9 Schematic of the two-region approach as used to simulate surfaces. PBCs 

may be applied perpendicular to the surface. 

To compare the energy of the surface to that of the bulk, two blocks instead of one can 

be used. In this case, the surface is not exposed to vacuum but another surface in the 

second block such that the two surfaces recover the bulk structure. From this 

arrangement one can then calculate the bulk (  ) and surface (  ) energies: 

   (    
       

   (     
        

   

Equation 2.71 

   (    
       

 )  (     
        

 ) 

Equation 2.72 

where the superscripts refer to either the energy of the bulk (  ) or the surface (  ) and 

the subscripts refer to the components of different regions interacting. For example 

     
  refers to the energy of interaction between ions in Regions I and II for the surface 

calculation. 
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The energy of a given surface,  , is the excess in energy of the surface calculation as 

compared to the bulk, for the same number of atoms per surface area: 

  
     

 
 

Equation 2.73 

where   is the surface area. Using the reasonable approximation of       
        

  they 

will cancel and thus their calculation can be avoided. 

2.5.1.3. Crystal Morphology 

Using the calculated surface energies it is possible to obtain the equilibrium 

morphology of a given material. For a crystal of a given volume, the equilibrium 

morphology will minimise the total surface energy and thus more stable surfaces will 

have larger surface areas and vice versa. Thus, Equation 2.74 is minimised for a given 

volume [186]: 

  ∑     
 

 

Equation 2.74 

where    is the surface energy per area and    is the surface area of the corresponding 

crystallographic face.   runs over all possible surfaces, however very high Miller index 

surfaces tend to be unstable and contribute very little to the final morphology. 

Building upon this, Wulff [187] proposed the crystal morphology could be calculated 

based on the normal vector to a crystallographic face (  ) and the surface energy of that 

face   : 

       

Equation 2.75 

where   is a constant dependent upon the volume of the crystal. By constructing planes 

at the end of these vectors, the inner surface gives the equilibrium morphology. This is 

known as the Wulff construction, Figure 2.10. 
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Figure 2.10 The Wulff construction of a crystal. The (120) surface is not expressed due 

to its high energy. 

The Wulff construction only holds true for larger crystals grown in equilibrium. The 

kinetic morphology may be very different due to the growth speeds of the different 

surfaces. Additionally, growth of crystals in different mediums will also affect the 

morphology and the surface calculations should include these effects for accurate 

comparison to experiments. 

2.5.1.4. Grain Boundaries 

Extended defects within the bulk such as dislocations and grain boundaries can be 

modelled by adapting the approach used for surfaces. Grain boundaries are generally 

considered as the interface between two crystalline grains with differing orientations 

[188], however dislocations can also be considered to be a special case of grain 

boundary where no rotation of the grain has occurred, but only displacement. 

There exist primarily two types of grain boundary: 

 Tilt Grain Boundaries – These boundaries are created when the rotation axis is 

parallel to the boundary plane. 



65 

 

 Twist Grain Boundaries – These boundaries are created when the rotation axis is 

perpendicular to the boundary plane. 

The definition of grain boundaries follows the coincidence site lattice model which 

assumes that low formation energy is achieved when there is a high degree of 

coincidence of the atomic positions across the two grains. The reciprocal density of 

coincidence sites,  , is defined as the sum of the squares of the Miller indices ( ,   and 

 ): 

   (          

Equation 2.76 

where   is 1 if sum of the squared indices is odd and 0.5 when they are even. Hence in 

cubic systems   values are always expressed as an odd number. Low   values are 

accepted as representing special boundaries (e.g. a   of 3 is a singular boundary. Further 

details about the coincidence site lattice model may be found elsewhere[189]. 

Constructing a grain boundary initially follows the same procedure as constructing a 

surface, diverging just prior to relaxation of the surface. Following the same approach 

as in surface construction, a block is created containing two regions as before. To build 

a grain boundary rather than a surface the block is reflected or rotated such that the 

Region Is of the two blocks are adjacent, Figure 2.11. 
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Figure 2.11 The two-region approach applied to a grain boundary (dislocation). 

The choice of reflection or rotation must be made carefully depending on the type of 

material and grain boundary being built. For centrosymmetric materials a reflection is 

equivalent to a rotation; for non-centrosymmetric materials it is not. 

One block is then scanned over the other to determine the displacement which will give 

the lowest energy structure. In principle the scan could be done over rotations in 

addition to displacements but for tilt grain boundaries only the displacement is required. 

These scans are performed with the METADISE code [165]. 

The scans are conducted by defining a two-dimensional mesh over the surface and 

displacing the second block to the different points on the mesh. The two Region Is of 

the blocks are then minimised and the final energy taken. The finer the mesh the more 

accurate the scan will be, at the expensive of more structures to evaluate. The scan may 
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also be accelerated by skipping the minimisation but then the lowest energy structure 

may not be found. 

When the lowest energy displacement structure is found the simulation cell is converted 

to a bulk-like cell and a second boundary half way along the simulation cell is created 

such that it is the same as the first boundary. The amount of bulk between the two 

boundaries can be varied to study the effects of inter-boundary distance, related to grain 

size in real materials. 

Two important energetic values can be calculated for grain boundaries. Cleavage energy 

(  ) is defined as the energy required to separate the boundary into two surfaces and is 

representative of how tightly bound the two grains are. Formation energy (  ) is the 

energy required to form the grain boundary from the bulk and is related to how likely 

the boundary is to form.    is calculated by: 

   
          

 
 

Equation 2.77 

where     is the energy of the grain boundary,       is the energy of the surface and   

is the area. Likewise    is obtained from: 

   
         

 
 

Equation 2.78 

where       is the energy of the bulk material. It is important that for both these 

calculations the energy values are for the same number of atoms per area. 
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3. Thermal Conductivity Methodology 

The calculation of thermal conductivity in simulation may be conducted a number of 

ways. In this chapter a brief overview of phonons is given followed by an outline of 

three different approaches to the calculation of thermal conductivity. Each of the 

approaches calculates the thermal conductivity in a different way and each has its 

strengths and weaknesses. 

3.1. Phonon Processes 

A phonon is a quasiparticle which represents waves traversing materials via local 

displacements of atoms. The thermodynamic properties of a material are directly 

governed by the phonon processes occurring within the material. Heat capacity, thermal 

expansion and thermal conductivity are just a few thermodynamic properties which are 

explained by phonons. Heat capacity may be calculated using only the harmonic 

approximation, but thermal expansion and thermal conductivity require that phonons 

interact with each other and therefore anharmonic contributions must be included. An 

initial starting point for anharmonic contributions is the harmonic approximation, which 

may then be extended to include anharmonic terms. 

3.1.1. The Harmonic Approximation 

The energy of a material ( ) may be described by a Taylor expansion of displacements 

(    ), where   is the atom label and   is a particular dimension ( ,   or  ): 

     
 

 
∑
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Equation 3.1 

where    is the equilibrium lattice energy, the second-order term is the harmonic energy 

and all higher terms (denoted by  ) contribute to the anharmonic energy. The first-order 

term is neglected as for a crystal at equilibrium the forces (negative of the first 
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derivative of energy) are zero. The harmonic approximation is simply to neglect all 

terms beyond the harmonic energy. 

In the harmonic approximation the phonon frequencies can be calculated using the finite 

displacement method, where the derivatives with respect to energy are calculated by 

displacing an atom by a small distance and recording the forces on all other atoms. This 

obtains a       matrix (where   is now the number of atoms) known as the harmonic 

matrix. The Fourier transform of the harmonic matrix using a given  -vector (or q-

point) is known as the dynamical matrix [190, 191]. The dynamical matrix may be 

diagonalised to yield the squared phonon frequencies as eigenvalues, with eigenvectors 

corresponding to atomic motions. 

This approach may be extended to include higher order terms and therefore some 

anharmonic properties, including thermal expansion and conductivity. Including the 

third-order term requires additional atomic displacements of other atoms so that all 

possible pairs of atomic displacements are included [122]. Problems such as memory 

requirements and numerical error on the forces rapidly make the approach intractable 

above the third-order force constants. However the third-order force constants are 

sufficient to allow phonon-phonon interactions to be calculated and thence thermal 

expansion and conductivity. 

3.1.2. Anharmonic Processes 

The anharmonicity of the interactions between atoms are not accounted for in the 

harmonic approximation. Including the anharmonic terms allows for both thermal 

expansion and phonon-phonon interactions [192], which moderate the thermal 

conductivity. This section is only intended as a brief overview, a more complete 

explanation is given by Dove [192]. 

3.1.2.1. Thermal expansion 

The thermal expansion of crystals is governed by the anharmonic part of the interaction. 

In the harmonic approximation the average interatomic distance does not change with 

temperature and thus the crystal does not expand. When the interaction is anharmonic 

the bond lengths may change upon changing temperature, Figure 3.1. 
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Figure 3.1 The equilibrium distance increases from    to    upon increasing 

temperature. 

The thermal conductivity of a material is also dependent upon anharmonic interactions. 

In a harmonic system phonon-phonon interactions do not occur and thus the thermal 

conductivity would be infinite as scattering does not occur. 

If the thermal expansion is reproduced well by a potential model then it is likely the 

potential model will also give good thermal conductivity values, although it is not 

ensured. 

3.1.2.2. Phonon Scattering 

There are two possible types of phonon scattering process, Normal and Umklapp. 

Normal type scattering processes occur when the interaction of two phonons (   and 

  ) results in a third phonon (  ) with the same total phonon momentum ( ) of the 

original two phonons: 

   
    

    
 

Equation 3.2 
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Umklapp type scattering processes occur when the interaction of two phonons (   and 

  ) results in a third phonon (  ) with less total phonon momentum ( ) than the original 

two phonons, but with some transfer of phonon momentum to the lattice ( ): 

   
    

    
   

Equation 3.3 

The reason behind this is that the  -vectors of the original two phonons push the 

resultant phonon’s  -vector outside of the first Brillouin zone.  -vectors pointing 

outside the first Brillouin zone can be remapped back into the first Brillouin zone by 

addition or subtraction of a reciprocal lattice vector, shown schematically in Figure 3.2. 

 

Figure 3.2 Normal and Umklapp type scattering processes [193]. 

However the distinction between these processes depends upon the definition of the 

basic cell of the reciprocal lattice [194]. Both phonons scattering processes are capable 

of reducing the thermal conductivity of the system as the heat-flux of is given by the 

product of the phonon’s energy and group velocity. Therefore as long as a scattering 

event produces a phonon with a lesser or reversed group velocity the thermal 

conductivity of the lattice will be reduced. A fuller discussion of these principles is 

given by Maznev [194]. 

The thermal conductivity itself can be calculated via a number of methods, which can 

be broadly categorised into two approaches. The first approach involves solving the 
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Boltzmann transport equation using lattice dynamics and the other involves measuring 

the thermal conductivity within molecular dynamics simulation. 

The molecular dynamics approaches may be subdivided further into two approaches. 

The first approach is based on non-equilibrium simulations where a temperature 

gradient is imposed and the response measured. The second approach is an equilibrium 

method and relies on obtaining the thermal conductivity the Green-Kubo relations. 

3.2. Calculation of Thermal Conductivity 

3.2.1. The Boltzmann Transport Equation 

The calculation of thermal conductivity via the Boltzmann transport equation is very 

complex and too extensive to cover here. In brief, the finite displacement method is 

used to generate the third-order dynamical matrix. The harmonic phonon frequencies 

(  ) are obtained from the second-order force constants as 

 discussed in Chapter 3.1.1. Additionally, the third-order force constants are used to 

obtain the imaginary part of the phonon self-energy (  ). Next the phonon self-energy 

and the harmonic phonon frequency (  ) are used to calculate lifetimes of the phonons 

(  ), Equation 3.4. 

   
 

   (   
 

Equation 3.4 

It is also assumed that the phonon relaxation time is equivalent to the phonon lifetime 

under the single mode relaxation time approximation (SMRT), Equation 3.5. 

  
        

Equation 3.5 

Finally, the number of unit cells ( ), system volume (  ), mode dependent heat 

capacities (  ), group velocities (  ) and phonon lifetimes (  
    ) are used to calculate 

the thermal conductivity ( ), Equation 3.6. 
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Equation 3.6 

A more complete description of the method is given by Togo et al.[122]. 

3.2.2. The Direct Method 

The direct method has been used extensively to calculate the thermal conductivity of 

various systems [123, 195-198]. The direct method involves defining two regions in the 

simulation cell as reservoirs which have thermostats applied to maintain a temperature 

difference. The use of two thermostatted regions means the system is not in equilibrium, 

and so this method is also known as the Non-Equilibrium Molecular Dynamics 

(NEMD) method. 

The reservoirs are thin layers, periodic in 2D and perpendicular to the X direction of the 

simulation cell. They are positioned half the simulation cell apart in the X direction so 

that they are equally spaced across the periodic boundaries as well, Figure 3.3. 

 

Figure 3.3 Layout of a NEMD simulation cell. Hot slab in red, cold slab in blue. 

The total energy removed and added to the system by the thermostats is monitored and 

is equal to the heat-flux. Then by measuring a temperature profile the thermal 

conductivity can be calculated using Equation 3.7. 

   
 

    ⁄
 

Equation 3.7 
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where   is the heat-flux,    is the temperature difference between the reservoirs and    

is the distance over which the thermal gradient is measured. These types of systems 

must be large to ensure a diffusive regime is reached and avoid ballistic transport of 

phonons between the reservoirs. 

The effect of having hot and cold reservoirs means the phonon mean free path in the X 

direction of the unit cell is limited. Therefore simulations of various lengths are often 

conducted, with the value of thermal conductivity for an infinitely long simulation cell 

extrapolated using Equation 3.8. 

 

  
 

 

  
 

 

 
 

Equation 3.8 

where    is the thermal conductivity for a given simulation cell length,  .   is a 

coefficient independent of simulation cell length and    is the bulk thermal 

conductivity at infinite length. This expression holds well for most materials but for 

some it fails to give reasonable values for thermal conductivity. 

A general problem with direct methods is that of isotropy. For isotropic systems the 

calculations need only be done once. However for anisotropic systems the series of 

calculations must be repeated for each distinct direction. 

Further problems are also introduced by the presence of the reservoirs. In the reservoir 

regions the velocities of the atoms are being constantly adjusted and therefore the 

reservoir acts much like a barrier to the phonons and hence thermal transport. In bulk 

materials this is not so much an issue as the material is periodic over short distances and 

the structure in the region of the reservoir will be repeated elsewhere. However, in 

complex nanostructured systems there are likely to be large infrequent defects, and a 

reservoir placed on these defects will exclude their effect on thermal transport. 

Issues also arise from using thermostats on the reservoirs as the choice of thermostat 

parameters can affect the rate of heat transport. Using a constant heat-flux regime where 

the amount of energy added/removed to the reservoirs per timestep is constant can 

mitigate this problem. 
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In the constant heat-flux direct method it is important that the amount of energy 

removed from the cold reservoir should match the amount of energy added to the hot 

reservoir. This approach requires scaling of all velocities within the reservoir region; a 

simpler approach involves swapping of velocities between the two regions, outlined 

below. 

3.2.2.1. The Reverse Non-Equilibrium Molecular Dynamics (RNEMD) Method 

The reverse non-equilibrium molecular dynamics (RNEMD) method by Müller-Plathe 

[126] is a variant of the direct method which is very similar to the constant heat-flux 

regime as implemented in the standard direct method. The difference of the RNEMD 

method is that it uses kinetic energy swapping between the hottest atom in the cold 

reservoir and the coldest atom in the hot reservoir to generate the temperature gradient. 

Thus the heat-flux between the two reservoirs is equal to the sum of the total energy 

transferred. 

The mechanics of this approach mean that the heat-flux can be finely controlled by 

adjusting how often the kinetic energy swaps are performed. 

The distribution of kinetic energies at the target temperature means that it is usual for 

the hottest atom in the cold reservoir to have more kinetic energy than the coldest atom 

in the hot reservoir. Even if this were not the case the swapping of kinetic energies 

should ensure there is always some overlap between the kinetic energy distributions, 

and hence a small temperature differential is ensured. 

A significant advantage of this method is that the heat-flux is known exactly. The heat-

flux in the direct method is measured and subject to large fluctuations, making the value 

slow to converge. Whereas in the RNEMD method the value to converge is the 

temperature gradient, which is averaged over atoms and time and thus should be faster 

to converge. 

Despite these advantages the RNEMD method still requires calculation of multiple sizes 

and orientations of the same system to obtain reasonable results while the issue of 

reservoir location still remains for large nanostructures. Alternative schemes based on 

similar principles have also been proposed [199]. 
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3.2.3. The Green-Kubo Method 

The thermal conductivity can also be calculated from systems in equilibrium by using 

the Green-Kubo relations [124, 125]. In the Green-Kubo method the heat-flux of the 

system is calculated at intervals and the processed to give the thermal conductivity. The 

advantages are that the system is always in a steady state regime with no artificial 

boundaries and finite size effects are somewhat minimised. 

First the heat-flux of the system is calculated using: 
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Equation 3.9 

where   is the heat-flux,    is the energy of atom  ,    is the velocity vector for atom   

and    is the stress tensor. This may also be expanded to give: 
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Equation 3.10 

and further: 
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Equation 3.11 

where     represents the force and     the separation between atoms   and  . 

A time averaged autocorrelation of the heat-flux is then taken and integrated, yielding a 

value proportional to the thermal conductivity: 
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Equation 3.12 
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where   is the integer number of steps between heat-flux sampling,    is the timestep of 

the simulation,   is the volume of the system,    is Boltzmann’s constant and   is the 

temperature of the system. 

It is important to select the timestep such that the highest frequency vibration in the 

system is accurately reproduced to ensure physical dynamics. Furthermore, the choice 

of heat-flux sampling interval is important as it must accurately capture the highest 

frequency mode which partakes in phonon scattering. 

The Green-Kubo method gives a thermal conductivity tensor as a result, instead of a 

single scalar value. The advantage gained over the direct method is that only one 

calculation is required for any material, as opposed to multiple calculations at different 

systems and lengths and in different directions. The advantage of the tensor output also 

extends to anisotropic materials (such as quartz), extended defects (such as grain 

boundaries) and highly nanostructured materials. 

A drawback of the Green-Kubo method is that long simulations/multiple simulations are 

required to properly sample the ensemble average. It may require tens of ns for the heat-

flux autocorrelation function to converge. Additionally, the point of convergence and 

thus the error may be difficult to identify. 

3.2.3.1. Deciding The Integral Cutoff 

The autocorrelation function for a bulk ionic solid tends to be quite simple. It resembles 

an exponential damped cosine wave, Figure 3.4 and Figure 3.5. 



78 

 

 

Figure 3.4 Heat-flux autocorrelation. 

 

Figure 3.5 Heat-flux autocorrelation (fine detail). 

Indeed, for simple systems fitting the data points to such an expression is possible, with 

the integral then calculated analytically. However for more complex systems this type 

of fitting becomes very difficult.  
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The exponential decay component of the autocorrelation is related to the lifetime of the 

acoustic modes and the sinusoidal component is related to optical phonons that are 

transporting heat locally but not contributing to long range transport. The more complex 

a system is, the more modes must be included to get a reasonable fit. For defective 

systems the fit becomes more difficult still due to the large range of frequencies a defect 

may operate over. 

For the complex systems presented here a numerical integration must be used and 

requires the choice of an integration cutoff. As there will always be some thermal noise 

it is necessary to average over a portion of the integral [200]. The averaging aims to 

remove random noise while preserving the signal underneath. The choice of parameters 

is somewhat arbitrary and difficult to define with this method, and error calculation is 

also difficult [201]. 

An example of a Green-Kubo integral is given in Figure 3.6 for the MgO system 

detailed later in Chapter 4.2.2. The value at each time interval is the thermal 

conductivity should the autocorrelation be integrated only up to that point. 

 

Figure 3.6 Example at 300 K with increasing integration. Example neck regime 

highlighted. 

In this work the method of McGaughey [202] has been used where the thermal 

conductivity integral is averaged over a period called the neck regime. The neck regime 
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occurs when the value for thermal conductivity plateaus and before statistical error 

begins to contribute significantly to the thermal conductivity, Figure 3.6. The start and 

finish of the neck regime itself may also change significantly between materials, 

temperature and nanostructure. For this work, the neck regime has been defined for each 

bulk material independently to simplify analysis, and kept the same for nanostructures 

of the same material. 

3.2.3.2. Green-Kubo Error Analysis 

The error on the thermal conductivity as calculated by the Green-Kubo method is very 

hard to define [203, 204]. To ensure maximum accuracy the thermal conductivity is 

calculated by passing heat-flux values as calculated by LAMMPS (Appendix C) to an 

in-house code (Appendix D) which performs the autocorrelation and integration. This 

code uses the heat-flux values from the entire data set rather than using windowed time-

frames as is done natively in LAMMPS. The advantage gained is that a shifting initial 

timestep can be used in the autocorrelation calculation, boosting accuracy. Additionally, 

the full cross-correlation tensor can be computed, giving access to the diagonal X, Y 

and Z components as well as the off-diagonal values (which should be zero). 

There are several sources of error on both the heat-flux values and originating within the 

method itself. The contributing factors include: 

 Error of autocorrelation point. Each point of the autocorrelation is generated by 

averaging the correlation between a large number of time intervals and so the 

accuracy of this value depends upon the number of time intervals available. 

 The error of integration. The exact calculation of thermal conductivity from the 

autocorrelation requires integration over continuous time. However only discrete 

time is available in molecular dynamics and so errors are present stemming from 

interpolation over the gaps in the data. This work has used a sampling frequency 

of 10 fs and integration of the autocorrelation was performed using a running 

trapezoidal rule. 

 The cut-off time for the integration. The final value of thermal conductivity is 

given by integrating up to a given time where the autocorrelation has completely 

decayed. As the Green-Kubo method relies on sampling the thermal noise of the 

system and relating it to thermal conductivity there is always some noise 
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remaining in the autocorrelation. Thus deciding the point at which the 

autocorrelation has fully decayed is extremely challenging as including values 

after the decay point only serves to add error from random noise. Choosing the 

cut-off point is not simple and varies from temperature to temperature, material 

to material and between different nanostructures/defects. 

The calculation of error is still not simple as each point within the neck regime is 

dependent upon the previous points and influenced by the errors outlined above. 

Therefore a simple standard error cannot be calculated and instead the error in this work 

is represented as the difference between the maximum and minimum values within the 

neck regime. With this approach some representation of the fluctuation in thermal 

conductivity values is retained. 

3.2.3.1. The Green-Kubo Spectrum 

If the Fourier transform of the heat-flux autocorrelation function is taken, a spectrum is 

yielded which relates to the periodic oscillations observable in the heat-flux 

autocorrelation function [202]. 

These oscillations have been shown to arise from a certain subset of optical phonon 

modes at the gamma point of the first Brillouin zone [115]. The subset of allowed 

phonon modes in the Green-Kubo spectrum seems to be related to the symmetry of the 

vibrational mode; modes which are symmetrical do not appear whereas the 

asymmetrical modes do. 

While these optical modes do not transport a significant portion of heat they are still 

capable of interacting with the heat carrying acoustic modes and thus the heat-flux of 

the system [115, 205]. 

3.2.3.2. Serial and Parallel Heat-Flux Collection 

The calculation of the heat-flux autocorrelation requires heat-flux data to be continuous 

as the important property is the strength of the relation between the heat-flux at one time 

and the heat-flux at another time. However, at longer intervals the heat-flux is not 

expected to be strongly correlated and thus the simulation may be divided into several 

different runs and then averaged later. By dividing the simulation into different runs, 

each starting with different velocities, the amount of data available for smaller time 
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intervals will also be reduced. An expression may be derived to predict the number of 

fewer data points available at any given time interval within the autocorrelation by the 

splitting of the calculation across several simulations. 

The set of parallel simulations may be considered a single serial simulation with 

discontinuities in the heat-flux data set. In this pseudo-serial run there will be     

discontinuities in the heat-flux data set. 

The total number of missing data points contributing to the autocorrelation in a set of 

parallel simulations as compared to a serial simulation is a function of the interval 

length and the number of discontinuities. 

At a timestep interval of zero there are no missing data points in a set of parallel 

simulations as compared to a serial simulation as there is no need to cross a 

discontinuity. At a timestep interval of 1 the number of missing data points is   

(     as there will be one missing autocorrelation values per discontinuity. Similarly 

at a timestep interval of 2 timesteps the autocorrelation will have   (     missing 

values in the autocorrelation. The general expression is given by: 

    (     

Equation 3.13 

where    is the number of missing heat-flux data points at point   of the 

autocorrelation and   is the number of parallel simulations. The number of data points 

contributing directly to any autocorrelation point in a sequential simulation can also be 

stated: 

       

Equation 3.14 

where    is the number of data points contributing to the autocorrelation at timestep 

interval   and   is the total number of heat-flux data points in the data set. By dividing 

   by    the fraction of missing values contributing to any autocorrelation point may 

be derived. 

As the fraction of missing data points increases linearly with the autocorrelation interval 

these values remain insignificant well beyond the point of decay for simulations 
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containing several ns of data collection for each parallel simulation. Additionally the 

additional averaging over phase space may offset the introduced error entirely [206]. 

3.2.4. Finite Size Effects 

Thermal conductivity calculations are particularly susceptible to finite size effects due 

to their reliance on vibrational modes of the system. If the wavelength of the vibration is 

limited (such as by periodic boundary conditions) then the number of heat conducting 

modes is also limited. 

An example of the extreme case is a single particle in a periodic box. As there is a 

single particle in the primitive unit cell and the number of vibrational modes is     , 

no vibrational modes are present. Acoustic modes are technically present in the form of 

lattice translations, however their frequency is imaginary. Clearly the thermal 

conductivity of such a system makes no sense as heat cannot be transported internally. 

It is by expanding the simulation cell for the system that vibrational modes become 

accessible. These may be acoustic or optical, which may or may not interact with the 

acoustic modes. Figure 3.7 shows various simulation cell sizes and their respective 

lowest frequency optical mode. Note that expansion of the cell may lose modes allowed 

in smaller systems (e.g. lowest frequency mode in a x2 expansion in the x3 expansion). 
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Figure 3.7 The lowest frequency allowed optical modes in different simulation cell 

expansions. Note that the wave of wavelength 2 is forbidden in the x3 expansion of the 

cell and likewise the wave of wavelength 3 is forbidden in the x4 expansion of the cell. 

The complex interaction of phonons in a small simulation cell can lead to spurious 

effects where acoustic phonons do not scatter before crossing a region they have only 

recently passed. The effect may result in constructive or destructive interference 

depending on the size of the simulation cell and the wavelength of the phonons. 

Finite size effects in defective materials are less important than in their bulk 

counterparts. The scattering centres introduced by the defects lead to a much shorter 

phonon mean free path and thus the limited size of the simulation may become less of 

an issue. However different defects interact or scatter phonons to different degrees, 

meaning some finite size effects may still remain. 

3.2.4.1. BTE Methods 

BTE methods employing lattice dynamics calculations are most susceptible to 

neglecting longer wavelength phonons due to the large memory requirements of the 

dynamical matrix, and thus small simulation cells. The problem of incommensurate 

waves outlined in Figure 3.7 is also present but may be compensated for by using 

multiple simulation cells of different sizes to better to describe the first Brillouin zone; 



85 

 

however this leads to the risk of small simulation cells and thus spurious force 

constants. 

3.2.4.2. Direct Methods 

Finite size effects are most important in direct method simulations where the 

temperature gradient is sustained over a finite distance. The distance between the two 

reservoir regions acts to limit the allowed wavelength of the phonons and thus multiple 

simulations are often required. The calculated thermal conductivity of these systems is 

then extrapolated to infinite length. 

3.2.4.3. Green-Kubo Method 

Green-Kubo calculations are performed at equilibrium and the lack of reservoirs allows 

acoustic phonons to pass through the system multiple times before scattering, thus 

reducing the problem of finite size. However, the maximum allowed wavelength of a 

phonon is still limited by periodic boundary conditions and interference is now possible. 

Therefore, convergence of the thermal conductivity with respect to system size must 

still be ensured.   
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4. The Effect of Nanostructuring on the Thermal 

Conductivity of Magnesium Oxide (MgO) 

The aim of the work in this chapter is to apply potential based techniques to calculate 

the thermal conductivity of bulk MgO via the Green-Kubo method and investigate the 

effect of extended defects and nanostructures. These systems are expected to give a 

significant reduction in the thermal conductivity which depends upon the structure of 

the boundary and nanostructure. 

Before presenting the results, a brief overview of MgO is given discussing the 

importance of MgO as a material and why its thermal conductivity is studied. Previous 

computational work on the thermal conductivity of MgO is also discussed. Throughout 

this work thermal conductivity is used to refer specifically to lattice thermal 

conductivity, excluding electronic and radiative contributions. 

4.1. MgO Overview 

Magnesium oxide (MgO) is one of the most abundant materials on the planet and 

comprises a significant portion of the earth’s lower mantle [207, 208]. In this context 

MgO is also known as periclase and when in conjunction with iron, ferropericlase. As 

this material exists deep in the earth’s mantle it is subject to extreme temperature and 

pressure conditions. These conditions are difficult to access experimentally but can be 

simulated relatively easily. 

In addition to being important geochemically, MgO and other binary metal oxides have 

found many uses in industrial applications such as in ceramics and in refractory 

materials [209-211] and as a potential component of immobilisation matrices for 

nuclear fuels [212, 213]. Many of these applications involve high temperature 

conditions and can benefit from a greater understanding of the thermal transport in these 

materials. 

MgO is a simple binary oxide compound with the rocksalt structure. The ionic nature of 

bonding in MgO and its simple structure means that thermal transport processes and the 

effect of defects can be understood more easily than in systems with complex structures 

and bonding. Some materials structurally similar to MgO are NiO, FeO, MnO and CoO, 
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which are of interest as possible thermoelectric materials [214], as they contain 

relatively cheap transition metal cations. Thus, MgO is a good model system. 

Previous work has been performed on MgO, both experimentally and computationally. 

The thermal conductivity of MgO has been measured experimentally and has given 

fairly consistent results [215-217]. The calculation of thermal conductivity 

computationally is somewhat more challenging due to many factors such as simulation 

size, timescale and most importantly accurate representation of interactions. Despite 

these challenges, the thermal conductivity of MgO has been calculated using several 

different techniques. 

Ab initio techniques derive the interatomic interactions from first principles calculations 

on the electronic structure. These types of calculations are computationally expensive 

and so most often use lattice dynamics to solve the Boltzmann transport equation [121, 

122, 218] using very small simulation cells. Other approaches to calculate the thermal 

conductivity using ab initio methods have also been tried. Ab initio non-equilibrium 

molecular dynamics (NEMD) simulations have also been used to calculate the thermal 

conductivity of MgO and produced a good match to experimental values [219]. Hybrid 

approaches using data from both ab initio molecular dynamics and ab initio lattice 

dynamics have also been demonstrated [220]. 

Classical modelling has also been successfully applied to MgO as the simple ionic 

interactions can be well described by pair potentials. There are many potential models 

available [127, 145, 221, 222] which have been applied to calculate many bulk and 

defect properties [165, 222, 223]. However, care must be taken when selecting a 

potential model for calculation of the thermal conductivity as the anharmonic properties 

of the potential [192] have a significant effect, meaning that it is important for the 

potential model to be accurate away from equilibrium. 

To date, there have been relatively few studies calculating the thermal conductivity of 

MgO due to the long time and length scales required to achieve a converged and 

accurate result. Despite these problems, some work has been done to calculate the 

thermal conductivity of MgO using computational methods. Shukla et al. [127] used the 

NEMD method to calculate the thermal conductivity of both bulk and polycrystalline 

MgO to assess its possible inclusion with other materials as an inert matrix for nuclear 

fuels. The high thermal conductivity of MgO is appealing in these circumstances but it 
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must be mixed with other materials to reduce the solubility of the matrix in water [212, 

213]. The same study also demonstrated an order of magnitude reduction in thermal 

conductivity when a polycrystalline sample of MgO was simulated. However, the 

polycrystalline system studied was a simple approximation constructed from a 

collection of hexagonal grains, infinite in one direction and tiling in the other two. 

Within each grain the bulk MgO material was randomly orientated around the {001} 

axis, meaning the boundaries formed are likely far from the most energetically 

favourable. 

Thus a more systematic study of the effect of different grain boundaries on the thermal 

conductivity is required. By studying individual boundaries more information can be 

gained about the phonon scattering mechanisms at a specific interface. This knowledge 

can then be used to generate materials with desirable thermal characteristics. 

The potential model used in this work for MgO was developed by Shukla et al. [127] 

and was chosen as it was specifically designed for accurate thermal conductivity 

calculations. The model has been fitted against the structure, lattice parameter and 

thermal expansion. As this model is rigid ion, there may be some small discrepancies 

from experiment due to the non-polarisable nature of the ions. 

Initially, the bulk properties of MgO will be calculated and compared against 

experimental values, Chapter 4.2. This is important as both the potential model and the 

approaches used to calculate thermal conductivity in this work must be verified. 

Additional information will also be derived to explain the scattering mechanism in bulk 

MgO. 

The work will then be extended to study two different grain boundary systems in 

Chapter 4.3. The two systems are expected to scatter phonons differently due to their 

different structures and whether the difference in scattering mechanism leads to 

significantly different thermal conductivities will be examined. 

The same methods are finally applied to different complex nanostructures in Chapter 

4.4. The nanostructures used in this work originate from Sayle et al. [224] and were 

built by positioning molten MgO on crystallographic sites and then allowing them to 

cool and form complex hierarchical nanostructures. This method is known as 

amorphisation and recrystallisation.  
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By using this hierarchical approach a more nuanced understanding of the phonon 

scattering in MgO is obtained and can be used to guide the engineering of nanomaterials 

to either enhance or reduce the thermal conductivity. These methods may then be 

applied to more promising thermoelectric materials with similar structure to MgO. 

4.2. Bulk MgO 

MgO has a simple face-centred cubic structure with the space group    ̅ . Both 

magnesium and oxygen atoms within the lattice are 6-fold coordinated. The calculated 

lattice parameter and independent elastic constants have been calculated using the 

potential model of Shukla et al. [127] using METADISE [165] and are compared to 

experiment in Table 4.1. 

Property Calculated Experiment % Difference 

a (Å) 4.20 4.21 -0.24 

c11 (GPa) 279.90 298.96 -6.37 

c12 (GPa) 128.32 96.42 33.08 

c44 (GPa) 128.32 157.13 -18.34 

Table 4.1 Calculated and experimental [225, 226] structural properties of MgO. 

Some deviation from experimental values is expected due to the finite temperature at 

which experiments are performed, whereas energy minimisation gives the values at 

effectively zero Kelvin (excluding even zero-point motion). The lattice parameter and 

c11 elastic constant are reproduced well but the c12 and c44 elastic constants deviate from 

experimental values. This deviation is a well-known artefact of rigid-ion pair potentials 

in the rocksalt structure and is caused by the Cauchy condition [227]. 

The Cauchy condition arises from the high symmetry found in some materials. For the 

Cauchy condition to apply the material must be of cubic symmetry, there is no initial 

stress, forces must be central and all atoms must be at a centre of symmetry. The reason 

this does not arise experimentally is that the magnesium oxygen interaction is not 

central due to the polarisability of the species, whereas the potential model here is rigid-

ion. A more complete discussion may be found in Kittel [135]. 
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Despite the limitations imposed by the Cauchy condition, the c12 and c44 lattice 

constants are still acceptable as their value falls between those of the experimental c12 

and c44 elastic constants. The elastic constants are an important property for a potential 

model to reproduce well as they are dependent on the curvature of the potential 

interactions which will have a significant impact on the thermal expansion and 

conductivity. 

As the property of interest in this work (thermal conductivity) is only available at finite 

temperatures, having static lattice properties is not sufficient to determine the 

applicability of the potential model. However, as a full thermal conductivity calculation 

is computationally expensive, it is wise to explore other properties, which arise from 

anharmonic interactions and which converge faster before proceeding with a full 

thermal conductivity calculation. The thermal expansion is a good measure of the 

potential models applicability as it derives directly from anharmonic phonon 

interactions [127, 228] and is relatively quick to calculate from molecular dynamics 

simulations. 

4.2.1. Thermal Expansion 

The thermal expansion of bulk MgO was calculated using molecular dynamics 

simulations under an NPT ensemble (using a Nosé–Hoover thermostat and barostat) 

within the LAMMPS [166] simulation code. A simulation cell of 10 x 10 x 10 eight 

atom cubic unit cells (approximately 42 Å along each side) was prepared, containing a 

total of 8,000 atoms. The a, b and c lattice vectors were allowed to vary independently 

while the angles α, β and γ were held fixed at 90°. Six different temperatures (300 K, 

500 K, 700 K, 900 K, 1100 K and 1300 K) were simulated for 0.5 ns and the lattice 

vectors recorded every 10 timesteps. A timestep of 1.0 fs was used due to the potential 

model being rigid-ion. The simulation was deemed to converge if the energy 

fluctuations were consistently less than 0.1% of the average energy value and the 

volume fluctuations were less than 0.5% of the average volume; these criteria are 

applied to all NPT simulations in all materials. The converged lattice constant of MgO 

is plotted alongside experimental data in Figure 4.1. 
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Figure 4.1 Thermal expansion of a MgO supercell using the potential model of Shukla 

et al. [127] compared to experiments [229, 230]. 

The experimental values of Dubrovinsky et al. [229] and Fiquet et al. [230] were both 

obtained using X-Ray experiments. The values of Dubrovinsky et al. were estimated to 

have an error of less than 5x10
-4

 Å at the temperatures presented here. The work of 

Fiquet et al. demonstrated very similar results across many previous studies using 

multiple techniques. 

The thermal expansion is reproduced very well by the potential model and matches 

experimental data very closely; the lattice parameter is within 1% of the experimental 

values at all temperatures. Additionally the thermal expansion coefficients match 

reasonably well over the temperature range of 300 K to 1300 K. A linear fit is made to 

the values within the range of interest for all data sets. The gradient of the fit may then 

be used to compare the calculated expansion of MgO. The calculated value of the 

gradient in this work is 1.38x10
-5

 K
-1

 which compares favourably with the values of 

1.95x10
-5

 K
-1

 for Dubrovinsky et al. and 1.66x10
-5

 K
-1

 for Fiquet et al.. 

As the thermal expansion is reproduced well by the potential model, it can be concluded 

that the anharmonic interactions are reasonable and that an equally reasonable thermal 

conductivity may be produced. 
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4.2.2. Thermal Conductivity 

The thermal conductivity of a material may be calculated in many ways. Two very 

different approaches to calculating the thermal conductivity are via molecular dynamics 

and lattice dynamics. The Green-Kubo method calculates the thermal conductivity from 

heat-flux data generated via long timescale molecular dynamics simulations. The lattice 

dynamics method utilises the Boltzmann transport equation (BTE) to calculate the 

thermal conductivity from the dynamical matrix obtained via the finite displacement 

method [122]. 

The results from the Green-Kubo calculations and the lattice dynamics calculations are 

not expected to be identical. Where one method fails the other excels. Green-Kubo 

calculations include all anharmonic terms whereas the lattice dynamics calculations tend 

only to include up to the third-order force constants. While lattice dynamics calculations 

are in principle exact within the approximations made, in Green-Kubo calculations it is 

more difficult to know when a converged result is achieved (Chapter 3.2.3.1) although 

there are methods available to assist in the determination [202]. 

Thus the Green-Kubo and lattice dynamics methods are expected to give complimentary 

information. Furthermore lattice dynamics calculations are able to give additional 

information on the phonon modes contributing to scattering. 

4.2.2.1. Green-Kubo Results 

Molecular dynamics simulations to calculate thermal conductivity via the Green-Kubo 

method were performed under the NVT ensemble (with a Nosé–Hoover thermostat) to 

better control the temperature fluctuations in the finite sized cell. Early tests showed no 

significant deviation in thermal conductivity from an NVE ensemble. The timestep used 

was 1.0 fs. 

The simulation cell used was the same as that for the thermal expansion calculation 

(cubic supercell of 8,000 atoms), with the lattice vectors set to their average at each 

temperature. A run of 0.5 ns of NVT equilibration was conducted to ensure thorough 

thermalisation of the system and that the initial velocities had no spurious effect on the 

final result. Subsequently, heat-flux data was collected for 10 ns with the heat-flux 

being sampled every 10 fs. Due to the isotropic nature of magnesium oxide, further 

averaging can also be done over the three independent directions X, Y and Z. 
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As discussed in Chapter 3.2.3, the thermal conductivity will be extracted from the 

integrated heat-flux autocorrelation by selecting a convergence region. This region is 

known as the neck regime and has been chosen so that the maximum fluctuation within 

the region is as small as possible. Figure 4.2 gives a plot of the average thermal 

conductivity with fluctuations as a function of possible neck regime for the 500 K 

simulation. Each possible regime spans 5,000 fs and each point is set to be at the 

midpoint of the regime. 

 

Figure 4.2 The average value of thermal conductivity at 500 K within different possible 

neck regimes. Each data point is set to the midpoint of a 5,000 fs window. Error bars 

represent the size of the fluctuation. 

The neck regime for this temperature is found to be between 20,000 and 25,000 fs as the 

size of the fluctuations is minimised. The neck regime remains valid as long as the 

autocorrelation lifetime is the same length or shorter, additionally significant deviations 

should not arise at longer timescales. These requirements are fulfilled at higher 

temperatures and in nanostructured materials. Thus the neck regime is kept fixed for all 

MgO simulations across temperatures and nanostructures. Neck regimes for other 

materials are likewise chosen based on the neck regime of the lowest temperature bulk 

simulation. 

While this approach simplifies analysis greatly, it must be applied carefully to avoid 

spurious values appearing in other systems; however the thermal conductivity integral at 
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lower temperatures tends to have larger fluctuations than at higher temperatures and so 

having a non-optimal neck regime at higher temperatures causes less difficulties. 

When this approach is used across all temperatures for bulk MgO a smooth curve for 

the thermal conductivity is obtained, Figure 4.3. The smooth transition from one value 

to another supports the approach outlined above as there is no significant deviation from 

the expected inverse power law behaviour. 

 

Figure 4.3 Calculated [127] and experimental [215-217] thermal conductivity of bulk 

MgO. 

The thermal conductivity as calculated by the Green-Kubo method displays the 

expected inverse power law behaviour [231] characteristic of materials with dominating 

phonon-phonon processes. The values themselves match almost exactly with the values 

previously calculated by Shukla et al. [127] using the same potential model but using 

the NEMD approach. The values calculated in this work give a good match at low and 

high temperatures but deviate slightly between 900 K and 1100 K. The deviation may 

stem either from larger finite size effects found in the NEMD method or from the longer 

convergence time required in the Green-Kubo method. 

The experimental work of Slifka et al. [216] used samples with 93% theoretical density 

and a grain size of 25 μm. Three MgO samples of various sizes were used in the 

experiment to allow the effect of interfacial resistance of the equipment to be factored 
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out. The different sized samples were combined in various ways to give the final values. 

Combination a) used the thermal conductivity from the 2.59 mm and 5.04 mm samples, 

b) used the 2.59 mm and 7.64mm samples while c) used data from the 5.04 mm and 

7.64 mm samples. The thermal conductivity for each of these approaches was almost 

identical and so only the a) combination has been presented. 

Deviations in the experimental results of Slifka et al. found at ~1300 K are noted as 

likely arising from failure of the experimental apparatus. The calculated thermal 

conductivity using the potential model is higher than these values as may be expected 

due to the perfect 100% density within the simulation. 

The experimental work of Hofmeister [217] gave better agreement to calculated values 

as a sample of 96% theoretical density was used and thus the measured thermal 

conductivity values are higher and closer to the values calculated from simulation. This 

result also shows the difficulty with comparing directly with experiment, as a 3% 

change in density resulted in ~25% difference in the measured values at 500 K for 

experimental values. In simulations the system is a 100% perfectly dense infinite single 

crystal and it is thus expected that the calculated thermal conductivity will always be 

higher than experimental values. 

The overall trend of the thermal conductivity values calculated from simulation matches 

very well to the standardised data from the TPRC Data Series [215] and the work of 

Hofmeister [217]. This similarity indicates that the response to temperature is being 

reproduced very well by the potential model and thus indicating that the phonon-phonon 

scattering processes are being well represented. 

Additional information can be gained from the molecular dynamics simulations by 

applying a Fourier transform to the autocorrelation of the heat-flux. The frequencies 

obtained are of the optical phonon modes which interact with the heat-flux; these modes 

transport thermal energy locally but may also interact with the acoustic phonon modes 

which transport heat non-locally. 

The Fourier transform of the heat-flux is called by the name Green-Kubo spectrum 

within this work but is known elsewhere as the spectrum of the heat-flux autocorrelation 

function (HFACF) or the spectrum of the heat-current autocorrelation function 

(HCACF). The Green-Kubo spectra for all temperatures are presented in Figure 4.4. 
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Figure 4.4 The Fourier transform of the heat-flux autocorrelation function for each 

temperature (Green-Kubo spectra). 

It is clear from the Green-Kubo spectra that there is a single optical phonon mode with a 

frequency slightly less than 10 THz which reduces in frequency as temperature 

increases. The lowering of the frequency is partially due to the expansion of the lattice 

as the temperature increases, making the wavelength of the phonon longer and hence the 

frequency lower. The frequency shift also partially originates from the anharmonicity of 

the potential. 

As the frequency of the mode is reduced, the probability of scattering an acoustic 

phonon increases due to the Bose-Einstein distribution (i.e. a greater population of 

acoustic phonons at lower frequency). As the scattering of acoustic phonons is 

increased, less thermal energy is being transported and thus the thermal conductivity 

decreases. A more thorough discussion is given by Dove [192]. 

The shape of the peaks may be understood in terms of the lifetime of the phonon mode. 

The autocorrelation function can be considered as a sine function (due to the optical 

modes) multiplied by an exponential decay (due to the acoustic modes). The peaks in 

the Green-Kubo spectra are thus Lorentzian (due to the exponential decay), centred at 

the frequency of the sine function. As the decay of the exponential function becomes 

shorter-lived the width of the Lorentzian increases. Thus, the width of the peaks in the 
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spectra are inversely proportional to the lifetime of the phonon modes [192]. The 

broadening of the peaks with increasing temperature is thus due to a reduction in the 

lifetime of the associated phonon mode. 

The motion of atoms associated with the modes appearing in the Green-Kubo spectrum 

cannot be easily obtained directly but may be derived from lattice dynamics calculations 

as will be demonstrated later in the next section (Chapter 4.2.2.2). 

In the next section the thermal conductivity of magnesium oxide is calculated using the 

same potential model but an alternative approach. The results from the two methods can 

then be compared to highlight the advantages and deficiencies of each. 

4.2.2.2. Lattice Dynamics Results 

Calculation of the lattice thermal conductivity can also be performed using lattice 

dynamics techniques. Phono3py [121, 122, 218] uses small finite displacements to 

calculate phonon-phonon interactions lifetimes and then uses the relaxation time 

approximation (RTA) within the Boltzmann transport equation (BTE) to calculate the 

thermal conductivity. 

The forces used to calculate the phonon-phonon interactions were calculated using the 

METADISE code [165] and used the same potential model as in the Green-Kubo 

calculations. Thus, convergence with the Green-Kubo calculations for a suitably sized 

supercell and q-point sampling mesh is expected. 

The following calculations were performed on a 3 x 3 x 3 expansion of the cubic unit 

cell of magnesium oxide (a total of 216 atoms). Larger supercells were attempted but 

problems were encountered involving excessive memory requirements exceeding the 

limitations of the machine. The convergence of q-points was tested and plotted in 

Figure 4.5 for some temperatures. 
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Figure 4.5 Convergence of thermal conductivity for number of q-points (per 

dimension). 

The dynamical matrix as generated from the supercell gives the force constants at a 

number of points within the first Brillouin zone. A Fourier interpolation to these points 

can theoretically give the force constants at any point within the first Brillouin zone if 

the force constants vary smoothly. By sampling these q-points for the thermal 

conductivity calculation as opposed to just the explicitly calculated points a more exact 

thermal conductivity can be obtained, though care must be taken to ensure the force 

constants vary smoothly over the Brillouin zone (a large enough supercell is used). 

Convergence with respect to q-points occurred in the region of 6 q-points per dimension 

for this system. 

The converged BTE results for all temperatures are compared against both the Green-

Kubo and experimental results are plotted in Figure 4.6 (only one experimental result 

shown for clarity). 
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Figure 4.6 Calculated thermal conductivity of bulk magnesium oxide via the Green-

Kubo and lattice dynamics methods compared with experiment. 

The thermal conductivity values as calculated via lattice dynamics are shifted to higher 

values than those calculated using the Green-Kubo method, but the overall trend 

remains the same. The upwards shift of thermal conductivity values as given by lattice 

dynamics calculation may have many sources. The simulation cell used was not 

adjusted for volume expansion and the fourth-order and above anharmonic terms are not 

computed, meaning the frequencies of the phonon modes do not change as a function of 

temperature. 

Another possible source of the shift is the small supercell size used in the calculation, 

meaning longer wavelength acoustic phonons are by necessity excluded, reducing 

acoustic-acoustic scattering. These problems are not apparent in the Green-Kubo 

calculation where all anharmonic terms are included and much longer wavelength 

phonons are allowed. 

Lattice dynamics calculations can also be used to generate the phonon density of states 

(DOS) which should show some similarity to the Green-Kubo spectrum as the thermal 

conductivity is dependent upon phonon-phonon scattering. 



100 

 

The calculation of the phonon DOS (gamma point) was performed on the primitive two 

atom MgO unit cell with the lattice vectors were a=b=c=2.97 Å and α=β=γ=60° using 

the Phonopy code [121]. 

Performing the calculation at the gamma point means the modes visible are strictly 

optical modes and thus will not transport significant portions of heat. However, these 

modes may still scatter acoustic modes and alter the heat-flux [205].  

The phonon DOS spectrum of magnesium oxide is displayed in Figure 4.7. The 

potential model used for the calculation was the same as for the Green-Kubo and BTE 

calculations. 

 

Figure 4.7 Phonon density of states (DOS) for magnesium oxide at the gamma point. 

The phonon DOS shows three identical modes at ~10 THz corresponding to optical 

phonons in each of the three lattice directions. The equivalence of the frequencies is 

expected due to the isotropic nature of magnesium oxide. An additional set of three 

vibrational modes are also present at 0 THz corresponding to the translation of the entire 

lattice, these have been removed for clarity from all phonon DOS spectra. 

The atomic motions corresponding to the phonon mode of each frequency in the phonon 

DOS may be obtained by examining the eigenvectors and mapping them to each atom. 

The result for bulk magnesium oxide reveals the motion at ~10 THz is that of the 
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magnesium and oxygen sublattices being displaced relative to each other. This type of 

motion may be considered a simple rattling motion which is often theorised to reduce 

thermal conductivity, especially when involving high mass substitutional defects or 

guest species [232]. The motion of the ~10 THz mode is displayed schematically in 

Figure 4.8. 

 

Figure 4.8 Schematic of the vibrational mode at 10 THz in a single layer of the MgO 

lattice. 

The lattice dynamics phonon DOS can be compared with those obtained from the 

Green-Kubo calculations, Figure 4.9. 

 

Figure 4.9 Lattice dynamics phonon DOS and Green-Kubo spectra of bulk MgO. 
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The frequency as calculated from lattice dynamics matches extremely well with those as 

calculated from the Green-Kubo method. A shift to higher frequency is observed and is 

expected due to the lattice dynamics calculation being performed at effectively zero 

Kelvin. This effect has been noted previously in the literature as arising from 

anharmonic effects at finite temperature [115]. 

The thermal conductivity of magnesium oxide has been calculated over a range of 

temperatures by both the Green-Kubo method and lattice dynamics employing the BTE. 

The BTE over predicts the thermal conductivity of magnesium oxide at all temperatures 

but has highlighted deficiencies in the BTE method for magnesium oxide. Lattice 

dynamics calculations also reveal which optical phonons can contribute to scattering 

and their atomic motions within the material. 

By applying these methods to more complex systems, an enhanced understanding of 

scattering processes may be obtained. Thus in the next section two different grain 

boundary systems are studied using the Green-Kubo method with additional 

information coming from lattice dynamics calculations. 

4.3. MgO Grain Boundaries 

There are many types of grain boundaries in oxide materials, however this study only 

accounts for two types, mirror tilt and twist. A mirror tilt boundary is constructed by 

having two grains expressing the same surface joining together. A twist boundary is 

constructed by rotating the mirrored surface to allow the formation of the boundary. 

These two boundary types will thus have significantly different environments due to the 

mismatch generated by the adjoining grains and may show different behaviours with 

respect to thermal conductivity. 

This work explores the Σ5{210}/[001]θ=26.57° tilt boundary and the {100}36.87° twist 

boundary (for simplicity referred to as Σ5{210} and {100}twist respectively), which are 

both constructed using the methodology outlined in Chapter 2.5.1.4. Both grain 

boundary systems have an inter-boundary distance of approximately 16 Å. 

The thermal conductivity of these systems is calculated using the Green-Kubo method 

with additional information again being derived using lattice dynamics. This simple 
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study acts as a proof of principle in distinguishing the effect of two very different grain 

boundary systems on the thermal conductivity. 

4.3.1. Mirror Tilt Grain Boundary 

The Σ5{210} tilt grain boundary is fairly simple and representative of many other 

magnesium oxide tilt grain boundaries [165]. The Σ5{210} boundary can be considered 

as two stepped surfaces (the {210} surfaces) coming together to form a reduced density 

layer, Figure 4.10. 

 

Figure 4.10 The energy minimised Σ5{210} boundary. 

Previous work by Watson et al. found the Σ5{210} boundary to be the most stable of 

the family of MgO grain boundaries [165] with the exception of the {110} boundary 

which may be considered a special case of a stacking fault grain boundary. The 

formation energy of this boundary has been calculated to be 1.33 Jm
-2

. The potential 

model of Lewis and Catlow [145] has also been used to calculate the formation energy 

of this system and has given a value of 1.73 Jm
-2

. 

The simulation cell used for the Green-Kubo calculation comprised of 1,280 atoms in a 

periodic cell of approximately 32 Å x 21 Å x 19 Å with a 500 K density ~94% that of 

bulk magnesium oxide. The simulation cell contains two identical Σ5{210} mirror tilt 

boundaries lying parallel to the Y-Z plane and perpendicular to the X axis, running in 

two opposite directions. The distance between the boundaries is much smaller than in a 
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real system and should have a significant effect on thermal conductivity by limiting 

allowed phonon frequencies. 

As before the simulation cells underwent 0.5 ns of NPT equilibration to obtain the 

averaged lattice vectors. A further 0.5 ns of NVT equilibration was then conducted to 

ensure thorough thermalisation of the system. Data were collected as three sets of 5 ns 

NVT simulations, whose autocorrelations are then averaged; this approach differs from 

the bulk calculation but will only have a significant effect on very large sample 

intervals, where the correlation should be negligible anyway. Additionally, the 

convergence is improved by sampling a more varied region of phase space [206]. The 

additional 5 ns of simulation time were added to improve convergence of the boundaries 

due to their lower thermal conductivities. Despite the increased simulation time the 300 

K simulation was dropped due to extremely poor convergence, as may have been 

expected from observations of the error from the bulk calculations. 

The average thermal conductivity at each temperature is calculated from the averaged 

integrals and is displayed in Figure 4.11. 

 

Figure 4.11 Average thermal conductivity of the Σ5{210} tilt boundary. 

Initial observations reveal the thermal conductivity is more than halved by introduction 

of grain boundaries at intervals of ~16 Å. The decrease in thermal conductivity with 

temperature is now less steep. 
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In the Σ5{210} system the X direction corresponds to the direction perpendicular to the 

boundary plane, the Y direction corresponds to the direction of the pipes in the 

boundary and the Z direction corresponds to the direction across the pipes. These three 

directions are structurally different at the boundary and so a difference in thermal 

conductivity is expected. The thermal conductivities for these three directions are 

presented in Figure 4.12. 

 

Figure 4.12 Directional thermal conductivities of the Σ5{210} tilt boundary. 

The inverse power law trend usually observed [231] in the bulk is no longer clear as the 

primary scattering mechanism is no longer phonon-phonon and the system now contains 

defects which also scatter phonons. 

As expected the thermal conductivity in the X direction, which goes through the 

boundary, is the lowest at ~4 W/(m.K) and shows effectively no sensitivity to 

temperature. The insensitivity to temperature likely results from the domination of 

phonon-boundary scattering up to 900 K and then increasing contribution of phonon-

phonon scattering at higher temperatures. The Y and Z direction are also reduced due to 

oblique scattering off the boundaries, i.e. scattering of phonons with some X component 

as well as other directions. The Z direction also has a noticeable behaviour change at 

900 K where the gradient of the thermal conductivity changes. The Z direction may also 

have a change in trend but it is less clear. 
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The Green-Kubo spectra may also reveal how the scattering mode of bulk magnesium 

oxide has changed. The spectra for the X, Y and Z direction are plotted in Figure 4.13, 

Figure 4.14and Figure 4.15. 

 

Figure 4.13 Σ5{210} tilt boundary Green-Kubo spectra in the X direction. 

 

Figure 4.14 Σ5{210} tilt boundary Green-Kubo spectra, Y direction. 
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Figure 4.15 Σ5{210} tilt boundary Green-Kubo spectra, Z direction. 

The most striking change to the spectra from the bulk is the very large number of 

additional modes now present. While the bulk spectra only had a single mode 

corresponding to vibration of the magnesium/oxygen sublattices, the grain boundary 

spectra shows many more modes available for interaction with the acoustic phonons. 

The increased number of modes results from the different environments created by the 

introduction of the grain boundary, so although the primary scattering mechanism is 

now phonon-boundary, it is via boundary vibrational modes that this occurs. 

Some unusual features are presented by these spectra. There is an extremely large 

additional mode in the X direction at ~11.5 THz which is equal in magnitude to the 

primary 10 THz peak. A similar, but smaller peak appears in the Y direction at ~10.7 

THz. The Z direction does not show an additional peak of very large magnitude but 

does have very many smaller peaks and the main peak has been shifted to ~9 THz. 

It is also noted that the usual shift to lower frequencies and broadening of the modes is 

occurring with increased temperature. However, the additional boundary modes become 

less distinct at higher temperatures, leaving only the optical mode inherent in the bulk 

material. This type of behaviour indicates a return to bulk-like scattering at higher 

temperatures as more phonons scatter via bulk optical modes before encountering 
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boundary based optical modes. However, the thermal conductivity remains lower than 

the bulk and so some effect of the grain boundary remains. 

The phonon DOS for the Σ5{210} mirror tilt boundary can be calculated using lattice 

dynamics methods implemented in the Phonopy code [121] to better analyse the modes 

appearing in the Green-Kubo calculation. The phonon DOS was computed at the 

gamma point and used the smallest symmetry reduced representation of the cell possible 

(128 atom orthorhombic cell of a=32.05 Å, b=4.16 Å and c=9.49 Å). The total phonon 

DOS is displayed in Figure 4.16 (the peak centred at 0 THz is a set of three translational 

modes). 

 

Figure 4.16 Σ5{210} tilt phonon DOS. 

It is immediately clear that the phonon DOS is much more complex for the Σ5{210} tilt 

boundary than the bulk material, although a series of strong mode are still present in the 

region of ~10 THz. It is possible to simplify the interpretation of the phonon DOS by 

removing all modes which should not appear in the Green-Kubo spectrum. 

The simplest way of removing those modes which do not appear in the Green-Kubo 

spectrum is to sum the non-mass-weighted eigenvectors produced for each frequency by 

the lattice dynamics calculation. Any mode that has a non-zero sum of non-mass-

weighted eigenvectors is asymmetric and should therefore interact with the heat-flux 

and appear in the Green-Kubo spectra.  
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While not a rigorous treatment, this simple analysis makes it very easy to identify which 

modes will interact with the acoustic modes of the system. A more rigorous analysis 

method is given by Landry et al. [115] in “Complex superlattice unit cell designs for 

reduced thermal conductivity”, Equation A13.  

In practice, a lower bound cutoff of 0.1 (dimensionless units) is used on the sum of non-

mass-weighted eigenvectors in each direction so that only the most significant modes 

are presented. A cutoff value of 0.1 will be used for all MgO calculations for 

consistency. 

An additional benefit is that this type of analysis gives directionally independent 

spectra, which can be useful for complex defective structures. Once the participating 

modes have been isolated, a Gaussian distribution is applied for easier comparison and 

is meant only to serve as a guide to the eye, Equation 4.1. 

 (       ( 
(     

   
) 

Equation 4.1 

  is set to be the magnitude of the sum of eigenvectors for the mode,   is the frequency 

of the mode and   is an arbitrary broadening parameter, set to 0.1 for all modes. The use 

of a Gaussian distribution makes it easier to see where certain modes may overlap and 

become difficult to distinguish. Comparison to the Green-Kubo calculations is now 

possible in a more systematic way; the lowest temperature Green-Kubo calculations 

(500 K in this case) are used for comparison as it should be the closest to the lattice 

dynamics calculations (effectively 0 K). The separate dimension comparisons are 

plotted in Figure 4.17, Figure 4.18 and Figure 4.19. 
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Figure 4.17 Comparison of the Green-Kubo at 500 K and lattice dynamics spectra for 

the Σ5{210} tilt boundary, X direction. 

 

Figure 4.18 Comparison of the Green-Kubo at 500 K and lattice dynamics spectra for 

the Σ5{210} tilt boundary, Y direction. 
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Figure 4.19 Comparison of the Green-Kubo at 500 K and lattice dynamics spectra for 

the Σ5{210} tilt boundary, Z direction. 

Once again the positions of the peaks match with the Green-Kubo calculations with 

only a small shift to higher frequencies associated with the lattice dynamics calculation 

being performed neglecting temperature. The relative heights of the peaks match very 

well in some instances and poorly in others. The mismatch is likely due to more 

complex factors affecting the probability of the optical phonon partaking in scattering 

processes, such as the temperature. Indeed the peaks that show the greatest mismatch 

are the ones that show the greatest temperature dependence in the Green-Kubo spectra. 

Additional peaks appear at greater than 14 THz in the Z direction of the lattice 

dynamics phonon DOS calculation which are not immediately apparent in the Green-

Kubo spectrum. By applying a logarithmic scale to the Green-Kubo spectrum the 

additional peaks become apparent and their frequencies match very well with those in 

the phonon DOS calculation, Figure 4.20. 
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Figure 4.20 Comparison of the Green-Kubo at 500 K and lattice dynamics spectra for 

the Σ5{210} tilt boundary, Z direction. Log10 scale on Green-Kubo intensity. 

The use of a logarithmic scale reveals several peaks that were not originally visible 

(primarily above 13 THz) and most of these peaks now match with those observed in 

the lattice dynamics calculations. A couple of the smaller peaks are also visible at very 

high and at very low frequencies that do not to have a counterpart in the lattice 

dynamics calculation, however this is as a result of the eigenvector cutoff used when 

analysing the phonon DOS and the very low significance of these modes. 

The changes to the modes present in the Green-Kubo spectra can now be understood by 

examining the eigenvectors as applied to the structure as atomic motions. 

The X direction spectrum shows many peaks, the majority of which are difficult to 

categorise due to the complex motion of atoms within the structure. The only mode that 

is easily described is at 9.34 THz where the oxygen atoms in the bulk portions of the 

system are vibrating symmetrically in the Z direction. This motion is almost entirely 

stopped at the boundary except for a small motion of magnesium atoms which makes 

the mode asymmetric in the X direction. 

In the Y direction only four modes are present and are easily categorised. The modes 

appearing at 9.62 and 10.88 THz are complicated and involve motion of all ions within 

the system. The mode appearing at 10.33 THz involves the vibration of ions within the 
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boundary only (within ~5 Å of the core of the boundary). The mode appearing at 11.06 

THz only has vibration of ions outside of the boundary region. This result demonstrates 

how local boundary structure can lead to new boundary modes that effectively scatter 

acoustic phonons. 

The strongest peak in the Z direction displays a significant shift and appears at 9.36 

THz. This is the same mode which is easily categorised in the X direction, except the 

motions of the grains are now concerted in the Z direction. The remaining modes are 

once again too complex to describe. 

4.3.2. Twist Grain Boundaries 

Another type of grain boundary is a twist boundary. Here the second grain is reflected 

across the cutting plane and then rotated about an axis perpendicular to the plane. The 

grain boundary chosen for this work was the {100}36.87° twist boundary which has 

been found to be extremely stable when the density at the boundary is reduced by 

removal of Mg and O atoms which are in close proximity. The 36.87° rotation angle has 

been frequently observed experimentally [234] and is very stable due to the good 

coincidence of the lattice sites across the boundary [235]. The formation energy of this 

system has been calculated as 1.51 Jm
-2
, slightly higher than the Σ5{210} tilt boundary. 

Once again the potential model of Lewis and Catlow has additionally been used to 

calculate the formation energy of this system and gives a value of 2.00 Jm
-2

. 

Figure 4.21 shows the boundary layer to be very thin. Figure 4.22 shows the internal 

structure of the grain boundary. The 8-fold and 4-fold interconnecting rings which 

comprise the core of the boundary are highlighted. 
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Figure 4.21 Side view of the relaxed {100}twist boundary. 

 

Figure 4.22 Internal structure of the relaxed {100}twist boundary plane with 8-fold and 

4-fold rings highlighted. 

The simulation cell used in these calculations was a 2,808 atoms supercell with lattice 

vectors of approximately 37 Å x 28 Å x 28 Å with a 500 K density of ~97% that of bulk 

magnesium oxide. Once again the system contains two grain boundaries running in 

opposite directions to allow for periodic boundaries. The grain boundaries again lie 

perpendicular to the X direction. The simulation procedure was the same as for the 
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Σ5{210} tilt boundary with 0.5 ns NPT equilibration, 0.5 ns NVT equilibration and 

three sets of 5 ns NVT data collection. The average thermal conductivity results for the 

{100}twist boundary are plotted in Figure 4.23. 

 

Figure 4.23 Average thermal conductivity of the {100}twist boundary. 

The thermal conductivity of the {100}twist boundary shows remarkably similar 

reduction in thermal conductivity as the Σ5{210} tilt boundary. However, it is unclear 

whether the contribution from each direction is the same as from the Σ5{210} tilt 

boundary. If some difference is present then it is expected that as the inter-grain 

distance increases the Y and Z direction thermal conductivities will tend towards bulk 

whereas the X direction thermal conductivity will diverge between the two boundary 

types due to structural differences. 

The structure of the {100}twist boundary is generally contained to a single atomic plane 

with only minor disruption to the lattice in adjacent planes. This narrow boundary 

means that the system is more dense than the Σ5{210} tilt boundary and only ~3% less 

dense than the perfect bulk material. Thus a higher thermal conductivity in the X 

direction compared to the Σ5{210} tilt boundary is expected as phonons are more likely 

to transmit some thermal energy across the boundary as it is more dense. The Y and Z 

directions in the {100}twist boundary are identical under symmetry and so it is expected 
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they will have near identical thermal conductivities. The directionally independent 

thermal conductivities are presented in Figure 4.24. 

 

Figure 4.24 Directional thermal conductivities of the {100}twist boundary. 

As was the case for the tilt boundary the X direction (through boundary) yields the 

lowest thermal conductivity. The X direction values also descend almost linearly from 

500 K to 1300 K, showing temperature dependence entirely absent from the tilt 

boundary. The Y and Z directions exhibit almost identical values across the temperature 

range as is expected as the two directions are symmetrically equivalent; this result also 

indicates the real error is much smaller than the fluctuations in the autocorrelation. The 

values in the Y and Z directions are also much reduced from the bulk values but not as 

much as the X direction. 

The spectra from these calculations are plotted in Figure 4.25, Figure 4.26 and Figure 

4.27. 
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Figure 4.25 {100}twist boundary Green-Kubo spectra, X direction. 

 

Figure 4.26 {100}twist boundary Green-Kubo spectra, Y direction. 
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Figure 4.27 {100}twist boundary Green-Kubo spectra, Z direction. 

The Green-Kubo spectra of the twist boundary show significantly less splitting of peaks 

in all directions than the tilt boundary. The fewer extra peaks are a result of fewer 

distinct environments at the boundary due to rotational symmetry as well as very little 

reconstruction in the planes between the boundary and the bulk. The same shift to lower 

frequency with higher temperature is still present. 

The largest peak in the X direction shows a large shift in frequency from ~10 THz to ~8 

THz, similar to the Z direction peak of the tilt boundary. The origins of this shift may 

also be similar, being due to the boundary blocking the vibration. 

Unlike the Σ5{210} tilt boundary, the Y and Z direction spectra for the {100}twist 

boundary are essentially identical due to their relation by symmetry. The main peak has 

remained at ~10 THz as the primary phonon vector is travelling through bulk, with edge 

scattering possibly causing the extra peak at ~9 THz. 

Performing the lattice dynamics analysis (using a 156 atom orthorhombic cell of 

a=34.00 Å and b=c=6.61 Å) shows a reasonable match to the Green-Kubo spectra. The 

results are plotted in Figure 4.28, Figure 4.29 and Figure 4.30. 
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Figure 4.28 Comparison of the Green-Kubo at 500 K and lattice dynamics spectra for 

the {100}twist boundary, X direction. Log10 scale on Green-Kubo intensity. 

 

Figure 4.29 Comparison of the Green-Kubo at 500 K and lattice dynamics spectra for 

the {100}twist boundary, Y direction. Log10 scale on Green-Kubo intensity. 
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Figure 4.30 Comparison of the Green-Kubo at 500 K and lattice dynamics spectra for 

the {100}twist boundary, Z direction. Log10 scale on Green-Kubo intensity. 

The spectra show reasonably good agreement. Where the spectra diverge can be 

explained by temperature effects and possibly the noise remaining in the Green-Kubo 

spectra. Additionally, it becomes clear that the main peak at 8 THz in the X direction is 

in fact a collection of several peaks of similar atomic motions; information which was 

not available from the Green-Kubo calculation alone. 

The large shift of the main peak to lower frequency in the X direction is a result of a 

rotational twisting element now associated with the vibration of the sublattices. The 

origin of this mode is at the boundary where the magnesium/oxygen sublattices in the 

plane vibrates purely in the X direction, but the interactions with the surrounding atoms 

induce an additional Y and Z movement.  

In previous lattice dynamics calculations each vibrational mode was asymmetric in only 

one direction. An unusual result for the twist boundary is that several frequencies now 

contain asymmetry in more than one direction simultaneously. All the frequencies 

showing this behaviour have peaks in both the Y and Z directions and never in the X 

direction. These frequencies with asymmetry in two dimensions are plotted in Figure 

4.31. 
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Figure 4.31 Lattice dynamics frequencies with greatest magnitude in both the Y 

direction and the Z direction for the {100}grain boundary. An identical set is found with 

the directions reversed. 

These additional contributions stem from the symmetry of the structure and partial 

continuity of the structure across the grain boundary. Simply, the motion in the Y 

direction of one grain is instigating a corresponding motion in the Z direction of the 

other grain. Thus the dimensional contributions cannot be completely separated. 

When considering only the X direction the Σ5{210} tilt boundary has a slightly lower 

thermal conductivity across all temperatures than the {100}twist boundary, likely due to 

the lower density of the Σ5{210} boundary (94% compared to 97%). The average 

thermal conductivity for the whole system is however very similar indicating a strong 

influence of the proximity of the boundaries at these sizes. Whether this relationship 

holds at greater inter-boundary distance is unclear. 

The simulations described here have demonstrated that the thermal conductivity is 

significantly reduced in the direction perpendicular to the grain boundary and that the 

structure of the grain boundary also has an impact on the thermal conductivity. The 

thermal conductivity parallel to the grain boundaries is also affected due to confinement 

of the phonons to the core of the grains, leading to a variation in thermal conductivity 

along with grain size. 
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By applying the same techniques to more complex polycrystalline systems the effect of 

different grain boundaries, grain sizes, surfaces and disorder may be elucidated. 

4.4. MgO Nanostructures 

Nanostructures are a promising approach to improve the    of thermoelectric materials 

as they can begin to approach the Phonon-Glass Electron-Crystal (PGEC) idea put forth 

by Slack [21, 44]. By offering many scattering areas mixed with regions of unmodified 

bulk it is possible to tune the scattering to affect primarily phonons and not electrons. 

However, there is some evidence that energy filtering by grain boundaries can also be 

beneficial to the power factor by boosting the Seebeck coefficient [54]. 

Rocksalt type nanostructures have been explored previously [224] and are produced via 

amorphisation and recrystallisation. The nanostructures used in this work were chosen 

to be geometrically distinct to each other. Thus one nanostructure is based on a 

hexagonal superlattice and one on a cubic superlattice. 

The large size and very low density of these systems pose a particular challenge for 

molecular dynamics simulation. As the LAMMPS code [166] distributes the 

calculations in a domain decomposition scheme, empty space can have a significantly 

detrimental effect of calculation speed and efficiency, even after optimisation of the 

domain sizes. 

Thus the calculations were split into several shorter simulations rather than attempt a 

single very long simulation. The splitting of the calculation into smaller runs will not 

have a significant effect on the statistical accuracy as the autocorrelations are expected 

to be short lived and thus longer correlation times are not statistically significant. 

A complication arises for the Green-Kubo calculation with these low density systems. 

In the grain boundary systems the density was near bulk levels (>90%), whereas this is 

not the case for the nanostructures. The Green-Kubo method require a system volume to 

calculate the thermal conductivity but it is somewhat unclear whether this volume 

should be of the entire system, or just the occupied space. This work uses the volume of 

the entire system as the nanostructure is the only object within the simulation cell and 

therefore the thermal conductivity should be correct for the given region of space which 

contains the nanostructure. 
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The next section presents the morphology, density and thermal conductivity of the two 

nanostructures. The Green-Kubo spectra are also discussed along with data from a 

model slab system to assist interpretation of the spectra. 

4.4.1. Nanostructure 1: Hexagonal Superlattice 

The first nanostructure studied is based on a hexagonal superlattice and contains 50,400 

atoms in a simulation cell approximately 96 Å x 164 Å x 68 Å in size with a 500 K 

density ~46% that of bulk magnesium oxide. The structure is presented in Figure 4.32. 

 

Figure 4.32 Simulation cell of the hexagonal nanostructure. 

A feature particular to this nanostructure is that the grain boundaries are only present 

perpendicular to the X-Y plane and the structure is symmetrically similar in 6 directions 

related by 60° rotations around the Z axis. Figure 4.33 shows a 3 x 3 x 3 expansion of 

the simulation cell coloured to highlight different density environments, such as 

surfaces and grain boundaries, which will act as scattering centres. 



124 

 

 

Figure 4.33 The hexagonal nanostructure (expanded 3 x 3 x 3) coloured to highlight 

different density environments. Blue is high density and red/white is low density. The 

blue box highlights the original simulation cell. 

The simulation was equilibrated at each temperature for 500,000 steps in an NPT 

ensemble, next the lattice vectors of the systems were set to their average values for the 

appropriate temperature. Subsequently 8 copies of the system were made and given new 

random initial velocities and equilibrated briefly (100 fs) in an NVT ensemble to 

remove any effect of initial conditions. The systems were then simulated in an NVT 

ensemble for 0.6 ns to collect heat-flux data. The autocorrelation was calculated up to 

100,000 steps. The averaging of the converged value was taken over the same region of 

the autocorrelation integral as for previous magnesium oxide calculations. The results 

are displayed in Figure 4.34 and Figure 4.35. 
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Figure 4.34 The average thermal conductivity for the hexagonal nanostructure 

compared to bulk. 

 

Figure 4.35 The directional thermal conductivity for the hexagonal nanostructure. 

The thermal conductivities for the hexagonal nanostructure show no temperature 

dependence, indicating a significant increase in scattering due to defects at all 

temperatures. The X and Y direction thermal conductivities are all between 1 and 2 

W/(m.K) and are essentially identical within the error, which is expected as the 
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nanostructure is symmetrically equivalent in these directions. This effect was also 

observed in the {100}twist boundary. 

The Z direction thermal conductivity is distinctly higher than the X and Y directions 

due to the grain boundaries being parallel to the Z direction instead of perpendicular. 

However scattering still occurs off the parallel boundaries and accounts for the large 

reduction in thermal conductivity. 

One concern for these calculations is the limited size of the nanostructure motif. While 

the simulation is large in terms of the magnesium oxide unit cell, the nanostructure itself 

only contains two repeat units of its smallest representation. To accurately reproduce 

extremely long wavelength, and thus low frequency, phonons relating to the movement 

of the lattice itself would require several repeat units of the superlattice as a minimum. 

However, it is not known for certain whether such low frequency phonons will 

contribute significantly to the thermal conductivity of this structure. 

The Green-Kubo spectra for hexagonal nanostructure are presented in Figure 4.36, 

Figure 4.37 and Figure 4.38. 

 

Figure 4.36 Green-Kubo spectra for the hexagonal nanostructure in the X direction. 
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Figure 4.37 Green-Kubo spectra for the hexagonal nanostructure in the Y direction. 

 

Figure 4.38 Green-Kubo spectra for the hexagonal nanostructure in the Z direction. 

The most obvious effect of nanostructuring is the broadening of the peaks. The broader 

peaks generally mean a shorter phonon lifetime. However, it is also possible that the 

increased variability of magnesium and oxygen environments has resulted in a large 

number of very similar modes clustered around ~10 THz, as was seen in the grain 
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boundary systems and discussed in Chapter 4.3. More intriguing is the additional peak 

which appears around 25 THz in the X and Y directions. 

The peak at ~25 THz in the X and Y directions is entirely missing from the Z direction 

spectra and thus is related to a feature found specifically in the X and Y directions and 

not the Z direction. Possible origins for the additional peak include the complex three 

grain boundary intersection, the separate tilt grain boundaries or the numerous surfaces 

(which are almost entirely <001> surfaces). 

However, from the grain boundary calculation in Chapter 4.3 it is clear that most grain 

boundary vibrational modes occur in the region of ~10 THz and so it is much more 

likely that the new modes originate from the large <001> orientated surfaces found 

perpendicular to the X and Y directions. 

The full hexagonal nanostructure contains 50,400 atoms and is much too large to be 

studied directly using lattice dynamics. Therefore a model system must be used to 

determine whether <001> surfaces are the origin of the ~25 THz peak. 

4.4.2. Model System 

A series of magnesium oxide slabs were generated and energy minimised. Each slab is 

made up of a number of layers (each layer is two atoms thick) with a surface 

termination of {001}. The slabs are separated enough from their periodic images to 

remove slab-slab interactions. The phonon DOS was calculated for each slab system 

and then processed to remove modes that do not interact with the heat-flux, leaving a 

spectrum which is directly comparable to the Green-Kubo spectrum. Figure 4.39 shows 

the frequency with the largest magnitude in the direction perpendicular to the slab plane 

as a function of slab thickness. 
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Figure 4.39 Frequencies of a magnesium oxide slab in the X direction as a function of 

slab thickness. 

Figure 4.39 demonstrates that the {001} surface of MgO introduces an additional 

scattering mode appearing above 20 THz, originating from the species at the surface 

being undercoordinated. It can also be seen that the thickness of the slab also has an 

effect on the frequency, converging to ~25 THz for thicker slabs. The thickness of 

crystallites in the hexagonal nanostructure are on the order of ~25 Å which is in the 

middle of the converged region of Figure 4.39; thus it is reasonably certain that the 

source of the new ~25 THz mode in the hexagonal nanostructure stems from surface 

scattering. 

Additional vibrational modes clustered around ~25 THz are also visible in the processed 

phonon DOS and stem from the subtly varying environments present at increasing 

distances from the surface. This result also goes some way to explaining the large 

broadening of the peaks seen in the Green-Kubo spectra. 

It is noted that the thickest slab in these calculation still did not recover any bulk-like 

frequencies (i.e. ~10 THz) in the direction perpendicular to the slab, indicating the 

dominance of surface scattering at these sizes. However, the Green-Kubo spectra retains 

modes around 10 THz which likely stem from phonons travelling lengthways through 

the grain and scattering at non-perpendicular surfaces or grain boundaries. 
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Combined with the fact that the grain boundary calculations showed no significant 

modes above ~20 THz it can be concluded that the additional ~25 THz peak appearing 

in the X and Y direction spectra of the hexagonal nanostructure originate from surface 

scattering rather than grain boundary scattering, which from the grain boundary 

calculations tends to show peaks around ~10 THz, i.e. more bulk like. 

4.4.3. Nanostructure 2: Cubic Superlattice 

The second nanostructure chosen is constructed the same way as the hexagonal 

nanostructure but on a cubic superlattice instead. The cell itself is comprised of 2,744 

atoms in a cell 41 Å x 39 Å x 41 Å in size with a 500 K density ~39% that of bulk 

magnesium oxide, Figure 4.40. 

 

Figure 4.40 Simulation cell of the cubic nanostructure. 

During recrystallisation no grain boundaries were formed, leaving a continuous crystal 

except for interconnected voids in a 3D grid arrangement; these voids lead to a large 

number of surfaces. The 3 x 3 x 3 expanded crystal structure is shown in Figure 4.41 

and shaded according to local density. The crystal-like core (blue) is surrounded by 

lower coordinated surfaces (white). 
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Figure 4.41 The cubic nanostructure (expanded 3 x 3 x 3) coloured to highlight different 

density environments. Blue is high density and red/white is low density. The blue box 

highlights the simulation cell. 

The same equilibration process was applied as in the first nanostructure. However, due 

to the much smaller simulation cell than the hexagonal nanostructure the simulations 

were split into three groups of 5,000,000 steps. The thermal conductivities are presented 

in Figure 4.42 and Figure 4.43. 
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Figure 4.42 The average thermal conductivity for the cubic nanostructure compared to 

bulk. 

 

Figure 4.43 The directional thermal conductivity for the cubic nanostructure. 

The thermal conductivity in each direction for the cubic nanostructure is lower than that 

of the hexagonal nanostructure. Once again there is little temperature dependence in the 

thermal conductivities, having approximately the same thermal conductivity across the 

range of temperatures studied. 
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As for previous systems a strong peak at ~10 THz is observed corresponding to the 

bulk-like vibrational mode. An additional peak is also visible which stems from the 

large number of surfaces in the system and the extremely small channels of MgO, 

leading to a large amount of scattering from surfaces. Due to the dominance of surface 

scattering a peak is expected at approximately 25 THz in the Green-Kubo spectra, 

Figure 4.44, Figure 4.45 and Figure 4.46. 

 

Figure 4.44 Green-Kubo spectra for the cubic nanostructure in the X direction. 
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Figure 4.45 Green-Kubo spectra for the cubic nanostructure in the Y direction. 

 

Figure 4.46 Green-Kubo spectra for the cubic nanostructure in the Z direction. 

The three spectra are similar to each other but vary in the magnitude of the peaks. Once 

again a secondary peak occurs, but in this case at ~20 THz instead of ~25 THz. The 

change in peak position can be related to the very small size magnesium oxide channels 

and thus the very short surface-surface distance. The surface-surface distances in the 

cubic nanostructure are on the order of 8 Å to 15 Å and correspond to a frequency of 
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~24 THz in Figure 4.39, which is slightly higher than the values found in the Green-

Kubo spectra. However, other effects such as cross-sectional area and surface roughness 

may also play a role in reducing the frequency further. 

4.5. MgO Summary 

The simulation of magnesium oxide has revealed that Green-Kubo calculations can give 

well converged thermal conductivities and an estimate of the error. Furthermore, the 

method gives access to phonon information that can be used to understand the scattering 

process going on at different temperatures and in different systems. 

Lattice dynamics and molecular dynamics calculations can be used to provide 

complementary information. Using the Boltzmann transport equation provides an 

alternative route to calculating thermal conductivity but very quickly becomes resource 

intensive with respect to system size and is not applicable for nanostructured or large 

defective systems. An additional issue arises for high thermal conductivity systems 

where the phonon mean free path is long and hence larger supercells are required. 

Lattice dynamics calculation of the phonon density of states (DOS) also provides 

additional information to aid understanding of the vibrational modes appearing in the 

Green-Kubo calculations. With this information it becomes clear which structural 

features are contributing the most to phonon scattering and hence lowering thermal 

conductivity. New nanostructures can then be designed with the most promising 

features to either maximise or minimise the thermal conductivity depending upon the 

application. 

For magnesium oxide the type of boundary seems to have only a small effect on the 

overall reduction in thermal conductivity. Both the tilt and twist boundary reduce the 

thermal conductivity to between 5 and 10 W/(m.K). What seems to be important is the 

disruption to the bulk by introduction of the grain boundary and limiting of allowed 

frequencies between the two boundaries in each simulation cell. Work on SrTiO3 grain 

boundary systems presented in Chapter 6.3 will explore the effect of different grain 

sizes on the thermal conductivity. There is however an effect on the modes available for 

scattering introduced by the boundaries. 



136 

 

Complex nanostructures successfully reduce the thermal conductivity several orders of 

magnitude, however a correction may have to be applied to account for the porosity of 

the structures. Defects and grain boundaries will reduce the thermal conductivity but 

surfaces play the largest role for nanostructures as seen from the peaks of the Green-

Kubo spectra. The exact positioning of the additional surface peak varies depending on 

the characteristic size of the grains. While grains are rarely this small in experiments the 

result may have important implications for other materials such as 2DEG materials 

which tend to have extremely small layers [236]. 

An important result for both grain boundaries and nanostructures is that an increase in 

defect scattering modifies the behavioural trend of thermal conductivity with respect to 

temperature. Phonon-phonon scattering is the only scattering mechanism available for 

pure materials and increases with temperature; however defect scattering is active at all 

temperatures. Thus all defective structures display a reduced response as temperature 

increases. The density of the system can also give a good indication of the thermal 

conductivity reduction, with lower densities equalling lower thermal conductivity, but 

no clear trend presents itself. 

In summary, the results demonstrate that the thermal conductivity can be calculated 

reliably for the ionic material, and that the modes that have the largest effect on the 

thermal conductivity. Different boundaries and nanostructures have also been studied 

and their influence on thermal conductivity evaluated. 

Furthermore, the results suggest that if analogous oxide materials were used as part of a 

thermoelectric device a reduction in the thermal conductivity (and hence an increase in 

  ) of a factor of ~30 could be achieved, which may mean the difference between the 

device being usable or not. 

In the following Chapter SiO2 is considered. SiO2 based materials offer a chance to 

study the behaviour of thermal transport in a covalent system instead of the purely ionic 

system presented by MgO. 
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5. The Thermal Conductivity of Silica (SiO2) 

Structures with Complex Vibrational Modes 

The aim of this chapter is to extend the range of thermal conductivity simulations to 

covalent materials. This study has opted to look at silica, SiO2, which is not only highly 

abundant, being one of the most naturally abundant oxides, but is also used in a range of 

devices and in its amorphous forms constitutes a major component of glasses. 

Additionally, mesoporous silica has been used as an additive to Nb-doped SrTiO3, 

which increased the    five fold via an increase in the electrical conductivity and 

reduction of thermal conductivity caused by the growth of Sr2TiSi2O8 at the grain 

boundaries, while the Seebeck coefficient remained unchanged [237]. The reduction in 

thermal conductivity and enhancement of electrical conductivity is of particular interest 

as the system is now approaching the PGEC concept [44]. The PGEC-like behaviour of 

the material may originate from the Sr2TiSi2O8 phase found at the boundary which is 

capable of rigid unit motion [238], leading to very low frequency RUMs which may be 

highly effective at scattering acoustic phonons. Silica systems are also known to contain 

rigid unit modes (RUMs) [239] and so can act as a model system. 

Hence, a detailed analysis of heat transfer in silica materials is also of great 

technological interest. Structurally, most silica polymorphs contain silicon atoms 

tetrahedrally coordinated by oxygen atoms, although there are some exceptions [240], 

such as the high pressure forms which may adopt octahedral coordination. These 

tetrahedra are then corner linked to form a variety of different crystalline structures, the 

most stable of which is quartz, but there are many other naturally occurring metastable 

forms, such as cristobalite and tridymite [241]. A number of more complex silica 

systems also exist, such as those synthesised within the zeolite community. One of these 

zeolite materials is silicalite, which is the basis of an important class of acid catalysts 

used for cracking hydrocarbons [242]. 

5.1. SiO2 Overview 

The wide variety of silica structures, which can undergo complex phase transitions, has 

meant that the structural properties, including the effects of temperature, have been 

studied extensively using computer simulation techniques [243-245]. One reason for the 
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structural complexity, which makes the vibrational properties of silica structures 

distinctive, is the presence of rigid unit modes (RUMs) [246-248], which are vibrational 

modes of silica frameworks with very low frequency. RUMs are often also associated 

with negative Grüneisen parameters and can be used to explain the mechanisms for the 

various phase transitions as well as the distinctive auxetic properties (negative Poisson’s 

ratio), most notably the negative thermal expansion coefficient [249]. A further question 

that then needs addressing is how this auxetic behaviour affect the thermal conductivity. 

Thus, in this chapter two distinct structures will be considered. Firstly the thermal 

conductivity of quartz will be studied with particular interest in effect of the phase 

transition to β-quartz at higher temperatures. Secondly the thermal conductivity of a 

microporous material, silicalite, will be studied. However, before modelling the thermal 

conductivity of silica polymorphs a potential model must be identified that can 

reproduce the vibrational and structural parameters with sufficient accuracy, which is 

described in Chapter 5.2. 

Reproducing the structural and vibrational properties of these different materials with a 

single potential model is very important. There are many potential models available for 

silica materials [250], including very complex reactive potentials [251]. However, a 

relatively simple potential model is desirable for the calculation of thermal conductivity 

due to the large system sizes and long simulation times required for a converged result. 

Thus, the requirement is for a comparatively simple functional form that has been used 

to model structural [252], elastic [253] and vibrational [254] properties. 

The potential model of van Beest, Kramer and van Stanten (BKS) [161, 162] has been 

selected for the work detailed here as it satisfies the requirement for a simple yet 

accurate model. The BKS potential has been used frequently and has been applied to a 

wide range of silicate materials. Examples showing the success of the BKS potential 

include shock-wave compression of quartz [255], pressure induced amorphisation [256, 

257], many amorphous glass studies [258-260] and the α-quartz to β-quartz transition 

[261]. Additionally the phase diagram for SiO2 using the BKS potential is at least 

partially known [262]. 

The BKS potential uses a simple Buckingham form for the short range interactions 

where the parameters were adjusted to reproduce the results of a number of electronic 

structure calculations along with experimental structural data. As indicated, it has been 
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used extensively in the calculation of many other properties and silicate systems. 

Indeed, the convention of using the oxygen charge of -1.2 e has also been adopted by 

the other potential models [156, 163]. 

More complex potential models than the BKS potential are available which include 

additional terms such as a three-body interaction [263, 264] or the shell model [265]. 

While improving on some properties over the BKS potential, the additional complexity 

will slow calculation significantly and make the potential unsuitable for thermal 

conductivity calculations. Thus the BKS potential is used for all silica materials detailed 

in this chapter. 

5.2. Quartz 

Quartz constitutes a significant proportion of the earth’s crust, coming second only to 

feldspar in abundance. Quartz also has numerous industrial and commercial applications 

due to its piezoelectric and pyroelectric properties, which arise out of the complex 

structure of the material. 

The quartz structure is complex due to the many types of symmetry present. Quartz is a 

non-centrosymmetric material meaning there is not a centre of inversion. This in turn 

gives rise to the piezoelectric and pyroelectric properties as dipoles may be formed 

across the material under stress/heating. Additionally, this property means there exists 

left and right handed polymorphs of quartz (Brazil twins) [266] related through a 

mirroring of the structure (enantiomorphism). 

Quartz may also exhibit further polymorphs related by the tilting of the SiO4 tetrahedra. 

At low temperatures quartz is in the form of α-quartz, where the tetrahedra are relaxed 

and tilted by 16.3° [267]. The tetrahedral tilt angle found in α-quartz may be positive or 

negative, giving rise to two polymorphs which are related through a 60° rotation about 

the c axis; when both forms are present in a single crystal the system is known as a 

Dauphiné twin. 

Upon heating above ~846 K [268], the α-quartz polymorph transforms into the higher 

symmetry β-quartz polymorph. The difference between α-quartz and β-quartz is in the 

average angle of tilt of the silicate tetrahedra. When the structure is α-quartz the 
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tetrahedral are tilted by approximately 16.3° on average, transitioning to an average tilt 

of 0° in β-quartz. 

The vibrational mode involved in the phase transformation is thus known as a rigid unit 

mode (RUM) [239]. RUMs have unusual vibrational properties [269-271] and leads to 

the negative thermal expansion of quartz at higher temperatures [249]. The presence of 

RUMs may also have some impact on the thermal conductivity of quartz and other 

silica polymorphs. 

Previous simulation work with the BKS potential model by Yoon et al. showed little 

variation of thermal conductivity with respect to temperature [272] at around ~5 

W/(m.K) between 500 K and 1100 K. The approach used was that of a NEMD 

simulation with data collected over the course of 2-12 ns. The thermal conductivity is 

then extrapolated from three different simulation sizes. The poor thermal conductivity 

values can be attributed to the setup of the simulation which had only a small region of 

diffusive thermal transport, the rest being dominated by ballistic transport introduced by 

thermostated hot/cold regions. Additionally, the extrapolation to infinite size thermal 

conductivity was only calculated with three system sizes, which is not enough to discern 

a trend in the data. Thus, to obtain reasonable values larger bulk regions or a smaller 

temperature difference are required in conjunction with more system sizes. 

Work by McGaughey et al. on the thermal conductivity of quartz also used the BKS 

potential but calculated the thermal conductivity with the Green-Kubo method instead 

and gave results which were in much better agreement with experiments [200, 202] than 

the NEMD work by Yoon et al., although at low temperatures only. 

The work by McGaughey et al. [200, 202] used the Wolf method [273] for electrostatics 

as it was found that the long range interactions were on the order of ~1% that of the 

short range interactions; the advantage of this method is that the electrostatic 

interactions are approximated as a medium range potential and hence the calculations 

are significantly faster. The calculations were performed on temperatures between 100 

K and 350 K at 50 K steps. Each temperature had five separate ~1 ns simulations 

performed and averaged to better sample phase space (with the exception of the 100 K 

series which required 10 separate ~1 ns simulations). The final thermal conductivity 

was located by using overlapping averages on the integral to identify the point of 

convergence. The results are very close to experimental values in both absolute value 
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and trend, supporting the use of both the BKS potential and the Green-Kubo method in 

calculating the thermal conductivity. 

Thus, the aim of this component of the work was firstly to demonstrate that not only can 

the thermal conductivity of α-quartz be calculated efficiently, but using the procedures 

described in the previous chapter the extent to which the optical modes are involved in 

heat transfer may be identified. 

The second aim is to investigate whether the effect of the α-quartz to β-quartz phase 

transition can be evaluated and if domains play a role in lowering the thermal 

conductivity. However, before describing the results of the thermal conductivity 

simulations, an assessment of the potential model in calculating more routine bulk 

properties is discussed. 

The structures of α-quartz and the high temperature polymorph β-quartz have been well 

determined experimentally [274] having the space groups       [274] and       

[275] respectively. Images of the structures are given in Figure 5.1, which shows the 

increased symmetry in β-quartz. 

 

Figure 5.1 View down the c axis of α-quartz (left) and β-quartz (right). α-quartz is 

related to its Dauphiné twin by a 60°/180° rotation around the c axis. The hexagonal 

unit cell is displayed in the blue box. 

As already mentioned in the previous chapter the thermal conductivity depends directly 

on the structure and lattice properties, including the elastic constants. The lattice 

parameter and elastic constants of α-quartz have been calculated via energy 

minimisation in the METADISE code [165] and are presented in Table 5.1. 
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Property Calculated Experiment % Difference 

a (Å) 4.922 4.913 0.18 

c (Å) 5.434 5.405 0.54 

c11 (GPa) 89.5 86.8 3.11 

c33 (GPa) 111.73 105.75 5.65 

c12 (GPa) 1.01 7.04 -85.65 

c13 (GPa) 16.85 11.91 41.48 

c44 (GPa) 50.6 58.2 -13.06 

c66 (GPa) 39.69 39.88 -0.48 

c14 (GPa) -16.87 -18.04 -6.49 

Table 5.1 Calculated and experimental [276, 277] properties of α-quartz. 

The agreement with experimental values is excellent. The lattice parameters are within 

0.05 Å of their experimental values. The elastic constants are also reproduced very well 

which is to be expected considering the BKS potential has been developed with the 

elastic constants as one of the fitting parameters. One further detail to note is that the 

BKS potential over predicts the Si-O-Si bond angle by ~6° at room temperature, which 

has been noted previously [278]. 

The temperature induced phase change present in quartz is closely linked to RUMs as 

the difference between α-quartz and β-quartz is in the positioning of the tetrahedra. 

Above the phase transition (~846 K) [268] the RUMs also play a role in the negative 

thermal expansion. How well the BKS potential performs in reproducing the phase 

change will also help indicate how well temperature dependent changes in the phonon 

frequencies are being reproduced. 

5.2.1. Thermal Expansion 

The thermal expansion of quartz was calculated as for magnesium oxide. In these 

simulations the BKS potential has been used due to the wealth of study and testing done 

on it previously [161, 162, 202, 255, 258-261]. The simulation cell used was a 7 x 4 x 6 

expansion of the orthorhombic unit cell consisting of 18 atoms and measuring 

approximately 4.9 Å x 8.5 Å x 5.4 Å, giving a final simulation cell of 3,024 atoms and 
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measuring approximately 34.5 Å x 34.1 Å x 32.6 Å. The crystallographic c direction of 

quartz is aligned along the Z direction. 

The thermal expansion was measured using the same procedure as for magnesium 

oxide. A series of 5 different 0.5 ns anisotropic NPT (Nosé–Hoover thermostat and 

barostat) molecular dynamics simulations were run on 6 different temperatures. A 

timestep of 1.0 fs was again used. The lattice vectors were sampled every 10.0 fs and 

averaged over the course of the simulations. Due to the anisotropic nature of the 

underlying material the lattice vectors were averaged independently. 

The resulting cell dimensions were converted back to the primitive hexagonal unit cell 

for easier comparison with experiments. The calculated a and b lattice parameters were 

found to be almost identical and that the maximum difference between them was less 

than 5x10
-4

 Å at high temperatures. Additionally the standard error between the 5 

separate runs was also on the order of 5x10
-4

 Å. The final results are plotted in Figure 

5.2, only the a and c parameters are presented. 

 

Figure 5.2 Calculated and experimental [279, 280] lattice parameters of quartz. 

The experimental c parameters of Jay and Taylor are effectively identical and are 

overlaid in Figure 5.2. However, the a parameter from the experiments of Jay (not 

shown) is significantly lower than the calculated values (in the region of 4.25 Å to 4.32 

Å). The discrepancy is because the a values of Jay were extrapolations based on the c 

direction rather than measurements and so are not included. Due to the remarkable 
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similarity of the c lattice parameters and the untrustworthiness of the Jay a lattice 

parameter only the experimental values of Taylor will be used from this point onwards. 

The calculated lattice parameters of quartz are reproduced well with a deviation of less 

than 3% compared to experiments. However, there is a consistent shift to higher values 

in simulation as compared to experiments. The c lattice parameter is consistently shifted 

upwards by 0.08 Å compared to experimental values. The a direction has a more 

variable shift of between 0.04 Å and 0.08 Å above experimental values. 

The trends seen in both the a and c directions are relatively well reproduced. The phase 

transition from α-quartz to β-quartz appears to occur in the region of 700 K-900 K in the 

calculations which matches well with the experimentally known value of 846 K [268]. 

The thermal expansion coefficient has been calculated for α-quartz and β-quartz 

separately using the values presented above and split across the phase transition 

temperature. The thermal expansion coefficients for α-quartz were calculated using the 

lattice parameter at 300 K as a baseline for the calculated expansion and the lattice 

parameter at 720 K as a baseline for the experimental expansion. Within these regions 

the expansion is essentially linear and thus this difference in baseline is not expected to 

cause much difficulty. The thermal expansion coefficients for α-quartz are presented in 

Table 5.2 and those for β-quartz in Table 5.3. 

Direction This Work Taylor 

a=b (K
-1

) 2.613x10
-5 

4.317x10
-5

 

c (K
-1

) 2.342x10
-5

 2.675x10
-5

 

Table 5.2 Thermal expansion coefficients of α-quartz. 

Direction This Work Taylor 

a=b (K
-1

) -1.800x10
-6 

0.0 

c (K
-1

) -3.575x10
-6

 -2.819x10
-6

 

Table 5.3 Thermal expansion coefficients of β-quartz. 

The thermal expansion coefficients are reasonably good matches to experimental 

values. All calculated thermal expansion coefficient are within an order of magnitude of 

the experimental values except for the a parameter of β-quartz where the experimental 

differences were too small to give a valid expansion coefficient. 
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The thermal expansion of quartz has also been calculated previously using the BKS 

potential model and gave slightly different results [252], Figure 5.3. 

 

Figure 5.3 Volume expansion of quartz calculated with the BKS potential compared to 

experiments [252]. 

Figure 5.3 clearly shows an increase in the volume as calculated by Müser et al., 

although the expansion behaviour is essentially identical. The difference between the 

two BKS calculations is attributed to the cutoff used in the simulations. In this work a 

cutoff of 8.5 Å has been used whereas in the work of Müser et al. used a cutoff of 9.5 Å. 

The requirement to simulate large systems for long time periods means a compromise 

must be made to accelerate the simulations and so a cutoff of 8.5 Å will be used. 

Both calculated data sets and the experimental data set indicate that the lattice 

parameters begin to decrease in the region of 850 K, indicating transition to the β-quartz 

phase. The change in thermal expansion is a result of a change in the behaviour of 

vibrational modes and thus could have a significant effect on the thermal conductivity. 

The negative thermal expansion of β-quartz at least partially originates from the tilting 

of the rigid tetrahedra. A simple two-dimensional example using squares is given in 

Figure 5.4 [249]. 
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Figure 5.4 As the rigid units (blue squares) rotate the total area occupied by the system 

decreases. The black box indicates the area required to hold one square in each motif. 

The area in a) is 4, the area in b) is 3.5 and the area in c is 2. 

Figure 5.4 b) may be considered a two-dimensional analogue of α-quartz and upon 

heating may transform to β-quartz, most similar to Figure 5.4 a). The transformation is 

accompanied by an increase in volume. The β-quartz structure is only stable 

dynamically and exists as a time average of the rigid tetrahedra occupying many tilt 

angles. By increasing the temperature further the system spends longer at one extreme 

or another of tilt and the time averaged volume is less than the perfect β-quartz 

structure. 

5.2.2. Thermal Conductivity 

Quartz is a complex material, constructed from a network of semi-rigid tetrahedra. The 

changes in orientation of the tetrahedra give rise to a phase change at approximately 850 

K, accompanied with a change to negative thermal expansion. These properties are also 

likely to have an impact on the thermal conductivity. 

5.2.2.1. Green-Kubo Results 

The thermal conductivity of quartz was calculated by dividing the simulation into 5 

individual sets. As discussed in Chapter 3.2.3.2 the calculation of thermal conductivity 

will theoretically converge faster when using multiple simulations with different 

starting velocities as a larger portion of phase space is sampled [206]. Each set of 

simulations comprised 6 temperatures (with lattice vectors set to the corresponding 

thermal expansion calculation values). The cell volume for each temperature was taken 

from the averaged thermal expansion calculations, each system was then equilibrated 



147 

 

for a further 0.5 ns in an NVT ensemble (with a Nosé–Hoover thermostat), followed by 

3 ns NVT data collection, sampling the heat-flux every 10 fs (1 fs timestep was once 

again used). Again, the crystallographic c direction of quartz is aligned along the Z 

direction, the X direction is equivalent to the crystallographic a direction and the Y 

direction is perpendicular to both the X and Z directions. 

The collected heat-flux data is then treated in the usual manner as discussed in Chapter 

3.2.3. It is autocorrelated, integrated and then averaged over all the sets for each 

temperature to give thermal conductivity values with respect to integral length. For 

simulations on SiO2 based materials, it was found that the convergence regime has 

occurred in the region of 20,000-25,000 steps for all temperatures. The values in the 

convergence region are thus averaged to give the final thermal conductivity values with 

half the difference between the maximum and minimum values used as a measure of the 

noise in the autocorrelation. Again the error presented here is likely much larger than 

the true error which is extremely difficult to calculate [201]. 

The experimental thermal conductivities for quartz are presented in Figure 5.5 and the 

calculated thermal conductivities are presented in Figure 5.6. 

 

Figure 5.5 Experimental thermal conductivity of quartz [49, 215]. 
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Figure 5.6 Calculated thermal conductivity of quartz for the three directions. 

The experimental thermal conductivities in Figure 5.5 show a clear splitting between the 

a and c directions, with the c direction thermal conductivity being consistently higher. 

An unusual trend is seen beyond the α-quartz to β-quartz at 846 K where the thermal 

conductivity increases. The unusual increase may be either related to the negative 

thermal expansion or to the presence of Dauphiné twins, discussed later in Chapter 

5.2.2.2. 

The calculated thermal conductivities in Figure 5.6 also show a clear split between the a 

direction (X and Y directions in the simulation) and the c direction (Z direction in the 

simulation). The absolute values are also fairly similar, although a constant shift to 

higher values is seen in the calculations, possibly due to the choice of cutoff as 

discussed in Chapter 5.2.1. Alternatively the experimental samples may contain trace 

defects not present in simulations, and would therefore have a lower thermal 

conductivity. 

The X and Z directions in the calculations correspond directly to the experimental a and 

c directions respectively. However, the Y direction in the calculations does not 

correspond directly to the b direction but does show effectively identical thermal 

conductivity to the X direction. The reason for this is that the X and Y directions are 

still related through symmetry, whereas the Z direction is not. 
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The minimum in the experimental thermal conductivities at 846 K is not observed in 

simulation. It could be argued this minimum is related to the negative thermal 

expansion above 846 K, however the negative thermal expansion is seen in both 

experiments and calculations but the minimum in thermal conductivity is only seen in 

experiments, making this explanation less likely. An alternative explanation is that of 

Dauphiné twins, the effect of which is difficult to capture in a comparatively small 

simulation cell. 

The calculated thermal conductivity values presented here represents an improvement 

on those calculated by Yoon et al. using the same potential model, but an alternative 

method [272]. The values of Yoon et al. are consistently around 5 W/(m.K) +/-0.5 

between 500 K and 1100 K. The thermal conductivity values calculated by Yoon et al. 

do however match the values calculated here at temperatures above ~850 K, showing 

the significance of the α-quartz to β-quartz transition and the possible presence of 

Dauphiné twinning in the simulation cell that becomes possible with NEMD methods. 

Green-Kubo methods preclude this possibility by having the entire simulation cell at 

one temperature, which does not make Dauphiné twinning impossible, but much less 

likely over the timescales simulated. Additionally the NEMD methods are known to be 

more sensitive to finite size effects, especially at lower temperatures, where the phonon 

mean free path is very long [281]. 

Other work by McGaughey et al. [202] using both the same potential model and 

simulation methodology has resulted in close agreement with experimental values, 

although at temperatures lower than presented here. The values calculated by 

McGaughey et al. also match well with the values presented here within the small 

region of overlap, Figure 5.7. The slight difference in values may be attributed to a 

different potential cutoff (which was not specified) or the use of the Wolf method [273] 

of solving electrostatic interactions. 
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Figure 5.7 Calculated thermal conductivity of bulk quartz in this work and by 

McGaughey et al. the a direction of McGaughey et al. is equivalent to the X and Y 

directions in this work. 

5.2.2.1. Lattice Dynamics Results 

Attempts to calculate the thermal conductivity of quartz via lattice dynamics failed to 

give a converged result with respect to supercell size and q-points. Furthermore, the 

phase change found in quartz is likely to complicate interpretation of any results. 

The unconverged values are presented in Appendix A. 

5.2.2.2. The Effect of Dauphiné Twinning 

Experimentally a minimum in the thermal conductivity is observed in the region of the 

α-quartz to β-quartz transition temperature. The origin of the minimum in thermal 

conductivity may be due to Dauphiné twinning found at temperatures near the α-quartz 

to β-quartz transition and in this section the aim is to generate a twinned structure for 

investigating whether they may cause the experimentally observed change in thermal 

conductivity. 

Dauphiné twins are related through a 60° rotation of the α-quartz structure. One 

Dauphiné domain may transform into another via the β-quartz structure i.e. a 

reorientation of the tetrahedra [282]. The boundaries between Dauphiné domains could 
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result in additional scattering as the phonons move from one orientation of quartz to 

another and therefore lower the thermal conductivity; additional scattering may also be 

caused by the local structure of the boundary itself. 

Dauphiné twins can only occur in α-quartz and not β-quartz, therefore it may be 

expected that they will only impact the thermal conductivity at temperatures below the 

α-quartz to β-quartz transition. At temperatures significantly above the α-quartz to β-

quartz transition the domains will not occur and phonons will experience the lattice as 

pure β-quartz. 

Thus the thermal conductivity at temperature much below the α-quartz to β-quartz 

transition is likely to be reduced by static Dauphiné twin domains. At temperatures 

above the α-quartz to β-quartz transition the phonons experience the lattice as β-quartz, 

resulting in less scattering. 

This complex trend in thermal conductivity is not seen in the calculated thermal 

conductivity (Figure 5.6) due to the relatively small system size. At larger sizes 

Dauphiné twins are able to form below the transition temperature and act as additional 

scattering centres. 

The general approach for generating a simulation cell containing Dauphiné twins was to 

first heat quartz above the transition temperature and then rapidly quench to low 

temperatures. By doing this different regions of the crystal crystallise to α-quartz 

independently and there is insufficient time for one orientation to exert dominance and 

remove the other orientation. However, below the transition temperature in small 

systems the twin boundaries are metastable and hence the simulation cell may simply 

recrystallise into one form of α-quartz. 

During creation of the Dauphiné twin system, it was found that the stability was 

dependent upon the size of the system. At small system sizes Dauphiné twins were 

unable to form as one orientation exerted dominance over the other, possibly due to 

strain effects in a small system. At intermediate sizes the twin boundaries would 

approach over time and anneal out of the structure. At large system sizes the twin 

boundaries were at such large separation that they were effectively independent and did 

not approach each other. Thus at the system sizes used for thermal conductivity 
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calculation Dauphiné twins are not expected to form and therefore will not be able to 

reduce the thermal conductivity in the region of the phase transition. 

A large orthorhombic simulation cell of α-quartz measuring approximately 193 Å x 22 

Å x 226 Å and containing 74,160 atoms was created. The crystallographic c direction 

was orientated along the Y direction while the crystallographic a direction was slightly 

misorientated from the X direction in an attempt to avoid spurious periodicity. The 

system was heated to 2000 K and maintained at that temperature for 10 ps, using a 

timestep of 1.0 fs in an NVT ensemble. The system is then rapidly cooled to 100 K over 

the course of 20 ps. The system was then energy minimised to remove any residual 

strain and thermal noise in the position of the atoms. 

Analysis of such boundaries is challenging because of the subtle difference in 

structures, i.e. tilting of tetrahedral, which distinguish the separate regions. To picture 

the boundaries within the system the density of atoms within a 4.5 Å radius of a silicon 

atom is calculated and the tetrahedra centred on that silicon is coloured depending upon 

that density. This system (expanded 2 x 2 x 2) is shown in Figure 5.8. 

 

Figure 5.8 The 74,160 atom Dauphiné twin system (expanded 2 x 2 x 2). Domain 

boundaries are coloured white. 
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One twin region is entirely enclosed by the other and takes on a trapezoidal shape with 

two ~60° and two ~120° angles, reflecting the symmetry of the α-quartz material. 

Interestingly the domain boundaries do not align along the crystallographic a or b 

directions and has a small misorientation angle of ~10°, an effect which has been noted 

before experimentally [283] and is the subject of a joint experimental/computational 

paper by Eder et al. [284]. This misorientation was observed in many systems regardless 

of whether the crystallographic a direction was misorientated from the X direction or 

not. 

Annealing this system at 300 K resulted in the inner domain being annealed to the same 

orientation as the outer domain. The reconstruction to one orientation of α-quartz is 

likely expedited by the strain generated by the twin boundary on the underlying crystal. 

By having the twin boundaries in close proximity there is a driving force for them to 

approach as the strain between them is relieved until the boundaries meet and remove 

the inner domain. In a sufficiently large system the boundaries should be so well 

separated as to have no driving force to move in any given direction, thus the stability of 

Dauphiné twins is expected to be extremely sensitive to system size. 

In an attempt to create a dynamically stable Dauphiné twin system an even larger 

system of approximately 386 Å x 22 Å x 452 Å (c axis orientated along the Y direction) 

containing 296,640 atoms was constructed and treated in the same manner as the 74,160 

atom system. The calculation of local density was performed as before and the coloured 

system is presented in Figure 5.9. 
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Figure 5.9 The 296,640 atom Dauphiné twin system. Domain boundaries are coloured 

white. 

Once again the system displayed an abundance of ~60° and ~120° angles in the 

boundary while the boundaries themselves are again slightly misorientated from the 

crystallographic a and b directions. This system was further annealed for 20 ps at 300 K, 

followed by 10 ps of cooling to 100 K and then energy minimised. The final system is 

shown in Figure 5.10. 
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Figure 5.10 The 296,640 atom Dauphiné twin system after annealing at 300 K. Domain 

boundaries are coloured white. 

Annealing at 300 K has resulted in longer and straighter twin boundaries, while 

retaining six individual ~120° angles. This system is stable at 300 K for short time 

periods due to the large distances between oppositely orientated boundaries; even larger 

systems should remain stable for longer periods and higher temperatures. 

A thermal conductivity calculation was attempted on this system but was not possible as 

the Dauphiné twins annealed away at 500 K and longer timescales necessary for thermal 

conductivity calculations. One possible solution is to increase the thickness (Y 

direction) of the system so that there is a greater barrier to diffusion of the domain 

boundary, however this would result in a system of more than a million atoms which 

would take an unfeasibly long time to simulate in order to gain enough data for a 

converged thermal conductivity. 

The calculation of thermal conductivity in these systems is further complicated by the 

changing geometry in these systems, meaning that the calculated thermal conductivity 

can change over the course of the simulation. 
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In summary, small scale (length and time) simulations have significant difficulty in 

capturing the effect of domains on the thermal conductivity of quartz. If the simulation 

cell is too small then two opposite domain boundaries may interact with each other, 

approach and annihilate. Furthermore the correct concentration and orientation of 

domains is exceptionally difficult to achieve, partially due to the constraints of periodic 

boundary conditions and simulation cell geometry. 

The magnitude of the impact of Dauphiné twins is thus still unknown. Future work may 

concentrate on creating more ordered, and more stable Dauphiné twin system which are 

capable of being simulated for the requisite amount of time. The concentration of 

Dauphiné domains is also an important aspect to be studied but is expected to be 

temperature sensitive and require even larger systems. 

Experimental results must also be carefully considered as the thermal conductivity 

should be dependent on the thermal history of the crystal, via Dauphiné twinning. If the 

crystal is cooled slowly at temperatures below the transition, then there is a greater 

amount of time for Dauphiné twins to be removed, conversely if the crystal is quenched 

quickly then many Dauphiné twins are expected to form and the thermal conductivity 

will consequently be lower. 

As shown in the previous chapter, it is also possible to analyse the lattice dynamics to 

identify the optical modes that interact with the acoustic and hence heat transport. 

Clearly, this is not possible for the domain structures, but α-quartz and β-quartz can still 

be considered. 

5.2.2.3. Green-Kubo and Lattice Dynamics Spectra 

The Green-Kubo spectra of quartz are expected to show significant changes with 

temperature due to the phase transition from α-quartz to β-quartz. The Green-Kubo 

spectra are presented in Figure 5.11, Figure 5.12 and Figure 5.13. 
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Figure 5.11 Green-Kubo spectra of quartz in the X direction, Log10 scale. 

 

Figure 5.12 Green-Kubo spectra of quartz in the Y direction, Log10 scale. 
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Figure 5.13 Green-Kubo spectra of quartz in the Z direction, Log10 scale. 

The spectra show once again that the X and Y directions are equivalent. All peaks occur 

between 10 THz and 40 THz and are in two main groups; those above ~25 THz and 

those below. Some peaks move to lower frequency with increasing temperature as was 

seen for MgO. Other peaks show the reverse trend, moving to higher frequency with 

increasing temperature and eventually merge with other peaks. Furthermore, some 

peaks disappear entirely with increasing temperature (~37 THz in X and Y, ~23 THz in 

Z). 

The most unusual feature of the Green-Kubo spectra is that some peaks shift to higher 

frequencies as temperature increase (a negative mode Grüneisen parameter), as opposed 

to the previously observed decrease in frequency with higher temperatures (a positive 

mode Grüneisen parameter). These frequencies are attributed to the transition from α-

quartz to β-quartz and the accompanying increase in symmetry. As the material changes 

phase, several previously distinct environments become identical and thus many phonon 

modes involving those environments also become identical. The increase in frequency 

is likely due to the increasing lattice parameter removing slack from tetrahedral chains, 

the chains thus become tighter and resulting in higher frequencies. 

A secondary feature of the spectra transformation is that some peaks (X and Y 

directions ~18 and ~23 THz and Z direction ~19 THz) which do shift to lower 
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frequency with higher temperature cease moving somewhere between 700 K and 900 K 

while other peaks (X,Y and Z direction ~33 THz) continue to shift towards lower 

frequencies. 

Additionally, the 36.6 THz peak in the X and Y directions and the 22.7 THz peak in the 

Z direction decrease in magnitude with increasing temperature until disappearing 

entirely in the region of 700 K to 900 K. 

These phenomena occur in the region of the quartz transition temperature and show that 

α-quartz and β-quartz present distinct systems with respect to thermal conductivity 

calculation. Thus the spectra support the idea that the NEMD molecular dynamics 

approach to calculating thermal conductivity may be unsuitable as the thermal 

conductivity will depend strongly upon the temperature gradient i.e. there may be α-

quartz in one portion of the system but β-quartz in another. The Green-Kubo method 

however maintains a single temperature throughout the system and may only experience 

the problem of Dauphiné twinning in large systems and close to the phase transition 

temperature. 

Calculating the thermal conductivity via BTE methods may also fail as they cannot 

directly account for the structural changes at the phase transition and thus a poor 

representation of the phonon-phonon scattering processes. 

The lattice dynamics phonon DOS can once again be used to give a physical 

interpretation of the modes appearing in the Green-Kubo spectra. The phonon DOS for 

α-quartz was calculated as previously, but now using a total eigenvector cutoff of 0.01. 

The simulation cell used for this calculation contained 9 atoms with lattice vectors of 

a=b=4.92 Å, c=5.43 Å, α=β=90° and γ=120°. The phonon DOS spectra of α-quartz and 

the 300 K Green-Kubo spectra for quartz are presented in Figure 5.14, Figure 5.15 and 

Figure 5.16. 
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Figure 5.14 Comparison of the Green-Kubo at 300 K and lattice dynamics spectra for α-

quartz, X direction. Log10 scale on Green-Kubo intensity. 

 

Figure 5.15 Comparison of the Green-Kubo at 300 K and lattice dynamics spectra for α-

quartz, Y direction. Log10 scale on Green-Kubo intensity. 
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Figure 5.16 Comparison of the Green-Kubo at 300 K and lattice dynamics spectra for α-

quartz, Z direction. Log10 scale on Green-Kubo intensity. 

The peaks arising from the Green-Kubo calculation at 300 K can now be indexed, Table 

5.4. 

Frequency (THz) Direction Motion 

5.104 X/Y Rigid Unit Mode (RUM) 

14.03 X/Y Tetrahedra distortion/Si-O bending 

14.32 Z Tetrahedra distortion/Si-O bending 

18.57 X/Y Tetrahedra distortion/Si-O bending 

19.84 Z Tetrahedra distortion/Si-O bending 

21.67 X/Y Tetrahedra distortion/Si-O bending 

22.84 Z Si rattling in tetrahedra/Si-O bending 

23.05 X/Y Tetrahedra distortion/Si-O bending 

33.23 X/Y Tetrahedra distortion/Si-O stretching 

33.58 Z Tetrahedra distortion/Si-O stretching 

36.83 X/Y Tetrahedra breathing and distortion/Si-O stretching 

Table 5.4 Assigned vibrational modes of α-quartz. 
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By indexing the peaks via lattice dynamics calculations it becomes clear that the modes 

present above ~25 THz are related to Si-O bond stretching, the modes between ~10 THz 

and ~25 THz are related to Si-O bond bending. An additional single mode appears 

below 10 THz which is a rigid unit mode (RUM). 

The vibrational frequencies for α-quartz as calculated by Green-Kubo and lattice 

dynamics match almost exactly. One exception appears to be the very low magnitude 

rigid unit mode (RUM) appearing at 5.1 THz in the X and Y directions of the lattice 

dynamics calculation which initially appears to have no counterpart in the Green-Kubo 

calculation. Closer inspection of the Green-Kubo spectra reveals this mode is indeed 

present in the X and Y directions but at exceptionally low intensity, matching fairly well 

with the relatively low magnitude found for this mode in the lattice dynamics 

calculation, Figure 5.17. 

 

Figure 5.17 Low frequency RUM in the X direction of α-quartz. Green-Kubo values are 

at 300 K. 

This mode is unusual in that it is the only RUM to appear in the Green-Kubo spectra 

and the lattice dynamics phonon DOS (after removing symmetric modes). However, 

other RUMs may be present but do not appear because the sum of their non-mass-

weighted eigenvectors is less than the cutoff; indeed there may be some evidence of 

further RUMs between 1.0 THz and 5.1 THz in the Green-Kubo spectrum, but these are 
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not conclusive. Furthermore the mode at 5.1 THz is absent from the β-quartz 

calculations, indicating that this mode becomes symmetric during the phase transition. 

The lattice dynamics phonon DOS is much harder to obtain for β-quartz as the structure 

is not stable to energy minimisation. Therefore a fictional β-quartz unit cell was created 

using the cell volume as calculated from molecular dynamics at 1300 K and the 

corresponding average atomic positions. The cell is then minimised under constant 

volume using the same potential parameters. By being precisely on the saddle point 

between the two possible orientations of α-quartz, relaxation to either state is avoided 

and the β-quartz structure is maintained. 

As β-quartz is not a stable structure at 0 K, imaginary modes are expected to appear in 

the spectra; however the rest of the modes in the spectra may give some insight into the 

vibrational modes interacting with the heat-flux. The β-quartz phonon DOS spectra and 

the 1300 K Green-Kubo spectra for quartz are presented in Figure 5.18, Figure 5.19 and 

Figure 5.20 and shows good agreement with the Green-Kubo spectra. 

 

Figure 5.18 Comparison of the Green-Kubo at 1300 K and lattice dynamics spectra for 

β-quartz, X direction. Log10 scale on Green-Kubo intensity. 
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Figure 5.19 Comparison of the Green-Kubo at 1300 K and lattice dynamics spectra for 

β-quartz, Y direction. Log10 scale on Green-Kubo intensity. 

 

Figure 5.20 Comparison of the Green-Kubo at 1300 K and lattice dynamics spectra for 

β-quartz, Z direction. Log10 scale on Green-Kubo intensity. 

There are many fewer peaks for β-quartz than α-quartz and a good match is achieved to 

the Green-Kubo spectra. One exception is the overestimation of the highest frequency 

peak which appears at 35 THz, a 3 THz overestimation on the Green-Kubo spectra. 
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These peaks may now be indexed according to their atomic motions; the results are 

displayed in Table 5.5. 

Frequency (THz) Direction Motion 

16.28 X/Y Tetrahedra distortion/Si-O bending 

17.75 Z Tetrahedra distortion/Si-O bending 

22.70 X/Y Si rattling in tetrahedra/Si-O bending 

34.97 Z Tetrahedra distortion/Si-O stretching 

35.01 X/Y Tetrahedra distortion/Si-O stretching 

Table 5.5 Assigned vibrational modes of β-quartz. 

The expected imaginary frequency for β-quartz is present and appears at approximately 

3.8i THz. The low frequency of the imaginary mode is due to the α-quartz to β-quartz 

transition being based on changes in tetrahedral positioning, and is thus an imaginary 

rigid unit mode (RUM). The imaginary frequency is symmetric and thus does not 

appear in the treated phonon DOS and it is not expected to directly affect the thermal 

conductivity. However, the existence of the phase transition itself is likely to lead to 

secondary effects that do have an impact on the thermal conductivity. 

The β-quartz structure shows a significant peak shift of the ~32 THz modes in the 

Green-Kubo spectra to ~35 THz in the lattice dynamics phonon DOS spectra. 

Additionally, the 21.5 THz mode in the X and Y directions of the Green-Kubo spectra is 

overestimated to 22.5 THz in the lattice dynamics phonon DOS. 

The shift of some modes to higher frequency in the lattice dynamics phonon DOS of β-

quartz originates from the fact that β-quartz is not a stable structure at 0 K and only 

exists as a dynamical average of many tetrahedral tilt angles. Thus at any given moment 

in time the SiO4 tetrahedra are not occupying the β-quartz average and the Si-O 

distances are closer to their low temperature bond lengths (1.60 Å). When the average 

atomic coordinates of β-quartz are used the Si-O bonds must become shorter to allow 

the tetrahedra to fit (1.59 Å). The Si-O bond is thus strained and not at its 0 K 

equilibrium distance, causing a slight change in the observed frequencies. The 

remaining modes which do not involve a stretching of the Si-O bond show a much 

better match to the Green-Kubo spectra. 
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The lattice dynamics spectra of both α-quartz and β-quartz can also help reveal the 

origin of changes in the Green-Kubo spectra as a function of temperature. The 

frequency at 22.84 THz in the Z direction disappears as the structure transitions from α-

quartz to β-quartz. The lattice dynamics calculation shows that this mode originates 

from the vibration of a Si atom within the tetrahedra, oscillating between two opposite 

edges. The vibration of the Si occurs mainly in the X-Y plane but also has some small Z 

component due to the tilt of the tetrahedra in α-quartz. The motion of all the tetrahedra 

in the system results symmetric mode in the X-Y plane but a concerted asymmetric 

motion in the Z direction, giving rise to the mode seen in the spectrum. At higher 

temperatures, the edges of the tetrahedra align perfectly in the X-Y plane and the 

concerted motion in the Z direction is removed, thus resulting in the mode reducing and 

disappearing at higher temperatures. 

The vibrational modes present at 14.32 THz and 19.84 THz in the Z direction of the α-

quartz spectrum (Figure 5.16) share identical motion of Si atoms, differing only in the 

motions of the O atoms. The two distinct frequencies arise out of the tetrahedral tilt and 

splitting of the vibrational environment. As the temperature increases and the 

environments become identical in β-quartz the frequencies merge into a single 

frequency at 17.75 THz in the Z direction of the β-quartz spectrum (Figure 5.20). 

Similar processes are likely the cause of other peak merging seen in the X and Y 

directions (14.03 THz with 18.57 THz and 21.67 THz with 23.05 THz) although the 

exact mechanism is unclear. 

The study of quartz has allowed a basic understanding of the thermal properties of silica 

materials to be developed which can aid in the interpretation of data coming from a 

more complex silica phase. In the next section a zeolite material, silicalite is studied, 

which has a much greater variety of environments and is much lower in density, both of 

which are factors which can greatly influence thermal conductivity. 

5.3. Silicalite 

The zeolites are a related class of silicate materials, which have a much lower density 

than quartz. There are over 200 known zeolite structures [285], both natural and 

synthetic. Their uses primarily stem from their highly porous structure, making them 

suited to catalysis [286], gas separation [287, 288] and ion exchange [289, 290]; these 
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process are often temperature dependent. Furthermore, zeolites are of interest for 

nuclear waste remediation and hence knowledge of their thermal properties is of great 

benefit [291]. 

The structure of zeolites also somewhat mirrors that of several promising thermoelectric 

material classes such as clathrates [68] by having a porous frame with the possibility of 

guest species. Thus the study of thermal transport in zeolite structures may give 

guidance on other materials for thermoelectric applications. 

Most zeolites incorporate aluminium into the structure and accommodate charge 

balancing cations in the pores such as alkali metals [292], alkaline earth metals or rare 

earth metals. It is however still possible for purely silicious versions of several zeolites 

to be synthesised. 

The thermal conductivity of zeolites has been studied computationally using the BKS 

potential. The work by McGaughey et al. [202] which calculated the thermal 

conductivity of quartz also calculated the thermal conductivity of a few zeolite 

structures (SOD, FAU and LTA) using the same approach. They found that in zeolites 

there are two primary mechanisms for heat transfer: 

1. A short range mechanism linked to optical phonons and short wavelength 

acoustic phonons and is heavily influenced by the geometry of the structure. 

This mechanism is temperature insensitive. 

2. A long range mechanism which is related to longer wavelength acoustic 

phonons. This mechanism is temperature sensitive and accounts for a significant 

portion of the thermal conductivity. 

Other potential models have also been used to calculate the thermal conductivity of 

zeolites. Schnell et al. [293] used a simplistic model [294, 295] in a NEMD simulation 

similar to that of Müller-Plathe[126] but with some minor modifications. This work 

found that the introduction of organic guest molecules into the zeolite structures had 

little effect on the thermal conductivity, likely due to weak interactions of the guests 

with the zeolite cages. This result gives an interesting contrast with clathrate materials 

where the guest ions are included specifically to reduce thermal conductivity, indicating 

the importance of both cage size and interaction strength. Therefore it may be expected 
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that introducing highly interacting cations may have a larger impact on the thermal 

conductivity. 

Hudiono et al. [296] used a more complex potential model incorporating electrostatic 

interactions, two-body interactions, three-body interactions and polarisation [297] to 

calculate the thermal conductivity of MFI within a BTE calculation. This study found 

increasing thermal conductivities with temperature between 150 K and 450 K, from 

~1.0 W/(m.K) to ~1.4 W/(m.K) with varying Si/Al ratio, matching closely the values 

from experiments conducted concurrently. 

Silicalite is a purely silicious version of the zeolite commonly known as MFI or ZSM-5 

[285]. The silicalite structure (Figure 5.21) contains large sinusoidal channels in the X 

direction and large straight channels in the Y direction, forming a network through 

which species may diffuse. This pore network is often used for catalysis, sequestration 

etc. 

 

Figure 5.21 Silicalite framework. Expanded x2 in the Z direction for clarity. The 

orthorhombic unit cell is displayed in the blue box. 

The structure of silicalite used here has space group      and is constructed from the 

same tetrahedral units as quartz, but arranged in a more complex motif. The 

crystallographic a, b and c directions correspond to the simulation X, Y and Z directions 

respectively. To test how well the potential model reproduces silicalite, the lattice 

parameters and elastic constants were calculated and are presented in Table 5.6. 
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Property Calculated Experiment % Difference 

a (Å) 20.286 19.963 1.62 

b (Å) 20.323 20.019 1.52 

c (Å) 13.655 13.388 1.99 

c11 (GPa) 33.7 68.2 -50.59 

c22 (GPa) 78.5 84.5 -7.10 

c33 (GPa) 79.1 79.0 0.13 

c44 (GPa) 18.8 23.5 -20.00 

c55 (GPa) 19.9 22.6 -11.95 

c66 (GPa) 20.3 21.2 -4.25 

c12 (GPa) 14.2 -1.52 -1034.21 

c13 (GPa) -3.42 10.3 -133.20 

c23 (GPa) 24.4 19.9 22.61 

Table 5.6 Calculated and experimental [298] properties of silicalite. The 

crystallographic a and b directions used in this work have been swapped for this 

comparison due to differences in space group definition. 

The experimental values for the elastic constants come from a sample which still 

contains the tetrapropylammonium (TPA) fluoride template. However, measuring the 

elastic constants for synthetic zeolites is particularly challenging due to the difficulties 

in growing sufficiently large crystals for analysis [298]. Thus, the values presented in 

Table 5.6 are presented as a closest match, with some deviation expected from the 

calculated values. 

Overall the match with experiment is reasonable, although the calculated lattice 

parameters are consistently ~0.3 Å higher than experimental values. The c11 constant is 

significantly underestimated compared to experiments, although this may be the result 

of the TPA-F guests making the structure stiffer. The c12 and c13 elastic constants also 

show significant deviation. 

To confirm whether the deviation from experiments is due to the presence of TPA-F in 

the structure or whether the potential model is not accurate enough, higher levels of 

theory may be applied in future to calculate the elastic constants, e.g. DFT. 
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5.3.1. Thermal Expansion 

The thermal expansion and conductivity of silicalite were calculated using the BKS 

potential [161] to facilitate direct comparison with the quartz results. The simulation 

cell used was a 2 x 2 x 3 expansion of the orthorhombic unit cell consisting of 288 

atoms and measuring approximately 20.3 Å x 20.3 Å x 13.7 Å, giving a final simulation 

cell of 3,456 atoms, measuring approximately 40.8 Å x 40.8 Å x 41.0 Å. 

The thermal expansion was measured using the same procedure as for all other 

materials in this work. A 0.5 ns anisotropic NPT molecular dynamics simulation was 

run on 6 different temperatures with a timestep of 1 fs. The lattice vectors were again 

sampled every 10 fs and averaged over the course of the simulation. The lattice vectors 

were averaged independently due to the anisotropic structure. The final lattice 

parameters are plotted against temperature in Figure 5.22. 

 

Figure 5.22 Calculated and experimental [299] lattice parameters. 

The calculated lattice parameters are within 3% of the experimental values [299] across 

the whole temperature range and in each direction. The thermal expansion coefficients 

were calculated for each direction using the lattice parameter at 500 K as the baseline. 

The thermal expansion values are presented in Table 5.7. 
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Direction This Work Bhange et al. 

a (K
-1

) -5.266x10
-6

 -3.998x10
-6

 

b (K
-1

) -5.232x10
-6

 -3.427x10
-6

 

c (K
-1

) -4.149x10
-6

 -2.364x10
-6

 

Table 5.7 Thermal expansion coefficients of silicalite from 500 K to 1000 K. 

The thermal expansion coefficients are reproduced within a factor of two in each 

direction. A deviation occurs below 500 K where the expansion is positive in the b and 

c directions. 

5.3.2. Thermal Conductivity 

The thermal conductivity of silicalite was calculated by dividing the simulations into a 

set of 5 molecular dynamics calculations for each of the 6 temperatures and then 

averaging the final Green-Kubo integrals for each temperature. Each temperature used 

the averaged lattice vectors as computed by the thermal expansion calculation. The 

simulations were given different random starting velocities and were equilibrated under 

an NVT ensemble for 0.5 ns before heat-flux data was collected for 4 ns under an NVT 

ensemble sampling every 10 timesteps (10 fs). The separate sets were then averaged 

together to give the final integrals from which the thermal conductivity was extracted. 

The thermal conductivity of silicalite with respect to temperature is presented in Figure 

5.23. 
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Figure 5.23 Average thermal conductivity of silicalite with respect to temperature. 

The calculated thermal conductivities lie within a narrow band between 2 and 3 

W/(m.K) and show essentially no response to temperature within the error. 

Experimental values tend to have increasing thermal conductivity values up to ~400 K 

and plateau at between 1 and 2 W/(m.K) [296, 300, 301]. As these experimental 

samples are not purely crystalline the higher thermal conductivities found in simulation 

are to be expected. 

As silicalite is an anisotropic material the thermal conductivities in different directions 

may be different, as was seen for quartz. The directionally dependent thermal 

conductivities are presented in Figure 5.24. 
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Figure 5.24 Directional thermal conductivities of silicalite with respect to temperature. 

The three directions appear to have almost equivalent thermal conductivities despite the 

structure being very different. The combination of these factors indicates that the main 

scattering mechanism is via the internal surfaces of the structure and thus the phonon 

mean free path is limited by surfaces and has very little variation with temperature. 

Below are presented the Green-Kubo spectra for silicalite in Figure 5.25, Figure 5.26 

and Figure 5.27. 
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Figure 5.25 Green-Kubo spectra of silicalite in the X direction, Log10 scale. 

 

Figure 5.26 Green-Kubo spectra of silicalite in the Y direction, Log10 scale. 
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Figure 5.27 Green-Kubo spectra of silicalite in the Z direction, Log10 scale. 

Each of the three directions gives distinct spectra although the overall regions for 

different types of modes match well with those of the spectra of quartz. The two regions 

are centred on 10-27 THz and 30-40 THz respectively. The 10-27 THz region contains 

Si-O bending modes while the 27-40 THz region contains Si-O stretching modes. The 

bending region of the spectra shows many more vibrational modes than for the quartz 

structures, with which acoustic phonons may interact. As was found for quartz the 

stretching region shows a frequency shift at increasing temperatures but the bending 

region does not. The very large widths of the peaks indicate short lived phonons as peak 

width is inversely proportional to phonon lifetime [192]. 

As the temperature increases, the number of independent modes decreases. The 

decrease in the apparent number of modes may stem from the same mechanism that 

reduced the number of modes in quartz i.e. increase in symmetry. However, the 

symmetry of the system (    ) remains the same for both the energy minimised 

structure and the 1300 K average molecular dynamics structure. Therefore, it is more 

likely that the reduction in modes is due to the broadening of the peaks leading to 

overlap and obscuring the separate modes. 

The lattice dynamics phonon DOS was calculated on the 288 atom orthorhombic cell 

with lattice vectors a=20.3 Å, b=20.3 Å and c=13.7 Å. The results provide an excellent 
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match to the Green-Kubo spectra and are presented in Figure 5.28, Figure 5.29 and 

Figure 5.30. 

 

Figure 5.28 Comparison of the Green-Kubo at 300 K and lattice dynamics spectra for 

silicalite, X direction. Log10 scale on Green-Kubo intensity. 

 

Figure 5.29 Comparison of the Green-Kubo at 300 K and lattice dynamics spectra for 

silicalite, Y direction. Log10 scale on Green-Kubo intensity. 
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Figure 5.30 Comparison of the Green-Kubo at 300 K and lattice dynamics spectra for 

silicalite, Z direction. Log10 scale on Green-Kubo intensity. 

The lattice dynamics phonon DOS spectra confirm that the higher frequency modes (30-

40 THz) are related to Si-O stretching and the middle frequency modes (10-25 THz) are 

related to Si-O bending. Additionally, the lattice dynamics calculations show that 

silicalite does have a small contribution from the low frequency RUM modes (<10 

THz), similar to quartz. 

Interestingly, the Z direction of silicalite is the high density direction, containing no 

channels, and is distinct compared to the X and Y direction in having three main peaks 

instead of two. The three main Z direction peaks also match well with the X and Y 

direction peaks of the β-quartz spectra and share broadly similar atomic motions Table 

5.8. 
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β-quartz Frequency 

(THz) 

Silicalite Frequency 

(THz) 

Motion 

16.28 ~19 Tetrahedra distortion/Si-O 

bending 

22.70 ~24 Si rattling in tetrahedra/Si-O 

bending 

35.01 ~34 Tetrahedra distortion/Si-O 

stretching 

Table 5.8 Major vibrational modes in β-quartz (X/Y direction) compared to silicalite (Z 

direction). 

The β-quartz structure contains the silica tetrahedra fully expanded. Furthermore, the 

silicalite structure does not undergo a phase transition and thus the similarity of the 

dense direction to β-quartz may be expected. 

Another feature of note is that the frequencies have generally increased in the silicalite 

calculation, except for the stretching mode which reduced in frequency. The reduction 

in frequency of the stretching mode is not real as the stretching mode in the β-quartz 

was already an overestimation due to the calculation being conducted on a transition 

structure. 

Overall the silicalite structure displays exceptionally low thermal conductivities on the 

order of 2.5 W/(m.K) and may be similar to a glass (Appendix B). However, the 

structure retains some similarities in its vibrational modes to bulk quartz. 

5.4. SiO2 Summary 

The effect of the phase transition seen in quartz can have a profound effect on the 

thermal conductivity due to the significant changes to the phonon modes in the system. 

While some modes display the expected shift to lower frequencies with increasing 

temperature, some display the opposite behaviour, indicative of a negative mode 

Grüneisen parameter. As the distribution of acoustic phonons obeys a Bose-Einstein 

distribution [192], optical modes at lower frequencies are expected to have a higher 

probability of scattering the heat carrying acoustic phonons and lower thermal 

conductivity. For the modes with a negative mode Grüneisen parameter this results in 

less scattering as temperature increases and therefore higher thermal conductivity due to 
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these modes. However, there are still many modes which display positive mode 

Grüneisen parameters and these tend to dominate the thermal conductivity. Looking 

back at Figure 5.5 it now seems possible that the minimum in thermal conductivity is at 

least partially due to these modes, although the effect of Dauphiné twinning cannot be 

discounted. 

The tetrahedral units which make up the structure of quartz give rise to very low 

frequency RUMs. However, most of these do not interact with the heat-flux and 

therefore cannot scatter heat-carrying phonons. Some RUMs are able to interact with 

the heat-flux at low temperatures within α-quartz but lose this ability as the temperature 

increases and the structure transitions to β-quartz. This change would also result in an 

increase of thermal conductivity if it was the only mode present, but is hidden by the 

reduction in thermal conductivity caused by the majority of other vibrational modes. 

The existence of RUMs in silicate materials results in interesting behaviour that can 

have applications in tuning the thermal conductivity. The RUMs present in quartz leads 

directly to the phase change and negative thermal expansion [249] which both alter the 

number and frequency of phonon modes present in the material. 

While the RUMs themselves do not significantly contribute to phonon scattering in the 

silica materials studied here (except at very low temperatures in quartz), their existence 

creates opportunities to scatter phonons by related mechanisms. Firstly, dynamic 

Dauphiné domain formation and destruction below the phase transition temperature 

may lead to the observed experimental thermal conductivity minimum seen in the work 

of Kanamori et al. [49]. However, extremely large (physical and time scales) molecular 

dynamics simulations would be required to capture these effects and lattice dynamics 

calculations may never be able to reproduce such effects as the memory requirements 

become unmanageable for large systems. 

The use of other silica tetrahedra based materials such as silicalite or even mesoporous 

silica offer many more opportunities for reducing thermal conductivity. The increased 

number of environments in the unit cell combined with lower density leads to an 

enormous reduction in thermal conductivity and hence may represent an excellent 

substrate material for thermoelectric devices. 
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The thermal conductivity of silicalite was found to be generally insensitive to 

temperature with a low thermal conductivity of ~2.5 W/(m.K), which is very close to 

preliminary calculations on silica glass (Appendix B). The primary differences in the 

systems are that of density and disorder. The density in the glass system is much higher 

as is the disorder. Therefore, density alone cannot be the only factor affecting thermal 

conductivity. It is the diversity of environments which leads to many optical phonon 

capable of interacting with the heat-flux and thus phonon scattering is greatly increased 

in silicalite. 

Although quartz and silicalite are not thermoelectric materials, the understanding gained 

from their study can now be applied to thermoelectric materials. Searching for a 

material with strong RUMs and/or which undergoes phase changes in the temperature 

region of operation may significantly reduce thermal conductivity and boost 

performance. 

In the next chapter the promising thermoelectric material SrTiO3/STO is discussed 

which combines a covalent framework with an ionic guest atom and may show 

behaviour similar to either/both MgO and SiO2. The role of grain boundaries and 

nanostructured materials in reducing thermal conductivity will also be explored further. 
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6. The Thermal Conductivity of Systems Based on 

the Thermoelectric Material Strontium Titanate 

(SrTiO3/STO) 

Strontium titanate (SrTiO3/STO) is a perovskite type material which may have 

applications in future high temperature thermoelectric devices. STO has advantages 

over more traditional thermoelectric materials in that its constituent elements are non-

toxic, abundant, cheap and stable to oxidation. These properties make STO suitable for 

use in high temperature applications as it is less likely to degrade in oxidising 

conditions. The relatively low cost of STO combined with the use of non-toxic 

elements, stability over a wide temperature range and its ready conversion to an n-type 

semiconductor makes STO an attractive material for thermoelectric applications. 

6.1. STO Overview 

STO is a perovskite material and exists in two phases; below ~105 K, the structure is 

tetragonal (I4/mcm) and above, the structure is cubic (Pm3 m) [302]. This work is 

concerned primarily with the high temperature thermal conductivity of STO and so only 

the cubic phase is considered. 

The cubic phase STO contains strontium atoms on the A sites coordinated by 12 oxygen 

atoms and titanium atoms on the B sites and are coordinated by 6 oxygen atoms. At 

room temperature, the perovskite structure is cubic with a lattice parameter of ~3.9 Å. 

The bonding arrangement in STO has a strong covalent interaction between titanium 

and oxygen, while the strontium interaction with the Ti-O framework is ionic [303, 

304], Figure 6.1. 
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Figure 6.1 Perspective view of a cubic SrTiO3 unit cell. The structure displayed contains 

1x Sr atom, 8x 1/8 Ti atoms and 12x 1/4 O atoms. 

While STO is an electrical insulator when stoichiometric, it can readily be made an n-

type semiconductor by introduction of defects. For example, by making the structure 

oxygen deficient, i.e. SrTiO3-x, Ti
3+

 species are generated [305, 306]. The perovskite 

structure has another notable feature, namely it can accommodate a wide range of guest 

species while maintaining its structural integrity, normally by substitution. In general, 

large low charged cations prefer to be at the Sr site while smaller higher charged cations 

prefer to be at the Ti site [307]. 

Despite its attractive TE properties, the thermoelectric figure of merit (  ) for STO 

remains stubbornly low. Typical values of    for STO are on the order of ~0.37 [308, 

309] at ~1000 K via doping with rare earth elements [310] or transition metals [311]. 

Lanthanum and niobium are particularly popular dopants [28, 312-315]. The low    

values are generally due to the high thermal conductivity found in oxide materials. 

There have been several approaches adopted for reducing the lattice thermal 

conductivity of STO, which include doping with heavy atoms and nanostructuring to 

enhance phonon scattering. As STO systems are generally doped to improve the 

electrical properties, further improvements in    are most likely to be gained via 

nanostructuring [316]. Nanostructuring may take on many forms and can impact on 

both the electrical and thermal properties and hence is a very active research area [316-

318]. 
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Introduction of grain boundaries is the most basic form of nanostructuring and are 

inherently present in polycrystalline systems. The presence of grain boundaries can 

greatly reduce the thermal conductivity by scattering phonons [319]. Unfortunately, 

charge carriers may also be scattered, reducing electrical conductivity. Thus more 

careful control of the grain boundary morphology and orientation may lead to more 

efficient thermoelectric materials, particularly if experiment could be guided as to which 

is the most effective microstructure. 

Reducing the dimensionality of the system is another approach to nanostructuring. 

Interesting quantum effects occur when STO is confined to a thin two dimensional layer 

[236, 320], these effects are referred to as a two dimensional electron gas or 2DEG. A 

significant increase in the absolute value of the Seebeck coefficient is obtained for a 

system of niobium doped STO layers embedded in pure STO when the thickness of the 

layers is less than 4 unit cells; achieving a maximum estimated    of 2.4 at 300 K using 

the thermal conductivity of pure bulk STO. However, this value refers only to the 

2DEG while the corresponding polycrystalline bulk    is only 0.24. 

By combining the nanostructuring approaches of grain boundaries and 2DEG systems, a 

promising approach to increasing the    of STO may be obtained. One such approach 

is in the development of ordered arrays of nanoparticles. In the case of STO, these 

would be nanocubes [318, 319]. Nanocube systems contain small STO crystals 

connected by a 3D network of 2DEG planes; thus, the system has many scattering 

planes for phonons while the scattering planes themselves increase the electrical 

properties. 

Nanocubes have been predicted to have a high theoretical   , approaching the values 

required for commercial applications [316]. A theoretical model based on DFT derived 

values was performed on assembled nanocubes. DFT calculations were used to obtain 

parameters for the STO nanocubes which contained 10% lanthanum doping and were 

held together by a variable sized “mortar” of 20% doped niobium STO. Calculations on 

the transport coefficients found that a    of 1.2 at 300 K is possible when the minimum 

thermal conductivity is used [321]. An alternative treatment of the thermal conductivity 

gave an alternative value of 0.8 at 300 K [316]. 

Simulations may provide additional information about the atomic scale processes which 

make STO a good thermoelectric material. A fundamental problem arises however as it 



184 

 

is very difficult to calculate all relevant transport coefficients using a single method. Ab 

initio methods are useful for calculating electronic properties as the electrons are 

included explicitly; ab initio methods may also be used to calculate the thermal 

conductivity, but are limited by system size and the approximations present in the BTE. 

Conversely, atomistic methods can extend to large system sizes to calculate the thermal 

conductivity via several methods, but have no accurate representation of the electronic 

processes. 

Atomistic methods are much more appropriate for studying thermal transport in STO as 

much larger systems may be used. Additionally by using molecular dynamics rather 

than lattice dynamics higher order anharmonicity may be included directly, however 

due to the simulation cell size certain phonons may be forbidden, see Chapter 3.2.4 for 

details. Therefore, lattice dynamics and molecular dynamics each have their own 

strengths and weaknesses and the selection of a method must be made carefully. A 

drawback of potential model techniques compared to ab initio methods is that they may 

struggle to accurately represent the interactions between species, particularly away from 

equilibrium and so care must be taken in their selection. 

The Shell model is often used in the study of oxide materials to better represent the 

ionic polarisability of the oxygen species. However, it has been found that for STO the 

shell model brings no significant benefit for either bulk or grain boundaries in terms of 

relative energies and structures [322]. Combined with the fact that shell model 

calculations are much more computationally expensive most potential models used for 

STO are rigid-ion, often containing partial charges. 

A potential model developed by Tosawat et al. [323] appears to give exceptionally good 

thermal conductivity values at first look. However, it has been pointed out by Goh et al. 

[128] that the Sr-O interaction in particular has a spurious attraction at close distances, 

which risks unphysical fusion of atoms at high temperatures. 

Goh et al. also propose an alternative potential model which performs well for thermal 

conductivity calculations, but has the issue of unequal charge distribution [128]. Most 

potential models either use formal charges or uniformly scaled partial charges; the 

model of Goh et al. uses partial charges of +2.0 for strontium, +2.2 for titanium and -1.4 

for oxygen. These charges seem to have been chosen to mirror the covalent nature of the 

Ti-O interaction and the ionic interaction of strontium atoms with the Ti-O network 
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[304]. However this distribution of charges results in non-neutral partial Schottky 

defects (i.e. SrO and TiO2) and renders the model almost unusable for any simulations 

beyond the bulk as most surfaces, grain boundaries and nanostructures will be non-

stoichiometric. 

Thus a potential model is required that is stable at high temperatures, can readily be 

used to examine the defect chemistry of STO, and ideally has interaction parameters 

available for a large range of dopant species. Such a potential model must also be able 

accurately reproduce the thermal conductivity of bulk STO. With this potential model 

the thermal conductivity of more defective structures can also be predicted.  

Defects within STO reduce the thermal conductivity by scattering the heat transporting 

acoustic phonons. Much work has been done experimentally to study the effect of grain 

size on thermal conductivity. However, little is known about the impact of grain 

boundary structure on the thermal conductivity. 

Thus, the aim of this work study the effect of different grain boundary structures, grain 

sizes and complex nanostructuring on the thermal conductivity of STO based materials. 

The Teter potential model [163] will be used as it has been fitted to many materials and 

has many interaction potentials available for future defect work. One drawback of this 

model is that the interactions are based on Buckingham potentials and so still include 

spurious attractions at small separations, however the energy barrier is high and thus 

unphysical fusion is unlikely at the temperatures studied here. 

The same techniques outlined and developed in previous chapters will be used again to 

calculate not only the thermal conductivity of various grain boundary systems but also 

their Green-Kubo spectra, which may be interpreted with help from lattice dynamics 

calculations. Thus, information about the specific structural features of the boundaries 

contributing most to scattering may be derived. 

6.2. Bulk STO 

The potential model used in this chapter was developed by Teter [163] (parameters are 

given in Chapter 2.1.5). When applied to the STO structure the symmetry is retained 

(space group    ̅ ) along with the coordination environments of each of the atoms. 
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The lattice parameter and independent elastic constants have been calculated using the 

potential model and are compared to experimental values in Table 6.1.  

Property Calculated Experiment % Difference 

a (Å) 3.88 3.91 -0.77 

c11 (GPa) 337.10 ~330 2.15 

c12 (GPa) 133.69 ~105 27.32 

c44 (GPa) 133.69 ~126 6.10 

Table 6.1 Calculated and experimental [324, 325] properties of STO. 

The lattice parameter differs from experiment by less than 1%. The c11 elastic constant 

is very close to the experimental value, differing by only ~2%. The c12 and c44 are once 

again identical due to the Cauchy condition and are slightly higher than the c44 

experimental elastic constant. It must be noted however that the experimental values 

were obtained at 298 K for the lattice parameter and 133 K for the elastic constants. 

As described in Chapter 3.1.2.1 the thermal expansion is an important property for a 

potential model to reproduce and so the thermal expansion of STO has been evaluated 

using the same procedure as for MgO and SiO2. 

6.2.1. Thermal Expansion 

A 12 x 12 x 12 supercell of the 5 atom STO cubic unit cell was generated containing a 

total of 8,640 atoms. A 0.5 ns isotropic NPT (with a Nosé–Hoover thermostat and 

barostat) molecular dynamics simulation was conducted; averaging the lattice vectors 

every 10 timesteps. The final lattice vectors converted back to the single unit cell are 

plotted as a function of temperature in Figure 6.2. 
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Figure 6.2 Calculated thermal expansion of STO compared to experiment [326]. 

The lattice parameters stay within 2% of the experimental values across the range to be 

studied. Additionally the calculated thermal expansion in the simulations is 1.13x10
-5

 K
-

1
 while the experimental thermal expansion is calculated to be 1.10x10

-5
 K

-1
, indicating 

the potential model is reproducing the anharmonic interactions well and reasonable 

thermal conductivity values may be expected. 

6.2.2. Thermal Conductivity 

The thermal conductivity of STO was calculated using the same procedure as the other 

materials (see Chapter 3.2.3). The same supercells were used as for the thermal 

expansion calculations with the lattice vectors set to their averaged value. A 0.5 ns NVT 

equilibration period (with a Nosé–Hoover thermostat) was conducted followed by a 20 

ns NVT heat-flux data collection period. The averaging window for STO was found to 

be optimal between 50,000-55,000 timesteps, although large fluctuations in the integral 

remained, leading to a large apparent error at low temperatures. The results are plotted 

against experimental values in Figure 6.3. 
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Figure 6.3 Thermal conductivity of bulk STO compared to experiments [319, 327, 328]. 

The values calculated using the Green-Kubo method appear to be slightly higher than 

those from experiments. The thermal conductivity values also obey the usual power law 

indicating the primary scattering mechanism is phonon-phonon. 

The thermal conductivity was also calculated via the BTE using the Phono3py code 

[121, 122]. The Teter potential model [163] was used to calculate the forces within the 

METADISE code [165]. Convergence was achieved with respect to supercell size and 

q-point mesh. The final results using a 4 x 4 x 4 supercell and a 20 x 20 x 20 q-point 

mesh are presented in Figure 6.4 compared to Green-Kubo calculation and experiment. 
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Figure 6.4 Calculated thermal conductivity of bulk STO via two methods compared 

with experiments [319, 327, 328]. 

An extremely good match to the Green-Kubo calculations is achieved. The match 

indicates that the lattice dynamics calculations approximations hold well for STO (i.e. 

there is no need to go above third order force constants and that the relaxation time 

approximation holds well) and that a 4 x 4 x 4 supercell is sufficiently large to include 

important long wavelength phonons in stoichiometric STO. 

The close agreement between the lattice dynamics calculation and molecular dynamics 

calculation indicates that the Green-Kubo results are indeed well converged. It can also 

be concluded that the potential model is overestimating the thermal conductivity 

compared to experimental values, particularly at lower temperatures. 

To better understand the scattering processes involved in the thermal conductivity the 

Fourier transform of the heat-flux autocorrelation can again be taken. Additionally, the 

lattice dynamics phonon DOS at the gamma point can be calculated and treated to 

obtain a more quantifiable frequency for each mode in addition to the motions of atoms 

involved in that mode. 
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6.2.3. Green-Kubo and Lattice Dynamics Spectra 

Despite the large fluctuation in the autocorrelations, their Fourier transforms give well 

resolved Green-Kubo spectra which are displayed in Figure 6.5. The well resolved 

spectra indicate that the large fluctuations seen in the autocorrelations are consistent 

long-lived optical modes, rather than random noise. As these optical phonon modes do 

not transport a significant portion of heat themselves then their truncation in the 

integration should not lead to a significant underestimation of the thermal conductivity. 

 

Figure 6.5 The Fourier transform of the heat-flux autocorrelation, Log10 scale. 

The Green-Kubo spectra for STO display three modes at ~5.7 THz, ~13.9 THz and a 

very small mode appearing at ~21.7 THz (depending on temperature). The mode 

appearing at ~5.7 THz seems entirely insensitive to temperature whereas the other two 

modes shift to lower frequencies with higher temperatures, as seen for previous bulk 

materials (Chapters 4 and 5). 

To index the peaks from the Green-Kubo spectra the total phonon DOS (gamma point) 

is calculated using the Phonopy code [121] using the 5 atom cubic cell with lattice 

vectors a=b=c=3.88 Å. The full phonon DOS at the gamma point reveals four distinct 

optical modes and is displayed in Figure 6.6 (a fifth mode of zero frequency has been 

removed which corresponds to a translation of the entire lattice). 
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Figure 6.6 Phonon density of states (DOS) for STO at the gamma point. 

The DOS has an extra mode at 11.13 THz when compared to the Green-Kubo spectra. 

This mode is expected to be symmetric and thus will be removed upon analysis. A 

dimensionless eigenvector cutoff of 0.01 is used for STO to remove the symmetric 

optical phonon modes. The cutoff value must be chosen carefully otherwise some 

modes are missed which do appear in the Green-Kubo spectra. The value of 0.01 was 

chosen to allow the mode at ~22.4 THz in the Green-Kubo spectra to be identified. 

As the three directions of STO are equivalent, only the X direction is plotted and 

compared with the low temperature Green-Kubo calculation in Figure 6.7. 



192 

 

 

Figure 6.7 Lattice dynamics phonon DOS and Green-Kubo spectra at 300 K of bulk 

STO. Log10 scale on Green-Kubo intensity. 

The frequencies as calculated by lattice dynamics are almost identical to those as 

calculated by Green-Kubo, with a relatively small deviation observed at ~14.1 THz and 

~22.4 THz. These two modes displayed significant shift with temperature in the Green-

Kubo calculations and so it can be safely assumed that the deviation of the frequencies 

is due to the lattice dynamics calculation not including temperature effects. 

The relative heights of the peaks correlate quite well when the Green-Kubo spectrum is 

plotted on a logarithmic scale. This indicates that there may be some exponential 

function involved in the peak heights for the Green-Kubo calculations as opposed to the 

lattice dynamics calculations; this is almost certainly down to Bose-Einstein statistics 

and the increased population of acoustic phonons at lower frequencies. 

Due to the low number of modes present in the gamma point phonon DOS, the 

vibrational modes can be examined and motions assigned, given in Table 6.2. 
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Frequency (THz) Motion 

5.75 Sr atoms vibrating within cubic Ti-O cages 

11.1 O tetrahedra distorting around Ti – SYMMETRIC MODE 

14.1 Ti atoms vibrating in O tetrahedra with tetrahedra distortion 

22.4 O atoms vibrating between Ti atoms 

Table 6.2 Assigned vibrational modes of bulk STO. 

The three modes, which are present in the Green-Kubo spectra, have motions which 

may be considered rattling type modes. Low frequency rattling modes are often 

introduced into thermoelectric materials via doping in order to reduce the thermal 

conductivity [66, 70, 329]. The low frequency of these modes maximises interaction 

with acoustic phonons due to the Bose-Einstein distribution of acoustic phonon 

populations, making them very effective at scattering acoustic phonons and reducing 

lattice thermal conductivity. 

The vibrational mode at ~11.1 THz is a distortion of the oxygen tetrahedra around 

titanium. The oxygen atoms distort in such a way that the centre of mass does not 

change during the vibration, making the mode symmetric and explaining its absence 

from the Green-Kubo spectra. 

These modes are expected to be present within grain boundary systems in addition to 

new modes created by new environments present at the boundary. The effect of the new 

modes should be to lower the thermal conductivity as there will be more ways to scatter 

acoustic phonons. Thus the thermal conductivities of three distinct grain boundaries, 

with either a large (~100 Å) or short (~15-20 Å) separation, have been calculated in 

order to understand the impact of varying system geometry. 

6.3. STO Grain Boundaries 

The results in Chapter 4.3 show that for magnesium oxide, the orientation of the grain 

boundaries is important due to the differing atomic environments found at the boundary. 

Whether or not the grain boundary will scatter a phonon will depend upon the 

environments found at the grain boundary. If there are no environments suitable for 

scattering a particular frequency then the phonon of that frequency may pass unimpeded 

[330, 331]. 
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The existence of two grain boundaries parallel to each other will also act to limit the 

allowed phonon wavelengths depending on the distance between them, and thus have 

some impact on the thermal conductivity. 

Three different grain boundaries, which have been identified in experimental studies on 

STO, have been constructed using the methodology outlined in Chapter 2.5.1.4 and then 

annealed at 1300 K for more than 5 ns. The boundaries are displayed in Figure 6.8 

subsequent to annealing, each showing distinctly different environments. 

 

Figure 6.8 The a) Σ3{111}, b) Σ3{112} and c) Σ5{310} STO grain boundary structures. 

Sr = yellow, Ti = pink, O = red. 

The structure of the Σ3{111} boundary is known experimentally from HRTEM studies 

[332]. DFT calculations [333] have shown that the Ti-O bonding network is partially 

preserved across the boundary, indicating the possibility of good electrical conductivity 

while effectively lowering the thermal conductivity. It has also been found that shear 

stress can alter the structure of the Σ3{111} boundary [334], and may have significant 

impact on the transport properties. 

The Σ3{111} grain boundary used here is found to be identical to those found 

experimentally and with DFT. The boundary itself is constructed from face sharing Ti-

O octahedra while the Sr atoms at the centre of the boundary remain 12-fold coordinate, 

although in a slightly different arrangement (now at the centre of a HCP packed 

polyhedra rather than the FCC packed polyhedra found in the bulk). The extent of 
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relaxation into the bulk caused by the Σ3{111} boundary is minimal and the bulk lattice 

is relatively unperturbed until very close to the centre of the boundary. 

The Σ3{112} grain boundary has two proposed structures, one is mirror symmetric and 

the other is mirror-glide symmetric. Both of these structures have been studied using 

DFT and were found to have almost identical energy [322]. Other work has managed to 

observe the mirror symmetric form experimentally using HRTEM [335]. This work has 

used the mirror-glide form of the boundary for calculation of thermal conductivity, 

which was found to remain stable after being annealed at temperatures greater than 

1000 K for several ns and displayed no tendencies to reconstruct. The structure of the 

mirror-glide symmetric Σ3{112} boundary has a larger range of reconstruction into the 

bulk material than the Σ3{111} boundary and contains square-based pyramidal Ti-O 

groups and 8-fold coordinate strontium at the boundary. 

Combined experimental work (scanning transmission electron microscopy) and first 

principles calculations have also been conducted on the Σ5{310} boundary and 

concluded that the structure is asymmetric [336]. It has also been found that the 

structure of the Σ5{310} grain boundary demonstrates temperature dependent faceting 

[337]. These complexities mean that there are a large number of candidate structures for 

the Σ5{310} boundary. An atomistic study using interatomic potentials looked at many 

possible structures and found many had similar energies [338]. 

The Σ5{310} structure used for these calculations has been annealed at 1300 K for 2 ns, 

resulting in a structure that is at least metastable at the temperatures under study and 

may be the most stable for this potential model. The Ti-O groups at the boundary adopt 

a mixture of square-based pyramids and distorted square-based pyramids. An interesting 

property of the Σ5{310} boundary is that the strontium atoms within the boundary 

display some disorder between two sites, which may give rise to interesting vibrational 

effects. 

Thus, the structures used for these calculations are either a match for experiment or are 

local minima which may still exist experimentally under certain conditions. 

Furthermore, due to the simplistic nature of interatomic potentials there is a reasonable 

possibility that the Σ3{112} and Σ5{310} boundary structures used are the global 

minima for this potential model, though determining this would require a full 

enumeration of all possible boundary structures. 
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While having accurate boundary structures is important, grain size is another factor 

which is likely to have a significant effect of the thermal conductivity in polycrystalline 

materials [339, 340]. For the systems under study, this is equivalent to the distance 

between the two grain boundaries as the other two directions are effectively infinite. 

The CPU time overhead for running these simulations meant that the effect of different 

distances between grain boundaries was studied by considering two separations for each 

grain boundary structure. The system with a large separation between the boundaries 

was used to model the isolated case while the system with small separation between the 

grain boundaries was used to study the interacting case. Thus, six systems in total were 

generated. 

Each system contains two identical grain boundaries (within symmetry) aligned 

perpendicular to the simulation cells X direction. The isolated systems have 

approximately 100 Å of bulk between the boundaries (giving a system of ~200 Å long); 

the interacting systems contain ~15-20 Å of bulk between the boundaries (~30-40 Å 

system total). 

The deviations in distance originate with the structure of each boundary and the 

thickness of the repeating bulk unit perpendicular to the boundary. The size of the 

systems in the other dimensions was set to be at least 20 Å. The small size deviations 

between systems are expected to have negligible influence on the final thermal 

conductivities as compared to the boundaries. 

Each system was simulated at 5 temperatures, 500 K, 700 K, 900 K, 1100 K and 1300 

K. The system was not simulated at 300 K due to large fluctuations and hence the 

concern for the quality of the convergence of the autocorrelation for the bulk material at 

this temperature. A timestep of 1.0 fs was once again used. Each temperature for each 

system was equilibrated for 0.5 ns using an NPT ensemble to obtain the time averaged 

lattice vectors. Subsequent NVT data collection simulations used these lattice vectors. 

The data collection simulation used an NVT ensemble collecting heat-flux data every 10 

fs for 20 ns. 

6.3.1. The Σ3{111} Boundary 

The Σ3{111} grain boundary has been studied at both long separation (isolated) and 

short separation (interacting). These different arrangements are expected to give 
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different thermal conductivities despite having the same structure due to the limiting of 

phonon wavelengths between the boundaries. 

The Σ3{111} grain boundary structure contains face sharing Ti-O octahedra and Sr 

atoms in a different coordination environment to the bulk. While both the bulk and grain 

boundary Sr atoms are 12-fold coordinate, in the bulk the packing is HCP and at the 

boundary the packing is FCC. The arrangement of the simulation cell is such that the 

grain boundary lies perpendicular to the X direction, while the Y and Z directions are 

parallel. In the case of the Σ3{111} grain boundary, the Y and Z directions are 

symmetrically equivalent and are expected to give equivalent thermal conductivities and 

Green-Kubo spectra. 

It must be noted that these simulations cannot be compared directly to polycrystalline 

systems as they are infinite in the Y and Z directions and thus are much more similar to 

multilayer thin film systems where two directions are effectively infinite bulk, while the 

third direction contains multiple grain boundaries aligned in parallel. 

The first simulation discussed is that where the grain boundaries are isolated (~100 Å 

apart), which is expected to have a thermal conductivity slightly less than bulk STO. 

Additionally, by having the grain boundaries isolated it becomes easier to discern 

whether distinct grain boundary structures have any significant individual effects. It is 

expected that at large separations the distance between boundaries will dominate the 

thermal conductivity, whereas at small grain sizes the types of boundary will become 

more important due to boundary-boundary interactions. 

6.3.1.1. Thermal Conductivity of the Σ3{111} Boundary 

The study of the isolated boundary gives a starting point for comparison of boundary-

boundary effects when studying interacting boundaries. Additionally, it may be possible 

to infer whether the boundary has a significantly long range effect, or whether it is the 

inter-boundary distance alone that is important. 

The isolated Σ3{111} grain boundary system is orthorhombic and is approximately 203 

Å x 22 Å x 19 Å and contains 7,200 atoms. The formation energy is 0.894 J/m
2
, 

calculated as outlined in Chapter 2.5.1.4. 
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It is also possible to calculate the amount of additional length in the simulation cell 

caused by the presence of the grain boundary. To calculate this value, first the volume 

of an equivalent bulk unit cell is calculated and then divided by the cross-sectional area 

of the grain boundary system (parallel to the grain boundary), which gives the length of 

the grain boundary system should the grain boundaries be absent. This length is 

subtracted from the true length of the grain boundary system and divided by two to give 

the excess length per grain boundary. For the isolated Σ3{111} grain boundary the 

excess length is found to be 0.265 Å. 

The thermal conductivity of the isolated Σ3{111} grain boundary has been calculated 

using the Green-Kubo method as described above. The average thermal conductivity 

compared to bulk is presented in Figure 6.9. 

 

Figure 6.9 Average thermal conductivity of the isolated Σ3{111} boundary. 

The grain boundary thermal conductivities appear very close to the corresponding bulk 

values, a result of the large amount of bulk between the boundaries and thus the average 

thermal conductivity of the system is much closer to bulk. This effect is more 

pronounced at higher temperatures, whereas low temperature thermal conductivities are 

lower than bulk values by 1-2 W/(m.K). 

As the Σ3{111} grain boundary system is anisotropic the thermal conductivity is again 

expected to be anisotropic. The X direction passes directly through the grain boundary 
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and is expected to display the lowest thermal conductivity; the Y and Z directions are 

equivalent due to symmetry and are expected to have identical thermal conductivities, 

Figure 6.10. 

 

Figure 6.10 Directional thermal conductivity of the isolated Σ3{111} boundary. 

Counter to what was expected, the X direction (through the boundary) has higher 

thermal conductivity than the Y and Z directions as well as bulk, although the difference 

is small and the fluctuations on the integral are large. One explanation for the possible 

increase in thermal conductivity may be that the large degree of Ti-O cross-linking at 

the boundary is facilitating thermal transport. Alternatively, the introduction of the 

boundary may introduce new scattering modes but also remove other scattering modes 

found in the bulk structure. 

By studying the Σ3{111} at a much shorter separation (~15-20 Å), the bulk component 

of the thermal conductivity is reduced; additionally the two grain boundaries within the 

system are more likely to interact with each other. By reducing the bulk component of 

the autocorrelation the new modes introduced by the boundary become clearer; modes 

created by boundary-boundary interactions may also be evident. 

The interacting Σ3{111} grain boundary system is orthorhombic and is approximately 

27 Å x 22 Å x 19 Å and contains 960 atoms. The formation energy is 0.875 J/m
2
, 

indicating a slight stabilisation over the isolated Σ3{111} grain boundary (0.894 J/m
2
) 
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due to boundary-boundary interaction. Furthermore, the excess length of the interacting 

Σ3{111} grain boundary has also been increased to 0.270 Å from 0.265 Å. 

The thermal conductivity of the interacting Σ3{111} grain boundary has also been 

calculated using the Green-Kubo method as described above. The average thermal 

conductivity compared to bulk is presented in Figure 6.11. 

 

Figure 6.11 Average thermal conductivity of the interacting Σ3{111} boundary. 

The thermal conductivity for the interacting Σ3{111} boundary is lower compared to 

bulk STO as may be expected for a system with a relatively high defect concentration 

(grain boundaries). The overall trend with temperature is flat indicating phonon-defect 

scattering is dominating over phonon-phonon scattering. To see whether the X direction 

still displays a higher thermal conductivity than the Y and Z directions the thermal 

conductivity is again split into directional components, Figure 6.12. 
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Figure 6.12 Directional thermal conductivity of the interacting Σ3{111} boundary. 

The X direction is now lower than the Y and Z directions, a reverse of the behaviour 

seen in the isolated system. This is the expected behaviour as phonons travelling in the 

X direction will have a shorter mean free path before interacting with the boundary than 

phonons with a significant Y or Z component. 

Thus, the origin of the increased X direction thermal conductivity in the isolated 

boundary system is still unclear, though it may stem from boundary-boundary 

interactions. Analysis of the Green-Kubo spectra for both the isolated and interacting 

system may give some idea as to how this effect arose. 

6.3.1.2. Spectra of the Σ3{111} Boundary 

The Green-Kubo spectra for the isolated Σ3{111} boundary at multiple temperatures are 

presented in Figure 6.13 and Figure 6.14. 
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Figure 6.13 Green-Kubo spectra of the isolated Σ3{111} boundary in the X direction, 

Log10 scale. 

 

Figure 6.14 Green-Kubo spectra of the isolated Σ3{111} boundary in the Y direction, 

Log10 scale. 

The Y and Z direction spectra are identical and so only the Y direction is presented. The 

Y/Z directions show almost no difference to the bulk spectra, whereas the X direction 

shows a new set of peaks at frequencies below 5 THz as well as a splitting of the peak at 
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~6 THz. It can be theorised that these changes are related to new vibrational modes 

introduced by the boundary and may be related to strontium based vibrations (as the 

new vibrational modes are in the region of the strontium peak) or to the vibration of the 

two grains with respect to each other in the X direction. A third option is the 

introduction of vibrational modes which are RUMs and hence low frequency. 

The only possible source of the increased thermal conductivity may come from the 

slight splitting of the main strontium peak (5 THz), with the satellite at slightly higher 

frequency. The splitting and slightly shift to higher frequency means that the new peak 

will interact with fewer acoustic modes due to the Bose-Einstein distribution, leading to 

a larger thermal conductivity. 

Further analysis of this system by lattice dynamics calculations is hampered by the large 

simulation cell. However, modes appearing in both the isolated Green-Kubo spectra and 

the interacting Green-Kubo spectra are likely to originate from the new boundary 

environments and so information about the new peaks in the X direction of the isolated 

system may still be obtainable from the spectra of the interacting system. 

The Green-Kubo spectra for the interacting Σ3{111} boundary at multiple temperatures 

are presented in Figure 6.15 and Figure 6.16. 

 

Figure 6.15 Green-Kubo spectra of the interacting Σ3{111} boundary in the X direction, 

Log10 scale. 
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Figure 6.16 Green-Kubo spectra of the interacting Σ3{111} boundary in the Y direction, 

Log10 scale. 

Once again the Y and Z directions are identical and so only the Y direction is displayed. 

The Green-Kubo spectra of the interacting Σ3{111} grain boundary have many more 

vibrational modes than the isolated version in all directions. Most of the new modes 

appear around the strontium peak (~6 THz). The strongest new vibrational modes 

appear perpendicular to the grain boundary in the X direction around the strontium 

peak. A couple of small intensity peaks appear in the oxygen region (~20 THz) of the X 

direction as well. An additional feature of the Y/Z direction is a significant broadening 

of the peak in the titanium region (~14 THz). 

There do not appear to be many matching peaks compared to the isolated system. The 

discrepancy is probably due to the peaks being shifted in the interacting system because 

of boundary-boundary interactions. 

The interacting system has a small enough unit cell that the phonon DOS can be 

calculated directly by lattice dynamics. The orthorhombic cell used contained 120 atoms 

with lattice vectors a=27.20 Å, b=5.52 Å and c=9.56 Å. By treating the phonon DOS in 

the same way as previously, the exact origins of the new peaks may be made clear. The 

same process has been used as previously to remove symmetric modes and split the 
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spectra into dimensional components. Once again broadening of the Gaussian peaks is 

arbitrary and is meant to serve only as a guide to the eye. 

The phonon DOS for the interacting Σ3{111} boundary are presented in Figure 6.17 and 

Figure 6.18. 

 

Figure 6.17 Lattice dynamics phonon DOS and 500 K Green-Kubo spectra of the 

interacting Σ3{111} boundary, X direction. Log10 scale on Green-Kubo intensity. 
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Figure 6.18 Lattice dynamics phonon DOS and 500 K Green-Kubo spectra of the 

interacting Σ3{111} boundary, Y direction. Log10 scale on Green-Kubo intensity. 

As expected, the Y and Z directions are identical and so only the Y direction is 

presented. The number and position of peaks found by the lattice dynamics calculations 

matches almost exactly with those found in the Green-Kubo spectra. A few additional 

peaks appear in the phonon DOS calculation, but it may be a case of these peaks having 

very low intensity in the Green-Kubo spectra. Many of the additional peaks appear at 

very high frequencies where the population of acoustic phonons is negligible and thus 

do not interact significantly with the heat-flux of the system. 

Several of the low frequency modes have some RUM character, but due to the boundary 

plane not all Ti-O octahedra are capable of the rigid unit motion. Furthermore, the 

modes cannot be conclusively related to the modes in the isolated system. 

A secondary feature to note is that in the region of the titanium peak (~14 THz), there 

are relatively few modes whereas in the Green-Kubo spectra the peaks is quite broad. 

This suggests that there are many titanium based modes with slight asymmetry, which 

are not being detected by the lattice dynamics analysis using the chosen cutoff value. 

The X direction of the interacting Σ3{111} boundary contains few enough modes to 

manually visualise the eigenvectors and assign the relative motion of each mode 

present. The 500 K X direction Green-Kubo spectrum of the interacting Σ3{111} 
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boundary is displayed again in Figure 6.19. The calculated lattice dynamics phonon 

DOS frequencies and a description of each mode are presented in Table 6.3. A diagram 

of the different strontium environments in the Σ3{111} boundary are presented in 

Figure 6.20. 

 

Figure 6.19 500 K Green-Kubo spectrum of the interacting Σ3{111} boundary in the X 

direction, Log10 scale. 

Frequency (THz) Motion 

3.21 Outer-Boundary Sr rattling 

3.99 Core-Boundary Sr rattling 

4.55 Bulk-Only Sr rattling 

5.39 All Sr rattling 

7.62 Bulk-Ti and Boundary-Ti split mode 

14.09 All Ti rattling 

19.92 Alternating-Layers O rattling perpendicular to boundary 

21.28 All O rattling 

Table 6.3 Assigned modes of the interacting Σ3{111} boundary. 
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Figure 6.20 Strontium environments in the Σ3{111} STO boundary. 

The assigned modes prove conclusively that the additional low frequency peaks are 

indeed due to strontium motion. In particular, the modes stem from the subtly different 

strontium environments present at the grain boundary. 

At ~4.0 THz the strontium atoms present at the core of the boundary are rattling, at ~3.2 

THz the strontium atoms either side of the core of the boundary are rattling and at ~4.6 

THz only the bulk strontium atoms are rattling while all the boundary strontium atoms 

remain fixed. The mode at ~5.4 THz is the usual strontium mode of bulk STO where all 

strontium atoms in the system are vibrating, the shift in frequency is attributed to the 

increased number of strontium atoms in a different environment to bulk. 

The mode present at ~7.6 THz is related to titanium motion rather than strontium 

motion and is due to the bulk titanium and boundary titanium rattling in opposite 

directions. 

The final additional mode at ~19.9 THz is an additional oxygen mode where alternating 

layers of oxygen atoms rattle in opposite directions. The asymmetry here is thus 

dependent on the number of bulk layers between boundaries and so this mode may not 

be significant at different inter-boundary distances. 

6.3.2. The Σ3{112} Boundary 

The Σ3{112} grain boundary structure system again has the grain boundary 

perpendicular to the X direction. The boundary itself contains Ti-O bridges across the 
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boundary and little else. The environments adjacent to the boundary contain square-

based pyramidal Ti-O groups and 8-fold coordinate strontium at the boundary. Due to 

the relatively empty grain boundary structure there are a small series of pipes running 

through the boundary in the Y direction which are expected to have an effect on the 

thermal conductivity. 

6.3.2.1. Thermal Conductivity of the Σ3{112} Boundary 

The isolated Σ3{112} boundary system is orthorhombic and approximately 193 Å x 22 

Å x 20 Å and contains 7,200 atoms. The grain boundaries have a formation energy of 

1.52 J/m
2
 which is higher than either of the Σ3{111} boundary systems. The excess 

length of the isolated Σ3{112} boundary was also higher than the previous Σ3{111} 

boundary systems at 0.544 Å instead of ~0.27 Å. 

The thermal conductivity of the isolated Σ3{112} boundary was calculated in the usual 

way. The average thermal conductivity compared to bulk is displayed in Figure 6.21. 

 

Figure 6.21 Average thermal conductivity of the isolated Σ3{112} boundary. 

The thermal conductivity of the isolated Σ3{112} boundary system is lower than that of 

bulk across all temperatures. This is a change from the behaviour of the isolated 

Σ3{111} boundary system where the thermal conductivities converged to a similar 

value at high temperatures. 
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The X direction is again perpendicular to the grain boundary while the Y and Z 

directions are parallel. As the Σ3{112} boundary system is distinct in the Y and Z 

directions, the thermal conductivities are now expected to be different. The directional 

components to the thermal conductivity are presented in Figure 6.22. 

 

Figure 6.22 Directional thermal conductivity of the isolated Σ3{112} boundary. 

The thermal conductivity of the isolated Σ3{112} boundary is lower than that of the 

bulk value in all directions. Additionally, the temperature dependence through the 

boundary (X direction) is greatly reduced and shows almost no dependence on 

temperature, indicating increased defect scattering and thus decreased phonon-phonon 

scattering. 

The fluctuations in the autocorrelations appear much smaller for the isolated Σ3{112} 

boundary than for the isolated Σ3{111} boundary, indicating less long-lived optical 

component to the autocorrelation. This may be confirmed later by examining the Green-

Kubo spectra. 

The interacting Σ3{112} boundary system is again orthorhombic and approximately 39 

Å x 22 Å x 20 Å and contains 1,440 atoms. The formation energy is 1.50 J/m
2
, which is 

slightly lower than the isolated system at 1.52 J/m
2
, a trend which was also observed for 

the Σ3{111} boundary systems. Likewise, the excess length has increased (as seen 

previously) to 0.551 Å from 0.544 Å. 
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The results for the average thermal conductivity of the interacting Σ3{112} boundary 

conductivity are displayed in Figure 6.23. 

 

Figure 6.23 Average thermal conductivity of the interacting Σ3{112} boundary. 

Figure 6.23 shows thermal conductivity values very similar to the Σ3{111} interacting 

boundary. All values are again around ~2.5 W/(m.K) and show only slight temperature 

dependence. The directional contributions are presented in Figure 6.24. 

 

Figure 6.24 Directional thermal conductivity of the interacting Σ3{112} boundary. 
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The thermal conductivity of all three directions appear very similar, although the X 

direction has a slightly lower value. The X direction also displays no temperature 

dependence at all while the Y and Z directions have only slight temperature 

dependence. 

6.3.2.2. Spectra of the Σ3{112} Boundary 

The Green-Kubo spectra for all temperatures have been calculated and show the usual 

variation with temperature (i.e. flattening, broadening and shift to lower frequencies for 

the titanium related peaks). For clarity, only the lowest temperature Green-Kubo 

spectrum will be presented from now on. The lattice dynamics phonon DOS spectra 

have also been calculated for the smaller interacting systems and will be presented 

where available. 

The spectra for the isolated Σ3{112} boundary are displayed in Figure 6.25. 

 

Figure 6.25 Green-Kubo spectra at 500 K of the isolated Σ3{112} boundary, Log10 

scale. 

All three directions display splitting of peaks and/or additional peaks. The peaks are 

also wider in these spectra than in the isolated Σ3{111} boundary, meaning that the 

lifetimes are shorter and leading to the smaller fluctuations seen when integrating the 

autocorrelation to obtain the thermal conductivity. 
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The additional peaks in Y and Z seem to be split from the strontium bulk peak. As these 

new peaks must arise from the introduction of the boundary, they are having a 

disproportionately large effect for such a small fraction of the number of strontium 

environments. 

As the spectra for the isolated Σ3{112} boundary is more complex than the isolated 

Σ3{111} boundary, the spectra for the interacting Σ3{112} boundary is expected to be 

particularly complex. Again, the interacting Σ3{112} boundary contains 120 atoms with 

an orthorhombic cell with lattice vectors a=39.10 Å, b=5.46 Å and c=6.78 Å. This 

system is small enough to have its lattice dynamics phonon DOS calculated and is 

displayed alongside the Green-Kubo spectra in Figure 6.26, Figure 6.27 and Figure 

6.28. 

 

Figure 6.26 Lattice dynamics phonon DOS and 500 K Green-Kubo spectra of the 

interacting Σ3{112} boundary, X direction. Log10 scale on Green-Kubo intensity. 
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Figure 6.27 Lattice dynamics phonon DOS and 500 K Green-Kubo spectra of the 

interacting Σ3{112} boundary, Y direction. Log10 scale on Green-Kubo intensity. 

 

Figure 6.28 Lattice dynamics phonon DOS and 500 K Green-Kubo spectra of the 

interacting Σ3{112} boundary, Z direction. Log10 scale on Green-Kubo intensity. 

All three spectra show a large number of additional vibrational modes introduced by the 

boundary. A number of vibrational modes have appeared in the regions between the 
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strontium peak (~6 THz) and the titanium peak (~14 THz) which are of uncertain 

character. 

The Σ3{112} boundary phonon DOS calculation also matches well with the Green-

Kubo calculation. Many additional modes are seen in the region between the strontium 

peak (~6 THz) and the titanium peak (~14 THz), as was observed in the Green-Kubo 

spectra. 

A few low frequency modes appear to be missing from the phonon DOS calculation in 

the Z direction. Their absence is attributed to having a sum of non-mass-weighted 

eigenvectors below the cutoff used; their relatively large height in the Green-Kubo 

spectra being due to low frequency and relatively high probability of interacting with an 

acoustic phonon. 

6.3.3. The Σ5{310} Boundary 

The structure of the Σ5{310} grain boundary has the boundary perpendicular to the X 

direction and has many different environments at the boundary, which is further 

complicated by dynamical disorder. In the Y direction, there are several large pipes, 

which accommodate strontium atoms. However, the pipes may accommodate the 

strontium atoms in one of two positions and the strontium atom can be seen to transition 

between these positions at high temperature in molecular dynamics. 

6.3.3.1. Thermal Conductivity of the Σ5{310} Boundary 

The isolated Σ5{310} grain boundary system is approximately 199 Å x 20 Å x 37 Å and 

contains 12,000 atoms. The formation energy is 2.00 J/m
2
, which is the highest of any 

of the studied grain boundaries. Additionally, the excess length caused by the boundary 

is 0.754 Å, again larger than the values observed for previous boundaries. 

The thermal conductivity of the isolated Σ5{310} boundary was calculated in the same 

way as the Σ3{111} and Σ3{112} boundaries. The results for the average thermal 

conductivity compared to bulk are displayed in Figure 6.29. 
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Figure 6.29 Average thermal conductivity of the isolated Σ5{310} boundary. 

The thermal conductivity of the isolated Σ5{310} boundary shows temperature 

dependence and has a remarkably similar thermal conductivity values to the isolated 

Σ3{112} system, indicating a possible minimum thermal conductivity for these isolated 

systems (~100 Å). 

The Σ5{310} boundary is once again perpendicular to the X direction. The pipes in the 

Y direction are expected to have a large effect on the thermal conductivity due to the 

disorder within them. The directional thermal conductivities of the isolated Σ5{310} 

boundary system are presented in Figure 6.30. 
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Figure 6.30 Directional thermal conductivity of the isolated Σ5{310} boundary. 

Figure 6.30 shows the thermal conductivity for the Σ5{310} boundary. The Σ5{310} 

boundary has the lowest thermal conductivity in the X direction as was seen for the 

Σ3{112} boundary. The trend of thermal conductivity across temperature is more 

gradual than the Σ3{112} boundary and indicates strong phonon-phonon scattering is 

still important. Extremely large fluctuations are seen in the Z direction, which likely 

stem from the strontium disorder in the boundary pipes. 

The interacting Σ5{310} grain boundary is orthorhombic and approximately 26 Å x 19 

Å x 37 Å and contains 1,500 atoms. The formation energy is 2.00 J/m
2
, which is the 

same as the isolated boundary, indicating that this boundary system is not especially 

stabilised by being in proximity to another boundary. However, the excess length still 

conforms to the usual trend and has increased in length to 0.765 Å (from 0.754 Å in the 

isolated case). 

The thermal conductivity of the interacting Σ5{310} boundary has also been calculated. 

The results for the average thermal conductivity are displayed in Figure 6.31. 



218 

 

 

Figure 6.31 Average thermal conductivity of the interacting Σ5{310} boundary. 

Figure 6.31 shows the thermal conductivity of the interacting Σ5{310} boundary. The 

behaviour is very similar to the interacting Σ3{111} and interacting Σ3{112} 

boundaries but the magnitude of the values are lower still. The directional thermal 

conductivities are presented in Figure 6.32. 

 

Figure 6.32 Directional thermal conductivity of the interacting Σ5{310} boundary. 



219 

 

The reduction in thermal conductivity likely reflects the low density and relatively large 

width of the Σ5{310} boundary, resulting in a very small region of bulk between the 

two boundaries. The thermal conductivity in the X direction is ~1.5 W/(m.K) at all 

temperatures. Furthermore, the thermal conductivities in the Y and Z directions are now 

also insensitive to temperature, although their values are very similar at ~2 W/(m.K). 

6.3.3.2. Spectra of the Σ5{310} Boundary 

The Green-Kubo spectra for the isolated Σ5{310} boundary were calculated by 

averaging the autocorrelations of the separate runs before applying the Fourier 

transform. The spectra for the different directions at 500 K are presented in Figure 6.33. 

 

Figure 6.33 Green-Kubo spectra at 500 K of the isolated Σ5{310} boundary, Log10 

scale. 

All three spectra are remarkably similar to the bulk spectra and do not show large 

additional peaks. Smaller peaks are however visible at lower frequencies in the X 

direction, indicating some effect from the strontium environments at the grain 

boundaries. 

One further subtle difference is the reduction in height of the ~6 THz strontium peak 

and the ~14 THz titanium peak in the X direction; a behaviour not seen in the other 

boundaries. The reduced peak heights likely stem from the low density of the boundary 
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and in particular the dynamical disorder of strontium atoms, leading to a broader set of 

strontium vibrations. The reduction of the titanium peak may then be explained as an 

increase in environments of titanium atoms near the disorder strontium. 

The spectra for the interacting Σ5{310} boundary system are expected to have many 

peaks due to the large number of environments found in the Σ5{310} grain boundary. 

The cell used for the lattice dynamics of the interacting Σ5{310} boundary system is 

orthorhombic and contains 100 atoms. The lattice vectors are a=26.15 Å, b=3.86 Å and 

c=12.34 Å. 

 The Green-Kubo and lattice dynamics phonon DOS spectra are displayed together in 

Figure 6.34, Figure 6.35 and Figure 6.36. 

 

Figure 6.34 Lattice dynamics phonon DOS and 500 K Green-Kubo spectra of the 

interacting Σ5{310} boundary, X direction. Log10 scale on Green-Kubo intensity. 
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Figure 6.35 Lattice dynamics phonon DOS and 500 K Green-Kubo spectra of the 

interacting Σ5{310} boundary, Y direction. Log10 scale on Green-Kubo intensity. 

 

Figure 6.36 Lattice dynamics phonon DOS and 500 K Green-Kubo spectra of the 

interacting Σ5{310} boundary, Z direction. Log10 scale on Green-Kubo intensity. 

The interacting Σ5{310} spectra do not show as many distinguishable peaks as 

expected; there are however very large broadenings on the original peaks and a few 

additional peaks indicating very short lifetime phonons. Additional peaks appear at low 
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frequency and are likely strontium based. The large number of modes in this region is a 

result of the dynamical disorder of strontium at the boundary. The broadening and 

flattening of the titanium peaks (~14 THz) is likely a result of the large number of 

titanium environments found at the boundary; in the X direction the intensity of the 

titanium peak is suppressed to near the level of the boundary peaks. 

The phonon DOS for the interacting Σ5{310} boundary was slightly more challenging 

to calculate than the previous boundaries due to the dynamic disorder of strontium 

atoms at the boundary. The structure used for these calculations had strontium atoms in 

differing environments at each boundary, which was found to be the most energetically 

stable. 

The Σ5{310} boundary has a very high number of peaks. Once again there are a few 

discrepancies between the phonon DOS calculation and the Green-Kubo calculations, 

but these can be explained by the intensity cutoff used on the phonon DOS, the high 

frequency of some modes, and the dynamic disorder found in the Σ5{310} boundary. 

6.3.4. Isolated and Interacting Grain Boundary Discussion 

Three different grain boundary systems have been studied, each having two different 

inter-boundary distances. The isolated boundary systems contain ~100 Å of bulk 

between the boundaries and the interacting boundary systems contain ~15-20 Å of bulk 

between the boundaries. The average thermal conductivities of all 6 systems are 

presented in Figure 6.37. 



223 

 

 

Figure 6.37 Average thermal conductivities for all grain boundary systems (without 

error bars for clarity). 

The isolated grain boundaries do have a small effect on the thermal conductivity despite 

the large inter-boundary separations. Both the Σ3{112} and Σ5{310} boundaries have 

the lowest thermal conductivities for the isolated systems at all temperatures and are 

remarkably similar. The Σ3{111} boundary has a higher average thermal conductivity 

than the Σ3{112} and Σ5{310} boundaries which may be partially due to the unusual 

thermal conductivity in the X direction which was increased over the bulk value at 

nearly all temperatures. 

The interacting boundaries have lower thermal conductivity in general than the isolated 

boundaries (Figure 6.37), which is found experimentally (i.e. smaller grain size) [339-

341]. The reasons for this reduction are the greatly reduced amount of bulk material and 

therefore the relative increase in the number of scattering environments compared to 

bulk environments. Additionally the smaller bulk region reduces allowed long 

wavelength phonons, further reducing thermal conductivity. 

The thermal conductivities of the STO grain boundaries follow some general trends, as 

presented in Table 6.4. 
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Structure Average Thermal 

Conductivity at 500 K 

(W/(m.K)) 

Formation 

Energy (J/m
2
) 

Excess 

Length (Å) 

Isolated 

Σ3{111} 

7.23 0.894 0.265 

Isolated 

Σ3{112} 

5.69 1.52 0.544 

Isolated 

Σ5{310} 

5.53 2.00 0.754 

Interacting 

Σ3{111} 

3.49 0.875 0.270 

Interacting 

Σ3{112} 

3.05 1.50 0.551 

Interacting 

Σ5{310} 

2.04 2.00 0.765 

Table 6.4 Calculated properties of STO grain boundaries. 

Table 6.4 shows that the thermal conductivities of the interacting systems are generally 

lower than those of the isolated systems, stemming from the reduction in allowed 

wavelength and higher density of scattering centres. All systems show a reduction over 

the bulk thermal conductivity at 500 K, which was ~8.5 W/(m.K). Table 6.4 also shows 

that grain boundaries with higher formation energy have a lower thermal conductivity 

along with a larger excess length (defined as the additional length of the simulation cell 

due to the boundary structure). 

The link between formation energy and thermal conductivity can be understood via the 

symmetry of the grain boundaries. Grain boundaries with lower symmetry (and thus a 

higher number of distinct environments) have higher formation energy. The greater 

variety of environments means a larger number of optical vibrational modes are present 

at the boundary with which the acoustic phonons may couple and scatter, reducing 

thermal conductivity. However, the exact frequency of these modes and the probability 

of scattering acoustic phonons are unknown and so quantitative predictions are 

challenging. 

An additional contribution stems from the inter-boundary distance. At higher 

temperatures the thermal conductivities at any particular inter-boundary length tend to a 

single value (with the exception of the isolated Σ3{111} system). The mechanism for 
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this change is unclear but may be related to increased acoustic-acoustic phonon 

scattering at higher temperatures. 

To obtain a better understanding of the importance of inter-boundary distance future 

work may concentrate on calculating the thermal conductivities at a wider variety of 

inter-boundary distances in order to calculate the interfacial thermal resistance (also 

known as Kapitza resistance) [331, 342, 343]. This approach allows derivation of the 

Kaptiza length, which is the amount of bulk a boundary represents in terms of thermal 

resistance. Such calculations require many more simulations of varying inter-boundary 

distance and are currently prohibitively expensive. 

The systems studied so far have contained infinite bulk in the Y and Z directions, yet 

still have reduced thermal conductivity in those directions due to a grain boundary lying 

parallel. Systems where the bulk region is entirely contained may show exceptional 

reduction in thermal conductivity as compared to the bulk as long wavelength phonons 

are severely disrupted in all directions. The thermal conductivity measured here is likely 

nearing the limit of thermal conductivity reduction possible using a single type of 

defect. 

In the next section (Chapter 6.4) several different STO nanocube systems are studied to 

determine whether different stacking orders have any effect on the thermal conductivity 

of the system. 

6.4. STO Nanocubes 

Assembled nanocube systems of STO are a promising thermoelectric material [316] due 

to the high density of interfaces. Each nanocube expresses the {001} surfaces but the 

surfaces may express different stoichiometries and may be further altered by appropriate 

doping. Indeed, although beyond the scope of this work, the work by Dang et al. 

suggested that doping with La would enhance the properties [318]. One of the proposed 

benefits is that if assembled together the boundaries between cubes may improve the 

electrical properties via formation of 2DEG [321] systems or energy filtering [95]. 

Simultaneously, the thermal transport via phonons is inhibited via increased scattering 

and confinement in sufficiently small systems. Therefore assembled nanocubes may 

make an excellent thermoelectric material if the size, composition and arrangement of 

nanocubes can be properly engineered [316]. 
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6.4.1. Surface Termination 

To study the effect the different surface terminations have on the thermal conductivity 

two different systems have been constructed. Both systems contain terminations on the 

{001} set of Miller planes, both have sides of ~70 Å but differ in that they terminate 

either in Sr-O or O-Ti-O; these are referred to as SrO rich and TiO2 rich respectively. 

The cubes are then assembled in a simple geometry. A 3 x 3 x 3 example is displayed in 

Figure 6.38. 

 

Figure 6.38 Schematic of the perfect cubic stacking of STO nanocubes, 3 x 3 x 3 

expansion. 

The simulation cells contain one complete nanocube in formation with its periodic 

images. The single cube in the simulation cell is not expected to cause any issues with 

convergence due to the large bulk region between the cube interfaces. The interfaces are 

partially disordered after annealing in molecular dynamics, especially at edges and 

corners. The disorder in the SrO rich nanocube system is primarily where 6-fold 

coordinated Ti has become 4-fold coordinated. Figure 6.39 shows a section of the SrO 

rich nanocube system, in particular the quadruple grain boundary structure.  



227 

 

 

Figure 6.39 Disorder found at the quadruple grain boundary found in the SrO rich STO 

nanocube system. 

6.4.1.1. SrO Rich Nanocube 

The SrO rich nanocube system is approximately 70 Å x 70 Å x 70 Å, contains 26,288 

atoms and has the approximate formula Sr1.18TiO3.18. Each of the five temperatures were 

equilibrated for 50,000 steps (50 ps) using an NPT isotropic ensemble. The averaged 

lattice vectors are then applied for the data collection. Heat-flux data was collected for 

20 ns (20,000,000 fs steps) and the flux sampled every 10 fs. The heat-flux data 

collection here was sequential. The thermal conductivities are presented in Figure 6.40. 
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Figure 6.40 Thermal conductivity of the SrO rich nanocube system. 

The SrO rich nanocube system has thermal conductivities that are almost entirely 

insensitive to temperature, all being approximately 2 W/(m.K). 

The larger fluctuations at lower temperatures are very apparent. However, the general 

isotropy of the system is still reflected in the thermal conductivity as all three directions 

give almost identical values and thus the real error is likely much lower. 

The Green-Kubo spectra for these systems are also available. However, they are too 

large to have their lattice dynamics phonon DOS spectra calculated and thus vibrational 

modes cannot be conclusively assigned. The Green-Kubo spectrum for the SrO rich 

nanocube system is presented in Figure 6.41. 
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Figure 6.41 Green-Kubo spectra of the SrO rich nanocube system in the X direction, 

Log10 scale. 

The X, Y and Z directions of the SrO rich STO nanocube have essentially the same 

Green-Kubo spectra and so only the X direction is presented for brevity. The Green-

Kubo spectra for the SrO rich nanocube system shows many new peaks at very low 

frequencies, below even those seen for the grain boundary systems. These new peaks 

(below ~5 THz) are possibly RUMs due to being such low frequency.  

6.4.1.2. TiO2 Rich Nanocube 

The TiO2 rich nanocube system is very similar to the SrO rich system, differing only in 

the surfaces terminations. The system remains approximately 70 Å x 70 Å x 70 Å, 

contains 27,224 atoms and has an approximate formula of SrTi1.18O3.36. As was the case 

for the SrO rich system each of the five temperatures were equilibrated for 50,000 steps 

(50 ps) using an NPT isotropic ensemble. The averaged lattice vectors are then applied 

for the data collection. Heat-flux data was collected for 20 ns and was sampled every 10 

fs. The heat-flux data collected here was sequential. The thermal conductivities are 

presented in Figure 6.42. 
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Figure 6.42 Thermal conductivity of the TiO2 rich nanocube system. 

The thermal conductivity of the TiO2 rich nanocube system is slightly higher than the 

SrO rich system at around ~3 W/(m.K). There remains some sensitivity to temperature 

below 600 K but is effectively flat thereafter. Again no directional dependence is seen, 

which may be expected, although the TiO2 rich boundaries are not necessarily identical. 

The reason why the thermal conductivity is higher in the SrO rich nanocube system is 

likely due to the large degree of Ti-O cross-linking. Higher thermal conductivity was 

seen in the X direction of the Σ3{111} boundary, which also contained significant Ti-O 

cross-linking. 

The Green-Kubo spectra for the TiO2 rich nanocube system are presented in Figure 

6.43, Figure 6.44 and Figure 6.45. 
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Figure 6.43 Green-Kubo spectra of the TiO2 rich nanocube system in the X direction, 

Log10 scale. 

 

Figure 6.44 Green-Kubo spectra of the TiO2 rich nanocube system in the Y direction, 

Log10 scale. 
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Figure 6.45 Green-Kubo spectra of the TiO2 rich nanocube system in the Z direction, 

Log10 scale. 

The spectra for the TiO2 rich nanocube system also displays an abundance of very low 

frequency peaks. An unusual feature of the spectra is the apparent splitting of the 

strontium peak (~6 THz) however the additional peak is not necessarily a strontium 

peak but a hugely shifted titanium peak. One explanation may be due to TiO2 like 

nature of the cube interfaces, which may have a significant peak at this position. 

Another feature of the spectra is the clear difference between each direction in the 

additional peaks around 6 THz, stemming from the different covalent bonding 

arrangements of Ti-O at each interface. The very low frequency peaks (less than 3 THz) 

however are identical in each direction. 

STO nanocubes may also be packed in other arrangements than the one outlined in 

Figure 6.38. The next section investigates two more possible stacking arrangements and 

evaluates their thermal conductivity. Due to the similarity of behaviour seen in the SrO 

rich and TiO2 rich nanocube systems and the slightly lower thermal conductivities seen 

in the SrO rich system, only the SrO rich system is used in the following study. 
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6.4.2. Displaced Nanocubes 

The STO nanocubes may assemble in other geometries than those presented above. By 

altering the stacking arrangement different systems may be formed which have a more 

complex boundary system. To study the effect different stacking orders have on the 

thermal conductivity two additional systems have been constructed. 

The new systems are based on the SrO rich nanocube, which displayed lower thermal 

conductivity than the TiO2 rich nanocube. The first system contains a single 

displacement in the Y direction of half a cube width relative to its neighbour; a 

schematic of the system is show in Figure 6.46. The shape of the system corresponds to 

lattice vectors of approximately 78 Å x 70 Å x 70 Å and an αβγ of 90° x 90° x 65°. 

 

Figure 6.46 Schematic of the singly displaced cubic stacking of STO nanocubes. 

The next new system is also based on the strontium rich system but contains a double 

displacement along the X and Y directions. A schematic of this system is shown in 

Figure 6.47. The system contains 26,288 atoms and has lattice vectors of 78 Å x 70 Å x 

78 Å and an αβγ of 90° x 65° x 65°. 
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Figure 6.47 Schematic of the doubly displaced cubic stacking of STO nanocubes. 

6.4.2.1. Single Displacement SrO Rich Nanocube 

The data collection for the displaced nanocubes was the same as for the non-displaced 

nanocube with the exception that data was collected in parallel, using four separate runs 

of 5 ns each at each temperature. The results are displayed in Figure 6.48. 

 

Figure 6.48 Thermal conductivity of the single displacement nanocube system. 
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The thermal conductivity of the single displacement system is remarkably similar to that 

of the non-displaced system with no sensitivity to temperature and all values at ~2 

W/(m.K). The similarity of the two systems indicates that the arrangement of nanocubes 

may not be significant and it is only the existence of the boundaries themselves that are 

impacting the thermal conductivity. The Green-Kubo spectra can now be generated and 

any difference to the non-displaced system can be noted, the spectra are presented in 

Figure 6.49, Figure 6.50 and Figure 6.51. 

 

Figure 6.49 Green-Kubo spectra of the single displacement nanocube system in the X 

direction, Log10 scale. 
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Figure 6.50 Green-Kubo spectra of the single displacement nanocube system in the Y 

direction, Log10 scale. 

 

Figure 6.51 Green-Kubo spectra of the single displacement nanocube system in the Z 

direction, Log10 scale. 

The Green-Kubo spectra of the single displacement system are very similar to those of 

the non-displaced system. The very low frequency peak pattern is almost identical 

between the two systems, as well as within the three directions. The similarities support 
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the idea that it is the existence of the boundaries themselves, rather than the 

arrangement of the cubes, which is the significant factor in reducing the thermal 

conductivity. 

The only significant difference between the non-displaced system and the single 

displacement system is an additional splitting of the titanium peak (~14 THz) in the X 

and Y directions. While this may seem unusual given the strontium rich nature of the 

system, it can be explained as stemming from the titanium atoms near the double 

interface. The SrO-like interface itself is likely represented by some of the peaks 

between ~3 THz and ~5 THz near the bulk Sr peak, but at low magnitude due to the 

relatively low concentration of species in this environment. 

6.4.2.2. Double Displacement SrO Rich Nanocube 

The double displacement system was equilibrated in the same manner as the single 

displacement system and data collection was performed in the same way. The results are 

displayed in Figure 6.52. 

 

Figure 6.52 Thermal conductivity of the double displacement nanocube system. 

Once again the thermal conductivity is flat with respect to temperature and has an 

average value of ~2 W/(m.K) and is significantly similar to the previous nanocube 
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thermal conductivity profiles. The Green-Kubo spectra are presented in Figure 6.53, 

Figure 6.54 and Figure 6.55. 

 

Figure 6.53 Green-Kubo spectra of the double displacement nanocube system in the X 

direction, Log10 scale. 

 

Figure 6.54 Green-Kubo spectra of the double displacement nanocube system in the Y 

direction, Log10 scale. 
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Figure 6.55 Green-Kubo spectra of the double displacement nanocube system in the Y 

direction, Log10 scale. 

The three spectra are very similar to those seen previously. However, there are minor 

deviations in the low frequency peaks which may stem from the more complex cube 

ordering. While the relative positions and heights of the low frequency peaks have 

changed slightly it does not have a significant effect on the thermal conductivity. 

Additional changes to the spectra are seen in the titanium peak (~14 THz) where there is 

splitting/broadening in the X and Z directions. These changes are expected and are 

likely to stem from titanium near the double/triple boundary environments. 

6.4.3. Nanocube Discussion 

The thermal conductivity values obtained from simulations on STO nanocubes have 

displayed thermal conductivities even lower than in the interacting grain boundary 

systems; even though the nanocube systems have a larger inter-boundary distance. The 

reason for this change in behaviour is that the nanocube system contains boundaries in 

all three dimensions, instead of just one. This means that phonons which would travel 

for a long distance in the Y and Z directions (yet retain some small X direction 

component) in the grain boundary system are scattered much earlier in the nanocube 

system. Therefore the grain boundary and nanocube systems are not directly comparable 
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as it cannot be said for certain if the grain boundaries studied individually scatter 

phonons more effectively than those used for the boundaries in the nanocube system. 

Additionally the thermal conductivities for all nanocube systems have almost complete 

insensitivity to temperature, remaining at an almost constant value. This is converse to 

the behaviour seen in the grain-boundary system where a dependency to temperature 

could be observed across much of the range. This is again attributed to the boundaries 

found in all three dimensions in the nanocube systems which make boundary-acoustic 

phonon scattering processes the primary mechanism even at high temperature, instead 

of switching to an acoustic-acoustic phonon scattering regime. 

The absolute value of thermal conductivity is higher in the TiO2 rich system at ~3 

W/(m.K) rather than ~2 W/(m.K) for the SrO rich system. Therefore it can be concluded 

that the type of boundary impacts the magnitude of the thermal conductivity, while the 

inter-boundary distance likely impacts the response to temperature and magnitude. 

The thermal conductivities of all three displaced SrO rich nanocube systems are 

essentially identical in both magnitude and response to temperature. Furthermore, the 

thermal conductivity of the displaced systems is remarkably similar to that of the non-

displaced system, further supporting the supposition that boundary-acoustic phonon 

scattering is highly dominant in a system of bulk surrounded by grain boundaries.  

The dominance of the 3D grain boundary arrangement is further supported by the 

Green-Kubo spectra which show almost identical peaks for all SrO rich systems, 

particularly at low frequencies. It is these low frequency peaks which are likely to have 

a disproportionate effect on the thermal conductivity due to the Bose-Einstein 

distribution. 

6.5. STO Summary 

The work presented on STO systems has shown that systems with large mass 

discrepancies in the atoms will have optical modes with significant asymmetry and thus 

are more likely to effectively scatter acoustic phonons. 

By introducing grain boundaries the number of optical modes increases, due to new 

atomic environments being created. These modes tend to be localised around the 

boundary and provide a mechanism for the thermal conductivity reduction seen by 
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introducing grain boundaries. Furthermore the effectiveness of a particular grain 

boundary at reducing thermal conductivity is related to the formation energy; higher 

formation energy tends to have more distinct boundary environments and thus more 

scattering centres. 

Lattice dynamics phonon DOS calculations provide a key way to understand the 

motions of atoms at the boundary. Many of the additional vibrational modes introduced 

by grain boundaries arise from the different environments around the extended defect. 

Thus it can be seen that the different environments at the boundary play a prominent 

role in scattering phonons and reducing thermal conductivity. Lattice dynamics may 

then provide a useful tool for quickly analysing structures to try and predict whether 

they will have a significantly low thermal conductivity without the need to perform 

expensive thermal conductivity calculations. 

By extending the grain boundary work into nanocube systems, where the interface can 

be considered a very thin separate phase, the thermal conductivity was lowered 

significantly and showed no response to temperature. The existence of separate phases 

has been known to be beneficial to thermoelectric materials and such systems are 

known as superlattice systems [344]. The actual arrangement of nanocubes in the 

superlattice system is of less importance. While there is some effect on the Green-Kubo 

spectra, the thermal conductivity is dominated by a few low frequency modes arising 

out of the two materials of different density and atomic arrangements. 

All SrO rich nanocube simulations displayed a minimum thermal conductivity of ~2 

W/(m.K) while the TiO2 rich nanocube system had a thermal conductivity of ~3 

W/(m.K). Both systems displayed no dependence on temperature. Compared with the 

bulk thermal conductivity of 7.5 W/(m.K) at 500 K, it is feasible that the bulk    of 

0.24 could be increased to around 0.8 as suggested by Koumoto [316]. 

Future work on STO should concentrate on other defect types. Substitution of the A site 

cation (strontium) is the most obvious approach, further lowering the lowest frequency 

peak in the bulk spectra (~5 THz). Further doping of grain boundary systems may also 

be of benefit if the new low frequency peaks could be shifted to lower frequencies or 

higher intensities; this approach would also require the dopant to segregate to the 

boundary. 
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The SrO rich nanocube interface is a Ruddlesden-Popper (RP) type phase [345], which 

may be used as a model system of the SrO rich nanocube interface. The RP phase has a 

unit cell small enough that a lattice dynamics calculation is possible and so the modes 

appearing in the molecular dynamics simulations could be conclusively assigned. 

Furthermore, the RP phases allow the study of more complex nanocube interfaces by 

varying the distance between the interfaces and the thickness of the interface (rocksalt 

layer).  
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7. Conclusions and Future Work 

The work presented here has demonstrated that the Green-Kubo approach for 

calculating thermal conductivity can give well converged results for a number of very 

different materials of different bonding, isotropy and complexity. While the Green-

Kubo method gives apparently good thermal conductivities, error analysis is still 

challenging due to the semi-arbitrary choice of integral cutoff. 

Additional information may be derived from the Fourier transform of the heat-flux 

autocorrelation function, referred to as the Green-Kubo spectra in this work. The modes 

visible in the Green-Kubo spectrum correspond to the optical phonon modes which are 

asymmetric and capable of interacting with the heat-flux of the system. 

The same phonon modes may also be obtained from lattice dynamics calculations 

allowing qualitative analysis of the thermal conductivity prior to a full long time-scale 

molecular dynamics (MD) simulation and application of the Green-Kubo method. 

The Boltzmann transport equation (BTE) has also been used (via Phono3py [122] and 

METADISE [165]) to calculate the thermal conductivity of several of these systems. 

The application of the BTE within the simulations presented here gives good thermal 

conductivity values for bulk STO, a good trend with temperature for bulk MgO 

(absolute value was shifted upwards by ~10 W/(m.K)) and failed to converge for bulk 

quartz. Furthermore, this approach is not suitable at present for large systems due to 

rapidly increasing memory requirements. 

The Green-Kubo method gave good thermal conductivity values for bulk MgO when 

compared with experiments [215-217]. The shift of thermal conductivities observed 

when using lattice dynamics to solve the BTE may be related to the choice of potential 

cutoff in the MD (8.5 Å rather than the 15.0 Å cutoff used in the lattice dynamics 

calculations); alternatively the shift may be due to the BTE neglecting fourth-order and 

higher force constants. 

Both of the MgO grain boundaries reduce the thermal conductivity to between 10 

W/(m.K) at 500 K and 5 W/(m.K) at 1300 K and overall show remarkably similar 

behaviour at all temperatures and a reduced thermal conductivity as compared to bulk 

by a factor of 2-3. The similarity may be attributed to the very small inter-boundary 
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distance (~16 Å) in these systems, which acts to limit the allowed phonon wavelengths. 

While the boundaries do display differing Green-Kubo spectra, the simulations suggest 

that the dominant feature in this case is the very frequent scattering of phonons due to 

the small inter-boundary distance, rather than any particular structure found at either 

grain boundary. 

Having demonstrated that the introduction of grain boundaries reduced the thermal 

conductivity, the work was extended to model nanostructures comprised of different 

orientated grains and included internal pores. It was found the the thermal conductivity 

of the MgO nanostructures was reduced dramatically, i.e. to ~2 W/(m.K) at all 

temperatures in the hexagonal nanostructure and to ~1 W/(m.K) at all temperatures for 

the cubic nanostructure. Analysis of the data found that the significantly increased 

reduction in thermal conductivity due to surface scattering via the use of a model 

system studied through lattice dynamics which demonstrated the origin of the strong 

additional peak appearing at ~25 THz. 

Green-Kubo calculations on quartz resulted in a thermal conductivity which overlaid 

experimental results, however the minimum in thermal conductivity observed 

experimentally at the α-quartz to β-quartz phase transition (~846 K) was not 

reproduced. One possible explanation was that formation of domains of Dauphiné twins 

may be the cause of the minimum in thermal conductivity as they should occur 

spontaneously around the transition temperature from α-quartz to β-quartz. Although 

Dauphiné twins were stabilised at low temperatures the calculation of the thermal 

conductivity proved inconclusive due annealing of the twin. 

The simulation results also suggest that in quartz a rigid unit mode (RUM) participated 

in scattering acoustic phonons while the material was in the α-quartz form, but its effect 

diminished as the material approached β-quartz. Upon analysis of the phonon DOS it 

was found that the mode was asymmetric in the Z direction due to the tilt of the SiO4 

tetrahedra at low temperatures but became symmetric at higher temperatures as the tilt 

of the tetrahedral is removed. 

Extension of the quartz work to the siliceous zeolite, silicalite, showed exceptionally 

low thermal conductivity values of ~2.5 W/(m.K) at all temperatures. This result is 

interesting as this value is similar to preliminary values obtained from SiO2 glass 

(Appendix B), indicating it is not the density of the system which is important but the 
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number of environments and the maximum phonon mean free path. Furthermore, the 

observed negative thermal expansion at high temperatures may lead to an expectation 

that the thermal conductivity may also increase at higher temperatures as was seen in 

experiments for quartz. However, this trend was not found but instead the thermal 

conductivity was virtually independent of temperature. 

When applied to strontium titanate (STO), both the Green-Kubo method and BTE 

compared well with experiments, particularly at higher temperatures. Interestingly, the 

Green-Kubo method and BTE gave almost identical results, indicating that in STO the 

fourth-order force constants are not important for an accurate thermal conductivity in 

STO. 

The grain boundaries of STO demonstrated that for a given inter-boundary distance, the 

formation energies correlated with the order of thermal conductivity. This relationship 

arises as higher formation energies tend to relate to greater deviation from the preferred 

coordination of atoms at the boundary; thus the number of scattering sites increases. 

Given the recent interest orientated nanoparticles, the thermal conductivity of several 

STO assembled nanocube systems were also studied. STO nanocubes demonstrated an 

average thermal conductivity of 2 W/(m.K) when SrO rich and an average thermal 

conductivity of 3 W/(m.K) when TiO2 rich. These values did not change with 

temperature. Furthermore, it was found that the exact stacking arrangement of the SrO 

rich cubes did not have an impact on the thermal conductivity, indicating significant 

boundary scattering in the enclosed nanocube. 

In summary this work has found that the type of grain boundary plays a small role in the 

thermal conductivity through inclusion of new scattering environments. However, the 

underlying system geometry tends to dominate and results in very low thermal 

conductivities which are insensitive to temperature. Therefore nanostructuring is a 

promising approach to improving thermoelectric materials, provided the electronic 

contributions can be maintained. 

7.1. Future Work 

To extend this work further more Green-Kubo simulations should be run on the grain 

boundary systems allowing calculation of the Kapitza length [197, 331, 343]. This value 
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represents the amount of bulk a given grain boundary represents in terms of phonon 

scattering. However, such simulations rapidly become difficult due to the large system 

sizes and long simulation times required to achieve a converged thermal conductivity 

with the Green-Kubo method. 

In the quartz system the RUMs provide a route to very low frequency modes which are 

sometimes capable of interacting significantly with acoustic phonons and thus the heat-

flux. At present only one RUM was observed to interact with the heat-flux, but if it 

were possible to modify the system with dopants such that more RUMs interacted with 

the heat-flux then a significant reduction in thermal conductivity may be expected. 

Furthermore the dopant need not be high mass as the nature of a RUM means the 

frequency is already very low.  

More Green-Kubo calculations should also be conducted on the Dauphiné twin system. 

As was discussed in Chapter 5.2.2.2, the size of Dauphiné twin domain plays a role in 

the stability and therefore exceptionally large systems may be required. Additionally 

high accuracy must be achieved as the effect of the twin boundary maybe very small. 

The silicate systems as a whole are very interesting due to the large number of 

structures which are possible. Completing the work on the glass thermal conductivity 

(Appendix B) along with more zeolite structures may further elucidate other promising 

mechanisms for reducing thermal conductivity. 

An avenue of research untouched in this work is the effect of dopants on the thermal 

conductivity in STO. The defect chemistry of STO is particular diverse as the system 

may accept dopants on either the A or B site. Furthermore intrinsic defects are also 

possible as either Schottky defects or by reduction of Ti
4+

 to Ti
3+

 and loss of oxygen. 

All these defects, as well as defect orderings, will have some impact on the thermal 

conductivity. 

Further development of the BTE approach is also another interesting avenue of 

research. The current approach uses the single mode relaxation time (SMRT) 

approximation, although other approaches are available [122, 346]. Additionally, 

extending the method to the fourth-order force constants may improve the bulk MgO 

results, but problems may be encountered concerning numerical accuracy. One final 

problem is that obtaining the thermal conductivity via this route is extremely 
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computationally memory intensive and may require specialised hardware for larger 

calculations. 

Finally, complementary ab initio calculations on the electronic properties of some of the 

presented systems in STO may help elucidate whether any particular system geometry 

or grain boundary will produce a particularly high    material. The different systems 

presented have vastly different environments at the boundary and are expected to have 

different impacts on the electronic properties. Taken together with the thermal 

conductivity calculations it may be possible to target a system geometry which 

maximises   . 
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Appendix A. Preliminary Quartz Lattice 

Dynamics Thermal Conductivity 

The thermal conductivity of quartz as calculated via lattice dynamics and the BTE failed 

to give a converged result with respect to supercell size and q-point sampling mesh. 

Some results are presented in Figure A.1 and A.2 (X and Z directions correspond to 

crystallographic a and c directions respectively) showing a large variation in obtained 

thermal conductivity values. 

Furthermore the thermal conductivities obtained via this method will be suspect as the 

structure used is that of α-quartz which is the most stable form at 0 K. Ideally the 

structure used at each temperature would be the time averaged molecular dynamics 

structure, however this introduces imaginary phonon modes which must be dealt with. 

 

Figure A.1 Thermal conductivity of quartz, X/Y direction. Left most set of numbers 

give supercell size and right most set of numbers give the q-point mesh. 
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Figure A.2 Thermal conductivity of quartz, Z direction. 
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Appendix B. Preliminary Glass Green-Kubo 

Thermal Conductivity 

The glass unit cell of approximately 22 Å x 22 Å x 22 Å and containing 648 atoms was 

run for 10 ns at 8 temperatures. The system is considered too small to draw conclusive 

results. The thermal conductivities are presented in Figure B.1. 

 

Figure B.1 Preliminary glass thermal conductivity. 

The lattice dynamics phonon DOS has also been calculated and analysed to remove 

optical phonon modes which do not contribute to scattering, Figure B.2. 
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Figure B.2 Analysed Lattice dynamics phonon DOS of the glass system. 

  



282 

 

Appendix C. LAMMPS Thermal Conductivity 

Script 

The following input script is designed to be run with an accompanying data file of the 

structure of interest, with modifications to “pair_coeff” to give the correct potential 

parameters. The units are LMMPS “real” units: 

 mass = grams/mole 

 distance = Angstroms 

 time = femtoseconds 

 energy = kcal/mole 

 temperature = Kelvin 

 pressure = atmospheres 

This script was designed to function with the LAMMPS program circa February 2014 

and may require some small modification as commands are updated within LAMMPS. 

#thermal conductivity script 

 

####################################################################### 

####################################################################### 

 

units real 

 

variable T equal      1100     # temperature 

variable Q equal     94275     # random number seed 

variable dt equal      1.0     # timestep in fs 

variable s equal       500     # screen output frequency 

variable trop equal      3     # system isotropy, 1 = isotropic, 2 = anisotropic, 3 = triclinic 

 

variable Ep equal    50000     # npt equilibriation steps 

variable Ev equal    50000     # nvt equilibriation steps 

 

variable NT equal        2     # data collection ensemble, 1 = NVE, 2 = NVT, 3 = NPT 

 

variable N equal   5000000     # number of steps 

variable d equal        10     # calculation frequency (equilibration lattice vectors and production heat-flux) 

 

variable rep equal       0     # 0 = do not replicate cell, 1 = replicate cell 

variable repx equal     12     # replication factor for x 

variable repy equal     12     # replication factor for y 

variable repz equal     12     # replication factor for z 

 

variable xyz equal       0     # 1 = print xyz file during production phase 

 

####################################################################### 

####################################################################### 

#system settings 

 

atom_style      full 

pair_style      buck/coul/long 8.5 

 

processors * * * grid numa 
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read_data       data.lmp 

if "${rep} == 1" then "replicate ${repx} ${repy} ${repz}" 

balance 1.0 shift xyz 20 1.0 

 

#kcal/mol for unit style "real" 

pair_coeff    *    *         0.000000  1.000000      0.000000 

pair_coeff    1    3    335921.2159    0.245015   1885.767153 

pair_coeff    2    3    546728.0894    0.18558     334.684293 

pair_coeff    3    3     42541.68289   0.343645   4441.08738 

 

kspace_style    pppm 1.0e-5 

 

####################################################################### 

####################################################################### 

#general settings 

timestep        ${dt} 

thermo          $s 

thermo_style    custom step temp etotal press vol lx ly lz xy xz yz 

thermo_modify flush no 

run_style       verlet 

 

####################################################################### 

####################################################################### 

#npt equi skipping 

 

if "${Ep} == 0" then "jump input.lmp NVT" 

 

####################################################################### 

####################################################################### 

#npt equi 

 

variable myLx equal lx 

variable myLy equal ly 

variable myLz equal lz 

variable myxy equal xy 

variable myxz equal xz 

variable myyz equal yz 

variable repeat equal v_Ep/v_d 

 

velocity all create $T $Q mom yes rot yes dist gaussian 

 

fix             A all momentum 100 linear 1 1 1 

 

if "${trop} == 1" then "fix B all npt temp $T $T 100.0 iso 0.0 0.0 1000.0" 

if "${trop} == 2" then "fix B all npt temp $T $T 100.0 aniso 0.0 0.0 1000.0" 

if "${trop} == 3" then "fix B all npt temp $T $T 100.0 tri 0.0 0.0 1000.0" 

 

fix             C all ave/time $d ${repeat} ${Ep} v_myLx v_myLy v_myLz v_myxy v_myxz v_myyz mode 

scalar ave one 

 

run ${Ep} 

 

variable newX equal f_C[1] 

variable newY equal f_C[2] 

variable newZ equal f_C[3] 

variable newxy equal f_C[4] 

variable newxz equal f_C[5] 

variable newyz equal f_C[6] 
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if "${trop} == 1" then "change_box all x final 0.0 ${newX} y final 0.0 ${newY} z final 0.0 ${newZ} 

remap units box" 

if "${trop} == 2" then "change_box all x final 0.0 ${newX} y final 0.0 ${newY} z final 0.0 ${newZ} 

remap units box" 

if "${trop} == 3" then "change_box all x final 0.0 ${newX} y final 0.0 ${newY} z final 0.0 ${newZ} xy 

final ${newxy} xz final ${newxz} yz final ${newyz} remap units box" 

 

unfix A 

unfix B 

unfix C 

 

write_data equi_vol.lmp 

 

####################################################################### 

####################################################################### 

#nvt equi skipping 

 

label NVT 

if "${Ev} == 0" then "jump input.lmp RUN" 

 

####################################################################### 

####################################################################### 

#nvt equi 

 

velocity all create $T $Q mom yes rot yes dist gaussian 

 

fix             A all momentum 100 linear 1 1 1 

fix             B all nvt temp $T $T 100.0 

 

run ${Ev} 

 

unfix A 

unfix B 

 

####################################################################### 

####################################################################### 

#choose data collection type 

 

label RUN 

if "$N == 0" then "jump input.lmp END" 

 

if "${NT} == 1" then "fix B all nve" 

if "${NT} == 2" then "fix B all nvt temp $T $T 100.0" 

if "${NT} == 3 && ${trop} == 1" then "fix B all npt temp $T $T 100.0 iso 0.0 0.0 1000.0" 

if "${NT} == 3 && ${trop} == 2" then "fix B all npt temp $T $T 100.0 aniso 0.0 0.0 1000.0" 

if "${NT} == 3 && ${trop} == 3" then "fix B all npt temp $T $T 100.0 tri 0.0 0.0 1000.0" 

 

####################################################################### 

####################################################################### 

#output variables 

 

variable V equal vol 

 

shell echo $T >> variables.txt 

shell echo $V >> variables.txt 

shell echo ${dt} >> variables.txt 

shell echo $d >> variables.txt 

 

####################################################################### 

####################################################################### 
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#heat-flux output 

 

reset_timestep 0 

 

compute myKE all ke/atom 

compute myPE all pe/atom 

compute myStress all stress/atom NULL virial 

compute flux all heat/flux myKE myPE myStress 

 

thermo_style    custom step temp press pe ke etotal 

thermo_modify flush no                       #flush output 

 

####################################################################### 

####################################################################### 

#running output 

 

variable timestep equal step 

variable Xflux equal c_flux[1] 

variable Yflux equal c_flux[2] 

variable Zflux equal c_flux[3] 

 

fix C all print $d "${timestep} ${Xflux} ${Yflux} ${Zflux}" append flux.txt screen no 

 

if "${xyz} == 1" then & 

"dump            1 all xyz $s structure.xyz" & 

"dump_modify     1 element Sr Ti O" 

 

####################################################################### 

####################################################################### 

#data collection 

 

run $N 

 

####################################################################### 

####################################################################### 

#new data generation 

 

label END 

 

write_data new_data.lmp 

 

####################################################################### 

####################################################################### 

  



286 

 

Appendix D. Source Code for Analysis Programs 

The programs outlined in this chapter are designed to be run with the input script given 

in Appendix C and so use the same units. Use of these programs with other unit systems 

will require modification of the source code. 

Thermal Conductivity 

The following source code was compiled with gfortran-4.7.3 using the command 

“gfortran –O2 source.f90”. The program is run on the heat-flux data produced by the 

script presented in Appendix C with the first (header) line removed and also the 

variables.txt file produced by the same script. The program produces an autocorrelation 

file and a running integration file. 

PROGRAM HEATFLUX 

IMPLICIT NONE 

REAL*8 :: DUMMY,TEMP,VOL,CONV,STEP 

REAL*8, DIMENSION(:,:), ALLOCATABLE :: INARRAY,OUTARRAY 

REAL*8, DIMENSION(:), ALLOCATABLE :: SUMARRAY 

INTEGER :: I,IA,IB,IC,IE,COL,FINALSTEP,INTERVAL,N,LENGTH 

CHARACTER*20 :: FILENAME1,FILENAME2 

 

!READ IN FILENAMES 

PRINT*,'INPUT FLUX FILENAME' 

READ'(A20)',FILENAME1 

OPEN(8,FILE=FILENAME1,STATUS='OLD') 

PRINT*,'INPUT VARIABLES FILE' 

READ'(A20)',FILENAME2 

OPEN(9,FILE=FILENAME2,STATUS='OLD') 

 

!READ IN VARIABLES SETTINGS 

READ(9,*),TEMP 

READ(9,*),VOL 

READ(9,*),STEP 

READ(9,*),INTERVAL 

 

!READ IN ADDITIONAL SETINGS 

PRINT*,'INPUT FINAL TIMESTEP' 

READ*,FINALSTEP 

PRINT*,'INPUT MAXIMUM AUTOCORRELATION LENGTH IN TIMESTEPS' 

READ*,LENGTH 

LENGTH=(LENGTH/INTERVAL)+1 

 

!SETUP ARRAYS ETC. 

N=(FINALSTEP/INTERVAL) 

ALLOCATE(INARRAY(9,N)) 

ALLOCATE(OUTARRAY(10,LENGTH)) 

ALLOCATE(SUMARRAY(9)) 

OUTARRAY=0D0 

SUMARRAY=0D0 

!SET WORKING COLUMN 
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COL=1 

 

!READ IN FLUX DATA 

DO I=1,N 

 READ(8,*),DUMMY,INARRAY(1,I),INARRAY(2,I),INARRAY(3,I) 

ENDDO 
 

!FILL FIRST COLUMN WITH INTERVALS 

DO I=1,LENGTH 

 OUTARRAY(COL,I)=(I-1)*STEP*INTERVAL 

ENDDO 
 

!DO THE AUTOCORRELATION 

DO IA=1,3    !LOOP OVER FIRST DIMENSION 

 DO IE=1,3    !LOOP OVER SECOND DIMENSION 

  COL=COL+1  !SHIFT TO COLUMN 2 

  DO IB=1,LENGTH  !LOOP OVER CORRELATION LENGTHS 

   DO IC=1,(N-(IB-1)) !LOOP OVER ALL VALUES 

    OUTARRAY(COL,IB)=OUTARRAY(COL,IB)+& 

    ((INARRAY(IA,IC)*INARRAY(IE,((IC+(IB-1)))))/& 

    (N-(IB-1))) 

   ENDDO 

  ENDDO 

 ENDDO 

ENDDO 
 

!OUTPUT AUTOCORR TO FILE 

OPEN(9,FILE='autocorr.txt') 

WRITE(9,*),'TIME XX XY XZ YX YY YZ ZX

 ZY ZZ' 

DO I=1,LENGTH 

WRITE(9,*),OUTARRAY(1,I),' ',OUTARRAY(2,I),' ',& 

OUTARRAY(3,I),' ',OUTARRAY(4,I),' ',OUTARRAY(5,I),' ',& 

OUTARRAY(6,I),' ',OUTARRAY(7,I),' ',OUTARRAY(8,I),' ',& 

OUTARRAY(9,I),' ',OUTARRAY(10,I) 

ENDDO 
CLOSE(9) 

 

!INTEGRATE SECTION 

 

!CONVERSION CONSTANT FOR REAL UNITS 

CONV=34995566.6257005D0/TEMP/TEMP/VOL*INTERVAL*STEP 

 

!SETUP OUTPUT FILE 

OPEN(9,FILE='therm.txt',STATUS='NEW') 

WRITE(9,*),'TIME XX XY XZ YX YY YZ ZX

 ZY ZZ' 

 

!CONVERT ARRAYS TO CORRECT UNITS 

DO IA=2,10 

 DO IB=1,LENGTH 

  OUTARRAY(IA,IB)=OUTARRAY(IA,IB)*CONV 

 ENDDO 

ENDDO 
 

!DO SHIFTING INTEGRATION 

DO IB=1,(LENGTH-1) 

 !INTEGRATE 

 DO IA=1,9 

  SUMARRAY(IA)=SUMARRAY(IA)+(OUTARRAY((IA+1),IB)/2)& 



288 

 

  +(OUTARRAY((IA+1),(IB+1))/2) 

 ENDDO 
 !WRITE OUT 

 WRITE(9,*),(IB*STEP*INTERVAL),' ',SUMARRAY(1),& 

 ' ',SUMARRAY(2),' ',SUMARRAY(3),' ',& 

 SUMARRAY(4),' ',SUMARRAY(5),' ',SUMARRAY(6),& 

 ' ',SUMARRAY(7),' ',SUMARRAY(8),' ',& 

 SUMARRAY(9) 

ENDDO 
 

!CLOSE FILE 

CLOSE(9) 

 

STOP 

END 

 

Green-Kubo Spectra 

The following source code was also compiled with gfortran-4.7.3 using the command 

“gfortran source.f90 –lfftw3” and includes the FFTW3 library. The program is then run 

on the autocorr.txt file produced by the program in Appendix C and the variables.txt file 

produced by the script in Chapter 0. The spec.txt file produced gives the Green-Kubo 

spectra with respect to frequency in THz. 

PROGRAM SPEC 

IMPLICIT NONE 

INCLUDE 'fftw3.f' 

REAL*8 :: DUMMY,INTERVAL,VEL,TIMESTEP,TEMP,VOL,CONV 

REAL*8, DIMENSION(:), ALLOCATABLE :: FFTIN 

COMPLEX*16, DIMENSION(:), ALLOCATABLE :: FFTOUT 

REAL*8, DIMENSION(:,:), ALLOCATABLE :: INPUT,OUTPUT 

INTEGER*8 :: N,I,IA,FFTPLAN,STEP 

CHARACTER*20 :: FILENAME 

 

!INPUT FILENAMES 

PRINT*,'INPUT AUTOCORRELATION FILE' 

READ'(A20)',FILENAME 

OPEN(7,FILE=FILENAME,STATUS='OLD') 

 

PRINT*,'INPUT VARIABLES FILE' 

READ'(A20)',FILENAME 

OPEN(9,FILE=FILENAME,STATUS='OLD') 

 

!READ IN VARIABLES SETTINGS 

READ(9,*),TEMP 

READ(9,*),VOL 

READ(9,*),TIMESTEP 

READ(9,*),STEP 

 

!READ IN USER VARIABLES 

PRINT*,'INPUT LENGTH OF AUTOCORRELATION (fs)' 

READ*,N 

N=N/STEP 

 

!ASSIGN ARRAY SIZES 
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ALLOCATE(INPUT(4,N)) 

ALLOCATE(OUTPUT(4,N/2)) 

ALLOCATE(FFTIN(N)) 

ALLOCATE(FFTOUT((N/2)+1)) 

 

!IGNORE FIRST LINE, READ DATA INTO ARRAY, CALCULATE SOME VALUES, CLOSE FILE 

READ(7,*) 

DO I=1,N 

 READ(7,*),INPUT(1,I),INPUT(2,I),DUMMY,DUMMY,DUMMY,INPUT(3,I),& 

 DUMMY,DUMMY,DUMMY,INPUT(4,I) 

ENDDO 
CLOSE(7) 

 

!CONVERT VALUES TO CORRECT UNITS 

CONV=34995566.6257005D0/TEMP/TEMP/VOL*TIMESTEP*STEP 

DO I=2,4 

 DO IA=1,N 

  INPUT(I,IA)=INPUT(I,IA)*CONV 

 ENDDO 

ENDDO 
 

!TIMESTEP CONVERSION TO SECONDS, 

!DIVIDE BY MEASUREMENT INTERVAL, DIVIDE BY NUMBER OF SAMPLES 

INTERVAL=((1E15/TIMESTEP)/STEP)/N 

DO I=1,N/2 

 OUTPUT(1,I)=((I-1)*INTERVAL)/1E12 

ENDDO 
 

!LOOP OVER THREE DIMENSIONS 

DO IA=2,4 

  

 !COPY DATA INTO INPUT ARRAY 

 DO I=1,N 

  FFTIN(I)=INPUT(IA,I) 

 ENDDO 
 

 !CALL FFT ROUTINE 

 CALL DFFTW_PLAN_DFT_R2C_1D(FFTPLAN,N,FFTIN,FFTOUT,FFTW_ESTIMATE) 

 CALL DFFTW_EXECUTE_DFT_R2C(FFTPLAN,FFTIN,FFTOUT) 

 CALL DFFTW_DESTROY_PLAN(FFTPLAN) 

 

 !COPY INTO OUTPUT ARRAY 

 DO I=1,N/2 

  OUTPUT(IA,I)=REALPART(FFTOUT(I)) 

 ENDDO 
 

ENDDO 
 

!OUTPUT TO A FILE 

OPEN(7,FILE='spec.txt',STATUS='REPLACE') 

WRITE(7,*),'FREQUENCY(THz) X Y Z' 

DO I=1,N/2 

 WRITE(7,*),OUTPUT(1,I),' ',OUTPUT(2,I),' ',OUTPUT(3,I),'

 ',OUTPUT(4,I) 

ENDDO 
CLOSE(7) 

 

STOP 

END 


