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Abstract 

The aim of this programme of research was to add to the existing body of knowledge on the 

measurement of certain hormones in relation to exercise training, the response to high 

intensity training, and their potential influence on short-term performance. The initial 

studies demonstrated agreement between venous and capillary concentrations of an array of 

hormones, and agreement between venous and saliva concentrations of testosterone and 

cortisol following scaling of saliva concentrations, suggesting suitability of use in an 

applied exercise setting.  In addition, to ensure accurate measurement of steroid hormone 

concentrations in saliva, it was shown that samples should be refrigerated immediately, 

transferred to a freezer within 24 h of collection, and analysed within 28 days. Assessment 

of the response to two exercise bouts of a different type within the same day indicated that it 

could be beneficial to perform resistance training in the afternoon preceded by interval 

exercise in the morning in order to stimulate a hormonal milieu that may be more conducive 

to stimulating muscle protein turnover. The robust increases seen in testosterone and 

cortisol following interval exercise performed in the morning in that study were also 

observed in the same cycling sprint interval protocol performed in females. In this study, 

the magnitude of change in DHT concentration was related to sprint cadence. In 

investigating the potential acute effects of hormones on performance, the penultimate study 

demonstrated a positive association between affect as an indicator mood and percentage 

testosterone concentration during high intensity cycling. Conversely, in the final study, no 

postactivation potentiation effect was observed to different exercise stimuli, thus no 

association was observed between hormone concentrations and strength and power 

performance. These data may suggest that the acute short-term effects of hormone 

concentrations on performance may be more related to mood and behaviour in the context 

of this research. 
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Introduction 

 

Competitive athletes complete demanding training schedules, composed of different 

training modes that target different aspects of their performance. As performance 

standards within competitive sport continue to increase, the margins between success 

and failure are becoming increasingly small. Circulating hormone concentrations are 

known to change in response to exercise stimuli (Kraemer et al., 1990; Kraemer & 

Ratamess, 2005; Crewther et al., 2006; Stokes et al., 2013). Concentrations of certain of 

these hormones have been suggested to be important in adaptation to exercise training, 

as well as to providing an indication of the physiological state of athletes (Nindl et al., 

2003; Kraemer & Ratamess, 2005; Crewther et al., 2006; Beaven et al., 2008a), and 

have also been shown to influence the performance of strength and power tasks, and 

associated with neuromuscular performance (Cardinale & Stone, 2006; Crewther et al., 

2009; Crewther et al., 2012a; Crewther et al., 2012b). In attempt to optimise training 

and performance, research has been conducted into the hormone response to exercise 

and whether these hormones can influence training adaptation and performance.  

 

If hormones are to be routinely monitored alongside athletic training, establishing valid 

and reliable sampling methodologies that can be employed in an exercise setting is of 

utmost importance. Capillary blood and saliva collection methods are accepted as more 

convenient and less invasive methods that enable more frequent measurement of 

hormone concentrations outside of a laboratory setting. Despite frequent use, 

particularly of saliva sampling (Filaire et al., 2001; Elloumi et al., 2003; Beaven et al., 

2008a; Beaven et al., 2008b; Crewther et al., 2008; Crewther et al., 2010; Edwards et 

al., 2006), few studies have sought to determine whether agreement between 
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concentrations of hormones measured in venous, capillary and  saliva samples is 

maintained in response to a physiological stress. The applied training environment also 

provides challenges as to the handling and storage of samples following collection. 

Different storage conditions and durations prior to analysis are likely to influence 

hormone concentrations measured (Chikuma et al., 1991; Kato et al., 1992; Garde & 

Hansen, 2005; Wood, 2009). However, no explicit guidelines exist regarding the 

appropriate handling and storage of saliva samples following collection in order to 

preserve sample integrity. Establishing relationships between different sample media in 

an exercise setting, and the effect of different handling and storage procedures is an 

important step to ensure the measured concentrations are an accurate reflection of the 

changes in circulating hormone concentration.  

 

In competitive sport it is common practice for athletes to complete at least two training 

sessions within a day. Depending on the event and requirements of the sport, these 

training sessions may target very different training goals. Different modes and 

intensities of training influence the subsequent changes in hormone concentration 

differently. As such, it is of importance to understand the hormone responses to 

individual exercise bouts of different types and the interaction between them. However, 

limited research has considered the influence of prior exercise on the hormone and 

performance responses to a subsequent bout. Additionally, while the hormone response 

to different resistance exercise schemes is well documented (Kraemer & Ratamess, 

2005; Crewther et al., 2006),  few reports exist concerning the hormone responses to 

high intensity interval exercise despite this forming an important part of the majority of 

training programmes.  
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Recent research has provided compelling evidence that challenges the role of 

purportedly anabolic hormones in mediating gains in muscle mass and strength (West et 

al., 2009; West et al., 2010; West & Phillips, 2010). However, circulating 

concentrations of androgens also elicit short term effects and have been linked to 

enhanced performance of strength and power tasks (Cardinale & Stone, 2006; Crewther 

et al., 2012a; Crewther et al., 2012b) by exerting a rapid influence on neuromuscular 

function (Crewther et al., 2011a), an effect that has also previously been achieved via 

the use of conditioning stimuli generating post-activation potentiation (Hodgson et al., 

2005; Tillin & Bishop, 2009). Little research has sought to examine a link between 

conditioning stimuli and a possible associated hormone response that could be used to 

'prime' or improve subsequent performance, an area with the potential to provide 

beneficial strategies within a competition environment. 

 

Additionally, concentrations of testosterone and cortisol have been shown to be 

influenced by mood with elevated testosterone related to elements of athletic behaviour 

relation to confidence and motivation to compete (Kilduff et al., 2013). Elevations in 

total and free testosterone concentration prior to performance have enhanced 

motivational behaviour, performance of identified skills (Cook & Crewther, 2012a), and 

strength performance (Cook & Crewther, 2012b). As a recent concept, further research 

is required to continue to investigate the possible link between mood and hormone 

concentrations and association with subsequent performance.  

 

The studies comprising this thesis attempt to add to the body of literature concerning the 

measurement of hormones within the blood and in saliva in an exercise setting, as well 

as adding to the research concerning the response of hormones to different forms of 
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training, and the possible relationships between hormone concentrations and 

performance. 

 

Specifically, it is intended that the investigations described in this thesis will fulfil the 

following objectives: 

 

1. Establish, at rest and following exercise, the agreement between venous and capillary 

samples, and venous and saliva samples for concentrations of hormones frequently 

monitored in elite sport, and the suitability of their use. 

2. Establish the effect of storage condition and duration on the concentration of selected 

steroid hormones typically analysed in elite sport, and best-practice recommendations 

for the preservation of sample integrity.  

 

3. Assess the influence of bout order on the hormone responses to the performance of 

repeated sprint interval exercise and resistance exercise.  

 

4. Assess the total testosterone and DHT response to a bout of repeated sprint cycle 

exercise in females, and the possible relationship with training status and performance. 

 

5. Assess the hormone, performance, and psychological affect responses to a bout of 

repeated sprint cycle exercise when preceded by a high intensity period of cycling 

designed to induce fatigue; and establish whether any variation in mood, hormone 

response or performance between two trials was linked. 
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6. Establish whether different methods of priming or potentiating exercise would be 

successful in enhancing power and strength performance, and whether any potentiating 

effect was associated with elevations in hormone concentrations and muscular 

activation. 
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Review of Literature 

 

2.1  Role of Hormones in Exercise 

2.1.1  Long Term Effects 

2.1.1.1 Adaptation 

Elevations in concentrations of hormones such as testosterone, growth hormone (GH) 

and insulin like growth factor (IGF-1) following exercise have been reported to 

contribute to the gain in muscle hypertrophy and strength that are observed with 

resistance training (McCall et al., 1999; Kraemer & Ratamess, 2005; Ratamess et al., 

2009; Spiering et al., 2009). As the primary anabolic hormone, testosterone in particular 

has been associated with  gains in muscle strength and mass based on observations that 

muscle growth occurs at puberty when testosterone concentrations increase (Ramos et 

al., 1998; Mauras, 2001), and supported by research demonstrating reversal of the 

gradual loss of muscle strength and mass that occurs with ages following exogenous 

administration of testosterone (Anawalt & Merriam, 2001), and attenuated gains in 

strength with resistance training after suppression of endogenous testosterone 

production (Kvorning et al., 2006). Additionally, strength gains have recently been 

reported when athletes trained according to resistance exercise protocols that stimulated 

their individual greatest increase in testosterone concentration (Beaven et al., 2008b).   

 

There are consistent reports throughout the literature relating to the ability of the 

anabolic hormones testosterone, IGF-1, and growth hormone to contribute to gains in 

muscle mass and strength when stimulated through exercise (McCall et al., 1999; 

Kraemer & Ratamess, 2005; Crewther et al., 2006; Ratamess et al., 2009; Spiering et 
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al., 2009). Recently, clear associations have been demonstrated between the magnitude 

of testosterone response elicited by training and subsequent gains in muscle mass an 

strength (Beaven et al., 2008a; 2008b). In the first of two studies, elite rugby players 

demonstrated individual responses to four different resistance exercise protocols. In a 

subsequent investigation utilising a crossover design, two groups of players spent two 

three week blocks training according to the protocol that elicited either their individual 

maximum or minimum testosterone response. When training according to the protocol 

that elicited their individual maximum testosterone response for a period of three weeks, 

all athletes exhibited increases in  bench press and leg press 1 RM as well as body mass. 

While training according to the protocol eliciting individual minimum testosterone 

response 75% of athletes demonstrated either no increase, or a reduction in 1 RM 

performances. Using similar protocols, Hansen et al. (2001) and Ronnestad et al. (2011) 

endeavoured to manipulate the internal hormonal milieu in attempt to further elucidate 

the effect of transiently elevated endogenous hormones on strength training adaptations. 

In both studies, additional lower body exercise was performed in order to increase 

endogenous hormone concentrations prior to training of the elbow flexors. Hansen et al. 

(2001) utilised a two group design with one group performing the additional lower body 

exercise, while the opposing group did not. In the study of Ronnestad et al. (2011) all 

participants completed four training sessions of the elbow flexors each week, two of 

which were preceded by additional leg exercise and two of which were not, with 

opposing arms being trained under each condition. Following a training period, 

increases in 1RM, peak power and muscle volume were observed only in the arm that 

was trained following leg exercise, under 'high hormone' conditions (Ronnestad et al., 

2011), while observed increases in arm strength were 9% in participants solely training 
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the upper body, and 37% in those who completed the additional preceding leg exercise 

(Hansen et al., 2001). 

 

While the studies discussed above identify an association between transient elevations 

of hormones and the contribution to gains in muscle mass and strength, more clinical 

work has also identified association between elevations in hormone concentrations and 

activation of the signalling pathways responsible for increases in muscle hypertrophy. 

Figure 2.1 illustrates some of the pathways these hormones are reported to have an 

effect. Following resistance exercise, or other forms of muscular overload, enhanced 

translation mediates the initial increase in protein synthesis. (Chesley et al., 1992; Welle 

et al., 1999). The primary pathway involved in this process involves Protein kinase B 

(Akt). Akt signals the response to muscular overload by phosphorylating downstream 

translation initiation factors to increase translational efficiency and protein synthesis 

(Bodine et al., 2001; Kimball et al., 2002). As demonstrated in Figure 2.1, 

phosphorylation of Akt, allows subsequent phosphorylation of key downstream target 

mammalian target of rapamycin (mTOR), which activates stimulators of protein 

synthesis: 70 k-Da ribosomal protein S6 kinase (p70S6k), and eukaryotic initiation 

factor 2-beta (eIF2B); and by repressing inibitors: glycogen synthase 3-beta (GSK-3b) 

and 4E binding protein 1 (4E-BP1) (Reynolds et al., 2002). While muscle contraction 

can directly activate Akt, hormones exert their effect on these pathways by binding to 

cell surface receptors and exerting signalling effects via activation of  

phosphatidylinositol-3 kinase (PI-3K) (Spiering et al., 2008). While increases in IGF-1 

and testosterone stimulate Akt signalling, cortisol opposes it. Attenutation of p70S6k 

phosphorylation that was likely due to cortisol inhibition has been observed following 

resistance exercise stimulating large increases in cortisol (Spiering et al., 2008). As 
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Figure 2.1 also demonstrates, testosterone is also able to exert influence on muscle 

protein synthesis in a more direct manner via androgen receptors (AR). Testosterone 

binds to and converts AR to a transcription factor capable of translocating to the nucleus 

and associating with DNA to regulate gene expression (Spiering et al., 2008). 

 

Following administration of testosterone to cultured cells, increases in phosphorylation 

of signalling proteins have frequently been reported. Akt phosphorylation has been 

shown to be increased 15 min after testosterone administration to rat skeletal muscle 

myotubes, with a subsequent increase in p70S6K at 60 min (Basualto-Alarcon et al., 

2013). Morphological changes were also noted during this study, with an increase in 

myotube cross sectional area observed. However, both p70S6k phosphorylation and 

hypertrophy were abolished by Akt and mTOR inhibition, with hypertrophy 

additionally prevented by AR inhibition. Similar findings were detected following 

administration of both testosterone and DHT to rat myoblasts (Wu et al., 2010). 

Testosterone administration elevated mTOR phosphorylation within 20min and p70S6k 

phosphorylation was elevated within 2 h. Hypertrophy was again noted in the cells 

treated with both testosterone and DHT, and was not observed in cells lacking AR, or 

followoing administration of and AR antagonist. Similar findings to these are present 

throughout the literature (Nguyen et al., 2005; Sato et al., 2008; Altamirano et al., 2009; 

Fu et al., 2012; White et al., 2013). Associations between testosterone and muscle 

signalling have also been reported in human subjects completing resistance exercise 

(Spiering et al., 2009). Similar to protocol previously mentioned, high volume upper 

body resistance exercise was used to elicit elevated concentrations of testosterone prior 

to performance of leg exercise during one of two trial, and was not performed in other 

which  acted as  the  control. Testosterone concentrations were  16%  greater  during the  
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Figure 2.1 Diagram demonstrating the major signalling pathways through which testosterone, IGF-1 and cortisol are 

reported to exert an effect 
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'high hormone' trial, and this was associated with greater muscle AR receptor content at 

3 h post exercise (Spiering et al., 2009). 

 

The administration of exogenous testosterone and suppression of endogenous 

testosterone in humans has provided further evidence of the association between 

circulating testosterone concentrations and gain in muscle mass and strength. Among 

hypogonadal men 10 weeks of treatment with testosterone replacement, bringing 

endogenous concentrations back to within normal physiological range, and alongside 

controlled energy intake and protein composition, resulted in an increase in fat-free 

mass and muscle size and strength (Bhasin et al., 1997). Similar observations were also 

observed following three years of testosterone replacement, with increases in fat free 

mass of 3.1 kg, principally occurring within the first 6 months of treatment (Snyder et 

al., 2000). Dose response relationships have also been observed in healthy eugonadal 

between the degree of testosterone supplementation and subsequent gains in muscle 

mass and strength. Changes in fat-free mass increased in a dose dependent manner from 

3.4 - 7.9 kg, with changes in leg power and thigh and quadriceps volume strongly 

correlated with measured testosterone concentrations (Bhasin et al., 2001). While 

exogenous testosterone alone increases muscle size and strength, the effect is increased 

when administration of testosterone is combined with resistance exercise (Bhasin et al., 

1996). Increases in fat free mass with the administration of testosterone combined with 

resistance exercise were 6.1 kg, nearly double that of administration of testosterone 

alone (3.2 kg) (Bhasin et al., 1996). Increasing doses of testosterone have also been 

demonstrated to increase the number of myonuclei per muscle fibre, leading to the 

assertion that the testosterone induced increases in muscle volume are true changes due 

to muscle fibre hypertrophy (Sinha-Hikim et al., 2002). Furthermore, gains in strength 
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following resistance training are attenuated when endogenous testosterone is suppressed 

(Kvorning et al., 2006). In a double blinded study, two groups of trained males 

completed eight weeks of resistance training, with one group administered with a GnRH 

analog and the other a placebo. Testosterone decreased significantly in the males 

receiving the testosterone suppressant, who also demonstrated no change in knee 

extension strength following the training period. Testosterone concentration did not 

change in the placebo group and significant increase in strength were observed. In 

addition body fat mass actually increased in the suppressant group, while a decrease was 

observed in the placebo group (Kvorning et al., 2006).  

 

More recent research has, however, challenged these views, questioning the importance 

of purportedly anabolic hormones in muscular adaptation and gains in muscle mass and 

strength. Myofibrillar protein synthesis, required for muscle hypertrophy, was not 

enhanced by simultaneous elevations in circulating concentrations of testosterone, GH 

and IGF-1 (West et al., 2009). Male participants completed unilateral resistance 

exercise of the elbow flexors of the elbow flexors on two separate occasions. On one 

occasion, the exercise was followed by high volume leg resistance exercise in order to 

stimulate an increase in endogenous hormone concentrations in order to compare 

muscle protein synthesis in the hours following resistance exercise between basal, or 

low, hormone concentrations and high hormone concentrations. In both trials the 

exercise was followed by consumption of 25g of protein. Marked elevations were 

observed in testosterone, IGF-1 and GH in response to the high hormone trial but not in 

the low hormone trial. The exercise protocol stimulated an increase in muscle protein 

synthesis in both trials as well as phosphorylation of p70S6k with no effect of hormone 

concentrations (West et al., 2009). In a study design similar to that of Ronnestad et al. 
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(2011) the same authors subsequently investigated the influence of elevated hormone 

concentrations on changes in muscle size and strength across a training period (West et 

al., 2010). Utilising the same protocol as the earlier study (West et al., 2009), and 

conversely to the study of Ronnestad et al. (2011), the high volume leg exercise was 

performed after the elbow flexor exercise. Participants trained for 15 weeks with 72h 

between each session, and alternating between high and low hormone conditions. 

Increases in testosterone, IGF-1 and GH were detected at 15 min and 30 min post 

exercise in the high hormone sessions only, and was maintained across the training 

period. Following the training period, and in opposition to the findings of Ronnestad et 

al. (2011), muscle cross sectional area was increased to the same extent in both arms. 

The authors directly challenged the findings of Ronnestad et al. (2011) by subsequently 

demonstrating that performance of high volume leg exercise before or after the arm 

resistance did not influence the observed responses either (West et al., 2013). Hormone 

delivery to the biceps was estimated via brachial artery blood flow. Hormone 

concentrations peaked at 15 min post leg exercise in both trial orders, but no difference 

in magnitude or blood flow was found between trial orders.  

 

Adaptation to resistance exercise has instead been attributed to the stimulus of loaded 

muscle contraction and amino acid availability, rather than the transient increase in 

endogenous hormone concentrations (West & Phillips, 2010). Wilkinson et al. (2006) 

demonstrated occurrence of local muscle hypertrophy in the quadriceps in the absence 

of  changes in circulating hormone concentrations. Participants trained unilaterally three 

times per week for eight weeks,  completing three sets of six to ten repetitions of knee 

extension and leg press at 80 - 90% of 1 RM. 1 RM and muscle cross sectional area 

increased in the trained limb over the course of the training period despite no increase 
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being observed in testosterone in response to training (Wilkinson et al., 2006). 

Additionally, the feeding of protein or amino acids has been shown to stimulate muscle 

protein synthesis, an effect that seems to be due to the amino acids themselves 

(Greenhaff et al., 2008). Intravenous infusion of amino acids has been demonstrated to 

increase post-exercise muscle protein synthesis rates and prevent the exercise-induced 

increase in protein degradation (Biolo et al., 1997). Even in the absence of prior 

resistance exercise, similar intravenous infusion of amino acids , muscle protein 

synthesis rates rapidly increase (Volpi et al., 1998). In a more applied and practical 

manner, the ingestion of protein or amino acids following exercise has also elicited 

increases in muscle protein synthesis, however, the effect appears to be dose dependent. 

Ingestions of a large amount (30 - 40g) of amino acids following exercise has been 

shown to stimulate muscle protein synthesis (Tipton et al., 1999), while smaller doses 

of essential amino acids (6 g) stimulated a small increase for a period of 2 h prior to 

protein balance becoming negative (Borsheim et al., 2002). Amino acids also exert their 

effect via the signalling pathways demonstrated in Figure 2.1. Increase amino acid 

concentrations, particularly leucine, activate mTOR and p70S6K, increasing the rate of 

mRNA translation (Rasmussen et al., 2000). Indeed, it seems that ingestion of amino 

acids following resistance exercise stimulates an additive increase in muscle protein 

signalling induced by the resistance exercise stimulus (Koopman et al., 2007). In 

combination with their observations demonstrating no increase in muscle protein 

synthesis, or in muscle size or strength despite increases in endogenous hormone (West 

et al., 2009; West & Phillips, 2010), West et al. argue that these factors are primarily 

responsible for governing muscular adaptation. With conflicted findings and opinions 

associated with the role of exogenous hormones, assertions have been made for a 
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stronger role for the short term effects of these hormones, particularly on mood and/or 

behaviour and performance.  

 

 

2.1.2 Short Term Effects 

2.1.2.1 Signalling 

The long term effects of androgens are thought to be regulated by steroid receptors 

found in the cytosol of target cells that control transcription of DNA (Heinlein & 

Chang, 2002). Further steroid receptors have, however, been located on the cell 

membrane comprised of G-proteins, protein kinases, neuro-transmitters and ion 

channels (Falkenstein et al., 2000). Although the precise role of these receptors still 

remains to be clarified it does not appear to be related to gene transcription, with the 

non-genomic actions elicited occurring on a much shorter timescale (Makara & Haller, 

2001; Heinlein & Chang, 2002). Within seconds, the effects of steroid binding at the 

cell membrane receptors induces second messenger signalling the intracellular release 

of ions including ATP, calcium and potassium (Passaquin et al., 1998; Jaimovich & 

Espinosa, 2004; Han et al., 2005). Subsequent downstream effects have been observed 

on protein kinase pathways (Estrada et al., 2003; Han et al., 2005; Nguyen et al., 2005). 

These signalling effects can influence neuronal inhibition or excitation within minutes 

(Smith et al., 2002; Zaki & Barrett-Jolley, 2002). Hormonal stimulation of these 

signalling process could therefore influence the neuromuscular system and associated 

tissues.  

 

Protein kinase pathway activation resulting from steroid hormone binding at the cell 

membrane receptors has been demonstrated to influence force production within muscle 

fibres. Following DHT administration, enhancement of force production in fast twitch 
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skeletal muscle fibres has been observed, and was accompanied by increases in MAPK 

and ERK 1/2 phosphorylation (Hamdi & Mutungi, 2010). The effect was not apparent 

in slow twitch muscle fibres.  

 

Release of calcium into skeletal muscle cells triggered by steroid hormone binding at 

the cell membrane receptors identifies a further role for steroid hormones linked to 

acute muscular function and performance. Release of calcium not only instigates muscle 

contraction but it is also involved in twitch relaxation, energy metabolism and the 

structural integrity of the muscle fibre in muscle fibre (Berchtold et al., 2000). In 

addition, steroid hormones and growth factors may assist in the mediation of muscle 

contraction via modification of activity of the sodium:potassium pump. IGF-1 has been 

shown to stimulate an influx of potassium and efflux of sodium within the muscle cells, 

while glucocorticoid administration in vitro appears to up-regulate sodium potassium 

pump content in muscle cells (Clausen, 2003).  

 

The above evidence indicates a role for steroid hormones, in particular testosterone and 

DHT in influencing acute muscle contraction and force production, and suggests the 

potential short term effects of steroid hormones on performance are more concerned 

with expression of muscular force and power. 

 

2.1.2.2 Neuromotor System 

Muscle function can also be mediated via steroid hormones effects on the motor system. 

Low free cortisol concentrations have been associated with enhanced motor cortex 

response, while administration of hydrocortisone prevented a response (Sale et al., 

2008). In addition, exogenous testosterone administration has been reported to decrease 
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the cortical motor threshold in humans (Bonifazi et al., 2004). These effects have been 

linked to improved performance via the influence on skeletal muscle function. 

Manipulation of  testosterone concentration via administration of exogenous 

testosterone has been shown to influence strength and leg power (Rogerson et al., 2007; 

Storer et al., 2003), with administration of cortisol resulting in a decrease in leg power 

(Fitts et al., 2007). 

 

2.1.2.3 Mood, Behaviour & Cognition 

Modifications in behaviour have been observed within minutes following manipulation 

of testosterone and cortisol concentrations in animal studies, indicating a non-genomic, 

short-term role for steroid hormones in the mediation of mood and behaviour. 

Administration of testosterone and DHT in animal studies has been shown to rapidly 

influence cognition and behaviour (Aikey et al., 2002, James & Nyby, 2002; Lacreuse 

et al., 2009). In humans, the effects of the use of androgenic-anabolic steroids on mood 

and behaviour have been well documented with reported increases in aggression and/or 

hostility, and changes in mood  (Hartgens & Kuipers, 2004). High levels of negative 

affect have also been reported in hypogonadal patients (O'Connor et al., 2002).  

 

Steroid hormones have also been shown to influence cognitive function in humans with 

demonstration of administration of testosterone improving verbal fluency in males 

(O'Connor et al., 2001) and improving visuospatial ability in females (Aleman et al., 

2004). Administration of cortisol on the other hand has been shown to compromise 

memory (Buss et al., 2003), increase risky decision making (Putman et al., 2010), and 

increase error rates during tasks such as the stroop test (Hsu et al, 2003). These effects 

have been attributed to the influence of steroid hormones on the brain, and alterations in 
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brain neuronal activity. However, the precise location of action of steroid hormones 

within the brain is unknown. All these effects have the potential to influence physical 

performance through influencing motivation and behaviour, as well as influencing 

decision making and behaviour than can affect execution of skills. 

 

2.1.2.4 Substrate Metabolism 

As a glucocorticoid, one of the primary roles of cortisol is to mediate gluconeogenesis 

and glycogenolysis through the metabolism of lipid, protein and glycogen, as well as 

through permissive action on other hormones such as catecholamines (Gorostiaga et al., 

1988; McNurlan et al., 1996; Rooyackers & Nair, 1997; Viru & Viru, 2004). 

Testosterone has been shown to promote rapid increase in metabolism and uptake of 

glucose in myotubules in vitro (Tsai & Sapolsky, 1998) and also to regulate insulin 

sensitivity in rats (Holmang & Bjorntorp, 1992), yet no difference were observed in 

substrate use during endurance performance in individuals with high, normal or low 

testosterone concentrations (Braun et al., 2005) 

 

Substrate metabolism at rest and during exercise may also be mediated by estrogen. At 

rest, elevated concentrations of estrogen have been associated with greater muscle 

glycogen content and, therefore, glycogen sparing (Hackney, 1990), and also with 

elevated levels of plasma free fatty acids and a lower respiratory exchange ratio (Reinke 

et al., 1972; Nicklas et al., 1989). During exercise, elevated concentrations of estrogen 

may enhance fatty acid oxidation and utilisation and spare hepatic glycogen, and have 

been associated with enhanced run time to exhaustion in rats (Kendrick et al., 1987; 

Hatta et al., 1988). In contrast, the dual administration of estrogen and progesterone 

elicited greater glucose utilisation.  
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2.2  Acute Hormone Response to Exercise 

2.2.1  Resistance Exercise 

Resistance exercise is the mode of exercise that has been most frequently researched in 

terms of the hormone response to exercise. The hormone response to resistance exercise 

is influenced by the exercise protocol used. Resistance exercise protocols most 

frequently utilised in resistance training with the aim of mediating muscle strength, size 

and power form three broad schemes. These are: hypertrophy, characterised by 

moderate loads and repetitions, controlled movement and short rest periods; maximal 

strength/neuronal, characterised by heavy loads, low repetitions, maximal efforts, and 

long rest periods; and dynamic power, characterised by light loads, explosive/ballistic 

movement, and moderate rest periods. In addition to the influence of programme design 

on hormone response to resistance exercise, other factors may also influence the 

observed response. These factors include programme design, age, training status, and 

nutrition, and will also be considered in the following sections. 

 

2.2.1.1 Testosterone 

Hypertrophy resistance exercise schemes tend to elicit large increases in testosterone 

concentrations, above those observed in response to maximal strength and dynamic 

power protocols (Crewther et al., 2008).  In a direct comparison between hypertrophy 

and maximal strength protocols, the increase in circulating testosterone in response to 

the hypertrophy protocol was nearly 3-fold greater (Kraemer et al., 1991), while in a 

different study, an increase in testosterone following completion of a hypertrophy 

protocol, with no change observed following completion of a maximal strength protocol 

(Hakkinen & Pakarinen, 1993). However, the magnitude of increase in testosterone to 

hypertrophy   protocols  is   variable.  Although,   a   lone   observation,  no   change   in  
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Table 2.1  Summary of the acute hormonal responses to hypertrophy protocol resistance exercise in males.  

 Author  Subjects Training Protocol Change in Hormone Concentration 

 (n) Status  T IGF-1 C 

Kraemer et al., (1991) 8 Trained 8 exercises: 3 x 10 (10 RM) + 72% + 34%  

Kraemer et al., (1993) 8 Trained 8 exercises: 3 x 10 (10 RM)   + 65% 

Hakkinen & Pakarinen (1993) 10 Trained 1 exercise: 10 x 10 (10 RM) + 24%  + 149% 

Chandler et al., (1994) 9 Trained 8 exercises: 2 x 8-10 (75% 1 RM) + 20% Nil  

McMurray et al., (1995) 8 Trained 6 exercises: 3 x 6-8 (80% 1RM) + 21%  Nil 

Gotshalk et al., (1997) 8 Trained 8 exercises: 1 x 10 (10 RM) + 14%  + 10% 

   8 exercises: 3 x 10 (10 RM) + 32%  + 25% 

Volek et al., (1997) 12 Trained 1 exercise: 5 x 10 (10 RM) + 7%  Nil 

Bosco et al., (2000) 6 Trained 3 exercises: 12 x 8-12 (70-75% 1 RM) - 70%   

Smilios et al., (2003) 11 Trained 4 exercises: 2 x 10 (75% 1 RM) Nil  Nil 

   4 exercises: 4 x 10 (75% 1 RM) + 10%  + 28% 

   4 exercises: 6 x 10 (75% 1 RM) Nil  + 27% 

Zafeiridis et al., (2003) 10 Trained 4 exercises: 4 x 10 (75% 1 RM)   + 38% 

Rubin et al., (2005) 9 Trained 1 exercise : 6 x 10 (10 RM)  + 11%  

       

McCall et al., (1999) 8 Recreational 8 exercises: 3 x 10 (10 RM) Nil Nil + 27% 
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Table 2.1 continued 

Author Subjects Training Protocol Change in Hormone Concentration 

 (n) Status  T IGF-1 C 

Kraemer et al., (2001) 10 Recreational 10 exercises: 3 x 10 (10 RM) - 29% *   

McGuigan et al., (2004) 8 Recreational 2 exercises: 6 x 10 (75% 1 RM)   + 97% * 

       

Vanhelder et al., (1985) 5 Un-Trained 1 exercise: 7 x 10 (10 RM)   + 80% 

Kraemer et al., (1992) 8 Un-Trained 4 exercises: 3 x 10 (10 RM) Nil Nil  

Hakkinen & Pakarinen (1995) 8 Un-Trained 1 exercise: 5 x 10 (10 RM) + 9%  Nil 

Kraemer et al., (1998) 8 Un-Trained 1 exercise: 4 x 10 (10 RM) + 38%  + 78% 

Hakkinen et al., (1998) 10 Un-Trained 2 exercises: 4 x 10 (100% MVC) + 27%  Nil 

Kraemer et al., (1999) 8 Un-Trained 1 exercise: 4 x 10 (10 RM) + 37%  + 80% 

Hakinnen et al., (2000) 10 Un-Trained 1 exercise: 5 x 10 (10 RM) + 21%   

Rubin et al., (2005) 10 Un-Trained 1 exercise : 6 x 10 (10 RM)  + 10%  

(T = Testosterone, C = Cortisol, * Salivary Hormones) 
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testosterone in response to this type of protocol has been reported (Smilios et al., 2003), 

while increases of 72% have also been reported (Kraemer et al., 1991). The testosterone 

response to dynamic power resistance exercise protocols appears to be the most 

consistent (Mero et al., 1991; Pullinen et al., 1998; Volek et al., 1997).   

 

The variability seen in response between the different forms of resistance exercise 

training are likely to be linked to the variation in the protocols used within each form.  

As shown in Tables 2.1 - 2.3 there is much greater variation in the protocols used when 

assessing the response to hypertrophy or maximal strength resistance training than to 

power resistance training. Hypertrophy protocols have varied from completing four sets 

of ten repetitions of a single exercise (Kraemer et al., 1999) to three sets of ten 

repetitions of eight exercises (Kraemer et al., 1991; Kraemer et al., 1993; Gotshalk et 

al., 1997). Maximal strength protocols vary from completing twenty single repetitions 

of a single exercise (Hakkinen & Pakarinen, 1993), to completing five sets of five 

repetitions of eight exercises (Kraemer et al., 1990), while protocols used to assess the 

hormonal response to power protocols vary much less, ranging from ten sets of six 

repetitions of a single exercise (Mero et al., 1991; Mero et al., 1993; Pullinen et al., 

1998), to five sets of ten repetitions of a single exercise (Volek et al., 1997). This 

consistency in protocol is accompanied by a consistent testosterone response from 13 - 

18%, while the observed response from maximal strength protocols has ranged from 0 - 

30%. The testosterone response to a given session appears to be linked to protocol 

volume. The greater volume of work completed during the study of Kraemer et al. 

(1990) stimulated a 30% increase in total testosterone, the study of Hakkinen & 

Pakarinen (2000) did not detect an increase in testosterone, while a study with a total 

volume between these two protocols, consisting of three sets of three to six repetitions 
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of three exercises, generated an increase in testosterone of 17% (Raastad et al., 2000). 

This would suggest repetition volume may be a key component to generating a 

testosterone response.  

 

Testosterone response to all of the protocol appears to be related to age and training 

status of the participants. As demonstrated in Table 2.3, greater testosterone responses 

to maximal strength type resistance exercise has been observed in males in their mid-

twenties in comparison to those in their teens (Mero et al., 1993; Pullinen et al., 1998). 

However this difference was offset by reducing the rest period between sets, providing 

support for the assertions and observations that there is a strong metabolic component to 

stimulation of testosterone production and release (Lu et al., 1997). A training history 

providing weightlifting experience of more than two years in youth participants has also 

been shown result in a greater testosterone response that in those with less experience 

(Craig et al.,1989). Training status also appears to influence the response within adult 

males. Following 12 weeks of resistance training a 12% increase in testosterone was 

observed in previously untrained males that had not demonstrated a testosterone 

response to the same resistance exercise session performed before the training period 

(Kraemer et al., 1998). Strength trained males have also been shown to respond to a 

greater extent to a given resistance exercise session than untrained individuals 

(Ahtianen et al., 2004; Tremblay et al., 2004), however, the inverse has also been 

reported (Ahtianen et al., 2003). Interestingly, in individuals training specifically to 

increase muscle mass an inhibited hormone response to resistance exercise has been 

observed (Bosco et al., 2000). This may help explain some of the variation in response 

seen, particularly within hypertrophy resistance training. 
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Nutritional strategies may also influence the hormone response to resistance exercise. 

Carbohydrate and/or protein supplementation immediately after and 2 h after exercise 

resulted in a decrease in total testosterone concentration in the post-exercise period 

(Chandler et al., 1994). Similar observation have also been reported following 

carbohydrate and protein supplementation across three days (Kraemer et al., 1998) and 

in response to a mixed meal, a supplement of similar nutritional content, and 

carbohydrate only (Bloomer et al., 2000). This response has been suggested to be due to 

an increase in hormone uptake or greater clearance from the circulation as it has not 

been accompanied by a decrease in LH (Chandler et al., 1994). It appears that 

nutritional considerations are important in regulating the testosterone response to 

exercise. 

 

2.2.1.2 Cortisol 

Similar to observations in testosterone, hypertrophy resistance exercise protocols have 

been shown to generate greater increases in cortisol concentration than maximal 

strength or dynamic power protocols. Increases in cortisol concentration as great as 

175% have been observed following hypertrophy protocols (Mulligan et al., 1996), 

while no response of cortisol has frequently been reported following performance of 

maximal strength protocols (Kraemer et al., 1993; Raastad et al., 2000; Smilios et al., 

2003; Zafeiridis et al., 2003). Dynamic power resistance exercise protocols have also 

resulted in increase in cortisol concentration (Mero et al., 1991), but not of the same 

magnitude as hypertrophy protocols. Indeed, on average the increase in cortisol 

concentration to hypertrophy resistance exercise is 45%, and 20% in response to 

dynamic power protocols (Crewther et al., 2006).  
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As with testosterone, these differences may be due to the protocol and design of the 

resistance exercise session appears to be important in determining the cortisol response. 

Session volume and load appear to be an important determining factor, with 

hypertrophy protocols typically containing a higher volume of work of up to three sets 

of ten repetitions of eight exercises (Kraemer et al., 1991; Kraemer et al., 1993; 

Gotshalk et al., 1997) than dynamic power protocols which generally consist of ten sets 

of six repetitions of a single exercise (Mero et al., 1991; Mero et al., 1993; Pullinen et 

al., 1998), and in  turn contain a higher volume of work than maximal strength 

protocols such as twenty single repetitions of a single exercise (Hakkinen & Pakarinen, 

1993), or five sets of five repetitions of eight exercises (Kraemer et al., 1990). This also 

suggests that cortisol response is linked to the metabolic demand and intensity of the 

resistance exercise session. Indeed, significant correlations have been observed between 

circulating lactate and cortisol concentrations (Kraemer et al., 1989; Ratamess et al., 

2005). Increasing the intensity and demand of a session by reducing the rest period 

between sets also result in higher elevations in cortisol concentration (Kraemer et al., 

1987; Kraemer et al., 1993; Kraemer et al., 1996).  

 

The relationship between the cortisol response to resistance exercise and the training 

status of an individual is requires further elucidation, with the literature demonstrating 

conflicting findings. Greater cortisol responses have been reported in untrained males 

following a lower body resistance exercise session (McMillan et al., 1993), with a 

reduced cortisol response to a given session following 12 weeks of resistance training in 

previously untrained males (Kraemer et al., 1999). However, other research has found 

no difference in cortisol response to resistance exercise in untrained and strength trained 

men (Ahtiainen et al., 2004, Tremblay et al., 2004), no correlation between response 
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and length of resistance training experience (Kraemer et al., 1992), and also no change 

in cortisol response following a training period (Kraemer et al., 1998; Kraemer et al., 

1999). However, similar to testosterone, cortisol response does appear to be influence 

by the type of training experience. In endurance trained males, cortisol response to a 

given resistance exercise session at a given relative percentage is attenuated in 

comparison to strength trained counterparts (Tremblay et al 2004). Differences in 

muscle size, strength and composition, and energy metabolism may explain these 

findings. 

 

Nutritional practices appear less important in regulating the cortisol response to 

resistance exercise. No difference in cortisol has been observed following either 

carbohydrate supplementation or a placebo prior to, and immediately after, a resistance 

exercise session (Thyfault et al., 2004)). Several other investigations have also failed to 

detect in cortisol response performed with carbohydrate or protein supplementation 

versus a placebo (Fry et al., 1993; Bloomer et al., 2000; Williams et al., 2002).  

 

2.2.1.3 GH & IGF-1 

Changes in IGF-1 concentration following resistance exercise have been observed, but 

unlike testosterone and cortisol, the influence of the resistance exercise protocol used 

seems to influence the response less with consistency in the degree of increase in IGF-1 

concentration observed following both hypertrophy and maximal strength resistance 

exercise protocols (Kraemer et al, 1990; Kraemer et al., 1991; Raastad et al., 2000; 

Rubin et al., 2005).  It has been suggested that influence of resistance exercise on IGF-1 

may in part be governed by the partitioning of IGF-1 among its binding proteins with 

resistance exercise also eliciting changes in binding protein concentrations (Nindl et al., 
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2001). In contrast, a marked difference between resistance exercise protocol is apparent 

in the GH response to resistance exercise with hypertrophy protocol generating vast 

increase in circulating GH concentrations up to 14-fold (Kraemer et al., 1990; Kraemer 

et al., 1991; Hakkinen & Pakarinen, 1993, Raastad et al., 2000; Zafeiridis et al., 2003), 

with significantly smaller increases of between 3 and 4-fold in response to maximal 

strength protocols measured in the same subjects (Kraemer et al., 1990; Zafeiridis et al., 

2003). 

 

The influence of resistance exercise training type or protocol on the IGF-1 response to a 

bout of resistance exercise is less clear than for testosterone or cortisol. As Tables 2.1 & 

2.2 demonstrate, the responses to hypertrophy and maximal strength type resistance 

exercise are varied. In response to a maximal strength protocol a decrease of 7% has 

been observed (Raastad et al., 2000), as have increases of 25 % (Kraemer et al., 1990) 

and 27 % (Kraemer et al., 1991). In response to hypertrophy resistance exercise, no 

change (Kraemer et al., 1992), and increases of 10% (Rubin et al., 2005) have been 

observed. With the limited number of studies to have considered IGF-1 it is difficult to 

draw comparison. It is suggested differences in response are likely due to other factors 

such as a possible increase in IGF-1 uptake, different release mechanisms of the growth 

factor from liver and from muscle (Crewther et al., 2006), and also the way it is 

partitioned among its binding proteins (Nindl et al., 2001) . 

 

Given the discussion above it is therefore unsurprising that training status appears to 

have little influence on the IGF-1 response to resistance exercise. Indeed, in response to 

hypertrophy resistance exercise trained and untrained males demonstrated increase in 

IGF-1 concentration of 11% and 10% respectively when lifting the same relative load 
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(Rubin et al., 2005). However, the absolute concentrations were consistently higher in 

the resistance trained males. This may suggest difference in basal concentrations of 

IGF-1 with resistance training. Greater basal level of IGF-1 have indeed been reported 

in active individuals above those who were sedentary (Kostka et al., 2003).   

 

Few studies have examined the influence of nutritional supplementation on IGF-1 

concentration alone as well as in relation to exercise. Elevated IGF-1 concentrations 

have however been observed with carbohydrate and protein supplementation alongside 

three consecutive days of resistance exercise (Kraemer et al., 1998). It is possible 

feeding may influence the IGF binding protein concentrations, and the expression of 

muscle IGF-1. Indeed, it is thought that locally produced IGF1 in the muscle may exert 

metabolic effects and possible stimulate glucose uptake (Berg & Bang, 2004).    
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Table 2.2  Summary of the acute hormonal responses to maximal strength protocol resistance exercise in males.  

Author Subjects Training Protocol Change in Hormone Concentration 

 (n) Status  T IGF-1 C 

Kraemer et al., (1990) 9 Trained 8 exercises: 3/5 x 5 (5 RM) + 30% + 25%  

Kraemer et al., (1991) 8 Trained 8 exercises: 3/5 x 5 (5 RM) + 27% + 27 %  

Hakkinen & Pakarinen (1993) 10 Trained 1 exercise: 20 x 1 (100% 1 RM) Nil  Nil 

Kraemer et al., (1993) 9 Trained 8 exercises: 3/5 x 5 (5 RM)   Nil 

Raastad et al., (2000) 8 Trained 3 exercises: 3 x 3-6 (3-6 RM) + 17 % - 7% Nil 

Smilios et al., (2003) 11 Trained 4 exercises: 2 x 5 (88% 1 RM) Nil  Nil 

   4 exercises: 4 x 5 (88% 1 RM) Nil  Nil 

   4 exercises: 6 x 5 (88% 1 RM) Nil  Nil 

Zafeiridis et al., (2003) 10 Trained 4 exercises: 4 x 5 (88% 1 RM)   Nil 

(T = Testosterone, C = Cortisol) 
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Table 2.3  Summary of the acute hormonal responses to power protocol resistance exercise in males.  

Author Subjects Training Protocol Change in Hormone Concentration 

 (n) Status  T IGF-1 C 

Mero et al., (1991) 9 Trained 1 exercise: 10 x 6 (50% 1 RM) + 18%   

Mero et al., (1993) 6 (24y) Trained 1 exercise: 10 x 6 (50% 1 RM) * + 16%  Nil 

 6 (24y) Trained 1 exercise: 10 x 6 (50% 1 RM) # + 18%  Nil 

 6 (15y) Trained 1 exercise: 10 x 6 (50% 1 RM) * Nil  + 67% 

 6 (15y) Trained 1 exercise: 10 x 6 (50% 1 RM) # + 13%  +33% 

Volek et al., (1997) 12 Trained 1 exercise: 5 x 10 (30% 1 RM) + 15 %  Nil 

Pullinen et al., (1998) 6 (25y) Trained 1 exercise: 10 x 6 (50% 1 RM) * + 16%   

 6 (25y) Trained 1 exercise: 10 x 6 (50% 1 RM) # + 18%   

 6 (15y) Trained 1 exercise: 10 x 6 (50% 1 RM) * Nil   

 6 (15 y) Trained 1 exercise: 10 x 6 (50% 1 RM) # + 13%   

(T = Testosterone, C = Cortisol, * = 4 min rest period, # = 1 min rest period) 
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2.2.2  Sprint/Interval Exercise 

Reports concerning the hormone response to interval exercise are few, particularly in 

relation to repeated sprint protocols. The responses to interval exercise are also difficult 

to compare given the multitude of exercise protocols that the terms sprint or interval 

exercise encompass. However, sprint and high intensity interval exercise have 

previously been shown to stimulate significant increases in concentrations of cortisol, 

total testosterone, prolactin, estradiol and GH to different protocols when performed in 

the form of both running, and cycling. 

 

2.2.2.1 Sprint Running Interval Exercise 

Sprint running interval repetitions of uniform, increasing and decreasing distance have 

been demonstrated to elicit changes in testosterone, cortisol and IGF-1 concentrations 

(Meckel et al., 2009; Meckel et al., 2011). In the first of these studies, with the  aim to 

assess the influence of brief sprint interval exercise on the balance between anabolic 

(testosterone, IGF-1 and GH) and catabolic (cortisol) hormones, participants completed 

4 x 250m running intervals on a treadmill at 80% of maximal speed, with 3 min 

recovery between each.  Small but significant increases in testosterone were noted of 

13%, while increases in IGF-1, although 16%, were not significant. Interestingly, 

following on from earlier discussion related to resistance exercise (Section 2.2.1), there 

were significant changes in IGF binding protein concentrations. Despite significant 

increases in lactate, cortisol concentration actually decreased resulting in a significant 

increase in the testosterone cortisol ratio. In using a similar subject group, Meckel et al. 

(2011) subsequently investigated the influence of increasing (100m - 400m) and 

decreasing (400m - 100m) sprint interval running repetitions, with increasing or 

decreasing rest respectively, on a treadmill on concentrations of IGF-1, testosterone and 
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cortisol. Similar results were demonstrated to the earlier study, with a significant 

increase in testosterone, accompanied this time by a significant increase in IGF-1 with 

no difference observed between trials in terms of concentrations, or area under the 

curve. No elevations in cortisol concentration was elicited. The similarity of results 

between the two studies may be expected given the same total session volume. The lack 

of cortisol response despite significant increases in lactate may be related to either long 

rest periods relative to exercise time, or the volume of the exercise.  

 

Larger increases in hormone response have been observed in response to sprint running 

interval exercise where the total volume of the exercise session has been higher. 

Increases of 38%, 45%, 230% and 2000% in testosterone, estrogen, prolactin and GH, 

respectively have been observed in male athletes completing 16 x 1 min runs on a 

treadmill at the speed at which VO2max was achieved, with 1 min walk between each 

(Gray et al., 1993). The testosterone response to interval running exercise does appear 

to be linked to the lactate response and the intensity of the exercise completed. The 

studies above, implementing protocols considered to have a large anaerobic component 

with a significant proportion of time spent above lactate threshold have elicited a 

significant response, while no change in testosterone has been reported to 20 min runs at 

various submaximal exercise intensities (Galbo et al., 1977; Wilkerson et al., 1980). 

These contrasting results also raise the possibility that the form of exercise, continuous 

or intermittent, may also be important at modulating the hormone response observed to 

a given session with intermittent exercise seemingly more effective.  
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2.2.2.2 Sprint Cycling Interval Exercise 

Despite the links stated above, relating intermittent exercise volume to hormone 

response, sprint cycling exercise of low volume has also been demonstrated to stimulate 

increases in circulating hormone concentrations. A single 6 s cycle sprint significantly 

elevated total testosterone concentration (Derbre et al., 2010), with single 30 s cycling 

sprint stimulating increases in cortisol, testosterone, prolactin and GH concentrations 

(Stokes et al., 2013), and single 30 s and 40 s cycle sprint demonstrating increases in 

salivary testosterone and cortisol concentrations (Crewther et al., 2010a; Crewther et 

al., 2010b). The findings of Derbre et al., (2010) also imply a link to training status, 

with trained participants demonstrating an increase in testosterone to the single sprint, 

while untrained participants did not. However, trained participants were also able to 

complete a greater amount of work over the 6 s sprint which may also contribute to this 

observation. The study of Stokes et al. (2013) investigated the response to a single 

sprint of longer duration in recreationally active males.  A significant in testosterone 

and cortosol was observed. It may be that the longer duration of the sprint was able to 

elicit a hormonal response in less trained individuals than those of the study of Derbre et 

al., (2010). Crewther et al., (2010a) utilised the same protocol and a similar subject 

group to Stokes et al. (2013) and demonstrated significant increases in salivary and 

venous testosterone and cortisol. Venous testosterone concentrations were elevated by 

8% immediately following exercise, while salivary testosterone concentration was 

elevated 35% above resting levels 10 min post exercise. Venous concentrations of 

cortisol did not change in response to the sprint, but salivary testosterone was elevated 

by 63% at 20min post exercise. The same authors used 40s upper and lower body 

sprints in a later study, with a highly trained group of participants consisting of elite 

male rugby players (Crewther et al., 2010b). The upper body cycle sprint did not 
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influence hormone concentrations, however, the lower body cycle sprint resulted in 

increases in salivary testosterone. Similar to observations relating to resistance exercise, 

this may suggest that active muscle mass is an important factor in determining the 

hormone response to exercise, an assertion that has been demonstrated previously, and 

thought to be linked to the metabolic stress generated (Lu et al., 1997; Ratamess et al., 

2005). In addition, given the very limited volume of the protocols used that stimulate a 

hormone  response, these findings suggest, similar to some assertions relating to sprint 

running interval exercise, that the intensity of the exercise is a key factor in stimulating 

hormonal responses.  

 

In terms of repeated sprint/intermittent cycling exercise, free testosterone concentration 

have been shown to increase in response to a bout of repeated 5 s sprint (Goto et al., 

2005). Similarly to sprint running exercise, sprint cycling interval exercise does not 

appear to elicit an increase in all hormones with no response in IGF-1 observed 

following a 30 s cycle sprint (Stokes et al., 2010).  A lack of IGF-1 response to exercise 

has been associated with an increase in pro-inflammatory cytokines that often 

accompanies high intensity exercise (Bishop et al., 2002) and may attenuate the IGF-1 

response (Eliakim & Nemet, 2010).  
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2.2.3  Concurrent Training 

Where two modes of  exercise are trained concurrently an interference effect has been 

proposed (Docherty and Sporer, 2000) relating to the observed compromised strength 

gains when strength and endurance are trained concurrently (Bell et al., 2000; Hakkinen 

et al., 2003; Chtara et al., 2008).  The majority of research to have considered 

concurrent training has investigated the effect of strength and endurance training 

performed within the same session. Total testosterone concentration has been reported 

to be greater post-training following a training session where strength training of 3 x 8 

repetitions at 75% 1RM of four exercises followed 30 min of aerobic cycling exercise at 

75% of maximal heart (Cadore et al., 2012), and also after 3 x 10 repetitions at 70% 1 

RM of four exercises followed and intermittent running protocol (Rosa et al., 2014). 

Post-exercise concentrations of cortisol did not differ depending on strength or 

endurance exercise order in either study, with the authors suggesting a training order of 

endurance exercise followed by strength exercise should be prescribed if the main focus 

of the training intervention is to induce an acute post-exercise anabolic environment. 

This assertion is supported further by research demonstrating greater increases in 

cortisol following performance of endurance exercise after strength exercise, that were 

also accompanied by increased neuromuscular fatigue, and decreased testosterone 

concentrations at 24 and 48 h post-exercise in comparison to performance of strength 

exercise after endurance exercise (Taipale & Hakkinen, 2013). The strength and 

endurance protocols used were slightly different to those in the aformentioned studies. 

The strength protocol consisted of 3 x 5 - 8 repetitions at 75 - 80% 1 RM followed by to 

3 x 8 - 10 repetitions at 30-40% 1 RM at high velocity in a circuit that was comprised of 

four exercises. The endurance exercise consisted of 60mins of steady state running at 

lactate threshold. Despite these differences in protocol between studies, similar 
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responses have been observed and conclusions drawn. These findings are, however, of 

limited practical value in an elite sport setting as there are very limited occasions where, 

in that particular environment, athletes would perform sessions concurrently. It may 

therefore be surprising that limited research has been conducted into the influence of 

hormone responses to an exercise bout and the hormone response and performance of a 

subsequent bout. Within the limited research, contrasting findings have been presented. 

Performance of cycle sprint exercise performed 60 min or 180 min prior to a resistance 

exercise session, did not result in any differences being observed in the responses of 

cortisol and free testosterone to the resistance exercise bout in comparison to when in 

was performed alone (Goto et al., 2007). Equally, completion of 60 min of endurance 

cycling at 50% VO2max, did not influence the testosterone and cortisol response to 

subsequent resistance exercise (Goto et al., 2005). In contrast, however, Ronsen et al. 

(2001) demonstrated a significantly greater increase in cortisol concentration following 

a repeated high intensity endurance exercise bout with 3 h recovery. Also in this study, 

pre-exercise concentrations of testosterone were lower prior to the second bout of 

exercise, but experienced a greater relative increase.  

 

 

 

 

 

 

 



39 

 

2.3 Effects of Acute Hormone Response on Performance 

2.3.1 Strength & Power 

Following compelling evidence demonstrating that purportedly anabolic hormones do 

not influence the gains in muscle strength and mass following resistance training (West 

et al., 2009; West et al, 2010; West & Phillips, 2010), recent research has investigated 

the ability of these hormones, in particular testosterone, to enhance acute performance 

of strength and power tasks.  

 

Performance of a lower body cycle sprint prior to the performance of strength and 

power tasks resulted in an elevation in salivary testosterone. While this response was 

related to an improvement in the subsequent strength task, power output was not 

improved (Crewther et al., 2011). However, significant relationships have been 

observed between resting saliva testosterone and cortisol concentrations and jump 

power and squatting strength (Crewther et al., 2009a), with pre-exercise concentrations 

of free testosterone also having been demonstrated to be significantly related to 1 RM 

squat performance and 10 m sprint running time (Crewther et al., 2012a). The same 

authors have also demonstrated further strong correlations between  salivary 

concentrations of testosterone and cortisol and  measures of speed, power and strength 

(Crewther et al., 2009b; Cook & Crewther, 2010), and suggest the  confirmation of a 

relationship between neuromuscular performance and hormone secretion patterns.  

 

Evidence exists suggesting that the effect on performance of elevations in testosterone 

concentration may be sustained with Cook et al. (2013) observing improvements in 

jump peak power, 400 m sprint time and 3 RM bench and squat performance performed 

6 h after a morning resistance exercise session that offset the circadian decrease in 
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testosterone concentration. In addition, increases in testosterone in response to different 

resistance exercise protocols performed as much as 3-4 days before a competitive rugby 

match have been shown to be associated with winning performances, with relative 

changes in testosterone in response to the resistance exercise bout significantly higher 

before matches resulting in a win (Crewther et al., 2013). However, it is very unclear as 

to whether the hormonal changes observed in these two studies are causal of the 

improvements observed. 

 

Recently, interest has been raised in the downstream androgen converted from 

testosterone, DHT. DHT is two to three times more potent than its precursor (Bauer et 

al., 2000) and has also been suggested to exert both functional and signalling effects in 

skeletal muscle above those of testosterone. Indeed, in vitro, it has been shown that 

treatment of muscle fibres with physiological doses of DHT modulates muscle fibres in 

a fibre-type dependent manner, increasing power in fast twitch fibres, while treatment 

with testosterone did not (Hamdi & Mutungi, 2010).  

 

2.3.2 Mood & Behaviour 

Following the evidence presented in section 2.1.2.3 regarding the ability of testosterone 

to influence mood, behaviour and cognitive function, recent research has sought to 

assess the influence of using short video clips in a pre-workout environment on change 

in hormone concentrations, athlete behaviour and subsequent voluntary performance 

(Cook & Crewther, 2012a; Cook & Crewther, 2012b). 

 

Highly trained athletes were exposed to a randomised presentation of short video clips 

15 min prior to the start of a workout. Significant relative increases in salivary 
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testosterone were measured following the watching of erotic, humorous, aggressive and 

training videos in comparison to a control. 3 RM performance was improved following 

viewing of the erotic, aggressive and training video clips. A strong within individual 

correlation was also noted between changes in testosterone and 3 RM performance 

across all video clips (Cook & Crewther, 2012a).  

 

In a subsequent study, the same authors investigated the influence of pre-match 

motivational interventions on the free testosterone and cortisol concentrations and 

subsequent match performance in rugby. Watching a video clip of successful skill 

performance along with positive feedback from the coach elevated testosterone 

concentrations beyond that of self-motivational practices or the viewing of video clips 

with cautionary feedback which elicited a elevation of cortisol. Across all trials, greater 

testosterone responses and lower cortisol responses were associated with enhanced 

motivational behaviour and performance of identified skills (Cook & Crewther, 2012b). 

 

Similar observation have been made in sports such as judo were positive associations 

have been demonstrated between free testosterone concentrations and offensive 

behaviours, with additional links identified between higher testosterone concentrations 

in winners of both physical and non-physical tasks (Kilduff et al., 2013). Combined, 

these studies support a role for testosterone and cortisol in enhancing acute strength and 

skill performance that is associated with motivation and confidence to compete. 
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General Methods 

 

3.1 Introduction 

This chapter describes the methodologies implemented during the studies comprising 

this thesis. Each of the investigations was carried out in the Exercise Physiology 

Laboratories at the University of Bath, and was approved by either the Local NHS 

Research Ethics Committee or the University of Bath Research Ethics Approval 

Committee for Health prior to commencing. The target populations for the 

investigations were male and female non-smokers, aged between 18 and 35 years who, 

depending on the study, were highly trained in either cycling, resistance exercise, or had 

no specific training history and were less well trained. Recruitment was done via 

advertisements around the university campus and training facilities, as well as through 

local sports clubs. After volunteering, participants were fully briefed as to the 

requirements of the investigation both verbally and in writing. Volunteers who felt they 

could fulfil the requirements of the investigation were then asked to provide written 

informed consent. Compulsory health screen questionnaires were completed by 

participants prior to commencing any testing, and participants were withdrawn from the 

investigation if any medical condition that posed a personal risk was reported.  
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3.2 Anthropometry 

Body mass was measured as part of each participant’s initial visit to the laboratory. 

Measurements were made using a balance scale (Avery Ltd, UK) were accurate to ± 0.5 

kg. Body mass was recorded prior to any exercise training session throughout each of 

the studies.  

 

Height was measured using a wall mounted stadiometer (Holtain Ltd, UK) that had a 

maximum range of 210 cm and was accurate to ± 0.01 cm. Height was measured 

without footwear, with the heels together and the participant looking straight ahead. The 

moveable gauge was lowered until contact with the participant’s head while they 

inhaled deeply.  
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3.3 Preliminary Measurements 

Prior to experimental trials, participants were required to visit the laboratory on up to 

two occasions. During these visits, anthropometric measures were taken as described 

above and exercise tests relevant to the investigation were completed in order to  assess 

each participant’s maximal performance characteristics.   

 

3.3.1 Maximal Oxygen Uptake 

During the investigations described in Chapters 4, 5, 7 and 8, participants completed a 

test to determine maximal oxygen uptake (VO2max), and the cycling power output 

associated with this value. The test involved continuous, incremental cycling on a 

stationary ergometer until the point of volitional exhaustion. Participants completed a 

10 min warm up at a self-selected intensity. The starting resistance of the test was 

adjusted for each participant in order that the test last approximately 12 – 15 min, and 

was increased by 30 W every 3 min. In the final minute of each stage, heart rate, ratings 

of perceived exertion and one minute expired air samples were collected. These 

measures were also obtained at the point of volitional exhaustion.  A true reflection of 

VO2max was considered to have been attained where the respiratory exchange ratio 

(RER) recorded was in excess of 1.15, and an increase in VO2 <5 ml.kg
-1

.min
-1

 in 

response to an increase in resistance from the previous stage was observed. 

 

3.3.2 Maximal Strength Testing 

Participants completing the investigations described in Chapters 4, 5, 7 and 10 

completed tests to determine maximal strength. This test was performed in the 

laboratory on either a Concept 2 dynamometer (Concept 2, Notts, UK), or on a Keiser 

A420 Leg Press (Keiser Ltd, Tetbury, UK). 
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3.3.2.1 Concept II Dynamometer Test: The Concept II dynamometer is a multi-purpose 

resistance machine providing a measure of force production (presented in kg) based on 

the acceleration applied to an internal flywheel. The force required for acceleration can 

be calculated since the moment of inertia of the fan is a known constant. The component 

of the force needed to resist the air drag is a function of the speed of the wheel and the 

air drag coefficient, which is determined during each run-down of the fan. 

 

Participants completed a test to determine their maximal strength for the exercises of leg 

press, chest press and upright bench pull on a Concept 2 dynamometer (Concept II, 

Notts, UK). Each lift was performed after the five second countdown indicated on the 

display unit, in order to allow the flywheel to settle. Participants warmed up on each lift 

at a self-selected intensity before the test started. Before the dynamometer will record 

data, three warm up, or pre-, lifts are required to be performed. Participants completed 

these three pre-lifts before performing three repetitions at maximum effort, leaving the 

required five seconds between repetitions. Participants completed the test first on chest 

press, followed by leg press, and finally upright bench pull.  

 

3.3.2.2 Leg Press Test: Participants completed an incremental test to determine their 

one repetition maximum for leg press on a Keiser A420 leg press (Keiser Ltd, Tetbury, 

UK). The leg press is designed to produce consistent resistance across the entire range 

of movement via the use of air pressure, and is designed to produce accurate position, 

velocity, power and acceleration information throughout the range of movement. The 

equipment was calibrated bimonthly  in a procedure that involved three steps: setting 

the zero point of the pressure transducers, setting the zero point of the position 

transducers, and setting the span of the position transducers. To set the zero for the 
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pressure transducers, the machine is reduced to minimum resistance before all air hoses 

are disconnected from both machine and compressor. The pressure is then set to zero in 

the software. The air hoses are then reconnected before setting the zero point for the 

position transducers by moving the foot plates through range to their outer stops and 

setting the zero point in the software once again. The span of the position transducers is 

calibrated using a calibration tool with two different length calibration blocks scored 

into it. For each of the moving arms of the machine, first, the shorter of the two 

calibration block is inserted between the collar at the end of moving part of the cylinder 

and the bolt at the end of the piston before setting the position point in the software. The 

same process is then repeated with the longer calibration block. The machine is then re-

calibrated for pressure and position. In order to determine maximal strength, 

participants completed the ten repetition test protocol programme installed on the leg 

press, completing single repetitions at progressively higher loads starting at a low 

relative percentage of predicted one repetition maximum. The test continued until the 

participant could not complete a lift. One repetition maximum was determined as the 

highest weight at which one full repetition was completed with the correct technique.  

 

3.3.2.3 10 s Maximum Cycle Sprint Test: Participants completed a 10 s maximum cycle 

sprint test to determine maximum sprint power on a Wattbike stationary cycle 

ergometer (Wattbike Ltd, Notts, UK). The Wattbike is factory calibrated and does not 

need recalibrating. It measures absolute mechanical power in Watts with the amount of 

power produced measured from the sum of all the forces applied to the chain through 

the cranks. The forces are measured by one load cell and sequencing of the applied 

force is calculated according to crank position which is determined by the location of 

two magnetic sensors on the crank. Prior to completing the 10 s test in order to 
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determine peak power, participants warmed up at a self-selected intensity for 5 - 10 

minutes during which time they trialled different resistances to find an appropriate 

starting gear. Following the warm up, participants completed a maximum 10 s effort, in 

their self-selected gear, from a standing start. Maximum and average power output, and 

peak and average cadence were recorded. 
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3.4  Physiological Measurements 

3.4.1 Expired Gas Analysis 

Prior to any expired gas collection, participants were provided with a nose clip and 

respiratory valve 30 – 45 s beforehand in order to flush all atmospheric air from the 

apparatus prior to the sample being taken. Falconia tubing was attached to the 

respiratory valve and connected the valve to a Douglas bag for collection of expired 

gases. The relative fractions of oxygen and carbon dioxide were measured (Servomex 

1440/5200, Servomex, UK). The analysers were calibrated prior to each test with a two 

point calibration using gas concentrations of known composition. The zero point was 

established with nitrogen (100%), and the upper limit with an O2 - CO2 mix (16% and 

5% respectively). The analyser was then validated against atmospheric air. Expired gas 

volumes were determined during evacuation of each Douglas bag using a dry gas meter 

(Harvard Apparatus, UK). The temperature of the expired gases was recorded during 

evacuation using a thermistor probe. Rates of oxygen (VO2) utilisation were then 

calculated with the use of a prepared spreadsheet. 

 

3.4.2 Saliva Sampling 

Samples were expressed via passive drool into 15 ml plastic collection tubes with no 

additive. Participants were asked to refrain from eating, drinking, or brushing teeth 

drinking in the 1 h prior to sample collection, rinse their mouth with water 5 min prior 

to collection (Shirtcliff et al., 2002), and remain seated while expressing the sample. 

Samples were dispensed into separate eppendorfs and frozen at -20
o
C until analysis. For 

analysis, samples were defrosted at room temperature, and subsequently centrifuged at 

3000 rpm for 10 mins. Clear supernatants were then assayed for concentrations of 

testosterone and cortisol.  Flow rate was not measured or corrected for as concentration 
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of unconjugated steroids such as testosterone and cortisol is not influenced by flow rate 

(Vining et al., 1983). 

 

3.4.3 Saliva Analysis 

Commercially available enzyme linked immunoassays (ELISA) (Salimetrics Europe, 

Oxford, UK) were used to analyse saliva for testosterone and cortisol. The assays are 

competitive ELISAs and operate on the principle that the hormone in the sample 

competes with the hormone linked to horseradish peroxidise for the antibody binding 

sites. Following incubation, the unbound components are washed away, and the bound 

amount of the hormone linked to peroxidase is measured by the reaction of the 

peroxidise enzyme on the substrate tetramethylbenzidine (TMB) which produces a blue 

colour. Upon stopping the reaction with sulphuric acid a yellow colour is formed. The 

optical density was then measured by the assay plate being read on a standard plate 

reader (Anthos II, Anthos, Krefeld, Germany) at 450 nm. The amount of hormone 

linked to peroxidase detected is inversely proportional to the concentration of the 

hormone present in the sample. 

 

3.4.4 Blood Sampling 

3.4.4.1 Venous Blood Sampling: Blood samples were drawn via venepuncture from an 

anterior antecubital vein. Participants were required to lie on a medical bench during 

sampling. At each sampling time-point a 10 ml whole blood sample was drawn. Of this, 

5 ml was dispensed into a blood collection tube (Sarstedt Ltd., UK) containing the 

anticoagulant ethylenediaminetetraacetic acid (EDTA). This sample was immediately 

analysed for concentrations of lactate prior to being centrifuged at 1500 g for 10 min. 

Plasma was subsequently removed from the sample and aliquoted into separate 
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individually labelled eppendorfs before being frozen at -20
o
C until analysis. The 

remaining 5 ml was transferred into a blood collection tube containing no anticoagulant 

(Sarstedt Ltd., UK) and was left to clot for ~15 min at room temperature and then 

centrifuged at 1500 g for 10 mins before the serum was removed, dispensed into 

separate individually labelled eppendorfs and frozen at -20
o
C until analysis.  

 

3.4.4.2 Capillary Blood Sampling: Blood samples were drawn from the finger tip 

following using a lancet device to make a small pin-prick incision. Participants were 

seated for sampling. At each sampling time-point two 500 ul samples of whole blood 

were drawn. One sample was collected into a blood collection tube containing the anti-

coagulant EDTA (Sarstedt Ltd., UK), and centrifuged immediately in a microcentrifuge 

at 10 000 rpm for 5 min. Plasma was removed from the sample, transferred to labelled 

eppendorfs and frozen at -20oC until analysis. The other sample was collected into a 

blood collection tube containing no anticoagulant (Sarstedt Ltd., UK) and was left to 

clot for  ~15min before being centrifuged in a microcentrifuge at 10 000 rpm for 5 min. 

Serum was removed from the sample, transferred to labelled eppendorfs and frozen at -

20
o
C until analysis. 

 

3.4.5 Blood Analysis 

3.4.5.1 Total Testosterone 

Serum analysed for total testosterone in Chapters 4, 5 and 7 was done by liquid 

chromatography tandem mass spectrometry (LC-MS-MS). During this procedure, 

deuterium labelled internal standard is added to the sample, and the testosterone in the 

sample is then isolated by liquid liquid extraction. The extract is then dried under a 

stream of nitrogen. For determination of testosterone, the sample extract is reconstituted 
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and quantified using multiple reaction monitoring of testosterone relative to the internal 

standard. There are no interferences from common steroids found in human serum 

(Fitzgerald et al., 2010). 

 

Serum analysed for total testosterone in Chapters 8, 9 and 10 was done by ELISA using 

commercially available kits (IBL, Hamburg, Germany). The procedure and principles 

are the same as those stated above in section 3.4.3.  

 

3.4.5.2 Cortisol 

Serum concentrations of cortisol in Chapters 4, 5, and 7 were determined by automated, 

solid-phase, competitive chemiluminescent enzyme immunoassay (Immulite®). Serum 

analysed for concentrations cortisol during Chapters 8, 9 and 10 was done so using 

commercially available kits (IBL, Hamburg, Germany). The procedure and principles 

are the same as those stated above in section 3.4.3.  

 

3.4.5.3 Free Testosterone & DHT 

Serum analysed for concentrations of free testosterone, DHT and cortisol during 

Chapters 8, 9 and 10 was done so using commercially available kits (IBL, Hamburg, 

Germany). The assay principles are the same as those stated above in section 3.4.3.  

  

3.4.5.4 Total IGF-1 & Free IGF-1 

During Chapter 4, plasma was analysed for total IGF-1 using a commercially available 

kit (Active IGF-I ELISA, DSL-10-5600), involving a simple acid-ethanol extraction 

procedure in which IGF-I was separated from its binding proteins. Determination of 

plasma free-IGF-I concentrations was carried out using a commercially available kit 
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(Active free IGF-I ELISA, DSL-10-9400) (DSL Europe, Oxford, UK). The assay 

principles are the same as those stated above in section 3.4.3.  

 

3.4.5.5 Prolactin, Estradiol, Progesterone, FSH & LH 

Serum analysed for concentrations of prolactin, estradiol, progesterone, FSH and LH 

was carried out using a semi-automated biochip immunoassay analyser (Evidence 

Investgator, Randox Laboratories, Co. Antrim, UK). 

 

 

Table 3.1  Intra- and inter-assay coefficient of variation (CV) for all hormones measured. 

 

Measure Intra-Assay CV (%) Inter-Assay CV (%) 

Saliva:   

Testosterone         4.6 5.7 

Cortisol 3.5 5.1 

   

Blood (Serum):   

Testosterone   

Free Testosterone 8.9 8.8 

DHT 6.9 8.5 

Cortisol 3.0 3.5 

Prolactin 8.0  

Progesterone 10.3  

Estradiol 8.5  

LH 5.7  

FSH 6.3  

   

Blood (Plasma):   

IGF-1 6.0 6.7 

Free IGF-1 3.1 9.1 
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3.5  Subjective Data 

3.5.1   Ratings of Perceived Exertion 

Sensations of fatigue and exertion were monitored during maximal oxygen uptake tests 

in Chapters 4, 5, 7, and 8, and throughout trials in Chapter 9 via a rating of perceived 

exertion (RPE) scale as described by Borg (1973). The RPE scale is graded from 6-20, 

with these numbers reflective of perceptions of effort ranging from 7 being ‘Very, very 

light’ to 20 which corresponds to ‘Maximum’ effort. 

 

3.5.2  Psychological Affect 

Psychological affect (Chapter 9) was assessed using the Feeling Scale (Hardy and 

Rejeski, 1989). This is an 11-point bipolar measure of pleasure-displeasure, ranging 

from +5 (I feel very good) to -5 (I feel very bad).  
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3.6 Standardisation Procedures 

3.6.1 Ambient Conditions 

Ambient temperature, pressure and humidity were monitored throughout each trial and 

controlled where possible in order to ensure that, as far as possible,  main trials were 

performed under the same environmental conditions.  

 

3.6.2 Dietary Control 

In order to ensure participants reported for each trial in the same nutritional state, each 

participant was provided with a dietary record sheet on which they were asked to record 

all food and drink intake over the 24 h prior to their first main trial. This diet was then 

adhered to in the 24 h before each subsequent trial. Participants were asked to avoid 

consumption of alcohol and caffeine in the 24 h leading up to each main trial. 

 

3.6.3 Habitual Training 

Participants were permitted to continue with their habitual training during their period 

of participation in any trial. In the 48 h prior to each main trial, participants were asked 

to avoid high intensity exercise, and to repeat their activity patterns as far as was 

practicable.  
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3.7 Statistical Analysis 

3.7.1 Bland Altman Limits of Agreement 

Bland Altman limits of agreement (LOA) analysis was used to assess agreement 

between sampling methods in Chapters 4 and 5. Firstly, the mean difference (bias) 

between the two measures was established, along with the standard deviation. Limits of 

agreement were then computed using mean ± 2SD. Ratio LOA were calculated using 

the same procedures following log transformation, and subsequent back transformation, 

of the data.  

 

3.7.2 ANOVA 

One-way repeated measures analysis of variance (ANOVA) was used to analyse 

variables measured once per trial. A two way repeated measures ANOVA was used to 

analyse variables measured through time. Greenhouse-Geisser epsilon corrections were 

used when the sphericity assumption was violated, whilst the Huynh-Feldt correction 

was utilised for less severe asphericity (Atkinson, 2001). Significant main effects were 

investigated further using multiple paired t-tests to determine the location of variance, 

post hoc Bonferroni correction was then used to adjust for the number of pairwise 

comparisons completed. 

 

3.7.3 T-Tests and Correlations 

In Chapters 4 and 5, paired two tailed T-tests were also used independently to compare 

the means between two different groups. Significance was accepted at P < 0.05. 

Bonferroni correction was applied where multiple t-tests were completed.  
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Correlations were used during all studies, with associations between variables assessed 

using Pearson's correlation or Spearman's Rank test. The strength of correlations 

observed was interpreted according to Cohen's effect sizes (Cohen, 1988) and is as 

follows: 

 

Table 3.2 Interpretation criteria for observed correlation coefficients 

r Effect Size Correlation 

0.1 Small Weak  

0.3 Medium Moderate 

0.5 Large Strong 

 

 

 

3.7.4 Post-Hoc Power Calculations 

Post-hoc power calculations were performed where near significant results were found 

in order to establish sample size required to achieve significance. Calculations were  

performed using G*Power software version 3.1.9.2 (Dusseldorf, Germany). Alpha was 

set to 0.05,  beta to 0.95, and observed means and standard deviations values were 

entered to calculate observed power, from which sample size to achieve desired power 

was calculated. 
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- Chapter 4 - 
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Agreement between Venous and Capillary Hormone 

Concentrations at Rest, and in Response to Resistance and Sprint 

Exercise 

 

4.1  Introduction 

Concentrations of a number of hormones have been suggested to be important in 

athletic performance and adaptation to exercise training, as well as to providing an 

indication of the physiological state of athletes (Nindl et al., 2003; Kraemer & 

Ratamess, 2005; Beaven et al., 2008). Circulating concentrations of some of these 

hormones are also known to change in response to exercise stimuli (Kraemer et al., 

1990), and have also been demonstrated to change in response to different nutritional 

practices with manipulation of dietary protein and fat intake (Crewther et al., 2006; 

Kraemer & Ratamess, 2005; Volek, 2004; Volek et al., 1997). Despite the debate 

relating to whether such responses to exercise influence training adaptation (Kraemer & 

Ratamess, 2005; Spiering et al., 2008; West et al., 2010; Wilkinson et al., 2006), these 

hormones are regularly monitored in elite sport.  

 

The traditional reference method for measuring hormone concentrations has been 

venous blood; but this can be impractical in some applied training situations. Capillary 

blood collection methods are accepted as more convenient and less invasive methods 

that enable more frequent measurement of hormone concentrations outside of a 

laboratory setting. 
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The relationship between venous and capillary concentrations of growth hormone is 

reported to be strong (Godfrey et al., 2004), and agreement between venous and 

capillary concentrations of plasma cortisol has recently been shown during high 

intensity exercise (Fryer et al. 2012). Nindl et al., (2003) have previously compared 

IGF-1 concentration obtained from a filter paper capillary blood spot assay with venous 

blood concentrations demonstrating a strong significant correlation (r = .920), and the 

ability of the blood spot concentrations to predict serum values. However, measured 

blood spot concentrations were on average 61% lower than serum values. No previous 

research has investigated the validity of capillary blood sampling for the measurement 

of circulating IGF-1 concentrations using standard ELISA methods.  

 

Indeed, given the possible suggested role of hormones in adaptation to exercise training, 

in particular IGF-1, cortisol and the sex steroids such as testosterone very little research 

has considered the agreement between venous and capillary hormone concentrations. 

Even less research has been conducted into the agreement between methods following 

intense exercise. The present research endeavoured to address this by including a wide 

battery of hormones for analysis and assessing agreement between methods at rest and 

in response to both resistance and high intensity interval exercise. Specifically, in order 

to establish whether capillary methods can be used as an acceptable alternative to 

venous sampling, the purpose of this investigation was to assess, at rest and following 

exercise, the agreement between venous and capillary samples for concentrations of 

total cortisol, total testosterone, free testosterone, total IGF-1, free IGF-1, total estradiol, 

total progesterone, total prolactin, total FSH, and total LH. 
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4.2  Methods 

4.2.1 Subjects 

Eleven physically active men (age 28  3 y; body mass (BM) 77.5  8.3 kg; 2OV max 

57.2  9.0 mlkg BM
-1
min

-1
) provided written informed consent before participating in 

the study, which was approved by the Bath Local National Health Service Research 

Ethics Committee. Participants had a range of sporting backgrounds, and habitual 

training varied from light (2-3 sessions per week) to substantial (8-10 sessions per 

week).  

 

4.2.2  Preliminary Measurements   

Preliminary tests were conducted in order to determine each participant’s maximal 

oxygen uptake.  Participants completed an incremental test to exhaustion on a SRM 

cycle ergometer (Schoberer Rad Messtechnik, Fuchsend, Germany).  The protocol 

included a 10 min warm-up at self-selected intensities followed by consecutive 3 min 

stages, at the end of which the load on the ergometer was increased by 30 W.  In the 

final minute of each stage, a one minute expired air sample was collected and analysed 

for concentrations of O2 and CO2 to assess oxygen uptake. Three maximal repetitions 

on each resistance exercise of leg press, seated bench press and seated bench pull were 

then also completed on the concept 2 dynamometer (Concept2 DYNO, Notts, UK). 

Data were used to calculate work intensities for the subsequent experimental trials.  All 

participants continued their habitual training throughout the study period but were asked 

to refrain from strenuous exercise and avoid both alcohol and caffeine consumption 

during the 24 h prior to any main trial. 
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4.2.3 Experimental Design   

Participants completed up to three trials in a randomised order separated by 5 - 10 days 

and were randomly allocated into two groups. One group completed two trials 

consisting of two exercise bouts (a cycling sprint interval exercise bout and a resistance 

exercise bout) separated by 5 h. The sprint interval exercise was performed on an SRM 

ergometer and comprised a 10 min warm up followed by 10 x 30 s sprints with 90 s 

recovery between each sprint. Participants were asked to aim for a peak power of 150 % 

power at 2OV max and then try to sustain a power output as close to that as they could 

for the remainder of each 30-s sprint. The resistance exercise session consisted of 5 sets 

of 10 repetitions at 80% of maximum on seated bench press, leg press and seated bench 

pull exercises. Exercises were performed as a superset (no rest interval between 

exercises) in the aforementioned order, with one minute recovery after each superset. In 

one trial, participants performed the interval exercise session in the morning and the 

resistance session in the afternoon, and in the other trial they performed the sessions in 

the reverse order. The second group completed three trials: a rest day; a rest day with 

carbohydrate-protein supplementation in addition to their normal diet; and a day on 

which they performed cycling sprint interval exercise. Exercise and protein intake have 

previously been shown to influence hormone concentrations (Crewther, et al., 2006; 

Kraemer & Ratamess, 2005; Volek, 2004; Volek, et al., 1997). 

 

4.2.4 Experimental Protocol 

Participants arrived in the laboratory at the same time of day for each trial. They 

continued their habitual training throughout the study period but refrained from 

strenuous exercise and avoided alcohol and caffeine consumption in the 24 h prior to 

main trials. Venous and capillary samples were obtained on arrival at the laboratory. 
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Participants in the first group completed a bout of exercise (sprint interval exercise or 

resistance exercise) after baseline sampling, and then performed the other exercise bout 

(either sprint or resistance) 5 h later. Samples were taken immediately and 1 h after each 

exercise bout. In the second group, during the rest trial, further samples were obtained at 

2, 4 and 6 h. In the protein trial, participants consumed a carbohydrate-protein drink 

(carbohydrate and whey protein isolate; 1:1 ratio; 0.5 gkg
-1

 protein) immediately after 

baseline sampling, and further samples were obtained at 1, 2, 4 and 6 h. Participants 

consumed an additional 0.17 gkg
-1

 protein following sampling at 1, 2 and 4 h to 

provide a total of 1.0 gkg
-1

 protein supplementary to their diet. In the cycling interval 

trial, exercise was performed immediately after baseline sampling, and subsequent 

samples were obtained immediately post exercise and at 1, 2 and 4 h post-exercise.  

 

4.2.5 Sampling and Analysis 

Capillary blood samples were taken from the finger tip and collected in serum and 

EDTA microvettes (Sarstedt, UK). Venous blood samples were taken from a superficial 

antecubital vein. Serum samples were left to clot for 15 min, centrifuged and serum was 

stored at -20
o
C until analysis. Plasma samples were centrifuges immediately and plasma 

was stored at -20
o
C until analysis. 

 

Serum was analysed for total cortisol, total testosterone, total IGF-1, free IGF-1, total 

estradiol, total progesterone, total prolactin, total FSH and total LH concentrations. 

Serum total testosterone concentrations were determined via Isotope Dilution Liquid 

Chromatography Tandem Mass Spectrometry (LC-MS-MS). Quantitation of results was 

performed by an internal standard method using Analyst® software version 1.4. 

Reporting range for the assay was between 0.7 - 60.0 nmoll
-1

. Serum concentrations of 

cortisol were determined by solid-phase, competitive chemiluminescent enzyme 
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immunoassay (Immulite®). Serum concentrations of total estradiol, total progesterone, 

total prolactin, total FSH and total LH were determined via a semi-automated biochip 

immunoassay analyser (Evidence Investgator, Randox Laboratories, Co. Antrim, UK). 

Intra assay CV of the fertility array was 8.5, 10.3, 8.0, 6.3, and 5.7% for estradiol, 

progesterone, prolactin, FSH and LH respectively. Analysis methods for the different 

media were selected based upon being considered valid and established measurement 

methods. 

 

Plasma was analysed for total IGF-1 using a commercially available kit (Active IGF-I 

ELISA, DSL-10-5600), involving a simple acid-ethanol extraction procedure in which 

IGF-I was separated from its binding proteins, with an assay sensitivity of 0.004 nmol.l
-

1
. Determination of plasma free-IGF-I concentrations was carried out using a 

commercially available kit (Active free IGF-I ELISA, DSL-10-9400), with an assay 

sensitivity of 0.002 nmol.l
-1

 (DSL Europe, Oxford, UK). Intra-assay CVs for total and 

free IGF-1 were 6.0 and 3.1% respectively; and inter-assay CVs were 6.7 and 9.1% for 

total and free IGF-1 respectively.  

 

4.2.6 Statistical Analysis 

Normality tests revealed non-normal distribution of all data. As such, Spearman 

correlations were used to identify the relation between concentrations from different 

samples. Bland-Altman analyses were used to determine 95% limits of agreement 

(LOA) between capillary samples with their venous sample equivalent. As some degree 

of heteroscedasticity was evident in all Bland-Altman difference plots, log 

transformation and subsequent back transformation of the data was used to establish 

LOA, with limits also expressed as ratio LOA (Atkinson & Nevill, 1998; Bland & 
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Altman, 2007). Paired t-tests were used to determine the presence of significant 

differences between sample types for each hormone at rest, following exercise, and with 

all samples combined. Data are presented as means and standard deviations with 

significance accepted at an alpha level of P < 0.05. 
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4.3  Results  

Hormone concentrations measured following carbohydrate-protein supplementation 

were not different from those measured during the rest trial, and these data were 

therefore combined for analysis. A robust response in cortisol, testosterone, 

progestrone, estradiol and prolactin concentrations occurred in response to interval 

exercise, with a smaller response in total cortisol, testosterone, progesterone and 

estradiol in response to resistance exercise. Total and free IGF-1 concentration did not 

change in response to either interval or resistance exercise, and the response of FSH and 

LH to both forms of exercise was unpredictable. 

 

Correlation between venous and capillary concentrations of total cortisol was very 

strong at rest (r = 0.907) and following exercise (r = 0.960; Table 4.1). In comparison to 

the range of concentrations measured, bias was small (-8.8 – -7.0 nmoll
-1

), with venous 

concentrations measuring lower than capillary concentrations.  LOA were similar at rest 

and following exercise and 95% ratio LOA for all samples suggest venous total cortisol 

concentrations to be between 16% lower and 13% greater than capillary concentrations.  

 

For total testosterone, correlation was strong (r = 0.841), bias small (1.7 nmoll
-1

) and 

LOA close (-6.2 – 10.3 nmoll
-1

) when all samples were considered together, and were 

similar for samples obtained at rest and following exercise (Table 1). Venous total 

testosterone concentrations were significantly higher than capillary concentrations (P < 

0.01). 95% ratio LOA suggest venous total testosterone concentration to be between 7% 

lower and 34% greater than capillary concentration. 
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Correlation between venous and capillary concentrations of total IGF-1 was moderate 

when  all samples were combined (r = 0.472), at was slightly stronger at rest (r = 0.567) 

than following exercise (r = 0.412) There was a significant bias with capillary plasma 

concentrations higher than venous plasma concentrations (P < 0.05), although this was 

reduced following exercise (-8.6 nmol.l
-1

) than at rest (-14.0 nmol.l
-1

) The moderate 

correlations were accompanied by wide absolute LOA (Table 4.1). Limits of agreement 

were wider following exercise and 95% ratio LOA for all samples suggest capillary 

total IGF-1 concentration to be between 23% greater and 16% lower than venous 

concentration. 

 

Correlation between venous and capillary free IGF-1 concentrations was strong for 

resting samples (r = 0.717) and slightly weaker post-exercise (r = 0.598). There was a 

significant bias with capillary plasma concentration measuring higher than venous 

plasma concentrations (P < 0.01) (Table 4.1). LOA were similar at rest and following 

exercise with 95% ratio LOA for all samples suggesting capillary free IGF-1 

concentration to be between 52% greater and 40% lower than venous concentration. 

 

For progesterone, correlation between venous and capillary concentrations was strong 

when all samples were considered together (r = 0.791) and at rest (r = 0.741), and spost-

exercise samples (r = 0.860). Bias was small in comparison to the range of 

concentrations measured (0.87 - 48.3 nmol.l
-1

), but was significant in resting samples 

(1.79 nmol.l
-1

; P < 0.01). 95% ratio LOA suggest venous progesterone concentration to 

be between 67% greater and 24% lower than capillary concentrations. 
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Correlation between venous and capillary concentrations of estradiol was strong when 

considering all samples together (r = 0.764), at rest (r = 0.681) and following exercise (r 

= 0.823). Bias was small following exercise (0.005 nmol.l
-1

), but greater at rest (0.011 

nmol.l
-1

; P < 0.01). 95% ratio LOA suggest venous estradiol concentrations to be 

between 12% lower and 33% greater than capillary concentrations. 

 

For prolactin, correlation between venous and capillary concentrations was strong in 

both resting samples (r = 0.921) and those following exercise (r = 0.976). In relation to 

the range of concentrations measured (0.145 - 1.658 nmol.l
-1

), bias was small but still 

significant in both resting samples (-0.015 nmol.l
-1

; P < 0.05) and following exercise (-

0.017 nmol.l
-1

; P < 0.05) with capillary concentration measuring higher than venous 

concentrations. 95% ratio LOA indicate venous prolactin concentrations to be between 

13% lower and 10% greater than capillary concentrations. 

 

Correlation between venous and capillary concentrations of FSH were strong in both 

resting samples (r = 0.859), and in those following exercise (r = 0.858). Bias was small 

and non-significant in all cases with venous concentrations measuring higher than 

capillary concentrations. 95% ratio limits of agreement suggest venous concentrations 

of FSH to be between 12% lower and 18% greater than capillary concentrations. 

 

LH demonstrated similar results to FSH. Correlation between venous and capillary 

samples was strong in both resting (r = 0.841) and post-exercise (r = 0.875). Bias was 

minimal, particularly following exercise (0.021 IU.l
-1

) with venous concentrations 

measuring higher than capillary counterparts. 95% ratio LOA suggest venous LH 
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concentration to be between 15 % lower and 21% greater than capillary LH 

concentration. 
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Table 4.1  Correlation and LOA between venous and capillary blood samples for all samples, rest, exercise. (n = number of samples; Bias = venous concentration – capillary 

concentration). 

Hormone Condition n Range  

(nmol.l
-1

) 

Correlation Bias  

(nmol.l
-1

) 

LOA  

(nmol.l
-1

) 

Ratio LOA 

 

 

 

Cortisol 

All 119 99.0 - 807.0 .949** -7.9 -102.3 - 86.5 0.84 - 1.13 

Rest 62 106.0 - 532.0 .907** -8.8 -88.8 - 71.2 0.83 - 1.13 

Exercise 57 99.0 - 807.0 .960** -7.0 -115.7 - 101.7 0.84 - 1.13 

 

 

 

Total Testosterone 

All 92 6.1 - 42.9 .841** 1.7* -6.2 - 10.3 0.93 - 1.34 

Rest 44 7.8 - 33.2 .800** 2.7** -5.2 - 10.5 0.95 - 1.40 

Exercise 48 6.1 - 42.9 .846** 1.1* -7.1 - 9.9 0.91 - 1.28 

 

 

 

Total IGF-1 

All 83 161.6 - 538.0 .472** -18.5* -127.2 - 115.6 0.77 - 1.16 

Rest 28 161.6 - 476.7 .567** -14.0 -114.3 - 86.3 0.82 - 1.14 

Exercise 55 196.5 - 538.0 .412** -8.61* -149.1 - 131.9 0.75 - 1.17 
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Free IGF-1 

All 83 0.19 - 3.32 .611** 0.82** -1.3 - 0.7 0.48 - 1.40 

Rest 

 

28 0.24 - 2.79 .717** 0.80** -1.3 - 0.7 0.47 - 1.34 

Exercise 55 0.19 - 3.32 .568** 0.84** -1.4 - 0.8 0.49 - 1.44 

 

 

 

Progesterone 

All 140 0.87 - 48.28 .791** 1.49** -8.4 - 11.4 0.76 - 1.67 

Rest 78 0.97 - 34.23 .741** 1.79** -7.3 - 10.9 0.75 - 1.74 

Exercise 60 0.87 - 48.28 .860** 1.12 -9.8 - 12.1 0.78 - 1.57 

 

 

 

Estradiol 

All 140 0.052 - 0.202 .764** 0.008** -0.039 - 0.056 0.88 - 1.33 

Rest 78 0.054 - 0.193 .681** 0.011** -0.039 - 0.061 0.90 - 1.38 

Exercise 60 0.052 - 0.202 .823** 0.005 -0.039 - 0.049 0.87 - 1.28 

 

 

 

Prolactin 

All 144 0.145 - 1.659 .951** -0.016** -0.136 - 0.106 0.87 - 1.10 

Rest 80 0.165 - 1.054 .921** -0.015* -0.125 - 0.094 0.86 - 1.10 

Exercise 64 0.145 - 1.659 .976** -0.017* -0.149 - 0.115 0.91 - 1.15 
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Hormone Condition n Range  

(IU.l
-1

) 

Correlation Bias  

(IU.l
-1

) 

LOA  

(IU.l
-1

) 

Ratio LOA 

 

 

 

FSH 

All 144 0.64 - 5.93 .868** 0.087 -1.0 - 1.1 0.88 - 1.18 

Rest 80 0.77 - 5.93 .859** 0.076 -1.1 - 1.3 0.86 - 1.19 

Exercise 64 0.64 - 5.39 .858** 0.101 -0.7 - 0.9 0.91 - 1.16 

 

 

 

LH 

All 140 1.2 - 9.4 .858** 0.066 -1.3 - 1.5 0.85 - 1.21 

Rest 78 1.2 - 8.2 .841** 0.100 -1.5 - 1.7 0.85 - 1.24 

Exercise 60 1.4 - 9.4 .875** 0.021 -1.1 - 1.1 0.87 - 1.16 

 
*P < 0.05,  **P < 0.01  
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4.4  Discussion 

This is the first study to provide a comprehensive report on the agreement between 

venous and capillary concentrations over a wide array of hormones. While the 

agreement between venous and capillary cortisol concentrations has previously been 

shown (Fryer et al., 2013), this is the first demonstration that there is good relation and 

agreement between venous and capillary concentrations of total testosterone, 

progesterone, estradiol, prolactin, FSH and LH; suggesting that capillary sampling may 

be used as an acceptable alternative to venous sampling for these measures. Correlation 

and agreement between venous concentrations of total and free IGF-1 and capillary 

equivalents was only moderate, suggesting that venous and capillary blood sampling 

may not be used as an alternative to venous sampling for determination of total and free 

IGF-1.   

 

Strong correlation and narrow LOA between venous and capillary concentrations of 

total cortisol, total testosterone, progesterone, estradiol, prolactin, FSH and LH indicate 

that capillary blood sampling may be used as an acceptable alternative to venous 

sampling in the determination of systemic concentrations of these hormones both at rest 

and following exercise. Bias indicated that capillary concentrations were significantly 

lower than venous concentrations of total testosterone (1.7 nmoll
-1

), progesterone (1.49 

nmol.l
-1

), and estradiol (0.008 nmol.l
-1

), and significantly higher than venous 

concentrations for prolactin (-0.016 nmol.l
-1

). However, this systematic bias was 

relatively small compared to the range of concentrations measured in all cases (Table 1). 

As such, it may not be necessary to apply a correction factor to account for these 

differences, particularly as in an applied setting it is the change over time in samples 

attained via the same method that is the important factor. 
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The present data suggest that concentrations of total and free IGF-1 in venous blood and 

capillary blood do not agree. The moderate correlation (r = 0.472, P < 0.01), large 

standard deviation and wide LOA between venous and capillary total IGF-1 

concentrations indicates a large amount of variability and random error in the 

relationship between venous and capillary concentrations. A stronger relationship was 

demonstrated between venous and capillary concentrations of free IGF-1 than total IGF-

1 (r = .611, P < 0.01), although ratio LOA were wider than those of total IGF-1. 

Overall, venous concentrations of total IGF-1 were lower than capillary concentrations, 

and venous concentrations were higher than capillary concentrations for free IGF-1, 

with the differences in concentrations being significant. Lack of agreement for free IGF-

1 could be explained by differences in the proportion of IGF-1 bound to one of the six 

different IGFBPs in the venous and capillary circulation. Free or binary complexed 

IGFBPs are thought to exit from the circulation rapidly, while ternary complexed 

IGFBPs seem to be confined to the vascular compartment
 
(Firth & Baxter, 2002), 

potentially leading to a more variable and changeable environment at the capillaries and 

lower capillary concentration of free IGF-1 in comparison to venous concentrations. 

Hence, difference in free IGF-1 concentrations might be expected between venous and 

capillary blood samples. However, since concentrations of total IGF-1 between 

sampling methods do not agree either, the role of IGFBPs is likely to be a secondary to 

other, unidentified, reasons for a lack of agreement.  

 

In preference to capillary blood sampling, saliva sampling has frequently been used to 

assess hormone concentrations in surrounding exercise. However, establishing the 

relationship between venous and capillary concentrations is useful because, although 

saliva provides an easy and completely non-invasive alternative for certain hormones, 
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there are disadvantages in the use of saliva. For example, the consumption of food or 

drink high in sugar content or caffeine, as often used in an exercise training 

environment, can compromise antibody-antigen binding and enzyme activity, while 

blood contamination of saliva by oral abrasions or microinjuries (e.g. common to 

contact sports or the wearing of gum shields) may substantially influence results 

(Papacosta & Nassis, 2011). There are also situations where collecting saliva can be 

time-consuming and may generate insufficient sample volumes for assay (Granger et 

al., 2007). In addition, salivary assays are not available for as wide a range of 

biomarkers as there are for plasma and serum.   

 

It is possible that individual ‘calibration’ coefficients should be developed in order to 

establish more accurate reflection of venous concentrations for a given individual. 

However, this would only be important in situations where knowledge of venous 

concentration is required, whereas in an applied sporting environment, the pattern of 

change over time may be sufficient in informing training and the physiological status of 

the athlete. In addition, the reproducibility of the nature of this relationship within an 

individual remains to be examined.  
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4.5  Conclusion 

In conclusion, the findings of the present investigation indicate strong correlation and 

agreement between venous and capillary hormone concentrations for cortisol, total 

testosterone, progesterone, estradiol, prolactin, FSH and LH. Capillary sampling might, 

therefore, be used as an acceptable alternative to venous blood sampling in determining 

concentrations of these hormones. 
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Agreement between Venous and Saliva Hormone Concentrations 

at Rest, and in Response to Resistance and Sprint Exercise 

 

5.1  Introduction 

Concentrations of circulating testosterone and cortisol are known to increase in response 

to exercise stimuli (Kraemer et al., 1990). Despite the debate relating to whether such 

responses to exercise influence training adaptation (Kraemer & Ratamess, 2005; 

Spiering et al., 2008; West et al., 2010; Wilkinson et al., 2006), these hormones are 

regularly monitored in elite sport. The traditional reference method for measuring 

hormone concentrations has been venous blood; but this can be impractical in some 

applied training situations. Saliva sampling methods are accepted as a more convenient 

and less invasive technique that enable more frequent measurement of hormone 

concentrations outside of a laboratory setting. 

 

Validation studies have reported moderate to strong correlations between total venous 

cortisol and salivary concentrations (r = 0.6 to 0.9) (Lac et al., 1993). Correlation 

between venous and saliva testosterone concentrations has been shown to be weaker 

than for cortisol, at r = 0.57, 0.60 and 0.61 for total, free, and bio-available fractions of 

plasma testosterone respectively (Crewther et al., 2010). Furthermore, few studies have 

sought to determine whether the correlation between venous and saliva is maintained in 

response to a physiological stress. This is surprising given that exercise results in a 

disproportionate increase in blood free and salivary cortisol compared to total cortisol 

because of saturation of corticosteroid-binding globulin (Paccotti et al., 2005; Vining et 

al., 1983).  Only Vanbruggen et al. (2011) have investigated the agreement between 
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venous and saliva cortisol pre- and post- low, medium and high intensity exercise 

demonstrating a significant increase in cortisol concentration in both media following 

high intensity exercise only. There was a significant moderate (r = 0.73) correlation  

between all matched samples, with saliva concentrations closely tracking those of 

venous concentrations at lower concentrations, but not as well at higher concentrations. 

More recently, agreement between serum and salivary testosterone concentrations has 

been assessed following 30 min cycling at 40%, 60% and 80% VO2max with strong 

correlations reported at moderate (r = 0.912) and high (r = 0.898) intensities, while at 

low intensities an increase in serum but not salivary testosterone was observed (Lane & 

Hackney, 2014). No research has, as yet, looked at the agreement following 

performance of high intensity interval exercise.  

 

One of the challenges in studies attempting to determine agreement between 

concentrations in different fluid samples is that it is often necessary to use different 

assay methods for the different fluid samples. As a result, measured concentrations 

might agree in relative terms, but they may not have absolute comparability (Crewther 

& Cook, 2010). To address this, a relative assessment of samples is required in order to 

establish whether there is parity between concentrations attained from the two sample 

methods, such as investigating whether salivary concentrations maintain a consistent 

relative proportion of venous total concentrations.  

 

In order to establish whether saliva sampling methods can be used as an acceptable 

alternative to venous sampling in the context of exercise training, the purpose of this 

investigation was to assess, at rest and following exercise, the agreement between 



80 

 

venous concentrations of total cortisol, total and free testosterone and saliva 

concentrations of cortisol and testosterone. 
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5.2   Materials and Methods 

5.2.1 Subjects 

Eleven physically active men (age 28  3 y; body mass (BM) 77.5  8.3 kg; 2OV max 

57.2  9.0 mlkg BM
-1
min

-1
) provided written informed consent before participating in 

the study, which was approved by the Bath Local National Health Service Research 

Ethics Committee. Participants had a range of sporting backgrounds, and habitual 

training varied from light (2-3 sessions per week) to substantial (8-10 sessions per 

week).  

 

5.2.2  Preliminary Measurements   

Preliminary tests were conducted in order to determine each participant’s maximal 

oxygen uptake.  Participants completed an incremental test to exhaustion on a SRM 

cycle ergometer (Schoberer Rad Messtechnik, Fuchsend, Germany).  The protocol 

included a 10 min warm-up at self-selected intensities followed by consecutive 3 min 

stages, at the end of which the load on the ergometer was increased by 30 W.  In the 

final minute of each stage, a one minute expired air sample was collected and analysed 

for concentrations of O2 and CO2 to assess oxygen uptake. Three maximal repetitions 

on each resistance exercise of leg press, seated bench press and seated bench pull were 

then also completed on the concept 2 dynamometer (Concept2 DYNO, Notts, UK). 

Data were used to calculate work intensities for the subsequent experimental trials.  All 

participants continued their habitual training throughout the study period but were asked 

to refrain from strenuous exercise and avoid both alcohol and caffeine consumption 

during the 24 h prior to any main trial. 
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5.2.3 Experimental Design   

Participants completed up to three trials in a randomised order separated by 5 - 10 days 

and were randomly allocated into two groups. One group completed two trials 

consisting of two exercise bouts (a cycling sprint interval exercise bout and a resistance 

exercise bout) separated by 5 h. The sprint interval exercise and the resistance exercise 

protocols are described in Chapter 4. The second group completed three trials: a rest 

day; a rest day with carbohydrate-protein supplementation in addition to their normal 

diet; and a day on which they performed cycling sprint interval exercise. Exercise and 

protein intake have previously been shown to influence hormone concentrations 

(Crewther, et al., 2006; Kraemer & Ratamess, 2005; Volek, 2004; Volek, et al., 1997). 

 

5.2.4 Experimental Protocol 

Participants arrived in the laboratory at the same time of day for each trial. They 

continued their habitual training throughout the study period but refrained from 

strenuous exercise and avoided alcohol and caffeine consumption in the 24 h prior to 

main trials. Venous blood and saliva samples were obtained on arrival at the laboratory. 

Participants in the first group completed a bout of exercise (sprint interval exercise or 

resistance exercise) after baseline sampling, and then performed the other exercise bout 

(either sprint or resistance) 5 h later. Samples were taken immediately and 1 h after each 

exercise bout. In the second group, during the rest trial, further samples were obtained at 

2, 4 and 6 h. In the protein trial, participants consumed a carbohydrate-protein drink 

(carbohydrate and whey protein isolate; 1:1 ratio; 0.5 gkg
-1

 protein) immediately after 

baseline sampling, and further samples were obtained at 1, 2, 4 and 6 h. Participants 

consumed an additional 0.17 gkg
-1

 protein following sampling at 1, 2 and 4 h to 

provide a total of 1.0 gkg
-1

 protein supplementary to their diet. In the cycling interval 
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trial, exercise was performed immediately after baseline sampling, and subsequent 

samples were obtained immediately post exercise and at 1, 2 and 4 h post-exercise.  

 

5.2.5 Sampling and Analysis 

At each sampling time point, venous blood samples were obtained first, followed by 

capillary sampling, with saliva samples the last to be collected. This order allowed for a 

lag time between collection of venous and saliva samples of approximately 10 min 

which has been shown to be sufficient to reflect equilibration between the two sample 

media (Crewther et al., 2010a; Crewther et al., 2010b). Saliva samples were collected 

by passive drool into sterile plastic containers (Sarstedt, UK). Participants were asked to 

refrain from eating or drinking in the 30 min prior to sample collection and rinsed their 

mouth with water 5 min prior to collection (Shirtcliff et al., 2002). Saliva was 

centrifuged, aliquoted into sterile containers and stored at -20
o
C until analysis. Venous 

blood samples were taken from a superficial antecubital vein. Samples were left to clot 

for 15 min, centrifuged and serum was stored at -20
o
C until analysis.  

 

Saliva was analysed for testosterone and cortisol concentrations by high-sensitivity 

enzyme linked immunosorbent assay (ELISA) (Salimetrics Europe, Suffolk, UK). 

Sensitivity of the assays was: testosterone < 1.0 pgml
-1

, and cortisol < 0.03 gdL
-1

. 

Intra and inter assay CV for testosterone was 4.6 and 8.5%, and 3.5 and 5.1%, for 

cortisol.   

 

Serum was analysed for total testosterone, free testosterone, and total cortisol 

concentrations. Serum total testosterone concentrations were determined via Isotope 

Dilution Liquid Chromatography Tandem Mass Spectrometry (LC-MS-MS). 
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Quantitation of results was performed by an internal standard method using Analyst® 

software version 1.4. Reporting range for the assay was between 0.7 - 60.0 nmoll
-1

. 

Serum concentrations of cortisol were determined by solid-phase, competitive 

chemiluminescent enzyme immunoassay (Immulite®). Serum free testosterone 

concentrations were determined by ELISA (ALPCO Diagnostics, Salem, NH, USA). 

Intra and inter assay CV was 8.9 and 8.8% respectively. Analysis methods for the 

different media were selected based upon being considered valid and established 

measurement methods. 

 

5.2.6 Statistical Analysis 

Normality tests revealed non-normal distribution of all data. As such, Spearman 

correlations were used to identify the relation between concentrations from different 

samples. Bland-Altman analyses were used to determine 95% limits of agreement 

(LOA) between saliva and capillary samples with their venous sample equivalent. As 

some degree of heteroscedasticity was evident in all Bland-Altman difference plots, log 

transformation and subsequent back transformation of the data was used to establish 

LOA, with limits also expressed as ratio LOA (Atkinson & Nevill, 1998; Bland & 

Altman, 2007). Paired t-tests were used to determine differences between sampling 

methods. Following calculation of the bias during Bland-Altman analysis, saliva 

concentrations were calculated as a percentage of venous concentrations. Saliva 

concentrations were then scaled according to this percentage to allow for absolute 

comparison between sampling methods. Data are presented as means and standard 

deviations with significance accepted at an alpha level of P < 0.05. 
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5.3  Results  

Hormone concentrations measured following carbohydrate-protein supplementation 

were not different from those measured during the rest trial, and these data were 

therefore combined for analysis. A significant increase in total cortisol and testosterone 

(P < 0.05) occurred in response to interval exercise, with a small non-significant 

increase in total and free testosterone and significant decrease in (P < 0.05) cortisol in 

response to resistance exercise (Fig. 5.1 & 5.2).  

 

Correlation between venous and saliva cortisol concentrations was strong and was 

similar at rest (r = 0.768, P < 0.01) and following exercise (r = 0.804, P < 0.01). Bias 

was significantly greater following exercise (P < 0.01) than at rest, however, LOA were 

similar. Correlation between venous total and saliva testosterone concentrations samples 

was moderate to strong, being and slightly stronger at rest (r = 0.554, P < 0.01) than 

following exercise (r = 0.434, P < 0.01). Bias and LOA were similar for samples 

obtained at rest and following exercise, with venous concentrations measuring 

significantly higher than saliva concentrations (P < 0.01) (Table 5.1). Correlation 

between venous free and saliva testosterone concentrations was weak both at rest (r = 

0.164, P > 0.05) and post-exercise (r = 0.263, P < 0.05). Bias and LOA were similar for 

samples obtained at rest and following exercise (Table 5.1). 

 

Heteroscedasticity was evident in all difference plots (Fig. 5.3) demonstrating a directly 

proportional increase in the difference between venous and saliva concentration in 

relation to the increase in the mean value of the two sample concentrations. However, 

saliva cortisol concentrations were consistently 2.0 ± 0.9% of venous cortisol 
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concentrations, saliva testosterone concentrations were 2.1 ± 1.0% of venous total 

testosterone concentrations and saliva testosterone concentrations were 12.9 ± 14.6% of 

venous free testosterone concentrations. Saliva concentrations were scaled according to 

these percentages, which substantially reduced the bias and LOA compared with the 

original concentrations (Table 5.1), with no significant difference between venous 

concentrations and scaled saliva concentrations for cortisol and total testosterone (P > 

0.05). However, differences between saliva concentrations and scaled venous 

concentrations of free testosterone were significant (P < 0.05). 
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Figure 5.1 Change in cortisol concentration in (A) venous blood (B) saliva with rest, interval exercise 

(IE) and resistance exercise (RE) at pre-exercise, post-exercise and 1-h post-exercise. 
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Figure 5.2 Change in (A) total testosterone concentration in venous blood (B) free testosterone 

concentration in venous blood and (C) saliva testosterone concentration with rest, interval exercise (IE) 

and resistance exercise (RE) at pre-exercise, post-exercise and 1-h post-exercise. 
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Figure 5.3 Bland-Altman difference plot demonstrating bias and 95% LOA between venous and saliva 

concentrations of (A) cortisol (B) testosterone and (C) free testosterone concentrations for all samples.  
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Table 5.1 Correlation and LOA between venous blood samples and saliva samples for all samples, rest, exercise and for males and females. (n = number of samples; Bias = 

venous concentration – saliva concentration). 

 

Hormone Condition n Range  

(nmol.l
-1

) 

Correlation Bias  

(nmol.l
-1

) 

LOA  

(nmol.l
-1

) 

Ratio LOA Scaled 

Bias 

(nmol.l
-1

) 

Scaled LOA 

(nmol.l
-1

) 

Scaled 

Ratio 

LOA 

 

 

 

Cortisol 

 

All 

 

144 

 

0.4 - 780.0 

 

.821** 

 

326.1** 

 

29.9 - 622.3 

 

33.9 - 94.9 

 

-23.6 

 

-391.4 - 344.3 

 

0.67 - 1.88 

 

Rest 

 

80 

 

0.4 - 526.0 

 

.768** 

 

272.3** 

 

79.0 - 465.5 

 

35.3 - 96.7 

 

-17.2 

 

-330.3 - 295.9 

 

0.70 - 1.91 

 

Exercise 

 

64 

 

0.6 - 780.0 

 

.804** 

 

393.3**† 

 

46.2 - 740.5 

 

32.2 - 92.9 

 

-25.5 

 

-442.1 - 391.2 

 

0.64 - 1.84 

 

 

Venous Total 

Testosterone 

v Saliva 

Testosterone 

 

All 

 

144 

 

0.1 - 38.0 

 

.528** 

 

19.9** 

 

9.7 - 30.1 

 

35.3 - 73.3 

 

0.6 

 

-13.7 - 14.9 

 

0.74 - 1.54 

 

Rest 

 

80 

 

0.1 - 33.2 

 

.554** 

 

19.0** 

 

9.8 - 28.2 

 

41.3 - 75.2 

 

0.3 

 

-11.6 - 12.1 

 

0.84 - 1.53 

 

Exercise 

 

64 

 

0.2 - 38.0 

 

.434** 

 

20.9** 

 

9.8 - 32.0 

 

30.6 - 69.4 

 

1.1 

 

-14.3 - 16.5 

 

0.63 - 1.43 

 

 

Venous Free 

Testosterone 

v Saliva 

Testosterone 

 

All 

 

144 

 

0.0 - 0.1 

 

.186* 

 

-0.4** 

 

0.0 - 0.7 

 

0.05 - 0.19 

 

0.07* 

 

-0.7 - 0.8 

 

0.69 - 2.83 

 

Rest 

 

80 

 

0.0 - 0.1 

 

.164 

 

-0.3** 

 

0.0 - 0.6 

 

0.05 - 0.24 

 

0.06 

 

-0.6 - 0.7 

 

0.54 - 2.54 

 

Exercise 

 

64 

 

0.0 - 0.2 

 

.263* 

 

-0.4** 

 

0.0 - 0.8 

 

0.04 - 0.13 

 

0.06 

 

-0.7 - 0.8 

 

1.01 - 2.98 

*P < 0.05,  **P < 0.01, # = Different from all samples, † = Different from rest.
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Table 5.2 Saliva concentrations expressed as a percentage of venous serum concentration for total testosterone and cortisol and venous serum free testosterone concentration 

as a percentage of saliva testosterone concentration for each individual. (Where SD = 0, only one immediate post-exercise time-point for the individual). 

 

 Saliva Cortisol and Venous Total 

Cortisol (%) 

Saliva Testosterone and Venous 

Total Testosterone (%) 

Venous Free Testosterone and Saliva 

Testosterone (%) 

 

Participant 

 

Rest 

 

Exercise 

 

Rest 

 

Exercise 

 

Rest 

 

Exercise 

 

1 

 

3.6  ± 2.2 

 

2.0 ± 1.1 

 

2.1 ± 0.9 

 

2.0 ± 0.6 

 

7.9 ± 4.2 

 

6.5 ± 1.4 

 

2 

 

1.6  ± 0.4 

 

1.8 ± 0.6 

 

1.4 ± 0.2 

 

1.5 ± 0.4 

 

8.6 ± 1.4 

 

7.5 ± 1.2 

 

3 

 

2.2 ± 0.8 

 

2.2 ± 0.0 

 

1.8 ± 0.3 

 

2.1 ± 0.0 

 

11.6 ± 2.1 

 

14.7 ± 0.0 

 

4 

 

1.9 ± 0.9 

 

3.1 ± 1.3 

 

1.8 ± 0.4 

 

2.2 ± 0.5 

 

8.2 ± 1.6 

 

6.2 ± 0.9 

 

5 

 

1.4 ± 0.4 

 

1.6 ± 0.0 

 

1.8 ± 0.2 

 

2.4 ± 0.0 

 

54.6 ± 9.9 

 

59.1 ± 0.0 

 

6 

 

2.2 ± 0.6 

 

2.4 ± 0.2 

 

3.1 ± 0.9 

 

3.5 ± 2.9 

 

5.5 ± 1.6 

 

4.6 ± 1.7 

 

7 

 

2.1 ± 0.8 

 

1.6 ± 0.4 

 

2.5 ± 0.4 

 

2.6 ± 0.7 

 

6.5 ± 0.7 

 

10.5 ± 5.8 

 

8 

 

2.1 ± 0.8 

 

0.8 ± 0.3 

 

2.1 ± 0.3 

 

1.9 ± 0.3 

 

9.5 ± 2.3 

 

12..7 ± 2.8 

 

9 

 

1.6 ± 1.1 

 

1.9 ± 0.9 

 

3.1 ± 0.6 

 

3.1 ± 0.8 

 

3.8 ± 0.7 

 

4.0 ± 1.2  
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5.4  Discussion 

Correlation between venous concentrations of total cortisol, total testosterone, free 

testosterone and saliva equivalents using the two sampling methods show good, 

moderate and poor relation respectively. After scaling of saliva concentrations, there 

was good agreement between venous and saliva compartments for total testosterone and 

cortisol.  

 

Correlations between venous total and saliva cortisol and testosterone concentrations 

were strong and moderate respectively. Correlations were not different between rest and 

following exercise for cortisol, and slightly stronger at rest for testosterone. However, 

the bias was greater, and absolute LOA for both hormones were wider, following 

exercise than at rest for both hormones. These differences may be due to calculating the 

LOA from a smaller number of samples across a wider measurement range following 

exercise, although it may, alternatively, indicate differences in equilibration of cortisol 

and testosterone between blood and saliva at rest and following exercise. Differences in 

the relative increase of venous and saliva cortisol concentrations from pre- to post-

exercise (Crewther et al., 2010; Gozansky et al., 2005) have been attributed to 

saturation of cortisol binding globulin at serum concentrations over 500 nmoll
-1

, 

leading to a greater relative increase in the free fraction of the hormone. Saliva hormone 

concentration is considered to reflect the free (unbound) fraction of a hormone (Lac et 

al., 1993; Laudat et al., 1988; Peake et al., 2005) and therefore saturation of binding 

globulins might explain a greater relative increase in saliva cortisol concentration. In the 

present study, the relative increase in saliva cortisol from pre- to immediately post-

exercise was greater than that of venous cortisol (75% and 57% respectively), although 

this was not significant. Subsequent analyses revealed saliva cortisol concentration to be 
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1.9 ± 0.9% of venous cortisol concentrations at rest and 2.2 ± 0.9% immediately post-

exercise suggesting that regardless of absolute serum concentration, approximately the 

same proportion of cortisol is consistently transferred into saliva. 

 

Saliva testosterone concentrations increased by 33% from pre- to post-exercise, which 

was significantly greater than the 11% increase observed in venous concentrations. In 

addition, saliva testosterone concentrations were 6.6 ± 2.1% of venous total testosterone 

concentrations at rest, but were significantly greater (9.0 ± 5.2%) immediately post-

exercise. These findings raise the possibility that saturation of binding globulins or 

albumin in the blood may occur at high concentrations of testosterone, resulting in an 

increase in the free fraction of the hormone. However, mean serum free testosterone 

was 0.05 nmoll
-1

 at rest and 0.04 nmoll
-1

 following exercise, indicating that there was 

not an increase in testosterone in the free form in venous blood. An alternative 

explanation is that testosterone bound to albumin dissociates readily at the capillaries 

due to conformational change of albumin upon interaction with the endothelial wall, 

allowing a greater amount of the hormone to diffuse into the saliva (Pardridge, 1986). 

This bioavailable testosterone does not contribute to the measurement of free 

testosterone in the serum, but has been shown to increase, along with an increase in 

albumin, following exercise (Crewther et al., 2010). It is also possible for a small 

proportion of albumin itself to enter the oral cavity, possibly transporting testosterone 

with it (Lac, 2001). These factors are likely to influence testosterone to a greater extent 

than cortisol, as only up to 7% of cortisol is bound to albumin, in comparison to up to 

50% for testosterone (Pardridge, 1986). 
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Venous free testosterone concentration represented 13 ± 15% of saliva testosterone 

concentration. Inter-individual variation for venous free testosterone versus saliva 

testosterone was greater than that for venous total testosterone and total cortisol in 

comparison with saliva concentrations. For example, for one participant, venous free 

testosterone concentration was 54 ± 11% of saliva testosterone concentration (Table 2). 

This may indicate individual variation in the partitioning or transport of hormones 

between blood and saliva and represents another factor that may confound the 

relationship between the different compartments. It is possible that individual 

‘calibration’ coefficients should be developed in order to establish more accurate 

reflection of venous concentrations for a given individual. This may be particularly 

important where results are used to inform subsequent athletic training and provide 

information regarding the status of the athlete. However, the reproducibility of the 

nature of this relationship within an individual remains to be examined.  

 

A limitation of current analytical methods meant that it was necessary to measure 

concentrations of cortisol, and total and free testosterone using different methods in 

different sample types. This limits the ability to make absolute comparison between 

samples but it is still possible to identify whether there is relative agreement between 

samples using different collection methods and this makes the understanding of 

agreement arguably more relevant. 

 

While the present data provide encouraging evidence for the use of saliva, it comes with 

a caveat that although saliva provides an easy and non-invasive alternative, there are 

disadvantages in the use of saliva. The consumption of food or drink high in sugar 

content or caffeine, as often used in an exercise training environment, can compromise 
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antibody-antigen binding and enzyme activity, while blood contamination of saliva by 

oral abrasions or microinjuries (e.g. common to contact sports or the wearing of gum 

shields) may substantially influence results (Papacosta & Nassis, 2011). There are also 

situations where collecting saliva can be time-consuming and may generate insufficient 

sample volumes for assay (Granger et al., 2007).   
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5.5  Conclusion 

In conclusion, the findings of the present investigation demonstrate that although 

absolute LOA did not indicate direct agreement between venous and saliva measures, 

saliva hormone concentrations did display a proportional relationship with venous 

concentrations. Scaling of salivary concentrations revealed direct agreement between 

venous and saliva concentrations. This suggests that saliva samples can be used to track 

and reflect changes in venous hormone concentrations, but that appropriate correction of 

saliva hormone concentrations is needed if saliva is to be used as an estimate of venous 

hormone concentrations of total cortisol and total testosterone. 
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- Chapter 6 - 
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Measurement of Steroid Hormones in Saliva: Effects of Sample 

Storage Condition and Duration 

 

6.1 Introduction 

Assessment of hormone responses to athletic activity can provide valuable 

information regarding training stress, adaptation and exercise performance (Groschl, 

2008). Measurement of steroid hormones in saliva is often used as an alternative to 

blood in studies of elite performers (Filaire et al., 2001; Elloumi et al., 2003; Beaven 

et al., 2008a; Beaven et al., 2008b; Crewther et al., 2008; Crewther et al., 2010; 

Edwards et al., 2006). Saliva collection procedures are non-invasive, easy to 

administer, stress-free and enable repeated sampling over the course of minutes or 

days (Granger et al., 2004). Furthermore, validation studies have demonstrated good 

agreement between salivary and total serum hormone concentrations(Crewther et al., 

2010); especially the free or biologically active fraction of blood hormones (Vining et 

al., 1983; Crewther et al., 2010; Arregger et al., 2007).  

 

Factors such as storage duration and temperature can influence saliva concentrations 

of steroid hormones because of degradation by enzymes within the saliva matrix 

(Chikuma et al., 1991; Kato et al., 1992), while micro-organisms in the oral cavity are 

potent decomposers of salivary components (Kaufmann et al., 1999; Suzuki et al., 

1998). Cortisol has been reported to be stable at 5°C for up to 3 months or at -20°C 

and -80°C for up to one year, but to decrease by approximately 9% per month in 

samples stored at room temperature (Garde and Hansen, 2005).  In contrast, others 

have reported a 25% decrease in salivary cortisol after just 3 weeks of storage at 4°C 
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or at room temperature, and an alarming 30-70% decrease over this period in samples 

that were not centrifuged prior to storage (Groschl et al., 2001).  Testosterone has 

been reported to be stable at -80°C for up to three years but to decrease by 18% after 

6 months at -20°C and increase by 20% and 330% after 1 week and 4 weeks of 

storage at 4°C, respectively (Granger et al., 2004).  Despite these mixed findings, the 

general consensus communicated in recent review articles is that salivary steroids are 

stable for up to 1 month at 4
o
C (i.e. in a regular household refrigerator) and for up to 3 

months at -20
o
C (Wood, 2009; Gatti and De Palo, 2010; Papacosta and Nassis, 2011). 

 

Saliva collection and analysis for the measurement of hormone concentrations is 

becoming increasingly routine in elite sport.  However, this setting places restrictions 

on how samples can be handled and stored after collection, especially in relation to 

access to freezers and centrifuges. As such, samples may be exposed to storage for 

long periods at room or fridge temperature (e.g. across training camps or during 

transportation) as whole native saliva before delivery to the laboratory. Therefore, the 

purpose of this study was to assess the effect of storage condition and duration on the 

concentration of selected steroid hormones typically analysed in elite sport.  

Specifically, we investigated the influence of storage temperature at 4
o
C compared to 

20
o
C on salivary cortisol, testosterone and estradiol concentrations after 1, 3, 7 and 14 

days; and the longer-term (28 and 84 days) stability of these hormones in whole saliva 

when stored in freezer conditions (-20
o
C  and -80

o
C). 
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6.2 Methods 

6.2.1 Participants 

Saliva samples were obtained from healthy male (n = 6) and female (n = 3) adult 

volunteers aged 21-39 years. Ethical approval was granted by the local National 

Health Service Research Ethics Committee, in line with the Helsinki Declaration of 

1975.  

 

6.2.2 Preliminary Investigation 

An initial pilot study was used to inform the methods used in the present 

investigation.  Specifically, we aimed to determine the volume of saliva that could be 

realistically provided by an individual in a single sample as well as the effects of 

specimen collection duration and multiple aliquoting of the same sample on sample 

concentration.  Participants (n=2) were asked to produce consecutive 6 mL saliva 

samples into 10 mL containers.  Participants were able to provide 18 mL of saliva 

within 15-30 min.  Each sample was spilt into six aliquots of 1-mL. The entire first 

sample, and half of the second and third samples were vortexed and aliquoted in raw 

form, while the remainder of the second and third samples were centrifuged prior to 

being aliquoted.  Samples were frozen immediately at -80
o
C and stored overnight 

before analysis of testosterone, cortisol, and estradiol by enzyme-linked 

immunosorbent assay (ELISA; Salimetrics, PA, USA). Variation in concentration 

between pre-storage treatment and between individual aliquots of the same sample 

was small, and within 95% confidence intervals based on the intra-assay coefficient of 

variation (CV). These results showed that measured hormone concentrations were not 

influenced by sequential aliquoting from a sample or by the vortexing process prior to 

aliquoting. 
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6.2.3 Experimental Procedures 

To study the short-term effects of sample storage in a regular household refrigerator 

compared to room temperature (i.e. conditions indicative of those typically available 

at field-based testing sites in elite athletes) and the longer duration stability of 

hormones in samples stored in freezer conditions (i.e. -20
o
C and -80

o
C), participants 

provided saliva samples on two separate testing days (separated by 1 week).  On each 

occasion, participants provided two 10 mL saliva samples via unstimulated passive 

drool into 15 mL collection tubes with no additive.  In order to achieve a wide range 

of hormone concentrations, we took advantage of the circadian variation in hormones 

by collecting samples from all participants both upon waking and in the late afternoon 

on each testing day; providing 18 different samples over a range of concentrations for 

storage in each condition. To minimise any contamination of samples, participants 

were asked to refrain from brushing their teeth and eating or drinking in the 60 min 

prior to sample collection.  Participants were also required to rinse their mouths with 

water 10 min prior to sampling. 

 

Following collection, samples were vortexed prior to being separated into eight 1-mL 

aliquots and stored in the appropriate condition.  Samples collected on the first 

occasion were frozen at -80
o
C and -20

o
C and analysed at baseline and after 28 days 

and 84 days.  Samples collected on the second occasion were stored in a refrigerator 

at 4
o
C or at a room temperature of 20

o
C, and were analysed after 1, 3, 7 and 14 days, 

and compared to a baseline -80
o
C control. For consistency in the sequence of 

aliquoting and assay procedures, all -80
o
C samples were handled prior to -20

o
C 

samples, and all 4
o
C samples were handled prior to those stored at 20

o
C. On all 

occasions, morning samples were processed prior to afternoon samples. 
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Once samples had been stored for the designated amount of time in the assigned 

condition, all samples (stored at a higher temperature than -80
o
C) were transferred to -

80
o
C overnight in order that samples stored at room and fridge temperature completed 

a freeze-thaw cycle to precipitate the mucins in the sample (Granger et al., 2007) and 

so that all samples could be defrosted from the same condition. Following overnight 

freezing at -80
o
C, samples were defrosted at room temperature, centrifuged for 10 min 

at 5000 rpm in a micro-centrifuge to remove particulate matter before clear sample 

was removed and pipetted into separate Eppendorf tubes. Samples were analysed in 

duplicate for concentrations of testosterone, cortisol, and estradiol by ELISA 

(Salimetrics, PA, USA). The intra-assay co-efficient of variation was less than 9% for 

all assays.  Inter-assay reliability calculated using the same high and low control 

samples run in quadruplicate on all plates were 5.4 and 8.4% for cortisol, 11.8 and 

18.3% for testosterone, and 17.6 and 16.5% for estradiol. 

 

6.2.4 Statistical Analysis 

Two, two-way ANOVA for repeated measures (treatment x time) were used to 

identify overall differences between experimental conditions; one to assess 

differences between short-term storage conditions (4
oC

 and 20
oC

), the second between 

long term-storage conditions (-20
oC

 and -80
oC

). The Greenhouse–Geisser correction 

was used for epsilon <0.75 and the Huynh–Feldt correction was adopted for less 

severe asphericity. Where significant F values were found, the Holm–Bonferroni 

stepwise correction was applied to determine the location of variance (Atkinson, 

2002). All data are expressed as mean ± standard deviation. Statistical significance 

was set at the 0.05 level. The likelihood that any observed changes in a given sample 
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were influenced by sample handling variance was calculated based on the inter-assay 

CV using the formula of Reed et al. (2002). 
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6.3 Results 

6.3.1 Cortisol 

A main effect was observed for time in both long term (P < 0.05) and short term 

storage conditions (P < 0.05). Cortisol concentrations were significantly reduced 

relative to baseline measurements (mean ± SD; 2.5 ± 2.1 ng∙ml
-1

, range: 0.5 – 6.9 

ng∙ml
-1

) under both freezer conditions after 28 days (-9 ± 11%; 2.3 ± 1.9 ng∙ml
-1

, P ≤ 

0.01) and 84 days (-10 ± 13%; 2.3 ± 1.8 ng∙ml
-1

, P < 0.01) of storage. Under non-

freezer conditions, cortisol concentrations did not decrease below baseline (mean ± 

SD; 2.8 ± 1.9 ng∙ml
-1

, range: 0.5 – 6.3 ng∙ml
-1

) until the 14-day time-point (-12 ± 

16%; 2.6 ± 1.7 ng∙ml
-1

, P < 0.05). There were no differences between the freezer 

conditions or between the non-freezer conditions in either the magnitude of the time-

course of these changes (Fig. 6.1).  

 

6.3.2 Testosterone 

A main effect was observed for time in the freezer, long term storage conditions (P < 

0.05). Relative to baseline measurements (99.2 ± 31.5 pg∙ml
-1

, Range: 34.8 – 151.1 

pg∙ml
-1

), testosterone concentrations in freezer conditions were maintained at the 24-

day time-point, but had increased significantly above baseline by the 84-day time-

point (24 ± 16%; 122 ± 37 pg∙ml
-1

, P < 0.001); with no differences between -80
o
C and 

-20
o
C  treatments (Figure 2). In the non-freezer storage conditions a main effect for 

time were detected (P < 0.05), with a linear decrease in testosterone observed from 

baseline measurements (95.9 ± 41.2 pg∙ml
-1

, range: 21.2 – 168.0 pg∙ml
-1

); reaching its 

lowest concentrations by day 7 (-26 ± 15%; 73.4 ± 36.2 pg∙ml
-1

, P < 0.001) but 

returning to near basal concentrations by 14 days (99.8 ± 43.3 pg∙ml
-1

). A  main effect 

for condition was also present (P < 0.05) with the decrease in testosterone 
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concentrations observed in non-freezer conditions across days 1-7 was significantly 

greater when samples were stored at 20
o
C compared to 4

o
C (P < 0.001; Fig. 6.2).  
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Figure 6.1 Saliva cortisol concentrations expressed as a percentage change from baseline after long-

term storage at -80
o
C and -20

o
C, and short-term storage at 4

o
C and 20

o
C. #, Significantly different from 

baseline across both treatments.  
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Figure 6.2  Saliva testosterone concentrations expressed as a percentage change from baseline  after 

long-term storage at -80
o
C and -20

o
C, and short-term storage at 4

o
C and 20

o
C. #, Significantly different 

from baseline across both treatments. *, Significantly different between treatments.  
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6.3.3 Estradiol 

A main effect was observed for time in long term storage conditions (P < 0.05) with 

estradiol concentrations reduced relative to baseline measurements (mean ± SD; 5.0 ± 

1.6 pg∙ml
-1

, range: 2.4 – 7.9 pg∙ml
-1

) under both freezer conditions after 28 days of 

storage (-9 ± 12%; 4.4 ± 1.4 pg∙ml
-1

, P < 0.01) but with no differences between -80
o
C 

and -20
o
C treatments at any time-point. A main effect for time was also observed in 

short-term storage conditions (P < 0.05) with estradiol concentrations in both non-

freezer conditions reduced relative to baseline concentrations (5.3 ± 1.8 pg∙ml
-1

, 

range: 2.6 – 9.4 pg∙ml
-1

) by day 1 (-15 ± 21%; 4.5 ± 2.0 pg∙ml
-1

, P ≤ 0.01), and were 

substantially decreased below baseline by day 7 (-58 ± 17%; 2.2 ± 1.0 pg∙ml
-1

, P < 

0.001). Following 14 days storage, estradiol concentrations were greater than reported 

at day 7, but remained lower than baseline concentrations (-27 ± 35%; 3.6 ± 1.5 

pg∙ml
-1

, P < 0.05). A main effect for storage condition was also detected in short-term 

storage conditions (P < 0.05) with estradiol concentrations were significantly lower in 

samples stored at 20
o
C in comparison to 4

o
C when measured at day 1 and day 3 (P ≤ 

0.01; Fig. 6.3). 
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Figure 6.3  Saliva estradiol concentrations expressed as a percentage change from baseline  after long-

term storage at -80
o
C and -20

o
C, and short-term storage at 4

o
C and 20

o
C. #, Significantly different from 

baseline across both treatments. *, Significantly different between treatments.  
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6.3.4 Inter-Assay Variability 

The likelihood that observed changes in hormone concentration were influenced by 

sample handling variance was calculated based on the inter-assay CV using the 

formulae of Reed et al. (2002). Previous formulae (Wood & Durham, 1980; Wood, 

1981) purport a two-fold difference to be the upper limit on acceptable variability. 

The formula of Reed et al. (2002) allows determination of the probability that an 

assay will accurately discern a k-fold difference between sample analyte 

concentrations where a sample has repeated measures, based on the knowledge of 

assay variability (CV).  Analysis using the formula indicates that there was a 34% and 

36% probability that the decrease in cortisol concentrations observed after 1 and 3 

months storage, respectively, in freezer conditions (i.e. a 9.5% mean decrease) was 

due to inter-assay variation. For testosterone and estradiol samples stored in freezer 

conditions, an even larger proportion (94% and 72%) of the reported changes in 

sample concentrations at 1 month was likely to be representative of inter-assay 

variation, respectively. For samples stored in non-freezer conditions, there was a 24% 

chance that the decrease in cortisol concentrations at day 14 (-12 ± 16%) was a 

function of inter-assay variance, while there was a 27% and a 6% probability that the 

decrease in testosterone (-26 ± 15%) and estradiol (-58 ± 17%) concentrations at day 

7 may be ascribed to inter-assay variance, respectively. 
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6.4 Discussion 

The main focus of the present study was to assess the effects of storage temperature 

and duration on measured concentrations of steroid hormones in whole, native saliva. 

Cortisol concentrations were not different between aliquots frozen immediately and 

those stored at room temperature or in a refrigerator for up to 7 days.  In contrast, 

there was a linear decrease in testosterone and estradiol concentrations across 1 to 7 

days of storage in non-freezer conditions; but samples stored in a refrigerator were 

more stable than those stored at room temperature. Longer-term storage of samples in 

freezer conditions were typically within 12% of baseline levels for all hormones, and 

a large proportion of these changes may be attributable to inter-assay variance. 

Storage condition and duration of saliva samples can introduce large error into 

measured concentrations of salivary hormones; particularly gonadal steroids.  

 

In the present study, there were no effects on the concentrations of salivary cortisol 

after storage of samples for up to 7 days in a refrigerator or at room temperature.  This 

finding is consistent with reports that cortisol is stable for up to 1 week at 4
o
C and at 

18
o
C in whole native saliva (Groschl et al., 2001).  In contrast, the data reported here 

shows a linear decrease in testosterone and estradiol concentrations across this period, 

reaching a mean low of -26 ± 15% and -58 ± 17% at 7 days, respectively. This 

degradation in sample concentrations was shown to be significantly more pronounced 

in samples stored at 20
o
C than at 4

o
C, for testosterone (at all time-points) and 

estradiol (at days 1 and 3). These observations are in agreement with previous 

research showing no differences in cortisol levels after 4 days storage in non-freezer 

conditions, but a marked reduction in testosterone and estradiol concentrations after 4 

days in the refrigerator (18% and 34%) or at room temperature (32% and 64%), 



112 

 

respectively (Schwartz et al., 2005). One plausible explanation is the influence of 

bacteria on sample integrity, given previous evidence of a decrease in testosterone but 

not cortisol in samples loaded with bacteria and when stored at room temperature 

prior to analysis (Whembolua et al., 2006). Thus, our data support the notion that 

bacterial multiplication may contribute to the decrease in gonadal steroid hormone 

concentrations during storage at higher temperatures. 

 

Following the marked decrease in measured testosterone and estradiol levels after 1 

weeks storage in non-freezer conditions, the subsequent increase or ‘rebound’ in the 

concentrations of these hormones reported after 2 weeks was unexpected and, to our 

knowledge, this pattern has not been reported previously.  Other authors have 

observed an increase in testosterone concentrations in samples stored at 4
o
C, but this 

was a linear increase from initial concentrations, and was determined using a single 

pooled sample from all participants (Granger et al., 2004). The increase in 

concentrations from day 7 to day 14 in the present study was systematic, with nearly 

all individual samples demonstrating an increase in concentrations. This effect cannot 

be explained by assay variation, as control values did not demonstrate the same 

pattern. It is beyond the scope of this study to determine the reason for this effect, but 

possible explanations include changes in sample pH, enzymatic activity and bacterial 

multiplication. Where the pH of the sample drops below 4, the antibody–antigen 

reaction necessary for accurate measurement of salivary biomarkers by immunoassay 

is compromised, resulting in artificially high estimates of hormone concentrations 

(Granger et al., 2007). In urine samples, microbial contamination can induce 

modification of steroid structure by oxidoreductive reactions (de la Torre et al., 2001). 

As such, while an increase in steroid concentrations due to bacterial growth is less 
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frequently observed than a decrease, an increase can occur due to bacterial hydrolysis 

of androstenediol, followed by 3-beta hydroxysteroid dehydrogenase and steroid 

isomerase activity (Mareck et al., 2008). This may also apply to estradiol given that 

conversion from androstenedione also occurs via the action of 3-beta hydroxysteroid 

dehydrogenase. 

 

It is noteworthy that the long-term storage of steroid hormones in saliva was more 

stable in samples stored in freezer compared to non-freezer conditions, and that there 

were no significant differences between a regular house-hold freezer (-20
o
C) 

compared to storage at ultra-low temperatures (-80
o
C). Variation in cortisol 

concentrations was less than 10% for longer-term storage of samples for up to 3 

months, but was shown to be significantly different from baseline.  This is in contrast 

to the findings of others who have shown that salivary cortisol is stable for up to 1 

year when archived at -20
o
C or -80

o
C (Garde and Hansen, 2005) in centrifuged saliva. 

However, cell and cell fragments within the oral mucosa contained in whole saliva 

provide an optimal surface for bacterial growth (Macpherson and Dawes, 1999), so 

centrifugation prior to storage likely preserves the concentration of hormones within 

the sample (Groschl et al., 2001; Granger et al., 2004). The present investigation 

aimed to preserve ecological validity by storing whole saliva as would be done in an 

exercise training environment; thereby providing greater real-world relevance. 

 

To the authors’ knowledge, this is the first study to report on the longer-term stability 

of salivary estradiol in freezer conditions, and our data show small albeit significant 

decreases in estradiol concentrations (i.e. less than 10% from baseline) after 1 month, 

followed by a return to near baseline values by 3 months.  Although testosterone 
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concentrations were shown to be stable after 1 month in freezer conditions, a similar 

but more marked subsequent increase in concentrations to that observed for estradiol 

was shown at 3 months.  This increase in gonadal steroid concentrations for samples 

stored in freezer conditions is in contrast to others who have shown an 18% decrease 

or no-change in measured testosterone levels when stored for 6 months at -20
o
C or -

80
o
C, respectively (Granger et al., 2004); but may be a function of differences 

between studies in the duration of sample storage prior to analysis. 

 

It is important to highlight that potential sources of pre-analytical measurement error 

(such as drift in the quality and concentration of  reagents and controls as well as 

subtle differences in assay technique) may account for some of the variance in 

hormone levels across time in the present study. As an expression of plate-to-plate 

consistency, the inter-assay co-efficient of variation calculated from the mean values 

for the high and low controls on each plate was less than 20% for all analyses; which 

is considered to be acceptable for immunoassays (Kivlighan et al., 2004; Reed et al., 

2002). Application of the formula of Reed et al. (2002), as a method to further explore 

the probability that any observed changes in a given single sample were influenced by 

inter-assay variation suggests that changes in hormone concentrations across the 

period of storage needed to be fairly large to be attributable to storage condition per 

se.  For example, there was approximately an 80% probability that changes in gonadal 

steroids after 1 month storage in freezer conditions was due to inter-assay variation. In 

contrast, the likelihood that the relatively large decrease in testosterone or estradiol 

concentrations by 7 days of storage at room or fridge temperature was due to sample 

handling variance was 26% and 6%, respectively; thereby more likely representing a 

true effect of storage temperature as a source of measurement error. 
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6.5  Conclusion 

The present results on the reliability of salivary steroid hormones under different 

storage conditions highlights problems that may occur when saliva is not frozen in the 

hours immediately after collection.  As long as these changes remain within the 

precision of the assay, however, even significant differences are not practically 

meaningful.  Nonetheless, greater changes in hormone concentrations associated with 

storage condition could be misinterpreted and may, for example, confuse the 

interpretation of the stress response to training in elite sport.  The present findings 

suggest that, in order to preserve the ‘original’ concentrations of hormones in saliva, 

gonadal steroids should be kept refrigerated upon collection and stored at -20
o
C or 

below within 24 h.  Samples to be analysed for cortisol may be stored or transported 

for up to 7 days at room temperature or in a refrigerator before freezing.  Samples to 

be analysed for cortisol, testosterone or estradiol may remain frozen for up to 1 month 

prior to analysis. 
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The Influence of Exercise Bout Order on the Concentration of 

Serum Hormones 

 

7.1 Introduction 

The acute hormone response to exercise has been linked to subsequent adaptation to 

training (Kraemer and Ratamess, 2005; Ahtiainen et al., 2005; Crewther et al., 2006; 

Beaven et al., 2008a; Beaven et al., 2008b). Exercise elicits a response in a wide 

variety of hormones with the resultant changes, and interaction between them, 

influencing processes such as muscle protein turnover and substrate metabolism, as 

well as being able to identify changes in the physiological status of an athlete through 

being indicative of non-functional over-reaching and over-training. Testosterone and 

cortisol are the primary hormones that have been linked to influencing muscle protein 

turnover with the magnitude of testosterone response to strength training having been 

suggested to influence gains in muscular strength (Beaven et al., 2008a; Beaven et al., 

2008b), with cortisol having been shown to increase protein degradation in muscle 

cells, suggesting a prominent role in tissue remodelling (Kraemer and Ratamess, 

2005). In addition, follicle stimulating hormone (FSH) and luteinising hormone (LH) 

can act as indicators of the hypothalamus-pituitary-gonadal axis, and LH, as an 

upstream signal for secretion of testosterone, may influence the ability of testosterone 

to respond to exercise and contribute to adaptation (Safarinejad et al., 2009). Cell 

proliferation and tissue growth are also influenced by IGF-1, which is considered to 

be a potent growth factor (Frystyk et al., 2010). IGF-1 has also been identified to be a 

useful marker of metabolic stress (Nindl et al., 2007). In its role in this capacity, 

interactions have also been reported with estrogen and progesterone, with estrogen 
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and progesterone having been demonstrated to be important in the regulation of 

substrate utilisation during exercise (Braun & Horton, 2001), as well as exerting an 

influence on circulating IGF-1 concentrations (Juul et al., 1997; Gleeson & Shalet, 

2005). Estrogen has also been shown to influence concentrations of cortisol and 

prolactin (Kraemer et al., 2012). Prolactin has been suggested to have a role in 

identification of over-training in athletes, with elevated resting concentrations thought 

to be indicative of non-functional over-reaching and over-training syndrome, with 

suppressed prolactin response to a second exercise bout a possible diagnostic tool for 

over-training syndrome (Meeusen et al., 2010).  

 

In competitive sport it is common practice for athletes to complete at least two 

training sessions within a day. Depending on the event and requirements of the sport, 

these training sessions may target very different training goals. An interference theory 

has been suggested (Docherty and Sporer, 2000) relating to the observed 

compromised strength gains when strength and endurance are trained concurrently 

(Bell et al., 2000; Hakkinen et al., 2003; Chtara et al., 2008). Given the reported 

relationship between acute hormone response to exercise and subsequent training 

adaptation (Kraemer and Ratamess, 2005; Ahtiainen et al., 2005; Crewther et al., 

2006; Beaven et al., 2008b; Beaven et al., 2008a) the acute hormone response in 

relation to individual exercise bouts may contribute to this cumulative effect. As such, 

it is important to understand hormonal responses to individual exercise bouts of 

different types, and how the order of these sessions may influence the hormone 

responses generated by subsequent sessions. 
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In contrast to a number of studies detailing responses to various types of single 

exercise bouts (Kraemer and Ratamess, 2005; Crewther et al., 2006), literature 

concerning the influence of repeated bouts of exercise is sparse, with even less 

information available on repeated bouts of exercise of different types. It is not known 

whether performing two different exercise sessions within a day, and in a different 

order, may influence the hormone response to these sessions and hormone 

concentrations across the course of the day. Therefore, the purpose of this study was 

to assess hormone responses to the completion of interval and resistance exercise 

within the same day, where one session was performed in the morning, and one in the 

afternoon. 
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7.2 Method 

7.2.1  Participants 

Seven males (age 28  3 y; body mass (BM) 77.6  9.5 kg; 2OV max 59.5  8.9 

mlkg BM
-1
min

-1
) participated in this study. All individuals were healthy, 

participating regularly in exercise or substantial training. Each participant was briefed 

regarding the nature of the study and provided written informed consent prior to 

commencing any testing. This study was approved by the Bath Local National Health 

Service Ethics Committee. 

 

7.2.2  Preliminary Measurements   

Preliminary tests were conducted in order to determine each participant’s maximal 

oxygen uptake.  Participants completed an incremental test to exhaustion on a SRM 

cycle ergometer (Schoberer Rad Messtechnik, Fuchsend, Germany).  The protocol 

included a 10 min warm-up at self-selected intensities followed by consecutive 3 min 

stages, at the end of which the load on the ergometer was increased by 30 W.  In the 

final minute of each stage, a one minute expired air sample was collected and 

analysed for concentrations of O2 and CO2 to assess oxygen uptake. Three maximal 

repetitions on each resistance exercise of leg press, seated bench press and seated 

bench pull were then also completed on the Concept II dynamometer (Concept II 

DYNO, Notts, UK). Data were used to calculate work intensities for the subsequent 

experimental trials.  All participants continued their habitual training throughout the 

study period but were asked to refrain from strenuous exercise and avoid both alcohol 

and caffeine consumption during the 24 h prior to any main trial. 
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7.2.3 Experimental Design   

Participants completed two main trials in a randomised order separated by 5-10 days.  

Over the 24 h preceding the first of these trials, each participant recorded their usual 

diet and activity and were subsequently asked to adhere to the same dietary intake and 

activity pattern in the 24 h prior to their second trial. Participants completed two 

exercise sessions separated by 4 h. One exercise session consisted of high-intensity 

interval exercise performed on an SRM ergometer and comprised a 10 min warm up 

followed by 10 x 30 s sprints with 90 s recovery between each sprint. Participants 

were asked to aim for a peak power of 150 % power at 2OV max and then try to sustain 

a power output as close to that as they could for the remainder of each 30-s sprint. The 

resistance exercise session consisted of 5 sets of 10 repetitions at 80% of maximum 

on seated bench press, leg press and seated bench pull exercises. Exercises were 

performed as a superset (no rest interval between exercises) in the aforementioned 

order, with one minute recovery after each superset. In one trial, participants 

performed the interval exercise session in the morning and the resistance session in 

the afternoon, and in the other trial they performed the sessions in the reverse order. 

 

7.2.4 Experimental Protocol 

Each participant arrived in the laboratory at the same time of day for each trial, not 

fasted, and a pre-exercise blood sample was obtained from an antecubital forearm 

vein. Participants then completed the first exercise session and blood samples were 

taken immediately after and 1 h after completion of this first exercise bout. Six hours 

after the start of the first exercise session, a further blood sample was taken before 

participants performed the second exercise session, followed by samples taken 

immediately and 1 h after completion of the second exercise bout (Fig. 1). In all trials, 
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participants were permitted to leave the laboratory between exercise bouts to continue 

with their normal daily routine. 

 

 

 

 

Figure 7.1  Schematic of timescales of both trials. Vertical arrows indicate blood sampling time-points. 

 

 

Blood was analysed immediately for lactate and glucose using an automated lactate 

and glucose analyser (YSI 2300 STAT Plus). The remaining sample was divided in to 

two 5-ml aliquots for plasma and serum. The serum sample was left to clot for 15 min 

at room temperature before being centrifuged at 3000 rpm (1500 g) for 10 min. 

Plasma samples were centrifuged immediately at 3000 rpm (1500 g) for 10 min. 

Serum and plasma were then transferred to labelled eppendorfs and frozen at -20oC 

until further analysis.  

 

Serum samples were analysed for total testosterone, free testosterone, and total 

cortisol. Plasma samples were analysed for free and total IGF-1. Serum total 

testosterone concentrations were determined via Isotope Dilution Liquid 

Chromatography Tandem Mass Spectrometry (LC-MS-MS). Samples were assayed 

on an automated LC-MS-MS system controlled by Analyst® software. Quantitation 

of results was performed by an internal standard method using Analyst® software 

version 1.4. Reporting range for the assay was between 0.7 - 60.0 nmol.l
-1

. 
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Determination of serum free testosterone concentrations was completed via ELISA 

(ALPCO Diagnostics, Salem, NH, USA). Intra- and inter-assay CV was 8.9 and 8.8% 

respectively Serum concentrations of total cortisol were determined via solid-phase, 

competitive chemiluminescent enzyme immunoassay using the automated Immulite® 

system using commercially available kits. Plasma total IGF-1 concentrations were 

determined using a commercially available kit (Active IGF-I ELISA, DSL-10-5600), 

involving a simple acid-ethanol extraction procedure in which IGF-I was separated 

from its binding proteins, with an assay sensitivity of 0.004 nmol.l
-1

. Determination of 

plasma free-IGF-I concentrations was carried out using a commercially available kit 

(Active free IGF-I ELISA, DSL-10-9400), with an assay sensitivity of 0.002 nmol.l
-1

 

(DSL Europe, Oxford, UK). Intra- and inter-assay CV for total and free IGF-1 were 

6.0 and 6.7%, and 3.1 and 9.1% respectively. Serum concentrations of estradiol, 

progesterone, prolactin, FSH and LH were determined via a semi-automated biochip 

immunoassay analyser (Evidence Investgator, Randox Laboratories, Co. Antrim, 

UK). Intra assay CV of the fertility array was 8.5, 10.3, 8.0, 6.3, and 5.7% for 

estradiol, progesterone, prolactin, FSH and LH respectively. 

 

7.2.5 Statistical Analyses 

One-way ANOVA was used to identify differences in hormone concentrations across 

each trial. Two-way, repeated measures ANOVA was performed to identify 

differences between trials. Subsequent paired two-tailed t-tests were used to identify 

the location of any variance. Incremental area under curve (IAUC) was calculated 

from pre-exercise to 1 h post exercise for each training session and each trial day, and 

total area under curve (TAUC) using the trapezoid method was calculated for all 

samples on each trial day. Statistical analyses were performed using IBM SPSS 
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Statistics (version 20.0.0; IBM, New York, NY) and Microsoft Office Excel for 

Windows version 2003 software (Redmond, WA, USA). All data are presented as 

mean ± SD. Statistical significance was accepted at P < 0.05. Post hoc power 

calculations were performed where near significant results were observed using 

G*Power software version 3.1.9.2 (Dusseldorf, Germany). 
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7.3 Results 

7.3.1  Morning Interval Exercise – Afternoon Resistance Exercise 

In response to interval exercise in the morning, concentrations of cortisol, total 

testosterone and progesterone were significantly increased above morning pre-

exercise values (Table 7.3, Fig. 7.2-3, 7.9). At 1 h post-exercise concentrations of 

total cortisol and total testosterone had decreased significantly from immediate post-

exercise to pre-exercise values, while prolactin concentration had decreased 

significantly from immediately post-exercise to below pre-exercise values (Fig. 7.8). 

Concentration of free testosterone displayed the same trend as cortisol and total 

testosterone, but this was not significant (P = 0.09 and 0.07 respectively). Total 

testosterone - cortisol (TC) ratio decreased significantly from baseline immediately 

post-exercise to pre-exercise values at the 1-h post-exercise time-point (Fig. 7.7). No 

significant changes were identified in the other hormones analysed. 

 

Following completion of interval exercise in the morning, afternoon pre-exercise 

concentration of cortisol and free testosterone was significantly lower than morning 

pre-exercise concentration (P < 0.05). When preceded by interval exercise, resistance 

exercise in the afternoon generated a significant increase in cortisol and free 

testosterone concentrations from pre-exercise. There was a trend for estradiol 

concentration to increase, but this did not reach significance (P = 0.06). At 1 h post-

exercise cortisol and free IGF-1 concentrations were significantly lower than 

immediate post-exercise concentration (Fig. 2 & 6). TC ratio was significantly higher 

than pre-exercise and immediate post-exercise levels (Fig. 7.7). 
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7.3.2 Morning Resistance Exercise – Afternoon Interval Exercise 

In response to resistance exercise in the morning, immediate post-exercise cortisol 

and prolactin concentrations were significantly lower than pre-exercise, while the TC 

ratio was significantly higher (Fig. 7.2, 7.7 & 7.8). At 1 h post-exercise, prolactin was 

lower than pre-exercise values and cortisol was lower than both pre-exercise and 

immediately post-exercise. The TC ratio was higher than pre-exercise and immediate 

post-exercise values.  

 

Following completion of resistance exercise in the morning, afternoon pre-exercise 

concentrations were significantly lower than morning pre-exercise concentrations for 

total testosterone, free testosterone and total IGF-1 (P < 0.05). Afternoon interval 

exercise generated significant increases from afternoon pre-exercise values in cortisol, 

prolactin, progesterone and estradiol, while the TC ratio decreased significantly from 

pre-exercise values. The immediate post-exercise increase in free testosterone from 

pre-exercise following afternoon interval exercise was not significant (P = 0.09). At 1 

h post-afternoon interval exercise, cortisol, progesterone and estradiol had decreased 

significantly (P = 0.00) and were not different from pre-exercise values. Prolactin 

decreased significantly from immediate post-exercise levels, but remained 

significantly elevated above baseline, The TC ratio remained significantly lower than 

pre-exercise values.  

 

7.3.3 Influence of Prior Resistance Exercise on Interval Exercise Response 

Following completion of resistance exercise in the morning, the magnitude of the 

response to interval exercise was greater for prolactin (141% vs 60%) TC ratio (-42% 

vs -30%), and approached significance for total IGF-1 (9% vs 2%; P = 0.09) than 
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when interval training was performed in the morning. IAUC data from pre-exercise to 

1 h post-exercise indicated a significantly greater IAUC for prolactin when interval 

exercise was performed in the afternoon preceded by resistance exercise in the 

morning than when performed in the morning (P < 0.01). The same trend approached 

significance for FSH (P = 0.09).  

 

7.3.4 Influence of Prior Interval Exercise on Resistance Exercise Response 

Following completion of interval exercise in the morning, the magnitude of the 

response to resistance exercise in the afternoon was significantly greater for cortisol 

(25% vs -16%) and prolactin (10% vs -26%), and approached significance for TC 

ratio (-10% vs 23%; P = 0.08).  IAUC from pre-exercise to 1 h post exercise 

resistance exercise was significantly greater for cortisol (P = 0.02) in the afternoon 

when preceded by interval exercise than when performed in the morning. It was not 

different for any other hormone, but there was a non-significant trend for a lesser and 

greater IAUC for resistance exercise in the afternoon when following interval exercise 

for TC ratio (P = 0.08) and free IGF-1 (P = 0.09) respectively.  

 

Total AUC, calculated across the whole trial day from pre-exercise in the morning to 

1 h post-exercise in the afternoon, was significantly greater over the morning interval 

training – afternoon resistance training trial for total testosterone (P < 0.01), total 

IGF-1 (P = 0.02), and approached significance for FSH (P = 0.09). Total AUC for 

estradiol was significantly greater over the morning resistance training - afternoon 

interval training session (P = 0.04). 
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Total IAUC, calculated across the whole trial day from morning pre-exercise 

concentrations to 1h post-exercise in the afternoon was significantly greater across the 

morning resistance exercise - afternoon interval exercise trial for cortisol (P = 0.04) 

and prolactin (P < 0.01), and significantly greater across the morning interval exercise 

- afternoon resistance exercise trial for TC ratio (P = 0.02), with IAUC across the day 

for free testosterone approaching significance for this trial (P = 0.09). 
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Figure 7.2  Change in cortisol concentration across trials with two exercise bouts (AM-IT – PM-RT = 

Morning interval exercise, afternoon resistance exercise. AM-RT – PM-IT = Morning resistance 

exercise, afternoon interval exercise). (* = Difference between trials; # = Difference from pre-exercise; 

† = Difference from immediately post-exercise; P < 0.05) 

 

 

Figure 7.3  Change in total testosterone concentration across trials with two exercise bouts (AM-IT – 

PM-RT = Morning interval exercise, afternoon resistance exercise. AM-RT – PM-IT = Morning 

resistance exercise, afternoon interval exercise). (* = Difference between trials; # = Difference from 

pre-exercise; † = Difference from immediately post-exercise; P < 0.05) 
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Figure 7.4  Change in free testosterone concentration across trials with two exercise bouts (AM-IT – 

PM-RT = Morning interval exercise, afternoon strength exercise. AM-RT – PM-IT = Morning 

resistance exercise, afternoon interval exercise). (* = Difference between trials; # = Difference from 

pre-exercise; † = Difference from immediately post-exercise; P < 0.05) 

 

 

Figure 7.5  Change in total IGF-1 concentration across trials with two exercise bouts (AM-IT – PM-

RT = Morning interval exercise, afternoon resistance exercise. AM-RT – PM-IT = Morning resistance 

exercise, afternoon interval exercise). (* = Difference between trials; # = Difference from pre-exercise; 

† = Difference from immediately post-exercise; P < 0.05) 
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Figure 7.6  Change in free IGF-1 concentration across trials with two exercise bouts (AM-IT – PM-RT 

= Morning interval exercise, afternoon resistance exercise. AM-RT – PM-IT = Morning resistance 

exercise, afternoon interval exercise). (* = Difference between trials; # = Difference from pre-exercise; 

† = Difference from immediately post-exercise; P < 0.05) 

 

 

Figure 7.7  Change in TC ratio across trials with two exercise bouts (AM-IT – PM-RT = Morning 

interval exercise, afternoon resistance exercise. AM-RT – PM-IT = Morning resistance exercise, 

afternoon interval exercise). (* = Difference between trials; # = Difference from pre-exercise; † = 

Difference from immediately post-exercise; P < 0.05) 
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Figure 7.8 Change in prolactin concentration across trials with two exercise bouts (AM-IT – PM-RT = 

Morning interval exercise, afternoon resistance exercise. AM-RT – PM-IT = Morning resistance 

exercise, afternoon interval exercise). (* = Difference between trials; # = Difference from pre-exercise; 

† = Difference from immediately post-exercise; P < 0.05) 

 

 

 

Figure 7.9 Change in progesterone concentration across trials with two exercise bouts (AM-IT – PM-

RT = Morning interval exercise, afternoon resistance exercise. AM-RT – PM-IT = Morning resistance 

exercise, afternoon interval exercise). (* = Difference between trials; # = Difference from pre-exercise; 

† = Difference from immediately post-exercise; P < 0.05) 
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Figure 7.10 Change in estradiol concentration across trials with two exercise bouts (AM-IT – PM-RT 

= Morning interval exercise, afternoon resistance exercise. AM-RT – PM-IT = Morning resistance 

exercise, afternoon interval exercise). (* = Difference between trials; # = Difference from pre-exercise; 

† = Difference from immediately post-exercise; P < 0.05) 

 

 

 

Figure 7.11 Change in FSH concentration across trials with two exercise bouts (AM-IT – PM-RT = 

Morning interval exercise, afternoon resistance exercise. AM-RT – PM-IT = Morning resistance 

exercise, afternoon interval exercise). (* = Difference between trials; # = Difference from pre-exercise; 

† = Difference from immediately post-exercise; P < 0.05) 
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Figure 7.12 Change in LH concentration across trials with two exercise bouts (AM-IT – PM-RT = 

Morning interval exercise, afternoon resistance exercise. AM-RT – PM-IT = Morning resistance 

exercise, afternoon interval exercise). (* = Difference between trials; # = Difference from pre-exercise; 

† = Difference from immediately post-exercise; P < 0.05) 

 

 

 

 

 

Table 7.1  IAUC from pre-exercise to 1 h post-exercise for all hormones during both trials. (* = 

Difference between trials in the response to the same exercise bout type; P < 0.05). 

 

AM-IT – PM-RT AM-RT – PM-IT 

 

Hormone 

AM 

(nmol.l-1.120 min) 

PM 

(nmol.l-1.120 min) 

AM 

(nmol.l-1.120 min) 

PM 

(nmol.l-1.120 min) 

Cortisol 18411 ± 8603 2927 ± 4389 * -8143 ± 6136 * 20374 ± 9987 

Testosterone 198 ± 290 43 ± 379 46 ± 105 135 ± 335 

Free Testosterone 1.0 ± 1.5 0.2 ± 0.3 0.1 ± 0.7 0.7 ± 0.9 

IGF-1 -305 ± 2163 2069 ± 6611 -380 ± 2518 1491 ± 4311 

Free IGF-1 -11.8 ± 32.1 12.4 ± 32.2 -16.1 ± 26.1 -11.6 ± 14.6 

Prolactin 15.7 ± 32.4 * 0.1 ± 7.2 * -11.4 ± 7.9 * 41.6 ± 23.1 * 

Progesterone 122 ± 119 5 ± 11  -10 ± 135 126 ± 117 

Estradiol 0.2 ± 0.2 0.2 ± 0.4 0.0 ± 0.7 0.5 ± 0.7 

FSH (Ul.l-1) -12 ± 37 -26 ± 48 -3 ± 25 11 ± 31 

LH (Ul.l-1) -8 ± 170 -80 ± 185 -16 ± 122 30 ± 73 

TC Ratio -168 ± 197 -27 ± 279 222 ± 164 -218 ± 191 
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Table 7.2  Total AUC for all hormones over both trials. (* = Difference between trials; P < 0.05). 

Hormone 

AM-IT –  PM-RT 

(nmol.l-1.420 min) 

AM-RT – PM-IT 

(nmol.l-1.420 min) 

Cortisol 152357 ± 22991 143413 ± 33461 

Testosterone 8959 ± 1902 * 8721 ± 2264 * 

Free Testosterone 13.5 ± 4.9 12.6 ± 3.3 

IGF-1 123467 ± 20023 * 119365 ± 20911 * 

Free IGF-1 351 ± 128 401 ± 149 

Prolactin 182 ± 54  199 ± 50 

Progesterone 2364 ± 979 3049 ± 1419 

Estradiol 34.6 ± 6.2 * 36.5 ± 6.3 * 

FSH (Ul.l-1) 919 ± 386 847 ± 309 

LH (Ul.l-1) 1775 ± 423 1629 ± 519 

TC Ratio 2909 ± 902 2992 ± 981 

 

 

 

Table 7.3  Percentage change in mean concentration from pre-exercise to immediately post-exercise  

  Interval Exercise Resistance Exercise 

Hormone Time Pre- 

(nmol.l-1) 

Post- 

(nmol.l-1) 

Change 

(%) 

Pre- 

(nmol.l-1) 

Post- 

(nmol.l-1) 

Change 

(%) 

Cortisol AM 390 677 84 ± 45 381 318 -16 ± 13 

 PM 305 609 120 ± 72 217 271 25 ± 21 

Testosterone AM 22.1 25.9 19 ± 20 22.5 23.2 3 ± 6 

 PM 18.1 21.0 16 ± 24 19.9 20.9 7 ± 18 

Free Testos. AM 0.03 0.05 45 ± 49 0.03 0.04 5 ± 23 

 PM 0.02 0.03 39 ± 43 0.03 0.03 13 ± 11 

IGF-1 AM 302 307 2 ± 12 299 300 2 ± 15 

 PM 270 288 9 ± 18 286 313 9 ± 29 

Free IGF-1 AM 0.90 0.77 4 ± 85 1.03 0.83 -15 ± 31 

 PM 1.06 0.96 -7 ± 27 0.83 1.05 57 ± 107 

Prolactin AM 0.44 0.70 60 ± 92 0.46 0.36 -26 ± 15 

 PM 0.40 0.98 141 ± 58 0.35 0.37 10 ± 23 

Progesterone AM 5.5 7.2 37 ± 25 6.9 7.0 9 ± 23 

 PM 5.9 8.0 41 ± 35 6.1 6.6 17 ± 26 

Estradiol AM 0.08 0.09 4 ± 6 0.09 0.09 0.3 ± 8 

 PM 0.08 0.09 11 ± 8 0.08 0.08 5 ± 5 

FSH (Ul.l-1) AM 2.4 2.3 -3 ± 16 2.1 2.0 -4 ± 12 

 PM 1.9 2.0 5 ± 18 2.3 1.9 -9 ± 13 

LH (Ul.l-1) AM 4.4 4.0 13 ± 87 4.2 3.9 -3 ± 39 

 PM 3.5 3.5 5 ± 19 4.4 3.6 -6 ± 50 

TC Ratio AM 5.9 3.7 -30 ± 29 5.9 7.3 25 ± 21 

 PM 6.3 3.6 -42 ± 23 9.3 8.2 -10 ± 30 
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7.3.5 Individual Responses 

7.3.5.1 Interval Exercise: 

Responses to interval exercise in the morning and the afternoon demonstrated 

considerable inter-and intra-individual differences. These differences in response were 

most marked for total testosterone (Fig. 7.13), free testosterone (Fig. 7.14), 

progesterone (Fig. 7.15), estradiol (Fig. 7.16), FSH (Fig. 7.17) and LH (Fig. 7.18).  

 

Figure 13  Individual change in total testosterone concentration from pre to immediately post-exercise 

for interval exercise performed in the morning and in the afternoon. 

 

Figure 14  Individual change in free testosterone concentration from pre to immediately post-exercise 

for interval exercise performed in the morning and in the afternoon. 
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Figure 7.15  Individual change in progesterone concentration from pre to immediately post-exercise 

for interval exercise performed in the morning and in the afternoon. 

 

 

 

Figure 7.16  Individual change in estradiol concentration from pre to immediately post-exercise for 

interval exercise performed in the morning and in the afternoon. 
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Figure 7.17  Individual change in FSH concentration from pre to immediately post-exercise for 

interval exercise performed in the morning and in the afternoon. 

 

 

 

 

Figure 7.18  Individual change in LH concentration from pre to immediately post-exercise for interval 

exercise performed in the morning and in the afternoon. 
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7.3.5.2 Resistance Exercise: 

Responses to resistance exercise in the morning and afternoon also demonstrated 

prominent inter- and intra- individual differences. These differences in response were 

most marked for total testosterone (Fig. 7.19), free testosterone (Fig. 7.20), total IGF-

1 (Fig. 7.21), progesterone (Fig. 7.22). FSH (Fig. 7.23), and LH (Fig. 7.24).   

 

Figure 7.19  Individual change in total testosterone concentration from pre to immediately post-

exercise for resistance exercise performed in the morning and in the afternoon.  

 

Figure 7.20  Individual change in free testosterone concentration from pre to immediately post-

exercise for resistance exercise performed in the morning and in the afternoon.  
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Figure 7.21  Individual change in total IGF-1 concentration from pre to immediately post-exercise for 

resistance exercise performed in the morning and in the afternoon.  

 

 

Figure 7.22  Individual change in progesterone concentration from pre to immediately post-exercise 

for resistance exercise performed in the morning and in the afternoon.  
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Figure 7.23  Individual change in FSH concentration from pre to immediately post-exercise for 

resistance exercise performed in the morning and in the afternoon.  

 

 
Figure 7.24  Individual change in LH concentration from pre to immediately post-exercise for 

resistance exercise performed in the morning and in the afternoon. 

-40

-30

-20

-10

0

10

20

AM PM

%
 C

h
a

n
g

e
 f

ro
m

 B
a
s
e
li

n
e

 

Time of Day 

Mean

-80

-60

-40

-20

0

20

40

60

80

100

AM PM

%
 C

h
a

n
g

e
 f

ro
m

 B
a
s
e
li

n
e

 

Time of Day 

Mean



142 

 

7.4 Discussion 

The main findings of the present investigation demonstrate that interval exercise 

performed in the morning resulted in significant increases in concentrations of 

cortisol, total testosterone and progesterone. Resistance exercise performed in the 

morning elicited a significant increase in the TC ratio while cortisol and prolactin 

concentrations were significantly lower post-exercise. Where two exercise bouts were 

completed during the same day, the magnitude of change in hormone concentration in 

response to resistance exercise in the afternoon following completion of interval 

exercise in the morning was numerically greater for all hormones in comparison to 

completion of resistance exercise in the morning, but this was only significant for 

cortisol and prolactin. However, for cortisol, this may have been influenced by a 

lower afternoon baseline concentration. The magnitude of change in concentration in 

response to interval exercise in the afternoon following completion of resistance 

exercise in the morning was varied, but was significantly greater for prolactin and the 

TC ratio .   

 

In agreement with the present results, sprint and high intensity interval exercise have 

previously been shown to stimulate significant increases in concentrations of cortisol, 

total testosterone, prolactin, estradiol and progesterone (Gray et al., 1993; Vincent et 

al., 2004; Pullinen et al., 2005; Meckel et al., 2009; Stokes et al., 2013).  Hypertrophy 

resistance exercise has consistently been reported as generating the greatest 

perturbation in hormone concentrations in comparison to other resistance exercise 

protocols (Kraemer and Ratamess, 2005; Crewther et al., 2006). The hypertrophy 

resistance exercise protocol employed in the present study was based upon those 

previously used in the literature (Hakkinen & Pakarinen, 1995; Ratamess et al., 2005). 
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In agreement with the present observations of the response of hormone concentration 

to morning resistance exercise, decreased concentrations of cortisol immediately 

following hypertrophy resistance exercise have been reported previously (Hakkinen 

and Pakarinen, 1993; Bosco et al., 2000; Beaven et al., 2008a), although this may be a 

reflection of cortisol concentrations naturally falling during the morning due to 

circadian variation (Diver et al., 2003). Increases in cortisol concentration have also 

previously been reported in response to hypertrophy-type resistance exercise 

(Crewther et al., 2006; Kraemer and Ratamess, 2005), as was seen in the present 

investigation following completion of resistance exercise in the afternoon after 

interval exercise in the morning. However, these sessions were not preceded by prior 

exercise. In contrast to the present data, significant increases in total and free 

testosterone following hypertrophy resistance exercise have been frequently reported 

(Ahtiainen et al., 2003; Kraemer and Ratamess, 2005; Crewther et al., 2006).  Free 

testosterone only increased in response to afternoon resistance exercise following 

morning interval exercise. 

 

Exercise intensity, rest periods, and metabolic stress have been identified as key 

determinants of the hormonal response to any given exercise session (Schwarz et al., 

1996; Kanaley et al., 2001; Tremblay et al., 2005; Crewther et al., 2006; Izquierdo et 

al., 2009). Lactate concentration has been shown to correlate directly with cortisol 

concentration following interval exercise (Opaszowski and Busko, 2003; Pullinen et 

al., 2005) and resistance exercise (Hakkinen and Pakarinen, 1993).  Lu et al. (1997) 

suggested a direct stimulatory effect of an increase in lactate concentration on total 

testosterone concentrations following exercise in rats, affected by lactate increasing 

testicular cAMP production. As such, the difference in post-exercise lactate 
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concentration between exercise modes in the present study (6.02 ± 3.11 mmol.l
-1

 for 

interval exercise; 1.50 ± 0.48 mmol.l
-1

 for resistance exercise; P < 0.05) may provide 

some explanation as to the difference in cortisol, and total and free testosterone 

concentrations seen between exercise modes. Greater lactate concentrations due to an 

increased metabolic stress stimulated by shorter rest periods between repetitions and 

sets during hypertrophy resistance exercise in comparison to maximal strength 

resistance exercise have been suggested to contribute to increases in response of total 

testosterone to resistance exercise (Goto et al., 2005). The nature of the equipment 

used for the resistance exercise bout in the present investigation may have influenced 

the responses observed. With use of the dynamometer, there is no eccentric phase in 

each ‘lift’, with only the concentric phase able to be performed. Kraemer et al. (2006) 

reported no difference in total or free testosterone responses between eccentric and 

concentric resistance exercise, however, the lack of an eccentric phase in each 

repetition will decrease the training load and intensity across the session, and also 

effectively increase ‘rest’ time following each repetition. These factors are likely to 

have reduced the lactate response to the resistance exercise bout in the present study 

and contributed to the absence of a response in total and free testosterone.  

 

Minimal change in concentrations of total and free IGF-1, FSH and LH was seen in 

response to interval exercise or resistance exercise alone, or when preceded by 

performance of the opposing trial. With regard to total and free IGF-1 this is in 

agreement with some previous findings demonstrating no change in total (Stokes et 

al., 2005; Meckel et al., 2009) or free (Stokes et al., 2010) IGF-1 in response to sprint 

exercise. An increase in pro-inflammatory cytokines such as IL-6 and TNF-α, that 

often accompanies high intensity exercise, may attenuate the IGF-1 response (Eliakim 
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& Nemet, 2010). This cytokine response has been shown to be intensity dependent 

during both resistance exercise (Helge et al., 2003) and running (Scott et al., 2011) 

with sprint exercise causing significant elevation in circulating cytokine 

concentrations (Bishop et al., 2002; Meckel et al., 2009; Meckel et al., 2011). A lack 

of total IGF-1 response to resistance exercise has been reported previously (Izquierdo 

et al., 2009; Dalbo et al., 2011), although an increase has also been reported (Rojas 

Vega et al., 2010). The differences in findings may result from differences in the 

exercise intensity and metabolic demand of the protocols used. This is likely in the 

present investigation given the aforementioned nature of the protocol and equipment 

employed. The minimal response in FSH and LH to both modes of exercise training 

observed in the present study has also been reported previously following both 

moderate and high intensity resistance exercise (Raastad et al., 2000). However, 

increases in both FSH and LH have been reported following a single 400m run sprint 

(Slowinska-Lisowska & Maida, 2002). The reasons for the discrepancies between 

studies are unclear. However, FSH and LH are both pulsatile hormones. Sampling 

timing and frequency may contribute to the reporting of different hormonal profiles in 

response to sessions. There was also considerable inter-individual and intra-individual 

variation seen in concentration and patterns of change of both FSH and LH across the 

course of the day which may influence mean hormone concentrations. 

 

Contrasting findings have been reported in the literature regarding hormone responses 

to repeated bouts of exercise. No significant differences were observed in cortisol and 

free testosterone responses to a resistance exercise session alone or when cycle sprint 

exercise was performed 180 min or 60 min prior (Goto et al., 2007). However, 

Ronsen et al. (2001) demonstrated a significantly greater increase in cortisol 
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concentration following a repeated high intensity endurance exercise bout with 3 h 

recovery. The present results demonstrate an augmented response of cortisol to 

resistance exercise in the afternoon when preceded by morning interval exercise in 

comparison to performance of resistance exercise in the morning. However, this may 

be linked to difference in baseline concentrations between morning and afternoon 

sessions. 

 

Brandenberger et al. (1984) stated that high resting cortisol levels provoked feedback 

suppression of the cortisol response to a subsequent stimulus. Lower pre-exercise 

cortisol concentrations have been demonstrated to result in a greater cortisol response 

to interval exercise in comparison to higher pre-exercise concentrations (Jurimae et 

al., 2004). Due to the circadian rhythm of cortisol it is possible that this effect would 

occur as a matter of course across a day. As a result, it could be suggested that 

response of cortisol to exercise would be lower in the morning than in the afternoon 

when basal concentrations are higher. Kanaley et al. (2001) suggested that the cortisol 

response to exercise is mediated by circadian rhythm of the hormone, and thus, time 

of day. However, reported increases in cortisol in relation to 30 min of treadmill 

exercise were greatest at 2400 than either 0700 or 1900, and greater at 0700 than 

1900. The present data demonstrate a significantly greater response of cortisol to 

afternoon resistance exercise than to resistance exercise performed in the morning. 

This is in agreement with the results of Ronsen et al. (2001) and Goto et al. (2007). 

However, these findings were all observed following a prior exercise bout. Kanaley et 

al. (2001) proposed that prior elevation of cortisol by exercise may result in a rebound 

suppression of the hormone, reducing concentration further than occurs by circadian 

decrease alone. This may further explain the lower cortisol concentrations prior to the 
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second exercise bout, which may in turn explain the larger response seen to the 

second session.  

 

In addition, following an increase in concentration to the earlier exercise bout, pre-

exercise total testosterone concentrations prior to the second bout were significantly 

lower, and demonstrated a significantly greater increase to the subsequent exercise 

bout, than during the rest or afternoon exercise only trials (Ronsen et al., 2001). This 

may suggest that this rebound effect, originally suggested in relation to cortisol 

(Kanaley et al., 2001), may also apply to other hormones. Indeed, prolactin and 

estradiol concentration increased significantly in response to afternoon interval 

training whilst they had not done so in the morning, and there was a significant 

increase in free testosterone, and non-significant trend for this to apply to total 

testosterone in relation to afternoon resistance exercise in the present study.  

 

Pre-exercise cortisol concentrations in the afternoon were significantly different 

between trials following completion of different exercise bouts in the morning. This 

may suggest that the extent of any rebound suppression effect, and/or augmentation of 

hormone response to a subsequent training session, may be influenced by the intensity 

of a preceding exercise stimulus, and the magnitude of the hormone response to this 

exercise stimulus. This assertion is supported by the findings of Goto et al. (2007) 

who also utilised sprint exercise prior to resistance exercise. This may explain the 

current trend for the response to resistance exercise to be greater for all hormones 

when performed in the afternoon following prior interval exercise, and the variation in 

the response to interval exercise in the afternoon when preceded by a lower 

magnitude of response and lower intensity of the resistance exercise bout. 
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It may not be sufficient to consider increases and decreases in individual hormone 

concentrations at specific time-points alone. In order to establish overall exposure of 

the tissue to a hormone, it may be more pertinent to consider AUC. In addition, given 

that hormones operate in concert, The TC ratio may provide additional information as 

to the balance between protein synthesis and degradation within the tissue (Izquierdo 

et al., 2001; Urhausen et al., 1995). IAUC for the TC ratio from pre-exercise to 1 h 

post-exercise was not different between trials for resistance exercise. However, the 

total IAUC across the entire trial day was significantly greater during the morning 

interval exercise - afternoon resistance exercise trial. If the TC ratio can indeed be 

used as an indication of the balance between protein synthesis and degradation, then 

performing exercise bouts in this order may be more beneficial in increasing muscle 

protein turnover for subsequent protein synthesis and muscular adaptation. Given 

earlier discussion of the findings of a rebound suppression apparent in some hormones 

it would seem prudent to consider TAUC across each trial day. The present data 

indicate across the entire trial day, TAUC was significantly greater for total 

testosterone and total IGF-1 during the morning interval exercise – afternoon 

resistance exercise trial. This may suggest performing exercise sessions in this order 

could be more beneficial for the goal of increasing muscle mass.  

 

Given the number of near significant result in the present investigation, post-hoc 

power calculations were performed in order to calculate the required sample size to 

sufficiently power the study and elicit significance. A minimum sample size of 17 

would be required in order to find significance in all results displaying a trend. This 

reinforces the suggestions that training session order may be an important factor for 
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consideration if the goal is to foster an endogenous hormonal environment that may 

be beneficial to muscular adaptation. 

 

Individual variation in hormonal responses in relation to exercise session type and 

order is evident in the present data. These differences encompassed the magnitude, 

direction and time course of the responses. This suggests that hormone synthesis, 

release and metabolism may be different between individuals even in relation to 

identical exercise stimuli. Bird and Tarpenning (2004) hypothesised that inter-

individual differences may reflect differences in entrainment of the circadian 

pacemaker due to differences in habit forming or conditioning but the authors failed 

to find a link between routine exercise time and hormonal response to resistance 

exercise. Training background and status of an individual may influence acute 

response of hormones to exercise. Increased testosterone secretion in response to 

exercise has been reported in individuals with a longer training history (Kraemer et 

al., 1992; Fry et al., 1993). Although, resting levels, and response of testosterone to 

exercise, have been reported to be blunted in endurance trained males in relation to 

cortisol (Duclos et al., 1998; Daly et al., 2005), and levels of anabolic hormones have 

been shown to decline with prolonged endurance training (Consitt et al., 2002). In 

addition, endurance trained individuals have been shown to demonstrate less 

pronounced cortisol and total and free testosterone responses to resistance and 

endurance exercise than resistance trained individuals (Tremblay et al., 2004). Given 

the varied training background of the participants in the current investigation this may 

provide some explanation as to the wide variation seen in individual responses; 

however, there were no significant correlations between individual responses and any 

of the physiological or performance characteristics obtained from participants (BM, 
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age, VO2max, maximum strength, and cycling peak power output – data not shown). 

Genetic polymorphisms relating to different elements of physical performance have 

been identified (Macarthur and North, 2005), some of which relate to endocrine and 

hormonal factors, that may influence the development of strength (Kostek et al., 

2005; Lapauw et al., 2007) or exercise economy (Lopez-Alarcon et al., 2007). As 

such, genetic characteristics may also dictate hormonal response to different exercise 

stimuli. For example, expression of androgen receptor mRNA, at rest and in response 

to exercise, has been demonstrated to be correlated with free testosterone 

concentration and response (Roberts et al., 2009). The factors that may influence the 

individual nature of these responses require further investigation. 
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7.5 Conclusion 

In conclusion, the present incremental and total area under curve data may indicate 

that it could be beneficial to perform resistance training in the afternoon preceded by 

interval training in the morning in order to stimulate a hormonal milieu that may be 

more conducive to increasing muscle protein turnover and increasing muscle mass. 

The data also demonstrate an augmented response of cortisol to resistance exercise 

following earlier interval exercise. These findings may be linked the influence of a 

prior exercise bout, and its intensity, on the circadian rhythm and feedback control of 

these hormones. The data presented demonstrate that interval exercise can be used to 

stimulate a pronounced hormone response, greater than that seen by the resistance 

exercise protocol employed in this study.  
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The Testosterone and Dihydrotestosterone Response to Sprint 

Interval Exercise in Females 

 

8.1 Introduction 

Testosterone concentrations are known to increase in response to certain exercise 

stimuli (Kraemer & Ratamess, 2005; Crewther et al., 2006). These responses have 

been linked to the acute performance of power and strength based tasks (Cardinale & 

Stone, 2006; Crewther et al., 2012a), as well as chronic adaptation to training (Beaven 

et al., 2008; Crewther et al., 2011), with suggestions that the response may be related 

to training status (Kraemer et al., 1992; Fry et al., 1993; Crewther et al 2006; 

Crewther et al., 2012). Mechanisms underlying these effects have been suggested to 

include activation of signalling pathways responsible for accretion of skeletal muscle 

proteins for hypertrophy via mTor (Ferrando et al., 2002; Wu et al., 2010), those 

responsible for mobilisation of energy via glutamine transporter 4 (GLUT 4) (Sato et 

al., 2008), as well as influences on behaviour (Archer, 2006) and cognition (Aleman 

et al., 2004) and control of neuromotor unit excitability (Bonifazi et al., 2004). The 

precise nature of the actions of testosterone remains to be elucidated, particularly 

given the compelling evidence questioning the influence of physiological  

concentrations of testosterone on adaptations in muscle size and strength (West et al., 

2010; West & Phillips, 2011). 

 

Recently, interest has been raised in the downstream androgen converted from 

testosterone, dihydrotestosterone (DHT). DHT is formed via the reduction of 

testosterone by the enzyme 5-alpha-reductase (Thigpen et al., 1993). Circulating 
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concentrations of DHT are lower than those of other androgens with approximately 

only five per cent of testosterone thought to be converted to DHT. However, DHT is 

two to three times more potent than its precursor, demonstrating greater affinity for 

androgen receptors (Bauer et al., 2000) and not dissociating as readily as testosterone 

from the androgen-receptor complex (Grino et al., 1990). Previously, 5-alpha-

reductase was thought not to be present in skeletal muscle, however, a further isoform 

of the enzyme that is highly expressed in skeletal muscle has recently been reported 

(Godoy et al., 2011).  DHT has been suggested to have both functional and signalling 

effects in this domain, enhancing force production in fast twitch fibre bundles in mice 

(Hamdi & Mutungi, 2010) and enhancing genomic signalling that promotes 

transcriptional processes associated with anabolic effects (Yoshioka et al., 2006). 

 

We have previously demonstrated a simultaneous increase in DHT and total and free 

testosterone in males in response to high intensity repeated cycle sprint exercise 

(Smith et al., 2013). The aim of the present investigation was to assess the total 

testosterone and DHT response to a bout of repeated sprint cycle exercise in females, 

and secondarily, to assess if the response was related to the training status of 

participants and performance of the exercise bout. 

 

 

 

 

 

 

 



155 

 

8.2  Methods 

8.2.1  Participants 

Ten young, healthy females (age: 24.9 ± 3.0 y; VO2 max 49.5 ± 9.9 ml.kg.min
-1

) 

participated in this study. Participants activity levels ranged from recreationally active 

(1-2 exercise sessions per week) to completing substantial training (10-12 exercise 

sessions per week). Each participant was briefed regarding the nature of the study and 

provided written informed consent prior to commencing any testing. This study was 

approved by the University of Bath Research Ethics Approval Committee for Health 

(REACH). 

 

8.2.2  Preliminary Measurements   

Preliminary tests were conducted in order to determine each participant’s maximal 

oxygen uptake.  Participants completed an incremental test to exhaustion on a SRM 

cycle ergometer (Schoberer Rad Messtechnik, Fuchsend, Germany).  The protocol 

included a 10 min warm-up at a self-selected intensity followed by consecutive 3 min 

stages, at the end of which the load on the ergometer was increased by 30 W. In the 

final minute of each stage, a one minute expired air sample was collected and 

analysed for concentrations of O2 and CO2 to assess oxygen uptake. The test 

continued until volitional exhaustion. Data were used to calculate subsequent work 

intensities for the main trial. Participants were asked to refrain from strenuous 

exercise and avoid both alcohol and caffeine consumption during the 24 h prior to the 

main trial. 
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8.2.3 Experimental Protocol 

At least 48 h after completion of the incremental exercise test, participants completed 

a bout of repeated sprint interval cycle exercise on the same stationary cycle 

ergometer. The session consisted of 10 x 30 s sprinting at a target power of 150% 

Wmax as established during the incremental exercise test, with 90 s recovery (as 

previously described in Chapter 4). The session was self-paced with real-time 

graphical and numerical feedback provided on elapsed time, cadence and power. 

Participants were given verbal encouragement throughout. 

 

8.2.4 Sampling and Analysis 

On arrival at the laboratory, a 10 ml pre-exercise blood sample was obtained from a 

superficial antecubital forearm vein. Further blood samples were obtained 

immediately post-exercise, and 1 h post-exercise. Samples were dispensed into serum 

collection tubes (Serum Z/5 ml; Sarstedt, Germany) and left to clot for 15 min before 

being centrifuged for 10 min at 1,500 g. Supernatant was removed and immediately 

transferred to polypropylene Eppendorf tubes and frozen at -20°C until analysis. 

 

Samples were analysed in duplicate via ELISA for total testosterone, DHT and 

cortisol using commercially available kits (IBL, Hamburg, Germany). Inclusion of the 

analysis of free testosterone was originally intended, however, concentrations were 

undetectable in 50% of participants during pilot work. Combined intra- and inter-

assay variation was 4.6% and 5.7% respectively for total testosterone, 6.9% and 8.5% 

for DHT, and 3.0% and 3.5% for cortisol. 
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8.2.5 Statistical Analyses 

One-way ANOVA was used to investigate differences in hormonal concentrations 

between different time-points. Subsequent two-tailed paired T-Tests were used to 

determine the location of any variance. Pearson product moment correlations were 

performed to assess relationships between performance parameters and hormones 

concentrations. Analyses were conducted using IBM SPSS Statistics (version 20.0.0; 

IBM, New York, NY). All data are presented as mean ± SD. Statistical significance 

was accepted at P < 0.05.  
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8.3 Results 

8.3.1 Hormone Concentrations 

Total testosterone concentrations increased by 19 ± 14% (P < 0.01) from pre-exercise 

to immediately post exercise, as did concentrations of DHT (22 ± 19%; P < 0.01) and 

cortisol (45 ± 47%; P < 0.01) (Fig. 8.1 - 8.3) . Concentrations of all hormones had 

returned to baseline values at 1 h post-exercise. Concentrations of DHT correlated 

with total testosterone concentrations pre- (r = 0.699; P < 0.05), post- (r = 0.709; P < 

0.05) and 1 h post-exercise (r = 0.687; P < 0.05). 

 

8.3.2 Performance Parameters 

Mean peak sprinting power was 430 ± 77 W, while mean average sprinting power 

was 289 ± 53 W. Mean peak sprinting cadence was 113 ± 14 rpm, and mean average 

sprinting cadence was 100 ± 13 rpm. VO2max was strongly correlated with average 

sprinting cadence (r = 0.669; P < 0.05) and peak sprinting cadence (r = 0.835; P < 

0.05). Peak sprinting cadence was very strongly correlated with average sprinting 

cadence (r = 0.992; P < 0.01). 
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Figure 8.1 Mean testosterone concentration across the trial. * = Significant change from pre-exercise 

(P < 0.05). # = significant change from immediately post-exercise (P < 0.05). 

 

 

Figure 8.2 Mean DHT concentration across the trial. * = Significant change from pre-exercise. # = 

significant change from immediately post-exercise (P < 0.05).  
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Figure 8.3 Mean cortisol concentration across the trial. * = Significant change from pre-exercise. # = 

significant change from immediately post-exercise (P < 0.05).  
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8.3.3 Performance and Hormone Concentration Correlations 

Post-exercise testosterone concentration was strongly correlated with average 

sprinting cadence (r = 0.675; P < 0.05; Fig. 8.4). Strong correlations were also 

observed between post-exercise DHT concentration and average sprinting cadence (r 

= 0.739; P < 0.05; Fig. 8.5), and percentage change in DHT concentration from pre-

exercise to post-exercise and both peak sprinting cadence (r = 0.828; P < 0.05) and 

average sprinting cadence (r = 0.819; P  < 0.01). Percentage change in cortisol 

concentration from pre- to post-exercise was strongly inversely correlated with 

average sprinting power (r = -0.795, P < 0.01) and peak sprinting power (r = -0.662; P 

< 0.05). 
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Figure 8.4 Correlation between post-exercise testosterone concentration from pre- to immediately 

post-exercise and average sprinting cadence (* = P < 0.05). 

 

 

Figure 8.5 Correlation between post-exercise DHT concentration and average sprint power (* = P < 

0.01). 



163 

 

 

Figure 8.6 Correlation between percentage change in DHT concentration from pre- to post-exercise 

and average sprint cadence (* = P < 0.01). 

 

 

Figure 8.7 Correlation between percentage change in cortisol concentration from pre- to post-exercise 

and average sprint power (* = P < 0.01). 
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Figure 8.8 Correlation between percentage change in cortisol concentration from pre- to post-exercise 

and peak sprint power (* = P < 0.05). 
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8.4 Discussion 

The present data demonstrate an elevation of circulating serum DHT, total 

testosterone and cortisol in females immediately following a high intensity repeated 

sprint cycling protocol. This is the first study to report exercise induced changes in the 

concentration of DHT in human females. Changes in hormone concentrations were 

transient, having returned to pre-exercise concentrations by 1 h post-exercise. These 

data are in agreement with our previous findings of elevations in circulating serum 

total and free testosterone and DHT in males (Smith et al., 2013), adding a further 

hormone to the array of those acutely elevated by exercise. Acute elevations of 

hormones, particularly testosterone, have been shown to play a role in the enhanced 

performance of strength and power tasks (Cardinale & Stone, 2006; Crewther et al., 

2012a), with a role for psychological affect in influencing hormonal concentrations 

and subsequent performance (Cook & Crewther, 2012). Whether the acute elevations 

generated by exercise extend to activation of 5α-reductase in skeletal muscle in 

humans remains to be investigated. However, in rats, exercise has been shown to 

trigger local muscular conversion of testosterone to DHT (Aizawa et al., 2010).  

 

In the present investigation, greater VO2max was not associated with higher baseline 

levels of testosterone or DHT, or with greater changes in testosterone or DHT 

following the high intensity interval exercise bout. This is in contrast to previous data 

demonstrating chronic elevation in baseline DHT concentration with training 

(Hawkins et al., 2008), and that elevations in testosterone in response to exercise may 

be dependent upon training status (Crewther et al., 2006; Crewther et al., 2012a). 

However, in females, no difference between trained and untrained individuals has 

been reported in the response of the androgens estradiol and free testosterone at 
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exercise intensities from 60 - 80% VO2max (Keizer et al., 1987). However, large 

standard deviations generated by a large amount of inter-individual variation in the 

present data may have contributed to this. In addition, the individuals within this 

study mostly completed endurance based exercise. It is possible that in a group 

containing females trained for strength and power would greater responses and 

magnitudes of change in hormone concentration may have been seen in some of the 

more well-trained individuals and a correlation may have been seen. Indeed, evidence 

has shown greater testosterone responses to exercise in strength based males 

(Crewther et al., 2012a; 2012b) and endurance training has been shown to blunt 

resting androgen concentrations and androgen response to exercise (Izquierdo et al., 

2004; Tremblay et al., 2004). Further research may consider assessing the response 

between un-trained and highly trained individuals of both endurance and strength and 

power backgrounds.  

 

In the females participating in the present investigation, a strong association was 

found between percentage change in DHT concentration and peak and average 

sprinting cadence across the 30 s sprints. This association supports the possibility that 

the change in DHT concentration may be related to composition and proportions of 

different muscle fibre types in the active muscle. The proportion of fast twitch fibres 

in the vastus lateralis of trained cyclists has previously been shown to correlate with 

optimal sprinting cadence, and maximal sprinting power output (Hautier et al., 1996), 

while DHT has also been shown to enhance power capability and contractile function 

only in fast twitch muscle fibres in rodents (Hamdi & Mutungi, 2010). In addition, 

DHT has also been shown to increase signalling of factors involved in calcium 

cycling and production of ATP in rodent muscle (Yoshioka et al., 2006), as well as 
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enhancing glucose metabolism via increasing protein expression and translocation of 

GLUT-4 (Sato et al., 2008), which may allow greater utilisation of fast twitch fibres 

through meeting the increased metabolic demand.  

 

Interestingly, and in contrast to our findings in males (Smith et al., 2013) there was no 

association between percentage change in testosterone concentration and average or 

peak cadence, or with percentage change in DHT concentration. Synthesis of DHT 

can however occur in a testosterone independent manner from 

dehydroepiandrosterone (DHEA) in peripheral intracrine tissues (Luu-The & Labrie, 

2010). Given that females have an approximately 10 fold lower concentration of 

circulating testosterone than males (Vingren et al., 2010), it is possible that 

production of DHT occurs more readily via testosterone independent pathways. 

Indeed, in post-menopausal women, generation of the majority of androgens occurs in 

this manner (Luu-The & Labrie, 2010). In addition, DHT can also be synthesised via 

a pathway independent of both testosterone and DHEA from conversion of 

progesterone to androstenedione and then to DHT (Yarrow et al., 2012). This raises 

the possibility that synthesis of DHT in response to exercise stimuli may be 

influenced by menstrual cycle phase, and also by the use of oral contraceptives. In the 

present investigation, menstrual cycle phase and oral contraceptive use was not 

controlled for and may explain some of the variation seen, and does introduce a 

considerable limitation to the interpretation of the findings. Previous research has 

demonstrated a suppression of circulating levels of total and free testosterone, and an 

increase in circulating SHBG concentrations with use of the oral contraceptive pil, 

with no effect of different doses or type of estrogen and progestins (Zimmerman et 

al., 2014). In pre-menopausal women, not using the contraceptive pill, it has been 
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shown that serum total testosterone, free testosterone, estradiol and SHBG levels 

peaked at mid-cycle and remained higher in the mid-luteal phase of the cycle, whereas 

DHT did not change (Rothman et al., 2011). However, evidence also demonstrates 

that these fluctuations are not large, but that increase in progesterone post-ovulation 

may result in preferential 5-alpha-reduction of progesterone over testosterone for 

formation of DHT (Mertens et al., 2001).  Further research could consider assessing 

the DHT response to exercise at different phases of the menstrual cycle alongside 

responses and concentrations of progesterone and testosterone, and associated 

strength and power performance.  

 

As a caveat, it should be mentioned that the changes observed in hormone 

concentrations in the present investigation may also be reflective of a change in 

plasma volume. It has previously been shown that high intensity sprint exercise can 

result in a 19% decrease in plasma volume in males (Bloomer & Farney, 2013), and 

relative increases in total and free testosterone concentrations with exercise have been 

shown to be no longer evident following adjustment for plasma volume change 

(White et al., 2002). The raises the possibility that the changes observed in were 

actually smaller in magnitude, or that no change in the absolute amount of hormone in 

the circulation occurred which would be suggest the exercise stimulus did not 

stimulate secretion of the hormones assessed. 
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8.5  Conclusion 

The present data demonstrate that repeated sprint cycle exercise elicits a robust 

increase in circulating concentrations of testosterone, DHT and cortisol in healthy 

females. The magnitude of the DHT response appears to be related to sprinting 

cadence, and is not associated with testosterone response. This may suggest that 

circulating DHT is synthesised via testosterone-independent pathways in females in 

response to exercise.  
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171 

 

Hormone,   Performance  and   Affect  Responses   to  Repeated 

Sprint Cycle Exercise Following Pre-fatigue 

 

9.1  Introduction 

Exercise elicits acute changes in circulating hormone concentrations (Kraemer & 

Ratamess, 2005; Crewther et al., 2006; Smith et al., 2013; Stokes et al., 2013), with 

the magnitude and direction of change dependent upon workout content and design 

(Crewther et al., 2006). The testosterone and cortisol response to a training session 

has also been shown to be influenced by psychological and cognitive state and 

associated with subsequent performance (Cook & Crewther, 2012 a & b), while 

increased concentrations of testosterone have been shown to improve cognitive 

function (Aleman et al., 2004), as well as increase aggression (Archer, 2004). In 

addition, concentrations of testosterone have been associated with the performance of 

power and strength tasks (Cardinale & Stone, 2006; Crewther et al., 2012a, 2012b). 

Increased  

 

The response of testosterone and DHT to a repeated sprint cycling exercise bout in 

trained men has previously been reported (Smith et al., 2013), demonstrating 

increases in both testosterone and DHT concentrations from pre- to post-exercise, 

echoing the findings shown for concentrations of total testosterone and cortisol shown 

in Chapter 7. The acute hormone response to an exercise session has been 

demonstrated to be influenced by a prior exercise bout (Ronsen et al., 2001; Viru et 

al., 2001; Goto et al., 2007), and has been demonstrated in an earlier in Chapter 7. 

The changes in response have been varied, and suggested to be related to rebound 
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suppression or augmentation (Brandenberger et al., 1984; Kanaley et al., 2001). In 

addition, increases in metabolic stress that have been reported to contribute to 

increases in the total testosterone (Lu et al., 1997) and cortisol concentrations 

(Pullinen et al., 2005) during exercise.   

 

Recently, links have been reported between endogenous hormone concentrations and 

elements of athletic behaviour associated with confidence and motivation to compete 

(Cook & Crewther, 2012a). Changes in mood state have been shown to influence 

hormone concentration and performance. Increases in endogenous testosterone have 

been associated with improved physical performance and skill execution, with 

increased cortisol related to decreased performance (Cook & Crewther, 2012a; 

2012b). 

 

The aim of the present investigation was to assess the hormonal response, 

performance, and psychological affect to a repeated sprint cycle session when 

preceded by a 20 min high intensity period of cycling designed to induce fatigue on 

two occasions. Completion of both trials was completed in a group setting, and as 

such, it was intended that the performance of an intense, unfamiliar protocol in this 

environment would be inherently more stressful than on the second occasion; and, 

thus by repeating the protocol, a dual aim was to assess whether any variation in 

mood, hormone response or performance between trials was linked.  

 

 

 

 



173 

 

9.2  Methods 

9.2.1  Participants 

Fourteen, well-trained male cyclists and triathletes (age: 32 ± 7 y; body mass: 77.8 ± 

9.4 kg) participated in this study. All participants completed regular cycling training. 

Each participant was briefed regarding the nature of the study and provided written 

informed consent prior to commencing any testing. This study was approved by the 

University of Bath Research Ethics Committee. 

 

9.2.2  Preliminary Measurements   

Preliminary tests were conducted in order to determine each participant’s average 

power output for a maximal 20 min time-trial (TT) effort.  Participants completed the 

test on a Wattbike cycle ergometer (Wattbike Ltd, Nottingham, UK).  The protocol 

included a warm-up at a self-selected intensity followed by a short break and then the 

20 min maximal effort TT. Data were used to calculate subsequent target work-loads 

for the main trials. Participants were asked to refrain from strenuous exercise and 

avoid both alcohol and caffeine consumption during the 24 h prior to main trials. 

 

9.2.3 Experimental Protocol 

One week after completion of the maximal 20 min TT, participants completed the first 

of the two main trials. The trial consisted of a 20 min effort at a target power of 80% 

of the average power obtained during the maximal 20 min TT, followed by a 5 min 

break, before completion of a bout of repeated sprint interval cycle exercise consisting 

of 10 x 30 s sprinting, with 90 s recovery. The session was self-paced with real-time 

numerical feedback provided on elapsed time, cadence and power. Participants were 

given verbal encouragement at specific time-points throughout the trial. The same 
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protocol was repeated for the second main trial one week later. Participants were 

permitted to drink water ad libitum throughout the trials. Trials were completed in a 

group setting as a group of six and a group of eight. A trial timeline schematic is 

displayed below (Fig. 9.1). 

 

 

Figure 9.1  Timeline schematic displaying the exercise and sampling procedures for both main trials 

 

 

9.2.4 Sampling and Analysis 

On arrival at the laboratory, an indwelling cannula was fitted into an antecubital 

forearm vein. A pre-exercise 5 ml blood sample was drawn immediately. Further 

blood samples were obtained following the 20 min effort, in the 90 s recovery period 

following the fourth sprint, and following the tenth sprint at the end of the trial. 

Ratings of perceived exertion (RPE) and measures of psychological affect were 

obtained at the same time-points. Blood samples were dispensed into plasma 

collection tubes (Plasma EDTA/5 ml; Sarstedt, Sarstedt, Germany) and centrifuged 

immediately for 10 min at 1,500 g. Supernatant was removed and transferred to 

polypropylene Eppendorf tubes and frozen at -80°C until analysis.  

 

Samples were analysed in duplicate via ELISA for total testosterone, DHT and 

cortisol using commercially available kits (IBL, Hamburg, Germany). Combined 
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intra- and inter-assay variation was 4.6% and 5.7% respectively for total testosterone, 

6.9% and 8.5% respectively for DHT, and 3.0% and 3.5% for cortisol. 

 

9.2.5 Statistical Analyses 

Two-way repeated measures ANOVA was used to investigate differences between 

trial and time-point for measures of RPE, psychological affect, performance 

parameters and hormonal concentrations between different time-points and trials. 

Subsequent two-tailed paired T-tests, with post hoc Bonferroni correction, were 

carried out to determine the location of any variance. Pearson product moment 

correlations were performed to assess relationships between variables. All analyses 

were conducted using IBM SPSS Statistics (version 21.0.0; IBM, New York, NY). 

All data are presented as mean ± SD. Significance was accepted at P < 0.05.  
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9.3  Results 

9.3.1 Performance Parameters 

9.3.1.1 20 min TT: There were no significant differences between trials in terms of 

average power output, cadence, or pacing during the 20 min effort with average 

power not significantly different between each 5 min period of the 20 min effort 

(Table 9.1).  

 

Table 9.1  Average power during each 5 min period of 20 min pre-fatigue TT effort 

 Average Power (W) 

 5 min 10 min 15 min 20 min 

Trial 1 233 ± 39 233 ± 39 232 ± 40 232 ± 40 

Trial 2 232 ± 42 232 ± 41 232 ± 41 232 ± 41 

 

 

9.3.1.2 Repeated Sprint Bout:  

A significant interaction effect was observed for peak cadence (P = 0.019) with peak 

cadence for sprints 1 and 2 higher in the second trial than the first (P < 0.05) (Fig. 

9.4), with a tendency for average cadence to also be higher for these sprints, although 

this did not reach significance (P = 0.07 and P = 0.06 for sprints 1 and 2 respectively) 

(Fig. 9.5).  

 

For the repeated sprint bout, a trend was apparent for peak sprint power to be different 

between trials (P = 0.07), with peak power higher for sprint 3 in trial 2 in comparison 

to trial 1 (P = 0.04) (Fig. 9.2), however this did not influence average power for those 

sprints and no difference between trials was found for average sprint power (Fig. 9.3).  
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On average, the lowest average power for a sprint in the repeated sprint bout was 19 ± 

11 % lower than the highest average power. Sprint 1 was most frequently the sprint on 

which highest average power was obtained, with lowest average power tending to 

occur at sprint 8-9.   
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Figure 9.2  Peak sprint power for each sprint during both trials.  

 

 

 

Figure 9.3  Average sprint power for each sprint during both trials.  
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Figure 9.4  Peak sprinting cadence for each sprint during both trials. (* = Difference between trials; P 

< 0.05) 

 

 

 

Figure 9.5  Average sprinting cadence for each sprint during both trials.  
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9.3.2 Hormone Concentrations 

9.3.2.1 Testosterone:  

A significant main effect for time-point was observed (P = 0.001). Total testosterone 

concentration was elevated above pre-exercise concentrations at all time-points (P < 

0.001). Mean concentration increased from pre-exercise to post-20 min effort (P < 

0.01), with further significant increases from post-20min effort to post-sprint 4 (P < 

0.01), and from post-sprint 4 to post-exercise (P = 0.02).  

 

9.3.2.2 Cortisol:  

A significant main effect was observed for time-point for cortisol (P = 0.033). Mean 

cortisol concentration decreased from pre-exercise to post-20 min effort (P < 0.05), 

followed by an increase from post exercise to post-sprint 4 (P < 0.01) back to baseline 

concentrations, before a further significant increase at post-exercise (P < 0.01). A 

significant main effect was observed for trial in percentage change in cortisol 

concentration (P = 0.05). The percentage increase in cortisol concentration from post-

20min effort to post-sprint 4 was smaller in the first trial in comparison to the second 

(2 ± 14 % vs 15 ±18%, P = 0.03) as was the increase in cortisol from pre-exercise to 

post-exercise (23 ± 52% vs 76 ± 102%, P = 0.04).  

 

9.3.2.3 DHT: 

A main effect for time-point was also observed for DHT (P = 0.026) with mean DHT 

concentration increasing from pre-exercise to post-20 min effort (P < 0.05), with a 

further significant increase from post-20 min effort to post-sprint 4 (P < 0.05). DHT 

concentration was elevated above pre-exercise concentrations at all time-points (P < 

0.05).  
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Figure 9.6  Testosterone concentration across trials. (# = Difference from pre-exercise; † = Difference 

from previous time-point; P < 0.05) 

 

 

 

Figure 9.7  Cortisol concentration across trials. (# = Difference from pre-exercise; † = Difference from 

previous time-point; P < 0.05) 
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Figure 9.8  DHT concentration across trials. ( # = Difference from pre-exercise; † = Difference from 

previous time-point; P < 0.05) 
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9.3.3 RPE & Psychological Affect 

9.3.3.1 RPE: 

No significant differences between trials were detected. A main effect was observed 

for time-point (P < 0.001). RPE was elevated above rest following the 20 min effort 

(P < 0.001), which further significant increases from post-20 min effort to post-sprint 

4 (P < 0.001) and from post-sprint 4 to post-exercise (P < 0.01).  

 

9.3.3.2 Psychological Affect: 

A main effect was evident for time-point (P < 0.001) with affect was decreasing from 

pre-exercise to post-20 min effort (P < 0.001), with further significant decreases from 

post-20 min effort to post-sprint 4 (P < 0.001), and from post-sprint 4 to post-exercise 

(P < 0.001). There was a tendency for affect to be different between trials (P = 0.062). 

Affect was  significantly lower following the 20 min effort in the second trial 

compared to the first (P < 0.05). 
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Figure 9.9  RPE across trials. (# = Difference from pre-exercise; † = Difference from previous time-

point; P < 0.05) 

 

 

Figure 9.10  Psychological affect across trials. (* = Difference between trials; # = Difference from pre-

exercise; † = Difference from previous time-point; P < 0.05) 
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9.3.4 Performance Parameter Correlations with Hormone Concentrations 

Average power across all sprints was inversely associated with the change in cortisol 

concentration from post-sprint 4 to post exercise (r = -0.448; P < 0.05), and with post-

exercise cortisol concentration (r = -0.527; P < 0.001). In addition, average peak 

power was inversely associated with percent change in cortisol concentration from 

post-sprint 4 to post-exercise (r = -0.432; P < 0.01) and post-exercise cortisol (r = -

0.449; P < 0.01).  

 

9.3.5 Psychological Affect and RPE Correlations with Hormone Concentrations 

Post-20 min effort affect was associated with percent change in testosterone 

concentration from post-sprint 4 to post-exercise (r = 0.449; P < 0.01), and was 

inversely associated with post-20 min effort RPE (r = -0.674; P < 0.001). Post-sprint 4 

affect inversely correlated with post-20 min effort cortisol concentration (r = -0.433; 

P < 0.01). Post exercise affect inversely correlated with post-20 min effort RPE (r = -

0.648; P < 0.001) and post-exercise RPE (r = -0.527; P < 0.001). 

 

Post 20-min effort RPE correlated with the change in cortisol from pre-exercise to 

post-20 min effort RPE (r = 0.619, P < 0.001). Post-sprint 4 RPE was correlated with 

the change in cortisol concentration from pre-exercise to post-20 min effort (r = 

0.397, P < 0.01). Post-exercise RPE was inversely associated with pre exercise 

cortisol concentration (r = -0.446; P < 0.01) and post-20 min effort cortisol 

concentration (r = -0.404; P < 0.01). 
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9.4  Discussion 

The present data demonstrate an increase in the concentrations of testosterone and 

DHT and a decrease in cortisol in response to a 20 min effort designed to elicit 

fatigue, with subsequent increases in concentrations of testosterone, DHT and cortisol 

in response to a repeated sprint cycle protocol performed immediately after. The data 

also reveal successive increases in RPE during trials, with simultaneous decreases in 

affect. Small differences in affect were observed between trials but these were not 

associated with changes in hormone concentrations or performance. 

 

In terms of performance, there were no significant differences between trials in terms 

of average power output, cadence, or pacing during the 20 min effort, and average 

power was not significantly different between each 5 min period of the 20 min effort. 

This indicates a consistency of performance and pacing strategy by trained cyclists 

when asked to maintain a specific power goal, reinforcing previous findings in well-

trained cyclists demonstrating reproducibility of power output and cadence across a 

20 km TT (Thomas et al., 2012) and 4 km TT (Stone et al., 2011).  For the repeated 

sprint bout, peak cadence for sprints 1 and 2 was significantly higher in the second 

trial than the first with a tendency for this to also apply to average cadence for these 

sprints. In addition, peak power was higher for sprint 3 in trial 2 in comparison to trial 

1, with a trend for the same to apply for the second and final sprints, however, 

average power was not different. Although in relation to a repeated sprint protocol, 

these data are reflective of previous findings relating to TT performance 

demonstrating non-significant, greater variability in power and cadence at the 

beginning and end of an effort (Thomas et al., 2012).  
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There was a tendency for affect to be different between trials at the post-20 min effort 

time-point, with decreased affect reported during the second trial. Further examination 

of the data revealed that this finding applied solely to the group of eight participants 

who performed their trials together. This difference may have been generated by a 

change in environmental conditions. Despite attempts to control laboratory conditions 

via air conditioning, mean ambient temperature for the second trial was significantly 

higher than the first trial (22.0
o
C vs 25.2

o
C; P = 0.01) with relative humidity also 

significantly higher (54% vs 59%; P < 0.001). Increases in ambient temperature and 

humidity have been shown to influence perceptions of effort (Gonzalez-Alonso et al., 

1999; Nielsen et al., 2001; Taylor et al., 2014). While RPE post-20 min effort was not 

significantly different between trials, it was 1.1 units higher at this time-point during 

the second trial and was strongly inversely correlated with affect at this time-point (r 

= -0.674; P < 0.001). In addition, greater negative affect, as reported at the 20 min 

effort in the second trial, has been linked to increased cortisol concentrations at rest 

and during exercise (Acevedo et al., 2007), yet, despite the differences in affect, no 

differences were observed between trials in performance or hormone concentrations at 

this time-point. Taking affect as a marker of mood, this would seem to suggest that, in 

contrast to previous findings (Cook & Crewther, 2012a; 2012b), mood is not related 

to hormone response and performance in this context. Indeed, reported affect did not 

influence subsequent performance. During the repeated sprint protocol, peak power 

during was actually greater during the second trial for the third sprint with a trend for 

the same to apply to the second sprint and final sprints, and peak cadence for the first 

and second sprints was greater during the second trial, with a tendency for the same to 

apply to average cadence. As such, affect reported at this time point, but may merely 

reflect the perception of how performance of a sustained effort felt in warmer 
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conditions rather than a true change in mood influencing the participants motivation 

to execute the sprint protocol as during both trials, positive correlations were seen 

between affect and percentage change in testosterone, with inverse correlations 

observed between affect and cortisol concentration, which would lend support for 

previous findings (Cook & Crewther, 2012a; 2012b). In addition, warmer conditions 

might result in higher muscle temperature, and therefore improved sprint performance 

(Kilduff et al., 2013). It is also likely that the attempt to influence mood in the present 

investigation through the use of the group setting and an unfamiliar intense protocol 

was not sufficient to stimulate a change in hormone concentrations. A change in affect 

has been achieved previously through interventions aimed at directly influencing 

mood through the viewing of various video clips. Aggressive, intense and positive 

video clips resulted in increases in endogenous testosterone and was associated with 

improved physical performance and skill execution (Cook & Crewther, 2012a; 

2012b), while more cautionary and less positive and motivational videos were related 

to increased cortisol and decreased performance (Cook & Crewther, 2012a). Directly 

aiming to manipulate mood via a similar strategy may have induced a greater 

difference in affect between trial in the present investigation and also led to changes 

in hormone concentrations and performance. 

 

The increase in testosterone in response to the 20 min intense pre-fatigue effort is in 

line with previous observations demonstrating an increase in testosterone in response 

to a 65 min effort at 75% VO2max (Ronsen et al., 2001). The increase seen in 

concentrations of testosterone, DHT and cortisol in relation to the repeated sprint 

protocol are also in agreement with those we have observed previously following the 

same protocol (Chapter 7 & 8; Smith et al., 2013).  There were no differences 
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between trials in concentrations of testosterone, DHT and cortisol at any time-point. 

However, there were differences between trials in terms of percentage change. The 

greater percentage increase in testosterone and cortisol concentrations from post-

20min effort to post-sprint 4 and in cortisol concentrations from pre-exercise to post-

exercise during the second trial in comparison to the first may be related to the 

aforementioned differences in cadence and power across the first three sprints in the 

second trial. Increased cadence has previously been shown to be related to greater 

elevations in androgens (Smith et al., 2013), however percentage change in DHT was 

not different between trials. Alternatively, it could be suggested that the greater 

metabolic stress, elicited by via increased peak power and cadence, contributed to this 

difference, with an increase in metabolic stress having been previously linked to an 

increase in testosterone response (Goto et al., 2005). In addition, and as previously 

mentioned, ambient temperature was higher during the second trial for one of the 

groups, and warmer temperatures have also been shown to result in greater increases 

in concentrations of cortisol and testosterone as a result of the greater overall stress 

(Maresh et al., 2014).  

 

We have previously shown increases in cortisol and testosterone in response to the 

repeated sprint bout when performed alone to be an average of 17% for testosterone 

and 74% for cortisol (Chapter 7). Present changes in concentrations of testosterone 

and cortisol from pre-exercise to post-exercise following both the 20 min effort and 

the repeated sprint protocol were 45 ± 28% and 48 ± 83% respectively.  While caution 

should be employed to comparing between studies given the individual variation in 

responses seen, these data would suggest that the pre-fatiguing bout did not blunt 

HPA axis sensitivity and the hormone response to the subsequent repeated sprint bout. 
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Conversely, it may have enhanced the testosterone response while subduing the 

cortisol response. In addition, and as previously mentioned, metabolic stress has been 

linked to the magnitude of testosterone response during resistance exercise (Goto et 

al., 2005).  It is likely the metabolic stress induced by the 20 min effort would have 

possibly contributed to enhancing the testosterone response to the repeated sprint 

bout.  

 

Interestingly, peak power and average power across all sprints were inversely 

associated with the increase in cortisol concentration from post-sprint 4 to post 

exercise, and with post-exercise cortisol concentration. This may indicate a 

relationship between cortisol response and training status. Higher peak power and 

average power across the repeated sprint protocol would be associated with more 

highly trained individuals, suggesting that the response of cortisol to a repeat sprint 

cycling protocol is decreased in these individuals. While all participants in the present 

study were trained, this relationship may reflect the extent of this training status. 

Cortisol response has previously been associated with training status (McMillan et al., 

1993; Crewther et al., 2006) and was also evident in our previous research on the 

response to the repeated sprint bout in women (Chapter 8).  
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9.5  Conclusion 

In conclusion, the present data demonstrate an increase in the concentrations of 

testosterone and DHT and a decrease in cortisol in response to a 20 min effort 

designed to elicit fatigue, with subsequent increases in concentrations of testosterone, 

DHT and cortisol in response to a repeated sprint cycle protocol performed 

immediately after. The data suggest no influence of the pre-fatigue effort on the 

ability of the endocrine system to respond subsequent exercise. Successive increases 

in RPE were observed during trials, with simultaneous decreases in affect. Small 

difference in affect between trials were noted following the 20 min effort, but were 

not associated with differences in hormone concentrations and did not influence 

performance and are likely to have been related to differences in environmental 

conditions.  
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Acute Hormonal and Neuromuscular Response to Priming 

Exercise and its Influence on Performance 

 

10.1 Introduction 

Circulating concentrations of androgens, in particular testosterone, have been linked 

to enhanced performance in strength and power tasks (Cardinale & Stone, 2006; 

Crewther et al., 2012a; Crewther et al., 2012b) and correlated with neuromuscular 

performance (Crewther et al., 2009). One of the mechanisms by which steroid 

hormones may achieve this is by influencing neuromuscular function (Crewther et al., 

2011a). The short-term effects of steroid hormones on the neuromuscular system 

include facilitation of rapid activation of many second messenger signals such as the 

intracellular release of ions such as ATP, calcium and potassium in different cells 

(Passaquin et al., 1998; Jaimovich & Espinosa, 2004; Han et al., 2005), with various 

downstream effects on protein kinase pathways (Estrada et al., 2003; Han et al., 2005; 

Nguyen et al., 2005). Calcium release into skeletal muscle cells is therefore 

influenced by testosterone and cortisol concentrations, with calcium subsequently 

involved in twitch relaxation, energy metabolism and the structural integrity of the 

muscle fibre in muscle fibre (Berchtold et al., 2000). These signalling effects can 

influence neuronal excitement within minutes (Smith et al., 2002; Zaki & Barrett-

Jolley, 2002). Therefore, the hormonal stimulation of these signals could influence the 

functioning of the neuromuscular tissue and system.  

 

Steroid hormones can also influence the action of the motor system. Low free cortisol 

has been linked to enhanced motor cortex response (Sale et al., 2008), while 
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exogenous testosterone has decreased cortical motor threshold in humans (Bonifazi et 

al., 2004), and has been linked to improved performance via the influence on skeletal 

muscle function. Recently, the concept of hormonal priming has received attention. 

This concept relates to a potential association between concentrations of endogenous 

testosterone and elements of athletic behaviour linked to confidence and motivation to 

compete, and may result from the effects of endogenous testosterone on the brain 

(Cook & Crewther, 2012a). This theory has been supported through observations that  

elevations in total testosterone and free testosterone concentration prior to 

performance, through the viewing of various video clips, enhanced motivational 

behaviour and performance of identified skills (Cook & Crewther, 2012b), as well as 

improved 3RM back squat performance (Cook and Crewther, 2012a).  

 

The process of postactivation potentiation (PAP) has been shown to enhance muscular 

performance in endurance activities involving speed and power (Hodgson et al., 

2005). Mechanisms via which PAP is suggested to exert its effect include 

phosphorylation of myosin regulatory light chains making actin and myosin more 

sensitive to calcium, an increase in α-motoneuron excitability as reflected by the 

changes in the H-reflex, and changes in pennation angle of the muscle influencing 

force transmission (Tillin & Bishop 2009). Different conditioning protocols have been 

utilised to induce PAP. Multiple sets of the conditioning stimulus have been 

demonstrated to be more effective than a single set, and high intensity conditioning 

stimuli have been shown to enhance performance to a greater extent than moderate or 

low intensity conditioning activity (Wilson et al., 2013). The mode of conditioning 

stimulus used most frequently within the literature has been leg press or squat 

movement performed at a high percentage of 1 RM, with the efficacy of the stimulus 
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assessed using jump performance. However, different modes of pre-exercise 

conditioning activities have been shown to enhance performance of explosive 

activities, in particular the use of single cycle sprints, with the potentiating effect of 

the cycle sprint associated with elevations in salivary testosterone (Crewther et al., 

2011b).  In support of these observations, more recent research has demonstrated 

further support for a potentiating effect of low-load ballistic exercise on performance 

of strength and power task such as jumps and sprints (Maloney et al., 2014). Ballistic 

exercise is defined by performing movement with maximal velocity, involving mass 

being accelerated throughout an entire movement. This removes the braking phase 

associated with heavy resistance exercise, facilitating greater muscle activation and 

force output (Newton et al., 1996). It is thought that ballistic exercise is able to induce 

post-activation potentiation via high recruitment of type II muscle fibres, that are 

associated with its performance, as well as through augmenting lower limb stiffness.  

 

The aim of the present investigation was: i) to assess whether different methods of 

priming or potentiating exercise would be successful in enhancing power and strength 

performance, and ii) if potentiation occurred, to assess whether it was associated with 

elevations in hormone concentrations and muscular activation. 
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10.2 Method 

10.2.1  Participants 

Eleven young, healthy males (age: 24.8 ± 3.7 y; body mass 77.3 ± 7.5 kg; leg press 1 

RM 325 ± 63 kg) participated in this study. All participants completed resistance 

training 3 - 5 times each week, and had a resistance training history of a minimum of 

two years. Each participant was briefed regarding the nature of the study and provided 

written informed consent prior to commencing any testing. This study was approved 

by the University of Bath Research Ethics Committee. 

 

10.2.2 Preliminary Measurements   

Preliminary tests were conducted in order to determine each participant's one 

repetition maximum (1RM) on leg press, maximal vertical jump height, and maximal 

power during a 10 s cycling sprint test. Participants performed a warm up at a self 

selected in intensity on a stationary cycle ergometer (Wattbike Ltd, Nottingham, UK), 

before performing 10 s maximal sprint from a standing start. Following this, 

participants performed a maximal countermovement jump using a displacement 

transducer (GymAware, Kinetic Performance Ltd, Mitchell, ACT, Australia). The 

transducer consists of a linear encoder unit that relays information, via infrared 

connection, to a hand held device. The time-displacement data are used to calculate 

movement velocities  and subsequent accelerations. Data are then differentiated, and 

the kinematic data used to estimate force and power when external load and/or body 

mass are included (Crewther et al., 2011). For force and power measurement, CVs of 

2.5% and 3.0% respectively, have previously been reported with use of the 

GymAware system (Crewther et al., 2011d), along with significant correlations to 

force plate data (Cronin et al., 2004; Crewther et al., 2011d). Finally, participants 
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completed an incremental strength test to determine seated leg press 1RM (Keiser 

UK, Tetbury, UK). Data were used in order to establish maximal performance data for 

each participant and to calculate workload for subsequent trials. Participants were 

asked to refrain from strenuous exercise and to avoid both alcohol and caffeine 

consumption during the 24 h prior to the main trials. 

 

10.2.3  Experimental Design 

Participants completed four main trials in a randomised counterbalanced order, 

separated by a minimum of 48 h. All trials consisted of a standardised 5 min warm up 

relative to body mass on the stationary cycle ergometer before completion of one of 

three different priming exercise bouts, or a control. The three different priming bouts 

were i) 3 x 1 repetition of  heavy leg press at 90% of 1 RM with 50 s between 

repetitions (HLP); ii) 3 x 10 s high cadence sprints on the stationary cycle ergometer 

at moderate resistance, a cadence of 130-140 rpm and 50-60% peak power with 50 s 

between repetitions (HCS); iii) 3 x 10 s low cadence sprints on the stationary cycle 

ergometer at high resistance, a cadence of 50-60 rpm and 50-60% peak power with 50 

s between repetitions (LCS). The control trial (CTL) consisted of completing the same 

5 min warm up, before being seated. Following the priming exercise bouts 

participants were asked to take a seat for 8 min before performance of a maximal 

vertical jump, immediately followed by a set to fatigue of leg press (LPF) at 80% of 

1RM. Trials were performed while wearing a pair of fitted shorts with integrated 

electromyography (EMG) sensors at the quadriceps, hamstrings and gluteals 

(Myontec Ltd, Kuopio, Finland). EMG signal was transmitted via bluetooth to a 

laptop. 
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10.2.4  Sampling and Analysis 

Blood Sampling: All trials were performed in the morning, starting between 8am and 

11am. Each participant arrived at the laboratory at the same time of day for each trial, 

non-fasted. A pre-exercise blood sample was obtained from a finger tip into serum 

collection tubes (Serum Z/500 ul; Sarstedt, Germany). Further blood samples were 

obtained post-stimulus, mid-way through the 8 min recovery period between the 

priming exercise or control and the performance tests, and post-exercise following the 

conclusion of the set of leg press to fatigue. Samples were left to clot for 15 min at 

room temperature before being centrifuged at 3000 rpm (1500 g) for 10 min. Serum 

was then transferred to labelled Eppendorfs and frozen at -20oC until further analysis. 

Samples were analysed in duplicate via ELISA for total testosterone, free 

testosterone, DHT and cortisol using commercially available kits (IBL, Hamburg, 

Germany). Combined intra- and inter-assay variation was 4.6% and 5.7% respectively 

for total testosterone, 4.1% and 5.4% for free testosterone, 6.9% and 8.5% for DHT, 

and 3.0% and 3.5% for cortisol. 

 

EMG: EMG signal was recorded throughout each trial at 1,024 Hz. All data were 

filtered with a band-pass filter allowing 400 Hz high pass and 10 Hz low pass with 

use of the MyOnWear software (Myontec Ltd, Kuopio, Finland). Filtered files were 

exported for analysis in Microsoft Excel (version 2007). Raw signal was full-wave 

rectified and smoothed over 50 ms. Average rectified EMG (AREMG) and peak 

EMG (PEMG) were calculated from the rectified signal across the first five 

repetitions of the set of LPF and for the vertical jump. 
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10.2.5  Statistical Analyses 

Two-way repeated measures ANOVA was used to investigate differences between 

trial and time-point for all measured hormones and for performance parameters and 

EMG signal in the first five reps of the set of leg press to fatigue. One way-repeated 

measures ANOVA was used to investigate differences in jump performance, number 

of repetitions during LPF, and percentage change in hormones between trials. 

Subsequent two-tailed paired T-tests, with post hoc Bonferroni correction, were 

carried out to determine the location of any variance. Pearson product moment 

correlations were performed to assess relationships between variables. All analyses 

were conducted using IBM SPSS Statistics (version 21.0.0; IBM, New York, NY). 

All data are presented as mean ± SD. Significance was accepted at P < 0.05.  
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10.3  Results 

10.3.1 Performance Parameters 

Vertical jump height was not significantly different between trials (Fig. 10.1), 

however there was a tendency for jump peak power to be different between trials (P = 

0.07) (Fig. 10.2). Number of repetitions during the set of leg press to fatigue was not 

different between trials (Fig. 10.3) and no significant difference was apparent between 

trials in peak power across the first five repetitions of the set of leg press to fatigue, 

however, there was a significant main effect for repetition for peak power (P = 0.005) 

(Fig. 10.4). Further investigation revealed power for repetition 1 to be significantly 

lower than repetitions 2, 3, 4 and 5 (P < 0.01). 
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Figure 10.1  Mean countermovement jump height attained in each trial.  

 

 

 

Figure 10.2  Mean vertical jump peak power attained in each trial.  
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Figure 10.3  Mean number of repetitions completed during leg press to fatigue in each trial. 

 

 

 

Figure 10.4 Mean peak power of each of the first five repetitions during leg press to fatigue for each 

trial (# = Difference from repetition 1; P < 0.05) 
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10.3.2 Hormone Concentrations 

10.3.2.1 Total Testosterone  

Total testosterone concentration was not significantly different between trials at any 

time-point, however, a main effect for time was apparent (P < 0.001) (Fig. 10.5). In 

all trials, total testosterone concentration increased from pre-exercise to post-exercise 

(P < 0.05). In all trials, except for HCS, total testosterone concentration increased 

significantly from post-stimulus to post-exercise (P < 0.05). Percentage increase in 

total testosterone from pre- to post-exercise was significantly greater in the HCS trial 

in comparison to CTL (12 ± 11% vs 23 ± 10%; P = 0.03). 
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Figure 10.5 Mean total testosterone concentration over the course of each trial. (# = Difference from 

pre-exercise; † = Difference from mid-recovery period; P < 0.05) 
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10.3.2.2 DHT  

DHT concentration displayed a significant main effect for time (P = 0.03), with a 

tendency for there to be an interaction effect between time-point and trial (P = 0.07) 

(Fig. 10.6). DHT concentration increased significantly from pre- to post-exercise in 

all trials (P < 0.05), with a significant increase in DHT concentration from pre-

exercise to post-stimulus in the HCS trial (P < 0.001), and from post-stimulus to post-

exercise in HCS (P < 0.005) and HLP trials (P < 0.05), with a tendency for the same 

to apply in the LCS trial (P = 0.07).  

 

There was also a significant difference between trials in terms of percentage change in 

DHT concentration from pre- to post-exercise (P = 0.04). Percentage change in DHT 

concentration from pre-exercise to post-stimulus was significantly greater during the 

HCS trial (10 ± 7%) than during the CTL trial (3 ± 7%; P = 0.03), the HLP trial (2 ± 

7%; P = 0.03), with a tendency for the increase to be greater compared to the LCS 

trial (4 ± 8%; P = 0.07). Percentage increase in DHT concentration from pre- to post-

exercise was significantly greater during the HCS trial (19 ± 10%) than during the 

CTL trial (7 ± 8%; P = 0.02), and the LCS trial (10 ± 11%; P = 0.02), and a tendency 

for the same to apply in the HLP trial (9 ± 13%; P = 0.07). 
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Figure 10.6  Mean DHT concentration over the course of each trial. (# = Difference from pre-exercise; 

† = Difference from mid-recovery period; P < 0.05) 
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10.3.2.3 Free Testosterone 

Free testosterone was not significantly different between trials at any time-point, 

however there was a main effect for time (P < 0.001) (Fig. 10.7). Free testosterone 

concentration increased from pre- to post-exercise in all trials (P < 0.05), with a 

significant increase from pre-exercise to post-stimulus in the HCS trial (P < 0.005). 

There was a significant difference between trials in percentage change in free 

testosterone concentration from pre-exercise to post-stimulus (P = 0.01), with a 

tendency for there to be a difference between trials in change in free testosterone 

concentration from post-stimulus to post-exercise (P = 0.06).  

 

Further analysis revealed percentage increase in concentration from pre-exercise to 

post-stimulus to be greater in the HCS trial (34 ± 25%) than in the HLP (6 ± 18%; P = 

0.01), and LCS (6 ± 22%; P = 0.01) trials with a trend for the same to apply during 

the CTL trial (16 ± 20%; P = 0.06). Percentage change from post-stimulus to post-

exercise was less in the HCS trial (6 ± 11%) than during the HLP trial (23 ± 15%; P = 

0.006), and percentage change from pre- to post exercise was greater during HCS trial 

(42 ± 24%) than the CTL trial (27 ± 20%; P = 0.05). 
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Figure 10.7 Mean free testosterone concentration over the course of each trial. (# = Difference from 

pre-exercise; † = Difference from mid-recovery period; P < 0.05) 
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10.3.2.4 Cortisol 

Cortisol concentration displayed a significant main effect for time (P = 0.04), but was 

not different between trials at any time-point (Fig. 10.8). Further analysis 

demonstrated a significant decrease from pre-exercise to post-stimulus during the 

HLP trial (P = 0.002), with a tendency for the same to apply during the LCS trial (P = 

0.06). In the CTL trial there was also a significant decrease in concentration from pre- 

to post-exercise (P = 0.02).  

 

There was a significant difference between trials in percentage change in cortisol 

concentration from post-stimulus to post-exercise (P = 0.04). Percentage decrease 

from pre- to post-exercise during the CTL trial (-11 ± 11%) was greater than that 

during the HCS trial (-1 ± 14%; P = 0.03), with a tendency for the decrease from post-

stimulus to post-exercise (-5 ± 10%) and pre- to post-exercise (-15 ± 13%) to be 

greater than the HCS trial (16 ± 37%; P = 0.08 and -1 ± 14%; P = 0.08, respectively).  
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Figure 10.8 Cortisol concentration over the course of each trial. (# = Difference from pre-exercise; † = 

Difference from mid-recovery period; P < 0.05) 
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10.3.3 EMG Signal 

Quadriceps AREMG during vertical jump was significantly different between trials (P 

= 0.041) (Fig. 10.9), with a trend for the same to apply to quadriceps PEMG (P = 

0.06) (Fig. 10.10). Further analysis revealed quadriceps AREMG to be greater during 

LCS trial than CTL (P = 0.03), with a tendency for it to be greater during HCS trial 

than CTL (P = 0.08) and HLP trial (P = 0.06). There was a trend for quadriceps 

PEMG to be greater during LCS trial than CTL (P = 0.06) and greater during the HCS 

trial than the HLP trial (P = 0.07).  

 

A significant main effect for repetition was apparent in quadriceps AREMG in the 

first five repetitions of LPF (P = 0.05), as it was for quadriceps PEMG (P = 0.005) 

however, neither was different between trials. Further analysis demonstrated 

quadriceps AREMG to be lower on repetition 1 than on repetitions 2 - 5 (P < 0.02), 

and quadriceps PEMG was also significantly lower on repetition 1 than on repetitions 

2 - 4 (P < 0.02), with PEMG being significantly lower for repetition 5 than for 

repetition 2 (P = 0.02) and repetition 3 (P = 0.03).  
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Figure 10.9  Quadriceps AREMG during vertical jump for all trials (# = Difference from CTL trial; P 

< 0.05) 

 

 

Figure 10.10  Quadriceps PEMG during vertical jump for all trials. 
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10.4  Discussion 

The present data do not demonstrate an enhancement of vertical jump performance or 

number of repetitions during performance of leg press exercise to fatigue with any of 

the potentiating exercises used in this investigation, suggesting postactivation 

potentiation did not occur. Given this observation, the secondary aim of the study, to 

assess the association between hormone concentrations and potentiation, was 

disregarded. However differences were observed between trials in muscular activation 

of the quadriceps during vertical jump performance.  

 

To our knowledge, this is the first research to investigate EMG activity alongside 

concentrations of serum hormones and exercise designed to potentiate subsequent 

muscle function. However, as stated, no potentiating effect was evident. Previous 

studies have also shown absence of performance improvement in vertical jump height 

following potentiating stimuli (Chiu et al., 2003; Khamoui et al., 2009). Where 

participants have been recreationally trained, postactivation potentiation has been 

shown to be less effective (Chiu et al., 2003; Khamoui et al., 2009; Wilson et al., 

2013). In a meta-analysis, effect sizes for muscle power following postactivation 

potentiation were reported as 0.14, 0.29 and 0.81 for untrained individuals, trained 

individuals and athletes, respectively (Wilson et al., 2013). While the participants in 

the current investigation were all trained, and regularly completed resistance training 

there was large variation in 1 RM, as well as the sports for which participants trained. 

This generates a large amount of variation in comparison to studies that have shown 

strong effects when using squads of elite athletes completing the same training 

(Crewther et al., 2009, 2011b,  2011c). Following potentiation, optimal performance 

occurs when fatigue has subsided, but the potentiated effect still exists (Hodgson et 
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al., 2005). Thus, inherently, training status has been linked to most effective duration 

of the recovery period, with trained individuals seemingly responding better to a 

longer recovery period than athletes (Wilson et al., 2013). While a number of 

recovery periods of different duration have been investigated, the most beneficial in 

enhancing performance of a countermovement jump has been shown to be 

approximately 8 min (Kilduff et al., 2007; Kilduff et al., 2008; Wilson et al., 2013) 

However, it is possible that participants in the present investigation may have required 

a longer recovery period in order for the potentiating exercises to be effective. 

 

The effectiveness of postactivation potentiation can also be influenced by muscle 

fibre type distribution. Individuals with a higher proportion of type II fibres have 

previously demonstrated a greater postactivation potentiation response but also 

generated a higher fatigue response (Hamada et al., 2003). This raises the possibility 

that for optimal performance, postactivation potentiation protocols should be 

individualised. Indeed, the effectiveness of postactivation potentiation in athletes has 

been shown to be enhanced by individualising the recovery period to each athlete 

(Crewther et al., 2011c). Participants in the present investigation would fall at a 

different points on a continuum of each of both training status and fibre type 

distribution, introducing variability into the observed data, as can be seen by the 

magnitudes of the standard deviations, and may also explain the lack of postactivation 

potentiation response seen.  

 

Previous research has considered the relationship between salivary testosterone and 

cortisol concentrations and performance of squat and sprint activities (Crewther et al., 

2009; 2011b) and demonstrated elevations of both hormones following cycle sprint 
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activities that was associated with improved jump performance (Crewther et al., 

2011b). Although total testosterone concentration in the present investigation did 

increase in response to all potentiating activities, it did not reach significance. 

However, a significant increase in free testosterone and DHT concentrations from pre-

exercise to post-stimulus was observed during the HCS trial, but not during the LCS 

trial. This is in agreement with our previous data demonstrating increase in DHT in 

response to repeated sprint cycling with the magnitude of increase being related to 

cadence (Smith et al., 2013). DHT has recently received attention for its potential to 

enhance performance above that of testosterone (Bauer et al., 2000; Grino et al., 

1990).  Administration of DHT to muscle fibre bundles has been shown to enhance 

contractile function, but only in fast-twitch fibres (Hamdi & Mutungi, 2010). As such, 

the presence of elevated DHT may be of considerable importance for optimal 

performance of high intensity strength and power based tasks. In the present 

investigation, although not significant, vertical jump height, and particularly vertical 

jump peak power, were greater during HCS trial than any other trial.  

 

In terms of muscle activation, quadriceps AREMG during vertical jump performance 

was greater during the LCS trial than CTL, with a tendency for AREMG to be higher 

during the HCS trial than both HLP and CTL trials. Allied with this, there was a trend 

for PEMG to also be greater during LCS than CTL trial and during the HCS than HLP 

trial. These data may be indicative of increased muscular recruitment in response to 

both the low cadence and high cadence stimuli, above that of heavy leg press stimuli 

and the control. Although, as stated, no significant difference in vertical jump height 

was observed between trials, these EMG data are reflective of the trends observed for 

vertical jump performance where for eight of the eleven participants, greatest jump 
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height was attained during HCS or LCS trials. These data may tentatively suggest 

that, although not statistically significant, there was a trend for both HCS and LCS to 

enhance muscular activation and recruitment, and generate an improvement in the 

performance of an explosive power task. Considered alongside the free testosterone 

and DHT responses during the HCS trial, where significant increases were seen in 

response to the potentiating stimulus, a further tentative suggestion could be made of 

a link between androgen response and explosive power performance. Indeed, although 

differences are small and statistically non-significant, vertical jump height was on 

average greatest during the HCS trial. It is possible that the use of a linear 

displacement transducer for assessment of jump height is not sufficiently sensitive or 

reliable. Although validity and reliability has been established for estimates of force 

and power using this method (Cronin et al., 2004; Crewther et al., 2011), total 

displacement during a jump is likely to be more variable due to the possibility of the 

participant moving away from a true vertical during the jump, and thus introducing 

variability in jump height to different degrees depending on the extent of movement.  

In addition, as previously mentioned, the variation in the study resulting from inter-

individual differences in training status and muscle fibre type distribution may also 

have influenced the EMG data. All participants in the current investigation wore the 

same pair of shorts for measurement of EMG. While this allows for a degree of intra-

individual consistency in terms of sensor placement, the anthropometry of the 

individuals was very different. As such, the sensors would have been located in 

different positions on the muscle for different individuals, introducing additional 

variation. However, small effects and trends as noted above were still observed. It is 

possible that with a more homogenous and highly trained group of individuals these 

trends may have become more apparent.  
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No difference was seen between trials for quadriceps AREMG or PEMG for the first 

five repetitions during LPF. However, AREMG was lower on the first repetition than 

on the following four, with PEMG also lower on the first repetition than on repetitions 

two to four, and lower on repetition five than on repetitions two to three. The data also 

demonstrate that, following reaching maximal values at repetition two or three, 

PEMG began to decline by repetition five although AREMG still remained elevated at 

this point. These observations are likely to be linked to the muscular recruitment 

strategies used to generate force throughout the set of leg press exercise, but further 

analysis would be required in order to determine this. However, no difference was 

seen between trials in terms of this change in PEMG and AREMG, suggesting no 

influence of any of the potential potentiating stimuli on muscular activation during the 

performance of leg press exercise.  
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10.5  Conclusion 

In conclusion, the present data do not demonstrate an enhancement of vertical jump 

performance or in number of repetitions performed during leg press exercise to 

fatigue with any of the exercises designed to induce potentiation in this investigation, 

suggesting PAP did not occur. As such, no association was established between 

potentiation and the hormone response to the stimuli utilised. Differences in muscular 

activation during jump performance were observed suggesting that low and high 

cadence sprints generated increased muscle recruitment during this task, however, this 

was not accompanied by improvement in jump performance. It is likely the magnitude 

of inter-individual variation within the cohort of participants influenced the present 

findings to a large extent. 
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- Chapter 11 - 
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General Discussion 

 

The series of studies comprising this thesis have endeavoured to add to the existing 

body of literature concerning the measurement of certain hormones in relation to 

exercise training, the response to high intensity exercise, and the potential influence of 

certain hormones on short-term performance. 

 

Chapters 4, 5 and 6 investigated the agreement between the hormone concentrations 

measured through venous sampling and those in capillary and saliva samples, and the 

effect of different storage conditions and duration on the saliva hormone 

concentrations.  In the first study to provide a comprehensive report on the agreement 

between venous and capillary concentrations over a wide array of hormones, good 

relation and agreement between venous and capillary concentrations of total 

testosterone, progesterone, estradiol, prolactin, FSH and LH was observed; suggesting 

that capillary sampling may be used as an acceptable alternative to venous sampling 

for these measures. However, correlation and agreement between venous 

concentrations of total and free IGF-1 and capillary equivalents was only moderate, 

suggesting that venous and capillary blood sampling may not be used interchangeably 

for determination of total and free IGF-1. For saliva sampling, although absolute LOA 

did not indicate direct agreement between venous and saliva measures, saliva 

hormone concentrations did display a proportional relationship with venous 

concentrations. Scaling of salivary concentrations revealed direct agreement between 

venous and saliva concentrations, suggesting that saliva samples can be used to track 

and reflect changes in venous hormone concentrations, but that appropriate correction 
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of saliva hormone concentrations is needed if saliva is to be used as an estimate of 

venous hormone concentrations of total cortisol and total testosterone.  

 

In terms of the handling and storage of saliva samples, the data demonstrated that 

problems may arise when saliva is not frozen in the hours immediately after 

collection. While cortisol concentrations were not different between aliquots frozen 

immediately and those stored at room temperature or in a refrigerator for up to 7 days, 

a linear decrease in testosterone and estradiol concentrations was observed across 1 to 

7 days of storage in non-freezer conditions. In order to preserve the ‘original’ 

concentrations of hormones in saliva, gonadal steroids should be kept refrigerated 

upon collection and stored at -20
o
C or below within 24 h.  Samples to be analysed for 

cortisol may be stored or transported for up to 7 days at room temperature or in a 

refrigerator before freezing.  Samples to be analysed for cortisol, testosterone or 

estradiol can remain frozen for up to 1 month prior to analysis. Establishing these 

guidelines for the handling and storage of samples following collection is an 

important finding.  

 

Chapter 7 sought to assess the hormone responses to consecutive interval and 

resistance exercise bouts in men. In the male participants completing two sessions in 

the same day, performance of interval exercise in the morning resulted in increases in 

concentrations of cortisol, total testosterone and progesterone. Resistance exercise 

performed in the morning elicited an increase in the TC ratio while cortisol and 

prolactin concentrations decreased. When preceded by interval exercise, the 

magnitude of change in hormone concentration in response to resistance exercise in 

the afternoon was numerically greater for all hormones in comparison to completion 
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of resistance exercise in the morning, but only significant for cortisol and prolactin. 

The magnitude of change in concentration in response to interval exercise in the 

afternoon following completion of resistance exercise in the morning was varied, but 

was significantly greater for prolactin and the TC ratio . The data for IAUC and 

TAUC data suggested that it could be beneficial to perform resistance training in the 

afternoon preceded by interval training in the morning in order to stimulate a 

hormonal milieu that may be more conducive to increasing muscle protein turnover 

and increasing muscle mass.  

 

Chapter 8 provided support for the hormone responses seen to the repeated sprint 

interval exercise bout performed in the morning. A cohort of both well-trained and 

recreationally active female participants completed the same repeated sprint interval 

exercise protocol and a robust increase was observed in circulating concentrations of 

testosterone, DHT and cortisol. DHT was analysed in this study following recent 

suggestions of its potential to exert both functional and signalling effects in skeletal 

muscle above those of testosterone (Hamdi & Mutungi, 2010). Similar to previous 

findings in males, cadence was associated with the magnitude of change in DHT 

concentration (Smith et al., 2013), however, in contrast, the magnitude of change in 

testosterone was not.  This may suggest that circulating DHT is synthesised via 

testosterone-independent pathways in females in response to exercise. It would be 

worthwhile for future investigations to establish whether DHT might be converted 

from local androgens within active muscle and role of DHT in acute athletic 

performance and chronic adaptation to exercise training.   
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Chapter 9 examined the influence of a sustained, high intensity, steady state cycling 

bout performed immediately prior, on the performance of, and hormone response to, 

the same repeated sprint interval exercise protocol used in the previous studies, as 

well as assessing proposed links between mood, hormone concentrations and 

performance. The prior exercise bout elicited an increase in total testosterone and 

DHT concentrations and a decrease in cortisol. Subsequent increases in 

concentrations of testosterone, DHT and cortisol in response to a repeated sprint cycle 

protocol performed immediately after were then observed suggesting no influence of 

the effort on the ability of the endocrine system to respond subsequent exercise, with 

magnitudes of change in testosterone and cortisol concentrations similar to those 

observed in Chapter 7. In terms of mood state, the data appeared to demonstrate some 

conflict. Small differences in affect were noted between trials following the 20 min 

effort, but were not associated with differences between trials in hormone 

concentrations or performance during the subsequent repeated sprint protocol, this 

may be suggestive of a disconnect in the association observed previously between 

mood, hormone concentrations and performance (Cook  & Crewther 2012a; 2012b). 

However, across both trials, affect was positively correlated with total testosterone 

concentrations, and inversely associated with cortisol concentrations providing 

support for a possible link.     

 

Chapter 10 endeavoured to further assess possible links between hormone 

concentrations and performance through investigating whether different methods of 

priming or potentiating exercise would be successful in enhancing power and strength 

performance, and if so, whether it was associated with elevations in hormone 

concentrations and muscular activation. No enhancement of vertical jump 
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performance or number of repetitions during performance of leg press exercise to 

fatigue with any of the potentiating exercises, suggesting postactivation potentiation 

did not occur. As such, no assessment of the possible association with hormone 

concentrations was made. However, muscular activation of the quadriceps during 

vertical jump performance was greater during the low cadence sprint and high 

cadence spints trials, and DHT and free testosterone increased in response to high 

cadence sprints.  These data do not suggest a link between hormone concentrations 

and performance of explosive power or strength tasks, however, in support of the 

findings of Chapter 8, and previous research (Smith et al., 2013), high cadence 

cycling generated an increase in concentrations of DHT.  

 

The results of Chapters 4 & 5 provide evidence to support the use of both capillary 

and saliva sampling in an applied exercise setting for the majority of the hormones 

measured. While capillary hormone concentrations demonstrated absolute agreement 

with venous concentrations, the relationships established between venous and saliva 

concentrations suggest scaling of the data may be required. However, the necessity of 

this is dependent on the requirements of sampling. If hormone concentrations are to 

be used to track the pattern of change over a period of time using the same sample 

medium, scaling of concentrations may not be required. The results of Chapter 6 

provide the basis from which to form recommendations for storage procedures in 

order to preserve sample integrity demonstrating samples should be refrigerated 

immediately and frozen within 24 h. In comparison to cortisol, testosterone appeared 

to be more unstable in saliva. In addition, the relationship observed in Chapter 5 

between venous and saliva concentrations was weaker than observed for cortisol, 

reinforcing the need to maintain the integrity of the sample to avoid additional error. 
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Chapter 7  allowed for characterisation of the response to both interval and resistance 

exercise, and assessment of the influence of bout order on the responses. The data 

established demonstrate an effect of previous exercise on the cortisol response to 

resistance exercise following earlier interval exercise. These changes may have been 

related to ciracadian rhythm and feedback control, but raise an important 

consideration for the scheduling of training, especially in the light of the recent 

demonstrations of associations between concentrations of steroid hormones and 

athletic performance. In order to maximise training gains, athletes need to ensure they 

perform optimally during each session. Concentrations of steroid hormones may 

influence this.  

 

The data presented in Chapter 7 also demonstrated a pronounced hormonal response 

to interval exercise, a finding that was mirrored in females in Chapter 8. Significant 

increases in testosterone, DHT and cortisol were accompanied by a positive 

association between the magnitude of change in DHT and cycling cadence. A 

observation that was also noted in Chapter 10. This may be suggestive of DHT being 

able to exert effect signalling and functional effects in skeletal muscle, as has been 

previously suggested (Hamdi & Mutungi, 2010). Cadence has also previously been 

demonstrated be related to the magnitude of change in testosterone concentration to 

the repeated sprint interval protocol in males (Smith et al., 2013), however, this was 

not apparent in the female participants here. Synthesis of DHT can occur in a 

testosterone independent manner (Luu-The & Labrie, 2010), and given that females 

have an approximately 10 fold lower concentration of circulating testosterone than 

males (Vingren et al., 2010), it is possible that production of DHT occurs more 

readily via testosterone independent pathways. As such, should DHT have the 
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signalling and functional effects proposed, in females, it may be a more important 

marker than testosterone in indicating adaptive potential and strength and power 

performance. However, this tentative suggestion requires further investigation. 

 

Concerning the short term effects of hormones on performance, Chapters 9 & 10 

sought to establish links between hormone concentrations and measures of mood and 

performance. The data in Chapter 9 demonstrated slightly conflicting evidence in 

regard to an association between hormone concentrations and mood. While slight 

differences observed in mood between trials were not related to differences in 

hormone concentration or performance, overall, a positive association was observed 

between affect and percentage change in testosterone. Despite prior performance of 

the pre-fatiguing cycling bout, increases in testosterone, DHT, and cortisol were 

observed in response to the repeated sprint cycling bout as used in Chapters 7 & 8. 

These data suggest no influence of the pre-fatigue effort on the ability of the 

endocrine system to respond subsequent exercise in this context. Magnitudes of 

increase in concentrations of cortisol and testosterone from pre- to post- exercise were 

similar to those observed in Chapter 7 following performance of the repeated sprint 

cycle bout alone.  

 

In contrast to the potential associations identified between mood and hormone 

concentration in Chapter 9, no association between hormone concentrations and 

performance was observed in Chapter 10. The data observed did not demonstrate 

evidence of postactivation potentiation or an association between hormones 

concentrations and performance of strength and power tasks. The absence of this may 

have been related to the training status of the participants. Where participants are 
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recreationally trained, postactivation postentiation has been shown to be less effective 

(Chiu et al., 2003; Khamoui et al., 2009; Wilson et al., 2013), and more highly trained 

individuals have been reported to demonstrate greater increases in androgens in 

response to exercise stimuli (Crewther et al., 2006). Conversely, the data presented 

here may also indicate that the main mechanism by which androgens exert their 

effects on performance is through influencing mood and behaviour, as has recently 

been demonstrated (Cook and Crewther, 2012a; 2012b), and as aforementioned, 

demonstrated with an association in Chapter 9 between affect and change in 

testosterone concentration. However, the data did demonstrate a significant increase 

in DHT and free testosterone in response to high cadence cycling as was 

demonstrated in Chapter 8 and previously (Smith et al., 2013). The precise 

mechanisms for this observation are unclear, but given recent evidence of increases in 

force production following DHT administration to muscle fibres in vitro (Hamdi & 

Mutungi, 2010), understanding this would seem to be an important step due to the 

possible implications for athletic performance. 

 

In summary, the programme of research presented in this thesis has several interesting 

findings that may also form the basis for guidelines to inform practice within an 

applied exercise setting. These are stated below: 

 

1. Capillary and saliva sampling can be used in the determination of concentrations of 

some hormones in an applied exercise setting. If a reflection of venous concentrations 

are required, saliva concentrations should be scaled accordingly. 
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2. Saliva samples should be refrigerated immediately upon collection, and frozen 

within 24 h. Subsequent analysis should take place within 28 days. 

 

3. The order of training sessions can influence the hormone response elicited. In this 

context, it may be beneficial to perform resistance exercise in the afternoon in order to 

stimulate a hormonal milieu that may be more conducive to increasing muscle protein 

turnover. 

 

4. Interval exercise elicits robust increases in testosterone, DHT and cortisol in 

females, with the magnitude of increase in DHT associated with sprinting cadence. 

 

5. A prior period of high intensity cycling did not influence the ability of testosterone, 

DHT and cortisol to respond to a repeated sprint interval cycling bout, with the 

magnitude of change in testosterone positively associated  with affect. 

 

6. No associations were found between hormone concentrations and strength and 

power performance following no observation of a postactivation potentiation effect to 

different exercise stimuli. However increases in DHT and free testosterone were 

observed in response to high cadence cycling. 

 

While the research presented here contributes to the existing body of knowledge 

regarding the measurement of circulating hormone concentrations, their response to 

high intensity exercise, and the potential influence on short-term performance, it also 

demonstrates potential future avenues for research. Two observations were made over 

the course of this research of an association between DHT concentrations and high 
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cadence cycling. An observation that has also previously been reported (Smith et al., 

2013). Given the reported influence of DHT on muscle force production in vitro, there 

may be possible implications for performance.  In addition, it would be of interest to 

further elucidate the influence of bout order of different modes of exercise on 

hormone responses and performance. 
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