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Abstract

The proposed research is essentially concerned on numerical simu-

lation of materials and structures commonly used in the aerospace

industry. The work is primarily focused on the study of the fracture

mechanics with emphasis to composite materials, which are widely

employed in the aerospace and automotive industry.

Since human lives are involved, it is highly important to know how

such structures react in case of failure and, possibly, how to prevent

them with an adequate design.

It has become of primary importance to simulate the material response

in composite, especially considering that even a crack, which could be

invisible from the outside, can propagate throughout the structure

with small external loads and lead to unrecoverable fracture of the

structure. In addition, structures made in composite often present a

complex behaviour, due to their unconventional elastic properties.

A numerical simulation is then a starting point of an innovative and

safe design.

Conventional techniques (finite elements for example) are not suffi-

cient or simply not efficient in providing a satisfactory description

of these phenomena. In fact, being based on the continuum assump-

tion, mesh-based techniques suffer of a native incapacity of simulating

discontinuities.

Novel numerical methods, known as Meshless Methods or Meshfree

Methods (MM) and, in a wider perspective, Partition of Unity Meth-

ods (PUM), promise to overcome all the disadvantages of the tradi-

tional finite element techniques.



The absence of a mesh makes MM very attractive for those problems

involving large deformations, moving boundaries and crack propaga-

tion.

However, MM still have significant limitations that prevent their ac-

ceptance among researchers and engineers. Because of the infancy of

these methods, more efforts should be made in order to improve their

performances, with particular attention to the computational time.

In summary, the proposed research will look at the attractive possi-

bilities offered by these methods for the study of failure in composite

materials and the subsequent propagation of cracks.
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Chapter 1

Statement of the problem

1.1 The Need for Meshless Methods

Numerical methods are crucial for an accurate simulation of physical problems

as the underlying partial differential equations usually need to be approximated.

Approximation is necessary either for the complexity of the equations themselves

or for the complexity of the geometry where these equations need to be solved.

Among all the available numerical schemes, mesh-based methods have become

the most popular tool for engineering analysis over the last decades in academic

and industrial applications. Conventional mesh-based numerical methods are Fi-

nite Element Method (FEM) and Finite Volume Method (FVM) among the most

well-known members of the thoroughly developed methods. FEM for example

is nowadays widely used by engineers in all fields and several well-assessed com-

mercial codes are available. The applications of FEM range from structural me-

chanics, thermal analysis, acoustics, fluid dynamics, electromagnetism and even

multi-physics (i.e. coupling of physical phenomena) simulations.

A vast amount of scientific literature has been produced in the recent years

since their invention in 1960 Clough (1960). A large mathematical work has been

done by researchers to prove their convergence for both fluid and solid mechanics.

This testifies that FEM performs really well for a broad range of cases where a

continuum can be easily subdivided (not broken) into discrete elements. This

operation is usually called discretization (figure 1.2). Each element is basically

made of a certain number of labelled nodes and a sequence of number (the nodes’
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1.1 The Need for Meshless Methods

labels) that defines how these nodes are connected. This is the fundamental char-

acteristic of the mesh-based methods: a priori definition of the nodes connectivity,

commonly known as mesh. The mesh permits the compatibility of the interpola-

tion (figure 1.1), meaning that the resulting approximation is continuous.

Figure 1.1: Example of Mesh in Finite Element Analysis

FEM is robust and in particular for mechanics has been thoroughly and con-

tinuously developed since its creation. This includes static and dynamic, linear

or non-linear stress analysis of structures. The creation of a mesh, though, could

represent a challenging task. In fact, the analyst spends most of his work-time

in creating the mesh. It has become a major component of the total cost of a

simulation project because currently mere hardware is exponentially decreasing

its price. According to Liu (2003), who in 2003 wrote the first comprehensive

book on meshfree methods, the logical consequence is that the issue is now more

the manpower time, and less the computer time. Consequently, in an ideal world,

the meshing process would be fully performed by the computer without human in-

tervention. At the same time, with the increasing demand of high performance

products in the manufacturing industry, the problems in computational mechan-

ics grow more and more difficult and mechanicians need more and more sophisti-

cated numerical tools. These tools will eventually allow engineers to design even

more complex and high quality products. These tools are nowadays not purely

2



1.1 The Need for Meshless Methods

Figure 1.2: Discretization: domain Ω is subdivided in elements ΩE

concern of academia, but can be very applicative indeed. Examples of such com-

plicated physical phenomena that are of interest in the manufacturing industry

are, for example, extrusion and molding, that require treatments of extremely

large deformations, or the computations of castings, where it is critical to predict

the propagation of interfaces between solids and liquids or to track the growth of

phase boundaries.

Another perhaps more clear example is the simulation of propagation of cracks

with arbitrary and complex paths. This is even more complicated when more

and more heterogeneous materials are created as the frontiers of the material

science continue to expand. Ultimately the frontiers would expand not only at a

macroscopic level, but go deeper at the smallest length scales, bringing engineers,

chemists and physicists to work together. This is for example what is currently

happening for the case of the nanotechnology field.

The technological evolution is particularly evident for composite materials.

Composite materials are the combination of two materials, generally a matrix that

surrounds and binds together a cluster of fibers or fragments of a much stronger

material (the reinforcement). There are many different types of composite mate-

rials: to mention only some of them, there exist carbon-fiber reinforced plastic,

shape memory polymer composites, metal matrix composites, ceramic matrix

3
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composites and sandwich composites. Being fairly complex materials, their fail-

ure cannot be easily treated with standard methods because failure modes for

composite materials are indeed quite different from the ones in metals. For ex-

ample, for laminated composite materials, where different plies are stacked up, a

very important failure mechanism is delamination (figure 1.3a), due to the lack

of reinforcement in the thickness. Delamination occurs for example in case of im-

pact events or for manufacturing defects. Moreover, since each ply is a mixture

of plastic matrix and fibers, fiber pull-out (figure 1.3b), fiber breakage (figure

1.3c), fiber-matrix debonding (figure 1.3d ) and matrix cracking ( figure 1.3e)

may initiate and propagate, compromising the integrity of the structure.

However, their unique characteristics of high strength and stiffness combined

to a much lower weight than aluminum and steel, make composite materials very

attractive to those manufacturing industries like automotive and aerospace, where

these requisites are more and more competitive values and influence the choice of

the customers. It suffices to think about the fuel that can be saved with lighter

vehicles without compromising the safety of the passengers. Less fuel would also

mean a positive impact on the environment. It is not a coincidence that the

two biggest aerospace industries like Boeing and Airbus have been trying (and

still are) to build either primary structural parts or entire airplanes in composite.

Another example is the automotive sector, one of the most competitive industrial

markets, where faster and more performing cars are proposed every year. This is

more stressed in competitive cutting edge sport sectors like Formula 1 when even

the smallest details can make the difference in a race.

Therefore the full understanding of these complex materials is at the same time

complicated but important, yet vital for a safe and competitive design. Their

importance, from an academic point of view, justifies the number of research

centers on composite materials and the number of researchers involved in the

many aspects of composite materials. The last international and most important

conference on composite materials 1 was attended by thousands of scholars from

all over the world.

We might then want to ask ourselves, what are the difficulties in the sim-

ulation of the mechanics of composite materials? Delaminations and fracture

1International Conference on Composite Materials 17 Edinburgh July, 2009
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(a) Delamination (from MERL ) (b) Fibre pull-out (from Gleich & Jackson

(2002) )

(c) Fibre breakage (from University of Ply-

mouth )

(d) Fibre-matrix debonding (from University

of Plymouth )

(e) Matrix cracking (from University of Texas

at Arlington )

Figure 1.3: Examples of failure in laminated composite
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breaking problems share a continuous change in the geometry of the domain un-

der study and their analysis with conventional methods could be a cumbersome

and expensive task as well as inaccurate. In fact, for crack propagation prob-

lems, FEM is not well suited to treat discontinuities that do not coincide with

the original mesh lines. Thus, the most viable strategy for dealing with moving

discontinuities in methods based on meshes would be to re-mesh in each step

of the evolution so that mesh lines remain coincident with the discontinuities

throughout the evolution of the problem.

Also, the analysis of large deformations problems by the FEM, may require

the continuous re-meshing of the domain to avoid the breakdown of the calcula-

tion due to excessive mesh distortion, which can either end the computation or

lead to drastic deterioration of accuracy. In addition, FEM often requires a very

fine mesh in problems with high gradients or with local character, which can be

again computationally expensive. Also, in order to compare successive stages of

the problem, all the meshes need to be stored, requiring more storage memory.

Furthermore, for fragmentation problems, like blasts or explosions, it seems nat-

ural to choose particle-based methods (or node-based) rather than mesh-based

methods.

In FEM it is very complicated to model the breakage into a large number of

fragments as FEM is intrinsically based on continuum mechanics, where elements

cannot be broken. The elements thus have to be either totally eroded or stay

as a whole piece, but this leads to a misrepresentation of the fracture path.

Serious errors can then occur because the nature of the problem is non-linear.

To overcome these problems related with the existence of a mesh, a numerical

scheme that relies only on nodes would be highly appreciated. These methods

are called meshfree or meshless 1, since they do not need a mesh to construct the

approximation of the solution of a given differential equation (figures 1.4 and 1.5).

According to Liu (2003), “the minimum requirement of a meshfree method is that

a predefined mesh is not necessary, at least in field variable interpolation”. The

meaning of this sentence will be clearer in the next chapters. Almost identical

definitions can be found in other review papers as Belytschko et al. (1996b),

1These two terms will be used indifferently in this thesis
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Figure 1.4: Example of Meshfree Method: nodes discretization of a femur (from

Doblare et al. (2005))

Duarte (1995), Fries & Matthies (2004), Gu (2005) Nguyen et al. (2008). More

details on classifications and definitions will be provided in section 2.2.

The ideal requirement would be, quoting Liu (2003), “that no mesh is nec-

essary at all throughout the process of solving the problem of given arbitrary ge-

ometry governed by partial differential system equations, subject to all kinds of

boundary conditions”.

Another interesting but different point of view can be found in Idelsohn &

Oñate (2006). In this paper, even though the authors agree on considering as

meshfree a method where the shape functions depend only on the node positions,

this definition is not enough to justify the use of a meshless method. In fact, what

they consider as discriminating factor is the evaluation of the nodal connectivity.

According to them, a meshless method without a fast evaluation of the nodal

connectivity is useless. An additional requisite should be therefore added to

the definition of meshfree, i.e. that the computational complexity of the nodal

connectivity should be bounded in time and linear in number of operations with

the number of points in the domain. The problem of connectivity will be discussed

7
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Figure 1.5: Discretization in Meshless Methods (from Doblare et al. (2005))

in a later chapter, although connectivity in this thesis will be intended not only

between the nodes, but also between nodes and Gaussian points. An algorithm

taken from the graph theory, known as kd-tree, will be used for this purpose, with

the aim of reducing the computational times related to connectivity and to derive

a fast method to assemble the matrices of the discretized problem.

1.2 Main differences between Finite Elements

and Meshfree

Before proceeding with the definition of the objectives of this thesis, it is necessary

to know the major differences (and/or similarities) between FE and MM, to

better individuate the weakness and the margin of improvements of the meshfree

techniques. Table 1.1, taken from Liu (2003), better resumes the major points.

Point 1 of table 1.1 illustrates the distinguishing difference between the two

methods, i.e. the absence of a mesh. This point it is still debatable, since some

meshfree methods do require a mesh, but only for integration purposes. However,

point 4 better clarifies point 1, since the construction of the approximation is

element based in FE and point based in MM. This makes a huge difference in terms

of the approximation to the differential equations and the (better) reproducibility

properties (and thus accuracy) that MM can achieve compared to FE. The term

reproducibility will be better explained in section 2.2.
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FEM MM

1 Element mesh Yes No

2 Mesh creation and Difficult due to the Relatively easy

automation need for element and no connectivity

connectivity is required

3 Mesh automation and Difficult for 3D cases Can always be done

adaptive analysis

4 Shape function creation Element based Node Based

5 Shape function property Satisfy Kronecker May or may not satisfy

delta conditions Kronecker delta conditions

depending on the

method used

6 Discretized system Banded and Banded but symmetry

stiffness matrix symmetrical depends on the method

7 Imposition of essential Easy and standard Special methods

boundary condition may be required;

it depends on the method

8 Computation speed Fast 1.1 to 50 times slower

compared to the FEM

depending on the

method used

9 Retrieval of results Special technique Standard routine

required

10 Accuracy Accurate compared Can be more

with FDM accurate than FEM

11 Stage of development Very well developed Infancy, with many

challenging problems

12 Commercial software Many Very few and close to none

package availability

Table 1.1: Main differences between FE and MM; taken from Liu (2003)
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The problem of the reproducing properties of FE is also contained partially

in point 2 of table 1.1. Having a higher order reproducibility capability usually

means that the approximation is more accurate. But, to achieve higher order

reproducibility properties, elements might be also of different shapes. A typical

example is the choice between triangular elements and quadrilateral elements.

Triangular elements with 3 nodes have linear reproducibility while quadrilateral

elements with 4 nodes can also reproduce the function xy. While a triangular

mesh is relatively easy to construct in an automatic manner, even for complicated

shapes, a quadrilateral mesh is usually more complicated to build automatically.

A software able to calculate a mesh is called meshers. A mesher able to

mesh arbitrary shapes with quadrilateral elements may not be as robust and may

not always work for complex surfaces (or volumes for hexagonal elements). The

algorithms behind the meshers are matter of a discipline called computational

geometry and there exists a vast literature for this topic Preparata & Shamos

(1985), De Berg et al. (2008). Nevertheless, even if a triangular mesh is easy

to build, not all the triangular meshes are equal. In fact it is defined a quality

factor for the meshes, that is an element-wise measure that depends on the ratio

between the area of the element and the sum of the squares of the length of the

edges of the element Bank (1990). Ideally, an optimal mesh is made only by

equilateral triangles. Of course this is not always possible; hence the quality of

a mesh must be checked on a case basis. Therefore, a mesh can really affect a

FE simulation, and not all the meshes are the same. Obtaining a good mesh can

then be difficult, since it is not a mere triangulation of points.

The meshfree methods that require a mesh do not need to submit to these

restrictions. In fact, meshes do not have any influence whatsoever on the ap-

proximation resulting from a MM. Mesh connectivity is a serious problem in

mesh-based calculations for cracks. For crack problems, with MM there is no

need of costly re-meshing. This also applies especially in problems with large

deformations or moving discontinuities. In fact, FE mesh distortions (figure 1.6)

in large deformation problems can compromise the solution, since most commer-

cial codes normally arrest the algorithm, unless special numerical expedients are

performed, like elements erosion or the Jacobian sign check. Conversely to FE,

MM do not need to define a priori connectivity, neither suffers of mesh alignment

10
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Figure 1.6: Mesh Distortion in FE

sensitivity. However, MM could benefit from the connectivity between the nodes

and the Gaussian points. This will be better explained in the next chapters.

Adaptivity (point 3 of table 1.1) is a very important topic, especially when

dealing with high gradient localized zones. In FE it is a difficult task, while in

MM it can be done quite easily. A method to efficiently adapt the meshfree shape

functions will be presented in the next chapters. In term of h-adaptivity, it is com-

parably simple with MM as only nodes have to be added, and the connectivity

is then computed at run-time automatically. In Li & Liu (2004a) is even stated

that, contrarily to finite elements, meshfree adaptivity is infinitely approachable,

i.e. there is no limit on successive h-refinement. Also p-adaptivity is also concep-

tually simpler than in mesh-based, since only an additional enrichment (intrinsic

or extrinsic) need to be added to the basis functions. This also applies to the in-

clusion of a priori knowledge of the local behaviour of the solution and provides a

better framework for multiscale simulations, since enrichments of the finer scales

can be incorporated into the coarse scale approximation Li & Liu (2004a).

From a computational point of view, (point 6 1.1), the discretized resulting

algebraic system of equations is banded and symmetrical in the FEM, which

means ease of solving when the size of the matrix becomes very large (order

of magnitude of thousands). Particularly, FE’s stiffness matrices are banded,

meaning that the majority of the entries of the matrix are zeros, except from those

11
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close to the main diagonal. The number of non-zero entries in the same row close

to the diagonal is called bandwidth. If the bandwidth is small and constant for all

the rows, then these entries can be efficiently stored, since it is necessary to store

a fixed number of columns much smaller than the number of rows. Moreover,

if the matrix is symmetrical, the number of columns halves. From a numerical

point of view, solving linear system of equations with this particular structure

is relatively easy and more suitable for large system of equations. For MM, the

stiffness matrix could be banded, but the bandwidth could be slightly larger than

FE and not constant, although the stiffness matrix is symmetrical, depending on

the method used 1. Nonetheless, the structure is more generally sparse, which

means that the majority of the entries are non-zero. In this case, only the row

and column indexes along with the entry need to be stored. Moreover, there exist

methods able to efficiently solve sparse systems of equations Duff et al. (1989).

Another major disadvantage of the FEM is the post-processing (point 9 1.1).

Re-meshing is not just computationally expensive, but it also degrades the ac-

curacy of the solution. Even in the post-processing of re-meshed solids requires

considerable effort, since one need to keep track of all the meshes for example

during the time-histories. MM on the contrary have a post-processing nature,

because shape functions are natively smooth. Any order of continuity can also

be achieved adjusting the weight functions and adding more polynomials to the

basis, reaching the desired order according to the order of the differential equa-

tions. For example, in figure 1.7 are compared MM shape functions and FE linear

shape functions. MM shape functions 1.7b are much smoother than the FE ones

1.7a for the same order of the basis. Let us suppose that linear FE shape func-

tions are used to carry out a stress analysis. In stress calculations, the stresses

obtained using FEM packages are discontinuous and less accurate, because the

simplest shape functions used in FEM are usually linear (figure 1.7a) or however

low-order polynomials. Thus, since displacements fields are of the same order of

the approximating functions, their derivatives (stress fields) are one order lower.

If linear functions are used for example, stress field will be piecewise constant,

which could be an unsatisfactory description of the stress distribution. In these

cases, stress smoothing techniques must be used, especially for stress recovery

1The methods used in this thesis generate symmetric stiffness matrices
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(a) Linear FE Shape Functions (b) Same order MM Shape Functions

Figure 1.7: Difference between FE and meshless shape functions

in error estimation. On the other hand, meshfree shape functions 1.7b have

smoother derivatives, which enable a quite accurate smooth stress description.

In this sense, MM shape functions have a native post-processing nature, since

they do not need stress smoothing techniques. Also, when smooth trends are not

desired, e.g. cracks, discontinuities can be easily handled.

Despite all the attractive characteristics, MM are not medications for all ills.

In practice, for a given reasonable accuracy, MM are often considerably more

time-consuming than their mesh-based counterparts, because at each sampling

point it is often necessary to search for neighbors, solve small systems of equations

and perform small matrix-matrix and matrix-vector operations. Furthermore,

meshfree shape functions are of a more complex nature than the polynomial-like

shape functions of mesh-based methods (figure 1.7). Consequently, the number

of integration points for a sufficiently accurate evaluation of the integrals of the

weak form is considerably larger in MM than in mesh-based methods. More-

over, the choice of the background mesh containing the integration cells is critical

and it easily leads to errors in the patch test Dolbow & Belytschko (1999). Ac-

cording to Dolbow & Belytschko (1999), a bounding box technique which takes

into account the overlapping supports sensibly reduces the integration errors and

can also solve equations with discontinuous parameters. In collocation MM no

integration is required; however, this advantage is often compensated by less accu-
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racy and more stability problems. In addition, conversely to FE, meshfree shape

functions unfortunately do not satisfy (depends on the method used) the Kro-

necker condition (3.3), (point 5 1.1), thus essential boundary conditions cannot be

directly imposed. Essential boundary conditions in MM require opportune treat-

ments (point 7 1.1), like the use of penalty-methods Fernández-Méndez & Huerta

(2004), Gavete et al. (2000) and Günther & Liu (1998) or Lagrange multipliers

Belytschko et al. (1996b).

It is evident from the table 1.1, that beside the many advantages of the MM,

still their infancy (with the mentioned problems) and the lack of dedicated com-

mercial packages prevent their wide acceptance in the engineering community.

1.3 Objectives

The industrial sector has been relying on FE for decades. Well-developed com-

mercial codes, even for multi-physics simulations, integration with CAD software,

not to mention the well-established mathematical work made by researchers in

the past years.

It is understandable that industry is often reluctant to open to new method-

ologies, especially if these new methods cannot offer better performances of FE

in terms of reliability and speed. This is also the reason why a compromise that

put together the benefits of both methods seems to catch on. This compromise is

the Extended Finite Element Method (XFEM) Black & Belytschko (1999), Moes

et al. (1999). The invention of XFEM is subsequent to the invention of MM 1

and, in a philosophical perspective it could be thought as the synthesis between

thesis (FEM) and antithesis (meshfree).

The XFEM is essentially FEM with enrichments. The meaning of the word

enrichment will be well explained in the next sections and represents the core

of this thesis. For the purpose of this introduction, it suffices to say that these

enrichments are able to simulate discontinuities independently from a mesh, even

though the method is mesh-based.XFEM could be more acceptable for industry

because it is essentially a FE which overcomes the limitations due to the presence

1The first meshfree paper appeared in 1994 whereas the first paper on XFEM appeared

around 1999
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of a mesh concerning fracture mechanics problems. A wide literature exists for

this topic and review papers can be found in Abdelaziz & Hamouine (2008),

Karihaloo & Xiao (2003), Mohammadi (2008). However, XFEM are still mesh-

based therefore they inherit the other disadvantages of FE, like mesh-distortion,

piecewise stress representation for linear elements and so on.

An interesting thread of discussion about the future of meshless methods can

be found on the website imechanica.org.

The aim of this thesis is NOT to prove that MM are completely alternative

to FE, since for many applications FE represents an unbeatable standard, but

rather to study their possible applications to a more narrow class of problems, like

the failure of composite materials. Particularly it is studied the capability of MM

to simulate strong discontinuities as occurs for example in delaminations. More

complex failure mechanisms like matrix failure and fibers breakage, originate at

smaller length scales (micro-scale) is part of a broader research topic called multi-

scale methods and will not be covered in this thesis. More reliability and speed is

requested to MM or PUM methods to represent a remedy for the disadvantages

of FE. A welcome outcome would be the integration of MM in commercial codes

or the development of brand new commercial packages.

That brings to the objectives of this thesis. Broadly speaking they are:

1. The production of prototype codes for 2D and 3D simulations, to be further

developed for large scale simulations

2. The applications to the simulation of macroscopic failure in composite ma-

terials and analysis of advantages and disadvantages deriving from the ap-

plication of MM

3. The reduction of computational times of MM.

The main outcome of this research has been the production of object-oriented

codes developed in MATLAB. Even though Matlab is not suitable to large scale

simulations, it is still quite easy to use, to debug errors and to post-process the

results, therefore it is a useful tool to prototype a code since one does not have to

spend time in re-writing well-established numerical routines, like the solution of

linear systems of equation, matrix products and so on. Even if it is believed to be
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not as fast as traditional programming languages like Fortran, with appropriate

programming tricks and compilation of the codes, Matlab can be reasonably fast

for medium-size applications (with number of unknowns order of magnitude of

thousand and number of Gaussian point order of hundreds of thousands).

The codes served as basis for the simulation of delamination, proposed in the

final chapters. From a geometric point of view, delamination is modeled with

an enrichment that exploits the property of partition of unity of the meshfree

shape functions. The physics of the delamination process will be simulated with

a constitutive model called cohesive zone, derived from the damage mechanics.

The combination of the cohesive law with MM will result in the cohesive segments

method.

For the third point, the innovations that will be proposed are

1. the employment of a more efficient node searching method known as KD-

trees

2. a faster assembly procedure based on a connectivity map between nodes

and Gaussian points

3. a new matrix-inversion procedure that also facilitates hp-adaptivity

Finally, from a more theoretical point of view, the explicit integration in

Reproducing Kernel Methods has been published by the author. More details

can be found in appendix A.

1.4 Outline of the thesis

The outline of the thesis is the following: in chapter 2 the literature and the

chronological history on meshfree methods will be reviewed, with particular at-

tention to fracture mechanics and composite materials; in chapter 3 the main

meshfree methods will be described in detail; subsequently in chapter 4 some

improvements to the existing techniques will be proposed, along with results and

considerations; chapter 5 will provide a description of the codes developed, while

in chapter 6 MM will be applied to the simulation of delamination. Finally,

conclusions are presented in chapter 7.
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Chapter 2

Literature Review

In this section meshfree methods will be firstly classified and a survey of the ex-

isting literature on the topic will be presented. Successively, the review will cover

particularly two methods, the Element Free Galerkin (EFG) and the Reproducing

Kernel Particle Method (RKPM) . It has been proven that these two approaches

lead to identical shape functions Liu et al. (1997b), Li & Liu (1996), Jin et al.

(2001), even if they start from different ideas.

This is a frequent problem in MM. Being a rapidly developing method, con-

fusion and disorder about different methods may arise. In fact in a recent paper

Orkisz & Krok (2008) it is reported that there exist about hundred different

names of the MM, mostly presenting very similar or even identical ideas. Some

of the methods differ only by the names of the authors or by the methods’ name,

and this certainly leads to confusion.

2.1 Review Papers and Books on Meshfree Meth-

ods

A good number of review papers and books on meshfree methods have been pub-

lished in the recent years. The first review appeared in Duarte (1995) almost

at the beginning of the MM era, shortly followed by the more general overview

Belytschko et al. (1996b). While Duarte (1995) is more focused on the mathe-

matical properties of these methods, Belytschko et al. (1996b) is more complete

17



2.2 Classification of Meshfree Methods

and more suitable for an engineering audience, since it contains many details on

the implementation of MM, especially for applications to crack problems.

The review Shaofan & Liu (2002) instead emphasizes the MM applications

for large deformation problems and reviews with particular attention multiscale

and particle methods. A subclass of particle methods is the molecular dynamics,

widely employed in computational chemistry. This paper is the background of

the book Li & Liu (2004b).

The first book on MM is instead Liu (2003) and it is in the author’s opinion

the most complete work on meshfree methods, since it contains many examples

(beams, shells, plates) and comparisons with different methods. A demonstrative

software has been also produced from the authors called MFREE2D, although

such software does not allow treatment of cracks or enrichments.

Updated reviews on meshfree methods can be found in Fries & Matthies (2004)

and Nguyen et al. (2008). Fries & Matthies (2004) reports also a classification

scheme to better discriminate the different MM, while Nguyen et al. (2008) con-

tains also a Matlab didactic code.

Special issues in international journals have been dedicated to MM Liu (1996),

Chen (2000) and Chen (2004).

2.2 Classification of Meshfree Methods

Several classifications have been proposed, but the debate is currently ongoing.

Liu (2003) proposed a classification based on the point of view that all the

meshless methods (MM) so far are not ideal and fail in one of the following

categories:

• methods that require background cells for the integration of system ma-

trices derived from the weak form over the problem domain. These meth-

ods are not truly mesh free. These methods are practical in many ways,

as the creation of a background mesh is generally feasible and can always

be automated using a triangular mesh for two-dimensional (2D) domains

and a tetrahedral mesh for three-dimensional (3D) domains. It needs to

be stressed out that this mesh is necessary only for integration purposes;
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2.2 Classification of Meshfree Methods

this means that the driving criterion in the generation of such a mesh is

the minimization of the integration error rather than the accuracy of the

approximation.

• Methods that require background cells locally for the integration of

system matrices over the problem domain. These methods are said to be

truly mesh free because creating a local mesh is easier than creating a

mesh for the entire problem domain and it can be performed automatically

without any predefinition for the local mesh.

• Methods that do not require a mesh at all, but that are less stable and less

accurate. Collocation methods and finite difference methods fall into this

category. This type of method has a very significant advantage: it is very

easy to implement, because no integration is required.

• Particle methods that require a predefinition of particles for their volumes or

masses. The algorithm will then carry out the analysis even if the problem

domain undergoes extremely large deformation and separation.

Fries & Matthies (2004) instead proposed a classification based on three char-

acterizing features:

• the capability of realizing a Partition of Unity of order n with the intrinsic

basis

• the presence of enrichments or more generally extrinsic basis

• the use of the test function

The last one discriminate between collocation-based methods or Galerkin meth-

ods. According to Fries & Matthies (2004), a meshfree method can have one or

more of these three features. Moreover, it is also individuated a grey area contain-

ing hybrid methods. Therefore, the classification suggested in Fries & Matthies

(2004) is based on the capability to reproduce polynomials up to a chosen de-

gree with or without an intrinsic basis. Moreover, the classification can be also

conducted on the choice of test functions, leading to local, global weak forms or

collocation methods.
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2.3 Origins of Meshless Methods

2.3 Origins of Meshless Methods

The very first meshless method is Smoothed Particle Hydrodynamics (SPH) and it

was introduced for the study of astrophysical phenomena without boundaries such

as exploding stars and dust clouds and it is due to Lucy (1977). Later Monaghan

in Monaghan (1982), Monaghan (1988) and Monaghan (1992) provided a more

mathematical basis through the means of kernel estimates. Particularly in the

paper Monaghan (1982) is demonstrated that the way a function is represented

in particle methods is a special case of interpolation using information from a set

of points. Moreover general equations for numerical work can be derived without

specifying the details of the interpolation method, showing similarities between

finite difference, spectral and particle methods.

Even though SPH was initially conceived for solving astrophysics problem, in

Libersky & Petschek (1990) SPH is applied for the first time in solid mechanics

and further to study dynamic material response under impact Libersky et al.

(1993). A recent review on the developments of SPH in impact problems can

be found in Vignjevic & Campbell (2009). However, the original SPH version

suffered from spurious instabilities, like tensile instability Swegle et al. (1995).

Nevertheless, such instabilities have been successful treated in Vignjevic et al.

(2000). Moreover, SPH lacks of consistency properties, especially at the bound-

aries, where SPH is not able to reproduce even the constant function. For these

reasons these methods worked well for unbounded problems like astrophysics,

where the domain can be certainly considered as infinite. This is not the case in

solid mechanics, where the domains under study are bounded; more importantly,

at the boundaries, forces, tractions, displacements are usually applied. Therefore

correction terms are needed in order to restore consistency.

Corrections to SPH and related treatment of boundary conditions have been

proposed in several papers by the Vignjevic and co-workers, for example in Camp-

bell et al. (2000) and Vignjevic et al. (2006).

In Rabczuk & Eibl (2003), Dilts (1999), Dilts (2000) and Cueto-Felgueroso

et al. (2004) SPH is used in a Galerkin weak form using MLS shape functions

(MLSSPH ).
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2.3 Origins of Meshless Methods

It is important here to recall the concept of consistency because it is crucial

for the convergence properties of any numerical scheme. Liu (2003) distinguishes

between reproducibility and consistency. Reproducibility for MM is defined as the

ability of the shape functions to reproduce exactly all the functions in its basis,

whilst consistency is the property of reproducing polynomial functions.

This is due to the fact that if the unknown solution u(x) is expanded in

Taylor series around a generic point x, since the approximation reproduces for

example polynomials up to degree n, then the approximation is able to reproduce

the solution of a differential problem until the order n. It is easy to understand

therefore that consistency is a highly desired property for a numerical method.

If the basis contains only polynomials, then reproducibility and consistency are

equivalent. If the basis contains only functions different from polynomials, the

approximation has only reproducibility but it is not consistent, hence it may

not converge to the solution. If the basis contains both polynomials and other

functions, the basis is called enriched or enhanced and it is not only consistent

but also able to reproduce these other functions. If these other functions are for

example known solutions of the equations, this means that the approximation

is able to reproduce the exact solution of the problem. This concept is the

foundation of the enriched methods for crack propagation. In fact, for linear

elastic fracture mechanics Anderson (1991), the theoretical solution is singular at

the crack tip.

Classical finite elements fail to reproduce accurately the solution. Also, non-

enriched meshfree methods are not able to reproduce exactly the solution. Con-

versely to finite elements, though, meshfree approximation can easily handle the

discontinuity while finite elements need elements conforming to the crack. More-

over, using enrichments, it is possible to reproduce singular functions because

these singularities can be included in the basis. This is one of the most attractive

features of MM.
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2.4 Reproducing Kernel Methods and Element Free Galerkin

2.4 Reproducing Kernel Methods and Element

Free Galerkin

While SPH and their corrected versions were based on a strong form, other meth-

ods were developed in the 1990s, based on a weak form. The first of them is based

on a global weak form and it was invented by Belytschko and his coworkers, who

exploited the Moving Least Squares (MLS) approximation Lancaster & Salkauskas

(1981). MLS have been already used to generalize finite elements in the work of

Nayroles et al. (1992), where diffuse elements were proposed. The MLS has its

origins in the computer graphics to smooth and interpolate scattered data, thus

it seems reasonable to apply this method when only scattered nodes are available

as a result of a discretization.

Belytschko et al. (1994b) refined and modified the work of Nayroles and called

their method Element Free Galerkin EFG, which is currently one of the most used

meshless methods. This class of methods is consistent, up to n-th degree depend-

ing on the polynomials used in the basis function, and quite stable although

substantially more expensive than SPH.

One year later Liu et al. (1995) developed the Reproducing Kernel Particle

Method (RKPM) which uses wavelets theory, contrarily to MLS. Surprisingly,

the imposition of the reproducibility for the polynomials led to shape functions

almost identical to MLS.

2.4.1 Reproducing Kernel Method

Reproducing Kernel Method (RKM) has its origins in wavelets theory Liu et al.

(1996) and its discrete counterpart has given birth to Reproducing Kernel Particle

Method (RKPM) which is one of the emerging classes of methods called meshless

methods. Moreover, RKPM shares similarities with moving least squares (MLS)

method and RKM is ultimately more a category within these methods can be

classified Liu et al. (1997b), even though MLS has its origins in data fitting.

Indeed, sometimes RKM is referred to as a corrected SPH.

In standard Smoothed Particle Hydrodynamics (SPH) method Gingold &

Monaghan (1977), Monaghan (1992), the function is simply approximated by an

22



2.4 Reproducing Kernel Methods and Element Free Galerkin

its convolution with a kernel function, which satisfies a set of properties. One of

them is that the kernel is a compact support function with dilatation parameter

ρ. The approximation is then filtered conferring a smoother behaviour to the

approximation. SPH scheme though, suffers of inconsistencies at the boundaries,

precisely at a distance equal to ρ Liu et al. (1997a). SPH is not able to reproduce

even the constant function, i.e. it does not realize a partition of unity Belytschko

et al. (1996b). This is also the reason SPH is more suitable for unbounded

domains.

In order to restore this condition, a corrected kernel must be used. It can

be demonstrated that using a modified kernel Liu et al. (1996) by the means of

a moments matrix, the reproducibility condition up to order n is restored. This

moments matrix has entries that are essentially the kernel estimates of polynomial

functions up to degree 2n. The resulting approximation is known as Reproducing

Kernel Method (RKM).

Although this theory is mathematically correct, its implementation might

pose problems since it is necessary to evaluate integrals. Thus in real computa-

tions a discretization is often necessary. This discretization is based on particles

associated with a measure of the domain and the integrals are replaced with

summations. However, an explicit computation of the integrals involved in RKM

without discrete summations has been proposed in Barbieri & Meo (2009b). A

description of this method will be proposed in the next chapters.

While in RKM the moments matrix depends only on the domain (actually,

only on the domain’s boundaries Barbieri & Meo (2009b)), in RKPM, because

of the discrete sums, it depends on the particles distribution. RKPM therefore

associates the advantage of being meshless with a higher accuracy, keeping the

multi-resolution property assured by the dilatation parameter of the kernel.

In Liu et al. (1996) and Liu et al. (1997a) the wavelets character of RKPM

allowed to generalize the method to multiple length scales. In Liu et al. (1996) is

proposed an approach to unify all the reproducing kernel methods under one large

family and an extension to include time and spatial shifting. In the latter Liu

et al. (1997a) the approach is particularized for its particle version RKPM. The

Fourier analysis is used to address error estimation and convergence properties.
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2.4 Reproducing Kernel Methods and Element Free Galerkin

2.4.2 Element Free Galerkin

In parallel, Belytschko et al. (1994b) applied another meshless approximation

scheme called moving least squares (MLS) Lancaster & Salkauskas (1981) to

a Galerkin approach creating the Element Free Galerkin (EFG) method. In

MLS a function is approximated by a weighted least squares procedure where the

weighting function is moving in the sense that it depends on the evaluation point.

The weighting function plays the same role of the kernel function in RKM, since

it is a smooth compact support function where the size of the support is ρ. The

support is centered on the evaluation point, around which fall a certain number

of nodes. The result is that the function is not interpolated, but approximated at

the nodes (similarly to the particles).

Thus, the resulting minimization of the sum of the squares of the error leads

to solving a linear system of equations in each point of interest. The matrix of

this system is called moment matrix and in fact it is the same of the RKPM.

The similarities between the two methods became more evident in the Moving

least-square reproducing kernel methods (MLSRKM), where a general framework

is introduced Liu et al. (1997b), Li & Liu (1996). From MLSRKM , both RKPM

and MLS can be derived, where the sum of the square errors can be interpreted

in a continuous way if an inner product based on integrals is considered. These

integrals are the same introduced in the moment matrix.

Applications of both RKPM and EFG have been quite successful in the recent

years, especially in problems with discontinuities and singularities and a large

number of papers can be found which dealt with these questions. The leap in

these methods has been provided by the works of Melenk & Babuška (1996)

and Duarte & Oden (1996) where it is recognized that MLS approximation is a

particular partition of unity.

The essence of the partition of unity method relies on the fact that whatever

partition of unity can be multiplied with any independent basis to form a new

and better basis. Sometimes the choice of an independent basis can be based

on users’ prior knowledge and experience about the problem. This led to the

creation of the enrichments for MLS (or RKPM) shape functions, which have

been wisely and widely exploited for fracture mechanics problem.
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2.5 Applications to Fracture Mechanics

There is a vast amount of literature about applications of MLS or RKPM in

fracture mechanics, most of them by the Northwestern University group of Be-

lytschko and W.K.Liu. Probably Belytschko et al. (1994a) is the first application

of EFG to crack problem contemporary to the publication of the classic paper

Belytschko et al. (1994b).

In Belytschko et al. (1994a) a visibility criterion is applied to model disconti-

nuities in the domain. This criterion is the very first one that has been applied

and it was subsequently modified to give more accurate representations of a crack

tip.

(a) (b) failure for non-convex domains

Figure 2.1: Visibility criterion (from Belytschko et al. (1994a))

Lagrange multipliers can be used to enforce essential boundary conditions,

even if penalty method is mentioned as well. A crack propagation criterion based

on the stress intensity factors (SIF) is used, and the SIFs are calculated according

to the famous J-integral Rice (1968) opportunely converted in a domain integrals.

All the integrals are evaluated in this paper with the mean of Gauss quadrature

with special mention to the problems that can arise. Also, the distribution of

nodes is a circular arrangement around the crack tip which can effectively capture

the stress singularity and the SIFs. Moreover it is possible to move a dense
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2.5 Applications to Fracture Mechanics

arrangement of nodes around a crack tip without re-meshing, which is the greatest

advantage over FE methods.

In Belytschko et al. (1995a) the classic problem of a plate with circular hole

under remote tension loading is presented. (figure 2.2)

Figure 2.2: Plate with circular hole under remote tension (from Belytschko et al.

(1995a))

On the outer boundaries the exact solution in terms of stresses is applied and

due to symmetry, only a quadrant of the problem is considered. Results show that

when concentrating the nodes distribution nearby the hole, the calculated stresses

are identical to the analytical ones. Regarding the edge crack problem, SIFs are

calculated for different ratio of width and length showing good comparison with

known solutions. Instead of visibility criterion, each node lying on the crack line

is split in two nodes, separated from a very small distance. It is shown that to

obtain greater accuracy, not only the number of nodes needs to be increased, but

also they need to be arranged along circular line around the crack tip (figure 2.3).

In fact, regular arrangement even with more nodes gives less accurate results than

the circular arrangement.

The two cases are then combined in a problem with cracks emanating from

a circular hole in order to study crack propagation. A criterion based on SIF
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2.5 Applications to Fracture Mechanics

Figure 2.3: Typical Nodes Arrangement for edge crack problem (picture taken

from Belytschko et al. (1996a))

and angle θ for the direction of the crack growth is used to predict the propaga-

tion path, derived from the Paris-Erdogan law for fatigue crack growth Paris &

Erdogan (1963).

Same approach with identical procedures is proposed in Belytschko et al.

(1995b), with the addition of a simulation of cracks in a dynamic field, i.e. how

a crack propagates in a moving body. Integration in time is carried out with

a β-Newmark integrator and solutions for dynamic stress factors are in agree-

ment with the analytical solution by Freund (1990). Another important work in

dynamic fracture mechanics with similar results is Belytschko & Tabbara (1996).

In Belytschko et al. (1996a) a new procedure to treat discontinuities is firstly

introduced, which overcome the disadvantages in the visibility criterion Belytschko

et al. (1994a). In fact visibility criterion fails with non-convex boundaries (figure

2.1b). This new procedure is the diffraction criterion (figure 2.4) and it is based

on the relative distance among each sampling point x, the discretization nodes

xI and the crack tip xc. With this procedure, nodes hidden by a non-convex

boundary are considered, leading to new weight functions capable of handling

the presence of a line of discontinuity. Also, in the same paper, a procedure

to accelerate the computation of shape function is introduced for the first time.
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2.5 Applications to Fracture Mechanics

Figure 2.4: Diffraction criterion; figure taken from Belytschko et al. (1996a)

Since shape functions are the results of small system of equations, LU factor-

ization can be used and the factorized matrices L and U stored for subsequent

usage in the derivatives calculation. This indeed permits to save computational

costs.

One of the most important steps forward in MM is surely the work of Duarte

& Oden (1996), where the Partition of Unity method (PUM) is introduced. Ba-

sically, PU functions are constructed starting from a set of N scattered nodes xI

in a domain Ω. Each nodes is the center of a sub-domain (or clouds) ΩI . On

each sub-domain, a function φI(x) is defined, which is non-zero outside ΩI (figure

1.5). Differently from FE, these sub-domains overlap, therefore the condition of

the partition of unity (i.e. the sum of all these function on Ω is equal to 1) is not

automatically guaranteed, but they have to be constructed accordingly.

Apart from classic FE functions, another class of functions that easily realize

PU is Shepard’s function where simply each function is normalized to the sum

of all φI(x). From the consistency point of view introduced in subsection 2.3,

this class lacks of accuracy, since they can only reproduce exactly constant func-

tions. Their advantage is the ease with these functions can be calculated, since

conversely to other MM, they do not need the resolution of a system of linear

equations. The importance of this work is that, even starting from Shepard’s func-

tion with low accuracy, more accurate shape functions can be constructed simply

by multiplying Shepard’s function with another basis function, which contains

enhanced or enriched functions. These functions could be either polynomials or
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functions similar to the known solution of the differential equation, like in Melenk

& Babuška (1996) for the Helmholtz equation in one dimension.

This method is also called extrinsic enrichment since the augmented basis is

external to the basis used to construct φI(x). The greatest drawback of these

methods is that more unknowns are introduced. If N is the number of nodes and

k the number of enhanced functions, there are N × k more unknowns than the

usual N . Since usually in real computations N could be a very large number, this

method can sensibly increase the computational cost. Therefore, usually only few

nodes are enriched; for example in edge crack problems, the nodes close to the

crack tip are enhanced. The contribution of Duarte & Oden (1996) is that, since

MLS shape functions are specific instance of PU (they are actually PU of order

n ≥ 1), they can replace Shepard’s functions.

The advantage is that hp-adaptivity is much more facilitated. In general adap-

tivity is a method to assess the quality of the results (based on error estimation

theory) and modify the mesh during the solution aiming to achieve approximate

solution within some bounds from the exact solution of the continuum problem.

Precisely:

• h-adaptivity in FE is when elements are refined (or unrefined). In MM this

is done simply adding nodes (figure 2.5)

• p-adaptivity when the order of polynomial basis functions is changed

• hp-adaptivity is a combination of the above

Fleming et al. (1997) presented for the first time a different way of enrich basis

functions, called intrinsic enrichment. Because of the reproducibility property

of the MLS, enhanced function can be added to the basis. In Fleming et al.

(1997) the two methods of extrinsic and intrinsic enrichment are compared. The

augmented functions are the well known asymptotic solution of the crack tip

in linear elastic fracture mechanics, whose stresses are singular at the end of

the crack line. Therefore functions whose derivatives are singular need to be

considered, for example the square root of the distance between the crack tip and

a generic point. In contrast to the extrinsic method, the intrinsic one does not

require additional unknowns. However, since the size of the basis is increased,
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Figure 2.5: h-adaptivity in FE (left) and meshfree (right)

more computational effort is needed to invert the moment matrix. Moreover, for

multiple cracks, additional terms are required for each crack. Enriched basis can

lead to a moment matrix which exhibits some ill-conditioning. LU factorization is

used to alleviate this ill-conditioning. In Fleming et al. (1997) is also introduced

a smoothing factor to the diffraction method and also a mapping for kinked crack

is proposed.

The benefit of the introduction of the enrichment is quite evident. Non-

enriched functions cannot reproduce the exact stress field, while enriched methods

show perfect agreement with the analytical solution. Also, oscillations are elimi-

nated without extra refining at the crack tip. Convergence considerations about

discontinuous approximations introduced by these enrichments are presented in

Krysl & Belytschko (1997). Krysl & Belytschko (1997) pointed out that much of

the mathematics for FE is applicable to EFG.

Therefore EFG method satisfies all the requirements under which conver-

gence estimates based on interpolation theory apply to conforming finite element

method. Consequently it can be expected that this FEM convergence theory will

apply also to the EFG method. It is shown that the enrichment greatly increases

the absolute accuracy. Accuracy means that the errors are small compared to the

exact solution and thus the code provides results close to the truth. When the

solution is unknown, the error is estimated.

In fact, for regular EFG (linear basis), the rate of convergence (which means

the increase in accuracy due to uniform nodal refinement) for problems with a
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singularity is controlled by the order of the singularity for a polynomial basis of

any order. For linear basis, the theoretical rate of convergence is therefore 1/2

(because the exact solution goes with the square root of the distance from the

crack tip). For the enriched approximations the exact solution is contained in

the trial function and according to the theory of minimum potential energy there

should be no errors due to approximation. In this case, the errors arise because

of quadrature error and discretization of the essential boundary conditions.

The early works with EFG dealt with two-dimensional structures until 1997

when the first applications to three-dimensional domain started to appear. In

Sukumar et al. (1997) 3D EFG is generalized in a straightforward manner. The

ease stands in the fact that, since no elements are required, one simply needs to

add function to the basis functions like z or z2. Weight functions are tensor prod-

ucts of one-dimensional weight functions, whereas implicit enriched functions are

used to achieve higher accuracy for the crack representation. An extended diffrac-

tion criterion is used to create shape functions which reproduce the discontinuity

line introduced by the edge stationary crack. While computational technology

for stationary cracks is well established, for 3D domains the main issue is the

geometrical representation of arbitrary evolving cracks.

MM appears to be one the most promising method to handle even three

dimensional cracks. In Krysl & Belytschko (1999) FE are coupled to EFG in the

sub-domain where the crack exists. Representation of the crack surface is made

by a triangular mesh and segments are used for the crack front. Since kinks in

the crack might be present, a smooth representation is not preferred.

A quite complex algorithm called node inclusion is presented to create dis-

continuous shape functions. The crack propagation algorithm is based on SIFs.

The addition of triangular elements is made with advance vectors. Recalculation

of shape functions is made accordingly. The method is applied successfully to

simulation of mixed-mode growth of center-through crack in a finite plate, mode-

I surface-breaking penny-shaped crack in a cube, penny-shaped crack growing

under general mixed-mode conditions and torsion-tension rectangular bar with

center through crack. Comparisons are made with respect to classic methods like

FE, showing that complex re-meshing is avoided.
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In the comprehensive paper Belytschko & Fleming (1999) the whole EFG

method is reviewed. Classic test cases are replicated such as infinite plate with

a hole, near-tip crack, plate with a hole and two cracks and compression-loaded

cracks. Beside the already known results, an innovation is introduced, precisely

the contact between two bodies or self-contact as in cracks problem. The contact

is implemented with the same penalty method used to impose essential boundary

conditions.

In Ventura et al. (2002) a new vector level set method for modeling propagat-

ing cracks in EFG is presented. With this approach only nodal data are used to

describe the crack and no geometrical entity is introduced for the crack trajectory.

The vector level set basically consists in a local extrinsic enrichment when one

of the enhanced functions is a sign function of the distance between the enriched

node and the crack line. Only the nodes whose support is cut by the crack line

have this type of enrichment. The nodes close to the crack tip have as enhanced

functions the linear elastic fracture mechanics solution for an infinite plate. The

update of the vector set is made through an advance vector of the crack tip.

2.6 Applications to Nonlinear Mechanics

As anticipated in section 1.1, MM are also employed in problems with large

deformations.

A large deformations in FE easily causes element distortion, resulting in a

lack of accuracy. In Chen et al. (1996) there is the first application of RKPM to

large deformation in hyper-elastic (figure 2.7) and elasto-plastic materials. The

advantage is that the compact support of a RKPM material shape function covers

the same set of particles during the deformation and hence there is no tension

instability. This is achieved with the introduction of a material (i.e. the initial

reference configuration) kernel function that deforms with the material, rather

than using a kernel with a fixed support. In fact fixed supports could lead to

instabilities under large deformations. The usage of material shape functions

avoids the re-adjustment of kernel function hence without creating an additional

burden.
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Figure 2.6: Example of Nonlinear Analysis: box-beam under impact; picture

taken from Chen et al. (1996)

Figure 2.7: Example of Large Deformation Analysis: hyperelastic material tensile

test; picture taken from Chen et al. (1996)
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The same approach is successfully used in Chen et al. (1997) to model the

behaviour of rubber in test cases like uni-axial tension-compression of a plane-

strain rubber unit, shear tests, inflation of an infinitely long rubber tube, disk

inflation and the analysis of a silent block rubber bushing assembly.

In Sukky Jun (1998) several issues regarding fast and exact algorithms for

large deformation problems have been addressed and it is suggested an algorithm

for the simulation of large deformation problems. The method is then applied to

a hyper-elastic material and also to a highly non-linear large deformation problem

and complex phenomenon as underwater bubble dynamics, to test the goodness

of the method.

In Liu & Jun (1998) the multi-resolution properties of RKPM Liu et al. (1996),

Liu et al. (1997a) are exploited to detect the different scales of the response of

a largely deformed material.In fact, due to this multi-resolution property, the re-

sponse of a complex mechanical system can be separated into different scales and

each scale is investigated separately. Therefore the non-linear Cauchy Green ten-

sor is decomposed in a high scale and a low scale component, where the high-scale

component of the solution is useful as a criterion for the procedure of adaptivity.

In Ponthot & Belytschko (1998) an Arbitrary Lagrangian Eulerian (ALE)

formulation is applied to EFG. ALE is particularly used in fluid-structure inter-

action problems and a combination of the two classic points of view in continuum

mechanics, i.e. Lagrangian and Eulerian description. The reason of using such a

combined formulation stays in the fact that neither the Lagrangian nor the Eule-

rian descriptions are well suited because of their well-known intrinsic limitations.

Essentially, the Eulerian description can deal with very large material distortions

but have limited spatial resolution to track a moving boundary. Conversely the

Lagrangian description can precisely track a moving boundary or interface but

is limited by mesh distortions. In fact, the Eulerian and Lagrangian formula-

tions viewpoints have rather complementary virtues. ALE has the possibility to

automatically retain an evolving high density of nodes where it is required and

in Ponthot & Belytschko (1998) this ability is joined with the ease of EFG in

treating discontinuities.

Other interesting applications of RKPM regard simulations of large deforma-

tion of thin shell structures Li et al. (2000b). These structures are simulated
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as 3D continuum, differently from shell elements in FE. Results are quite sur-

prising, showing that RKPM can easily simulate large deformation problems of

both elasto-plastic and hyper-elastic thin shell structures like cylindrical shells

and conic shells.

Other interesting non-linear applications include shear band formations Li

et al. (2000a), Liew et al. (2002a), plasticity due to impacts Eskandarian et al.

(2003), Chen et al. (2005) and Beissel et al. (2006), non-linear fracture mechanics

Rao & Rahman (2004) and non-linear analysis of plates and laminates Belinha

& Dinis (2007).

2.7 Other Meshfree Methods

As mentioned in section 2.2 there are many different MM, most of them presenting

very similar or even identical ideas.

A probably non-comprehensive list of MM is Finite Point Method Onate et al.

(1996) , the Meshless Local Petrov-Galerkin (MLPG) Atluri & Zhu (1998), Local

Boundary Integral Equation (LBIE) Zhu et al. (1998), Natural Element Method

(NEM) Sukumar et al. (1998), Meshless Finite Element Method (MFEM) Idel-

sohn et al. (2003), Finite sphere De & Bathe (2000) and hp-clouds Duarte &

Oden (1996).

2.8 Shortcomings, Recent Improvements and Trends

Despite their attractive features, MM still have some drawbacks. The most prob-

lematic is the solution of small systems of equation at each point of evaluation,

since it really slows down the computational run-time.

Recently efforts have been made in this sense, with the work from Fasshauer

(2002) Fasshauer & Zhang (2003). The final goal of these works would be an

explicit representation of shape functions, avoiding so the burden of the numer-

ical solution of a linear system of equations. In fact, beside the computational

costs, another issue to take into account when dealing with numerical solution

of equation is the conditioning of the matrix. As for Lagrangian interpolation,
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ill-conditioning of the moment matrix may appear whenever polynomials are in-

cluded in the basis function. One of the most effective remedies is an appropriate

scaling and translating of these polynomials.

An important work in this sense is made in Breitkopf et al. (2000) and Zhou

et al. (2005) where the moments matrix is evaluated symbolically, providing ex-

plicit representation of the shape functions. It is showed that computation of

shape functions in RKM is considerably speeded up. It has been verified by the

author that when the moment matrix exceeds the size 5×5, symbolic tools cannot

provide an explicit and stable expression for the entries of the inverse. This aspect

has been investigated by this thesis’ author and an alternative method, based on

the inversion of partitioned matrix, will be proposed in the next chapters.

Another issue is related with the quadrature, since meshfree shape functions

are usually not integrable explicitly. Therefore a background mesh is necessary

to compute the integrals involved in a weak formulation. This is the reason why

some MM are called not truly meshfree. Duflot & Nguyen-Dang (2002) proposed

a quadrature with MLS Shepard Functions which realize a PU. The integration is

made on overlapping supports, as also proposed in Dolbow & Belytschko (1999).

The difference stays that no background cells are required, making the method

truly meshfree. The method is both simple and smart because the integration

scheme is related to the set of nodes used for the approximation. So, the quadra-

ture points concentrate automatically where the node density is high. Also, it is

particularly useful in adaptive computations when an increase in the number of

nodes in a given area will involve an increase in the number of quadrature points

in this area.

In Khosravifard & Hematiyan (2009) a rather different approach named Carte-

sian Transformation Method (CTM) is proposed as an alternative to the back-

ground regular grid integration. CTM makes use of the Gauss’ theorem to trans-

form domain integrals in boundary integrals. The resulting scheme is basically an

integration method based on regular grid arrangement with the difference that

even complicated boundaries are calculated more accurately. According to the

definition proposed in section 2.2, Khosravifard & Hematiyan (2009) CTM is a

truly meshfree method. However, CTM employs Gaussian points, which can eas-

ily outnumber the nodes. This means that the construction of the shape functions
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requires evaluations for a large number of points. The ideal requirements would

be that the shape functions are evaluated only on the nodes, without resorting to

Gaussian integration.

This type of integration is called nodal integration Beissel & Belytschko (1996).

The advantage of fewer evaluation points is on the other hand paid with less

accuracy and instabilities, since usually derivatives of the shape functions are

integrated in weak forms, and derivatives in nodes are usually zero. Therefore

stabilizing terms must be introduced. Different techniques have been proposed

to avoid this inconvenience, for example stabilized conforming nodal integration

(SCNI) Chen et al. (2001) and stabilized nodal averaging Puso et al. (2008), where

the calculation of the derivatives is not necessary, with undoubted alleviation of

the computational burden. Nevertheless these techniques still do not provide

the same accuracy of the Gaussian element integration, but further efforts and

developments of nodal integration techniques could really lead to a breakthrough

in meshfree methods.

Recent improvements have also been achieved in the way the discontinuities

are approximated. Duflot & Nguyen-Dang (2004a) Duflot (2006) suggested en-

riched weight functions rather than basis enrichment and more recently Muravin

& Turkel (2006b) Muravin & Turkel (2006a) proposed the spiral weight criterion

alternatively to the diffraction criterion. Spiral weight appears to solve issues

related with the diffraction criterion, for example it does not properly capture

the stress singularity at the crack tip when a linear basis is used.

Recently two papers dealt with the future trend of MM. Idelsohn & Oñate

(2006) discussed the choice between mesh method and a meshless method for the

solution of a partial differential equation by a numerical method. In this very

interesting paper the author poses some tricky questions as ”‘why are so many

people trying to use meshless methods?”’ or ”‘is better to solve a problem with or

without mesh?”’.

This paper discusses this issue to show that in most of the applications, it

is not the right question, whether using a mesh or not. In fact, for Idelsohn &

Oñate (2006), if the problem needs a permanent update of the nodal connectiv-

ity, the most important requirement is to ask for an algorithm giving a linear

relation between the number of nodes and the number of operations to generate
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the connectivity. When the problem to be solved needs a permanently update of

the nodal connectivity, if the algorithm is based on a mesh or a meshless method

is, in general, irrelevant. Both mesh based methods or meshless methods may

give the correct answer provided the algorithm used for the evaluation of the

node connectivity is bounded in computing time and is linear with the number

of nodes. According to Idelsohn & Oñate (2006), this is crucial to decide the

appropriate method to use.

In Nguyen et al. (2008) is contained the most updated review on MM. In this

paper, the problem is posed in terms of competitiveness of meshfree methods

against other emerging method such as Extended Finite Elements (XFEM). In

fact both methods seem to have advantages and disadvantages, for example the

computational costs in MM. XFEM are essentially enriched FEM in presence

of cracks, using the PU property expressed in Duarte & Oden (1996). XFEM,

as FEM cannot deal with distorted meshes, which would decrease its direct ap-

plicability to problems involving high mesh distortion. Moreover, another item

for future research concerns the mathematical theory of meshfree methods. A

unified theory of the approximation properties and stability of meshfree methods

has attracted recent interests, and still a potential unified theory appears to be

missing.

The influence of the shape and size of the domains of influence on accuracy

and stability in MM based on local/global weak forms or collocation methods

remains unclear.
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Chapter 3

Description of the Method

In the previous chapter the chronological development of the main meshfree meth-

ods has been presented. In this chapter the methods will be illustrated more in

detail, with particular emphasis on Reproducing Kernel Particle Method. The

chapter starts with some definitions and proceeds with describing the approxi-

mations in SPH and Reproducing Kernels. Subsequently, different methods for

the treatment of discontinuities will be described. Finally, the weak form and the

equations of equilibrium are presented in the last section.

3.1 Definitions

In this section are briefly recalled some concepts which are the basis of the MM.

Throughout this thesis the function to be approximated will be indicated as u(x)

where x ∈ Ω where Ω is the domain under consideration. The approximation will

be indicated with a superscript h, as uh(x) and the following holds

uh(x) =
N∑
I=1

φI(x)UI (3.1)

where φI : Ω→ R are the shape functions and UI is the i-th nodal value located at

the position xI where I = 1, . . . , N where N is the total number of nodes. In MM

it must be pointed out that most of the methods do not interpolate prescribed

values UI at the nodes xI

uh(xI) 6= UI . (3.2)
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3.1 Definitions

For this reason, the term approximation is preferred to the term interpolation.

Because of equation (3.2), shape functions do not satisfy the Kronecker condition

φI(xJ) 6= δij ∀I, J = 1 . . . N. (3.3)

This will affect the imposition of the essential boundary conditions, as it will be

shown later.

3.1.1 Kernel or Weight Function

The shape functions φI are derived from the kernel functions, or window or

weighting functions, which are indicated by wI : Ω→ R
The kernels have compact support, which means that they are zero outside

and on the boundary of a ball ΩI centered in xI (figure 3.1a). The radius of

this support is given by a parameter called dilatation parameter or smoothing

length which can be indicated as ρI or dI or aI to avoid confusion with the mass

density. According to the norm considered, the shape of the support may vary,

for example it could be a circle but also a rectangle (figure 3.1b).

(a) Circular Support (b) Rectangular Support

Figure 3.1: Examples of compact support

The dilatation parameter is crucial for the accuracy, the stability of the algo-

rithm and plays the role of the element size in the FE, although its effects on all
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these aspects have not been rigorously demonstrated yet. Moreover, when vari-

able dilatation parameters are used, particular care must be taken in the choice

of these quantities. As a rule of thumb, with a background element mesh, it is

practical to choose

ρI = αmax
e
leI (3.4)

where α1 is a scaling factor depending on the degree of the polynomial basis and

leI is the length of the eth edge of the all the elements having xI as a node.

When the nodes are distributed non-uniformly, according to (3.4) a variable

dilatation parameter is assigned to each particle. As a result, a non-uniform

distribution of ρI is obtained. Whenever a significant change in node density

exists, (e.g. to capture stress concentration, or in adaptivity), the distribution of

smoothing lengths over the domain will be therefore non-uniform (high ∇ρ). As

a drawback, the resulting approximation (regardless the differential equation) is

poor, since it is known that MLS approximants Rabczuk & Belytschko (2005) de-

grade in the presence of sudden change in the support size. A remedy is presented

in Rabczuk & Belytschko (2005), it could be, for example, based on averaging

the smoothing lengths. Nonetheless, the role of the dilatation parameters is still

not well understood and it represents an obscure area in MLS and RKPM, which

requires further mathematical work. A deeper look in the field of the approxima-

tion theory will hopefully clarify the role of the smoothing lengths and provide a

more rigorous rule for their choice.

The fact of being compact basically guarantees the sparsity and the bandness

of the stiffness matrix in a Galerkin formulation, which is particularly useful for

the computer algorithms of matrix inversion. The final characteristic of weight

functions is its functional form Fries & Matthies (2004).

Naming

s =
‖x− xI‖

a
(3.5)

1To avoid singularities of the moment matrix, α should be at least 2 − 2.2 for quadratic

basis in two dimensions, at least 2.4 for cubic polynomials and so on
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the properties of kernel functions are

w(s) ≥ 0 s ∈ [0, 1], (3.6a)

w(1) = 0, (3.6b)∫ 1

0

w(s)ds =
1

2
, (3.6c)

lim
a→0

w(s) = δ(s), (3.6d)

w(s) is monotonically decreasing with s. (3.6e)

Properties (3.6a) and (3.6b) guarantee that the kernel has compact support, while

(3.6c) is a normalization property. Property (3.6d) assures that at the limit the

kernel becomes a Dirac function. Some functional expressions of the kernel could

be for example the 3rd order spline

w(s) =


2
3
− 4s2 + 4s3 0 ≤ s ≤ 1

2
4
3
− 4s+ 4s2 − 4

3
s3 1

2
< s ≤ 1

0 s > 1

(3.7)

which is C2(Ω)1 or more generally the 2k-th order spline (figure 3.2)

w(s) =

{
(1− s2)k 0 ≤ s ≤ 1

0 s > 1
(3.8)

which is Ck−1(Ω) with k > 1.

The order of continuity of a kernel function is important because it influences

the order of continuity of the shape functions. First partial derivatives of the

kernel with respect to the variable xk can be evaluated using chain rule

∂w

∂xk
=
∂w

∂s

∂s

∂xk
. (3.9)

For example, if the norm used in equation (3.5) is the common euclidean norm,

then a singularity may appear in (3.9). To the author’s knowledge, this aspect

has never been considered in the literature; therefore the next subsection will

clarify this aspect in a more general manner.

1the notation Ck(Ω) indicates a function which is continuous on the domain Ω along with

its derivatives up to order k
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Figure 3.2: Window function (3.8) for different values of k

3.1.2 Window function and its derivatives

Let us consider the weight function w and its first and second derivatives in two

dimensions. Defining the following coordinates as in figure 3.3

ξ =
x− xI
ρI

η =
y − yI
ρI

(3.10)

and

s =
√
ξ2 + η2 = s(ξ, η) (3.11)

then
∂s

∂ξ
=
ξ

s

∂s

∂η
=
η

s
(3.12)

and
∂2s

∂ξ2
=
η2

s3
,

∂2s

∂η2
=
ξ2

s3
,

∂2s

∂ξ∂η
= −ξη

s3
. (3.13)

If the window functions is a spline

w(s) = 1− 6s2 + 8s3 − 3s4 =
m∑
k=0

aks
k (3.14)

then
dw

ds
= −12s+ 24s2 − 12s3 =

m∑
k=1

kaks
k−1 (3.15)

and
d2w

ds2
= −12 + 48s− 36s2 =

m∑
k=2

k(k − 1)aks
k−2. (3.16)
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Figure 3.3: Definition of the variables ξ and η

Therefore
∂w

∂ξ
=
∂w

∂s

∂s

∂ξ
=

m∑
k=1

kaks
k−1η

s
(3.17)

∂w

∂η
=
∂w

∂s

∂s

∂η
=

m∑
k=1

kaks
k−1 ξ

s
. (3.18)

There is apparently a singularity at s = 0, but this indeterminate form can

be eliminated with the positions{
ξ = s cos(θ)

η = s sin(θ).
(3.19)

Hence equations (3.17) and (3.18) become

∂w

∂ξ
=

m∑
k=1

kaks
k−1 cos(θ), (3.20)

∂w

∂η
=

m∑
k=1

kaks
k−1 sin(θ), (3.21)

that evaluated at s = 0 and considering that the spline chosen in (3.14) has a1 = 0

∂w

∂ξ
(s = 0) = a1 cos(θ) = 0 ∀ θ, (3.22)
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∂w

∂η
(s = 0) = a1 sin(θ) = 0 ∀ θ, (3.23)

∂2w

∂ξ2
=
d2w

ds2

(
∂s

∂ξ

)2

+
dw

ds

∂2s

∂ξ2
=

m∑
k=2

k(k − 1)aks
k−2 ξ

2

s2
+

m∑
k=1

kaks
k−1η

2

s3
, (3.24)

∂2w

∂η2
=
d2w

ds2

(
∂s

∂η

)2

+
dw

ds

∂2s

∂η2
=

m∑
k=2

k(k − 1)aks
k−2η

2

s2
+

+
m∑
k=1

kaks
k−1 ξ

2

s3
, (3.25)

∂2w

∂ξ∂η
=
d2w

ds2

∂s

∂η

∂s

∂ξ
+
dw

ds

∂2s

∂ξ∂η
=

m∑
k=2

k(k − 1)aks
k−2 ξη

s2
+

−
m∑
k=1

kaks
k−1 ξη

s3
. (3.26)

With the same positions (3.19) equations (3.24), (3.25) and (3.25) become

∂2w

∂ξ2
=
d2w

ds2
cos2(θ) +

dw

ds

sin2(θ)

s
=

m∑
k=2

k(k − 1)aks
k−2 cos2(θ)+

+
m∑
k=1

kaks
k−2 sin2(θ), (3.27)

which evaluated at s = 0 is

∂2w

∂ξ2
(s = 0) = 2a2 cos2(θ) +

(
lim
s→0

a1

s
+ 2a2

)
sin2(θ) = 2a2 ∀ θ (3.28)

because a1 = 0.

Analogously

∂2w

∂η2
=
d2w

ds2
sin2(θ) +

dw

ds

cos2(θ)

s
=

m∑
k=2

k(k − 1)aks
k−2 sin2(θ)+

+
m∑
k=1

kaks
k−2 cos2(θ), (3.29)
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that is

∂2w

∂η2
(s = 0) = 2a2 sin2(θ) +

(
lim
s→0

a1

s
+ 2a2

)
cos2(θ) = 2a2 ∀ θ (3.30)

and

∂2w

∂ξ∂η
=
d2w

ds2
cos(θ) sin(θ)− dw

ds

cos(θ) sin(θ)

s
=

=
m∑
k=2

k(k − 1)aks
k−2 cos(θ) sin(θ)−

m∑
k=1

kaks
k−2 cos(θ) sin(θ) (3.31)

and since a1 = 0

∂2w

∂ξ∂η
(s = 0) = 2a2 cos(θ) sin(θ)−

(
lim
s→0

a1

s
+ 2a2

)
cos(θ) sin(θ) = 0 ∀ θ.

(3.32)

3.1.3 Partition of Unity and Consistency

Shape functions realize a Partition of Unity (PU) if

N∑
I=1

φI(x) = 1. (3.33)

More generally they realize a n− th order consistency if

N∑
I=1

φI(x)x α
I = xα (3.34)

where the multi-index notation is used

α =
[
α1 α2 . . . αd

]
, (3.35)

where d = dim(Ω) and
∑d

i=1 αi ≤ n

xα = xα1
1 x

α2
2 . . . xαdd . (3.36)

Equations (3.35) and (3.36) simply define a complete basis according to the di-

mension of the domain, i.e. 1D, 2D or 3D. Therefore it follows that PU is a

zero− th order consistency. Consistency also means that the shape functions are

able to reproduce exactly all the polynomials of a complete basis in the dimension

d.
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3.2 Smooth Particle Hydrodynamics (SPH)

SPH is the forefather of the modern MM Monaghan (1982), Monaghan (1988)

and Monaghan (1992). It simply states that

uh(x) =

∫
Ω

w(x− x′)u(x′)dΩ′ (3.37)

it is basically a convolution or a filtering of the function u through the kernel.

When discretized, equation (3.37) becomes

uh(x) =
N∑
I=1

w(x− xI)∆VIUI , (3.38)

where ∆VI = meas(ΩI) is a measure (i.e. length, area or volume ) of ΩI . There-

fore shape functions are given by

φI(x) = w(x− xI)∆VI . (3.39)

It can be shown Belytschko et al. (1996b) that, choosing a regular arrangement

of nodes, SPH shape functions do not realize a partition of unity, precisely at the

boundaries, therefore they cannot reproduce exactly even the constant function

(figure 3.4).

This is also the reason why these methods are used commonly in unbounded

domains. If the shape functions are normalized with respect to their sum, then

they realize a PU

φ 0
I (x) =

φI(x)∑N
I=1 φI(x)

. (3.40)

These functions are called Shepard’s functions and the superscript 0 means that

they have 0− th order consistency.

3.3 Reproducing Kernel Method (RKM)

RKM corrects SPH regarding consistency with a corrected kernel

uh(x) =

∫
Ω

C(x,x− x′)w(x− x′)u(x′)dΩ′ (3.41)
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Figure 3.4: SPH shape functions: their sum do not realize a PU

The corrective term C(x,x− x′) is obtained by Taylor’s series expansion. Let us

define a polynomial basis of order n

p(x) =

{
xα :

d∑
i=1

αi ≤ n

}
(3.42)

p(x) is also known as basis functions, for example

pT (x) = (1, x, x2, . . . , xk) (3.43)

in 1D case or

pT (x) = (1, x, y, x2, xy, y2) (3.44)

in 2D case. It can be shown Fries & Matthies (2004) that equation (3.41) is

uh(x) = pT (x)M(x)−1

∫
Ω

p(x)w(x− x′)u(x′)dΩ′ (3.45)

where

M(x) =

∫
Ω

p(x)pT (x)w(x− x′)dΩ′ (3.46)
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is called the moments matrix. In fact, if pT (x) is substituted in u(x) in equation

(3.45) it can be obtained that uh(x) = pT (x) which means that the approximation

can reproduce exactly all the polynomials in the basis function.

Sometimes it is preferred a scaled and translated version of equation (3.45),

to alleviate the ill-conditioning of the moments matrix.

uh(x) = pT (0)M(x)−1

∫
Ω

p

(
x′ − x

ρ

)
w

(
x′ − x

ρ

)
u(x′)dΩ′ (3.47)

where

M(x) =

∫
Ω

p

(
x′ − x

ρ

)
pT
(

x′ − x

ρ

)
w

(
x′ − x

ρ

)
dΩ′. (3.48)

In Barbieri & Meo (2009b), integrals in RKM have been resolved for a general

domain of a complex shape.

3.4 Reproducing Kernel Particle Method (RKPM)

RKPM is the discretized version of RKM, in fact considering equations (3.47)

and (3.48) and substituting integrals with summation

uh(x) = pT (0)M(x)−1

N∑
I=1

p

(
xI − x

ρ

)
w

(
xI − x

ρ

)
∆VIUI , (3.49)

M(x) =
N∑
I=1

p

(
xI − x

ρ

)
pT
(

xI − x

ρ

)
w

(
xI − x

ρ

)
∆VI . (3.50)

Therefore shape function for node I for RKPM is given by

φI(x) = CI(x)w

(
xI − x

ρ

)
∆VI , (3.51)

CI(x)︸ ︷︷ ︸
1x1

= pT (0)︸ ︷︷ ︸
1xk

M(x)−1︸ ︷︷ ︸
kxk

p

(
xI − x

ρ

)
︸ ︷︷ ︸

kx1

, (3.52)

where k is the number of functions in the basis. From equation (3.51) is quite

evident that CI(x) is a corrective term for the single weight function centered

in xI . Liu et al. (1997a) reported that the corrective term influences the weight
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functions only on a strip of length equal to the dilatation parameter around the

boundary.

Derivatives for the shape functions (3.51) are given by

∂φI
∂x

=
∂CI(x)

∂x
w(x) + CI(x)

∂w(x)

∂x
, (3.53)

where
∂CI
∂x

= pT (0)

[
∂M(x)−1

∂x
p + M(x)−1∂p

∂x

]
(3.54)

and
∂M(x)−1

∂x
= −M−1∂M

∂x
M−1. (3.55)

In Belytschko et al. (1996a) it is explained how to speed up the computation of

the derivatives with the means of LU factorization.

In equations (3.49), it is clear as the computational burden of MM shape

functions is still a factor hindering the diffusion of the meshfree technology. In

the next chapter, a solution to this problem is proposed. In fact it is possible

to accelerate remarkably the inversion of the moments matrix and its derivatives

without using any numerical routines (such as Gauss elimination, LU factorization

etc...) and, most importantly, it is possible to avoid such routines at each point

of evaluation. This greatly facilitates the implementation and also the portability

of the codes on different platforms.

3.5 Moving Least Squares (MLS)

MLS is a least squares procedure where the weights are spatial functions that

span all over the domain Ω. As it will be shown later, this procedure leads to

the same equations of RKPM. The surprising fact is that, both MLS and RKPM

can be derived from the same framework even though they have been originated

from different contexts. Indeed, RKPM has its origins in wavelets theory while

MLS has its in the approximation theory Lancaster & Salkauskas (1981). More-

over in Liu et al. (1997b) and Li & Liu (1996) it is derived a continuous version

of MLS, precisely called Moving Least Squares Reproducing Kernel Method ML-

SRKM which is the definitive missing link between the two methods.
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3.5 Moving Least Squares (MLS)

The approximation in MLS can be written as

uh(x) = pT (x)a(x). (3.56)

Given a set of nodes with coordinates xI at which the field variable UI is known,

a weighted L2 norm can be written

J =
N∑
I=1

w(x− xI)
[
pT (x)a(x)− UI

]2
. (3.57)

The minimum of J with respect to the coefficients a(x) leads to a set of linear

equations

M(x)a(x) = C(x)U (3.58)

where

M(x) =
N∑
I=1

w(x− xI)p(xI)p
T (xI), (3.59)

C(x) =
[
w(x− x1)p(x1) w(x− x2)p(x2) . . . w(x− xN)p(xN)

]
, (3.60)

U =
[
U1 U2 . . . UN

]T
. (3.61)

Solving equation (3.58) and substituting in equation (3.56)

uh(x) =
N∑
I=1

pT (x)M−1(x)CI(x)UI =
N∑
I=1

φI(x)UI , (3.62)

where CI(x) is the I − th column of C. Thus the shape functions are

φI(x) = pT (x)M−1(x)p(xI)w(x− xI). (3.63)

As said previously, this version of shape functions could lead to ill-conditioning

of the moments matrix. Therefore a scaled and translated version is commonly

preferred, leading to the same equations of RKPM (3.51), (3.52) when ∆VI = 1.

It has been reported in Fries & Matthies (2004) that choosing ∆VI 6= 1 has no

effect on the evaluation of shape functions, thus it can be concluded that MLS

and RKPM are practically the same.
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3.6 Discontinuities in Approximations

To reduce the number of computations in MLS or RKPM, derivatives can

be evaluated according to the procedure derived in Belytschko et al. (1996a). In

fact, if the linear system of equations (3.58) is solved by LU factor decomposition,

the matrices L and U can be stored for subsequent evaluation of the derivatives.

Re-writing equation (3.63) in the form

φI(x) = pT (x)M−1(x)p(xI)w(x− xI) = γ(x)p(xI)w(x− xI), (3.64)

the first derivatives are given by

∂φI(x)

∂x
=
γ(x)

∂x
p(xI)w(x− xI) + γ(x)p(xI)

w(x− xI)

∂x
. (3.65)

γ is obtained from the following

M(x)γ(x) = pT (x). (3.66)

Derivatives of γ can be obtained differentiating equation (3.66)

M(x)
γ(x)

∂x
=
∂p

∂x
− ∂M(x)

∂x
γ(x), (3.67)

which can be solved using the same LU decomposition used to solve equation

(3.66) and therefore only back-substitutions are necessary to compute equation

(3.67).

3.6 Discontinuities in Approximations

In fracture mechanics the presence of a crack introduces a discontinuity in the

domain. In FE, elements need to be conforming to the crack line, i.e. no inter-

element cracks are allowed, therefore the crack is usually simulated with a very

small thickness or by duplicating or splitting the nodes located on the edges. As

a consequence, when dealing with propagating cracks, a re-meshing operation is

necessary, often requiring human interaction.

MMs overcome all these limitations, because discontinuities can be constructed

directly from the shape functions. The first method to introduce discontinuity

can be found in Belytschko et al. (1994a) and it is called visibility criterion. In

this method the boundaries of the body and any interior lines of discontinuity are
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3.6 Discontinuities in Approximations

considered opaque, which means that when the domain of influence for the weight

function is constructed the line from a point to a node is imagined to be like a ray

of light. If the ray reaches an opaque line, for example an interior discontinuity,

the point is not included in the domain of influence (figure 2.1) Thus, nodes on

Figure 3.5: Weight function for the visibility criterion: picture taken from Be-

lytschko et al. (1994a)

the opposite side of the crack are excluded in the approximation of the displace-

ment field. A major drawback of this method is that non-convex boundaries are

not treated properly, since it does not include nodes or point that should instead

be included. Moreover, the resulting shape functions are discontinuous, which

is usually undesired in a Galerkin procedure, even though convergence of such

method has been proved in Krysl & Belytschko (1997).

A modification of this criterion is the diffraction method. When the ray

encounters a crack line, the distance between the two points is lengthened, in-

cluding the distance between the point and the crack tip (figure 2.4 ). Moreover,

a smoothing factor λ is included to take into account the density of the nodes

or the presence of enrichments. Conversely to the visibility criterion, the diffrac-

tion method builds continuous approximations. The weight function distance s

is modified as follows

s(x) =

(
s1 + s2(x)

s0(x)

)λ
s0(x), (3.68)
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3.6 Discontinuities in Approximations

where s1 = ‖xI − xc‖, s2(x) = ‖x− xc‖ and s0(x) = ‖x− xI‖ where xc is

the crack tip position and λ is a smoothing factor which for problems with a

normal nodal distribution and a linear basis, is chosen as 2. For problems with

enrichments, it could be either 1 or 2.

Figure 3.6: Weight function for the transparency criterion: figure taken from

Belytschko et al. (1996a)

Derivatives of weight function are evaluated accordingly

∂s

∂xi
= λ

(
s1 + s2(x)

s0(x)

)λ−1
∂s2

∂xi
+ (1− λ)

(
s1 + s2(x)

s0(x)

)λ
∂s0

∂xi
, (3.69)

where
∂s0

∂xi
(x) =

xi − xIi
s0(x)

(3.70)

and
∂s2

∂xi
(x) =

xi − xci
s0(x)

. (3.71)

Another technique for obtaining continuous approximations is the transparency

method (figure 3.6). The transparency is not uniform for the whole length but it

changes so that it is completely transparent at the tip and becomes completely

opaque a short distance from the tip. In this manner, the range of vision for each

node near the crack tip is not suddenly truncated when it reaches the crack tip,
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3.7 Intrinsic Enrichments

but diminishes smoothly to zero at a short distance from the tip. The length

modifies as follows:

s(x) = s0(x) + ρI

(
sc(x)

s̄c

)
, (3.72)

where sc(x) is the distance between the crack tip and the intersection point

between the ray and the crack line, ρI is the dilatation parameter for node I and

s̄c it is a parameter that regulates the transparency transition from the tip to the

point of complete opacity. One drawback of the transparency method is that it

does not work well when nodes are placed too close to the crack surface.

Other methods employed are the see-through method and most recently, the

spiral weight method Muravin & Turkel (2006b) takes into consideration the ad-

vantages and drawbacks of the diffraction method. It is claimed in this method

that the use of this weight function can accurately solve for the stresses even

when using a linear basis with no enrichments.

3.7 Intrinsic Enrichments

Intrinsic enrichment consists simply in adding functions to the basis that resem-

ble the known solution of a particular problem. For example, for linear elastic

fracture mechanics in two dimensions, one can include the asymptotic near-tip

displacement field

pT (x) =
[
1 x y

√
r cos θ

2

√
r sin θ

2

√
r cos θ

2
sin θ

√
r sin θ

2
sin θ

]
, (3.73)

where

r =
√

(x− xc)2 + (y − yc)2 (3.74)

and

θ = atan2(y − yc, x− xc), (3.75)

where θ ∈ [−π/2, π/2] is the angle from the segment between the point x and the

crack tip xc and the tangent of the crack line (figure 3.8).
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3.8 Extrinsic Enrichment

It can be proved that these augmented functions can reproduce exactly the

near-tip asymptotic displacement field

u(x) =
k1

2µ

√
r

2π
cos

(
θ

2

)[
κ− 1 + 2 sin2

(
θ

2

)]
, (3.76a)

v(x) =
k1

2µ

√
r

2π
sin

(
θ

2

)[
κ− 1 + 2 cos2

(
θ

2

)]
, (3.76b)

where κ is the Kolosov constant

κ =

{
3− 4ν plane strain
(3−ν)
1+ν

plane stress
, (3.77)

µ is the shear modulus and k1 is the stress intensity factor for mode I.

Even though there are no extra unknowns, for multiple cracks, four additional

terms need to be added to the basis for each crack. This increase the size of

the moments matrix, which means more computational effort and more dense

distribution of nodes, because each support must contain at least a number of

nodes equal to the size of the basis Huerta & Fernandez-Mendez (2000).

There are also ill-conditioning issues when the basis contains non-polynomial

basis Belytschko & Fleming (1999). A method for coupling approximation with

enriched and polynomial basis is proposed in Belytschko & Fleming (1999) where

uh(x) = Ruenr(x) + (1−R)ulin(x), (3.78)

where uenr(x) is the enriched approximation, ulin(x) is the linear basis approxi-

mation and R is a ramp function which is equal to unity on the enriched boundary

of the coupling region and equal to zero on the linear boundary of the coupling

region. The same approach is used in Belytschko et al. (1996b) to couple FE and

MM.

3.8 Extrinsic Enrichment

Extrinsic enrichments are based on the broader concept of Partition of Unity

Duarte & Oden (1996) Melenk & Babuška (1996). There are two different types

of extrinsic enrichment, namely extrinsic global enrichment and extrinsic local
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3.8 Extrinsic Enrichment

enrichment. The global enrichment consists in adding functions to the approx-

imation that are evaluated on all the Gaussian points of the domain, whereas

an extrinsic local enrichment limits these extra functions only in specific parts of

the domain. It will be shown in the next sections that the second approach is

achieved exploiting the PU property of the shape functions.

3.8.1 Extrinsic Global Enrichment

In the global enrichment the approximation uh(x) for each component of the

displacement is written as

uhi (x) = pT (x)ai(x) +
nc∑
j=1

αjQj
i (x) i = 1, . . . , nc, (3.79)

where nc is the number of the cracks, ai(x) coefficients of the polynomial ba-

sis, αj is an unknown associated with the j − th crack and Qj
i (x) are near-tip

displacement field for mode I

Q1(x) =
1

2µ

√
r

2π
cos

(
θ

2

)[
κ− 1 + 2 sin2

(
θ

2

)]
, (3.80a)

Q2(x) =
1

2µ

√
r

2π
sin

(
θ

2

)[
κ− 1 + 2 cos2

(
θ

2

)]
. (3.80b)

Using MLS procedure, in terms of shape functions, equation (3.79) becomes

uhi (x) =
N∑
I=1

φI(x)UIi +
nc∑
j=1

αj

[
Qj
i (x)−

N∑
I=1

φI(x)Qj
i (xI)

]
, (3.81)

where φI(x) is the shape function defined in equation (3.63). It should be noted

that in this method there are only nc additional unknowns of the problem. This

means that if only 1 crack exists, there is just one more unknown per component

of displacements, which is quite advantageous. Moreover, for crack problems,

in Nguyen et al. (2008) is reported that extrinsic global enrichments for crack

problems are far superior in terms of accuracy on the stress intensity factors with

respect to the local enrichment and can be directly obtained without considering

the J-integral. However, the computational cost is higher since the enrichment
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3.8 Extrinsic Enrichment

is applied in the entire domain. The extrinsic local enrichment based on the

PU is only slightly less accurate but computationally more efficient, since the

enrichment is applied locally and little modifications to existing codes are needed

to turn a standard meshfree code into an enriched one.

3.8.2 Extrinsic Local Enrichment

The extrinsic local enrichment or extrinsic PU enrichment instead makes use

of the Shepard’s function (3.40). This approach will be later used to simulate

delaminations in composite materials.

For the sake of the clarity, let us start with a simple example.

uh(x) =
N∑
I=1

φI(x)UI + Ψ(x) (3.82)

where Ψ(x) is a generic enrichment function, for example the near-tip crack en-

richment or a strong discontinuity like the Heaviside function.

It may seem that (3.82) is similar to the global extrinsic equation. Indeed, to

localize the enrichment, one simply has to consider (3.33) and multiply 1 to Ψ(x)

uh(x) =
N∑
I=1

φI(x)UI + Ψ(x) 1︸︷︷︸∑Ne
I=1 φ

0
I(x)aI

=

=
N∑
I=1

φI(x)UI + Ψ(x)
Ne∑
J=1

φ0
J(x)aJ =

N∑
I=1

φI(x)UI +
Ne∑
J=1

φ0
J(x)Ψ(x)aJ , (3.83)

where the superscript 0 means zero-th order consistency. The number Ne is the

number of enriched nodes and aJ are added unknowns to these nodes. If all the aJ

are equal to 1, then, for the PU, the (3.83) becomes (3.82) and therefore Ψ(x) is

reproduced exactly. The locality of the enrichment stays in the term φ0
J(x)Ψ(x).

In fact, the enriched nodes are chosen as the nodes whose support contains the

enrichment. If it is a discontinuity, then the enriched nodes are the ones whose

support is cut by the discontinuity. If Ψ(x) is a near-tip crack enrichment, then

the enriched nodes are the ones whose support contains the crack tip. Since

the φ0
J are compact support functions, the enrichment Ψ(x) does not have to be
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3.8 Extrinsic Enrichment

evaluated to all the x ∈ Ω but only to all the (Gaussian) points x belonging to

the Ne supports of the φ0
J .

Duarte & Oden (1996) pointed out that also standard MLS shape functions

(3.63) are PU; therefore in equation (3.82) Shepard’s functions could be replaced

by φnI (x) where the superscript n denotes any shape functions satisfying a PU of

order n.

Apart from the minor computational cost of this formulation, another advan-

tage is the facilitation of hp-adaptivity, since the enhanced functions may vary

from node to node. In fact, for crack problems, it is possible to use the following

enrichment Ventura et al. (2002)

uh(x) =
N∑
I

φI(x)UI +
Nc∑
J

φj(x)H(x)aj +

Nb∑
k

φk(x)
4∑

α=1

Bα(x)bαk, (3.84)

where aj and bαk are added unknowns, H(x) is the Heaviside function, Nc is the

number of nodes whose support is completely cut by the crack, Nb is the number

of nodes whose support contains the crack tip and Bα are the branch functions

(figure 3.7 )

BT =
[√

(r) cos
(
θ
2

) √
(r) sin

(
θ
2

) √
(r) sin

(
θ
2

)
sin(θ)

√
(r) cos

(
θ
2

)
sin(θ)

]
(3.85)

where

r =
√
x2 + y2 (3.86)

θ =
y√

x2 + y2 + x
(3.87)

as shown in figure 3.8.

For completeness, here the derivatives of the branch functions are also reported

∂(r, θ)

∂(x, y)
=

 x/r y/r

−y/(2r2) x/(2r2)

 (3.88)
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3.8 Extrinsic Enrichment

(a) B1 (b) B2

(c) B3 (d) B4

Figure 3.7: Branch functions

Figure 3.8: Near crack-tip polar coordinates
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∂B

∂(r, θ)
=



1
2
√
r

cos
(
θ
2

)
−
√
r sin

(
θ
2

)
1

2
√
r

sin
(
θ
2

)
−
√
r cos

(
θ
2

)
1

2
√
r

sin2
(
θ
2

)
cos
(
θ
2

) √
r
(
3 cos2

(
θ
2

)
− 1
) (

sin
(
θ
2

))
1

2
√
r

cos2
(
θ
2

)
sin
(
θ
2

) √
r
(
3 cos2

(
θ
2

)
− 2
) (

cos
(
θ
2

))


. (3.89)

Therefore
∂B

∂(x, y)
=

∂B

∂(r, θ)

∂(r, θ)

∂(x, y)
, (3.90)

∂B1

∂x
=

1

2
cos

(
θ

2

)
x

r3/2
+

1

4
sin

(
θ

2

)
y

r3/2
, (3.91)

∂B1

∂y
=

1

2
cos

(
θ

2

)
y

r3/2
− 1

4
sin

(
θ

2

)
x

r3/2
, (3.92)

∂B2

∂x
=

1

2
sin

(
θ

2

)
x

r3/2
− 1

4
cos

(
θ

2

)
y

r3/2
, (3.93)

∂B2

∂y
=

1

2
sin

(
θ

2

)
y

r3/2
+

1

4
cos

(
θ

2

)
x

r3/2
, (3.94)

∂B3

∂x
= sin2

(
θ

2

)
cos

(
θ

2

)
x

r3/2
− 1

2

(
3 cos2

(
θ

2

)
− 1

)
sin

(
θ

2

)
y

r3/2
, (3.95)

∂B3

∂y
= sin2

(
θ

2

)
cos

(
θ

2

)
y

r3/2
+

1

2

(
3 cos2

(
θ

2

)
− 1

)
sin

(
θ

2

)
x

r3/2
, (3.96)

∂B4

∂x
= sin2

(
θ

2

)
cos

(
θ

2

)
x

r3/2
− 1

2

(
3 cos2

(
θ

2

)
− 1

)
sin

(
θ

2

)
y

r3/2
, (3.97)

∂B4

∂y
= cos2

(
θ

2

)
sin

(
θ

2

)
y

r3/2
+

1

2

(
3 cos2

(
θ

2

)
− 2

)
cos

(
θ

2

)
x

r3/2
. (3.98)
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3.9 Element-Free Galerkin (EFG)

So far only approximations to the unknown function have been considered. In

order to solve a differential equation, methods like variational formulations or

collocative methods (like finite difference) must be used. The EFG method Be-

lytschko et al. (1994b) is based on the weak variational form of the differential

equations of the elasticity along with the boundary conditions. For example, in

dynamic problems,∫
Ω

δεTσdΩ−
∫

Ω

δuTbdΩ−
∫

Γ

δuT tdΓ+

∫
Ω

δuTρüdΩ+α

∫
Γu

δG(u)TG(u)dΓu = 0,

(3.99)

where Ω is the entire domain of the solid, Γ its whole boundary, Γu the part of

boundary where are imposed the essential boundary conditions, σ is the vector-

ized stress tensor, ε is the vectorized strain tensor, ρ the mass density, u is the

displacements vector, b and t are respectively the body and the surface forces

and G(u) the vector of the essential boundary conditions, for example in 2D

G(u) =

[
u− ū
v − v̄

]
∀x ∈ Γu. (3.100)

The parameter α is a penalty parameter Zienckiewicz & Taylor (1994) used to

impose essential boundary conditions.

In fact, because of the non-interpolating nature of MLS, essential boundary

conditions cannot be directly imposed on the nodes. Thus, a penalty method is

needed to enforce boundary conditions on displacements. Other methods used

to impose essential boundary conditions are Lagrange Multipliers or coupling

with FE. To the author’s opinion, penalty method must be preferred to Lagrange

Multipliers since no extra unknowns are introduced (the Lagrange multipliers λ)

and also no zeros appear in the diagonal of the resulting stiffness matrix. The

introduction of extra zeros could cause spurious zero-modes in a dynamic analysis.

Also, the symmetry of the stiffness matrix is destroyed by the introduction of the

multipliers, with disadvantages in the numerical solutions of the algebraic system

of equations. Moreover penalty method may be easily used to impose contacts

between two or more bodies and also to separate sub-domains of a whole body.

An example of the power of the penalty method can be found in Barbieri &
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3.9 Element-Free Galerkin (EFG)

Meo (2008) and Barbieri & Meo (2009a) where the delamination in a composite

material is studied in conjunction to a cohesive zone model. A generalization of

the cohesive zone model applied to meshless method can be found in Sun et al.

(2007) and it will be presented in the next chapters.

Substitution of equation (3.63) in equation (3.99) leads to the discretized

equation of motion

MÜ + CU̇ + KU = f(t), (3.101)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix

and f is the vector of generalized forces. It should be remarked that U is a “fic-

titious” nodal displacements vector because of equation (3.2). Mass and stiffness

matrices are given by

Mij =

∫
Ω

ρφiφjdΩ, (3.102)

Kij =

∫
Ω

BT
i DBjdΩ + α

∫
Γu

φiφjdΓu, (3.103)

where B is the two-dimensional strain differential operator matrix applied to all

shape functions φI , D is the elastic constitutive matrix and f(t) generalized forces

are given by

fi(t) =

∫
Ω

φibdΩ +

∫
Γ

φitdΓ + α

∫
Γu

φiūdΓu. (3.104)

Because of the complex nature of the shape functions, integrals in equations

(3.102), (3.103) and (3.104) have to be evaluated numerically. Since mesh-free

methods have no intrinsic subdivision like finite elements, it is necessary to intro-

duce a subdivision of the domain. Normally two approaches are used, background

elements (figure 3.9a) or cell quadrature (figure 3.9b). In the former one, quadra-

ture is performed over a subdivision of the domain built by a FE mesh generator

and the vertices are taken as initial array nodes for MLS approximation, while in

the latter an octree cell structure, independent of the domain, is used. Each inte-

gration point is checked as to whether or not it lies inside the domain; points which

lie outside are neglected. One may think that cell quadrature is less performing

than background elements, because large errors are expected when surfaces pass

through the cell and at the boundaries; nonetheless, in Belytschko & Fleming
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(a) Background elements (b) Cell quadrature

Figure 3.9: Quadrature methods in MM; pictures taken from Belytschko et al.

(1996b)

(1999) it is reported that no significant difference can be found using the two

different types.

In Dolbow & Belytschko (1999) is proposed a bounding box technique which

takes into account the overlapping supports. This technique seems reasonable for

tensor-product kernels (figure 3.10a), where the product of 2 shape functions in

different nodes is different from zero only where the supports overlap each other.

The minimal regions of these overlapping determine the bounding box technique

in figure 3.10b. Therefore such integration method is expected to greatly reduce

the numerical errors due to numerical integration, whenever a tensor product

kernel is used. Moreover, it is usually recommended to use Gaussian integration

over these cells rather than trapezoidal integration, since Gaussian is more accu-

rate than the trapezoidal for the same number of integration points. In Dolbow

& Belytschko (1999) it is also mentioned that more smaller integration cells with

less integration points is a better choice than larger integration cells with higher

order accuracy, because shape functions usually vary quite rapidly over a small

portion of the domain. The use of cells or elements for the numerical integration

might sound incoherent, since MMs are expected not to use any sort of mesh.

This is indeed a quite controversial topic, that led some researchers to distinguish

between truly meshless methods and not truly MM Atluri & Zhu (1998).

In fact, to create truly MM, one needs to construct local weak formulations
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(a) Tensor product kernels (b) Bounding box technique

Figure 3.10: Bounding box integration; pictures taken from Dolbow & Belytschko

(1999)

Atluri & Zhu (1998), while EFG is a global weak formulation.

In response to this paradox, Liu (2003) said:

”One may ask now, why do we not simply use the conventional finite

element method (FEM) with triangular elements, which has been fully

developed? The answer is simply the well-known fact that the FEM

results using triangular elements are very poor. This is due to the poor

quality of the linear shape functions constructed based on three-node

element confined interpolation schemes. In meshfree methods, how-

ever, the interpolation/ approximation is not cell/element confined.

Basically, it can ”freely,” ”automatically,” and ”dynamically” choose

surrounding nodes to construct the shape functions. This freedom

of node selection enabled by meshfree technology is truly powerful.

Based on this argument, the difference between FEM and meshfree

methods is essentially the difference in the interpolation scheme, and

this is also the reason the interpolation technique is the key to the

success of the meshfree methods.”
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Chapter 4

Improvements to the Method

The major factors hindering the spreading of the meshfree methods are of practi-

cal nature. Indeed, for equation (3.49), it is necessary to invert a matrix M, called

the moment matrix, for each point of interest. If the number of points is large,

then this operation must be repeated several times, raising the computational

cost.

Another issue regards the search for points located within the support radius.

In fact, for equation (3.5), meshfree shape functions are compact support func-

tions, which means that they are zero outside a ball of radius ρI centered in the

I − th node. This means that, in equation (3.49), the summation can be limited

to the nodes that have x in their support. Hence, to evaluate the shape functions,

the following operations must be performed at every point x (figure 4.1) Krysl &

Belytschko (2001) and Fries & Matthies (2004):

• search for neighbors within the set of nodes

• calculate the moment matrix (see equation (3.50))

• invert the moment matrix

• apply the corrective term to the weight function (see equation (3.51))

Also derivatives are usually of interest in Galerkin formulations.

Since these operations are carried out within a loop over the Gaussian points,

and since the Gaussian points are always more than the nodes, it is easy to see

that the overall code is incredibly slowed down.
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Figure 4.1: Flowchart of the classic algorithm in meshfree methods

67



4.1 kd-Trees for Neighbour Search

In this chapter some remedies to implementation issues in MM will be pre-

sented, while in the next chapter the complete code will be described.

As a general guideline, the double-looping over the nodes and the Gaussian

points should be avoided as much as possible. This is true for every programming

language but it is more evident for Matlab , where significant speeds-up can be

achieved with loop vectorization. Moreover, the Gaussian points are usually are

more numerous than the nodes, therefore instead of looping over the Gaussian

points and looking for the nodes, it is more convenient to focus on nodes and

search for the Gaussian points included in the support.

In the following sections the typewriter character A will be used to indicate

the computer variable, while A will indicate the mathematical entity (vector,

matrix, etc...).

4.1 kd-Trees for Neighbour Search

Meshfree shape functions are compact support functions, as stated in equation

(3.5) and properties (3.6a) and (3.6b).

The purpose of the compactness is to discretize the domain, as in FE, i.e. to

give a local character to the approximation. As a result, stiffness matrix is sparse,

i.e. with most entries equal to zero. The compactness of the shape functions can

be exploited to better store the matrix values and to efficiently evaluate the

integrals in Galerkin formulations. In fact, figure 4.2 shows the sparsity pattern

arising from a typical meshfree discretization over a line segment. If ng is the

number of evaluation points (rows) and ns the number of nodes, the meshfree

shape functions resulting from a discretization can be stored in a ng × ns matrix

PHI.

For example, for a fixed column 1 PHI contains the values of the j − th shape

function on all the points that belong to the support of the j − th node.

PHI(:, j) j = 1, . . . , ns. (4.1)

1it is used the Matlab notation where the colon : in a matrix means variation over that

dimension
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4.1 kd-Trees for Neighbour Search

Since on the same evaluation point there should be enough nodes for the meshfree

approximation 1, analogously, for a fixed row PHI contains the values of the shape

functions of the nodes that have the i− th evaluation point within their support.

PHI(i, :) i = 1, . . . , ng. (4.2)

The sparsity diagram 4.2 is a representation of the non-zero values of PHI,

where a blue dot corresponds to a non-null entry. Firstly, it can be seen how the

number of evaluation points is usually much larger than the number of nodes.

These evaluation points usually are Gaussian points, if the variational weak form

is used. Secondly, it can be clearly seen that the vast majority of entry is zero

and concentrated on the main diagonal.

This reflects the fact that for each node, only the nearest Gaussian points

are considered. When two supports for two different nodes overlap, then there is

a non-zero entry for the stiffness matrix, otherwise the correspondent entry will

be null. Thus, it seems reasonable not to store the shape functions matrix as

a full matrix, but rather as sparse matrix. The only values stored are then the

row-index, the column-index and the non-zero entry. A full matrix would have

had all the values, even the zero ones, arranged in a table-like manner.

As an example of the amount of memory saved, a factor called density d is

normally calculated for sparse matrix. It is the ratio of the number of non-zero

values nnz and the total number of elements of the matrix, i.e. the product of the

total number of rows r for the total number of columns c. For meshfree shape

functions, this factor could be around 6%, depending of course on the dilatation

parameter.

d =
nnz
rc
. (4.3)

In order to obtain this sparse matrix, it is crucial an algorithm capable of

searching the evaluation points within a certain radius (figure 4.3).

Given a set of ns approximation nodes (variable GRIDSET)

S1 = {xJ : J = 1, . . . , ns} ⊂ Rk k = 1, 2, 3 (4.4)

1to avoid ill-conditioning of the moment matrix Fries & Matthies (2004) and Nguyen et al.

(2008)
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4.1 kd-Trees for Neighbour Search

Figure 4.2: Sparsity pattern for meshfree shape functions on a segment
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4.1 kd-Trees for Neighbour Search

Figure 4.3: Neighbour Search: red crosses: evaluation points inside the support;

blue crosses: evaluation points outside the support

and a second set of ng evaluation points (variable GGRID1)

S2 = {xI : I = 1, . . . , ng} ⊂ Rk k = 1, 2, 3 (4.5)

the complete distance matrix S would be a matrix ng × ns where

SIJ =
|xI − xJ |

ρJ
, (4.6)

where ρJ is the dilatation parameter for the J-th node.

After S matrix is constructed, for equation (3.5) only the values less than or

equal to one must be considered. Let us call nnz the number of elements in S

satisfying

s = {I ∈ 1, . . . ng, J ∈ 1, . . . ns : SIJ ≤ 1} (4.7)

then, the output of such procedure would eventually be 3 vectors of length nnz,

ig, js and s such that (figure 4.4)

Sigi,jsi
= si i = 1, . . . , nnz. (4.8)
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4.1 kd-Trees for Neighbour Search

Figure 4.4: Neighbour Search: example of the mapping in equation (4.8)

This is a well-known problem in the field of the computational geometry and

it is called neighbour search or range query.

A naive implementation would loop over the Gaussian points S2, loop again

over the nodes S1, compare the distance with the dilatation parameter and then

decide whether a point belongs to the node or not. This brute force algorithm

is said to have a computational cost O(N2), which means that the number of

operations goes with the square of the number N of the elements. If N is a

large number, then it is easy to understand that the computational cost becomes

prohibitive. Yet, this algorithm for its simplicity is widely used in the meshfree

community as affirmed in Idelsohn & Oñate (2006) and reported in several papers

Belytschko et al. (1996b) , Dolbow & Belytschko (1998), Krysl & Belytschko

(2001) and Nguyen et al. (2008).

The brute force algorithm is nonetheless inefficient when the number of nodes

notably grows. It is then especially not recommended for large scale simulations.

The neighbour search is indeed recognized as one of the greatest bottle-neck

for the meshfree technology. For a more efficient code, improvements should be

1in principle different from GRIDSET, but not necessarily
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4.1 kd-Trees for Neighbour Search

directed also in this sense.

An attempt towards this scope is reported in Liu (2003) where an algorithm

called bucket is used to reduce the range of nodes over the search is performed.

The algorithm allows a maximum number of nodes to fall within each bucket.

If the number of nodes in the bucket exceeds a certain pre-fixed value, then the

bucket is split in two parts. The subdivision is iterated until every bucket has a

number of nodes inferior to a defined one. This is roughly the concept behind a

more powerful tool, i.e. kd-tree.

A kd-tree is a generalization of binary trees to k−dimensional data. Binary

trees are studied in computer science as data structure that emulates a hierarchi-

cal tree structure with a set of linked nodes. Every node is connected to at most 2

other nodes, called children. If each node is connected to 4 children, then the tree

is called a quadtree, if connected to 8 children the tree is a octree. The quadtree

idea is identical to the bucket idea, and in fact it is normally used to to partition

a two dimensional space by recursively subdividing it into four quadrants or re-

gions Finkel & Bentley (1974), while the three-dimensional analogue is an octree.

Quadtrees have been used in meshfree methods as background mesh generators

Klaas & Shephard (2000), Cartwright et al. (2001), Griebel & Schweitzer (2002a),

Macri et al. (2003) and also for adaptivity Tabarraei & Sukumar (2005), The use

of binary trees is different in this context. In this thesis binary trees are used not

to generate a hierarchical mesh but rather as a tool for building a connectivity

map between nodes and Gaussian points.

In a recent work Fasshauer (2007) binary tree methods have been applied in

meshfree methods, although a different method (Radial Basis Function) is used.

A kd-tree (where k stays for k− dimensional tree) is a space-partitioning

data structure for organizing N points in a k−dimensional space. A complete

exposition of kd-trees is beyond the aims of this thesis, but main concepts will

be briefly recalled. The interested reader can refer to specialized textbooks as

Cormen et al. (2001) or Moore (1991) for more formal definitions and details.

The space-partitioning achieved by hierarchically decomposing a set of points

into smaller sets of data, until each subset has the same number of points. The

procedure is graphically shown in figure 4.5
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4.1 kd-Trees for Neighbour Search

(a) The space-partitioning (b) The final kd-tree

Figure 4.5: Example of kd-tree (from Wikipedia)

The first step consists in picking a point (the root) and considering a plane

perpendicular to one of the axis and passing through the root. The whole domain

is then split in two halves, each one containing roughly the same number of

nodes. For each of the two sub-partitions, a node is chosen again, but this time

the splitting plane will be on a different dimension of the previous one. The

two nodes are called children. The procedure is then repeated for the children,

generating other children, until the final sub-partitions will not contain any node.

These final children are called leaves. From the root to the leaves, every node of

the tree represents a point. In meshfree methods, the final connectivity matrix is

constructed by two steps: the construction of the tree and the range query. The

computational cost for building the tree is O(kN logN) for points in Rk and the

range query takes only O(logN), while for the brute force algorithm is O(N). In

Krysl & Belytschko (2001) it is recommended to use O(logN) algorithm for the

neighbour search.

The kd-tree algorithm is considerably more efficient than the naive implemen-

tation and it will be preferred in the development of the codes.

74

http://en.wikipedia.org/wiki/Kd-tree


4.1 kd-Trees for Neighbour Search

4.1.1 Speed-up using a background mesh: a mixed kd-

tree-elements approach

A further speed-up in neighbour search can be achieved whenever a background

element mesh is used for integration purposes. In fact, for this type of integration,

Gaussian points do not need to be searched, since they are located within the

boundaries of each element. Knowing the inverse mapping between elements and

nodes, (i.e. which elements belong to each node), it is necessary to search inside

only one set of points, i.e. S1 (4.4). Since the number of nodes it is usually less

than the number of Gaussian points, this approach notably reduces the computa-

tional time. However, it can only be used in combination with elements. When a

different type of integration is implemented, for example regular background grid,

it is necessary to perform the full kd-tree neighbour search, which is nevertheless

O(logN).

4.1.2 The Matlab kd-tree

Matlab does not have a predefined kd-tree routine, but a free implementation can

be download from the internet at the Matlab Central File Exchange. The one

used in this thesis is by Dr. Guy Shechter and is covered by the BSD License.

4.1.3 Results

Numerical tests have been performed to assess the capabilities of the proposed

approach. The number of nodes of set S1 (4.4) has been fixed, while the number

of Gaussian points (set S2 (4.5) ) was varied.

As it can be seen in figure 4.6, for small data sets, the brute force algorithm

seems to perform better than kd-tree. However, this is simply due to overhead in

kd-tree (the construction of the tree). In fact, when the data set grows, the brute

force algorithm becomes incredibly slow, even using a highly vectorized version,

as in this case. This highly vectorized brute force version needs more storage

memory, since it requires the whole distance matrix. With the increase of the

Gaussian points then, the brute force becomes then prohibitive. In fact for the
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4.2 The Moment Matrix

case in figure 4.7, with a larger set of nodes, it was not possible to apply the brute

force algorithm.

Figures 4.6 and 4.7 show the convenience of using a background element mesh

for range searching. Compared to the brute force, the approach described in

section 4.1.1 can save up to two orders of magnitude in computational time and

an order of magnitude with respect to the kd-tree in Gaussian points. Nonetheless,

in order to exploit the advantages of brute force for small data sets (e.g. Gaussian

points on boundaries for the application of the boundary conditions), the code is

able to switch from brute force to kd-tree according to the size of the set.

For the Gaussian points in the bulk, the code switches to the mixed kd-tree

algorithm with nodes and elements.

Figure 4.6: Computational times for neighbour search for fixed number of nodes

(2465): blue line: brute force; red line: kd-tree in Gaussian points; green line:

kd-tree using background elements

4.2 The Moment Matrix

The key of the reproducing properties of RKPM is the moment matrix M(x)

(3.50).

The formula is here recalled for the sake of clarity

M(x) =
ns∑
I=1

p

(
x− xI
ρ

)
pT
(

x− xI
ρ

)
w

(
x− xI
ρI

)
, (4.9)
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Figure 4.7: Computational times for neighbour search for fixed number of nodes

(9537): blue line: kd-tree in Gaussian points; red line: kd-tree using background

elements

where ρ is the mean of all the dilatation parameters and p is the polynomial

basis. For linear reproducing properties in 2D is, for example,

pT
(

x− xI
ρ

)
=
[
1 x−xI

ρ
y−yI
ρ

]
. (4.10)

Once the connectivity vectors are obtained (4.8), the values s (3.5) can be

used to calculate the weight function and its derivatives. Indeed, the connectiv-

ity vectors ig, js and s allow the evaluation of the window functions directly

on the non-zero values of the compact support functions. With the opportune

correction (3.51), these values will become the shape functions. The role of the

connectivity vectors is crucial for the code, since they need to be computed only

once (with an efficient algorithm O(logN)) and consent to avoid any loop for

the subsequent calculations. All the operations can then be carried out vector-

wise. This operation is called loop vectorization. Moreover, the computations are

executed only on non-zero values of the weight functions, avoiding any unneces-

sary computation. In the next subsections all the operations will be explained in

detail.
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4.2 The Moment Matrix

4.2.1 The window function handle

In Matlab it is possible to define an object called function handle, which allows a

quick evaluation of a function. The function handle is defined using the following

command:

Kernel = @(s) 1− 6s2 + 8s3 − 3s4. (4.11)

In this case @(s) indicate an anonymous variable. Such mute variable can be

replaced with the actual variable s (4.7) and calculate the expression contained

in the object Kernel over all the values contained in s simply by executing the

command

PSI = Kernel(s), (4.12)

where the vector PSI1 contains the non-zero values of the weight functions for all

the nodes and for all the Gaussian points.

Once obtained the values PSI, the following operations are necessary to cal-

culate the entries of the moment matrix:

• the computation of the scaled coordinates ξI = x−xI
ρ

and ηI
y−yI
ρ

,

• the computation of the polynomial basis (4.10),

• the computation of the sum of the polynomial basis (4.9).

4.2.2 Computation of scaled coordinates

Supposing GRIDSET is the coordinate list of the set S1 and GGRID the coordinate

list of the set S2 and CSI is the computer implementation of ξI ∀I = 1, . . . , ns

and ETA the computer variable for ηI ∀I = 1, . . . , ns , then the computation of ξI

and ηI is done in the following way:

CSI = (GGRID(ig, 1)− GRIDSET(js, 1))./mrho (4.13)

ETA = (GGRID(ig, 2)− GRIDSET(js, 2))./mrho (4.14)

where mrho is ρ the average of the dilatation parameters.

1PSI is used instead of W to avoid confusion with the Gaussian weights
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4.2.3 Computation of the polynomial basis

Similarly to the command (4.11), it is possible to define the polynomial basis as

function handle. For a more neat programming style, it is opportune to group

these functions in an array, or cell array.

A cell array is similar to a multidimensional array, but with the interesting

feature that data are allowed to be not necessarily of the same type.

PolyBasis.p{1} = @(x,y) 1 (4.15)

PolyBasis.p{2} = @(x,y) x (4.16)

PolyBasis.p{3} = @(x,y) y (4.17)

PolyBasis.dpdx{1} = @(x,y) 0 (4.18)

PolyBasis.dpdx{2} = @(x,y) 1 (4.19)

PolyBasis.dpdx{3} = @(x,y) 0 (4.20)

PolyBasis.dpdy{1} = @(x,y) 0 (4.21)

PolyBasis.dpdy{2} = @(x,y) 0 (4.22)

PolyBasis.dpdy{3} = @(x,y) 1 (4.23)

Let us define a function handle of the type

P handle = @(P) {P(CSI,ETA)} (4.24)

where CSI is (4.13) and ETA is (4.14). In this way, by simply calling

P = cellfun(P handle,PolyBasis.p(1:3)).’ (4.25)

the values of the polynomial basis are readily calculated. Moreover, with the call

DPDX = cellfun(P handle,PolyBasis.dpdx(1:3)).’ (4.26)

79



4.2 The Moment Matrix

DPDY = cellfun(P handle,PolyBasis.dpdy(1:3)).’ (4.27)

the derivatives of the polynomial basis can also be automatically calculated, with-

out the need of defining dedicated function handles for the derivatives.

4.2.4 Computation of the sum of the polynomials

According to equation (4.9), in order to obtain the entries of the moment matrix,

the sum of the polynomials (4.25) must be performed over the nodes. After (4.25),

P is a 3 × 1 cell array. Every element of the cell contains nnz values, the same

number as the variables ig, js and s.

The sum is carried out in three steps:

1. the product

pi

(
x− xI
ρI

)
pj

(
x− xI
ρI

)
w

(
x− xI
ρI

)
i, j = 1, . . . , np, (4.28)

where np is the number of the polynomials included in the basis;

2. reshape of the matrix product (4.28);

3. sum over the columns (the second dimension) of the reshaped matrix.

The matrix product (4.28) originates n2
p vectors of size nnz × 1. However,

since the moments matrix is symmetric, not all the products need to be stored,

but only np(np + 1)/2. Therefore in equation (4.28) the products to calculate are

only the ones i, j = 1, . . . , np with i ≤ j.

These indexes i, j for a symmetric matrix np×np can be grouped in two arrays

of length np(np + 1)/2. For example, if np = 3

i =
[
1 1 1 2 2 3

]
(4.29)

j =
[
1 2 3 2 3 3

]
(4.30)

Indexes in (4.29) and (4.30) allow the definition of a function handle for the

products in equation (4.28)

M handle=@(i,j) {P{i}.*P{j}.*PSI} (4.31)
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In fact, vectors Pi and PSI are the same size and thus can be multiplied in an

element-wise manner. The call

M = arrayfun(M handle,i,j) (4.32)

originates a cell array of size np(np + 1)/2, where each element contains the

product (4.28).

The next step is to reshape each element of the cell array M from a nnz vec-

tor to a matrix ng × ns. Luckily, the command sparse in Matlab allows this

transformation without filling with zeros, but keeping the indexes ig, js.

The command

S = sparse(i,j,s,m,n) (4.33)

uses vectors i, j, and s to generate an m× n sparse matrix such that

S(i(k), j(k)) = s(k) k = 1, . . . , nnz (4.34)

if vectors i, j, and s are all the same length.

Additionally, any elements of s that are zero are ignored, along with the

corresponding values of i and j. Any elements of s that have duplicate values of

i and j are added together.

Therefore, the following command can be defined

spar handle = @(C) sum(sparse(ig,js,C,ng,ns),2) (4.35)

where ng is ng and ns is ns.

Command (4.35) incorporates 2 commands, the first one is sparse, which

reshape the anonymous matrix C and the second one is the sum over the nodes,

where 2 stays for the second dimension of the matrix, i.e. the columns. It can

be seen that with the introduction of the connectivity vectors ig and js, it is

no longer necessary to search for nodes at each Gaussian point for the purpose

of the sum in the moment matrix. These operations can be indeed automatized

once the connectivity has been defined at the beginning of the calculation.

By calling

M = cellfun(spar handle,M) (4.36)
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the moment matrix M is finally calculated. The result of (4.36) is a cell

array of np(np + 1)/2 elements, each array containing ng elements, i.e. as many

as the number of the Gaussian points. By inverting M, it is possible to get the

corrective terms for the kernels (the weight functions) that restore the reproducing

properties.

4.2.5 Derivatives of the moment matrix

For completeness are here reported the commands necessary to calculate the

derivatives of the moment matrix. Firstly, it is necessary to calculate the deriva-

tives of the kernel, as in equation (3.9).

∂w

∂x
=
∂w

∂s

∂s

∂ξI

∂ξI
∂x

=
∂w

∂s

∂s

∂ξI

1

ρI
(4.37)

∂w

∂y
=
∂w

∂s

∂s

∂ηI

∂ξI
∂x

=
∂w

∂s

∂s

∂ηI

1

ρI
(4.38)

The first step is calculating
∂w

∂s
by defining the following function handle

dKernel = @(s) − 12s(s− 1)2 (4.39)

and then executing the command

dPSI = dKernel(S). (4.40)

The derivatives
∂s

∂ξI
and

∂s

∂ηI
are calculated as follows

dDcsi= ((GGRID(ig,1)-GRIDSET(js,1))./rho(js))./S (4.41)

dDcsi(S==0) = 1 (4.42)

dDeta= ((GGRID(ig,2)-GRIDSET(js,2))./rho(js))./S (4.43)

dDeta(S==0) = 1 (4.44)
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where equations (4.42) and (4.44) eliminate the indeterminate form as described

in section (3.1.2). Derivatives of the kernel functions are

dPSIcsi = dPSI.*dDcsi (4.45)

dPSIeta = dPSI.*dDeta (4.46)

The handles for the derivatives of the moment matrix are

DMx handle = @(i,j) {(DPDX{i}.*P{j} + P{i}.*DPDX{j}).*PSI

+ P{i}.*P{j}.*dPSIcsi}

(4.47)

DMy handle = @(i,j) {(DPDY{i}.*P{j} + P{i}.*DPDY{j}).*PSI

+ P{i}.*P{j}.*dPSIeta} (4.48)

and the operations of product, reshape and sum are executed by calling these

commands

DMx = arrayfun(DMx handle,i,j) (4.49)

DMx = cellfun(spar handle,DMx) (4.50)

DMy = arrayfun(DMy handle,i,j) (4.51)

DMy = cellfun(spar handle,DMy) (4.52)

4.2.6 Explicit Inverse of the Moments Matrix

In section 4.2 the construction if the moment matrix for linear reproducing prop-

erty was illustrated.

If a linear reproducing property is desired, the moments matrix can be inverted

directly by symbolic manipulation, as in Breitkopf et al. (2000) and Zhou et al.

(2005) . This can still be done in 3D, when the moment matrix is size 4× 4.

However, if higher order reproducing properties are sought, this approach

cannot be used, since the symbolic inversion of a matrix of size larger than 5× 5

is unstable or even impossible to achieve practically. In section 4.3.1 an alternative

approach is proposed. It will be shown that the explicit inverse of the moments
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matrix for linear reproducing property is indeed the starting point to calculate

the inverse of the moment matrix with higher reproducing capabilities.

The inversion of the moment matrix for linear reproducing properties can be

done following the Cramer’s rule

det(M) = (M2,2M3,3 −M2
2,3)M1,1 −M2

1,3M2,2 −M2
1,2M3,3+

+ 2M1,2M1,3M2,3 (4.53)

M−1
1,1 =

M2,2M3,3 −M2
2,3

det(M)
(4.54)

M−1
1,2 = −M1,2M3,3 −M1,3M2,3

det(M)
(4.55)

M−1
1,3 =

M1,2M2,3 −M1,3M2,2

det(M)
(4.56)

M−1
2,2 =

M1,1M3,3 −M2
1,3

det(M)
(4.57)

M−1
2,3 = −M1,1M2,3 −M1,2M1,3

det(M)
(4.58)

M−1
3,3 =

M1,1M2,2 −M2
1,2

det(M)
(4.59)

Derivatives of the inverse of the moments matrix can be calculated with equa-

tion (3.55).

4.3 Inversion of the Moment Matrix through

Partitioning

In the previous section, explicit inversion formulas for the moments matrix were

illustrated, for the case of linear reproducibility. This section is focused on the

following two questions:

1. how to calculate the shape functions if a higher order reproducibility is

sought?

2. how to calculate the shape functions if other points are inserted?

84



4.3 Inversion of the Moment Matrix through Partitioning

The first question is usually known as h-adaptivity, whilst the second is known

p-adaptivity. Together, they are known as hp-adaptivity. The hp-adaptivity con-

sists in a global/local refinement of the approximation through raising the order

of the polynomials in the approximating function and/or adding nodes to the

discretization, with the aim of reducing the local error or capturing high gradient

zones. Local h-refinement consists in adding nodes to limited zones of the domain,

usually detected when a measure of the error exceeds a predefined threshold, while

global h-refinement means refining the discretization in the whole domain. Lo-

cal p-refinement is done by enriching the approximation with the introduction of

extra-unknowns, as explained in section 3.8.2 and they not need to be necessarily

polynomials. Global p-refinement is instead obtained in meshfree methods by

adding extra-functions to the polynomial basis in equation (3.42). This section

will deal on global p-refinement, while enrichments will be treated in the next

chapters to simulate delamination.

With the aim of reducing the error, the error must be calculated. Of course,

if the error was known a priori, there would be no need of solving the equation

in the first place; therefore what it is usually done is estimating the error a

posteriori. Detailed informations on adaptivity in meshless methods can be found

in Liu & Tu (2002a) and Rabczuk & Belytschko (2005). Once these zones are

individuated, then nodes or polynomials must be practically inserted into the

approximation. In meshfree methods, this task is simpler than FE, as stated

in section 1.1. This section explains how practically insert extra polynomials or

nodes to the shape functions without carrying out expensive operations. Practical

computer implementations can be found in section 5.2.3. It will be shown that

the classic algorithm in figure 4.1 will be modified into the one in figure 4.8

4.3.1 Fast Inversion of the Moment Matrix and p-adaptivity

In this section is proposed a method to answer to the first of the questions in

4.3, i.e. to efficiently invert the moment matrix whenever the order of repro-

ducibility is greater than one. As a result, it can be proficiently used for global

p-adaptivity. A similar approach based on the imposing consistency constraints

can be found in Breitkopf et al. (2000). The reproducing properties are imposed
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Figure 4.8: Flowchart of the proposed algorithm in meshfree methods
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4.3 Inversion of the Moment Matrix through Partitioning

through Lagrangian multipliers. The resulting method does not make use of a

moment matrix, but iteratively update the weights, nonetheless leading to simi-

lar formulas. The proposed method does not employ Lagrangian multipliers but

simply a partitioning of the moment matrix and it is based on the updating of

its inverse. The codes described in the next chapters are entirely based on this

approach, instead of numerical routines (Gauss elimination, LU factorization) for

point-wise inversion of the moments matrix.

Let

wI = w

(
x− xI
ρI

)
I = 1, . . . , N (4.60)

and

p
(k)
I = p(k)

(
x− xI
ρ

)
, (4.61)

where ρ is

ρ =
1

N

N∑
I=1

ρI . (4.62)

The superscript k in equation (4.61) is the number of polynomial terms included

in the basis functions p. In fact, shape functions with such basis will be indicated

with superscript k as well, i.e.

φ
(k)
I (x) = p(k)(0)TM−1

k (x)p
(k)
I wI(x), (4.63)

Mk(x) =
N∑
I=1

p
(k)
I p

(k)T
I wI , (4.64)

where the scaled form has been used to avoid problems on the condition number

for Mk(x). The final goal is to obtain the shape functions when an additional term

is included in the basis function, without re-calculating the moment matrix and,

most importantly, without performing the costly point-by-point matrix inversion.

This means

φ
(k+1)
I (x) = p(k+1)(0)TM−1

k+1(x)p
(k+1)
I wI(x). (4.65)

In order to do so, the corrective term needs to be updated

C
(k+1)
I (x) = p(k+1)(0)TM−1

k+1(x)p
(k+1)
I , (4.66)
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4.3 Inversion of the Moment Matrix through Partitioning

which in turn requires the update of the basis

p
(k+1)T
I =

[
p

(k)T
I p

(e)
I

]
(4.67)

and the update of the inverse of the moment matrix

Mk+1(x) =
N∑
I=1

p
(k+1)
I p

(k+1)T
I wI =

N∑
I=1

[
p

(k)
I

p
(e)
I

] [
p

(k)T
I p

(e)
I

]
wI =

=

[
Mk(x) b

bT c

]
, (4.68)

where

b(x) =
N∑
I=1

p(k)p(e)wI (4.69)

c(x) =
N∑
I=1

p(e)2wI . (4.70)

Inversion of matrix (4.68) can be directly obtained from the entries of M−1
k+1(x)

without performing a computationally expensive point by point inversion. In fact,

using Boltz’s formula, Mk+1(x) can be inverted block-wise by using the following

analytical inversion formula

M−1
k+1(x) =

M−1
k (x) 0

0 0

+
1

q

(M−1
k b)(M−1

k b)T −M−1
k b

−(M−1
k b)T 1

 , (4.71)

where

q(x) = c− bT (M−1
k b). (4.72)

Equation (4.71) is tremendously useful since one need to perform only element-

wise products and divisions that are particularly fast in Matlab.

In fact, without this formula, one has to loop over the far numerous Gaussian

points and invert the moment matrix with a numerical routine. This is one of the

major drawbacks of RKPM and MLS, since an accurate integration of the weak

form of the PDE might necessitate a high order Gaussian quadrature scheme and

therefore the number of Gaussian points notably grows. Instead, using equation

(4.71), assuming that the entries M−1
k (x) are already available, one needs only
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4.3 Inversion of the Moment Matrix through Partitioning

to calculate the moments b and c and perform only element-wise operations to

update the moment matrix.

Boltz’ formula allows to vectorize the Matlab code and effectively speeds up

the calculation of the shape functions.

It must be pointed out though, that equation (4.71) shows how to update the

inverse of a matrix when an additional column (and a row) is introduced when

M−1
k (x) is already known. Therefore to fully exploit the advantages of the block-

inversion, the entries of M−1
k (x) must be obtained beforehand. Nevertheless, one

of the greatest advantage of equation (4.71) is that can be applied iteratively, in

the sense that can be applied several times until the desired order of reproduction

is achieved.

For example, a linear reproduction property is at least required for the con-

vergence of the weak form. Therefore shape functions at least must satisfy linear

reproduction conditions, which lead to a 3× 3 moment matrix in two dimensions

and a 4× 4 moment matrix in three-dimensions. These sizes of matrices are eas-

ily invertible analytically, for example with Cramer’s rule for the two-dimensional

case and with symbolic inversion for 4× 4, that again do not require any numer-

ical routine for matrix inversion and can be obtained with element-wise matrix

operations.

It must be remarked that symbolic inversion is unstable (and sometimes im-

possible for some symbolic softwares) for 5× 5 and impossible to obtain for ma-

trices of higher size. Nonetheless linear reproduction property can be the starting

point of the inversion of a bigger size matrix. In fact once M−1
3 (x) is calculated

for the two-dimensional case, with (4.71) it is possible to obtain M−1
4 (x). Once

obtained M−1
4 (x) one proceeds to M−1

5 (x) and so on until the sought order of

reproduction is achieved.

4.3.1.1 First Order Derivatives

In the assembly of the stiffness matrix of a weak form, at least first order deriva-

tives of the shape functions are required, hence a fast computation of the first
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4.3 Inversion of the Moment Matrix through Partitioning

order derivatives of equations (4.65) can accelerate the assembly process.

∂φI
∂x

(k+1)

=
∂CI
∂x

(k+1)

wI + C
(k+1)
I

∂wI
∂x

, (4.73)

where

∂CI
∂x

(k+1)

= p(k)T (0)

(
∂M−1

k+1(x)

∂x
p

(k+1)
I + M−1

k+1(x)
∂p

(k+1)
I

∂x

)
. (4.74)

Derivatives of M−1
k+1(x) can be readily obtained by derivation of equation

(4.71)

∂M−1
k+1(x)

∂x
=


∂M−1

k (x)

∂x
0

0 0

− 1

q2

∂q

∂x

(M−1
k b)(M−1

k b)T −M−1
k b

−(M−1
k b)T 1

+

+
1

q


∂(M−1

k b)

∂x
(M−1

k b)T + (M−1
k b)

∂(M−1
k b)T

∂x
−∂(M−1

k b)

∂x

−∂(M−1
k b)T

∂x
0

 , (4.75)

where
∂M−1

k (x)

∂x
= −M−1

k (x)
∂Mk(x)

∂x
M−1

k (x), (4.76)

∂(M−1
k b)

∂x
=
∂M−1

k (x)

∂x
b + M−1

k (x)
∂b

∂x
, (4.77)

∂Mk(x)

∂x
=

N∑
I=1

(
∂p(k)

∂x
p(k)T + p(k)∂p(k)T

∂x

)
wI + p(k)p(k)T ∂wI

∂x
, (4.78)

∂q

∂x
=
∂c

∂x
− ∂bT

∂x
(M−1

k b) + bT
∂(M−1

k b)

∂x
, (4.79)

∂c

∂x
=

N∑
I=1

2p(e)∂p
(e)

∂x
wI + p(e)2∂wI

∂x
, (4.80)

∂b

∂x
=

N∑
I=1

(
∂p(k)

∂x
p(e) + p(k)∂p

(e)

∂x

)
wI + p(k)p(e)∂wI

∂x
. (4.81)
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4.3.2 Fast Inversion of the Moment Matrix and h-adaptivity

In this section is proposed a method to answer to the second of the questions in

4.3.

Let us indicate with subscript N the moment matrix with N nodes

MN(x) =
N∑
I=1

pIp
T
I wI . (4.82)

If an additional node is introduced, the moment matrix inverse needs to be up-

dated.

MN+1(x) =
N+1∑
I=1

pIp
T
I wI =

N∑
I=1

pIp
T
I wI + pN+1p

T
N+1wN+1 = MN(x)+

+ pN+1p
T
N+1wN+1. (4.83)

Therefore it is simply a rank-1 update:

M−1
N+1(x) = M−1

N (x)− (M−1
N pN+1)(M−1

N pN+1)T

r
wN+1, (4.84)

r = 1 + pTN+1(M−1
N pN+1)wN+1, (4.85)

therefore

φI(x) = pT (0)M−1
N+1(x)pIwI(x) I = 1, . . . , N + 1. (4.86)

Derivatives are given by

∂φI
∂x

= pT (0)

[(
∂M−1

N+1(x)

∂x
pI + M−1

N+1(x)
∂pI
∂x

)
wI(x)+

+M−1
N+1(x)pI

∂wI
∂x

]
, (4.87)

∂M−1
N+1(x)

∂x
=
∂M−1

N (x)

∂x
− 1

r2

[(
∂(M−1

N pN+1)

∂x
(M−1

N pN+1)T+

+(M−1
N pN+1)

∂(M−1
N pN+1)T

∂x

)
r − (M−1

N pN+1)(M−1
N pN+1)T

∂r

∂x

]
wN+1−

+
(M−1

N pN+1)(M−1
N pN+1)T

r

∂wN+1

∂x
, (4.88)
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where
∂(M−1

N pN+1)

∂x
=
∂M−1

N (x)

∂x
pN+1 + M−1

N (x)
∂pN+1

∂x
, (4.89)

∂r

∂x
=

[
∂pTN+1

∂x
(M−1

N pN+1) + pTN+1

∂(M−1
N pN+1)

∂x

]
wN+1+

+ pTN+1(M−1
N pN+1)

∂wN+1

∂x
. (4.90)

Finally, it should be remarked that the approach in formula (4.83) was firstly

noted in You et al. (2003), without explicitly suggesting the update of the inverse

of the moment matrix.

4.4 The Kernel Corrective Term

The term in equation (3.52) (here recalled for clarity) is called corrective be-

cause it allows to calculate the shape functions (4.91) from the kernel functions,

restoring the reproducing properties.

φI(x) = CI(x)w

(
xI − x

ρ

)
, (4.91)

CI(x) = pT (0)M(x)−1pT
(

xI − x

ρ

)
. (4.92)

The values of the weight functions are computed through the commands (4.12)

and stored in an array PSI of length nnz and so do the values of P, stored in a cell

array. The problem is the entries of the inverse of the moment matrix M−1, that

are stored in a cell array Minv and every element of the cell is an array of length

ng. Therefore, a naive approach would loop over the basis function, then double

loop over the nodes and over the evaluation points, calculating the correction

and then applying it to the weight functions. Instead, the corrective term can be

quickly calculated using the connectivity vector ig.

The code is the following:

C = 0;

if nargout>2
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4.4 The Kernel Corrective Term

dCx = 0;

dCy = 0;

end

for i=1:np

for j=1:np

if P0{i}~=0

if i<=j

C = C + P0{i}.*Minv{i,j}(ig).*P{j};

if nargout>2

dCx = dCx + P0{i}.*DMinvx{i,j}(ig).*P{j} +...

+ P0{i}.*Minv{i,j}(ig).*DPDX{j};

dCy = dCy + P0{i}.*DMinvy{i,j}(ig).*P{j} +...

P0{i}.*Minv{i,j}(ig).*DPDY{j};

end

else

C = C + P0{i}.*Minv{j,i}(ig).*P{j};

if nargout>2

dCx = dCx + P0{i}.*DMinvx{j,i}(ig).*P{j} +...

+ P0{i}.*Minv{i,j}(ig).*DPDX{j};

dCy = dCy + P0{i}.*DMinvy{j,i}(ig).*P{j} +...

+ P0{i}.*Minv{j,i}(ig).*DPDY{j};

end

end

end

end

end

where ig act as a index in the command Minv{i,j}(ig). The variable nargout

is the number of output arguments. If more than two arguments are requested,

derivatives are calculated.

This index ig points to Minv{i,j}(:), in the same order PSI and P are stored,

allowing the generic entry of the moment matrix to become an array of length

nnz and multiply PSI and P in an element-wise manner. The same approach can
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be applied also to the derivatives of the corrective term, i.e. dCx and dCy. Using

the same logic, the following handle can be defined

asb handle = @(f,g) f.*g(ig) (4.93)

that will be useful for the stiffness matrix assembly in the next section. Finally,

the shape functions are calculated as follows

PHI = C.*PSI;

if nargout>2

DPHIx = (dCx.*PSI + C.*dPSIcsi)/mrho;

DPHIy = (dCy.*PSI + C.*dPSIeta)/mrho;

end

At this stage, though, the values are stored in arrays of size nnz. To reshape the

arrays, the following handle can be defined

sp handle = @(f) sparse(ig,js,f,ng,ns). (4.94)

The object (4.94) transforms a sparse array f defined by indexes ig and js

into a sparse matrix ng× ns.

The inverse operation can be performed by the following command

desp handle = @(f) f(sub2ind(size(f),ig,js)). (4.95)

The final step for constructing the shape functions is

PHI = sp_handle(PHI);

if nargout>2

DPHIx = sp_handle(DPHIx);

DPHIy = sp_handle(DPHIy);

end

4.5 Assembly of the Stiffness Matrix

In this section the assembly of the stiffness matrix in equation (3.103) is explained

in detail for the two and three dimensional cases.
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The infinitesimal strain is defined as

ε =

 εxεy
γxy

 =



∂u

∂x

∂v

∂y

∂u

∂y
+
∂v

∂x


=



∂

∂x

∂

∂y

∂

∂y

∂

∂x


[
u
v

]
= Lu, (4.96)

where L is the infinitesimal strain differential operator and u is the displacement

vector.

The linear elastic stress-strain relationship is defined through the Generalized

Hooke’s law (with the Voigt notation1)

σ = Cε =

C11 C12

C12 C22

C33

 εx
εy

2γxy

 , (4.97)

where C is called the stiffness tensor and for two-dimensional orthotropic mate-

rials in plane stress tensional state is defined as

C =

C11 C12

C12 C22

C33

 =


E11/(1− ν12ν21) ν12E22/((1− ν12ν21)

ν12E22/((1− ν12ν21) E22/(1− ν12ν21)

G12

 ,
(4.98)

where Eii is the Young’s modulus along axis i, Gij is the shear modulus in di-

rection j on the plane whose normal is in direction i, νij is the Poisson’s ratio

that corresponds to a contraction in direction j when an extension is applied in

direction i.

If plane strain is desired, then the following changes are necessary

1The Voigt notation is the standard mapping for tensor indexes
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E11 ←
E11

1− ν2
12

, (4.99)

E22 ←
E22

1− ν2
12

, (4.100)

G12 ←
G12

1− ν2
12

, (4.101)

ν12 ←
ν12

1− ν2
12

, (4.102)

ν21 ←
ν21

1− ν2
12

. (4.103)

(4.104)

The displacement vector u is approximated with the meshfree shape functions

u(x) ≈ uh(x) =


ΦT (x)︸ ︷︷ ︸

1×ns

ΦT (x)︸ ︷︷ ︸
1×ns


 U︸︷︷︸
ns×1

V︸︷︷︸
ns×1

 . (4.105)

It is opportune to distinguish between the mathematical vector Φ(x) which is

size ns × 1 and the computer array PHI in section 4.4, which is a sparse matrix

of size ng × ns.
Applying (4.96) to (4.105), the strain resulting from the approximation is

εh(x) =



∂ΦT

∂x

∂ΦT

∂y

∂ΦT

∂y

∂ΦT

∂x


[
U
V

]
(4.106)
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and applying (4.97) to (4.106)

σh =

C11 C12

C12 C22

C33





∂ΦT

∂x

∂ΦT

∂y

∂ΦT

∂y

∂ΦT

∂x


[
U
V

]
=



C11
∂ΦT

∂x
+ C12

∂ΦT

∂y

C11
∂ΦT

∂x
+ C22

∂ΦT

∂y

C33
∂ΦT

∂y
+ C33

∂ΦT

∂x


[
U
V

]
.

(4.107)

In equation (3.99) the variational term for the stiffness matrix can be expressed

as follows

∫
Ω

δεTσdΩ =
[
δUT δVT

] ∫
Ω


∂Φ

∂x

∂Φ

∂y

∂Φ

∂y

∂Φ

∂x





C11
∂ΦT

∂x
+ C12

∂ΦT

∂y

C11
∂ΦT

∂x
+ C22

∂ΦT

∂y

C33
∂ΦT

∂y
+ C33

∂ΦT

∂x


dΩ

[
U
V

]
.

(4.108)

Therefore the stiffness matrix K can be written as

K =

K11 K12

KT
12 K22

 , (4.109)

where

K11 =

∫
Ω

C11
∂Φ

∂x

∂ΦT

∂x
+ C33

∂Φ

∂y

∂ΦT

∂y
dΩ, (4.110)

K22 =

∫
Ω

C33
∂Φ

∂x

∂ΦT

∂x
+ C22

∂Φ

∂y

∂ΦT

∂y
dΩ, (4.111)

K12 =

∫
Ω

C12

(
∂Φ

∂x

∂ΦT

∂y
+

(
∂Φ

∂x

∂ΦT

∂y

)T)
dΩ. (4.112)

The stiffness matrix can be then computed whenever the following matrices
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are calculated

Kxx =

∫
Ω

∂Φ

∂x

∂ΦT

∂x
dΩ, (4.113)

Kyy =

∫
Ω

∂Φ

∂y

∂ΦT

∂y
dΩ, (4.114)

Kxy =

∫
Ω

∂Φ

∂x

∂ΦT

∂y
dΩ. (4.115)

Integrals in (4.113), (4.114) and (4.115) are calculated using Gaussian quadra-

ture. Naming W as the vector of size ng × 1 containing the Gaussian weights

associated with the Gaussian points GGRID, then a brute force algorithm would

be

for i=1:ns

for j=1:ns

Kxx(i,j) = W.’*(DPHIx(:,i).*DPHIy(:,j))

end

end

Double loops however, really slow down the calculation. To avoid one loop, one

could then think to create an intermediate matrix

for i=1:nset

WX(i,:) = DPHIx(:,i)’.*W.’;

end

Kxx = WX*DPHIx;

To avoid loops, one could then think to calculating an intermediate matrix

WX = DPHIx.*repmat(W,1,ns)

and then

Kxx = WX.’*DPHIy

The command repmat creates ns replicas of the vector W along the columns.

Nevertheless, such an approach is costly in term of speed and memory storage,

since it creates a temporary array of size ng × ns.
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Instead, indexing can be used with the handle in equation (4.93). With the

command desp handle (4.95)

DPHIx = desp handle(DPHIx) (4.116)

the derivatives of the shape functions are reshaped into mono-dimensional arrays.

WX = asb handle(DPHIx,W) (4.117)

Then reshaping DPHIx and WX into bi-dimensional arrays with (4.94)

DPHIx = sp handle(DPHIx) (4.118)

WX = sp handle(WX) (4.119)

Ffinally equation (4.113) is computed

KXX = WX.’*DPHIx (4.120)

The same approach can be repeated for equations (4.115) and (4.114).

4.6 Results

In order to show the effectiveness of the improvements, in this section it will be

presented a comparison between the classical and the new methods based on the

computational run-times.

By classic it is intended the method based on a point-wise inversion of the

moment matrix (4.9), i.e. the moment matrix is calculated and then the inversion

is made by looping over the Gaussian points, create a temporary matrix, invert

it with a standard numerical routine (LU factorization or Gaussian elimination)

and then pass it back to the cell array Minv. Instead, the new method is the one

explained in section 4.3 whose computer implementation is explained in detail

in appendix 5.2.3. For both methods, the routines used for the connectivity,

the correction and the assembly are the same, i.e. the procedures explained

respectively in sections 4.1, 4.4 and 4.5.
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To assure a fair comparison, both methods have been executed on the same

computer, with a 3 GHz processor Intel R©Pentium R©with 1 GB of RAM. Nev-

ertheless, performances may vary and computational times reduce on different

computers. Hence, the computational times reported here should be intended as

a relative measure, not as an absolute measure of the code performances.

As a benchmark case, a three-dimensional model of a bar has been considered

as in figure 4.9, with elastic properties and geometry resumed in respectively in

tables 4.1 and 4.2.

Figure 4.9: Three dimensional case: geometry

E11 E22 = E33 G12 G23 ν12 = ν13 ν23

122.7 GPa 10.1 GPa 5.5 GPa 3.7 GPa 0.25 0.45

Table 4.1: Elastic Properties for the benchmark case

Lx Ly Lz

185 mm 25 mm 2.5 mm

Table 4.2: Geometry for the benchmark case

The quadrature cells considered are cubic as in figure 4.10
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Figure 4.10: Continuous Line: Quadrature Cells; Circles: Nodes; Blue crosses:

Gaussian Points

and a full quadratic basis (superscript 2) has been included as in equation

(4.121), thus the moment matrix has size 10× 10.

p(2)T (x) =
[
1 x y z x2 y2 z2 xy yz xz

]
. (4.121)

Tables 4.3, 4.4, 4.5, 4.6, 4.7 and 4.8 illustrates the computational run-times for

the specimen for same number of nodes (11× 6× 3 = 132), but different number

of Gaussian Points. The dilatation parameter ρI is variable with the node and it

is chosen as 2.4 max(hI) with hI the maximum length of the edges concurring in

that node.

The run-time has been divided mainly in time for the creation of the shape

functions and time for the assembly of the stiffness matrix, as described in sub-

section 4.5. The run-times for the shape functions comprise also the derivatives

of the shape functions. The run-time for the shape functions has been subdivided

in 4 contributions:

1. connectivity, i.e. the time necessary to calculate the vectors ig, js and s

using the kd-tree algorithm as described in subsection 4.1;
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2. moment matrix, i.e. the time necessary to compute the cell array M as in

subsection 4.2;

3. inversion of the moment matrix, i.e. the time for inverting the moment

matrix;

4. correction term, i.e. the time for calculating the correction to the kernel as

in subsection 4.4.

Gaussian Points Classic (sec) New (sec)

800 0.1614 0.1269

2700 0.4329 0.4500

6400 0.8698 0.8728

12500 1.5980 1.5694

21600 3.0833 3.2427

34300 4.8564 4.2063

51200 7.4106 7.2022

Table 4.3: Computational run-times for the connectivity

Gaussian Points Classic (sec) New (sec)

800 0.2220 0.3374

2700 2.6361 2.5686

6400 4.7568 4.7648

12500 7.1372 7.7983

21600 12.5379 18.1758

34300 25.3300 24.7946

51200 34.6201 33.2414

Table 4.4: Computational run-times for the correction term

It can be observed that, as expected, the major differences are not in the

connectivity (table 4.3), in the correction term (table 4.4) and in the assembly

(table 4.5). In fact, for these purposes, the same routines have been used in
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Gaussian Points Classic (sec) New (sec)

800 0.3424 0.3908

2700 1.0952 1.0500

6400 2.9279 3.1260

12500 7.2566 5.9309

21600 14.7860 11.1589

34300 22.0235 21.5802

51200 29.3857 31.1248

Table 4.5: Computational run-times for the assembly

Gaussian Points Classic (sec) New (sec)

800 1.8273 0.5012

2700 11.4439 1.8473

6400 22.4772 3.9266

12500 49.4992 8.1483

21600 75.7696 14.1422

34300 135.0388 21.9535

51200 170.9730 35.3794

Table 4.6: Computational run-times for the moment matrix

Gaussian Points Classic (sec) New (sec)

800 1.5319 1.8981

2700 12.6961 9.5511

6400 58.8198 21.1465

12500 190.0229 39.9969

21600 555.5533 72.0766

34300 1344.9519 117.3779

51200 3002.2513 162.7680

Table 4.7: Computational run-times for the inversion of the moment matrix
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Gaussian Points Classic (sec) New (sec) New/Classic %

800 3.7471 2.8693 76.57 %

2700 27.2389 14.4471 53.04 %

6400 86.9840 30.7691 35.37 %

12500 248.3761 57.6299 23.20 %

21600 647.1185 107.8531 16.67 %

34300 1510.5029 168.6082 11.16 %

51200 3215.7002 239.0169 7.43 %

Table 4.8: Computational Run-times for the Shape Functions

both methods. Instead, there is a great difference for the computation times

related to the moment matrix (table 4.6), even though the same procedure of

subsection 4.2 has been used for both cases. The reason for such discrepancy

is that in the classic method, a symmetric 10 × 10 moment matrix need to be

constructed straight after the connectivity phase, whereas with the new method

(the partitioning inversion method) only a symmetric 4 × 4 moment matrix is

necessary. The symmetric 4 × 4 moment matrix for the partitioning method

can be inverted symbolically and represents the starting point of the iterative

procedure described in subsection 4.3. The remaining terms in the new method

are constructed at the same time of the inversion, allowing a huge saving in terms

of computational time, around 80% average for all the cases.

This saving is not only in terms of speed but also in terms of storage memory.

In fact, the number of entries of the moment matrix stored in the classic method

is 10×11/2 = 55, whereas in the partitioning method is 4×5/2 = 10. Therefore,

an estimation of the saving in terms of speed is (55− 10)/55× 100 = 81.18%.

Moreover, for the storage memory, there is another aspect to consider, which

is not evident from the computational times. After the inversion, the memory oc-

cupied by the moment matrix (4×4) can be cleared since it is no longer necessary.

The update is executed directly on the inverse of the moment matrix, through

previous calculation of the moments b (equation (4.69) and c (equation (4.70)).

After the update is executed, the moments b and c required for the update of the

inverse can be deleted as well. On the contrary, for the classic method, all the
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Figure 4.11: Computational run-times for the inversion of the moment matrix:

circles: classic method; squares: new method; dashed line: quadratic fit for the

classic method; continuous line: linear fit for the new method

Figure 4.12: Computational run-times for the shape functions: circles: classic

method; squares: new method; dashed line: quadratic fit for the classic method;

continuous line: linear fit for the new method
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Coefficients 95 % Coefficient Bounds

p1 = 389.7 (377.6, 401.8)

p2 = 789.8 (777.2, 802.4)

p3 = 403.9 (390.5, 417.3)

Coefficient of determination R2 0.999

Table 4.9: Inversion of the moment matrix (classic method): goodness of

quadratic fit f(x) = p1x
2 + p2x+ p3

Coefficients 95 % Coefficient Bounds

p1 = 60.24 (56.9, 63.59)

p2 = 60.69 (57.59, 63.78)

Coefficient of determination R2 0.9977

Table 4.10: Inversion of the moment matrix (new method) : goodness of linear

fit f(x) = p1x+ p2

terms must be retained for the point-wise inversion, and deleted only after the

inversion is concluded. The inversion through partitioning of the moment matrix

is particularly advantageous, as shown in table 4.7. Moreover, figures 4.11 and

4.12 show another interesting side: the dataset of the computational times and

the number of Gaussian points can be fit by a quadratic curve for the classic

method and by a linear curve for the proposed method.

The classic method is fit by a quadratic polynomial with coefficients and

statistics resumed in table 4.9, while the ones for the proposed method are in

table 4.10. In both cases, the 95% coefficients bounds are pretty tight with a

coefficient of determination very close to 1.

The proposed method, either for the inversion of the moment matrix and

for the construction of the shape functions, has a computational cost O(n) with

respect to the number of Gaussian Points, compared to the O(n2) of the classic

one. The saving in computational time is tremendous: in fact, for the classic

method (table 4.8), for 51200 Gaussian points, almost an hour (54 minutes) is

needed to calculate the shape functions and their first derivatives, while with the

proposed method only 4 minutes.
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Coefficients 95 % Coefficient Bounds

p1 = 383.7 (380.5, 386.9)

p2 = 874 (870.7, 877.3)

p3 = 491 (487.5, 494.6)

Coefficient of determination R2 0.999

Table 4.11: Shape functions (classic method) : goodness of quadratic fit f(x) =

p1x
2 + p2x+ p3

Coefficients 95 % Coefficient Bounds

p1 = 88.01 (83.85, 92.16)

p2 = 88.74 (84.9, 92.59)

Coefficient of determination R2 0.9983

Table 4.12: Shape functions (new method) : goodness of linear fit f(x) = p1x+p2
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Chapter 5

Description of the Codes

In this chapter the prototype codes in Matlab will be presented. Firstly, the

purposes of the Object-Oriented Programming (OOP) will be briefly illustrated

in section 5.1, although a complete and rigorous description of the ideas can be

found in specialized textbooks. In this chapter the main ideas of the OOP will be

used to create the classes for the two-dimensional and three-dimensional codes.

5.1 The object-oriented programming

The most widely known programming technique is the procedural programming.

In the procedural coding, the data are variables or structures and the instructions

are executed in a sequential order, by calling functions that have these data as

inputs and/or outputs.

These functions perform one or more operations on the data. After these

operations are performed, the transformed data are passed back to the main

program which will continue to execute the list of the instructions.

The OOP is a rather different approach. In the OOP the main variables are

objects. An object is a specific instance of a class. A class is, from a programming

point of view, a complex structure which encapsulates both variables and func-

tions. The variables of the class are called properties and the functions defined on

these variables are called methods. The methods are not executed sequentially,

but only if a specific action is desired to be carried out on the class.
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When the input variables are given to the class, the class becomes an object.

The creation of an object, in this sense, is performed by a method called con-

structor which is compulsorily defined for every class. The constructor has the

same name of the class.

The class, in fact, describes the characteristics that all the (different) objects

have in common. Analogously to the procedural programming, the objects are the

variables, while the class is similar to the list of the instructions. The difference

is that the list of the instructions does not have to be executed obligatorily and

the variables are internal to the object. Object can then manage their own data

and different object can interact according to the actions (the methods) defined

on them.

Another interesting feature of the classes is that they can alert when any prop-

erty value is queried or changed. These notices are called events and objects can

broadcast the when for example a property value is changed. As a consequence,

other methods called listeners can be defined. Listeners execute other functions

in response to the notification of an event1.

5.2 The class RKPM

The class RKPM applies to both two-dimensional and three-dimensional linear elas-

tic objects. The purpose of this class is to provide the RKPM approximation

whenever evaluation points are inserted as input. This class is usually called to

compute the shape functions in the Gaussian points, either for the domain inte-

gral in the stiffness matrix and for the line integrals for the force vectors and for

the constraints.

5.2.1 The properties

The main properties defined for the class RKPM are

• nodes: vector ns×2 or ns×3; a list of the coordinates of the RKPM nodes

(4.4): initially it is set as the vertices of the integration mesh, but other

nodes can be added to the list if h-adaptivity is performed

1The classes presented in this chapter do not implement listeners and events at the moment
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• rho: dilatation parameters as in section 3.1.1

• PSI ,dPSIcsi, dPSIeta : the values of the kernel function and its derivatives

stored in a vector-wise manner, as defined in equations (4.12), (4.45) and

(4.46)

• ig, js: the connectivity vectors as defined in (4.8)

• PolyBasis: cell vector of function handles; contains the polynomial basis

functions as in equation (4.15).

• Kernel dKernel: function handles defining the functional form of the kernel

and its first derivative, as in equations (4.11) and (4.11)

• CSI and ETA: the scaled and translated coordinates as in equations (4.13)

and (4.14)

• P ,P0, DPDX, DPDY cell-arrays containing the values of the polynomial basis

as defined in equations (4.25), (4.26) and (4.27) stored in a vector-wise

manner

• Minv, DMinvx,DMinvy cell-arrays containing the values of the inverse of the

moment matrix and their derivatives, as it will be described in section 5.2.3

• sp handle : the function handle described in 4.94

• asb handle: the function handle described in 4.93

• desp handle : the function handle described in 4.95

• PHI, DPHIx, DPHIy the values of the shape functions and their derivatives

as described in 4.4, stored in a sparse manner

• pe, dpedx, dpedy cell arrays of function handles containing additional poly-

nomials to be added to the basis, as in p-adaptivity: in fact, as shown later,

the linear polynomial basis is inserted by default in PolyBasis
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5.2.2 The methods

The methods defined on the class RKPM are:

1. RKPM(varargin) : the constructor, named as the class itself, allows the

construction of the object. The input variables are the function handles

that define the kernel, its derivative and the optional enhanced polynomials.

function obj = RKPM(varargin)

obj.nodes = @(a)(a.fv.vertices);

obj.rho = @(a)(a.rho);

obj.Kernel = varargin{1};

obj.dKernel = varargin{2};

obj.PolyBasis.p{1} = inline(’sparse(1:numel(x),1,1)’,’x’,’y’);

obj.PolyBasis.p{2} = inline(’x’,’x’,’y’);

obj.PolyBasis.p{3} = inline(’y’,’x’,’y’);

obj.PolyBasis.dpdx{1} = inline(’sparse(numel(x),1)’,’x’,’y’);

obj.PolyBasis.dpdx{2} = inline(’sparse(1:numel(x),1,1)’,’x’,’y’);

obj.PolyBasis.dpdx{3} = inline(’sparse(numel(x),1)’,’x’,’y’);

obj.PolyBasis.dpdy{1} = inline(’sparse(numel(x),1)’,’x’,’y’);

obj.PolyBasis.dpdy{2} = inline(’sparse(numel(x),1)’,’x’,’y’);

obj.PolyBasis.dpdy{3} = inline(’sparse(1:numel(x),1,1)’,’x’,’y’);

obj.nPB = 3;

obj.nPE = numel(varargin{3});

obj.pe = varargin{3};

obj.dpedx = varargin{4};

obj.dpedy = varargin{5};

end

2. ShapeAndDer: computes the shape functions and their derivatives in the

input points GGRID. This method firstly calls the function Conn that imple-

ments the kd-tree (section 4.1) and subsequently calls the kernel handles.

function obj = ShapeAndDer(obj,GGRID,obj2)
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[obj.PSI,obj.ig,obj.js,obj.dPSIcsi,obj.dPSIeta] =...

Conn(obj.nodes(obj2),GGRID,obj.rho(obj2),...

...obj.Kernel,obj.dKernel);

if ~isempty(obj.ig)

[obj,obj.PHI,obj.DPHIx,obj.DPHIy] =...

RKPM3(obj.nodes(obj2),...

GGRID,obj,mean(obj.rho(obj2)),...

...obj.pe,obj.dpedx,obj.dpedy);

end

obj.CSI = []; obj.ETA = [];

end

Once obtained the values for PSI, ig, js, dPSIcsi and dPSIeta, the func-

tion RKPM3 actually calculates the shape functions.

It is usually employed for the assembly of the stiffness matrix.

3. Shape: same as ShapeAndDer, but only calculates the shape functions, not

the derivatives. It is usually employed for the assembly of the force vectors

in equation.

4. ShapeAndDerPU: same as ShapeAndDer but calculates only the Partition of

Unity functions. It is used to construct the enrichment as described later

in section 6.4.

5. ShapePU: same as Shape but calculates only the Partition of Unity functions

6. ShapeWithPsi, ShapeAndDerWithPsi,

ShapeWithPsiPU and ShapeAndDerWithPsiPU are similar to the above meth-

ods, with the exception that the connectivity and the kernel values are pro-

vided as inputs, because calculated elsewhere, for example by the following

method GetFromPlate. These methods are usually used for the enrich-

ments.

112



5.2 The class RKPM

7. GetFromPlate a method that selects the ig, js PSI and optionally dPSIcsi

and dPSIeta from an existing set of nodes-Gaussian points.

function obj = GetFromPlate(obj,obj2,nodes)

[c,loc] = ismember(obj2.js,nodes);

obj.ig = obj2.ig(c);

obj.js = loc(c);

obj.PSI = obj2.PSI(c);

if ~isempty(obj2.dPSIcsi)

obj.dPSIcsi = obj2.dPSIcsi(c);

obj.dPSIeta = obj2.dPSIeta(c);

end

end

It should be noted that, even though Minv is defined as a property, there

is no property for the moment matrix. In fact, the moment matrix entries are

calculated internally in the function RKPM3.

5.2.3 Inversion of the moments matrix through partition-

ing

The function RKPM31 is defined internally in the class RKPM and its purpose is to

calculate the shape functions in the nodes and their derivatives.

The operations in RKPM3 have been already described in chapter 4, with the

exception of the details regarding the computer implementation of the inversion

of the moments matrix.

The inversion of the moments matrix is carried out by another function

RKPMp32, which is called (iteratively) after the symbolic inversion of the moments

matrix with linear reproduction properties, as described in subsection 4.2.6.

The inputs to RKPMp3 are the object obj, the properties pe, dpedx and dpedy

and the function handle spar handle (4.35), used for the computation of the

moments.

1the number 3 refers to the third version of the function
2p stands for partitioning or p-adaptivity
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Firstly, using CSI and ETA, the properties P ,P0, DPDX and DPDY are augmented

by the i− th function in pe, dpedx and dpedy

np = numel(obj.PolyBasis.p);

obj.P0{np+1,1} = pe(0,0);

obj.P{np+1,1} = pe(obj.CSI,obj.ETA);

obj.PolyBasis.p{1,np+1} = pe;

if nargin>4

obj.DPDX{np+1,1} = dpedx(obj.CSI,obj.ETA);

obj.DPDY{np+1,1} = dpedy(obj.CSI,obj.ETA);

obj.PolyBasis.dpdx{1,np+1} = dpedx;

obj.PolyBasis.dpdy{1,np+1} = dpedy;

end

The b vector in equation (4.69) (and its derivatives (4.81)) is calculated using

the spar handle

b_handle = @(i) {obj.P{i}.*obj.P{np+1}.*obj.PSI};

b = arrayfun(b_handle,1:np);

b = cellfun(spar_handle,b);

if nargin>3

dbdx_handle = @(i) {obj.DPDX{i}.*obj.P{np+1}.*obj.PSI +

+ obj.P{i}.*obj.DPDX{np+1}.*obj.PSI +

+ obj.P{i}.*obj.P{np+1}.*obj.dPSIcsi};

dbdx = arrayfun(dbdx_handle,(1:np).’);

dbdx = cellfun(spar_handle,dbdx);

dbdy_handle = @(i) {obj.DPDY{i}.*obj.P{np+1}.*obj.PSI +

+ obj.P{i}.*obj.DPDY{np+1}.*obj.PSI +

+obj.P{i}.*obj.P{np+1}.*obj.dPSIeta};

dbdy = arrayfun(dbdy_handle,(1:np).’);

dbdy = cellfun(spar_handle,dbdy);

end

Same process for c in equation (4.70) and its derivatives (4.80)

c = obj.P{np+1}.^2.*obj.PSI;

114



5.2 The class RKPM

c = cell2mat(cellfun(spar_handle,{c}));

if nargin>3

dcdx = 2.*obj.P{np+1}.*obj.DPDX{np+1}.*obj.PSI +

+ obj.P{np+1}.^2.*obj.dPSIcsi;

dcdx = cell2mat(cellfun(spar_handle,{dcdx}));

dcdy = 2.*obj.P{np+1}.*obj.DPDY{np+1}.*obj.PSI +

+ obj.P{np+1}.^2.*obj.dPSIeta;

dcdy = cell2mat(cellfun(spar_handle,{dcdy}));

end

The product M−1
k b (and its derivatives) is calculated by looping over the

number of polynomials

for i=1:np

for j=1:np

if i<=j

Minvb{i,1} = Minvb{i,1} + obj.Minv{i,j}.*b{j};

if nargin>3

dMinvbdx{i,1} = dMinvbdx{i,1} + obj.DMinvx{i,j}.*b{j} +

+ obj.Minv{i,j}.*dbdx{j};

dMinvbdy{i,1} = dMinvbdy{i,1} + obj.DMinvy{i,j}.*b{j} +

+obj.Minv{i,j}.*dbdy{j};

else

Minvb{i,1} = Minvb{i,1} + obj.Minv{j,i}.*b{j};

if nargin>3

dMinvbdx{i,1} = dMinvbdx{i,1} + obj.DMinvx{j,i}.*b{j} +

+ obj.Minv{j,i}.*dbdx{j};

dMinvbdy{i,1} = dMinvbdy{i,1} + obj.DMinvy{j,i}.*b{j} +

+ obj.Minv{j,i}.*dbdy{j};

end

end

end

end

end

The q term in equation (4.72) and its derivatives (4.79) are calculated as:
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for i=1:np

bTMinvb = bTMinvb + b{i}.*Minvb{i};

if nargin>4

dbTMinvbdx = dbTMinvbdx + dbdx{i}.*Minvb{i} +

+ b{i}.*dMinvbdx{i};

dbTMinvbdy = dbTMinvbdy + dbdy{i}.*Minvb{i} +

+ b{i}.*dMinvbdy{i};

end

end

q = c-bTMinvb;

if nargin>4

dqdx = dcdx - dbTMinvbdx;

dqdy = dcdy - dbTMinvbdy;

end

Finally, the update of the inverse of the moment matrix (4.71) (and its deriva-

tives 4.75) is done by

for i=1:np+1

for j=1:np+1

if i<=j

if i<=np && j<=np

obj.Minv{i,j} = obj.Minv{i,j} + Minvb{i}.*Minvb{j}./q;

if nargin>4

obj.DMinvx{i,j} = obj.DMinvx{i,j} +

- dqdx.*Minvb{i}.*Minvb{j}./(q.^2) +

+ dMinvbdx{i}.*Minvb{j}./q + Minvb{i}.*dMinvbdx{j}./q;

obj.DMinvy{i,j} = obj.DMinvy{i,j} +

- dqdy.*Minvb{i}.*Minvb{j}./(q.^2) +

+ dMinvbdy{i}.*Minvb{j}./q + Minvb{i}.*dMinvbdy{j}./q;

end

elseif i<=np && j==np+1

obj.Minv{i,j} = -Minvb{i}./q;

if nargin>4

obj.DMinvx{i,j} = dqdx.*Minvb{i}./q.^2 +
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-dMinvbdx{i}./q;

obj.DMinvy{i,j} = dqdy.*Minvb{i}./q.^2 +

-dMinvbdy{i}./q;

end

elseif i==np+1 && j==np+1

obj.Minv{i,j} = 1./q;

if nargin>4

obj.DMinvx{i,j} = -dqdx./q.^2;

obj.DMinvy{i,j} = -dqdy./q.^2;

end

end

end

end

end

5.3 The class Mesh

The class Mesh contains the background integration mesh, with the Gaussian

points and the weights for the domain Ω and the boundary ∂Ω.

5.3.1 The properties

The main properties defined on the class Mesh are

• fv a structure where fv.vertices is the list of the vertices of the back-

ground mesh and fv.faces is the connectivity matrix that defines the ele-

ments

• ne is the number of edges that composes the boundary ∂Ω

• bfv is an array of ne cells, where each cell is structure composed of vertices

and faces

• GP is the list of coordinates of the Gaussian points in Ω

• W is the list of the Gaussian weights
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• bGP is an array of ne cells, where each cell contains a structure composed

of Gaussian points and weights

• ng is the number of the Gaussian points in Ω

• rho is the array of the dilatation parameters, calculated as the

• RKPM is the RKPM object for the Gaussian points in Ω

5.3.2 The methods

The methods defined on the class Mesh are:

1. Mesh: the constructor of the class. The inputs to the constructor are the

name of the file containing the input data, the list of points, the vertices

and the edges of the background mesh. It also calls the function RhoHex

that calculates the dilatation parameter as ρs× the maximum length of the

edges of the elements that has the I−th node as vertex. ρs is a factor which

is usually 2 for quadratic basis or 2.4 for cubic basis. Moreover, the function

GaussQuad is called, that creates the Gaussian points and the weight on the

triangular mesh using the mapping

x = x1φ1(ξ, η) + x2φ2(ξ, η) + x3φ3(ξ, η), (5.1)

y = y1φ1(ξ, η) + y2φ2(ξ, η) + y3φ3(ξ, η), (5.2)

where (x1, y1), (x2, y2), (x3, y3) are the vertices of the element, ξ and η are

the local coordinates of the unit simplex and φ1, φ2 and φ3 are the finite

element shape functions deriving from Lagrangian interpolation.

φ1(ξ, η) = ξ, (5.3)

φ2(ξ, η) = η, (5.4)

φ3(ξ, η) = 1− ξ − η. (5.5)

The determinant of the Jacobian of equations (5.1) and(5.2) is∣∣∣∣∂(x, y)

∂(ξ, η)

∣∣∣∣ = (x1 − x3)(y2 − y3)− (x2 − x3)(y1 − y3) = 2A, (5.6)

where A is the area of the triangular element
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5.4 The class Load

2. MeshB: behaves as Mesh but on a specified edge of the boundary, using the

mapping

x = x1φ1(ξ) + x2φ2(ξ), (5.7)

y = y1φ1(ξ) + y2φ2(ξ), (5.8)

where (x1, y1), (x2, y2) are the vertices of the element, ξ is the local coordi-

nates of the interval [−1, 1] and φ1, φ2 are the finite element shape functions

deriving from Lagrangian interpolation

φ1(ξ) =
1− ξ

2
, φ2(ξ) =

1 + ξ

2
. (5.9)

The length of the tangent vector in equations (5.7) and (5.8) is∣∣∣∣∂(x, y)

∂ξ

∣∣∣∣ =

√(
x2 − x1

2

)2

+

(
y2 − y1

2

)2

. (5.10)

3. PlotBoundary and PlotMesh are methods that plot the mesh and the

boundary as patches. A patch is a graph object predefined in Matlab,

that uses the same vertices-faces structure defined in fv and bfv;

4. PlotGP and PlotOnGP(obj,fun) plot the Gaussian Points and a function

fun on the Gaussian points as scatter plots.

5. WDPHIx, WDPHIy, WPHI, IPHI, IPHIf, WbPHI, wbPHI are methods that calcu-

late the integrals using the asb handle as in command (4.93).

5.4 The class Load

The properties defined in class Load are the natural boundary conditions (loads

and displacements) applied to ∂Ω, while the methods calculate the force vectors

and plot the natural boundary conditions.
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5.4 The class Load

5.4.1 The properties

The properties for the class Load are:

• DistributedTractions: a structure whose fields are the function handles

tx and ty, that contain the functional expressions for the applied dis-

tributed tractions;

• DistributedDisplacements: a structure whose fields are the function han-

dles dx and dy, that contain the functional expressions for the applied dis-

tributed displacements;

• PointForces: a structure whose fields are: P coordinates of the points

where concentrated forces are applied, tbar an array containing the com-

ponents of the forces;

• PointDisplacements: a structure whose fields are: P coordinates of the

points where concentrated displacements are applied, tbar an array con-

taining the components of the displacements;

• NBC: an array 2 × ne of logical, where 1 indicates an active component of

the distributed tractions on the j − th edge j = 1, . . . , ne and 0 otherwise;

• DBC: same as NBC for the applied distributed displacements.

5.4.2 The methods

The main methods defined on Load are:

1. ApplyDistrTrac(obj,obj2,ne,tx,ty): calculates the distributed tractions

tx and ty on the ne-th edge of ∂Ω, where obj2 is a Mesh object. The output

is the force vector
∫

Γ
φT tdΓ in equation (3.104). In order to calculate the

outputs, the MeshB method is called to create the Gaussian points and the

weights on the edge, then a RKPM object is constructed on these Gaussian

points and the method IPHI of the RKPM object is invoked for the integral.
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5.5 The class Constraint

2. ApplyDistrDispl(obj,obj2,ne,dx,dy): same as ApplyDistrTrac but for

the distributed displacement. The output is the generalized force vector

in
∫

Γu
φT ūdΓu in equation (3.104) and the matrix

∫
Γu
φiφjdΓu in equation

(3.103). The method WbPHI is used to calculate the matrix.

3. ApplyPointForces same as ApplyDistrTrac but for concentrated forces;

4. ApplyPointDispl same as ApplyPointForces but for concentrated dis-

placements;

5. DeleteDistrTrac, DeleteDistrDispl, DeletePointForce and

DeletePointDispl are destructors, i.e. methods that allow to remove the

applied forces and displacements;

6. PlotLoads and PlotDisplacements are graphic methods that plot the ap-

plied loads and displacements on the boundary ∂Ω.

5.5 The class Constraint

The properties defined in class Load are the essential boundary conditions applied

to ∂Ω, while the methods calculate the matrix and plot the constraints.

5.5.1 The properties

The properties defined in the class Constraint are:

• Points structure similar to the one for the Load class (subsection 5.4.1). It

contains the informations related to essential boundary conditions applied

in points.

• EBC array similar to NBC in Load class (subsection 5.4.1): 1 indicates an

active constraint, otherwise the value is set to 0.
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5.6 Other classes

5.5.2 The methods

The methods defined in the class Constraint are similar to the ones defined for

the class Load:

1. ApplyConstraints(obj,obj2,ne,c): applies essential boundary conditions

on the ne-th edge. The output is the matrix
∫

Γu
φiφjdΓu in equation (3.103).

The method WbPHI is used to calculate the matrix;

2. ApplyPointConstraints: same as ApplyConstraints but on points rather

than segments.

5.6 Other classes

The remaining classes are auxiliary to the main one LinearElastic2D, described

later. The class ElasticProperties reads the elastic properties from the input

file and calculates the stiffness tensor for two-dimensional linear orthotropic ma-

terials as in section 4.5. The only method implemented is the computation of

equation (4.98).

The class PostProcessing extracts the solution of an elastic problem and

writes the files containing the displacements, the stress σ and strain ε tensors in

the Gaussian points. These data can be subsequently used for a deformation plot

or for a fringe plot of the stress or the strain.

If a Cohesive object 6.4.9 in given as additional input, a PostProcessing

class calculates the enriched approximation as in equations (6.73), (6.76), (6.77)

and (6.78)

5.7 The class LinearElastic2D

In this section it is finally described the class that comprehends the above de-

scribed classes. The instance created from this class is the object Plate.

The object behaves like an actual plate, where forces, displacements and con-

straints can be applied and the resulting deformed configuration (along with the

levels of stress or strain) can be displayed.
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5.7 The class LinearElastic2D

5.7.1 The properties

The main properties defined on the class are:

• Elastic: the ElasticProperties object described in subsection 5.6;

• Omega: a Mesh object;

• Loads: a Load object;

• Constraints: a Constraint object;

• Results: a PostProcessing object;

• K: the stiffness matrix in equation (3.103);

• Vinc: the matrix output of the method ApplyConstraints;

• Vinc p : the matrix output of the method ApplyPointConstraints;

• Vincd p: the matrix output of the method ApplyPointDispl;

• Vincd : the matrix output of the method ApplyDistrDispl;

• F: the vector output of the method ApplyDistrTrac;

• Fd: the vector output of the method ApplyDistrDispl;

• F p: the vector output of the method ApplyPointForces;

• Fd p: the vector output of the method ApplyPointDispl.

5.7.2 The methods

The main methods of the class are

• LinearElastic2D: the constructor, which creates the objects Elastic, Omega,

Loads and Constraints by calling the correspondent classes;
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5.7 The class LinearElastic2D

• ApplyDistrDispl, ApplyDistrTrac, ApplyPointForces, ApplyPointDispl,

ApplyConstraints and ApplyPointConstraints are overloaded methods

from the classes Load and Constraint for the application of forces and

constraints;

• DeleteDistrTrac, DeleteDistrDispl, DeletePointForces,

DeletePointDisplacements, DeleteConstraints and

DeletePointConstraints are overloaded methods from the classes Load

and Constraint for the deletion of forces and constraints;

• PlotLoads, PlotApplDisplacements PlotConstraints are overloaded meth-

ods from the classes Load and Constraint for the plot of forces and con-

straints;

• PlotMesh, PlotOnGP are overloaded methods from the class Mesh for the

plot of the mesh and the Gaussian points;

• Assembly: method that creates the stiffness matrix K as described in sec-

tion 4.5; It creates an object of the class RKPM for the shape functions in

the Gaussian points GP contained in the object Omega of the class Mesh;

• PostProcessing: overloaded constructor of the object Results;

• Solve is the method that solves the linear elastic problem once the stiffness

matrix and the force vectors are calculated:

R = (obj.K+obj.Options.Penalty*obj.Vinc+

+obj.Options.Penalty*obj.Vinc_p+

+obj.Options.Penalty*obj.Vincd_p +

+obj.Options.Penalty*obj.Vincd )\(obj.F +

+ obj.F_p + obj.Options.Penalty*obj.Fd +

+ obj.Options.Penalty*obj.Fd_p);

. The solution of the linear system of equations is performed by the built-in

operator \, that automatically chooses the most suitable algorithm accord-

ing to the structure of the matrix K. When the solution is completed, the

object Results is created
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5.8 The class LinearElastic3D

obj.Results = PostProcessing(R(1:obj.Omega.ns,:),...

...R(obj.Omega.ns+1:2*obj.Omega.ns,:));

.

5.8 The class LinearElastic3D

The three-dimensional class is very similar to the two-dimensional class. The

difference lies in the class Mesh that makes use of predefined classed in the newest

releases of Matlab as TriRep and DelaunayTri.

TriRep provides topological and geometric queries for triangulations in 3-

D space. For example, for tetrahedral meshes numerous queries can be made,

like triangles attached to a vertex, triangles that share an edge, neighbour in-

formation, circumcenters, or other features. An object of the class TriRep can

be created directly using existing triangulation data. If only points are avail-

able and a triangulation is required, the class DelaunayTri can be used instead.

DelaunayTri creates a Delaunay triangulation when coordinates of points are

inserted as input. Also, it contains a listener that automatically modifies the

triangulation whenever new points are inserted. The figures 5.1,5.2 and 5.3 illus-

trates the capabilities of the 3D code. The construction of the Gaussian points

is different, because a different mapping is necessary.

For the tetrahedral elements:

x = x1φ1(ξ, η, ζ) + x2φ2(ξ, η, ζ) + x3φ3(ξ, η, ζ) + x4φ4(ξ, η, ζ), (5.11)

y = y1φ1(ξ, η, ζ) + y2φ2(ξ, η, ζ) + y3φ3(ξ, η, ζ) + y4φ4(ξ, η, ζ), (5.12)

z = z1φ1(ξ, η, ζ) + z2φ2(ξ, η, ζ) + z3φ3(ξ, η, ζ) + z4φ4(ξ, η, ζ), (5.13)

where (x1, y1, z1), (x2, y2, z2), (x3, y3, z3), (x4, y4, z4) are the vertices of the ele-

ment, ξ, η and ζ are the local coordinates of the unit simplex and φ1, φ2, φ3 and
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5.8 The class LinearElastic3D

φ4 are the finite element shape functions deriving from Lagrangian interpolation.

φ1(ξ, η, ζ) = ξ, (5.14)

φ2(ξ, η, ζ) = η, (5.15)

φ3(ξ, η, ζ) = ζ, (5.16)

φ4(ξ, η, ζ) = 1− ξ − η − ζ. (5.17)

(5.18)

The determinant of the Jacobian of equations (5.11), (5.12) and (5.13)is∣∣∣∣∂(x, y, z)

∂(ξ, η, ζ)

∣∣∣∣ = 6V ; (5.19)

where V is the volume of the tetrahedral element.

For the triangular elements of the surfaces of the boundaries, the following

mapping is used

x = x1φ1(ξ, η) + x2φ2(ξ, η) + x3φ3(ξ, η), (5.20)

y = y1φ1(ξ, η) + y2φ2(ξ, η) + y3φ3(ξ, η), (5.21)

z = z1φ1(ξ, η) + z2φ2(ξ, η) + z3φ3(ξ, η), (5.22)

(5.23)

where (x1, y1), (x2, y2) and (x3, y3, z3) are the vertices of the element, ξ and η are

the local coordinates of the unit simplex and φ1, φ2 and φ3 are the finite element

shape functions deriving from Lagrangian interpolation. The Jacobian used in

the mapping is ∣∣∣∣∂(x, y, z)

∂ξ
× ∂(x, y, z)

∂η

∣∣∣∣ = 2A, (5.24)

where A is the area of the triangle.

Finally, for the linear elements of the edges, the following mapping is used

x = x1φ1(ξ) + x2φ2(ξ), (5.25)

y = y1φ1(ξ) + y2φ2(ξ), (5.26)

z = z1φ1(ξ) + z2φ2(ξ), (5.27)
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5.8 The class LinearElastic3D

where (x1, y1), (x2, y2) and (x3, y3) are the vertices of the element, ξ is the local

coordinates of the interval [−1, 1] and φ1, φ2 are the finite element shape functions

deriving from Lagrangian interpolation.

The length of the vector in equations (5.25) and (5.26) and (5.27) is∣∣∣∣∂(x, y, z)

∂ξ

∣∣∣∣ =

√(
x2 − x1

2

)2

+

(
y2 − y1

2

)2

+

(
z2 − z1

2

)2

(5.28)

(a) Longitudinal stress (view 1) (b) Longitudinal stress(view 2)

Figure 5.1: Three-dimensional code: vertical bending
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5.8 The class LinearElastic3D

(a) In-plane shear stress (b) In-plane shear stress

(c) Out-of-plane shear stress

Figure 5.2: Three-dimensional code: torsion
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5.8 The class LinearElastic3D

(a) Longitudinal stress (view 1) (b) Longitudinal stress (view 2)

(c) In-plane shear stress (view 1) (d) In-plane shear stress (view 2)

Figure 5.3: Three-dimensional code: lateral bending
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Chapter 6

Application to Composite

Materials: Delamination

In this chapter the meshfree techniques and the codes presented in the previous

chapters will be used to model failure in composite materials. With the term

failure is usually intended the event that occurs when the structure loses its

ability to withstand an external load. This load may be static or dynamics,

periodic or impulsive and the global/local response of the material might vary

according to its mechanical properties. Therefore by the word failure a broad

class of problems may be intended.

These problems may be classified by their dependency with time (static, quasi-

static, creep, fatigue, dynamic loading), or by the stress-strain constitutive rela-

tionship (classic elastic fracture mechanics, plastic fracture mechanics, ), or by

their ultimate behaviour (brittle or ductile materials). Moreover, materials can

have different behaviour if subjected to high-rate loads. For example metals are

ductile at quasi-static loads, but turn into brittle if subjected to shock loads.

Also, the opposite may occur. It is for example the case of concrete, which is

brittle for quasi static loads, but ductile at elevated rates.

Simulation of these phenomena may require quite complex computational

tools, not yet completely developed, since it can be done bridging different length

scales, as in the so called multi-scale methods. The advent of new technologies

with faster computers is fostering the application of these methodologies also to

large scale simulations.
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Before proceeding further, it is then opportune to define and restrict the type

of failure that will be modeled with the presented method. Simulation of failure

will not be focused on multi-scale method, but rather on a more engineering level.

At a practical level, for the simulation of failure two approaches can be followed,

a damage mechanics based and a fracture mechanics based.

These two approaches are not mutually exclusive, but rather complementary

branches of the solid mechanics. Fracture mechanics utilizes balance laws (J-

integral Rice (1968)) or state variable derived criteria (Stress Intensity Factors) to

predict the failure, without modifying (introducing additional internal variables)

the underlying constitutive model(s) but rather works “on top” of them. Damage

mechanics 1, however, uses thermodynamics concepts. CDM introduces a new

state variable (the damage, be it scalar, vector, matrix, tensor) to the constitutive

model along with its evolution equation (and failure/initiation criteria etc.) and

coupling to other state variables. Damage mechanics is more suitable for the

prediction of the onset, while fracture mechanics is based on the pre-existence

of a crack. The method utilized in the proceeding of the chapter is a damage

mechanics based method combined to a fracture mechanics approach, able to

represent geometric discontinuities. Following damage mechanics, it is crucial

the choice of a correct constitutive model.

Nevertheless, in composite materials, the inhomogeneity introduces further

complexity and uncertainty to the derivation of constitutive models. Damage

initiation and propagation may be therefore completely different from the ones

in homogeneous materials. In fact matrix and fibers usually have independent

failure mechanisms and thresholds. On the top of that, bonding limits between

the individual components along their interfaces represent new modes of failure.

Generally, two categories of failure are predominant in laminated composite

materials, i.e. intra-laminar failures (for example matrix failure, fibers break-

ing, interface failure between matrix and fibers) and inter-laminar failure, i.e.

delamination. A complete review of the numerous failure theories available for

composite materials can be found in Orifici et al. (2008).

For fibers breaking there exist various criteria to predict the tensile failure,

for example Puck & Schürmann (2002). The breaking is due to accumulation of

1More often referred as Continuum Damage Mechanics CDM
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each fibre within the ply and different criteria for the compressive failure, due to

microbuckling and formation of kink bands. Moreover, there are methods that do

not distinguish between the two types of failure, but use a global criterion that

comprises both tension and compression.

Matrix failure is due to coalescence of accumulated micro-cracks, typically

originated at defects or at fibre-matrix interface. Eventually this coalescence

leads to failure across a critical fracture plane. This plane can be predicted using

fracture mechanics tools. Examples of criteria can be found for example in Hashin

(1980) and Puck & Schürmann (2002).

The above mentioned mechanisms however will not be covered by the ap-

proaches developed in the the following sections. The main focus of this work

will be delamination, although the previous mentioned failure mechanism could

constitute the basis of future work, perhaps in a multiscale perspective.

Delamination is the debonding of the layers that may occur for example in case

of low velocity impact or from a manufacturing defect such shrinkage of the matrix

during curing. It is an important cause of failure in unidirectional fiber-reinforced

composites. Since there is no reinforcement in the direction perpendicular to

the layers, the plies are more exposed to failure in case of impact. The major

inconvenient resulting from delamination is a consistent reduction in the load

carrying capability of a structure.

There are mainly two types of delamination, as reported in Bolotin (1996)

and Bolotin (2001): near-surface delamination and internal delaminations. Near-

surface delaminations are localized on the surface of the laminate and their de-

formation is not much influenced by the rest of the laminate. The accurate

simulation of these delaminations prescribes the analysis of the local stability.

This chapter will be focused though on internal delaminations, with an exist-

ing pre-crack. As in fracture mechanics, three modes of failure exist for internal

delamination, as depicted in figure 6.1. Mode I is called opening mode, since

separation occurs perpendicularly to the loading force, while the other two are

shear modes. In the shear modes, the separation is parallel to the loading, but

while mode II is a sliding mode (in-plane shear stress), mode III is an out-of-plane

shear stress loading mode.
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6.1 Review of simulation of delamination

Figure 6.1: Failure modes for internal delamination: (a) mode I , (b) mode II ,

(c) mode III

6.1 Review of simulation of delamination

The simulation of delamination in composites is usually divided into delamination

initiation and delamination propagation. The first one is usually based on the

strength of materials theory and employs stress criteria normally based on point

or average stress, while propagation is modeled with fracture mechanics tools

based on the evaluation of the energy release rate G.

In the past years finite elements (FE) have proved to be the most widely

used computer resource in the industrial and scientific community to model de-

lamination. Particularly, decohesion elements are the most popular choice and

they are nowadays implemented in many commercial FE packages. The main

advantage of the use of decohesion elements is the capability to predict both

onset and propagation of delamination. These elements could be of different

types, like continuous interface elements (zero-thickness or finite-thickness vol-

umetric elements) or point decohesion elements (non-linear springs connecting

nodes). Decohesion elements use the cohesive model as the constitutive relation-

ship between the relative displacements and the traction forces at the interfaces

Camanho et al. (2001), Camanho & Dávila (2002), Camanho et al. (2003). Co-

hesive model will be described in detail in section 6.2. Finite elements methods,

like decohesion elements or interface elements, have the major disadvantage that

crack path is highly dependent on the mesh structure, since discontinuities must
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6.1 Review of simulation of delamination

follow inter-element boundaries, therefore capturing of a propagating discontinu-

ity is achieved by constant re-meshing of the structure. This procedure is costly

not to mention the degradation of the accuracy of the solution.

These limitations are overcome with novel methods such as meshfree or other

Partition of Unity-based methods (PUM), where discontinuities are not restricted

to element boundaries or even no elements are necessary at all. An important

progress in this sense has been recently obtained with the introduction of par-

tition of unity-based methods (PUM) Babuska & Melenk (1997) like extended

finite element (XFEM) Moes et al. (1999), Black & Belytschko (1999), Dolbow

et al. (2000), Moës & Belytschko (2002) and meshless methods like Element-

Free Galerkin Belytschko et al. (1994b) or Reproducing Kernel Particle Method

(RKPM) Liu et al. (1995). In the papers of Wells & Sluys (2001) and Remmers

et al. (2003a), a new method called cohesive segments method is introduced. In

Wells & Sluys (2001) the PUM idea is applied in the context of cohesive cracks. A

full non-linear model is developed, with tractions acting on the cohesive surfaces.

These tractions are depending on the opening displacement (or discontinuous

displacement) and used to model crack propagation in three-points bending test

and single edge notched beam.

In Remmers et al. (2003a) these segments are introduced under a FE frame-

work, similarly to the Extended Finite Element Method (XFEM). Using a partic-

ular instance of a PUM , a continuous crack is approximated by a set of segments,

each one of them split the domain in two parts. At each of these interfaces, a

cohesive model is used in order to simulate the debonding of the parts. It can be

shown that by doing so, the total displacement is enriched by a sum of Heaviside

functions that can effectively represent the discontinuity. In this way, additional

unknowns are introduced to the final algebraic system of equations. These seg-

ments can be introduced at any time of the calculation, whenever a stress-based

failure criterion is satisfied, and the orientation of the onset cohesive segment is

given by the principal direction of the stress. In this way, no explicit represen-

tation of the crack surface is needed allowing arbitrary crack growth, which is

extremely useful when the crack propagation path is not known a priori. The

drawback of this method is that additional unknowns are introduced at each crack

segment. The unknowns are localized to the nodes of the elements cut by the

134



6.1 Review of simulation of delamination

discontinuity. In Remmers et al. (2008) the same approach is used to efficiently

simulate dynamic crack propagation.

The idea of combining cohesive segments with meshfree methods is a very

recent idea Sun et al. (2007), although delamination modeling with Element Free

Galerkin can be found in Guiamatsia et al. (2009), but combined with a Virtual

Crack Closure Method rather than cohesive laws.

When the crack path is known a priori, like in the case of single mode delami-

nation, the same approach can be used without adding additional unknowns, like

in Barbieri & Meo (2008) and Barbieri & Meo (2009a).

In this case, the domain can be decomposed in two parts connected by a

penalty parameter, as also suggested in Belytschko et al. (1996a). The variational

problem is formulated for each sub-domain and then a coupling term between

their displacements is introduced. The coupling term is nothing else than a

penalty factor defined on the whole contact segment. Penalty terms are well-

known in the meshfree community since, conversely to FE, the shape functions

do not possess the Kronecker condition Fries & Matthies (2004). This condition

allows in FE to directly impose essential boundary conditions on the nodes located

on the constrained boundaries. For simple constraints, though, a constant penalty

factor is sufficient throughout the whole boundary. The same approach can be

used to connect or disconnect two or more objects.

At this aim, a penalty-based finite element technology was introduced in Pan-

tano & Averill (2002) to assemble together independently modeled finite element

sub-domains. The same technology was subsequently used in Pantano & Aver-

ill (2004) to model mixed-mode delamination growth, using the concept that a

penalty factor that was previously used to bond together different parts can be

used as well for their separation. The simulation is almost mesh independent, but

additional unknowns are required for the interface, even for single delamination.

It will be shown in the next sections that using meshfree shape functions this

limitation can be removed.

The coupling term that derives from the application of the cohesive model at

the separation leads to a final nonlinear set of equations

Ψ(a, λ) = R(a)− λP = 0, (6.1)
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where a is a 2ns × 1 vector which is usually the displacement vector, P is the

unitary external force vector, λ is a scalar that quantifies the magnitude of the

applied force and R(a) is the internal force vector. Problem (6.1) is called para-

metric continuation.

In computational solid mechanics, equation (6.1) often refers to the search of

an equilibrium path (a, λ) and two approaches can be followed, as reported in

the classic book Crisfield (1991):

1. displacement control, where a displacement is applied and λ derives from a

posteriori computation of a reaction force (figure 6.2a)

2. force control where a force is applied and λ is treated as an additional

unknown (figure 6.2b)

(a) Displacement Control (b) Force Control

Figure 6.2: Examples of equilibrium paths for non-linear equations

Displacement control may be suitable when the equilibrium curve presents an

unstable point, where the tangent at the curve is horizontal to the displacement

axis (figure 6.3a). In fact, in this case for the same load level λ there exist two

different equilibrium states u1 and u2. Nevertheless, displacement control may

fail as well for the case illustrated in figure 6.3b, where the same equilibrium state

u1 is satisfied simultaneously by two different load levels λ1 and λ2.

Nonetheless, the equilibrium path could be more complicated and for example

in case in figure 6.3b both displacement and force control fail. A more general
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6.2 Cohesive Zone Model

(a) Failure of the force control method (b) Failure of the displacement and force con-

trol method

Figure 6.3: Failures in the load control and displacement control

approach to trace the equilibrium path in figure 6.3b is therefore the force control

with an arc-length solver. To provide more robustness, the arc-length can be also

combined with a line-search approach. Following Crisfield (1991), a detailed

procedure is reported in appendix B. A Matlab in-house code has been written

to serve this scope.

The outline of the chapter is the following: firstly, in section 6.2, the cohesive

zone model will be reviewed, then in section 6.3 the penalty approach to model

delamination will be presented and numerical cases will be shown. Finally, in

section 6.4 a more general approach will be presented, known as the cohesive

segments method that exploits the PUM principle along with numerical cases.

6.2 Cohesive Zone Model

Cohesive models are based on the Dudgale - Barenblatt Barenblatt (1962) cohe-

sive zone approach, subsequently extended by Hillerborg Hillerborg et al. (1976)

and Needleman Needleman (1987).

The main purpose of cohesive zone models is to provide a more physical expla-

nation of the failure process, differently from classical linear fracture mechanics,

which lacks of a physics-based description Klein et al. (2001) and it is based on

the concentration of stress at notches. Conversely to classical fracture mechanics,
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6.2 Cohesive Zone Model

the cohesive zone modeling approach does not involve crack tip stress singularities

and failure is regulated by relative displacements and stresses.

In the cohesive zone model instead, it is postulated the existence of a narrow

band of vanishing thickness ahead of a crack tip which represents the fracture

process zone. The bonding of the surfaces of the zone is obtained by cohesive

traction that derives from a potential. Specifically, in the work of Needleman

(1987) 1, it is introduced a potential φ(un, ut, ub) function of the normal com-

ponent un, the tangential component ut and the binormal component ub of the

displacement jump ∆ at the interface (figure 6.4).

Figure 6.4: Reference frame for the interface
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(6.2)

where Tn, Tt and Tb are the tractions respectively on direction n, t and b and δ

is a characteristic length, σmax is the maximum traction carried at the interface

1the same notation will be used
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under purely normal separation (ut = ub = 0), α the ratio between tangential

and normal stiffness.

When un exceeds δ, then the potential φ equals the work of separation φsep.

These traction can be obtained by differentiating (6.2)

Tn =
∂φ

∂un
= −27

4
σmax
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δ

)[
1− 2

(un
δ
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(un
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+
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, (6.3)

Tt =
∂φ

∂ut
= −27

4
σmaxα

(ut
δ

)[
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(un
δ

)
+
(un
δ

)2
]
, (6.4)

Tb =
∂φ

∂ub
= −27

4
σmaxα

(ub
δ

)[
1− 2

(un
δ

)
+
(un
δ

)2
]
. (6.5)

Figure 6.5: Normal traction Tn - relative displacement un curve for α = 0 (equa-

tion (6.3) )

The work of separation (or critical strain energy release rate Gc) is

φsep =
9

16
σmaxδ (6.6)
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This model, though, describes only debonding by normal separation. In Tver-

gaard (1990) this model was generalized by introducing a damage variable D. In

addition, a cleavage unloading procedure can be added, in which the stiffness is

reduced when damage occurs but separation totally vanishes when the traction

is reduced to zero.

D = m

√(
ut
δmax

)m
+

(
un
δmax

)m
D ∈ [0, 1], (6.7)

when m = 2, then the tractions are

Tn =
27

4
σmax

un
δ

(1−D)2, (6.8)

Tt =
27

4
σmax

ut
δ

(1−D)2. (6.9)

Many different constitutive laws exist, for example the exponential or the bilinear

softening model Zou et al. (2003). These laws are typically regulated by both

strength of material parameters (like the tensile strength) and fracture mechanics

based parameters like the critical fracture energies for the considered fracture

mode. Crack growth occurs when a critical value is reached at which cohesive

traction disappears.

The cohesive model implemented in the following sections is a bilinear traction

- displacement relationship τ(∆), where τ is the traction at the interface and

∆(x) is the displacement jumps at the interface. The bilinear curve is divided

into three main parts (fig. 6.6) and the constitutive equations are the following:

• ∆ ≤ ∆0: elastic part : traction across the interface increases until it reaches

a maximum, and the stress is linked to the relative displacement via an

arbitrary interface stiffness K0 :

τ(∆) = K0∆; (6.10)

• ∆0 < ∆ ≤ vF : softening part : the traction across the interface decreases

until it becomes equal to zero: the two layers begin to separate. The damage

accumulated at the interface is represented by a variable D, which is equal
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6.2 Cohesive Zone Model

to zero when there is no damage and reaches 1 when the material is fully

damaged:

τ(∆) = (1−D(∆))K0∆; (6.11)

• ∆ > ∆f : decohesion part : decohesion of the two layers is complete: there

is no more bond between the two layers, the traction across the interface is

null.

Figure 6.6: Bilinear softening model

The shaded area in figure 6.6 is the energy dissipated per unit area G for a

particular mode. Moreover, for mode II the diagram is symmetrical with respect

to the zero, since the sliding motion could occur in both senses (figure 6.1), while

to prevent inter-penetration of the crack surfaces, diagram for mode I is linear

for negative relative displacements ∆ and no damage is prescribed. In this way,

the stiffness parameter is restored in order to keep the interface closed.

When ∆ = ∆f the area of the whole triangle is the critical energy dissipated

per unit area Gc. It can be shown Rice (1968) that in this case cohesive zone

approaches can be related to Griffith’s theory of fracture. Moreover Alfano &

Crisfield (2001) showed that when ∆0 = ∆f (which means abrupt load fall to

zero) a perfectly brittle fracture can be simulated.

Two independent parameters are necessary to define a bilinear softening model,

i.e. the inter-facial maximum strength τm and the critical energy dissipated per
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6.3 The Cohesive Penalty approach

unit area Gc, since the following relations hold

Gc =
τm∆f

2
(6.12)

τm = K0∆0 (6.13)

where K0 is an arbitrary initial penalty stiffness (dimensionally N/m3) which

is usually set as a large number. Then, once derived ∆0 and ∆f , the variable

damage D can be calculated as

D(∆) =


0 ∆ ≤ ∆0
∆f (∆−∆0)

∆(∆f−∆0)
if ∆0 < ∆ ≤ ∆F

1 ∆ > ∆F

(6.14)

6.3 The Cohesive Penalty approach

In the penalty approach, Barbieri & Meo (2009a), for single loading modes I

and II, the two layers are modelled as two independent beams, Ω1 and Ω2. The

key parameter of a bilinear cohesive model, i.e. the arbitrary penalty stiffness,

is defined over the contact surface Γc (figure 6.7) and weakened according to a

cohesive law.

6.3.1 The equations of equilibrium

Assuming that there are no body or inertia forces, the strong form of the equi-

librium equations along with the boundary conditions can be written as

∇ · σ = 0 x ∈ Ω, (6.15)

nt · σ = t̄ x ∈ Γt, (6.16)

u = ū x ∈ Γu, (6.17)

nc · σ = τ(∆) x ∈ Γc, (6.18)

where Ω is the entire domain, σ is the Cauchy stress tensor, nt is the normal unity

vector of the boundary Γt where the traction t̄ is prescribed, nc is the normal

unity vector of the boundary Γc where the traction τ(∆) is prescribed and Γu is

the boundary where the displacement ū is imposed.
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Figure 6.7: Description of the problem

The traction τ depends on the displacement jump ∆ on the cohesive seg-

ment Γc, which divides Ω in two sub-domains Ω1 and Ω2 as in figure 6.7. The

displacement jump ∆(x) is defined as follows

∆(x) = u1(x)− u2(x) x ∈ Γc, (6.19)

where u1(x) is the displacement of sub-domain Ω1 and u2(x) is the displacement

of sub-domain Ω2.

Using displacement u as test function for equations (6.15), (6.16) and dis-

placement jump ∆ as test function for equation (6.18), the variational principle

can be written as∫
Ω1

δεTσdΩ1 +

∫
Ω2

δεTσdΩ2 −
∫

Γt1

δuT t̄dΓt1 −
∫

Γt2

δuT t̄dΓt2+

α

2
δ

∫
Γu1

(u− ū)2dΓu1 +
α

2
δ

∫
Γu2

(u− ū)2dΓu2 +

∫
Γc

δ∆T τdΓc = 0, (6.20)

where the penalty method is used to enforce essential boundary conditions (6.17)

and α is called penalty parameter, which is usually an arbitrary very large num-

ber. After having performed several numerical experiments, a penalty factor of

1e15 seemed to efficiently enforce essential boundary conditions without causing

instability.

Varying this number it is possible to loosen or tighten a certain constraint.

This will be useful in the next sections with the application of the cohesive model
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at the crack interface Γc. In equation (6.20) Γt1 and Γu1 refer to the part of

boundaries Γu and Γt that belong to sub-domain Ω1, whereas Γt2 and Γu2 the

ones that belong to Ω2.

6.3.2 Discretization of equations of equilibrium

In general, for a two-dimensional case, (but similar argument can be conducted

in the three-dimensional case), naming t the tangential direction the cohesive

segment and n the normal direction, the stress - relative displacement relationship

can be formulated as

τ =

[
τt
τn

]
=

[
Kt(∆t,∆n) 0

0 Kn(∆t,∆n)

] [
∆t

∆n

]
=

=

[
(1−Dt(∆t,∆n))K0t 0

0 (1−Dn(∆t,∆n))K0n

] [
∆t

∆n

]
. (6.21)

If a given loading mode has reached 1, the damage variable corresponding to

the other loading mode is set as well to 1 to avoid that the material would still

be able to carry tractions.

In the following examples t corresponds to axis x and n to axis y. For ar-

bitrary orientations, a transformation matrix would be necessary to express dis-

placements from the global reference frame to the local one (figure 6.8).

Figure 6.8: Reference transformation from global coordinates to local coordinates
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Displacement jump in equation (6.19) can be then expressed as

∆ =

[
∆x

∆y

]
=

[
φT1cU1 − φT2cU2

φT1cV1 − φT2cV2

]
=

[
φT1c 0 −φT2c 0
0 φT1c 0 −φT2c

]
U1

V1

U2

V2

 = φ̃TR,

(6.22)

where

φ1c = φ1(x) x ∈ Γc, (6.23)

where φ1(x) are the shape functions of sub-domain Ω1, whereas

φ2c = φ2(x) x ∈ Γc (6.24)

are the shape functions belonging to sub-domain Ω2,

φ̃T =

[
φT1c 0 −φT2c 0
0 φT1c 0 −φT2c

]
(6.25)

and RT
1 =

[
U T

1 V T
1

]
is the displacement vector for nodes located in Ω1 whereas

RT
2 =

[
U T

2 V T
2

]
is the displacement vector for nodes located in Ω2 and RT =[

R T
1 R T

2

]
is the total displacement vector. Substituting equations (3.1) and

(6.22) in the variational principle (6.20)

δRT
1 K1R1 + δRT

2 K2R2 − δRT
1 F1t − δRT

2 F2t + αδRT
1 V1R1 − αδRT

1 F1u+

αδRT
2 V2R2 − αδRT

2 F2u + δRT
1 Fc

1 + δRT
2 Fc

2 = 0, (6.26)

where

Ki =

∫
Ωi

BDBTdΩi i = 1, 2, (6.27)

where D is the stress-strain relationship matrix, B is the differential strain oper-

ator matrix

Vi =

∫
Γui

φφTdΓui i = 1, 2, (6.28)

Fiu =

∫
Γui

φūdΓui i = 1, 2, (6.29)

Fit =

∫
Γti

φt̄dΓti i = 1, 2, (6.30)
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and

Fc
1 =

[
Fc

x1

Fc
y1

]
, (6.31)

[
Fc

x2

Fc
y2

]
, (6.32)

Fc
x1 =

∫
Γc

φ1cτtdΓc, (6.33)

Fc
y1 =

∫
Γc

φ1cτndΓc, (6.34)

Fc
x2 = −

∫
Γc

φ2cτtdΓc, (6.35)

Fc
y2 = −

∫
Γc

φ2cτndΓc. (6.36)

Finally the following nonlinear set of equations can be obtained

[K + αV] R + Fc(R)− F− αFū = f(R) = 0 (6.37)

where

K =

[
K1 0
0 K2

]
(6.38)

and

V =

[
V1 0
0 V2

]
, (6.39)

F =

[
F1t

F2t

]
, (6.40)

Fū =

[
F1u

F2u

]
, (6.41)

Fc =

[
Fc

1

Fc
2

]
. (6.42)
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6.3.3 Tangent Stiffness Matrix

Equation (6.37) must be solved iteratively. A commonly used scheme is the

Newton-Raphson method where the iteration n + 1 at a generic load step is

obtained from iteration n by the formula

R(n+1) = R(n) −
(
J(n)

)−1
f(R(n)), (6.43)

where

J =
∂f

∂R
. (6.44)

In order to obtain the Jacobian matrix J, a linearization of equation (6.21) is

needed.

τ (n+1) = τ (n) +
∂τ

∂∆

(
∆(n+1) −∆(n)

)
= τ (n) + T

(
∆(n+1) −∆(n)

)
, (6.45)

where

T =
∂τ

∂∆
=


∂Kx

∂∆x

0

0
∂Ky

∂∆y

 =

−
∂Dx

∂∆x

K0x 0

0 −∂Dy

∂∆y

K0y

 . (6.46)

Deriving equation (6.14)

∂D

∂∆
=

∆f∆0

∆2(∆f −∆0)
. (6.47)

Substituting (6.46) into (6.20), the expression of the Jacobian (6.44) can be ob-

tained as

J = K + αV + KT , (6.48)

where

KT =
∂Fc

∂R
=

∫
Γc


φ1c

φ1c

−φ2c

−φ2c

 ∂τ

∂∆

∂∆

∂R
dΓc. (6.49)

Considering equations (6.25) and (6.46)

KT =

∫
Γc


φ1c

φ1c

−φ2c

−φ2c

T

[
φT1c −φT2c

φT1c −φT2c

]
dΓc, (6.50)
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KT =

[
KT11 −KT12

−KT
T12 KT22

]
, (6.51)

where

KT11 =

[
KT11x 0

0 KT11y

]
, (6.52)

KT12 =

[
KT12x 0

0 KT12y

]
, (6.53)

KT22 =

[
KT22x 0

0 KT22y

]
, (6.54)

KT ijl =

∫
Γc

φic

(
Kl(∆l)−Kl0

∆f∆0

∆l(∆f −∆0)

)
φjcdΓc i, j = 1, 2 l = x, y.

(6.55)

The equilibrium path for equation (6.37) will be traced with a single param-

eter arc-length continuation method, whose algorithm is explained in appendix

B. The continuation method is essentially based on the Newton-Rhapson algo-

rithm, with some modification in order to take into account the addition of the

parameter, which in this case is the magnitude of the applied force. Therefore

the method used is a force control method. A drawback of the Newton-Rhapson

algorithms is that their (quadratic) convergence is guaranteed only if the guess

solution is close enough to the real solution. In order to accelerate the Newton

process, a cubic polynomial line search (LS) algorithm has been used Press et al.

(1986). LS algorithms are instead globally convergent, since they may converge

independently from the tentative solution.

6.3.4 Convergence Issues in the Numerical Continuation

As reported in Camanho & Dávila (2002) and Camanho et al. (2003), the soft-

ening nature of the bilinear cohesive zone model can pose numerical problems.

These problems are related to the convergence of the numerical scheme, that may

not be achieved in some cases. In fact, during the numerical simulations, it has

been experienced that the numerical continuation stops and does not proceed

further. The point of arrest is usually the first unstable point encountered in the
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path, which is when the delamination starts to propagate. In other words, this

point occurs when the relative displacement exceeds the critical value δf , which

means that the strain energy release rate is greater than the critical value Gc for

that particular mode, therefore, according to the Griffith’s theory, there is enough

energy to create new surfaces (the crack surfaces).

The choice of the penalty values is important since it could lead to large

unbalanced forces and shoot the iteration beyond its radius of convergence. Par-

ticularly, the value of inter-facial maximum strength τm exerts a major influence

on the fluency of the numerical scheme. It has been reported in Turon (2007), for

finite elements this effect is due to the length of the cohesive zone. The length of

the cohesive zone is defined as the distance from the crack tip (when the traction

is zero with the bilinear model) to the point where the maximum cohesive trac-

tion τm is attained. If the cohesive zone is discretized by too few elements, the

distribution of tractions ahead of the crack tip is misrepresented, analogously to

the under-sampling phenomenon of a digital signal.

Therefore a very fine mesh should be used if the cohesive length is too small.

The cohesive length is usually proportional to the fracture energy release rate Gc

and to 1
τ2m

. The higher the inter-facial strength, the finer the mesh that should

be used. This suggests a way to use coarser mesh, i.e. to arbitrarily reduce the

inter-facial strength, as done in Chen et al. (1999) and Alfano & Crisfield (2001).

This reduction, though, does not compromise the resulting force-displacement

curve, if the reduction is reasonable, but can indeed ease the convergence. A

strong reduction, on the contrary, can lead to inaccurate results; therefore the

reduction of the τm should be used carefully.

Another problem related to the insufficient mesh size is the false instabilities.

Although the critical value can be accurately predicted, an oscillatory behaviour

can be observed in the force-displacement curve. In the finite element context,

these oscillations in the force-displacement curve are due to a sudden release of

the elastic strain energy caused by simultaneous failure of more than one element

per time. Unfortunately, reducing the step-length size in the arc-length proce-

dure does not solve this inconvenient, since it is inherently caused by insufficient

discretization of the interface, i.e. not enough elements.
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False instabilities will be observed in a later ad-hoc example when an artificial

void is introduced in the cohesive contact. This cavity is introduced simply

by setting the penalty parameter to zero in an internal zone of the interface.

One remedy to this issue is obviously to refine (globally or locally). Within

certain limits, though, refinement can be avoided by adding more nodes to the

enrichment, although this increases the number of extra-unknowns.

6.3.5 The class CohesiveContact

6.3.5.1 The properties

The properties of the CohesiveContact are

• d0t, dFt, d0n, dFn, GIc, GIIc, smax I, smax II are the parameters of the

cohesive zone model, as described in section 6.2;

• tx and ty: the tractions at the interface as defined in equation (6.21);

• vx and vy: the displacement jumps at the interface as in equation (6.21);

• ne1 and ne2: the ne1-th edge of Ω1 and the ne2-th edge of Ω2 where the

penalty contact is applied;

• RKPM1 RKPM2 are objects of the class RKPM that calculates φ1c and φ2c in

equation (6.23) and (6.24);

• hn, ht arrays defined on the Gaussian points of the shared edge, with values

0 if there is a pre-crack, 1 otherwise;

• KTt and KTn the derivatives of the penalty factors, as defined in equation

(6.55).

6.3.5.2 The methods

The methods defined for the class CohesiveContact are

• CohesiveContact the constructor, with inputs ne1, ne2 and the file con-

taining the CZM parameters;
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• ApplyContact creates the objects RKPM1 and RKPM2;

• InitSegm allows to insert a pre-crack by entering a logical expression like

x ≥ Lx − a0;

• DisplacementJump calculates equation (6.22)

function obj = DisplacementJump(obj,U1,V1,U2,V2)

obj.vx = obj.RKPM1.PHI*U1-obj.RKPM2.PHI*U2;

obj.vy = obj.RKPM1.PHI*V1-obj.RKPM2.PHI*V2;

end

• CohesiveTraction calculates (6.21) and KTt and KTn

function obj = CohesiveTraction(obj,U1,V1,U2,V2)

obj = DisplacementJump(obj,U1,V1,U2,V2);

[Dt,dDt] = dam(obj.vx,obj.d0t,obj.dFt);

obj.kt = (1-Dt).*obj.Kt0.*obj.ht;

obj.tx = obj.kt.*obj.vx;

obj.KTt = ((1-Dt) - obj.vx.*dDt).*obj.Kt0.*obj.ht;

[Dn,dDn] = dam(obj.vy,obj.d0n,obj.dFn);

obj.kn = (1-Dn).*obj.Kn0.*obj.hn;

obj.ty = obj.kn.*obj.vy;

obj.KTn = ((1-Dn) - obj.vy.*dDn).*obj.Kn0.*obj.hn;

clear Dt Dn dDn dDt

end

where dam is an internal function that calculates (6.14);

• AssembCoupl computes the generalized cohesive force vector (6.42) and the

tangent stiffness matrix (6.51) using the integration methods defined on the

RKPM objects.
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6.4 The Cohesive Segments method

The method of cohesive segments consists in a local partition of unity enrichment

of an existing meshless approximation. It was developed initially in a FE frame-

work Wells et al. (2002), Remmers et al. (2003b) and Remmers et al. (2003a) but

using the PUM it can be extended to meshfree approximations.

In subsection 6.4.1 the approximation is described, then in subsection 6.4.2

the constructed approximation is used in a variational form in order to get the

desired discretized equations of equilibrium.

Figure 6.9 shows the basic principles of cohesive segments. The idea is to

decompose a continuous crack into discrete cracks, each one of them represented

by a segment. On these segments a Heaviside enrichment function is defined.

This enrichment is then superimposed to a continuous field that represents the

undamaged model.

6.4.1 RKPM Enriched Approximation

The approximation uh(x) for a scalar variable is

uh(x) = ū(x) +
m∑
j=1

HΓ,j(x)ũj(x), (6.56)

where ū(x) is the continuous part of the displacement, m is the number of cracks,

or cohesive segments, HΓ,j is the enrichment function defined on the j-th segment

and ũj(x) is a continuous field that defines the magnitude of the discontinuity.

Figure 6.9: Cohesive segments method: circles: RKPM nodes; red line: crack;

dashed line: cohesive segments
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Figure 6.10: Decomposition of a continuous crack in discrete cracks

The enrichment function is a composed function of a Heaviside function and

a distance function ϕj

ϕj(x) = − sin(θj)(x− xj) + cos(θj)(y − yj), (6.57)

where (xj, yj) and θjare respectively the coordinates of the initial point and the

inclination of the j-th segment, as illustrated in figure 6.10.

The normal vector of the segment (pointing towards Ω+
j ) is given by

nTj =
[
nxj nyj

]
=
[
cos(θj) sin(θj)

]
. (6.58)

The distance functions separate the domain Ω in two parts, as in figure 6.10.

Ω+
j = {x ∈ Ω : ϕj(x) ≥ 0} (6.59)

Ω−j = Ω− Ω+
j . (6.60)

The cohesive segment is defined then as

Γd,j = {x ∈ Ω : ϕj(x) = 0}. (6.61)

Therefore, the enrichment functions are

HΓ,j(x) = H(ϕj(x)). (6.62)
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The infinitesimal strain can be calculated as follows

εh = ∇sū(x) +
m∑
j=1

H(ϕj(x))∇sũj(x) + δ(ϕj(x)) (ũj(x)⊗ nj) , (6.63)

where the superscript s means the symmetric part of the gradient ∇ū(x) and the

δ1 is the Dirac function centered on the segment Γd,j
2, i.e. when ϕj(x) = 0 . It

can be shown later that the Dirac term will originate the cohesive traction in the

cohesive segment. This is opposed to the classic linear elastic fracture mechanics

theory Rice (1968), where the fracture faces are considered traction-less, causing

the Dirac term to disappear.

Using the Voigt notation, equation (4.96) can be rearranged as

εh = Lū(x) +
m∑
j=1

H(ϕj(x))Lũj(x) + δ(ϕj(x))Nũj(x), (6.64)

where

N =

nxj nyj
nyj nxj.

 (6.65)

The RKPM approximation is used for the continuous field ū(x) and ũj(x)

uh(x) =
N∑
I=1

φI(x)UI +
m∑
j=1

H(ϕj(x))

Nj∑
i=1

φ
(0)
i (x)aij x ∈ Ω, (6.66)

where Ω is the domain of the elastic problem, N is the number of the standard

nodes (not enriched), φI is the RKPM shape function for the I − th node, UI is

the I − th (fictitious) displacement in node I , Nj is the number of the enriched

nodes for the j-th crack, φ
(0)
i (x) is the Shepard shape functions for the i − th

enriched node, aij is the i− th additional variable for the additional crack.

Similarly, for the v component of the displacement

vh(x) =
N∑
I=1

φI(x)VI +
m∑
j=1

H(ϕj(x))

Nj∑
i=1

φ
(0)
i (x)bij x ∈ Ω. (6.67)

1not be confused with the variational δ
2d means discontinuity
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If UI = VI = 0 ∀I and aij = bij = 1 ∀J , the functions (6.66) and (6.67) resort to

a sum of Heaviside functions that represent the discontinuities.

Finally, the displacement jump at the k-th segment is given by

∆k(x) =
m∑
j=1

H(ϕj(x))ũj(x) =

=
m∑
j=1

H(ϕj(x))

[∑Nj
i=1 φ

(0)
i (x)aij∑Nj

i=1 φ
(0)
i (x)bij

]
x ∈ Γd,k. (6.68)

6.4.2 The equations of equilibrium

The equations of equilibrium in strong form are the same of section 6.3, i.e.

(6.15), (6.16), (6.17) with the exception of equation (6.18) that is modified to

allow multiple segments

nj · σ = τ(∆l,j) x ∈ Γd,j j = 1, . . . ,m, (6.69)

where nj is the normal unity vector of the segment Γd,j where the cohesive traction

τ(∆l) is prescribed, l is the local coordinate system.

The traction τ depends on the displacement jump ∆l (transformed in the

local reference t − n where t is the tangent to the segment and n is the normal

direction to the segment) on the cohesive segments Γd,j as described in section

6.2.

The displacement jump ∆(x)l in the local global reference for the j-th segment

instead is

∆l,j(x) = Rj(θ)∆j(x) x ∈ Γd,j (6.70)

where

Rj(θ) =

 cos(θj) sin(θj)

− sin(θj) cos(θj)

 . (6.71)

Using displacement u as test function for equations (6.15), (6.16) and the

(local) displacement jump ∆l as test function for equation (6.18), the variational
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principle can be written as∫
Ω

δεTσdΩ−
∫

Γt

δuT t̄dΓt +
α

2
δ

∫
Γu

(u− ū)2dΓu +
m∑
j=1

∫
Γd,j

δ∆j
T
l τ(∆j)dΓd,j = 0,

(6.72)

where the penalty method is used to enforce essential boundary conditions (6.17).

In vectorial form equation (6.66) can be written as

uh(x) = ΦT (x)︸ ︷︷ ︸
1 x N

U︸︷︷︸
N x 1

+
m∑
j=1

Φ0
j
T

(x)︸ ︷︷ ︸
1 x Nj

aj︸︷︷︸
Nj x 1

(6.73)

where

ΦT =
[
φ1(x) φ2(x) . . . φN(x)

]
(6.74)

and similarly for

Φ0
j
T

=
[
φ

(0)
1 (x) φ

(0)
2 (x) . . . φ

(0)
Nj

(x)
]
. (6.75)

Analogously for the v displacement

vh(x) = ΦT (x)︸ ︷︷ ︸
1 x N

V︸︷︷︸
N x 1

+
m∑
j=1

Φ0
j
T

(x)︸ ︷︷ ︸
1 x Nj

bj︸︷︷︸
Nj x 1

. (6.76)

Therefore, applying the differential operator as in equation (4.96)

ε = B

U

V

+
m∑
j=1

HjB
(0)
j

aj

bj

 (6.77)

and, applying the generalized Hooke’s law

σ = DB

U

V

+
m∑
j=1

HjDB
(0)
j

aj

bj

 , (6.78)
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the first term in (6.20) reads as

∫
Ω

δεTσdΩ =

∫
Ω

(
δRTBT +

m∑
j=1

δcTj HjB
(0)T
j

)
D

(
BR +

m∑
k=1

HkB
(0)T
k ck

)
dΩ =

= δRT

[∫
Ω

BTDBdΩ

]
R + δRT

m∑
j=1

[∫
Ω

BTDB(0)THjdΩ

]
cj+

+
m∑
k=1

δcTk

[∫
Ω

B(0)DBHkdΩ

]
R +

m∑
k=1

m∑
j=1

δcTk

[∫
Ω

B(0)TDB(0)HkHjdΩ

]
cj

(6.79)

where RT =
[
UT , VT

]
and cTj =

[
aTj , bTj

]
and Hj is the enrichment

function as in equation (6.62).

The variational term for the forces is as follow

∫
Γt

δuT t̄dΓ = δRT

[∫
Γt

Φt̄xdΓ∫
Γt

Φt̄ydΓ

]
+

m∑
j=1

δcTj Hj

[∫
Γt

Φ(0)t̄xdΓ∫
Γt

Φ(0)t̄ydΓ

]
. (6.80)

The same term can be obtained for the cohesive forces, i.e. the term∫
Γl,j

δ∆T
l,jτ(∆l,j)dΓd,j. (6.81)

In a non-linear perspective, the relative displacement ∆l,j must be calculated

first, in order to obtain the traction τ . Using the coordinate transformation

(6.70),

∆l,j = Rj(θ)∆j = Rj(θ)
m∑
k=1

Hk

[
ΦT(0)

k ak

ΦT(0)
k bk

]
x ∈ Γd,j, (6.82)

∫
Γd,j

δ∆l,j
T τ(∆l,j)dΓd,j =

=
m∑
k=1

δcTkHk

[∫
Γd,j

Φ(0)
k [τt(∆l,j) cos(θj)− τn(∆l,j) sin(θj)] dΓd,j∫

Γd,j
Φ(0)

k [τt(∆l,j) sin(θj) + τn(∆l,j) cos(θj)] dΓd,j

]
. (6.83)
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Summing over j = 1, . . . ,m as in equation (6.20)

m∑
j=1

∫
Γd,j

δ∆l,j
T τ(∆l,j)dΓd,j =

=
m∑
j=1

m∑
k=1

δcTk

[∫
Γd,j

Φ(0)
k [τt(∆l,j) cos(θj)− τn(∆l,j) sin(θj)]HkdΓd,j∫

Γd,j
Φ(0)

k [τt(∆l,j) sin(θj) + τn(∆l,j) cos(θj)]HkdΓd,j

]
. (6.84)

Equation (6.84) can be regarded as a nonlinear internal force term. It should

be remarked that the integration is carried out over the union of all the segments,

regardless if they intersect or not

Γd =
m⋃
j=1

Γd,j. (6.85)

Another remark is that the (6.84) is similar to (6.80) since they both integrate

tractions on boundaries and the result is a force vector in the final discretized

equations.

6.4.3 Discretization of equations of equilibrium

The final equations from (6.20) are



K Krc1 . . . Krcm

Kc1c1 . . . Kc1cm

. . .
...

symm. Kcm,cm


+ α



V Vrc1 . . . Vrcm

Vc1c1 . . . Vc1cm

. . .
...

symm. Vcmcm







R

c1

...

cm


+

−



F

Fc1

...

Fcm


− α



Fu

Fuc1

...

Fucm


+



0

Fc
c1(c1, . . . , cm)

...

Fc
cm(c1, . . . , cm)


= 0 (6.86)
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where

K =

∫
Ω

BTDBdΩ, (6.87)

Krcj =

∫
Ω+
j

BTDB
(0)
j dΩ, (6.88)

Kcicj =

∫
Ω+
i ∩Ω+

j

B
(0)T
i DB

(0)
j dΩ, (6.89)

Vu = Vv =

∫
Γu

ΦΦTdΓu, (6.90)

V =

Vu

Vv

 , (6.91)

Vuaj = Vvbj =

∫
Γu

ΦΦ
(0)T
j HjdΓu, (6.92)

Vrcj =

Vuaj

Vvbj

 , (6.93)

Vaiaj = Vbibj =

∫
Γu

Φ
(0)
i Φ

(0)T
j HiHjdΓu, (6.94)

Vcicj =

Vaiaj

Vbibj

 , (6.95)

Fx =

∫
Γt

Φt̄xdΓt, (6.96)

Fy =

∫
Γt

Φt̄ydΓt, (6.97)

F =

Fx

Fy

 , (6.98)

Fx,ci =

∫
Γt

Φ
(0)
i t̄xHidΓt, (6.99)
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Fy,ci =

∫
Γt

Φ
(0)
i t̄yHidΓt, (6.100)

Fci =

Fx,ci

Fy,ci

 , (6.101)

Fux =

∫
Γt

ΦūdΓt, (6.102)

Fuy =

∫
Γt

Φv̄dΓt, (6.103)

F =

Fux

Fuy

 , (6.104)

Fux,ci =

∫
Γt

Φ
(0)
i HiūdΓt, (6.105)

Fuy,ci =

∫
Γt

Φ
(0)
i Hiv̄dΓt, (6.106)

Fuci =

Fux,ci

Fuy,ci

 , (6.107)

Fc
x,ci =

m∑
j=1

∫
Γd,j

Φ
(0)
i [τt(∆l,j) cos(θj)− τn(∆l,j) sin(θj)]HidΓd,j, (6.108)

Fc
y,ci =

m∑
j=1

∫
Γd,j

Φ
(0)
i [τt(∆l,j) sin(θj) + τn(∆l,j) cos(θj)]HidΓd,j, (6.109)

Fc
ci =

Fc
x,ci

Fc
y,ci

 . (6.110)
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6.4.4 Tangent Stiffness Matrix

Equation (6.86) is a nonlinear system of equations in the variable
[
RT , cT

]T
.

The solution to equation (6.86) is usually solved with an iterative scheme, often

Newton-Rhapson (NR) and its modifications. NR method is based on a first order

Taylor expansion with respect to the unknown
[
RT cT

]T
, therefore it requires

the Jacobian J of the right hand side of the equation (6.86). This Jacobian is

known as the tangent stiffness matrix and for equation (6.86) is

K Krc1 . . . Krcm

Kc1c1 . . . Kc1cm

. . .
...

symm. Kcm,cm


+ α



V Vrc1 . . . Vrcm

Vc1c1 . . . Vc1cm

. . .
...

symm. Vcmcm


+



0 0 . . . 0

KTc1c1 . . . KTc1cm

. . .
...

symm. KTcm,cm


(6.111)

where KT can be obtained by partial derivation of equation (6.84) with respect

to ci.

Indeed

KTij =
∂Fc

c,i

∂cj
=

∂

∂cj

m∑
j=1

∫
Γd,j

Φi(0)T

Φ
(0)
i

T

Rj(θ)
T τ HidΓd,j

m∑
j=1

∫
Γd,j

Φi(0)T

Φ
(0)
i

T

Rj(θ)
T ∂τ

∂cj
HidΓd,j =

=
m∑
j=1

∫
Γd,j

Φi(0)T

Φ
(0)
i

T

Rj(θ)
T ∂τ

∂∆l,j

∂∆l,j

∂cj
HidΓd,j. (6.112)
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From equation (6.82)

∂∆l,j

∂cj
= Rj(θ)Hj

Φ
(0)
j

T

Φ
(0)
j

T

 . (6.113)

The Jacobian of the tractions with respect to the relative displacements is

equation (6.46). Therefore,

KTij =

∫
Γd,j

HiHj

Φ
(0)
i

Φ
(0)
i

Rj(θ)
TTRj(θ)

Φ
(0)
j

T

Φ
(0)
j

T

 dΓd,j =

[
KTij11 KTij12

KTij21 KTij22

]
(6.114)

where

KTij11 =

∫
Γd,j

HiHjΦ
(0)
i Φ

(0)
j

T
cos(θj)(T11 cos(θj)−T21 sin(θj))+

− sin(θj)(T12 cos(θj)−T22 sin(θj))dΓd,j, (6.115)

KTij12 =

∫
Γd,j

HiHjΦ
(0)
i Φ

(0)
j

T
cos(θj)(T12 cos(θj)−T22 sin(θj))+

+ sin(θj)(T11 cos(θj)−T21 sin(θj))dΓd,j, (6.116)

KTij21 =

∫
Γd,j

HiHjΦ
(0)
i Φ

(0)
j

T
cos(θj)(T21 cos(θj) + T11 sin(θj))+

− sin(θj)(T222 cos(θj) + T12 sin(θj))dΓd,j, (6.117)

KTij22 =

∫
Γd,j

HiHjΦ
(0)
i Φ

(0)
j

T
cos(θj)(T22 cos(θj) + T12 sin(θj))+

+ sin(θj)(T21 cos(θj) + T11 sin(θj))dΓd,j. (6.118)
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6.4.5 Selection of Enriched Nodes

Equations (6.66) and (6.67) allow the introduction of the enrichment. The choice

of the enriched nodes is therefore an important part of the algorithm, since it

allows to locally introducing the discontinuity. Equations (6.66) and (6.67) are

only valid if the PU is built on nodes whose support is cut (partially or entirely)

by the discontinuity.

The selection is then made upon comparison of the distances between the node

and the segment (figures 6.11 and 6.12). If the distance is less than the dilata-

tion parameter, then the node is selected for enrichment, otherwise is discarded.

Calling Senr,j the set of enriched nodes for the j − th crack

Senr,j = {xI ∈ S1 : |xI − x| ≤ ρI x ∈ Γd,j} (6.119)

where S1 is the set of RKPM nodes.

Naming h(xI ,x) = |xI − x| a distance function, equation (6.119) can be

formulated as

Senr,j = {xI ∈ S1 : h(xI ,x) ≤ ρI x ∈ Γd,j} . (6.120)

Hence, to correctly select the nodes, it is important to use an appropriate

distance function. In two dimensions, if Γd,j is a straight line, then it is easy to

construct h(x). If Γd,j is instead a segment P1P2

P1 ≡ (x1, y1) P2 ≡ (x2, y2) (6.121)

the distance function is slightly more elaborated. In fact, it should take into

account the endpoints of the segment, where the distance function is not the usual

distance from a straight line, but it is the distance from a point. An appropriate

distance function in this sense should blend these two distance function. In this

section a quite easy approach is proposed. The basic idea is to use Heaviside

functions on the parameter t that defines a segment{
x(t) = x1 + t(x2 − x1)

y(t) = y1 + t(y2 − y1) t ∈ [0, 1]
. (6.122)
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Defining

dT =
[
x2 − x1 , y2 − y1

]
, (6.123)

rT1 =
[
x− x1 , y − y1

]
, (6.124)

rT2 =
[
x− x2 , y − y2

]
, (6.125)

then the parameter t can be defined ∀ (x, y) ∈ R2

t = t(x, y) =
dT r1

‖d‖2 =
(x2 − x1)(x− x1) + (y2 − y1)(y − y1)

(x2 − x1)2 + (y2 − y1)2
, (6.126)

then

a = (x− x1)2 + (y − y1)2, (6.127)

b = (x− x2)2 + (y − y2)2, (6.128)

c = [x− x1 − t(x2 − x1)]2 + [y − y1 − t(y2 − y1)]2. (6.129)

Then the (minimum) distance function (not signed) h(x, y) for a generic point

(x, y) from the segment P1P2 is

h(x, y) = a(x, y)H(−t(x, y)) + c(x, y) [H(t(x, y))−H(t(x, y)− 1)] +

+ b(x, y)H(t(x, y)− 1), (6.130)

where H is the Heaviside function.

The Matlab implementation can be easily done using function handles or

inline functions. For example

t = inline(’[(x2-x1).*(x-x1)+(y2-y1).*(y-y1)]./(((x2-x1).^2...

+(y2-y1).^2))’,’x’,’y’,’x1’,’x2’,’y1’,’y2’);

a = inline(’(x-x1).^2+(y-y1).^2’,’x’,’y’,’x1’,’y1’);
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b = inline(’(x-x2).^2+(y-y2).^2’,’x’,’y’,’x2’,’y2’);

c = inline(’(x-(x1+t(x,y,x1,x2,y1,y2)*(x2-x1))).^2+...

...+(y-(y1+t(x,y,x1,x2,y1,y2)*(y2-y1))).^2’...

...,’x’,’y’,’x1’,’x2’,’y1’,’y2’,’t’);

h = inline(’a(x,y,x1,y1).*heaviside(-t(x,y,x1,x2,y1,y2))+...

...+c(x,y,x1,x2,y1,y2,t).*[heaviside(t(x,y,x1,x2,y1,y2))+...

-heaviside(t(x,y,x1,x2,y1,y2)-1)]+...

...+b(x,y,x2,y2).*heaviside(t(x,y,x1,x2,y1,y2)-1)’,...

’x’,’y’,’x1’,’x2’,’y1’,’y2’,’a’,’b’,’c’,’t’)

Once known the vectors d and r1, function h can be directly evaluated on the

coordinates of the RKPM nodes and then compared to their respective dilatation

parameters.

Figures 6.13 and 6.14 show the selection of the nodes using the function h(x, y)

in equation (6.130) for a segment shown in figure 6.11.

Figure 6.11: Cohesive segments: Gaussian points defined over the segment; red

crosses: Gaussian points; black points: RKPM nodes

Figure 6.12: Cohesive segments: Gaussian points defined over the segment

(zoom); red crosses: Gaussian points; black points: RKPM nodes
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Figure 6.13: Cohesive segments: selection of enriched nodes; black: RKPM nodes;

pink: enriched nodes

Figure 6.14: Cohesive segments: selection of enriched nodes (zoom); black:

RKPM nodes; pink: enriched nodes

6.4.6 Numerical Examples

Numerical applications regarding single mode delamination are presented in this

section. The fracture modes studied are mode I with three Double Cantilevered

Beam (DCB) tests (figures 6.15 and 6.18) and mode II with an End Loaded

Split test (ELS) (figure 6.16) and two End Notched Flexure (ENF) tests (figure

6.17). These tests were performed assuming that an initial crack already existed.

In order to simulate an initial delamination (indicated with a0), penalty factors

were set to zero at the pre-crack.

An additional test (figure 6.19) with no initial crack was performed, with the

scope of simulating initiation of the fracture.

Furthermore, a DCB beam with multiple failures is simulated to better un-

derstand the phenomena of false instabilities in the equilibrium path.

In all cases a full quadratic polynomial basis and regular arrangement of nodes

have been used. By regular arrangement of nodes it is intended a distribution

of nodes disposed as the vertices of a rectangular grid, as in figure 6.9. In the
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following examples it will be indicated with ny × nx, where ny is the number of

nodes along the thickness and nx the number of nodes along the length.

The number nx is chosen according to the aspect ratio of the plate L/b

nx =
L

b
ny (6.131)

approximated to the next integer number.

The numerical quadrature used to calculate the stiffness matrices and the

force vectors is Gaussian quadrature carried out over triangular elements, with a

3rd order quadrature.

The quadrature cells over the segments should be always constructed bearing

in mind the under-sampling problem due to the cohesive zone. In the following

examples the length is chosen to assure that the longest segment is discretized

with at least 200 quadrature cells.

Although quadrilateral elements may seem more suitable for a regular ar-

rangement of nodes. Nevertheless, triangular elements are preferred, since an

automatic triangular mesh can always be constructed with ease; therefore the

code gains in versatility and robustness. Moreover, since the kernel used is a

circular support one, the advantage of a background mesh aligned with the sup-

port, as in Dolbow & Belytschko (1999) would be lost anyway. Nonetheless,

accurate results can still be obtained, as shown in the next examples. The order

of quadrature chosen is the best compromise between number of Gaussian points

and quadrature. In fact, a higher order of quadrature could be more accurate,

but leads to a much greater number of points. Since a n − th order Gaussian

quadrature rule has accuracy O(2n− 1), for n = 3 the accuracy is guaranteed up

to the 5− th order.

A full quadratic basis was used for the standard RKPM approximation, while

the enrichments have been constructed with Shepard functions, that are very

easy to construct, as smooth as the kernel functions and have the same order

of continuity. Furthermore, the PSI, ig, js, dPSIcsi and dPSIeta used for the

RKPM can be stored and re-used to calculate the Shepard functions, allowing

savings in computational run-time.
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Figure 6.15: Double Cantilevered Beam: geometry and boundary conditions

Figure 6.16: End Loaded Split: geometry and boundary conditions

Figure 6.17: End Notched Flexure: geometry and boundary conditions
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Figure 6.18: Simply Supported Double Cantilevered Beam: geometry and bound-

ary conditions

Figure 6.19: Central Delamination: geometry and boundary conditions
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6.4.6.1 Double Cantilevered Beam: T300/977-2

The first case is a DCB test from Turon (2007) for a (0◦24) T300/977-2 carbon

fibre-reinforced epoxy laminate. The elastic and cohesive properties and the

geometry are resumed in table 6.1 (where w is the plate width).

E11 E22 G12 ν12

150 GPa 11 GPa 6 GPa 0.25

(a) Elastic Properties

L b w

150 mm 1.98 mm 20 mm

(b) Geometry for DCB test

L b w

100 mm 1.98 mm 10 mm

(c) Geometry for ENF test

GIc τmaxn a0

352 J/m2 40 MPa 55 mm

(d) Mode I interface properties

GIIc τmaxt a0

1450 J/m2 40 MPa 30 mm

(e) Mode II interface properties

Table 6.1: Properties for T300/977-2

A comparison with the experimental test is shown in figure 6.21, as it can

be observed the numerical model can predict the relative displacement at which

the delamination starts (around 5 mm) and the correspondent maximum force

(62 N). Once reached the critical opening displacement, the delamination prop-

agates through the mid-plane. Figure (figure 6.20) shows different delamination

stages. The deformed configuration is drawn in true scale. The colormap plot

indicates different levels of transverse stress σy. As the delamination progresses,

the stress concentration at the tip is tracked. The cohesive length zone could be

observed in front of the crack tip, as the zone where the stress is more localized.

The equilibrium path is fairly smooth and fits quite well the experimental tests.

The smoothness derives from a quite fine distribution of nodes (a fine mesh using

FE terminology) has been used, i.e. 10 × 758 nodes. This discretization is then

able to capture the cohesive process.
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Figure 6.20: Delamination Stages for DCB test T300/977-2: transverse stress σy

plot

Figure 6.21: Force-Displacement curve for DCB test T300/977-2 : continuous

line: numerical; squared line: experimental
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6.4.6.2 Double Cantilevered Beam: XAS-913C

The second DCB case is from Alfano & Crisfield (2001) for a XAS-913C carbon-

fiber epoxy composite. The distribution of nodes is 8× 533. The properties and

the initial conditions are reported in table 6.2. The plate has been modelled as

figure 6.15 and there is only a slight difference between the experimental test and

the numerical results regarding the reaction force (figure 6.22).

E11 E22 G12 ν12

126 GPa 7.5 GPa 4.981 GPa 0.281

(a) Elastic Properties

GIc τm a0

263 J/m2 57 MPa 30 mm

(b) Interface properties

L b w

100 mm 1.5mm 30 mm

(c) Geometry

Table 6.2: Properties for DCB test XAS-913C

Figure 6.22: Force-Displacement curve for DCB test XAS-913C : continuous line:

numerical; squared line: experimental

In figures 6.23 are depicted the stress color plot for the longitudinal stress
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σx (figure 6.23a) and the shear stress τxy (figure 6.23b). As expected, each de-

laminated arm behaves like a cantilevered beam in bending constrained at the

delamination tip. The same distribution can be identified in the next examples.

(a) σx

(b) τxy

Figure 6.23: Delamination stress plot for DCB test XAS-913C

6.4.6.3 Double Cantilevered Beam: AS4/PEEK

The third DCB case is taken from Camanho & Dávila (2002) for a thermoplastic

laminate AS4/PEEK. The boundary conditions are in this case changed, as in

figure 6.18. The plate is simply supported at both ends, loaded with a vertical

force at the right end. Nevertheless, the plate is still loading in mode I. In fact,

the only reaction force is located at the right end, opposite the external force, as

in a DCB test. The elastic and interface properties are resumed in table 6.3 and

the distribution of nodes is 8× 523.

Even though local bumps in the equilibrium path appear to be more evi-

dent (figure 6.24), still there is a good fit between the numerical results and the

experimental tests.

6.4.6.4 Double Cantilevered Beam: Plane Stress or Plane Strain?

In the next example a comparison between two different tensional states is pre-

sented. For real structures, there are two cases where the stress (or the strain)

tensor can be simplified and some components neglected and therefore the anal-

ysis can be reduced from a three-dimensional stress analysis to a more simple

and less expensive two-dimensional analysis. Such two-dimensional structure can
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E11 E22 G12 ν12

122.7 GPa 10.1 GPa 5.5 GPa 0.25

(a) Elastic Properties

L b w

102 mm 1.56 mm 25.4 mm

(b) Geometry for DCB test

L b w

100 mm 1.56 mm 25.4 mm

(c) Geometry for ENF test

GIc τmaxn a0

969 J/m2 80 MPa 32.9 mm

(d) Mode I interface properties

GIIc τmaxt a0

1719 J/m2 100 MPa 39.3 mm

(e) Mode II interface properties

Table 6.3: Properties for AS4/PEEK

Figure 6.24: Force-Displacement curve for DCB test AS4/PEEK : continuous

line: numerical; squared line: experimental
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be either in plane stress or plane strain. A plane stress state is usually found in

structures with one dimension much smaller than the other two, while for struc-

tures with one dimension much larger than the other two a plane strain state can

be more properly assumed.

The link between the two theories is equation (4.99) and one can pass from

one analysis to the other just changing the elastic properties. Nevertheless, the

stress states are rather different. Supposing z the third dimension, a plane stress

state assumes that σzz ≈ 0, but according to Hooke’s law, the consequence is

that εzz 6= 0, while for plane strain it is assumed that εzz ≈ 0 with a consequent

σzz 6= 0. Both these non-zero terms, though, can be temporarily removed from

the analysis and reducing the problem to a two dimensional one.

In the case of delamination, the length L is usually the largest dimension,

but also the dimension where the delamination propagates, so it cannot be ne-

glected. The dimension that can be neglected is the width w, since the relevant

mechanisms for delamination occur in the length and in the thickness 2b. In Al-

fano & Crisfield (2001) it is suggested that delamination can be treated as a two

dimensional analysis in plane strain, assuming the width as neglected dimension.

In order to verify this assumption, in this subsection it is simulated a DCB

in both plane stress and plane strain and the results compared. The elastic

properties and the geometry are reported in table 6.4 and the experimental results

taken from Chen et al. (1999). The distribution of nodes used is 8× 774. Figure

6.25 shows that the plane strain state predict the peak load more accurately

than the plane stress, while both can almost identically predict the post critical

opening phase.

6.4.6.5 End Loaded Split (ELS)

Delamination of mode II (sliding mode) has been modeled as in figure 6.16 with

a loading displacement applied at the free end of the bottom plate. For mode II

loading, the interfaces are here supposed frictionless. Properties and geometry

are summarized in table 6.4. Experimental results are taken from Chen et al.

(1999), while the distribution of nodes used is 8× 550.

175



6.4 The Cohesive Segments method

Figure 6.25: Force - Displacement curve for DCB test in Chen et al. (1999)

: continuous line: numerical plane strain; dashed line: numerical plane stress;

squared line: experimental

From figure 6.26 it can be observed that the model can capture the trend

with a minor difference from the experimental test. In figures 6.27 and 6.28 it

is pretty clear the presence of the damage and the stresses are distributed as

expected. In fact, in the longitudinal stress plot (figure 6.27) , two zones can

be readily identified: ahead the crack tip, the plate responds as an entire plate

and the distribution is typical for a plate in bending; behind the crack tip, where

there is separation, the longitudinal stress is representative of two distinct plates

in bending.

In figure 6.28 instead it can be observed the stress concentration due to the

presence of the delamination. The cohesive zone is shaped like a bubble and it

can usefully track the progression of the delamination.

The critical opening displacement is around 15 mm, after that the delamina-

tion advances quite rapidly (figures 6.27 and 6.28 ). The delamination is complete

(split) for a displacement of 21 mm, after that the two beams respond separately

to the loads.
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E11 E22 G12 ν12

130 GPa 8 GPa 5 GPa 0.27

(a) Elastic Properties

L b w

150 mm 1.55 mm 24 mm

(b) Geometry for DCB test

L b w

105 mm 1.525 mm 24 mm

(c) Geometry for ELS test

GIc τmaxn a0

257 J/m2 20 MPa 22 mm

(d) Mode I interface properties

GIIc τmaxt a0

856 J/m2 48 MPa 60 mm

(e) Mode II interface properties

Table 6.4: Properties for material in Chen et al. (1999)

Figure 6.26: Force-Displacement curve for ELS test : continuous line: numerical

; squared line: experimental
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Figure 6.27: Delamination Stages for ELS test: longitudinal stress σx plot

Figure 6.28: Delamination Stages for ELS test: longitudinal stress τxy plot
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6.4.6.6 Mode II End Notched Flexure: AS4/PEEK

Another example of Mode II loading is an ENF test where a vertical force is

applied in the middle of a simply supported beam with an initial delamination

length (three-point bending as in figure 6.17 ) Experimental results are taken from

Camanho & Dávila (2002) and geometry and properties (AS4/PEEK) 6.3 are the

same of subsection 6.4.6.3. The distribution of nodes is 8 × 512. Once again a

good agreement can be observed between the experimental and the numerical

results. The critical opening displacement is perfectly predicted with a minor

difference in the value of the peak force. Delamination phases can be observed

from figures 6.30 and 6.31. From both pictures the effects of the delamination

are pretty clear. Wherever the bonding is full, the plate responds to the load

as a beam with a concentrated load in the middle, otherwise the disconnected

parts behave independently. The beam is, as expected, in tension for the bottom

and in compression for the top (6.30).This is true for both the areas ahead and

behind the crack tip. The crack tip can be easily individuated also from the

bubble-like shear stress concentration in figure 6.31. The last phase of picture

6.31 indicates full delamination and the shear stress is piecewise constant along

the beam length, with a discontinuity, as expected, in the middle where the load

is applied.

6.4.6.7 Mode II End Notched Flexure: T300/977-2

Final example for mode II is an ENF test for a graphite/epoxy material T300/977-

2 (same specimen of DCB test in subsection 6.4.6.1 but with different width) taken

from Dávila et al. (2001) whose elastic and interface properties are resumed in

tables 6.1. The distribution of nodes used is 8 × 404. The figure 6.32 shows a

comparison with FE decohesion elements which has been the most widely FE-

based used technique for delamination modelling. As it can seen, results are very

similar. Moreover the curve is much smoother than the previous case. This is

mainly due to convergence issues as mentioned in the previous section 6.3.4.
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Figure 6.29: Force-Displacement curve for ENF test (AS4/PEEK) : continuous

line: numerical ; dashed line: experimental

Figure 6.30: Delamination Stages for ENF test: longitudinal stress σx plot
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Figure 6.31: Delamination Stages for ENF test: shear stress τxy plot

Figure 6.32: Force-Displacement curve for ENF test (T300/977-2) : continuous

thick line: RKPM ; continuous thin line: FE decohesion
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6.4.6.8 Central delamination with no pre-crack

The next case is a loading mode I delamination with no initial pre-crack. The

specimen is cantilevered at the ends and transversely loaded, as in figure 6.19.

The specimen is the same for Mode I in table 6.4 except that a0 = 0 . The cohesive

approach allows the initiation and subsequent propagation of the crack, as it can

be seen from the first phases of delamination in figures 6.33, 6.34 and 6.35. The

complete equilibrium path is shown in figure 6.36. The first part of the curve (in

figure 6.37 ) is an elastic phase with high stiffness and very small displacements

(from 0 to 500 N), since the material is supposed undamaged and a relatively

high force is necessary to overcome the cohesive tractions at the interface. After

500 N the response is plastic-like, until the delamination starts for a peak load of

almost 1500 N and an opening displacement of less than 0.05 mm. Subsequently

the delamination propagates symmetrically respect to the middle, with patterns

similar to the DCB tests examined previously, until complete delamination, when

the two beams split (around 2.25 mm).

6.4.6.9 Double Cantilevered Beam with multiple cavities

As anticipated in subsection 6.3.4, there are some numerical issued due to a char-

acteristic length related to the cohesive zone, namely the cohesive length. This

issue affects the nodes distribution, since it should be efficiently fine to capture the

concentration of the stress, otherwise the under-sampling can alter the equilib-

rium path. The consequences are normally two-fold: the arrest of the numerical

continuation and the appearance of spurious bumps in the equilibrium path. In

figure 6.38 is shown the path for the DCB case in 6.4.6.1 with a coarser mesh.

The false instabilities appear after the initiation of the delamination, although

the peak load is predicted very accurately. Therefore, if the main purpose of using

the code is to estimate the peak load and the critical opening length, a coarser

mesh, which is computationally inexpensive, would seem sufficient. Nevertheless,

the following examples will show that this approach fails due to the presence of

instabilities too close to the initial crack and the peak load might not be predicted

accurately.
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Figure 6.33: Delamination stages for the case of central delamination: longitudi-

nal stress σx plot
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Figure 6.34: Delamination stages for the case of central delamination: longitudi-

nal stress σy plot

184



6.4 The Cohesive Segments method

Figure 6.35: Delamination stages for the case of central delamination: longitudi-

nal stress τxy plot
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Figure 6.36: Force-Displacement curve for central delamination

Figure 6.37: Force-Displacement curve for central delamination (zoom on the

initial phase)
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Figure 6.38: Force-Displacement curve for DCB test T300 with coarser mesh

5× 378

In Samimi et al. (2009) is reported that these local bumps are caused by

sudden release of strain energy. This release is due to simultaneous failure of

areas of the interface wider than the cohesive length. The areas are more precisely

elements, if too few it may happen more elements than necessary may improperly

satisfy the separation criterion and therefore cause de-bonding. To test this

statement, the false instabilities were simulated with failures in the contact, .i.e.

the penalty stiffnesses were set to zero locally (as in figure 6.39) and the position

and the number have been varied. The case tested is a DCB for an isotropic

material in plane stress. The elastic properties of the material and the geometry

are resumed in table 6.5 and the distribution of nodes is 11× 1100.

The first example is represented in figure 6.39 where a first pre-crack is present

and internal failures have been introduced periodically. The length of the failed

zone is the same of the pre-crack (1 mm) and their separation is equal to the

length of the pre-crack.

In figure 6.42 the presence of multiple failures is manifested by wide bumps in

the curve that occur when the delamination reaches a failed segment. Around a
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E ν

100 MPa 0.3

(a) Elastic Properties

GIc τm a0

100 J/m2 1 MPa 1 mm

(b) Interface properties

L b w

10 mm 1 mm 1 mm

(c) Geometry

Table 6.5: Properties for DCB test with cavities

displacement of 3 mm, the continuation interrupted as convergence of the model

was not further achieved. By interruption it is meant that the continuation code,

being a path following technique, tries to reduce the step-length on the equilib-

rium path. If convergence is not achieved, the step-length (a value of 10−5 m is

usually a good choice) is reduced further until a convergent state is found. Usu-

ally a very small length is set as an inferior bound (for example 10−15 m), below

which if convergence is not found, then it is convenient to interrupt the contin-

uation. In fact, it has been experienced by the author that setting the inferior

bound even lower, does not help in overcoming the obstacle.

Figure 6.43 shows the shear stress at the last convergent state. It can be seen

that the presence of the failures alters the stress distribution with respect to the

shear stress distribution showed in figure 6.23b. In fact, the next failed segment

introduces a sort of border effect that increases the stress concentration at its

ends. The more acute concentration of stress further reduces the cohesive length,

therefore more nodes (or element) are necessary to capture the concentrated field

and proceed with the numerical continuation.

The peak loads and the critical opening displacements are the same predicted

from the undamaged model. This is not the case for the following example (figure

6.41), when only one internal failure of reduced length 0.25 mm is introduced at

a distance 2 mm from the free end. In fact, even though the curve is the same,

the damaged model has a lower peak force (figure 6.44) and an earlier critical

opening displacement. This is due to the fact that the internal failure is close to

the pre-crack. In fact, if the cavity is inserted far from the crack-tip (figure 6.41,
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in the middle of the plate), the equilibrium path 6.45 is identical to the one with

no internal failures, except, of course, when the delamination reaches the failed

zone.

Figure 6.39: DCB with multiple cavities: continuous line: failed interface; dotted

line: undamaged interface

Figure 6.40: DCB with one cavity close to the crack-tip

In conclusion, to sum up:

• the presence of sudden localized failures, as in insufficient sampling of the

interface, can lead to local bumps in the equilibrium path;

• the continuation might stuck on these false instabilities due to excessive

stress concentration;

• if a pre-crack exists, if the failure is located close to the initial pre-crack,

the two cracks interact. In this case the peak load and the critical opening

displacement might not be predicted accurately: therefore the use of a

coarse mesh, even if less computationally expensive, could be inaccurate.
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Figure 6.41: DCB with one internal cavity

Figure 6.42: Force-Displacement curve for DCB with cavities: continuous line:

pre-crack and multiple failures ; dotted line: pre-crack and no failures
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Figure 6.43: Shear Stress τxy plot for DCB with pre-crack and multiple failures

Figure 6.44: Force-Displacement curve for DCB with one cavity as in fig. 6.40:

continuous line: pre-crack and one failure ; dotted line: pre-crack and no failures
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Figure 6.45: Force-Displacement curve for DCB with one cavity far from the

crack-tip as in fig. 6.41: continuous line: pre-crack and one failure ; dotted line:

pre-crack and no failures

6.4.7 Comparison with the Penalty Approach

In this subsection a comparison between the two approach is presented. It will

be shown that the cohesive segments method leads to almost identical results

to the penalty approach. The advantage of cohesive segments, though, is that

crack modelling is not restricted to the boundaries of sub-domains, i.e. when

the crack path is not known a priori. For the penalty approach, 8 nodes in the

thickness for each sub-plate were used. The number of nodes in the length is

chosen accordingly to equation (6.131). Numerical Gaussian quadrature of order

3 was performed over triangular elements and over the cohesive segments, where

ad-hoc quadrature cells are constructed in the class Cohesive (section 6.4.9).

Figures 6.46, 6.47 and 6.48 show a comparison between the penalty approach

and the cohesive segments method. As it can be seen, results are indistinguish-

able, apart from figure 6.47 where there is very little difference in the prediction

of the force in the post-critical phase. Nonetheless both methods agree quite well

with the experimental findings.

The penalty method is based on a sub-division of the domain, while the co-

hesive segments superimposed a discontinuity. The fact that both methods give
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Figure 6.46: Cohesive Segments DCB : Force - Displacement curve; continuous

line: cohesive segments; squares: experimental; crossed line: penalty approach

Figure 6.47: Cohesive Segments DCB XAS-913C: Force - Displacement curve;

continuous thin line: penalty approach; squares: experimental; continuous thick

line: cohesive segments
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Figure 6.48: Cohesive Segments ELS: Force - Displacement curve; continuous

line: cohesive segments; squares: experimental; crossed line: penalty approach

the same results is an indication that the cohesive segments method is very effec-

tive in reproducing the strong discontinuity caused by the delamination, which

in the penalty method is introduced natively by construction of two different

sub-domains.

6.4.8 Convergence issues

In this section some issues encountered during the numerical continuation of the

non-linear equations will be described.

6.4.8.1 Effects of the inter-laminar strength τmax

In figure 6.49 it is shown a comparison for test in section 6.4.6.4. The parameters

varied are the inter-laminar strength τmaxn , the state of plane stress or plane strain

and the nodes distribution. In all cases, the propagation of the delamination is

represented with quite good agreement with the experimental results. Neverthe-

less, the prediction of the peak force and the critical opening can fail due to the

above mentioned parameters. In fact, for same discretization and value of τmaxn ,
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better results are obtained if the plane strain is assumed, as shown also in section

6.4.6.4. From a cohesive-length point of view, the use of the plane strain length-

ens the cohesive length, since it is proportional to the elastic modulus. Indeed,

for equation (4.99), the elastic moduli are augmented when plane strain is used.

The reduction of τm is normally used to stretch the cohesive zone in coarse

mesh. Nonetheless, figure 6.49 shows that this trick might lead to inaccurate

prediction of the peak load. In fact, for same stress state and discretization, the

use of a higher inter-laminar strength improves the prediction to almost the ex-

perimental one. Finally, the thick line in figure 6.49 is the result slightly higher

inter-facial strength. A finer mesh better samples the cohesive process and ulti-

mately lead to an accurate prediction of the peak load.

Figure 6.49: Convergence issues: squares: experimental data; continuous line:

8×774 plane strain, τmaxn = 17 MPa; dash-dot line: 6×580 plane strain, τmaxn = 15

MPa; dotted line: 6 × 580 plane strain, τmaxn = 10 MPa; dashed line: 6 × 580

plane stress, τmaxn = 10 MPa
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6.4.8.2 Effects of the critical strain energy release rate Gc

The reduction of the inter-laminar strength can sometimes be beneficial, although,

as seen in the previous subsection, it should be used carefully, as an excessive

reduction can lead to incorrect results.

Instead, the strain energy release rate Gc should not be changed arbitrarily. In

fact, figure 6.50 shows the equilibrium path for the test in section 6.4.6.1, where

a GIc = 352 J/m2 has been used, as reported in Turon (2007). If a reduced value

it is used, the equilibrium path is completely different and incorrect. The value

used in curve 6.50 is GIc = 268 J/m2.

Indeed, since the cohesive zone model is primarily an energy-based model,

reducing the value of Gc means reducing the area under the triangle in figure 6.6.

This means that the critical failure will happen to a lower peak force and for a

lower critical opening length, as in figure 6.50.

Figure 6.50: Convergence issues for different Gc: continuous line: numerical;

squares: experimental
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6.4.8.3 Effects of a coarse mesh

The effects of a coarse mesh have been detailed in subsection 6.4.6.9, usually

accompanied by the arrest of the continuation. Another curious effect is the

bouncing back of the continuation, as in figure 6.51. The test in the example

is the ELS of subsection 6.4.6.5. When the critical force is reached (unstable

point), instead of starting the delamination, it can happen that the continuation

goes back to the previous convergent path. One possible explanation is that the

continuation code is used in combination with a line-search algorithm. The line

search looks for a reduction of the residual error. If this reduction cannot be

found after the critical point (i.e. for the difficulties due to a coarse mesh), the

only way to reduce the error and find the equilibrium is then to go back to the

previous convergent path, which is for sure an equilibrium path.

The result is then that no new equilibrium states are found but the continu-

ation rebounds on old equilibrium states.

Figure 6.51: Bounce back of the continuation
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6.4.9 The class Cohesive

6.4.9.1 The properties

Many properties are the same defined for the class CohesiveContact.

• d0t, dFt, d0n, dFn, GIc, GIIc, smax I, smax II are the parameters of the

cohesive zone model, as described in section 6.2;

• dist a structure that contains the functions in equation (6.126),(6.127),(6.128),

(6.129) and (6.130);

• H a function handle containing the enrichment function (6.62);

• nseg: the number of cohesive segments;

• Ind a cell array of size nseg, where each cell contains the indices of the

enriched nodes for each segment, selected according to equation (6.120);

• P0 an array size nseg× 2, containing the coordinates of the initial point of

the segment, as in figure 6.10;

• theta an array size nseg containing the inclination of each segment, as in

figure 6.10;

• L: an array size nseg containing the length of each segment, as in figure

6.10;

• tx and ty: cell array of size nseg, where each cell contains the tractions at

the interface as defined in equation (6.21);

• vx and vy: cell array of size nseg, where each cell contains the displacement

jumps at the interface as in equation (6.21);

• hn, ht cell array of size nseg, where each cell contains an array defined on

the Gaussian points of the segment, with values 0 if there is a pre-crack, 1

otherwise;

• KTt and KTn cell array of the derivatives of the penalty factors;
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• Krc cell array of size nseg× 1 containing the matrices in equation (6.88) ;

• Kcc cell array of size nseg×nseg containing the matrices in equation (6.89);

• Vrc cell array of size nseg× 1 containing the matrices in equation (6.93);

• Vcc cell array of size nseg×nseg containing the matrices in equation (6.95);

• KT cell array of size nseg×nseg containing the matrices in equation (6.114);

• Fc cell array of size nseg× 1 containing the vector in equation (6.110);

• Segments is a structure composed of five fields:

1. Omega: cell array of size nseg × 1, where each cell contains a RKPM

object, defined on the Gaussian points of Ω, with RKPM nodes defined

as the selected enriched nodes contained in Ind, as in equation (6.66)

and (6.67).

In this case, since the PSI, dPSIcsi, dPSIeta, ig and js vectors are

already available; they can be taken from the existing object Plate.

Therefore, the methods GetFromPlate and ShapeAndDerWithPsiPU

are used.

Subsequently, the enrichment function is imposed using the internal

function AddH that multiplies the shape functions and their derivatives

by the Heaviside function in equation (6.62).

These enriched shape functions are necessary to compute the matrices

Krc and Kcc;

2. Line: cell array of size nseg×nseg where the cell Line{i,j} contains

a RKPM object that calculates the shape functions on the Gaussian

points of the j-th segment but using the set of enriched nodes for the

i-th segment. In this case, the method ShapePU is used. If no Gaussian

points of the j-th segment are found within the supports of the nodes

for the i-th segment, the cell is left empty and no shape functions are

calculated;
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3. B: cell array of size equal to the number of edges, where each cell con-

tains a nested cell array of size nseg. Each nested cell contains a RKPM

object. For example, B{k}.RKPM{i} computes the shape functions on

the i-th edge of ∂Ω, but using the set of enriched nodes for the i-th

segment. If no Gaussian points of the i-th edge are found within the

supports of the nodes for the i-th segment, the cell is left empty and

no shape functions are calculated;

This properties is used to calculate the force vectors in equations

(6.93), (6.95), (6.101)

4. PointForces and PointConstraints same as the previous field, but

for concentrated loads and point constraints.

6.4.9.2 The methods

The methods defined on the class are:

• Cohesive the constructor of the class. This method selects the node to

enrich as in section 6.4.5 and sets up the integration points for the segments

using the mapping in equations (5.7) and (5.8);

• DisplJump calculates the displacement jump as in equation (6.68) for each

segment;

• Assembly calculates the stiffness matrices Krc and Kcc, the constraint ma-

trices (6.93), (6.95) and the force vectors (6.101);

• PenaltyStiffness calculates the penalty factors according to the displace-

ment jumps, as in equation (6.21);

• AssemblyCohesive calculates the cohesive force vector (6.110) and the tan-

gent stiffness matrix (6.114);

• PlotSegments and PlotEnrichedNodes are graphic methods that plot the

Gaussian points of the cohesive segments and the enriched nodes, as in

figures 6.13 and 6.11.
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Chapter 7

Conclusions and future works

The research has been focused mainly on exploring the possibilities offered by

the meshfree techniques. The topic of major interest has been the modelling of

failure characterized by strong discontinuities in composite materials.

Primarily, it has been shown that the meshfree methods can successfully sim-

ulate delaminations for different loading modes, without using finite elements

and/or re-meshing. Quite good agreement has been found with experimental

evidences taken from the literature. Most importantly, it has been shown that

discontinuities can be introduced in the model without the need of modelling

separate domains or the usage of interface elements, de-cohesion elements or

other finite element-based technique. Compared to these methods, it has been

demonstrated that delamination can be effectively modelled using meshfree with

enrichments, or extended meshfree method.

The success in this sense it is also due to the combination of the meshfree

capabilities with a constitutive relationship known as cohesive zone model. The

cohesive zone model establishes a traction-displacement relationship between the

cohesive traction at the interface of a crack with its opening displacement. The

main purpose of cohesive zone models is to give a more physical explanation of

the failure. This is different from classical linear fracture mechanics, which is not

suitable to composites, as it involves non-physical crack tip stress singularities.

Delamination is essentially a cohesive process and the possibility in the cohesive

models to introduce debonding is a key factor in modelling delamination. The

study of delamination was possible through the development of prototype meshfree
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software.

The codes have been modified and improved from the very first naive one-

dimensional implementation, which was honestly quite slow. Since then, the

primary drive for continuous search of improvements has been the computational

run-time. The results of this search have been proposed in this work, showing that

with appropriate programming and mathematical manipulation, it is possible to

enhance the performance of the meshfree methods, notoriously known as good-

but-slow methods.

Another drive was the idea of designing a code that would have been similar

to a commercial one. Therefore the efforts were directed to build a more sophis-

ticated code. At the present time, the MM codes developed so far can handle

dynamic and static problems in 2D and 3D even with complex geometries. The

produced code is far from perfection, but hopefully would help the development

of even more sophisticated (maybe industry-oriented) codes.

Particularly helpful in this sense was the object-oriented programming, that

it is a flexible and intuitive philosophy of programming. The object-oriented

programming allows the creation of virtual models of the object under study, and

acting on it as it was a real object. Moreover, an object-oriented code facilitates

abstraction and opens to future improvements and modifications, by creating

new objects over existing ones, or brand new objects, and let them interact. For

example, the objects for the cohesive crack were created upon the existing linear

elastic object.

Fracture mechanics applications are so far limited to two-dimensions, due

also to the fact that it is still an open problem in the scientific community and

there is little knowledge on three-dimensional propagation paths. As a research

direction for the future, it would be great to extend the cohesive zone model to

three-dimensional structures. The introduction of large displacements would be

another step forward in the development of the code.
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7.1 Future works

7.1 Future works

Future works will then consider mainly two aspects, one practical ( more powerful

programming language) and the other one more theoretical (the extension to

three-dimensional cracks).

The practical problem will therefore see the migration to a more powerful

language programming, more attention to storage problems and as a final goal,

the production of an effective simulation tool suitable for industry. The choice

to a different programming language should also take into account the inability

of normal desktop computers to carry out simulations with millions of degrees

of freedom. Proper programming is necessary if parallel capabilities need to be

exploited. It would be also highly desirable to further expand the capabilities of

the codes to include large deformations, aiming towards the simulation of impact

phenomena, in order to fully appreciate the ideas of the meshfree technology.

The present thesis has shown that it is possible to reduce the computational

costs of the construction of the shape functions. The burden of the neighbour

search has been alleviated through the use of the kd-tree algorithm. Nevertheless,

it has been shown that, for a fixed number of degrees of freedom, the computa-

tional cost goes linearly with the number of Gaussian points. Gaussian points

are needed to numerically evaluate the integrals in a weak form of the equations

of equilibrium. The experience of the author is that a good compromise between

accuracy and costs is given by a Gaussian quadrature of order 3, which means 9

Gaussian points per triangular element in two-dimensions and 27 Gaussian points

per tetrahedral element in three-dimensions.

This means that the bottle neck is represented by the number of Gaussian

points, even if with the proposed method they can be computed in a faster man-

ner with respect to the traditional point-wise LU factorization. In this sense,

a leap ahead would be then represented by further researching stabilization of

nodal integration techniques. Nodal integration is the Holy Grail of the meshless

methods. A truly-meshfree method that do not require a background mesh for

the purposes of the integration, will then eliminate the costs due to the necessity

of Gaussian points.
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Appendix A

Computation of the Integral

Terms in Reproducing Kernel

Methods

In this appendix it is described a procedure to calculate the integrals in equation

(3.41), (3.47) and (3.48), as mentioned in section 3.3.

The full description can be found in Barbieri & Meo (2009b) and Barbieri &

Meo (submitted), here only the major points will be recalled. Particularly in this

appendix, only the calculation of the moments will be shown.

A.1 The Window Function w and its primitives

Hn

In this section are presented preliminary considerations about the window func-

tion w(ξ) and its primitives. Window functions in the case of RKM could have

compact support (for instance spline functions) or not, like Gaussian function.

In both cases though, it is possible to define their primitives. Their evaluation
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A.1 The Window Function w and its primitives Hn

can be made once and for all for example through softwares capable of symbolic

computations. Moreover, since primitives are infinite in number, in order to de-

fine Hn functions uniquely, a further condition need to be imposed. Defining the

variable, with x′ being the integration variable

ξ =
x′ − x
ρ

(A.1)

the functions Hn are n+ 1 antiderivatives, or primitives of the window

Hn(ξ) =

∫ ∫
. . .

∫
︸ ︷︷ ︸

n+1

w(ξ)dξ. (A.2)

Obviously, the following properties hold

dHn

dξ
= Hn−1, (A.3a)

dn+1

dξn+1
Hn = w(ξ), (A.3b)

∂Hn

∂x′
=

1

ρx
Hn−1(ξ), (A.3c)

∂Hn

∂x
= − 1

ρx
Hn−1(ξ), (A.3d)

∂(n+1)

∂x(n+1)
Hn = − 1

ρn+1
x

(−1)n+1w(ξ). (A.3e)

Moreover, it is possible to evaluate the moments Jk(ξ) of the window using these

functions. Indeed, applying the recursive integration by parts

Jk(ξ) =

∫
ξkw(ξ)dξ =

k∑
i=0

(−1)i
k!

(k − i)!
ξk−iHi(ξ), (A.4)

for example

J0(ξ) =

∫
ξ0w(ξ)dξ = H0(ξ), (A.5a)

J1(ξ) =

∫
ξ1w(ξ)dξ = ξH0(ξ)−H1(ξ), (A.5b)

J2(ξ) =

∫
ξ2w(ξ)dξ = ξ2H0(ξ)− 2ξH1(ξ) + 2H2(ξ), (A.5c)

J3(ξ) =

∫
ξ3w(ξ)dξ = ξ3H0(ξ)− 3ξ2H1(ξ) + 6ξH2(ξ)− 6H3(ξ). (A.5d)

205



A.1 The Window Function w and its primitives Hn

A.1.1 Non Compact Support Kernels

An example of kernels having non-compact support is the Gaussian function

w(ξ) = e−
1
2
ξ2 . (A.6)

The particular function in equation (A.6) it is 1 for ξ = 0 and it rapidly decays

to zero (even though is it not exactly zero) around ξ = ±3, as it can be seen from

figure A.1a. Moreover, since primitives are infinite in number, in order to define

Hn functions uniquely, a further condition need to be imposed. For non-compact

support, the following condition is chosen

lim
x→−∞

H0(ξ) = 0. (A.7)

In this case, Hn functions are

H0(ξ) =

√
2π

2
erf

(√
2

2
ξ

)
+

√
2π

2
, (A.8)

H1(ξ) =
√
π

(√
2

2
ξ erf

(√
2

2
ξ

)
+
e−1/2 ξ2

√
π

)
+

√
2π

2
ξ, (A.9)

H2(ξ) =
√
π

(√
2

2

(
ξ2

2
erf

(√
2

2
ξ

)
− 2

(
−
√

2ξ

4e
ξ2

2

+

√
π

4
erf

(√
2

2
ξ

))
1√
π

)
+

+

√
2

2
erf

(√
2

2
ξ

))
+

√
2π

4
ξ2, (A.10)

where erf (x) is the error function defined as

erf (x) =
2√
π

∫ x

0

e−t
2

dt. (A.11)

This functions are plotted in figures A.1. It can be observed that these functions

(figures A.1b, A.1c and A.1d ) outside ξ = 3 have respectively constant, linear

and quadratic behavior. This means that the boundary correction terms influence

only a small portion of the domain around the boundaries of measure ρ, as it is

also reported in Liu et al. (1997a). This is more evident for the moment matrix

entries depicted in figures A.3a, A.3b and A.3c.

206



A.1 The Window Function w and its primitives Hn

(a) Kernel Function (b) Primitive H0

(c) Primitive H1 (d) Primitive H2

Figure A.1: Non-Compact Support Kernel Functions: Gaussian Function
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A.1 The Window Function w and its primitives Hn

A.1.2 Compact Support Kernels

An example of compact support kernel is the 2kth order spline which can be

rewritten using the Heaviside function H as

w(ξ) = (1− ξ2)k [H(ξ + 1)−H(ξ − 1)] . (A.12)

For compact support functions, the condition on the primitive has been chosen

as

H0(ξ = −1) = 0. (A.13)

Thus, naming as 2F1(a, b; c; z) the classical standard hypergeometric series

H0(ξ) = ξ 2F1(
1

2
,−k;

3

2
; ξ2) [H(ξ + 1)−H(ξ − 1)] +

+ 2F1(
1

2
,−k;

3

2
; 1) [H(ξ + 1) + H(ξ − 1)] , (A.14)

H1(ξ) =

[
2F1(

1

2
,−k;

3

2
; ξ2)(ξ − 1)− 1

2(k + 1)
2F1(−1

2
,−k − 1;

1

2
; ξ2)

]
H(ξ−1)+

+

[
1

2(k + 1)
2F1(−1

2
,−k − 1;

1

2
; ξ2) + 2F1(

1

2
,−k;

3

2
; 1)(ξ + 1)+

− 1

2(k + 1)
2F1(−1

2
,−k − 1;

1

2
; 1)

]
H(ξ + 1). (A.15)

This functions are drawn in figures A.2 for different degree k of spline. It can be

noted again the influence of the correction terms outside the support i.e. ξ = 1.

Moreover, it is useful to define the primitives Ik(ξ) of the moments Jk(ξ). These

functions are used in the computation of moments for three-dimensional domains.

Ik(ξ) =

∫
Jk(ξ)dξ =

k∑
i=0

(−1)i(i+ 1)
k!

(k − i)!
ξk−iHi+1(ξ) (A.16)
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A.1 The Window Function w and its primitives Hn

(a) Kernel Function (b) Primitive H0

(c) Primitive H1 (d) Primitive H2

Figure A.2: Compact Support Kernel Functions: 2k − th order spline
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A.2 Moments Matrix in One Dimension

for example

I0(ξ) =

∫
J0(ξ)dξ = H1(ξ), (A.17a)

I1(ξ) =

∫
J1(ξ)dξ = ξH1(ξ)− 2H2(ξ), (A.17b)

I2(ξ) =

∫
J2(ξ)dξ = ξ2H1(ξ)− 4ξH2(ξ) + 6H3(ξ), (A.17c)

I3(ξ) =

∫
J3(ξ)dξ = ξ3H1(ξ)− 6ξ2H2(ξ) + 18ξH3(ξ)− 24H4(ξ). (A.17d)

A.2 Moments Matrix in One Dimension

Using the Hn functions, it is immediate to evaluate the entries in the moments

matrix.

If Ω = [0, L], then the generic entry Mij of the moments matrix is

Mij(x) =

∫ L

0

ξi+jw(ξ)dx′ = ρx

∫ L−x
ρx

−x
ρx

ξi+jw(ξ)dξ. (A.18)

More generally: ∫ L−x
ρx

− x
ρx

ξkw(ξ)dξ = Jk

(
L− x
ρx

)
− Jk

(
− x

ρx

)
. (A.19)

Therefore, from equation (A.4), it follows

Mij(x) = ρx

[
i+j∑
l=0

(−1)l
(i+ j)!

(i+ j − l)!
ξi+j−lHl(ξ)

]L−x
ρx

−x
ρx

. (A.20)

In figures A.4a and A.4b correction functions are plotted for basis functions

pT (x) = [1 x]. Indeed correction terms are given by pT (0)M(x)−1 that is

pT (0)M(x)−1 =
[
1 0

] [M−1
11 (x) M−1

12 (x)
M−1

12 (x) M−1
22 (x)

]
=
[
M−1

11 (x) M−1
12 (x)

]
(A.21)

where, using symbolic evaluation of the inverse of M(x)

M−1
11 (x) =

M22(x)

M11(x)M22(x)−M12(x)2
, (A.22)
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A.2 Moments Matrix in One Dimension

(a) M00(x)

(b) M01(x) = M10(x) (c) M11(x) = M20(x) = M02(x)

Figure A.3: Moments Matrix in One Dimension

211



A.2 Moments Matrix in One Dimension

(a) M−1
11 (x) (b) M−1

12 (x)

Figure A.4: Correction Factors in One Dimension for basis function pT (x) = [1 x]

M−1
12 (x) = − M12(x)

M11(x)M22(x)−M12(x)2
. (A.23)

The calculation of
∂M(x)−1

∂xi
and

∂Λ(x)

∂x
is necessary to get the derivatives of

the shape functions. First derivatives of the moment matrix can be calculated

promptly. In fact

∂M(x)−1

∂x
= −M(x)−1∂M(x)

∂x
M(x)−1. (A.24)

Regarding the moments matrix

∂Mij(x)

∂x
=

∫ L

0

∂

∂x

(
ξi+jw(ξ)

)
dx′ =

∫ L

0

∂

∂ξ

(
ξi+jw(ξ)

) ∂ξ
∂x
dx′ =

= −
∫ L−x

ρx

−x
ρx

∂

∂ξ

(
ξi+jw(ξ)

)
dξ (A.25)

then

∂Mij(x)

∂x
=

(
− x

ρx

)i+j
w

(
− x

ρx

)
−
(
L− x
ρx

)i+j
w

(
L− x
ρx

)
. (A.26)
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A.2 Moments Matrix in One Dimension

(a)
∂M00

∂x
(x) (b)

∂M01

∂x
(x)

(c)
∂M11(x)

∂x

Figure A.5: First Derivative of Moments Matrix in One Dimension
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A.3 Two-Dimensional Domains

(a)
∂M−1

11

∂x
(x) (b)

∂M−1
12

∂x
(x)

Figure A.6: First Derivative of Correction Factors in One Dimension for basis

function pT (x) = [1 x]

A.3 Two-Dimensional Domains

It is possible to generalize to two and three dimensions the procedure described

in the previous section.

A tensor product kernel of the type

w

(
x′ − x

ρ

)
= w

(
x′ − x
ρx

)
w

(
y′ − y
ρy

)
(A.27)

will be used in this section.

The generic entry for the moment matrix is

Mij(x, y) =

∫∫
Ω′
ξiηjw(ξ)w(η)dx′dy′ (A.28)

where

η =
y′ − y
ρy

, (A.29)

∫
Ωnξ

ξkηlw(ξ)w(η)dξdη =

∮
∂Ωnξ

Fkl(ξ, η) · dn (A.30)

where dn is the infinitesimal normal vector to ∂Ωnξ pointing outwards (figure

A.7) and Fkl a vectorial field resulting from

∇ · Fkl(ξ, η) =
∂F kl

ξ

∂ξ
+
∂F kl

η

∂η
= ξkηlw(ξ)w(η). (A.31)
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A.3 Two-Dimensional Domains

Figure A.7: Four Nodes Quadrilateral element

No boundary conditions are required to solve (A.31), therefore the following

equations satisfy (A.31) 
∂F kl

ξ

∂ξ
= 1

2
ξkηlw(ξ)w(η)

∂F kl
η

∂η
= 1

2
ξkηlw(ξ)w(η)

. (A.32)

Thus

F kl
ξ (ξ, η) =

∫
1

2
ξkηlw(ξ)w(η)dξ =

1

2
Jk(ξ)η

lw(η), (A.33a)

F kl
η (ξ, η) =

∫
1

2
ξkηlw(ξ)w(η)dη =

1

2
ξkw(ξ)Jl(η). (A.33b)

Moreover, formula (A.31) facilitates the computation of the above mentioned

integrals if Ω has one or more holes. In this case the circular integral needs to be

carried out on two or more boundaries, since domains can be seen as a difference

among separated domains (figure A.8).

In fact, according to equation (A.30),

∮
∂Ωnξ

Fkl(ξ, η) · dn =

∮
∂Ωnξe

Fkl(ξ, η) · dn−
∮
∂Ω

nξh

Fkl(ξ, η) · dn (A.34)

where ∂Ωnξe is the external boundary and ∂Ωnξh is the hole boundary. If nh is

the number of holes, one just needs to subtract to equation (A.34) all the terms

related to the holes ∂Ωnξhi i = 1, . . . , nh.
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A.3 Two-Dimensional Domains

(a) (b)

(c) (d)

Figure A.8: Examples of moment matrix entries in two dimensions
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A.4 Three-Dimensional Domains

A.4 Three-Dimensional Domains

The same approach applies to three-dimensional domains, where the generic in-

tegral in equation (A.30) is extended as∫
Ωnξ

ξkηlζmw(ξ)w(η)w(ζ)dξdη =©
∫∫

∂Ωnξ

Fklm(ξ, η, ζ) · dn (A.35)

where dn is the infinitesimal normal vector to ∂Ω pointing outwards and Fklm a

vectorial field resulting from

∇ · Fklm(ξ, η, ζ) =
∂F klm

ξ

∂ξ
+
∂F klm

η

∂η
+
∂F klm

ζ

∂η
= ξkηlζmw(ξ)w(η)w(ζ). (A.36)

Thus,

F klm
ξ (ξ, η, ζ) =

∫
1

3
ξkηlζmw(ξ)w(η)w(ζ)dξ =

1

3
Jk(ξ)η

lw(η)ζmw(ζ), (A.37a)

F klm
η (ξ, η, ζ) =

∫
1

3
ξkηlζmw(ξ)w(η)w(ζ)dη =

1

3
ξkw(ξ)Jl(η)ζmw(ζ), (A.37b)

F klm
ζ (ξ, η, ζ) =

∫
1

3
ξkηlζmw(ξ)w(η)w(ζ)dζ =

1

3
ξkw(ξ)ηlw(η)Jm(ζ). (A.37c)

A further reduction of integral (A.35) can be made if Ωnξ is part of a polygon

subdivision as defined in Li et al. (2004), here recalled

Polygon subdivision A partition Fn = {Ω1, Ω2 . . .Ωn} is a polygon subdivi-

sion if

1. Ωi i ∈ 1, . . . , n is a polygon;

2. Ωi ∩ Ωj = ∅ i 6= j;

3.
⋃n
i=1 Ωi = Ω;

4. if Ωi ∩ Ωj i 6= j consists of exactly one point, then it is the common vertex

of the two polygons;

5. if Ωi ∩ Ωj i 6= j consists of more than one point, then Ωi ∩ Ωj is either the

common surface or the common edge.
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A.4 Three-Dimensional Domains

Figure A.9: Three-dimensional polygonal subdivision

In this case Ωnξ is a polygon, therefore ∂Ωnξ is the union of nf faces Ai that

are polygon themselves (figure A.9).

∂Ωnξ =

nf⋃
i=1

Ai. (A.38)

Let nAi the (constant) normal vector to Ai Therefore

©
∫∫

∂Ωnξ

Fklm · dn =

nf∑
i=1

nTAi

∫∫
Ai

FklmdAi. (A.39)

Again the Gauss’ theorem can be used for each face∫∫
Ai

FklmdAi =

∮
∂Ai

Gklm nds (A.40)

where n is the constant normal vector of the common edge, but which belongs

to the face Ai and uniquely defined as

nij = tij × nAi (A.41)

where tij is the (constant) tangent vector of the j-th edge that belongs to the

i-th face. With the definition (A.41) the normal vector in integral (A.40) points

outwards ∂Ai. The matrix in integral (A.40) is given by

∇ ·Gklm(ξ, η, ζ) = Fklm(ξ, η, ζ) (A.42)
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A.4 Three-Dimensional Domains

that is

∂Gklm
ξξ

∂ξ
+
∂Gklm

ξη

∂η
+
∂Gklm

ξζ

∂ζ
= F klm

ξ , (A.43a)

∂Gklm
ηξ

∂ξ
+
∂Gklm

ηη

∂η
+
∂Gklm

ηζ

∂ζ
= F klm

η , (A.43b)

∂Gklm
ζξ

∂ξ
+
∂Gklm

ζη

∂η
+
∂Gklm

ζζ

∂ζ
= F klm

ζ . (A.43c)

Equations (A.43) can be evaluated as usual

Gklm
ξξ (ξ, η, ζ) =

∫
1

3
F klm
ξ dξ =

1

9
Ik(ξ)η

lw(η)ζmw(ζ), (A.44a)

Gklm
ξη (ξ, η, ζ) =

∫
1

3
F klm
ξ dη =

1

9
Jk(ξ)Jl(η)ζmw(ζ), (A.44b)

Gklm
ξζ (ξ, η, ζ) =

∫
1

3
F klm
ξ dζ =

1

9
Jk(ξ)η

lw(η)Jm(ζ), (A.44c)

Gklm
ηξ (ξ, η, ζ) =

∫
1

3
F klm
η dξ =

1

9
Jk(ξ)Jl(η)ζmw(ζ) = Gklm

ξη (ξ, η, ζ), (A.44d)

Gklm
ηη (ξ, η, ζ) =

∫
1

3
F klm
η dη =

1

9
ξkw(ξ)Il(η)ζmw(ζ), (A.44e)

Gklm
ηζ (ξ, η, ζ) =

∫
1

3
F klm
η dζ =

1

9
ξkw(ξ)Jl(η)Jm(ζ), (A.44f)

Gklm
ζξ (ξ, η, ζ) =

∫
1

3
F klm
ζ dξ =

1

9
Jk(ξ)η

lw(η)Jm(ζ) = Gklm
ξζ (ξ, η, ζ), (A.44g)

Gklm
ζη (ξ, η, ζ) =

∫
1

3
F klm
ζ dη =

1

9
ξkw(ξ)Jl(η)Jm(ζ) = Gklm

ηζ (ξ, η, ζ), (A.44h)

Gklm
ζζ (ξ, η, ζ) =

∫
1

3
F klm
ζ dζ =

1

9
ξkw(ξ)ηlw(η)Im(ζ). (A.44i)

(A.44j)

Therefore if Ωnξ is a polygon, (for example like in FE discretization)∫
Ωnξ

ξkηlζmw(ξ)w(η)w(ζ)dξdη =

nf∑
i=1

nTAi

ns∑
j=1

(∫
eij

Gklmds

)
nij (A.45)

where ns is the number of segments of the face and eij is the j-th edge that belongs

to the i-th face with normal vector nij. Thus it can be concluded that every
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integral for two and three-dimensional polygon subdivision is then reformulated

as a line integral for which an explicit expression can be provided.

A.5 Explicit Expression for Line Integrals

In order to calculate line integrals parametrization of the boundaries must be

provided.

For polygon subdivision, these lines are actually segments that are easy to

parametrize. If the orientated segment has starting point P1 = (x1, y1) and end

point P2 = (x2, y2), then {
ξ(t) = h(x) + αt ,

η(t) = q(y) + βt t ∈ [0, 1]
(A.46)

with h = x1−x
ρx

, q = y1−y
ρy

, α = x2−x1
ρx

and β = y2−y1
ρy

and normal vector nT =[
β −α

]
.

These line integrals can be evaluated explicitly through symbolic manipula-

tion.

As an example∫ P2

P1

F 00
ξ (ξ, η)dη − F 00

η (ξ, η)dξ =
β

2

∫ 1

0

H0(h+ αt)w(q + βt) dt+

− α

2

∫ 1

0

w(h+ αt)H0(q + βt) dt. (A.47)

If either α = 0 (vertical segment) or β = 0 (horizontal segment), the integral

(A.47) is trivial since if α = 0

β

2

∫ 1

0

H0(h)w(q + βt) dt =
H0(h)

2

∫ 1

0

w(q + βt) d(q + βt) =

=
H0(h)

2
[H0(q + β)−H0(q)] (A.48)

whereas if β = 0
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A.5 Explicit Expression for Line Integrals

α

2

∫ 1

0

H0(q)w(h+ αt) dt =
H0(q)

2

∫ 1

0

w(h+ αt) d(h+ αt) =

=
H0(q)

2
[H0(h+ α)−H0(h)] . (A.49)

If both α 6= 0 and β 6= 0 the expression becomes much more complicated, even

with simple spline window functions.

Defining the window function as

w(ξ) = f(ξ) [H(ξ + 1)−H(ξ − 1)] (A.50)

for example in (A.12)

f(ξ) = (1− ξ2)k (A.51)

and defining the primitive of f(ξ)

K0(ξ) =

∫ ξ

−1

f(ξ)dξ (A.52)

function H0(ξ) can be written as

H0(ξ) = K0(ξ) [H(ξ + 1)−H(ξ − 1)] +K0(1)H(ξ − 1). (A.53)

It has been experienced by the authors that symbolic softwares cannot provide

directly a closed form of the integral (A.47). This is mostly caused by the presence

of the Heaviside functions that can easily halt the calculation. If an explicit form

is desired, some preliminary manipulation is needed. Firstly, it can be noted from

equation (A.47) that the second term of the right hand side is exactly the same

of the first one provided that α and h are interchanged with β and q. Therefore,

it suffices to calculate only the first integral in (A.47). Such integral can be

expanded in the following form using equations (A.50), (A.52) and (A.53)
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∫ 1

0

H0(h+αt)w(q+βt) dt =

∫ 1

0

K0(h+at)f(q+bt) H(at+h+1)H(bt+q+1)dt+

−
∫ 1

0

K0(h+ at)f(q + bt) H(at+ h− 1)H(bt+ q + 1)dt+

−
∫ 1

0

K0(h+ at)f(q + bt) H(at+ h+ 1)H(bt+ q − 1)dt

+

∫ 1

0

K0(h+ at)f(q + bt) H(at+ h− 1)H(bt+ q − 1)dt+

+ K0(1)

∫ 1

0

f(q + bt) H(at+ h− 1)H(bt+ q + 1)dt+

−K0(1)

∫ 1

0

f(q + bt) H(at+ h− 1)H(bt+ q − 1)dt. (A.54)

Considering that generally for m = h+ 1, h− 1

H(at+m) = H(α)H
(
t+

m

α

)
+ H(−α)H

(
−
(
t+

m

α

))
=

= (H(α)−H(−α))H
(
t+

m

α

)
+ H(−α). (A.55)

and for p = q + 1, q − 1

H(αt+m)H(βt+ p) =

= (H(α)−H(−α)) (H(β)−H(−β))H
(
t+

m

α

)
H

(
t+

p

β

)
+

H(−β)(H(α)−H(−α))H
(
t+

m

α

)
+ H(−α)(H(β)−H(−β))H

(
t+

p

β

)
+

+ H(−α)H(−β) (A.56)

also considering that if spline window functions are used, the functions K0(h +

at)f(q + bt) and f(q + bt) can be re-grouped in polynomial form as

K0(h+ at)f(q + bt) = C(α, β, h(x), q(y))TT (A.57)

where T is a vector of monomial powers of t

T =
[
1 t t2 · · · tn

]
(A.58)
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and C(α, β, h(x), q(y))T is a vector of coefficients that does not depend on the

variable of integration t. Therefore the generic term that appears in integral

(A.54) can be re-written as∫ 1

0

K0(h+ αt)f(q + βt)H(αt+m)H(βt+ p) =

(H(α)−H(−α)) (H(β)−H(−β)) CT

∫ 1

0

TH
(
t+

m

α

)
H

(
t+

p

β

)
dt+

+ H(−β)(H(α)−H(−α))CT

∫ 1

0

TH
(
t+

m

α

)
dt+

+ CTH(−α)(H(β)−H(−β))

∫ 1

0

TH

(
t+

p

β

)
dt+

+ H(−α)H(−β)CT

∫ 1

0

Tdt. (A.59)

therefore one only needs to evaluate explicitly the integrals

I1n(α, β, n,m(x), p(y)) =

∫ 1

0

tnH
(
t+

m

α

)
H

(
t+

p

β

)
dt =

1

αβ(n+ 1)

[
H
(m
α

+ 1
)((

bm
(
−m
α

)n
− αp

(
− p
β

)n)
H

(
−m
α

+
p

β

)
+

+α

(
p

(
− p
β

)n
+ β

)
H

(
p

β
+ 1

))
−
((

βm
(
−m
α

)n
− αp

(
− p
β

)n)
×

×H
(
−m
α

+
p

β

)
+ αH

(
p

β

)
p

(
− p
β

)n)
H
(m
α

)]
, (A.60)

I2n(α, n,m(x)) =

∫ 1

0

tnH
(
t+

m

α

)
dt =

1

α(n+ 1)

(
H
(

1 +
m

α

)
m
(
−m
α

)n
+

+H
(

1 +
m

α

)
α−H

(m
α

)
m
(
−m
α

)n)
, (A.61)

∫ 1

0

tndt =
1

n+ 1
(A.62)

with n ∈ N0 The same method can be used for the remaining terms in (A.54).

This approach can be repeated for all the vectorial fields Fklm and tensorial

Gklm and explicit integrals can be obtained with a software capable of symbolic

manipulations.
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A.5 Explicit Expression for Line Integrals

Derivatives can be readily calculated as well since from equation (A.57)

∂C

∂x
(α, β, h(x), q(y)) = − 1

ρx

∂C(α, β, h, q)

∂h
, (A.63a)

∂C

∂y
(α, β, h(x), q(y)) = − 1

ρy

∂C(α, β, h, q)

∂q
. (A.63b)

The right hand side of equations (A.63a) is easy to evaluate since C is a vector

of polynomial functions in h(x) and q(y).

∂I1n

∂x
= − 1

ρx

∂I1n

∂m
= − 1

ρxα

[
H
(

1 +
m

α

)
−H

(m
α

)]
H

(
αp− βm

αβ

)(
−m
α

)n
,

(A.64)

∂I2n

∂x
= − 1

ρx

∂I2n

∂m
= − 1

ρxα

[
H
(

1 +
m

α

)
−H

(m
α

)](
−m
α

)n
, (A.65)

∂I1n

∂y
= − 1

ρy

∂I1n

∂p
= − 1

ρyβ

[
H

(
m+ α

α

)
H

(
−βm+ αp

αβ

)
−

+H

(
m+ α

α

)
H

(
p+ β

β

)
+

−H
(
−βm+ αp

αβ

)
H
(m
α

)
+ H

(m
α

)
H

(
p

β

)](
− p
β

)n
, (A.66)

∂I2n

∂y
= − 1

ρy

∂I2n

∂p
= − 1

ρyβ

[
H

(
1 +

p

β

)
−H

(
p

β

)](
− p
β

)n
. (A.67)
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Appendix B

Arc Length Numerical

Continuation

Let us consider the following non-linear system of equation

Ψ(a, λ) = R(a)− λP = 0 (B.1)

where a is a n× 1 vector and λ is a scalar. An equilibrium state (a0, λ0) satisfies

a convergence criterion
|Ψ(a0, λ0)|
|λ0P|

≤ β (B.2)

where β is a predefined tolerance, typically set to 0.001.

Let us define

Iterative change δ With the symbol δ it is indicated the change between two

successive iterations.

δak = ak+1 − ak. (B.3)

Incremental change ∆ With the symbol ∆ it is indicated the change between

an iteration ak and the previous convergent state a0

∆ak = ak − a0, (B.4a)

∆λk = λk − λ0. (B.4b)
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B.1 Continuation of Equilibrium

Hence

∆ak+1 = ∆ak + δak, (B.5a)

∆λk+1 = ∆λk + δλk. (B.5b)

Equation (B.1) is a system of n equations in n+ 1 unknowns, therefore an addi-

tional equation (usually called constraint equation) is required.

Ψ(a, λ) = R(a)− λP = 0, (B.6a)

f(∆a,∆λ) = ∆aT∆a + α2∆λ2PTP− ds2 = 0. (B.6b)

Equation (B.6b) is the arc-length constraint.

B.1 Continuation of Equilibrium

Continuation is essentially the task of getting a new equilibrium state (a1, λ1)

starting from a previous convergent one (a0, λ0). Continuation is divided in two

phases: predictor and corrector.

B.1.1 Predictor Phase

In the predictor phase, one moves from the equilibrium state (a0, λ0) to the first

tentative state (a1, λ1). Expanding equation (B.1) in Taylor series around (a0, λ0)

Ψ(a1, λ1) = Ψ(a0, λ0) +
∂Ψ

∂a
(a0, λ0)δa0 +

∂Ψ

∂λ
(a0, λ0)δλ0 + . . . (B.7)

since Ψ(a0, λ0) = 0 and supposing that Ψ(a1, λ1) ∼== 01 and neglecting higher

order terms, equation (B.7) becomes

KT (a0, λ0)δa0 −P(a0, λ0)δλ0 = 0 (B.8)

where
∂Ψ

∂a
(a0, λ0) = KT (a0, λ0) is the tangent stiffness matrix at state (a0, λ0)

and
∂Ψ

∂λ
(a0, λ0) = −P. Mathematically, equation (B.8) is an undetermined sys-

tem of equation, therefore there are infinite solutions[
δaT0 δλ0

]
∈ Null

([
KT −P

])
. (B.9)

1it is hoped that convergence is achieved in the next step
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B.1 Continuation of Equilibrium

The constraint equation (B.6b) allows to choose the one of length ds.

f(∆a1,∆λ1) = ∆aT1 ∆a1 + ψ2∆λ2
1P

TP− ds2 = δaT0 ∆a0 + ψ2∆λ2
0P

TP− ds2.

(B.10)

Thus, from equation (B.8)

δa0 = δλ0K
−1
T P = δλ0δaP , (B.11)

where δaP = K−1
T P and δλ is defined from the equation (B.10)

(δλ0δaP )T (δλ0δaP ) + ψ2∆λ2
0P

TP = ds2. (B.12)

Therefore,

δλ0 = sgn
ds√

δaTP δaP + ψ2PTP
(B.13)

where sgn = ±1.

There are different ways to solve the ambiguity on the sign in equation (B.13).

For example, Crisfield (1991)

sgn =

{
1 aTp ∆a + ψ2∆λ ≥ 0

−1 otherwise
(B.14)

where ∆a and ∆λ are the increments with respect to the two previous convergent

states at steps n and n− 1.

∆a = an − an−1 ∆λ = λn − λn−1. (B.15)

For the first increment n = 1, the following can be used in place

sgn =

{
1 aTp P ≥ 0

−1 otherwise
. (B.16)

At the end of the predictor phase the situation is the following:{
a1 = a0 + δa0

λ1 = λ0 + δλ0

(B.17)

and the convergence is checked: if the criterion is verified

|Ψ(a1, λ1)|
|λ1P|

≤ β (B.18)

then (a1, λ1) is a convergent state, otherwise it is necessary to perform one or

more corrections. These corrections are carried out in the corrector phase.
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B.1 Continuation of Equilibrium

B.1.2 Corrector Phase

The corrector phase includes all the corrections from a state (a1, λ1) that does

not satisfy equation (B.18) to a state (a1, λ1) that does satisfy (B.18). This

is normally achieved within few corrections unless some exceptions described in

subsection 6.3.4. Considering the generalized system of equation

Ψ̃(ak, λk) =

 Ψ(ak, λk)

f(∆ak,∆λk)

 . (B.19)

Expanding in Taylor series and neglecting terms of order higher than the first

Ψ̃(ak + δk, λk + δλk)︸ ︷︷ ︸
≈0

= Ψ̃(ak, λk)︸ ︷︷ ︸
6=0

+
∂Ψ̃

∂a
(ak, λk)δak +

∂Ψ̃

∂λ
(ak, λk)δλk (B.20)

where

∂Ψ̃

∂a
=


∂Ψ

∂a

∂f

∂a

 =

 KT

2∆aTk

 , (B.21)

∂Ψ̃

∂λ
=


∂Ψ

∂λ

∂f

∂λ

 =

 −P

2∆λkψ
2PTP

 . (B.22)

Thus, the expanded Newton-like problem to solve is KT

2∆aTk

 δak +

 −P

2∆λkψ
2PTP

 δλk + Ψ̃(ak, λk) = 0 (B.23)

or, in matrix form KT −P

2∆aTk 2∆λkψ
2PTP

δak
δλk

 = −Ψ̃(ak, λk) (B.24)

which solved gives the iterationsδak
δλk

 = −

 KT −P

2∆aTk 2∆λkψ
2PTP

−1 Ψ(ak, λk)

f(ak, λk)

 . (B.25)
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B.1 Continuation of Equilibrium

Remark Since equation (B.25) is simply a generalization of the Newton-Raphson

(NR) step for problem (B.20), it could seem straightforward to adapt an existing

NR solver in order to get a numerical continuation code. Moreover, equation

(B.25) is solvable even when det(KT ) = 0, i.e. bifurcation points, that have a

physical meaning in mechanics (for example the buckling of a beam is a bifur-

cation problem). Unfortunately this is not the case. Although mathematically

correct, (B.25) in its brutal form it is disadvantageous when it comes to large

scale simulations. In fact for finite element discretization (and for meshfree as

well), KT is usually large, sparse, symmetric and banded, therefore easy to invert

with an existing and well established numerical method like for example Gauss

elimination, or LU factorization. Particularly for FE this feature of the tangent

stiffness matrix is particularly advantageous since KT is tri-diagonal, which is

even simpler to invert and to store. Looking at equation (B.25), it is evident how

such symmetry is lost, since the matrix required for the inversion is now aug-

mented with a row and a column that are different. The immediate consequence

of the loss of symmetry is that the tangent stiffness matrix KT is more difficult

to invert numerically.

This inconvenient is eliminated by using the Boltz’ lemma (or ABCD lemma)

Wriggers (2008)

Lemma B.1.1 ABCD Lemma Let A ∈ Rn×n an invertible matrix, ∀ b, c, d ∈

Rn 
A b

aT c


−1

=


A−1 0

0 0

+
1

κ


(A−1b)aTA−1 −A−1b

−aTA−1 1

 (B.26)

where κ = c− aT (A−1b).

Applying the ABCD lemma B.1.1 to equation (B.25), it is possible to show that

δλk = − f(ak, λk)/2 + ∆aTk δaψ
∆aTk δaP + ψ2∆λkPTP

(B.27a)

δak = δaψ + δλkδaP (B.27b)
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B.1 Continuation of Equilibrium

where

δaP = K−1
T P, (B.28a)

δaψ = K−1
T (−Ψ(ak, λk)). (B.28b)

Equations (B.27) show that it is possible to directly solve (B.25) without invert-

ing the augmented matrix but rather using equations (B.28a) and (B.28b), that

prescribe, as desired, only the inversion of matrix KT (ak, λk). Moreover, (B.28a)

and (B.28b) can be solved simultaneously, as they can be considered a linear

system of equations with two right-hand sides[
δaP δaψ

]
= K−1

T

[
P (−Ψ(ak, λk))

]
(B.29)

this is particularly suitable for numerical routines for example based on Gaussian

elimination, where multiple right-hand sides can be considered in the solution.

Furthermore, some continuation methods prefer to perform the update of the

stiffness matrix only at the beginning of the predictor phase, rather than at every

corrector phase. Although it might be less accurate, this approach consents to

save computing time, since the assembly of the tangent stiffness matrix can be

sometimes time-consuming.

If the tangent stiffness matrix is calculated at beginning of the predictor phase

(i.e. moving from the equilibrium state (a0, λ0) ), it could be advantageous to

consider LU factorization

KT (a0, λ0) = LU (B.30)

where L and U are respectively a lower triangular matrix and a upper triangular

matrix.

In this case equation (B.29) is not only solved just using only forward and

backward substitutions, but since L and U are already available at this point of

the calculation, they can be stored and subsequently re-used in every corrector

phase. Moreover, for sparse matrices, LU factorization computational cost de-

pends only on the number of the non-zero entries of the matrix rather than on its

size. This is clearly advantageous for large scale simulations where matrices have

sizes that far outnumber the amount of non-zero values. This approach could be
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B.2 Line Search algorithm

disadvantageous because more memory is required to store L and U and also it

could be inaccurate in points of the equilibrium path where the determinant of

KT changes sign. This is the case for delamination, as seen in chapter 6. The

equilibrium paths might have one or more bifurcation points (typically when a

crack begins to propagate) and might have many false instabilities points due to

not sufficient nodes density, that cause a quick change in the sign of det KT .

Finally, the state (ak, λk) can be updated

ak+1 = ak + δak (B.31a)

∆ak+1 = ∆ak + δak (B.31b)

λk+1 = λk + δλk (B.31c)

∆λk+1 = ∆λk + δλk (B.31d)

(B.31e)

and convergence checked

|Ψ(ak+1, λk+1)|
|λk+1P|

≤ β. (B.32)

B.2 Line Search algorithm

Let us suppose that the load level λ is fixed to a value λ̄. The equation (B.1) is

now

Ψ(a, λ̄) = R(a)− λ̄P = 0 (B.33)

and can be solved with a standard NR method using a NR iteration

δak = −K−1
T Ψ(ak, λ̄) (B.34)

then repeat equation (B.31a) until convergence (B.32) is achieved.

NR method is said to be a local convergent method, meaning that quadratic

rate of convergence is assured whenever the starting guess solution is close to the

actual solution. Practically not always is possible to choose or to know a priori a

good guess solution. Moreover, when det(KT ) is close to zero, the resulting NR

step (B.34) can be so large that the following situation might happen:

|Ψ(ak+1, λ̄)| > |Ψ(ak, λ̄)|. (B.35)
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The principle behind the line search method is exactly the search for an adequate

decrease of the norm of the residual, to prevent the situation in equation (B.35).

In order to do so, problem (B.33) is reformulated as

F (a, λ̄) =
1

2
Ψ(a, λ̄)TΨ(a, λ̄) = 0. (B.36)

It can be observed that the NR step (B.34) is a descent path for F (a, λ̄). Indeed,

∇F T δak =
∂F

∂a
(−K−1

T Ψ(a, λ̄)) = −Ψ(a, λ̄)T
∂Ψ

∂a
K−1
T Ψ(a, λ̄) =

= −Ψ(a, λ̄)TKTK−1
T Ψ(a, λ̄) = −Ψ(a, λ̄)TΨ(a, λ̄) ≤ 0. (B.37)

This may appear in contradiction with equation (B.35), since it may seem that

according to (B.37), a NR step can only proceed towards a reduction of the norm

of the residual. It must be observed, though, that equation (B.37) is local and also

that the actual NR step depends from the inverse of the tangent stiffness matrix

(equation (B.34)). Therefore the resulting δak, being too large, can overshoot far

from the root.

A remedy is the Line-Search method LS and a detailed exposition can be

found in Press et al. (1986). The idea is not to take the full NR step (B.34) but

only a fraction η

ak+1 = ak + ηδak (B.38)

where η is chosen such that the residual f is sufficiently decreased

f(ak+1) ≤ f(ak) + α∇fTηδak (B.39)

where α is a number generally chosen as 0.0001. The actual value of η can be

calculated by minimizing the function

g(η) = f(ak + ηδak) (B.40)

where
∂g

∂η
= ∇fT δak. (B.41)
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The function g(η) is not known a priori, but can be approximated with all the

informations available at the first step, i.e.

g(0) = f(ak), (B.42a)

g(1) = f(ak+1), (B.42b)

∂g

∂η
(0) = ΨT (ak, λ̄)KT (−K−1

T )ΨT (ak, λ̄) = −|Ψ(ak, λ̄)|2 = −f(ak+1, λ̄).

(B.42c)

Thus, the function g(η) can be approximated with a quadratic polynomial

g(η) ≈
[
g(1)− g(0)− ∂g

∂η
(0)

]
η2 +

∂g

∂η
(0)η + g(0) (B.43)

and minimizing

η = −

∂g

∂η
(0)

2

[
g(1)− g(0)− ∂g

∂η
(0)

] . (B.44)

The process described above is iterative, until condition (B.39) is met. In the

subsequent steps, more informations become available (the two values of g), so

the function g can be modelled as a cubic polynomial 1. The same process can

be applied at the numerical continuation. In fact

λk+1 = λk + ηδk, (B.45)

δak = δaΨ + ηδλkδaP . (B.46)

In this case

g(η) = f(ak + δaΨ + ηδλkδaP , λk + ηδk), (B.47)

∇f =


∂f

∂a

∂f

∂λ

 =


KTΨ(a, λ)

−PTΨ(a, λ)

 . (B.48)

1this is the reason for the name Cubic Line Search method
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B.2 Line Search algorithm

Using

g(0) = f(ak, λk), (B.49)

and

g(1) = f(ak+1, λk+1), (B.50)

∂g

∂η
= ∇fT


δak

δλk


︸ ︷︷ ︸

full NR iteration

= ΨT (ak, λk)
[
KT −P

] 
δak

δλk

 . (B.51)

Equations (B.48), (B.49), (B.50) and (B.51) allow adaptation of an existing LS

routine to a numerical continuation code. In fact, it suffices to enter as input the

values (B.49), (B.50) and (B.48) instead of (B.42).

234



References

Abdelaziz, Y. & Hamouine, A. (2008). A survey of the extended finite ele-

ment. Computers and Structures , 86, 1141–1151. 15

Alfano, G. & Crisfield, M. (2001). Finite element interface models for the

delamination analysis of laminated composites: mechanical and computational

issues. Int. J. Numer. Meth. Engng , 50, 1701–1736. 141, 149, 172, 175

Anderson, T. (1991). Fracture mechanics . CRC Press. 21

Atluri, S. & Zhu, T. (1998). A new Meshless Local Petrov-Galerkin (MLPG)

approach in computational mechanics. Computational Mechanics , 22, 117–127.

35, 64, 65

Babuska, I. & Melenk, J. (1997). The partition of unity method. Interna-

tional Journal for Numerical Methods in Engineering , 40, 727–758. 134

Babuška, I., Banerjee, U. & Osborn, J. (2003). Survey of meshless and

generalized finite element methods: A unified approach. Acta Numerica, 12,

1–125.

Bank, R. (1990). PLTMG, a software package for solving elliptic partial differ-

ential equations: users’ guide 6.0 . Society for Industrial and Applied Mathe-

matics. 10

Barbieri, E. & Meo, M. (2008). Delamination modelling using an Element

Free Galerkin approach. In 13th European Conference on Composite Materials

ECCM-13, Stockholm, Sweden. 62, 135

235



REFERENCES

Barbieri, E. & Meo, M. (2009a). A meshfree penalty-based approach to de-

lamination in composites. Composites Science and Technology , 69, 2169–2177.

63, 135, 142

Barbieri, E. & Meo, M. (2009b). Evaluation of the integral terms in reproduc-

ing kernel methods. Computer Methods in Applied Mechanics and Engineering ,

198, 2485–2507. 23, 49, 204

Barbieri, E. & Meo, M. (submitted). Computation of the integral terms in

reproducing kernel element methods. Computer Methods in Applied Mechanics

and Engineering . 204

Barenblatt, G. (1962). Mathematical Theory of Equilibrium Cracks in Brittle

Failure. Advances in Applied Mechanics , 7. 137

Beissel, S. & Belytschko, T. (1996). Nodal integration of the element-free

Galerkin method. Computer Methods in Applied Mechanics and Engineering ,

139, 49–74. 37

Beissel, S., Gerlach, C. & Johnson, G. (2006). Hypervelocity impact com-

putations with finite elements and meshfree particles. International Journal of

Impact Engineering , 33, 80–90. 35

Belinha, J. & Dinis, L. (2006). Analysis of plates and laminates using the

element-free Galerkin method. Computers and Structures , 84, 1547–1559.

Belinha, J. & Dinis, L. (2007). Nonlinear analysis of plates and laminates

using the element free Galerkin method. Composite Structures , 78, 337–350.

35

Belytschko, T. & Fleming, M. (1999). Smoothing, enrichment and contact

in the element-free Galerkin method. Computers and Structures , 71, 173–195.

32, 56, 63

Belytschko, T. & Tabbara, M. (1996). Dynamic fracture using element-free

Galerkin methods. International Journal for Numerical Methods in Engineer-

ing , 39, 923–938. 27

236



REFERENCES

Belytschko, T., Gu, L. & Lu, Y. (1994a). Fracture and crack growth by

element-free Galerkin methods. Modelling Simul. Mater. Sci. Eng , 2, 519–534.

25, 27, 52, 53

Belytschko, T., Lu, Y. & Gu, L. (1994b). Element-free Galerkin methods.

International Journal for Numerical Methods in Engineering , 37, 229–256. 22,

24, 25, 62, 134

Belytschko, T., Lu, Y. & Gu, L. (1995a). Crack propagation by element-free

Galerkin methods. Engineering Fracture Mechanics , 51, 295–315. 26

Belytschko, T., Lu, Y., Gu, L. & Tabbara, M. (1995b). Element-free

Galerkin methods for static and dynamic fracture. International Journal of

Solids and Structures , 32, 2547–2570. 27

Belytschko, T., Krongauz, Y., Fleming, M., Organ, D. & Snm Liu,

W. (1996a). Smoothing and accelerated computations in the element free

Galerkin method. Journal of Computational and Applied Mathematics , 74,

111–126. 27, 28, 50, 52, 54, 135

Belytschko, T., Krongauz, Y., Organ, D., Fleming, M. & Krysl, P.

(1996b). Meshless methods: An overview and recent developments. Computer

Methods in Applied Mechanics and Engineering , 139, 3–47. 6, 14, 17, 23, 47,

56, 64, 72

Black, T. & Belytschko, T. (1999). Elastic crack growth in finite elements

with minimal remeshing. International Journal for Numerical Methods in En-

gineering , 45, 601–620. 14, 134

Bolotin, V. (1996). Delaminations in composite structures: its origin, buckling,

growth and stability. Composites. Part B, Engineering , 27, 129–145. 132

Bolotin, V. (2001). Mechanics of delaminations in laminate composite struc-

tures. Mechanics of Composite Materials , 37, 367–380. 132

237



REFERENCES

Bordas, S., Rabczuk, T. & Zi, G. (2008). Three-dimensional crack initi-

ation, propagation, branching and junction in non-linear materials by an ex-

tended meshfree method without asymptotic enrichment. Engineering Fracture

Mechanics , 75, 943–960.

Borg, R., Nilsson, L. & Simonsson, K. (2002). Modeling of delamination

using a discretized cohesive zone and damage formulation. Composites Science

and Technology , 62, 1299–1314.

Borg, R., Nilsson, L. & Simonsson, K. (2004). Simulating DCB, ENF and

MMB experiments using shell elements and a cohesive zone model. Composites

Science and Technology , 64, 269–278.

Borst, R., Remmers, J. & Needleman, A. (2006). Mesh-independent dis-

crete numerical representations of cohesive-zone models. Engineering Fracture

Mechanics , 73, 160–177.

Breitkopf, P., Rassineux, A., Touzot, G. & Villon, P. (2000). Explicit

form and efficient computation of MLS shape functions and their derivatives.

Int. J. Numer. Meth. Engng , 48, 466. 36, 83, 85

Brighenti, R. (2005). Application of the element-free Galerkin meshless method

to 3-D fracture mechanics problems. Engineering Fracture Mechanics , 72,

2808–2820.

Camanho, P. & Dávila, C. (2002). Mixed-mode decohesion finite elements for

the simulation of delamination in composite materials. NASA-Technical Paper ,

211737. 133, 148, 173, 179

Camanho, P., Dávila, C. & Ambur, D. (2001). Numerical Simulation of

Delamination Growth in Composite Materials. 133

Camanho, P., Dávila, C. & de Moura, M. (2003). Numerical Simulation

of Mixed-Mode Progressive Delamination in Composite Materials. Journal of

Composite Materials , 37, 1415. 133, 148

238



REFERENCES

Campbell, J., Vignjevic, R. & Libersky, L. (2000). A contact algorithm

for smoothed particle hydrodynamics. Computer Methods in Applied Mechanics

and Engineering , 184, 49–65. 20

Carpinteri, A., Ferro, G. & Ventura, G. (2003). The partition of unity

quadrature in element-free crack modelling. Computers and Structures , 81,

1783–1794.

Cartwright, C., Oliveira, S. & Stewart, D. (2001). A parallel quadtree

algorithm for efficient assembly of stiffness matrices in meshfree galerkin meth-

ods. In Parallel and Distributed Processing Symposium., Proceedings 15th In-

ternational , 1194–1198. 73

Cartwright, C., Oliveira, S. & Stewart, D. (2007). Parallel support set

searches for meshfree methods. SIAM Journal on Scientific Computing , 28,

1318–1334.

Chen, J., Pan, C., Wu, C. & Liu, W. (1996). Reproducing Kernel Parti-

cle Methods for large deformation analysis of non-linear structures. Computer

Methods in Applied Mechanics and Engineering , 139, 195–227. 32, 33

Chen, J., Pan, C. & Wu, C. (1997). Large deformation analysis of rubber

based on a reproducing kernel particle method. Computational Mechanics , 19,

211–227. 34

Chen, J., Crisfield, M., Kinloch, A., Busso, E., Matthews, F. & Qiu,

Y. (1999). Predicting Progressive Delamination of Composite Material Speci-

mens via Interface Elements. Mechanics of Advanced Materials and Structures ,

6, 301–317. xiii, xv, 149, 175, 176, 177

Chen, J., Wu, C., Yoon, S. & You, Y. (2001). A stabilized conforming

nodal integration for Galerkin mesh-free methods. Int. J. Numer. Meth. Eng ,

50, 435–466. 37

Chen, L.W.e., J.S. (2000). Meshless particle methods (special issue). Compu-

tational Mechanics , 25, 99–317. 18

239



REFERENCES

Chen, L.W.e., J.S. (2004). Meshless methods: Recent advances and new ap-

plications (special issue). Computer Methods in Applied Mechanics and Engi-

neering , 193, 933–1321. 18

Chen, X., Liu, G. & Lim, S. (2003). An element free Galerkin method for the

free vibration analysis of composite laminates of complicated shape. Composite

Structures , 59, 279–289.

Chen, Y., Eskandarian, A., Oskard, M. & Lee, J. (2005). Meshless anal-

ysis of high-speed impact. Theoretical and Applied Fracture Mechanics , 44,

201–207. 35

Clough, R. (1960). The finite element method in plane stress analysis. In

Proceedings, 2nd ASCE Conference on Electronic Computations, Pittsburgh,

September 1960 , 960. 1

Cormen, T., Leiserson, C., Rivest, R. & Stein, C. (2001). Introduction

to algorithms . The MIT press. 73

Crisfield, M. (1991). Non-Linear Finite Element Analysis of Solids and Struc-

tures . John Wiley & Sons Inc. 136, 137, 227

Cueto-Felgueroso, L., Colominas, I., Mosqueira, G., Navarrina, F.

& Casteleiro, M. (2004). On the Galerkin formulation of the smoothed

particle hydrodynamics method. International journal for numerical methods

in engineering , 60, 1475–1512. 20

Dávila, C., Camanho, P. & De Moura, M. (2001). Mixed-mode decohesion

elements for analyses of progressive delamination. In Proceedings of the 42nd

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materi-

als Conference, Seattle, WA. 179

De, S. & Bathe, K. (2000). The method of finite spheres. Computational Me-

chanics , 25, 329–345. 35

De Berg, M., Cheong, O., Van Kreveld, M. & Overmars, M. (2008).

Computational geometry: algorithms and applications . Springer-Verlag New

York Inc. 10

240



REFERENCES

de Borst, R. (2003). Numerical aspects of cohesive-zone models. Engineering

Fracture Mechanics , 70, 1743–1757.

de Borst, R. & Remmers, J. (2006). Computational modelling of delamina-

tion. Composites Science and Technology , 66, 713–722.

de Borst, R., Remmers, J. & Needleman, A. (2004). Computational as-

pects of cohesive zone models. Advanced Fracture Mechanics for Life and Safety

Assesments-Stockholm (Sweden).

Dilts, G. (1999). Moving-least-squares-particle hydrodynamics-I. Consistency

and stability. International Journal for Numerical Methods in Engineering ,

44, 1115–1155. 20

Dilts, G. (2000). Moving least-squares particle hydrodynamics II: conservation

and boundaries. International Journal for Numerical Methods in Engineering ,

48, 1503–1524. 20

Doblare, M., Cueto, E., Calvo, B., Martinez, M., Garcia, J. & Ce-

gonino, J. (2005). On the employ of meshless methods in biomechanics. Com-

puter Methods in Applied Mechanics and Engineering , 194, 801–821. 7, 8

Dolbow, J. & Belytschko, T. (1998). An introduction to programming the

meshless element free Galerkin method. Archives of Computational Methods in

Engineering , 5, 207–241. 72

Dolbow, J. & Belytschko, T. (1999). Numerical integration of the Galerkin

weak form in meshfree methods. Computational Mechanics , 23, 219–230. 13,

36, 64, 65, 167
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