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Abstract!!
The! evolution! of! a! gene’s! expression! profile! is! commonly! assumed! to! be!

independent!of!its!genomic!neighborhood.!!This!is,!however,!in!contrast!to!what!

we!know!about!the!lack!of!autonomy!between!expression!of!neighboring!genes!

in! extant! taxa.! Indeed,! in! all! eukaryotic! genomes,! genes! of! similar! expressionC

profile!tend!to!cluster,!reflecting!chromatin!level!dynamics.!!Does!it!follow!that!if!

a!gene! increases!expression! in!a!particular! lineage!then!the!genomic!neighbors!

will! also! increase! in! their! expression! or! is! gene! expression! evolution!

autonomous?! !!To! address! this,! I! consider! evolution!of! human!gene! expression!

since! the! humanCchimp! common! ancestor,! allowing! for! both! variation! in!

estimation! of! current! expression! level! and! error! in! Bayesian! estimation! of! the!

ancestral! state.!! I! find! that! in! all! tissues! and! both! sexes,! the! change! in! gene!

expression!of!a!focal!gene!on!average!predicts!the!change!in!gene!expression!of!

neighbors.!The!effect!is!highly!pronounced!in!the!immediate!vicinity!but!extends!

much! further.! SexCspecific! expression! change! is! also! genomically! clustered.! As!

genes! increasing! their! expression! in! humans! tend! to! avoid! nuclear! lamina!

domains! and! be! enriched! for! the! gene! activator! 5Chydroxymethylcytosine,!

chromatin! level! mechanisms! are! likely! regulators! of! this! phenomenon.! Firstly!

established!in!Primates!and!then!expanded!to!compacted!genome!of!yeasts,!the!

phenomenon! of! correlation! in! change! in! gene! expression! of! the! neighbouring!

genes! I! describe! as! “expression! piggyCbacking”,! an! analog! of! hitchhiking.!

Extending! the! same! principle! to! nonCcoding! genes! I! find! a! possible! role! of!

lincRNAs! in! regulating! expression! of! their! neighbours,!mediated! by! a! coupling!

between! splicing! and! chromatin! modification.! Finally! I! employ! insertions! of!

human! endogenous! retroviruses! (HERVs),! as! a! naturally! occurring! transgene!

experiment,! to! find! out! how! randomly! scattered! sequences! would! affect! the!

expression!profile!of!their!neighboring!genes.!!I!show!these!retroviruses!to!be!the!

focus!of!transcription!in!human!ES!cells!and!define!a!transcription!factor,!LBP9,!

as! a! novel! pluripotencyCassociated! agent.! ! Transcription! results! in!

neighbourhood!modification! including! the! generation! of! chimaeric! transcripts.!

Predictions!were!confirmed!experimentally!by!collaborators.!! !



! 5!

Chapter 1. Introduction!

Differences! between! species! might! be! the! result! of! either! changes! in! gene!

expression!or!changes! in!genes.! !My!thesis!concentrates!on!the!former.!Most!of!

the!studies on the evolution of gene expression are based on gene centric model and 

frequently focus on the regulatory elements affecting a given gene (Hammock and 

Young 2002; Carninci et al. 2006; Tirosh et al. 2006; Wray 2007; Tirosh et al. 2009; 

Wang and Rekaya 2009; Molineris et al. 2011; Hornung et al. 2012; Rosin et al. 2012; 

Wittkopp and Kalay 2012; Forrest et al. 2014; Yang et al. 2014).  Such studies 

typically concentrate analysis on changes to a gene’s promoters and enhancers. In 

such a perspective, changes in the promoter change the expression of the gene 

controlled by that promoter but nothing else. With the exception of downstream effect 

of the for example changes in dose of transcription factors, these studies often fail to 

consider any downstream gene regulatory effects.  Indeed, little effort has been put  

into examining up or down regulation of the neighboring genes. But!is!it! likely!that!

changes!in!the!expression!of!a!given!gene!are!isolated!(or!insulated)!or!do!they!

propagate! through! a! gene’s! physical! neighbors?! Put differently, are genes 

autonomous in their evolution in the sense that the change in expression of a focal 

gene has no effects on its immediate genomic neighbors?  

 

In contrast to the prevailing autonomous view of gene expression evolution, 

examining profiles of gene expression across chromosomes in eukaryotes genomes 

has revealed evidence for genomic clustering of genes of similar expression profile 

(Cho et al. 1998; Cohen et al. 2000; Caron et al. 2001; Reik and Walter 2001; 

Blumenthal et al. 2002; Hurst et al. 2002; Roy et al. 2002; Spellman and Rubin 2002; 

Birnbaum et al. 2003; Lee and Sonnhammer 2003; Lercher et al. 2003; Versteeg et al. 

2003; Khaitovich et al. 2004; Stolc et al. 2004; Williams and Bowles 2004; Denver et 

al. 2005; Liu et al. 2005; Mijalski et al. 2005; Oliver and Misteli 2005; Singer et al. 

2005; Sproul et al. 2005; Lercher and Hurst 2006; Sémon and Duret 2006; Purmann et 

al. 2007; Ebisuya et al. 2008; Nutzmann and Osbourn 2014).   

 

This is seen both at a fine scale and a more gross chromosomal scale (Cohen et al. 

2000; Caron et al. 2001; Lercher et al. 2003; Pal and Hurst 2003; Williams and 

Bowles 2004; Purmann et al. 2007; Michalak 2008; Woo and Li 2011).  On a fine 
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scale neighboring genes tend to be co-expressed more than expected by chance across 

multiple taxa (Blumenthal et al. 2002; Boutanaev et al. 2002; Roy et al. 2002; Lercher 

et al. 2003; Fukuoka et al. 2004; Williams and Bowles 2004; Purmann et al. 2007; 

Davila Lopez et al. 2010), the effect being most pronounced often for genes in a 

bidirectional orientation, in which promoters sit in close proximity to each other 

(Cohen et al. 2000; Williams and Bowles 2004; Davila Lopez et al. 2010; Wei et al. 

2011; Uesaka et al. 2014).  On a more gross scale, genes expressed in most tissues 

(housekeeping genes) and highly expressed genes tend to cluster in domains 

corresponding to tens of genes (Caron et al. 2001; Lercher et al. 2002; Versteeg et al. 

2003; Weber and Hurst 2011). 

!

These genes co-expression clusters could contain genes controlled by the same 

transcription factors, as shown in yeast (Képès 2003; Janga et al. 2008). Chromatin 

level regulation of transcription could also facilitate establishment of these clusters 

(Grunstein 1997; Cohen et al. 2000; Sémon and Duret 2006; Batada et al. 2007; Li et 

al. 2007). Interestingly, in yeast even after controlling for transcription factor 

similarity, neighboring genes still show striking similarity in co-expression (Batada et 

al. 2007).  Similarly, in mammals, incorporation of transgenes into chromosomes 

demonstrates that these adopt the expression profile of neighbors within a broad span 

(Gierman et al. 2007; Symmons et al. 2014).  In both yeast and mammals, the 

upregulation of one gene causes time lagged ripples of gene expression that 

correspond to changes in chromatin state (Cohen et al. 2000; Janicki et al. 2004; 

Ebisuya et al. 2008). In humans these ripple domains are around 100kb in size. 

Whether evidence for gene expression clusters could also imply selection for such 

clusters is unresolved.  In yeast, the most highly co-expressed gene pairs tend to be 

more similar in functionality and more commonly conserved as a pair (Hurst et al. 

2002; Poyatos and Hurst 2007). However, results in other lineages are less decisive 

(Lee and Sonnhammer 2003; Lee and Sonnhammer 2004; Liao and Zhang 2008; 

Weber and Hurst 2011). It might be that selection is weak in which case we might 

expect to see evidence for selection in yeast (with large population sizes) but less so 

in mammals.  

 

The contrast between intra-specific and inter-specific analyses is striking and suggests 

an evident question:  if a gene is evolutionarily up-regulated in a given lineage, are its 
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neighbors more likely to be evolutionarily up-regulated too?  If this is so, do the 

neighboring genes on the same strand show similar change in their gene expression as 

to the ones on the opposite direction? Does this just affect expression of the closest 

gene or is there a relative range of operation, e.g. 100Kb as suggested in ripple effect? 

Is there any tissue specific pattern in evolution of neighboring genes?  

 

These questions are the main focus of the chapter 2 in this thesis. Using gene 

expression data provided for six tissues across 5 primates generated by Brawand et al 

(Brawand et al. 2011), I ask whether genes are autonomous in their expression 

evolution. Reconstructing the human-chimp ancestral state of expression for 

homologous genes in these primates, made it possible to estimate the extent of change 

in expression between humans and this ancestor. Several measures were then applied 

to quantify this change, including a Z score and a fold change. As Z score is more 

robust to the variation in expression between replicates (expression or measurement 

noise) and uncertainty in ancestral state reconstruction, most of the analysis were 

done considering Z score values. In addition, by considering the residuals of the 

orthogonal regression of Z for a gene in a given tissue in males against the same in 

females we could define the degree of sex bias in expression change.  This enabled us 

to ask in turn whether this too shows evidence of autonomy or clustering.  

 

Challenging the gene centric perception of evolution of gene expression in Primates, I 

then asked if the co-expression clusters observed in Primates also exists in other 

organisms. Are these co-evolving gene clusters a feature of large genomes like 

mammals or could we find evidence in more compact genomes, like yeasts. Would 

short intergenic regions in yeast result in a conflicting pattern compared to the one 

observed in Primates with extensive intergenic DNA?  

 

To pave the way to extend this concept to other kingdoms of life, I have also 

investigated if phylogenetic assumption affects the correlation observed in the change 

of gene expression of the neighboring genes. The near ubiquitous agreement on 

approximate divergence date of 5 primates considered in the Primates study made 

analysing the effects of prior phylogenetic tree used unnecessary. However, 

phylogenetic relationships are still disputed across many taxa (Rutschmann 2006) and 

their effect on analysing evolution of gene expression is unknown. This is discussed 
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in the third chapter of my thesis, when piggybacking is examined in the content of 

single cell compact genome of yeasts. 

 

While these two studies in Primates and Yeasts revealed hidden relationship in 

evolution of gene expression of coding genes in Primates and Yeasts, they both 

exclude non-coding genes. As we found evidence for the co-evolving gene expression 

clusters are possibly owing to the chromatin regulatory mechanisms, we might ask if 

non-coding genes could also have a role in evolution of gene expression of their 

neighboring coding genes through changing the chromatin state. This is indeed the 

focus of the fourth chapter of this thesis. In this chapter I ask whether transcription of 

non-coding RNA could regulate the neighboring genes? To enable as close a 

resemblance to the analysis of protein coding genes (which typically do not overlap), 

we decided to consider a particular class of non-coding RNAs, long intergenic non-

coding RNA or lincRNA. Investigating this class of non-coding RNAs would not only 

enable us to answer this question but would also elucidate on an intriguing pattern of 

purifying selection acting on exonic splice enhancer (ESE) motifs in lincRNAs as 

found by my collaborator on this project, Andreas Schueler. 

 

The exons of human non-coding RNAs, ncRNAs, are known to be poorly conserved 

compared to protein-coding genes (Marques and Ponting 2009). On average they 

evolve a little slower than their flanking introns (Hurst and Smith 1999; Pang et al. 

2006), suggesting weak purifying selection. The causes of this weak purifying 

selection are unknown (Pang et al. 2006). However, this relatively rapid evolution 

need not imply an absence of function as the opposite was shown in a few well-

studied functional ncRNAs, like Xist (Engreitz et al. 2013).  

 

Using a well-defined set of lincRNAs (Cabili et al. 2011), Andreas asked where in 

ncRNAs purifying selection operates and what predicts rates of evolution of ncRNAs. 

He found evidence for weak purifying selection especially in lincRNAs’ ESE motifs 

and then asked if this splice related selection could be explained by lincRNAs 

stability, in case they were to function as a scaffold, but could not find any evidence 

to support this hypothesis. He also investigated whether this purifying selection could 

be related to nonsense mediated decay pathway to capture transcripts incorrectly 

processed by ribosomes, which was not the case either. So then we asked whether the 
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purifying selection on ESE motifs could be explained by their role in regulation of the 

neighboring genes through a unique class of chromatin modifiers: spliced-coupled 

chromatin modifiers, like CHD1 (Marfella and Imbalzano 2007; Sims et al. 2007; 

Persson and Ekwall 2010; Hnilicova and Stanek 2011; Zentner et al. 2013). This was 

indeed the case; I found that intron rich lincRNAs are also enriched in CHD1’s 

binding sites and they also correlate with DNase hypersensity sites, DHSs, a marker 

for open chromatin (Thurman et al. 2012), both of which also correlate with 

expression of neighbors. Hence these linRNAs are more likely to be involved in 

regulation of their neighboring genes through changing chromatin structure.  

 

So far I have shown evidence to link locality of genes with their evolution of 

expression across the coding and non-coding genes in a large genome and also a 

compact genome. These results would lead a curious mind to ask if one is to insert 

similar sequences across a genome, to what extent these randomly scattered 

sequences would affect the expression profile of the genes in their vicinity. Human 

specific endogenous retroviruses, HERVs, would provide an excellent base as a 

naturally occurring transgene experiment to investigate this. Members of each HERV 

family also exhibit high sequence similarity (although in part this is tautological). In 

collaboration with Prof. Zsuzsanna Izvak, at Max Delbruck centre in Berlin, we have 

shown that actively transcribed members of a particular class of HERVs, HERV-H, 

are involved in regulating their neighbors in human ES cells. This HERV we 

observed to be common in the transcriptome of ES cells. To determine whether this is 

transcriptional read-through or because of the HERVH providing functional binding 

sites for transcription factors, I performed a set of epigenetic analyses. These studies 

indicated that the epigenetic markers for transcription initiation were indeed found in 

the HERVH.  Next I determined what the possible binding partners might be. I found 

that HERVH not only provides functional binding sites for a combination of naïve 

pluripotency transcription factors but also discovered a marker for naïve stem cells. 

Also the long terminal repeats, LTRs, associated with HERV-H family in particular 

rewire regulating mechanisms associated with pluripotency. These LTRs, I 

discovered, should provide a harbour for a novel transcription factor, LBP9, to initiate 

transcription. The role of LBP9 was confirmed by my experimental colleagues. 
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When we analysed the products of transcription and the relationship to the neighbours 

we discovered that the HERVs do not simply modulate expression levels of 

neighbours, but, surprisingly, HERV-H elements have a few more tricks in their 

arsenal and are a source of novelty in our genome. Through creating chimeric 

transcripts, they not only create new genes but also affect splicing of their 

neighboring genes. All of this is explained in more detail in chapter five, where I have 

also clarified my contribution to the resulting paper (published in Nature).  
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Abstract

When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic
neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in
gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to
cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then
the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this
here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both
variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in
all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression
of neighbors. The effect is highly pronounced in the immediate vicinity (<100 kb) but extends much further. Sex-specific
expression change is also genomically clustered. As genes increasing their expression in humans tend to avoid nuclear
lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing
to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression
evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking.

Key words: gene expression evolution, gene clustering, sex-biased evolution.

Introduction
Work on the evolution of gene expression has commonly
been gene centric, concentrating on, for example, changes
in the promoter elements of a given gene (Hammock and
Young 2002; Carninci et al. 2006; Tirosh et al. 2006; Wray 2007;
Tirosh et al. 2009; Wang and Rekaya 2009; Molineris et al.
2011; Hornung et al. 2012; Rosin et al. 2012; Wittkopp and
Kalay 2012; Forrest et al. 2014; Yang et al. 2014). In such a
model, changes in the promoter change the expression of the
gene controlled by that promoter but nothing else (baring
downstream effects of, for example, up- or downregulation of
a transcription factor). But are genes autonomous in their
evolution in the sense that the change in expression of a
focal gene has no effects on its immediate genomic neigh-
bors? In contrast to such an autonomous view of gene
expression evolution, when examining profiles of gene expres-
sion across chromosomes, it is now evident that in eukaryotes
genes of similar expression tend to cluster (Cho et al. 1998;
Cohen et al. 2000; Caron et al. 2001; Reik and Walter 2001;
Blumenthal et al. 2002; Hurst et al. 2002; Roy et al. 2002;
Spellman and Rubin 2002; Birnbaum et al. 2003; Lee and
Sonnhammer 2003; Lercher et al. 2003; Versteeg et al. 2003;
Khaitovich et al. 2004; Stolc et al. 2004; Williams and Bowles
2004; Denver et al. 2005; Liu et al. 2005; Mijalski et al. 2005;
Oliver and Misteli 2005; Singer et al. 2005; Sproul et al. 2005;
Lercher and Hurst 2006; S!emon and Duret 2006; Purmann
et al. 2007; Ebisuya et al. 2008; Nutzmann and Osbourn 2014).
This is seen both at a fine scale and a more gross

chromosomal scale (Cohen et al. 2000; Caron et al. 2001;
Lercher et al. 2003; Pal and Hurst 2003; Williams and
Bowles 2004; Purmann et al. 2007; Michalak 2008; Woo and
Li 2011). On a fine scale, neighboring genes tend to be coex-
pressed more than expected by chance across multiple taxa
(Blumenthal et al. 2002; Boutanaev et al. 2002; Roy et al. 2002;
Lercher et al. 2003; Fukuoka et al. 2004; Williams and Bowles
2004; Purmann et al. 2007; Davila Lopez et al. 2010), the effect
being most pronounced often for genes in a bidirectional
orientation, in which promoters sit in close proximity to
each other (Cohen et al. 2000; Williams and Bowles 2004;
Davila Lopez et al. 2010; Wei et al. 2011; Uesaka et al. 2014).
On a more gross scale, genes expressed in most tissues
(housekeeping genes) and highly expressed genes tend to
cluster in domains corresponding to tens of genes (Caron
et al. 2001; Lercher et al. 2002; Versteeg et al. 2003; Weber
and Hurst 2011).

Although genes controlled by the same transcription fac-
tors are themselves not randomly organized, at least not in
yeast (K!epès 2003; Janga et al. 2008), in large part broad and
narrow span clustering tendencies probably reflect chromatin
dynamics rather than shared transcription factors (Grunstein
1997; Cohen et al. 2000; S!emon and Duret 2006; Batada et al.
2007; Li et al. 2007). In yeast, for example, controlling for
transcription factor similarity neighboring genes still show
striking similarity in coexpression (Batada et al. 2007).
Similarly, in mammals, incorporation of transgenes into chro-
mosomes demonstrates that these adopt the expression
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profile of neighbors within a broad span (Gierman et al. 2007;
Symmons et al. 2014). In both yeast and mammals, the upre-
gulation of one gene causes time-lagged ripples of gene ex-
pression that correspond to changes in chromatin state
(Cohen et al. 2000; Janicki et al. 2004; Ebisuya et al. 2008). In
humans these ripple domains are around 100 kb in size
(Ebisuya et al. 2008). Whether the fact of clusters of gene
expression implies selection for such clusters is unresolved.
In yeast, the most highly coexpressed gene pairs tend to be
more similar in functionality and more commonly conserved
as a pair (Hurst et al. 2002; Poyatos and Hurst 2007). However,
results in other lineages are less decisive (Lee and
Sonnhammer 2003, 2004; Liao and Zhang 2008; Weber and
Hurst 2011).

Here we ask whether genes are autonomous in their expres-
sion evolution. To this end we consider RNASeq data for sev-
eral tissues in male and female primates. Reconstructing the
human–chimp ancestral state permits us to estimate the
extent of expression change between humans and this ances-
tor and represent this as a Z score that factors in both current
variation in expression between replicates (expression or mea-
surement noise) and uncertainty in ancestral state reconstruc-
tion. We then consider the extent to which neighboring genes
show correlated Z scores. Under the null that genes are auton-
omous in their expression evolution the correlation in Z score
between neighbors should be zero. In addition, by considering
the residuals of the orthogonal regression of Z for a gene in a
given tissue in males against the same in females we can define
the degree of sex bias in expression change. We can thus in
turn ask whether this too shows evidence of autonomy.

Results

Neighboring Genes Are Correlated in the Expression
Change in All Tissues in Both Sexes
So as to gauge what the possible mechanisms might be, we
considered several methods to ask whether the expression
change of a focal gene (Z) is correlated with that of its neigh-
bors. In the first instance we consider for each gene (regardless
of which strand they reside on) the nearest neighbor down-
stream of the focal gene (downstream here is by reference to
the published chromosomal strand not to the orientation of
the gene), allowing only those instances where the intergene
distance is less than 100 kb, this being the estimated size of
the ripple effect (Ebisuya et al. 2008), wherein upregulation of
one gene causes a time-lagged upregulation of the neighbors
(the ripple). In the second instance we consider the correla-
tion between a focal gene and its nearest pair of neighbors,
one upstream one downstream, assuming both were within
100 kb (this is comparable to the first method but could be
less noisy). In this instance we take the mean Z of the neigh-
bors. In the third, we considered for each focal gene the mean
Z of all neighbors within 100 kb. While the first method might
be detecting immediate and local interactions between any
given gene pair (e.g., mediated by bidirectional promoters),
the latter most likely recovers broader scale chromatin
effects. Under the premise that we must be missing the
site of expression, we excluded genes with Z (prior to

modification—see Materials and Methods) of zero owing to
lack of expression in a given tissue. In the first and second
cases we consider only nonoverlapping genes. For the third
case, if the focal gene overlaps any of its adjacent neighbors, it
is removed from the analysis; but if there are nonfocal over-
lapping genes in the neighborhood, they are included.

Strikingly we find that for all tissues in both sexes, all
analyses report a highly significant positive correlation
between Z of focal genes and Z of neighbors (fig. 1,
tables 1–3). The correlation stays highly significant and
in positive direction if one is to consider fold change since
ancestor instead of Z score (supplementary table S1,
Supplementary Material online). Note too that our cor-
rection of Z to a median of zero is here irrelevant as our
statistics are based on rank ordering. These results
strongly supports the hypothesis that gene evolution is
nonautonomous, or at least that it occurs on a cluster-by-
cluster basis. We note too that our Z scores accord well
with the metric to define significantly changed expression
employed by Brawand et al (2011) (supplementary fig. S1
and table S2, Supplementary Material online).

While the earlier results provide evidence of clustering it
does not identify clusters nor does it suggest their dimen-
sion. As alternative means to test for clustering and to
identify unusually large clusters, we consider the number
of switches in Z score as one runs along a chromosome. We
represent all genes as having a positive, negative, or zero Z
score. Those with a zero we consider to be too indecisive to
be permitted for this test so are excluded. We then con-
sider, running down each chromosome, the number and
lengths of spans with uniform Z sign. That is we ask about
the size of runs of positive and negative Z scores (Z+ and
Z! we then consider as states + and !). To address
whether there are fewer but larger runs than expected
(clustering) we ask about the number of edges of runs. A
series +++–+++ for example has two edges, a + to – switch
and a – to + switch. We then compare the observed
genomic number of switches to the number expected
under a null of random ordering. The null is derived
from randomisation of character states (i.e., loci) within
each chromosome, thus preserving the absolute number
of + and – genes on each chromosome. For all tissues in
both sexes, we observe that the observed number of clus-
ters is lower than expected; hence, their length is greater
than expected (P < 0.0001 in all cases). Put differently,
longer runs of uniform expression change are more com-
monly observed than expected by chance and shorter runs
are less common (fig. 2). The largest clusters even by this
conservative definition (a single gene of opposite sign
breaks a cluster) run to tens of genes. For illustration of
some very large clusters, see supplementary figure S2a and
b, Supplementary Material online. This result provides fur-
ther evidence that our core result, the clustering of genes
showing similar change in expression is largely immune to
assumption about the precise metric of change, it being
seen with Z metric (tables 1–3), fold change (supplemen-
tary table S1, Supplementary Material online), and digital
parametrization (fig. 2).
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Weak Evidence Only That Gene Orientation Is
Relevant to Correlated Change in Gene Expression
When considering the correlation between a focal gene and
the nearest neighbour, we ignored any effects of orientation
between the neighbor and the focal gene. Prior work has
suggested that genes in divergent orientation may be partic-
ular in the extent of coupling in their expression (Wright et al.
1995; Cho et al. 1998; Cohen et al. 2000; Kruglyak and Tang
2000; Hurst et al. 2002; Trinklein et al. 2004; Williams and
Bowles 2004; Woo and Li 2011; Wakano et al. 2012). This
may be for no better reason that genes in divergent orienta-
tion will have a lower distance between their promoters

(Wakano et al. 2012), all else being equal. Genes sharing bidi-
rectional promoters are, under this model, the most highly
coupled. Do we then see any effect of the correlation between
Z scores as a function of orientation?

For every focal gene and its unique nearest downstream
neighbour, we consider the two to be in one of three orien-
tations: divergent (<–4 ), convergent (-4<-) and coor-
iented (-4 -4 or <-<-). For each of the three classes we
calculated the Spearman’s ! value for the correlation of
Z scores between the neighbors, this being repeated for
each tissue in each sex (table 4). Very weakly suggestive of a
greater coordination of genes in divergent orientation,
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FIG. 1. Relationship between Z of a focal gene and Z of the nearest downstream neighbor for six male tissues. In this instance we consider all genes are
nearest downstream neighbors if the distance between the start codons is <100 kb. This slightly contrasts with data in table 1, where the distance is
defined as minimum distance between gene bodies. Trends are robust to alternative definitions. Data are split into equal sized bins (of 500 genes)
defined after rank ordering with respect to Z score of the focal gene. The value on the X axis represents the mean Z of the genes in that bin. The value of
the Y axis indicates the mean (!SEM) for the relevant flanking genes. The presented statistics are from Spearman correlation on raw data.
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we find that in 6 of 10 incidences the divergent orientation
genes have the highest ! value (these being male liver, brain
and testis, and female kidney, heart, and cerebellum).
Assuming that the divergent orientation should have the
highest ! value one-third of the time, a 6:4 split is not signif-
icant (two-tailed, binomial test P = 0.094; one-tailed binomial
test P = 0.076).

To check whether the three Spearman’s ! values (for each
tissue for each sex) differed from ! score of a randomly se-
lected subset of the same size, we performed Monte Carlo
randomizations. Each simulation extracted the appropriate
but randomly selected number of gene neighbors using the
same underlying data (i.e., same tissue, same sex). Each sim-
ulation was repeated 10,000 times. The ! score of each
random sample was calculated and compared with that ob-
served in the simulants to determine P (Materials and
Methods). We find that in two incidences (male testis and
female cerebellum) genes in divergent orientation have a sig-
nificantly higher (P< 0.05) correlation in the Z scores than
expected by chance (table 5). The effects are, however,

marginal (0.01< P< 0.05) and not robust to Bonferroni
correction.

Prior evidence suggests that bidirectional orientation may
have its most profound influence at the sub 1 kb scale (Hurst
et al. 2002; Li et al. 2006; Franck et al. 2008), although another
study found a marginally lower correlation among divergent
genes at 1 kb distance (Takai and Jones 2004). Unfortunately
there are few genes in the sample at such proximity.
Nonetheless we can repeat the analyses above on this more
limited subset. We observe that in five incidences (male brain,
male kidney, male liver, female cerebellum, female kidney)
divergent orientation records the highest ! value, again not
a significant difference (table 6). Weak significance from
Monte Carlo simulations is observed in only one case (male
liver), again not robust to Bonferroni correction (table 7). We
conclude that we see weak, at best, evidence that gene ori-
entation has an influence on the degree of correlated expres-
sion change.

Overlapping Genes Are the Most Strongly Positively
Correlated in Expression Change
Thus far we excluded from consideration overlapping genes.
A priori we might expect these to behave differently, not least
because simultaneous expression of both genes might lead to
transcriptional interference (Noguchi et al. 1994; Prescott and
Proudfoot 2002; Osato et al. 2007). Hence upregulation of one
might force downregulation of the other, if only through
forcing premature transcriptional termination. Alternatively,
upregulation of one might make the chromatin environment
of the promoter of the neighbor even more likely to be ac-
cessible, so proving an even stronger signal of nonautono-
mous evolution.

While the original data set (Brawand et al. 2011) was spe-
cified as excluding all incidences in which genes overlap
within their protein coding sequence, many overlap in their
full-length transcript. Examining these we find that the near-
est neighbors still show a strong positive correlation in
Z scores (tables 8 and 9). Indeed, in all cases, the correlation
is stronger for the overlapping genes than for the nearest
nonoverlapping neighbor. Assuming each sample to be inde-
pendent, the probability of such agreement is low (binomial
test, P = 0.002). However, all samples are not independent
(male and female expression change correlates—see later).
Thus to evaluate whether the strength of this correlation
was any different to that expected for any pair of nearest
downstream neighbors, we repeatedly extracted from the
larger set of nonoverlapping neighbors a random subset of
the nearest downstream neighbors. The random subsets had
the same number of genes as seen in the overlapping genes’
set. We then asked how often we see a ! value as great or
greater than that observed for the overlapping case.
Overlapping genes had consistently stronger correlation
than the nonoverlapping gene sets in all tissues in both
sexes (table 10). These results support the view that close
proximity, possibly owing to a greater likelihood of shared
chromatin environment, is a more important determinant

Table 1. Spearman Correlation between Focal Gene’s Z Score and
Z Score of Its Closest Nonoverlapping Downstream Neighbor.

Tissue Male P Value Male q Female P-Value Female q

Brain 8.71E!07 0.05504 2.81E!08 0.06247

Cerebellum 1.71E!19 0.10246 9.25E!21 0.10539

Kidney 3.97E!126 0.26420 3.37E!07 0.05751

Heart 4.13E!66 0.19308 7.14E!20 0.10423

Liver 5.91E!12 0.07786 NA NA

Testis 6.92E!83 0.21132 NA NA

NOTE.—All statistics are significant after Bonferroni testing.

Table 2. Spearman Correlation between Focal Gene’s Z Score and
Mean of Its Closest Nonoverlapping Neighbors on Both Sides.

Tissue Male P-Value Male q Female P-Value Female q

Brain 2.95E!10 0.08015 8.70E!12 0.08727

Cerebellum 1.96E!31 0.15009 1.51E!33 0.15433

Kidney 1.44E!155 0.33054 6.07E!10 0.07925

Heart 2.03E!86 0.24993 2.16E!28 0.14318

Liver 8.86E!17 0.10676 NA NA

Testis 4.43E!118 0.28520 NA NA

NOTE.—All statistics are significant after Bonferroni testing.

Table 3. Spearman Ranked Correlation of Z Score of Focal Gene
with Mean Z Score of All Its Nonoverlapping Neighboring (within
"100 kb) Genes.

Tissue Male P-value Male q Female P-value Female q

Brain 7.75E!08 0.04780 6.93E!17 0.07465

Cerebellum 8.67E!61 0.14784 1.17E!41 0.12111

Kidney 1.32E!274 0.30926 2.81E!15 0.07078

Heart 8.82E!160 0.23968 2.07E!44 0.12681

Liver 8.51E!26 0.09458 NA NA

Testis 6.27E!187 0.25247 NA NA

NOTE.—All statistics are significant after Bonferroni testing.
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FIG. 2. Numbers of clusters of a given size compared to that expected under a random null. Observed number of clusters including certain number of
genes is shown by red stars, boxplots show variation across number of clusters in 1,000 random sets.
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of coupled gene expression change than is transcriptional
interference or gene orientation.

A Ripple Effect Cannot Explain the Dimensions of the
Expression Change Clusters
Although the earlier more extreme correlation in changes at
very small distances is potentially consistent with the ripple
effect, this same effect suggests that expression clusters
should be of ~100 kb in magnitude (Ebisuya et al. 2008). To
estimate physical cluster size, we consider the strength of the

correlation between genes in their Z score as a function of the
distance between them. We consider all focal genes and the
correlation between Z scores for these genes and the nearest
downstream gene at a minimum of x base pairs away. By
incrementing the minimum distance of x, we can then ask
at what physical distance on average is ! between the
focal genes and nearest “neighbors” is less than the mean
! 1.96 SD of 1,000 randomized null sets.

For three tissues (heart, kidney, testes), the data appear to
be relatively noise free, suggesting the span of local correlation
to extend up to tens of megabytes (10–25 MB) (fig. 3a). For

Table 4. Spearman Correlation between Z of Divergent, Convergent, and Cooriented Closest Gene Pairs.

Tissue/Gender Divergent P-Value Divergent q Convergent P-Value Convergent q Cooriented P-Value Cooriented q

Brain/male 0.000474 0.07738 0.105396 0.03449 0.00031 0.05483

Cerebellum/male 1.76E"05 0.09616 2.27E"07 0.11123 7.63E"13 0.11086

Kidney/male 1.76E"35 0.27214 9.33E"30 0.23963 5.83E"78 0.27992

Heart/male 4.52E"18 0.19287 3.26E"16 0.17496 5.52E"42 0.20693

Liver/male 8.23E"07 0.11054 0.008186 0.05694 1.07E"06 0.07485

Testis/male 3.47E"30 0.24745 1.24E-22 0.20458 3.24E-42 0.20261

Brain/female 0.003130 0.06569 0.000440 0.07510 0.00107 0.05010

Cerebellum/female 3.01E-10 0.14002 0.000271 0.07796 1.24E-10 0.09887

Kidney/female 0.004371 0.06349 0.032372 0.04601 0.000205 0.05684

Heart/female 4.75E-09 0.13200 3.77E-06 0.10040 2.52E-11 0.10359

NOTE.—Results significant after Bonferroni testing are highlighted in italic.

Table 5. P-Values of Monte Carlo Simulations Comparing Spearman’s Correlation q Score between Z Score of Focal Gene and Z Score of Its
Downstream Neighbor across Divergent, Convergent, and Cooriented Subsets against q of a Randomly Selected Set of Genes of the Same Size as
Those Subsets.

Tissue Divergent Male
P-Value

Convergent Male
P-Value

Cooriented Male
P-Value

Divergent Female
P-Value

Convergent Female
P-Value

Cooriented Female
P-Value

Brain 0.12059 0.87421 0.86861 0.37086 0.20748 0.20998

Cerebellum 0.70893 0.40776 0.40526 0.03330 0.91901 0.92151

Kidney 0.41026 0.94881 0.95150 0.36286 0.70813 0.71763

Heart 0.55744 0.86571 0.86821 0.12109 0.68713 0.67243

Liver 0.05359 0.88301 0.88571 NA NA NA

Testis 0.03550 0.72293 0.71803 NA NA NA

NOTE.—If the number of genes in divergent orientation, for example, after removing zero Z scores in a specific tissue and sex is shown by tsND and Spearman’s correlation’s !
score between those focal genes and their divergent downstream is shown by ts!. Then ! score of 10,000 random sets of linked gene pairs of tsND size, selected from pool of all
genes in this study regardless of their orientation, is calculated and compared with ts! in corresponding tissue/gender. If the number of random sets with their ! great or greater
than ts! is shown by M, Monte Carlo P-values are then calculated as (M+1)/10,001. No observations are significant after Bonferroni testing.

Table 6. Spearman Correlation between Z Score of Focal Gene and Z Score of Its Closest Downstream Neighbor across Divergent, Convergent,
and Cooriented Closest Gene Pairs Which Are Closer than 1 kb.

Tissue/Gender Divergent P-value Divergent q Convergent P-value Convergent q Cooriented P-value Cooriented q

Brain/male 0.10085 0.08288 0.81912 0.01280 0.95651 "0.00366

Cerebellum/male 0.01006 0.13001 0.01738 0.13288 0.02453 0.15090

Kidney/male 7.07E"16 0.39189 1.30E-08 0.31211 0.00327 0.19567

Heart/male 7.80E-06 0.22392 7.79E-09 0.31661 0.00752 0.17813

Liver/male 0.00044 0.17669 0.20270 0.07196 0.69872 0.02606

Testis/male 1.02E-11 0.33586 1.49E-10 0.34886 0.04807 0.13197

Brain/female 0.36058 0.04629 0.86790 "0.00929 0.43382 0.05267

Cerebellum/female 1.32E-05 0.21838 0.00461 0.15838 0.05900 0.12635

Kidney/female 0.12010 0.07853 0.64196 "0.02613 0.72420 "0.0237

Heart/female 0.00250 0.15248 0.00302 0.16604 0.02574 0.14933

NOTE.—Results significant after Bonferroni testing are highlighted in italic.
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the remaining three, brain suggests a much more limited
domain, while cerebellum and liver are consistent with ~10
MB span. Looking in more details at trends under 1 MB from
the focal genes (fig. 3b), we observe that all tissues report the
local correlation of Z to be most profound under 100 kb, with
brain tissue indeed, suggesting this to be the upper limit. The
discrepancy between brain and the other tissues might, we
suggest be owing to heterogeneity in sampling procedures
and intrinsic heterogeneity of brain tissue. A ripple effect
(Ebisuya et al. 2008) that extends over ~100 kb might be
able to explain the intensity of the signal at such short
range (fig. 3b) (notice the nonlinear trends seen in 3b and
the extent to which the left most data point in 3a appears as
an outlier). The ripple effect appears, however, to be incom-
patible with the much longer-range effects as these extend in
many cases well beyond the 100 kb limit of the ripple effect.

Changes in Gene Expression Accord with Lamina
Domains and 5-Hydroxymethylcytosine
Do the genes changing expression accord with any chromatin
signatures? Nuclear compartmentalization and lamina-asso-
ciated chromatin domains (LADs) in particular have been
shown to be involved in regulating genes in Metazoan
(Reddy et al. 2008; Van Bortle and Corces 2013). Moreover,
recent analysis of gene disregulation in Downs syndrome sug-
gested that LADs represent a level of expression organization
in the human genome (Letourneau et al. 2014). LADs have
also been shown to associate with low gene expression
(Guelen et al. 2008). Hence LADs would provide a good mea-
sure for investigating chromatin level regulation’s involve-
ment in evolution of gene expression. Using a high-
resolution map of LADs in fibroblast (Guelen et al. 2008),
we find that in all six tissues genes residing in putative
lamina domains tend to have lower Z scores than those
not in lamina domains (fig. 4 [before multitest correction,
Mann–Whitney U test P< 10!9 except brain
P = 4" 10!4]). Thus increases in expression level tend to be
outside of lamina domains.

5-Hydroxymethyl cytosine (hmC) and 5 methylcytosine
(mC) are also involved in chromatin level regulation of
gene expression through recruiting chromatin modifiers
(Mellen et al. 2012; Spruijt et al. 2013). Recent evidence also
indicates that gene activity is associated with hmC on the
coding strand (Wen et al. 2014). Inactive genes or noncoding

Table 7. P-Values of Monte Carlo Simulation Comparing Spearman’s Correlation q Score between Focal Gene and Its Downstream Neighbor
across Divergent, Convergent, and Coordinated Subsets to a Randomly Selected Subset of the Same Size for Gene Pairs Closer than 1 kb.

Tissue Divergent Male
P-Value

Convergent Male
P-Value

Cooriented Male
P-Value

Divergent Female
P-Value

Convergent Female
P-Value

Cooriented Female
P-Value

Brain 0.13399 0.71823 0.72053 0.33787 0.79582 0.79852

Cerebellum 0.64264 0.60364 0.59444 0.33907 0.85431 0.84622

Kidney 0.17848 0.87671 0.87581 0.07129 0.84862 0.84202

Heart 0.91831 0.15938 0.15298 0.78032 0.62664 0.63754

Liver 0.02850 0.76262 0.75932 NA NA NA

Testis 0.57334 0.42326 0.43336 NA NA NA

NOTE.—Monte Carlo simulation’s steps and number of repetition are the same as explained in table 5. No observation is significant after Bonferroni testing.

Table 8. Spearman Correlation between Focal Gene’s Z Scores and Z
of Its Overlapping Downstream Neighbor on the Opposite Strand.

Tissue Male P-value Male q Female P-value Female q

Brain 0.00392 0.10783* 0.00368 0.10886*

Cerebellum 8.37E!14 0.27613* 8.45E!06 0.16696*

Kidney 2.75E!26 0.38295* 0.01655 0.08992*

Heart 4.90E!15 0.28986* 1.18E!06 0.18234*

Liver 0.00019 0.13979* NA NA

Testis <2.2E!16 0.3942* NA NA

NOTE.—Those incidences marked with an asterisk have a higher correlation than
seen in the comparable nonoverlapping case (shown in table 1). All observations are
significant after Bonferroni testing. As the underlying data are strand-specific tran-
scriptomics, employing overlapping sequence from opposite strands obviates prob-
lems with mismapping, causing artifactual signals of high correlation.

Table 9. Spearman Correlation between Focal Gene’s Z Scores and
Mean of Its Closest Up and Downstream Neighbors, at Least One of
Which Overlaps the Focal Gene.

Tissue Male P-Value Male q Female P-value Female q

Brain 0.00013 0.11001* 0.0002 0.10724*

Cerebellum 1.18E!24 0.29169* 1.52E!11 0.19365*

Kidney <2.2E!16 0.41596* 0.00126 0.09303*

Heart 2.93E!29 0.31778* 4.58E!13 0.20841*

Liver 7.60E!07 0.14236* NA NA

Testis <2.2E!16 0.4018* NA NA

NOTE.—Those incidences marked with an asterisk have a higher correlation than
seen in the comparable nonoverlapping case (shown in table 2). All observations are
significant after Bonferroni testing.

Table 10. Monte Carlo Simulation of Overlapping Genes’ Z.

Tissue Male P-Value Female P-Value

Brain 0.005999 0.0095

Cerebellum 0.000099 0.003

Kidney 0.000099 0.0132

Heart 0.000499 0.0004

Liver 0.007399 NA

Testis 0.000099 NA

NOTE.—Comparing Spearman correlation’s ! score of overlapping genes against ran-
domly selected set of gene pairs of the same size over 1,000 repetitions. The number
of incidents when ! of randomly selected set is equal or higher than ! in over-
lapping set was counted to calculate empirical P-values. All observations are signif-
icant after Bonferroni testing.
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FIG. 3. Correlation between Z of each focal gene and Z of nearest downstream neighbor more than a given minimum physical distance away. (a) We
plot data considering increments of minimum distance 1 MB at a time up to a maximum of 30 MB. (b) We consider 10-kb increments up to a
maximum of 1 MB. For each focal gene we extract the nearest neighbor downstream that is at least the distance x away, x being the units on the x axis.
From a list of focal and neighbor Z scores, we consider then the correlation between these. Correlations significant at the 0.05 level are shown in red,
otherwise in blue. The blue horizontal lines indicate 1.96 SD limits determined by randomization (which should in principle correspond with the P from
Spearman’s !), with the black line indicating mean of null expectation from randomization (which should be around zero).
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strands by contrast tend to be enriched in mC (Dahl et al.
2011). Do we see then any correspondence between hmC,
mC (in cortex samples), and Z? Employing base pair resolu-
tion data (Wen et al. 2014), we indeed observe that Z (for
brain) is positively correlated with hmC (Spearman correla-
tion: != 0.17, P< 10!107) and negatively correlated with mC
(Spearman correlation: !=!0.07, P< 10!18).

A priori we might expect that genes associated with pos-
itive Z scores are associated with activating chromatin marks
like H3K4me3 (Santos-Rosa et al. 2002; Sims et al. 2003;
Martin and Zhang 2005; Greer and Shi 2012). We approach
this issue using data from cardiac fibroblast, cardiac myocyte
(muscle cells in heart), and astrocytes, chromatin data for
which is available. Astrocytes are the most abundant cells
in the brain and cerebellum (Tower and Young 1973; Chen

and Swanson 2003; Tsai et al. 2012), hence would provide a
defendable approximation for histone methylation profile of
the whole organ. As expected Z score positive genes differ
from Z score negative ones in H3K4me3 (table 11).

Given the earlier result, we might in addition expect that
for genes with relatively extreme changes in Z the correspon-
dence with H3K4me3 marks should be more pronounced. To
address this we consider the subset of genes whose Z score is
greater than or equal to 1 or less than or equal to !1.
Unexpectedly, these genes show no significant difference in
their activating histone mark methylation in two instances
and only a marginal effect (astrocytes) in one (table 12).

The points mentioned earlier shows association of
H3K4me3 with elevated expression in human lineage but
does not elucidate whether relative gain or depletion of

Table 11. Number of Positive and Negative Z Score Genes Overlapping at Least One H3K4me3 Peak.

Tissue Number of
Genes

Number
of Z+

Number
of Z-

AVG
(Number of Z+
with H3K4me3)

Number of
Expected Z+

AVG
(Number of Z!
with H3K4me3)

Number of
Expected Z-

v2 P-Value

Astrocytes-cerebellar 12,418 5,923 6,495 5,108 4,812.38 4,981.5 5,277.12 3.806E!09

Cardiac fibroblasts 12,098 5,605 6,493 4,702 4,548.21 5,115 5,268.78 0.00185

Cardiac myocytes 12,098 5,605 6,493 4,920.5 4,759.71 5,353 5,513.79 0.00146

Table 12. Number of Highly Positive and Negative Z Score Genes Overlapping at Least One H3K4me3 Peak.

Tissue Number
of Genes

Number
of Z+

Number
of Z-

AVG
(Number of Z+
with H3K4me3)

Number of
Expected Z+

AVG
(Number of Z!
with H3K4me3)

Number of
Expected Z!

v2 P-Value

astrocytes-Cerebellar 6,164 3,708 2,456 3,206.5 31,32.91 2,001.5 2,075.089 0.03727

Cardiac fibroblasts 4,679 2,941 1,738 2,389 2,394.47 1,420.5 1,415.027 0.8544

Cardiac myocytes 4,679 2,941 1,738 2,520 2,516.10 1,483 1,486.902 0.8984

NOTE.—Genes with Z score higher than 1 are considered highly positive Z and the ones with Z score lower than !1 are studied as highly negative Z.

FIG. 4. Z scores of genes in and out of lamina domains across six tissues. All pairwise comparisons are highly significant (before multitest correction,
Mann–Whitney U test P< 10!9 except brain P = 4" 10!4). Z score of the genes on Lamina domains are shown with boxplots in red and the rest
are in green. Genes with very high or very low Z are excluded from the plot as outliers to improve presentation but have been included in Mann–
Whitney U test.
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activating histone marks in human compared with other pri-
mates are associated with upregulation or downregulation of
clusters in human lineage. To address this, we looked for
evidence of H3K4me3 peaks with 1.5-fold gain or depletion
in human prefrontal neuron samples compared with chimps
and macaques (Shulha et al. 2012), in Z+ and Z! clusters in
brain. We found that while Z+ clusters are significantly en-
riched in gained H3K4me3 peaks in both female and male
compared with Z! clusters, Z! clusters are significantly en-
riched in deplete H3K4me3 peaks compared with Z+ clusters
only in clusters found in female brain and not males (supple-
mentary tables S4a and b, Supplementary Material online).

Genes with Between–Tissue Concordance in
Expression Change Are Common and Clustered
Earlier, we have considered each gene’s expression change in
each tissue independently. Is it, however, the case that a gene
upregulated in one tissue is also upregulated in other tissues
or is the effect tissue specific? For those genes showing across-
tissue concordance in expression change, do we find that
their neighbors also tend to show across tissue concordance?
That is, if a gene is up- or down-regulated in all tissues, do the
neighbors also show concerted change across all tissues in the
same direction as the focal gene?

To ask whether genes tend to show concerted change
across all tissues, we start by analysing the six male tissues
(as these have multiple replicates making the data more
robust). For each gene we then convert the Z score into a
simple classification (Z4 0 = +1; Z<0 =!1), leaving Z = 0
class as is. We then consider the sum of these scores for
each gene (Z sum). At the limit genes may be downregulated
in all tissues compared with the ancestor (Z sum =!6) or
upregulated in all (Z sum = +6). We compare the frequencies
of Z sum against a null derived from randomizations in which
we preserve the sum number of Z+, Z!, and Z = 0 seen in
each tissue. We observe a great excess of incidences of con-
certed change, meaning an excess of more extreme scores
(!2 = 12,409.04, df = 12, P << 0.01; supplementary fig. S3,
Supplementary Material online). Indeed, we find 6-fold
more genes showing concerted change across all tissues
than expected under a null in which the Z score in any
given tissue is independent of that in any other tissue
(table 13). We conclude that there is a strong tendency for
change in expression of a given gene to be in the same direc-
tion across multiple tissues.

Those genes showing concerted evolution across all tis-
sues belong to an eclectic mix of Gene Ontology (GO) terms
including sensory perception (for positive concerted Z genes)

and muscle development regulation (for negative concerted
Z genes), the logic of which is not transparent to us (supple-
mentary tables S5a and b, Supplementary Material online).

We can also ask about the expression profile of genes that
show high mean Z scores. We consider four different metrics
of expression, these being expression breadth, peak expres-
sion, mean expression level (in the tissues within which the
gene is expressed), and expression skew (tau) (for definitions
see Materials and Methods). We find that genes with a high
mean Z score are more broadly expressed ("= 0.14), more
highly expressed ("= 0.39), have higher maximal expression
("= 0.38), and have a low degree of skew (i.e., more evenly
expressed across tissues) ("=!0.13) (in all cases P< 10!14).
In many regards, these results are to be expected as high Z
genes are more likely to be highly expressed genes as Z is in
part the difference between current and ancestral state and
those with the highest current state are likely to be Z4 0.
Consistent with the Z+ concerted clusters being housekeep-
ing/highly expressed clusters, in most tissues Z+ clusters are
shorter and hence denser (although the reverse is observed in
clusters in brain), supplementary figure S4 and tables S3a and
b, Supplementary Material online.

To ask whether genes with concerted expression evo-
lution across tissues (all + or all!) are themselves clus-
tered, we ask whether their neighbors are similarly
concerted. To this end we identify all genes that show
concerted change across all tissues either with positive Z
or negative Z (absolute Z sum = 6). We then ask how often
we find clusters of such genes (of the same sign). That is,
how often do we find two concerted genes of the same
sign together, how often we find triplets, etc. We compare
these numbers to those observed in simulations in which
the position of concerted genes is randomized. We find
strong evidence that concerted genes clusters occur more
than expected by chance (table 14). This suggests a strong
principle of clustering of genes that uniformly change
expression in the same direction across multiple tissues.
Supplementary figure S5, Supplementary Material online,
provides some examples.

Tissue-Specific Upregulation Affects Neighbors and Is
Common in Cerebellum
If genes that are evolutionarily up- or downregulated across all
tissues in humans cluster, do we also see that those showing
tissue-specific evolutionary increase tend to sit next to genes
showing evolutionary increase in the same tissue? To address
this we consider those genes which, in males, show strong
(Z4 1) increase in evolutionary change in one tissue alone,

Table 13. Observed Number of Concerted Genes Is Higher than Expected.

Proportion in: Expected Proportion Expected Number Observed Number v2 P-Value

Brain Cerebellum Heart Kidney Liver Testis

Z+ 0.4916 0.49996 0.4999 0.4999 0.4999 0.4999 0.015356 200.0482 1216 5159 <<0.001

Z- 0.4804 0.49996 0.4999 0.4999 0.4999 0.4999 0.015006 195.4874 1165 4808 <<0.001

NOTE.—Concerted genes are either Z+ or Z! across all six tissues. So the expected number is the mean expectation of the number of concerted genes against a null of
independent evolution in all tissues. The total number of genes included in this analysis is 13,027.
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showing zero or negative Z in all others. This definition allows
recognition of very few genes (170) but suggests the cerebel-
lum to be a hotspot for such change (supplementary table
S6a, Supplementary Material online). Given the low sample
size, we relax the definition to include genes which are Z4 1
in one and only one tissue, with Z<1 in all others. Henceforth,
these we will refer to as tissue-specific upregulated (TSU)
genes. Analysis of these provide a striking result, namely
TSU genes in cerebellum alone are much common than
TSU genes in other tissues (supplementary table S6b,
Supplementary Material online), as indeed are the more
strictly defined tissue-specially upregulated genes. We identi-
fied 1,230 such genes in cerebellum while only 39 genes show
brain-specific upregulation. This we suggest agrees with the
recent finding that the cerebellum is a focus of evolution
within the primates (Barton and Venditti 2014).

Genes showing tissue-specific upregulation, in contrast to
those showing coordinated change across multiple tissues,
tend to be in domains of low gene density (the number of
genes in !100 kb of focal gene is low compared with coor-
dinated ones, Mann–Whitney U test P-value = 1.26 E"43,
supplementary fig. S6, Supplementary Material online). This
density effect enabled us to compare the local Z similarity for
the genes with at least one neighbor closer than 100 kb
against those whose closest neighbor is further than 100 kb
(of which there is an appreciable number). As shown in sup-
plementary table S6c, Supplementary Material online, for the
genes with a neighbor in 100 kb, the number of focal genes
having a Z4 0 (in the focal tissue) closest neighbor is more
than expected by chance (!2 = 68, df = 5, P<< 0.001).
Indeed in all tissues the number of incidences where the
nearest neighbor shows upregulation in the tissue of the
focal gene is greater than expected, the deviation being sig-
nificant in four of six tissues. For the genes lacking a close
neighbor (supplementary table S6d, Supplementary Material
online), the trend is mixed but the overall!2 statistic is weakly
significant (!2 = 12.4, df = 5, P< 0.05). This, however, is
mostly owing to two tissues showing a strong dearth of Z+
genes in the vicinity of the TSU genes. That we could not
detect an excess of Z+ genes outside of 100 kb limit suggests
that many tissue-specific change genes are relatively insulated
in their effects (compared with what is seen overall), possibly
mediated by low gene density.

While earlier we asked merely if the neighbors have an
excess of incidence of Z4 0 in the tissue concerned, we
can also ask how many TSU genes have a TSU neighbor
(Z4 1), with that upregulation being in the same tissue
(i.e., do we see clusters of tissue-specific upregulation).
While no TSU gene has any TSU neighbor in the same
tissue in brain and testis, in cerebellum there are 128 genes
whose closest downstream neighbor also exhibits cerebellum
tissue-specific upregulation. This is not more than expected
by chance (one-tailed Monte Carlo simulation keeping the
same number of TSU genes in each tissue and randomizing
gene order, P 4 0.05; supplementary table S6e,
Supplementary Material online). More generally, we see no
evidence that TSU genes cluster in any tissue (supplementary
table S6e, Supplementary Material online) and, through com-
bining individual P-values across tissues with Fisher method,
we find no overall support for the hypothesis of TSU cluster-
ing (!2 = 15.84, df = 12, P-value 4 0.1).

No Evidence for Unusual Expression Change in the
Vicinity of the Human Chromosome 2 Fusion Event
Earlier, we have considered trends en masse. Close scrutiny of
some forms of gross chromosomal change suggest that genes
neighboring chromosomal disruption sites tend to have al-
tered gene expression (Milot et al. 1996; Dillon et al. 1997;
Kleinjan and van Heyningen 1998; Kleinjan and van
Heyningen 2005; Harewood and Fraser 2014). Do we see
any evidence of this on the broader evolutionary scale? To
address this we consider the genes in the vicinity of the
human chromosome 2 fusion event.

Human chromosome 2 is fusion of two chromosomes
present in the great apes, chimp included (Miller and Reis
1982). The fusion zone is reported to be in the vicinity of
2q13-2q14.1 (Fan et al. 2002). Via the Ensembl web browser
(Flicek et al. 2014) under comparative genomic mode, we
determined that human gene ENSG00000146556 was in the
vicinity of the fusion boundary, its neighbors in chimp being
ENSPTRG00000014555 on chromosome 2b in one direction
and ENSPTRG00000012388 and ENSPTRG00000012383 on
chromosome 2a in the other direction. We then asked
whether the mean Z for genes in proximity to this site were
in any manner unusual. To this end we considered a 1 MB
window upstream and downstream of the fusion sites and
considered Z for all genes within this domain. As expected, in
one direction there are relatively few genes, this correspond-
ing to the ancient telomeric end of one of the fusion
chromosomes. The mean Z score for genes in this window
is no different to zero (mean Z = 0.002, SD = 0.396), suggesting
that this is not a zone associated with either up- or downreg-
ulation (supplementary fig. S7, Supplementary Material
online).

Sex-Biased Gene Expression Change Is Clustered
As we have, for several tissues, change in expression data in
both males and females, we can ask, for any given gene,
whether the change in expression in one sex correlates with
that in the other sex. Under a null of no change in the degree

Table 14. Monte Carlo Simulation’s P-Value and the Number of
Clusters of Concerted Genes of the Same Direction of Evolution of
Expression Are Shown by Cluster Size.

Z Score
Sign of
the Cluster

Randomization P-Values Per Number of Genes
in Clusters/Number of Clusters of This Size

2 3 4 5 6
Positive 9.999E"05/137 9.999E"05/29 9.999E"05/9 0.0059/2 0.0158/1

Negative 9.999E"05/137 9.999E"05/26 9.999E"05/8 1/0 1/0

NOTE.—Number of Z+ and Z" concerted genes are kept unchanged, but their order
has been randomized, this is repeated for 1,000 iterations. Concerted gene clusters
are found, and the number of occurrences of each cluster is compared with ob-
served number of clusters of specific number of concerted genes. If the number is
the same or exceeds the observed number of clusters of specific size, Monte Carlo
counter is incremented. At the end of the simulation, P-value is calculated.
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of sex bias in expression, such a check also provides an inter-
nal consistency check for our mode of analysis and the data.
Indeed, as for female tissues we have only one sample, and it
might be that data from females are too noisy to be depend-
able. We find a strong correlation, on a gene-by-gene basis for
Z in males in given tissue and Z in females for the same tissue
(table 15). The correlation stays significant when zero Z score
(after correction) genes are left in (supplementary table S7,
Supplementary Material online). This provides support for
the hypothesis that the dominant trend in change in gene
expression is not sex biased.

By considering the standardized residuals from orthog-
onal regression between the male and female Z scores, we
can also obtain information on the extent of sex bias in
the evolution of gene expression. Note this is not the same
as the degree of sex bias, but rather the degree of change
in sex bias. We can then ask whether the degree of change
in sex bias is also nonautonomous. To this end, we con-
sider the correlations as mentioned earlier. For each focal
gene, we consider the correlation between residuals for a
focal gene and its nearest downstream neighbor, between
the focal gene and its two nearest neighbors (one up-
stream one down) and between the focal gene and the
mean of all neighbors within 100 kb of the focal gene. In all
examples we find a significant and positive correlation
indicating the sex-biased expression change also occurs
in a clustered mode (tables 16–18). In 6 of 8 nearest neigh-
bor comparisons, the effect is more pronounced for over-
lapping genes. The genomic sizes of the clusters of genes
with correlated residuals is varied across tissues, starting
with cerebellum and heart clusters below 50 kb, going up
to 100 kb in brain and exceeding 200 kb in kidney (fig. 5).

These results support the hypothesis that the extent of
change in sex bias is also genomically regionalized. This is
further supported by the finding that when we score residuals
as positive or negative states, we again find fewer switches in

state than expected by chance, implying clustering (P from
randomisation, brain P = 0.0009; cerebellum P = 0.01; heart
P = 0.007; kidney P = 0.001).

The earlier analysis ignores those instances where Z is zero
(before median correction) for a gene in either sex. This may
be biasing results as the genes with Z = 0 in one sex, but not
the other, are sex biased in their change of expression. This
makes little difference to results (supplementary tables S8a–c,
Supplementary Material online).

No Evidence That the X Chromosome Is Enriched for
Genes Changing Sex Bias
With the same data we can also ask whether another form of
clustering is seen, i.e., chromosomal scale clustering.
According to Rice’s hypothesis (Rice 1984) the X chromo-
some should be a hotspot for sex-biased gene expression
change. He postulates that genes with sexually antagonistic
fitness effects can be more likely to spread if on a sex chro-
mosome. The spread of such alleles creates the context for the
spread of modifiers that limit the expression of the deleterious
allele in the sex in which the effect is deleterious, i.e., modifiers
of sex-specific change in expression. Hence sex biased gene
expression change is expected to be more pronounced on the
X chromosome than on autosomes. This can mean both the
evolution toward male-biased and female-biased gene
expression.

Given that we have no strong prior on the direction of sex-
biased change on the X, we consider for all genes the modulus
of the degree of sex-biased change. We then ask whether
these values are different for X than for autosomes. We find
no evidence for a difference (Mann–Whitney U test, brain
P-value = 0.4906; cerebellum P-value = 0.8944; heart
P-value = 0.9374; kidney P-value = 0.7523). In addition we

Table 15. Spearman Correlation between Female and Mean of Male
Z Scores Per Tissue.

Tissue q P-Value

Brain 0.52967 <<0.0001

Cerebellum 0.32532 <<0.0001

Heart 0.45401 <<0.0001

Kidney 0.43073 <<0.0001

Table 16. Spearman Correlation between Sex Bias Standard Residual
of Standard Major Axis Estimation between Z of Male and Female for
a Focal Gene and Standard Residual of Its Nearest Downstream
Neighbor.

Tissue Nonoverlapping
P-Value

Nonoverlapping
q

Overlapping
P-Value

Overlapping
q

Brain 0.00018 0.03995 0.00325 0.10407

Cerebellum 0.03109 0.02304 9.10E!06 0.15636

Heart 1.42E!05 0.04638 8.04E!05 0.13913

Kidney 6.95E!19 0.09465 0.01206 0.08883

NOTE.—Incidences significant after Bonferroni testing are shown in italic.

Table 17. Spearman Correlation between Standard Residual of
Standard Major Axis Estimation between Z of Male and Female for
a Focal Gene and Mean Standard Residual of Its Two Nearest
Neighbors.

Tissue Nonoverlapping
P-Value

Nonoverlapping
q

Overlapping
P-Value

Overlapping
q

Brain 1.46E!05 0.05452 0.00281 0.07649

Cerebellum 0.01433 0.03082 6.07E!07 0.12738

Heart 4.50E!07 0.06346 3.05E!08 0.14127

Kidney 7.02E!23 0.12348 4.32E!06 0.11740

NOTE.—Incidences significant after Bonferroni testing are shown in italic.

Table 18. Spearman Correlation between Standard Residual of
Standard Major Axis Estimation between Z of Male and Female of
the Focal Gene and the Mean of Standard Residual of All Its
Neighbors within 100 kb of the Focal Gene.

Tissue Spearman P-Value Spearman q

Brain 4.00E!08 0.04817

Cerebellum 0.00848 0.02310

Kidney 1.71E!39 0.11504

Heart 1.87E!05 0.03755

NOTE.—All incidences are significant after Bonferroni testing.
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can ask about the 5% of genes with the most extreme change
in sex bias (the 5% with the highest modulus of residual
score). Are these more commonly found on the X chromo-
some? We find no evidence to support this proposition either
(supplementary table S9, Supplementary Material online). We
conclude that we see no evidence that the X chromosome is a
hotspot for sex-biased gene expression change. However, if
instead we consider the change in expression of genes in the
testis, we do find that X-linked genes show a different median
Z compared with autosomal genes. Considering only those
genes with expression 4 0 in the ancestor, the median Z for
X-linked genes is 0.15, while for autosomes it is !0.012
(Mann–Whiney U test, P = 0.00023). In no other tissue is
the median Z on the X greater than the median Z on the
autosomes.

Discussion
Here we have presented evidence that gene expression
change, at least in humans, occurs on a cluster-by-cluster
basis, such that the expression change of any given focal
gene predicts the expression change of genes in its vicinity
in any given tissue. The result is insensitive to the metric of
expression change. Moreover, many genes show coordinated
changes in expression across multiple tissues and in the same
tissue in different sexes. Genes that show coordinated expres-
sion changes across multiple tissues tend to sit next to other
genes showing similar coordination. This suggests that a dom-
inant mode of expression change evolution may be nothing
more than a switch of a chromosomal block to a state of
permanently open (or predominantly closed) chromatin in
multiple tissues (or open/closed longer in multiple tissues),
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FIG. 5. The extent of local correlation in sex-biased expression change for four tissues. Method is the same as that for figure 3, excepting that here we
employ standardized residuals of the orthologous regression on Z between sexes (rather than Z). We consider all focal genes and the correlation
between residuals of Z scores for these genes and the nearest downstream gene on the same chromosome a minimum of x base pairs away. Correlations
significant at the 0.05 level are shown in red, otherwise in blue. The blue horizontal lines indicate 1.96 SD limits determined by randomization, with the
black line indicating mean of null expectation (which should be around zero).
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thereby causing increases or decreases in expression of spans
of genes in all circumstances.

Gene density effects we suggest might in addition also be
relevant. If much of the expression change is owing to local
chromatin modification, we might expect that domains of
high gene density are more coordinated in their expression
change, simply because the chances that a local change to one
gene might affect another would be greater. Such a model is
consistent with our finding that genes showing tissue-specific
upregulation and that have no gene neighbor within 100 kb
do not affect expression of their nearest (over 100 kb)
neighbor, while other genes in high density domains do. If
upregulation of one gene in a zone of high gene density affects
the neighbors whose upregulation affects the neighbors on
and so forth, this might in turn generate self-propagating
domains of expression change. It is notable then that genes
showing increased expression across multiple tissues tend to
be in domains of high gene density.

Why gene expression for the focal gene changes is unclear,
although we found no evidence for a coupling with chromo-
somal alternations (i.e., in the chromosome 2 fusion event).
While the precise mechanisms of nonautonomous evolution
are unclear, the form of the curves relating genomic distance
to correlation in Z score, suggest much more profound effects
in immediate vicinity, a conclusion supported by the stronger
correlations seen for overlapping genes. We suggest that there
may thus be more than one mechanism at play. Perhaps in
the immediate vicinity of a gene, expression of one gene di-
rectly impacts the expression of its neighbors (cf. the ripple
effect [Ebisuya et al. 2008]), while over broader spans
(4 100 kb), a more generic chromatin opening/closing and
self-propagation mechanism (Batada et al. 2007; Gierman
et al. 2007) may be more relevant. Either way, our results
suggest that a promoter-focused concentration on the
causes of expression change (Tirosh et al. 2009; Rosin et al.
2012; Wittkopp and Kalay 2012; Yang et al. 2014) is likely to
provide too restricted a view of expression change viewed
more globally, at least within primates.

While we detected expression change clusters defined on
an intrachromosomal scale, which for the most part is not
predicted by population genetical theory, we did not observe
a form of clustering that we had expected from such theory.
Rice’s theory (Rice 1984) would suggest that X-linked genes
should be prone to changes in sex-biased gene expression;
however, we did not detect this for expression in tissues pre-
sent in both sexes. One possible explanation for this might be
that the tissues examined may not be those most likely to be
subject to the strongest sex-biased gene expression. Indeed,
testes show a large increase in Z for X-linked genes compared
with autosomal genes, potentially compatible with Rice’s
model (note this is not change in degree of sex bias as
there is no female testicular expression to compare it with).
The data thus accord with a model in which for nonsex-
specific tissues the degree of sex-biased change in gene ex-
pression is a largely neutral process and thus outside of the
domain of Rice’s hypothesis.

More generally, given the extent to which one gene’s ex-
pression change affects that of the neighbors, it is simplest to

suppose as a null model that much of the expression change
we observe is neutral and what might be called expression
“piggybacking.” That is to say, the upregulation of one gene
may be selectively favored but, because its upregulation in-
creases the chances that the neighbors are upregulated, the
spread through the population of the focal heritable expres-
sion change causes expression divergence (from the ancestral
state) of near neighbors of that focal gene. The expression
change of the neighbours need not be the focus of selection
but rather a necessary consequence of the change to the focal
gene.

Expression piggybacking may be considered an analog of
genetic hitchhiking, in so much as it suggests correlated
changes at genomically neighboring sites. Piggybacking is dif-
ferent, however, in so much as it does not require linkage
disequilibrium between alleles at closely linked sites. Indeed, in
piggybacking there need only be one allele affecting the ex-
pression of the focal gene while the neighboring genes can, in
principle, be genetically uniform across the population.
Nonetheless, the flanking genes will change, over evolutionary
time, their expression profile, piggybacking on the heritable
expression change at the focal allele. Alternatively put, esti-
mation of the net selective impact, if any, of any mutation
affecting the expression of any given gene, needs also to factor
in the effects this focal expression change has on the expres-
sion of neighbors as well. Our data are broadly consistent with
expression piggybacking, possibly largely selectively neutral,
being a fundamental cause of expression divergence in
primates.

Materials and Methods

Estimation of Z Scores
Gene expression data were obtained from Brawand et al
(2011). We used expression values reported in
NormalizedRPKM_ConstitutiveAlignedExons_Primate1to1-
Orthologues.txt and extracted loci and strand information
from Human_Ensembl57_TopHat_UniqueReads.txt also pro-
vided in the supplementary materials of the relevant paper.
This provides RPKM figures for 13,027 genes in six tissues
across five primate species. To determine the change in
gene expression between current levels in humans and that
seen in the human–chimp common ancestor we employed
BayesTraits (Pagel et al. 2004). The assumed phylogeny and
branch lengths are the same as those employed by Brawand
et al. (2011).

BayesTraits was run in the following manner. Normalized
RPKM, as provided by Brawand et al. (2011), were passed to
BayesTraits as measures of gene expression. For each gene,
mean of normalized RPKM values across different individuals
in Human was calculated separately for male and female
samples. Also if more than one male or female sample is
available in any of the tissues in chimpanzee or any of the
outgroups, their mean is computed and passed to
BayesTraits, otherwise a single expression value was used.
To find the estimated gene expression level in the ancestor
of human and chimpanzee, for each gene in each tissue,
BayesTraits program was run twice, first to build the
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estimated gene expression tree for males and second for
female samples. Each time, the primate phylogenic tree and
means of normalized RPKM of the gene in human and also its
orthologous genes in chimpanzee and three primate out-
groups (gorilla, orangutan, and macaque), in corresponding
gender, are passed to BayesTraits, to build the estimated gene
expression model. BayesTraits employs Markov chain Monte
Carlo and maximum likelihood to find the posterior distribu-
tion of this model and estimate the level of expression in this
tree’s middle nodes (Pagel et al. 2004). Through examination
of the convergence trends of the BayesTraits output, we con-
sidered that the final 10% of BayesTraits estimates would be
robust. From this sample we estimate both the mean (Ea) and
variance (Va) in the estimation of the human–chimp ances-
tral state. Relaxation of the 10% cutoff makes no important
difference to results (data not shown).

These simulations were run independently for each gene,
for each tissue in each sex. If the mean expression of given
gene, in given tissue in a given sex is Ecurrent, or Ec in abbrevi-
ated form, and its variance is Vc, if estimable, while that for the
ancestral condition is Ea and Va, then we can define the degree
of expression divergence in human lineage from human–
chimp ancestor as a Z score:

Z ¼ Ec " Eaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vc þ Va
p

This metric compares the extent of difference between mean
current expression level and ancestral level, scaled by the
degree of variation both in current estimates (expression
noise or measurement error) and the degree of uncertainty
in the ancestral state’s estimation. A positive Z implies an
increase in gene expression since the ancestor. In part the
defense for our metric is the same as the defense for any
application of a Z score, namely it measures difference in
standard deviation units. That is, a gene with largely variable
expression across individuals or high fluctuation and uncer-
tainty in estimation of expression in ancestor would have a
lower Z score compared to a gene with similar but steadier
level of current expression and/or one with similar but more
stable estimation of ancestral level of expression. However,
another part of the defense is that in our model, inspired by
the ripple hypothesis, increased opening of chromatin can
lead to increased spurious expression. Our supposition is
that this might cause an approximately constant absolute
increase in the amount of transcription in all neighbors a
given distance away, not an increase proportional to the cur-
rent level (as measured by fold change). Nonetheless to ex-
amine the possibility that results might be contingent on
metric we also consider 1) a digital representation (increase
or decrease since ancestor) and 2) fold change. Note too that
we are not concerned with whether our metric calls signifi-
cance in gene expression change as most of the gene expres-
sion in our model is neutral drift owing to ripple effects.
Rather, we wish to present a quantitative variable that cap-
tures the absolute amount of expression change factored in
standard deviation units.

For each tissue in each sex we assume that the median
expression change must be zero. This is equivalent to assum-
ing an absence of net increase or decrease in overall expres-
sion levels. This required a minor adjustment of Z scores for all
genes in all tissues. If the median Z in any given tissue in a
given sex is M, then we defined modified Z as Zmod = Z – M.
This forces all tissues to have a modified median of zero and
as many genes increasing expression as decreasing (this being
approximately equivalent to an assumption that the net
transciptome size is no different; hence, for every gene in-
creasing expression there should be one decreasing expres-
sion). All analyses were performed on Zmod. Henceforth, we
shall refer to Z, for convenience, where Zmod is what we are
employing. In practice the correction makes little or no dif-
ference as 1) the correction is usually very small and 2) many
of our statistics are rank order based and so unaffected by the
modification. We note that our method has the advantage
that it largely eliminates any RNAseq amplication biases (e.g.,
owing to GC content) from affecting our metric of expression
change. This is because nucleotide content is almost
unchanged between human and chimp, and hence any bias
in amplification of a given transcript is likely to affect human
and chimp equally. By considering only the change from the
ancestor we thus exclude amplification biases from derivation
of Z. As evidence for this, the mean correlation, across all
tissues, between Z and the change in GC between human
and chimp is indistinguishable from zero.

Chromatin Data
For a few human cell lines, ChIP-seq histone methylation data
produced by University of Washington is available through
ENCODE’s portal (Bernstein et al. 2012; Gerstein et al. 2012;
Rosenbloom et al. 2012). We could approximate whole tissue
histone methylations profile by matching the most abundant
cell lines in heart and cerebellum to three of the cell lines
available in ENCODE. Among many cell types composing
heart, Cardiac fibroblast and cardiac myocyte (muscle cells
in heart) are consequently mostly abundant ones.
Furthermore, astrocytes are the most numerous cell type in
the central nervous system (Chen and Swanson 2003; Tsai
et al. 2012). Hence, HAc, an astrocytes-cerebellar cell line, was
used to approximate histone methylation profile in cerebel-
lum (Tower and Young 1973).

To do the histone methylation analysis, H3K4me3 peak
data were downloaded as an activating histone mark
(Santos-Rosa et al. 2002; Sims et al. 2003; Martin and Zhang
2005; Greer and Shi 2012) for above cell lines. Then Z score
positive and negative genes overlapping one or more
H3K4me3 peak(s) were found using Bedtools (Quinlan and
Hall 2010). Due to the histone mark protocol used in
ENCODE, each experiment was repeated twice and peak
data are reported separately for each repetition. So here we
report the average number of Z score positive or negative
genes overlapping one or more peaks across these two re-
peated peak data sets.

We also compared Z score positive and negative clusters
with regard to gain and depletion of H3K4me3 peaks in
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humans compared with chimps and macaques. To do this,
we took 885 H3K4me3 peaks which were shown to have
1.5-fold higher human-specific gain in human samples com-
pared with macaque and chimpanzee samples as shown by
Shulha (2012). Intersect command from bedtools was then
used to find the clusters overlapping a gained H3K4me3 peak.
An ad hoc script was used to count the number of Z+ and Z!
clusters with at least one gained peak. Similarly we also com-
pared the number of Z+ and Z! clusters with evidence for at
least one H3K4me3 depleted peak using 177 H3K4me3 peaks
with human-specific depletion which had at least 1.5-fold
lower tag density in human samples compared with chimps
and macaques as shown by Shulha (2012).

GO Analysis
Is there a functional link between the genes that show the
same sign of expression change across all tissues (concerted
genes)? Is there a functional clue to link the genes with ele-
vated changed expression across all tissues? To determine
this, the concerted genes (same profile of change across all
tissues) are divided into two sets:first the ones with elevated
expression in human lineage compared with human–chimp
ancestor across all tissues in male samples and second the
ones with reduced expression than the estimated expression
in the ancestor. We just used male sample tissues for this
analysis as there are more repeats available for these, also as
shown, their expression is more stable and less noisy. Doing
this, we found 1,244 concerted Z score positive genes and
1,053 concerted negative ones. Then GO term enrichment
analysis was performed on these two sets, using GOrilla (Eden
et al. 2009), to find the enriched GO functions and processes.

Expression Measures
To address the correlates of Z we also ask about a series of
expression measures, these being breadth, mean rate, peak
rate, and tau. For a gene to be considered as being expressed
in a given tissue in a given species we required that the mean
across replicates for that tissue to be more than at least 2
RPKM. If it was less than 2, it was set to zero for that tissue.
Breadth is defined as the proportion of tissues within which a
gene is expressed. To prevent nonindependence between rate
and breadth, we defined rate as the mean rate of expression
of that gene across all tissue within which it is expressed (i.e.,
at rate 4 2). Peak rate is the maximum expression level
considered across all tissues. Tau is a measure of skew in
expression and is defined as:

! ¼

Xn

j¼1
ð1! logðejÞ

logðemaxÞÞ
n! 1

where there are n tissues, the expression in any one being
ej and the maximal for that gene across all tissues is emax. A
gene with very highly skewed expression (very high in only
one tissue) take a high value of tau (limit approaching 1)
while those expressed uniformly take a low value (limit
zero).

hmC and mC Assays
Base resolution map of hydromethylome in prefrontal cortex
has been produced by Wen et al. (2014). First shown in
Bacteriophage, hmC is able to turn genes on or off (Wyatt
and Cohen 1952; Dahl et al. 2011). Wen et al. (2014) has
recently shown 10-fold increase in hmC in adult prefrontal
cortex compared with fetal. Also, hmC correlates positively
with gene expression while mC correlates negatively with
gene expression (Colquitt et al. 2013; Wen et al. 2014).
Furthermore, there is disparity between hmC and mC enrich-
ment on sense and antisense strands, hmC being enriched on
sense and mC on antisense strands (Peric-Hupkes et al. 2010).
To find out if they correspond with change in gene expres-
sion, we took hmC and mC percentages as reported by Wen
et al (2014) and calculated how they correlated with Z scores
of genes in brain.

Lamina Domain Assignment
LADs originally produced by Guelen et al (2008) using Lung
fibroblast cell line, are available through UCSC’s table browser
for hg19. Intersect command from bedtools (Quinlan and
Hall 2010) was used to find the genes overlapping these do-
mains. For this analysis, genes with zero Z scores (prior to
modification) are not removed due to expectation of the
genes on LAD domains to be very lowly, if at all, expressed.
Then Z of genes on and off LAD domains were compared
using Mann–Whitney U test and also Brunner Munzel test, to
correct for robustness to the form of distributions.

Statistics
Where appropriate statistics were performed in R, many anal-
yses were performed using Monte Carlo simulations. In these
incidences, if N is the number of observations as extreme or
more extreme as observed and M is the number of simulants,
then the unbiased estimator of the type I error rate (what
may be regarded as an empirical P) is:

P ¼ Nþ 1

Mþ 1
:

Supplementary Material
Supplementary figures S1–S7 and tables S1–S9 are available at
Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).

Acknowledgments

The work was funded by a studentship award from University
of Bath to A.T.G. and Medical Research Grant MR/L007215/1.

References
Barton RA, Venditti C. 2014. Rapid evolution of the cerebellum in

humans and other great apes. Curr Biol. 24:2440–2444.
Batada NN, Urrutia AO, Hurst LD. 2007. Chromatin remodelling is a

major source of coexpression of linked genes in yeast. Trends Genet.
23:480–484.

Bernstein BE, Birney E, Dunham I, Green E, Gunter C, Snyder M. 2012. An
integrated encyclopedia of DNA elements in the human genome.
Nature 489:57–74.

16

Ghanbarian and Hurst . doi:10.1093/molbev/msv053 MBE

 by guest on A
pril 18, 2015

http://m
be.oxfordjournals.org/

D
ow

nloaded from
 



! 33!

Birnbaum K, Shasha D, Wang J, Jung J, Lambert G, Galbraith D, Benfey P.
2003. A gene expression map of the Arabidopsis root. Science 302:
1956–1960.

Blumenthal T, Evans D, Link C, Guffanti A, Lawson D, Thierry-Mieg J,
Thierry-Mieg D, Chiu W, Duke K, Kiraly M, et al. 2002. A global
analysis of Caenorhabditis elegans operons. Nature 417:851–854.

Boutanaev AM, Kalmykova AI, Shevelyov YY, Nurminsky DI. 2002. Large
clusters of co-expressed genes in the Drosophila genome. Nature
420:666–669.

Brawand D, Soumillon M, Necsulea A, Julien P, Csardi G, Harrigan P,
Weier M, Liechti A, Aximu-Petri A, Kircher M, et al. 2011. The evo-
lution of gene expression levels in mammalian organs. Nature 478:
343–348.

Carninci P, Sandelin A, Lenhard B, Katayama S, Shimokawa K, Ponjavic J,
Semple C, Taylor M, Engstrom P, Frith M, et al. 2006. Genome-wide
analysis of mammalian promoter architecture and evolution. Nat
Genet. 38:626–635.

Caron H, van Schaik B, van der Mee M, Baas F, Riggins G, van Sluis P,
Hermus M, van Asperen R, Boon K, Voute P, et al. 2001. The human
transcriptome map: Clustering of highly expressed genes in chro-
mosomal domains. Science 291:1289.

Chen Y, Swanson RA. 2003. Astrocytes and brain injury. J Cereb Blood
Flow Metab. 23:137–149.

Cho RJ, Campbell MJ, Winzeler EA, Steinmetz L, Conway A, Wodicka L,
Wolfsberg TG, Gabrielian AE, Landsman D, Lockhart DJ, et al. 1998.
A genome-wide transcriptional analysis of the mitotic cell cycle. Mol
Cell. 2:65–73.

Cohen BA, Mitra RD, Hughes JD, Church GM. 2000. A computational
analysis of whole-genome expression data reveals chromosomal do-
mains of gene expression. Nat Genet. 26:183–186.

Colquitt BM, Allen WE, Barnea G, Lomvardas S. 2013. Alteration of genic
5-hydroxymethylcytosine patterning in olfactory neurons correlates
with changes in gene expression and cell identity. Proc Natl Acad Sci
U S A. 110:14682–14687.

Dahl C, Gronbaek K, Guldberg P. 2011. Advances in DNA methylation:
5-hydroxymethylcytosine revisited. Clinica Chim Acta. 412:831–836.

Davila Lopez M, Martinez Guerra J, Samuelsson T. 2010. Analysis of gene
order conservation in eukaryotes identifies transcriptionally and
functionally linked genes. PLoS One 5:e10654.

Denver D, Morris K, Streelman J, Kim S, Lynch M, Thomas W. 2005. The
transcriptional consequences of mutation and natural selection in
Caenorhabditis elegans. Nat Genet. 37:544–548.

Dillon N, Trimborn T, Strouboulis J, Fraser P, Grosveld F. 1997. The effect
of distance on long-range chromatin interactions. Mol Cell. 1:131–139.

Ebisuya M, Yamamoto T, Nakajima M, Nishida E. 2008. Ripples from
neighbouring transcription. Nat Cell Biol. 10:1106–1113.

Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. 2009. GOrilla: a tool for
discovery and visualization of enriched GO terms in ranked gene
lists. BMC Bioinformatics 10:48.

Fan Y, Linardopoulou E, Friedman C, Williams E, Trask B. 2002. Genomic
structure and evolution of the ancestral chromosome fusion site in
2q13-2q14.1 and paralogous regions on other human chromo-
somes. Genome Res. 12:1651–1662.

Flicek P, Amode MR, Barrell D, Beal K, Billis K, Brent S, Carvalho-Silva D,
Clapham P, Coates G, Fitzgerald S, et al. 2014. Ensembl 2014. Nucleic
Acids Res. 42:D749–D755.

Forrest A, Kawaji H, Rehli M, Baillie J, de Hoon M, Lassmann T, Itoh M,
Summers K, Suzuki H, Daub C, et al. 2014. A promoter-level mam-
malian expression atlas. Nature 507:462–470.

Franck E, Hulsen T, Huynen M, de Jong W, Lubsen N, Madsen O. 2008.
Evolution of closely linked gene pairs in vertebrate genomes. Mol
Biol Evol. 25:1909–1921.

Fukuoka Y, Inaoka H, Kohane IS. 2004. Inter-species differences of co-
expression of neighboring genes in eukaryotic genomes. BMC
Genomics 5:4.

Gerstein M, Kundaje A, Hariharan M, Landt S, Yan K, Cheng C, Mu X,
Khurana E, Rozowsky J, Alexander R, et al. 2012. Architecture of the
human regulatory network derived from ENCODE data. Nature 489:
91–100.

Gierman H, Indemans M, Koster J, Goetze S, Seppen J, Geerts D, van
Driel R, Versteeg R. 2007. Domain-wide regulation of gene expres-
sion in the human genome. Genome Res. 17:1286–1295.

Greer E, Shi Y. 2012. Histone methylation: a dynamic mark in health,
disease and inheritance. Nat Rev Gen. 13:343–357.

Grunstein M. 1997. Histone acetylation in chromatin structure and
transcription. Nature 389:349–352.

Guelen L, Pagie L, Brasset E, Meuleman W, Faza M, Talhout W, Eussen B,
de Klein A, Wessels L, de Laat W, et al. 2008. Domain organization of
human chromosomes revealed by mapping of nuclear lamina in-
teractions. Nature 453:948–951.

Hammock EA, Young LJ. 2002. Variation in the vasopressin V1a receptor
promoter and expression: implications for inter- and intraspecific
variation in social behaviour. Eur J Neurosci. 16:399–402.

Harewood L, Fraser P. 2014. The impact of chromosomal rearrange-
ments on regulation of gene expression. Hum Mol Genet. 23:
R76–R82.

Hornung G, Oren M, Barkai N. 2012. Nucleosome organization affects
the sensitivity of gene expression to promoter mutations. Mol Cell.
46:362–368.

Hurst LD, Williams EJ, P!al C. 2002. Natural selection promotes the con-
servation of linkage of co-expressed genes. Trends Genet. 18:
604–606.

Janga S, Collado-Vides J, Babu M. 2008. Transcriptional regulation con-
strains the organization of genes on eukaryotic chromosomes. Proc
Natl Acad Sci U S A. 105:15761–15766.

Janicki SM, Tsukamoto T, Salghetti SE, Tansey WP, Sachidanandam R,
Prasanth KV, Ried T, Shav-Tal Y, Bertrand E, Singer RH. 2004. From
silencing to gene expression: real-time analysis in single cells. Cell 116:
683–698.

K!epès F. 2003. Periodic epi-organization of the yeast genome revealed by
the distribution of promoter sites. J Mol Biol. 329:859–865.

Khaitovich P, Muetzel B, She X, Lachmann M, Hellmann I, Dietzsch J,
Steigele S, Do HH, Weiss G, Enard W, et al. 2004. Regional patterns of
gene expression in human and chimpanzee brains. Genome Res. 14:
1462–1473.

Kleinjan D-J, van Heyningen V. 1998. Position effect in human genetic
disease. Hum Mol Genet. 7:1611–1618.

Kleinjan DA, van Heyningen V. 2005. Long-range control of gene ex-
pression: emerging mechanisms and disruption in disease. Am J
Hum Genet. 76:8–32.

Kruglyak S, Tang H. 2000. Regulation of adjacent yeast genes. Trends
Genet. 16:109–111.

Lee J, Sonnhammer E. 2003. Genomic gene clustering analysis of path-
ways in eukaryotes. Genome Res. 13:875–882.

Lee JM, Sonnhammer EL. 2004. Genomic gene clustering analysis of
pathways in eukaryotes (vol 13, pg 875, 2003). Genome Res. 14:2510.

Lercher MJ, Blumenthal T, Hurst LD. 2003. Coexpression of neighboring
genes in Caenorhabditis elegans is mostly due to operons and du-
plicate genes. Genome Res. 13:238–243.

Lercher MJ, Hurst LD. 2006. Co-expressed yeast genes cluster over a long
range but are not regularly spaced. J Mol Biol. 359:825–831.

Lercher MJ, Urrutia AO, Hurst LD. 2002. Clustering of housekeeping
genes provides a unified model of gene order in the human
genome. Nat Genet. 31:180–183.

Letourneau A, Santoni FA, Bonilla X, Sailani MR, Gonzalez D, Kind J,
Chevalier C, Thurman R, Sandstrom RS, Hibaoui Y, et al. 2014.
Domains of genome-wide gene expression dysregulation in
Down’s syndrome. Nature 508:345–350.

Li B, Carey M, Workman JL. 2007. The role of chromatin during tran-
scription. Cell 128:707–719.

Li Y-Y, Yu H, Guo Z-M, Guo T-Q, Tu K, Li Y-X. 2006. Systematic analysis
of head-to-head gene organization: evolutionary conservation and
potential biological relevance. PLoS Comp Biol. 2:e74.

Liao BY, Zhang J. 2008. Coexpression of linked genes in mammalian
genomes is generally disadvantageous. Mol Biol Evol. 25:1555–1565.

Liu C, Ghosh S, Searls DB, Saunders AM, Cossman J, Roses AD. 2005.
Clusters of adjacent and similarly expressed genes across normal

17

Correlated Evolution in Gene Expression . doi:10.1093/molbev/msv053 MBE

 by guest on A
pril 18, 2015

http://m
be.oxfordjournals.org/

D
ow

nloaded from
 



! 34!

human tissues complicate comparative transcriptomic discovery.
OMICS: J Integr Biol. 9:351–363.

Martin C, Zhang Y. 2005. The diverse functions of histone lysine meth-
ylation. Nat Rev Mol Cell Biol. 6:838–849.

Mellen M, Ayata P, Dewell S, Kriaucionis S, Heintz N. 2012. MeCP2 binds
to 5hmC enriched within active genes and accessible chromatin in
the nervous system. Cell 151:1417–1430.

Michalak P. 2008. Coexpression coregulation, and cofunctionality of
neighboring genes in eukaryotic genomes. Genomics 91:243–248.

Mijalski T, Harder A, Halder T, Kersten M, Horsch M, Strom TM,
Liebscher HV, Lottspeich F, de Angelis MH, Beckers J. 2005.
Identification of coexpressed gene clusters in a comparative analysis
of transcriptome and proteome in mouse tissues. Proc Natl Acad Sci
U S A. 102:8621–8626.

Miller R, Reis D. 1982. The origin of man: a chromosomal pictorial legacy.
Science 215:1526.

Milot E, Strouboulis J, Trimborn T, Wijgerde M, de Boer E, Langeveld A,
Tan-Un K, Vergeer W, Yannoutsos N, Grosveld F, et al. 1996.
Heterochromatin effects on the frequency and duration of LCR-
mediated gene transcription. Cell 87:105–114.

Molineris I, Grassi E, Ala U, Di Cunto F, Provero P. 2011. Evolution of
promoter affinity for transcription factors in the human lineage. Mol
Biol Evol. 28:2173–2183.

Noguchi M, Miyamoto S, Silverman TA, Safer B. 1994. Characterization
of an antisense Inr element in the eIF-2 alpha gene. J Biol Chem. 269:
29161–29167.

Nutzmann HW, Osbourn A. 2014. Gene clustering in plant specialized
metabolism. Curr Opin Biotechnol. 26:91–99.

Oliver B, Misteli T. 2005. A non-random walk through the genome.
Genome Biol. 6:214.

Osato N, Suzuki Y, Ikeo K, Gojobori T. 2007. Transcriptional interfer-
ences in cis natural antisense transcripts of humans and mice.
Genetics 176:1299–1306.

Pagel M, Meade A, Barker D. 2004. Bayesian estimation of ancestral
character states on phylogenies. Syst Biol. 53:673–684.

Pal C, Hurst LD. 2003. Evidence for co-evolution of gene order and
recombination rate. Nat Genet. 33:392–395.

Peric-Hupkes D, Meuleman W, Pagie L, Bruggeman SW, Solovei I,
Brugman W, Graf S, Flicek P, Kerkhoven RM, Van Lohuizen M,
et al. 2010. Molecular maps of the reorganization of genome-nuclear
lamina interactions during differentiation. Mol Cell. 38:603–613.

Poyatos J, Hurst L. 2007. The determinants of gene order conservation in
yeasts. Genome Biol. 8:R233.

Prescott EM, Proudfoot NJ. 2002. Transcriptional collision between con-
vergent genes in budding yeast. Proc Natl Acad Sci U S A. 99:
8796–8801.

Purmann A, Toedling J, Schueler M, Carninci P, Lehrach H, Hayashizaki
Y, Huber W, Sperling S. 2007. Genomic organization of transcrip-
tomes in mammals: coregulation and cofunctionality. Genomics 89:
580–587.

Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for
comparing genomic features. Bioinformatics 26:841–842.

Reddy KL, Zullo JM, Bertolino E, Singh H. 2008. Transcriptional repres-
sion mediated by repositioning of genes to the nuclear lamina.
Nature 452:243–247.

Reik W, Walter J. 2001. Genomic imprinting: parental influence on the
genome. Nat Rev Genet. 2:21–32.

Rice WR. 1984. Sex chromosomes and the evolution of sexual dimor-
phism. Evolution 38:735–742.

Rosenbloom KR, Dreszer TR, Long JC, Malladi VS, Sloan CA, Raney BJ,
Cline MS, Karolchik D, Barber GP, Clawson H, et al. 2012. ENCODE
whole-genome data in the UCSC Genome Browser: update 2012.
Nucleic Acids Res. 40:D912–917.

Rosin D, Hornung G, Tirosh I, Gispan A, Barkai N. 2012. Promoter nu-
cleosome organization shapes the evolution of gene expression.
PLoS Genet. 8:e1002579.

Roy PJ, Stuart JM, Lund J, Kim SK. 2002. Chromosomal clustering of
muscle-expressed genes in caenorhabditis elegans. Nature 418:
975–979.

Santos-Rosa H, Schneider R, Bannister AJ, Sherriff J, Bernstein BE, Emre
NCT, Schreiber SL, Mellor J, Kouzarides T. 2002. Active genes are tri-
methylated at K4 of histone H3. Nature 419:407–411.

S!emon M, Duret L. 2006. Evolutionary origin and maintenance of coex-
pressed gene clusters in mammals. Mol Biol Evol. 23:1715–1723.

Shulha H, Crisci J, Reshetov D, Tushir JS, Cheung I, Bharadwaj R, Chou HJ,
Houston IB, Peter CJ, Mitchell AC, et al. 2012. Human-specific his-
tone methylation signatures at transcription start sites in prefrontal
neurons. PLoS Biol. 10:e1001427.

Sims R Jr, Nishioka K, Reinberg D. 2003. Histone lysine methylation: a
signature for chromatin function. Trends Genet. 19:629–639.

Singer GA, Lloyd AT, Huminiecki LB, Wolfe KH. 2005. Clusters of co-
expressed genes in mammalian genomes are conserved by natural
selection. Mol Biol Evol. 22:767–775.

Spellman PT, Rubin GM. 2002. Evidence for large domains of similarly
expressed genes in the Drosophila genome. J Biol. 1:5.

Sproul D, Gilbert N, Bickmore WA. 2005. The role of chromatin struc-
ture in regulating the expression of clustered genes. Nat Rev Genet. 6:
775–781.

Spruijt CG, Gnerlich F, Smits AH, Pfaffeneder T, Jansen PW, Bauer C,
Munzel M, Wagner M, Muller M, Khan F, et al. 2013. Dynamic
readers for 5-(hydroxy)methylcytosine and its oxidized derivatives.
Cell 152:1146–1159.

Stolc V, Gauhar Z, Mason C, Halasz G, van Batenburg MF, Rifkin SA, Hua
S, Herreman T, Tongprasit W, Barbano PE, et al. 2004. A gene ex-
pression map for the euchromatic genome of Drosophila melano-
gaster. Science 306:655–660.

Symmons O, Uslu VV, Tsujimura T, Ruf S, Nassari S, Schwarzer W,
Ettwiller L, Spitz F. 2014. Functional and topological characteristics
of mammalian regulatory domains. Genome Res. 24:390–400.

Takai D, Jones PA. 2004. Origins of bidirectional promoters: computa-
tional analyses of intergenic distance in the human genome. Mol Biol
Evol. 21:463–467.

Tirosh I, Barkai N, Verstrepen KJ. 2009. Promoter architecture and the
evolvability of gene expression. J Biol. 8:95.

Tirosh I, Weinberger A, Carmi M, Barkai N. 2006. A genetic signature of
interspecies variations in gene expression. Nat Genet. 38:830–834.

Tower DB, Young OM. 1973. The activities of butyrylcholinesterase and
carbonic anhydrase, the rate of anaerobic glycolysts, and the ques-
tion of a constant density of glial cells in cerebral cortices of various
mammalian species from mouse to whale. J Neurochem. 20:269–278.

Trinklein ND, Aldred SF, Hartman SJ, Schroeder DI, Otillar RP, Myers RM.
2004. An abundance of bidirectional promoters in the human
genome. Genome Res. 14:62–66.

Tsai HH, Li H, Fuentealba LC, Molofsky AV, Taveira-Marques R, Zhuang
H, Tenney A, Murnen AT, Fancy SP, Merkle F, et al. 2012. Regional
astrocyte allocation regulates CNS synaptogenesis and repair.
Science 337:358–362.

Uesaka M, Nishimura O, Go Y, Nakashima K, Agata K, Imamura T. 2014.
Bidirectional promoters are the major source of gene activation-
associated non-coding RNAs in mammals. BMC Genomics 15:35.

Van Bortle K, Corces VG. 2013. Spinning the web of cell fate. Cell 152:
1213–1217.

Versteeg R, van Schaik BD, van Batenburg MF, Roos M, Monajemi R,
Caron H, Bussemaker HJ, van Kampen AH. 2003. The human tran-
scriptome map reveals extremes in gene density, intron length, GC
content, and repeat pattern for domains of highly and weakly ex-
pressed genes. Genome Res. 13:1998–2004.

Wakano C, Byun JS, Di LJ, Gardner K. 2012. The dual lives of bidirectional
promoters. BBA-Gene Regul Mech. 1819:688–693.

Wang Y, Rekaya R. 2009. A comprehensive analysis of gene expression
evolution between humans and mice. Evol Bioinform Online. 5:81.

Weber CC, Hurst LD. 2011. Support for multiple classes of local expres-
sion clusters in Drosophila melanogaster, but no evidence for gene
order conservation. Genome Biol. 12:R23.

Wei W, Pelechano V, Jarvelin AI, Steinmetz LM. 2011. Functional con-
sequences of bidirectional promoters. Trends Genet. 27:267–276.

Wen L, Li X, Yan L, Tan Y, Li R, Zhao Y, Wang Y, Xie J, Zhang Y, Song C,
et al. 2014. Whole-genome analysis of 5-hydroxymethylcytosine and

18

Ghanbarian and Hurst . doi:10.1093/molbev/msv053 MBE

 by guest on A
pril 18, 2015

http://m
be.oxfordjournals.org/

D
ow

nloaded from
 



! 35!

!
!
! !

5-methylcytosine at base resolution in the human brain. Genome
Biol. 15:R49.

Williams EJB, Bowles DJ. 2004. Coexpression of neighboring genes
in the genome of Arabidopsis thaliana. Genome Res. 14:
1060–1067.

Wittkopp PJ, Kalay G. 2012. Cis-regulatory elements: molecular mecha-
nisms and evolutionary processes underlying divergence. Nat Rev
Genet. 13:59–69.

Woo YH, Li W-H. 2011. Gene clustering pattern, promoter architecture,
and gene expression stability in eukaryotic genomes. Proc Natl Acad
Sci U S A. 108:3306–3311.

Wray GA. 2007. The evolutionary significance of cis-regulatory muta-
tions. Nat Rev Genet. 8:206–216.

Wright KL, White LC, Kelly A, Beck S, Trowsdale J, Ting JP. 1995.
Coordinate regulation of the human TAP1 and LMP2 genes
from a shared bidirectional promoter. J Exp Med. 181:
1459–1471.

Wyatt GR, Cohen SS. 1952. A new pyrimidine base from bacteriophage
nucleic acids. Nature 170:1072–1073.

Yang H, Li D, Cheng C. 2014. Relating gene expression evolution with
CpG content changes. BMC Genomics 15:693.

19

Correlated Evolution in Gene Expression . doi:10.1093/molbev/msv053 MBE

 by guest on A
pril 18, 2015

http://m
be.oxfordjournals.org/

D
ow

nloaded from
 



! 36!

Table S1a. Spearman correlation between focal gene’s fold change and fold change of its 
closest non-overlapping downstream neighbor. Fold change is defined as mean of current level 
of expression in human divided by mean of estimated expression in ancestor All statistics are 
significant after Bonferroni testing. 
Tissue         Male P-value Male Rho       Female P-value Female Rho     
Brain               9.61E-10 0.06680 1.71E-10 0.07036 
Cerebellum           5.15E-22 0.10794 7.50E-31 0.12778 
Kidney                1.29E-107 0.23983 1.57E-08 0.06260 
Heart                2.29E-43 0.15370 3.10E-22 0.11004 
Liver                3.41E-16 0.09092 NA                   NA                   
Testis               7.16E-92 0.21573 NA                   NA                   

 
Table S1b. Spearman correlation between focal gene’s fold change and mean fold change of 
its closest non-overlapping neighbors on both sides. All statistics are significant after 
Bonferroni testing. 

 
Tissue         Male P-value   Male Rho       Female P-value Female Rho     
Brain                5.12E-18 0.09341 2.49E-19 0.09756 
Cerebellum           3.88E-38 0.14116 6.95E-57 0.17230 
Kidney                6.99E-149 0.27710 3.74E-17 0.09157 
Heart                2.48E-59 0.17661 1.72E-35 0.13684 
Liver                1.24E-23 0.10929 NA                   NA                   
Testis                5.20E-145 0.26955 NA                    NA                    

 
Table S1c. Spearman ranked correlation of fold change of focal gene with mean of fold 
change of all its non-overlapping neighboring (within ±100Kb) genes. All statistics are 
significant after Bonferroni testing. 

 
Tissue         Male P-value   Male Rho       Female P-value Female Rho     
Brain                3.51E-09 0.05254 3.43E-10 0.05617 
Cerebellum           4.81E-55 0.14054 2.47E-59 0.14527 
Kidney                9.39E-251 0.29607 9.68E-26 0.09391 
Heart                 4.99E-109 0.19835 4.44E-42 0.12333 
Liver                2.30E-53 0.13815 NA                   NA                   
Testis                5.32E-178 0.24651 NA                    NA                    
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Table S2. Concordance between genes called as of changed expression by Z score method 
and the method of Brawand et al. Mann-Whitney test comparing Z scores of the genes shown 
by Brawand et al to have significantly shifted their expression compare to the rest of the genes 
shows significant difference between Z score of the two groups. The number of genes reported as 
significant in Brawand et al. is very low in some tissues. 

 
Tissue                                              Male P-value  Female P-value  Number of genes in 

Brawand's significant 
genes list 

Brain                0.00068 0.00177 4 
Cerebellum           9.87E-88 4.71E-94 268 
Kidney               1.42E-42 8.04E-75 207 
Heart                6.01E-07 1.16E-06 10 
Liver               3.42E-36 NA                  80 
Testis                4.83E-154 NA                    567 
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Table S3a. GO processes enriched in concerted Z score positive genes across tissues in male 
samples 

 
GO term Description P-value 

GO:0050909 Sensory perception of taste 1.97E-5 
GO:0007606 Sensory perception of chemical stimulus 1.41E-4 
GO:0009968 Negative regulation of signal transduction 1.48E-4 
GO:0048585 Negative regulation of response to stimulus 7.82E-4 
GO:0060041 Retina development in camera-type eye 8.78E-4 
GO:0017038 Protein import 9.03E-4 

 

 
 

Table S3b. GO processes enriched in concerted Z score negative genes across tissues in 
male samples 

 
GO term Description P-value 

GO:0016202 Regulation of striated muscle tissue development 4.99E-4 
GO:1901861 Regulation of muscle tissue development 4.99E-4 
GO:0048634 Regulation of muscle organ development 4.99E-4 
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Table S4a. In Brain Z+ clusters, in comparison to Z- clusters, are significantly enriched in 
gained H3K4me3 peaks in human compared to chimps and macaques in both males and females.!
Tissue& #Clusters& #Positives&

Cluster&
#Negatives&
Negative&

#Positives&
cluster&
gained&at&
least&one&
H3K4me3&

#Expected&
positives&
clusters&
gained&

#Negatives&
cluster&
gained&
H3K4me3&

#Expected&
Negatives&
clusters&at&
least&one&
gained&

Chi&
Square&
&
&P"value&

Female& 5975! 2987! 2988! 256! 220.46! 185! 220.54! 11.457!
P.value!
<0.001!

Male& 6053! 3023! 3030! 275! 226.24! 178! 226.76! 20.994!
P.value!
<<0.001!

!
!
Table S4b. In brain, Z- clusters, in comparison to Z+ clusters, are significantly enriched in 
depleted H3K4me3 peaks in human compared to chimps and macaques only in females.!
!
Tissue& #Clusters& #Positives&

Cluster&
#Negatives&
Negative&

#Positives&
cluster&
depleted&
at&least&
one&
H3K4me3&

#Expected&
positives&
gained&

#Negatives&
cluster&
depleted&at&
least&one&
H3K4me3&

#Expected&
Negatives&
gained&

Chi&
Square&
P"value&

Female& 5975! 2987! 2988! 39! 71.49! 104! 71.51! 29.527!
P.value!
<<0.001!

Male& 6053! 3023! 3030! 62! 66.92! 72! 67.08! 0.722!
p.value!
~0.4!

!
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Table S5a. P-values of Mann-Whitney test comparing physical dimensions of Z+ and Z- clusters  
 

Tissue         Median 
length of 
Z+ clusters 
(Male)   

Median 
length of Z- 
clusters 
(Male)   

Male  
P-value                         

Median 
length of Z+ 
clusters 
(Female) 

Median 
length of Z- 
clusters 
(Female) 

Female 
P-value 

Brain                100813 81953 1.74E-06 90674 91422 0.86969 
Cerebellum         90838 96469 0.15828 92790 102161 0.05200 
Kidney               98079.5 115206 2.33E-07 83051.5 99106 0.00382 
Heart                87304 115284 7.89E-07 91020 112959 2.91E-05 
Liver                73028 106214 4.96E-17 NA                   NA                   NA                   
Testis               97548 106808 0.00039 NA                   NA                   NA                   
 
 

Table S5b. P-values of one-tailed Monte Carlo simulation to determine whether the difference 
observed between density of Z+ and Z- clusters could have happened by chance, as a function of the 
number of genes in a cluster. For this simulation, the number of Z+ and Z- genes are kept the same as 
observed and gene order is randomized. In each iteration, the number of occurrence of clusters of 
specified size is counted, if it is great or greater than the observed number of clusters of that size, Monte 
Carlo counter is incremented. Empirical P is then calculated after 1000 iterations.  

 
 

Tissue/ 
Gender  

P-value per Gene Cluster containing this number of genes 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Brain/M  0.9980 1.0000 0.4376 0.9940 0.5554 0.6943 0.9301 0.8262 0.9031 0.6913 NA                NA                NA                NA                NA                

Cere./M 1.0000 0.9950 0.0270 0.0130 0.0959 0.0090 0.0350 0.0230 0.0290 0.5504 0.0230 0.0819 NA                  NA                  NA                  

Kidney/M 0.9990 0.2527 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0160 0.0020 0.0010 0.0160 0.0010 0.0230 

Heart/M  1.0000 0.3127 0.0010 0.0010 0.0010 0.0010 0.0010 0.0200 0.0010 0.0420 0.0010 0.0010 0.1748 0.0859 NA                   

Liver/M  0.1968 0.0010 0.0010 0.0010 0.0010 0.0030 0.0789 0.5724 0.0440 0.7592 0.2308 NA                   NA                   NA                   NA                   

Testis/M  0.8511 0.5015 0.0310 0.0020 0.0010 0.0010 0.0010 0.0010 0.0010 0.0020 0.0020 0.0010 0.0010 0.0010 NA                   

Brain/F  0.8971 0.4525 0.4236 0.9530 0.8591 1.0000 0.3137 1.0000 0.4236 1.0000 NA                NA                NA                NA                NA                

Cere./F  0.9980 0.9880 0.7493 0.0010 0.0999 0.0010 0.0420 0.2238 0.0310 0.1039 0.3267 NA                   NA                   NA                   NA                   

Kidney/F  0.9970 0.2907 0.0010 0.3586 0.3117 0.5544 0.2807 0.1888 0.0559 0.7732 NA                   NA                   NA                   NA                   

Heart/F  1.0000 0.8561 0.1269 0.0060 0.0010 0.0100 0.0080 0.0020 0.0050 0.5954 0.2817 NA                   NA                   NA                   NA                   

 

Cere. = Cerebellum 
M = Male 
F = Female 
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Table S6a. There are more strictly tissue-specifically up-regulated genes in Cerebellum and 
Liver than expected by chance. If we define strictly tissue specific up-regulated genes as the 
genes with Z score of more than one in one tissue and zscore of negative or zero in all other 
tissues and then estimate their number in each tissue based on the ratio of total number of strictly 
tissue specific up-regulated genes to the total number of expressed genes (across all tissues), and 
define expected number of strictly tissue specific genes by number of genes which are expressed 
in that tissue multiplied to this ratio, the observed number of tissue-specific genes in Cerebellum 
and Liver are significantly higher than the number expected by chance. Number of strictly tissue-
specific genes is significantly below the expected number in Brain and Heart. 

 
Tissue                   #Genes 

Expressed 
(RPKM>2) 

#Strictly Tissue 
Specific Genes   

Expected                 Chi-Squared              P-value                  

Brain            10020 7 29.3038 16.9759 <<0.01 
Cerebellum       9400 45 27.4906 11.1522 <0.01 
Kidney           9619 15 28.1311 6.1293 ~0.02 
Heart            9328 13 27.2800 7.4750 <0.01 
Liver            8917 51 26.0780 23.8171 <<0.01 
Testis           10845 39 31.7165 1.6726 ~0.2 

 
 
 

Table S6b. There are more tissue-specifically up-regulated genes in Cerebellum than 
expected by chance. By relaxing the definition of tissue-specific up-regulated genes to genes with 
Z>1 in one and only one tissue, more tissue-specifically up-regulated genes are detected. If we 
estimate number of tissue specifically up-regulated genes in each tissue based on the ratio of total 
number of tissue specifically up-regulated genes to the total number of expressed genes (across all 
tissues), and define expected number of tissue specific genes by number of genes which are 
expressed in that tissue multiplied to this ratio, the observed number of tissue-specific genes in 
Cerebellum is significantly higher than the number expected by chance. Number of tissue specific 
genes is significantly below the expected number in Brain and Heart. 

 
Tissue                   #Genes 

Expressed 
(RPKM>2) 

#Tissue 
Specific 
Genes   

Expected                 Chi-
Squared              

P-value                  

Brain            10020 39 557.9786 482.7045 <<0.01 
Cerebellum       9400 1230 523.4530 953.6838 <<0.01 
Kidney           9619 524 535.6484 0.2533 ~0.6 
Heart            9328 365 519.4436 45.9199 <<0.01 
Liver            8917 457 496.5564 3.1511 ~0.07 
Testis           10845 622 603.9200 0.5413 ~0.55 
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Table S6c. If a focal tissue-specific up-regulated gene has a neighbor closer than 100Kb, 
overall this neighbor is more likely to be up-regulated. Binomial test between the number of 
tissue-specific up-regulated genes with at least a neighbor in ±100Kb to the number of these genes 
whose closest neighbor in 100Kb is also a Z+ gene, Chi-Squared = 68.03, p-value<<0.01. Overall 
59.45% of these genes have a Z+ gene as their closest neighbor.  Expected is the expected number 
of tissue specifically up-regulated genes with a neighbour up-regulated in the same tissue. Tissue-
specific up-regulated genes are defined as explained in table S6b. 

 
Tissue                                       #TSU* 

with a 
neighbor 
in ±100Kb    

#TSU* 
with Z+ 
neighbor 
in ±100Kb&

%with Z+ 
neighbor in 
±100Kb                 

Expected 
Value  

Binomial  
P-value 

Brain             32 19 59.375 15.731 0.2902 
Cerebellum           1076 606 56.3197 537.9587 3.33E-05 
Kidney               501 348 69.4611 250.4808 1.16E-18 
Heart               336 196 58.3333 167.9871 0.0022 
Liver             413 220 53.2688 206.4841 0.1844 
Testis               547 338 61.7916 273.479 3.09E-08 

 
* TSU: Tissue-Specific Up-regulated genes 

!
!

Table& S6d.& If& a& focal& tissueEspecific& upEregulated& gene& lacks& a& neighbor& closer& than&
100Kb,&overall&its&closest&neighbor&is&less&likely&to&be&a&Z+&gene.&Binomial!test!between!
the! number! of! tissue.specific! up.regulated! genes! without! any! neighbor! in! ±100Kb! to! the!
number!of!these!genes!whose!closest!neighbor!is!a!Z+!gene.!Expected!value!for!the!number!
of! tissue.specific!up.regulated!genes!having!a!Z+!as! their! closest!neighbor! is! calculated!by!
multiplying!number!of!tissue.specific!up.regulated!genes!to!probability!of!a!gene!being!Z+!in!
the!corresponding!tissue,!Chi.Squared!=!12.43,!p.value<0.04.!Overall!39.46%!of!these!genes!
were!observed!to!have!a!Z+!gene!as!their!closest!neighbor.!Tissue-specific up-regulated genes 
are defined as explained in table S6b. 

 
Tissue                                       #TSU* 

without a 
neighbor in 
100Kb 

#TSU* with 
Z+ as its 
closest 
neighbor 

%with Z+ 
closest 
neighbor 

Expected 
Value  

Binomial 
P-value 

Brain             7 4 57.1429 3.4412 0.7222 
Cerebellum           154 57 37.013 76.9941 0.0016 
Kidney               23 14 60.8696 11.4991 0.3074 
Heart               29 13 44.8276 14.4989 0.7111 
Liver             44 21 47.7273 21.9983 0.8804 
Testis               75 22 29.3333 37.4971 0.0004 

* TSU: Tissue-Specific Up-regulated genes 
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Table S6e. Genes with Tissue-specific upregulation are not clustered. The number of tissue-
specific up-regulated (TSU) genes with a TSU downstream neighbor in the same tissue is shown.  
P-value of one-tailed Monte Carlo simulation is also reported. For this simulation the number of 
TSU genes are kept the same as observed in corresponding tissue but their gene order is 
randomized by shuffling all the genes including TSU ones in each tissue to ask if similar number 
of TSU downstream neighbors could have happened just by chance under the null of random gene 
order. This is repeated for 10,000 times and the number of TSU genes with a TSU downstream 
neighbor, regardless of their distance to the focal gene, is counted; If equal or greater than the 
observed number of genes with a TSU downstream neighbor, Monte Carlo counter is incremented 
and overall P-value calculated.  We also show, for information, the proportion of TSU pairs where 
they are within 100kb of each other. Tissue-specific up-regulated genes are defined as explained 
in table S6b. 

 
Tissue                                           

#TSU* 
genes  

#Downstream 
neighbour is 
also TSU in the 
same tissue 

%Within 
100Kb  

Monte Carlo 
Mean (SD)  

Monte 
Carlo 
P-value  

Brain        39 0 0 0.1135 (0.3347) 1 
Cerebellum         1230 128 77.343 116.0135 (9.661) 0.11979 
Kidney               524 28 92.857 21.056 (4.407) 0.07629!
Heart             365 13 92.307 10.1909 (3.082) 0.22058 
Liver                457 20 85 16.0068 (3.865) 0.17988 
Testis         622 0 0 29.5799 (5.112) 1 

 
* TSU: Tissue-Specific Up-regulated 
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Table S7. Spearman correlation between female and mean of male Z scores per tissues, 
without removing zero Z scores 

 
Tissue  Rho     P-value 
Brain             0.52967 <<0.0001 
Cerebellum            0.32532 9.01e-319 
Heart             0.45401 <2.2e-16 
Kidney            0.43073 <2.2e-16 
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Tables S8a. Spearman correlation between standard residual of standard major axis 
estimation between Z of male and female for a focal gene and residual of its nearest 
downstream neighbor, without removing zero Z scores 

 
Tissue                  Non-overlapping 

P-value 
Non-overlapping 
Rho 

Overlapping 
P-value  

Overlapping Rho 

Brain                0.00018 0.03994 0.00325 0.10408 
Cerebellum           0.03109 0.02304 9.10E-06 0.15636 
Heart                1.42E-05 0.04638 8.04E-05 0.13913 
Kidney              6.95E-19 0.09465 0.01206 0.08883 

 

Table S8b. Spearman correlation between standard residual of standard major axis 
estimation between Z of male and female for a focal gene and mean of residuals of its two 
nearest neighbors, without removing zero Z scores 

 
Tissue                  Non-overlapping 

P-value 
Non-overlapping 
Rho  

Overlapping 
P-value 

Overlapping 
Rho 

Brain                5.71E-06 0.05461 0.00613 0.09694 
Cerebellum           0.002448527 0.03648 0.00076 0.11884 
Heart               5.86E-09 0.07003 0.00019 0.13129 
Kidney               3.24E-23 0.11913 0.00018 0.13190 

 

Table S8c. Spearman correlation between standard residual of focal gene and the mean of 
standard of residual of all neighbors within 100kb of the focal gene, without removing zero Z 
scores 

 
Tissue           Spearman P-value Spearman Rho 
Brain                4.00E-08 0.04816 
Cerebellum         0.00847 0.02310 
Kidney               1.71E-39 0.11504 
Heart                1.87E-05 0.03755 
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Table S9. No evidence for X chromosome enrichment in sex biased genes. If top 5% of the 
genes are selected based on their standard residual to standard major axis estimation between Z of 
male and female, no enrichment of x linked genes is observed compared to autosomal genes. 
Brawand’s dataset includes 466 genes on chromosome X and 12561 genes on autosomes. Note, 
genes with Z=0 are not excluded from this analysis so expected number of genes are the same 
across different tissues. 

 
 Observed 

X 
Expected 
X 

Observed 
Autosome 

Expected 
Autosome 

Chi Squared P-value 

Brain 21 23.3 628 628.05 0.2270 >0.6 
Cerebellum 17 23.3 632 628.05 1.7283 >0.15 
Heart 26 23.3 623 628.05 0.3535 >0.5  
Kidney 21 23.3 628 628.05 0.2270 >0.6 

 
 
! !
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Fig S1. The genes Brawand et al found to have changed their expression significantly in 
human also have high Z score. Genes listed with significant lineage-specific expression switches in 
human in Brawand et al. are divided in two groups: Brawand’s significant genes which are Z 
score positive (in blue) and the ones with negative Z scores (in yellow). These two subsets are 
then plotted against the rest of the genes, shown in green, across different tissues. There was no Z 
score negative gene in 4 genes Brawand found to have significantly changed their expression in 
human brain. Please also note that genes found to have extremely high or low Z score have been 
removed from this plot to improve clarity of comparison between our method and Brawand et al’s 
method.  
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Fig S2a. Examples of large positive Z clusters 
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Fig S2b. Examples of large negative Z clusters 
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Fig S3. Genes showing increase in expression across all tissues or decrease in expression 
across all tissues are more common than expected by chance. The sign of Z score indicates the 
direction of change in gene expression across time (from common ancestor to human). One may 
represent Z positive genes with +1 and Z negative with -1, keeping zero Z scores unchanged, and 
calculate for each gene their sum across 6 male tissues. Genes with sums equal to +6 (or -6) have 
gone up (or down) across all 6 tissues. The number of concerted up-regulated genes is shown by 
the right-most bar in histogram and the number of concerted down-regulated genes is shown by 
the left-most bar. Null expectations are shown in blue. Null is derived from randomizations in 
which the number of Z+, Z- and Z=0 genes are kept the same as observed, but the gene order is 
randomised across tissues.  Errors bars are +/-SD from 1000 simulations. 
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Fig S4. Positive Z score clusters are denser in most tissues except in brain. Positive Z score 
clusters are shown in green and negative ones in red. The effect is most pronounced in male 
kidney.  
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Fig S5. The longest concerted Z score positive cluster based on expression profile in males
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Fig S6. Tissue-specific up-regulated genes tend to be in domains of low gene density 
compared to genes with concerted change in expression across all 6 tissues. Number of genes 
in ±100Kb window around the tissue-specific up-regulated and concerted genes are shown below. 
There is a significant difference between number of genes in ±100Kb of focal genes is tissue-
specific genes compared to concerted ones, Mann-Whitney U test P-value = 1.26e-43. 
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Fig S7. Mean of Z scores of genes across 6 tissues in the vicinity of fusion point on human 
chromosome 2.  Means are averages across all tissues. Error bars indicate SEM.  The vertical line 
indicates the approximate location of the fusion zone.  

 

 

 
 
!

113500000 114000000 114500000 115000000

−0
.5

0.
0

0.
5

1.
0

Loci

M
ea

n 
Z 

sc
or

e 
ac

ro
ss

 ti
ss

ue
s



! 55!

Chapter 3. Piggybacking neighbors, Part 2: 

Evolution of gene expression in Yeasts!

 
 
The following section is to be submitted to Journal of Molecular Evolution as a single 
author paper.  
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Evidence for small scale expression piggybacking in a 
compact genome  

Avazeh T. Ghanbarian1,2* 

1. Department of Biology and Biochemisty, University of Bath, Bath, BA2 7AY 
2. Wellcome Trust - Medical Research Council Stem Cell Institute, University of 

Cambridge, Tennis Court Road, Cambridge, CB2 1QR 
!

 

Abstract As short term upregulation of a gene causes, in humans and yeast, a time-
lagged upregulation of genes in the near vicinity (this being a so called ripple effect), 
it was conjectured that, over evolutionary time the change in expression of one gene 
might also correlate with that of the neighbors. Indeed this was recently shown to be 
true in primates.  The notion that evolutionary change in expression of one gene might 
be correlated with that of the neighbors was dubbed expression piggybacking. In 
primates the ripple effect extends to circa 100kb and the piggybacking is most acute 
within this span but extends further.  In yeast the ripple span is more limited, 
extending to only a few kb (~3kb).  Do we then see correlated changes in expression 
between neighboring genes in yeast and is the span much more limited than seen in 
primates?  Here I examine these hypotheses, testing results for resilience to 
phylogenetic assumptions.  I find that gene expression evolution within the yeasts is 
indeed correlated on a local scale and that the scale (< 3kb) is very much more limited 
than seen in primates.  These results indicate that expression piggybacking is seen in 
highly compact genomes but that compaction is also associated with stronger 
insulation of gene expression change. 

 
Keywords: Evolution of gene expression, Yeast, Ripple effect 
 

 

Introduction 
 
Classically when we think about the evolution of gene expression, we tend to think in 
gene centric manner.  That is to say, we look, for example, for changes in the 
promoter of a given gene to explain the changes in the expression of this gene.  
Recently, this view has been challenged.  Starting from the observation that a short 
term increase in a gene’s expression leads to a commensurate increase in expression 
of the neighbors, the so-called ripple effect (Ebisuya et al. 2008), it was asked 
whether, on an evolutionary time scale, the change in expression of a gene correlates 
with that of its neighbors. Such changes could explain, for example, the regularly 
observed similarity of gene expression of neighboring genes (over small and broad 
scale) seen in eukaryotes (Caron et al. 2001; Cohen et al. 2000; Lercher et al. 2003; 
Michalak 2008; Pal and Hurst 2003; Purmann et al. 2007; Williams and Bowles 2004; 
Woo and Li 2011). Through analysis of expression change in humans since the 
human chimp common ancestor, it was found that across both sexes and all tissues 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
*!Corresponding!author,!atg20@bath.ac.uk!
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examined, change in expression of a given gene was indeed correlated with that of the 
neighbors.  This coupled alteration in gene expression of physically clustered genes 
was termed expression piggybacking (Ghanbarian and Hurst 2015). 
 
In the case of primates, the domain of influence is most acute in the immediate 
vicinity of the focal gene.  However, while the ripple effect extends only to circa 
100kb in primates, the correlation in expression change could be detected at much 
greater distances. Might expression piggybacking be a peculiarity of primates with 
their large genomes with abundant intergene DNA and possibly slight selection for 
tight insulation of changes in gene expression?  Yeast has been also demonstrated to 
have a ripple effect (Ebisuya et al. 2008).  Importantly in this instance the ripple is 
much more localised (circa 3kb) than seen in primates.  This might be explained by a 
greater need to insulate gene expression in genomes with shorter sequences 
interspersed between genes.  Here then I ask whether yeast also shows evidence of 
piggybacking (i.e. correlated expression evolution between physically linked genes) 
and whether the dimensions of such clusters are more restricted than seen in primates. 
Availability of well-annotated genomes and comparative transcriptome data in 4 
Yeasts (Busby et al. 2011), makes yeast species a suitable model to investigate these 
questions. 
 

Materials and Methods 

Gene expression data 
Gene expression data was obtained from Busby et al (2011). For the analysis reported 
in this paper, cross-species expression values reported in 1471-2164-12-635-s2.xls 
was complemented with annotations from the Saccharomyces Genome Database, 
http://downloads. yeastgenome.org accessed on 26’th, Feb, 2015, (Cherry et al. 2012). 
An ad-hoc script is used to find 2963 homologous genes across all 4 Yeasts included 
in this study, Saccharomyces cerevisiae, Saccharomyces paradoxus, Saccharomyces 
mikatae, Saccharomyces bayanus. Read counts for these homologous genes are 
reported for two replicates in Busby et al (2011). Level of expression in S. cerevisiae 
and S. paradoxus’s ancestor is then estimated by employing BayesTraits (Pagel et al. 
2004).   
 

Estimating ancestral level of gene expression  
The changes in expression of a gene over evolutionary time can be estimated by 
standard Z score and/or fold change. To calculate either, we first need to estimate the 
level of gene expression in the ancestor of the species of interest. For this study, I 
calculate the change in expression of Saccharomyces cerevisiae’s genes to their 
estimated expression in Saccharomyces cerevisiae and Saccharomyces paradoxus’s 
common ancestor. While inclusion of expression values in at least one outgroup 
species is necessary in this estimation, the accuracy can be improved by including 
more outgroups. Hence expression values in S. mikatae and S. bayanus were added as 
two outgroups. To this end, a Bayesian model of gene expression across the four 
yeasts was built. Through applying a Bayesian method, BayesTraits, to the read 
counts per gene across homologous genes in these 4 yeast species, the level of 
expression in the common ancestor of S. cerevisiae and S. paradoxus can be 
estimated. Subsequently the difference between current level of expression in S. 
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cerevisiae to this ancestor is calculated as a Z score and fold change, the formulas are 
explained in detail below. The method applied here is similar to the one we employed 
previously to study evolution of gene expression in Primates (Ghanbarian and Hurst 
2015), except for  a couple of necessary changes. First to account for yeasts’ 
sensitivity to minute changes in the experimental conditions and second to examine 
the effect of chosen phylogenetic tree on the estimated change in gene expression in 
yeast as explained below.  

Addressing!variation!across!replicates!!
Z score and fold change are first calculated based on the mean of read counts per gene 
across two replicates. The analysis based on these Z score or fold change values are 
tagged as “Mean” across the results reported here. Nonetheless, Busby et al attributed 
more than 60% of observed variance between species to their environmental response 
or measurement imprecision (Busby et al. 2011). Hence to account for yeasts’ 
sensitivity to environmental changes and experimental conditions, the level of gene 
expression in ancestor is also estimated in each replicate separately. Z score and fold 
change calculated based on these estimates are tagged as “Rep1” or “Rep2” across all 
analysis reported here. Having these three separate measures available per 
homologous gene, helps to tease apart the variation triggered by environmental 
response or measurement imprecision from the variation implied by the changes in 
gene expression during evolutionary time. Variation caused by environmental 
response are assumed to be due to unaccounted experimental conditions, since Busby 
et al. claimed the growth conditions and other experimental conditions to be the same 
across both replicates.  

Addressing!the!difference!across!prior!phylogenetic!trees!
As mentioned above, the Bayesian method, BayesTraits, requires a prior phylogenetic 
tree to be able to build an accurate model of gene expression across 4 yeasts in this 
study. Phylogenetic relationships are still disputed across many taxa (Rutschmann 
2006). While the ubiquitous agreement on approximate divergence date of 5 primates 
considered in the Primates study (Ghanbarian and Hurst 2015), made analysing the 
effects of prior phylogenetic tree used unnecessary, this could make a difference in 
expanding this analysis to other species. In species lacking general agreement on their 
phylogenetic relationship, especially their divergence date, we might ask how the 
choice of phylogenetic relationship in estimation of the ancestral state might affect the 
correlation between evolutionary changes in expression of the neighboring genes. In 
particular, it would be relevant to compare the difference in using two specific 
phylogenetic trees: one inferred based on the substitution rate in genic regions and the 
second based on substitution rate in intergenic regions. This would be especially 
important to test hypotheses regarding not only the resilience to phylogenetic 
assumptions but also the regulatory mechanisms involved in controlling the correlated 
change in expression. This would be particularly interesting since intergenic regions 
are enriched in such regulatory elements, like promoters and enhancers, compared to 
the gene bodies. By considering these two phylogenetic trees, one may ask if the 
magnitude or domain of correlation in change in gene expression is substantially and 
consistently different when genic or intergenic phylogenetic trees is applied. For this 
comparison, I used the genic and intergenic phylogenetic trees produced by Kellis et 
al (2003) based on the substitution rate in genic and intergenic sequences across the 
same 4 yeasts included in the study reported here  
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Measure of change in gene expression 
If one is to use mean of replicates, Z score is calculated as follows. If the mean read 
count of a given gene is Ecurrent, or Ec in abbreviated form, and its variance is Vc, while 
that for the ancestral condition is Ea and Va, then we can define the degree of 
expression divergence in S. cerevisiae lineage from cerevisiae-paradoxus ancestor as 
a Z score calculated as below: 

Z = E! − E!
V! + V!

 

 

If one is to consider each replicate separately, Ec would represent the read count in 
corresponding replicates and Vc would be equal to zero, as there is no variance in a 
single read count for each gene in each replicate. Hence Z score formula would be 
reduce to the one below: 

Z = E! − E!
V!

 

Nevertheless Ea and Va could be calculated based on different percentage of 
BayesTraits estimates, as BayesTraits provides us with a list of estimated values 
rather than just one value. So as to gauge what percentage of estimates should be used 
as a robust estimation of expression in cerevisiae-paradoxus ancestor, a benchmark 
was applied. For each gene, Z scores were calculated based on all or last 50%, 20% 
and 10% of BayesTraits estimate. Distribution of Z scores including their median, 
maximum and minimum is shown in figs S1 and S2, in supplementary materials.  
Under the assumption that size of transcriptome has not changed since this ancestor, 
median of Z score across all genes should be close to zero. This is because if as many 
genes increase their expression as there are genes decreasing their expression, median 
of Z score would be near zero. Overall, using last 10% of BayesTraits’ estimates 
produces medians closer to zero, across different phylogenetic trees and strategies to 
treat replicate read counts. So all Z scores and fold changes reported in the body of 
this paper are calculated based on using last 10% of BayesTraits estimate as the 
measure of ancestral level of gene expression. 

Anyway, Z score metric compares the extent of difference between current level of 
expression and ancestral level, scaled by the degree of variation both in current 
estimates (expression noise or measurement error) and the degree of uncertainty in the 
ancestral state’s estimation. In other words, Z score measures the difference in 
standard deviation units. That is, a gene with largely variable expression across 
individuals or high fluctuation and uncertainty in estimation of expression in ancestor 
would have a lower Z score compared to a gene with similar but steadier level of 
current expression and/or one with similar but more stable estimation of ancestral 
level of expression. Also a positive Z implies an increase in gene expression since the 
ancestor and a negative Z shows a gene which is down-regulated since the ancestor. 

We also calculated a second measure of change in gene expression: fold change. We 
define fold change simply by dividing current level of expression, or its mean if 
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applied, to the mean of estimated level of expression in ancestor in the last 10% of 
BayesTraits estimates.  

Median Correction 
Assuming an absence of net increase or decrease in overall expression levels requires 
a minor adjustment of the Z scores for all genes in all tissues.  If the median Z in any 
given tissue in a given sex is M, then we define modified Z as Zmod = Z – M.  This 
forces all datasets to have a modified median of zero and as many genes increasing in 
expression as decreasing, as the current net transcriptome size is assumed not to be 
any different from that of the ancestor.  All analyses were performed on Zmod. 
Henceforth we shall refer to Z, for convenience, where Zmod is what we are 
employing.  In practice the correction makes little or no difference as a) the correction 
is usually very small and b) many of our statistics are rank order based and so 
unaffected by the modification.  

Results 
Neighboring genes correlate significantly in their evolution of gene 
expression regardless of phylogenetic tree applied 

Regardless of the approach to treat replicates separately or use their average, or even 
irrespective of the phylogenetic tree used in estimating the gene expression model, 
there is a significant correlation between the change in gene expression of the focal 
gene and that of its neighboring genes (Fig 1, Tables 1-3). The correlation is also 
consistently significant and in positive direction irrespective of the measure of change 
in gene expression applied, whether it is Z score (shown in tables 1-3) or fold change 
(shown in tables S1-3 in supplementary material). Moreover, the correlation is always 
in a positive direction, implying that the change in gene expression of the focal gene 
predicts the change in gene expression of its neighbors. Across the correlations 
reported above, only the neighbors within 3Kb boundary of the focal gene are 
considered, 3Kb being the boundary of expression correlation in yeast as suggested by 
the ripple effect (Ebisuya et al. 2008). 

While this indicates that the prior result from Primates are by no means exceptional, 
the degree of correlation is far less than what was seen in Primates (Ghanbarian and 
Hurst 2015). Spearman rho scores in yeasts are about half or even one third of that 
observed in the Primate study. This might be due to relative compaction of yeast’s 
genome in comparison to Primates. As the intergenic regions are far smaller in Yeasts 
in comparison to Primates, this could potentially increase the chance of interference in 
expression leading to a more localised correlation in evolution of gene expression 
(Kristiansson et al. 2009; Zeitlinger and Stark 2010). 

No!evidence!for!genic!or!intergenic!prior!phylogenetic!trees!to!have!a!
consistent!effect!on!the!correlation!in!change!in!gene!expression!in!the!
neighboring!genes 
Intergenic regions are enriched in the regulatory elements which could influence up-
regulation or down-regulation of the genes. So if the ancestral state of expression is 
estimated based on intergenic phylogenetic relationship between species, do 
neighboring gene correlate the change in their expression better? To this end, I used 
genic and intergenic phylogenic trees and calculated Z score as the measure of change 
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in gene expression across three sets of neighboring genes and also different strategies 
to treat replicates (Tables 1-3). Neither a consistent nor a drastic change was found in 
the correlation of Z scores of the neighboring genes; only a minor disparity was 
observed in the score and significance of the correlations across the two phylogenetic 
trees. This is irrespective of the strategy applied in treating the replicates separately or 
considering their average. In short, while genic tree leads to small increase in 
correlation of Z score of the neighboring genes in some datasets, intergenic tree 
improves this correlation slightly in other datasets. For example in the correlation 
between Z scores of the focal gene and Z score of its closest downstream neighbour 
closer than 3Kb, shown in Table 1, the use of intergenic phylogenetic tree results in 
slightly more significant and stronger correlation between the change in gene 
expression of the focal gene and its closest downstream neighbour when mean of 
replicates is considered; however, the genic phylogenetic tree yields slightly more 
significant and stronger correlation in replicate 1. Intriguingly, both correlations are 
insignificant after Bonferroni correlation regardless of the phylogenetic tree used in 
replicate 2. Next, when the correlation between Z score of the focal gene to the Z 
score of mean of closest upstream and downstream neighbors is considered, mean and 
replicate 2 show an small increase in correlation when intergenic tree is used; while 
correlation is slightly higher for genic tree in replicate 1. The results stay significant 
after Bonferroni correction (Table 2). A similar pattern is observed when the 
correlation between Z score of the focal gene and mean Z score of all its neighbors 
closer than 3Kb is calculated; again neither of the two phylogenetic trees outperform 
the other consistently across all mean and replicates sets. Hence, the correlation 
between the change in expression of the neighboring genes is resilient to phylogenetic 
assumptions, at least when the trees only moderately differ in their branch length 
rather than their structure.  

Genic!phylogenetic!tree!improves!the!accuracy!in!estimation!of!ancestral!
state!of!expression!and!complies!with!assumption!of!constant!transcriptome!
size!in!most!of!the!datasets!
If the transcriptome size has been constant since the ancestor, one would expect to see 
as many genes increasing their expression as there are genes decreasing their 
expression. Under such assumption, median of all genes’ Z scores is expected to be 
near zero. Using genic phylogenetic tree to estimate the ancestral level of expression 
results in lower Z score median in mean and replicate 1 but not replicate 2 
(supplementary figs S1-2). In other words, in mean and replicate 1, using genic 
phylogenetic tree yields Z scores agreeable to the general assumption that the size of 
transcriptome has not changed drastically since the ancestor. On the other hand, in 
replicate 2 use of intergenic tree produces Z scores compliant with constant 
transcriptome assumption.  

However, the genic phylogenetic tree consistently produces more extreme Z scores in 
comparison to Z scores generated by intergenic trees across all mean and two 
replicates. This could be due to improvement in estimating level of expression in the 
ancestor for highly up-regulated or down-regulated genes. More accurate estimation 
of level of expression of such genes in the ancestor would reduce the variation in the 
estimated values in BayesTraits output. This would finally push Z score of these 
highly up-regulated or down-regulated genes to more extreme values. 
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Domain of correlation in change in gene expression is smaller in Yeast 
compared to Human 

So far we have shown that there is a significant correlation between the change in 
expression of the focal gene and that of its immediate neighbors. This is regardless of 
the choice of phylogenetic tree or the strategy to treat the replicate information. The 
results represented so far only include the neighboring genes located in the boundaries 
suggested by the ripple effect empirical data for yeast, 3Kb. But how far does the 
correlation between the change in gene expression of the neighboring genes extend? 
Ebisuya et al have shown the ripple effect in Mammals would cause the neighboring 
genes to correlate their expression in a time-lagged manner if they are closer than 
100Kb to each other. They have also characterised the boundaries of this ripple effect 
in Yeasts, which only expands to 3Kb of the focal loci of expression (Ebisuya et al. 
2008). In our previous analyse of evolution of gene expression in Primates, we found 
evidence for the span of local correlation to extend an order of magnitude further than 
ripple effect’s suggested boundary (Ghanbarian and Hurst 2015). In some tissues a 
significant correlation was observed even as far as tens of mega base pairs away from 
the focal gene. So does the dimension of correlation similarly exceed the boundary 
suggested by ripple effect in yeasts? 

The correlation between Z score of the neighboring genes sitting x-min kilobase pairs 
away was calculated for the gene pairs at 1Kb, 2Kb and 3Kb (Table 5). While the 
correlation in change in gene expression is significant for the genes closer than 1Kbs 
away, it fell into insignificance for the neighboring genes in the next bit. Extending 
the analysis to 3Kb, as ripple’s boundary in yeasts, restores the significant correlation 
between the neighboring genes across all but one of the datasets, rep1 dataset when 
intergenic phylogenetic tree is used. So the boundary of significant correlation in 
evolution of gene expression of the neighboring genes in yeast is perhaps smaller than 
the ripple effect’s boundary. The limited dimensions of the zone of piggy-backing 
could be due to smaller intergenic regions in yeasts compared to larger intergenic 
regions in Primates. Smaller intergenic regions might increase the chance of 
transcriptional interference leading to a more localised correlation in gene expression. 

It needs to be mentioned that all overlapping genes have been excluded from the 
results reported so far. However, when analysing the evolution of gene expression in 
Primates, we found that very close proximity in overlapping genes leads to increase in 
correlation in change in gene expression (Ghanbarian and Hurst 2015). This is 
possibly because overlapping genes are more likely to be regulated by the same 
chromatin level regulatory elements. These regulatory elements would facilitate high 
correlation in evolution of their gene expression profiles. However, Busby et al 
(2011) included very few overlapping genes, less than 20. So our effort to investigate 
whether overlapping genes in more compact genomes, like yeasts, would also 
demonstrate higher correlation in their evolution of gene expression in comparison to 
non-overlapping neighbors was ineffective. The correlations were not statistically 
significant across any of the sets but given the limited sample size we prefer not to 
make a strong conclusion (Table 4 and table S4 in supplementary material). 
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Discussion 

The phenomena of correlated change in expression of the neighboring genes was 
dubbed “piggy-backing” when it was first established in Primates. Here I have shown 
evidence for the piggy-backing in yeast, an organism with a compact genome. The 
correlation between the change in gene expression of the neighboring genes is shown 
to be significant and in positive direction regardless of the phylogeny assumption; 
whether genic or intergenic substitution rate is used to infer phylogenetic relationship 
between yeast species in this study. Moreover, the strategy applied to treat the 
replicate information and yeast sensitivity to the environmental changes makes no 
qualitative!difference in the direction or significance of this correlation. Only a minor 
disparity was observed in p-values across the datasets generated by processing each 
replicate separately or employing their average read count in our study. 

While there were not enough overlapping genes in the homologous gene set to 
evaluate the strength of correlation at very close proximity, it was still possible to 
investigate the boundary of this correlation. Calculating Spearman correlation of Z 
score of two genes at x-min distance away from each other revealed the genes 
significantly correlate the change in their expression at 1Kb, however, the correlation 
falls into insignificant p-values very quickly at only 2Kb. Henceforth, the boundary of 
co-evolving gene clusters in not only slightly smaller than suggested by ripple effect 
in yeast but more importantly it is vastly smaller than the boundary observed in 
Primates. This could be due to shorter intergenic regions in yeast in comparison to 
large ones in Primates. Short intergenic regions increase the possibility of 
transcriptional interference and also decrease the number of regulatory elements 
necessary to create a more comprehensive expression profile similar to the one 
observed in Primates and multicellular organisms. Investigating the boundary of co-
evolving gene expression clusters in other organisms with an intermediate average 
length of intergenic DNA would allow one to investigate if boundary of piggybacking 
can be predicted solely by the length of intergenic DNA. 

Although the choice of genic or intergenic substitution rates to infer the phylogenetic 
relationship does not make a quantitative difference in the correlation of change in 
gene expression in neighboring genes, it makes a difference in the median of Z score. 
Using genic phylogenetic tree in two third of the datasets resulted in Z scores with 
median closer to zero. In other words, use of genic tree leads to Z scores more 
agreeable to the general assumption of constant transcriptome size since the common 
ancestor. However, more comparative transcriptome replicates should be employed to 
make a statistically valid conclusion. It needs to be mentioned that the evolutionary 
distance between the yeast species included in this study is relatively short. This 
might not be consistent if the change in expression of genes were to be estimated from 
a more distant ancestor.  
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Table 1. Spearman correlation between Z score of the focal gene and its closest 
non-overlapping downstream neighborwhich is closer than 3Kb away. Results 
significant after Bonferroni testing are highlighted in bold. 

Mean/Rep                #Genes  
Genic Tree 
P-value      

Genic Tree 
Rho          

Intergenic 
Tree  
P-value 

Intergenic 
Tree Rho     

Mean                 2214 0.00113 0.06915 2.51E-05 0.08943 
Rep1                 2214 0.00016 0.08015 0.00062 0.07268 
Rep2 2214 0.03589 0.04459 0.02307 0.04829 
 
Table 2. Spearman correlation between Z score of the focal gene and mean Z 
score of its up and downstream neighbors, when at least one neighborin closer 
than 3Kb. Results significant after Bonferroni testing are highlighted in bold. 

Mean/Rep                #Genes  
Genic Tree 
P-value      

Genic Tree 
Rho          

Intergenic 
Tree P-value 

Intergenic 
Tree Rho     

Mean                 2751 7.70E-07 0.09443 5.13E-10 0.11859 
Rep1                 2750 1.97E-08 0.10722 1.30E-07 0.10084 
Rep2                 2750 0.00037 0.06814 0.00018 0.07162 
 
Table 3. Spearman correlation between Z score of the focal gene and mean Z 
score of all genes in ±3Kb neighborhood, when the focal gene has at least one 
neighborin ±3Kb. Results significant after Bonferroni testing are highlighted in bold. 

Mean/Rep                #Genes  
Genic Tree 
P-value      

Genic Tree 
Rho          

Intergenic 
Tree P-value 

Intergenic 
Tree Rho     

Mean                 2751 0.00017 0.07168 2.66E-06 0.08938 
Rep1                 2750 0.00014 0.07271 0.00354 0.05561 
Rep2                 2750 0.00026 0.06951 0.00022 0.07039 
 
 
 
 
Table 4. Spearman correlation between Z score of the focal gene and Z score of 
its overlapping downstream neighbor. None of the correlations is statistically 
significant due to low number of overlapping genes in our study.  
Mean/Re
p                

#overlapping 
Genes  

Genic Tree  
P-value      

Genic 
Tree Rho          

Intergenic 
Tree P-value 

Intergenic 
Tree Rho     

Mean              19 0.30940 0.24561 0.61043 0.12456 
Rep1              18 0.49789 0.17028 0.38844 0.21569 
Rep2              19 0.57028 0.13860 0.52181 0.15614 
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Table 5. Correlation in change in gene expression only extends to 1Kb. The 
correlation between Z score of the focal gene and its nearest downstream gene on the 
same chromosome a minimum of 1K, 2K and 3K base pairs away is shown across the 
datasets generated by using genic and intergenic phylogenetic trees and different 
strategies to treat replicates. Results significant after Bonferroni testing are 
highlighted in bold. 
Mean-Rep/Tree              Correlation to 

1Kb 
Correlation to 2Kb Correlation to 

3Kb 
P-value Rho     P-value Rho     P-value Rho     

Mean/Genic           0.00033 0.07372 0.32129 0.02701 0.02448 0.05953 
Mean/Intergeni
c      2.20E-05 0.08706 0.21298 0.03392 0.02496 0.05933 
Rep1/Genic         0.00112 0.06690 0.16517 0.03780 0.05061 0.05176 
Rep1/Intergenic     0.00399 0.05914 0.44299 0.02090 0.46728 0.01926 
Rep2/Genic          0.00206 0.06328 0.22554 0.03302 0.01302 0.06570 
Rep2/Intergenic     0.00203 0.06336 0.60948 0.01392 0.01356 0.06532 
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Fig 1. Relationship between Z of a focal gene and mean Z of the its nearest 
up/downstream neighbors across two phylogenetic trees and mean or separate 
replicates read counts.  In this instance we consider all genes are nearest neighbors if 
the distance between the gene bodies of the focal and at least one of its immediate 
neighboring genes is less than 3kb. Data is split into 15 equal sized bins defined after 
rank ordering with respect to Z score of the focal gene.  The value on the X axis 
represents the mean Z of the genes in that bin.  The value of the Y axis indicates the 
mean (+/-sem) for the relevant flanking genes. 
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Supplementary material 

Supplementary Tables 

Table S1. Spearman correlation between fold change of the focal gene and fold 
change of its closest non-overlapping downstream neighborwhich is closer than 
3Kb away. Results significant after Bonferroni testing are highlighted in bold. 

Mean/Rep                #Genes  
Genic Tree 
P-value      

Genic Tree 
Rho          

Intergenic 
Tree P-
value 

Intergenic 
Tree Rho     

Mean                 2214 0.00567 0.05877 0.00014 0.08071 
Rep1                 2214 0.00082 0.07107 0.00156 0.06719 
Rep2 2214 0.05760 0.04036 0.03768 0.04417 
 
Table S2. Spearman correlation between fold change of the focal gene and mean 
fold change of its up and downstream neighbors, when at least one neighborin 
closer than 3Kb. Results significant after Bonferroni testing are highlighted in bold. 

Mean/Rep                #Genes  
Genic Tree 
P-value      

Genic Tree 
Rho          

Intergenic 
Tree P-value 

Intergenic 
Tree Rho     

Mean                 2751 2.06E-05 0.08140 5.81E-08 0.10359 
Rep1                 2750 1.07E-05 0.08417 1.55E-05 0.08262 
Rep2                 2750 0.00071 0.06478 0.00042 0.06742 
 
Table S3. Spearman correlation between fold change of the focal gene and mean 
fold change of all genes in ±3Kb neighborhood, when the focal gene has at least 
one neighborin ±3Kb. Results significant after Bonferroni testing are highlighted in 
bold. 

Mean/Rep                #Genes  
Genic Tree 
P-value      

Genic Tree 
Rho          

Intergenic 
Tree P-value 

Intergenic 
Tree Rho     

Mean                 2751 0.00336 0.05590 0.00037 0.06782 
Rep1                 2750 0.00249 0.05765 0.00591 0.05248 
Rep2                 2750 0.00069 0.06468 0.00153 0.06041 
 
Table S4. Spearman correlation between fold change of the focal gene and fold 
change of its overlapping downstream neighbor 
Mean/Re
p                

#overlapping 
Genes  

Genic Tree  
P-value      

Genic 
Tree Rho          

Intergenic 
Tree P-value 

Intergenic 
Tree Rho     

Mean              19 0.27518 0.26316 0.30587 0.24737 
Rep1              18 0.17642 0.33333 0.14988 0.35397 
Rep2              19 0.61553 0.12281 0.55553 0.14386 
 
 
  



! 69!

Supplementary Figures 

Figure S1. Distribution of Z scores calculated based on mean of read counts 
across two replicates for two phylogenetic trees shown by the percentage of 
BayesTraits’ estimates used in calculation of Z score, all or last 50%, 20% and 
10%. Median, maximum and minimum Z score are also shown. First row shows Z 
scores calculated by using genic phylogenetic tree accompanied by the corresponding 
intergenic one on the second row. 
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Figure S2. Distribution of Z score calculated based on separate read counts per 
two replicates for two phylogenetic trees shown by the percentage of 
BayesTraits’ estimates used in calculation of Z score, all or last 50%, 20% and 
10%. Median, maximum and minimum Z score are also shown. First and second 
rows show Rep1 and third and forth rows show Rep2. On even rows Z scores are 
calculated by using genic phylogenetic tree and corresponding intergenic ones are 
shown on odd rows below. 
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Chapter 4. Double agents:  
How lincRNAs regulate expression of their neighbors 

 
 
Contribution 

Having shown evolution of gene expression in the coding genes to be linked to their neighbours in 
Primates and Yeasts in previous two chapters, in this chapter I delve into the world of non-coding 
genes to discuss evolution of lincRNAs. The paper, for which I was co-first author with Andreas 
Schuler, is published in Molecular Biology and Evolution. This paper is presented as chapter 4. 
Here I clarify my contributions in this work, not the least to fulfil the requirement of the thesis 
specifications required by the University of Bath. 

Andreas has done all the analyses regarding to the ESE usage and within gene variations in rates 
of evolution and RNA stability. Laurence Hurst did the nonsense-mediated decay hypothesis. I 
have done all the analyses to find evidence for the process hypothesis. These include analysing the 
chromatin remodellers when I found evidence for intron rich active lincRNAs being enriched in 
CHD1. I have also proceeded with the chromatin state analysis where I found intron density of 
lincRNA not only correlates with local DHS density but also possibly regulates the expression of 
neighbours. A few of the epigenetics analyses I have conducted helped us to formulate the process 
scenario better but were removed from the publication to make the paper as concise as possible. 
Hence my contributions were instrumental in explaining weak purifying selection on ESE motifs 
in lincRNA through the process hypothesis versus the product hypothesis.  

As you will read in more detail in the paper below, the process hypothesis is an ingenious idea to 
draw attention to the possibility of the process of splicing to recruit splice-coupled chromatin 
modifier, CHD1, which would in turn increase the possibility of the neighbouring genes to be 
transcribed. If one is to see lincRNAs through the glasses of the process hypothesis, one might 
appreciate how cleverly they function as a double agent; appearing to be only weakly conserved 
on their ESE motifs but in reality regulating the neighbouring genes through engaging with an 
splice-coupled chromatin modifier, CHD1.  

 
 
!!



! 72!

!

A
rticle
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Abstract

There are two strong and equally important predictors of rates of human protein evolution: The amount the gene is
expressed and the proportion of exonic sequence devoted to control splicing, mediated largely by selection on exonic
splice enhancer (ESE) motifs. Is the same true for noncoding RNAs, known to be under very weak purifying selection?
Prior evidence suggests that selection at splice sites in long intergenic noncoding RNAs (lincRNAs) is important. We now
report multiple lines of evidence indicating that the great majority of purifying selection operating on lincRNAs in
humans is splice related. Splice-related parameters explain much of the between-gene variation in evolutionary rate in
humans. Expression rate is not a relevant predictor, although expression breadth is weakly so. In contrast to protein-
coding RNAs, we observe no relationship between evolutionary rate and lincRNA stability. As in protein-coding genes,
ESEs are especially abundant near splice junctions and evolve slower than non-ESE sequence equidistant from boundaries.
Nearly all constraint in lincRNAs is at exon ends (N.B. the same is not witnessed in Drosophila). Although we cannot
definitely answer the question as to why splice-related selection is so important, we find no evidence that splicing might
enable the nonsense-mediated decay pathway to capture transcripts incorrectly processed by ribosomes. We find evi-
dence consistent with the notion that splicing modifies the underlying chromatin through recruitment of splice-coupled
chromatin modifiers, such as CHD1, which in turn might modulate neighbor gene activity. We conclude that most
selection on human lincRNAs is splice mediated and suggest that the possibility of splice–chromatin coupling is worthy of
further scrutiny.

Key words: ncRNA, rate of evolution, splicing.

Introduction
Understanding how genes evolve and where purifying selec-
tion is acting to maintain the status quo can, in principle, be
highly informative of the function of a gene and the reasons
that mutations might be deleterious and potentially causative
of disease. In the simplest instance, for example, selection to
preserve functional protein motifs is commonly taken to
imply a function for that motif and possible pathogenic con-
sequences for mutations that disrupt the motif. On a broad
scale, we can approach these issues by asking where in genes
we see purifying selection and what determines the variation
between genes in their rate of evolution. Although the deter-
minants of the rate of protein evolution are much studied
(Pal et al. 2006; Zeldovich and Shakhnovich 2008), much less
well understood are the determinants of the evolutionary rate
of noncoding RNAs (ncRNAs). The exons of human ncRNAs
are typically poorly conserved compared with protein-coding
genes (Marques and Ponting 2009) and on average evolve a
little slower than their flanking introns (Hurst and Smith
1999; Pang et al. 2006), suggesting weak purifying selection.
The causes of this are unclear (Pang et al. 2006). The relatively

rapid evolution need not imply an absence of function, as
even highly functional ncRNAs, such as Xist, contain only a
few conserved stretches (Pang et al. 2006). The determinants
of between-gene variation in the rate of evolution of ncRNAs
are only beginning to be explored (Managadze et al. 2011).
Here then we ask about where in ncRNAs purifying selection
operates and what predicts rates of evolution of ncRNAs.

Understanding the evolution of ncRNA can, conversely,
potentially shed important light on the mode of selection
on protein-coding genes. For example, it has recently been
suggested that selection on RNA stability is an important
determinant of rate of protein evolution (Park et al. 2013).
It is, however, unknown whether this selection is particular to
RNAs that are translated or to all RNA species. In principle,
one can imagine models for either possibility. For example,
RNA stability selection may be important in altering transla-
tional dynamics if RNA structure modulates ribosomal speed.
Conversely, the selection may simply be to enable RNA to
persist in a stable configuration, in which case ncRNA might
be under similar selection. For proteins there is at least one
universal predictor of between-gene variation in rate of

! The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommon-
s.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work
is properly cited. Open Access
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evolution, namely the more a gene is expressed the lower its
evolutionary rate (Pal et al. 2001; Drummond et al. 2006). One
hypothesis to explain this concerns selection on protein-fold-
ing accuracy (Drummond and Wilke 2008; Yang et al. 2010). If
the correlation between protein rate of expression and rate of
evolution is mediated exclusively by selection on protein fold-
ing, then we expect no such correlation in ncRNAs. One prior
claim (Managadze et al. 2011) identified slower evolution in
more highly expressed ncRNA and found a coupling between
long intergenic ncRNA (lincRNA) stability and evolutionary
rate. They concluded there to be a universal (all transcript
types) correlation between expression level and evolutionary
rate. This they took to suggest a possible universal selection
on folding, be it RNA or protein level. Given the importance
of such a result, we now return to this issue.

In mammals, splice-related constraints are of an approxi-
mately equal magnitude to the expression-related parameters
as a predictor of rate of protein evolution (Parmley et al.
2007). Although splice sites are necessary for exon–intron
junction recognition, they carry only some of the information
required for accurate splicing of protein-coding genes (Lim
and Burge 2001). Exonic splice enhancers (ESEs) are also nec-
essary to maintain proper splicing. ESE motifs are purine-rich
hexamers that bind serine arginine-rich (SR) proteins to aid
exonic splice site recognition (Blencowe 2000; Cartegni et al.
2002). They mostly operate close to (within 70 bp) exon–
intron junctions (Fairbrother, Holste, et al. 2004) in a quanti-
tative fashion, such that the higher the density of ESEs the
higher the splice rate (Graveley 2000; Fairbrother et al. 2002;
Fairbrother, Holste, et al. 2004; Fairbrother, Yeo, et al. 2004; Ke
et al. 2011). On average 30–40% of bases at the flanks of
protein-coding exons feature in at least one experimentally
confirmed motif, this proportion being higher for exons
flanked by larger introns (Dewey et al. 2006) where exon
definition is especially difficult.

Owing to their abundance, importance, and skewed
nucleotide content, ESEs leave strong and easily identified
footprints in the molecular evolution of mammalian pro-
tein-coding genes (C!aceres and Hurst 2014). ESE motifs
evolve at considerably lower rates than non-ESE sites, at
both the synonymous (Carlini and Genut 2006; Parmley
et al. 2006) and nonsynonymous levels (Parmley et al.
2007). The abundance of ESEs near exon junctions skews
amino acid content and codon usage patterns (Parmley
and Hurst 2007; Parmley et al. 2007), with the majority of
amino acids and codons showing avoidance or preference
near boundaries, these trends being well predicted by ESE
nucleotide content. As “boundary” regions are large with re-
spect to the average size of an exon, the biology of ESEs is one
of the major influences on human protein-coding genes.

ncRNAs frequently contain conserved promoter regions
and splice sites and also show a reduced rate of insertions
and deletions (Ponjavic et al. 2007), indicative of selection for
splicing and transcription. Indeed, conserved splice sites have
been employed to identify noncoding transcripts (Rose et al.
2011) and splice sites in ncRNA often show considerable de-
grees of conservation (Nitsche et al. 2014; Washietl et al.
2014). It is, however, unknown whether ESEs are involved in

splice regulation and, assuming that they are, whether they
contribute to purifying selection operating on sequence. Here
then we employ a robust and appropriate high-quality data
set of human ncRNAs (Cabili et al. 2011), wherein we can
both have a good measure of confidence that the ncRNAs are
not protein coding, that the ncRNA are real (by them being
identified more than once), and that, being intergenic, there
are minimal issues with overlapping transcripts. Of these data,
we ask 1) whether ncRNAs show evidence of splice-related
constraint with reduced rates of evolution at exonic ends,
especially in residues associated with exonic splice enhancer
motifs; 2) if so, what proportion of the reduced rate of evo-
lution of ncRNA exons, when compared with flanking introns,
can be explained as owing to splice-related selection; and 3)
how important is splice-related selection in explaining be-
tween-gene variation in rate of evolution of ncRNAs com-
pared with other possible predictors. We report that the great
majority of selection on ncRNAs is splice related, purifying
selection being dominantly on exon ends with ESE motifs
especially slow evolving. We consider a series of models to
explain this unexpected result.

Results
Do lincRNAs employ ESEs? If they do, can we find evidence for
splice-related constraints within the exons on lincRNAs? If we
can, how important are splice-related constraints, both in
explaining any purifying selection operating on lincRNAs
exons when compared with their introns and in explaining
between-gene variation in rates of exonic evolution? To ad-
dress the former issues, we start by considering whether exons
of lincRNAs use ESEs in the same manner as protein-coding
genes and in turn whether they impose comparable degrees
of constraint.

ESE Usage and within-Gene Variation in Rate of
Evolution
ESE Usage at lincRNA Exonic Flanks Resembles That in
Protein-Coding Exons
ESEs are most efficient close to the splice junction
(Fairbrother et al. 2002; Fairbrother, Holste, et al. 2004;
Fairbrother, Yeo, et al. 2004) and if ESEs are involved in splicing
regulation for lincRNAs, putative ESE motifs should be en-
riched close to splice junctions. To test this hypothesis, we
annotated putative ESE motifs in the lincRNA and protein-
coding alignments by using the set of experimentally con-
firmed human ESE-hexamers employed in a previous study
(Parmley et al. 2006) as defined by Fairbrother, Yeo, et al.
(2004). We temporarily removed gaps from the alignments
to scan for matches to the set of known ESE-hexamers.
Matching hexamers were masked and gaps were reinserted
after the scan. As expected, the density of putative ESE mo-
tifs is highest in direct proximity to the splice sites and de-
creases with distance from the splice site. This trend is
observed in both lincRNA and protein-coding exons (fig. 1a
and b).

It has been shown that large introns are correlated with a
high density of ESEs in the flanking exons (Dewey et al. 2006;
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C!aceres and Hurst 2014). We can reproduce this observation
for both the protein-coding genes and the lincRNAs in our
data set (fig. 1c and d). The trend is weaker in lincRNAs
compared with protein-coding genes (rho = 0.2 and 0.28,
respectively) but both correlations are highly significant
(from Spearman: P< 10!16). Using all lincRNAs instead of
only the conservative subset does not qualitatively change
these results (supplementary fig. S1, Supplementary
Material online).

Exonic Splice Enhancers Evolve Considerably Slower Than
Nonenhancers in lincRNA Evolution
In protein-coding genes, exon residues that specify ESEs
evolve slower than non-ESE sequence (Parmley et al. 2006,
2007). Our data replicate this result (median K [ESE] = 0.021,
median K [non-ESE] = 0.028, Wilcoxon test: P< 10!16). More
importantly, we find that substitution rates in ESEs are signif-
icantly lower than the ones in non-ESE sites in lincRNAs
(median K [ESE] = 0.055, median K [non-ESE] = 0.066,
Wilcoxon test: P< 10!16).

Given that ESEs function close to exon boundaries, it might
in turn be helpful to control for distance from an exon bound-
ary. We thus compared the evolutionary rates between ESE
and non-ESE sites as a function of the distance from the
nearest splice junction. Conceptually, every exon was split

in half and for each alignment site we assigned the base
pair-distance to the 50-splice junction for the first exon-half
or to 30-junction for the second exon-half. We calculated the
substitution rates for sites up to 70 bp away from the nearest
splice junction and distinguished between ESE and non-ESE
for both protein coding RNAs (fig. 2a) and lincRNA (fig .2b).
We again observe a trend of ESE sites evolving slower than
non-ESE sites, and also a positional effect with the average
substitution rates increasing with the distance from the near-
est splice junction. This positional effect is observed both in
lincRNA and in protein-coding genes (fig. 2). Using all
lincRNAs instead of the conservative subset again does not
qualitatively affect the results (supplementary fig. S2,
Supplementary Material online).

ESEs are purine-rich and, as ESE density is also decreasing
with distance from the nearest splice junction, a biased nu-
cleotide composition might be responsible for the overall
increase in evolutionary rates with increasing distance from
the splice site. To test this, we concatenated the alignments of
all exons and for each distance value, we extracted a random
sample from this concatenated alignment with the same
sample size and nucleotide composition as the alignment
sites for the respective distance from the splice junction.
The overall evolutionary rates in the randomized samples
are higher compared with the putative ESE motifs and

FIG. 1. Relative frequencies of bases" SEM predicted to be part of an ESE motif as a function of the distance to the nearest intron, starting at a distance
of 6 [(a) and (b)]. The decadic logarithm of the average intron length for lincRNA and protein-coding genes versus the density of ESE motifs on the exon
sequences of this gene is shown in (c) and (d). For (c) and (d), “density” has been measured as the number of nucleotides that belong to a putative ESE
motif divided by the summed length of exons for the respective gene. This figure includes only the conservative lincRNAs. For the complete set, see
supplementary figure S1, Supplementary Material online. Error bars for (a) and (b) =" SEM.
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comparable to the non-ESE sites, demonstrating that biased
nucleotide composition cannot explain the lower evolution-
ary rates in putative ESE motifs. The magnitude of the differ-
ence between the ESE and non-ESE sequences in their rate of
evolution in lincRNAs, with ESE evolving around 15% slower
than nucleotide controlled null sequence, is the same as wit-
nessed at 4-fold degenerate synonymous sites in protein-
coding genes (C!aceres and Hurst 2014).

Although we employ experimentally confirmed ESEs, these
are unlikely to correspond to all biologically meaningful ESEs.
Nonetheless, selective pressure to maintain the experimen-
tally defined set of ESE-motifs does not seem to be the only
cause for this trend because non-ESE sequences show the
same trend of increasing substitution rates with increasing
distance (rho [ESE] = 0.554 and rho [non-ESE] = 0.729 for pro-
tein-coding genes; fig. 2, and for lincRNAs rho [ESE] = 0.298,
rho [non-ESE] = 0.306; fig. 2). To consider more generally the
role of splice-related constraint, we therefore also compare
exon flanks with exon cores and with intronic cores. We
presume any differences in rates to be owing to splice-related
features.

Weak Constraint on lincRNAs Is Dominantly Owing to
Selection in Exonic Flanks in Humans
We employed the ratio of the substitution rate in exons (Ke)
over the substitution rate in introns (Ki) to scan the lincRNA
alignments for signatures of purifying selection. For the inter-
pretation of this ratio, introns are used as a proxy for back-
ground, possibly neutral, rate (Hoffman and Birney 2007;
Resch et al. 2007). A Ke/Ki ratio< 1 (or< 0 after log-trans-
formation) would thus be indicative of purifying selection. For
protein-coding genes, there is evidence of higher selective
constraints near exon–intron boundaries, both in the
exonic and in the intronic regions flanking the splice junction
(Chamary and Hurst 2004; Warnecke et al. 2008) and we
therefore analyzed the regions in exon and intron cores and
those flanking the splice junction separately (we do not ana-
lyze intron flanks). For each aligned gene in the protein-
coding and the lincRNA data set, we concatenated 70 bp of
exonic sequences flanking the splice junctions and calculated
the number of substitutions in the concatenated exon flanks
(Kef). We defined exon cores as the sequences enclosed by
two exon flanks, concatenated them as well, and calculated

FIG. 2. ESE motifs evolve slower than non-ESE sites. The substitution rates (number of substitutions divided by number of sites) in ESEs and non-ESEs
are shown as a function of the distance in base pairs from the nearest splice-junction, for lincRNA (bottom) and protein-coding (top) genes. This figure
includes only the conservative lincRNAs. For the complete set, see supplementary figure S2, Supplementary Material online. Bars indicate! SEM.
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their substitution rates (Kec). We compared those rates with
the substitution rates in concatenated intron cores (Kic), de-
fined as the intronic sequences without the 20 bp flanking the
splice junction, as done previously (Warnecke et al. 2008). For
this analysis, to reduce the impact of noisy short sequences,
we excluded all genes for which the concatenated exon- and
intron flanks and intron cores were shorter than 100 bp,
which leaves us with 1,810 (53%) lincRNA genes.

The logged (natural logarithm) distributions of Ke/Ki ratios
for the alignments of lincRNAs and protein-coding genes are
shown in figure 3a and c. The Kec/Kic distribution in protein-
coding genes is, as expected, consistent with the majority of
genes evolving under strong purifying selection (median log
Kec/Kic =!0.769; fig. 3c). For the core exon and core intron
regions of lincRNAs, we observe a similar but much weaker
trend (median log Ke/Ki =!0.005, Wilcoxon test: P = 0.027;
fig. 3a). This trend is still significant at the 0.05 level, but very
weak compared with the same effect seen in protein-coding
genes, which is consistent with earlier studies that found little
evidence for purifying selection acting on lincRNA exons. The
Ke/Ki ratio is slightly more pronounced when the entire set of

lincRNAs instead of only the conservative subset is used (sup-
plementary fig. S3, Supplementary Material online) which is
not unexpected because the nonconservative set might con-
tain some genes with protein-coding potential (see Materials
and Methods for filtering with respect to coding potential).

We notice that with ESE sequence close to exon flanks
evolving 15% slower than neighboring sequence, that this
effect alone might explain all or nearly all constraint on
ncRNAs. With about 27% of sequence near exon flanks (in
the relevant sample), a density of ESE around 30% and 15%
slower rate of evolution, assuming exonic non-ESE sequence
evolves at about the same rate as introns, we predict that log
Ke/Ki should be approximately log (1! [0.27" 0.3" 0.15]) =
!0.01. This is, if anything, greater than the proportional dif-
ference that is actually observed, suggesting that selection on
ESEs may account for all of the reduced rate of evolution of
exons compared with introns.

Assuming this to be the case, we would also expect a low
rate of evolution at exon flanks to account for most of the
difference between exon and intron. The exon flanks of pro-
tein-coding genes have previously been shown to evolve

FIG. 3. Exon cores and flanks evolve at different rates. The distributions of Kec/Kic and Kef/Kec values are shown for protein-coding genes and lincRNAs.
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slower than the exon-core regions owing to the fact that
splice-related motifs tend to be in the flanks (Parmley et al.
2007; Warnecke et al. 2008). As expected, we also observe this
in our set of protein-coding genes (median log Kef/
Kec =!0.136; fig. 3d). Importantly, a similar pattern can be
observed for the lincRNA data set, where the exon flanks also
evolve slower on average than the exon-core regions (fig. 3b).
The difference between exon flanks and cores in lincRNAs is
again not as pronounced as in the protein-coding data set but
still highly significant (median log Kef/Kec =!0.022, Wilcoxon
test: P = 0.0009). Overall then, these results support the view
that the majority of selective constraint on lincRNAs is at
exonic ends with little if any at exon cores. Put differently, if
there are conserved motifs in exon cores (as seen if Xist), then
they are rare. As we excluded genes where the concatenated
exon flanks and cores or the concatenated intron cores were
shorter than 100 nucleotides, these results do not necessarily
reflect trends in short lincRNA genes.

These results replicate in part those of Chodroff et al.
(2010) who noted a tendency for exon cores of lincRNAs to
evolve faster than flanks. They suggest that this might not be
owing to splice-related constraint but instead reflect trans-
posable element insertion in cores. That in the flanks ESEs and
non-ESE evolve at different rates (fig. 2) and that the net
exonic rate can be predicted from knowing this constraint
alone strongly argue in favor of splice-related constraint par-
ticular to the exon flanks.

Constraint on lincRNAs in Drosophila Is Stronger Than in
Humans but Is Dominantly Not Owing to Selection in
Exonic Flanks
We can ask whether the above result might be general.
Recently, it has been reported that in Drosophila selection
on ncRNAs is more intense than seen in humans (Young et al.
2012; Haerty and Ponting 2013). Does this mean that the
difference in evolutionary rate between flanks and cores is
all the more profound? To address this, we considered rates of
evolution of ncRNAs as previously annotated comparing D.
melanogaster and D. yakuba. Confirming the strong con-
straint in ncRNA exons we find that the log of the ratio of
rate of evolution between exon core and intron core is !0.6
(Wilcoxon test: P = 4.8" 10!18). Unexpectedly, we find that
flanks evolve if anything faster than the cores (median ratio of
log [flank/core] = 0.25, Wilcoxon tests: P = 1" 10!8). We con-
clude that the stronger selection on flanks of ncRNAs is not
universal.

Causes of between-Gene Variation in Rates of
Evolution
The above analyses indicate that ncRNAs use ESEs much as
protein-coding genes do and that splice-related constraints
explain the great majority of within-gene purifying selection.
These results suggest a further issue. If splicing is so important
in explaining intragene variation in rates of evolution, is it also
the most important predictor of between-gene variation in
rates of evolution? It is not trivially the case that this need be
so. For protein-coding genes, a universal and highly significant
negative correlation between gene expression and rate of

protein evolution has repeatedly been observed (Pal et al.
2001; Drummond and Wilke 2008; Wolf et al. 2010). As this
is effectively controlled for by considering intragene analyses,
it could be that the causes of intragene variation are dwarfed
by a feature, such as expression level, which only becomes
important when considering intergene comparisons.

Partial Correlation Analysis Suggests ESE Density Is the Best
Predictor of lincRNA Rate of Evolution
The above analysis suggests that ESEs and exon flanks impose
major constraint on sequence evolution of lincRNAs. Indeed,
the difference in the extent of constraint between the exon
core and exon flank suggests that most constraint is splice
related. This analysis, while controlled at a pairwise level, does
not address the issue of how well splice-related constraints
explain between-gene variations in evolutionary rate. How
then do splice-related constraints compare with other puta-
tive predictors of evolutionary rate and how relatively impor-
tant is each predictor when allowing for covariance with the
others?

To this end, we carried out a partial correlation analysis
using the pcor R script (Kim and Yi 2006). We considered
three expression parameters (maximum expression rate,
median expression rate and expression breadth, breadth
being the proportion of tissues within which a gene is ex-
pressed), two splicing-related parameters (fraction of exon
sequence in 70-bp windows flanking splice junctions
[frac70] and the fraction of exonic sequence that matches
known ESE motifs [ESE density]), folding stability and GC
content. Normal and partial correlations are shown in
table 1 (see also supplementary table S1, Supplementary
Material online). In addition, for comparison, we consider
the same parameters in their ability to predict rates of evo-
lution of protein-coding genes.

As regards the rate of evolution of lincRNAs, one param-
eter stands out. Out of all parameters we considered, the
density of ESE motifs in exon sequences is the best predictor
for evolutionary rates in lincRNAs, both in normal and in full
partial correlation analyses. The other splicing-related param-
eter, the fraction of sequence within 70 bp of an exon junc-
tion (frac70), is however not significantly correlated with
evolutionary rates of the lincRNAs.

For the protein-coding genes, the situation is somewhat
different. Both the fractions of sequence within 70 bp of an
exon boundary and ESE density are correlated with evolution-
ary rate in the normal correlation analyses, whereas ESE den-
sity is no longer significantly correlated in the partial
correlation analyses. This seems to be an interaction effect
with GC content because ESE density shows a significant
partial correlation, comparable to the normal correlation,
when GC content is removed from the set of controlled var-
iables. The overall GC content of lincRNA exons is very low
compared with the exons of protein-coding genes (median
GC content = 0.309 and 0.515, respectively) which might ex-
plain why GC content masks the effect of ESE density on
evolutionary rate in protein-coding genes but not in
lincRNAs.
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Expression Level Does Not Predict Evolutionary Rates of
lincRNAs
A universal and highly significant negative correlation be-
tween gene expression and rate of protein evolution has re-
peatedly been observed (Pal et al. 2001; Drummond and
Wilke 2008; Wolf et al. 2010). It has been proposed that the
dominant underlying cause for this correlation is the cost
imposed by protein misfolding, which is higher for highly
expressed genes (Drummond and Wilke 2008; Yang et al.
2010). It has also been demonstrated however that the cost
imposed by protein misfolding cannot be the only cause un-
derlying the observed negative correlation, other possible
mechanisms that underlie this correlation include the avoid-
ance of protein misinteractions (Yang et al. 2012) and differ-
ential requirements for mRNA folding (Park et al. 2013).

If selective pressure to avoid protein misfolding (or indeed
any protein related feature) is the cause of this correlation, a
similar trend for lincRNAs should be absent, assuming that
they are never translated into a protein product. However,
Managadze et al. (2011) have shown that a weak but signif-
icant negative correlation between expression level and evo-
lutionary rate is indeed observable in human and mouse
lincRNA data sets. We tested the lincRNA data set produced
by Cabili et al. to see whether we can reproduce these
findings.

For each lincRNA sequence, we plotted the evolutionary
distance against the maximal and median expressions and the
expression breadth of the respective lincRNA (fig. 4a–c).
Surprisingly, given prior evidence (Managadze et al. 2011),
we observe no significant correlation for either maximal ex-
pression (rho =!0.005, P = 0.76; fig. 4a) or median expression
(rho =!0.025, P = 0.12; fig. 4b). This remains true after partial

correlation. For expression breadth, we observe a weak neg-
ative correlation that is significant at the 0.05 level
(rho =!0.038, P = 0.02; fig. 4c). This result is a little more
robust on partial correlation analysis (table 1). Thus
lincRNAs that are highly tissue-specific are, on average, less
conserved between humans and macaques than those with a
larger expression breadth.

The weak correlations between expression parameters and
rate of evolution of lincRNAs contrast strikingly with what we
find for protein-coding genes. For the protein-coding data set,
maximum expression (rho =!0.204, P< 2.2" 10!16; fig. 4d),
median expression (rho =!0.34, P = 2.2" 10!16; fig. 4e), and
expression breadth (rho =!0.369, P = 2.2" 10!16; fig. 4f) all
show a highly significant negative correlation with expression,
as expected. These results are diminished on partial correla-
tion analysis but expression level and breadth remain
predictors.

lincRNA Folding Stability Does Not Explain Evolutionary
Rates
The possibility that RNA structure might be a determinant of
protein rate of evolution has recently been proposed (Park
et al. 2013). Given this it is relevant to ask whether the same
may be perhaps an even more profound predictor for se-
quences where the RNA alone may be functionally relevant,
that is, lincRNAs. We find that folding stability shows a very
weak Spearman correlation with evolutionary rates of
lincRNAs, but this effect vanishes when the other parameters
are controlled for. We conclude that selection on folding
strength does not explain the rate of evolution of long
ncRNAs (lncRNAs).

Although one may question the ability of any method to
correctly infer RNA stability (not least because they fail to
acknowledge the presence of the exon-junction complex
(EJC) on mature RNA), it is notable that this result contrasts
with what is seen for protein-coding genes. In this instance, as
previously reported (Park et al. 2013), folding stability shows a
strong positive Spearman correlation with evolutionary rate
(rho = 0.154, P< 2.2" 10!16). We note an important word of
caution, however, as this correlation is substantially reduced
in the partial correlation analysis (partial rho = 0.028,
P< 10!3). Moreover in a partial Pearson product–moment
correlation the sign of the correlation shifts to being negative
(supplementary table S1, Supplementary Material online).
The strong correlation in the normal Spearman analysis
(and that recently reported; Park et al. 2013) seems to be
caused by an interaction effect with GC content and ESE
density and the removal of those two parameters from the
partial correlation analysis yields a partial correlation of com-
parable magnitude to the normal correlation (partial
rho = 0.158, P< 2.2" 10!16). GC content and folding stability
are positively correlated and the negative correlation of fold-
ing stability and evolutionary rate thus seems to be caused by
stable protein-coding RNAs having a higher GC content than
average. Whether the GC content is high to ensure strong
folding or whether strong folding is an incidental side conse-
quence of GC content remains to be discovered.

Table 1. Normal and Partial Correlations with Evolutionary Rate
(measured as Tamura–Kumar distance, see Materials and Methods)
Using Spearman Correlation (for Pearson correlation, see supplemen-
tary table S1, Supplementary Material online).

Normal Partial

lincRNA

Max. expression rate !0.005 0.032

Med. expression rate !0.025 !0.035

Exp. breadth !0.038 !0.091**

RNA stability 0.048y 0.009

Frac70 !0.051y !0.011

ESE density !0.182*** !0.194***

GC !0.058* !0.102***

Protein coding

Max. expression !0.203*** !0.019

Med. expression !0.339*** !0.063***

Exp. breadth !0.369*** !0.189***

RNA stability 0.154*** 0.028*

Frac70 !0.222*** !0.101***

ESE density !0.29*** 0.008

GC 0.313*** 0.168***

NOTE.—Numbers highlighted in italic are significant after Bonferroni correction (at
5% level, raw P< 0.00357 with N = 14). Significance codes for P values prior to
Bonferroni correction: yP< 0.01; *P< 10!3; **P< 10!6; *** P< 10!9.

3170
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Complex Correlations between lincRNA Folding Stability and
Expression Parameters but No Relation with Evolutionary
Rates
Although RNA stability does not predict evolutionary rates of
evolution, it remains valid to ask whether stability might cor-
relate with expression parameters. It has been proposed that
many, if not most, lncRNA transcripts are highly unstable
(Houseley and Tollervey 2009). However, genome-wide stud-
ies on lncRNA stability have revealed that lncRNA transcripts
are not generally unstable, but rather show a wide range of
stabilities that is on average lower, but still comparable to that
of protein-coding mRNAs (Clark et al. 2012). As the stability
of protein-coding RNAs is correlated with expression
(Liebhaber 1997; Shabalina et al. 2006), we tested the
lincRNA data set for the presence of a similar pattern.

We detected not only a significant positive correlation
between folding stability and maximal expression level
(rho = 0.105, P ~ 10!9; fig. 5a) but also a highly significant
negative correlation between folding stability and median
expression (rho =!0.19, P< 10!16; fig. 5b) and a positive
correlation with expression breadth (rho = 0.309, P< 10!16;
fig. 5c). To see whether these trends are statistically indepen-
dent from each other, we constructed a linear regression

model to predict RNA stability based on all three expression
parameters and conducted an analysis of variance. There is a
significant three-way interaction between maximum expres-
sion, median expression, and expression breadth (F-test:
P ~ 10!5). These trends suggest that stable lincRNAs are as-
sociated with a high maximum expression and are expressed
in several tissues, but are highly expressed in few or only one
of these tissues and thus also have a low median expression.

For the protein-coding genes in our data set, we observe
negative correlations between folding stability and both max-
imal expression (rho =!0.05, P< 10!9; fig. 5d) and median
expression (rho =!0.07, P< 10!16; fig. 5e) but no significant
correlation with expression breadth (fig. 5f). This is perhaps
surprising as expression breadth is the strongest predictor of
protein evolutionary rates.

Differential Sampling with Respect to Expression Level
Explains Differences between Analyses
The above analyses have thrown up two possibly surprising
results: Splice-related features are centrally important for pre-
dicting between-gene variation in rates of evolution and ex-
pression level appears not to be an important predictor. The
latter result is doubly surprising given how important expres-
sion level is for predicting protein rates of evolution and

FIG. 4. Correlation of expression parameters with evolutionary rates of lincRNAs and protein-coding genes. The evolutionary distance to the macaque
homologue was plotted versus the values of maximum expression (a), median expression (b), expression breadth (c) for each lincRNA, and for protein
coding genes (d-f).
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because Managadze et al. (2011) had previously reported a
coupling between evolutionary rate and expression rate.
There may be several reasons why this correlation is not ap-
parent in the lincRNA data set produced by Cabili et al.
The data set used in the study by Managadze et al. was
based on lincRNA data from the NRED database (Dinger
et al. 2009) and has a smaller sample size compared with
the data set we used in this study. Using a gap threshold of
15% (to match that of Managadze et al., see Materials and
Methods) we are left with 3,592 lincRNAs compared with 519
human and 2,013 mouse lincRNAs in the study by
Managadze et al. This may itself have some influence, as if
we reduce our sample size to 1,500 transcripts we recover a
negative correlation at least as extreme as that seen in
Managadze et al.’s study 18% of the time.

However, the more important reason for the discrepancy
appears to be that the data produced by Cabili et al. is based on
deeper transcriptome sequencing that is less biased toward
highly expressed lincRNA genes. We tested this hypothesis by
analyzing the correlation between expression level and evolu-
tionary rate using only the 50% of lincRNAs that show the
highest maximum expression level. For this data set, we do
observe a weak but significant negative correlation (supple-
mentary fig. S4A–C, Supplementary Material online, P values

for all correlations< 0.05). Indeed, when we repeatedly sub-
sample from only the more highly expressed gene set we re-
cover a negative correlation at least as extreme as that seen in
Managadze et al.’s (2011) study 98% of the time. We obtained
the lincRNA data set used in the study by Managadze et al.
(2011) and can reproduce their results using this data set.

These results suggest that the correlation observed before
between expression level and rate of evolution of lincRNAs
(Managadze et al. 2011) is dependent on limited sampling. It
might be that the more in-depth analysis of Cabili et al. (2011)
is more noisy, especially for lowly expressed transcripts, and
that this extra noise led to the removal of the correlation.
Alternatively, there may not be a monotonic relationship
between expression level and rate, in which case sampling
only the more highly expressed transcripts could enable de-
tection of a strong trend unique to the highly expressed genes.
Alternatively, the prior result may simply be an artifact of
limited sampling. As we cannot discriminate between these
alternatives, we suggest that the evidence against the misfold-
ing hypothesis on the basis of correlation between expression
level on ncRNA evolution (Managadze et al. 2011) be consid-
ered provisional. The possibly stronger evidence (although
this is relative) appears to derive from a weak correlation
between expression breadth and rate of evolution.

FIG. 5. Folding stability and expression of lincRNAs. The folding stability, assessed as the fraction of paired nucleotides in the minimum energy fold, is
plotted against maximum (a) and median expression (b) and expression breadth (c) comparable plots for protein coding genes are shown in d, e, and f.
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Discussion and Further Results
Human lincRNAs have been shown to be almost as poorly
conserved as other intergenic sequences and even highly
functional lincRNAs such as Xist only contain few short
stretches that are well conserved (Pang et al. 2006).
However, many lincRNA loci have conserved promoter se-
quences (Carninci et al. 2005) and conserved splice sites
(Ponjavic et al. 2007). The 50- and 30-splice sites alone are
usually not sufficient to maintain proper intron excision
(Lim and Burge 2001) without the additional presence of
ESE motifs near the splice junction (Wang et al. 2005). In
protein-coding genes, purifying selection is acting to maintain
these motifs and we thus hypothesized that, given the pres-
ence of conserved splice sites, a similar trend might be ob-
servable for lincRNAs. Consistent with this hypothesis, we do
observe that the exon-flank regions of lincRNAs evolve slower
than their exon-core regions. This trend is weaker than the
one observed in protein-coding genes, but qualitatively sim-
ilar and highly statistically significant. We further showed that
the putative ESE motifs within exon flanks evolve significantly
slower than the sites which do not correspond to known ESEs,
indicating that purifying selection to maintain ESE motifs is at
least partly responsible for the slower evolution in exon flanks
compared with core regions.

One possible explanation for the difference in evolutionary
rate between ESE and non-ESE at exon flanks (fig. 2) is that
our data set of lincRNAs is contaminated with protein-coding
genes and these and these alone employ ESEs (or employ
them much more often). Note that if both protein-coding
genes and noncoding genes both employ ESEs at similar den-
sities (which we show they do—fig. 1a and b), then the dif-
ference in rate between ESE and non-ESE cannot be explained
as a contamination artifact. On a priori grounds, it is indeed
hard to see how an SR protein might distinguish an ESE in a
protein-coding immature transcript from the same ESE in a
lincRNA immature transcript. The artifact explanation we
suggest is unparsimonious for numerous reasons. First, all of
our results strongly argue against a large contamination issue:
The rate of evolution is extremely high on average in our
lincRNAs and we do not recover the strongest protein-related
correlations, such as with expression level and RNA stability.
Perhaps more directly, if we split our internal exons into those
with at least one stop codon in every frame (very unlikely to
be protein coding) and all others and repeat the analysis of
ESE and non-ESE rates, we observe that the two partitions of
the data are nearly identical in absolute rates and the differ-
ence between ESE and non-ESE (supplementary fig. S5,
Supplementary Material online). Indeed, the difference be-
tween ESE and non-ESE in the set with stops in all frames is
approximately 15% as it is for the data set en mass and for 4-
fold degenerate sites in protein-coding exons (C!aceres and
Hurst 2014). We conclude that our results are not affected by
contamination from protein-coding sequence.

Given the evidence for purifying selection on ESEs we
might expect to see some genetic diseases associated with
splicing defects in lincRNAs owing to single nucleotide poly-
morphisms close to but not at the splice junctions. The

evidence for selection on ESE refutes the hypothesis that
lincRNAs are the all the product of junk transcription. That
the majority of the selection on lincRNAs is on splicing
presents a new paradox, why it is that selection acts on
the splicing process. In principle there might be at least
three classes of explanation, which we term the product
hypothesis, the error-proofing hypothesis, and the process
hypothesis.

Why Is Most Selection on Human lincRNAs Splice
Related?
Absence of Constraint in Exon Cores Does Not Refute the
Product Hypothesis
The product hypothesis proposes that the product of tran-
scription and splicing is important and the precise exonic
structure of the mature ncRNA relevant to this function (as
with most protein-coding genes). Our finding that exon cores
evolve at rates very similar to those of flanking introns pro-
vides little or no support for the idea that functionality of the
ncRNA product impacts evidently on sequence conservation.
This does not, however, refute the product hypothesis for
several reasons. First, some well-described lincRNAs have
known functions (e.g., Xist) but apparently little or no se-
quence conservation (Pang et al. 2006). Further, were our
lincRNAs to contain very small subset of sites under strong
purifying selection owing to selection on the operation of the
RNA, we would almost certainly be unable to detect it with
our metrics, the sites being too rare and hence diluted. In
addition, conservation of function may be reflected not in
conservation of nucleotide sequence but in tolerated indel
events.

One way to rationalize the apparent rare selection on nu-
cleotide sequence is that ncRNA might be under selection to
enable strong structure, which imposes only weak selection
on the primary sequence. This hypothesis would also be con-
sistent with the observations that many lincRNAs with dis-
tinct sequences are able to bind the same protein complex
(Guttman et al. 2011; Khalil and Rinn 2011) and that the rates
of insertions and deletions, which would be much more dis-
ruptive to the secondary structure than point mutations, are
reduced in lincRNAs (Ponjavic et al. 2007). Were this the case,
however, we might expect that lincRNAs that are more stable
might evolve slower to preserve that structure. Our data,
however, find no support for the view that lincRNA structure
is under selection, or at least that any selection on structure is
operating uniformly in the same direction (e.g., to always
increase stability). This contrasts with the picture for pro-
tein-coding genes and with prior claims for ncRNA
(Managadze et al. 2011). Selection against indels may well
also disrupt splicing, potentially explaining this prior result.
In sum, given evidence of function in the absence of sequence
conservation, we cannot eliminate the hypothesis that
lincRNAs have a direct function, we just find little or no ev-
idence to support it from the mode of sequence evolution in
humans, although the fly data are compatible with such a
model.
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No Strong Evidence for the Nonsense-Mediated Decay
Error-Proofing Hypothesis
Another possibility is that the selection on splicing may be
part of an error-control mechanism. Splicing commonly re-
sults in the mature transcript being bound with the EJC in
proximity to the exon–exon junction (Le Hir et al. 2001).
The complex is known to mediate the effect of splicing on
mRNA expression levels (Wiegand et al. 2003) and so might
be directly beneficial were the lincRNA functional (i.e., the
product hypothesis above). However, many of the effects of
the EJC may well be undesirable for ncRNAs: The EJC acts to
promote export from the nucleus, enable polyadenylation,
and enhance translation (Le Hir et al. 2001; Wiegand et al.
2003). In addition, however, in mammals the EJC is also nec-
essary for the initiation of NMD (Le Hir et al. 2001; Isken et al.
2008). Might the selection on splicing be to enable the EJC to
be attached to initiate NMD should a ribosome inappropri-
ately bind an ncRNA? Binding of ribosomes to ncRNA has
been described (Wilson and Masel 2011), but whether this
reflects improperly annotated coding genes or accidental ri-
bosome initiation in unclear.

At first sight this is a possibly attractive explanation, not
least because it is consistent with the apparent-reduced con-
straint in exon flanks compared with cores in Drosophila, as
flies do not employ the EJC to initiate NMD (Brogna and Wen
2009). The hypothesis also fits with the notion that many
otherwise paradoxical features of gene and genome evolution
are error-correcting or error-proofing (Warnecke and Hurst
2011). However, the hypothesis has at least one major prob-
lem. Although a polyA tail is required for NMD activation
(Brogna and Wen 2009), many ncRNAs are possibly not poly-
adenylated. Indeed, the great majority of the transcripts that
can be detected uniquely in protocols that do not require
polyA tail tagging, compared with methods that require such
tagging, are lncRNAs (Cui et al. 2010).

We can in addition ask whether we can find a trace of
selection for NMD triggering on the ncRNA sequences. Stop
codons less than about 50 bp upstream of the terminal exon–
intron junction are thought to be invisible to the activity of
NMD (Zhang et al. 1998), what we term the NMD shadow.
This provides grounds for potentially instructive tests. If in-
trons are there to trigger NMD, then sequence prior to this
50-bp window might be expected to have a higher frequency
of stops (in any frame). To address this, then we considered
instances of lncRNAs where the last but one exon was more
than 100 bp. We then considered the 50 bp at the 30-end of
this exon and the 50 bp at the 50-end of the same exon. We
then compare stop codon frequency in the 50- and 30-end in a
paired fashion. This method allows us to control for the
amount of sequence analyzed per exon, the proximity to
an exon junction (given that these are expected to be
purine loaded owing to the presence of ESEs), isochore level
nucleotide content, and the possibility that the last but one
exon may actually be protein coding. A small and nonsignif-
icant minority (47.5%) of last but one exons have more stops
at the 50-end than the 30-end (binomial test: P = 0.31). On
average, each 50-bp exon end has about 0.6–0.7 stop codons

in each reading frame. We thus see no evidence that stops are
enriched outside of the NMD 50-bp shadow.

One might object that this test fails to recognize the pos-
sibility that a stop may have occurred prior to the last but one
exon and only one stop is required (per possible frame). To
consider this, then we consider the class of ncRNAs with just
two exons and consider the sequence !100 to !51 prior to
the single exon junction in the first exon and compare this to
sequence !50 to the 30-end of exon (the NMD shadow). As
before the stop codon frequency is no different in the two (in
50.03% of cases the first 50 bp has the higher stop codon
frequency). Of all two exon ncRNAs 20% have no stop
codon outside of the final 50 nucleotides and 55% have
fewer than three, meaning that at least one prospective read-
ing frame is NMD unprotected. Were there selection for stops
outside of the NMD shadow this should be most apparent in
those first exons longer than 50 bp but still relatively short. Of
those first exons that have more than 50 bp of sequence but
less than 101 bp, 45% have no stop codons outside of the
NMD shadow. Randomizing the same 50-sequence we predict
that around 41% would lack a stop codon in any frame by
chance alone suggesting, if anything, that the real sequence is
slightly diminished for stops. Ninety-one percent of the
50-sequences have fewer than three stop codons meaning
that at least one frame of reading is NMD unprotected.
Eighty-six percent of random sequence is expected to have
fewer than three, again suggesting no enrichment of stop
codons to initiate NMD. We can more generally ask about
stop codon density in the 50-exon of two exon genes. If stops
are there to trap ribosomes, then we would expect a higher
density in small first exons as these would be under particular
pressure to encode them, longer first exons likely having a
stop codon by chance. However, stop codon density is unre-
lated to exon length, with no hint of the expected negative
correlation (rho = 0.14, P = 0.51). In sum, we find no good
evidence that selection is enriching these exons for stop
codons to trigger NMD.

The Process Hypothesis: Intron Density Is Associated with
Chromatin and Gene Activity
The final possibility is that it is the process of splicing that is
important. Implicit in the process argument, and contrary to
the product hypothesis, is the notion that after the splicing
event the RNA could be destroyed instantaneously with no
negative consequence. Although it is unclear why the process
might be relevant, we note that recent evidence suggests that
the splicing process is somehow coupled with epigenetic
marks on the DNA (Adam-Hall and Georgel 2011; Luco
et al. 2011). This can mean both that the epigenetic status
of the DNA can affect the process of splicing and, more im-
portantly in this context, that the splicing process can modify
the underlying DNA (Hnilicova and Stanek 2011). Evidence
exists for both directions of interaction (Hnilicova and Stanek
2011). Mechanistically it is unclear how this operates but four
chromatin adaptor proteins (including the chromatin re-
modeler CHD1 [Sims et al. 2007]) are recognized that
permit coupling between splicing factors and histone
posttranslational modifications (Adam-Hall and Georgel
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2011). Similarly, the SWI/SNF chromatin remodeling factors
are known to interact with many components of the spliceo-
some (Adam-Hall and Georgel 2011). We note that a poten-
tial role for introns in modulating the chromatin of the
underlying gene has relevance for explaining why mammalian
transgenes typically require introns for efficient expression. As
this effect is mediated, at least in part, by the recruitment of
the EJC, rather than the presence of an intronic sequence per
se (Wiegand et al. 2003), interaction between the EJC and any
of the above splice/chromatin modifiers would provide a
mechanistic rationale.

Given that ncRNAs are thought to play a role in chromatin
modulation (Mercer and Mattick 2013) (although splicing is
not always necessary [Beckedorff et al. 2013]) this suggests a
hypothesis that is, to the best of our knowledge, novel. Might
the expression and splicing on lincRNAs be a mechanism to
alter the epigenetic landscape of the underlying DNA? If it
does, then might this simply be a mechanism to control ex-
pression of the lincRNA or might it have knock on conse-
quences for flanking genes? In yeast and mammals, for
example, the expression of one gene causes a time-lagged
ripple of gene activation of neighbors associated with spread-
ing altered chromatin (Ebisuya et al. 2008). NcRNAs are well
known to have cis-effects on genes in their vicinity (Pauler
et al. 2012), so this possibility is not without precedent. Here
then we ask two questions. First, is there evidence consistent
with the possibility that lincRNAs affect, through splicing,
underlying chromatin? Second, is there evidence consistent
with the possibility that the activity and splicing of lincRNAs
impact on the chromatin and expression of neighbors? Note
that expression alone might have effects on chromatin even
in the absence of splicing (as in yeast), such a model can also
apply to expression of lincRNAs without introns. Our hypoth-
esis is that splicing can bolster such an effect.

This hypothesis, like the NMD hypothesis, can potentially
explain why constraint is not so evident in exonic flanks in
Drosophila. Although chromatin modifiers can also be splice
modifiers in Drosophila (Hnilicova and Stanek 2011), in flies
ESE density is thought to be relatively low as introns are short
and exons typically have strong splice sites (Warnecke et al.
2008). Humans, in contrast, have much longer introns and
quite often weaker splice sites, both of which predict higher
ESE density (Dewey et al. 2006). Thus information in the
flanks is thought to be of lesser importance in Drosophila
than it is in humans for the specification of splice location
and, while detectable, the impact on codon usage and rates of
evolution at exonic flanks of selection for ESEs is marginal in
protein-coding genes (Warnecke and Hurst 2007).

Intron-Rich Active lincRNAs Are Enriched in CHD1. To test
the first hypothesis, we assessed 1) whether actively tran-
scribed lincRNAs are enriched in CHD1-binding sites com-
pared with inactive lincRNAs and 2) whether the density of
CHD1 is correlated with the intron density (and hence the
amount of splicing per base pair of a gene). This analysis is
limited to the cell lines H1-HESC, from human embryonic
stem cells, and K562, a leukemia cell line, as those are the
only cell lines for which CHD1 modifications are available in

the ENCODE data set. lincRNA expression status and expres-
sion of neighbors we derive from the same two cell types.
Note that the genes considered active or inactive in the two
cells in these analyses are specific to each cell and the CHD1
measure is similarly specific to each cell type. Thus, the two
cell types are independent tests of the same hypothesis.

We find that active lincRNAs are more dense in CHD1 on
the DNA containing the gene compared with the transcrip-
tionally inactive lincRNAs (Mann–Whitney U test, two tailed,
P = 3.9! 10"9 in H1 and P = 4.8! 10"9 in K562). Concerned
that this statistic may be misled by large number of sequences
with no CHD1 binding, we repeated the analysis using a
Monte Carlo simulation (see Materials and Methods) which
may be more robust to the data structure. The results remain
robust (from simulation: P << 10"4).

In addition, we can ask whether the CHD1 density on a
ncRNA is predicted by the density of introns. As can be seen
(fig. 6), active genes have higher CHD1 density the more in-
trons they have (H1; rho = 0.23, P< 2.2! 10"16, for K562
rho = 0.16, P< 2.2! 10"16). For the inactives, the inverse is
seen, the effect being greatly owing to the great number of
intron-rich genes without any CHD1 (H1 inactive,
rho ="0.11, P< 5.2! 10"15, for K562 rho ="0.19,
P< 2.2! 10"16). This might suggest active purging of
CHD1 from inactive genes. Considering CHD1 coverage (i.e.,
proportion of gene covered by at least one CHD1 span) does
not affect conclusions: H1 active, rho = 0.1, P< 10"12, K562
active rho = 0.08, P< 10"8, inactives: H1 rho ="0.15,
P< 2.2! 10"16, K562 rho ="0.23, P< 2.2! 10"16. These
tests are robust to application of Goodman–Kruskall
gamma test, a test more robust to tied values (see fig. 6). In
turn we can ask whether CHD1 occupancy correlates with the
extent of open chromatin within the genes in question, as
assayed by the density of DNAase Hypersensity Sites (DHS).
As expected, active genes have higher DHS than inactive ones
and the extent of DHS correlates positively with intron den-
sity (fig. 7). There is a strong positive correlation between
CHD1 occupancy and DHS occupancy in both cell types
(table 2).

These findings are consistent with the chromatin modifi-
cation/splicing hypothesis, in which splicing recruits CHD1 to
the underlying sequence which in turn acts to maintain or
force opening of chromatin. Moreover, consistent with the
notion that splicing enables the focal gene to remain open
and active we find that the intron density in both cell lines is
higher for active genes than for inactive ones (Mann–
Whitney U test: H1, P = 0.0003, K562 P = 0.04).

Intron Density of lincRNA Predicts Local DHS Density and
Expression of Neighbors. Although the above evidence is
consistent with the hypothesis that splicing of lincRNAs me-
diates recruitment of CHD1 to the underlying DNA, it pro-
vides no evidence that this has consequences for the
neighboring genes. It may simply be the case that CHD1 re-
cruitment aids the maintained expression of the focal
lincRNA (for whatever reason) or indeed, that CHD1 recruit-
ment is an incidental occurrence, a necessary consequence of
splicing. We can then also ask whether active lincRNAs define
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a broader domain of open chromatin and a domain of in-
creased gene activation, as supposed by the ripple hypothesis
(Ebisuya et al. 2008). To this end we ask about activity in the
domains flanking the focal genes, both in terms of chromatin
and gene activity. As in humans the ripple effect is thought to
extend approximately 100 kb (Ebisuya et al. 2008), this defines
the span that we examine.

To analyze the chromatin state, we examine the density of
DHS in spans around the focal active or inactive lincRNAs. We
calculated the DHS density in independent 10-kb windows
either side of active and inactive lincRNA and then compare
the density, at a given distance between the active and inac-
tive ones. As can be seen the DHS density is highest in the
immediate vicinity of active loci in both cell types (fig. 8 and
supplementary fig. S6, Supplementary Material online). It is
striking that active lincRNAs appear to be at the position of
maximal chromatin opening. This is what would be expected
were activity of the lincRNA causing a rippling/spreading
opening of chromatin.

If the chromatin splice model is correct and enables
spreading of open chromatin, then we might expect that
the local DHS density is correlated both with intronic density
and with activity of the focal gene. To examine this, we con-
sider the 50-kb blocks either side of the focal gene and take

the average DHS density. We then ask whether that density is
correlated with the intron density of the focal gene. We find
that it is both for active and inactive genes (table 3; supple-
mentary fig. S7, Supplementary Material online). Similarly, the
CHD1 density in the focal gene predicts DHS coverage in the
flanking sequence (table 4), this effect being either about the
same magnitude as in the inactives or much more profound
when the focal gene is active, depending on the data set. To
ask then whether the inactives and actives differ in the local
DHS density controlling for gene intron content, we perform
a loess regression and compare the residuals for the actives
and inactives. We consider numerous alternative kernels for
the loess to consider the consequence of different smoothing
parameters. In all cases, the actives have a higher DHS density
in their vicinity than the inactives (supplementary table S2,
Supplementary Material online). We conclude that high
intron density, high CHD1 occupancy, and gene activity of
the focal lincRNAs all predict higher DHS levels in the neigh-
borhood of the active gene, consistent with a spreading chro-
matin model.

We can in addition ask whether this open chromatin has
any functional correlates. We might, for example, imagine
that upregulation of a lincRNA with a high intron density
modifies local chromatin and enables genes in the vicinity
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FIG. 6. CHD1 density within lincRNAs is higher in active intron rich genes. Here, for each gene, we consider the number of CHD1 peaks (as specified by
ENCODE) per unit base pair of each gene and compare this with the number of introns per unit base pair of gene length (in both cases we employ the
length of the unspliced gene). We consider those lincRNAs that are transcriptionally active or inactive in each cell type separately. As can be seen, active
genes have higher CHD1 density the more introns they have. For H1 active, rho = 0.23, P< 2.2! 10"16, for K562 rho = 0.16, P< 2.2! 10"16. For the
inactives, the inverse is seen the effect being greatly owing to the great number of intron rich genes without any CHD1: For H1 inactive, rho ="0.11,
P< 5.2! 10"15, for K562 rho ="0.19, P< 2.2! 10"16. Concerned that there were many tied values we examined the latter result using the Goodmans
Kruskall gamma test, this being more robust to tied values. Results are unaffected (for H1 active, gamma = 0.2048, H1 inactive gamma ="0.0863, K562
active gamma = 0.1353, and K562 inactive gamma ="0.1382; all P’s< 0.001 from 1,000 simulations). Note that the genes considered active or inactive
in the two cells are specific to each cell and the CHD1 measure is similarly specific to each cell type. Thus, the two cell types are independent tests of the
same hypothesis. Considering CHD1 coverage (i.e., proportion of gene covered by at least one CHD1 span) does not affect conclusions: H1 active,
rho = 0.1, P< 10"12, K562 active rho = 0.08, P< 10"8, inactives: H1 rho ="0.15, P< 2.2! 10"16, K562 rho ="0.23, P< 2.2! 10"16. Results are again
robust to application of Goodmans Kruskal gamma (H1 active gamma = 0.0865, K562 active gamma = 0.0654 and H1 inactive gamma ="0.142 and
K562 inactive gamma ="0.1834 and all P< 0.001, from 1,000 simulations).
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to be expressed by spreading of chromatin. Consistent with
this, the neighbors of active lincRNAs are themselves espe-
cially active. Just as active genes sit at local DHS peaks, so too
active lincRNAs sit at the centre of peaks of expression (fig. 9
and supplementary fig. S8, Supplementary Material online).
The DHS and the expression modulation peaks extend ap-
proximately the same distance. As expected given this model,

intron-rich and intron-poor lincRNAs have differing gene ac-
tivity in their vicinity (correlation between intron density
and percentage of genes expressed, for H1 and K562
active rho = 0.08, P< 1! 10"8) (supplementary fig. S9,
Supplementary Material online). This correlation is slightly
weaker when the focal gene is inactive (for both rho = 0.07,
P< 10"6). Similarly the focal gene’s CHD density positively
correlates with the expression of neighbors (H1 actives,
rho = 0.19, P = 1.2! 10"43; K562 actives rho = 0.18, P =
6.7! 10"35). Again controlling for intron density, using the
loess method, we find that active lincRNAs have higher gene
expression in their vicinity than inactive ones (supplementary
table S3, Supplementary Material online).

The above evidence is consistent with the model that
transcription and splicing of lincRNAs modulate chromatin
of the underlying gene body which can in turn have a spread-
ing effect, modulating expression of neighbors.

Alternative Models and Interpretations
Above we discussed three possibilities but this catalogue of
possible explanations is by no means exhaustive. It has, for
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FIG. 7. DHS density as a function of intron density for active and inactive genes. As within the WashU data set DHS density is rather low (such that most
short genes have no DHS peak within the gene), we here analyze the data in manner designed to avoid the inherent stochasticity this induces. First, we
rank all genes by total gene length (including introns). We then divide the data into bins of equal total gene size. With ten bins, the first bin contains the
longest genes whose total length in approximately 1/10 the total gene length. Thus, each bin has different numbers of genes but an equal amount of
total sampled DNA. We then calculate for each bin the total number of introns to derive the number of introns per kilobase of sequence. We also
consider the total number of DHS peaks and calculate the number of these per kb. All correlations are significant at P< 0.0002 (Spearman). In all
incidences, the mean DHS density is higher in the actives than the inactives (paired t-test, P< 0.05).

Table 2. Correlation between Intragenic DHS Density and CHD1
Coverage Density Occupancy within Active Genes.

Source of DHS Data H1 K562

Duke P< 2.2 E-16 P< 2.2 E-16
rho = 0.43 rho = 0.51

WashU P< 2.2 E-16 Rep1:
rho = 0.44 P< 2.2 E-16

rho = 0.30
Rep2:
P< 2.2 E-16
rho = 0.31

NOTE.—lincRNA data from Derrien et al. (2012). WashU DHS data provide two
replicates for K562. We analyze both separately.
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example, been demonstrated that ncRNAs can act as long-
range cis-silencers by transcriptional interference, and could
thus be regulatory active without the mature RNA being in-
volved in the process (Pauler et al. 2012). This would be a
further manifestation of the process argument, although why
this process requires splicing is unclear. There might in turn be
selection for the correct placement of the EJC, for reasons
other than the initiation of NMD. EJCs are, for example,
thought to regulate RNA localization (Giorgi and Moore
2007). Given that EJC placement is not now thought to be
constitutive (Sauliere et al. 2010), it will be informative to
know whether lincRNAs are unusual in their ability to attract
these complexes.

Our chromatin model results are consistent with a model
in which splicing of lincRNAs recruits CHD1 (and related
splice associated chromatin modifiers) to transcriptionally
active DNA, and this in turn enables both the chromatin
within the focal gene to remain open and for there to be
some spreading away from the focal active gene which is
permissive for expression of neighbors. The same model, we
note, also suggests a novel hypothesis for the positive corre-
lation between intron density and expression breadth of pro-
tein-coding genes (Parmley et al. 2007) on the one hand, and
the tendency for house-keeping genes to genomically cluster

(Lercher et al. 2002). Broadly expressed (housekeeping) genes
may be selectively favored to have absolutely more introns to
enable a self-reinforcing open chromatin (N.B. intron density
is higher in active genes). This would be mediated by splicing
increasing the chances of recruiting CHD1 (and similar
splice/chromatin modifiers) to the local DNA, which increases
the chances of keeping chromatin open, enabling a higher
likelihood of further transcription of the neighboring broadly
expressed genes.

However while consistent with the model, our results are
also consistent with alternative models. Notably, if for some
other reason intron-rich genes tend to reside in domains of
high gene activity then it is possible that the lincRNA has
expression passively dependent on the local DHS/expression
environment, much as transgenes adopt the expression pro-
file of neighbors (Gierman et al. 2007). Consistent with this
model highly and broadly expressed genes cluster in mam-
malian genomes (Caron et al. 2001; Lercher et al. 2002).
Similarly, GC rich isochores tend to be domains of small in-
trons and hence a higher intron density measured as introns
per base pair of full gene. Note, however, in this model, given
the evidence of local transgene adoption of expression pro-
files (Gierman et al. 2007), there is still a need to evoke the
notion that local gene expression influences genes in the
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FIG. 8. The DHS density in sites flanking active and inactive lncRNAs.

Table 3. Spearman Correlation between the Focal lincRNA Gene’s
Intron Count Density per Kilobase and DHS Coverage per Kilobase
in! 50 kb Flanks.

Flanking Data
(!50 kb)

Active
Rho

Active P Inactive
Rho

Inactive P

Duke H1 0.264 2.34E-78 0.219 1.82E-50

Duke K562 0.239 1.11E-63 0.223 3.38E-52

WashU H1 0.183 5.49E-38 0.132 6.62E-19

WashU K562 Rep1 0.190 1.49E-40 0.191 1.31E-40

WashU K562 Rep2 0.146 4.12E-23 0.142 7.16E-22

Table 4. Spearman Correlation between the Focal lincRNA Gene’s
CHD1 Density per Kilobase and DHS Coverage per Kilobase in
!50 kb Flanks.

Flanking Data
(!50 kb)

Active
Rho

Active P Inactive
Rho

Inactive P

Duke H1 0.334 1.72E-127 0.303 3.84E-97

Duke K562 0.465 1.02E-258 0.264 5.14E-74

WashU H1 0.455 2.09E-247 0.369 6.16E-147

WashU K562 Rep1 0.528 0 0.529 0

WashU K562 Rep2 0.286 9.65E-87 0.286 5.69E-87
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vicinity. Indeed, to disallow the possibility that lincRNAs do
not affect their neighborhood, one would have to make a
special case as to why one class of gene (protein coding)
might affect neighbors but another (lincRNAs) do not. Why
in this passive expression model intron dimensions of the
focal lincRNA covary with local expression level is unclear,
but could reflect a local mutational bias toward deletions.
Indeed, intron size and intergene distance tend to covary
(Urrutia and Hurst 2003).

The required experiment to distinguish these two expla-
nations would be the introduction of a lincRNA with and
without introns and ask whether the intron containing one
affects the local DHS and expression of neighbors more than
the same insertion when lacking the intron. It would also be
helpful to know whether transcription rate of a lincRNA, with
or without introns, might predict the extent of any upregula-
tion of neighbors. Should it prove to be the case that intron-
bearing genes modulate the expression of their neighbors, this
would have consequences for the assessment of the safety of
transgene inserts, as, for example, in gene therapy.

Materials and Methods

Sequences, Alignments, and Evolutionary Distances
ncRNAs are commonly classified by their length into small
(18–31 nt), medium (32–200 nt) and long (from 200 nt up to
several hundred kilobases) ncRNAs (Wilusz et al. 2009;
Nagano and Fraser 2011). The lncRNAs are the most myste-
rious group among those three. Few of them have been ex-
perimentally characterized and many are poorly conserved on
the sequence level (Amaral et al. 2011; Lee 2012). The group of
lncRNAs can be further divided into those transcripts that
overlap protein-coding genes and lincRNAs (Ponting et al.
2009). The lncRNAs that overlap protein-coding genes are
most likely involved in sense–antisense regulation (Chen
et al. 2005). Their evolution is likely to be constrained by
the evolution of the antisense target and hence is not optimal

to ask about selection on ncRNAs more generally. Here then
we solely examine lincRNAs. So far, few lincRNAs have been
experimentally characterized, but functional lincRNAs seem
to be involved in protein-coding gene regulation by means of
chromatin remodeling, transcriptional control, and posttran-
scriptional processing (Mercer and Mattick 2013).

The data set of putative human lincRNAs identified by
Cabili et al. (2011) was downloaded as BED (Browser
Extensible Data, including genomic coordinates) formatted
data (supplementary material in Cabili et al. 2011). These
putative lincRNAs were inferred based on the reconstruction
of transcripts based on greater than 4 billion RNA-seq reads
collected from 24 human tissues. In total, 10,500 putative
lincRNAs have been identified by the authors. This set of
candidate lincRNAs was filtered to remove transcripts
where evidence for protein-coding potential could be de-
tected (as specified by the original authors), which leads to
a subset of 8,195 lincRNAs. This subset was further been fil-
tered to remove lincRNA genes that could not be recon-
structed in at least two different tissues, or reconstructed
by two different assemblers in the same tissue, leaving a strin-
gent subset of 4,662 lincRNAs (Kapranov et al. 2007). Unless
otherwise noted, this stringent lincRNA subset was used for
analyses in this study.

The intron and exon sequences (based on the hg19 assem-
bly) corresponding to the lincRNA BED data were down-
loaded from the Galaxy server (Blankenberg et al. 2011).
The galaxy server was also used to extract alignments of
these regions to the rhesus macaque genome (rheMac2 as-
sembly), based on the UCSC 46-way whole-genome multiZ
alignment (Kent et al. 2002). The intron and exon alignment
blocks were concatenated with the “stitch gene blocks” func-
tion provided by the Galaxy server to produce alignments of
concatenated exons and concatenated introns for each
lincRNA gene. The fraction of alignment positions that cor-
respond to insertions/deletions (indels) was calculated with a
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FIG. 9. Gene expression in the vicinity of active and inactive lincRNAs.
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custom script and alignments with a fraction of indels higher
than a given threshold were discarded. Unless otherwise
noted, this threshold was set to 15% (this threshold, while
arbitrary, enables comparison to other analyses).

To compare the properties of lincRNAs with those of pro-
tein-coding genes, we gathered BED12 data for the 17,132
reconstructed protein-coding transcripts from the data set
and constructed alignments to the homologous regions in
the macaque genome with the same approach as described
for the lincRNAs. Note that we employ intronic sequence
away from exon ends as a comparator not because all the
sequence is necessarily neutrally evolving but because it 1)
controls for local variation in the mutation rate (Matassi et al.
1999; Lercher et al. 2001), 2) conforms with numerous prior
analyses (Hurst and Smith 1999; Pang et al. 2006), and 3)
controls for transcription-coupled mutational/repair pro-
cesses (Hanawalt and Spivak 2008). Importantly, comparison
with flanking nontranscribed sequence, even if GC matched,
does not control for this. If transcription-coupled repair is
prevalent even on neutrally evolving sequence, in comparing
exonic rates of evolution to flanking but untranscribed and
hence unrepaired sequence, one could potentially misinfer
purifying selection on the exon. In contrast, as introns may
contain hidden residues under constraint, the comparison of
exonic to intronic rates to infer purifying selection on the
exons is most probably conservative. We note in addition
that with biased gene conversion prevalent in the human
genome (Duret and Galtier 2009) no sequence can be guar-
anteed to provide a perfect neutral proxy.

Evolutionary distances between human and macaque se-
quences were calculated with a custom implementation of
the method proposed by Tamura and Kumar (2002). This
method relaxes the assumption of substitution pattern ho-
mogeneity among lineages and thus allows for a more accu-
rate distance estimation. Note that to enable fair comparison
between protein-coding genes and lincRNAs we use the same
metric for both. This is also meaningful as the dominant
constraints that we are examining, splice-related selection
and RNA folding, operate at the RNA rather than the protein
level.

Expression Data
We used the expression patterns of lincRNAs and protein-
coding transcripts based on the supplementary tables S2 and
S6 of Cabili et al. (2011). For each lincRNA, the FPKM (frag-
ments per kilobase of exon per million fragments mapped)
value for each of the 24 studied tissues was extracted. We
log-normalized the FPKM values and calculated the maxi-
mum and median FPKM for each lincRNA. The expression
breadth was assessed by calculating the fraction of tissues
where the respective lincRNA was detectably expressed
(FPKM 4 0).

For analysis of the expression of genes neighboring focal
ncRNA genes, we used the profiles available for H1 and K562
cell lines on Encode portal, generated with Gencode V7 an-
notation (2012). We considered gene expression in bins

flanking focal ncRNA genes. Average gene expression per
bin is calculated as below:

Note here we simply consider whether a gene is expressed
or not, not its absolute level.

ESE Hexamers
We annotated putative ESE motifs in the lincRNA and pro-
tein-coding alignments by using the set of experimentally
confirmed human ESE-hexamers employed in a previous
study (Parmley et al. 2006) as defined by Fairbrother, Yeo,
et al. (2004). These are presented in supplementary table S4,
Supplementary Material online.

RNA Folding Simulation
We used the UNAfold (Markham and Zuker 2008) software
package to computationally predict the minimum energy
folding of each lincRNA sequence. The “hybrid-ss-min” tool
from the UNAfold package was run on each sequence with
default parameters and we subsequently inferred the
number of paired nucleotides from the output file. The
proportion of folded nucleotides in the minimum energy
RNA structure was used as a proxy for RNA-folding
stability.

Assessing CHD1-Binding Sites in Active lincRNAs
We used ENCODE Project Consortium (2012) data in the
latest release to find the CHD1-binding sites for the
lincRNAs that both correspond to our stringent subset of
the Cabili et al.’s data and are also found in the Macaque
genome. Specifically, we downloaded the broadPeak data sets
for the only human cell lines for which CHD1 modifications
are available—k562 and h1-hesc (available on http://genome.
ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeBroadHist
one, last accessed September 1, 2014).

To calculate the density for each lincRNA, the number of
CHD1’s peaks which are overlapping this lincRNA is divided
by the lincRNA-length. In addition, we consider the sum
breadth of CHD1 spans (as specified by ENCODE) and con-
sider the proportion of this span to the gene length. Unless
specified otherwise, analysis is on the number of CHD1 peaks
per base pair. As the K562 and H1-hesc cell lines have not
been considered in the data set of Cabili et al., we assessed
whether lincRNAs were expressed in these cell lines based on
Caltech and CSHL RNA seq data sets available from ENCODE
(http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEn
codeCaltechRnaSeq and http://genome.ucsc.edu/cgi-bin/hg
FileUi?db=hg19&g=wgEncodeCshlLongRnaSeq [last accessed
September 1, 2014] respectively). Based on these data sets,
we find 346 lincRNAs to be actively expressed in the H1-hesc
cell line and 338 in the K562 cell line. For analysis comparing
various features against intron density in lincRNAs, we
employ the larger lincRNA data set of Derrien et al. (2012).

As there are multiple sequences with no CHD1 binding, we
were concerned that the Mann–Whitney U test might be
misleading. To explore this, we used a Monte Carlo simulation
to test whether the enrichment of CHD1-binding sites in
active sequences could be explained by chance. To do this
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for each cell type, we combined the active and inactive sets
and randomly selected two sets: A hypothetical active set and
a hypothetical inactive set, including the same number of
sequences as observed in each cell line by querying
ENCODE data. This was iterated 10,000 times, each time
the difference between medians of CHD1 density in two
sets was calculated and compared with the difference in me-
dians observed in the real data. The number of times the
median difference in hypothetical and randomly generated
sets was as high or higher than the median difference was
observed. In this test the unbiased estimation of the P of this
Monte Carlo simulation is P = (n + 1)/(m + 1), where n is the
number of randomization as extreme or more extreme in the
difference between the two classes as seen in the real data and
m is the number of randomizations.

DHS-Binding Profile
DNase hypersensitive sites (DHSs) point at open chromatin
segments on chromosomes. Different tissues diverge in loca-
tions of DHSs, encouraging tissue-specific gene expression
patterns. The DHSs data available through ENCODE portal
are generated in two production centers, University of
Washington and Duke University, through a similar proce-
dure. WashU provides two sets for K562 accessible through:
http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEnc
odeUwDnase, last accessed September 1, 2014. Duke’s data
sets are accessible from: http://genome.ucsc.edu/cgi-bin/
hgFileUi?db=hg19&g=wgEncodeOpenChromDnase, last acc-
essed September 1, 2014.

Supplementary Material
Supplementary figures S1–S9 and tables S1–S4 are available at
Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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SUPPLEMENTARY,DATA,

Supplementary,figure,1.,Relative!frequencies!of!bases!predicted!to!be!part!of!an!ESE!motif!as!
a!function!of!the!distance!to!the!nearest!intron,!starting!at!a!distance!of!6!(a+b).!Shown!in!c+d!

is!the!decadic!logarithm!of!the!average!intron!length!for!lincRNA!and!proteinKcoding!genes!vs.!

the! density! of! ESE!motifs! on! the! exon! sequences! of! this! gene.! For! c+d,! "density"! has! been!

measured! as! the! number! of! nucleotides! that! belong! to! a! putative! ESE!motif! divided! by! the!

summed!length!of!exons!for!the!respective!gene.!This!figure!includes!all! lincRNAs!instead!of!

only!the!conservative!subset!(see!methods).!

Supplementary Figure 2. ESE!motifs!evolve!slower!than!nonKESE!sites.!The!substitution!rates!
in!ESEs!and!nonKESEs!are!shown!as!a!function!of!the!distance!from!the!nearest!spliceKjunction.!

This!figure!includes!all!lincRNAs!instead!of!only!the!conservative!subset!(see!methods).!

Supplementary Figure 3. Exon!cores!and!flanks!evolve!at!different!rates.!The!distributions!of!
Kec/Kic and! Kef/Kec values! are! shown! for! proteinKcoding! genes! and! lincRNAs.! This! figure!
includes!all!lincRNAs!instead!of!only!the!conservative!subset!(see!methods).!

Supplementary Figure 4. Evolutionary! rates! and! lincRNA! expression.! The! evolutionary!
distance! to! the!macaque! homologue!was! plotted! vs! the! values! of!maximum!expression! (a),!

median!expression!(b)!and!expression!breadth!(c)! for!each! lincRNA.!This! figure! includes!all!

lincRNAs!instead!of!only!the!conservative!subset!(see!methods).!

Supplementary, Figure, 5.! !DHS!density! in! the!vicinity!of!active!and! inactive! lincRNAs! from!
the!WashU!data.!

Supplementary,Figure,6.! !The!relationship!between!local!DHS!density!(+/K50kb!either!side!
of!a!focal!gene)!and!the!intron!density!of!that!gene.!!

!

Supplementary,Figure,7.!!Proportion!of!gene!expressed!in!the!vicinity!of!active!and!inactive!
lincRNAs!from!the!WashU!data.!

Supplementary, Figure, 8.! ! The! relationship! between! the! local! expression! (proportion! of!
genes!expressed!in!+/K!50kb!window)!and!the!intron!density!of!the!focal!gene.!

!

Table S1. Normal! and! partial! correlations! with! evolutionary! rate! (measured! as! TamuraK
Kumar! distance,! see!methods)! using! Pearson! product!moment! correlation! and! Spearmans.!

Numbers!highlighted!in!bold!are!significant!after!Bonferonni!correction!with!N=14.!

Table,S2.!Analysis!of!residuals!of!loess!plot!of!intron!density!versus!local!DHS!density!

Table,S3.!Analysis!of!residuals!of!loess!plot!of!intron!density!versus!local!expression!

!!

!

!

!
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Table,1.!Normal!and!partial!correlations!with!evolutionary!rate!(measured!as!TamuraKKumar!

distance,! see! methods)! using! Spearman’s! correlation! (for! Pearson! correlation! see!

supplementary! table! 1).! Numbers! highlighted! in! bold! are! significant! after! Bonferonni!

correction!with!N=14.!!

!

LincRNA Normal Partial 
Max. Expression rate -0.005 0.032 
Med. Expression rate -0.025 -0.035 
Exp. breadth -0.038 -0.091** 
RNA stability 0.048# 0.009 
Frac70 -0.051# -0.011 
ESE density -0.182*** -0.194*** 
GC -0.058* -0.102*** 
 
Protein coding Normal Partial 
Max. expression -0.203*** -0.019 
Med. Expression -0.339*** -0.063*** 
Exp. Breadth -0.369*** -0.189*** 
RNA stability 0.154*** 0.028* 
Frac70 -0.222*** -0.101*** 
ESE density -0.29*** 0.008 
GC 0.313*** 0.168*** 

!

!

Significance!codes!for!pKvalues:!#!P!<!0.01;*!P!<!10K3;!**!P!<!10K6!;***!P!<!10K9!!

!

!

!

Table,2.!!Correlation!between!intragenic!DHS!density!and!CHD1!coverage!density!occupancy!

within!active!genes.!!LincRNA!data!from!Derrien!et!al.(Derrien,!et!al.!2012).!WashU!DHS!data!

provides!two!replicates!for!K562.!!We!analyse!both!separately.!

!

Source,of,DHS,
data,

H1 K562 

Duke! p-value < 2.2e-16 
rho = 0.429496 

p-value < 2.2e-16 
rho = 0.5130903 

WashU! p-value < 2.2e-16 
rho = 0.4447778 

Rep1: 
p-value < 2.2e-16 
rho = 0.3011269 
Rep2: 
p-value < 2.2e-16 
rho = 0.3076285 

,
,
, ,



! 94!

Table,3.!Spearman,correlation,between,the,focal,lincRNA,gene’s,Intron,count,density,per,
Kb,and,DHS,coverage,per,Kb,in,±50Kb,flanks!!
!

!

Flanking,
data,
(+/V
50kb),

Active,rho, Active,
P,

Inactive,rho, Inactive,
P,

Duke,H1, 0.263832376! 2.34EK

78!

0.218965279! 1.82EK

50!

Duke,
K562,

0.238683917! 1.11EK

63!

0.22204091! 3.38EK

52!

WashU,
H1,

0.183116797! 5.49EK

38!

0.131202149! 6.62EK

19!

WashU,
K562,
Rep1,

0.189931885! 1.49EK

40!

0.190064325! 1.31EK

40!

WashU,
K562,
Rep2,,

0.145656374! 4.12EK

23!

0.141437648! 7.16EK

22!

!

Table,4,Spearman,correlation,between,the,focal,lincRNA,gene’s,CHD1,density,per,Kb,and,
DHS,coverage,per,Kb,in,±50Kb,flanks,
,

Flanking,
data,
(+/V
50kb),

Active,rho, Active,
P,

Inactive,rho, Inactive,
P,

Duke,H1, 0.334331422! 1.72EK

127!

0.303009846! 3.84EK

97!

Duke,
K562,

0.465303297! 1.02EK

258!

0.264378638! 5.14EK

74!

WashU,
H1,

0.454898251! 2.09EK

247!

0.36938285! 6.16EK

147!

WashU,
K562,
Rep1,

0.528028699! 0! 0.529417285! 0!

WashU,
K562,
Rep2,,

0.285852821! 9.65EK

87!

0.286223385! 5.69EK

87!

, ,
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Figure 1. Relative frequencies of bases predicted to be part of an ESE motif as a function of the distance to the 

nearest intron, starting at a distance of 6 (a+b). Shown in c+d is the decadic logarithm of the average intron length 

for lincRNA and protein-coding genes vs. the density of ESE motifs on the exon sequences of this gene. For c+d, 

"density" has been measured as the number of nucleotides that belong to a putative ESE motif divided by the summed 

length of exons for the respective gene. This figure includes only the conservative lincRNAs.  For the complete set see  

Supplementary Figure 1.  
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Figure,2.,ESE,motifs,evolve,slower, than,nonVESE,sites.!The!substitution!rates!in!ESEs!and!

nonKESEs!are!shown!as!a!function!of!the!distance!from!the!nearest!spliceKjunction.!This!figure!

includes!only!the!conservative!lincRNAs.!!For!the!complete!set!see!!Supplementary!Figure!2.!!

!
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!

!

Fig., 3, Exon, cores, and, flanks, evolve, at, different, rates.! The! distributions! of!Kec/Kic'and!

Kef/Kec!values!are!shown!for!proteinKcoding!genes!and!lincRNAs.!

!

!
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Figure,4,Correlation,of,expression,parameters,with,evolutionary,rates,of, lincRNAs,and,

proteinVcoding, genes.!The!evolutionary!distance! to! the!macaque!homologue!was!plotted!vs!

the!values!of!maximum!expression!(a),!median!expression!(b)!and!expression!breadth!(c)! for!

each!lincRNA.!

!

!
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Figure,5,Folding,stability,and,expression,of,lincRNAs.,The!folding!stability,!assessed!as!the!

fraction!of!paired!nucleotides!in!the!minimum!energy!fold,!is!plotted!against!maximum!(a)!and!

median!expression!(b),!expression!breadth!(c)!and!evolutionary!distance!(d).!

!

!

!

! !
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Figure,6.,CHD1,density,within, lincRNAs, is,higher, in,active, intron,rich,genes.!Here,!for!

each!gene,!we!consider! the!number!of!CHD1!peaks! (as! specified!by!ENCODE)!per!unit!base!

pair! of! each! gene! and! compare! this!with! the! number! of! introns! per! unit! base! pair! of! gene!

length! (in! both! cases! we! employ! the! length! of! the! unspliced! gene).! We! consider! those!

lincRNAs!that!are!transcriptionally!active!or! inactive! in!each!cell! type!separately.! !As!can!be!

seen,! active! genes! have! higher! CHD1! density! the! more! introns! they! have.! ! For! H1! active,!

rho=0.23,!P<2.2!x!10K16,!for!K562!rho=0.16,!P<2.2!x!10K16.!!For!the!inactives,!the!inverse!is!seen!

the!effect!being!greatly!owing!to!the!great!number!of!intron!rich!genes!without!any!CHD1:!For!

H1!inactive,!rho=K0.11,!P<5.2!x!10K15,! for!K562!rho=K0.19,!P<2.2!x!10K16.! !Note!that!the!genes!

considered!active!or!inactive!in!the!two!cells!are!specific!to!each!cell!and!the!CHD1!measure!is!

similarly!specific!to!each!cell!type.!!Thus!the!two!cell!types!are!independent!tests!of!the!same!

hypothesis.!Considering!CHD1!coverage!(i.e.!proportion!of!gene!covered!by!at!least!one!CHD1!

span)!doesn’t!affect!conclusions:!H1!active,!rho=0.1,!P<10K12,!K562!active!rho=0.08,!P!<!10K8,!

inactives:!H1!rho=K0.15,!P<2.2!x!10K16,!K562!rho=K0.23,!P<2.2!x!10K16.!
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Figure,7,DHS,density,as,a,function,of,intron,density,for,active,and,inactive,genes.,,As!
within!the!WashU!dataset!DHS!density!is!rather!low!(such!that!most!short!genes!have!no!DHS!

peak!within!the!gene),!we!here!analyse!the!data!in!manner!designed!to!avoid!the!inherent!

stochasticity!this!induces.!!First!we!rank!all!genes!by!total!gene!length!(including!introns).!!We!

then!divide!the!data!into!bins!of!equal!total!gene!size.!!With!ten!bins,!the!first!bin!contains!the!

longest!genes!whose!total!length!in!approximately!1/10!the!total!gene!length.!!Thus!each!bin!

has!different!numbers!of!genes!but!an!equal!amount!of!total!sampled!DNA.!!We!then!calculate!

for!each!bin!the!total!number!of!introns!to!derive!the!number!of!introns!per!kb!of!sequence.!!

We!also!consider!the!total!number!of!DHS!peaks!and!calculate!the!number!of!these!per!kb.!All!

correlations!are!significant!at!P!<0.0002!(Spearmans).!!In!all!incidences!the!mean!DHS!density!
is!higher!in!the!actives!than!the!inactives!(paired!t.!test,!P<0.05)!
!
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Figure,8,The,DHS,density,in,sites,flanking,active,and,inactive,lncRNAs.,
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Figure,9,Gene,expression,in,the,vicinity,of,active,and,inactive,lincRNAs,
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Chapter 5. Highly prized immigrants: 
How endogenous retrovirus elements rewired our 
pluripotency network 

 
 

Introduction 

In previous chapters, I have shown that neighboring coding genes correlate in their 
evolution of expression across Primates and Yeasts. I have also presented evidence on 
how weak purifying selection found splice enhancer motifs points at non-coding genes 
being involved in regulating their neighboring coding genes. In this chapter, I will take 
one step further and show how study of a primate specific endogenous retrovirus family 
in the context of stem cells has revealed the critical role these foreign element play in 
rewiring our pluripotency network. Human specific endogenous retroviruses, HERVs, 
provide an excellent opportunity to investigate the effect of randomly scattered almost-
identical sequences on evolution of expression profile of their neighboring genes. In this 
sense, HERVs can be seen as a naturally occurring transgene experiment. 

It needs to be clarified that the data and analysis provided in this chapter are result of a 
collaboration with the lab of Prof. Zsuzsanna Izvak, at Max Delbruck center in Berlin. 
Result of this collaboration has been published in Nature. Some of the analyses I have 
conducted were removed from this publication due to word count restrictions, accepted 
number of figures and other limitations enforced by the journal. Also due to replication 
of many of my in silico analyses in vivo, we have decided to drop some of the 
Bioinformatics analyses out of the final paper. However, as these analyses were 
instrumental in the discovery and final conclusion stated in the publication, here I 
explain them and also clarify my contribution. 

Prof. Izvak and her team have discovered a particular family of HERVs, HERV-H, to be 
highly expressed in human embryonic stem cells and were interested to find out why 
HERV-Hs, among all other families of repeat elements, exhibit such a curious 
expression profile. They provided us with a list of transcriptionally active HERV-H and 
I started analyzing them in silico. I first compared their expression profile in stem cells 
in comparison to other tissues. As their expression pattern proved to be distinctive, I 
then analysed the chromatin state and epigenetics marks in their vicinity. This was 
followed by several transcription factor analyses and comparison of binding sites for 
several chromatin remodelers.  

These Bioinformatics analyses have shown actively transcribed members of HERV-H 
are involved in regulating their neighbours. They not only provide functional binding 
sites for a combination of naïve pluripotency transcription factors but also, I discovered, 
a novel transcription factor, LBP9, which interestingly was found to be a marker for 
naïve stem cells by several in vitro experiments done in Prof. Izvak’s lab and is 
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currently being patented. Hence, through providing a harbor for LBP9, the long terminal 
repeats, LTRs, associated with HERV-H family rewire regulating mechanisms 
associated with pluripotency and also initiate transcription of the neighboring genes. The 
full Nature publication resulting from our collaboration has been included at the end of 
this chapter, but first I will explain my contribution in silico analyses in more detail. 

A clarification on the definition of “active sequences” is needed before any explanation 
on the analyses themselves could be initiated. Prof. Izvak and her team has first 
provided us with a list of manually assembled HERV sequences.  These are composed 
of long sequences each consisting on one or more HERV and their terminal repeats. 
Those with unique RNA seq reads attached to them were consider to be active. This 
definition of active sequences suits the type of analyses addressing patterns in larger 
segments of genome, like open chromatin analysis. Prof. Izvak and her team have also 
specified the list of individual HERV-Hs and their LTRs plus a shorted list of HERV-Ks 
and their LTRs which were all found to be actively transcribed in HESC cell line under 
study. All of the analyses stated in this chapter are done on the later list of active genes 
if not otherwise stated.  

It is also important to clarify the definition of “extended active” and “extended inactive” 
sequences. In the primitive analyses conducted, I found an interesting signature in active 
HERV-Hs and their LTRs, LTR7s. As explained below, we found these active 
sequences to be in open stretches on chromosomes or be very close to open chromatin. 
This inspired us to not only include the bodies of these active sequences in our study but 
also include a short stretch of DNA up and downstream to them. After a consultation 
with our wet lab collaborators and running a benchmark, it was decided to extend active 
sequences 1.5Kb on either sides. 

 

Active HERV-Hs are more often in vicinity of open chromatin in 
stem cells rather than any other tissues studied 

DNase I hypersensitive sites, DHSs, are used as indicators for segments of open 
chromatin across chromosomes (Thurman et al. 2012). DHS data is available for a few 
cell lines through ENCODE portal (Bernstein et al. 2012).  Using these publically 
available datasets, I asked whether active manually assembled HERV-Hs represent a 
tissue specific pattern. In other words, could we find evidence for open chromatin in one 
specific cell line compared to the others available. And the answer is yes, active HERV-
Hs are enriched in DHS peaks in human embryonic stem cell line, HESC, compared to 
any other cell lines, as shown in table 1. The stark difference between HESC and 
induced pluripotent stem cell, iPS is especially interesting and at the time was 
instrumental in follow up in vitro analysis.   
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Table 1. Active HERV-Hs are enriched in DHS peak in HESC cell lines compared 
to induced pluripotent stem cell  

 
I have also conducted a Monte Carlo simulation to investigate statistical significance of 
having the same or more sequences overlapping one or more DHSs just by chance. To 
do this for 10,000 iterations, I have computationally generated 397 random sequences 
and then counted the number of sequences including one or more DHSs, counted the 
number of times the same or more sequences were found to overlap DHSs. From this 
count one could calculate a Monte Carlo derived p-value to find out if the number 
observed could just have happened by chance. However, the p-value of observing this 
number of overlaps by chance is 1×10!! . This means that HERV-Hs are highly 
significantly enriched in open chromatin marks,  

I have also expanded on this analysis by investigating HERV-Hs for which there was no 
evidence for overlapping a DHS peak, as a mark for open chromatin. I asked if no open 
chromatin evidence is found for these active HERV-Hs, how far are they from the 
closest open chromatin. So the distance between these active HERV-Hs to their closest 
DHS peak were calculated. As shown on figure 1, we found that while active HERV-Hs 
not overlapping a DHS peak themselves are very close to a DHS peak in HESC cell 
lines, they are mostly mega base pairs away from an open chromatin mark in other cell 
lines. Some members of HERV-K are also active in HESC cell line but they don’t 
exhibit a similar patter in overlapping DHSs. 

Active HERV-H and their long terminal repeats are highly 
enriched in open chromatin DHS peaks 

Now that longer manually assembled active sequences were found to be overlapping a 
DHS or be very close to one, do the active individual HERV-H and their long terminal 
repeats, LTR7s, show the same pattern? Using ENCODE data for HESC cell line, the 
number of active and inactive HERV-Hs and LTR7s were counted. A simple chi test 
revealed they are both enriched in open chromatin DHS peaks, table 2. Expected value 
shown in table 2 is calculated as follows. If the number of active sequences were shown 
by N!, the number of inactive ones by N!, the number of in active sequence overlapping 
at least one DHS peak by H! and the number of inactive sequences overlapping at least 
one DHS peak by H!, then the number of active sequences expected to overlap at least 
one DHS peak when there was no statistical difference between the active and inactive 
sequences could be calculated by:  

 HESC iPS Neuron Fibroblast Trophoblast 
#active HERV-Hs 
overlapping at 
least one DHS(s) 

214 16 18 15 0 

#active HERV-Hs 
not overlapping 
any DHS(s) 

183 381 379 382 397 
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Some members of HERV-K are also active in HESC cell line but they are not 
significantly enriched in DHSs as chi-squared test showed.  
 

 
Figure 1. Cross-tissue comparison of the distance of the closest DHS to the active 
sequences not overlapping any DHS peaks. The distances are presented in log ratio. 

 
HERV-H is associated with activating but not repressive histone 
marks  

Now that active HERV-Hs and their LTRs are enriched in open chromatin DHS peaks, 
are they also enriched in activating or repressive epigenetic marks? To investigate this, I 
used two of the best studied epigenetics marks, H3K4me3 and H3K27me3, both of 
which were available through ENCODE for HESC cell line. H3K4me3 is associated 
with transcriptional activation while H3K27me3 is shown to be repressive (Sims et al. 
2007; Cedar and Bergman 2009; Bock 2012; Greer and Shi 2012). Comparison of 
H3K4me3 and H3K27me3, across the active and inactive HERV-H and also LTR7 have 
shown the active HERV-H and LTR7s to be highly enriched in activating histone mark 
but not the repressive histone mark (Table 2). Chi squared P-values are less than 0.001 
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in H3K4me3 analysis, indicating the difference between activating histone mark 
enrichment in active and inactive HERV-Hs and LTR7s to be statistically significant.  

No evidence for bivalent chromatin mark in active or inactive 
HERV-H and LTR7 

Highly conserved non-coding sequences in ESC also manifest a distinctive histone mark 
signature. It is thought that these regions are poised into a dynamic state marked by 
large segments enriched in H3K4me3 containing short and sporadic intervals of 
H3K27me3 marks (Bernstein et al. 2006). This bivalent mark is also known to be 
reduced in cancer stem cells (Soejima 2010). I have examined this bivalent histone mark 
but did not find any evidence for it in active or inactive sequences of HERV-H or LTR7.  

Active HERV-Hs and their long terminal repeats are enriched in 
chromatin modifier binding sites compared to inactive HERV-Hs 

CHD1 is a member of the chromodomain helicase DNA binding, CHD, family of 
proteins that interacts with nucleosomes and plays a role in chromatin remodeling to 
modulate transcription. The members of the CHD family of proteins possess 3 common 
structural and functional domains: a chromodomain, to act as chromatin organization 
modifier, an SNF2-like helicase/ATPase domain and a C-terminal DNA-binding 
domain. CHD1 is the most studied member of this family and has been shown to interact 
with the transcriptional co-repressor NCoR and histone deacetylase 1 indicating a role in 
transcriptional regulation. (Marfella and Imbalzano 2007; Sims et al. 2007; Zentner et al. 
2013). CHD1 has also been shown to interact with the Paf1 complex and Rtf1 
implicating an additional role in transcriptional elongation (Warner et al. 2007). 
Importantly, recently CHD1 was shown to be involved regulation of pluripotency in 
ESCs (Piatti et al. 2015; Siggens et al. 2015) 

The previous analysis in lincRNAs, explained in previous chapter, I found evidence for 
CHD1’s role in regulating the neighboring genes. So do we see a similar pattern 
emerging in repeat elements too? To find the answer, I have compared CHD1’s binding 
sites in active and non-active extended HERV-Hs and LTR7s and found active HERV-
Hs and LTR7s to be highly enriched in CHD1’s binding sites compared to non-active 
ones. This is shown in table 2 below and the source of CHD1 binding sites is the dataset 
provided in HESC on ENCODE (Bernstein et al. 2012). I also compared binding sites of 
three other chromatin remodelers, MYC, MAX and CHD2, for which experimental data 
is provided through the ENCODE’s portal. A very similar pattern emerged, active 
HERV-Hs and LTR7s were found to be highly enriched in all three of these chromatin 
remodelers.  

I have also asked if this is a signature of HERV-H family of endogenous retroviruses. 
Since our wet lab collaborators have found a few members of HERV-Ks to be also 
transcribed in embryonic stem cells in human, I could inspect them and their long 
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terminal repeats to find the answer. Active HERV-Ks and their long terminal repeats, 
LTR5s, were not found to be enriched in any of these four chromatin remodelers. So we 
concluded this to be a signature of HERV-H family and our wet lab collaborators then 
have conducted experiments to show this in vivo. More detail is included in the paper 
attached below. 

 
Table 2. Chi-squared comparison between active and inactive HERV-H, their long 
terminal repeats, LTR7 across open chromatin DHS peaks, activating and 
repressive histone marks and also four chromatin modifiers are represented. Active 
HERV-H and LTR7 are highly enriched in open chromatin DHS peaks and also are 
highly enriched in activating histone mark, H3K4me3. Nonetheless, neither is enriched 
in repressive histone mark, H3K27me3. More interestingly, active HERV-H and LTR7s 
are highly enriched in four chromatin modifiers, CHD1, CHD2, c-MYC and MAX. 
Neither of these statements is true for HERV-K and their long terminal repeats, LTR5. 
 

  Total Active Inactive In 
extended 

active 

Expected 
active 
 

In 
extended 
inactive 

Expected 
inactive 
 

Chi Squared 
(P) 

DHS HERVH 6030 874 5156 473 159.7 629 942.3 718.8 (P<<0.001) 
LTR7 3218 212 3006 293 112.06 1408 1588.94 312.75 (P<<0.001) 
HERVK 247 13 234 6 5.1 91 91.9 0.168 (P≅0.7) 
LTR5 615 21 594 5 5.6 159 153.6 0.254 (P≅0.6) 

H3K4me3 
 

HERVH 6030 874 5156 2527.5 644.4 1918.5 3801.6 6435.6 (P<<0.001) 
LTR7 3218 212 3006 473 91.24 912 1295.05 1709.9(P<<0.001) 
HERVK 247 13 234 10 2.2 31.5 39.3 29.2 (P<0.001) 
LTR5 615 21 594 1.5 3.4 97 95.1 1.09 (P≅0.95) 

H3K27me3 HERVH 6030 874 5156 11.5 14.7 90 86.8  0.86 (P>0.05) 
LTR7 3218 212 3006 4.5 7.15 104 101.35 1.05 (P>0.05) 
HERVK 247 13 234 1.5 1.6 29 28.9 0.0066 (P≅0.95) 
LTR5 615 21 594 7 2.7 72 76.3 7.09 (p<0.01) 

CHD1 HERV-H 6030 874 5156 435 83.5 141 492.5 1730.6(P<<0.001) 
LTR7 18079 212 17867 88 4.43 290 373.57 1594.2(P<<0.001) 
HERVK 247 13 234 7 7.6  137 136.4 0.05(P>0.05) 
LTR5_Hs 615 21 594 13 11.7 331 332.3 0.15(P>0.05) 

c-MYC LTR7 3218 212 3006 19 10.21 136 144.79 8.09 (P=0.0044) 
HERVK 247 13 234 1 1.11 20 19.89 0.01 (P>0.05) 
LTR5 615 21 594 4 1.98 54 56.02 2.13 (P>0.05) 

MAX HERVH 6030 874 5156 99 47.68 230 281.31 64.57 (P<<0.001) 
LTR7 3218 212 3006 51 23.85 311 338.15 33.09 (P<<0.001) 
HERVK 247 13 234 2 1.84 33 33.15 0.014 (P>0.05) 
LTR5 615 21 594 5 4.54 128 128.46 0.047 (P>0.05) 

CHD2 HERVH 6030 874 5156 174 50 171 294.99 359.58 (P<<0.001) 
LTR7 3218 212 3006 76 18.38 203 260.62 193.36 (P<<0.001) 
HERVK 247 13 234 0 0.79 15 14.21 0.833 (P>0.05) 
LTR5 615 21 594 4 1.50 40 42.49 4.29 (P= 0.038) 

 
LTR7s provide binding sites for a novel transcription factor 
rewiring pluripotency network  

So far I have shown active HERV-Hs and LTR7s are associated with open chromatin, 
are enriched in activating histone marks and four chromatin remodelers. So they are 
changing chromatin state from close to open which would allow for transcription of their 
neighboring genes. In this content, one might ask if they also provide binding site for 
specific transcription factor(s), TF(s). In other word, is the expression of active HERV-
Hs or LTR7s regulated by a particular transcription factor or combination of 
transcription factors? While in vivo experiments are essential in verifying TFs, they are 



! 110!

largely ineffective in finding the transcription factors candidates in the first instance. 
There are thousands of TFs discovered and the list is still growing. In vivo TF analyses 
are also time consuming and expensive. So the best approach is to use computational 
methods to narrow down the list of TFs and/or find a novel TF. However, it is necessary 
for these TFs to be then verified as the computational methods have high false positive 
rates. 

Clover and Rover were used to implement a comparative solution to find TFs which are 
significantly enriched in HERVHs and/or LTR7s (Haverty et al. 2004), however, both 
packages depend on a list of TF motifs to be able to conduct TF analysis on the 
sequences of interest. For this purpose I have used Jaspar database which is a relatively 
comprehensive database and one of the few openly accessible TF databases (Bryne et al. 
2008). But Jaspar does not include all the TFs discovered so far. To cover for this 
shortcoming, I later complemented my TF analyses by probing other resources, 
including ENCODE and hmChIP databases explained in details below. 

Clover and Rover Analysis 

To find the motifs found in the active HERVHs, Clover was used to compare Jaspar 
motifs enriched in the active HERV-Hs against GC matched background sequences. 
This allows us to ask which TFs, within the Jaspar dataset, have more TF binding sites 
than expected by chance in GC matched control sequences.  In addition, we ask using 
Rover which motifs might be significantly enriched in the active HERV-Hs compared 
with those with LTR7C/Y, which are slightly less active members of LTR7. I have also 
used Rover to find which TFs are enriched in active LTR7 sequences in comparison to 
inactive HERV-Hs. The analyses where then compiled together to find the set of TFs 
found significant across all, table 3. The only TFs found to be significant across all 
analyses is MA0145.1 Tcfcp2l1, also known as LBP9.  

 
ENCODE and hmChIP 

ENCODE and hmChIP databases include chip-seq datasets with much lower false 
positive rate compared to the computation approach presented above. However, they 
include far fewer TFs, so the list provided by them is by no means comprehensive.  

For ENCODE analysis, second release of Txn Factor ChIP was downloaded through 
ENCODE’s portal (http://genome.ucsc.edu/ENCODE/downloads.html). This data 
set is the result of collaboration between Myers Lab at the HudsonAlpha Institute for 
Biotechnology and the labs of Michael Snyder, Mark Gerstein and Sherman Weissman 
at Yale University; Peggy Farnham at UC Davis; and Kevin Struhl at Harvard. Kevin 
White at The University of Chicago. Vishy Iyer at The University of Texas Austin 
(Bernstein et al. 2012). I then used bedtools to process these files to find which 
transcription factors are enriched in which sequences. These three sequence sets were 
processed in this fashion: 1- manually assembled longer HERV-H sequence, 2- extended 
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manually assembled longer HERV-H sequence and 3- 1090 highly expressed HERV-Hs. 
The number of transcription factor binding sites found in each set is shown in table 4. 

Table 3. Motifs found significantly enriched in active sequences of interest by 
Clover and Rover analyses of transcription factors are listed. 

Jaspar ID / Motif  

Clover  
HERV-H v 
GC matched 
(Raw score) 

Clover 
HERV-H v 
GC matched  
(P-value)  

Rover HERV-
h v LTR7C/Y  
(P-value) 

Rover LTR7 
v inactive 
HERV-H  
(P-value) 

MA0145.1_Tcfcp2l1 
(LBP9) 111 0.001 8.30E-36 0.000576175 
MA0035.2_Gata1 96.4 0 2.40E-27 

 MA0109.1_Hltf 86.2 0 1.17E-18 
 MA0063.1_Nkx2-5 -3.97 0.002 9.80E-15 0.000265626 

MA0259.1_HIF1A::ARNT -3.68 0 1.47E-14 
 MA0047.2_Foxa2 365 0 1.43E-08 
 MA0148.1_FOXA1 416 0 8.38E-07 
 MA0101.1_REL 184 0 0.000411012 
 MA0143.1_Sox2 64.9 0.001 0.00150613 
 MA0055.1_Myf 285 0 0.00229056 
 MA0140.1_Tal1::Gata1 175 0 0.00700998 
 MA0144.1_Stat3 -4.94 1 5.80E-83 0.000910078 

MA0066.1_PPARG -6.61 1 9.08E-75 9.99431e-06 
MA0007.1_Ar -5.98 0.989 3.37E-45 0.000755461 
MA0158.1_HOXA5 -4.36 1 2.34E-08 

 MA0135.1_Lhx3 6.79 0.999 1.17E-07 
 MA0137.2_STAT1 11.3 0.994 2.62E-06 
 MA0113.1_NR3C1 -4.76 1 6.50E-06 
 MA0048.1_NHLH1 -4.03 1 7.14E-06 
 MA0163.1_PLAG1 -6.04 1 4.51E-05 
 MA0099.2_AP1 50.9 0.982 6.82E-05 
 MA0025.1_NFIL3 -7.09 1 0.000107307 
 MA0078.1_Sox17 -4.43 1 0.000281809 
 MA0030.1_FOXF2 -5.5 1 0.000616575 
 MA0139.1_CTCF -7.09 1 0.00160586 
 MA0040.1_Foxq1 -4.45 1 0.00233706 
 MA0014.1_Pax5 -3.79 1 0.00235216 
 MA0102.2_CEBPA -3.99 0.958 0.00535611 
  

I have also proceeded with analyzing the manually assembled active sequences’ 
transcription factors profile in hmChIP database (Chen et al. 2011). As mentioned 
above, hmChIP is a database of genome-wide chromatin immunoprecipitation (ChIP) 
data in human and mouse, including 2016 samples from 492 ChIP-seq and ChIP-chip 
experiments. hmChIP also lists some of the older data releases from the labs involved in 
ENCODE project. The latest version of hmChIP is based on used hg18, so liftover was 
used to convert our sequences, which were based on hg19 annotation, to hg18. 
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Conversion was successful except for one sequence which could not be done due to a 
split introduced in hg19. The top hits for our manually assembled sequences in hmChIP 
database included P300, Pol2-4H8, Pol2 and TAF1 which were all found in ENCODE 
analyses too. However, at the end we decided to discard results from hmChIP’s TF 
analyses due to a number of caveats concerning a large number of these hits being based 
on old datasets, whose newer releases were accessible through ENCODE portal. These 
new releases were anyway included in ENCODE analysis reported above. 

Table 4. The number of transcription factor binding sites of the transcription 
factor of interest in ENCODE is shown below. 
TF Count in 

assembled 
HERV-H seqs 

Count in extended 
assembled HERV-
H seqs 

Counts in highly 
expressed seqs 

Pol2-4H8 118 140 199 
Pol2 104 128 245 
CTCF 41 45 78 
TAF7_(SQ-8) 40 53 56 
TAF1 35 39 46 
NANOG_(SC-
33759) 

27 33 41 

CEBPB 25 33 50 
MafK_(ab50322) 22 28 43 

 
Conclusion 

In previous chapters, I have shown evidence regarding the effects of evolution of coding 
and non-coding sequences on the expression of their neighbours. In this chapter, I used 
Human specific endogenous retroviruses, HERVs, to provide an excellent base as a 
naturally occurring transgene experiment to examine how these randomly scattered 
sequences might affect the expression profile of their neighboring genes, in the context 
of stem cells. In collaboration with Prof. Zsuzsanna Izvak, I have shown actively 
transcribed members of a special class of HERVs, HERV-H, are involved in regulating 
their neighbours. Above I have presented a summary on evidence of open chromatin 
DHS peaks and activating histone marks on and in vicinity of active HERV-Hs and their 
long terminal repeats, LTR7. TF analyses were especially instrumental in guiding wet 
lab team to characterize role of a novel transcription factor, LBP9, in rewiring 
pluripotency network in stem cells. I also helped with analyzing chimeric transcripts. 
HERV-Hs not only create new genes but also affect splicing of the genes. All of this is 
explained in more detail in the resulting paper published in Nature, which is attached 
below.  
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Chapter 6. Discussion 
 

 

In the results chapters presented so far, I have shown that the change in gene 

expression of a focal gene on average predicts the change in gene expression of 

neighbors in six human tissues and both sexes. The effect is highly pronounced in the 

immediate vicinity but extends much further. Sex-specific expression change is also 

genomically clustered. As genes increasing their expression in humans tend to avoid 

nuclear lamina domains and be enriched for the gene activator 5-

hydroxymethylcytosine, chromatin level mechanisms are probably involved in 

regulating this phenomenon. The phenomenon of correlation in change in gene 

expression of the neighbouring genes is termed expression piggy-backing, an analog 

of hitchhiking. I have also shown evidence of piggybacking in the compact genome of 

yeast. However, the size of co-evolving clusters found in yeast was much smaller than 

that observed in human. 

I have also investigated whether non-coding genes might initiate a similar regulation 

of neighbours. To this end I conducted a follow-up study in lincRNAs. Finding most 

selection on lincRNA to be splice related, I have shown intron-rich lincRNAs to be 

enriched in CHD1’s, an splice-related chromatin remodeller binding sites. I also 

found intron rich lincRNAs to be enriched in DHS peaks, a marker for open 

chromatin. And both CHD1 and DHS were found to correlate with expression of the 

neighbours, the effect possibly modulated through intron density effects. In other 

words, lincRNAs were found to be regulating expression of their neighbouring genes 

through providing binding site for a splice-related chromatin remodeller, CHD1. I 

then studied HERVs, as a naturally occurring transgene experiment, to investigate  

how randomly scattered similar sequences might affect the expression profile of their 

neighboring genes.  

The publications resulting from my PhD are all reported in this thesis. They include 2 

papers in Molecular Biology and Evolution, a paper in Nature and another recently 

submitted to Journal of Molecular Evolution. Each paper includes an in depth 

conclusion and discussion. As a consequence, here I will just point out the future 

work. These include a few interesting questions which the limited time and resources 
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did not allow me to investigate during my PhD. Nevertheless, they are important 

questions in context of evolution of gene expression. 

In my MBE paper “Neighboring Genes Show Correlated Evolution in Gene 

Expression”, I have presented evidence for co-evolving gene expression clusters 

across 6 tissues, analysed clusters of genes exhibiting between–tissue concordances 

and also established sex-biased gene expression clusters. However, I have just 

scratched the surface on characterising co-evolving gene expression clusters. 

Knowing evolution of gene expression happens in clusters expands the horizon to 

study variations in gene expression in both healthy and affected individuals. One 

could ask how disease-associated variants relate to these clusters and whether these 

co-evolving gene expression clusters could explain why some diseases prevailed 

throughout populations even after long periods of purifying selection. These clusters 

might also explain why many gene therapy efforts had unexpected outcomes and 

many have failed (Schneider et al. 2010; Kay 2011). 

In the first couple of results chapter, I have shown evidence for correlation in gene 

expression in Primates and Yeasts. Although we found evidence for piggybacking in 

both genomes, the boundary of correlation was drastically different. While numerous 

co-evolving gene expression clusters were found to expand over large segments of the 

genome in human, the size of clusters are far smaller in yeast and usually include only 

very close neighbours. In comparison to the large genome of human, yeast has a 

compact genome with short intergenic regions that might necessitate greater 

insultation.  A compact genome might also increase the chance of transcriptional 

interference, hence would bar expansion of correlated gene expression domains. In 

turn does this render the yeast genome more evolutionary constrained in exploring 

possible expression space, as change in one gene affects relatively few others. A 

compact genome might also be limiting in that longer intergenic regions in theory 

could increase diversity of regulatory elements which are necessary to evolve a more 

complex gene expression profile.  

But could we conclude that the size of co-evolving gene expression clusters are 

dictated by the average size of intergenic regions in any particular organism? The 

results presented here in two genomes are too limited to answer this question. To find 

the answer, one shall study piggybacking in several other genomes across varied 
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average intergenic regions size to investigate average size of co-evolving gene 

expression clusters as a function of average size of intergenic regions. 

On the other hand, while piggybacking might facilitate evolution of complex gene 

expression profiles, at least in Primates and yeasts, not much is known about how this 

phenomena itself came to existence. In other words, how has piggybacking expression 

itself evolved? Was there a benefit to the correlation in gene expression when it first 

evolved or is it best seen as a deleterious trait that needs to be neutralized as much as 

feasible? It need not be that one or the other need be true. It could be that modulated 

change in expression is beneficial for some gene clusters, disadvantageous for others.  

Mechanistically, I presumed that piggybacking emerged with the same mechanism 

through all phylogenies.  This need not be true and it might have developed several 

times in parallel? These questions and many others regarding the evolution of 

piggybacking phenomena itself cannot be answered by limited results provided here. 

A through examination of piggybacking in several other organisms across different 

kingdom of life is necessary to shed light on how this phenomena itself was evolved. 

One could also ask how evolution of novel genes correlate with evolution of its 

neighboring genes’ expression? Do novel genes more often emerge in a particular 

type of co-evolving gene expression clusters? Do they popup in shorter clusters or 

longer ones? Above I have shown up-regulated clusters are denser compared to the 

down-regulated ones. So are up-regulated gene clusters functioning as hotspots for 

novel genes to emerge? In our Nature paper, we have shown how HERV-Hs provides 

a source of novelty in our genome through creating chimeric transcripts. We have 

shown HERV-Hs not only create new genes but also affect splicing of their 

neighboring genes. So if one is to make a list of novel genes created through 

retrovirus insertions, through mutations creating new ORFs in intergenic regions or 

through other means established in literature (Long et al. 2003; Hoekstra and Coyne 

2007; Innan and Kondrashov 2010), do we see any preference for novel genes to 

emerge in any specific type of clusters? Also how does expression profile of these 

novel genes differ from that of their neighbours? Do they always adopt a similar 

expression profile or may they function as an insulator and break clusters? The 

answer to these questions could have direct implications in gene therapy. 



! 142!

This novel gene analysis could be conducted differently by studying age of genes in 

relationship to the characteristics of co-evolving gene expression cluster they belong 

to. In this context, the first question to ask would be: are clusters generally 

homogeneous in terms of the age of the genes they encompass? Do younger genes 

often appear on cluster edges? Are down-regulated clusters populated with older 

genes compared to up-regulated clusters? This analysis might also help to understand 

how larger clusters came to existence. 

Here, I have not presented results of my preliminary study of insulators. My first 

analysis of CTCF binding sites across up-regulated and down-regulated clusters did 

not find any significant difference between the two types of cluster. However, there 

are many other insulators one could study to probe the differences in insulation 

mechanisms across up-regulated and down-regulated clusters (Guelen et al. 2008; 

Symmons et al. 2014). One could also investigate the difference in pattern of 

insulation across small and large clusters. Not all insulation mechanisms and 

components involved are yet known, nonetheless, the topic is attracting more 

attention and novel mechanisms and components are being discovered. Hence, it 

would be interesting to revisit the role of insulators in defining boundaries of co-

evolving gene expression clusters. 

I have shown evidence for chromatin level regulation of evolution of gene expression. 

Although, these mechanisms can explain correlation in scales of hundred kilo base 

pairs, as ripple effect suggests, they overreach their limits to explain the observed 

cluster sizes. It was shown in chapter 2 that the ripple effect alone cannot explain the 

domain of influence observed in Primates. Nevertheless, astounding clusters 

expanding a few mega base pairs calls for novel mechanisms perhaps yet to be 

discovered or ground breaking clarification on actual boundaries of currently known 

mechanisms. Could newly established chromosomal looping concept be able to 

explain how large clusters of co-evolving gene are maintained (Rao et al. 2014)? 

Could 3D structure of chromosomes be able to shed light on obscurities in regulation 

of these large clusters? It needs to be mentioned that the current methods applied to 

develop 3D models of chromosomal structure still suffer from high false positives and 

quality and accuracy of the resulting models have been frequently questioned (Jin et 

al. 2013). Perhaps in near future a novel method would lift this limit and then we 
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could investigate large co-evolving gene clusters encompassing 3D dynamics to build 

a more accurate model of evolution of gene expression. 

Last but not least, in chapter 4, I have shown evidence for lincRNAs being involved 

in regulating expression of their neighbouring genes through providing binding site 

for an splice-related chromatin remodeller, CHD1. But I have not checked if this only 

happens in lincRNAs or whether a similar pattern is observed in other classes of non-

coding RNAs. In other words, do other classes of non-coding RNAs adopt a similar 

mechanism and are involved in regulating their neighboring coding genes? By the 

method presented here, one could investigate this further. 

So with this I would like to conclude this thesis and thank you for your attention. 
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