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Abstract  
 

This thesis discusses nonlinear effects, such as modulation instability and solitons in 

nano-structured waveguides. The nanoscale optical waveguides have extremely small 

transverse dimensions, which can provide tight confinement of light. Therefore, by 

changing the waveguide geometry, the waveguide dispersion can be strongly altered. On 

the other hand, the confinement also enhances the nonlinear dispersion, allowing for 

nonlinear optical phenomena supported by dispersion of nonlinearity.  

 

The new models governing evolution of the amplitudes of components of the optical 

waves interacting in the waveguides are derived for continuous wave and pulse wave 

using perturbation expansion method. The new modulation instability condition is found, 

as we take into account the dispersion of nonlinearity which is enhanced through a strong 

variation of the modal profile with the wavelength of light in sub-wavelength waveguides. 

  

We demonstrate that this dispersion of nonlinearity can lead to the modulation instability 

in the regime of normal group velocity dispersion through the mechanism independent 

from higher order dispersions of linear waves for continuous wave. We address that the 

new mechanism highly associated with dispersion of nonlinearity in sub-wavelength 

semiconductor waveguide induces the modulation instability in picsecond regime together 

with the cascaded generation of higher-order sidebands. The impact of the dispersion of 

nonlinearity on spectral broadening of short pulses in a silicon waveguide also is 

considered. 

 

We study the temporal evolutions of fundamental and one-ring solitary waves with phase 

dislocation in dielectric-metal-dielectric waveguides with PT-symmetry and numerically 

analyze the properties of these nonlinear localized modes and, In particular, reveal 

different scenarios of their instability. 
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Chapter 1

introduction

As an indispensable branch of modern physics, nonlinear optics has been in-

vestigated theoretically and experimentally for many years. In particular, the

fruitful theoretical studies[1, 2, 3, 4, 5] shed light on that many nonlinear

phenomena in optical �ber or waveguide can be captured by a simple cubic

nonlinear Schrödinger (NLS) equation and its generalizations, which we will

discuss in chapter 2. Based on these �rmly established theory, this thesis is

intended to provide a basic model governing evolution of intense light with

propagation distance and time in sub-wavelength waveguides with high non-

linearity, while it is applied to describing several nonlinear e�ects, such as

modulation instability (MI) and solitons.

In the presence of optical nonlinearity, the interaction between light and

nonlinear medium brings about a rich varities of nonlinear phenomena. Gen-

erally, nonlinear e�ects exist due to anharmonic motion of bound electrons

under the in�uence of an intensity �eld, which means, typically, only electro-

magnetic �eld is intense enough to modify the optical properties of a material

system[1]. In nonlinear optics, there are many nonlinear processes classi�ed as

second or third-order parametric processes, depending on whether the second-

order susceptibility or third-order susceptibility is responsible for them. These

e�ects attract lots of interests of researchers, for instance, self-phase modula-

tion (SPM), which results from dipole excitations induced by three photons

(Figure 1.1.1 (a) shows this process) and leads to spectral broadening of pulses

while mantaining the pro�le of the pulses, cross-phase modulation (XPM), in

which two signals interact with each other without any energy transfer between
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them, third-harmonic generation (THG), which allows a new signal oscillating

at ωTHG = 3ω ( ω is pump frequency) , four wave mixing (FWM), in which

three photons interact inside the optical waveguide to generate the fourth pho-

ton, second-harmonic generation through second-order susceptibility, in which

photons interacting with a nonlinear material are combined to form new pho-

tons with twice the energy, and twice the frequency of the initial photons.

Nonlinearity is a universal phenomenon in nature. In particular, nonlinear

optics o�ers a fertile and accessible ground in which concepts from another

branch of physics can be realized and investigated experimentally, which ex-

plains partly why nonlinear optics has become an active subject recently.

In this work, the main nonlinear e�ects, which are investigated in details

in the following chapters, are FWM (or modulation instability) and soliton.

1.1 General principles of four wave mixing

One of the most important nonlinear e�ects in optical waveguides is the FWM

arising from the interaction of four photons through the third-order nonlin-

ear susceptibility. One can distinguish several of such processes, see Figure

1.1.1(c,d). Speci�cally, in this work, we are concerned with so-called degen-

erate FWM, in which two identical pump photons generate signal and idler

ones. Only when the phase mismatch between the interacting waves nearly

vanishes, does signi�cant FWM occur. Physically, from the classical point of

view, the way of understanding these conditions is that since the energy trans-

fer is a coherent process, all optical �elds inside the waveguides must maintain

a special relationship between the correlation phases to provide constructive

interference. Thus basically, FWM requires matching of the frequencies as well

as of the wave vectors. From quantum mechanical point of view, the energy

conservation in the FWM can be expressed as:

~ωp1 + ~ωp2 = ~ωs + ~ωi, (1.1.1)

where ωp1, ωp2 are the frequencies of the pumps, ωs and ωi are frequencies of

signal and idler waves, respectively, and ~ is reduced Planck Constant. During

this process, two photons at frequencies ωp1, ωp2 are annihilated with simul-
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taneous creation of two photons at frequencies ωs, ωi. Figure 1.1 shows these

processes for several cases. Fortunately, the energy conservation is automat-

ically satis�ed, which indicates that matching of the frequencies can always

be obtained. At the same time, the phase matching can be expressed as the

momentum conservation:

~κp1 + ~κp2 = ~κs + ~κi, (1.1.2)

where κp1, κp2, κs, κi are propagation constants corresponding to two pumps,

signal and idler waves. By using the expression:

κ =
neff (ω)ω

c
,

where neff is the e�ective index of refraction (see below for details) in optical

waveguides. Substituting it into 1.1.2, we obtain:

neff (ωp1)ωp1 + neff (ωp2)ωp2 − neff (ωs)ωs + neff (ωi)ωi = 0. (1.1.3)

From 1.1.3, it is obvious that the momentum in FWM is not always con-

served unless a speci�c choice of frequencies and the refractive indices has been

chosen carefully.

In order to explain how FWM occurs in a concise way, we de�ne that

total propagation constant consists of two parts: one is from material dis-

persion and geometrical dispersion, another one is from nonlinear e�ects in

optical waveguides. Material dispersion refers to the dependence of materials

refractive index on the frequency of the light. Geometrical dispersion strongly

depends on the shape of waveguide, especially for semiconductor waveguide

with high-index contrast. As for nonlinear part, the self-phase modulation

(SPM) and cross-phase modulation (XPM) contributions have to be included.

Figure 1.1(a,b) shows two processes. For these two parts, we will investigate

how they a�ect the achievement of FWM in chapter 2. Here, for instance,

for degenerate FWM, if we choose the reference frequency to be the pump

frequency, the net phase mismatch is given by:

δκ = 2κp − κs − κi, (1.1.4)
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Figure 1.1.1: Schematic diagrams of possible energy level. Self-phase modula-
tion (SPM), cross-phase modulation (XPM), degenerate and non-degenerate
four-wave mixing (FWM).
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here,

κp = γp, (1.1.5)

κs = β(ωs)− β(ωp) + 2γp, (1.1.6)

κi = β(ωi)− β(ωp) + 2γp, (1.1.7)

where κp, κs, κi are total propagation constants corresponding to the pump,

signal and idler waves, γ is nonlinear parameter measured in 1/W ·m, and p

is the initial power. Substituting 1.1.5 1.1.6 1.1.7 into 1.1.4, we obtain:

δκ = δβ − 2γp, (1.1.8)

where δβ is linear phase mismatch which is from the linear dispersion, and the

second term of 1.1.8 is from SPM and XPM. From 1.1.8, in order to achieve

phase matching, the linear phase mismatch δβ must be positive. The above

qualitative consideration is often found in text books[1]. However, it ignores

the impact of dispersion of nonlinearity on FWM, which is one of the main

topics of this thesis.

It is worth mentioning that modulation instability (MI), which is discussed

in this thesis, actually is the description of FWM. By perturbing a steady state

of continuous wave (CW) light inside an optical �bre, it was found that, in

the time domain, such a small perturbation can cause the CW light break up

into a short pulse train. The physics behind this is that the perturbation with

a frequency Ω grows exponetially with the propagation distance if the pump

frequency ω0 is in the anomalous dispersion regime[1]. On the other hand,

in the frequency domain, two sidebands at ω0 ± Ω, which are symmetrically

located in both sides, are generated. This is exactly what the FWM describes.

1.2 Solitons

Solitons have been found in many branches of physics, such as Bose�Einstein

condensate[6], �uid dynamics[7, 8] and plasma physics[8, 9]. In nonlinear op-

tics, soliton is a very important nonlinear e�ect, which results from the balance
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between linear dispersion or di�raction and nonlinearity.

A soliton is a wavepacket localised either spatially or temporally. In 1844,

James Scott Russell observed that a heap of water in a canal can continu-

ously propagate over several Kilometers without any distortion[10]. Such wave

later was termed solitary wave. In the optics literature, it is common to refer

to solitary waves as solitons. An appropriate mathmatical model was intro-

duced and the inverse scattering method was used to �nd soliton solution for

Korteweg-deVries (KdV) equation in the 1960s[11]. Since then, inverse scat-

tering method has been employed to solve many kinds of nonlinear equations,

including NLS[1]. It should be mentioned that most of properties of optical

solitons can be understood within the frame of NLS[1].

1.2.1 Optical temporal solitons

In optics, the pulses propagating inside the �ber can mantain their shape intact

because the nonlinear e�ect (nonlinear change of refractive index depending on

the light intensity-known as optical Kerr e�ect) is able to compensate the dis-

persion exactly, see Figure 1.2.1. Temporal optical solitons were �rst predicted

by Akira Hasegawa in 1973 [12], and �rst observed experimentally by Linn Mol-

lenauer and Roger Stolen in 1980 in conventional �bre [13]. Since then, solitons

have become an active subject and have been studied extensively. The applica-

tions have been found in �ber-optic communications[14, 15, 16]. Transmitting

solitons over thousands of km has been realized[17].

More recently, with the dramatic development of photonic crystal �bre

(PCF)[18, 19], solitons[20] have been found in PCF with an intricate transverse

structure of glass and air-gaps which run through their entire length. One of

the advantages of PCF is that dispersion tailoring can be achieved by changing

the geometry of this structure, and thus the group velocity dispersion (GVD)

can be greatly altered, allowing for changing normal bulk GVD into anomalous

GVD in PCF.

Also, solitons have been discovered in Silicon on insulator (SOI) waveguides

with strong ultrafast nonlinearity[21, 22, 23, 24, 25], and the capability for

dispersion engineering[26, 27, 28].
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Figure 1.2.1: For Gaussian pulse in time domain, in the left, the front and
trailing of the pulse contain equal amount of the frequencies, which are neg-
atively and positively detuned from center frequency ω0. On the top right,
the initially existing frequencies are redistributed across the pulse in time do-
main due to GVD (no new frequencies are generated during this process). In
anomalous GVD range, high frequencies are fast. On the bottom right, self-
phase modulation (SPM) in Kerr medium leads to spectral broadening of pulse
(new frequencies are generated), while maintaining the pulse pro�le una�ected.
Exact balance between GVD and SPM leads to soliton.
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1.2.2 Optical spatial solitons

Spatial solitons can be formed if the con�ment of light occurs in space during

the light propagation through balancing between nonlinear e�ect and di�rac-

tion, as Figure 1.2.2 shown. As discussed above, the electromagnetic �eld can

change the refractive index of the medium while propagating, thus creating an

optical lens with higher refractive index in the beam's center. This induced

lens is able to focus the beam (a phenomenon called self-focusing, see Figure

1.2.2), which could cancel out the natural d�raction, and therefore leads to a

spatial soliton.

The earliest example of a spatial soliton dates back to 1964. Self-focussing

of CW beams has been discovered in a bulk nonlinear medium[30], although

it is not stable. Until 1980s, one dimensional spatial soliton has been ob-

served using nonlinear media[31]. In 2001, it was found in a semiconduc-

tor waveguide[32]. Also, discrete spatial solitons were �rst introduced by

Christodoulides in 1988 theoretically and were observed experimentally in 1998

using arrays of single-mode nonlinear AlGaAs waveguides[33, 34, 35]. Another

kind of spatial soliton called dark soliton has been found and studied exten-

sively in self-defocusing medium[36, 23].

As one of family of spatial solions, votex soliton causes much attention

because of its unique properties. Votex soliton is also called topological soli-

ton associated with the self-trapping of a phase singularity embedded in a

optical beam. The vortex with a hole in the center is characterized by a num-

ber called the topological charge m, according to how many twists the light

does, and carries orbital angular momentum, which can be applied to trapping

particles[38, 39, 40, 41, 42]. Speci�cally, in self-focusing material, self-trapped

optical beams with a ring shape was discoverd in 1985[43]. They have a spi-

ral phase structure with a singularity in the center and these ring-like vortex

beams are also called vortex solitons. Such solitons carrying a topological

charge are considered in chapter 5.

1.3 Introduction of nanostructure waveguides

Because of appropriate optical properties of silicon and the mature comple-

mentary metal-oxide-semiconductor (CMOS) fabrication processing technol-
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Figure 1.2.2: Schematic illustration of the spatial beam pro�les (solid line)
and phase fronts (dashed line) for (A) beam self-focusing, (B) normal beam
di�raction, and (C) soliton propagation. A soliton forms when self-focusing
exactly balances beam divergence [29].
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ogy compatible with silicon, silicon photonics attracts considerable attention.

[44, 46, 45]. Because of the potential application of silicon waveguides in all-

optical switches, optical ampli�ers, and so on, silicon waveguides become a

very favorble platform to implement many kinds of functionalities by using its

high Kerr nonlinearity and capability of dispersion tailoring.

For AlGaAs, nonlinear coe�cient γ is 500 times larger than that of silica,

and 3 times larger than that of silicon at telecommunication wavelengths[47].

Its negligible two-photon absorption (TPA) for wavelength λ > 1.55µm makes

it more attractive[48] despite its relatively high material cost. The tight con-

�nement of the optical waves in such AlGaAs nanowires can cause a strong

variation of dispersion by altering the geometry of waveguides[50].

1.3.1 Semiconductor waveguide

In this section, we introduce several geometries of silicon waveguides. The

typical SOI devices and the guided modes considered in this thesis are given

in Figure 1.3.1, 1.3.2.

SOI devices consist of nanoscale silicon waveguides deposited on top of an

insulator silica base (Figure 1.3.1). It gradually becomes an attractive platform

for integrated photonics due to CMOS-process compatibility as mentioned be-

fore. Also, the linear and nonlinear optical properties of silicon waveguide

make it an ideal medium for nanoscale integrated photonic devices. First,

large refractive index (n = 3.5), in conjunction with a low-index cladding

(ncladding = 1.45 for silica), leads to very tight light con�nement, which makes

it possible to scale silicon photonic devices down to ultrasmall cross sections.

This reduction of cross section leads to the capability for dispersion engineering

and a high optical �eld density. Silicon also has an extremely large intrinsic

third-order nonlinear optical susceptibility. Together these factors result in a

low optical power requirement, and short distance required to achieve nonlinear

functionality.

Considerable e�orts have been dedicated to SOI devices in recent years. For

instance, self-phase modulation[52, 53, 54, 22], cross-phase modulation[55, 56],

stimulated Raman scattering[57, 65, 59]and FWM[60, 61, 62, 63, 64, 65, 66,

67, 68, 69, 70, 71] have been explored. In this work, we will mainly investigate

FWM in silicon nanowire waveguides.
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Si nonlinearity

SiO
2

Air

TE

Figure 1.3.1: Cross-sectional structure of a si wire waveguide (Scanning elec-
tron micrograph (SEM) of a cross-sectional view of a typical silicon wire waveg-
uide) and the TE guided mode corresponding to this structure (simulation
using comsol).[51]

TE

Si waveguide

SiO
2

Slot nonlinearity

Figure 1.3.2: SEM of a silicon slot waveguide in which high nonlinear material
is �lled. The guided slot mode is shown on the right for the slot waveguides.[51]
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Figure 1.3.3: SEM if two dimensional photonic crystal waveguide on the left
and illustration of the slow light intensity enhancement.[51]

Due to large loss induced by two photon absorption (TPA) and free car-

riers in silicon waveguide, realizing the optical ampli�er functionalities based

on silicon waveguide experimentally isn't an easy task. In order to reduce

the loss and continue to enhance �eld intensity inside the waveguide, people

began to investigate di�erent waveguide geometry. Figure 1.3.2 shows plot

of a slot waveguide. Theoretical analysis and experimental demonstration

of the �rst slot waveguide implemented in the Si/SiO2 material system at

wavelength λ = 1.55µm were reported by Cornell researchers in 2004[72, 73].

The principle of operation of a slot-waveguide is based on the discontinuity

of the normal component of the electric �eld at high-refractive-index-contrast

interfaces. Maxwell's equations manifest that, to satisfy the continuity of the

normal component of the electric displacement D at an interface, the corre-

sponding electric �eld must undergo a discontinuity with higher amplitude in

the low-refractive-index side. In practice, the slot is uniformly �lled with non-

linear material, which has large band gap and can reduce TPA. In our work,

we will study FWM in slot waveguide in chapter 3.

Recently, photonic crystal (PhC) waveguides have been used for enhancing

third harmonic generation and FWM[74, 75, 76]. In this kind of structure,

group velocity of pulse has been reduced, which means the slowdown of the �eld

can promote stronger light-matter interaction because the pulse is compressed

12



and its energy density is increased per unit length. Figure 1.3.3 shows an

example of a slow light PhC waveguide on a suspended membrane fabricated

from a SOI wafer[77]. On the both sides, it is connected to two tapered ridge

nanowires. Here, the PhC waveguide is actually two-dimensional photonic

crystal with a line defect, in which light can propagate with a frequency within

the band gap of crystal.

1.3.2 Dielectric-metal waveguide

Here, we brie�y introduce the dielectric-metal-dielectric waveguide, see Figure

1.3.4. On the nanoscale, there is a unique way to manipulate light through

the combination of light and electrons using metallic waveguide[78, 79]. The

incident light couples with the surface plasmons, which are coherent electron

oscillation, to create self-sustaining, propagating along the interface electro-

magnetic waves known as surface plasmon polaritons (SPPs). They are lo-

calized in the direction perpendicular to the interface. Normally, light can

only be focused down to microscale regions due to the di�raction limit. These

unique interface waves (surface plasmon) have a much smaller wavelength at

the same frequency compared to free-space wavelength (incident light wave-

length). Therefore, application of SPPs enables subwavelength optics in mi-

croscopy and lithography beyond the di�raction limit[78, 79]. On the other

hand, coupling light e�ciently into nanometer scale volumes leads to �eld

enhancements, which can be used to boost nonlinear phenomena[80, 81, 82].

A combination of graphene or silicon with noble-metal nanostructures indi-

cates a varity of promising applications by making use of the properties of

SPPs[83, 84]. In chapter 5, we will study the light evolution with time instead

of propagation distance in dielectric-metal-dielectric waveguides with the same

amount of gain in the upper layer and loss in the lower layer (see Figure 1.3.4).

1.4 Scope of the thesis

This thesis aims to study MI, the cascaded generation of higher-order side-

bands and the spectral broadening of short pulses supported by new mecha-

nism arising from dispersion of nonlinearity in nano-structured semi-conductor
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Figure 1.3.4: Geometry of a three-layer system consisting of a thin metal layer
(100nm) sandwiched between two in�nite half dielectric layers.

waveguides based on new models fully taking nonlinear dispersion into account

which are derived in chapter 2 for continuous wave (CW) and pulse wave, and

the dynamics of fundamental solitons and beams with a topological charge in

dielectric-metal-dielectric waveguides with PT symmetry.

Tight con�nement of light in sub-wavelength waveguide enhances the Kerr

nonlinearity and, especially, leads to strong waveguide dispersion. At the same

time, a strong variation of the modal pro�le with the wavelength of light causes

the strong geommetric dispersion of nonlinearity. In chapter 2, by considering

the nonlinear dispersion, the new models governing evolution of the amplitudes

of components of the optical waves interacting in the waveguides are derived

for CW and pulse wave using perturbation expansion method.

In chapter 3, by using our model derived in chapter 2, the new modula-

tion instability condition is found, as we take into account the dispersion of

nonlinearity which is enhanced through a strong variation of the modal pro�le

with the wavelength of light in sub-wavelength waveguides. We demonstrate

that this dispersion of nonlinearity can lead to the MI in the range of normal

group velocity dispersion through the mechanism independent from higher or-

der dispersions of linear waves for CW. A simple generalization of the NLS

equation accounting for the MI resulting from the dispersion of nonlinearity is

presented.

Furthermore, under the assumption of factorization of the four-frequency

dependence of nonlinear coe�cient, the model derived in chapter 2 can be

14



reduced to the generalized nonlinear Schrödinger-type equation. Based on

this model, in chapter 4, we address that the dispersion of nonlinearity in

sub-wavelength semiconductor waveguide induces the MI in picsecond regime

together with the cascaded generation of higher-order sidebands. The impact

of the dispersion of nonlinearity on spectral broadening of short pulses in a

silicon waveguide also is considered.

In chapter 5, we study the temporal evolutions of fundamental and one-ring

solitary waves with phase dislocation in dielectric-metal-dielectric waveguides

with PT-symmetry and numerically analyze the properties of these nonlinear

localized modes and, In particular, reveal di�erent scenarios of their instability.

In chapter 6, the research work described in this thesis is summarized and

directions for future work are discussed.
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Chapter 2

Theoretical model

The propagation of light can be described directly by Maxwell's equations in

the presence of linear and nonlinear polarization in optical waveguide and the

equations can be integrated[85]. However, very large computational resources

are needed for this.

On the other hand, to avoid the heavy numerical calculations[85], it is

possible to substantially reduce the complexity of Maxwell's equations by using

the envelopes of the electromagnetic �elds, which are still capable of describing

the dynamics of pulse accurately. Consequently, the Nonlinear Schrödinger

equation (NLS), which is obtained by making several assumptions[1], has been

applied to many branchs of nonlinear optics[5]. A speci�c extended version

of the NLS equation (or the generalized NLSE), including the Raman e�ect

term , self-steepening term and the higher order dispersion terms[1] has been

introduced to characterize pulse evolution inside the �ber.

It should be emphasized that the slowly-varying envelope approximation

(SVEA) is valid only if the envelope pro�le contains many oscillations. SVEA

also allows for reducing the second-order equation into a �rst-order equation,

which makes numerical simulations drastically reduced as the fast oscillation

of the carrier wave has been removed.

Another assumption is that the z-component of the electric �eld is very

small with respect to its transverse components. This assumption is justi�ed

for conventional �bers with a low index contrast between the core and the

cladding. However, for the sub-wavelength waveguides with high index con-

trast, longitudinal component of the electric �eld is non-negligible. Thus, a
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complete vector theory need to be considered[90, 86, 87].

In this chapter, based on the well-known NLS equation, a standard theory

of modulation instability in optical waveguide is reviewed. For sub-wavelength

waveguides, based on SVEA, the generalized NLS equations are derived by

taking into account vector nature of the pulses interacting inside the waveguide.

2.1 Engineering dispersion

This thesis aims to present the third-order nonlinear optical properties of sub-

wavelength silicon waveguides. As we know, most of third-order nonlinear

e�ects stem from third-order susceptibility induced by strong external �elds.

In this subsection, we �rst discuss the origin of these nonlinear e�ects, together

with the origin of material dispersion resulting from linear susceptibility in

optical waveguides.

2.1.1 Third-order susceptibility

The optical response can often be described by expressing the polarization

P as a power series when electric �eld E is far from medium resonance[3].

Therefore, as we know, to describe linear and nonlinear optical phenomena,

the most common procedure is based on expanding the polarization P in terms

of the applied electric �eld strengthE:

P = ε0(χ(1) · E + χ(2) : EE + χ(3)...EEE + · · · ), (2.1.1)

where ε0 is the vacuum permittivity and χ(i) are the ith-order optical suscepti-

bilities and these terms are tensors of rank (i+1). In practice, the polarization

can be categorized into linear and nonlinear parts: P = PL +PNL . The linear

polarization will be discussed in next section.

Because of symmetry of si-crystal lattice, the lowest-order nonlinear e�ects

arise from the third-order susceptibility. In this work, the second-order sus-

ceptibility is neglected for silicon and AlGaAs. Therefore, the nonlinear part

can be written as:P (3)
NL = ε0χ

(3)...EEE, where χ(3) is third-order susceptibility.

The real part of the third-order susceptibility is directly related to the non-

linear refractive index n2. Accordingly, the imaginary part governs the TPA
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coe�cient βT . One can have the expressions[1, 88]:

n2 =
3

4cn2
0ε0

Re(χ(3)) (2.1.2)

βT =
−3ω

2c2n2
0ε0

Im(χ(3)). (2.1.3)

In the process of two-photon absorption, an electron makes a transition from

the valence band to the conduction band by the simultaneous absorption of

two photons, which produces an electron-hole pair. For instance, for silicon, an

electron transits from the valence band to the conduction band when energy

of photons exceeds the half band gap Eg/2 , corresponding to a wavelength

of 1.1µm [88]. In addition, the TPA process also generates a considerable

number of free electrons and holes depending on the peak power and duration

of a pulse. These excessive carriers not only absorb light but also a�ect the

wave propagation by changing the refractive index[88]. Thus, TPA and free

carrier limit the FWM e�ciency and operating power. To fully understand

free charge carrier e�ects, we introduce equation:

∂N

∂t
=
ξeβT |A(z, t)|4

2~ωp
− N

τ0

(2.1.4)

where N is the density of electron-hole pairs, βT is the coe�cient of two-photon

absorption, ξe is polarization factor, and τ0 is the carrier lifetime. τ0 depends

on the waveguide design and duration of a pulse. It can be reduced to be

smaller than 1ns by changing the waveguide dimension to improve the carrier

recombination or simply by using an external electric �eld to sweep out the

carriers. In a word, existence of TPA and free carrier in silicon waveguide can

severely degrade the performance of ultrafast all-optical devices based on the

optical Kerr e�ect.

2.1.2 Linear susceptibility and material dispersion

In the case of linear optics, the polarization varies linearly with the electric

�eld strength, which can be expressed simply: PL = ε0χ
(1) · E, where χ(1) is

the linear susceptibility. Its e�ects are included through the refractive index
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n and the attenuation coe�cient α. In other words, the real part of χ(1) is

related to the dispersive e�ects, whereas the imaginary part of χ(1) accounts

for loss or gain. In practice, for bulk silicon, we have a very useful Sellmeier

equation[89, 90], which has form:

n2
si(λ) = ε+

A

λ2
+

Bλ2
1

λ2 − λ2
g

(2.1.5)

with ε = 11.686, A = 0.9398µm2, B = 0.00081046, λg = 1.1071µm. For bulk

silica[1], Sellmeier equation is given by:

n2
silica(λ) = 1 +

m∑
j=1

Bjω
2
j

ω2
j − ω2

where ωjis the frequency and Bjis the strength of jth resonance. When

m = 3, the values of these parameters are found to be B1 = 0.6961663, B2 =

0.4079426, B3 = 0.8974794, λ1 = 0.0684043µm, λ2 = 0.1162414µm, λ3 =

9.896161µm. Note that the material frequency dependence of bulk silicon

and silica is included in equation 2.1.5. It should be mentioned that the ma-

terial dispersion in standard �bers dominates the linear dispersion properties.

On the contrary, in silicon waveguides, the waveguide dispersion is dominant,

which means that one is able to change the total dispersion strongly by altering

the geometry in the wavelength range that we are concerned.

For bulk AlxGa1−xAs, we have a similar equation describing the refractive

index n(ω). The real part of the dielectric constant ε1 can be expressed as[91]:

ε1(ω) = A0{f(χ) +
1

2
[E0/(E0 + ∆0)]3/2f(χso)}+B0, (2.1.6)

where f(χ) = χ−2[2 − (1 + χ)1/2 − (1 − χ)1/2], χ = ~ω/E0, χso = ~ω/(E0 +

∆0). A0 and B0 are constants and can be obtained by �tting 2.1.6 with the

experimental data. The constants A0 and B0 as function of composition x are

found to be written as:A0(x) = 6.3+19x,B0(x) = 9.4−10.2x. ~ω is the photon

energy. Also, the numerical values of E0 and E0 + ∆0 can be found through:

E0 = 1.425 + 1.155x+ 0.37x2
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E0 + ∆0 = 1.765 + 1.115x+ 0.37x2

Based on these equations, one can calculate the frequency dependence of ε1for

di�erent value of composition x. In chapter 3, particularly, we choose x = 0.25

to compute material dispersion for AlGaAs waveguide.

In chapter 3, we also use chalcogenide glass As2S3 in slot waveguide. The

refractive index n(λ) gives[92]:

n(λ) =√
1.8983678λ2

λ1

+
1.9222979λ2

λ2

+
0.8765134λ2

λ3

+ +
0.1188704λ2

λ4

+
0.9569903λ2

λ5

+ 1

(2.1.7)

where λ1 = λ2 − 0.0225× 10−12, λ2 = λ2 − 0.0625× 10−12, λ3 = λ2 − 0.1225×
10−12, λ4 = λ2 − 0.2025× 10−12, λ5 = λ2 − 750× 10−12.

2.1.3 Geometric dispersion

In this section, we review the characteristics of group-velocity dispersion (GVD)

inside SOI waveguides due to its impact on the phase matching in FWM pro-

cess.

As we know, in small core optical �bers, the waveguide geometry con-

tributes to dispersion. Utilizing this feature in silica �bers, one can tailor

their dispersion by changing the size of the �ber core[94, 95], or by using a

photonic-crystal cladding[93]. In SOI waveguides, because of the extremely

small cross sections and high index contrast which cause strong optical con-

�nement, waveguide dispersion dominates the dispersive properties of silicon

waveguides[28, 90]. It should be pointed out that, in our calculations, the

material dispersion is included by using the equations 2.1.5,2.1.6,2.1.7.

One of the main goals of tailoring dispersion is that we need to reduce the

broadening of pulse propagating inside the waveguide by careful designing the

waveguide to minimize GVD for a given wavelength. Figure 2.1.1 shows that

there are two zero-GVD wavelengths for small waveguide dimension. From

this �gure, one can �nd that dispersion can be engineered simply by changing
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Figure 2.1.1: Dispersion curves as function of wavelength for several silicon
waveguides with di�erent cross-section. Positive values correspond to anoma-
lous GVD and negative values correspond to normal GVD . We use commer-
cial software comsol to compute propagation constant corresponding to guided
quasi-TE modes.

the waveguide dimensions or the width of the silicon waveguide core. The zero-

GVD point shifts towards the large wavelength with the increase of width of

waveguides. On the other hand, the maximal value of GVD becomes smaller.

It is worth mentioning that large GVD can minimize the overall bandwidth of

FWM. Therefore, working near the zero-GVD wavelength is very essential for

gaining broader bandwidth.

We should note that the higher-order dispersion is important in FWM

processes. Especially, operating near the Z-GVD point makes higher-order

dispersion critical. By varying the core-cladding index di�erence, higher-order

dispersion can be engineered simultaneously[96].

Finally, for di�erent modes existing in waveguides, one should use di�erent

method to acquire the ideal curve of dispersion. In principle, the boundaries

decide an optical mode. On the boundaries, the electric �eld is discontinuous.

Therefore, the qusi-TE mode is more sensitive to the two sidewalls and the

waveguide width. On the contrary, the quasi-TM mode is a�ected mainly by

the top and bottom interfaces and the waveguide height[88].
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Figure 2.1.2: Slot waveguide with silicon layers surrounding a highly nonlinear
chalcogenide slot layer.
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Figure 2.1.3: Dispersion curves in 10-cm-long chalcogenide slot waveguides
with di�erent slot heights. The geometry is same as Figure 2.1.2.
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In the preceding section, we discussed how to engineer the dispersion for

single silicon waveguide. It should be mentioned that one can tailor dispersion

for slot waveguide by a careful control of the geometrical waveguide parame-

ters including the cross sectional area, the slot �ll factor, and the slot asym-

metry degree[97, 98, 99]. For instance, in a vertical slot waveguide (see Figure

2.1.2), one can obtain di�erent dispersion curves by changing the slot waveg-

uide height for quasi-TM mode (The con�ned TM mode is shown in chapter

3). The Figure 2.1.3 shows these results clearly.

As we mentioned before, the e�cient FWM requires minimal phase-mismatch

of the four interacting waves. From equation 1.1.8 and the equations 2.2.9,

2.2.11 we will derive below, one can see that the phase matching can be sat-

is�ed by locating the pump in the anomalous dispersion regime because the

nonlinear part of the phase mismatch is always positive. By changing the ge-

ometry of waveguide, one is always able to obtain the anomalous dispersion in

the wavelength range that we are interested.

2.2 Basic theory of modulation instability in op-

tical waveguides

In many nonlinear systems[7, 100, 101, 102, 103], especially, in optical non-

linear systems, the combination of dispersive and nonlinear e�ects can lead

to modulation of the steady state when a pulse or CW beam propagates in-

side optical waveguides, which is referred to as the modulation instability or

FWM. E.g., when only one strong pump wave is incident on a waveguide, and

the phase-matching condition is satis�ed, the spectral sidebands can be gener-

ated from noise and the input wave is broken into a train of ultrashort pulses.

If sidebands are seeded by a weak input signal, the signal is ampli�ed and,

the idler wave is generated simultaneously. In latter case, usually, we call this

nonlinear process as degenerate FWM. In this section, the previously known

theory about FWM will be reviewed in details.

Generally, when an electromagnetic wave interacts with bound electrons

of a dielectric, the medium response depends on the optical frequency. This

property is referred to as material dispersion. On the other hand, for the

sub-wavelength waveguide, due to the e�ects at the material boundaries, a
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waveguide introduces dispersion of its own. Waveguide dispersion plays an

important role in propagation of short optical pulses because di�erent spectral

components within the pulse travel at di�erent speed. Therefore, to realize

matching of wave vector in FWM, controlling characteristic of dispersion of

optical waveguide becomes important (see above for more details). We �rst

introduce the propagation constant β, which is associated with frequency and

accounts for e�ect of dispersion. However, it is not easy to obtain the exact

functional form of β. By expanding β in a series around the carrier frequency

, we found:

β(ω) = neff
ω

c
= β0 +(ω−ω0)β1 +

1

2
(ω−ω0)2β2 +

1

6
(ω−ω0)3β3 + · · · , (2.2.1)

and βn are the dispersion coe�cients. neff is e�ective index, which includes

e�ects of the material dispersion and geometrical dispersion. β1 = 1/vg is group

velocity, and β2 represents dispersion of the group velocity (GVD). Note that

we can alter the zero GVD point by changing the width and height of waveguide

(see below for more details). Dispersion parameter D is related to β2 by the

relation:

D =
dβ1

dλ
= −2πc

λ2
β2.

When D < 0, the optical waveguide is said to exhibit normal dispersion. By

contrast, the positive value of D gives anomalous GVD. The coe�cient and

above constitute of what is known as high order dispersion (HOD).

We start with the Nonlinear Schrodinger equation, which can be derived

from Maxwell equations[1]. If losses are ignored, and width of optical pulses

is large than 1ps, NLS equation takes the form:

i∂zE = −(
i

1!
β1∂t +

i2

2!
β2∂

2
t +

i3

3!
β3∂

2
t + · · · )E − γ|E|2E, (2.2.2)

where E represents the complex amplitude of the �eld envelope. The two terms

in the right hand side are the dispersive and nonlinear shifts of β0, respectively.

γ is nonlinear parameter. The pump frequency has been taken as the reference

frequency ω0. To study FWM, we look for the overall �eld in the form:

E = Ap(z)eiκpz + As(z)eiκsz−iΩt + Ai(z)eiκiz+iΩt, (2.2.3)
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where ωs,i = ω0 ± Ω , and Ap(z), As(z)Ai(z) are the amplitudes correspond-

ing to the pump, signal and idler waves, κp, κs, κi represent the propagation

constants including linear and nonlinear contributions, and Ω is the frequency

detuning. Here, we de�ne the total phase mismatch as:

δκ = 2κp − κs − κi. (2.2.4)

Substituting the expression 2.2.3 into equation 2.2.2, we arrive at:

i∂zAp − κpAp = −γ|Ap|Ap, (2.2.5)

i∂zAs − κsAs = (βp − βs(ωp + Ω))As − 2γ|Ap|2As − γA2
pA
∗
i e
iδκz, (2.2.6)

i∂zAi − κiAi = (βp − βi(ωp + Ω))Ai − 2γ|Ap|2Ai − γA2
pA
∗
se
iδκz, (2.2.7)

where βp, βs, βi are the linear propagation constants. In the equation 2.2.5-

2.2.7, we have assumed that signal and idler wave are weak, so the nonlinear

terms in the signal and idler can be neglected. In equation 2.2.5, the term

in the right side represents the SPM. From Figure 1.1.1(a), one can see that

three identical photons cause dipole transitions to excited states. When these

excited states do not correspond to a real level, an electron goes back to the

original level and the photon is released instantaneously. It is this instanta-

neous response that has attracted the interest of the researchers over the years.

SPM results in an intensity-dependent refractive index change n2, which is the

nonlinear index coe�cient inducing the spectral changes of pulse. In equation

2.2.6, the second term in the right hand side represents XPM, in which one

�eld at frequency ω1 in�uences another �eld at frequency ω2 . Note that, In

this nonlinear process, there is no energy transfer between two optical �elds.

As we can see from the equation 2.2.5-2.2.7, the refractive index change caused

by XPM is twice as strong as the refractive index change caused by SPM. If

we select κp,s,i as:

κp = γ|Ap|2,
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κs = βs(ωp + Ω)− βp + 2γ|Ap|2,

κi = βi(ωp − Ω)− βp + 2γ|Ap|2.

and assume that the pump amplitude is constant. Then we get the follow-

ing equations governing the evolution of the signal and idler waves inside a

waveguide:

i∂zAs = −γA2
pA
∗
i e
iδκz,

i∂zAi = −γA2
pA
∗
se
iδκz. (2.2.8)

The equation for As is:

i∂2
zAs = iγ|Ap|2As − δκ∂zAs.

Assuming As = eλz, we �nd:λ = i
2
δκ±

√
γ2p2 − 1

4
(δκ)2. From this, we de�ne

that the growth rate of modulation instability is:

g = Re

√
γ2p2 − 1

4
(δκ)2,

where p = |Ap|2 is the pump power. Also, we take δβ = 2βp − βs − βi, which
represents the linear phase mismatch. Total phase mismatch can be written

as:

δκ = δβ − 2γp. (2.2.9)

Consequently, the gain can also be expressed by:

g = Re

√
1

4
δβ(4γp− δβ). (2.2.10)

From equation 2.2.10, one can see that the gain exists within 0 < δβ < 4γp.

By using expression 2.2.1, the linear phase mismatching δβ can be rewritten

as[1]:

δβ = −2
∞∑

m=2,4,···

βm(ωp)

m!
Ωm. (2.2.11)
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In standard theory, δβ must be positive and δβ < 4γp in order to amplify

the signal and realize frequency conversion. If β2 dominates the linear phase

mismatch, in this case, gain can exist only when GVD is anomalous. One can

�nd that only the even-order dispersion terms in�uence the phase-matching

condition. When GVD parameter β2 is very small, higher order dispersion

terms have to be taken into account. Therefore, adding the higher-order dis-

persion terms becomes critical when we operate the pump wavelength near the

zero-GVD point. In this case, the higher-order dispersion plays very important

role in the phase matching. Apart from the gain interval near the pump, which

is due to the GVD, a second narrow gain region is located further from the

pump and appears due to higher order dispersion[1, 104] . As an example, we

choose the waveguide with cross-section 330nm × 220nm and operate within

the anomalous GVD range. By using the equation 2.2.2, the numerical result

shows that the two peaks located quite close to the pump are because of GVD.

The higher order dispersion can account for the two peaks, which are far from

the pump wavelength (see Figure 2.2.1 ). Even when one operates the wave-

length within the normal-GVD regime, the high-order dispersion can induce

the modulation instability which occurs in the large frequency o�set[1, 104].

It should be noted that, in common FWM theory as presented above, the

small di�erences in nonlinear resonance of four light pulses are neglected, γ

has the form of[1]:

γ =
n2ωp
cAeff

, (2.2.12)

where

Aeff =
[
˜ +∞
−∞ |F (x, y)|2dxdy]2˜ +∞
−∞ |F (x, y)|4dxdy

(2.2.13)

where c is velocity of light in vacuum, and F (x, y) is the transverse distribution

of the �ber mode, and n2 is the nonlinear refractive index . Here it is reason-

able to assume n2 doesn't depend on frequency. Aeff is the e�ective mode area

of an optical waveguide. Generally, the e�ective area should be a function of

the pump, idler, and signal wavelengths due to dependence of modes distri-

bution on frequency. However, from expression 2.2.13, the variation of the

e�ective core area is negligible in conventional single-mode �bers. Therefore,

we should note that γ is only decided by pump frequency although there are
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Figure 2.2.1: Spectral output of a 220nm × 330nm silicon waveguide with
initial power 1W and λp = 1.47µm. Spectral sidebands are due to modulation
instability. (Note: this model doesn't include the TPA and free carrier e�ects.)

three interacting waves inside the waveguide. For a conventional �ber, in prac-

tice, this assumption is reasonable because the mode pro�le does not change

much with frequency. Therefore, the e�ective core area Aeff doesn't change

too much also. However, for subwavelength optical waveguide with high-index

contrast, we should be careful about this assumption because the waveguide

modes strongly depend on the wavelength for the given waveguide geometry. γ

is not simply function of a single frequency, but it should depend on ωp, ωs, ωi,

which is explored in details in the following section. More than this, in silicon

waveguides, the modes inside the waveguide should include the longitudinal

component of the mode �elds, which has been ignored in conventional �ber,

when one calculates the e�ective core area. Also, because the tight optical-�eld

con�nement achieved in this waveguide results in a strong dependence of the

waveguide modes on waveguide geometry, for di�erent waveguide geometry,

the value of γ should be quite di�erent. Based on these considerations, we will

address a new model to calculate the value of γ and discuss the impacts of

dispersion of nonlinearity on FWM in details.
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2.3 Derivation of propagation equation includ-

ing dispersion of nonlinearity

We noticed that many prior works[72, 75, 28]on optical waveguides have as-

sumed that γ(ωpump) depends only on frequency of the pump �eld. Therefore,

only the frequency dependence of the modal distribution of pump wavelength

has been considered. Furthermore, the longitudinal component of the pump

�eld hasn't been included when one calculates the nonlinear parameter γ. It

is safe to make these assumptions, speci�cally, in the weakly guiding geome-

tries. However, distributions of modes propagating inside the waveguides with

high index contrast are strongly dependent on the frequency, which can not

be simply neglected.

In order to completely understand the nonlinear optical properties of sub-

wavelength waveguide, in particular, when conditions of phase matching are

satis�ed, a new model, which accounts for dispersion of nonlinearity inside the

subwavelength semiconductor waveguides, is needed.

Below, a new model, which more accurately describes the dynamics of

optical pulses propagating in optical waveguides is derived. First of all, we

obtain the new expression of nonlinear coe�cient γ, which depends on all

interacting waves and all of components of the optical wave interacting in

waveguide such as pump, idler and signal waves. Note that, according to our

new equations, the contribution of the longitudinal component of the modes

is included by considering the vectorial solutions of Maxwell's equations.

The propagation of electromagnetic �elds in �bers is described by Maxwell's

equations:

∇× E = −∂B
∂t

(2.3.1)

∇× E = J +
∂D

∂t
(2.3.2)

∇ ·D = ρf (2.3.3)

∇ ·B = 0 (2.3.4)
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where E and H are electric and magnetic �eld vectors, respectively, and D

and B are corresponding to the electric displacement and magnetic induction,

respectively, ρf and J are the external electric charge and current densities,

respectively. These Maxwell equations are the fundamental equations of the

theory of electrodynamics and determine the electromagnetic �eld completely.

In particular, in waveguides, external charges are absent, which means J = 0

and ρf = 0. In the following section, based on these equations, a set of

equations describing the light propagation in optical waveguides with high

index contrast are derived.

We start with Maxwell's equations for electric and magnetic �elds:

Ξ(−→r, t) =
1

2

∑
n

En(−→r )e−iωnt + c.c

H(−→r, t) =
1

2

∑
n

Hn(−→r )e−iωnt + c.c.

Each harmonic �eld satis�es Maxwell equations:

∇× En = iωnµ0Hn (2.3.5)

∇×Hn = −iωnDn (2.3.6)

Dn = ε0En + Pn

where Dn is the electric displacement �eld and Pn is the electric polarization

of the medium induced by electric �eld and has the form:

Pn = ε0[εL(−→r )− 1]En + δPn. (2.3.7)

The �rst term in the right hand side is linear polarisation and the second term

δPn consists of nonlinear polarization, free carrier, and linear loss, respectively

and is given by:

δPn = δP (NL)
n + δP (FC)

n + δP (L)
n .

For convenience, we use Lorentz reciprocity theorem by constructing two sets
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of �elds:[2, 90, 105]:

∂

∂z

ˆ
A

Fc
ˆ

ˆzdA =

ˆ
A

∇ · FcdAe (2.3.8)

Fc = E1 ×H∗2 + E∗2 ×H1,

where êz is the unit vector along the longitudinal axis of the waveguide, and

the �eld Fc consists of two arbitrary guided �elds (E1, H1) and (E2, H2). It

is important that A should be large enough that the modes decay to zero at

the boundaries. Now we consider that (En, Hn) = (E2, H2) are the �elds cre-

ated by the nonlinear polarization and free carriers, and so on, and (E1, H1) =

(ene
iβnz, hne

iβnz) is the electromagnetic �eld in an ideal linear waveguide. Here,

en, hn denote the mode at the corresponding frequency ωn. Based on Maxwell

equations, through various numerical methods including Finite Element meth-

ods, the vectorial modes consisting of three components can be obtained. We

neglect the time dependence of the �eld by assuming quasi-CW condition. For

the perturbed �elds, we choose the following:

En = un(z)ene
iβnz

Hn = un(z)hne
iβnz,

where un(z) is the complex mode amplitude, βn is the propagation constant.

Using Maxwell equations and Lorentz reciprocity theorem, we obtain:

In
dun
dz

= iωne
−iβnz

ˆ
A

(en)∗δPndA (2.3.9)

where In =
´
A

(en × h∗n + hn × e∗n). Note that, to derive equation 2.3.9, we

assumed that the modes of perturbed and unperturbed waveguides are same

since the variation of the index of refraction is small. In addition, the following

formula has been used:

∇ · (f × g) = (∇× f) · g − f · (∇× g)

where f and g are both vectors.
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Below, we only consider the nonlinear polarization, and temporarily, ne-

glect the other of terms. In this work, especially because the Si-crystal lattice

is invariant with respect to the inversion symmetry, the second-order suscep-

tibility disappears, i.e.χ(2) = 0 . Thus, in silicon, the lowest-order optical

nonlinearity is the third-order nonlinear response. We have:

{δPNL}ω = ε0{χ(3)...Ξ3}ω.

Here χ(3) is the fourth-rank tensor. Obviously,χ(3)...Ξ3 is a vector. Its ith

component is given by:

{χ(3)...Ξ3}i =
3∑

p,r,s=1

χ
(3)
iprsΞpΞrΞs.

In general, χ(3) has 81 components. Fortunately, because silicon belongs to

the crystallographic point group m3m , χ(3) only has 21 nonzero elements[57],

of which only four are independent, namely, χ(3)
1111 ,χ(3)

1122 ,χ(3)
1212,andχ

(3)
1221[3].

Because of intrinsic permutation symmetry, χ(3)
1122 = χ

(3)
1221. In addition, the

frequency dispersion of the nonlinear susceptibility can be neglected, so the

Kleinman symmetry relations[90] imply that χ(3)
1122 = χ

(3)
1212. In this report,

only the terms of frequency combinations ωk − ωl + ωm = ωn are considered

here. In other words, we assume that third-harmonic frequency and another

sum-frequency generation processes are not phase matched. Thus, we drop all

of them. By assuming the similar expression for the polarization:

−→
P =

1

2

∑
n

Pn(−→r )e−iωnt + c.c.,

eventually, we obtain:

δPNL
n =

3ε0

4

∑
ωk−ωl+ωm=ωn

χ(3)...EkE∗l Em. (2.3.10)

Substituting 2.3.10 into equation 2.3.9, �nally, we arrive at the following dif-

ferential equation:
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In
dun
dz

=
∑
k,l,m

iΓnklme
i(βk+βm−βl−βn)zuku

∗
l um (2.3.11)

Γnklm = ωn
3ε0

4In

ˆ
A

(en)∗χ(3)...eke∗l emdA.

It should be noted that the total time-averaged power is given by:

P =

ˆ
A

(Ξ×H)êzdA =
∑
n

|un|2In/4.

It is convenient to introduce rescaled amplitudes an =
√
Inun/2 , so the total

time-averaged power is given by:

P =
∑
n

|an|2.

By using this transformation, our new equation reads as:

dan
dz

=
∑
k,l,m

iγnklme
i(βk+βm−βl−βn)zaka

∗
l am, (2.3.12)

where

γnklm = 4

√
In

IkIlIm
Γnklm.

As we discussed before, for silicon, its nonlinear response has only four inde-

pendent components and can be written as:

χ
(3)
iprs = χ

(3)
1122δipδrs + χ

(3)
1212δirδps + χ

(3)
1221δisδpr + χ

(3)
d δiprs,

where δij denote the Kronecker's delta and χ
(3)
d = χ

(3)
11111−χ

(3)
1122−χ

(3)
1212−χ

(3)
1221,

which denotes anisotropy of nonlinearity. By using χ(3)
1122 = χ

(3)
1221 = χ

(3)
1212, We

rewrite χ(3)
iprs tensor as:

χ
(3)
iprs = χ3[

ρ

3
(δipδrs + δirδps + δisδpr) + (1− ρ)δiprs]

where ρ = 3χ
(3)
1122/χ

3. We should note that the magnitude of nonlinear anisotropy

is associated with the band structure of material. It has been measured through

several methods[106, 107, 108]. For silicon, the value of ρ is close to 1.27 in
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the telecom band. In this work, we take ρ = 1 for AlGaAs waveguides. Thus,

the nonlinear coe�cient can be expressed as

γnklm = ωn
3ε0χ

3

√
InIkIlIm

×
ˆ
A

dA{ρ
3

[(e∗n · em)(e∗l · ek) + (e∗n · ek)(e∗l · em)

+(e∗n · e∗l )(ek · em)] + (1− ρ)
∑
i=x,y,z

e∗niekie
∗
liemi}. (2.3.13)

As mentioned before, although the electronic nonlinear susceptibility shows

frequency dispersion in special frequency range, however, if the corresponding

photon energies are smaller than the band-gap energy of Si, we can say that this

frequency dispersion of nonlinear susceptibility χ3 is small enough to neglect

it. As we know, the real and imaginary parts of χ3 are related to the Kerr

coe�cient n2 and the TPA coe�cient βT as:

χ3 =
4n2εε0c

3
(1 + i

cβT
2ωn2

) (2.3.14)

Substituting 2.3.14 into 2.3.13, we �nd:

γnklm = ωn
4ε2

0c

3
√
InIkIlIm

×
ˆ
A

ε(r̂)n2(r̂)(1 + iαT (r̂))ςnklm(r̂)dA, (2.3.15)

ςnklm = ρ(r̂)[(e∗n · em)(e∗l · ek) + (e∗n · ek)(e∗l · em) + (e∗n · e∗l )(ek · em)]

+3(1− ρ(r̂))
∑
i=x,y,z

e∗niekie
∗
liemi (2.3.16)

where αT = cβT/2ωn2. All function ςnklm are real and have certain symmetry

due to intrinsic permutation symmetry. For instance,ςnklm = ςnmlk = ςlknm =

ςknml = ςmlkn = ςmnkl. In chapter four, considering this symmetry of ςnklm, a

signi�cant reduction is made to simplify the computation of γnklm.

Based on the above theory, we consider the case of four interacting harmon-

ics, i.e. two pumps and two generated signals. For each harmonic, there exist

SPM terms and XPM terms, as well as FWM terms. The resulting coupled

34



equations are:

da0

dz
= iγ0000|a0|2a0 + 2i

∑
i=1,2,3

γ0ii0|ai|2a0 + iγ0121e
i(2β1−β2−β0)za2

1a
∗
2

+2iγ0132e
i(β1+β2−β3−β0)za1a

∗
3a2,

da1

dz
= iγ1111|a1|2a1 + 2i

∑
i=0,2,3

γ1ii1|ai|2a1 + iγ1232e
i(2β2−β3−β1)za2

2a
∗
3

+ 2iγ1012e
i(β0+β2−2β1)za0a2a

∗
1 + 2iγ1023e

i(β0+β3−β1−β2)za0a
∗
2a3,

da2

dz
= iγ2222|a2|2a2 + 2i

∑
i=0,1,3

γ2ii2|ai|2a2 + iγ2101e
i(2β1−β0−β2)za2

1a
∗
0

+ 2iγ2123e
i(β1+β3−2β2)za1a3a

∗
2 + 2iγ2013e

i(β0+β3−β1−β2)za0a
∗
1a3,

da3

dz
= iγ3333|a3|2a03 + 2i

∑
i=0,1,2

γ3ii3|ai|2a3 + iγ3212e
i(2β2−β1−β3)za2

2a
∗
1

+2iγ3102e
i(β1+β2−β3−β0)za1a

∗
0a2, (2.3.17)

where a1, a2 denote the pump amplitudes and a0, a3 correspond to signal and

idler waves. Note that all of the γs strongly vary with the wavelength. In chap-

ter 3, to address this, we compute these γs for di�erent geometries. Because of

the big di�erence between these γs, the modulation instability happens within

normal dispersion region even when δβ < 0.

As discussed in section 2.2 and reference[1], theoretical description of CW

and pulse propagation in conventional �bers or waveguides is mainly based

on the well-known generalized Nonlinear Schrodinger equation, which only

includes self-steepening term (the �rst-order term of nonlinear dispersion). To

explain how the dispersion of nonlinearity could a�ect modulation instability

in subwavelength waveguides, in this section, a new model has been derived

for CW. In equation 2.3.12, we neglect the time dependence of the amplitudes
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of the �eld components due to quasi-CW conditions. However, if we need to

describe modulation instability of optical pulses, then the e�ect of GVD has to

be included into our model. We should note that the group velocity of pulses

participating in the four-wave mixing process can be quite di�erent. Thus,

e�cient FWM needs not only phase matching but also matching of the group

velocities.

Following the same procedure as demonstrated above and in references[90],

by using Fourier expansion for the electric �eld:

Ξ(−→r, t) =
1√
2π

ˆ
E(−→r , ω)e−iωtdω + c.c,

where each harmonic is described in terms of slowly varying amplitude Aω(z)

of the corresponding linear mode eω(x, y):

E(−→r , ω) = I−1/2
ω Aω(z)eω(x, y),

where Iω =
´ ´ +∞
−∞ (eω × h∗ω + e∗ω × hω)êzdxdy, we derive equations for the

harmonic amplitudes:

i∂zAω = −βωAω −
ω

2π

ˆ ˆ
Γωω1ω2ω3Aω1A

∗
ω2
Aω3dω1dω2, (2.3.18)

ω3 = ω − ω1 + ω2

where βω is the propagation constant at the corresponding frequency for the

linear guided mode, and the nonlinear coe�cients are given by:

Γnklm =
ε0√

InIkIlIm
×
ˆ
A

χnklmς(r̂)dA, (2.3.19)

where ς(r̂) is de�ned above. Note that the actual nonlinear coe�cients are

given by:γnklm = ωnΓnklm. As discussed before, It is reasonable to assume

that χnklm = (3/4)ε0εcn2 as the nonlinear material dispersion is usually weak.

Therefore, the Kerr coe�cient n2 and dielectric permittivity ε are evaluated

at a reference frequency ω0 = 2πc/λ0. On the contrary, we expect that the

geometrical dispersion of nonlinearity is strong and could make big impact

on nonlinear e�ects, such as modulation instability, soliton, in sub-wavelength

36



waveguides.

Below, in chapter 3 and chapter 4, the role of dispersion of nonlinearity

resulting from geometrical dispersion of nonlinearity is investigated based on

our new model 2.3.12 in sub-wavelength semiconductor waveguides for CW

and pulse wave.

2.4 Summary

Linear dispersion causing linear chirp can compensate the nonlinear chirp in-

duced by nonlinearity, thus leading to soliton, which is very important non-

linear phenomenon in optical �bers or waveguides. Furthermore, linear phase

mismatch resulting from linear dispersion plays a critical role during the pro-

cess of FWM. Thanks to these, in this chapter, we discussed how to engineer

the dispersion in sub-wavelength waveguides with high index together with the

origin of linear dispersion and nonlinearity.

We derived the new model governing evolution of the amplitudes of com-

ponents of the optical waves interacting in the waveguides for CW and pulse

wave using perturbation expansion method. The new MI condition is found, as

we take into account the dispersion of nonlinearity which is enhanced through

a strong variation of the modal pro�le with the wavelength of light in sub-

wavelength waveguides in chapter 3.

In our model, we don't consider the e�ects of TPA and free carrier. This is

because there are two approaches which could reduce the in�uence of TPA and

free carrier. One is that, by applying external electric �eld, the free carrier can

be removed. In addition, by changing the waveguide geometry (slot waveguide)

or material and varying the operating wavelength, we can reduce e�ect of TPA

or completely eliminate it. For instance, TPA can be ignored at wavelength

λ > 1.5µm for AlGaAs waveguide[48] and at wavelength λ > 2µm for Silicon

waveguide[49].
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Chapter 3

Modulation instability induced by

nonlinear dispersion for continuous

wave

The models describing nonlinear light propagation in sub-wavelength waveg-

uides have been investigated extensively[109, 110, 86, 87, 111, 112]. As one

of important nonlinear phenomena, FWM[113, 114, 115, 93] has been �rst

explored in conventional �ber. The main characteristics of FWM can be un-

derstood from the equations (2.2.10),(2.2.11). As we mentioned before, for-

mally, the e�ective core area Aeff is a function of the wavelength as the modal

pro�les can change signi�cantly. However, the variation of the e�ective core

area is negligible in conventional single-mode �bers since the transverse scales

involved are relatively large compared to the wavelength. Dispersion of non-

linearity hasn't gained much attention in many works, in particular, when one

studies the FWM in silica �ber.

In the process of FWM, to achieve e�cient FWM, Phase matching is very

important. From equations 2.2.9 and 2.2.10, in order to cancel the mismatch

resulting from nonlinear e�ects, δβ should be positive, where δβ represents

the mismatch caused by material dispersion and waveguide dispersion. Based

on these considerations, during the past few years, FWM has been studied

extensively[93, 118, 119, 94, 120][60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,

88, 121].

Recently, due to advances in the fabrication of photonic-crystal �bers (PCFs)[18,
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19, 116], the �bers with the wavelength scale core areas have been produced.

Compared with conventional �bers, the dispersion characteristics were strongly

modi�ed. As a consequence, the FWM phase matching conditions are quite

di�erent from those seen in conventional �bers. For small core PCFs, Strong

nonlinear interactions occur at relatively low peak powers and over short prop-

agation distances. The other kind of �ber is tapered �bers[117] (TFs), which

are made by heating and stretching conventional �bers. The dispersion charac-

teristics of TFs are very similar to those in small-core PCFs, which means the

GVD pro�les of PCFs and TFs are similar, because, in a typical index-guiding

PCF, most of the light is guided in a tiny core surrounded by a periodic struc-

ture of large air-�lled holes separated by thin membranes. In a word, the pho-

tonic crystal �bers[18, 19, 116], tapered[117] �bers and even doped �bers[118]

have high nonlinearity, as well as o�er opportunities for engineering of dis-

persion. Soon after their successful fabrication and development, these highly

nonlinear �bers have been used for e�cient FWM[93, 118, 119, 94, 120]. Most

of the results in these papers can be understood within the framework of the

idealized nonlinear Schrodinger equation, which we have already reviewed in

previous section. On the other hand, FWM theory has been developed based

on the full wave equation[93].

Due to favorable optical, electronic, and physical properties of silicon and

CMOS fabrication processing technology compatible with silicon, signi�cant

research e�ort has been put into silicon-based nanophotonic devices[44, 46, 45].

During the past few years, from �ber[113, 114, 115, 93] to Silicon-on-insulator

(SOI) photonic nanowires[60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 88, 121],

FWM attracted signi�cant attention because of its potential applications in all-

optical switches, optical signal regenerators, high-speed optical networks, and

optical sources for quantum information technology. Developing an optical am-

pli�er and frequency conversion based on silicon waveguide are important for

the success of SOI photonic integrated circuits. Through the process of phase-

matched FWM in suitably designed SOI waveguide, optical ampli�er[121] can

be acquired. Compared with Raman gain bandwidth[122], more broad conver-

sion bandwidth has been obtained[121], which allows for the implementation

of dense wavelength division multiplexing and demultiplexing in silicon waveg-

uides. In �ber-optic communication, wavelength-division multiplexing (WDM)
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is a technology which combines a number of optical carrier signals onto a sin-

gle optical waveguide by using di�erent wavelengths of laser light. A WDM

system uses a multiplexer at the transmitter to join the signals together, and a

demultiplexer at the receiver to split them apart. The demultiplexer tends to

be wideband devices. It must provide the wavelength selectivity of the receiver

in the WDM system. Exploiting FWM, error-free 640 Gbit/s demultiplexing

has been demonstrated[123].

As discussed in preceding section, e�ciency of FWM is limited by TPA

and free carrier. Therefore, it is not easy to realize the net gain in silicon

waveguides. However, the recent work[121] shows that the parametric gain

can be obtained if the SOI waveguides can be designed properly [121, 67]. In

addition, using a single silicon waveguide with 700nm × 425nm cross section

and mid-infrared pump, due to reducing the impact of two photon absorption,

high gain and broad bandwidth can be achieved[124].

Also, FWM has been observed in SOI waveguides with normal GVD due

to higher-order dispersion[63, 66, 68]. However, the bandwidth is very narrow

and the conversion e�ciencies are lower[63, 66, 68]. By tailoring waveguide

dispersion, broad gain bandwidths and e�cient wavelength conversion have

been achieved via phase-matched FWM[71, 88, 125] by using a CW pump.

It is worth mentioning that, in the theoretical part of these papers, γ is only

decided by the pump frequency although there are three interacting waves

inside the waveguide. In another word, so far, for the most of investigations of

FWM in silicon waveguide, the dispersion of nonlinearity hasn't caused much

attention because of the reasons presented above. In this work, through the

new model 2.3.12 derived in chapter 2, signi�cant di�erence is made to the

modulation instability condition for the sub-wavelength waveguide. Thus the

new mechanism supporting FWM is addressed below.

The main results in this chapter can be found in our paper[126].

3.1 Parametric gain and dispersion of nonlinear-

ity

We consider only a single pump a1, while, a0, a2 correspond to signal and idler

wave, respectively. Equations 2.3.17 are quite general because they include
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the SPM, XPM, and pump depletion due to the FWM. If we assume that the

pump �eld is strong enough to remain undepleted during the process of FWM,

and signal and idler are weak, then we get the following coupled equations:

da1

dz
= iγ1111|a1|2a1 (3.1.1)

da0

dz
= 2iγ0110|a1|2a0 + iγ0121e

i(2β1−β2−β0)za2
1a
∗
2 (3.1.2)

da2

dz
= 2iγ2112|a1|2a2 + iγ2101e

i(2β1−β0−β2)za2
1a
∗
0. (3.1.3)

By assuming that δβ = 2β1 − β2 − β0, and initial power p = |a(0)|2, through
several basic calculations, one can easily obtain two coupled equations for

signal and idler �elds:

da0

dz
= 2iγ0110pa0 + iγ0121e

iδβze2iγ1111pzpa∗2 (3.1.4)

da2

dz
= 2iγ2112pa2 + iγ2101e

iδβze2iγ1111pzpa∗0. (3.1.5)

To solve these equations, we introduce:

a0 = A0(z)e2iγ0110pz (3.1.6)

a2 = A2(z)e2iγ2112pz, (3.1.7)

where A0,2 ∼ egz. By using equation 3.1.4 through 3.1.7, we then obtain the

parametric gain depending coe�cient in the form:

g =
1

2
Re(

√
(4Γ+p− δβ)(δβ − 4Γ−p)) (3.1.8)

where

Γ+ =
γ0110 + γ2112 +

√
γ0121γ2101 − γ1111

2
(3.1.9)

Γ− =
γ0110 + γ2112 −

√
γ0121γ2101 − γ1111

2
. (3.1.10)

41



From equations 3.1.8-3.1.10, after performing simple calculations, the modu-

lation instability condition g > 0 can be expressed as follows:

4Γ−p < δβ < 4Γ+p (3.1.11)

We write the threshold power in terms of Γ± :

pcritical1 =
δβ

4Γ−

pcritical2 =
δβ

4Γ+

By taking γ0110 = γ2112 = γ0121 = γ2101 = γ, we �nd Γ+ = γ,Γ− = 0. Thus,

the conventional condition δβ > 0 is recovered.

Before we discuss how Γ− makes impact upon modulation instability in de-

tails by numerical calculation, we �rst look through the new conditions 3.1.11.

Γ− is a very essential parameter for gain spectrum since the gain range strongly

depends on the Γ−. Γ− 6= 0 because of the dependence of nonlinear coe�cients

on frequencies, i.e., ωp,ωs,ωi. However, the value of γnklm is determined by the

complex overlap integrals, which we will calculate below. Importantly, Γ− can

be negative. Therefore, even if δβ is negative, the growth rate of modulation

instability still can happen providing p > pcritical1. From the equation 3.1.11,

one can see that, if Γ− is a small negative number, then δβ should be very

small negative number as well in order to realize the FWM under the low

power condition. Consequently, minimizing the value of δβ becomes very cru-

cial by engineering the dispersion of waveguides in subwavelength waveguide.

Notably, when Γ− < 0, our task is that we need larger absolute value of Γ− ,

and on the other hand, smaller absolute value of δβ in order to satisfy the MI

condition for practical power.

It is important to emphasize that tight optical-�eld con�nement achieved in

sub-wavelength silicon waveguide results in a strong dependence of the waveg-

uide mode pro�les and their propagation constant of these structures on both

waveguide geometry and the corresponding material parameters. Similar to

the linear optical properties of silicon waveguides, we expect that the nonlin-

ear properties of silicon waveguide also show large frequency dispersion, which
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means the nonlinear dispersion is too large to ignore it. To achieve these,

we need to calculate the waveguide modes and the corresponding propagation

constant at frequency ωp,ωs ,ωi, and then use Equations 2.3.15 and 3.1.8 to

calculate the nonlinear coe�cient γ and gain, respectively.

3.2 Nonlinear coe�cient γ

In chapter 2 and section 3.1, by considering the dispersion of nonlinearity in

semiconductor waveguides, the new MI condition has been found through cal-

culating the overlap integrals. In our theory, the dispersion of γnklm is de�ned

by the three distinct contributions. First, it is from the material dispersion

of the χ(3) tensor; second, is from the geometrical dispersion induced by the

dependencies of the modal pro�les and of the overlap integrals on the value of

ωp,s,i; third, is that each γnklm is trivially proportional to ωn. The latter factor

on its own makes Γ− ∼ ωp −
√
ω2
p − (ωp − ωs)2 > 0 and hence can not create

MI gain with negative δβ . Thus to achieve Γ− < 0, one has to rely on the

material and geometrical contributions to the dispersion of nonlinearity. The

material dispersion is usually weak and also poorly characterized in terms of its

variations with multiple frequencies. On the contrary, geometrical dispersion is

expected to be strong and also controllable with the waveguide geometry and

choice of the operating wavelength. Below we calculate γnklm in some ordinary

waveguide geometries. Hereafter we take χ(3) = χ = (4/3)ε0εcn2 , where n2

is the constant Kerr coe�cient and ε = ε(ωp). The geometrical dispersion

is accounted for by computing guided modes (Figure. 3.2.1) at the required

frequencies with the help of the Comsol's Maxwell solver.

Value of γnklm and dispersion are strongly correlated with waveguide ge-

ometry for silicon nanowires. Here, we take γp = γ1111, γsp = γ0110, γip =

γ2112, γ4s = γ0121, γ4i = γ2101.

We �rst compute the γp as a function of pump wavelength. As is shown in

Figure 3.2.2, the value of γp changes with wavelength notably. Through com-

parison of γ
′
ps for three geometries, we found that the γp rapidly drops with

the decrease of the width of the waveguides from shorter to longer wavelength,

which implies that, for waveguide with small cross-section, the nonlinear dis-

persion term ∂2
ωγp, which is second derivative of γp, can make big in�uence on
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Figure 3.2.1: The pro�le of guided mode for 380nm × 220nm SOI waveguide
at pump wavelength λp=1.55µm. from left to right , in the �rst row, Ex, Ey,
Ez. In the second row, Hx, Hy, Hz.

MI. We will return to this issure in the section 3.4.

Below, we calculate all of the γnklm for a given pump wavelength and waveg-

uide geometry. As an example, we �rst consider a single 700nm× 220nm SOI

waveguide. As we kow, bulk silicon exhibits normal dispersion over its trans-

parent spectral region. However, the dispersion can change dramatically if the

GVD resulting from a strong optical mode con�nement is used to compensate

for the material GVD. In the following, we calculate the dispersion by using

Comsol. Figure 2.1.1 in chapter 2 shows dispersion curve of the 700nm×220nm

waveguide. It is clear to see that the �rst zero-GVD point is about 1.435µm

and the second zero-GVD is 2.24µm. The dispersion is expressed in units of

ps/nm · km.
From Equation 2.3.16, to calculate γnklm, one can �nd that we need to

know the modes corresponding to pump, signal and idler wave. Here, we

choose pump wavelength to be 1.55µm, which is located in the anomalous

GVD range. Figure 3.2.1 shows the fundamental mode propagating inside

silicon waveguide. In our calculations, we take n2 = 4× 10−18m2/W [90]. The

result is demonstrated in �gure 3.2.3. As we expect, the di�erence between
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Figure 3.2.2: γp as function of pump wavelength λp. the black curve with dot,
the dashed line and the blue curve with circle correspond to single 300nm ×
220nm, 380nm× 220nm, 700nm× 220nm SOI waveguide, respectively.
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Figure 3.2.3: The plot of value of γnklm as function of signal wavelength for
700nm × 220nm SOI waveguide. The pump wavelength is 1.55µm, which is
within anomalous GVD range.
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Figure 3.2.4: The plot of value of γnklm as function of signal wavelength for
380nm × 220nm SOI waveguide. The pump wavelength is 1.55µm, which is
within anomalous GVD range.

γnklm is very pronounced. With decrease of signal wavelength, γip and γ4i go

down to about 89/mW and 98/mW , respectively. Obviously, γsp and γ4s go

up to 202/mW and 178/mW , respectively.

Next, to further see the variations of γnklm with wavelength and waveguide

geometry, by decreasing the width of waveguide, and �xing the height of waveg-

uide, again, we calculate the γnklm for 380nm× 220nm SOI waveguide. Pump

wavelength is 1.55µm located in the anomalous GVD regime. Compared with

values of γnklm in Figure 3.2.3, Figure 3.2.4 shows that γip, γ4i,γ4s decrease

quickly with increase of signal frequency. From equation 2.3.16, we �nd that,

to compute these three γnklms, the modes corresponding to idler wavelengths

needs to be calculated (for γpand γsp , only the modes of pump and signal

waves are needed.). In particular, for a subwavelength silicon waveguide, the

modes become less con�ned for the larger wavelength (idler wave). Especially,

as idler wavelength is close to the cuto� wavelength, only a smaller amount

of optical power is guided within the region with optical nonlinearity, which

leads to decrease of γnklm related to the mode of idler wave.

Figure 3.2.5 shows the same trend as in Figure 3.2.4. However, a major

concern is given to the linear mismatch δβ for 300nm × 220nm waveguide.

we choose that pump wavelength is 1.4µm in the normal GVD range. (The
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Figure 3.2.5: The plot of value of γnklm as function of signal wavelength for
300nm × 220nm SOI waveguide. The pump wavelength is 1.4µm, which is
within normal GVD range.

dispersion curve has been shown in Figure 2.1.1, we will be back to this case

in the following section). It is necessary to emphasize that δβ < 0 from our

calculation. According to standard theory, MI gain doesn't exist if δβ < 0.

However, as will be discussed below, due to these signi�cant di�erences between

these γnklm, which account for nonlinear dispersion, the MI happens in this

case.

As a �nal consideration in this subsection, based on our values of γnklm,

which have been obtained above, we calculate Γ− for 700nm × 220nm and

380nm×220nm SOI waveguides, speci�cally. By employing expression 3.1.10,

which we derived in section 3.1,Γ− responsible for the occurrence of MI when

δβ < 0 is evaluated. Figure 3.2.6 shows same interesting results. For a �xed

pump wavelength 1.55µm, the values of Γ− are always positive for 700nm by

220nm waveguide, which means MI gain can not happen if δβ < 0 in this case.

The same conclusion has been made by using the standard theory. In addition,

we calculated Γ− at pump wavelength 1.55µm for a SOI waveguide with cross-

section of 500nm by 220nm and we found the same result (The dispersion

curve also has been shown in Figure 2.1.1). However, for 380nm× 220nm SOI

waveguides, Figure 3.2.6 shows totally di�erent behavior. Within the whole

wavelength range, Γ− is always negative, which means the gain can exist even
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Figure 3.2.6: The plot of value of Γ−as function of wavelength for 700nm ×
220nm (red curve with dot)and 380nm× 220nm (black curve with cross) SOI
waveguides. (Pump wavelength is 1.55µm for two cases.)

if δβ < 0 as long as we choose an appropriate power.

The results predicted by our model shed light on the occurrence of MI

supported by the new mechanism. In the following section, with the help

of the Comsol's solver, numerically, we compute Γ− and corresponding gain

spectrum for several sub-wavelength waveguides.

3.3 Modulation instability due to dispersion of

nonlinearity

As discussed in preceding chapter, if we operate speci�c wavelength near to

the Zero-GVD point, where β2 ∼ 0, the e�ect of fourth-order dispersion will

become essential for a large frequency o�sets. In the standard theory, only

when the instability condition 0 < δβ < 4γp is satis�ed, MI could occur in this

system. Especially, In normal GVD regime, β2 > 0, the instability condition

may be satis�ed if β4 < 0 , and furthermore, in this case, the generated signal

and idler frequencies through process of MI can not be close to the pump

frequency as only large frequency o�set can cancel out β2 and make δβ > 0.
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Figure 3.3.1: Guided mode of 380nm × 220nm SOI waveguide : in the left,
pro�le of the dominant electric �eld component (ex) at lp = 1.65µm. In the
right, calculated GVD, D = =2pcβ2/λ

2, Black dash-dot line indicates the
pump wavelength and red dashed line represents Z-GVD point.

On the contrary, based on new instability condition 3.1.11, in this section, we

will investigate the MI gain when δβ < 0. Note again that δβ refers to the

linear phase mismatch.

3.3.1 Modulation instability for 380nm×220nm SOI waveg-

uide

To demonstrate how our unique MI condition 3.1.11 works, in particular, we

choose the pump wavelength located in the normal GVD range, which can

ensure δβ < 0. On the other hand, we also found that, in anomalous disper-

sion regime, broader gain bandwidth can be acquired if we take dispersion of

nonlinearity into account (make sure that Γ− < 0) when δβ < 0 at a speci�c

signal wavelength where the parametric gain becomes zero using the standard

theory.

As our �rst example, we consider a SOI waveguide with cross-section of

380nm× 220nm. The geometry and the mode pro�le (dominant electric �eld

component is oriented horizontally) are shown in Figure 3.1.1. The GVD of this

mode is normal for λ > 1.612µm. In order to apply our new theory, we choose

that the pump wavelength is 1.65µm, which is su�ciently far from the Z-GVD

point. Thus, the second-order dispersion β2 > 0 and D = −3200ps/nm/Km.

The black full curve in Figure 3.3.2(a) shows the plot of δβ as function of
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Figure 3.3.2: The plot of values of δβ and Γ− as functions of signal and idler
wavelengths at λp = 1.65µm for 380nm × 220nm SOI waveguide. n2 = 4 ×
10−18m2/W ,D = −3200ps/nm/Km.

the signal and idler wavelengths for λp = 1.65µm. One can see that, across the

whole wavelength range, δβ always negative, thus MI can be supported only

through the mechanism related to the nonlinear dispersion and can happen

only if Γ− < 0. Fortunately, Γ−is negative everywhere within the broad range of

the signal and idler wavelengths from our calculation shown in Figure 3.3.2(b).

Thus, by increasing the pump power p, the MI condition 3.1.11 always can be

satis�ed.

Figure 3.3.3 shows parametric gain together with threshold pump power

pth(λp) (red dashed curve). However, unfortunately, to acquire this kind of

parametric gain, a su�ciently high threshold pump power, which is about

1600W , is required. Also, one should remember that TPA and free carriers in

silicon can degrade the gain resulting from dispersion of nonlinearity.

Note that, to qualitatively estimate the impact of material dispersion of

χ(3) on MI, we also calculated pth(λp) by using χnklm = (4/3)ε0εω̄nklmcn2,

where ω̄ = (ωn + ωk + ωl + ωm)/4. This gave only negligible deviations from

the results shown in Figure 3.3.3, thus con�rming the dominant role of the

geometrical dispersion of nonlinearity. Therefore, in the following section, we

ignore material dispersion of χ(3).
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Figure 3.3.3: Plot of gain as function of pump power and signal/idler wave-
lengths. Dashed lines show the threshold power pth = δβ/(4Γ−); Geometry is
same as Figure 3.3.1. In the shaded area, darker colours indicate the larger
values of gain.

3.3.2 Modulation instability for 300nm×220nm SOI waveg-

uide

In this section, we continue to seek the optimal geometry to implement our

theory under low pump power in order to reduce the impacts of TPA and free

carriers in silicon waveguide. 300nm×220nm SOI waveguide is employed. The

pro�le of con�ned mode is similar to the mode in Figure 3.3.1. From Figure

3.3.4, for λp > 1.38µm, the waveguide exhibits normal dispersion since D < 0.

To obtain negative δβ, we still choose pump wavelength λp = 1.4µm located in

normal GVD regime. One can see that δβ is negative everywhere from Figure

3.3.5(a). In the case of negative δβ, MI can be induced only by dispersion of

nonlinearity in terms of our new �ndings.

Consequently, the sign of Γ−becomes essential for MI to exist. Figure

3.3.5(b) shows that Γ− is negative within the range of the signal and idler

frequencies which we are concerned. Compared with the values of Γ− in Figure

3.3.2, the absolute values of Γ− becomes larger in this case, which means we

can use lower pump power to generate parametric gain based on MI condition

3.1.11. The Figure 3.3.6 further proves this prediction. The generated gain

and the threshold power pth(λp) (red dashed curve) are shown in Figure 3.3.6.
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Figure 3.3.4: The plot of GVD, D = =2pcβ2/λ
2, Black dash-dot line indi-

cates the pump wavelength λp = 1.4µm. Red dashed line represents Z-GVD
wavelength.

The lower threshold power 500W has been found by using pth = δβ/(4Γ−).

We also consider a 380nm×220nm silicon waveguide with polymer cladding.

In this case, the value of the dispersion parameter D is always negative within

the whole range of wavelength and δβ < 0. At pump wavelength λp = 1.375µm,

We found that Γ−is always positive within the whole wavelength regime. Thus,

no MI happens in this waveguide.

3.3.3 Modulation instability for 300nm × 500nm AlGaAs

waveguide

As mentioned above, TPA and free carrier induced by external �eld can bring

signi�cant impact on MI in SOI waveguide. Thus, observing the MI gain

becomes di�cult in practice. As we know, for AlGaAs waveguide, TPA[48] is

negligible when the operation wavelength is larger than 1.5µm.

As another example, we consider a suspended Al0.25Ga0.75As waveguide.

Again, the geometry and pro�le of the guided modes at λp = 1.7µm (dominant

electric �eld component is oriented horizontally) are shown in Fig. 3.3.7(a).

The GVD of this mode is normal for λ > 1.66µm, see Figure 3.3.7(b).

The full black curve in Figure 3.3.8(a) shows the plot of δβ as function

of the signal and idler wavelengths for λp = 1.7µm. One can see that δβ is

negative everywhere. Hence MI can be provided only through the mechanism
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Figure 3.3.5: Plot of δβand Γ− as function of signal and idler wavelengths
at λp = 1.4µm for 300nm × 220nm SOI waveguide. n2 = 4 × 10−18m2/W
,D = −2200ps/nm/Km.

Figure 3.3.6: Plot of gain as function of pump power and signal/idler wave-
lengths. Dashed lines show the threshold power pth = δβ/(4Γ−); Geometry
is same as Figure 3.3.5. In the shaded area, darker colors indicate the larger
values of gain.
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Figure 3.3.7: Guided mode of Al0.25Ga0.75As waveguide suspended in air: (a)
pro�le of the dominant electric �eld component (ex) at λp = 1.7µm for 500nm×
300nm. Waveguide is indicated by dashed lines; (b) The plot of GVD, D =
=2pcβ2/λ

2. Grey dash-dot line indicates the pump wavelength λp = 1.7µm.
Grey line represents Z-GVD wavelength.

Figure 3.3.8: MI in Al0.25Ga0.75As waveguide: (a) δβ and Γ− at λp = 2pc/ωp =
1.7µm as functions of the signal/idler wavelengths. n2 = 1.5 × 10−17m2/W ,
D = −0.07ps/nm/mm; (b) gain as function of pump power and signal/idler
wavelengths, g > 0 within shaded areas with darker colors corresponding to
larger values of g. Red dashed lines show the threshold power pth = δβ/(4Γ−);
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Figure 3.3.9: The plot of gain as function of signal/idler wavelength for P =
800W at pump wavelength λp = 1.7µm.

related to the dispersion of nonlinearity and is possible only if Γ− < 0. Γ−

and Γ+ have been calculated by using 3.1.10 and 3.1.10. As we expected, Γ+

is always positive. We have found that Γ− is negative in the broad range of

the signal and idler frequencies, see the dashed line in Figure 3.3.8(a). Thus,

by increasing the pump power P , one can always satisfy the MI condition

3.1.11. The calculated gain together with the threshold pump power pth(λp)

(red dashed curve) are shown in Figs. 3.3.8(b). The darker colors indicate the

larger value of gain.

In addition, To demonstrate the MI development, we investigate the prop-

agation of pump and signal waves. For P = 800W, the maximum gain is

achieved for λs = 1.65µm (λi = 1.75µm), see Figure 3.3.9, and the char-

acteristic MI length is LMI = 1/g ∼ 0.03mm. By assuming the excita-

tion with picosecond pulses, T0 = 1ps, we estimate the dispersion length,

LD = T 2
0 /|β2| ∼ 100mm, and the walko� length between the signal and idler,

Lw = T0/|1/vgs=1/vgi| ∼ 1mm, vgs,gi = 1/∂ωβ(ωs,i) to be much longer than

the MI length. This justi�es our CW based approach to analyze MI, Equa-

tions. 3.1.1�3.1.3. Also, we simulate the MI development along the waveguide

length for the cases of δβ > 0(λp = 1.6µm) and δβ < 0(λp = 1.7µm). The

results were obtained by numerically simulating Equation 2.3.12 for the case

of three waves. During evolution, the energy from the pump is almost en-

tirely transferred to the signal and idler, and then back to the pump again.
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Figure 3.3.10: Dynamics of the pump and signal waves for δβ > 0 (a) and
δβ < 0 (b). Initial power: pp = 800W, ps = 0.8mW, pi = 0, λp = 1.6µm, λs =
1.55µm (a), λp = 1.7µm, λs = 1.65µm (b). Solid and dashed curve correspond
to pump and signal, respectively.

The whole process repeats periodically with propagation distance. The pump,

signal and idler periodically exchange power (see Figure 3.3.10).

Such recurrence is typical for MI processes in optical �bres[1]. It is known

that the pump energy is transferred to the sidebands and even their higher

order harmonics[127], surprisingly, after some distance, the energy is back to

pump. Studies of possible modi�cations of the recurrence process due to the

dispersion of nonlinearity in subwavelength structures is an interesting topic

of future work.

.

3.3.4 Modulation instability for silicon-on-insulator slot

waveguide with polymer cladding

To reduce the impacts of TPA and free carrier in silicon waveguide, another

approach to implement our theory is that we could use slot waveguide, in which

higher amplitude is concentrated on the low-refractive-index region. The slot

is �lled with nonlinear material, for which the TPA is negligible. In this sec-

tion, we consider a SOI dielectric slot waveguide with the nonlinear polymer

cladding[128]. The guided slot mode is shown in Figure 3.3.11(a). As we in-

vestigated in single SOI waveguide before, localization of the fundamental slot

mode is also sensitive to wavelength, and therefore the geometrical dispersion

of nonlinearity is expected to be signi�cant. The plot of GVD is shown in Fig.
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Figure 3.3.11: Fundamental mode of the silicon-polymer slot waveguide: (a)
pro�le of the dominant electric �eld component (ex) at λp = 1.7µm for 500nm×
220nm silicon waveguides, wall-to-wall separation 50nm, silica glass substrate
and nonlinear polymer cladding. Geometry is indicated by solid lines; (b)
calculated GVD.

3.3.11(b) and it is normal for any wavelength. Hence, Figure 3.3.12(a) shows

that δβ < 0 within the range of signal and idler wavelengths. It is clear to see

that, without the dispersion of nonlinearity, no MI is expected for any pump

wavelength.

However, Γ− has been found negative, see Figure 3.3.12(a). Therefore,

the MI condition 3.1.11 is satis�ed for P > Pth, see Figure 3.3.12(b). The

ratio of the characteristic lengths (see AlGaAs discussion) has also been found

favorable for MI observation over typical sub-millimeter propagation distances,

where walk-o� due to GVD is negligible for picosecond pulses. Thus, while the

frequency conversion in the optical processing experiment with a similar slot

waveguide[68] has relied on the two frequency pumping (classical four wave

mixing setup), our MI mechanism allows to obtain the necessary gain only

with the single pump wave. Note also that TPA and free carrier generation in

AlGaAs are negligible for λ ≥ 1.5µm. However, they are signi�cant in silicon,

but reduced in the slot geometry with the polymer cladding as the most energy

of light is focused on the slot[128].
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Figure 3.3.12: (a):The plot of δβ and Γ−at λp = 2pc/ωp = 1.7µm as func-
tions of the signal/idler wavelengths for the slot waveguide shown in Figure
3.3.11(a); (b): gain as function of pump power and signal and idler wave-
lengths. Again, darker colours correspond to larger values of gain. n2,polymer =
16.9× 10−18m2/W, n2,silicon = 4× 10−18m2/W , D = −0.0015ps/nm/mm;

3.3.5 Modulation instability for slot waveguide with sil-

icon layers surrounding a chalcogenide glass layer

As our next example, chalcogenide glass slot waveguide is considered. Our ma-

jor consideration for using chalcogenide glass is that it has highly nonlinearity

with reduced TPA coe�cient βTPA compared to silicon[88].

Due to the discontinuity of electric �eld of quasi-TM mode at the interfaces

of the slot and the silicon layers, the guided mode is con�ned in the slot layer

with lower refractive index. The geometry of slot waveguide and dispersion

curve are demonstrated in Figure 3.3.13. The large variation of the area of

the slot mode with wavelength is expected here. Therefore, the dispersion of

nonlinearity is able to induce MI under required threshold power. The plot

of GVD is shown in Figure 3.3.13. It is normal for λ > 1.68µm. Numerical

calculation shows that the values of Γ− are negative in the range of signal

and idler wavelength, see Figure 3.3.14 (b), for λp = 1.7µm. Consequently,

the MI gain is observed numerically for p > pth. Note that, Figure 3.3.15 also

shows that the threshold power (800W ) is lower than the one (1500W ) in

Figure 3.3.12. In practice, lower threshold power is required in order to reduce

nonlinear loss, such as TPA and free carrier .

The characteristic lengths, such as MI length LMI = 1/g, has been calcu-

lated, which is much shorter than the dispersion length LD = T 2
0 /|β2|. Also,
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Figure 3.3.13: Slot waveguide with silicon layers surrounding a highly nonlinear
slot layer (chalcogenide glass). Fundamental mode of slot waveguide: in the
left, pro�le of the dominant electric �eld component at λp = 1.7µm for 280nm×
180nm silicon waveguides, wall-to-wall separation 115nm, silica glass substrate
and air cladding. Geometry is indicated by solid lines; in the right, calculated
GVD. Black dash-dot line indicates the pump wavelength λp = 1.7µm. Red
dashed line represents Z-GVD wavelength.
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Figure 3.3.14: Plot of δβ and Γ−as function of signal and idler wave-
lengths for the slot waveguide . Geometry is same as Figure 3.3.13. D =
−0.0003ps/nm/mm n2,glass = 3× 10−18m2/W, n2,silicon = 4× 10−18m2/W
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Figure 3.3.15: Plot of gain as function of pump power and signal/idler wave-
lengths. Dashed lines show the threshold power pth = δβ/(4Γ−); Geometry is
same as Figure 3.3.13. In the shaded area, darker colours indicate the larger
values of gain.

the walk-o� between signal and idler is negligible for picosecond pulse.

3.4 Minimal model describing modulation insta-

bility induced by dispersion of nonlinearity

Apart from continuing to seek more suitable geometry and material to reduce

the threshold power and nonlinear loss, we also need to investigate the MI

condition more deeply. All of these calculations of γnklm based on our theory

are quite complicated because of the complex overlap integrals. Therefore,

condition of existence of MI gain is not straightforward. Indeed, all the infor-

mation needed to analyze MI condition in Equation 3.1.11 is hidden inside the

overlap integrals. In order to �nd the better way to understand new MI condi-

tion induced by the dispersion of nonlinearity, we introduce a generalized NLS

equation where all the dispersion coe�cients include nonlinear contributions:

i∂zA = −
N∑
n=0

(βn + γn|A|2)∂nt A. (3.4.1)

where A is slowly varying amplitude. Monochromatic solution of this equa-
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Figure 3.4.1: Plot of nonlinear parameters (a)γ0and (b) γ2 for di�erent geome-
tries as in Fig. 3.3.7 (solid line) and Fig.3.3.11 (dashed line).

tion is given by A = aeiκz−iδt , where κ =
∑

n(βn+γn|a|2)δn/n! and δ = ω−ωp.
The linear propagation constant is

β =
∑
n

βnδ
n/n!,

and, the frequency dependence of the nonlinear waveguide parameter γ is given

by:

γ =
∑
n

γnδ
n/n!.

By the appropriate choice of the phase shift and of the reference frame velocity,

we can �x β0 = β1 = 0. We simply take the minimal model including dispersion

of nonlinearity resulting in MI when δβ < 0:

i∂zA = −γ1|A|2∂tA+
1

2
(β2 + γ2|A|2)∂2

tA− γ0|A|2A. (3.4.2)

As we demonstrated in chapter two before, we expand A as the sum for the

pump, signal and idler �elds:

A = Ap(z)eiκpz + As(z)eiκsz−iΩt + Ai(z)eiκiz+iΩt (3.4.3)

where Ap(z), As(z), Ai(z) are the slowly varying amplitudes with distance cor-

responding to the pump, signal and idler waves, κp, κs, κi represent the total

propagation constant (linear part and nonlinear part), and Ω is the frequency
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detuning from pump wavelength. Substituting 3.4.3 into 3.4.2, we have follow-

ing equations in the form of:

i∂zAp − κpAp = −γ0|Ap|2Ap,

i∂zAs − κsAs = −β2

2
Ω2As − (2γ0 + γ1Ω +

1

2
γ2Ω2)|Ap|2As − γ0A

2
pA
∗
i e
iδκz,

i∂zAi − κiAi = −β2

2
Ω2Ai − (2γ0 − γ1Ω +

1

2
γ2Ω2)|Ap|2Ai − γ0A

2
pA
∗
se
iδκz.

One can readily �nd that γ4s = γ4i = γ0 = γp (Note that in the modal

expansion γ4s 6= γ4i 6= γ0 ), γsp = γ0 + 1
2
γ1Ω + 1

4
γ2Ω2,γip = γ0 − 1

2
γΩ + 1

4
γ2Ω2.

Thus MI condition for δβ < 0 transforms to : Γ− = γ2Ω2 < 0. For relatively

small detuning Ω, we have γn = ∂nωγ.

Using equation 2.3.15, γp(ωp) are evaluated as function of wavelength for

AlGaAs waveguide (see Figure 3.3.7) and slot waveguide (see Figure 3.3.11),

see Figure 3.4.1 (a). We also plot the second derivative as a function of wave-

length for the waveguides considered above in Figure 3.4.1 (b). These plots

show that ∂2
ωγ < 0 and therefore com�rm our prediction about MI resulting

from the calculation of the several overlap integrals. This simple di�erentia-

tion of γ gives us straightforward approach to estimate where such behavior

can be expected.

3.5 Summary

In this chapter, by using our model derived in chapter two, we proved that the

growth rate of MI can exist even in the range of normal GVD due to dispersion

of nonlinearity in subwavelength AlGaAs and silicon waveguides. We calcu-

lated the pump power thresholds required for this type of MI and we found

that the gain exists under acceptable threshold powers. To reduce the thresh-

old power to levels more favorable for applications, further understanding of

the relevant physics and design work are necessary. We presented a simple

generalization of the NLS equation accounting for the MI resulting from the

dispersion of nonlinearity. By computing MI condition based on this equa-
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tion, we presented that much simpler di�erentiation of γ can give us the same

prediction about existence of MI induced by the dispersion of nonlinearity.
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Chapter 4

Modulation instability and

spectral variation induced by

nonlinear dispersion in picsecond

regime

As discussed in chapter 3, tight con�nement of light (typical waveguide trans-

verse dimensions of the order of hundreds of nanometers) and a strong vari-

ation of modes with wavelength for CW in such subwavelength waveguides

with high refractive index contrast induce substantial dispersion of nonlinear

response [126], which has a strong in�uence on FWM or soliton[130, 131].

Pulse propagation equations which are able to accurately describe evolution

of ultra-short pulses in nonlinear media have been explored for many years.

The well-known and generally accepted nonlinear Schrödinger model [1] in

conventional waveguides and �bers can qualitatively and successfully describe

evolution of the guided mode envelope with propagation distance although it

has a very simple form consisting of the group velocity dispersion of the mode

(responsible for pulse spreading in time) and nonlinear interaction (resulting

from the intensity-dependent refractive index). It is the interplay between

these linear and nonlinear e�ects that creates many interesting phenomena in

optical waveguides and �bers [1].

One of the most important assumptions on which the NLS equation is

based is that the z-component of the electric �eld is very small with respect
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to its transverse components (weak guidance regime)[1, 5]. However, this is

only true for waveguides with a relatively low refractive index contrast be-

tween the core and the cladding, and with core sizes being much larger than

the wavelength of light. For subwavelength semiconductor waveguides, the

longitudinal electric �eld component of the mode should be included into the

model. Therefore, development of adequate models to describe light propaga-

tion in subwavelength waveguides has become the subject of active research in

the recent years [90, 88, 110, 86, 87, 132, 133, 134].

Light con�ned within several handreds nanometers area strongly enhances

the nonlinearity in subwavelength waveguides. On the other hand, one of the

distinctive features of these waveguides is a strong variation of the modal pro-

�le with the wavelength of light. Since distribution of light intensity across

the cross-section of waveguide de�nes the e�ectiveness of nonlinear (multipho-

ton) processes, this variation leads to a considerable dispersion of nonlinear-

ity [133, 134]. By introducing a nonlinear waveguide parameter γ depending

on frequency, some novel e�ects can be explored based on the generalized

NLS equation[1]. As we all know, the �rst-order dispersion of nonlinearity

(γ1 = dγ/dω) gives intensity-dependent correction to the group velocity. It

is responsible for the self-steepening of pulses. Self-steepening leads to an

asymmetry in the SPM-broadened spectra of ultrashort pulses[1]. In subwave-

length waveguides, the self-steepening e�ect can be signi�cantly enhanced due

to the geometrical contribution to the dispersion of nonlinearity [88, 87, 111].

More than this, dispersion of nonlinearity resulting from geometrical contribu-

tion causes much attention since many novel e�ects associated with nonlinear

dispersion have been found. Recently we derived a set of coupled equations

governing pulse propagation by using reciprocity theorem[2] and identi�ed the

novel mechanism of MI of a constant-amplitude wave, mediated by the disper-

sion of nonlinearity in subwavelength waveguides[126]. We also introduced a

simple phenomenological model describing this e�ect, which is based on the

generalized version of the NLS equation where the second-order dispersion of

nonlinearity term is included (γ2 = d2γ/dω2). Similar models have been con-

sidered recently in the context of ultrashort pulse dynamics in �bers [135, 131],

beam propagation in nonlinear photonic crystals[130], pulse dynamics in non-

linear metamaterials [136], and dynamics of Bose�Einstein condensate of dipo-
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lar atoms in a periodic potential [137].

It must be emphasized, that for the Kerr-type nonlinear response of a

medium (the most common in optics), the nonlinear process involves four

photons at di�erent frequencies (four wave mixing process). Therefore, the

nonlinear parameter γ should rely on four frequencies of all the interacting

waves, rather than single frequency dependence γ(ω) as in the above NLS

models.[90, 86, 87, 126]. Conveniently, to obtain the wave equation for the

slowly varying amplitude, we can work in the frequency domain by treating pNL
as a small perturbation. However, as we presented in chapter 3, the resulting

model that describes evolution of individual harmonics with the propagation

distance, the harmonic propagation (HP) model, contains a network of nonlocal

nonlinear interactions[87, 126]. Also, this approach gives us little intuition on

why and where such behavior can be expected.

In this chapter, we demonstrate that the HP model ,which is derived from

Maxwell equations following the standard perturbation expansion procedure[90,

88, 86], can be reduced to the generalized NLS equation with higher order dis-

persion terms and nonlinear dispersion terms[138] (more details see below).

The only assumption which allows this reduction is the factorization of the

four-frequency dependence of nonlinear coe�cients in HP model. Having ana-

lyzed di�erent semiconductor subwavelength waveguide geometries, we found

that this factorization approximates well the actual four-frequency dependen-

cies in a wide range of wavelengths.

4.1 Factorization approximation

Below, we introduce the factorization of nonlinear coe�cients and compare

with the actual full coe�cients Γ. In chapter 2, we derived the equation 2.3.18

which can fully describe pulse propagation with the dispersion of nonlinearity

in sub-wavelength waveguides. The full coe�cient Γ has the form:

Γnklm =
ε0√

InIkIlIm
×
ˆ
A

χnklmς(r̂)dA,
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ςnklm = ρ(r̂)[(e∗n · em)(e∗l · ek) + (e∗n · ek)(e∗l · em) + (e∗n · e∗l )(ek · em)] (4.1.1)

+3(1− ρ(r̂))
∑
i=x,y,z

e∗niekie
∗
liemi. (4.1.2)

The geometrical dispersion of nonlinearity is accounted for by the coe�cients

ςnklm in equation 4.1.1. Notably, de�nition of these coe�cients involves overlap

integrals with modal pro�les at di�erent frequencies. We note that ςnklm are

invariant under all permutations of indices[3] that preserve the condition n−
k + l −m = 0: ςnklm = ςlknm = ςnmlk = ςmlkn = ςknml = ςmnkl. However, even

with the account of the above symmetry, description of a broadband signal

evolution within the HP model in equation 2.3.18 remains to be a challenging

computational task due to the large number of nonlinear coe�cients to be

computed. Considering the above permutation symmetry resulting from the

Si's symmetry, a signi�cant reduction can be made by assuming factorization

of nonlinear coe�cients:

Γnklm = gngkglgm, gn = Γ1/4
nnnn. (4.1.3)

To prove our approximation, we test it by the direct comparison with the

original coe�cients obtained from equation 4.1.1. The relative error is de�ned

as:

∆ = |Γnklm − gngkglgm|/Γn

For 300nm × 500nm AlGaAs waveguide (the AlGaAs waveguide geometry

shown in Figure 4.1.1), Figure 4.1.2 shows the relative error ∆ plotted in the

plane of parameters δk,l = (ωk,l − ωn)/ωn for the �xed ωn ≈ 1.13 × 1015rad/s

(λn = 2πc/ωn = 1.665µm). It should be noted that the fourth frequency ωm
is determined by the resonance condition in equation 2.3.18. The discrepancy

between the factorized coe�cient Γ (equation 4.1.3) and the full coe�cient Γ

(equation 4.1.1), remains to be small,∆ < 10−1, within a large window of fre-

quency detunings (δk = 0.25 corresponds to δλ ≈ 0.5µm). We have obtained

similar results for other �xed values of ωn. For the silicon waveguide (geome-

try shown in Figure 4.5.1), we repeated the above calculations and comparison

and the same conclusion has been obtained. All of the tests that we did so far
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Figure 4.1.1: Geometry and pro�le of the quasi-TE guided mode in subwave-
length AlGaAs waveguide with cross-section 300nm×500nm suspended in air
for λ0 = 1.665µm.

manifest that our approximation (factorization of nonlinear coe�cients) is rea-

sonable and can give us consistent results. Note that certain one-dimensional

subsets of coe�cients with δk = δl, δk = 0, δl = 0 enter the condition of MI of

the constant amplitude pump at the frequency ωn, as will be discussed in the

next section. Further comparison between the corresponding factorized and

full coe�cients G is illustrated in Figure 4.1.4.

4.2 Pulse propagation equation

Based on our factorization of nonlinear coe�cients, the equation 2.3.18 can be

reduced to a single generalized NLS. Firstly, replacing coe�cients Γnklm with

their factorized analogs and changing to variables :

An = (g0/gn)Ψn, (4.2.1)
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Figure 4.1.2: Relative error ∆ for the AlGaAs waveguide with cross-section
300nm× 500nm as in Figure 4.4.1 and the �xed frequency ωn = 2πc/λn, λn =
1.665µm, see text for details.
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Figure 4.1.3: The plots of nonlinear coe�cients Γ entering the necessary
condition of MI [see equation 4.3.5] calculated for AlGaAs waveguide at
λp = 1.665µm (a) and SOI waveguide at λp = 2.2µm (b). Dashed curves
show their factorized approximations, see Equation 4.1.3.
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where g0 = Γ
1/4
0 corresponds to a reference frequency ω0, thus the equation

2.3.18 becomes:

i∂zΨω = −βωΨω −
γ̃ω
2π

ˆ ˆ
Ψω1Ψ

∗
ω2

Ψω3dω1dω2, (4.2.2)

where the modi�ed nonlinear coe�cient is given by:

γ̃ω = ω
√

Γ0Γω. (4.2.3)

It is instructive to note that the equation 4.2.2 possesses two integrals of

motion[137]:

P =

ˆ
ω|Ψω|2

γ̃ω
dω = const.,

N =

ˆ
|Ψω|2

γ̃ω
dω = const.

They are very useful for monitoring the accuracy of numerically integrating

the equation 4.2.2. In particular, in terms of the original harmonic ampli-

tudes An, these integrals correspond to the energy and the number of photons,

respectively.

By assuming polynomial �ts of the linear and nonlinear dispersion coe�-

cients in the equation 4.2.2:

β(ω = ω0 + δ) =

ND∑
n=0

(1/n!)βnδ
n

γ̃(ω = ω0 + δ) =

NG∑
n=0

(1/n!)γ̃nδ
n,

using the inverse Fourier transform:

ψ(z, t) =
1√
2π

ˆ
Ψω(z)e−i(ω0+δ)tdδ

and transforming into the rotating and moving frame[1] by introducing

ψ(z, t) = a(τ = t− β1z, z)eiβ0z,
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Figure 4.2.1: Modi�ed nonlinear coe�cient γ̃ for AlGaAs waveguide; see
equation 4.2.3. Dashed curve shows the conventional nonlinear coe�cient
γ = ωΓωfor the same waveguide.

Eventually, we obtain the following pulse propagation equation:

i∂za = −D̂(i∂τ )a− Ĝ(i∂τ )(|a|2a) (4.2.4)

D̂(i∂τ ) =

ND∑
n=2

βn
n!

(i∂τ )
n (4.2.5)

Ĝ(i∂τ ) =

NG∑
n=0

γ̃n
n!

(i∂τ )
n. (4.2.6)

The equation 4.2.4 allows us to describe the pulse dynamics and parametric

frequency conversion processes in subwavelength waveguides without comput-

ing the overlap integrals. Unlike the method proposed in[87], our approach

does not require performing computationally heavy procedure of Taylor ex-

pansion of the modal pro�le frequency dependence, and is not limited by the

narrow spectral width (quasi- CW) approximation.

It should be emphasized that the factorization of coe�cients Γnklm in equa-

tion 4.1.3 is the only approximation made to derive the above generalized NLS

equation 4.2.4. The dispersion of nonlinearity operator Ĝ in equation 4.2.4
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and 4.2.6 is related to the modi�ed nonlinear coe�cient γ̃(ω), which is obvi-

ously di�erent from the conventional nonlinear coe�cientγ = ωΓω[90, 1], see

equation 4.2.3. Figure 4.2.1 shows the di�erences between γ (conventional

nonlinear coe�cient) and γ̃ using equation 4.2.3. If a narrowband signal is

considered, the polynomial expansion coe�cients γ̃ncan be replaced by the

standard Taylor coe�cients:

γ̃tn = dnγ̃/dωn = dn(ω
√

Γ0Γω)/dωn. (4.2.7)

One can relate these coe�cients to the corresponding Taylor expansion coe�-

cients of the functionγ. γtn is given by:

γtn = dnγ/dωn = dn(ωΓω)/dωn (4.2.8)

For the �rst three coe�cients we obtain:

γ̃0 = γ0 (4.2.9)

γ̃1 =
1

2
(
γ0

ω0

+ γ1) (4.2.10)

γ̃2 =
γ2

2
− (γ1 − γ0/ω0)2

4γ0

(4.2.11)

Figure 4.2.2 demonstrates that the values of γ̃1 and γ̃2 from our approach are

smaller than values of γ1and γ2, respectively, while pump wavelength moves

towards large wavelength, which implies that one should obtain higher gain

(see equation 4.3.10) under the same initial power p if a gerneralized NLS

equation[1] is employed.

We should note that, when geometrical dispersion of nonlinearity is absent,

which means γ̃i>1 = 0, the �rst-order dispersion coe�cient γ̃1 is reduced to the

standard self-steepening term [1]: γ̃1 = γ0/ω0.

To analyze the role of dispersion of nonlinearity in ultrashort pulse dy-

namics and parametric frequency conversion, the pulse propagation equation

4.2.4 is investigated below. In our modeling, by using equation 4.1.1, we com-

puted coe�cients Γω (see Figure 4.1.3) from modal pro�les which, together
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Figure 4.2.2: Modi�ed Taylor expansion coe�cients γ̃1 and γ̃2 as function of
pump wavelength for AlGaAs waveguide; see equation 4.2.7. Dashed curve
shows the Taylor expansion coe�cients γ1 and γ2 for the same waveguide; see
equation 4.2.8.

with the corresponding propagation constants β(ω), were obtained with the

help of a commercially available Maxwell solver package. Equation 4.1.1 was

then numerically integrated by the standard split-step procedure [1], where

the nonlinear step was computed in frequency domain by the fourth-order

Runge�Kutta method. Finally, the output �eld was converted to the modal

amplitudes A by applying the scaling in frequency domain, see equation 4.2.1.

4.3 Modulation instability for pulse wave induced

by dispersion of nonlinearity

MI is a well known and widely studied in �bers and waveguides because

of its potential applications. As discussed in chapter 2, For focusing Kerr

nonlinearity[1], the MI gain has the form: g =
√
γpδβ − 1

4
δβ2 , where γ is

the nonlinear parameter, and p is the pump power, and δβ is linear phase

mismatch. One can see that the gain exists within 0 < δβ < 4γp . δβ can

be rewritten as: δβ = −2
∞∑

m=2,4...

βm(ωp)

m!
Ωm. Note that only the even order

dispersion terms have in�uence on the MI condition. In particular, if β2 is

dominant, then MI gain requires that GVD is anomalous. It should be noted

that the higher even order dispersion terms can lead to MI gain, which occurs in

the large frequency o�set, when we operate the wavelength within the normal
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Figure 4.2.3: (a) group velocity dispersion, conventional MI is possible in
the range of anomalous GVD, β2 < 0. Shaded area indicates the region of
unconventional MI due to the dispersion of nonlinearity. (b) Condition for
γ− < 0, see equation 4.3.12.

GVD regime[104]. In this case, although β2 is positive, the higher even order

dispersion terms makes δβ > 0. On the other hand, MI research was extended

to a NLS equation with self-steepening term and Raman nonlinearity. They

both have impact on MI gain and condition[142]. Here, we only consider the

parametric processes, in which the total energy of the interacting photons is

conserved. Therefore, any non-parametric e�ects, such as TPA, Raman e�ect

have been disregarded in what follows.

In this section, based on propagation equations 2.3.18 and 4.2.4, we exploit

the MI in two di�erent ways. The onset of MI can be analyzed and numerically

modeled by reduced HP model 2.3.18, which includes only three interacting

harmonics[126]. However, their mixing generally leads to generation of mul-

tiple higher-order harmonics, see Figure 4.4.1 (a). To model such process, it

is more convenient to use equation 4.2.4. Moreover, it allows one to identify

speci�c features of MI process when dealing with pulsed excitation. Below,

we compare the two models by considering three interacting harmonics, and

then proceed with numerical analysis of MI evolution with pulses by using the

equation 4.2.4.

By assuming the very weak signal and idler waves and a strong pump pulse,

reduced equation 2.3.18 can be written as :

i∂zAp = −βpAp − ωpΓp|Ap|2Ap (4.3.1)
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Figure 4.3.1: (a) δβ at pump wavelength λp = 1.665µm as functions of signal
and idler wavelengths. (b) calculated γ− for λp = 1.665µm from equation
4.3.11 by using Taylor expansion coe�cients of γ̃(ω), solid curve, and γ(ω),
dashed curve. Red circles correspond to γ− calculated from 4.3.6.

i∂zAs = −βsAs − 2ωsΓsp|Ap|2As − ωsΓ4A
2
pA
∗
i (4.3.2)

i∂zAi = −βiAi − 2ωiΓip|Ap|2Ai − ωsΓ4A
2
pA
∗
s (4.3.3)

where βp,s,i = β(ωp,s,i). For convenience, we take Γp = Γpppp,Γsp = ΓsppsΓip =

ΓippiΓ4 = Γspip = Γipsp. Assuming As, Ai ∼ eqz, parametric ampli�cation

occurs when g = Re(q) > 0. From equations 4.3.1-4.3.3, it is straightforward

to derive the corresponding condition of existence of MI and gain [126]:

4γ−|Ap|2 < δβ < 4γ+|Ap|2 (4.3.4)

g =
1

2
Re(

√
(4γ+|Ap|2 − δβ)(δβ − 4γ−|Ap|2)) (4.3.5)

γ± = (ωsΓsp + ωiΓip − ωpΓp ±
√
ωsωiΓ2

4)/2 (4.3.6)

In the absence of dispersion of nonlinearity, i.e., assuming all coe�cients Γ

in equation 4.3.6 to be equal, it is easy to see that γ− > 0, and therefore

MI is only possible when δβ > 0, which is the well-known textbook condition

[1]. In particular, if β(ω) can be approximated by a parabola in a vicinity of

ωp [i.e., βi>2 = 0 in equation 4.2.5, as we discussed above, the conventional
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MI condition can be recovered: β2 = ∂2
ωβ(ωp) < 0, which corresponds to

anomalous GVD, see Figure 4.2.3(a).

It should be pointed out that no gain is possible if the pump power P is

below the threshold pump power:

P > Pth = |δβ|/(4|γ−|). (4.3.7)

Recently, we identi�ed a novel mechanism supporting MI when δβ < 0 pro-

vided γ− < 0. Dispersion of nonlinearity is obviously responsible for this[126].

Note that Γ(ω) should be able to make γ−negative, which generally implies

γ̃2 = ∂2
ωγ̃ 6= 0 [126], see equation 4.2.3.

Di�erent coe�cients Γ entering the condition in equation 4.3.4 are plotted

for the AlGaAs and silicon waveguides in Figure 4.1.3(a) and (b), respectively.

Apparently, in both examples, factorization approximation works well in a wide

range of signal/idler wavelengths, and therefore one can bene�t from using the

more convenient for analysis pulse propagation equation 4.2.4.

In the presence of only �rst-order and second-order dispersions of nonlin-

earity in the equation 4.2.4, Expanding a as the sum for the pump, signal and

idler waves: a = ap(z)eiκpz +as(z)eiκsz−iδt+ai(z)eiκiz+iδt, where ap, as, ai stand

for pump, signal and idler waves and δ is frequency shift, and substituting

it into equation 4.2.4, After several calculations, for strong pump and small

signal and idler waves, we obtain the following equations:

i
∂as
∂z

= (−γ̃0 − γ̃1δ −
γ̃2

2
δ2)a2

pa
∗
i e
iδκz (4.3.8)

i
∂ai
∂z

= (−γ̃0 + γ̃1δ −
γ̃2

2
δ2)a2

pa
∗
i e
iδκz (4.3.9)

The growth rate of MI is given by:

g = Re

√
−1

4
δk2 + δk(γ̃0P + γ̃2Pδ2)− γ̃0γ̃2δ2P 2 − 3

4
γ̃2

2δ
4P 2 − γ̃2

1δ
2P 2

(4.3.10)

where P is the pump power and P = |Ap|2, and δk is linear mismatch. By ig-

noring all of the nonlinear dispersion terms, the conventional gain expression[1]

can be restored.
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To gain the direct insight, instead of calculating the �ve complex nonlin-

ear coe�cients, in chapter 2, by employing the minimal model 3.4.2, the MI

condition has the simple form: Γ− = 1
2
γ2Ω2 < 0. Therefore, the condition

transforms to: γ2 < 0. In the present work, it is obvious that γ−(δ = ωp − ωs)
is given by:

γ− =
γ̃0 + γ̃2δ

2 −
√

(γ̃0 + γ̃2δ2

2
)2 − γ̃2

1δ
2

2
(4.3.11)

From this expression, one can see that the MI gain is crucially determined by

the sign of γ̃2 , and γ̃1 doesn't a�ect the gain condition. we derive that γ− is

always negative for small enough detunings δ, provided the following condition

is satis�ed:

G =
γ̃0γ̃2

γ̃1

< −1 (4.3.12)

For the typical case of focusing Kerr nonlinearity, the nonlinear coe�cient is

positive: γ̃0 > 0, and therefore the above condition implies, in particular, that

γ̃2 < 0. While only one coe�cient Γω is needed to compute the modi�ed non-

linear coe�cient γ̃, see Equation 4.2.3, the condition in equation 4.3.12 is much

more convenient for analysis of MI, as compared to the direct computation of

γ− from equation 4.3.6.

In the following section, As an example, we consider a suspended 300nm×
500nms Al0.25Ga0.75A waveguide [126] with the geometry and pro�le of one of

the guided quasi-TE modes (dominant electric �eld component is oriented hor-

izontally) shown in Figure 4.1.1. As we know, AlGaAs has a strong and instan-

taneous Kerr nonlinearity, and also the linear and two photon absorption[48,

129] are negligible when the operation wavelength is larger than 1.5µm. Figure

4.2.3 shows that the GVD is normal (β2 < 0) for λ > 1.659µm. The nonlinear

coe�cient γ̃ is shown in Figure 4.2.1. Analysis of the equation 4.3.12 indicates

possibility to observe MI in a wide window of wavelengths within the range of

normal GVD: 1.66µm < λ < 1.76µm, see Figure 4.2.3(b) and shaded area in

Figure 4.2.3(a). The plot of δβ as function of the signal and idler wavelengths

is shown in Figure 4.3.1(a). One can see that δβ is negative over the whole

range. It should be emphasized that, for δβ < 0, MI condition can be satis-

�ed only via the mechanism of dispersion of nonlinearity compensating for the

linear mismatch, which is independent from higher order dispersions of linear
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Figure 4.3.4: MI development with 100ps pulse excitation: (a) output spectra
in frequency domain after z = 0.4mm propagation distance. The pump, sig-
nal and idler wavelengths are: λp = 1.665µm, λs = 1.7µm, λi = 1.6314µm.
Thin solid curve corresponds to wavelength-independent nonlinearity, dotted
red/gray curve to self-steepening only, and thick solid curve to full dispersion
of nonlinearity. Pump peak power is 150W . The inset shows the MI at signal
wavelength 1.7µm. (b) Conversion e�ciency as a function of the pump peak
power. Full/open circles correspond to the full/self-steepening only dispersion
of nonlinearity. Full squares correspond to the same as full circles, but for
10ps pulse excitation. Vertical dashed line indicates the threshold power for
the case of three interacting waves [126]. The signal peak power is �xed to
0.1mW in all simulations.
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wave.

Choosing λp = 2πc/ωp = 1.665µm, we compute γ− by using the original

de�nition in equation 4.3.6 and the reduced expression in equation 4.3.11; both

appear to be in good agreement as shown in Figure 4.3.1(b). For comparison,

we also compute γ− by using the standard de�nition of the nonlinear coe�cient,

i.e., by replacing all γ̃i with γi in equation 4.3.11, see the dashed curve in

Figure 4.3.1(b). Apparently, the modi�ed nonlinear coe�cient, which has been

derived on the basis of the factorization approximation in equation 4.1.3, gives

a much better agreement with the original model in equation 2.3.18.

The computed coe�cient γ− is negative in the broad range of the sig-

nal and idler wavelengths. This result is consistent with the condition in

equation 4.3.12. While δβ is negative for the chosen pump wavelength, see

Figure 4.3.1(a), MI can be provided only through the mechanism related to

the dispersion of nonlinearity. Figure 4.3.2 shows the computed gain coef-

�cient g for the pump power of |Ap|2 = 150W . In this case, the max-

imum gain of g = 5000m−1 is achieved for the signal located at around

λs = 1.7µm (idler is at λi = 1.63µm). It is instructive to note that the

MI length is LML = 1/g ∼ 0.2mm. In our simulation, for the duration of pulse

T0 = 100ps, 10ps, , the dispersion length LD = T 2
0 /|β2| and the walk-o� length

LW = T0/|1/vg,s − 1/vg,i| between the signal and idler wave are both much

larger than the MI length, which ensure that our analytical approach can pro-

vide a good prediction. For pump wavelength λp = 1.665µm, the threshold

pump power Pth is computed and is shown in Figure 4.3.3 by using equations

4.3.6(red curve) and 4.3.11(black curve). They are considerably in agreement

with each other, which provides a further evidence about the MI predicted

by equation 4.2.4. It should be noted that the Pth = 115W for λs = 1.7µm

(λi ≈ 1.63µm).

While the condition in equation 4.3.6 was obtained under approximation

of three interacting harmonics, to analyze the role of �nite pump bandwidth

and higher harmonics excitation in the development of MI, the picosecond

sech pulse centered at wavelength 1.665µm with duration T0= 100ps and peak

power 150W is incident to waveguide together with a weak signal wave at

1.7µm with the same duration (peak power 0.1mW ). The signal pulse triggers

MI and is located at the wavelength for which the maximum gain is predicted
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when CW pump of the same power is used, see Figure 4.3.2. Such setup

corresponds to the case of seeded MI [139]and requires relatively short propa-

gation distances if compared to noise- or waveguide impurity-induced MI. The

orders of polynomial expansions of linear and nonlinear dispersion operators,

equations 4.2.5 and 4.2.6, were taken as ND = 11 and NG = 7, respectively,

providing with a good �t of numerically computed functions β(ω) and γ̃(ω)

across the range of wavelengths 1.4µm < λ < 2µm.

The output spectrum in frequency domain after the propagation distance

up to z = 0.4mm are demonstrated in Figure 4.3.4(a). Both signal and idler

are boosted in power due to the development of MI. To con�rm the impor-

tance of the dispersion of nonlinearity in this process, we repeated simulations

with the truncated versions of the nonlinear operator in 4.2.6 having NG = 0

(wavelength-independent nonlinearity) and NG = 1 (self-steepening only). In

both cases, the output signal and idler spectral peaks are similar (they are

nonzero because the signal is seeded) and signi�cantly lower than those with

the full dispersion of nonlinearity operator, see Figure 4.3.4(a).

To investigate the impact of peak power of the pulse on MI, we introduce

the conversion e�ciency η , which is de�ned as:

η =
pi,out
ps,in

where pi,out is the output power of idler wave and ps,in is the input power

of signal wave. In Figure 4.3.4(b) the conversion e�ciency [139] is plotted

as function of the pump pulse peak power. pi,out and ps,in, were computed

by the integration of the respective narrow frequency intervals. According to

the analytical estimation based on the three waves approximation, no gain is

possible below the threshold pump power Pth, while above this threshold the

gain increases with pump power [126]. For the chosen signal wavelength, from

Figure 4.3.3, we evaluate the threshold power to be Pth(λ = 1.7µm) = 115W ,

see the vertical dashed line in Figure 4.3.4(b). When using pulse excitation,

we found that the conversion e�ciency grows steadily with the pump power.

Note that if we keep the self-steepening type of dispersion of nonlinearity only,

the conversion e�ciency remains low at all powers, see open circles in Figure

4.3.4(b). This con�rms that the observed gain is due to the higher-order
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Figure 4.4.1: MI development with 10ps pulse excitation: (a) evolution of
the spectrum with propagation distance and (b) output signal in time domain
after the propagation distance of z = 0.8mm. The inset zooms in the cen-
tral region of the pulse, where formation of a periodic sequence of ultra-short
pulses is clearly visible. The pump/ seed peak power is 150W./0.1mW ; other
parameters are the same as in Figure 4.3.4.

dispersion of nonlinearity.

For shorter pulse durations we obtained qualitatively similar results, but

the conversion e�ciency becomes higher, see full squares in Figure 4.3.4(b).

This growth can be explained by the spectral broadening of the signal and

idler due to the self-phase modulation[1], which becomes more pronounced for

shorter pulses. The broadening e�ectively acts as a secondary seed, expanding

the range of seed/idler frequencies to be parametrically ampli�ed.

4.4 Frequency comb generation

As the signal (ωp + δ) and idler (ωp − δ) are ampli�ed continuously, the side-

bands at ωp ± δ eventually become strong and the perturbation becomes very

large. Therefore, as we know, the linear stability analysis is not valid. Evolu-

tion of the modulated state is then completely governed by the NLS equation

4.2.4. From Figure 4.4.1(a), one can see that their interaction with the pump

produces higher-order sidebands, which are located at ωp ±mδ (m = 2, 3, ...).

The process is repeated in the cascaded manner, eventually leading to the gen-

eration of a frequency comb. In time domain, this corresponds to the formation

of a periodic sequence of ultrashort pulses, see Figure 4.4.1(b).
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Figure 4.5.1: Geometry and pro�le of the dominant electric �eld component of
the quasi-TE guided mode in subwavelength SOI waveguide for λ0 = 2.3µm.

4.5 Spectral broadening in SOI waveguide

In this section, we discuss the impact of dispersion of nonlinearity on spectral

broadening of ultrashort pulses. This renowned phenomenon occurs in a wide

range of nonlinear media. Particularly in optical �bers, octave-wide spectral

broadening from a sub-picosecond pulse, optical supercontinuum, has been

studied for decades and applied to a range of �elds as the convenient tool for

generation of coherent radiation [140]. The theoretical foundation for spectral

broadening in optical �bers is well established nowadays; in particular, it is

recognized that the phenomenon occurs as the interplay between linear disper-

sion and nonlinearity. The broadest spectra are achieved by pumping near the

zero GVD wavelength, where the dispersion changes its sign from anomalous

to normal or vice versa [140].

Recently, spectral broadening and frequency conversion in SOI waveguides

has become a focus of research [141, 112]. High nonlinear coe�cient of silicon,

combined with strong and tunable dispersion of SOI nano-waveguides, ensures

nonlinear e�ects happening more e�ectively and over much shorter propagation

distances than in conventional �bers. However, silicon has strong two-photon

absorption (TPA) near the standard telecom wavelength of λ = 1.55µm[49],
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Figure 4.5.2: TPA rate in bulk silicon: experimental data adapted from [49]
(circles) and analytical �t used in our calculations (solid curve).

which brings major limitations to the nonlinear performance of SOI waveg-

uides. TPA can be characterized by the ratio αTPA of the real and imaginary

parts of the nonlinear susceptibility of silicon [88]:

χ(3) = χ(1 + iαTPA).

Figure 4.5.2 shows the experimental data for αTPA in bulk silicon (adapted

from [49]) together with a simple �t αTPA = 0.03/π.[arctan((ω−ωc)/ω)+π/2],

λc = 2πc/ωc = 2·1013s−1,used in our calculations. As one can see, TPA sharply

drops and becomes practically negligible beyond 2µm.

We choose the geometry of SOI waveguide shown in Figure 4.5.1. For

the selected waveguide dimensions, the quasi-TE mode has zero GVD at

λ ≈ 2.27µm, see Figure 4.5.3(a). By pumping near this wavelength, one should

expect to bene�t from a reduced TPA rate. Figure 4.5.4 illustrates spectral

broadening for the case of 100fs input sech pulse with the peak power of 100W

and central wavelength of λ0 = 2.2µm. This result was obtained by numerical

integration of equation4.2.4 with the wavelength-independent nonlinear coef-

�cient, i.e., NG = 0 in the expansion of the nonlinear operator in equation

4.2.6, and with no account of TPA. The spectrum evolves following the typ-
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Figure 4.5.3: (a) Calculated GVD and (b) nonlinear coe�cient (real part),
for the quasi-TE mode of SOI waveguide shown in Figure 4.5.1. Solid/dashed
curve in (b) corresponds to the modi�ed/conventional (γ̃/γ) nonlinear coe�-
cient. In numerical simulations, we used polynomial �ts of orders ND = 6 and
NG = 4 to reproduce β2(ω) and γ̃(ω)dependencies, respectively.

Figure 4.5.4: Spectral broadening in SOI waveguide pumped at λ0 = 2.2µm
by a 100fs pulse with 100W peak power. The result is obtained for the case of
wavelength-independent nonlinear coe�cient, γ̃ = Const., TPA is neglected.
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Figure 4.5.5: Spectral broadening in SOI waveguide: geometrical dispersion
of nonlinearity. Output spectra at z = 1mm calculated for the cases of
wavelength-independent nonlinearity γ̃ = Const. Const: (thin solid curve),
self-steepening nonlinearity γ̃ = ωΓ0 (dashed red/gray curve), and fully dis-
persive nonlinearity γ̃ = ω

√
Γ0Γ (thick solid curve). Input parameters are the

same as in Figure 4.5.4.

ical two-stage scenario [140]. At the �rst stage (0 < z < 0.7mm) spectrum

broadens symmetrically due to the self-phase modulation of the pulse. For

larger distances, the interplay between dispersion and nonlinearity becomes

important. This causes a considerable spectral asymmetry, with more power

being concentrated in the long-wavelength part of the spectrum.

After z = 1mm propagation distance, the output spectrum covers the wide

range of wavelengths 1.8µm < l < 2.6µm. According to our calculations, the

real part of the nonlinear coe�cient changes signi�cantly in this wavelength

range, see Figure 4.5.3(b). Also, a large part of the output spectrum falls into

the range of strong TPA. Therefore, both geometrical and material dispersions

of nonlinearity are expected to in�uence the spectral broadening process.

In Figure 4.5.5, output spectra are compared for three di�erent cases: with

constant nonlinear coe�cient, self-steepening only, and full geometrical dis-

persion of nonlinearity. TPA was disregarded in all these simulations. Self-

steepening enhances spectral asymmetry by lowering and shifting peak in the

short-wavelength part of the spectrum and separating the long-wavelength
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Figure 4.5.6: Spectral broadening in SOI waveguide: dispersion of TPA. Out-
put spectra at z = 1mm calculated for the cases of no TPA (thin solid curve),
wavelength-independent TPA αTPA ≡ 0.03 (dashed red/gray curve), and dis-
persive TPA (thick solid curve) as in Figure 4.5.2. Full geometrical dispersion
of nonlinearity is taken into account. Input parameters are the same as in
Figure 4.5.4.

edge spectral peak from the central three-peak structure formed during the

self-phase modulation stage. Geometrical dispersion further boosts the asym-

metry, especially enhancing features in the long-wavelength wing.

The e�ect of dispersion of TPA is summarized in Figure 4.5.6, where we

compare cases of no TPA, wavelength-independent TPA, and dispersive TPA.

As expected, inclusion of �at TPA rate αTPA ≡ 0.03 (Oviously, the part

of spectral in the short wavelength wing falls into the range of wavelengths

1.7µm < λ1.9µm, in which TPA is quite strong, see Figure 4.5.2. ) results in

overall shrinking of the spectrum. Perhaps more surprisingly, fully dispersive

TPA does not bring any noticeable spectral asymmetries and e�ectively acts as

a reduced �at TPA. The reason for that is in the link between short- and long-

wavelength wings of the spectrum, which has been analyzed in details in the

context of supercontinuum generation in �bers [140]. In particular, spectral

features in the normal GVD wing of generated supercontinua are generally de-

�ned by the positions and intensities of spectral peaks in the anomalous GVD

wing. Apparently, this relation holds in the equation2.3.18: while TPA a�ects
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mostly the short-wavelength wing of the spectrum (where GVD is anomalous),

the spectral peaks in the long-wavelength wing (normal GVD) change accord-

ingly.

4.6 Summary

Due to tight optical �eld con�nement in subwavelength waveguide, the disper-

sion of nonlinear response can be increased signi�cantly. Speci�cally, because

of the low nonlinear loss in AlGaAs waveguides, we demonstrated that the

MI exists for picsecond pulse under an appropriate threshold power, which

is arisend from dispersion of nonlinearity independently in the regime of nor-

mal group velocity dispersion, by using a generalized NLS equation 4.2.4 with

all the dispersion coe�cients including nonlinear contributions derived from

Maxwell equations following the perturbation expansion procedure by intro-

ducing factorization of the four-frequency dependence of the nonlinear coe�-

cients Γnklm. The factorization was tested on di�erent semiconductor waveg-

uide geometries and found to approximate well the actual coe�cients in the

wide wavelength ranges, although a careful analysis of the general conditions

of applicability of this approximation is still needed for future research.

Based on this model, the new MI gain and condition expressions have been

obtained. Also, our results indicate that spectral broadening of pulses due to

self-phase modulation plays an important role in the development of MI. In

particular, MI is observed for pump pulse peak powers well below the threshold

predicted for CW pump [126]. In addition, the conversion e�ciency becomes

higher when shorter pulses are used. Similar to the conventional MI, long-term

evolution of the dispersion of nonlinearity induced MI leads to the cascaded

generation of higher-order sidebands and associated formation of a sequence

of ultrashort pulses.

We also considered an impact of the dispersion of nonlinearity on spectral

broadening of short pulses in a SOI waveguide. We chose the geometry where

the zero of GVD is located at around λ = 2.27µm. Pumping by 100fs pulses

with 100W peak power in a vicinity of this wavelength, a considerable spec-

tral broadening can be observed with the output spectra spanning from 1.8

to 2.6µm. The nonlinear coe�cient changes signi�cantly in this wavelength
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range, causing clearly pronounced spectral asymmetries. Also, for silicon, the

ratio of TPA to Kerr coe�cients changes sharply around λ = 2.2µm , reaching

its highest rate of αTPA ≈ 0.03 below 1.9µm and being practically zero above

2.1µm. However, the account for dispersive imaginary part of the nonlinear

coe�cient does not introduce any noticeable additional asymmetry in the out-

put spectra, causing nearly even shrinkage and power loss on either side of the

spectrum. This counterintuitive result is explained by the internal link between

the edges of the spectrum, well analyzed in the context of optical �bers[140].

Although the long-wavelength wing remains in the range of negligibly small

TPA, its structure still changes accordingly with the short-wavelength wing,

the latter being a�ected by the strong TPA.
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Chapter 5

Modulation instability and

oscillating solitons in

dielectric-metal-dielectric

waveguides with PT-symmetry

MI is a well known phenomenon induced by nonlinearity in many branches of

physics[143]. in nonlinear optics, the small noise or perturbation rapidly en-

hances because of the interaction of nonlinearity and di�raction or dispersion.

Consequently, a constant amplitude pump wave or a broad optical beam decay

into pulse trains or optical �laments, respectively. It was found that MI can

lead to �oscillons� (or oscillating solitons) in granular[144] systems, and also it

is a mechanism behind the generation of rogue waves[145, 146, 147].

Recently, studies in quantum mechanics by Bender and co-worker demon-

strated that even non-Hermitian Hamiltonians can have entirely real spectra

provided they obey parity-time (PT) symmetry[148]. Generally, the action

of the parity P and time T operators is de�ned as p̂ → −p̂, x̂ → −x̂ and

p̂ → −p̂, x̂ → x̂, i → −i ( here, p̂,x̂ stand for momentum and position opera-

tors, respectively). It was found that Hamiltonian Ĥ = p̂2/2m + V (x̂) is PT

symmetric if the condition V (x̂) = V ∗(−x̂) is satis�ed, where V is the potential

and m is mass. In other words, PT symmetry requires that the real part of the

potential V is an even function of position x , while the imaginary part is odd,

which means that the Hamiltonian has the form Ĥ = p̂2/2m+VR(x̂)+ iεVI(x̂),
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where VR and VI are the symmetric and antisymmetric functions, respectively.

One can see that the Hamiltonian is Hermitian only when ε = 0.

Optics provides an appropriate platform in which PT concept from quan-

tum mechanics can be realized analytically and experimentally. In particular,

the quantum mechanical Schrodinger equation is equivalent to the pulse propa-

gation equation and the real and imaginary parts of the index of refraction can

be manipulated. Based on these considerations, we can design a PT-symmetric

system by satisfying nR = nR(−x), nI = −nI(−x). Such PT-symmetric system

�rstly has been achieved in optical coupler with balanced gain and loss[149]

and in the temporal lattices[150]. The intriguing properties of PT symmetry

causes extensive interests in theory and experiment[151, 152, 153, 154, 155,

156, 157, 158, 159, 160, 161, 162, 163, 164, 165]. Light in a linear couplers

with PT-symmetry propagates in a non-reciprocal manner[149]. Beam dy-

namics (especially, Bloch oscillation and discrete di�raction) in PT-symmetric

lattices has been investigated[151, 152, 153, 154, 155]. By considering the non-

linearity of the waveguides, the optical soliton[166, 167, 168] in di�erent PT

potentials and breathers[165]in optical couplers have been observed theoret-

ically. Therefore, these experimental and theoretical works discussed above

suggest that such dielectric waveguides with PT-symmetry can be used for

light controlling.

Lately, due to the ability to manipulate light in a nanometer size regime

and a great deal of applications from nanoscale photonic devices to biologi-

cal sensors[171, 172], in dielectric-metal (plasmonic) systems, surface plasmon

polaritons (SPPs), which are exponentially localized, are explored extensively.

The stable spatial plasmon soliton excited below the surface plasmon frequency

has been demonstrated by using Ginzburg-Landau equation in dielectric-metal

waveguides with gain and loss[177, 178, 179]. On the other hand, speci�cally,

the localized surface plasmon resonances (localized SPPs) have been excited

by direct illumination using arrays of plasmonic nanotubes[173, 174]. Further-

more, for a nanoparticle chain driven by an optical �eld with the frequency

close to the frequency of the surface plasmon resonance of an individual par-

ticle, oscillating soliton (oscillon) has been found[175, 176].

Inspired by these works, it is natural to expect that the combination of

strong surface plasmon resonances and PT-symmetry may open up a new way
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for light manipulating. In this chapter, importantly, one assumption is made

by assuming that the localized SPPs can be described by two coupled equations

(see below). Based on these equations, we investigate the temporal evolutions

of fundamental and one-ring solitary waves with phase dislocation in dielectric-

metal-dielectric waveguides with PT-symmetry and numerically analyze the

properties of these nonlinear localized modes and reveal di�erent scenarios

of their instability. In particular, we demonstrate that the stable oscillating

soliton and long-lived breather do exist over a wide range of parameters ( see

below for details).

5.1 Model and stationary solutions

As mentioned above, SPPs are guided along metal-dielectric interfaces and can

be created through the coupling of the light to oscillations of the conductor's

electron plasma. There are two kinds of SPPs depending on how they are

excited. One is the SPPs propagating at a interface excited at frequencies

below the surface plasmon frequeny ωsp[177, 180]. The model describing prop-

agating SPPs has been derived in di�erent geometries by taking into account

the full vectorial nature of the guided waves[177, 179, 181]. The other one is

the localized SPPs[133, 180] excited at frequencies close to ωsp. In particular,

in the absence of damping of the conduction electron oscillation[180], as the

frequency approaches ωsp, the wave vector β goes to in�nity and the group

velocity vg tends to 0, which implies that the SPPs is con�ned to the inter-

face without propagating. Here, in the case of localized SPPs, to demonstrate

the dynamics of the self-trapped beams in sandwich waveguides composed of

two dielectric layers with gain and loss and a thin metal stripe where SPPs

at the two interfaces are coupled, which is schematically depicted in Figure

5.1.1(a), two coupled equations, which describe the temporal evolution of lo-

calized SPPs, are employed. By scaling our variables carefully, we obtain the

following dimensionless form:

iUt + Uxx + Uyy +
|U |2U

1 + α|U |2
= −V + iγU
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iVt + Vxx + Vyy +
|V |2V

1 + α|V |2
= −U − iγV (5.1.1)

Here t is the temporal coordinate and x and y are the transverse coor-

dinates. The in-plane di�raction of SPPs happens along x and y directions,

see Figure 5.1.1(a). α is a saturation parameter and by taking α = 0, Kerr

nonlinearity can be recovered. The U and V variables are the normalized

complex amplitudes. In the right-hand side of equation 5.1.1, the �rst terms

describe the coupling between two modes through the overlap of their tails.

The second terms account for the balanced gain in the top layer and loss in

the bottom layer, which explains how the PT-symmetry can be achieved by

properly choosing the complex refractive index[149].

It should be noted that one can �nd stable solitons within certain area em-

ploying Kerr nonlinearity in two dielectric layers when the in-plane di�raction

of SPPs happens along x or y direction[169]. However, for Kerr nonlinear-

ity, by extending the system to include two di�raction directions, we found

that stationary solutions are unstable in the whole parameter plane of a and

γ (see Figure 5.3.1). Therefore, in this work, we only focus on self-focusing

saturable nonlinearity. Before we start our analysis, we should note that, in

this dissipative system, the individual powers and total power are both not

conserved if γ 6= 0. However, they can provide very useful information for the

understanding of the soliton and MI, therefore we write these two expressions

here for convenience:

PU =

¨
|U |2dxdy, PV =

¨
|V |2dxdy (5.1.2)

PT = PU + PV (5.1.3)

Below, in order to obtain the stationary solutions in sandwich waveguides

with saturable nonlinearity, it is convenient to introduce the polar coordinate

and �nally we arrive at:

i
∂U

∂t
+
∂2U

∂r2
+

1

r

∂U

∂r
+

1

r2

∂2U

∂ϕ2
+
|U |2U

1 + α|U |
= −V + iγU
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Figure 5.1.1: (a) A schematic of dielectric-metal-dielectric structure with gain
(top layer) and loss (bottom layer). (b) Plot of the �eld amplitude Ψ(r) for
m = 0, 1, 2, and γ = 0.4, a = 1.0409, α = 0.1.
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Figure 5.1.2: Plots of power PU,V for fundamental solitons as function of a and
γ. The values of parameters are as follows: (a), γ = 0.4; (b),Ω = 1.5 . Note
that cos θ > 0 for both plots.
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∂2V
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+

1

r

∂V

∂r
+

1

r2

∂2V

∂ϕ2
+
|V |2V

1 + α|V |2
= −U − iγV (5.1.4)

We make a transformation by using the following form[169]:

U(r, ϕ, t) = ei(Ωt−θ)u(r)eimϕ, V (r, ϕ, t) = eiΩtv(r)eimϕ (5.1.5)

where θ is a constant satisfying γ = sin θ and Ω is a real parameter. m must

be integer. For the ground state, there is no phase singularity, thus, m = 0.

Substituting 5.1.5 to 5.1.4, the resulting coupled equations in polar coordinate

are:

−Ωu+
∂2u

∂r2
+

1

r

∂u

∂r
− m2

r2
u+

|u|2u
1 + α|u|

= −v cos θ + iγ(u− v)

− Ωv +
∂2v

∂r2
+

1

r

∂v

∂r
− m2

r2
v +

|v|2v
1 + α|v|2

= −u cos θ + iγ(u− v) (5.1.6)

Furthermore, to �nd a special stationary solution, we assume u = v = Ψ.

Therefore, the equations 5.1.6 are reduced to the scalar nonlinear Schrodinger

equation:

∂2Ψ

∂r2
+

1

r

∂Ψ

∂r
− m2

r2
Ψ− a2Ψ +

|Ψ|2Ψ

1 + α|Ψ|
= 0, (5.1.7)

where a2 = Ω − cos θ. Note that, according to the sign of cosθ, the station-

ary solution of equation 5.1.7 can be classi�ed into two families. One has

cosθ =
√

1− γ2 > 0; the other one has cosθ = −
√

1− γ2 < 0. It should

be stressed that only when γ < 1, these two families solutions could exist.

Assuming that this restriction always holds, equation 5.1.7 was solved nu-

merically using Newton method. Typical pro�les of Ψ for di�erent values

of m are presented in Figure 5.1.1(b). In addition, for fundamental solu-

tions, Figure 5.1.2 shows that the power PU,V increases with a and γ when

cos θ > 0. We also found two-, three-, and many-ring solutions with or with-

out a central phase singularity. However, in this work, currently, we only

concentrate on the ground state and one-ring solution with a phase singularity
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at the center. As we know, based on equation 5.1.7 (in conserved systems),

numerical simulations and analytical method through applying the Vakhitov-

Kolokolov stability criterion[5, 170] indicate that all of the ground states in

the saturable media are stable. Also, all higher-order solitons (soliton with

one or two or many rings) are not stable although the saturable nonlinear-

ity can suppress the instability[182]. In the Hamiltonian systems, because

of an azimuthal symmetry-breaking instability, it was shown that, theoret-

ically, the ring-shaped solitons break up into mutiple fundamental solitons

depending on topological charge m[170, 183, 184, 185]. This kind of insta-

bility has been observed experimentally in Kerr-type and quadratic nonlinear

media[186, 187, 188]. Our aim in next section is to numerically investigate the

stability of these special solutions 5.1.5 (solutions with or without phase dis-

location) in dielectric-metal-dielectric waveguides with saturable nonlinearity

for dissipative system.

5.2 Linear stability analysis

The stationary solutions are not necessarily stable. Therefore, one should

study how they react to small perturbation. The linear stability analysis is

well established for the models similar to ours[5]. Below, we follow the normal

procedure as described in Refs.[5]to analyze the stability of the stationary

solutions obtained by numerically solving the equation 5.1.7.

To identify the stability of the two families of solitons, we consider the

small perturbations of the stationary solution:

U(r, ϕ, t) = Ψ(r) + δU(r, ϕ, t), V (r, ϕ, t) = Ψ(r) + δV (r, ϕ, t) (5.2.1)

and linearize the equations 5.1.4 in δU and δV . The following coupled equa-

tions are obtained:
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i
∂δU

∂t
+
∂2δU

∂r2
+

1

r

∂δU

∂r
− m2

r2
δU +

1

r2

∂2δU

∂ϕ2
+

2im

r2

∂δU

∂ϕ
− ΩδU +

Ψ2δU

1 + αΨ2

+
Ψ2δU

(1 + αΨ2)2
+

Ψ2δU∗

(1 + αΨ2)2
= − cos θδV + iγ(δU − δV ) (5.2.2)

i
∂δV

∂t
+
∂2δV

∂r2
+

1

r

∂δV

∂r
− m2

r2
δV +

1

r2

∂2δV

∂ϕ2
+

2im

r2

∂δV

∂ϕ
− ΩδV +

Ψ2δV

1 + αΨ2

+
Ψ2δV

(1 + αΨ2)2
+

Ψ2δV ∗

(1 + αΨ2)2
= − cos θδU + iγ(δU − δV ) (5.2.3)

It is convenient to make a transformation by using the symmetric and anti-

symmetric combinations:

p = δU + δV, q = δU − δV.

Hence, the new form of linearized equations 5.2.2 and 5.2.3 are given by:

i
∂p

∂t
+
∂2p

∂r2
+

1

r

∂p

∂r
− m2

r2
p+

1

r2

∂2δU

∂ϕ2
+

2im

r2

∂p

∂ϕ
− Ωp+

Ψ2p

1 + αΨ2

+
Ψ2p

(1 + αΨ2)2
+

Ψ2p∗
(1 + αΨ2)2

= − cos θp+ 2iγq (5.2.4)

i
∂q

∂t
+
∂2q

∂r2
+

1

r

∂q

∂r
− m2

r2
q +

1

r2

∂2q

∂ϕ2
+

2im

r2

∂q

∂ϕ
− Ωq +

Ψ2q

1 + αΨ2

+
Ψ2q

(1 + αΨ2)2
+

Ψ2q∗
(1 + αΨ2)2

= cos θq (5.2.5)

The general solution of the linearized problem for p and q can be expressed as a

superposition of azimuthal Fourier modes e±iJθ (J = 0, 1, 2 · · · ) with complex

coe�cients depending on r and t. Therefore, we set:

p = p+(r) exp(νt+ iJϕ) + p∗−(r) exp(ν∗t− iJϕ) (5.2.6)
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q = q+(r) exp(νt+ iJϕ) + q∗−(r) exp(ν∗t− iJϕ). (5.2.7)

Substituting equations 5.2.6 and 5.2.7 into 5.2.4 and 5.2.5, the eigenvalue prob-

lem can be given by:

iν
−→
P =


Lp+

Ψ2

(1+αΨ2)2
2iγ 0

−Ψ2

(1+αΨ2)2
Lp− 0 −2iγ

0 0 Lq+
Ψ2

(1+αΨ2)2

0 0 −Ψ2

(1+αΨ2)2
Lq−

−→P (5.2.8)

where the operators can be written as:

Lp+ = −(
∂2

∂r2
+

1

r

∂

∂r
− (J +m)2

r2
− Ω +

Ψ2

1 + αΨ2
+

Ψ2

(1 + αΨ2)2
)− cos θ

Lp− =
∂2

∂r2
+

1

r

∂

∂r
− (J −m)2

r2
− Ω +

Ψ2

1 + αΨ2
+

Ψ2

(1 + αΨ2)2
+ cos θ

Lq+ = −(
∂2

∂r2
+

1

r

∂

∂r
− (J +m)2

r2
− Ω +

Ψ2

1 + αΨ2
+

Ψ2

(1 + αΨ2)2
) + cos θ

Lq− =
∂2

∂r2
+

1

r

∂

∂r
− (J −m)2

r2
− Ω +

Ψ2

1 + αΨ2
+

Ψ2

(1 + αΨ2)2
− cos θ

and

−→
P =


p+

−p−
q+

−q−

 .
In order to eliminate the singularity where the operators Lp+, L

p
−, L

q
+, L

q
− tend

to in�nity when r = 0, we introduce:

p+ = x1(r)r|m+J |, p− = x2(r)r|m−J | (5.2.9)
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q+ = x3(r)r|m+J |, q− = x4(r)r|m−J | (5.2.10)

iν
−→
X =


L1

+
Ψ2r|m−J|−|m+J|

(1+αΨ2)2
2iγ 0

−Ψ2r|m+J|−|m−J|

(1+αΨ2)2
−L2

− 0 −2iγ

0 0 L3
+

Ψ2r|m−J|−|m+J|

(1+αΨ2)2

0 0 −Ψ2r|m+J|−|m−J|

(1+αΨ2)2
−L4

−

−→X
(5.2.11)

where

L1
+ = − ∂2

∂r2
− 2|J +m|+ 1

r

∂

∂r
+ Ω− Ψ2

1 + αΨ2
− Ψ2

(1 + αΨ2)2
)− cos θ

L2
− = − ∂2

∂r2
− 2|J −m|+ 1

r

∂

∂r
+ Ω +− Ψ2

1 + αΨ2
− Ψ2

(1 + αΨ2)2
− cos θ

L3
+ = − ∂2

∂r2
+

2|J +m|+ 1

r

∂

∂r
+ Ω− Ψ2

1 + αΨ2
− Ψ2

(1 + αΨ2)2
) + cos θ

L4
− = − ∂2

∂r2
− 2|J −m|+ 1

r

∂

∂r
+ Ω− Ψ2

1 + αΨ2
− Ψ2

(1 + αΨ2)2
+ cos θ

and

−→
X =


x1

−x2

x3

−x4

 .
The equation 5.2.11 can be solved numerically. We reduce equation 5.2.11 to

an algebraic eigenvalue problem by replacing the di�erential operators with

the second-order �nite di�erences. For large value of r,
−→
X tends to 0, and

appropriate boundary conditions at r = 0 are given by equations 5.2.9 and

5.2.10. Although the equation 5.2.11can be applied for investigating the �la-
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ment dynamics after ring breakup[170], in this work, we mainly focus on the

MI of fundamental solitons (m = 0,or without phase singularity).

The numerical study of eigenvalue problem 5.2.11 o�ers a direct information

about where the stable fundamental soliton can be expected. Figure 5.3.1

presents this results. For cosθ > 0, we found that the eigenvalues ν are zeros

below the solid blue line, which means that the stationary solutions do not

grow exponentially with time. Above the solid blue line, the eigenvalues ν

are real numbers, and consequently, the solutions are unstable. Note that,

for cosθ < 0, the solitons are all not stable based on linear stability analysis

and direct numerical simulation. In contrast, the unstable eigenmodes have

complex eigenvalues and the magnitude of real parts are much smaller than it

of imaginary parts. We also found that the lifetimes of the solitons with small

values of a (in Figure 5.3.8, below the dashed line with circles numerically

found by using equations 5.1.1) are very long. Therefore, in practice, they can

be observed.

5.3 Time evolution of solitons

To further identify the stable soliton and unstable soliton and test the results

of our stability analysis obtained above, we performed considerable numerical

simulations of equations 5.1.1 with initial conditions in the form:

U(r, ϕ) = e−iθu(r)eimϕ(1 + s · random),

V (r, ϕ) = v(r)eimϕ(1 + s · random), (5.3.1)

where random is the complex function consisting of real and imaginary parts

which are evaluated by the standard uniform distribution on the open interval

(0, 1) and s is a constant. Simulation was carried out by using equations

5.1.1 on the rectangular grid with 512 × 512 grid points along the x and y

coordinates, respectively. As we know, generally the instability gets stronger

for α → 0 and it could be suppressed when α gets larger[189, 190]. It should

be noted that, in our simulations, we take α = 0.1.
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Figure 5.3.1: Plot of a as function of γ. The dashed curve with circles directly
obtained by simulating the equations 5.1.1 with initial conditions 5.3.1 and the
solid blue line based on linear stability analysis indicate the boundary between
stable soliton and unstable soliton (breakup of solitons). The star markers
represent breakup of solitons (see Figure 5.3.5). The triangular markers mean
di�raction of solitons (see Figure 5.3.4). The rectangular markers indicate
breather (see Figure 5.3.6). The circles indicates the stable oscillating soliton.
The parameter α = 0.1.

5.3.1 Solitons for cosθ > 0

A solution of equations 5.1.4 is stable if none of the eigenmodes of the linear

eigenvalue problem 5.2.11 grows exponentially. Soliton evolution with time is

modelled numerically. Figure 5.3.1 presents the presence of stable fundamental

soliton below the dashed line with circles and instabilities above the dashed

line with circles. Three kinds of scenarios of instabilities have been identi�ed.

Figure 5.3.2 shows the soliton evolution with time without initial noise.

We performed a number of numerical simulations using equations 5.1.1 with-

out initial noise. The solitons U and V almost stay unchanged apart from the

small variation of the peak of soliton, see Figure 5.3.2(b). It should be empha-

sized that the demarcation line between the stable and unstable area based

on numerical simulation is in agreement with the one from linear analysis (the

solid blue line in Figure 5.3.1). From Figure 5.3.3(d), one can see that the

individual power for U or V is a constant (the dashed grey line), which means

that the gain can completely compensate for the loss during the evolution.
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Figure 5.3.2: (a) The evolution of cross-sections of pulse along the time direc-
tion without adding noise. (b) Peaks of amplitude for U and V as function of
time t. The parameters are as follows: γ = 0.4, a = 0.2889, α = 0.1

To further examine the robustness of self-trapped fundamental PT modes

U and V , considerable simulations have been done by adding low (s = 0.01)

and high (s = 0.025) initial noises on amplitude and phase. Surprisingly,

although the cross-section and peaks of solitons all vary with time notably,

solitons can evolve stably for su�cient long time without any exponential de-

cay or growth, see Figure 5.3.3(a)(b). Figure 5.3.3(c) shows that the period

of peaks gets shorter whilst increasing the noise level. We should note that

the individual power PU and PV and total power PT have a very small �uctu-

ation along the time axis, see Figure 5.3.3(d). We assume that the power is

conserved and this kind of soliton is called oscillating soliton. It is found that

there is the small discrepancy between the dashed curve with circle obtained

by direct simulations with initial noise and solid blue line based on linear sta-

bility analysis (Figure 5.3.1). Notably, the stable area shrinks when one adds

noise on the system with PT symmetry. From our simulations, adding smaller

perturbations, we found that the border (dashed curve with circle) numerically

obtained approaches the one (solid blue line) from stability analysis.

Figure 5.3.4, 5.3.5 and 5.3.6 present the three scenarios of instabilities.

The triangular markers in Figure 5.3.1 represent the di�raction of the solitons,

which means that the soliton spread everywhere with time evolution. One of

examples is shown in Figure 5.3.4. the cross-sections of the U and V both
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Figure 5.3.3: (a) and (b) show the evolution of cross-sections of envelope U
along the time direction with γ = 0.4, a = 0.2889, α = 0.1 and initial noise (a)
s = 0.01, (b) s = 0.025 . by adding noise to the initial amplitude and phase, we
found that the oscillating soliton can propagate stably for long time. (c) Peaks
of amplitude U with initial noise s = 0.01(dot-dash curve) and s = 0.025 (full
red curve) as function of time t. (d) Horizontal dashed line mark the evolution
of power for U without noise with time. Dashed line with circles and red full
line indicate the individual power PV and PU , respectively, and the grey full
line represents the total power PT with noise s = 0.025.

103



Figure 5.3.4: (a) The evolution of the cross-sections of soliton for U with
γ = 0.1, a = 0.8397, α = 0.1. (b) Dot-dash line with circles and red full line
indicate the individual power for PV and PU , respectively, and the grey dashed
line represents the total power PT .

Figure 5.3.5: Breakup of the soliton for U with γ = 0.9, a = 0.5739, α = 0.1.
The insets indicate the cross-sections corresponding to t = 0, 79, 84, respec-
tively.
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Figure 5.3.6: The plot of evolution of breathers ( (a) U (b) V ) with time with
γ = 0.4, a = 2.0208, α = 0.1.
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Figure 5.3.7: Dot-dash line with circles and red full line indicate the individual
power PV and PU , respectively, and the grey dashed line represents the total
power PT . The parameters are same as in Figure 5.3.6.

di�ract, and at the same time, the peaks of U and V both decay with time.

The total power decreases at a speci�c point [Figure 5.3.4(b)].

In another scenario, the soliton blows up during the evolution. The star

markers in Figure 5.3.1 represent breakup of solitons. The power and peaks

of solitons all exponentially grow with time. However, the solitons U and V

break up in a symmetric way and the eight small �laments are distributed

symmetrically in the last stage (Figure 5.3.5).

In addition, the breakup of the unstable soliton results in the formation of a

long-lived breather (Figure 5.3.6). Like the results presented in reference[169]

and Figure 5.3.4(b), the component V (mode amplitude in the bottom waveg-

uides with loss) grows and U decreases in the very initial stage (t = 15− 19).

Their cross-sections vary with time periodically, but they never go back to ini-

tial state. Accordingly, the individual powers and total power show a periodic

behavior (Figure 5.3.7).

It is worth mentioning that the cross-section evolves stably in a periodic way

(Figure 5.3.2, 5.3.3, 5.3.6), and even after the breakup of solitons, the eight �l-

aments still could propagate periodically in time domain (Figure 5.3.5), which

implies that the stable oscillating soliton or breather is a common phenomenon

in the system with balanced gain and loss.
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Figure 5.3.8: the dashed curve with circle shows the boundary between the
long-lived soliton (eventually di�ract, see Figure 5.3.9) and splitting and mov-
ing of the soliton. The red stars mark the splitting of the soliton (see Figure
5.3.12) and the plus markers indicate the moving of the soliton (see Figure
5.3.10) in the same direction.

5.3.2 Solitons for cosθ < 0

To verify the predictions based on linear stability analysis, as we addressed

above, we carried out numerical simulations of solitons with a range of ampli-

tudes for di�erent gain-loss rate γ. The simulations of the whole γ regime are

summarized in Figure 5.3.8. The red stars indicate that the solitons split into

two breathers (Figure 5.3.12) and the plus markers represent that the insta-

bility of solitons leads to spontaneous motion of the two components U and V

in the same direction (Figure 5.3.10).

For one-dimensional case[169, 165] (only with x or y direction), the solitons

for cosθ > 0 and cosθ < 0 are both stable for su�ciently small a (below a �nite

threshold). Although the soliton with cosθ < 0 has unstable eigenvalue (also

its real part is exponentially small), the small-amplitude soliton doesn't show

any instability within the very long distance[165]. In contrast, in our case (for

cosθ < 0), numerically, we found that the U and V components with initial

noise both decay eventually. Therefore, the peaks of amplitudes U and V

decrease with time and the individual power PU and PV and total power PT
oscillates around the position of equilibrium, see Figure 5.3.9(b)(c)(d). On the

contrary, Figure 5.3.9(a)(c)(d) shows that, without noise, the soliton is stable
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within a very long time, and the peaks and powers keep almost unchanged.

For soliton with cosθ < 0, one of the scenarios of instability is shown in

Figure 5.3.10. The solitons start moving at t ≈ 60 in the same direction, and

transforming to breathers, followed by the decay of U and V . Figure 5.3.11

demonstrates that the individual powers and total power oscillate with time,

which is similar to variation of power in Figure 5.3.9(d) (the soliton both decay

eventually in these two cases).

The other observed instability of solitons is demonstrated in Figure 5.3.12.

In this case, with the increase of power (Figure 5.3.13), the solion breaks up

into a pair of breathers in order to shake o� the extra energy. In particular,

in our simulation, these two breathers evolve stably for su�cient long time if

one take parameter 0.3 < γ < 0.5.

In addition, it should be emphasized that the long-lived breathers can stay

for long time if the gain-loss rate parameter 0.3 < γ < 0.5 for cosθ > 0 and

cosθ < 0, which indicates that, to practically observe these instabilities, one

should choose γ within this area.

5.3.3 Breakup of one-ring solutions with phase disloca-

tion

Ring bright and dark soliton has drawn a great deal of interest in many

branches of physics. For instance, In the context of Bose-Einstein condensates

(BEC), The ring dark soliton is �rst introduced in the repulsive BECs[191].

Ring bright solitons are also observed In a binary BEC experiment[192, 193]

and studied further theoretically for di�erent winding number m in the frame

of the Gross-Pitaevskii equation[194, 195]. In optics, Ring-like vortex solitons

were discovered for several types of nonlinear media[183, 184, 185]. As dis-

cussed above, the stability of these solutions has been investigated extensively

in conserved systems[170, 185]. Both linear and nonlinear propagation of the

beams with phase dislocations and the related angular momentum e�ects have

been a very active research area[170, 185, 196, 197, 198, 199, 200]. For a sys-

tem with balanced gain and loss, we expect the novel instability of solitons

appearing.

As we mentioned before, when m 6= 0, the stationary solution with the
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Figure 5.3.9: (a) and (b) show the evolution of cross-sections of one of the com-
ponents U along the time direction with γ = 0.4, a = 0.5626, α = 0.1, cosθ < 0,
and initial noise (a) s = 0, (b) s = 0.025 . by adding noise to the initial am-
plitude and phase, we found that the oscillating soliton can propagate stably
for long time and eventually decay or spread everywhere, see (b). (c) Peaks of
amplitude U without initial noise (dot-dash curve) and Peaks of amplitudes
U and V with s = 0.025 (full red curve and full black curve with circles) as
function of time t. (d) Horizontal dashed line mark the evolution of power for
U without noise with time. Full line with circles and red full line indicate the
individual power PV and PU , respectively, and the grey full line represents the
total power PT with noise s = 0.025.
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Figure 5.3.10: (a) and (b) show the evolution of cross-sections of the com-
ponents U and V with time. The two components both move in the same
direction and �nally decay. The parameters are as follows: γ = 0.1, a =
1.2227, α = 0.1, cosθ < 0,
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Figure 5.3.11: Dot-dash line with circles and red full line indicate the individual
power PV and PU , respectively, and the grey dashed line represents the total
power PT . The parameters are same as in Figure 5.3.10.

phase dislocation has been found in the system 5.1.1. It is natural to ask if

these solutions are stable. In the case of one-ring solutions, the linear stability

analysis shows that the real part of the eigenvalues ν are the real numbers.

Therefore, all of the one-ring solutions are not stable. Below, through numeri-

cally integrating the equation 5.1.1 by using Fast Fourier Transform for linear

part of equation and the fourth-order Runge-Kutta method for nonlinear step,

the dynamics of ring-like soliton is studied.

We �rst simulate the dynamic evolution of the ring soliton with m = 1

for cosθ > 0. Figure 5.3.14(a) shows that one-ring soliton breaks up into two

breathers. Note that, for large value of a (a = 1.756), the transverse velocity

of soliton is bigger, see Figure 5.3.14(b). According to the power evolution

shown in Figure 5.3.15, when t ≈ 65, the power increases to a speci�c value

and oscillates again, which indicates that the breather is going to continuously

break up. Figure 5.3.16 presents that, after t = 65, in order to propagate

stably further, one of the breathers split into three breathers, which is able to

eliminate the extra energy obtained from the gain medium.

In the case of cosθ < 0, for the ring soliton with m = 1, two breathers

form in the �rst stage. After t ≈ 30, surprisingly, these two breathers break

up into four breathers with the decrease of oscillation of power, see Figure

5.3.17. To identify how the value of m in�uences on the dynamics of soliton,

111



Figure 5.3.12: (a) and (b) show the evolution of cross-sections of the com-
ponents U and V with time. The two components both split into a pair of
breathers. The parameters are as follows: γ = 0.4, a = 1.7078, α = 0.1, cosθ <
0,
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Figure 5.3.13: Dot-dash line with circles and red full line indicate the individual
power PV and PU , respectively, and the grey dashed line represents the total
power PT . The parameters are same as in Figure 5.3.12.

below, we simulate the evolution of ring soliton with m = 2. Similarly, for

cosθ > 0, the soliton split into four breathers and one of them disappears at

t ≈ 40. Numerically, we found that these three breathers still stay there after

t = 100. For cosθ < 0, four breathers form when t reaches to 30 and four

breathers further dissociate and become eight breathers, followed by breakup

when t = 55.

Figure 5.3.18(b) and Figure 5.3.19(b) show the motion trajectories of �l-

aments after the breakup of a ring soliton. Clearly, one can see that the

self-trapped �laments travel along the paths tangent to the initial ring.

5.4 Summary

In this chapter, we examined the stability of two families of solitons which are

special stationary solution found through equations 5.1.5-5.1.7 in dielectric-

metal-dielectric waveguides with balanced gain and loss. The main results can

be summarized as follows.

(1) For solitons with cosθ > 0, below the critical values of a, which have

been found numerically, the solitons with low and high level noises are sta-

ble by numerically testing several cases. Furthermore, for twelve values of
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Figure 5.3.14: (a) Breakup of the one-ring solution U with a = 1.0409. (b)
The evolution of the unstable solution U with a = 1.0409 (the black area) and
a = 1.756 (the blue area). Here γ = 0.4, α = 0.1,m = 1, cosθ > 0,
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Figure 5.3.15: Dot-dash line with circles and red full line indicate the individual
power PV and PU , respectively, and the grey dashed line represents the total
power PT . The parameters are same as in Figure 5.3.6.

γ = 0.1, 0.2, 0.3, 0.35, 0.4, 0.45, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99, we simulated the evo-

lutions of solitons with a above the critical values, and three di�erent scenarios

of instability of solitons have been identi�ed. When 0.3 < γ < 0.5, long-lived

breathers are formed. On the other hand, the two �elds U and V grow with

time monotonously and �nally break up into several �laments, see Figure 5.3.5.

In addition, U and V components both decay with time and spread everywhere,

see Figure 5.3.4.

(2) In the case of solitons with cosθ < 0, all solitons are unstable. However,

the lifetime of the solitons with small value of a can survive for very long

time. Therefore, they can be observed in practice. Also, the splitting and

spontaneous moving of solitons have been found.

(3) For the ring solitons with a phase dislocation and cosθ > 0, we identi�ed

that , when m = 1, 2, the ring solitons break into 2 and 4 �laments in the early

stage, respectively, and these �laments move outwards along the tangents to

the initial ring. In contrast, in the case of ring solitons with cosθ < 0, for

m = 1, in the �rst stage, two �laments are formed and next, these two �laments

continue to split into four �laments and �nally blow up. For m = 2, similar

scenario appeared, see Figure 5.3.19.
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Figure 5.3.16: Breakup of the one-ring solution U with a = 1.0409. Here
γ = 0.4, α = 0.1,m = 1, cosθ > 0,
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Figure 5.3.17: (a) Breakup of the one-ring solution U with a = 1.0082. The
inset shows the initial ring soliton. (b) Dot-dash line with circles and red full
line indicate the individual power PV and PU , respectively, and the grey dashed
line represents the total power PT . Here γ = 0.4, α = 0.1,m = 1, cosθ < 0,
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Figure 5.3.18: (a) Breakup of the one-ring solution U with a = 1.0409. The
inset shows the initial ring soliton. (b) The trajectory of the unstable solution
U with a = 1.0409. Here γ = 0.4, α = 0.1,m = 2, cosθ > 0,
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Figure 5.3.19: (a) Breakup of the one-ring solution U with a = 1.0082. The
inset shows the initial ring soliton. (b) The trajectory of the unstable solution
U with a = 1.0082. Here γ = 0.4, α = 0.1,m = 2, cosθ < 0,
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Chapter 6

Conclusions and future work

This chapter provides a summary of �ndings discussed above and our future

work.

We reported new mechanism arising from dispersion of nonlinearity, which

is capable of inducing MI in the regime of normal group velocity dispersion,

in nano-structured semi-conductor waveguides, and the dynamics of soliton in

dielectric-metal-dielectric waveguides with PT symmetry.

We derived a new model with nonlinear dispersion terms governing evolu-

tion of the amplitude of the all optical components interacting in a waveguide.

In particular, for degenerate FWM, The new MI condition has been found, as

we took into account the dispersion of nonlinearity. We demonstrated that this

dispersion of nonlinearity can lead to the MI in the range of normal group ve-

locity dispersion for CW. A simple generalization of the NLS equation account-

ing for the MI resulting from the dispersion of nonlinearity was presented[126].

(Optics Express, 19 , 9345, 2011.)

In chapter 4, by making the assumption of factorization of the four-frequency

dependence of nonlinear coe�cient, the reduced generalized nonlinear Schrödinger-

type equation has been derived. Based on this model, we addressed that the

dispersion of nonlinearity in sub-wavelength semiconductor waveguide induces

the MI in picsecond regime together with the cascaded generation of higher-

order sidebands. The impact of the dispersion of nonlinearity on spectral

broadening of short pulses in a silicon waveguide also has been demonstrated[138].

(J. Opt. Soc. Am. B, 30 , 812, 2013.)

We demonstrated the temporal evolutions of fundamental and one-ring
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solitary waves with phase dislocation in dielectric-metal-dielectric waveguides

with PT-symmetry and numerically analyzed the properties of these nonlin-

ear localized modes and, revealed di�erent scenarios of their instability. (In

preparation)

One of our main goals of this thesis is to study the impact of dispersion

of nonlinearity on MI in sub-wavelength waveguides. On the other hand, by

considering the dispersion of nonlinearity, the nonlinear phenomena in nona-

structured waveguides, such as soliton[131], are also under investigation. In

particular, while the pump wavelength is close to Zero-GVD point, it is still

remaining a challenge whether the dispersion of nonlinearity on its own could

compensate for the nonlinearity, thus leading to a soliton.

PT-symmetry, which is a basic and crucial concept for understanding the

physics behind many phenomena[148], has been introduced into optics lately

as optics o�ers an ideal platform to implement this functionality[149]. Further

investigating the waveguides with PT-symmetry could bring profound under-

standing about this concept and rich and new phenomena in optics.
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Appendix: Numerical Methods

A: Split-step beam propagation method with adap-

tive step

In our work, we have frequently used Split-step Fourier method to simulate

the beam propagation. In this section, the implementation of this method is

discussed.

The generalised NLS equation always can be given by:

∂E

∂z
= [D̂(ω) + N̂(z, ω)]E, (6.0.1)

where D̂ is the dispersion operator and N̂ is the nonlinear operator.

Without the nonlinear terms (including such as self-steepening term, Ra-

man delayed response, etc..), the equation can be solved in the frequency

domain, since the derivative term D̂ in the time domain is replaced with a

simple multiplication factor. On the contrary, The nonlinear terms are more

easily evaluated in the time domain. Split-step Fourier technique can satisfy

both requirements. The principle of the Split-step Fourier method is to solve

the equation 6.0.1for each small step h. The dispersion operator and the non-

linear operator act independantly for each step h. The dispersive step can be

written as:
∂ED
∂z

= D̂(ω)E.
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Its solution in frequency domain is given by:

ED(z + h, ω) = exp[D̂(ω)]ED(z, ω).

On the other hand, the nonlinear step:

∂EN
∂z

= N̂(ω)E

has been solved by using fourth or �fth-order Runge-Kutta method.

In the process of solving the equation 6.0.1, the pulse propagates from one

step h to another repeatedly until the end of the waveguide or �bre is achieved

and a Fourier transform and an inverse Fourier transform are performed at

each step h. Note that a fast Fourier transform (FFT) algorithm is used.

It should be mentioned that, in the nonlinear step, Runge-Kutta method

with adaptive step[201] has been employed in order to reduce the numerical

error. Adaptive stepsize algorithm invented by Fehlberg is base on the embed-

ded Runge-Kutta formulars. For simplicity, the general form of a �fth-order

Runge-Kutta formula is directly given by:

k1 = hf(xn, yn),

k2 = hf(xn + a2h, yn + b21k1),

· · ·

k6 = hf(xn + a26h, yn + b61k1 + · · ·+ b65k5),

yn+1 = yn + c1k1 + c2k2 + c3k3 + c4k4 + c5k5 + c6k6 + o(h6). (6.0.2)

The embedded fourth-order foumula is given by:
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y∗n+1 = yn + c∗1k1 + c∗2k2 + c∗3k3 + c∗4k4 + c∗5k5 + c∗6k6 + o(h5). (6.0.3)

The values of the constants appearing in equations 6.0.2 and 6.0.3 are given

in reference [201]. The error estimate is:

∆ = yn+1 − y∗n+1.

We de�ne ∆0 as the desired accuracy and take a step h1and produce an error

∆1. If ∆1 is larger than ∆0 in magnitude, then the stepsize must be reduced.

If ∆1 is smaller than ∆0, then we can increase the stepsize for the next step.

B: Newton method

Newton's method, which also is called Newton-Raphson method, is widely

employed to solve the nonlinear equations. The idea of the method is that

the function is approximated by its tangent line at a current point xi, and

until it crosses zero, one computes the abscissa of this tangent line. This x-

intercept will be a better approximation to the function's root than the original

guess. This method employs the familiar Taylor series expansion of a function.

Typically, the function involves N variables xi, i = 1, 2 · · ·N, and is given by:

fi(x1, x2, · · ·xN) = 0, i = 1, 2, · · ·N.

Each of the functions fi can be expanded in Taylor series:

fi(X + δX) = fi(X) +
N∑
j=1

∂fi
∂xj

δxj +O(δX2), (6.0.4)

where X denotes the entire vector of values xiand F denote the entire vector

of functions fi.

We de�ne the matrix of partial derivatives as the Jacobian matrix J :

Jij =
∂fi
∂xj

.
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The equation 6.0.4 can be written as:

F (X + δX) = F (X) + J ·δX +O(δX2).

By neglecting second-order term together with higher order terms in the right

hand side and by setting F (X + δX) = 0, we obtain a set of linear equations

for the corrections δX :

J ·δX = =F (X).

The corrections are added to the solution vector:

Xnew = Xold + δX

It should be noted that the convergence strongly depends on the initial guess.

Therefore, the method will converge quickly provided this initial guess is close

enough to root.
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