

University of Bath

PHD

A study of normalisation through subatomic logic

Aler Tubella, Andrea

Award date:
2017

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 22. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161919547?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A study of normalisation through

subatomic logic
submitted by

Andrea Aler Tubella

for the degree of Doctor of Philosophy

of the

University of Bath

Department of Computer Science

January 2017

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with its author. This

copy of the thesis has been supplied on the condition that anyone who consults it is

understood to recognise that its copyright rests with its author and that no quotation

from the thesis and no information derived from it may be published without the prior

written consent of the author.

This thesis may be made available for consultation within the University Library and

may be photocopied or lent to other libraries for the purposes of consultation.

Signature of Author .

Andrea Aler Tubella

Abstract

We introduce subatomic logic, a new methodology where by looking inside of atoms

we are able to represent a wide variety of proof systems in such a way that every rule

is an instance of a single, regular, linear rule scheme. We show the generality of the

subatomic approach by presenting how it can be applied to several different systems

with very different expressivity.

In this thesis we use subatomic logic to study two normalisation procedures: cut-

elimination and decomposition. In particular, we study cut-elimination by characterising

a whole class of substructural logics and giving a generalised cut-elimination procedure

for them, and we study decomposition by providing generalised rewriting rules for

derivations that we can then apply to decompose derivations and to eliminate cycles.

Acknowledgements

First and foremost, I would like to thank my supervisor Alessio Guglielmi. I could not

have asked for a more supportive, inspiring and cake-loving supervisor to guide me

through my PhD. He introduced me to proof theory and to the world of research, and I

couldn’t have done this without his help, insight and encouragement. Thank you.

I would like to thank Benjamin Ralph for our fruitful discussions in front of the

whiteboard, for his patience while listening to my convoluted explanations, and for all

the help he has provided me throughout the writing of this thesis, typesetting atomic

flows and giving greatly useful comments on various drafts.

I would also like to greatly thank my examiners Willem Heijltjes and Luca Roversi

for their useful comments and observations.

I am also truly grateful to the whole mathfound group in Bath. Everyone has been

helpful, kind, interesting and very willing to share their knowledge with me.

On a personal note, I would like to thank my parents and my sister for their love

and support: it is what has led me here, and I couldn’t be luckier to have you.

Thank you Laura for being the best friend there can ever be. Thank you to the

Bath gang: D., L., M., C., J., Z., E., H., Z., A., A., you are my family away from home,

and have made these three years the most wonderful time.

Contents

1 Introduction 1

2 Subatomic Logic 7

2.1 Subatomic formulae . 9

2.2 Subatomic proof systems . 15

2.3 Proofs . 26

3 Splitting 31

3.1 Splitting for MLL . 31

3.2 General splitting . 48

3.3 The robustness of splitting: adding a modality 65

3.4 Conclusions . 73

4 Decomposition 74

4.1 Preliminaries: atomic decomposition in classical logic and multiplicative

additive linear logic . 75

4.2 General rewriting system . 86

5 Removing cycles 108

6 Conclusion 122

Bibliography 126

i

Chapter 1

Introduction

Proof theorists have long been interested in the study of normalisation of proofs. From

cut-elimination to proof identity, finding a normal form for proofs is a valuable research

goal that includes questions such as which properties we would like for the normal form,

and what the size of the normal form is in relation to the original proof. To study

normalisation procedures generally is however very difficult: cut-elimination procedures

for example are highly sensitive to variations on the form and structure of the rules of a

system, where a single change in one of the rules or the addition of another warrant the

need for a full new proof of cut-elimination in a new system. In this thesis, we provide a

new approach within the setting of deep inference, which we call subatomic, that allows

us to present a wide variety of propositional proof systems in such a way that every rule

is an instance of a single linear rule scheme. We then exploit this generality to study

normalisation procedures and their complexity, and in particular the role played by the

interactions between the rules. These first applications of the subatomic methodology

open an avenue for promising future research on the effect the interactions between

rules have in different procedures, as well as in the realm of proof system design.

The first normalisation procedure that we set out to study is cut-elimination.

Gentzen’s proofs of cut-elimination [11] for classical and intuitionistic logic were only

the first instance of a type of argument that has been long studied since. From that

breakthrough, Gentzen-style cut elimination proofs abound in the literature, exploring

on a system-by-system basis how to permute the cut-rules towards the premiss of a proof.

The specificity needed for these cut-elimination arguments requires tricky case by case

analyses, making it difficult to understand how cut-elimination works. Indeed, when

designing a new proof system a complex trial and error phase is necessary to obtain cut

admissibility. The fact that simple variations of a rule have so much influence on these

arguments is the first hint that cut-elimination is in fact a combinatorial phenomenon,

hinging mostly on the shape and interaction between the rules of a system. It is precisely

this phenomenon that we set out to study, to understand how the interactions between

the rules affect cut-elimination.

The second normalisation procedure that we analyse is decomposition. It is known

that we can decompose a classical logic proof into a linear phase and a phase made-up

only of contractions [29], or that we can decompose a first-order proof into a propositional

1

phase and a quantified phase through a Herbrand theorem [7]. These type of results

are called decomposition theorems, and they provide normal forms for proofs that are

of great use since they allow us to separate proofs into different fragments that we

can study independently from each other. Cut-elimination and decomposition often

seem to be intertwined, since in the literature the proofs of both decomposition and

cut-elimination theorems often rely on super rules, permuting contractions and cuts

together in a single rule. However, in [29, 24] the decomposition of classical logic proofs

into a linear phase followed by only atomic contractions is shown to be a purely local

phenomenon independent of cut-elimination in proofs without cycles. By providing

general rewriting schemes to permute rules, we will study the effect the interaction of

rules has in decomposition and in the removal of cycles, showing that decomposition is

a property fully independent from cut-elimination.

Since our main aim is to study the interactions between rules, we will do so in the

setting of deep inference [18] where rules can be reduced to their atomic form providing

great regularity in the inference rule schemes. In deep inference, proofs can be composed

by the logical connectives that are used to compose formulae [25]. For example, if

φ =
A

B
and ψ =

C

D
are two proofs in propositional logic,

φ ∧ ψ =
A

B
∧
C

D
and φ ∨ ψ =

A

B
∨
C

D

are two valid proofs with premisses A∧C and A∨C and conclusions B ∧D and B ∨D
respectively. In deep inference, rules can be applied at any depth inside a formula and

as a result every contraction and cut instance can be locally transformed into their

atomic variants by a local procedure of polynomial-size complexity [4]. This provides

a surprising regularity in the inference rule schemes: it can be observed that in most

deep inference systems all rules besides the atomic ones can be expressed as

(A α B) β (C γ D)

(A ε C) ζ (B η D)
,

where A,B,C,D are formulae and α, β, γ, ε, ζ, η are logical relations. We call this rule

shape a medial shape. Following this discovery, we will achieve an even greater regularity

on the inference rules by looking even further, inside the atoms. We will introduce a

new methodology through which we are able to represent every rule as an instance

of a single inference rule scheme. This characterisation is not trivial: it is a delicate

trade-off to impose restrictions on the possible assignments for α, β, γ, ε, ζ, η that allow

us to characterise systems that enjoy cut-elimination and decompostion, but that are

2

general enough to encompass the expressivity of a wide variety of logics. Indeed, the

finding of these restrictions is the product of a long trial-and-error phase to obtain the

desired generality together with the desired properties.

The main idea of this work is to consider atoms as self-dual, noncommutative binary

logical relations and to build formulae by freely composing units by atoms and the other

logical relations. We will consider the occurrences of an atom a as interpretations of

more primitive expressions involving a noncommutative binary relation, still denoted

by a. Two formulae A and B in the relation a, in this order, are denoted by A a B.

Formulae are built over the units for the logical relations, denoted for example by t, f in

the case of classical logic. We can think of it as a superposition of truth values: f a t is

the superposition of the two possible assignments for the atom a. We can for example

have a projection onto a specific assignment by choosing which ‘side’ we read: if we

read the values on the left of the atom we assign f to a and if we read the ones on the

right we assign t to a. We call these formulae subatomic. For example,

((t a f) ∧ (f b f)) ∨ ((f ∧ t) a t) and (t a t) b (f ∧ f)

are subatomic formulae for classical logic.

In this way, we obtain an extended language of formulae which we can relate to the

usual propositional formulae, or interpret, through an interpretation map
I7→. A natural

way to build such a map is to provide meaning to units inside the scope of an atom, by

setting f a t
I7→ a and t a f

I7→ ā, and extending it to all formulae in the natural way.

Subatomic formulae are much more than a clever representation. By using them, we

are strikingly able to present proof systems in such a way that every rule has a medial

shape, including the atomic rules that do not usually follow this scheme. For example,

the rules for atomic introduction and atomic contraction can be represented as

(f ∨ t) a (t ∨ f)

(f a t) ∨ (t a f)

I7→
t

a ∨ ā
and

(f a t) ∨ (f a t)

(f ∨ f) a (t ∨ t)

I7→
a ∨ a
a

.

This provides us with an extremely useful way to reason generally about proof systems:

we need only focus on how the interaction of rules of this shape influences the cut-

elimination and the decomposition procedures.

There are many different cut-elimination techniques in the deep inference literature

[16, 3, 2, 37, 28], exploiting different aspects of the proof systems they work on. In

this assortment, a particular methodology does however stand out for its generality:

cut-elimination via splitting [21] can be achieved in the deep inference systems for linear

logic [35], multiplicative exponential linear logic [37], the mixed commutative/non-

commutative logic BV [21] and its extension with linear exponentials NEL [28], or

classical predicate logic [3]. The generality of this procedure points towards the fact

that it exploits some properties that are common to all these systems.

3

Splitting is based on a simple idea: to show that an atomic cut involving a and ā is

admissible, we follow a and ā to the top of the proof to find two independent subproofs,

the premiss of one containing the dual of a and the other one containing the dual of

ā. In this way we obtain two independent ‘pieces’ that we can rearrange to get a new

cut-free proof.

This type of argument has been used to prove the admissibility of rules other than the

atomic cut [21], showing that it can be applied to any logical relation that we can follow

upwards in a proof. Thus, the splitting procedure hinges strongly on the dualities present

in propositional logical systems (to find the duals of a and ā) and on the regularity of

deep inference rules (to follow the atoms in a proof), further confirming the suspicion

that logical dualities and the shape of rules have a strong bearing on cut-elimination.

Based on this intuition, we capitalise on the regularity of subatomic inference rules

to generalise this process, studying which rules allow us to follow a connective in a

proof. We show that in systems where the scope of relations only increases reading from

bottom to top, called splittable systems, we can follow these relations through the proof

and hence a whole class of rules is admissible via the splitting procedure. Splittable

systems turn out to be the subatomic equivalent to propositional systems that we would

characterise as linear, i.e., having no contractions. Unsurprisingly then, the class of rules

shown admissible is precisely the class of rules that allow us to make the cut atomic in

deep inference formalisms. Achieving this simple characterisation of splittable systems

gives us a full understanding of how the splitting procedure works, and why it has

been used with success to prove the admissibility of different rules in several systems.

We note that splitting is a global procedure: we need to study the proof as a whole

to obtain a cut-free proof through splitting. Furthermore, splitting does not create

meaningful complexity: the size of the cut-free proofs obtained by general splitting is

linear on the size of the proofs with cut they come from, and splitting is a procedure of

polynomial-time complexity. This is an interesting observation for the further study of

complexity, since deep inference proofs are as long or shorter than sequent proofs [6].

The generalised splitting procedure works in linear systems, but splitting theorems

and in general cut-elimination have been proved in systems with contraction, such as

4

for classical logic. It has long been suspected that this is due to the ability of these

systems to be decomposed into a linear phase followed by a contractive phase. In

classical Gentzen-style cut-elimination arguments, contractions are pushed to the top of

a proof together with the cuts with the use of a mix rule, since permuting contraction

rules and cut rules is not straightforward. This strategy can also be applied in deep

inference systems, but in using it we lose sight of how the shapes and interactions of

the rules influence cut-elimination and of when complexity is introduced, as we deal

with the problematic case by conflating the rules together. This mismatch between

cut-elimination procedures with and without contractions suggests that by moving the

contractions together with the cut we conflate two different phenomena: the interactions

of the contraction rules and the linear rules that generate complexity when they permute

upwards in a proof, and the interactions between the linear rules and the cut rules that

are straightforwardly taken care of via splitting. It has indeed been shown for classical

logic and for multiplicative additive linear logic (MALL) [29, 35] that decomposing

proofs into a linear phase followed by atomic contractions may generate an exponential

increase in complexity.

We will study this phenomenon, providing general rewriting rules that correspond to

the rewritings presented both for classical logic and for MALL in [29] and [35], proving

that both decomposition results are a consequence of precisely the same properties.

Additionally, it has long been conjectured [4] that it is possible to achieve a further

decomposition of these systems, permuting not only the atomic contraction but a whole

family of contractive rules towards the bottom of a derivation. The generalised rewriting

rules that we present should be a significant step towards a proof of this conjecture.

Lastly, decomposition for classical logic has been proved to be independent from

cut-elimination in the case of cycle-free proofs [29]. Cycles are a particular construction

that might occur in a proof with cuts and contractions, and it is known that it is

possible to remove them as a consequence of cut-elimination. Loops have been studied

in the sequent calculus, and it has been shown that removing them might entail an

exponential complexity growth [9]. Through our generalised rewriting rules we are able

to present a purely local procedure based on permutations to remove the cycles in proofs,

fully showing that decomposition in classical logic is independent from cut-elimination.

Furthermore, this procedure will allow us to be able to study the complexity cost of the

elimination of cycles in deep inference independently from cut-elimination, which is as

of now unknown.

In this thesis we present and formalise subatomic logic and exploit its uniformity

5

to study the effect of the interactions between rules in normalisation procedures. We

present a generalisation of the splitting procedure, together with sufficient conditions

for a system to enjoy splitting, that can be applied to a variety of logics to prove

cut-elimination. We show a generalisation of decomposition reduction rules, together

with sufficient conditions for a system to be decomposable into phases containing

only atomic contractions/cocontractions and a linear phase. Furthermore, we show a

cycle-eliminating procedure in classical logic. We obtain the following results:

Procedure Splitting Decomposition Cycle-elimination

MLL CL CL

BV MALL MALL

Logic KV−

CL−

Substructural Logic Class

In other words, we provide a new methodology that proves itself to be useful in its

generality, allowing us to generalise and understand normalisation procedures in such a

way that they capture several differently expressive logics. For this reason, this research

aims to be only the start of the characaterisation of proof systems and their properties

by the shape of their rules, as well as a useful reference for proof system design.

6

Chapter 2

Subatomic Logic

In this chapter, we will show how to achieve complete regularity on the shape of inference

rules by introducing a new methodology, that we call subatomic because we look ‘inside

the atoms’. We will start by introducing subatomic formulae and giving tools to relate

them to ‘ordinary formulae’. Subatomic formulae are built by freely composing constants

by connectives and atoms. For example,

A ≡ ((f a t) ∨ t) ∧ (t b f) and B ≡ ((t b f) ∧ t) ∨ f

are two subatomic formulae for classical logic. The main idea is to interpret f a t as a

positive occurrence of the atom a, and t a f as a negative occurrence of the same atom,

denoted by ā. Intuitively, we can view subatomic formulae as a superposition of truth

values. For example, f a t is the superposition of the two possible assignments for the

atom a, and t a f is the superposition of the possible assignments for ā: if we read the

value on the left of the atom we assign f to a and t to ā, and if we read the one on the

right we assign t to a and f to ā.

Since we consider atoms as connectives, we will give a broad definition of what

relations are, not assuming any logical characteristics or properties such as commutativity

or associativity. We will therefore encompass logics with both commutative and non-

commutative, associative and non-associative, dual and-self dual relations. This feature

deserves to be highlighted since expressing self-dual non-commutative connectives into

proof systems that enjoy cut-elimination is a challenge in Gentzen-style sequent calculi:

it is impossible to have a complete analytic system with a self-dual non-commutative

relation [38].

Using the new structure offered by subatomic formulae together with the regularity

provided by deep inference we will then show that it is possible to achieve full regularity

on the shape of inference rules in a wide variety of systems. In deep inference, the

possibilty of composing proofs with the same connectives as formulae allows us to reduce

most rules to their atomic form. The inference rules so obtained present a surprising

regularity, that we can exploit towards obtaining a general rule scheme that encompasses

every inference rule. We will show an underlying structure on the shape of the inference

rules, using it to present all the rules of a system as instances of a single rule scheme,

7

including the atomic ones.

Consider for example system SKS for classical logic [4].

t
ai↓
a ∨ ā

a ∧ ā
ai↑

f

(A ∨B) ∧ C
s

(A ∧ C) ∨B
(A ∧B) ∨ (C ∧D)

m

(A ∨ C) ∧ (B ∨D)

a ∨ a
ac↓

a

a
ac↑

a ∧ a

f
aw↓

a

a
aw↑

t

System SKS

We can derive the rule s from the rule

(A ∨B) ∧ (C ∨D)

(A ∧ C) ∨ (B ∨D)
,

which has the same ‘shape’ as the rule m. In fact we will show that in many systems

most non-atomic rules can be made to fit this scheme as well. By using the subatomic

methodology, we are able to further extend this phenomenon to atomic rules in such a

way that we can present a system for classical logic where every rule of the system has

the same shape.

(A ∨B) a (C ∨D)
a↓

(A a C) ∨ (B a D)

(A a B) ∧ (C a D)
a↑

(A ∧ C) a (B ∧D)

(A ∨B) ∧ (C ∨D)
∧↓

(A ∧ C) ∨ (B ∨D)

(A ∨B) ∧ (C ∧D)
∨↑

(A ∧ C) ∨ (B ∧D)

(A ∧B) ∨ (C ∧D)
m

(A ∨ C) ∧ (B ∨D)

(A a B) ∨ (C a D)
ac

(A ∨ C) a (B ∨D)

(A ∧B) a (C ∧D)
ac̄

(A a C) ∧ (B a D)

System SAKS

We will present a characterisation of this rule shape, showcasing its generality by

presenting examples of several such regular systems for different logics, which will be

extended with further examples throughout the rest of the thesis.

Lastly, we will extend the notion of proof to subatomic systems, in order to relate

them to ‘usual’ proof systems.

8

2.1 Subatomic formulae

Subatomic formulae are built by freely composing constants by connectives and atoms.

For example, A ≡ ((f a t)∨ t)∧ (t b f) and B ≡ ((t b f)∧ t)∨ f are two subatomic formulae

for Classical Logic. By considering atoms as relations we will work with an extended

language of formulae, since we can have atoms in the scope of other atoms, something

that does not occur in ‘traditional’ formulae.

Definition 2.1. Let U be a denumerable set of constants whose elements are denoted

by u, v, w, Let R be a denumerable partially ordered set of relations whose elements

are denoted by α, β, γ, The set F of subatomic formulae (or SA formulae) contains

terms defined by the grammar

F ::= U | F R F .

Formulae are denoted by A, B, C,

A (formula) context K{ } · · · { } is a formula where some subformulae are substituted

by holes; K{A1} · · · {An} denotes a formula where the n holes in K{ } · · · { } have been

filled with A1, . . . , An.

The expression A ≡ B means that the formulae A and B are syntactically equal.

We omit parentheses when there is no ambiguity.

In K{A α B} we say that the subformulae of A and B are in the scope of α.

Example 2.2. The set Fcl of subatomic formulae for classical logic is given by the set of

constants U = {f, t} and the set of relations R = {∧,∨} ∪ A where A is a denumerable

set of atoms, denoted by a, b, . . . with A ∩ {∧,∨} = ∅. Two examples of subatomic

formulae for classical logic are

A ≡ ((f a t) ∨ (t a t)) ∧ (t b f) and B ≡ ((t b f) ∧ t) ∨ (f a f) .

Example 2.3. The set Fll of subatomic formulae for multiplicative linear logic is given

by the set of constants U = {⊥, 1} and the set of relations R = {O,�} ∪ A where A is

a denumerable set of atoms, denoted by a, b, . . . with A∩ {O,�} = ∅. Two examples of

subatomic formulae for linear logic are

C ≡ ((1O⊥) a 1)�⊥ and D ≡ ((⊥O1) b 1)�(1 a⊥) .

Aside from classical logic and multiplicative linear logic, we will feature the logic

BV [21] amongst the examples to showcase a well-studied logic with self-dual non-

commutative connectives. For that, we define the logic BVU. BV will correspond to

BVU with all the units identified.

Example 2.4. We define system BVU. The formulae of BVU are built from the units

⊥, ◦, 1 by composing them with the relationsO, /,�.

9

The relationsO and� are dual to each other, associative, commutative and have

units ⊥ and 1 respectively. / is self-dual and associative, and has unit ◦.
Negation on BVU formulae is built respecting DeMorgan dualities, with ◦̄ = ◦, and

⊥̄ = 1.

The units verify the equations ◦O◦ = 1 ; ◦�◦ = ⊥ and 1 / 1 = 1 ; ⊥ /⊥ = ⊥.

The inference rules for system BVU are given by the same rules as for system BV [21].

System BV corresponds to system BV with the three units identified, i.e. 1 = ◦ = ⊥.

The set Fbv of subatomic formulae for the non-commutative logics BVU and BV is

given by the set of constants U = {⊥, 1, ◦} and the set of relations R = {O, /,�} ∪ A

where A is a denumerable set of atoms, denoted by a, b, . . . with A∩{O, /,�} = ∅. Two

examples of subatomic formulae for BV are

E ≡ (1 a⊥) / (◦�(⊥ b⊥)) and F ≡ ((◦�1) a 1)O1 .

Just like for ‘ordinary’ formulae, we will define an equational theory and a negation

map on the set of subatomic formulae. We will work in a classical setting, in the

sense that we will consider an involutive negation that satisfies DeMorgan dualities.

Furthermore, in order to keep track of the equational theory in the general results

exposed in this thesis, we restrict the equalities that we allow.

Definition 2.5. We define negation as a pair of involutive maps ·̄ : R 7→ R and

·̄ : U 7→ U. We define the negation map on formulae as the map inductively defined by

setting A α B := A α B.

We define an equational theory = on F as the minimal equivalence relation closed

under negation (if A = B, then Ā = B̄) and under context (if A = B, then K{A} =

K{B} for any context K{ }) defined by a set of axioms of the form:

(1) ∀A,B,C ∈ F. (A α B) α C = A α (B α C) ; (Associativity of α)

(2) ∀A,B ∈ F. A α B = B α A ; (Commutativity of α)

(3) ∀A ∈ F. A α uα = A = uα α A for a fixed uα ∈ U ; (Unit of α)

(4) v α w = u for fixed v, w, u ∈ U ; (Constant assignment for α)

(5) u = v for fixed u, v ∈ U. (Constant identification)

If there is an axiom of the form (1) for α, we say that α is associative. If there is an

axiom of the form (2) for α, we say that α is commutative. If there is an axiom of the

form (3) for α we say that α is unitary, and we call uα the unit of α.

Remark 2.6. Since the equational theory is closed under negation, if α is unitary with

unit uα, then α is unitary and its unit is uα.

10

Example 2.7. For the set of subatomic formulae for classical logic Fcl defined in example

2.2, we define negation through:

∧̄ := ∨ ;

ā := a for all a ∈ A ;

t̄ := f .

We define the equational theory = on Fcl as the minimal equivalence relation closed

under negation and under context defined by:

For all A,B,C ∈ F :

(A ∧B) ∧ C = A ∧ (B ∧ C) ; (A ∨B) ∨ C = A ∧ (B ∨ C) ;

A ∧B = B ∧A ; A ∨B = B ∨A ;

A ∧ t = A ; A ∨ f = A ;

f ∧ f = f ; t ∨ t = t ;

∀a ∈ A. f a f = f ; ∀a ∈ A. t a t = t .

Example 2.8. For the set of subatomic formulae for linear logic Fll defined in example

2.3, we define negation through:

�̄=O ;

ā := a for all a ∈ A ;

1̄ := ⊥ .

We define the equational theory = on Fll as the minimal equivalence relation closed

under negation and under context defined by:

For all A,B,C ∈ F :

(A�B)�C = A�(B�C) ; (AOB)OC = AO(BOC) ;

A�B = B�A ; AOB = BOA ;

A�1 = A ; AO⊥ = A ;

∀a ∈ A. ⊥ a⊥ = ⊥ ; ∀a ∈ A. 1 a 1 = 1 .

Example 2.9. For both BVU and BV we will define the same negation map. They will

differ only on the equational theory, since all the units are identified in BV.

For the set of subatomic formulae for BVU and for BV Fbv defined in example 2.4,

11

we define negation through:

�̄ :=O ;

/̄ := / ;

ā := a for all a ∈ A ;

◦̄ := ◦ ;

⊥̄ := 1 .

For the logic BVU we define an equational theory = on Fbv as the minimal equivalence

relation closed under negation and under context defined by:

For all A,B,C ∈ F :

(A�B)�C = A�(B�C) ; (AOB)OC = AO(BOC) ;

A�B = B�A ; AOB = BOA ;

(A / B) / C = A / (B / C) ;

A�1 = A ; AO⊥ = A ;

A / ◦ = A ; ◦ / A = A ;

◦�◦ = ⊥ ; ◦O◦ = 1 ;

∀a ∈ A. ⊥ a⊥ = ⊥ ; ∀a ∈ A. 1 a 1 = 1 ;

⊥ /⊥ = ⊥ ; 1 / 1 = 1 .

The equational theory for the logic BV defined on the set of subatomic formulae

Fbv is given by the previous equations, together with the added axioms:

1 = ◦ ; ⊥ = ◦ .

Given a propositional logic with certain relations and constants, its subatomic

counterpart is therefore composed of an extended language of formulae, made up from

the same relations but with the added possibility of having atoms in the scope of other

atoms. To translate the subatomic formulae into the ‘usual’ formulae, we can define a

simple interpretation map.

The intuitive idea behind the translation is to interpret a certain assignment of

units inside an atom as a positive occurrence of the atom, and the dual assignment as a

negative occurrence of the atom. For example, for classical logic we interpret f a t as a

positive occurrence of the atom a and t a f as a negative one. In this way, the formula

A ≡ ((f a t) ∨ t) ∧ (t b f) is interpreted as A′ ≡ (a ∨ t) ∧ b̄.
We can view the constants in the scope of an atom as a superposition of truth values.

f a t is the superposition of the two possible assignments for the atom a and t a f the

superposition of the two assignments for ā. We can project onto a specific assignment

by choosing which ‘side’ we read: if we read the values on the left of the atom we assign

f to a and t to ā and if we read the ones on the right we assign t to a and f to ā.

In order to define an intepretation map following this idea, subatomic formulae must

12

be built from the same relations as the ‘original’ formulae, with the addition of the

atoms as connectives.

Definition 2.10. Let G be the set of formulae of a propositional logic L. We say that

the set of subatomic formulae F is natural for L if there is a partition on the set of

relations R = A∪ R′ with A∩ R′ = ∅,such that:

• there is an injective map from the constants of G to the constants in U;

• there is a one to one correspondence between the relations in G and the relations

in R′;

• there is a one to one correspondence between the set of unordered pairs of dual

atoms {a, ā} in G and the set of relations A.

We call the relations in A atoms as well. For each distinct pair of dual atoms we

give a polarity assignment: we call one atom of the pair positive, and the other one

negative. We will denote the atom of A corresponding to each pair with the same letter

as the positive atom of the pair.

We will denote the constants of U and the relations in R′ with the same symbols as

their counterparts in G.

Example 2.11. The sets of subatomic formulae defined in examples 2.7, 2.8 and 2.9 are

natural for classical logic, multiplicative linear logic and BV respectively.

The notion of interpretation map is easily extended to all logics for which we define

a subatomic logic in the natural way. This interpretation will allow us to go back and

forth between subatomic systems and ‘regular’ propositional systems.

Definition 2.12. Let G be the set of formulae of a propositional logic L with negation

denoted by · and equational theory denoted by =. Let F be the set of subatomic

formulae with constants U and relations R with negation denoted by · and equational

theory denoted by =. A surjective partial function I : F→ G is called interpretation

map. The domain of definition of I is the set of interpretable formulae and is denoted by

Fi. If F ≡ I(A), we say that F is the interpretation of A, and that A is a representation

of F .

We extend the notion of interpretability to contexts: we say that S{ } is interpretable

if S{A} is interpretable for every interpretable A.

If F is natural for L, we say that an interpretation i : Fi → G is natural when:

• I(u) ≡ u for every constant u of G;

• ∀α ∈ R′, if A,B ∈ Fi then A α B ∈ Fi and I(A α B) ≡ I(A) α I(B);

• For some distinguished constants u1, u2 ∈ U, for all a ∈ A, I(u1 a u2) ≡ a and

I(u2 a u1) ≡ ā.

We define the natural representation R : G→ F associated to I for every formula

G ∈ G inductively on the structure of G by:

13

• R(u) ≡ u if u is a constant;

• R(a) ≡ u1 a u2 if a is a positive atom;

• R(b) ≡ u2 a u1 if b ≡ ā is a negative atom;

• R(A α B) ≡ R(A) α R(B) for every relation α of G.

For every formula A ∈ F, I(R(A)) ≡ A.

Example 2.13. A natural interpretation for the set of subatomic formulae for classical

logic defined in example 2.2 is given by considering the assignments:

− I(t) ≡ t ; − I(f) ≡ f ;

− ∀a ∈ A. I(f a f) ≡ f ; − ∀a ∈ A. I(t a t) ≡ t ;

− ∀a ∈ A. I(f a t) ≡ a ; − ∀a ∈ A. I(t a f) ≡ ā ;

− I(A ∨B) ≡ I(A) ∨ I(B) ; − I(A ∧B) ≡ I(A) ∧ I(B) ;

where A,B ∈ Fi, and extending it in such a way that A a B is interpretable iff

A = u,B = v with u, v ∈ {f, t} and then I(A a B) ≡ I(u a v).

For example, if A ≡ (((f ∧ t) a t) ∨ t) ∧ (t b f), its interpretation is I(A) = (a ∨ t) ∧ b̄.

Note that the set Fi of interpretable formulae is composed by all formulae equal to

a formula where an atom does not occur in the scope of another atom. Every other

formula is not interpretable, such as B ≡ ((t b f) ∧ t) a f.

Example 2.14. A natural interpretation for the set of subatomic formulae for multiplica-

tive additive linear logic defined in example 2.3 is given by considering the assignments:

− I(1) ≡ 1 ; − I(⊥) ≡ ⊥ ;

− ∀a ∈ A. I(⊥ a⊥) ≡ ⊥ ; − ∀a ∈ A. I(1 a 1) ≡ 1 ;

− ∀a ∈ A. I(⊥ a 1) ≡ a ; − ∀a ∈ A. I(1 a⊥) ≡ ā ;

− I(AOB) ≡ I(A)OI(B) ; − I(A�B) ≡ I(A)�I(B) ;

where A,B ∈ Fi, and extending it in such a way that A a B is interpretable iff

A = u,B = v with u, v ∈ {⊥, 1} and then I(A a B) ≡ I(u a v).

For example, for C ≡ ((1O⊥) a 1)�⊥, I(C) = a�⊥.

The formulae that are not interpretable are not only those equal to a formula where

an atom occurs in the scope of another atom, but also those where a formula made up

of units not equal to 1 or ⊥ occurs in the scope of an atom, such as (1O1) a⊥.

Example 2.15. A natural interpretation for the set of subatomic formulae Fbv into the

14

set of formulae of BVU is given by considering the assignments:

− I(⊥) ≡ ⊥ ; − I(1) ≡ 1 ;

− I(◦) ≡ ◦ ;

− ∀a ∈ A. I(⊥ a⊥) ≡ ⊥ ; − ∀a ∈ A. I(1 a 1) ≡ 1 ;

− ∀a ∈ A. I(⊥ a 1) ≡ a ; − ∀a ∈ A. I(1 a⊥) ≡ ā ;

− I(AOB) ≡ I(A)OI(B) ; − I(A�B) ≡ I(A)�I(B) ;

− I(A / B) ≡ I(A) / I(B) ;

where A,B ∈ Fi, and extending it in such a way that A a B is interpretable iff

A = u,B = v with u, v ∈ {⊥, 1} and then I(A a B) ≡ I(u a v).

The formulae that are not interpretable are not only those equal to a formula where

an atom occurs in the scope of another atom, but also those where a formula made-up

of units not equal to ⊥ or 1 occurs in the scope of an atom, such as (1O1) a ◦.

This interpretation is also natural as an interpretation into the set of formulae of

BV. Note that even though ⊥ a 1 = ◦ a 1 in BV, the former is interpretable, while the

latter is not. Interpretability is not necessarily preserved by equality.

2.2 Subatomic proof systems

The useful properties of subatomic formulae become apparent when we extend the

principle to atomic inference rules. Let us consider, for example, the usual contraction

rule for an atom in classical logic given by

a ∨ a
a

.

We could obtain this rule subatomically through the interpretation map defined in

example 2.13 as follows:

(f a t) ∨ (f a t)

(f ∨ f) a (t ∨ t)

I7→
a ∨ a
a

and
(t a f) ∨ (t a f)

(t ∨ t) a (f ∨ f)

I7→
ā ∨ ā
ā

.

These rules are therefore generated by the linear scheme

(A a B) ∨ (C a D)

(A ∨ C) a (B ∨D)
, where A,B,C,D are formulae.

Strikingly, the non-linearity of the contraction rule has been pushed from the atoms

to the units.

15

Similarly, we can consider the atomic identity rule

t

a ∨ ā
.

It can be obtained subatomically as follows:

(f ∨ t) a (t ∨ f)

(f a t) ∨ (t a f)

I7→
t

a ∨ ā
.

Similarly to the contraction rule, it is generated by the linear scheme

(A ∨B) a (C ∨D)

(A a C) ∨ (B a D)
, where A,B,C,D are formulae.

It is quite plain to see that both the subatomic contraction rule and the subatomic

introduction rule have the same shape. This surprising regularity is made very useful in

combination with the observation that in fact the linear rule scheme

(A α B) ν (C β D)

(A ν C) α (B γ D)
,

where α, ν, β, γ are relations, and A,B,C,D are formulae is typical of logical rules in

deep inference. We refer to it as a medial shape. For example, consider system SKS for

classical logic:

t
ai↓
a ∨ ā

a ∧ ā
ai↑

f

(A ∨B) ∧ C
s

(A ∧ C) ∨B
(A ∧B) ∨ (C ∧D)

m

(A ∨ C) ∧ (B ∨D)

a ∨ a
ac↓

a

a
ac↑

a ∧ a

f
aw↓

a

a
aw↑

t

System SKS

We can see that the rule m follows this scheme as well, and we can derive the rule s

from the rule
(A ∨B) ∧ (C ∨D)

∧↓
(A ∧ C) ∨ (B ∨D)

,

which follows this scheme. We have therefore uncovered an underlying sturucture behind

the shape of inference rules, that we will exploit to obtain a general characterisation of

16

rules.

To make use of the general characterisation, we will impose some restrictions on

α, ν, β, γ. These conditions strike a balance between being general enough to encompass

a wide variety of logics and being explicit enough to enable us to generalise procedure

such as cut-elimination and decomposition. They are the result of a trial-and-error

phase comprised of the comparison of different proof systems together with the study

of the properties necessary for cut-elimination and decomposition results.

The restrictions on the relations of the rule scheme stem from the observation that

certain dualities between the relations are maintained in every rule. For example, we

can write the rule ∧↓ as

(A ∨B) ∧ (C ∨D)
∧↓

(A ∧ C) ∨ (B ∧̄D)

and the subatomic identity rule as

(A ∨B) a (C ∨D)

(A a C) ∨ (B ā D)
.

We will generalise this observation, considering rules with a medial shape and

certain dualities between the connectives involved and show that this shape is enough

to represent a wide variety of logics. With the subatomic methodology, we are therefore

able to represent proof systems in such a way that every rule has the same shape. This

full regularity gives us a newly gained ability to characterise proof systems that enjoy

properties such as decomposition and cut-elimination.

To characterise the dualities present in the inference rules, we introduce a notion of

polarity in the pairs of dual relations. This notion of polarity can be reminiscent of the

polarities assigned to connectives in linear logic [13], but the idea behind it is rather

to assign which of the relations in the pair is ‘stronger’ than the other. Intuitively, it

loosely corresponds to assigning which relation of the pair will imply the other. For

example, in classical logic A ∧B implies A ∨B, and thus we will assign ∧ to be strong

and ∨ to be weak.

Definition 2.16. For each pair of relations {α, α}, we give a polarity assignment: we

call one relation of the pair strong and the other one weak.

If α is strong and α is weak, we will write αM=αM=α and αm=αm=α. Self-dual

relations are both strong and weak.

Definition 2.17. A subatomic proof system SA with set of formulae F is

• a collection of inference rules of the shape
(A β B) α (C β D)

(A α C) β (B αm D)
, α, β∈ R, called

down-rules,

• a collection of inference rules of the shape
(A β B) α (C βM D)

(A α C) β (B α D)
, α, β∈ R, called

up-rules,

17

• a collection of rules
A

=

B
and

A
=

B
, for every axiom A = B of the equational theory

= on F, called equality rules.

Note that the non-invertible rules are linear: surprisingly, non-linearity can be

pushed from the atoms to the units.

Remark 2.18. Since we will not always work modulo equality, we define the equality

rules to be inference steps just like the inference rules, rather than focusing on equality

as equations between formulae. Two formulae A and B will be equal if and only if there

is a derivation from A to B composed only of equality rules.

We could have just as well defined equality between formulae directly in this way,

but chose to define it initially as an equivalence relation for the sake of clearer exposition

when defining the interpretation map.

The rules
A

=

B
are invertible and correspond to equivalence by mutual implication.

Every non-invertible rule with logical significance is therefore an instance of the general

rule scheme with medial shape.

Remark 2.19. We will often use the notation

(A β B) αM (C β D)

(A α B) β (C α D)

for down-rules with a strong relation in the premiss where β is commutative.

Example 2.20. We consider ∧ as strong and ∨ as weak in classical logic. The subatomic

proof system SAKS is given by the inference rules in Figure 2-1, together with the

equality rules given by
A

=

B
for every A, B on opposite sides of the equality axioms

provided in example 2.7.

Rules labeled with a ↓ are down-rules, and rules labeled by a ↑ are up-rules. The

medial rule labeled by m is self-dual, and is both a down-rule and an up-rule.

Example 2.21. We consider� as strong andO as weak in multiplicative linear logic. The

subatomic proof system SAMLLS is given by the inference rules in Figure 2-3 together

with the equality rules given by
A

=

B
for every A, B on opposite sides of the equality

axioms provided in example 2.8.

Example 2.22. We consider� as strong andO as weak in BVU and BV. The subatomic

proof system SABVU is given by the inference rules in Figure 2-5 together with the

equality rules given by
A

=

B
for every A, B on opposite sides of the equality axioms for

BVU provided in example 2.9.

18

(A ∨B) a (C ∨D)
a↓

(A a C) ∨ (B a D)

(A a B) ∧ (C a D)
a↑

(A ∧ C) a (B ∧D)

(A ∨B) ∧ (C ∨D)
∧↓

(A ∧ C) ∨ (B ∨D)

(A ∨B) ∧ (C ∧D)
∨↑

(A ∧ C) ∨ (B ∧D)

(A ∧B) ∨ (C ∧D)
m

(A ∨ C) ∧ (B ∨D)

(A a B) ∨ (C a D)
ac

(A ∨ C) a (B ∨D)

(A ∧B) a (C ∧D)
ac̄

(A a C) ∧ (B a D)

Figure 2-1: SAKS

t
i↓
a ∨ ā

a ∧ ā
i↑

f

(A ∨B) ∧ C
s

(A ∧ C) ∨B
(A ∧B) ∨ (C ∧D)

m
(A ∨ C) ∧ (B ∨D)

a ∨ a
c↓

a

a
c↑
a ∧ a

f
aw↓

a

a
aw↑

t

Figure 2-2: SKS [4]

(AOB) a (COD)
a↓

(A a C)O(B a D)

(A a B)�(C a D)
a↑

(A�C) a (B�D)

(AOB)�(COD)
�↓

(A�C)O(BOD)

(AOB)�(C�D)
O↑

(A�C)O(B�D)

Figure 2-3: SAMLLS

1
ai↓
aO ā

a� ā
ai↑
⊥

(AOB)�C
s

(A�C)OB

Figure 2-4: SMLLS [36]

19

(AOB) a (COD)
a↓

(A a C)O(B a D)

(A a B)�(C a D)
a↑

(A�C) a (B�D)

(AOB)�(COD)
�↓

(A�C)O(BOD)

(AOB)�(C�D)
O↑

(A�C)O(B�D)

(AOB) / (COD)
/↓

(A / C)O(B / D)

(A / B)�(C / D)
/↑

(A�C) / (B�D)

Figure 2-5: SABV

◦
ai↓
aO ā

a� ā
a↑
◦

(AOB)�C)
s

(A�C)OB

(AOB) / (COD)
q↓

(A / C)O(B / D)

(A / B)�(C / D)
q↑

(A�C) / (B�D)

Figure 2-6: SBV [21]

Likewise, the subatomic proof system SABV is given by the same inference rules and

equality rules, together with the equality rules given by
⊥

=

◦
,

1
=

◦
and their converse.

Remark 2.23. An interesting future line of work is to characterise sound rules based on

a partial order on relations. Some preliminary research in this direction has yielded very

encouraging results. We assign a partial order based on implication to the relations of

classical logic: ∨ < a < ∧.

Then, all down-rules in systems SAKS obey the scheme
(A β B) α (C β D)

(A α C) β (B αm D)
,

β̄ ≥α.

Dually, all up-rules obey the scheme
(A β B) α (C βM D)

(A α C) β (B α D)
, ᾱ ≥β.

Furthermore, every rule following this scheme is sound in classical logic.

We can similarly assign partial orders to the relations of multiplicative additive

linear logic and BV (O< � < a < N <� andO< /, a <�). Then, the rules of systems

SAMALLS (Figure 4-3) and SBV verify this scheme as well.

To reduce rules to their subatomic form, we will work in the setting of deep inference

[18], where proofs can be composed with the same connectives as formulae. The deep

inference methodology has been exploited in many ways, such as shortening analytic

proofs by exponential factors with respect to Gentzen proofs [6, 10], modeling process

algebras [5, 31, 33, 34] or typing optimised versions of the λ-calculus that provide a novel

treatment of sharing and duplication [30]. The particular property that most interests

20

us is that rules can be applied at any depth inside a formula and as a result every

contraction and cut instances can be locally transformed into their atomic variants by a

local procedure of polynomial-size complexity [4]. Therefore they can be transformed

into their subatomic variants straightforwardly.

We will present proofs in the open deduction formalism [25], which is a logic-

independent formalism, allowing us to reach the desired level of generality.

Definition 2.24. Given a subatomic systems SA and formulae A and B, a derivation

φ in SA from premiss A to conclusion B denoted by
A
φ SA

B
is defined to be:

• a formula φ ≡ A ≡ B;

• a composition by inference

φ ≡

A
φ1 SA

A′

ρ

B′

φ2 SA

B

where ρ is an instance of an inference rule in SA and φ1 and φ2 are derivations in

SA;

• a composition by relations

φ ≡
A1

φ1 SA

B1

α
A2

φ2 SA

B2

where α∈ R, A ≡ A1 α A2, B ≡ B1 α B2, φ1 and φ2 are derivations in SA.

We denote by

A
φ {ρ1,...,ρn}

B

a derivation where only the rules ρ1, . . . , ρn appear.

Sometimes we omit the name of a derivation or the name of the proof system if

there is no ambiguity.

To improve readability sometimes we remove the boxes around derivations.

21

Notation 2.25. We consider the two derivations

A1

φ1 SA

A2
ρ1

B1

φ2 SA

B2

ρ2

C1

φ3 SA

C2

and

A1

φ1 SA

A2
ρ1

B1

φ2 SA

B2
ρ2

C1

φ3 SA

C2

to be equal and we denote them both by

A1

φ1 SA

A2
ρ1
B1

φ2 SA

B2
ρ2
C1

φ2 SA

C2

.

Example 2.26. The following is a SAKS derivation with premiss (f∨t)a(t∨f)∧((fbt)∨t)∧t
and conclusion ((f a t) ∧ (f b t)) ∨ ((t a f) ∨ t) ∧ t:

(f ∨ t) a (t ∨ f)
ai↓

(f a t) ∨ (t a f)
∧ ((f b t) ∨ t)

s

((f a t) ∧ (f b t)) ∨ ((t a f) ∨ t)

∧ t

Definition 2.27. Let
A
φ SA

B
and

B
ψ SA

C
be two derivations. We define their composition

φ
....
ψ

as the derivation constructed as follows:

- if φ is a formula then
φ
....
ψ
≡ ψ ; likewise if ψ is a formula then

φ
....
ψ
≡ φ ;

- if φ ≡
φ1

φ2

then
φ
....
ψ
≡

φ1(
φ2....
ψ

)
; likewise if ψ ≡

ψ1

ψ2

then
φ
....
ψ
≡

(
φ
.....
ψ1

)
ψ2

;

22

- if φ ≡ φ1 α φ2 and ψ ≡ ψ1 α ψ2 then
φ
....
ψ
≡
φ1.....
ψ1

α
φ2.....
ψ2

.

Definition 2.28. Let
A
φ SA

B
be a derivation, and K{ } a context. We define the

derivation K{φ} from K{A} to K{B} as the derivation obtained by inserting φ in the

place of the hole in K{ }.

Example 2.29. If φ =
(f ∨ t) a (t ∨ f)

ai↓
(f a t) ∨ (t a f)

and K{ } = (t ∧ { }) ∨ (f ∧ f), then

K{φ} =

(
t ∧

(f ∨ t) a (t ∨ f)
ai↓

(f a t) ∨ (t a f)

)
∨ (f ∧ f) .

Sometimes we will work by induction on the number of rules on a derivation. For

that, it is useful to impose an order on the rules to have a notion of which one is the

‘last’ rule of the derivation. We impose this order by sequentialising the derivation.

Definition 2.30. Let
A
φ

B
be a derivation. We define the sequential form of φ as follows

by structural induction on φ:

- if φ ≡ A is a formula, then its sequential form is given by A ;

- if φ ≡

A
φ1

A′

ρ

B′

φ2

B

, then we consider φ1 and φ2 in sequential form:

φ1 =

A
ρ1

A2

...

An
ρn

A′

and φ2 =

B′
ρn+1

B2

...

Bm
ρm

B

23

and the sequential form of φ is given by

φ =

A
ρ1

...
ρn
A′

ρ

B′
ρn+1

...
ρn+m

B

.

- if φ ≡
A1

φ1

B1

α
A2

φ2

B2

, then we sequentialise φ1 and φ2 to obtain

φ1 =

A1
ρ1

C2

...

Cn
ρn

B1

and φ2 =

A2
ρn+1

D2

...

Dm
ρn+m

B2

and the sequential form of φ is given by

φ =

A1 α A2
ρ1

C2 α A2

...

Cn α A2
ρn

B1 α A2
ρn+1

B1 α D2

...

B1 α Dm
ρn+m

B1 α B2

.

To simplify readability, when there is no ambiguity we will represent the sequential

form through single lines
A

B
instead of double lines

A

B
.

The sequential form is not a normal form: we can choose how to sequentialise a

composition by relation, by starting from either side of the relation. However we make

this choice, the number of rules in the sequential form of the derivation stays nonetheless

equal to the number of inference rules in its open deduction form.

24

Example 2.31. The sequential form of the derivation φ of example 2.26 is:

φ =

(((f ∨ t) a (t ∨ f)) ∧ ((f b t) ∨ t)) ∧ t
ai↓

(((f a t) ∨ (t a f)) ∧ ((f b t) ∨ t)) ∧ t
s

(((f a t) ∧ (f b t)) ∨ ((t a f) ∨ t)) ∧ t

.

For some results, such as the splitting theorem in Section 3 it is useful to consider

proofs modulo certain equalities. To simplify the presentation and the case analysis, we

define the Calculus of Structures presentation. This presentation provides us with a

natural way of extending an equivalence relation between formulae to an equivalence

relation between derivations.

Definition 2.32. Let ∼ be an equivalence relation on F obtained from a subset of the

axioms that define = as per Definition 2.5.

If C ∼ C ′, there is a derivation
C
ζ

C ′
where ζ is composed only of equality rules

corresponding to the axioms of ∼. We will denote such derivations by
C

∼
C ′

.

A derivation in sequential form

φ =

A0
∼
A1

ρ1
A2

∼
A3

...

An
∼
An+1

ρm
An+2

∼
An+3

has Calculus of Structures (CoS) notation for ∼ given by

φ =

A0
ρ1

A3

...

An+1
ρm

An+3

.

25

We define the equivalence relation ∼ on derivations as φ1 ∼ φ2 if

φ1 =

A0
ρ1

A1

...

An
ρn+1

An+1

and φ2 =

A′0
ρ1

A′1
...

A′n
ρn+1

A′n+1

in CoS notation for ∼, with Ai ∼ A′i for every 0 ≤ i ≤ n+ 1.

Example 2.33. If ∼ is the equivalence relation on the set of formulae Fcl for classical

logic defined by the axiom A ∧ t = A, then

(((f ∨ t) a (t ∨ f)) ∧ ((f b t) ∨ t)) ∧ t
ai↓

(((f a t) ∨ (t a f)) ∧ ((f b t) ∨ t)) ∧ t
s

(((f a t) ∧ (f b t)) ∨ ((t a f) ∨ t)) ∧ t

∼
((f ∨ t) a (t ∨ f)) ∧ ((f b t) ∨ t)

ai↓
((f a t) ∨ (t a f)) ∧ ((f b t) ∨ t)

s

((f a t) ∧ (f b t)) ∨ ((t a f) ∨ t)

.

2.3 Proofs

To study proof theory through subatomic proof systems, we need to have a notion of

proofs equivalent to that of the ‘regular’ theory. For that, we will establish a notion of

correspondence between subatomic systems and deep inference systems. In a correct

proof system every ‘ordinary’ proof will have a corresponding subatomic proof, and

every subatomic proof where every step has an interpretation will correspond to an

‘ordinary’ proof.

Definition 2.34. Let 1 ∈ U be a distinguished constant. A proof of A is a derivation

φ whose premiss is 1. We denote proofs by
φ

A
.

For reasons of convention, the distinguished unit for each proof system might be

denoted with a different symbol, as is the case for classical logic.

Example 2.35. A proof in SAKS is a derivation with premiss t.

Example 2.36. A proof in SAMLLS is a derivation with premiss 1.

Example 2.37. A proof in SABV is a derivation with premiss 1.

Definition 2.38. Given an interpretation map I for SA, a derivation is interpretable if

every formula appearing in its sequential form is interpretable.

Definition 2.39. Let SA be a subatomic system with a natural interpretation I into

the set G of formulae of a complete proof system S for a propositional logic L, with

associated representation map R.

We say that SA is correct for S when:

26

• for every interpretable SA derivation ψ with premiss P and conclusion C, there is

a derivation ψ′ in S with premiss I(P) and conclusion I(C); and

• for every derivation φ in S with premiss P ′ and conclusion C ′, there is an inter-

pretable derivation φ′ in SA with premiss R(P ′) and conclusion R(C ′).

Lemma 2.40. Let SA be a subatomic system with a natural interpretation I into the set

G of formulae of a complete proof system S for a propositional logic L, with associated

representation map R.

SA is correct for S if, and only if:

• for every interpretable instance of an inference rule of SA

A
ρ

B
,

there is a derivation
I(A)

S

I(B)
;

• for every interpretable instance of derivations of the form

A
ρ

B
a C and D a

A
ρ

B

with a ∈ A and ρ an inference rule of SA, there are derivations

I(A a C)
S

I(B a C)
and

I(D a A)
S

I(D a B)
; and

• for every inference rule

A
r

B

of S, there is an interpretable derivation

R(A)
SA

R(B)
.

Proof. It is clear from how derivations are built and from the fact that I(A α B) =

I(A) α I(B) for α∈ R′ and that R(A α B) = R(A) α R(B) for α∈ R′.

Example 2.41. System SAKS of Figure 2-1 is correct for system SKS of Figure 2-2.

27

Every interpretable assignment of units in the inference rules has a corresponding

derivation in SKS. For example, for rule a ↓ we have the following interpretable

assignments:

(t ∨ t) a (t ∨ t)
a↓

(t a t) ∨ (t a t)

I7→
t

t ∨ t

(f ∨ f) a (f ∨ f)
a↓

(f a f) ∨ (f a f)

I7→
f

f ∨ f

(f ∨ t) a (t ∨ f)
a↓

(f a t) ∨ (t a f)

I7→
t

a ∨ ā
(t ∨ f) a (f ∨ t)

a↓
(t a f) ∨ (f a t)

I7→
t

ā ∨ a
(f ∨ t) a (f ∨ t)

a↓
(f a f) ∨ (t a t)

I7→
t

f ∨ t

(t ∨ f) a (t ∨ f)
a↓

(t a t) ∨ (f a f)

I7→
t

t ∨ f

(f ∨ f) a (t ∨ t)
a↓

(f a t) ∨ (f a t)

I7→
a

a ∨ a
(t ∨ t) a (f ∨ f)

a↓
(t a f) ∨ (t a f)

I7→
ā

ā ∨ ā
(f ∨ t) a (t ∨ t)

a↓
(f a t) ∨ (t a t)

I7→
t

a ∨ t

(t ∨ t) a (f ∨ t)
a↓

(t a f) ∨ (t a t)

I7→
t

ā ∨ t

(t ∨ f) a (t ∨ t)
a↓

(t a t) ∨ (f a t)

I7→
t

t ∨ a
(t ∨ t) a (t ∨ f)

a↓
(t a t) ∨ (t a f)

I7→
t

t ∨ ā
(f ∨ t) a (f ∨ f)

a↓
(f a f) ∨ (t a f)

I7→
ā

f ∨ ā
(f ∨ f) a (f ∨ t)

a↓
(f a f) ∨ (f a t)

I7→
a

f ∨ a
(t ∨ f) a (f ∨ f)

a↓
(t a f) ∨ (f a f)

I7→
ā

ā ∨ f

(f ∨ f) a (t ∨ f)
a↓

(f a t) ∨ (f a f)

I7→
a

a ∨ f
.

It is easy to see that for each of them there is an SKS derivation with the same

premiss and conclusion as the interpretation.

Likewise, we can check every interpretable instance of a rule inside the scope of an

atom:
f

f
a f

I7→
f

f

f

f
a t

I7→
a

a

t

t
a f

I7→
ā

ā

t

t
a t

I7→
t

t

f a
f

f

I7→
f

f
t a

f

f

I7→
ā

ā

f a
t

t

I7→
a

a
t a

t

t

I7→
t

t

f

t
a f

I7→
f

ā

f

t
a t

I7→
a

t

f a
f

t

I7→
f

a
t a

f

t

I7→
ā

t
.

It is easy to see that for each of them there is an SKS derivation with the same

premiss and conclusion as the interpretation.

Furthermore, every inference rule of system SAKS trivially corresponds to the

28

representation of an inference rule of system SKS , except for the rules aw↓ and aw↑.

aw↓ corresponds to

f
=

f a
(f ∧ t) ∨ (t ∧ f)

m

(f ∨ t) ∧ (t ∨ f)
=

f a t

I7→
f

a
and

f
=

(f ∧ t) ∨ (t ∧ f)
m

(f ∨ t) ∧ (t ∨ f)
a f

=

t a f

I7→
f

ā
,

and aw↑ is the image of the dual derivations.

Furthermore, ∨ and ∧ are associative and commutative in SAKS and their units are

f and t respectively, and so the conditions are trivially verified for the equality inference

rules.

Example 2.42. System SAMLLS of Figure 2-3 is correct for the multiplicative fragment

of system SLLS given in Figure 2-4..

Every interpretable assignment of units in the inference rules has a corresponding

derivation in the multiplicative fragment of SLLS. For example, for rule a↓ we have the

following interpretable assignments:

(⊥O⊥) a (⊥O⊥)
a↓

(⊥ a⊥)O(⊥ a⊥)

I7→
⊥
⊥O⊥

(⊥O1) a (1O⊥)
a↓

(⊥ a 1)O(1 a⊥)

I7→
1

aO ā

(1O⊥) a (⊥O1)
a↓

(1 a⊥)O(⊥ a 1)

I7→
1

āOa
(⊥O1) a (⊥O1)

a↓
(⊥ a⊥)O(1 a 1)

I7→
1

⊥O1

(1O⊥) a (1O⊥)
a↓

(1 a 1)O(⊥ a⊥)

I7→
1

1O⊥
(⊥O⊥) a (⊥O1)

a↓
(⊥ a⊥)O(⊥ a 1)

I7→
a

⊥Oa
(⊥O1) a (⊥O⊥)

a↓
(⊥ a⊥)O(1 a⊥)

I7→
ā

⊥O ā
(⊥O⊥) a (1O⊥)

a↓
(⊥ a 1)O(⊥ a⊥)

I7→
a

aO⊥
(1O⊥) a (⊥O⊥)

a↓
(1 a⊥)O(⊥ a⊥)

I7→
ā

āO⊥
.

It is easy to see that for each of them there is a derivation in the multiplicative

fragment of SLLS with the same premiss and conclusion as the interpretation.

Every interpretable instance of a rule ρ inside the scope of an atom is necessarily

an instance where the premiss and conclusion of ρ are interpreted as constants. The

only such instances are of the form
u

u
with u ∈ {⊥, 1} and therefore every interpretable

instance of a rule inside the scope of an atom trivially corresponds to a derivation in

the multiplicative fragment of SLLS.

Every inference rule of SAMLLS of Figure 2-3 trivially corresponds to the represen-

tation of an inference rule of the multiplicative fragment of system SLLS.

O and� are associative and commutative in SAMLLS and their units are ⊥ and 1

29

respectively. Therefore, the equality rules trivially verify the conditions.

Example 2.43. System SABV of Figure 2-5 is correct for system SBV given in Figure

2-6.

Every interpretable assignment of units in the inference rules has a corresponding

derivation in SBV. For example, for rule a ↓ we have the following interpretable

assignments:

(⊥O⊥) a (⊥O⊥)
a↓

(⊥ a⊥)O(⊥ a⊥)

I7→
⊥
⊥O⊥

(⊥O1) a (1O⊥)
a↓

(⊥ a 1)O(1 a⊥)

I7→
1

aO ā

(1O⊥) a (⊥O1)
a↓

(1 a⊥)O(⊥ a 1)

I7→
1

āOa
(⊥O1) a (⊥O1)

a↓
(⊥ a⊥)O(1 a 1)

I7→
1

⊥O1

(1O⊥) a (1O⊥)
a↓

(1 a 1)O(⊥ a⊥)

I7→
1

1O⊥
(⊥O⊥) a (⊥O1)

a↓
(⊥ a⊥)O(⊥ a 1)

I7→
a

⊥Oa
(⊥O1) a (⊥O⊥)

a↓
(⊥ a⊥)O(1 a⊥)

I7→
ā

⊥O ā
(⊥O⊥) a (1O⊥)

a↓
(⊥ a 1)O(⊥ a⊥)

I7→
a

aO⊥
(1O⊥) a (⊥O⊥)

a↓
(1 a⊥)O(⊥ a⊥)

I7→
ā

āO⊥
.

It is easy to see that for each of them there is a derivation in SBV with the same

premiss and conclusion as the interpretation.

Every interpretable inference rule in the scope of an atom corresponds to a rule
u

u

with u ∈ {⊥, ◦, 1} and therefore trivially corresponds to an SBV derivation.

Every inference rule of system SABV is trivially the representation of an inference

rule of system SBV, and the equality axioms are trivially represented by the equational

theory for SABV we defined in example 2.9 where the units are identified.

In the next chapter we will focus on showing the admissibility of certain distinguished

rules.

Definition 2.44. We say that an inference rule ρ is admissible for a proof system SA

if ρ /∈ SA and for every proof
SA∪{ρ}

A
there exists a proof

SA

A
.

30

Chapter 3

Splitting

Cut-elimination via splitting has been shown to work in a vast array of deep infer-

ence systems: linear logic [35], multiplicative exponential linear logic [37], the mixed

commutative/non-commutative logic BV [21] and its extension with linear exponentials

NEL [28] and classical predicate logic [3]. This generality points towards the fact that the

splitting procedure hinges on some fundamental properties required for cut-elimination

rather than on the specificities of each system.

In particular, cut-elimination proofs via splitting are very straightforward in those

systems without contractions, as we will show in Section 3.1 with the example of

multiplicative linear logic. This suggests that it is the properties of linear rules (as

opposed to contraction rules) that enable us to prove cut-elimination. Indeed, the

generalisation of the splitting procedure that we show in Section 3.2 allows us to fully

confirm these suspicions: it is precisely because of the properties of the linear rules

that we are able to prove cut-elimination for systems where they are present. In this

way, we will give sufficient conditions that guarantee cut-elimination for a full class of

substructural logics, similarly to [1, 39, 15] where conditions for a display calculus to

enjoy cut elimination are presented, or to [32] where conditions for propositional ba-

sed logics in the sequent calculus are presented.

3.1 Splitting for MLL

Linear logic was developed by Girard [14] as a refinement of classical logic by introducing

restrictions on the structural rules of contraction and weakening. The core propositional

connectives of linear logic are divided into additive and multiplicative connectives,

exemplifying perfectly the distinction we will be making in this thesis between contractive

systems and linear systems (that we will call splittable). The introduction rules for the

additive conjunction N (with) and the multiplicative conjunction� (tensor) are given

in their sequent calculus presentation as follows:

` A,Φ ` B,Φ
` ANB,Φ

,
` A,Φ ` B,Ψ
` A�B,Φ,Ψ

.

31

(AOB) a (COD)
a↓

(A a C)O(B a D)

(AOB)�(COD)
�↓

(A�C)O(BOD)

Figure 3-1: System SAMLLS↓

Reading bottom up, we see that the additive conjunction N requires a duplication

of the context whereas the multiplicative conjunction� requires that the context be

divided between its hypotheses. There is no communication between Φ and Ψ in the

proof above the tensor rule where they are united.

It is precisely this multiplicative rule shape that splitting hinges on. In the sequent

calculus, the presence of a main connective allows us to know exactly which rules can

be applied above a cut. In deep inference, this is not possible since any rule can be

applied at any depth, and we therefore focus on the behaviour of the context around a

cut to tackle cut-elimination. This allows us to have a better understanding of how the

cut-elimination procedure changes the proof globally. If all the connectives of a system

require a splitting of the context like the multiplicative tensor does, then we can keep

track of exactly how the context around a connective behaves. This allows us to split a

proof into independent subproofs above every rule, just like in the example above the

proof is divided into Π1 and Π2 above the� introduction rule. Cut-elimination is then

only a matter of rearranging the independent subproofs into a cut-free proof.

Multiplicative linear logic (MLL) is the fragment of linear logic comprising only the

multiplicative connectives and their units. It is a very simple system in which every

connective requires such a splitting of the context, and therefore ideal to provide an

example of a proof of cut-elimination via splitting. In what follows we will present a

proof of cut-elimination via splitting for MLL, as an example of an application of the

generalised theorem of Section 3.2.

We will present this proof in the subatomic proof system for multiplicative linear

logic SAMLLS to help the reader become accustomed to the subatomic notation, as

well as to relate it better to the generalised theorem. We present subatomic system

SAMLLS for MLL in Figure 2-3, together with the equations of example 2.8 and the

interpretation map in example 2.14.

32

As is usual in deep inference systems, the sequent calculus cut rule is divided into

several rules, corresponding to the up rules indicated by ↑. The splitting method allows

us to prove the admissibility of all of these rules. The reduced cut-free system is denoted

by SAMLLS↓, and is shown in Figure 3-1.

By simple observation, we can notice that in SAMLLS↓ the scope of the relations a

and� only decreases when reading top to bottom. The widening scope of relations from

bottom to top is the main property used to prove splitting. If we follow a particular

instance of the tensor� through a proof, its scope will be at its widest in the premiss.

Therefore, if we have a proof of F{A�B}, we can follow� up in the proof to obtain

two independent proofs
Π1

QA{A}
and

Π2

QB{B}
.

Π1

AOK1OQ1

�
Π2

BOK2OQ2

(AOK1)�(BOK2)

(A�B)OK1OK2

OQ1OQ2

If we do this for every occurrence of� and a in the conclusion of a proof, starting

from the outermost, we obtain a series of subproofs independent from each other. This

is the gist of the splitting theorem, and cut-elimination comes as a corollary, by showing

that we are free to rearrange these independent subproofs in such a way that the cut is

no longer necessary.

We will show that this cut-elimination procedure corresponds to cut-elimination in

the non-subatomic system SMLLS. For that, we will pay particular attention to tame

proofs.

Definition 3.1. We say that an interpretable derivation φ in SA is tame if the only

instances of rules in the scope of an atom are equality rules.

Note that the composition of tame derivations by any relation that is not an atom

yields a tame derivation.

Example 3.2. The derivation

(⊥O1) a (⊥O1)
a↓

(⊥ a⊥)O(1 a 1)
a⊥

in SAMLLS is interpretable but is not tame.

The derivation
1

=

(⊥O1)
a⊥

is tame.

Every proof in SMLLS corresponds to a tame proof in SAMLLS since every rule

of SMLLS corresponds to a tame derivation in SAMLLS. This is trivial for every rule,

33

except for the atomic introduction and cut rules

1

aO ā
and

a� ā

⊥
.

The introduction rule corresponds to the tame derivation

1
=

1 a 1
=

(⊥O1) a (1O⊥)
a↓

(⊥ a 1)O(1 a⊥)

,

and dually the cut rule corresponds to a tame derivation as well.

Tameness is preserved by splitting and therefore it is preserved by the cut-elimination

procedure. The cut-free proofs obtained from proofs in the ‘original’ system will therefore

be tame and correspond to cut-free proofs in SMLLS.

In what follows we will present the splitting theorem for SAMLLS↓. The form of

the statement follows the standard scheme for splitting theorems, stemming from the

original proof in [21]: it is therefore divided in two results for ease of reading, called

shallow splitting and context reduction. Guided from the generalisation we present in

Section 3.2, we use a simple induction measure. We will work modulo associativity,

commutativity and unit ofO.

Notation 3.3. We will abuse notation and refer to a derivation φ composed only of

equality rules as an equality.

Definition 3.4. Given a proof φ in SAMLLS↓, we define the length of φ as the number of

inference rules in φ different from the equality rules for the associativity, commutativity

and unit ofO. We denote it by |φ|O.

Definition 3.5. We define =O as the equivalence relation on formulae defined by the

axioms for the associativity, commutativity and unit ofO.

We define the equivalence relation =O on derivations following Definition 2.32.

It is straightforward that if φ =O ψ, then |φ|O = |ψ|O.

Theorem 3.6 (Shallow splitting). For all formulae A,B,C:

1. If there is a proof φ of (A�B)OC in SAMLLS↓, there exist Q1, Q2 and

Q1OQ2

ψ

C
,

φ1

AOQ1
,

φ2

BOQ2

such that |φ1|O+ |φ2|O≤ |φ|O.

Furthermore, if φ is tame, then φ1, φ2 and ψ are tame.

34

2. If there is a proof φ of (A a B)OC in SAMLLS↓, there exist Q1, Q2 and

Q1 a Q2

ψ

C
,

φ1

AOQ1
,

φ2

BOQ2

such that |φ1|O+ |φ2|O≤ |φ|O.

Furthermore, if φ is tame, then φ1, φ2 are equalities and ψ is tame.

Proof. Given a proof φ of (A�B)OC in SAMLLS↓ we reduce it to CoS notation for=O.

We proceed by induction on |φ|O.

1. If |φ|O = 0, then (A�B)OC =O 1. Then, either:

– A =OB =O 1, C =O⊥ and we take

ψ ≡
⊥O⊥

=

⊥
=O

C

, φ1 ≡

1
=O

1
=O

A
O⊥

, φ2 ≡

1
=O

1
=O

B
O⊥

; or

– A = ⊥, B = C = 1 and we take

ψ ≡
1O⊥

=

1
=O

C

, φ1 ≡

1
=O

⊥
=O

A
O1

, φ2 ≡

1
=O

1
=O

B
O⊥

; or

– B = ⊥, A = C = 1 and we take Q1 = ⊥, Q2 = 1

ψ ≡
⊥O1

=

1
=O

C

, φ1 ≡

1
=O

1
=O

A
O⊥

, φ2 ≡

1
=O

⊥
=O

B
O1

.

If |φ|O = n > 0, inspection of the rules provides us the following possible cases:

(1) φ =O

φ′

(A′�B)OC
r

(A�B)OC
;

(2) φ =O

φ′

(A�B′)OC
r

(A�B)OC
;

35

(3) φ =O

φ′

(A�B)OC ′
r

(A�B)OC
;

(4) φ =O

φ′

((AOC1)�(BOC2))OC3
�↓

(A�B)OC1OC2OC3

with C =O C1OC2OC3 ;

(5) φ =O

φ′

(((A�B)OC1)�(C2OC3))OC4
�↓

(A�B)OC2O(C1�C3)OC4

with C =O C2O(C1�C3)OC4 ;

(6) φ =O

φ′

(A1�(A2�B))OC
=

((A1�A2)�B)OC
;

(7) φ =O

φ′

(A�B)OC
=

(B�A)OC
;

(8) φ =O

φ′

(((A�B)OC1)�1)OC2

(A�B)OC1OC2

with C =O C1OC2 ;

(9) φ =O

φ′

(1�((A�B)OC1))OC2

(A�B)OC1OC2

with C =O C1OC2 ;

(10) φ =O

φ′

AOC

(A�1)OC
with B =O 1 ;

(11) φ =O

φ′

AOC

(1�B)OC
with A =O 1 .

(1) Since |φ′|O = n− 1, we apply the induction hypothesis to φ′. There exist Q1,

Q2 and

Q1OQ2

ψ

C
, φ1 ≡

φ′1

A′
r

A
OQ1

,
φ2

BOQ2

such that |φ1|O+ |φ2|O = |φ′1|O+ |φ2|O+ 1 ≤ |φ′|O+ 1 = |φ|O.

If φ is tame, then ψ, φ′1 and φ2 are tame. Furthermore, since φ is tame r is

tame, and therefore φ1 is interpretable.

36

(2) This case is analogous to (1).

(3) We apply the induction hypothesis to φ′. There exist Q1, Q2 and

Q1OQ2

ψ′

C ′
r

C

,
φ1

AOQ1
,

φ2

BOQ2

such that |φ1|O+ |φ2|O≤ |φ′|O≤ |φ|O.

If φ is tame, then ψ′, φ1 and φ2 are tame. Furthermore, since φ is tame r is

tame. Therefore ψ is tame.

(4) We apply the induction hypothesis to φ′. There exist Q′1, Q′2 and

Q′1OQ
′
2

ψ′

C3

,
φ1

AOC1OQ′1
,

φ2

BOC2OQ′2

such that |φ1|O+ |φ2|O≤ |φ′|O≤ |φ|O.

If φ is tame, then ψ′, φ1 and φ2 are tame.

We take Q1 = C1OQ′1, Q2 = C2OQ′2 and we have

ψ ≡

C1OQ′1OC2OQ′2
=O

C1OC2O
Q′1OQ

′
2

ψ′

C3
=O

C

.

If φ is tame, since φ1 and φ2 are tame, C1, Q
′
1 and C2, Q

′
2 are interpretable.

Then, since ψ′ is tame, ψ is tame.

(5) We apply the induction hypothesis to φ′. There exist Q′1, Q′2 and

Q′1OQ
′
2

ψ1

C4

,
φ′1

(A�B)OC1OQ′1
,

φ′2

C2OC3OQ′2

such that |φ′1|O+ |φ′2|O≤ |φ′|O.

37

We apply the induction hypothesis to φ′1. There exist Q1, Q2 and

ψ ≡

Q1OQ2

ψ2

C1OQ′1
�

φ′2

C2OC3OQ′2
�↓

(C1�C3)OC2O
Q′1OQ

′
2

ψ1

C4
=O

C

,
φ1

AOQ1
,

φ2

BOQ2

such that |φ1|O+ |φ2|O≤ |φ′1|O≤ |φ′|O≤ |φ|O.

If φ is tame, then ψ1, φ
′
1 and φ′2 are tame. Therefore, ψ2, φ1 and φ2 are tame

and thus ψ is tame.

(6) We apply the induction hypothesis to φ′. There exist Q′1, Q′2 and

Q′1OQ
′
2

ψ1

C
,

φ′1

A1OQ′1
,

φ′2

(A2�B)OQ′2

such that |φ′1|O+ |φ′2|O≤ |φ′|O.

We apply the induction hypothesis to φ′2. There exist M , Q2 and

MOQ2

ψ2

Q′2

,
ζ

A2OM
,

φ2

BOQ2

such that |ζ|O+ |φ2|O≤ |φ′2|O.

We take Q1 ≡ Q′1OM and

ψ ≡

(Q′1OM)OQ2
=O

Q′1O
MOQ2

ψ2

Q′2
ψ1

C

, φ1 ≡
φ′1

A1OQ′1
�

ζ

A2OM
�↓

(A1�A2)O(Q′1OM)

.

We have:

|φ1|O+ |φ2|O = |φ′1|O+ |ζ|O+ 1 + |φ2|O≤ |φ′1|O+ |φ′2|O+ 1 ≤ |φ′|O+ 1 = |φ|O.

If φ is tame, ψ1, φ′1 and φ′2 are tame. Then, ψ2, ζ and φ2 are tame. Therefore,

ψ and φ1 are tame.

38

(7) We apply the induction hypothesis to φ′. There are Q′1, Q′2 and

Q2OQ1

ψ′

C
,

φ2

BOQ2
,

φ1

AOQ1

such that |φ1|O+ |φ2|O≤ |φ|O.

We take

ψ ≡

Q1OQ2
=O
Q1OQ1

ψ′

C

.

If φ is tame, ψ′, φ1 and φ2 are tame, and thus ψ is tame as well.

(8) We apply the induction hypothesis to φ′. There exist Q′1, Q′2 and

Q′1OQ
′
2

ψ1

C2

,
φ′1

(A�B)OC1OQ′1
,

φ′2

1OQ′2

such that |φ′1|O+ |φ′2|O≤ |φ′|O.

We apply the induction hypothesis to φ′1. There exist Q1, Q2 and

ψ ≡

Q1OQ2

ψ2

C1OQ′1
�

φ′2

1OQ′2
�↓

(C1�1)O
Q′1OQ

′
2

ψ1

C2
=O

C

,
φ1

AOQ1
,

φ2

BOQ2

such that |φ1|O+ |φ2|O≤ |φ′1|O≤ |φ′|O≤ |φ|O.

If φ is tame, then so are ψ1, φ
′
1 and φ′2. Therefore, ψ2, φ1 and φ2 are tame,

and so is ψ.

(9) This case is analogous to case (8).

(10) We take

ψ ≡
CO⊥

=O
C

, φ1 ≡
φ′

AOC , φ2 ≡

1
=O

1
=O

B
O⊥

.

We have |φ1|O+ |φ2|O≤ |φ|O.

39

If φ is tame, then C is interpretable and φ′ is tame and thus ψ and φ1 are

tame. ψ2 is tame.

(11) This case is analogous to case (10).

2. If |φ|O = 0, then either

– A =OB =O 1, C =O⊥ and we take

ψ ≡
⊥ a⊥

=

⊥
=O

C

, φ1 ≡

1
=O

1
=O

A
O⊥

, φ2 ≡

1
=O

1
=O

B
O⊥

,

with |φ1|O = |φ2|O = 0 ;

– or A =OB =O⊥, C =O 1 and we take

1 a 1
=

1
=O

C

, φ1 ≡

1
=O

⊥
=O

A
O1

, φ2 ≡

1
=O

⊥
=O

B
O1

.

with |φ1|O = |φ2|O = 0 .

If |φ|O = n > 0 and A a B 6=O u, inspection of the rules provides us the following

possible cases:

(1) φ =O

φ′

(A′ a B)OC
r

(A a B)OC
;

(2) φ =O

φ′

(A a B′)OC
r

(A a B)OC
;

(3) φ =O

φ′

(A a B)OC ′
r

(A a B)OC
;

(4) φ =O

φ′

((AOC1) a (BOC2))OC3
�↓

(A a B)O(C1 a C2)OC3

with C =O (C1 a C2)OC3 ;

40

(5) φ =O

φ′

(((A a B)OC1)�(C2OC3))OC4
�↓

(A a B)OC2O(C1�C3)OC4

with C =O C2O(C1�C3)OC4 ;

(6) φ =O

φ′

(((A a B)OC1)�1)OC2
=

(A a B)OC1OC2

with C =O C1OC2 ;

(7) φ =O

φ′

(1�((A a B)OC1))OC2
=

(A a B)OC1OC2

with C =O C1OC2 ;

(8) φ =O

φ′

1OC
=

(1 a 1)OC
with A =OB =O 1 ;

(9) φ =O

φ′

⊥OC
=

(⊥ a⊥)OC
with A =OB =O 1 .

(1) We apply the induction hypothesis to φ′. There exist Q1, Q2 and

Q1 a Q2

C
, φ1 ≡

φ′1

A′
r

A
OQ1

,
φ2

BOQ2

such that |φ1|O+ |φ2|O = |φ′1|O+ 1 + |φ2|O≤ |φ′|O+ 1 = |φ|O.

If φ is tame, ψ is tame and φ′1 and φ2 are equalities. r is an equality, and

therefore φ1 is an equality.

(2) This case is analogous to (1).

(3) We apply the induction hypothesis to φ′. There exist Q1, Q2 and

Q1 a Q2

ψ′

C ′
r

C

,
φ1

AOQ1
,

φ2

BOQ2

such that |φ1|O+ |φ2|O≤ |φ′|O≤ |φ|O.

If φ is tame, so are ψ′ and r and thus so is ψ. φ1 and φ2 are equalities.

41

(4) We apply the induction hypothesis to φ′. There exist Q′1, Q′2 and

Q′1 a Q
′
2

ψ′

C3

,
φ1

AOC1OQ′1
,

φ2

BOC2OQ′2

such that |φ1|O+ |φ2|O≤ |φ′|O≤ |φ|O.

We take Q1 = C1OQ′1, Q2 = C2OQ′2 and

ψ ≡

(C1OQ′1) a (C2OQ′2)
a↓

(C1 a C2)O
Q′1 a Q

′
2

ψ′

C3
=O

C

.

If φ is tame, then ψ′ is tame and φ1 and φ2 are equalities. Then C1OQ′1 = 1 or

C1OQ′1 = ⊥ and C2OQ′2 = 1 or C2OQ′2 = ⊥. Therefore, (C1OQ′1)a (C2OQ′2)

and C1 a C2 are interpretable and ψ is tame.

(5) We apply the induction hypothesis to φ′. There exist Q′1, Q′2 and

Q′1OQ
′
2

ψ1

C4

,
φ′1

(A a B)OC1OQ′1
,

φ′2

C2OC3OQ′2

such that |φ′1|O+ |φ′2|O≤ |φ′|O.

We apply the induction hypothesis to φ′1. There exist Q1, Q2 and

ψ ≡

Q1 a Q2

ψ2

C1OQ′1
�

φ′2

C2OC3OQ′2
�↓

(C1�C3)OC2O
Q′1OQ

′
2

ψ1

C4
=O

C

,
φ1

AOQ1
,

φ2

BOQ2

such that |φ1|O+ |φ2|O≤ |φ′1|O≤ |φ′|O≤ |φ|O.

If φ is tame, then ψ1, φ′1, φ
′
2 and ψ2 are tame. Therefore ψ is tame. Further-

more, by the induction hypothesis φ1 and φ2 are equalities.

42

(6) We apply the induction hypothesis to φ′. There exist Q′1, Q′2 and

Q′1OQ
′
2

ψ1

C2

,
φ′1

(A a B)OC1OQ′1
,

φ′2

1OQ′2

such that |φ′1|O+ |φ′2|O≤ |φ′|O.

We apply the induction hypothesis to φ′1. There exist Q1, Q2 and

ψ ≡

Q1 a Q2

ψ2

C1OQ′1
�

φ′2

1OQ′2
�↓

(C1�1)O
Q′1OQ

′
2

ψ1

C2
=O

C

,
φ1

AOQ1
,

φ2

BOQ2

such that |φ1|O, |φ2|O≤ |φ′1|O≤ |φ′|O≤ |φ|O.

If φ is tame, then ψ1, φ′1, φ
′
2 and ψ2 are tame. Therefore ψ is tame. Further-

more, by the induction hypothesis φ1 and φ2 are equalities.

(7) This case is analogous to case (5).

(8) We take

φ1 ≡

1
=O

1
=O

A
O⊥

, φ2 ≡

1
=O

1
=O

B
O⊥

and

ψ ≡

(
⊥ a⊥

=

⊥
O⊥

)
�

φ

1OC
�↓

⊥�1
=

⊥
O⊥OC

,

with |φ1|O = |φ2|O = 0 .

If φ is tame, ψ is tame. Furthermore, φ1 and φ2 are equalities.

(9) We take

φ1 ≡

1
=O

⊥
=O

A
O1

, φ2 ≡

1
=O

⊥
=O

B
O1

and

43

ψ ≡

(
1 a 1

=

1
O⊥

)
�

φ

⊥OC
�↓

1�⊥
=

⊥
O⊥OC

,

with |φ1|O = |φ2|O = 0 .

If φ is tame, ψ is tame. Furthermore, φ1 and φ2 are equalities.

Note the big similarities in the case analysis for both clauses of the theorem. In

fact, in the general splitting theorem we will provide a case analysis that holds for every

connective.

To grasp the generalization, it is important to note that the base cases rely on the

dualities in the equational theory. If A and B are equal to constants v and w respectively,

there need to be dual constants v̄ and w̄ such that vOv̄ = 1 and wOw̄ = 1. Furthermore,

tameness is preserved by splitting because of some properties of the interpretation map,

most importantly those that allow us to guarantee the interpretability of the premiss in

case 2.(4). These will be fundamental requirements for the generalised splitting theorem.

Shallow splitting tells us that from ‘shallow’ contexts where the main connective isO
we can follow occurrences of� and of the atoms up in the proof and obtain independent

subproofs. We can now apply shallow splitting starting from the outermost occurrences

of � or the atoms, and apply this process recursively on every subproof to obtain a

series of nested subproofs that in a way make-up the original proof. We formalise this

recursive process in the following theorem.

Definition 3.7. We say that a context H{ } is provable if H{1} = 1.

Definition 3.8. Given a context S{ } we define its height as the number of instances

of� and a that { } is in the scope of. We denote it by |S|O.

Example 3.9. The height of S{ } = (⊥ a (1�{ }))O(1 a⊥) is 2.

Theorem 3.10 (Context Reduction). For any formula A and any context S, given a

proof
φ SAMLLS↓

S{A} there exist a provable context H{ }, a formula K and derivations

ζ SAMLLS↓

KOA
,

H{KO{ }}
χ

S{ }
,

such that if φ is tame, then ζ is tame.

Furthermore, if { } is not in the scope of an atom in S{ } and φ is tame, then χ is

tame.

44

Proof. We proceed by induction on |S|O.

- If S{A} =OAOK, it is clear.

- If S{A} =O (S′{A}�L)OM , we apply Theorem 3.6. There exist Q1, Q2 and

Q1OQ2

ψ

M
,

φ1

S′{A}OQ1
,

φ2

LOQ2
.

We apply the induction hypothesis to S′{A}OQ1. There exist a provable context

H{ }, a formula K and derivations

ζ SAMLLS↓

KOA
, χ ≡

H{KO{ }}
χ′

S′{ }OQ1

�
φ2

LOQ2

�↓

(S′{ }�L)O
Q1OQ2

ψ

M

.

We take H{ } ≡ H ′{ }�1.

If φ is tame, then ζ is tame. If { } is not in the scope of an atom in S{ } and φ is

tame, then χ′ is tame. Furthermore, φ2 and ψ are tame, and therefore χ is tame.

- If S{A} =O (S′{A} a L)OM , we apply Theorem 3.6. There exist Q1, Q2 and

Q1 a Q2

ψ

M
,

φ1

S′{A}OQ1
,

φ2

LOQ2
.

We apply the induction hypothesis to S′{A}OQ1. There exist a provable context

H ′, a formula K and derivations

ζ SAMLLS↓

KOA
, χ ≡

H ′{KO{ }}
χ′

S′{ }OQ1

a
φ2

LOQ2

a↓

(S′{ }�L)O
Q1 a Q2

ψ

M

.

We take H{ } ≡ H ′{ } a 1.

If φ is tame, then ζ is tame.

45

The splitting results are stronger than cut-elimination: they give us information

about the structure of a proof and the ‘pieces’ from which it’s built. Cut-elimination is

a corollary of these results, stemming from our ability to rearrange these pieces in a

way that suits us and still obtain a proof.

To show that the cut is admissible in a proof we will follow the relations a and�
that take part in the cut to find what independent subproofs they belong to. We will

then rearrange them in such a way that the cut is no longer needed.

For example, we consider the following simple proof:

1O⊥ a ⊥O1
a↓

(1 a⊥)O(⊥ a 1)
�

⊥O1 a 1O⊥
a↓

(⊥ a 1)O(1 a⊥)
�↓

(1 a⊥)�(⊥ a 1)
a↑

(1�⊥) a (⊥�1)
O(⊥ a 1)O(1 a⊥)

.

We follow the relations participating in the cut (in red) to find the boxed indepen-

dent subproofs via context reduction and splitting. We can then rearrange them to

obtain the following cut-free proof:

1O⊥ � ⊥O1
�↓

(1�⊥)O(⊥O1)
a

⊥O1 � 1O⊥
�↓

(⊥�1)O1O⊥
a↓

(1�⊥) a (⊥�1)O
(⊥O1) a (1O⊥)

a↓
(⊥ a 1)O(1 a⊥)

.

Through the following corollary we will show that such a rearrangement is always

possible, and therefore the cut is admissible.

Corollary 3.11 (Cut Elimination). For any formulae A,B,C,D, any context S and

any proof

φ ≡
SAMLLS↓

S

{
(A a B)�(C a D)

a↑
(A�C) a (B�D)

}
,

there is a proof
φ′ SAMLLS↓

S{(A�C) a (B�D)} .

Furthermore, if φ is tame then φ′ is tame.

Proof. Given a proof
SAMLLS↓

S{(A a B)�(C a D)}, we apply Theorem 3.10.

46

There exist a provable context H, a formula K and derivations

ζ SAMLLS↓

KO((A a B)�(C a D))
,

H{KO{ }}
χ

S{ }
.

We apply Theorem 3.6 to ζ. There are formulae Q1, Q2 and derivations

Q1OQ2

ψ

K
,

φ1 SAMLLS↓

(A a B)OQ1
,

φ2 SAMLLS↓

(C a D)OQ2
.

We apply Theorem 3.6 to φ1. There are formulae QA, QB and derivations

QA a QB
ψ1

Q1

,
φA SAMLLS↓

AOQA
,

φB SAMLLS↓

BOQB
.

We apply Theorem 3.6 to φ2. There are formulae QC , QD and derivations

QC a QD
ψ2

Q2

,
φC SAMLLS↓

COQC
,

φD SAMLLS↓

DOQD
.

Finally then, there exists a proof in SAMLLS↓:

φ′ =
H

φA

AOQA
�

φC

COQC
�↓

(A�C)OQAOQC

a

φB

BOQB
�

φD

DOQD
�↓

(B�D)OQBOQD
a↓

((A�C) a (B�D))O

(QAOQC) a (QBOQD)
a↓

QA a QB
ψ1

Q1

O
QC a QD
ψ2

Q2

ψ

K

χ

S{(QAOQC) a (QBOQD)}

.

If φ is tame, then { } is not in the scope of an atom in S{ }. Then ζ and χ are tame.

ψ1, ψ2, ψ3 are tame as well. φ1 and φ2 are equalities. Furthermore, since (A�C)a(B�D)

is interpretable, then (A�C) and (B�C) are of the form 1�1 or ⊥�1. Therefore, the

instances of�↓ are trivially of the form
1

1
and can be replaced by equalities. φ′ is then

tame.

47

Note that in this last proof we have implicitly made use of the associativity and

commutativity of O. In fact this will be a requirement in the generalised splitting

theorem.

Since every proof of SMLLS corresponds to a tame proof in SAMLLS, the cut-free

proof obtained from it will be tame and therefore interpretable. This cut-elimination

procedure therefore corresponds to cut-elimination in SMLLS.

It is interesting to observe that at no point in the reasoning leading us to cut-

elimination have we required formulae to be interpretable. Splitting and the admissibility

of up-rules hold for the full subatomic language, and in particular for interpretable

proofs.

3.2 General splitting

Splitting is based on a simple idea: to show that an atomic cut involving a and ā is

admissible, we follow a and ā to the top of the derivation to find two independent

subderivations, the premisses of which contain the dual of a and the dual of ā respectively.

In this way we obtain two proofs that don’t interact above the cut, that we can rearrange

to get a new cut-free proof.

Proofs of cut-elimination by splitting therefore rely on two main properties of a proof

system: the dualities present in it to ensure that each of the independent subproofs

contains the dual of an atom involved in the cut, and the shape of the linear rules

ensuring that the two proofs remain independent above the cut. It is precisely a formal

characterisation of these properties that we will provide, enabling us to understand why

they are enough to guarantee cut-elimination. We therefore show how the interaction

of linear rules and the cut affects cut-elimination.

Since the splitting proof consists on being able to follow relations through a proof to

obtain the subproofs that compose it, its generalisation will be based on a characterisation

of the relations that we can follow in such a way. In a system with only these relations,

cut-elimination will be a mere corollary of splitting as is the case in SAMLLS↓.

To follow a relation through the proof from the bottom to the top, we require their

scope to widen. As we observed in SAMLLS↓, the scope of� and a in the inference rules

only widens when reading bottom-up. Accordingly, we will consider systems where the

shape of the rules ensures the widening of the scope.

48

Notation 3.12. In what follows we will consider a subatomic system SA↓ with set of

formulae F, set of relations R, set of constants U and a natural interpretation I whose

inference rules are all down-rules.

A proof in SA is a derivation with premiss 1 ∈ U.

Definition 3.13. We say that a relation α is contractive in SA↓ if there is an inference

rule
(A α B) ν (C α D)

(A ν C) α (B νm D)
for some ν∈ R

in SA↓.

Otherwise, we say that the relation α is non-contractive.

Example 3.14. In SAMLLS↓ (Figure 3-1),� and a are non-contractive.

Example 3.15. In SAKS (Figure 2-1), a is contractive since in the rule ac its scope

shrinks from bottom to top. Likewise, ∧ is contractive.

In SAMLLS↓ the only contractive relation isO. The property distinguishingO from

a and � is in fact that it is the minimal relation: it is the relation that appears in

the excluded middle rules that introduce the dualities. In particular, the fact that

uOū = 1, for every constant u is fundamental to prove the base cases of Theorem 3.6.

In every propositional system with an identity rule that introduces dualities there is

such a distinguished relation. We will characterise splittable systems, i.e., systems with

sufficient conditions to ensure cut-elimination through a splitting procedure.

In splittable systems, mimicking the case of MLL, we will require that all relations

except for a distinguished relation + be non-contractive so that we are able to follow

them in a proof, and that there be a rule u+ ū = 1 for every constant u.

Furthermore, when looking for the nested subproofs provided by context reduction

in Theorem 3.10, we start from the outermost occurrence of a or� in the conclusion of

a proof, and apply shallow splitting recursively. To piece together all the subproofs in

such a way that we obtain a provable context, we can see that a fundamental property

of a and� is that 1 a 1 = 1 and 1�1 = 1. In splittable systems we will follow the same

procedure, and will therefore require that 1 αM 1 = 1 for every α.

Lastly, we implicitly made use of the associativity and commutativity ofO. We will

in the same way require associativity and commutativity of +.

Definition 3.16. A system SA↓ is splittable if:

1. There is a strong relation × with unit 1 and dual + with unit 0,

2. Every relation α 6= + is non-contractive,

3. There is a constant assignment u+ ū = 1 for every unit u ∈ U,

4. + is associative and commutative,

5. 1 αM 1 = 1 for every α.

49

(A ∨B) a (C ∨D)
a↓

(A a C) ∨ (B a D)

(A ∨B) ∧ (C ∨D)
∧↓

(A ∧ C) ∨ (B ∨D)

Figure 3-2: SAKS↓

(AOB) a (COD)
a↓

(A a C)O(B a D)

(AOB) / (COD)
/↓

(A / C)O(B / D)

(AOB)�(COD)
�↓

(A�C)O(BOD)

Figure 3-3: Systems SABVU↓ and SABV↓

Example 3.17. SAMLLS↓ is splittable, and the minimal relation + introducing dualities

isO.

Example 3.18. The linear down fragment of classical logic SAKS↓ of Figure 3-2 together

with the equality rules corresponding to the axioms of example 2.7 is splittable. The

minimal relation + introducing dualities is ∨.

Example 3.19. The down fragment of SABVU given in Figure 3-3 SABVU↓ together

with the equality rules corresponding to the axioms of example 2.9 is splittable. The

minimal relation + introducing dualities isO.

Likewise, the down fragment of SABV given in the same figure is splittable.

Remark 3.20. From condition 3 in Definition 3.16 and the closure of = under negation,

× is associative and commutative.

Notation 3.21. As all relations α 6= + are non-contractive, all the inference rules of a

splittable system are of the form

(A+B) α (C +D)
α↓

(A α C) + (B αm D)
.

We denote this rule by α↓.

The idea behind the generalisation of splitting is simple: if a relation α is non-

contractive, its scope only widens when following it from the bottom to the top of a

proof. Therefore, given a proof
φ

S{A α B} ,

50

we can follow α all the way to the top of π we will find that its scope only widens and

that φ is of the form

A+Q1
α
B +Q2

α↓
(A α B) + (Q1 α

m Q2)

S{A α B}

.

In other words, the proof φ splits into two subproofs that have no interaction above

α↓.

We will obtain the admissibility of certain rules as a corollary of splitting. In

particular, we will show that the subatomic rule that corresponds to the atomic cut rule

is admissible. To prove that this result corresponds to cut-elimination in the original

systems, we will need to show that the cut-free proofs obtained from proofs of the

non-subatomic original system via this procedure are interpretable themselves, and

therefore correspond to proofs in the original system. For that, we will pay particular

attention to tame proofs, in which no inference rule occurs in the scope of an atom. If

the interpretation I is built in a natural way, every proof of the original system will be

represented by a tame proof in SA. The interpretability of tame proofs is preserved by

splitting as long as interpretability is preserved by duals. In that case, as a corollary,

interpretability will be preserved by the cut-elimination procedure.

Definition 3.22. We define =+ as the equivalence relation on formulae defined by the

axioms for the associativity, commutativity, unit of + and constant assignments for +.

We define the equivalence relation =+ on derivations following Definition 2.32.

Definition 3.23. We say that a system SA with a natural interpretation I, negation ·
and an equational theory = is preservable when:

1. If A is interpretable and A =+ B, then B is interpretable ;

2. If A α B is interpretable, α∈ R, then A and B are interpretable ;

3. If A a B is interpretable and A+A′ = 1, B +B′ = 1 then A′ a B′ is interpretable

for a ∈ A ;

4. If A is interpretable, then A is interpretable ;

5. The atoms of A are non-commutative, non-associative and non-unitary.

These conditions ensure that interpretability is preserved by duality, meaning that

if an instance of a rule is interpretable, the same rule instantiated with the duals of the

formulae involved is interpretable as well.

The proof of the splitting result is done in two steps for ease of reading: shallow

splitting and context reduction, just as in the example in Section 3.1. As noted in [21]

and in [36], the main difficulty of splitting is finding the right induction measure for

51

every system. In the literature, each splitting theorem for each proof system uses a

different induction measure tailored specifically for it. By providing a general splitting

theorem, we not only give a formal definition of what a splitting theorem is, but also

give a new one-size-fits-all induction measure that works for every splittable system,

taking the search for an induction measure out of the process for designing a proof

system.

Lemma 3.24. If SA↓ is splittable, then for every proof

φ SA↓

u+ C

where u ∈ U, there is a derivation

ū
ψ SA↓

C

.

Furthermore, if SA↓ is preservable, then if φ is tame we have that ψ is tame.

Proof. We take

ψ ≡

(ū+ 0)×
φ

u+ C
×↓

ū× u
=

0
+ 0 + C

.

Definition 3.25. Given a derivation φ, we define the length of φ as the number of

rules in φ different from the equality rules for the associativity and commutativity of +,

the unit rule for + and the unit assignments for +. We denote it by |φ|+.

It is straightforward that if φ =+ ψ, then |φ|+ = |ψ|+. It is clear as well that if SA

is preservable and φ is tame, then ψ is as well, since interpretability is preserved by =+

and we cannot add or remove non-equality rules in the scope of atoms from a formula

through the equalities of =+.

Notation 3.26. We will abuse notation and refer to derivations made up only of

equality rules rules as equalities.

Theorem 3.27 (Shallow Splitting). If SA↓ is splittable, for every formulae A, B, C,

for every relation α 6= +, for every proof

φ SA↓

(A α B) + C

52

there exist formulae Q1, Q2 and derivations

Q1 α Q2

ψ SA↓

C

,
φ1 SA↓

A+Q1
and

φ2 SA↓

B +Q2
,

with |φ1|+ + |φ2|+ ≤ |φ|+ .

If SA↓ is preservable and φ is tame, then φ1, φ2 and ψ are tame. Furthermore, if α

is an atom then φ1 and φ2 are equalities.

Proof. Given a proof φ in SA of (A α B) +C we reduce it to CoS notation for =+. We

will proceed by induction on |φ|+.

If |φ|+ = 1, then A =+ v,B =+ w and v α w =+ u, with u+ C =+ 1. By Lemma

3.24, there is a derivation
ū

ψ′ SA↓

C

and we take:

ψ ≡

v̄ α w̄
=

ū
ψ′

C

, φ1 ≡

1
=+

v
=+

A
+ v̄

and φ2 ≡

1
=+

w
=+

B
+ w̄

.

ψ′ is tame and v̄ α w̄ is interpretable, and therefore ψ is tame. Furthermore, φ1 and

φ2 are tame and equalities.

If |φ|+ = |φ′|+ > 1, we prove the inductive step for all the possible cases of the

bottom inference rule ρ of φ.

Inspection of the rules provides us with the following possible cases:

(1) φ =+

φ′ SA↓

(A α B) + C ′
ρ

(A α B) + C

;

(2) φ =+

φ′ SA↓

(((A α B) + C1)× (C2 + C3)) + C4
×↓

(A α B) + C2 + (C1 × C3) + C4

;

(3) φ =+

φ′ SA↓

(((A α B) + C1) β uβ) + C2
=

(A α B) + C1 + C2

;

(4) φ =+

φ′ SA↓

(uβ β ((A α B) + C1)) + C2
=

(A α B) + C1 + C2

;

53

(5) φ =+

φ′ SA↓

(A′ α B) + C
ρ

(A α B) + C

;

(6) φ =+

φ′ SA↓

(A α B′) + C
ρ

(A α B) + C

;

(7) φ =+

φ′ SA↓

((A+ C1) α (B + C2)) + C3
α↓

((A α B) + (C1 α C2)) + C3

if α is strong ;

(8) φ =+

φ′ SA↓

((A+ C1) α (B + C2)) + C3
α↓

((A α B) + (C1 α C2)) + C3

if α is weak ;

(9) φ =+

φ′ SA↓

((A+ C1) α (B + C2)) + C3
α↓

((A α B) + (C1 α C2)) + C3

if α is weak ;

(10) φ =+

φ′ SA↓

(B α A) + C
=

(A α B) + C

if α is commutative ;

(11) φ =+

φ′ SA↓

((A α B1) α B2) + C
=

(A α (B1 α B2)) + C

if α is associative ;

(12) φ =+

φ′ SA↓

(A1 α (A2 α B)) + C
=

((A1 α A2) α B) + C

if α is associative ;

(13) φ =+

φ′ SA↓

A+ C
=

(A α uα) + C

if α is unitary, with B =+ uβ ;

(14) φ =+

φ′ SA↓

B + C
=

(uα α B) + C

if α is unitary, with A =+ uβ ;

(15) φ =+

φ′ SA↓

u+ C
=

(v α w) + C

with A =+ v and B =+ w .

54

We proceed as follows:

(1) We can apply the induction hypothesis to φ′ as |φ′|+ < |φ|+.

There are derivations

ψ =+

Q1 α Q2

ψ′ SA↓

C ′
ρ

C

,
φ1 SA↓

A+Q1
and

φ2 SA↓

B +Q2
,

with |φ1|+ + |φ2|+ ≤ |φ|+ < |φ|+ .

If φ is tame, then ρ and φ1, φ2 and ψ′ are tame. Hence ψ is tame.

Furthermore, if α is an atom then by the induction hypothesis φ1 and φ2 are

equalities.

(2) We can apply the induction hypothesis to φ′ as |φ′|+ < |φ|+.

There are derivations

ψ =+

H1 +H2

ψ′ SA↓

C4

,
ω1 SA↓

(A α B) + C1 +H1
and

ω2 SA↓

C2 + C3 +H2
,

with |ω1|+ + |ω2|+ ≤ |φ′′|+.

If φ is tame, then φ′ is tame and ω1, ω2 and ψ′ are tame.

We apply the induction hypothesis to ω1 as |ω1|+ ≤ |φ′|+ < |φ|+.

There are derivations

Q1 α Q2

ψ′′ SA↓

C1 +H1

,
φ1 SA↓

A+Q1
,

φ2 SA↓

B +Q2
,

with |φ1|+ + |φ2|+ ≤ |ω1|+ < |φ|+.

We take:

ψ =+

Q1 α Q2

ψ′′

C1 +H1

×
ω2

C2 + C3 +H2

×↓

(C1 × C3) + C2 +
H1 +H2

ψ′

C4

.

55

If φ is tame, then ω1 is tame and φ1, φ2 and ψ′′ are tame. ψ′ and ω2 are tame as

well, and since I is preservable, C1, C2, C3 are interpretable. Therefore ψ is tame.

Furthermore, if α is an atom then by the induction hypothesis φ1 and φ2 are

equalities.

(3) We can apply the induction hypothesis to φ′ as |φ′|+ < |φ|+. There are derivations

H1 β H2

ψ′ SA↓

C2

,
ω1 SA↓

(A α B) + C1 +H1
,

ω2 SA↓

uβ +H2
,

with |ω1|+ + |ω2|+ ≤ |φ′|+.

By Lemma 3.24, there is a derivation

ūβ
ψ′′ SA↓

H2

.

If φ is tame, then ω2 is tame and thus ψ′′ is tame.

We apply the induction hypothesis to ω1 as |ω1|+ ≤ |φ′|+ < |φ|+. There are

derivations
Q1 α Q2

ψ′′′ SA↓

C1 +H1

,
φ1 SA↓

A+Q1
,

φ2 SA↓

B +Q2
,

with |φ1|+ + |φ2|+ ≤ |ω1|+ < |φ|+.

We take:

ψ =+

Q1 α Q2

ψ′′′

C1 +
H1 β

ūβ
ψ′′

H2

ψ′

C2

.

Atoms are not unitary, and thus β is not an atom. If φ is tame, then ω1 is tame

and φ1, φ2 and ψ′′′ are tame. ψ′′ and ψ′ are tame as well, and hence ψ is tame.

Furthermore, if α is an atom then by the induction hypothesis φ1 and φ2 are

equalities.

56

(4) This case is analogous to (3).

(5) We can apply the induction hypothesis to φ′ as |φ′|+ < |φ|+. There are derivations

Q1 α
m Q2

ψ SA↓

C

, φ1 ≡

φ′1 SA↓

A′
ρ

A
+Q1

and
φ2 SA↓

B +Q2
,

with |φ′1|+ + |φ2|+ ≤ |φ′|+.

We have |φ1|+ + |φ2|+ = |φ′1|+ + 1 + |φ2|+ ≤ |φ′|+ + 1 = |φ|+.

If φ is tame, then φ′ is tame and φ′1, φ2 and ψ are tame. ρ is tame as well, and

thus φ1 is tame.

Furthermore, if α is an atom the only allowed instances of ρ are equalities and

φ′1 is an equality, and thus φ1 is an equality. By induction hypothesis, φ2 is an

equality.

(6) This case is analogous to (5).

(7) We can apply the induction hypothesis to φ′ as |φ′|+ < |φ|+. There are derivations

H1 α H2

ψ′ SA↓

C3

,
φ1 SA↓

A+ C1 +H1
and

φ2 SA↓

B + C2 +H2
,

with |φ1|+ + |φ2|+ ≤ |φ′|+ < |φ|+.

We take Q1 ≡ C1 +H1, Q2 ≡ C2 +H2 and

ψ =+

(C1 +H1) α (C2 +H2)
α↓

(C1 α C2) +
H1 α H2

ψ′

C3

.

If φ is tame, then φ′ is tame and by induction hypothesis φ1, φ2 and ψ′ are tame.

If α is an atom, then by the induction hypothesis φ1 and φ2 are equalities. Then

(C1 +H1) α (C2 +H2) is interpretable by condition 3 of preservability. Therefore,

ψ is tame.

If φ is tame and α is not an atom, then ψ is trivially tame since C1, H1, C2, H2

are interpretable and ψ′ is tame.

57

(8) We can apply the induction hypothesis to φ′ as |φ′|+ < |φ|+. There are derivations

H1 α H2

ψ′ SA↓

C3

,
φ1 SA↓

A+ C1 +H1
and

φ2 SA↓

B + C2 +H2
,

with |φ1|+ + |φ2|+ ≤ |φ′|+ < |φ|+.

We take Q1 ≡ C1 +H1, Q2 ≡ C2 +H2 and

ψ =+

(C1 +H1) α (C2 +H2)
α↓

(C1 α C2) +
H1 α H2

ψ′

F3

.

If φ is tame, then φ′ is tame and by induction hypothesis φ1, φ2 and ψ′ are tame.

If α is an atom, then by the induction hypothesis φ1 and φ2 are equalities. Then

(C1 +H1) α (C2 +H2) is interpretable by condition 3 of preservability. Therefore,

ψ is tame.

If φ is tame and α is not an atom, then ψ is trivially tame since C1, H1, C2, H2

are interpretable and ψ′ is tame.

(9) We can apply the induction hypothesis to φ′ as |φ′|+ < |φ|+. There are derivations

H1 α H2

ψ′ SA↓

F3

,
φ1 SA↓

A+ C1 +H1
and

φ2 SA↓

B + C2 +H2
,

with |φ1|+ + |φ2|+ ≤ |φ′|+ < |φ|+.

We take Q1 ≡ C1 +H1, Q2 ≡ C2 +H2 and

ψ =+

(C1 +H1) α (C2 +H2)
αm↓

(C1 α C2) +
H1 α H2

ψ′

C3

.

If φ is tame, then φ′ is tame and by induction hypothesis φ1, φ2 and ψ′ are tame.

If α is an atom, then by the induction hypothesis φ1 and φ2 are equalities. Then

(C1 +H1) α (C2 +H2) is interpretable by condition 3 of preservability. Therefore,

ψ is tame.

58

If φ is tame and α is not an atom, then ψ is trivially tame since C1, H1, C2, H2

are interpretable and ψ′ is tame.

(10) We can apply the induction hypothesis to φ′ as |φ′|+ < |φ|+. There are derivations

H1 α H2

ψ′ SA↓

C

,
ω1 SA↓

B +H1
and

ω2 SA↓

A+H2
,

with |ω1|+ + |ω2|+ ≤ |φ′|+.

We take Q1 ≡ H2, Q2 ≡ H1, φ1 ≡ ω2, φ2 ≡ ω1 and

ψ ≡

H2 α H1
=

H1 α H2

ψ′

C

.

Atoms are not commutative and thus α is not an atom.

If φ is tame, then φ′ is tame and by induction hypothesis ψ1, ψ2 and ψ′ are tame.

Then H1 and H2 are interpretable and hence ψ is tame as well.

(11) We can apply the induction hypothesis to φ′ as |φ′|+ < |φ|+. There are derivations

H1 α H2

ψ′ SA↓

C

,
ω1 SA↓

(A α B1) +H1
and

ω2 SA↓

B2 +H2
,

with |ω1|+ + |ω2|+ ≤ |φ′|+.

If φ is tame, then φ′ is tame and by induction hypothesis ω1, ω2 and ψ′ are tame.

We apply the induction hypothesis to ω1 as |ω1|+ ≤ |φ′|+ < |φ|+. There are

Q1 α H3

ψ′′ SA↓

H1

,
φ1 SA↓

A+Q1
,

ω3 SA↓

B1 +H3
,

with |φ1|+ + |ω3|+ ≤ |ω1|+.

We take Q2 ≡ H3 α H2 and

59

φ2 ≡
ω3

B1 +H3
αM

ω2

B2 +H2
α↓

(B1 α B2) + (H3 α H2)

, ψ ≡

Q1 α (H3 α H2)
=

Q1 α H3

ψ′′

H1

α H2

ψ′

C

.

We have |φ1|+ + |φ2|+ = |φ1|+ + |ω3|+ + |ω2|+ +1 ≤ |ω1|+ + |ω2|+ +1 ≤ |φ′|+ +1 =

|φ|+.

Atoms are not associative, thus α is not an atom. If φ is tame, then ω2, ω3, ψ′

and ψ′′ are tame and so Q1, H2, H3 are interpretable. Therefore φ1, φ2 and ψ are

tame.

(12) This case is analogous to (11).

(13) We take Q1 ≡ C, Q2 ≡ ūα and

ψ ≡
C α ūα

=

C
, φ1 ≡

φ′

A+ C
, φ2 ≡

1
=+

uα
=+

B
+ ūα

.

Then, |φ1|+ + |φ2|+ = |φ′|+ < |φ|+.

If φ is tame, then C is interpretable and φ′ is tame, and therefore φ1, φ2 and ψ

are tame.

(14) This case is analogous to (13).

(15) By Lemma 3.24, there is a derivation
ū

ψ′ SA↓

C

and we take:

ψ ≡

v̄ α w̄
=

ū
ψ′

C

, φ1 ≡

1
=+

v
=+

A
+ v̄

and φ2 ≡

1
=+

w
=+

B
+ w̄

.

If φ is tame, then ψ′ is tame and φ1 and φ2 are tame. Since v α w is interpretable,

by condition 4 of preservability v̄ α w̄ is interpretable. Therefore ψ is tame.

Furthermore, φ1 and φ2 are equalities.

60

We can see that shallow splitting hinges precisely on the non-contractiveness of

relations and on the duality between constants.

Remark 3.28. The requirement for + to be associative and commutative can be relaxed,

with the condition that the rule ×↓ be restricted in such a way that it corresponds to

two rules
(A+B)× C
(A× C) +B

and
A× (B + C)

B + (A× C)
.

Since all relations are non-contractive, we can apply shallow splitting to the outermost

relation in any context S, and continue applying it inductively to split any proof

completely. This process is formalised in the following Theorem 3.29, which is a

generalisation of Theorem 4.1.5 in [21].

Theorem 3.29 (Context Reduction). Let SA↓ be a splittable system. For any formula

A and for any context S{ }, given a proof
φ SA↓

S{A} , there exist a formula K, a provable

context H{ } and derivations

ζ SA↓

A+K
and

H{{ }+K}
χ SA↓

S{ }

such that if φ is tame, then ζ is tame.

Furthermore, if { } is not in the scope of an atom in S{ } and φ is tame, then χ is

tame.

Proof. We proceed by induction on the number of relations α 6= + that { } is in the

scope of in S{ }. We denote it by |S|+.

If |S|+ = 0, then S{A} =+ A+K and we take ζ =+ φ and H{ } = { }.

If S{A} =+ (S′{A} β B) + C with β 6= +, we apply Theorem 3.27 to φ. There exist

derivations
Q1 β Q2

ψ SA↓

C

,
φ1 SA↓

S′{A}+Q1
and

φ2 SA↓

B +Q2

such that φ1, φ2 and ψ are tame if φ is tame.

We apply the induction hypothesis to φ1 since |S′|+ < |S|+. There are derivations

ζ SA↓

A+K
,

H ′{{ }+K}
χ′ SA↓

S′{ }+Q1

,

with H ′ a provable context, such that ζ is tame if φ1 is tame.

61

We take H{ } = H ′{ } βM 1 . We have H{1} = H ′{1} βM 1 = 1 βM 1 = 1, and we

can build in SA↓

χ ≡

H ′{{ }+K}
χ′

S′{ }+Q1

βM
φ2

B +Q2

β↓

(S′{ } β B) +
Q1 β Q2

ψ

C

.

If { } is not in the scope of an atom in S{ } and φ is tame, then by the induction

hypothesis χ′ is tame and { } is not in the scope of an atom in H ′{ }. Since β is not an

atom, { } is not in the scope of an atom in H{ } and χ is tame.

We proceed likewise if S{A} =+ (B β S′{A}) + C.

As a corollary of shallow splitting and context reduction we can show the admissibility

of a class of up-rules. The main idea is that through splitting we can separate a proof

into “building blocks” that are independently provable. We can then easily combine

these building blocks differently to obtain a new proof with the same conclusion.

Since tameness is preserved by splitting, cut-free proofs obtained from tame proofs

will be tame themselves. The cut-free proofs obtained from non-subatomic proofs will

therefore be interpretable, and we can ensure that this cut-elimination result corresponds

to cut-elimination in the original system.

When designing a proof system that enjoys cut-elimination, we will therefore only

have to ensure that the interpretation map is preservable. This is quite an easy task,

since the conditions for an interpretation map to be natural are very lenient, and

therefore there is much freedom to design an interpretation to suit many needs.

Definition 3.30. Rules of the form
(A α B)×

(
C αM D

)
α↑

(A× C) α (B ×D)
are cuts.

Corollary 3.31 (Admissibility of cuts). Let SA be a splittable proof system.

For any formulae A,B,C,D, any context S, any relation α 6= +, given a proof

φ ≡
φ′ SA↓

S

{
(A α B)×

(
C αM D

)
α↑

(A× C) α (B ×D)

}
,

there is a proof
π SA↓

S{(A× C) α (B ×D)} .

Furthermore, if φ is tame and α is not an atom, π is tame.

62

Proof. We apply Theorem 3.29 to φ.

There are derivations

ζ SA↓(
(A α B)×

(
C αM D

))
+K

and
H{{ }+K}

χ SA↓

S{ }
,

with H{1} = 1.

We apply Theorem 3.27 to ζ. There exist derivations

Q1 +Q2

ψ SA↓

K

,
φ1 SA↓

(A α B) +Q1
and

φ2 SA↓(
C αM D

)
+Q2

.

We apply Theorem 3.27 to φ3 and φ4 and we obtain

QA α QB
ψ1 SA↓

Q1

,
φ3 SA↓

QA +A
and

φ4 SA↓

QB +B
,

QC α
m QD

ψ2 SA↓

Q2

,
φ5 SA↓

QC + C
and

φ6 SA↓

QD +D
.

We can then build the following proof in SA↓

π =
H

φ3

A+QA
×

φ5

C +QC
×↓

(A× C) +QA +QC

αM
φ4

B +QB
×

φ6

D +QD
×↓

(B ×D) +QB +QD
αM↓

((A× C) α (B ×D)) +

(QA +QC) α (QB +QD)
α↓

QA α QB
ψ1

Q1

+
QC α

m QD
ψ2

Q2

ψ

K

χ

S{(A× C) α (B ×D)}

.

If φ is tame, then { } is not in the scope of an atom in S{ } and φ3, φ4, φ5, φ6, ψ1, ψ2

and χ are tame. Therefore, if α is not an atom, π is tame.

Remark 3.32. The rule
(A+B)× (C ×D)

+↑
(A× C) + (B ×D)

is always admissible in systems with the

63

rule ×↓ where × is associative. We obtain it as follows:

(A+B)× (C ×D)
=

((A+B)× C)×D
=

((A+B)× (C + 0))×D
×↓

((A× C) + (B + 0))×D
=

((A× C) +B)× (0 +D)
×↓

(A× C) + 0 + (B ×D)

.

Example 3.33. We can apply this theorem to show the admissibility of the up fragment

of SAMLLS.

Example 3.34. We have shown the admissibility of the up rules

(A a B) ∧ (C a D)
a↑

(A ∧ C) a (B ∧D)
and

(A ∨B) ∧ (C ∧D)
∨↑

(A ∨ C) ∧ (B ∨D)

in system SAKS↓.

We can show the admissibility of these rules in system SAKS↓ where ∧ is associative

and commutative, or we could use the splitting procedure to show the admissibilty of

commutativity and associativity of ∧ as well, if we consider them as given by the rule

(A ∧B) ∧ (C ∧D)
∧↑

(A ∧ C) ∧ (B ∧D)
.

Every rule of the linear fragment of system KS for classical logic corresponds to a tame

derivation in SAKS. Therefore every proof in that fragment corresponds to a tame proof

in SAKS.

Tameness is preserved when eliminating rule a↑ since every instance of a rule ∧↓
with the premiss equal to t has conclusion equal to t and can therefore be replaced by

an equality to obtain a tame cut-free proof. Therefore, if α is an atom and φ is tame in

Theorem 3.31, π is tame as well.

Example 3.35. We have shown the admissibility of the up rules of system SABVU, a↑
and /↑. Just as above, we can likewise choose to show the admissibility of commutativity

and associativity of�. The cut-free proofs obtained from tame proofs are tame, since

identically to the case of SAMLLS, if there is an interpretable instance of a↑, then the

instances of�↓ in the cut-free proof can be replaced by equalities to obtain a tame proof

(see the proof of Theorem 3.11).

This extends to system BV where the units are identified. Even though system

SABV does not verify condition 3 of preservability, in a tame proof there are no instances

of the equality axioms 0 = ◦ and 1 = ◦ in the scope of an atom since ◦ in the scope

of an atom is not interpretable. Therefore, in Theorem 3.27, if φ is tame and α is an

64

atom then φ1 and φ2 are equalities that do not contain any instance of these axioms.

Tameness is preserved since in the absence of these axioms condition 3 of preservability

holds.

The splitting procedure is therefore a very general phenomenon: it can be applied

to systems with any number of relations and units as long as certain basic equations

are satisfied, and is maintained by the identification of any of these units.

3.3 The robustness of splitting: adding a modality

As we have shown in the previous section, splitting hinges only on the shape of rules

and on dualities. In the general splitting theorem that we presented we considered

only binary relations, but it will be the focus of future research to extend this result

to include relations of different arities: splitting can be applied to different types of

unary operators, as is shown by the splitting theorems for exponentials in [36] or for a

self-dual binder in [34]. In this section we will show a starting point in the direction of

such a generalisation, by extending the general procedure to a system with a self-dual

modality. The fact that it is possible to do so shows the robustness of the general

splitting methodology: it is based on properties that are present in systems with very

different expressiveness and therefore it can be expanded to include an extremely wide

variety of relations as long as they are introduced by rules of non-contractive shape.

We will present system SAKV− [22], a system with a self-dual modality. SAKV−

combines a linear splittable core with a self-dual commutative connective (therefore

being outside the realm of what is achievable with Gentzen-style calculi) and the simplest

case of a modality in terms of the further study of decomposition, the self-dual modality

?.

Definition 3.36. We define the set R = A ∪ {O, /,�} where A is a denumerable set

with A ∩ {O, /,�} = ∅. We define the set U = {⊥, ◦, 1} of constants. The set F of

formulae of SAKV− contains terms defined by the grammar

F ::= U | ?F | F α F ,

with α∈ R.

We define negation as an involutive map ·̄ on F by setting:

�̄ :=O ;

/̄ := / ;

ā := a for all a ∈ A ;

◦̄ := ◦ ;

⊥̄ := 1

65

(AOB) a (COD)
a↓

(A a C)O(B a D)

(A a B)�(C a D)
a↑

(A�C) a (B�D)

(AOB)�(COD)
�↓

(A�C)O(BOD)

(AOB)�(C�D)
O↑

(A�C)O(B�D)

(AOB) / (COD)
/↓

(A / C)O(B / D)

(A / B)�(C / D)
/↑

(A�C) / (B�D)

?(AOB)
?↓
?AO?B

?A�?B
?↑
?(A�B)

Figure 3-4: System SAKV−

and
A α B := A α B ;

?A := ?A .

We define an equational theory = on F as the minimal equivalence relation closed

under negation and under context defined by:

For all A,B,C ∈ F :

(A�B)�C = A�(B�C) ; (AOB)OC = AO(BOC) ;

A�B = B�A ; AOB = BOA ;

(A / B) / C = A / (B / C) ;

A�1 = A ; AO⊥ = A ;

A / ◦ = A ; ◦ / A = A ;

◦�◦ = ⊥ ; ◦O◦ = 1 ;

⊥ /⊥ = ⊥ ; 1 / 1 = 1 ;

∀a ∈ A. ⊥ a⊥ = ⊥ ; ∀a ∈ A. 1 a 1 = 1 ;

?◦ = ◦ ;

1 = ◦ ; ⊥ = ◦ .

The subatomic proof system SAKV− is given by the inference rules in Figure 3-4,

together with the equality rules given by
A

=

B
for every A, B on opposite sides of the

equality axioms above.

A proof in SAKV− is a derivation with premiss 1.

We define SAKV↓ as the system given by the down-rules of system SAKV−.

We can observe that the rules ?↓ and ?↑ correspond to the unary versions of the

rules α↓ considered in the previous section. Furthermore, the constants verify the same

equations than for BV and therefore they verify the duality conditions necessary for the

66

splitting theorem. For these reasons, extending this result to SKV− is a straightforward

task, showcasing the generality of the conditions that allow us to obtain splitting.

For the sake of brevity we omit considerations about tameness, that are done

identically to the previous section.

Theorem 3.37.

1. For every formulae A, B, C, for every relation α 6=O, for every proof

φ SAKV↓

(A α B)OC

there exist formulae Q1, Q2 and derivations

Q1 α Q2

ψ SAKV↓

C

,
φ1 SAKV↓

AOQ1
and

φ2 SAKV↓

BOQ2
,

with |φ1|O+ |φ2|O≤ |φ|O .

2. For every formulae A, C, for every proof

φ SAKV↓

?AOC

there exists a formula Q and derivations

?Q
ψ SAKV↓

C

,
φ1 SAKV↓

AOQ ,

with |φ1|O≤ |φ|O .

Proof.

1. This case is an instance of the general splitting theorem 3.27, since it is straight-

forward that the presence of rule ?↓ does not introduce any new cases and that

the conditions are satisfied.

2. We proceed by induction on |φ|O. The base case is an instance of case (7) below.

We prove the inductive step for all the possible cases of the bottom inference rule

ρ of φ.

Identically to the proof of 3.27, inspection of the rules provides us with the

following possible cases:

67

(1) φ =O

φ′ SAKV↓

?AOC ′
ρ

?AOC
;

(2) φ =O

φ′ SAKV↓

((?AOC1)�(C2OC3))OC4
�↓

?AOC2O(C1�C3)OC4

;

(3) φ =O

φ′ SAKV↓

((?AOC1) β uβ)OC2
=

?AOC1OC2

;

(4) φ =O

φ′ SAKV↓

(uβ β (?AOC1))OC2
=

?AOC1OC2

;

(5) φ =O

φ′ SAKV↓

?A′OC
ρ

?AOC
;

(6) φ =O

φ′ SAKV↓

?(AOC1)OC2
O↓
?AO?C1OC2

;

(7) φ =O

φ′ SAKV↓

◦OC
=

?◦OC
;

We proceed as follows:

(1) This case corresponds to case (1) of Theorem 3.27. We can apply the

induction hypothesis to φ′ as |φ′|+ < |φ|+.

There are derivations

ψ =O

?Q
ψ′ SAKV↓

C ′
ρ

C

,
φ1 SAKV↓

AOQ ,

with |φ1|O≤ |φ′|O< |φ′|O .

(2) This case corresponds to case (2) of Theorem 3.27. We can apply case 1 of

this Theorem 3.37 to φ′.

68

There are derivations

H1OH2

ψ′ SAKV↓

C4

,
ω1 SAKV↓

?AOC1OH1
and

ω2 SAKV↓

C2OC3OH2
,

with |ω1|O+ |ω2|O≤ |φ′|O.

We apply the induction hypothesis to ω1 as |ω1|O≤ |φ′|O< |φ|O.

There are derivations

?Q
ψ′′ SAKV↓

C1 +H1

,
φ1 SAKV↓

AOQ ,

with |φ1|O≤ |ω1|O< |φ|O.

We take:

ψ =O

?Q
ψ′′

C1OH1

�
ω2

C2OC3OH2

�↓

(C1�C3)OC2O
H1OH2

ψ′

C4

.

(3) This corresponds to case (3) of Theorem 3.27. We can apply case 1 of this

Theorem 3.37 to φ′. There are derivations

H1 β H2

ψ′ SAKV↓

C2

,
ω1 SAKV↓

?AOC1OH1
,

ω2 SAKV↓

uβOH2
,

with |ω1|O+ |ω2|O≤ |φ′|O.

By Lemma 3.24, there is a derivation

ūβ
ψ′′ SAKV↓

H2

.

We apply the induction hypothesis to ω1 as |ω1|O≤ |φ′|O< |φ|O. There are

derivations
?Q

ψ′′′ SAKV↓

C1OH1

,
φ1 SAKV↓

AOQ ,

69

with |φ1|O≤ |ω1|O< |φ′|O.

We take:

ψ =O

?Q
ψ′′′

C1O
H1 β

ūβ
ψ′′

H2

ψ′

C2

.

(4) This case is analogous to (3).

(5) This corresponds to case (5) of Theorem 3.27. We can apply the induction

hypothesis to φ′ as |φ′|+ < |φ|+. There are derivations

?Q
ψ SAKV↓

C

, φ1 ≡

φ′1 SAKV↓

A′
ρ

A
OQ ,

with |φ1|O = |φ′1|O+ 1 ≤ |φ′|O+ 1 = |φ|O.

(6) This corresponds to case (7) of Theorem 3.27. We can apply the induction

hypothesis to φ′ as |φ′|+ < |φ|+. There are derivations

?H
ψ′ SAKV↓

C2

,
φ1 SAKV↓

AOC1OH
,

with |φ1|O≤ |φ′|O< |φ|O.

We take Q ≡ C1OH, and

ψ =O

?(C1OH)
?↓

?C1O
?H
ψ′

C2

.

(7) This corresponds to case (15) of Theorem 3.27. By Lemma 3.24, there is a

70

derivation
◦

ψ′ SAKV↓

C

and we take:

ψ ≡

?◦
=

◦
ψ′

C

, φ1 ≡
1

=O
◦O◦

,

with |φ1|O = 0 ≤ |φ|O.

Theorem 3.38. For any formula A and any context S{ }, given a proof
φ SAKV↓

S{A} ,

there exist a formula K, a provable context H{ } and derivations

ζ SAKV↓

A+K
and

H{{ }+K}
χ SAKV↓

S{ }
.

Proof. We proceed by induction on the number of relations α 6=O that { } is in the

scope of in S{ }. We denote it by |S|O.

If |S|+ = 0, then S{A} =OAOK and we take ζ =O φ and H{ } = { }.

If S{A} =O (S′{A} β B)OC we proceed as in Theorem 3.29.

If S{A} =O ?S
′{A}OC, we apply Theorem 3.27 to φ. There exist derivations

?Q
ψ SAKV↓

C

,
φ1 SAKV↓

S′{A}OQ .

We apply the induction hypothesis to φ1 since |S′|+ < |S|+. There are derivations

ζ SAKV↓

AOK ,
H ′{{ }OK}

χ′ SAKV↓

S′{ }OQ1

,

with H ′ a provable context.

We take H{ } = ?H ′{ }. We have H{1} = ?H ′{1} = ?1 = ?◦ = ◦ = 1, and we can

71

build in SAKV↓

χ ≡

?
H ′{{ }OK}

χ′

S′{ }OQ
?↓

?S′{ }O
?Q
ψ

C

.

Elimination of the rulesO↑, a↑, /↑ is a consequence of Theorem 3.31. We will focus

on showing the admissibility of the rule ?↑ in an identical argument, showcasing tha

fact that admissibility is a broad phenomenon related to the particular shape of rules

and extending beyond the cut.

Corollary 3.39 (Admissibility of ?↑). Let SA be a splittable proof system.

For any formulae A,B,C,D, any context S, given a proof

φ ≡
φ′ SAKV↓

S

{
?A�?B

α↑
?(A�B)

}
,

there is a proof
π SAKV↓

S{?(A�B)} .

Proof. We apply Theorem 3.38 to φ.

There are derivations

ζ SAKV↓

(?A�?B)OK and
H{{ }OK}

χ SAKV↓

S{ }
,

with H{1} = 1.

We apply Theorem 3.37 to ζ. There exist derivations

Q1OQ2

ψ SAKV↓

K

,
φ1 SAKV↓

?AOQ1
and

φ2 SAKV↓

?BOQ2
.

We apply Theorem 3.37 to φ3 and φ4 and we obtain

?QA
ψ1 SAKV↓

Q1

,
φ3 SAKV↓

QAOA
,

72

?QB
ψ2 SAKV↓

Q2

,
φ4 SAKV↓

QBOB
,

We can then build the following proof in SAKV↓

π =
H

?

φ3

AOQA
�

φ4

BOQB
�↓

(A�B)OQAOQB
?↓

?(A�B)O

?(QAOQB)
?↓

?QA
ψ1

Q1

O
?QB
ψ2

Q2

ψ

K

χ

S{?(A�B)}

.

3.4 Conclusions

The general splitting procedure gives us a full understanding of how the splitting

procedure works, and why it has been shown to work in every linear system expressed

in deep inference so far. We have shown that dualities and the interactions between

linear rules are the fundamental phenomena behind admissibility. In this way, we come

to see admissibility as a property resulting from the shape of rules that extends beyond

the cut: we can show the admissibility of a whole class of inference rules. Furthermore,

the understanding that we gain from the generalised theorem allows us to showcase just

how broad this methodology is. We have given sufficient properties verified by a whole

class of substructural logics that are enough to prove cut-elimination.

Splitting is a global procedure: we have to take into consideration the whole proof to

find independent subproofs and rearrange them. This comes only at a polynomial-time

complexity cost, and the size of the cut-free proof is at most linear on the size of

the original proof. Therefore we see that linear rules do not contribute towards the

complexity cost of cut-elimination procedures.

Last, the generalisation of splitting does not only contribute to the understanding of

the procedure, it also provides guidelines for the design of logical systems. By providing

a generalised theorem, we are able to remove the search for cut-elimination from the

design process.

73

Chapter 4

Decomposition

It is a well known phenomenon in proof theory that in many systems derivations can be

arranged into consecutive subderivations made up of only certain rules. For example,

we can decompose a first-order proof into a propositional phase and a quantified phase

through a Herbrand theorem [7]. This phenomenon has long been explored in deep

inference [4, 26, 29, 36, 16], presenting decomposition by means of specific permutations

of rules or super-rules, permuting the contractions and cuts together.

Decomposition theorems provide a way to normalise proofs and divide derivations into

independent subsystems that can be studied independently. Furthermore, they give the

possibility of dividing cut-elimination into several different procedures: decomposition,

which introduces complexity, and cut-elimination on a proper linear fragment which

does not.

Although decomposition theorems abound, it is the separation of a particular

subsystem that we are after: it has long been conjectured that classical logic and

linear logic proofs can be decomposed into a splittable phase and a contractive phase

independently from cut-elimination, as happens for example in the logic NEL [27] or in

the mutiplicative exponential fragment of linear logic [36].

In fact, obtaining a total decomposition into a splittable phase followed by a

contractive phase is equivalent to showing that general contractions such as the inference

A ∨A
A

in classical logic can be permuted to the bottom of linear proofs. However, as is pointed

out in [36], it is not always clear whether (and how) this general rule permutes with

other rules of the system.

The locality awarded by deep inference allows us to advance towards this result,

since we can permute atomic contractions to the bottom of a proof in both classical

logic [29] and linear logic [36] through reduction rules for proofs. The decomposition

procedures that yield these results are independent from cut-elimination in the case of

proofs that do not contain a particular type of subderivation, called a cycle.

The decomposition results for atomic contractions in this thesis are a significant

74

step towards proving these conjectures, but need to be expanded in two ways to obtain

a full decomposition result independent from cut-elimination. The first one is that for

both classical logic and linear logic cut-elimination is used to prove the termination of

the decomposition procedure, to show that cycles can be removed from proofs. The

second one is that it is unclear how rules involved in making contractions atomic, such

as the rule m of SKS, should be permuted with other rules.

In this chapter we will present general reduction rules for systems that achieve four

goals:

• We are able to show that the existing decomposition results for classical logic and

linear logic are obtained via reductions that are in fact instances of a more general

reduction coming from the interactions of contractive rules with other rules;

• We present sufficient conditions for two rules to permute with each other, reducing

the analysis usually necessary to obtain decomposition results;

• We show that decomposition and cut-elimination are independent procedures by

providing a local procedure to remove cycles through these reduction rules;

• We present tools for future work on achieving a full decomposition theorem for

both classical logic and linear logic.

We will start by introducing the reduction rules given in [29] to obtain the de-

composition result for atomic contractions in classical logic. We will introduce atomic

flows, an invariant of proofs that allows us to intuitively follow these reductions and

the measure used to prove the termination of the reduction system in the absence of

cycles. Following that, we will present a generalisation of the notion of contraction, and

characterise a type of rules, called contractive, which we can permute downwards in a

proofs through the general reduction rules we present. In the last chapter we will use

these generalised reduction rules to present a procedure allowing us to remove cycles

from proofs without recurring to cut-elimination.

4.1 Preliminaries: atomic decomposition in classical logic

and multiplicative additive linear logic

In system SKS (Figure 2-2) it is possible to obtain reduction rules to permute atomic

contractions ac↓ and atomic cocontractions ac↑ towards the bottom or the top of a

derivation respectively. We will introduce the rewriting system for derivations presentes

in [29] to achieve that.

Definition 4.1. A reduction rule r is a couple (φ′, ψ′) where φ′ and ψ′ are derivations

in SKS with pr φ′ ≡ prψ′ and cnφ′ ≡ cnψ′. We write r : φ′ → ψ′.

For every reduction rule r : φ′ → ψ′ we define the reduction →r such that φ→r ψ if

and only if ψ′ is a subderivation of φ and ψ is obtained from φ by replacing φ′ by ψ′.

75

We call a finite set R of reduction rules a rewriting system. Given a set S of

derivations, we say that rewriting system R is terminating on S if there is no infinite

chain φ→r1 φ1 →r2 . . . with ri ∈ R for any φ ∈ S.

Definition 4.2. We define the following reduction rules for SKS:

- c↓−c↓:

a ∨ a
ac↓

a
ac↑

a ∧ a

−→

a
ac↑

a ∧ a
∨

a
ac↑

a ∧ a
m

a ∨ a
ac↓

a
∧

a ∨ a
ac↓

a

- c↓−i↑:

a ∨ a
ac↓

a
∧ ā

ai↑
f

−→

(a ∨ a) ∧
ā

ac↑
ā ∧ ā

s

(a ∧ (ā ∧ ā)) ∨ a
s

a ∧ ā
ai↑

f
∨

a ∧ ā
ai↑

f
=

f

- c↓−w↑:
a ∨ a

ac↓
a

aw↑
t

−→
a

w↑
t
∨

a
w↑

t
=

t

And their duals:

- i↓−c↑:

t
ai↓

a
ac↑

a ∧ a
∨ ā

−→

t
=

t
ac↓

a ∨ ā
∧

t
ac↓

a ∨ ā
s

((a ∨ ā) ∧ a) ∨ ā
s

(a ∧ a) ∨
ā ∨ ā

ac↓
ā

76

- w↓−c↑:
f

aw↓
a

ac↑
a ∧ a

−→

f
=

f
aw↓

a
∧

f
aw↓

a

Last, we define the trivial family of reduction rules:

- c↓−ρH :

H

{
a ∨ a

ac↓
a

}
ρ

H ′{a}

−→
H{a ∨ a}

ρ

H ′

{
a ∨ a

ac↓
a

}

- ρH− c↑:
H ′{a}

ρ

H

{
a

ac↑
a ∧ a

}
−→

H ′

{
a

ac↑
a ∧ a

}
ρ

H{a ∧ a}

It is clear that if the rewriting system obtained from the reduction rules of definition

4.1 terminates, then we will obtain a derivation with three phases: a top phase made up

only of rules ac↑, a phase made-up of rules s,m, ai↑, ai↓, w↑, w↓ and a bottom phase

made up only of rules ac↓.

Definition 4.3. We define rewriting system C for SKS as the rewriting system given

by the reduction rules of Definition 4.1.

We will see that in the absence of a certain construction inside a derivation, called

cycle, the termination of rewriting system C is guaranteed. To provide a measure for

termination, we will introduce the atomic flows, a graphical invariant of proofs that

allows us to intuitively follow these reductions.

Atomic flows are specialised Buss flow graphs [8] that follow the occurrences of

atoms in a derivation in SKS. They can be seen as composite diagrams that are freely

generated from a set of six elementary diagrams, or as labelled directed graphs, where

the six possible labels for the vertices are given in the following figure.

ai↓ aw↓ ac↓

ai↑ aw↑ ac↑

77

We can associate an atomic flow to every derivation in SKS in a natural way:

every edge follows the occurrence of an atom in the derivation, and each vertex label

corresponds to the occurrence of a critical rule where atoms are created or destroyed

(ai↓, ai↑, aw↓, aw↑, ac↓, ac↑). The direction of the edges corresponds to the up-down

direction in a derivation. The units f and t are not represented in the flow.

Example 4.4. Below are several examples of derivations and the flows associated to

them. Every edge represents an occurrence of the atom of the same colour.

Technically, there are some restrictions on the construction of the flows to guarantee

that for every flow there is an associated SKS derivation. However, only an intuitive

understanding of the flows is required to follow the graphical representation of the

rewriting rules and the measure presented in this section and this is what we are seeking

to provide. The interested reader is invited to refer to [29] for further details on the

definition of the atomic flows and on the definitions and results presented in what

follows.

The measure used to prove termination can be easily followed in a flow: it corresponds

to the length of a certain type of paths.

Definition 4.5. Given an edge ε in an atomic flow, we define up(ε) as the upper vertex

it is connected to, and lo(ε) as the lower vertex it is connected to.

Given a sequence of distinct edges ε1, . . . , εn such that lo(εi) = up(εi+1) for 1 ≤ i < n,

we say that ε1, . . . , εn is a path of length n from up(ε1) to lo(εn), and that εn, . . . , ε1 is a

path of length n from lo(εn) to up(ε1).

Given a sequence of distinct edges ε1, . . . , εn, we say that ε1, . . . , εn is an ai-path of

length n from vertex v1 to vertex v2 if it is a path from v1 to v2 or if there exists a vertex

v labelled by ai↑ or ai↓ such that ε1, . . . , εh is an ai-path from v1 to v and εh+1, . . . , εn
is an ai-path from v to v2.

78

An ai-path of length n is maximal if no ai-path containing its edges has length

greater than n. An ai-path of length n from v is maximal if no ai-path from v containing

its edges has length greater than n.

Intuitively, paths correspond to any non-empty sequence of edges from v1 to v2 that

does not change direction (it either only ‘goes downwards’ or ‘goes upwards’). ai-paths

are allowed to change direction, but only at ai-vertices: they are zig-zag paths that

change direction at ai-nodes.

Example 4.6.

1 2

4

3 5

Some examples of paths of this flow are 2, 4 and 5.

Some examples of ai-paths in this flow are given by 1, 2 and 3, 4, 5.

The maximal ai-paths of this flow are 1, 2, 4, 5 and 3, 4, 5 and their reverse.

The maximal ai-paths from the ac↓ vertex are 2, 1 and 3 and 4, 5.

If we consider the maximal ai-paths from an ac↓ vertex starting with its lower edge,

we can see that their length corresponds to the number of critical rules the contraction

it corresponds to will have to “go through” when applying the reduction rules. For

example, in a derivation whose flow is the flow of example 4.6, when we apply the

reduction rules to move the atomic contraction downwards, it will permute with one

instance of the rule ai↑.
More precisely, we can assign a rank to every contraction and to every cocontraction

of a derivation by refering to its flow. The rank of a contraction will be given by the sum

of the lengths of the maximal ai-paths starting with the lower edge of its corresponding

vertex in the flow. Dually, the rank of a cocontraction will be given by the sum of

the lengths of the maximal ai-paths starting with the upper edge of its corresponding

vertex in a flow. We will see that the reduction rules of system C reduce the sum of

the ranks of the contractions and cocontractions in a derivation, effectively providing a

termination measure when these ranks are finite.

Definition 4.7. Given a vertex v labelled with ac↓ in a flow, we define its rank as the

sum of the lengths of the maximal ai-paths ε1, . . . , εn from v such that up(ε1) = v.

Dually, given a vertex v labelled with ac↑ in a flow, we define its rank as the sum of

the lengths of the maximal ai-paths ε1, . . . , εn from v such that lo(ε1) = v.

Example 4.8. The rank of the ac↓ vertex of the flow of example 4.6 is 2: it corresponds

to the length of the ai-path 4, 5.

Definition 4.9. Given an occurrence of the rule ac↓ in a derivation φ with flow ψ, we

define its rank as the rank of its corresponding vertex in ψ.

Likewise, we define the rank of an occurrence of the rule ac↑ as the rank of its

corresponding vertex.

79

The reductions of system C will reduce the sum of the ranks of the contractions and

cocontractions in a derivation except when a certain construction is present, that we

call an ai-cycle.

This can perhaps best be seen by considering the atomic flow reductions associated

to the reductions on derivations:

c↓−i↑:
1 2 3

−→

1 2 3

c↓−c↑:

3 4

1 2

−→

3 4

1 2

It is easy to check that the sum of the ranks of ac↓ and ac↑ vertexes is decreased by

these reductions, when the cycles defined in what follows are not present.

Definition 4.10. An ai-path from v to v is called an ai-cycle.

Example 4.11.

1

3 2

The ai-path 1, 2, 3 is an ai-cycle.

Definition 4.12. We say that a derivation contains an ai-cycle if its atomic flow

contains an ai-cycle.

When we apply the reductions in C to atomic contractions that belong to a cycle,

the rewriting system is not terminating:

→C →C →C . . .

In the absence of ai-cycles however, the rewriting system terminates as is proved

in [29]. We simply outline that proof here to give the reader an idea of the proof and

to show that the termination measure and arguments can easily be extended to the

rewriting system for MALL that we will present next.

80

Theorem 4.13. Rewriting system C is terminating on the set of ai-cycle-free deriva-

tions.

Proof. The first observation is that it is clear by inspection of the reduction rules that

the rank of (co)contractions not involved in the reduction stays the same.

Given an ai-cycle-free derivation φ, we consider the lexicographic order on (r, d).

r is the sum of the ranks of the contractions and cocontractions in φ, and d is the

sum of the number of rules below each contraction and the number of rules above each

cocontraction when sequentialising φ.

We will show that each application of a reduction of C reduces (r, d).

- Applications of the rules c↓−c↑, c↓−i↑ and i↓−c↑ reduce r in the absence of

ai-cycles as is shown in the proof of Theorem 7.2.3 of [29] .

- Applications of the rules c ↓ −w ↑ and w ↓ −c ↑ reduce r since they remove

contractions and cocontractions.

- Applications of the rules c↓−ρH and ρH− c↑ trivially maintain r and reduce d.

The decomposition procedure may increase the size of a proof exponentially, through

the crossings of contractions and cocontractions in the following configuration:

... −→∗C
...

...
...

...

The formula corresponding to the middle line of the diagram on the right will contain

a number of atoms exponentially larger than any of the formulae corresponding to the

diagram on the left.

This poses a stark contrast with the polynomial cost of cut-elimination via splitting:

by separating the two procedures we are able to isolate the source of the complexity

cost of cut-elimination in cycle-free proofs.

ai-cycles are evidently removed through cut-elimination, since they are caused by

the connexion of a cut and an introduction. In Chapter 5 we will present a procedure

to remove loops that does not involve cut-elimination, thus proving the independence of

decomposition from cut-elimination. The complexity cost of that procedure is as of yet

unknown, and is the last missing element in understanding and separating the causes of

the complexity cost of cut-elimination.

81

Weakenings and coweakenings can be permuted to the bottom/top of a derivation

easily through the following reductions, presented in [29] as well.

Definition 4.14. We define the following reduction rules for SKS:

- w↓−c↓:
f

aw↓
a
∨ a

ac↓
a

−→
f ∨ a

=

a

- w↓−i↑:
f

aw↓
a
∧ ā

ai↑
f

−→
f ∧

ā
aw↑

t
=

f

- w↓−w↑:

f
aw↓

a
aw↑

t

−→

f
=

f ∧ (f ∨ t)
s

(f ∧ f) ∨ t
=

t

And their duals:

- c↑−w↑:
a

ac↑
a

aw↑
t

−→
a

=

a ∧ t

- i↓−w↑:
t

ai↓
a

aw↑
t
∨ ā

−→

t
=

t ∨
f

aw↓
ā

And the trivial reductions:

- w↓−ρH :

H

{
f

aw↓
a

}
ρ

H ′{f}

−→
H{f}

ρ

H ′

{
f

aw↓
a

}

82

- ρH− w↑:
H ′{a}

ρ

H

{
a

aw↑
t

}
−→

H ′

{
a

aw↑
t

}
ρ

H{t}

Definition 4.15. We define rewriting system W as the rewriting system given by the

reductions in Definition 4.14.

By observing the corresponding flow reductions, it is easy to see that the non-trivial

reductions of W remove edges of atomic flows:

w↓−c↓:

2

1
−→

1,2

w↓−i↑:
1
−→

1

w↓−u↑: −→

Termination is then clear, since every application of a non-trivial reduction rule

reduces the number of edges of the associated flow to a derivation, and the trivial rules

reduce the number of rules below weakenings and above coweakenings. By a similar

argument to the one used for Theorem 4.13, we will then obatin termination.

Theorem 4.16. Rewriting system W is terminating.

Note that the reductions of system W do not introduce atomic (co)contractions

or medials: only splittable rules. By applying system C followed by system W to a

derivation, we obtain an SKS derivation of the form

A
w↑

A1

ac↑
A2

s,m,ai

A3

ac↓
A4

w↓
B

.

83

1
ai↓
aO ā

a� ā
ai↑
⊥

(AOB)�C
s

(A�C)OB

(AOB) N (COD)
d↓

(AN C)O(B �D)

(A�B)�(C ND)
d↑

(A�C)� (B�D)

(AOB) � (COD)
�↓

(A� C)O(B �D)

(ANB)�(C ND)
N↑

(A�C) N (B�D)

(ANB) � (C ND)
m

(A� C) N (B �D)

a� a
ac↓

a

a
ac↑

aN a

(A�B) � (C�D)
m2↓

(A� C)�(B �D)

(ANB)O(C ND)
m2↑

(AOC) N (BOD)

0
at↓

a

a
at↑
>

Figure 4-1: System SMALLS

Extremely similar rewriting systems can be presented for linear logic [36] to permute

atomic (co)contractions with the other rules. We will particularly focus on the multi-

plicative additive fragment of linear logic (MALL) given by the subsystem SMALLS

(Figure 4-1) corresponding to the MALL fragment of the system SLLS in [36]. The

exponentials are expected to be included in future research as unary relations.

We will briefly introduce the rewriting systems, to highlight the similarities between

the reduction rules in classical logic and in linear logic, and to observe that an identical

termination argument than that made for Theorem 4.13 holds for derivations without

ai-cycles in multiplicative additive linear logic.

Definition 4.17. We present the following reduction rules for SMALLS:

- c↓−c↓:

a� a
ac↓

a
ac↑

aN a

−→

a
ac↑

aN a
�

a
ac↑

aN a
m

a� a
ac↓

a
N

a� a
ac↓

a

84

- c↓−i↑:

a� a
ac↓

a
� ā

ai↑
⊥

−→

(a� a)�
ā

ac↑
āN ā

d↑
aN ā

ai↑
⊥

�
aN ā

ai↑
⊥

=

⊥

- c↓−w↑:
a� a

ac↓
a

aw↑
>

−→
a

w↑
>

�
a

w↑
>

=

>

Just like for classical logic, we can define the duals of these reductions and the trivial

reduction rules.

Definition 4.18. Rewriting system Q for SMALLS is given by the reduction rules

presented in Definition 4.17 and their duals.

We can define the rank of atomic contractions and atomic cocontractions in an iden-

tical fashion to classical logic, and present the exact same argument for the termination

of Q in the absence of ai-cycles.

Theorem 4.19. Rewriting system Q is terminating on the set of ai-cycle-free SMALLS

derivations.

Again, this decomposition procedure may increase the size of a proof exponentially,

through the exact same phenomenon as in classical logic.

We can define reduction rules for the permutation of weakenings and coweakenings.

Definition 4.20. We define the following reduction rules for SMALLS:

- w↓−c↓:
0

aw↓
a
� a

ac↓
a

−→
0� a

=

a

- w↓−i↑:
0

aw↓
a
� ā

ai↑
⊥

−→
0�

ā
aw↑
>

=

⊥

85

- w↓−w↑:

0
aw↓

a
aw↑
>

−→

0
=

(⊥O>) N (⊥O0)
d↓

(⊥N⊥) � (>� 0)
=

>

We can define the dual reductions and the trivial reductions identically to clasical

logic.

Definition 4.21. Rewriting system Y for SMALLS is given by the reduction rules of

Definition 4.20 together with their duals and the trivial reduction rules.

Just like for classical logic, these reduction rules remove atoms from a derivation.

Therefore, the rewriting system is clearly terminating.

Theorem 4.22. Rewriting system Y is terminating.

Again, we can remark that the reductions of system Y do not introduce atomic

(co)contractions or other contractive rules: only splittable rules d↓ and d↑.

We have thus shown that it is possible to decompose SKS and SMALLS derivations

in extremely similar ways. In the next section we will show that both decomposition

theorems correspond to the same phenomenon: the interaction of contractive rules.

Furthermore, in the last section of this chapter we will present a procedure to remove

ai-cycles from derivations, effectively showing the independence of decomposition and

cut-elimination.

4.2 General rewriting system

Decomposition theorems obtained by permutations of rules, being a local phenomenon,

are as different as different logics are. Therefore, generalising decomposition is not a

straightforward task. However, permuting atomic contractions to the bottom of a proof

has been proved possible in both classical logic and in linear logic (Section 4.1). The

reduction rules to achieve it are extremely similar in both logics, suggesting that they

are heavily dependant on the shape of the rules rather than being system-specific.

Furthermore, it has long been a conjecture that it is possible to further decompose

proofs into a splittable phase followed by the other rules in classical logic [4] and in linear

logic, suggesting that we can permute rules other than atomic contractions downwards

in a proof as well.

Both these arguments indicate that it should be possible to characterise the rules

that can be permuted downwards in proofs and generalise the reduction rules. This is

what we set out to do in this section: we will present generalised reduction rules that

encompass the existing reduction rules for classical logic and linear logic, as well as

allow us to permute other contractive rules downwards in a proof. It is expected that

future research will yield a full decomposition theorem for classical logic by means of

these reductions.

86

In addition, these reduction rules will be fundamental in the ai-cycle removal

procedure that we will present in Chapter 5.

The main problem we face when permuting contractive rules such as the rule m of

SKS downwards in a proof is that it is not clear how to proceed, since by permuting

it through certain rules we may create an unbounded number of cocontractions and

medials, making it extremely difficult to guarantee that we are in fact advancing towards

a medial-free proof and to find a measure that will show the termination of the procedure.

By observing the subatomic reduction rules corresponding to the reductions presented

in the previous section, a novel way of controlling this phenomenon arises: we will show

that it is possible to move ‘blocks’ of nested contractive rules together, in such a way

that we are no longer concerned by the number of cocontractions and medials created

by the decomposition procedure.

The reduction c↓→ c↑ for SKS can for example be written subatomically as

This reduction corresponds to moving a block of nested contractions (surrounded

by a red box) by creating another block of nested contractions lower in the proof.

The rule c↓−i↑ can be written subatomically as

87

In this case we move a block of nested contractions by creating another block of

nested contractions lower in the proof and a block of nested cocontractions.

We will call generic contractions the blocks of nested contractions, and define general

reductions to permute them downwards just like in these examples. We will present

two types of reductions, corresponding to the two types of reductions that we have just

shown as examples: a reduction s given by

and a reduction t given by

In this way we obtain novel reductions for derivations, such as the reduction

88

(a ∧ ā) ∨ (a ∧ ā)
m

a ∨ a
ac

a
∧

ā ∨ ā
ac

ā
ai↑

f

→
a ∧ ā

ai↑
f
∨

a ∧ ā
ai↑

f
=

f

−→

that is fundamental for the cycle-elimination procedure that we will present in the

next chapter.

In this section we will use classical logic and multiplicative additive linear logic

as examples. However, instead of taking associativity and commutativity as equality

axioms, we will present them as instances of rules
(A α B) α (C α D)

(A α C) α (B α D)
(Figures 4-2 and

4-3). This small change does not warrant a change of name for the system, and therefore

we will refer to this system for classical logic as SAKS as well.

Definition 4.23 (System SAMALLS). Subatomic formulae for multiplicative additive

linear logic Fare given by the set of constants U = {⊥, 0,>, 1} and the set of relations

R = {O,�,N,�} ∪ A where A is a denumerable set of atoms, denoted by a, b, . . . Two

examples of subatomic formulae for linear logic are

C ≡ ((1O⊥) a 1)�0 and D ≡ ((0 N>) b 1) a (1O⊥) .

For the set of subatomic formulae for linear logic F, we define negation through:

�̄=O
N̄ := � ;

ā := a for alla ∈ A ;

1̄ := ⊥ ;

>̄ := 0 .

We define the equational theory = on Fas the minimal equivalence relation closed

89

under negation and under context defined by:

∀A,B,C ∈ F,

A�1 = A ; AO⊥ = A ;

AN> = A ; A� 0 = A ;

⊥N⊥ = ⊥ ; 1 N 1 = 1 ;

⊥�⊥ = ⊥ ; 1 � 1 = 1 ;

0�0 = 0 ; >O> = > ;

0O0 = 0 ; >�> = > ;

0 N 0 = 0 ; >�> = > ;

∀a ∈ A. ⊥ a⊥ = ⊥ ; ∀a ∈ A. 1 a 1 = 1 ;

∀a ∈ A. 0 a 0 = 0 ; ∀a ∈ A. > a> = > ;

∀a ∈ A. ⊥ a> = > ; ∀a ∈ A. 1 a 0 = 0 ;

∀a ∈ A. > a⊥ = > ; ∀a ∈ A. 0 a 1 = 0 ;

∀a ∈ A. 1 a> = > ; ∀a ∈ A. ⊥ a 0 = 0 ;

∀a ∈ A. > a 1 = > ; ∀a ∈ A. 0 a⊥ = 0 ;

A natural interpretation is given by considering the assignments:

− I(1) ≡ 1 ; − I(⊥) ≡ ⊥ ;

− I(>) ≡ > ; − I(0) ≡ 0 ;

− ∀a ∈ A. I(⊥ a⊥) ≡ ⊥ ; − ∀a ∈ A. I(1 a 1) ≡ 1 ;

− ∀a ∈ A. I(⊥ a 1) ≡ a ; − ∀a ∈ A. I(1 a⊥) ≡ ā ;

− ∀a ∈ A. I(0 a 0) ≡ 0 ; − ∀a ∈ A. I(> a>) ≡ > ;

− ∀a ∈ A. I(⊥ a>) ≡ > ; − ∀a ∈ A. I(> a⊥) ≡ > ;

− ∀a ∈ A. I(> a 1) ≡ > ; − ∀a ∈ A. I(1 a>) ≡ > ;

− ∀a ∈ A. I(0 a 1) ≡ 0 ; − ∀a ∈ A. I(1 a 0) ≡ 0 ;

− ∀a ∈ A. I(⊥ a 0) ≡ 0 ; − ∀a ∈ A. I(0 a⊥) ≡ 0 ;

− I(AOB) ≡ I(A)OI(B) ; − I(A�B) ≡ I(A)�I(B) ;

− I(A�B) ≡ I(A) � I(B) ; − I(ANB) ≡ I(A) N I(B) .

where A,B ∈ Fi, extending it in such a way that AaB is interpretable iff A = u,B = v

with u, v ∈ {⊥, 0,>, 1} and u a v is interpretable. Then, I(A a B) ≡ I(u a v).

System SAMALLS for multiplicative additive linear logic is given by the inference

rules of Figure 4-3 together with an equality rule for each pair of formulae on opposite

sides of an equality in the equations above.

System SAMALLS is correct for the multiplicative additive fragment of system SLLS

in [35]. Every rule of that fragment trivially corresponds to a rule of SAMALLS, except

for the rules at↓ and at↑ that are obtained identically to the rules aw↓ and aw↑ of

classical logic in example 2.41.

90

(A ∨B) a (C ∨D)
a↓

(A a C) ∨ (B a D)

(A a B) ∧ (C a D)
a↑

(A ∧ C) a (B ∧D)

(A ∨B) ∧ (C ∨D)
∧↓

(A ∧ C) ∨ (B ∨D)

(A ∨B) ∧ (C ∧D)
∨↑

(A ∧ C) ∨ (B ∧D)

(A ∨B) ∨ (C ∨D)
∨↓

(A ∨ C) ∨ (B ∨D)

(A ∧B) ∧ (C ∧D)
∧↑

(A ∧ C) ∧ (B ∧D)

(A ∧B) ∨ (C ∧D)
m

(A ∨ C) ∧ (B ∨D)

(A a B) ∨ (C a D)
ac

(A ∨ C) a (B ∨D)

(A ∧B) a (C ∧D)
ac̄

(A a C) ∧ (B a D)

Figure 4-2: SAKS

(AOB) a (COD)
a↓

(A a C)O(B a D)

(A a B)�(C a D)
a↑

(A�C) a (B�D)

(AOB)�(COD)
�↓

(A�C)O(BOD)

(AOB)�(C�D)
O↑

(A�C)O(B�D)

(AOB) N (COD)
N↓

(AN C)O(B �D)

(A�B)�(C ND)
�↑

(A�C)� (B�D)

(AOB) � (COD)
�↓

(A� C)O(B �D)

(ANB)�(C ND)
N↑

(A�C)N (B�D)

(AOB)O(COD)
O↓

(AOC)O(BOD)

(A�B)�(C�D)
�↑

(A�C)�(B�D)

(ANB)� (C ND)
m

(A� C) N (B �D)

(A a B) � (C a D)
ac

(A� C) a (B �D)

(ANB) a (C ND)
ac̄

(A a C) N (B a D)

(A�B) � (C�D)
�c

(A� C)�(B �D)

(ANB)O(C ND)
Ōc

(AOC) N (BOD)

(A�B)� (C �D)
�c

(A� C) � (B �D)

(ANB) N (C ND)
Nc̄

(AN C)N (B ND)

Figure 4-3: SAMALLS

91

The first step in the generalisation is to characterise the contractions, the rules

that will be permuted. Unsurprisingly, the rules that we will be able to permute down-

wards/upwards in a derivation correspond to the rules involved in making contraction

atomic. We will call them contractions as well.

ν-contractive systems will then be defined in such a way that they correspond to

those systems where we can always recover general contractions of the form

A ν A

A
.

Definition 4.24. Let ν be a relation with unit O, and ν its dual with unit M. A

ν-contractive system SA is a subatomic proof system where:

• For every relation α there is a down rule of the form

(A α B) ν (C α D)
αc

(A ν C) α (B ν D)
,

that we call contraction for α.

• Dually, for every relation α there is an up-rule of the form

(A ν B) α (C ν D)
αc̄

(A α B) ν (C α D)
,

that we call cocontraction for α.

• The only unit assignments for ν are of the form u ν u = u for every constant

u ∈ U. We call the equality rule
u ν u

=

u
the contraction equality rule for u.

• Dually, the only unit assignments for ν are of the form u ν u = u for every

constant u ∈ U. We call the equality rule
u ν u

=

u
the cocontraction equality rule

for u.

• For every constant u ∈ U,
O

u
is derivable in SA. We will denote these unitary

instances of contractive rules by
O

w

u
and call them weakenings.

• Dually, for every constant u ∈ U,
u

M
is derivable in SA. We will denote these

unitary instances of contractive rules by
O

w̄

u
and call them coweakenings.

92

• For every relation α there is an equality axiom O α O = O.

• Dually, for every relation α there is an equality axiom MαM=M.

We call ν the contracting relation, and ν the cocontracting relation.

Remark 4.25. Note that this definition implies that ν is weak.

Example 4.26. System SAKS (Figure 4-2) is a ∨-contractive system.

Example 4.27. System SAMALLS (Figure 4-3) is a �-contractive system.

Furthermore, general contractions correspond to a very particular arrangement of

these rules: they can be recovered through derivations made-up of nested contraction

rules, just like the ‘blocks’ we highlighted in the introductory example. This type of

derivation, that we call generic contraction, is the type of derivation that we will show

it is possible to permute downwards in a proof.

Definition 4.28. Generic contractions are defined recursively as follows:

• The empty derivation is a generic contraction ;

• A contraction equality rule is a generic contraction ;

• A derivation
(A α B) ν (C α D)

c

A ν C
φ1 c

R
α
B ν D
φ2 c

S

is a generic contraction if c is a contraction and φ1 and φ2 are generic contractions.

In this case, we say that it is a generic contraction with main relation α.

We label generic contractions with a c, as in
A
φ c

A′
.

Generic cocontractions are defined dually, and are labeled with c̄.

Lemma 4.29. In a ν-contractive system, for any formula A there is a generic contrac-

tion
A ν A
φ c

A
.

Dually, there is a generic cocontraction

A
ψ c̄

A ν A
.

93

Proof. We proceed by structural induction on A.

If A ≡ u, with u a constant, we take φ ≡
u ν u

=

u
.

If A ≡ A1 α A2, then by the induction hypothesis, there are generic contractions

A1 ν A1

φ1 c

A1

and
A2 ν A2

φ2 c

A2

.

We take

φ ≡

(A1 α A2) ν (A1 α A2)
c

A1 ν A1

φ1 c

A1

α
A2 ν A2

φ2 c

A2

.

Example 4.30. Consider A ≡ (1 a 0) ∧ (0 b 1). Then the generic contraction given by

Lemma 4.29 is

((1 a 0) ∧ (0 b 1)) ∨ ((1 a 0) ∧ (0 b 1))
∧c

(1 a 0) ∨ (1 a 0)
ac

1 ∨ 1
=

1
a

0 ∨ 0
=

0

∧

(0 b 1) ∨ (0 b 1)
ac

0 ∨ 0
=

0
b

1 ∨ 1
=

1

.

In contractive systems where formulae are built over the units of relations, weakenings

come ‘for free’. This is a consequence of the fact that the inferences
O

w

uα
are always

derivable in a ν-contractive system. If uα is a unit for α, then we can consider the

following instance of a contractive inference rule:

(uα α O) ν (O α uα)
αc

(uα ν O) α (O ν uα)

with premiss O and conclusion uα.

Through these unitary weakenings, we can recover general weakenings

O

A

as well.

In fact, we will not treat weakenings as instances of contractive rules, and will

therefore not permute them downwards in a proof with the reductions presented in

94

what follows. We will instead present different reduction rules for them, as is done for

the weakenings in the previous section.

Lemma 4.31. In a ν-contractive system, for every formula A there is a derivation

O
φ w

A

made-up only of weakenings and equalities, that we will call generic weakening.

Proof. We proceed by structural induction on A.

If A ≡ u, then we take
O

w

u
.

If A ≡ A1 α A2, then by induction hypothesis there are derivations

O
φ1 w

A1

and
O

φ2 w

A2

.

We take

φ ≡

O
=

O
φ1 w

A1

α
O

φ2 w

A2

.

Notation 4.32. We will anotate generic weakenings with w, as in
O
w

A
.

To permute contractive rules with other rules we will sometimes need to create

cocontractive rules, just as is the case in the reduction c↓−c↑ presented in Section 4.1.

However, unlike the atomic contraction case, we might create an arbitrarily big number

of cocontractive rules. This is an important hurdle towards proving termination of the

reduction system. To address this problem, we will show that it is possible to “move”

the cocontractions created all together as a block, rather than one by one, therefore

eliminating concerns about the size and number of the cocontractions created. Dually,

we will show that it is possible to permute generic contractions as a whole with other

rules, rather than contraction by contraction.

The following Lemma is instrumental in showing that the structure of generic

contractions allows us to move them as a single block.

95

Lemma 4.33. In a ν-contractive system, for every generic contraction

A ν B
c φ

M β N
,

there are derivations
A

=,w

A1 β A2

,
B

=,w

B1 β B2

,

and generic contractions

A1 ν B1

φ1 c

M
,

A2 ν B2

φ2 c

N
.

Proof. We proceed by induction on the number of contractive rules in φ, that we refer

to as size.

- If the size is 0, then M β N ≡ A ν B. We take A1 ≡ A,A2 ≡ B,B1 ≡ A,B2 ≡ B
and

A ν
O
w

B
,

O
w

A
ν B ,

and
A ν A
φ1 c

A
,

B ν B
φ2 c

B
.

- If the size is greater than 0, then

φ ≡

(A1 β A2) ν (B1 β B2)

A1 ν B1

φ1 c

M
β
A2 ν B2

φ2 c

N

,

with A ≡ A1 β A2, B ≡ B1 β B2, and it is clear.

Notation 4.34. We will write

(A β B) γ (C β′ D)

(A γ C) β (B γ′ D)

to represent both up and down-rules, i.e. either β′=β and γ′=γm or β′=βM and γ′=γ.

96

Definition 4.35. A subatomic reduction rule r for a system SA is a couple (φ′, ψ′)

where φ′ and ψ′ are derivations in SA with pr φ′ ≡ prψ′ and cnφ′ ≡ cnψ′. We write

r : φ′ → ψ′.

For every reduction rule r : φ′ → ψ′ we define the reduction →r such that φ→r ψ if

and only if ψ′ is a subderivation of φ and ψ is obtained from φ by replacing φ′ by ψ′.

We call a finite set R of reduction rules a rewriting system. Given a set S of SA

derivations, we say that rewriting system R is weakly normalising on S if for every

φ ∈ S there is a finite chain φ→r1 φ1 →r2 · · · →rn ψ with ri ∈ R where no reduction

rule of R can be applied to ψ.

The first family of reduction rules we present is akin to the rule c↑ −c↓ for atomic

flows.

Definition 4.36 (Decomposition rule s). In a ν-contractive system, we define the

following class of reduction rules:

where A1, A2, B1, B2, C1, C2, D1, D2 are obtained from Lemma 4.33.

Since Lemma 4.33 holds for any ν-contractive system, this rewriting holds in any

contractive system.

Example 4.37. The reduction rule c↑−c↓ for atomic flows is an instance of this reduction

rule. Likewise, the reduction rule presented in [36] to permute atomic contractions and

atomic cocontractions in linear logic is an instance of this reduction rule family:

97

((⊥N⊥) a (1N 1))� ((⊥N⊥) a (1N 1))
ac̄

(⊥N⊥) � (⊥N⊥)
Nc
⊥�⊥
⊥

N
⊥�⊥
⊥

a

(1N 1) � (1N 1)
Nc

1� 1

1
N

1� 1

1
ac̄

(⊥ a 1)N (⊥ a 1)

−→

(⊥N⊥) a (1N 1)
ac̄

(⊥ a 1) N (⊥ a 1)
�

(⊥N⊥) a (1N 1)
ac

(⊥ a 1) N (⊥ a 1)
Nc

(⊥ a 1)� (⊥ a 1)
ac

⊥�⊥
⊥

a
1� 1

1

N

(⊥ a 1)� (⊥ a 1)
ac

⊥�⊥
⊥

a
1� 1

1

Example 4.38. We can apply an instance of this reduction rule to permute rule ∧c and

rule ∧↓ of SAKS:

(A ∧B) ∨ (C ∧D)
∧c

(A ∨ C) ∧ (B ∨D)
∧↓

(A ∧B) ∨ (C ∨D)

−→

A ∨ O
w

C

 ∧
B ∨ O

w

D

∧↓

(A ∧B) ∨ (C ∨D)

∨

O
w

A
∨ C

 ∧
O

w

B
∨D

∧↓

(A ∧B) ∨ (C ∨D)
∨c

(A ∧B) ∨ (A ∧B)
∧c

A ∨A
c

A
∧
B ∨B

c

B

∨

(C ∨D) ∨ (C ∨D)
∨c

C ∨ C
c

C
∨
D ∨D

c

D

Example 4.39. We can permute a generic contraction through a cut for example:

((f a t) ∧ (t a f)) ∨ ((f a t) ∧ (t a f))
∧c

(f a t) ∨ (f a t)
ac

f ∨ f
=

f
a

t ∨ t
=

t

∧

(t a f) ∨ (t a f)
ac

t ∨ t
=

t
a

f ∨ f
=

f
a↑

(f ∧ t) a (t ∧ f)

−→

98

(f a t) ∧ (t a f)
a↑

(f ∧ t) a (t ∧ f)
∨

(f a t) ∧ (t a f)
a↑

(f ∧ t) a (t ∧ f)
ac

(f ∧ t) ∨ (f ∧ t)
∧c

f ∨ f
=

f
∧

t ∨ t
=

t

a

(t ∧ f) ∨ (t ∧ f)
∧c

t ∨ t
=

t
∧

f ∨ f
=

f

We obtain the flow transformation:

−→

This transformation shows that permuting generic medials downwards in fact disconnects

edges of an atomic flow. This is a fundamental advance allowing us to remove ai-cycles

as we will show in the next chapter. This discovery has been made purely through the

means of the subatomic methodology, and it suggests that by studying the behaviour

of contractive rules in the same way that atomic flows study the behaviour of atomic

contractions we can discover and characterise interesting properties of proof systems.

Since our aim is to permute generic contractions as a whole, we need to consider

the case when a rule ρ occurs inside of them, such as

(A α B) ν (C α D)
c

A ν C
c

(M γ N) β (O γ′ P)

(M β O) γ (N β′ P)

α
B ν D
c

S

.

In this case, we could apply an instance of s and permute the generic contraction on

the inside with ρ, followed by permuting the remaining rules of the generic contraction.

However, to offer an advantage in termination arguments by being able to always move

generic contractions as whole, we combine these two consecutive reductions in a single

rule. We will name this rule sn, where n is the depth at which the rule s is applied.

Definition 4.40. In a ν-contractive system, we define the following class of reduction

99

rules:

where A1, A2, A3, A4, C1, C2, C3, C4 are obtained from Lemma 4.33.

Likewise, we can extend it to the rule ρ being applied at any depth.

Definition 4.41. In a ν-contractive system, we define the following class of reduction

rules:

100

where A1, A2, A3, A4, C1, C2, C3, C4 are obtained from Lemma 4.33.

Example 4.42. We can permute a generic contraction through an atomic contraction for

example:

(H1{(f a1 t) ∨ (f a2 t)} α B) ∨ (H2{(f a3 t) ∨ (f a4 t)} α D)
αc

H1{(f a1 t) ∨ (f a2 t)} ∨H2{(f a3 t) ∨ (f a4 t)}
c

H

((f a1 t) ∨ (f a2 t)) ∨ ((f a3 t) ∨ (f a4 t))
∨c

(f a1 t) ∨ (f a3 t)
c

f ∨ f
=

f
a5

t ∨ t
=

t

∨

(f a2 t) ∨ (f a4 t)
c

f ∨ f
=

f
a6

t ∨ t
=

t
ac

(f ∨ f) a7 (t ∨ t)

α
B ∨D

c

O

−→

(
H1

{
(f a1 t) ∨ (f a2 t)

ac

(f ∨ f) a8 (t ∨ t)

}
α B

)
∨

(
H2

{
(f a3 t) ∨ (f a4 t)

c

(f ∨ f) a9 (t ∨ t)

}
α D

)
αc

H1{(f ∨ f) a8 (t ∨ t)} ∨H2{(f ∨ f) a9 (t ∨ t)}
c

H

((f ∨ f) a8 (t ∨ t)) ∨ ((f ∨ f) a9 (t ∨ t))
ac

(f ∨ f) ∨ (f ∨ f)
∨c

f ∨ f
=

f
∨

f ∨ f
=

f

a7

(t ∨ t) ∨ (t ∨ t)
∨c

t ∨ t
=

t
∨

t ∨ t
=

t

α
B ∨D

c

O

where we numbered the occurrences of atoms for clarity.

It is in the case where a generic contraction is “broken” by another rule where it

has until now been unclear how to proceed. Just like in the reduction rule c↓ −i↑, we

might create cocontractions, but in this case we might obtain an arbitrarily big number

of them.

The main contribution of this reduction rule is the fact that we can now consider

all the cocontractions created as a single generic cocontraction block that we can move

as a whole upwards in a proof, therefore not having to be concerned by its size.

101

Unlike for the previous reduction rules, the following rule is not always applica-

ble. However, we can easily present sufficient conditions for its applicability, greatly

simplifying the task of studying which contractions permute with every other rule.

Definition 4.43 (Reduction rule t). If the rule
(A ν B) β (C ν D)

µ

(A β C) ν (B β D)
is derivable in

ν-contractive system SA we define the following family of rewriting rules:

Example 4.44. The reduction rule c↓−i↑ for classical logic is an instance of this reduction

rule. Likewise, the reduction rule presented in [36] to permute atomic contractions and

102

atomic cuts in linear logic is an instance of this reduction rule family:

(⊥ a 1) � (⊥ a 1)
ac

⊥�⊥
⊥

a
1� 1

1

�(1 a⊥)

a↑
(⊥�1) a (1�⊥)

−→

((⊥ a 1)� (⊥ a 1))�

1

1N 1
a
⊥
⊥N⊥

ac̄

(1 a⊥) N (1 a⊥)
�↑

(⊥ a 1)�(1 a⊥)
a↑

(⊥�1) a (1�⊥)
�

(⊥ a 1)�(1 a⊥)
a↑

(⊥�1) a (1�⊥)
ac

(⊥�1)� (⊥�1)

⊥�⊥
⊥

�
1� 1

1

a

(1�⊥) � (1�⊥)

1� 1

1
�
⊥�⊥
⊥

.

Example 4.45. In SAMALLS we have the following reduction rule:

((A�B)� (C�D))
�c

((A� C)�(B �D))
�(E�F)

�↑
((A� C)�E)�((B �D)�F)

−→

((A�B)� (C�D))�

E
c̄

E N E
�

F
c̄

F N F
�̄c

(E�F) N (E�F)
�↑

(A�B)�(E�F)
�↑

(A�E)�(B�F)
�

(C�D)�(E�F)
�↑

(C�E)�(D�F)
�c

(A�E) � (C�E)
�c

(A� C) N
E � E

c

E

�

(B�F)� (D�F)
�c

(B �D) N
F � F

c

F

Thus, we can easily see if a contraction permutes through another rule in this way

just by checking the existence of certain derivations, reducing the case by case analysis

greatly. For example, we can see that in SAKS it is possible to move generic contractions

with main relations ∧, a through every other possible rule. In SAMALLS it is possible

to permute generic contractions with main relations�, a,� through every rule.

Additionally, we present reduction rules regarding the interaction of generic con-

tractions with equality rules and weakenings. Similarly to the reductions presented in

Section 4.1, we replace them by equalities or weakenings. Since the only unit assignments

103

for ν are the contraction equalities, we need only consider four cases:

e1 :

(A α uα) ν (C α uα)
αc

A ν C
c

M
α

uα ν uα
=

uα
=

M

→

A α uα
=

A
ν

C α uα
=

C

c

M

e2 :

(v α w) ν (v α w)
αc

v ν v
=

v
α

w ν w
=

w
=

u

→
v α w

=

u
ν

v α w
=

u
=

u

e3 :

(A α O) ν (C α D)
αc

A ν C
c

M
α

O ν D
=

D

→

A α
O
w

D

 ν (C α D)

αc

A ν C
c

M
α
D ν D

c

D

e4 :

O ν O
=

O
w

u

→
O

w

u
ν

O
w

u
=

u

e5 :

u ν u
=

u
=

v α w

→

u
=

v α w
ν

u
=

v α w
αc

v ν v
=

v
α

w ν w
=

w

Last, we can define the trivial reduction rules

i1 :
H

Ac
B

ρ

H ′ {B}

−→

H{A}
ρ

H ′

Ac
B

i2 :

(A′ α B) ν (C ν D)
αc(

A′
ρ

A
ν C

)
α (B ν D)

−→

(
A′

ρ

A
α B

)
ν (C ν D)

αc

(A ν C) α (B ν D)

104

We can easily extend the rewriting rules presented to the symmetrical cases, such as

(A α B) ν (C α D)
c

A ν C
c

S
α

B ν D
c

(M γ N) β (O γ′ P)

(M β O) γ (N β′ P)

for s1 or

(E α′ F) β

(A α B) ν (C α D)
c

A ν C
c

R
α
B ν D
c

S
ρ

(E β R) α (F β′ S)

for t.

Likewise, we can take the duals of these reductions to present a reduction rule

system to permute generic cocontractions upwards in a derivation.

At this point, preservation of interpretability is not a concern: we want to permute

generic contractions that correspond to generic contractions in the ‘original’ system.

Interpretability is trivially preserved by these reductions applied to SAKS, since they do

not introduce atoms in the scope of atoms, and every other configuration is interpretable

in SAKS. However, in SAMALLS there are formulae such as 1O1 that are not interpretable

when in the scope of an atom. For interpretability to be preserved, we need to ensure that

changing the order of the application of rules does not introduce such uninterpretable

formulae in the scope of atoms.

Nonetheless, for now we are not concerned about the general preservation of inter-

pretability. For example, for system SKS we simply want to present reduction rules to

permute generic contractions composed of medials m, associativity and commutativity

of ∨ and of atomic contractions ac↓. We can take the representations of these generic

contractions in SAKS and study the specific reductions for them. It is easy to see that

these reductions are all interpretable. If ρ does not involve atoms, then the generic

contractions with main relation a remain untouched and are therefore still interpreted

as
a ∨ a
a

. Thus, we are only interested in studying reductions where contractions with

main relation a appear, which is easily done. If ρ involves atoms, then the only possible

cases are those coming from instances of the reductions in examples 4.37, 4.39, 4.42 and

4.44, which are all interpretable. Therefore, we can permute all generic contractions in

SKS, and likewise in SMALLS. We will in fact use exactly these reductions in the next

chapter to provide a procedure for cycle-elimination.

In this way, we can recover the rewriting systems C and Q of the previous section.

105

Definition 4.46. We define rewriting system C′ for SAKS as the system given by the

instances of the general reductions s, t, e for generic contractions γ of the form

γ =

(f a t) ∨ (f a t)

f ∨ f

f
a
t ∨ t

t

and γ =

(t a f) ∨ (t a f)

t ∨ t

t
a
f ∨ f

f

.

We define rewriting system Q′ for SAMALLS as the system given by the instances

of the general reductions s, t, e for generic contractions γ of the form

γ =

(⊥ a 1) � (⊥ a 1)

⊥�⊥
⊥

a
1� 1

1

and γ =

(1 a⊥) � (1 a⊥)

1� 1

1
a
⊥�⊥
⊥

.

These systems correspond exactly to the rewriting systems defined in the previous

section, and therefore termination can be proved in the same way. We define ai-cycles

for SAKS and SAMALLS in identical fashion as in the previous section: they correspond

to the connexion of an atomic introduction and an atomic cut.

Theorem 4.47. Rewriting system C′ is terminating on the set of ai-cycle-free deriva-

tions.

Theorem 4.48. Rewriting system Q′ is terminating on the set of ai-cycle-free deriva-

tions.

Furthermore, with these rules we can consider rewriting systems for SAKS and for

SAMALLS that would allow us to obtain full decompositon theorems for classical logic

and for multiplicative additive linear logic.

As we showed in Section 4.1, in SAKS and SAMALLS there are derivations with ai-

cycles where the reductions for atomic contractions do not terminate. When considering

the reduction rules for other relations, we increase the type of cycles that can lead to

non-termination. However, in both SAKS and SAMALLS every such cycle will originate

from the presence of a “critical medial” which we will define in the next chapter. By

permuting the widest generic (co)contraction first we can therefore guarantee that it is

not in a cycle, and thus we obtain a normalisation strategy. To prove termination we

only need to find an adequate notion of rank for generic (co)contractions, where the

rank of the generic (co)contractions not involved in a reduction is maintained. Finding

the appropriate notion of rank will be the focus of future research.

Definition 4.49. We define rewriting system D for SAKS as the system given by the

general reductions s, t, e, the symmetric reductions, and the dual reductions for generic

contractions with main relations ∧,∨, a.

106

We define rewriting system G for SAMALLS as the system given by the general

reductions s, t, e, the symmetric reductions, and the dual reductions for generic

contractions with main relations�,N, a,�,O.

Conjecture 4.50. System D is weakly normalising on tame proofs.

Normalisation through system G is slightly more complex: generic contractions with

main relationO do not permute with the associativity rule forO. Thus, the focus of the

reduction should be to permute every other generic contraction. This should not be a

problem, but the notion of rank of a generic contraction will have to be adapted to take

that into account.

In both systems the decomposition results affecting atomic (co)weakenings are

very simple, since every reduction rule reduces the number of atoms in a derivation.

Therefore, once the reductions of D and G have been applied, atomic weakenings can

be permuted since they do not introduce any new generic (co)contractions as we noted

in the previous section. Unitary weakenings remain in the proof, but they can in most

cases be replaced by instances of linear rules: in classical logic for example, the inference

f

t
can be obtained from the rule ∧↓.

By presenting these general reduction rules we have shown that the atomic decom-

position results for classical logic and linear logic correspond to the same phenomenon:

both rewriting systems exploit the shape of atomic contractions to be able to permute

them with other rules.

Furthermore, by being able to permute generic contractions together, we advance

towards proving a full decomposition theorem for classical logic and multiplicative

additive linear logic, which will be the focus of future research.

Another area of further research will be the exploration of the similarities between

the general reduction rules that we presented and the duplication rules for sharing

graphs [17]. In fact these similarities are perhaps not so surprising, since there is

a Curry–Howard correspondence between well-formed interaction nets and a deep-

inference deduction system based on linear logic [12]: decomposition in this system

via the general rules of this chapter might well correspond to the duplication rules of

sharing graphs.

In the next chapter we will present an application of the general reduction rules:

the elimination of ai-cycles in both logics as a local procedure.

107

Chapter 5

Removing cycles

As we saw in the previous chapter, atomic contractions and atomic cocontractions

can be permuted downwards/upwards in a classical logic derivation in the absence of

ai-cycles. Identically, the result holds for multiplicative additive linear logic.

Our goal in this chapter is to take advantage of the reductions presented in the

previous chapter to show that we can remove ai-cycles without recurring to cut-

elimination, therefore proving the independence of the decomposition and the cut-

elimination procedures.

Furthermore, the phenomenon of cycles has been studied in the sequent calculus,

where it has been shown that it is possible to remove them through a procedure of

quadratic-time complexity [9]. With the procedure we present in what follows, we hope

to be able to study the complexity cost of cycle-elimination in deep inference in future

research.

Cycles are a particular construction caused by the ‘connection’ of an introduction

and a cut, as we saw in Section 4.1:

For an ai-cycle to occur in classical logic, two edges of an atomic flow that were

related by ∨ at the top of the flow have to be connected by ∧ at the bottom of the flow.

Therefore, an instance of a rule that changes the main relation between formulae from

α 6= ∧ to ∧ needs to occur, containing the atoms involved in the cycle. In SKS, the only

such rule is m.

108

Likewise, for an ai-cycle to occur in multiplicative additive linear logic, an instance

of a rule that changes the main relation between formulae from α 6=� to� has to occur.

The only such rule is�c.

Following this observation, and with the reduction rules of the previous section

as tools, the procedure to remove cycles is very simple. We can easily permute these

critical instances of generic contractions with main connective ∧ or� downwards in a

proof, together with all the generic contractions with main connective ∧ or� between

them and the cut-rule. When at the end of the procedure there are no remaining critical

contractions above the cut, the cycle will have disappeared.

m

−→
m

This idea of removing cycles by starting from the ‘critical medial’ has in fact yielded

two methods for the elimination of cycles: the one presented in what follows, and the

one presented in [23], that will both be studied to ascertain the complexity cost of each

procedure.

To show the termination of our procedure, we only need to show that no new cycles

are created by the application of the reduction rules. We will show it atomically rather

than subatomically for ease of following the flows.

Definition 5.1. We define the rules

(A ∨B) ∨ (C ∨D)
∨c

(A ∨ C) ∨ (B ∨D)
,

(A ∧B) ∧ (C ∧D)
∧c̄

(A ∧ C) ∧ (B ∧D)
,

(A ∨B) ∧ (C ∨D)
∧↓

(A ∨B) ∨ (C ∧D)
.

Proposition 5.2. In an SKS proof, we can replace every instance of associativity and

commutatitvity of ∨ by instances of the rule ∨c and the unit rule for ∨, and every

instance of associativity and commutatitvity of ∧ by instances of the rule ∧c̄ and the

unit rule for ∧. Furthermore, we can replace every instance of the rule s by instances

of the rule ∧ ↓ and the unit rule for ∨.

109

Proof. We replace

(A ∨B) ∨ C
=

A ∨ (B ∨ C)

by

(A ∨B) ∨ C
=

(A ∨B) ∨ (f ∨ C)
∨c

(A ∨ f) ∨ (B ∨ C)
=

A ∨ (B ∨ C)

.

We replace

A ∨B
=

B ∨A

by

A ∨B
=

(f ∨A) ∨ (B ∨ f)
∨c

(f ∨B) ∨ (A ∨ f)
=

B ∨A

.

We proceed identically for ∧.

We replace

(A ∨B) ∧ C
=

A ∨ (B ∧ C)

by

(A ∨B) ∧ C
=

(A ∨B) ∧ (f ∨ C)
∧↓

(A ∨ f) ∨ (B ∧ C)
=

A ∨ (B ∧ C)

.

We will proceed in system SKS with these replacements. This small change does

not warrant a change of name, and we will therefore still refer to these derivations as

SKS derivations.

Definition 5.3. Generic contractions are defined recursively as follows:

• The empty derivation is a generic contraction ;

• The rules
f ∨ f

=

f
and

t ∨ t
=

t
are generic contractions ;

110

• A derivation
(A α B) ∨ (C α D)

c

A ∨ C
φ1 c

R
α
B ∨D
φ2 c

S

is a generic contraction if c is an instance of the rules m, ac↓ or ∨c and φ1 and φ2

are generic contractions. In this case, we say that it is a generic contraction with

main relation α.

We will permute critical generic contractions with main relation ∧ downwards in a

proof, until they are no longer in a cycle. We will do so with the reduction rules defined

in the previous chapter applied to SKS.

The reduction rules where ρ does not involve atoms are trivially applicable to SKS

since they only involve switches ∧↓ and medials m. We will simply observe how the

cases where ρ involves atoms are represented atomically, rather than subatomically.

If ρ involves atoms, we are either in the case of the reductions c↓ −c↑ and c↓ −i↓, in

the cases of examples 4.39 and 4.42 or in the case of an equality reduction inside of an

application of sn.

In those cases, we obtain the atomic reductions

r1 :

(a ∧ ā) ∨ (a ∧ ā)
m

a ∨ a
ac

a
∧

ā ∨ ā
ac

ā
ai↑

f

−→
a ∧ ā

ai↑
f
∨

a ∧ ā
ai↑

f
=

f

r2 :

(a1 ∨ a2) ∨ (a3 ∨ a4)
∨c

a1 ∨ a3
ac↓

a5

∨
a2 ∨ a3

ac↓
a6

ac↓
a7

−→
a1 ∨ a2

ac↓
a8

∨
a3 ∨ a4

ac↓
a9

ac↓
a7

ea :

a ∨ a
ac↓

a
aw↑

t

−→
a

aw↓
t
∨

a
aw↓

t
=

t

that we can apply at any depth inside of the generic contraction to obtain the atomic

instances of the reduction rule sn.

111

Theorem 5.4. Given a derivation
A
φ SKS

B

with an ai-cycle, there exists an ai-cycle-free derivation

A
φ′ SKS

B
.

Proof. For an ai-cycle to occur in an SKS derivation, two atoms that were related by

∨ at the top of the derivation have to end up connected by ∧ lower in the derivation.

Therefore, an instance of a rule that changes the main relation between formulae from

α 6= ∧ to ∧ needs to occur, containing the atoms involved in the cycle. In SKS, the only

such rule is m.

Therefore, there is at least an instance of a critical medial that contains the atoms

involved in the cut on each side of the relation ∨ in the premiss. In particular, this

medial is the top rule of a generic contraction with main relation ∧.

We permute every critical generic contraction with main relation ∧ downwards in

the derivation via the reduction rules. These generic contractions permute with every

rule except with other generic contractions with main relation ∧. If there is such a

generic contraction between them and the cut, we permute it downwards as well.

When the critical medials are permuted below the cut of the cycle, they no longer

remain critical, and therefore the cycle disappears. We only need to show that when

permuting a critical medial downwards we do not create new critical medials i.e. that

we do not create new cycles.

We remark that the flows of the atoms not involved in a reduction step remain

unchanged, and therefore we only need to observe the flows of the atoms involved in

each possible reduction step:

• It is easy to see in SAKS that instances of s where ρ is a rule that does not involve

atoms do not change the links between the existing edges of a flow. They merely

create two “smaller” instances of ρ that do not involve atoms and therefore do

not break or change any existing connections.

112

For example, reductions of the form

(A ∧B) ∨ (C ∧D)
m

A ∨ C
c

M ∨N
∧
B ∨D

c

O ∨ P
s

(M ∧O) ∨ (N ∨ P)

−→

A ∧B
s

(A1 ∧B1) ∨ (A2 ∨B2)
∨

C ∧D
s

(C1 ∧D1) ∨ (C2 ∨D2)
=

(A1 ∧B1) ∨ (C1 ∧D1)
m

A1 ∨ C1

c

M
∧
B1 ∨ C1

c

O

∨

(A2 ∨B2) ∨ (C2 ∨D2)
=

A2 ∨ C2

c

N
∨
B2 ∨ C2

c

P

create two switch rules instead of one, but do not change the links between the

edges of the flow. They might introduce some weakenings and contractions, like

in example 4.38.

−→

It is likewise for s applied at any depth, i.e. for any application of sn where ρ is a

rule that does not involve atoms.

• Instances of sn where ρ is a rule that involves atoms can only come from three

cases:

– From the reduction c↓−c↑ which does not introduce cycles,

– From a reduction of the form

(H1{a ∧ ā} ∧B) ∨ (H2{a ∧ ā} ∧D)
m

H1{a ∧ ā} ∨H2{a ∧ ā}
ψ c

H

(a ∧ ā) ∨ (a ∧ ā)
m

a ∨ a
ac

a
∧

ā ∨ ā
ac

ā
ai↑

f

∧
B ∨D

c

O

−→

113

(
H1

{
a ∧ ā

ai↑
f

}
∧B

)
∨

(
H2

{
a ∧ ā

ai↑
f

}
∧D

)
m

H1{f} ∨H2{f}
ψ c

H

{
f ∨ f

f

} ∧
B ∨D

c

O

−→

where it is clear that we do not form new cycles, since the edges connected

by a cut-rule after the reduction were already connected by a cut-rule before

the reduction. It is precisely from an instance of this transformation that

the cycle will be broken.

−→

– Or from a reduction of the form

(H1{a1 ∨ a2} ∧B) ∨ (H2{a3 ∨ a4} ∧D)
m

H1{a1 ∨ a2} ∨H2{a3 ∨ a4}
ψ c

H

(a1 ∨ a2) ∨ (a3 ∨ a4)
=

a1 ∨ a3
c

a5

∨
a2 ∨ a4

c

a6
c

a7

∧
B ∨D

c

O

−→

(
H1

{
a1 ∨ a2

c

a8

}
∧B

)
∨

(
H2

{
a3 ∨ a4

c

a9

}
∨D

)
m

H1{a8} ∨H2{a9}
ψ c

H

{
a8 ∨ a9

c

a7

} ∧
B ∨D

c

O

where we numbered the occurrences of atoms for clarity, which clearly does

not introduce cycles.

114

−→

• Likewise, instances of t where ρ is a rule that does not involve atoms do not change

the links between the existing edges of a flow. They might bifurcate previously

“single” edges.

For example, reductions of the form

(A ∧B) ∨ (C ∧D)
m

A ∨ C
c

M
∧
B ∨D

c

N

∧ (E ∨ F)

s

(M ∧ E) ∨ (N ∧ F)

−→

((A ∧B) ∨ (C ∧D)) ∧
E ∨ F

c̄

(E ∨ F) ∧ (E ∨ F)
s

(A ∧B) ∧ (E ∨ F)
s

(A ∧ E) ∨ (B ∧ F)
∨

(C ∧D) ∧ (E ∨ F)
s

(C ∧ E) ∨ (D ∧ F)
=

(A ∧ E) ∨ (C ∧ E)
m

A ∨ C
c

M
∧
E ∨ E

c

E

∨

(B ∧ F) ∨ (D ∧ F)
m

B ∨D
c

N
∧
F ∨ F

c

F

simply create instances of the switch rule, and do not change any links between

the edges of the flow.

−→

• Instances of t where ρ involves atoms do not occur when permuting generic medials

with main relation ∨.

• Evidently, reduction rules e do not create new cycles since they only concern units

and merely create weakenings, and reduction rules i do not change the flow of a

derivation.

Identically, we can check that the reductions for permuting generic contractions

with main relation� in SAMALLS do not create new ai-cycles, and therefore remove

115

cycles in SMALLS.

Example 5.5. We will remove the cycle in the following derivation:

m

At every step, the part of the derivation that is above the critical contraction and

therefore remains untouched by reductions is shown in blue. The premiss of the generic

contraction that we permute is shown in purple, and the rest of it is shown in red.

116

We apply an instance of the reduction t to permute past the equality rule.

m

We apply an instance of e to permute past the equality f ∨B = B and an instance

117

of s1 to permute past ∧↓ (here, for brevity, they are shown together):

We apply instances of s2 and s1 to permute past the commutativity rule and the

rule ∧↓.

118

m

We apply an instance of s to permute past the rule ∧↓:

119

We then apply an instance of s to permute past the rule ∧↓:

Last, we apply an instance of s1 to permute past the cut:

120

m

121

Chapter 6

Conclusion

In this thesis, we have achieved a series of technical results, by taking advantage of the

generality provided by the subatomic methodology:

• We have provided a general characterisation of proof systems, in such a way that

every rule is an instance of single, regular, linear, inference rule scheme. We showed

how this characterisation encompasses such different systems as multiplicative

additive linear logic, BV or classical logic, while remaining concise enough to be

useful in generalising splitting and decomposition.

• We proved a generalised splitting theorem, allowing us to understand the properties

of proof systems that the procedure hinges on. In this way, we prove cut-elimination

for a whole class of substructural logics and show that splitting is a very general

procedure that can be applied to many systems with any number of relations

and units. Furthermore, we show that it is carried over by the identification of

units, as happens in the case of BV. In addition, this generalisation provides

useful guidelines for the design of linear proof systems, removing the search for

cut-elimination from the design process.

• We have shown that the splitting procedure is not restricted to systems with

binary connectives and can be extended to relations of different arities by proving

a splitting theorem for SKV, a system with a modality.

• We have shown that admissibility is a property that goes beyond the cut-rule: as

a corollary of splitting we have proved the admissibility of a whole class of rules

that corresponds to those rules necessary to make the cut atomic, such as the rule

q↑ of BV or the associativity of ∧ in classical logic.

• We provided general reduction rules for the permutation of generic contractions

and cocontractions with other rules and a characterisation of the systems they can

be applied to, including MALL and classical logic. By doing so, we showed that not

only atomic contractions and cocontractions can be permuted downwards/upwards

in a derivation, but that in fact it is possible to permute a whole class of rules.

The ability to permute atomic contractions and cocontractions in MALL and

122

classical logic is an instance of this phenomenon, and is due to certain properties

that both systems share.

• We used the general reduction rules to design a procedure to remove ai-cycles

in SKS and SMALLS proofs, proving the independence of the decomposition

procedure from cut-elimination, and advancing towards being able to ascertain

the complexity cost of the removal of cycles.

These results leave room for future developments, some of which are currently being

researched:

• It would be interesting to provide a characterisation of sound rules in terms of

an order between the relations: the design of systems would be much simplified,

and the characterisation of systems would be further improved, maintaining

the properties of the characterisation we provided in this work while gaining in

specificity.

• Generalising the characterisation of rules and the splitting result to relations of

different arities to include modalities and exponentials is expected to be a close

future development, since the study of the deep inference systems for linear logic

(with exponentials) [37], for classical predicate logic [3] or for BV has yielded

very encouraging results towards the characterisation of the rules involving the

exponentials with a single shape.

• The notation for generic contractions and the rewriting rules can be simplified,

particularly highlighting only those features that are necessary to prove termination

of the rewriting system, as is done with the atomic flows for classical logic.

• Obtaining full decomposition for classical logic and for MALL in such a way that

we can rewrite proofs into a splittable phase followed by a contractive phase is

now a matter of finding the correct measure to prove that the permutations of

generic contractions terminate.

• The removal of cycles from proofs has been proved to be a quadratic-time procedure

in the sequent calculus [9]. By studying the procedure presented in this thesis,

it will be possible to understand the complexity cost of cycle removal in deep

inference.

The characterisation of rules through a single inference rule scheme was initially

intended as a stepping stone towards the development of a graphical formalism that

could be used to represent a wide variety of logics. The task however proved to be

more daunting than we expected: to develop this formalism, a full understanding of the

properties required for the normalisation procedures that we want to capture to isolate

the complexity generating mechanisms (cut-elimination and decomposition) proved to

be necessary. For that, a refinement of the general rule scheme was needed, and so the

development of conditions on the relations that enable us to capture the normalisation

123

procedures while maintaining generality came about. This characterisation was no easy

task, since it needs to encompass both the linear and the contractive rules, that vary in

behaviour and in shape in different non-subatomic systems.

Once the adequate characterisation was found, we proceeded to study cut-elimination

and decomposition with this new methodology, with a strong focus on understanding

the properties of the rules that are essential to obtain them. The generalisations of

both of these procedures highlight which features should be captured by a graphical

formalism: duality and contractiveness. When the final missing feature consisting of the

extension of the notion of rank of an atomic contraction to generic contractions is found,

we will have a description of all the elements that need to be featured in a graphical

formalism in which cut-elimination and decomposition are naturally represented. I

would very much like to continue towards this research direction: this thesis is a good

start that provides many of the tools that I expect to use.

In short, in this work we have uncovered an underlying structure behind the shape of

inference rules. This observation is truly surprising, and its generality can be exploited

in many ways. Here, we used it to characterise proof systems and to study normalisation

procedures, and it is expected that in the future the number of applications will only

grow.

124

Bibliography

[1] Nuel D. Belnap (1982): Display Logic. Journal of Philosophical Logic 11, pp.

375–417.

[2] Kai Brünnler (2003): Atomic Cut Elimination for Classical Logic. In M. Baaz

& J. A. Makowsky, editors: Computer Science Logic (CSL), Lecture Notes in

Computer Science 2803, Springer-Verlag, pp. 86–97. Available at

http://www.iam.unibe.ch/~kai/Papers/ace.pdf.

[3] Kai Brünnler (2006): Cut Elimination Inside a Deep Inference System for Classical

Predicate Logic. Studia Logica 82(1), pp. 51–71. Available at

http://www.iam.unibe.ch/~kai/Papers/q.pdf.

[4] Kai Brünnler & Alwen Fernanto Tiu (2001): A Local System for Classical Logic.

In R. Nieuwenhuis & Andrei Voronkov, editors: Logic for Programming, Artificial

Intelligence, and Reasoning (LPAR), Lecture Notes in Computer Science 2250,

Springer-Verlag, pp. 347–361, doi:10.1007/3-540-45653-8 24. Available at

http://www.iam.unibe.ch/~kai/Papers/lcl-lpar.pdf.

[5] Paola Bruscoli (2002): A Purely Logical Account of Sequentiality in Proof Search.

In Peter J. Stuckey, editor: Logic Programming, 18th International Conference

(ICLP), Lecture Notes in Computer Science 2401, Springer-Verlag, pp. 302–316,

doi:10.1007/3-540-45619-8 21. Available at

http://cs.bath.ac.uk/pb/bvl/bvl.pdf.

[6] Paola Bruscoli & Alessio Guglielmi (2009): On the Proof Complexity of Deep

Inference. ACM Transactions on Computational Logic 10(2), pp. 14:1–34,

doi:10.1145/1462179.1462186. Available at

http://cs.bath.ac.uk/ag/p/PrComplDI.pdf.

[7] S. R. Buss (1995): On Herbrand’s theorem, pp. 195 – 209. Lecture Notes in

Computer Science 960, Springer-Verlag.

[8] Samuel R. Buss (1991): The Undecidability of k-Provability. Annals of Pure and

Applied Logic 53(1), pp. 75–102.

[9] Alessandra Carbone (2002): The Cost of a Cycle is a Square. The Journal of

Symbolic Logic 67(1), pp. 35–61.

126

http://www.iam.unibe.ch/~kai/Papers/ace.pdf
http://www.iam.unibe.ch/~kai/Papers/q.pdf
http://dx.doi.org/10.1007/3-540-45653-8_24
http://www.iam.unibe.ch/~kai/Papers/lcl-lpar.pdf
http://dx.doi.org/10.1007/3-540-45619-8_21
http://cs.bath.ac.uk/pb/bvl/bvl.pdf
http://dx.doi.org/10.1145/1462179.1462186
http://cs.bath.ac.uk/ag/p/PrComplDI.pdf

[10] Anupam Das (2011): On the Proof Complexity of Cut-Free Bounded Deep Inference.

In Kai Brünnler & George Metcalfe, editors: Tableaux 2011, Lecture Notes in

Artificial Intelligence 6793, Springer-Verlag, pp. 134–148, doi:10.1007/978-3-642-

22119-4 12. Available at

http://www.anupamdas.com/items/PrCompII/ProofComplexityBoundedDI.

pdf.

[11] Gerhard Gentzen (1969): The Collected Papers of Gerhard Gentzen. North-Holland.

[12] Stéphane Gimenez & Georg Moser (2013): The Structure of Interaction. In Simona

Ronchi Della Rocca, editor: Computer Science Logic (CSL), Leibniz International

Proceedings in Informatics (LIPIcs) 23, Schloss Dagstuhl–Leibniz-Zentrum für

Informatik, pp. 316–331, doi:10.4230/LIPIcs.CSL.2013.316. Available at

http://cl-informatik.uibk.ac.at/users/sgimenez/data/articles/soi.

pdf.

[13] J.-Y. Girard (1991): A new constructive logic: classical logic. Mathematical

Structures in Computer Science 1(3), pp. 255–296.

[14] Jean-Yves Girard (1987): Linear Logic. Theoretical Computer Science 50, pp.

1–102, doi:10.1016/0304-3975(87)90045-4.

[15] Rajeev Goré (1998): Substructural logics on display. Logic Journal of the IGPL

6(3), pp. 451–504.

[16] Nicolas Guenot & Lutz Straßburger (2014): Symmetric Normalisation for Intu-

itionistic Logic. In: Joint Meeting of the 23rd EACSL Annual Conference on

Computer Science Logic (CSL) and the 29th Annual ACM/IEEE Symposium on

Logic in Computer Science (LICS). To appear.

[17] Stefano Guerrini (1997): A General Theory of Sharing Graphs. IRCS Technical

Reports Series (78).

[18] Alessio Guglielmi: Deep Inference. Web site at

http://alessio.guglielmi.name/res/cos.

[19] Alessio Guglielmi (2002): Subatomic Logic. Available at

http://cs.bath.ac.uk/ag/p/AG8.pdf.

[20] Alessio Guglielmi (2005): Some News on Subatomic Logic. Available at

http://cs.bath.ac.uk/ag/p/AG16.pdf.

[21] Alessio Guglielmi (2007): A System of Interaction and Structure. ACM Transactions

on Computational Logic 8(1), pp. 1:1–64, doi:10.1145/1182613.1182614. Available

at

http://cs.bath.ac.uk/ag/p/SystIntStr.pdf.

[22] Alessio Guglielmi (2016): Private communication.

127

http://dx.doi.org/10.1007/978-3-642-22119-4_12
http://dx.doi.org/10.1007/978-3-642-22119-4_12
http://www.anupamdas.com/items/PrCompII/ProofComplexityBoundedDI.pdf
http://www.anupamdas.com/items/PrCompII/ProofComplexityBoundedDI.pdf
http://dx.doi.org/10.4230/LIPIcs.CSL.2013.316
http://cl-informatik.uibk.ac.at/users/sgimenez/data/articles/soi.pdf
http://cl-informatik.uibk.ac.at/users/sgimenez/data/articles/soi.pdf
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://alessio.guglielmi.name/res/cos
http://cs.bath.ac.uk/ag/p/AG8.pdf
http://cs.bath.ac.uk/ag/p/AG16.pdf
http://dx.doi.org/10.1145/1182613.1182614
http://cs.bath.ac.uk/ag/p/SystIntStr.pdf

[23] Alessio Guglielmi (2016): Removing loops. Note. Available at

http://cs.bath.ac.uk/ag/p/RemoveLoops.pdf.

[24] Alessio Guglielmi & Tom Gundersen (2008): Normalisation Control in Deep

Inference via Atomic Flows. Logical Methods in Computer Science 4(1), pp. 9:1–36,

doi:10.2168/LMCS-4(1:9)2008. Available at

http://arxiv.org/pdf/0709.1205.pdf.

[25] Alessio Guglielmi, Tom Gundersen & Michel Parigot (2010): A Proof Calculus

Which Reduces Syntactic Bureaucracy. In Christopher Lynch, editor: 21st Inter-

national Conference on Rewriting Techniques and Applications (RTA), Leibniz

International Proceedings in Informatics (LIPIcs) 6, Schloss Dagstuhl–Leibniz-

Zentrum für Informatik, pp. 135–150, doi:10.4230/LIPIcs.RTA.2010.135. Available

at

http://drops.dagstuhl.de/opus/volltexte/2010/2649.

[26] Alessio Guglielmi & Lutz Straßburger (2001): Non-commutativity and MELL in

the Calculus of Structures. In L. Fribourg, editor: Computer Science Logic (CSL),

Lecture Notes in Computer Science 2142, Springer-Verlag, pp. 54–68, doi:10.1007/3-

540-44802-0 5. Available at

http://cs.bath.ac.uk/ag/p/NoncMELLCoS.pdf.

[27] Alessio Guglielmi & Lutz Straßburger (2002): A Non-commutative Extension of

MELL. In Matthias Baaz & Andrei Voronkov, editors: Logic for Programming,

Artificial Intelligence, and Reasoning (LPAR), Lecture Notes in Computer Science

2514, Springer-Verlag, pp. 231–246, doi:10.1007/3-540-36078-6 16. Available at

http://www.lix.polytechnique.fr/~lutz/papers/NEL.pdf.

[28] Alessio Guglielmi & Lutz Straßburger (2011): A System of Interaction and Structure

V: The Exponentials and Splitting. Mathematical Structures in Computer Science

21(3), pp. 563–584, doi:10.1017/S096012951100003X. Available at

http://www.lix.polytechnique.fr/~lutz/papers/NEL-splitting.pdf.

[29] Tom Gundersen (2009): A General View of Normalisation Through Atomic Flows.

Ph.D. thesis, University of Bath. Available at

http://tel.archives-ouvertes.fr/docs/00/50/92/41/PDF/thesis.pdf.

[30] Tom Gundersen, Willem Heijltjes & Michel Parigot (2013): Atomic Lambda Calcu-

lus: A Typed Lambda-Calculus with Explicit Sharing. In Orna Kupferman, editor:

28th Annual IEEE Symposium on Logic in Computer Science (LICS), IEEE, pp.

311–320, doi:10.1109/LICS.2013.37. Available at

http://opus.bath.ac.uk/34527/1/AL.pdf.

[31] Ozan Kahramanoğulları (2005): Towards Planning as Concurrency. In M.H. Hamza,

editor: Artificial Intelligence and Applications (AIA), ACTA Press, pp. 197–202.

Available at

http://www.wv.inf.tu-dresden.de/~guglielm/ok/aia05.pdf.

128

http://cs.bath.ac.uk/ag/p/RemoveLoops.pdf
http://dx.doi.org/10.2168/LMCS-4(1:9)2008
http://arxiv.org/pdf/0709.1205.pdf
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.135
http://drops.dagstuhl.de/opus/volltexte/2010/2649
http://dx.doi.org/10.1007/3-540-44802-0_5
http://dx.doi.org/10.1007/3-540-44802-0_5
http://cs.bath.ac.uk/ag/p/NoncMELLCoS.pdf
http://dx.doi.org/10.1007/3-540-36078-6_16
http://www.lix.polytechnique.fr/~lutz/papers/NEL.pdf
http://dx.doi.org/10.1017/S096012951100003X
http://www.lix.polytechnique.fr/~lutz/papers/NEL-splitting.pdf
http://tel.archives-ouvertes.fr/docs/00/50/92/41/PDF/thesis.pdf
http://dx.doi.org/10.1109/LICS.2013.37
http://opus.bath.ac.uk/34527/1/AL.pdf
http://www.wv.inf.tu-dresden.de/~guglielm/ok/aia05.pdf

[32] J. Rasga (2005): Cut elimination for a class of propositional based logics. Technical

Report, CLC, Department of Mathematics, Instituto Superior Tecnico.

[33] Luca Roversi (2011): Linear Lambda Calculus and Deep Inference. In Luke Ong,

editor: Typed Lambda Calculi and Applications, Lecture Notes in Computer

Science 6690, Springer-Verlag, pp. 184–197, doi:10.1007/978-3-642-21691-6 16.

Available at

http://www.di.unito.it/~rover/RESEARCH/PUBLICATIONS/2011-TLCA/

Roversi2011TLCA.pdf.

[34] Luca Roversi (2016): A Deep Inference System with a Self-Dual Binder Which Is

Complete for Linear Lambda Calculus. Journal of Logic and Computation 26(2),

pp. 677–698, doi:10.1093/logcom/exu033. Available at

http://www.di.unito.it/~rover/RESEARCH/PUBLICATIONS/2014-JLC/

Roversi2014JLC.pdf.

[35] Lutz Straßburger (2002): A Local System for Linear Logic. In Matthias Baaz

& Andrei Voronkov, editors: Logic for Programming, Artificial Intelligence, and

Reasoning (LPAR), Lecture Notes in Computer Science 2514, Springer-Verlag, pp.

388–402. Available at

http://www.lix.polytechnique.fr/~lutz/papers/lls-lpar.pdf.

[36] Lutz Straßburger (2003): Linear Logic and Noncommutativity in the Calculus of

Structures. Ph.D. thesis, Technische Universität Dresden. Available at

http://www.lix.polytechnique.fr/~lutz/papers/dissvonlutz.pdf.

[37] Lutz Straßburger (2003): MELL in the Calculus of Structures. Theoretical Com-

puter Science 309, pp. 213–285. Available at

http://www.lix.polytechnique.fr/~lutz/papers/els.pdf.

[38] Alwen Tiu (2006): A System of Interaction and Structure II: The Need for Deep In-

ference. Logical Methods in Computer Science 2(2), pp. 4:1–24, doi:10.2168/LMCS-

2(2:4)2006. Available at

http://arxiv.org/pdf/cs.LO/0512036.pdf.

[39] H. Wansing (1998): Displaying modal logic. Kluwer Academic Publishers.

129

http://dx.doi.org/10.1007/978-3-642-21691-6_16
http://www.di.unito.it/~rover/RESEARCH/PUBLICATIONS/2011-TLCA/Roversi2011TLCA.pdf
http://www.di.unito.it/~rover/RESEARCH/PUBLICATIONS/2011-TLCA/Roversi2011TLCA.pdf
http://dx.doi.org/10.1093/logcom/exu033
http://www.di.unito.it/~rover/RESEARCH/PUBLICATIONS/2014-JLC/Roversi2014JLC.pdf
http://www.di.unito.it/~rover/RESEARCH/PUBLICATIONS/2014-JLC/Roversi2014JLC.pdf
http://www.lix.polytechnique.fr/~lutz/papers/lls-lpar.pdf
http://www.lix.polytechnique.fr/~lutz/papers/dissvonlutz.pdf
http://www.lix.polytechnique.fr/~lutz/papers/els.pdf
http://dx.doi.org/10.2168/LMCS-2(2:4)2006
http://dx.doi.org/10.2168/LMCS-2(2:4)2006
http://arxiv.org/pdf/cs.LO/0512036.pdf

	Introduction
	Subatomic Logic
	Subatomic formulae
	Subatomic proof systems
	Proofs

	Splitting
	Splitting for MLL
	General splitting
	The robustness of splitting: adding a modality
	Conclusions

	Decomposition
	Preliminaries: atomic decomposition in classical logic and multiplicative additive linear logic
	General rewriting system

	Removing cycles
	Conclusion
	Bibliography

