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Abstract 
 

Burns represent one of the most devastating forms of injury with infection 

complications representing the highest risk of mortality. The primary objective of the 

Bacteriosafe project was the development of a smart wound dressing that would 

respond to the presence of bacteria in burn wounds. The basis of this sensing system 

employed the use of phospholipid vesicles, containing a self-quenchable fluorescent 

dye. These vesicles mimic the eukaryotic cell membrane and as such are susceptible 

to bacterial cytolytic factors which lyse the vesicles, generating an observable and 

measurable fluorescent response. My primary role in this project was to identify the 

vesicle lysing agents secreted from the two most frequent burn wound colonisers, 

Staphylococcus aureus and Pseudomonas aeruginosa. We identified the small 

amphipathic alpha helical peptide toxins from S. aureus and glycolipid molecules 

derived from P. aeruginosa as the agents responsible for vesicle lysis. The 

identification of these molecules led to the development of two novel phenotypic 

assays designed to measure these important virulence factors, as discussed in chapter 

3 and 4. In chapter 5 we examined the role of toxic shock syndrome toxin-1 (TSST-

1) in repressing global exoprotein expression. Our results demonstrate that TSST-1 

does not repress toxin secretion and strains expressing TSST-1 retain their ability to 

lyse vesicles. In chapter 6 we explored the use of subinhibitory oxacillin in inducing 

the alternative penicillin binding protein 2a (PBP2a) in community-acquired 

methicillin resistant S. aureus (CA-MRSA) strains to down-regulate toxicity. 

Previous work in the Massey lab demonstrated that the expression of the mecA gene, 

which encodes PBP2a, resulted in reduced toxicity in hospital-acquired (HA) -

MRSA. CA-MRSA strains are considered highly toxic and have a considerably 

lower level of PBP2a expression. Treatment of CA-MRSA strains with subinhibitory 

oxacillin did result in a down-regulation of some toxins but also the up-regulation of 

others, highlighting the pleiotropic effect oxacillin had on virulence regulation. In 

chapter 7 we developed an approach that uses the genome sequences of a set of 

related clinical S. aureus strains to identify novel virulence loci by associating 

genetic polymorphisms with specific virulence phenotypes using a genome wide 

association study (GWAS). This analysis resulted in the identification of four novel 

loci which when mutated lead to a reduction in toxicity. We demonstrate that the 



 
 

GWAS approach is an effective method in identifying candidate SNPs which may be 

important in altering virulence but do highlight limitations of this approach, 

primarily the generation of false positives.     
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1 

Introduction 

 

1.1 Development of active wound dressing for detection of 

pathogenic bacteria in burns patients 
___________________________________________________________________________________________ 

 

urns represent a complex and traumatic event and are classified as one of 

the most debilitating forms of injury due to the adverse local and systemic 

effects on normal homeostasis. In the United States alone, 1.2 million 

people suffer burn injuries each year with a mortality rate of 5-10% in those patients 

suffering from moderate to severe burns (1, 2). Although there has been a huge 

improvement in the treatment of burn victims in areas such as fluid resuscitation and 

nutritional support, 75% of all deaths are related to infection complications (3, 4). 

The patients’ age group can have a major influence on the cause of trauma. The 

annual admission of children under the age of five suffering from burn injury in 

England and Wales is 4,300 and 53% of all scald related injuries are suffered by this 

age group (5). Furthermore, this age group is particularly susceptible to burn-related 

infection, due partly to a thinner dermal layer increasing the propensity for deeper 

burns and invasive infection and an immature immune system (6). These statistics 

represent a growing need to tackle burn-related injury especially in young children, 

as it is the third leading cause of accidental death (5).  

 

1.1.1 Biology of a burn wound 

 

The skin plays a major role as a protective barrier to infection but is also extremely 

important in fluid homeostasis, thermoregulation and various immunological and 

metabolic functions. Thermal injury dismantles this protective function and causes a 

rapid degree of cellular damage. The process which leads to burn eschar begins with 

exposure to high temperature, stimulating increasing molecular collisions, alteration 

B 
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and disruption of intramolecular bonds causing protein denaturation, liberation of 

oxygen radicals, disruption of cell membrane integrity and eventual cell death (7, 8). 

The depth of the burn is based on the intensity and duration of heat exposure and can 

be classified into three main degrees as shown in figure 1.1, each with an increasing 

predisposition to infection (9). Superficial or first degree burn only affects the 

outermost epidermal layer and is characterised by a painful erythematous appearance 

without blistering. Partial thickness or second degree burns can be divided into two 

subgroups; superficial and deep partial thickness. Superficial partial thickness affects 

the papillary dermis illustrated by a weeping moist texture and blistering with 

minimal scarring, whereas the deep partial thickness burns affect the reticular dermis 

usually causing a loss of 50% of the dermis (10). Common features of these burns 

are white dry texture with minimal pain as nerve fibres have been destroyed, with 

healing taking up to 6 weeks if no complications occur. It is these types of burns that 

are most associated with scald related injury (9). Full thickness or third degree burns 

penetrate the skin into the subcutaneous fat and sometimes deeper. They have a waxy 

leathery appearance, with no bleeding due to the thrombosed vessels and are at the 

highest risk of infection. As the body tries to maintain homeostasis after burn injury, 

the clinical picture of necrotic coagulation unveils.  

 

Three distinct zones are associated with burn wounds as described by Jackson 

et al (11). The zone of coagulation is at the centre focus of the injury nearest the heat 

source, consisting of devitalised tissue which forms the burn eschar. The zone of 

stasis represents the tissue adjacent to the necrotic area and is still viable but at risk 

of irreversible death because of ongoing ischemia due to decreased perfusion, while 

the zone of hyperaemia is the most peripheral zone which consists of normal skin 

with minimal structural damage, and increased blood flow due to the injury. 



3 
 

 

Figure 1.1: Classification of burn wounds: First degree burns are localised to the epidermis layer of 

the skin, causing a painful pink to red appearance with no blister formation. Second degree burns 

affect either the superficial dermis layer causing severe pain and blistering or the deeper reticular layer 

which generally results in scarring. Third degree burns result in charring and total destruction of the 

epidermis/dermis layers and can penetrate to the subcutaneous layer and deeper. Image modified from 

http://hospitals.unm.edu/burn/classification.shtml.  

 

 

1.1.2 Systemic response to burn injury 

 

Thermal injury causes systemic pathophysiological changes, resulting in clinical 

manifestations such as shock, respiratory and renal failure, hypermetabolism and 

catabolism, intestinal alterations and immunosupression, in which the latter two 

directly predispose the patient to infection (12-15). Like the skin, the gastrointestinal 

epithelium provides a mucosal barrier against infection. Following thermal injury, 

gastrointestinal motility and absorption is impaired (16, 17). Gastroduodenoscopy on 

patients suffering from burns revealed a high degree of stomach and duodenum 

lining erosion (18). Bacterial translocation and macromolecular leakage is also 

evident after burn injury, resulting in the dissemination of endogenous 

gastrointestinal flora (19-22). Intestinal ischemia triggers oxidative stress, generated 

from monocyte derived molecular mediators, culminating in the production of 

hydrogen peroxide (H2O2) and nitric oxide (NO) which are toxic to enterocytes, 

resulting in the observed increase in gut permeability (23, 24).   

  

The immune system responds to trauma by rapidly expressing 

proinflammatory cytokines and other factors important in acute inflammation. 

http://hospitals.unm.edu/burn/classification.shtml
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However, this proinflammatory cascade requires an equally important anti-

inflammatory response to compensate and prevent further injury. Many of the 

chemical mediators involved in this compensatory response are highly 

immunosuppressive (25, 26), which can lead to the patient being colonised by 

opportunistic organisms (27, 28).  

 

 Directly after a burn injury a proinflammatory response is generated, 

characterised by increased serum levels of proinflammatory cytokines such as 

interleukin-1β (IL-1β) and tumour necrosis factor α (TNFα) (29). Both of this 

cytokines stimulate the expression of prostaglandin E2 (PGE2) and IL-6 from 

endothelial cells and macrophages (30), and as with IL-1β and TNFα, IL-6 

contributes to the activation of T cells (31). Interferon gamma (IFN-γ), another 

proinflammatory cytokine, is produced by natural killer (NK) cells and Th-1 cells in 

response to burn trauma and is important in macrophage activation and CD4
+
 T cell 

differentiation into Th-1 cells (32).  

  

Early immune suppression is evident 3 days after burn injury in patients with 

burns greater than 30% total body surface area (TBSA) (9, 33). This is mediated by 

an opposing set of cytokines which impact the adaptive immune system, particularly 

the T cell population. Biochemical alterations influencing the expression of steroid 

hormones and catecholamines inhibit the production of proinflammatory but not anti-

inflammatory mediators (34, 35). Macrophages increase production of PGE2 and 

decrease expression of IL-12, causing an inhibition of Th-1 but not Th-2 cell 

proliferation and function (14, 36). The differentiation of T helper cell population 

from Th-1 to Th-2 cells reduces cell-mediated immunity and leads to an increase in 

anti-inflammatory cytokines such as IL-4 and IL-10 (37). Increased IL-4 and IL-10 

inhibit Th-1 cell activation, decrease production of proinflammatory cytokines and 

interfere with bactericidal and fungicidal activity (38-40). Increased PGE2 can also 

lead to the reduction of IL-1β and inhibit the activity of NK cells (41). Neutrophil 

dysfunction, in terms of chemotaxis and intracellular killing impairment, is also 

evident following major burn injury (42, 43). Macrophages also display reduced 
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phagocytosis and major histocompatibility complex class II (MHC II) expression and 

antigen presentation following severe thermal injury (44-46). 

 

1.1.3 Epidemiology of burn wound infections  

 

Although the burn wound surface is initially sterile immediately after thermal injury, 

there is a temporal colonisation of the wound with microorganisms originating from 

either nosocomial transmission from contaminated healthcare workers, fomites or 

from the patient’s own endogenous flora (47, 48). In the last three decades there has 

been a change in burn management from controlling bacterial growth on the wound 

surface, allowing for breakdown of burn eschar coupled with debridement and daily 

immersion hydrotherapy (conservative exposure) to early excision and closure of the 

wound and shower therapy (49). However, only two randomized, controlled trials of 

early excision vs controlled exposure have been published with neither illustrating a 

significant reduction in burn wound infection in burn wounds >15% TBSA (50, 51). 

Importantly, this change in burn wound care has altered the epidemiology of burn 

wound infections (49), therefore epidemiological studies from the era of conservative 

exposure therapy has largely been omitted from this thesis.  

 

Exposed burned tissue is susceptible to colonisation from microorganisms 

typical of gastrointestinal and upper respiratory tract flora (52), but following initial 

thermal injury, Gram-positive bacteria are first to colonise the wound (53, 54). 

Coagulase-negative staphylococci (CoNS) and Staphylococcus aureus are the most 

common microorganism found in burn wounds, particularly small TBSA burns (33, 

41, 47-49, 55-57). A recent study investigating the change in microbial flora in burn 

wounds during treatment found that CoNS (63%) and S. aureus (19.7%) were most 

prevalent upon admission, but a gradual decrease in CoNS isolates (34.7%) and an 

increase in S. aureus (37.6%) and P. aeruginosa (16.2%) isolates was observed at 

day 21 (48). Interestingly, antibiotic resistance in S. aureus increased with increasing 

hospital stay in the burns patient, while MRSA nasal carriage increased from 3.9% 

on day 1 to 62.7% at day 21 (48), consistent with other studies (58-60).  
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Gram-positive cocci are gradually replaced with gram-negative bacilli, which 

are hypothesised to have a greater propensity to invade and are associated with larger 

burn areas (33, 56, 61). Of the Gram-negative organism, the Pseudomonas species, 

particularly P. aeruginosa, are the most frequent colonisers [48, 55, 56, 59, 65-67], 

with P. aeruginosa associated with high mortality in burn patients (62). In a similar 

fashion to S. aureus, P. aeruginosa also exhibited decreasing susceptibilities to 

various antibiotics with increasing hospital stay in the burns patient (57). P. 

aeruginosa is inherently resistance to antibiotics due to constitutive expression of β-

lactamases and efflux pumps, coupled with the possession of a low permeable outer 

membrane (63-65). P. aeruginosa also has a remarkable capacity to acquire 

resistance to various classes of antibiotics, and has been shown to contain practically 

all known mechanisms of antibiotic resistance (66).    

 

Different geographical locations have a different prevalence and spectrum of 

organisms that are capable of causing burn wound infections. For example, 

Enterococcus species play an important role in burn wound infections in the US, 

accounting for up to 12% (67), but were significantly less prevalent (3%) in a 

Brazilian study (68).  A recent review of 104 US burn units found that P. aeruginosa 

is the most frequent pathogen among Gram-negatives at 44%, followed by 

Acinetobacter baumannii and Enterococcus spp (69). In China, A. baumannii and 

Proteus mirabilis are responsible for the most burn infections (70). Different 

prevalence rates have also been shown for Acinetobacter spp (71), Candida albicans 

(72) and various gram-negatives including Klebsiella pneumonia and Escherichia 

coli (73), however, in the vast majority of burn hospitalisations, S. aureus and P. 

aeruginosa are the earliest and most frequent colonisers of burn wounds.  

 

1.1.4 Pathogenesis of burn wound  

 

The susceptibility of burns wounds to infection is the result of a combination of 

factors including the disruption of the skin barrier, depression of innate and adaptive 

immunity and an environment rich in nutrients in the form of coagulated proteins, 

exudate and necrotic tissue (30, 56). Incidence of ventilator associated pneumonia, 
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primary blood stream and wound infection are all higher in the burn patient than 

other intensive care unit (ICU) patients (73).   

 

Frequently, after colonisation of the burn wound, microorganisms can 

penetrate the eschar and invade the underlining unburned subcutaneous tissues. S. 

aureus is well equipped to achieve this and after invasion can form abscesses with 

thick walls that further obstruct antibiotic therapy and an already weakened host 

defence, which can lead to the  haematogenous dissemination of the infection (56). 

P. aeruginosa has a preference for warm, moist environments, and is well adapted to 

colonise the burn patients. Both of these major burn pathogens expresses and secrete 

a plethora of virulence factors which are fundamental in burn wound colonisation 

and infection. 

 

 A great deal of information on the specific virulence factors which P. 

aeruginosa utilises in burn infection has been documented (74-78). Virulence factor 

expression in P. aeruginosa is coordinated through an elegant hierarchy cell density 

quorum sensing system, involving the lasRI, rhlRI, quinolone signalling system and 

multiple accessory factors that alter these regulatory circuits at the transcriptional, 

post-transcriptional and translational level (79-85). It has been shown previously that 

the lasRI and rhlRI systems are extremely important in initial spread from the 

inoculation site in a burn wound and for dissemination throughout the body (75), 

highlighting the role of virulence factors in burn wound pathogenesis.  

 

P. aeruginosa expresses two surface appendages, a single flagellum and type 

VI pili, that are involved in multiple roles including adhesion, locomotion, biofilm 

formation, natural transformation, DNA binding and invasion (86-89). Mutants 

deficient in either of these structures have reduced virulence in a mouse burn model, 

displaying reduced persistence at the wound site and lower dissemination to target 

organs (74). Rhamnolipids are glycolipids that have bio-surfactant properties and are 

important in motility and colonisation of surfaces, and are likely play a role in burn 

wound colonisation (90, 91) (see section 4.2 for additional information). Efficient 

dissemination in the burn wound also requires the production of elastases and other 
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proteases, which are present in both P. aeruginosa and S. aureus (76). The 

importance of elastase in burn wounds is governed by its ability to degrade collagen 

and non-collagen host proteins and disrupt the integrity of the basement membrane, 

providing an avenue for dissemination (77).  

 

Direct evidence for the production of the P. aeruginosa ADP-ribosylating 

toxin, exotoxin A, in a burn wound mouse model has been shown (78). Exotoxin A 

catalyses the transfer of the ADP-ribose molecule from nicotinamide adenine 

dinucleotide (NAD
+
) to a residue on elongation factor 2 (EF-2), inactivating this 

protein and subsequently inhibiting protein synthesis in the target cell (92). Exotoxin 

A causes cell death and necrosis at the site of colonisation (93), and is continuously 

expressed for up to 35 h after infection (78), underling the possibility that other 

toxins are also continuously produced at this rate. Additional P. aeruginosa virulence 

factors that have been reported to be involved in burn wound infection include the 

phospholipase C enzyme, which targets phospholipid membranes (94), and the 

effector molecules of the type III secretion system, namely exoenzyme S (95), 

another ADP-ribosylating toxin.  

 

Detailed experiments identifying specific virulence factor involvement in S. 

aureus burn wound infection are lacking. However, S. aureus expresses a multitude 

of virulence determinants which are likely to be important in burn wound 

pathogenesis. These factors can be divided into three main virulence categories: 

adhesins, immune evasins and toxins (96, 97). S. aureus is well equipped to adhere to 

the host, utilising a diverse array of surface adhesins to interact with a myriad of 

extracellular matrix proteins and cell types (98). S. aureus also employs multiple 

factors which can interact and impede the various arms of the immune system (99) 

and evolved to expresses a plethora of membrane damaging toxins and enzymes, 

designed to destroy immune cells and host tissue (100). [The S. aureus virulence 

factors are reviewed in more detail in section 1.3.5]. 
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1.1.5 Biofilm and burns 

 

Biofilms exist as a community of organisms attached to a surface, surrounded by a 

polymeric matrix and are associated with persistence and antibiotic resistance (101-

103). Both S. aureus and P. aeruginosa are capable of forming single and 

multispecies biofilms, in a wide range of artificial and natural environments (101). 

Generally, biofilms are associated with foreign device-related and chronic infections 

but recent evidence suggests that biofilm formation plays an active role in burn 

wound pathogenesis (102-104). Biofilm development occurs through three key 

stages: attachment, maturation and detachment (Fig 1.2). This classification is further 

subdivided into (I) initial attachment, (II) irreversible attachment, following the 

production of extracellular polymeric substances (EPS) or exopolysaccharide matrix, 

(III) early construction of biofilm architecture, (IV) biofilm maturation and (V) cell 

dispersion or detachment (Fig 1.2) (101, 105). The environmental cues which trigger 

initial biofilm formation include an abundance of nutrients, oxygen availability and 

osmotically balanced media (106, 107). 

 

 

 

Figure 1.2: Biofilm development: Following specific environmental signals, planktonic bacteria 

begin to adhere to abiotic or biotic surfaces in the (I) initial attachment stage of biofilm formation. 

Biofilm development moves into the (II) irreversible adherence stage after the production of an 

exopolysaccharide matrix. Biofilms mature in stages III and IV and finally disperse or detach (V) 

following specific signals, leading to the dissemination of single cells with the potential to initiate new 

biofilm colonies.  
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In P. aeruginosa biofilms, initial attachment is largely governed by the adhesins and 

surface appendages such as flagella and type IV pili, which allow independent 

movements of twitching and gliding (108). Alteration in the O-polysaccharide of 

lipopolysaccharides (LPS) can alter the adherence properties, where a loss in the A-

band results in reduced attachment to hydrophilic surfaces and increased adherence 

to hydrophobic surfaces, which may be important depending on the surface for initial 

biofilm attachment (109). Following the initial reversible interaction, P. aeruginosa 

commences the production of alginate and other polysaccharides (EPS)  initiating the 

transfer into early maturation stage (110). Upon contact, flagellar synthesis is down 

regulated and alginate synthesis increased, suggesting a surface-mediated alteration 

in gene expression (111). EPS maintains biofilm architecture and protects against 

shear forces in fluid environments acting as a ‘glue’ keeping cells together (112). 

Alginate appears to protect the biofilm from the reactive oxygen species released 

from inflammatory cells and prevents phagocytosis from immune cells (113, 114). 

The Psl exoploysaccharide (Polysaccharide synthesis locus) is required for binding to 

a substratum, cell-cell interactions and maturation and maintenance of the biofilm 

architecture (112, 115). Another polysaccharide, Pel, was shown to be important in 

biofilm initiation only in non-piliated mutants, highlighting a role for both Pel and 

type IV pili in initial attachment (116). In addition to exopolysaccharides, 

extracellular DNA (eDNA) is an important factor of the matrix in early biofilms 

(117). The liberation of eDNA and the regulation of pel biosynthetic genes involved 

both the las and rhl quorum sensing systems, highlighting their respective roles in 

biofilm formation and maturation (118).  

 

Rhamnolipids play major roles in P. aeruginosa biofilm maturation, 

maintenance and detachment (119-121). These amphipathic glycolipids have been 

shown to be involved in construction of channels and interstitial voids allowing a 

type of circulatory system to exist within the biofilm, supplying a critical avenue for 

efficient nutrient supply and waste removal (120). Rhamnolipids are hypothesized to 

be central in the development of mushroom cap formation (119) and directly 

involved in biofilm detachment (121).  
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S. aureus is also an excellent biofilm former and utilises similar gene 

products as P. aeruginosa in the construction, maintenance and dispersion of 

biofilms. S. aureus expresses a plethora of surface proteins which have the capacity 

to bind and interact with multiple matrix proteins (122) and are intimately involved 

in the initial attachment phase of staphylococcal biofilm formation (123). Although 

the composition of EPS or matrix of S. aureus differs from that of P. aeruginosa, its 

function is largely the same; important in intracellular aggregation, protection and 

construction of fluid-filled and mushroom shaped cell towers.  

 

The primary molecule responsible for intracellular adhesion is the 

polysaccharide intercellular adhesin (PIA) (124), which functions by providing 

charge differences permitting electrostatic interactions between the teichoic acid-

mediated negatively charged bacterial cells (125). However, PIA-independent 

biofilms do exist (126), and in these cases the adhesive function of PIA appears to be 

substituted by adhesive proteins, primarily the accumulation-associated protein (Aap) 

and fibronectin binding proteins (FnBPs) (127). Keeping with the importance of 

preserving the biofilms ability to distribute nutrients and remove waste products, S. 

aureus employs quorum sensing dependent, surfactant peptides, known as Phenol-

soluble modulins (PSMs) (reviewed in section 1.3.5.2.3), to structure biofilms (128). 

Similar to the importance of rhamnolipids in P. aeruginosa biofilms, these PSM 

peptides are also multi-functional and are employed in an effective method for 

biofilm detachment and dissemination (128).  

 

The presence of biofilms in burns has only been recently established (102-

104). Biofilms have been demonstrated to form in burn wounds of thermally injured 

mice (102, 129). In these studies, biofilms began to form around blood vessels and 

adipose cells within 8 h of infection. Under these conditions, P. aeruginosa strain 

PAO1 replicates rapidly within the burn tissue increasing from 10
2 

CFU to 10
9 

CFU 

in under 24 h (75). A recent study investigating the presence of bacterial biofilm 

from human burn wound biopsies observed increased bacterial colonies surrounding 

ulcerated and surgical site lesions, which were largely accompanied by necrotic 

material and wound exudates within 7 days post-injury (103). These biofilms were of 
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mixed species and evidence of glycocalyx and EPS were observed (103). These 

results demonstrate that biofilm formation does occur in burn wounds which may 

have implications for the future development of wound dressings.   

 

1.1.6 Current and ‘smart’ burn wound dressings  

 

Wound healing progresses through overlapping stages involving a variety of cellular 

and biochemical processes which act together to re-establish tissue integrity (130). 

New advances in burn wound technology have centred on achieving an ideal wound 

condition:  moist, warm environment conducive to growth and tissue regeneration 

while preventing microbial infection.  

 

 The prevention of microbial colonisation and subsequent infection is a key 

criterion of burn wound dressings. Silver (Ag) has very broad microbicidal activity, 

being highly reactive in its charged state, Ag
+
, binding with high efficiency to 

negatively charged particles. This leads to direct killing on contact due to 

interference with electron transport and cellular respiration, denaturation of  proteins 

and DNA and destabilising membrane permeability (131-133). Nanocrystalline silver 

(Ag
0
), which is actively released from Aticoat™ wound dressings, display 

impressive antibacterial activity and protective covering of skin grafts, greater than 

that observed using silver nitrate or silver sulfadiazine (132). This greater activity has 

been attributed to the use of non-charged Ag, causing a less reactivity and sustained 

release of Ag into the wound rather than a mass active event which is short lived 

(131). Unfortunately, silver, even in the form demonstrated in Aticoat™ dressings, 

have been shown to be toxic to skin cells, fibroblasts and keratinocytes (134). Poon 

et al further warned against the use of Ag containing dressing in burn wounds where 

rapidly proliferating kerationcytes are exposed (134). Dressings which continuously 

expose antimicrobials to the burn wound may also increase the rate at which 

microorganism acquire resistance, leading to further complications, increasing 

hospitalization time and healthcare costs (135).  
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Occlusive dressings are an important element in modern burn management 

and highlight the importance of autolysis in burn care. These types of dressing 

provide a barrier to the external environment, allowing the body’s phagocytic 

processes to natural debride and shape the wound (136). Hydrocolloid dressings are 

among the most important and widely used occlusive dressings (137). These 

dressings are composed of a gel forming colloidal agent combined with either 

adhesives or with other materials such as alginates. They are used frequently in burn 

care due their impermeability properties, flexibility and ease of removal, an 

important feature particularly in paediatric burn care (5, 137). Unfortunately, most 

burn wounds produces heavy exudate causing hydrocolloid dressing to swell, 

dislodge and fall apart. These dressings also require frequent changing, every 2-5 

days, which can strip immature epithelial layers (136, 137).   

 

In recent years, biological dressings or bioengineered skin substitutes have 

been introduced with great success in the management of superficial and deep partial 

thickness burns (138). These dressing have the advantage of containing 

biodegradable components, such as collagen or elastin, which play an active part of 

the natural tissue extracellular matrix and regeneration. One example of a biological 

dressing widely used in the United Kingdom is registered as Biobrane™. This 

dressing is composed of a nylon mesh attached to a silicone membrane bonded with 

purified porcine derived dermal collagen (139). Although Biobrane™ and other 

similar biological dressing have shown improved wound adherence, flexibility, and 

healing in burn wounds (140, 141) their failure rate can be attributed to wound 

infection, as they have no means to sense or tackle infection (142).  

 

Currently the only methods used to investigate burn wound infection are by 

analysing surface swabs and tissue biopsy specimens (143, 144). This requires direct 

wound assessment and removal of adherent dressing. These methods are slow, cause 

discomfort to the patient, are costly and can increase the risk of life-long scarring and 

further infection (5). Assessment of the clinical condition of the patient is not 

sufficient as a sole method to evaluate infection, as the clinical signs of infection, 

particularly in paediatric patients, are non-specific (5, 145). At present time there is a 
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need for technology which can be used in combination with biological dressings 

which can sense the presence of pathogenic bacteria in the wound environment. The 

core principle behind the development of a ‘smart’ dressing, which will be discussed 

in this thesis, is the use of a colorimetric sensor device which responds to the 

presence of bacteria in the burn wound. The sensor acts as a molecular mimic of the 

plasma membrane of eukaryotic cells and responds to the action of bacterial secreted 

virulence factors, which have been shown to play a key role during burn wound 

pathogenesis.  
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1.2 Using phospholipid vesicles as biosensors  

___________________________________________________________________________________________ 

 

hospholipid molecules, in partnership with proteins and nucleic acids, 

represent the essential factors for all living matter. Phospholipid molecules 

are amphiphilic, containing a polar, water-soluble, hydrophilic head group 

attached to a non-polar, water-insoluble, hydrophobic hydrocarbon or fatty acid 

chain(s). Glycerolphospholipids are phospholipids that contain two acyl chains, 

which can be saturated or unsaturated, linked to a headgroup by means of a glycerol 

backbone (Fig 1.3). These molecules are a major component in all cytoplasmic 

membranes as well as phospholipid vesicles (vesicles).  

 

 The vesicles used in this study are artificially formulated, spherical, self-

enclosed structures, composed of lipid bilayers. An important feature of this structure 

is the ability to encapsulate the surrounding solvent within the aqueous cavity (Fig 

1.3). Vesicles vary in size from 20 nm to several micrometers, and can be generated 

containing one (unilamellar vesicle) or more (multilamellar vesicle) lipid bilayers, 

each spanning a thickness of approximately 4 nm, surrounding an equal number of 

aqueous spaces. The bilayers are usually composed of natural or synthetic 

phospholipids and cholesterol, but incorporation of other sterols, fatty acids, 

glycolipids proteins and other membrane factors is also possible (146). 

 

 Unilamellar vesicles make fantastic model systems for investigating the 

dynamics and structural features of many cellular processes including viral 

interactions with membranes (147) and endocytic features (148) and are used 

extensively in investigating toxin-membrane interactions (149-153). In addition to 

being important models in understanding fundamental molecular research, vesicles 

have been developed as vehicles for drug delivery (154) and gene transfer (155). 

Vesicles are very attractive structures to use in medical therapy because they are 

biocompatible, biodegradable, and those composed of natural phospholipids, are 

biologically inert and weakly immunogenic (154).  

 

 

P 
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Figure 1.3: Representation of phospholipid structure and liposome. Phospholipid molecules 

consist of a hydrophilic phosphate head group and a hydrophobic fatty acid tail. Liposomes care 

spherical, self-closed structures consisting of phospholipid bilayers, which can encapsulate the 

surrounding environment into their interior.  

 

 

1.2.1 Self-assembly 

 

As previously stated phospholipids are amphiphiles and therefore spontaneously 

aggregate into a variety of different structures based on their dual solvent preference.  

The hydrophobic effect dictates this self-assembly, by driving the organisation of 

amphiphiles (156). Both ends of the phospholipid molecule imposed a 

thermodynamic preference which is satisfied by self-association, with the fatty acid 

chains in the middle, avoiding the aqueous solvent and the polar head groups at the 

surface as depicted in figure 1.3. This self-organisation is usually accompanied by an 

increase in the entropy of the system. This arises as the polar/non-polar interactions 

force the water molecules into an ordered state around the fatty acid chains (156). 

Movement of the hydrophobic parts out of the aqueous solution releases the ordered 

water molecules and sequesters the hydrophobic elements within the interior of the 

structure. This is hypothesised to lead to an overall gain in free energy, permitting 

spontaneous aggregation.  
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1.2.2 Lipid polymorphism and aggregate structure 

 

The spontaneous aggregation of amphiphilic lipids in aqueous solution can result in 

the formation of many structures. Although the hydrophobic effect is important in 

aggregation, other parameters of the amphiphile, most notably the shape of the 

individual molecules and the concentration, play an important role in the formation 

of these structures (157). The shape of the lipid aggregates is determined by the 

surfactant packing parameter,     (157):  

 

       

 

where   is the volume of the hydrophobic portion of the amphiphile,   is the length 

of the hydrocarbon chains and   is the area of the polar head group. The relative 

sizes of the head group and hydrocarbon chains will dictate the way in which 

packaging into different geometrical aggregates occurs. By convention, if the 

curvature of an aggregate is around the hydrophobic portion it is considered positive, 

whereas if it is around the polar portion it is considered negative (158). The positive 

curvature forms normal aggregates and phases, whereas the latter forms reversed 

ones. If the surfactant packaging parameter ( ) is <1/3, only spherical micelles are 

formed in solution. If   =1 a balance between the sizes of the polar head groups and 

hydrophobic tails exist, forming planar aggregates with a bilayer structure. When   

>1 the surfactant form reversed micelle structures (Fig 1.4).  

 

 One of the major components of the vesicles used throughout this thesis is    

1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). This lipid, like most bilayer-

forming lipids, has a shape parameter of approximately 1, which means it has a 

cylindrical shape and tends to form bilayers. As lipid concentration increases, these 

molecules generally form lamellar phases where planar lipid bilayers alternate with 

water layer (Fig 1.4). Aggregate formation in different phases depends on the free 

energy per lipid molecule. This differs in lamellar and hexagonal phases, in which 

the molecule occupies different volumes. This shape dependent free energy involves 

the fatty acid energies, bending of the lipid monolayers, hydration and electrostatic 
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potentials (158). In the hexagonal II phase (HII) water molecules are sequestered 

within the cylindrical tubes. If the concentration of water-to-lipid increases, this 

results in an increase fatty acid packaging free energy. This can lead to an ordering 

of aggregates relative to each other or a change in the aggregate shape, which 

happens when monolayers curl and undergo a Lα to HII phase to lower the total free 

energy (158).   

 

 

 
Figure 1.4: The geometrical packaging concept. The general relationship between the lipid 

molecule and preferred aggregate structure is illustrated, according to the surfactant packaging 

parameter. When the surfactant packaging parameter, S, is 1, the lipid is roughly cylindrical and can 

form stable bilayers (lamellar phase) when in aqueous solutions. When S <1/3 lipids tend to organise 

into micelles in a hexagonal phase I, whereas S>1 tends to cause lipid to form inverted micelles 

(Hexagonal phase II). 
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1.2.3 Lamellar Phases 

 

Lipid bilayers are dynamic structures which can exist in many different physical 

states (159). Phase behaviour is defined as the relative fluidity of the lipid bilayer 

with respect to changes in lipid composition and temperature (160). Typically, there 

are two major phases: the lamellar liquid-crystalline or liquid phase (Lα) and the 

lamellar gel or solid phase (Lβ). In the liquid phase, molecules freely diffuse within 

the two dimensional plane, rapidly exchanging position with neighbouring molecules 

in a process known as lipid ‘flip-flop’ or transbilayer lipid motion (161). Lipids in 

the gel phase are fixed in place and exhibit limited mobility. The attractive 

interactions between individual adjacent molecules are important in determining the 

phase behaviour. The length of the fatty acid chains permits more interactions 

between adjacent molecules leading to tighter packaging of lipid molecules and 

therefore less mobility (162). The degree of saturation of hydrocarbon tails also 

affects the phase behaviour, with the addition of double bonds disrupting lipid 

packaging and increasing mobility and flexibility (162). The melting or transition 

temperature (Tm) is defined as the temperature where the gel-to-liquid phase 

transition occurs and is a function of the chemical composition of the bilayer, 

particularly the acyl chains.  

 

1.2.4 Vesicle formation  

 

Vesicles are self-closed bilayer structures which can encapsulated the solution from 

which they are formed in. Bilayer edges tend to seal when they are mechanically 

dispersed in aqueous suspension, due to their amphipathicity, the hydrophobic effect 

and the assembly of hydrocarbon chains away from water molecules. When planar 

bilayers are dispersed in a hydrophilic environment, bending curvature minimises the 

high surface tension at the rim of the bilayer sheet. A thermodynamically favourable 

structure results when an entropically driven encapsulation of hydrocarbon chains 

into spherical vesicles occurs (156, 158, 163). Lipids which are used to formulate 

vesicles are generally cylindrical in shape containing more than 11 carbons in their 

acyl chain (158). Vesicles can be classified on the basis of lamella, either uni- or 
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multilamellar and size (163). Multilamellar vesicles (MLVs) contain concentric 

bilayers and are easily prepared by simple shaking of a dried lipid film in aqueous 

solution (163). Unilamellar vesicles (ULVs) can be sub-divided into two categories, 

small unilamellar vesicles (SUVs) or large unilamellar vesicles (LUVs) (158, 163). 

SUVs have diameters of 20-50 nm and are prepared through extensive sonication of 

MLVs, or through extrusion through polycarbonate filters of defined size. LUVs are 

vesicles with diameters between 100 nm and 5 µm and are formed in a similar 

fashion to SUVs, but with an added freeze-thaw step which induces fusion of SUV 

(164). 

 

 Using liposomes as biosensors for bacterial detection requires a vesicle type 

which exhibits stability in diverse environments, but also sensitive to secreted 

virulence factors. The vesicles used throughout this thesis contain 16 carbon DPPC 

and 16 carbon 1, 2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) 

phospholipids. Both of these lipids are saturated, resulting in a higher transition 

temperature and a more stable vesicle. The incorporation of a polydiacetylene, 10, 

12-tricosadiynoic acid (TCDA) is also performed. This lipid is amphiphilic and can 

self assemble and incorporate into the lipid bilayer following ultra-violet (UV) 

induced polymerisation, providing stability (165). The addition of cholesterol has 

major effects of membrane fluidity causing the vesicle membrane to transition from a 

liquid-disordered to liquid-ordered state (166). Cholesterol influences the rigidity of 

the membrane controlling permeability and will affect the incorporation of bacterial 

toxins and the sensitivity of these vesicles.  Overall the liposome recipe, as depicted 

in section 2.2 and highlighted above, was chosen to satisfy the two biophysical 

parameters of stability and sensitivity.   

 

Carboxylfluorescein (CF) is a fluorescent molecule that is self-quenchable at 

high concentrations due to the formation of non-fluorescent dimer molecules at 

concentrations above 0.2 M (167). This trait allows this molecule to be used as a 

sensor dye, only fluorescing when diluted, in cases such as liposome burst. 

Additionally this molecule is an attractive candidate to use in such biosensors as it is 

cheap and relatively non-toxic at concentrations used in this thesis (168).  
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1.3 Staphylococcus aureus  

___________________________________________________________________________________________ 

 

taphylococcus aureus was identified as a causative agent of disease in 1882, 

when Sir Alexander Ogston highlighted its role in abscess formation and 

sepsis (169). In the past century our knowledge of S. aureus in areas of 

epidemiology, physiology and pathogenicity, has increase exponentially, however 

this fantastically equipped organism remains a global threat to human health.           

 

S. aureus is a Gram-positive, facultative anaerobic, coccal bacterium, and is a 

common commensal of mammals. This bacterium is non-flagellated, but does have 

the ability to spread on soft agar at temperatures between 30-43°C, a method of 

mobility dependent on the expression of teichoic acids and surfactant molecules such 

as the PSM peptides (170, 171). Exactly what advantage this colony spreading 

mechanism of mobility confers to bacteria is unknown, but it may aid effective 

colonisation over surfaces such as host tissue or inanimate objects such as catheters. 

Macroscopically, this bacterium generally grows with a golden colour due to the 

expression of the carotenoid pigment staphyloxanthin, which plays a role in 

resistance against hydrogen peroxide and hydroxyl radicals, compounds important in 

neutrophil killing (172). This carotenoid molecule acts as an antioxidant, 

sequestering oxygen free radicals through its conjugated double bonds (172, 173). 

Microscopically, S. aureus presents as clusters, as cell division occurs in three 

alternating perpendicular planes resulting in sister cells remaining attached after 

division, causing the irregular clumping phenotype (174). In the environment, S. 

aureus can withstand harsh conditions and is extremely versatile, capable of growing 

in a wide range of temperatures, from 7 to 48.5°C (175), pH between 4.0 and 10.0 

and sodium chloride up to 3 M (176).  

 

1.3.1 Genome and evolution of S. aureus 

 

The genomes of S. aureus consist of a single circular chromosome which range in 

size from 2.7 to 3.1 Mb (177, 178). With the success of next generation sequencing, 

S 
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a plethora of S. aureus strains have now been sequenced, allowing comparative 

genetics to identify conserved and variable features of the genome.  

 

1.3.1.1 Core genome 

 

The S. aureus genome can be divided into two parts; the core and accessory 

genomes. Approximately 75% of the genome is core, defined as genes conserved in 

all strains (179). Unsurprisingly, the majority of these genes are required for essential 

functions, central in metabolism and survival (179). However, genes involved in 

virulence are also contain within these genetic blocks, coding for surface and capsule 

proteins and as well as adhesins, toxins and enzymes (179).  

 

At first instance it would seem that genes within these region do not play 

major roles in the diversity observed between S. aureus lineages, however, subtle 

minute changes in genes can have drastic effects on gene function and overall 

phenotypes of strains (177). Isolates from the same clonal complex or lineage have 

very conserved core genomes while isolates from different lineages can have major 

differences with variability in hundreds of genes (179). Genetic diversity can arise 

due to single base-pair changes (single nucleotide polymorphisms SNPs), insertion or 

deletion (InDels) of a single or run of bases pairs within genes or intergenic regions, 

or by large scale rearrangements observed through blocks of divergent sequence due 

to recombination (177, 180). Most of the observed diversity within the core genome 

is a result of SNPs, which can result in either a synonymous or non-synonymous 

mutation. A non-synonymous mutation results in a change in amino acid and may 

result in altered gene and/or protein expression. Synonymous mutations can be 

regarded as ‘silent’ mutations as codon change does not result in amino acid change, 

however a codon bias may result. This codon usage alteration can become substantial 

if it affects the efficiency of translation of essential proteins (181).  

 

Recombination in the core genome can drastically influence bacterial 

physiology. Genetic information up to several kilobase pairs can be exchanged 

through homologous recombination, evident within the variable region between agrB 
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and agrC in the accessory gene regulator operon (182). This recombination event is 

responsible for the four different auto-inducing peptide (AIP) groups which define 

Agr activity (183), enabling cross activation or inhibition of other groups (184).  

 

1.3.1.2 Accessory Genome  

 

The variable or accessory component of the S. aureus genome consists of non-

essential genes involved in virulence, substrate utilisation, antibiotic and heavy metal 

resistance and other metabolic functions (177, 185). Horizontal gene transfer (HGT) 

plays an important role in shaping the accessory genome, as many of the mobile 

genetic elements (MGE) which comprise the accessory genome (bacteriophages, 

staphylococcal pathogenicity islands, plasmids, transposons, and staphylococcal 

cassette chromosomes) can all be transferred horizontally between bacteria. 

Therefore, the MGEs are much more varied than the core genome, and can be key 

factors in driving the evolution of S. aureus clones.  

 

Three mechanisms dictate HGT: transformation, conjugation and 

transduction (186). Until recently, S. aureus was regarded as unable to acquire ‘free’ 

DNA from the environment by natural transformation. However, the recent 

identification of a novel sigma (σ) factor, σ
H
, has been demonstrated to assist RNA 

polymerase (RNAP) in the expression of competence genes, the comG and comE 

orthologues in S. aureus (187). Interestingly, sigH
 
expression is cryptic and is not 

detected under normal laboratory conditions, whereas artificial overexpression can 

induce competence genes (187). Morikawa et al highlighted that σ
H 

is expressed in a 

fraction of the population involving chromosomal gene duplication rearrangements 

which occur spontaneously and at low frequency permitting the expression of a new 

chimeric sigH gene (188). This expression is also under post-transcriptional control, 

possibly by a small regulatory non-coding RNA, and requires growth in a specific 

medium (187). Under these conditions the successful transformation of recipient 

cells was observed through the acquisition by transformation of a Staphylococcal 

cassette chromosome mec (SCCmec II) element (188). 
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Conjugation involves the transfer of genetic material from a recipient to a 

donor cell, by pili or pores. S. aureus does not contain pili, therefore it is 

hypothesized that conjugation is pore-mediated between cells in close contact, but is 

not a common mechanism of HGT found in S. aureus (177, 189). tra (transfer) genes 

are important in the transfer encoding the necessary machinery for conjugation to 

occur, and this method of HGT is restricted to conjugate plasmids containing these 

genes (190) which were found in only 13 of the 243 sequenced S. aureus plasmids 

(191).  

 

The main method of HGT in S. aureus is believed to be via transduction, 

which is the transfer of DNA mediated by bacteriophage. Bacteriophages are viruses 

which infect bacteria and either incorporate their genetic material into the bacterial 

chromosome (prophage) or package and deliver ‘foreign DNA’, derived from the 

bacterial chromosome or plasmids, in a process known as generalised transduction 

(177). After infection, phage can be induced to excise, replicate, synthesis new phage 

particles and lyse the bacterial cell releasing new phage leading to infection of 

susceptible cells. Lysogenic phage (phage which remain integrated within the host 

genome), are common in S. aureus, with most strains carrying between one and four 

types (177). Phage genomes are approximately 45 kb in length, which limits the 

amount of genetic material that can be packaged inside phage heads, prior to 

infection. Many bacteriophage carry with them virulence genes which code for 

virulence factors such PVL (192)), enterotoxin A (193), and exfoliative toxin A 

(194).  

 

S. aureus pathogenicity islands (SaPIs) are related to bacteriophages; they are 

14-27 kb in length, contain phage-like repressors, integrases and terminases as well 

as virulence genes (195). Some of the SaPIs encode superantigens, (SaPI 1 encodes 

tst, sek and seq (196)) and immune inhibitory proteins, (SaPI5 codes for chemotaxis 

inhibitory protein (chp) (197) and staphylococcal complement inhibitory protein 

(scn) (198)). However, the genes required for transfer (synthesis of capsid heads and 

tails) are absent. SaPIs are normally repressed and integrated within the bacterial 

chromosome, but during HGT, helper phages (such as bacteriophage 80α (199)) 



25 
 

encode proteins which inactivate SaPI repressor proteins permitting efficient 

mobilization (195). These helper phage package SaPIs and deliver them to new S. 

aureus strains whereby SaPIs may integrate at specific site, in an analogous fashion 

to phage (196).  

 

Plasmids are autonomously replicating, circular segments of DNA which 

encode a variety of genes beneficial to the host, including resistance to antibiotics 

(pT181 (200), tetracycline resistance in S. aureus strain COL), heavy metal 

resistance (pI258 cadmium resistance in S. aureus (201)) and exfoliative toxin B 

(pETB (202)). Historically, plasmids have been classified based on size and 

incompatibility (203). A more recent classification system has been developed based 

on the sequence of replication (rep) genes (204). Recent work has reported on the 

distribution of plasmids, conferring antibiotic resistance and virulence, in S. aureus 

populations, highlighting specific plasmid groups with specific lineages (191). This 

observation suggests that there are genetic pressures and restrictive barriers to 

evolution of hyper-resistant, hyper-virulent S. aureus strains (191). 

 

Transposons are MGEs which encode a transposase gene, conferring the 

ability to excise, replicate and integrate into the chromosome or plasmid. 

Transposons are generally small and encode resistance to antibiotics, for example 

Tn554 encodes resistance to erythromycin (205). Transposons can integrate multiple 

times in the chromosome and also integrate within other MGE such as SCCmec or 

plasmids (206). It is this ‘hitch-hiking’ on other MGE which is the hypothesised 

method of how the undergo HGT.  

 

 Staphylococcal cassette chromosomes (SCCs) are relatively large DNA 

fragments of 21-53kb in length that can encode either antibiotic resistance and/or 

virulence factors. SCCs can be divided into those which contain the mecA gene, 

which confers resistance to the beta-lactam antibiotics (SCCmec) and those that do 

not (non-SCCmec). mecA encodes that alternative penicillin binding protein 2a 

(PBP2a) which has a much lower binding affinity to semi-synthetic penicillins (207). 

Beta-lactam antibiotics work by preventing the crosslinking of peptidoglycan 
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polymers by inhibiting the transpeptidase action of native PBPs, therefore the 

introduction of PBP2a circumvents this inhibition. The SCCmec elements, in 

addition to the mecA gene, comprise mecI and mecR, which encode the repressor and 

signal membrane transducer respectively. Another important feature are site-specific 

recombinases, known as cassette chromosome recombinases (ccr) which catalyse the 

integration and excision of SCCmec elements within a specific attachment site 

(attBscc) at the 3’ end of the S. aureus chromosome (208). All SCCmec elements  

share certain characteristic: presence of the mec and ccr gene complexes, integration 

at a specific site, known as the integration site sequence (ISS) and direct repeats 

flanking the ISS (209). Currently, there are eight described SCCmec types in S. 

aureus, as shown in figure 1.5. Classification of these elements is based on a 

combination of ccr and mec gene complexes (209). Presently there are 3 ccr genes, 

ccrA, ccrB and ccrC. The ccrA and ccrB genes have been grouped into 4 allotypes 

based on the designation of genes within the same allotype with nucleotide identities 

of  ≥ 85%. There is only one ccrC allotype, as all identified variants show nucleotide 

similarities of  ≥ 87%.  The mec gene complex is composed of mecA, the regulatory 

genes and the commonly associated insertion sequence (IS431) downstream of 

mecA. Four mec gene complexes exist in S. aureus, based on the genetic diversity 

within the mecI-mecR1 region. Class A is the prototypical class, with an intact and 

functioning mec gene complex. Classes B, C1 and C2 have truncated mecR1 genes 

due to either insertion of IS1272 within mecR1 (class B) or IS431 in mecR1 (class C1 

and C2 differ in the orientation of the insertion sequence). Variants of the mecA class 

also exist, as shown in the type IV variant in figure 1.5., which has a Tn4001 

insertion within the mecR1 gene. The SCCmec also contains a region known as the J 

or joining region, which consist of non-essential components of the element, but 

often carry additional antimicrobial resistance factors in the form of integrated 

plasmids or transposons. For example the pUB110 plasmid integrated within 

SCCmec II elements harbours the ant4’ gene, encoding resistance to several 

aminoglycosides (210).  
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Figure 1.5: Classification of SCCmec. The primary structures of the eight SCCmec elements are 

shown. The different mec gene complexes and ccr groups are highlighted in brackets. Insertion 

sequences and common accessory genes in the J-regions are also illustrated. The red arrows indicate 

the integration site sequence. Adapted from (209).  

 

 

Another genetic component within certain SCCmec elements (SCCmec II, III and 

VIII) is the phenol soluble modulin psm-mec, the only identified toxin within a 

mobile antibiotic resistance determinant (211, 212). psm-mec appears to have 

opposing functions; as a transcript it acts as a regulatory RNA inhibiting the 

translation of the agrA gene (213). Introduction of psm-mec into CA-MRSA or a 

MSSA strain decreases production of core genome PSMs (214), as PSMs are 

positively regulated by direct AgrA binding to psm promoter regions (215). 

Consistent with these observations, deletion of psm-mec from certain HA-MRSA 

strains increases expression of AgrA and core genome PSMs (213), illustrating the 

inhibitory effect of psm-mec in the expression of important virulence factors. The 

translational product of psm-mec, the cytolytic PSM-mec peptide, is active against 

human neutrophils and it has been shown that psm-mec has a positive effect on 

virulence in a mouse skin and systemic infection models (216). However, this effect 

appears to be strain dependent, as this positive correlation between virulence and 
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psm-mec is not observed in all HA-MRSA strains (213, 216). Therefore, this element 

appears to have both virulence inhibiting and activating properties, based on its 

transcriptional or translational status. The inhibitory effect of psm-mec is partly 

responsible for the increased virulence observed in CA-MRSA, due to the absence of 

psm-mec on SCCmec elements generally associated with CA-MRSA strains (213).  

 

Certain SCC elements encode other factors which benefit the bacterial host in 

a non-antibiotic resistance fashion. For example, SCCcap1 contains genes involved 

in the synthesis of capsular proteins, important in immune evasion (217). SCCmec 

elements spread relatively slowly and the exact mechanism which promotes 

replication and transfer is not known. It has been suggested that the SCCmec IV 

which spread more easily and frequently, maybe able to package into phage head and 

undergo transduction due to its smaller size (177). With respect to the larger SCCmec 

elements, the newly described proteins involved in transformation (188) may be an 

important method of transfer but this is not known as of yet.  

 

1.3.1.3 Identifying related strains – Genotyping  

 

Monitoring S. aureus strains is important from an epidemiological, evolutionary and 

preventative perspective; in light of these requirements, various methods have been 

designed to investigate the relatedness of S. aureus isolates.  

 

 Multilocus sequence typing (MLST) is a sequencing-based genotypic method 

of discriminating between strains based on single nucleotide variants (alleles) of 

multiple housekeeping genes (218). For S. aureus, 450 bp internal fragments of 

seven housekeeping genes (arcC, aroE, glpF, gmk, pta, tpi, yqiL) are sequenced, and 

differences in each fragment are assigned different alleles, with the cumulative 

alleles of the seven genes generating a sequence type (ST) (219). If five or more of 

the loci are identical, the strains are grouped within the same clonal complex (CC). 

Mutations within these housekeeping genes accumulate slowly, therefore MLST can 

be used to measure long periods of evolution with highly reproducible results.  
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 Pulse-field gel electrophoresis (PFGE) is a highly discriminative typing 

method for S. aureus and was considered gold standard for investigating MRSA 

outbreaks in hospitals and evaluation of recent evolution among lineages. The 

method relies on the digestion of chromosomal DNA with the restriction enzyme, 

SmaI, and the separation of DNA fragments by agarose gel electrophoresis with an 

alternating voltage gradient. The resulting pattern of DNA bands are analysed using 

specialised software and related strains are grouped according to an 80% similarity 

coefficient (220).  

 

spa typing is a sequence based analysis, which determines the variation 

within the polymorphic region X of the spa gene (encodes protein A) (221). 

Differences in the sequences of the variable-number tandem repeats allow 

discrimination between strains. This method is inexpensive, less laborious and time 

consuming than MLST as only one locus is sequenced. However, spa typing can lose 

its discriminative power which occurs when the same or related spa gene occurs in 

different clonal lineages, possibly through recombination (222).   

 

 The methods stated above do not fully discriminate between isolates of the 

same lineage and therefore do not provide the high resolution required to define 

specific relationships between strains. Next generation sequencing (NGS) technology 

has been employed to gain a more precise understanding of the relationship between 

strains, down to the finest of details. NGS has been used to generate ultra-fine data 

based on the mapping of SNPs and InDels from whole populations to that of a 

reference sequence (223). Each whole genome can be tagged individually allowing 

multiple strains to be sequenced rapidly and efficiently, with SNP and InDel outputs 

presented highlighting where changes to the reference genome occurred. This 

method was used in monitor the hospital and intercontinental transmission of a 

highly transmissible, multi-drug resistant clone of MRSA, ST239 (223). Results from 

this project illustrate the high discriminative power and superiority NGS has over 

other typing methods, resolving 5 strains which differed by only 14 SNPs. On the 

basis of SNP variation and sensitivity of the whole genome analysis, isolates can 

now be traced during outbreaks, and used to investigate their relatedness (224, 225).   
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1.3.1.4 Evolution and clonal diversification of MRSA  

 

Molecular epidemiology reveals that the population structure of S. aureus and 

evolution of MRSA is predominantly clonal (226, 227). By analysing the sequence 

changes at MLST loci, it was estimated that point mutations occurred 15-fold more 

frequently than recombination and that this is the driving force behind the initial 

stages of clonal diversification (226). However, recombination plays an important 

role in shaping the genome of S. aureus and is generally restricted to the MGEs of 

the non-core or accessory genome, but within core genomes the highest rates of 

recombination are localised to cell envelope proteins (180). Long-term evolution of 

S. aureus can be influenced by large chromosomal replacements (226, 228), as seen 

in the mosaic chromosome of ST239, a descendent of ST8 lineage, which underwent 

a significant recombination event acquiring 635 kb fragment from ST30 background 

(178). Recently, it has been observed that the recombination rate varied significantly 

within a single clone of S. aureus (ST239), and that this variation was associated 

with phylogeography (180). What is ultimately causing this variation is currently 

unknown but could be due to a variety of factors including genetic changes in the 

bacterial genome affecting restriction and modification system thereby imposing 

barriers to recombination within specific sub-clones (180, 189). 

 

The history of methicillin resistance S. aureus began with the successful 

introduction of the SCCmec element into a methicillin susceptible S. aureus (MSSA) 

host. The origins and mechanism of transfer of SCCmec are still unknown but an 

ordered progression of SCCmec transmission among the staphylococci has been 

proposed (228, 229). Considering that a PBP belonging to S. sciuri has the highest 

amino acid similarity (88%) to PBP2a, it is feasible to suggest that this organism was 

the evolutionary precursor of the mecA found in MRSA strains (229, 230). It has 

been hypothesised that the SCCmec element was first formed in coagulase negative 

staphylococci (CoNS), after the recombinases (ccr) and mec regulatory genes were 

assembled on a MGE in CoNS, which then acted as donors for transmission to S. 

aureus (228, 230). There are several lines of evidence that suggest this transmission, 

notably the intact nature of IS1272 found in CoNS and on SCCmec elements  
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consistent with transmission from a CoNS, the in vivo development of MRSA as a 

result of transmission of mecA from S. epidermidis to S. aureus (231), the high rate 

of methicillin resistance found in S. epidermidis and the observation that SCCmec IV 

was present in S. epidermidis before S. aureus (228).    

 

 There have been multiple introductions of SCCmec into S. aureus, and 

although the origins of MRSA are not completely understood, it is now agreed that 

MRSA did not arise from a single ancestral clone, highlighted by the evidence that 

strains with the same ST have different SCCmec types (227). It has now been 

determined that acquisition of SCCmec has occurred at least 20 times, with models 

predicting that acquisition was 4 times more likely than replacement (232). The S. 

aureus population consists of approximately 11 different lineages or clonal 

complexes (CC1, CC5, CC8, CC12, CC15, CC22, CC25, CC30, CC45 and CC51) 

with the most dominant HA-MRSA isolates belonging to CC5, CC8, CC22, CC30 

and CC45 (227). Enright et al investigated the evolutionary origins of a vast 

international collection of MSSA and MRSA isolates and identified 11 major STs 

within the five major lineages above (227).  

 

The ancestral MRSA genotype has shown to be ST250 which arose after the 

acquisition of SCCmec I by ST-250 MSSA, which itself descended from ST8 MSSA 

(227). CC8 is a successful clonal complex, containing three other major epidemic 

MRSA (EMRSA) STs (ST8, ST247 and ST239). Although ST8 is a successful 

MSSA clone, it has also acquired SCCmec types II and IV and is a widely 

disseminated EMRSA clone (227). ST247 is a single locus variant (SLV) of ST250 

and has spread internationally, known commonly as the Iberian clone (233) whereas 

the Brazilian clone (ST239), which also has genetic roots from CC8, is highly 

transmissible and multidrug resistant (234). The other major internationally 

disseminated EMRSA STs (ST5, ST22, ST30 and ST45) are very different 

genetically to the CC8s and originated from epidemic MSSA lineages that acquired 

the SCCmec element (227).  
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 The first antibiotic resistant S. aureus was the penicillin-resistant phage type 

80/81 pandemic strain which caused infections in both the hospital and community 

(235). EMRSA-16 is one of the most successful MRSA clones to have emerged over 

the past 20 years, and belongs to the same clonal complex of phage type 80/81, CC30 

(236). Interestingly, after genetic characterisation and comparison of genome 

sequences of isolates representing phage type 80/81, and CC30 hospital clones, it 

was shown that these strain diverged from a recent common ancestor (237). The shift 

from highly virulent phage type 80/81 to less virulent hospital restricted EMRSA-16 

clone maybe due to the acquisition of the SCCmec type II element which has been 

shown to interfere with agr signalling and reduction in cytolytic toxin expression 

while conferring resistance to beta-lactam antibiotics (238).  

 

EMRSA-15 represents a particularly successful clone associated with rapid 

and efficient transmission within the hospital environment, with evidence of spread 

to other countries (239, 240). EMRSA-15 belongs to the ST-22 family and is one of 

the most frequent found MRSA clones in Europe (240). In order to understand the 

genetic changes that contributed to the success of this clone, Holden et al sequenced 

the genomes of 193 ST-22 isolates from 15 countries (241). Of the many mutation 

and genetic rearrangements that were identified in order to explain ST-22 success, 

two nonsynonymous SNPs associated with fluroquinolone resistance were 

highlighted as key factors, with the authors suggesting that resistance to this 

particular antibiotic may have given ST-22 a competitive advantage and promoted 

colonisation in an environment where this antibiotic was frequently used. Other 

studies have shown that the acquisition of specific genetic elements can contribute to 

enhanced spreading, colonisation, virulence and success of MRSA clones. The 

acquisition of the ΦSPβ-like prophage containing the sasX gene has been implicated 

in the successful spreading and dominance of ST239 in China in the past 10 years 

(242). This 15kDa surface protein promotes nasal colonisation through increased 

attachment to nasal epithelial cells, bacterial aggregation and biofilm formation and 

impedes phagocytosis, increasing survival within the blood (242). The expression of 

this multifactorial protein promotes abscess formation in mice (242) and is a key 
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factor in increased pathogenic activity and epidemiological success of this specific 

epidemic clone. 

 

 Community acquired- (CA-) and hospital acquired- (HA-) MRSA are very 

different both in terms of genetic background and phenotype (discussed in detail in 

section 1.3.3), and are not from related lineages, with more clonal diversity observed 

within CA-MRSA than HA-MRSA (243, 244). Presently there are 5 major CA-

MRSA clones in circulation globally: ST1 clone in disseminating in Asia, Europe 

and the US, ST8 predominantly caused by USA300 clone in the US, but becoming 

more frequent in Europe, ST30 clone of Australia, Europe and South America and 

the ST80 clone harbouring in Asian Europe and the Middle East (222). The 

acquisition of SCCmec by CA-MRSA strains most likely occurred by MSSA 

acquiring SCCmec IV, as PVL positive MSSA strains were present in Japan and 

acquired SCCmec IV (245).  

  

The evolutionary success and dominance of certain S. aureus clones can be 

attributed to the successful acquisition of genetic elements horizontally, highlighted 

recently by the acquisition of sasX by ST239 strains in Asia. Recent evidence 

suggests that within certain lineages, MGEs are transferred with higher frequency 

than in others, potentially enhancing the successful spread of new MRSA clones 

(177). One method that S. aureus has evolved to prevent transfer of genes between 

different lineages is highlighted by the restriction and modification systems which 

targets and destroys ‘foreign’ DNA based on sequence and modification patterns 

(189). Therefore, these RM systems can dictate bacterial evolution by preventing 

transfer of virulence or resistance genes between different CCs. However, in certain 

cases, lack of a particular target sites enables genetic transfer between lineages which 

may be an important feature in driving the evolution of MRSA clones (246).   

 

1.3.2 S. aureus and the human host  

 

The main ecological niche for the colonisation of the human host by S. aureus is 

localised to the non-ciliated, keratinized epithelium of the anterior nares (vestibulum 
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nasi) (247-249). Other anatomical sites may also be colonised including the axillia 

and perineum (247), and in some cases the  pharynx; however it is unclear whether 

this is a permanent or transient site, as S. aureus adherence to nasopharyngeal 

ciliated epithelium is poor (250). Nasal carriage is a recognised risk factor for 

staphylococcal disease (249, 251). Patients undergoing medical treatment are more 

likely to become infected if they are carriers than those who are not (252, 253). It has 

been widely accepted that the majority of infecting strains are identical to that of the 

carriage strain (254, 255) with one particular study highlighting nasal isolates as a 

source of bacteraemia in greater than 80% of cases (251). Elimination of nasal 

carriage using topical antimicrobials generally eliminates colonisation from other 

anatomical site, highlighting the nares as the dominant reservoir for infection (256). 

 

Historically, S. aureus nasal colonisation of humans has been divided into 

three groups: persistent carrier, which accounts for approximately 20% of 

individuals, intermittent carrier (~30%) and non-carriers (~50%) (247, 248, 257). 

However, the rate of re-colonisation after elimination varies widely, as does the 

prevalence of S. aureus with respect to ethnicity, age, sex and patients with chronic 

underlying illness (255, 258-260). The identification of specific features of the 

different carriage types has redefined nasal carriage classification (261). Using a 

human colonisation model, S. aureus strains were observed to have a significantly 

higher survival rate in persistent carriers as opposed to intermittent and non-carriers, 

which show similar rates (261). Coupled with differences in bacterial load in colony 

forming units (CFU) per sample and anti-staphylococcal antibody profiles between 

the persistent and intermittent/non-carriers groups, nasal carriage is now grouped as 

either persistent or others (261). The ability of S. aureus to persist in the nasal 

cavities in certain individuals is not fully understood, but is likely to be a result of a 

combination of host and bacterial factors and the presence of commensal organisms, 

as illustrated in figure 1.6.  

 

The pattern of carriage of S. aureus suggests a host genetic predisposition to 

colonisation, supported by the observation that nasal carriage varies with ethnicity 

(262). Recent studies have shed light onto specific genetic polymorphisms and 



36 
 

environmental nasal conditions which modulate colonisation. Nasal secretions 

contain anti-staphylococcal potential in the form of antimicrobial peptides (AMPs) 

such as lysozyme, lactoferrin, phospholipase A2 and defensins (263). Unsurprisingly, 

reduced expression of these AMPs  have been implicated with increased nasal 

carriage (264). Curiously, certain individuals produced secretions which promoted 

nasal colonisation (265). Protease treatment and immunoprecipitation studies 

revealed haemoglobin as the substance conferring increased colonisation (265). It 

was observed that haemoglobin not only increased bacteria attachment to collagen 

and fibronectin, but decreased the inoculum size required for establishing successful 

colonisation in a rat model (265). Interestingly, this effect was independent of iron as 

apohaemoglobin also promoted this phenomenon. It has been observed previously 

that the alpha and beta chains of haemoglobin inhibit exotoxin production in S. 

aureus (266). Interestingly, it was shown that haemoglobin specifically inhibited the 

accessory gene regulatory (Agr) quorum sensing system (Agr reviewed in section 

1.3.4.1) and that constitutive expression of RNAIII, the effector molecule of the 

system, inhibits nasal colonisation (265). The authors suggest that since Agr 

regulates proteases, the downregulation of agr by haemoglobin may infer an 

advantage by inhibiting the activation of proteases which may cleave surface proteins 

important in attachment and colonisation to squamous epithelial cells (265). Other 

host factors contributing to a persistent nasal carriage state involved polymorphisms 

in genes which can modulate immune activity, such as glucocorticoids, C-reactive 

proteins, interleukin 4 and complement inhibitor proteins (267, 268). 

 

It is widely known that commensal bacteria can compete and inhibit 

pathogenic bacteria and influence colonisation (257). Recently, the impact of normal 

flora on S. aureus nasal colonisation has been reported. Here a subset of 

Staphylococcus epidermidis strains secreting a serine protease, Esp, lead to inhibition 

of biofilm formation and nasal colonisation by S. aureus (269). This inhibitory effect 

is augmented when Esp is combined with human beta-defensin 2 (hBD2) an AMP 

secreted by keratinocyes, resulting in higher biofilm destruction (269). Introduction 

of wild type but not esp mutants in human S. aureus positive volunteers lead to the 
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elimination of S. aureus colonisation, clearly showing the importance of S. 

epidermidis in determining S. aureus persistent colonisation.  

 

 

 

Figure 1.6: Factors affecting persistent nasal colonisation of S. aureus. This schematic represents 

some of the major factors affecting persistent nasal carriage of S. aureus. The expression of proteins 

(ClfB, IsdA and SdrC and D) and polymers (wall teichoic acids (WTA)) on the surface of S. aureus 

interact with the squamous epithelium facilitating adherence and colonisation. ClfB specifically 

interacts with two ligands on the surface of squamous epithelial cells, loricrin and cytokeratin. Nasal 

secretions contain different antimicrobial peptides (AMPs) which can inhibit the growth of S. aureus 

in the nasal cavity. Nasal secretions can also contain factors which increase colonisation, exhibited 

here by high haemoglobin concentrations. Haemoglobin interferers with Agr signalling, which may 

interrupt protease activation resulting in higher surface protein expression and increase nasal 

colonisation.  A subset of S. epidermidis strains secrete the Esp protease which reduces biofilm 

formation and nasal carriage, which occurs through a mechanism involving human beta-defensin 2 

(hBD2) AMP.  

 

 

Bacterial factors are also extremely important in nasal colonisation. The most 

influential factor for nasal carriage is the ability of S. aureus to adhere to epithelial 

surfaces. For this interaction to take place, bacteria need to expresses the correct 

surface proteins to interact with the corresponding ligands present on cells. One of 
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the major ligands on the cell surface of S. aureus is clumping factor B (ClfB) (98). 

This protein has been shown to interact with two specific structural proteins of 

squamous epithelial cells, cytokeratin 10 and loricrin (270) and the absence of either 

ClfB or loricin in mouse models diminishes nasal colonisation (270, 271). Through 

the use of surrogate expression, isogenic mutants and ex vivo squamous adherence 

assays, other surface proteins have also been implicated in nasal colonisation, most 

notably the iron surface determinant protein IsdA, and the serine-aspartic acid repeat 

proteins, SdrC and SdrD (272). The S. aureus cell envelope also contains complex 

surface-exposed polymers, known as wall teichoic acids (WTA) (273). These 

molecules are composed of ribitol phosphate repeating units modified with N-

acetylglucosamine and D-alanine (273). The role of these complex polymers in nasal 

colonisation was explored, with mutants deficient in key teichoic acid biosynthetic 

steps impaired in their adherence to primary nasal epithelial cells and human airway 

epithelial cells (274), however the precise receptors to which WTA in anchors with 

remains to be determined.  

 

1.3.3 Epidemiology and disease of S. aureus  

 

Humans are a natural reservoir of S. aureus and can exist in a non-pathogenic 

relationship with the host. Generally, initiation of infection begins with a breach in 

the natural barriers of the skin and/or mucosa, from which bacteria can invade the 

adjoining tissues or bloodstream (275, 276). S. aureus can cause a wide range of 

pathophysiological complications and is a leading cause of hospital-acquired 

infections (277). S. aureus is the primary cause of lower respiratory tract and surgical 

site infections (278) and among the most prevalent causes of bacteraemia (279) and 

pneumonia (67, 277, 278). 

 

 In the US alone, hospitalization and rates of infection increased substantially 

between 1999 and 2005 (277), and in 2009 an estimated 463,017 MRSA-related 

hospitalizations was recorded, at a rate of 11.74 hospitalisations per 1,000, 

illustrating the increasing burden this pathogen imposes on health care resources 

(280). Fatalities due to MRSA infection in hospitalised Americans approximate at 
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19,000 annually, a number that is equal to the combined deaths due to AIDS, 

tuberculosis and viral hepatitis combined (281, 282). The severity of the disease 

depends on the complex interplay between the multitude of S. aureus virulence 

determinants (reviewed in section 1.3.5) and the capabilities of host immune defence. 

Although the vast majority of S. aureus infections require a combination of these 

virulence determinants, in some cases, individual factors can be singled out as the 

predominant cause, such as in toxic shock syndrome (283), staphylococcal scalded 

skin syndrome (284) and necrotic lesions of the skin or mucosa (285).  

 

S. aureus is notoriously difficult to treat due to antibiotic resistance. Since the 

first appearance of methicillin resistance in 1960, MRSA strains have spread globally 

and are now endemic, and in some cases, epidemic in hospitals, care facilities and 

communities (67, 281, 286). The high incidence of MRSA is not only localised to the 

US, with South East Asia, southern Europe, parts of South America and Australia all 

having rates of prevalence between 25-50% (228). This is in stark contrast to the 

Scandinavian countries and the Netherlands, which have the lowest MRSA 

prevalence rates, due to their effective search and destroy policies of screening, 

isolation of MRSA-positive carriers and eradication (287). In Europe, MRSA clones 

display higher levels of clustering and regional distribution than their MSSA 

counterparts (240). However, as MRSA strains tend to emerge from MSSA strains 

and considering that the acquisition of SCCmec is a rare event, there are fewer 

MRSA clones which have had less time to diversify and have had more of a selective 

pressure in harsher environments which may constrain their diversity. In contrast, 

MSSA strains have a much weaker selection which may bias the geographical 

clustering of MRSA (240). Of growing concern is the emergence of MRSA infection 

in people who had no prior contact with hospitals or health care or other risk factors, 

the so called community-associated MRSA (CA-MRSA).  

 

Historically, S. aureus, particularly MRSA, was associated with hospital 

infection, so called hospital acquired/associated (HA)- MRSA (288). Risk factors for 

colonisation included surgery, intensive care unit admission, exposure to antibiotics 

or MRSA-colonised patient and prolonged hospital stay (288). Higher carriage rates 
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are associated with intravenous drug users, healthcare workers, patients with 

underlying illness such as dermatological conditions, indwelling devices and diabetes 

(275, 288). In recent years, MRSA epidemiology has changed from predominantly 

hospital acquired, to infections that are acquired in the community (289). With this 

switch came an increase in hospitalisations, primarily due to an increase in skin and 

soft tissue infections (SSTIs) caused by these CA-MRSA strains (290). The 

epidemiology of CA-MRSA is markedly age dependent, with CA-MRSA strains 

causing disease in younger patients with no previously defined health risk factors. 

How these CA-MRSA strains differ from HA-MRSA strains, in terms of clonal 

background, antibiotic resistance, virulence and transmissibility is described in the 

following section. MRSA is also found colonising livestock including pigs, cattle and 

poultry, a third epidemiological group known as livestock-associated- (LA-) MRSA, 

with CC398 as the most predominant clonal complex (291).  

 

1.3.3.1 CA-MRSA 

  

In the past HA-MRSA strains were restricted to the healthcare setting and out-

competed CA-MRSA in this environment probably due to their higher antibiotic 

resistance potential. CA-MRSA dominated in the community setting being fitter and 

more virulent than their HA-MRSA counterparts. Presently, there exists a more 

complex epidemiology, whereby both HA- and CA-MRSA circulate in the 

community and highly successful CA-MRSA clones are invading hospitals and 

healthcare facilities (292, 293). In spite of this, certain molecular traits can be used to 

discriminate between the two groups, a summary of which is shown in figure 1.7.  

 

In the early 1990s, the first documented CA-MRSA cases began to emerge in 

the US, with MRSA infections causing high mortality in healthy individuals in the 

community (294). In the following years, CA-MRSA became a global problem.  

Virulent CA-MRSA strains have been shown to belong to different lineages, with a 

geographical predominance (295). In the US, the most dominant CA-MRSA strain is 

USA300 (ST-8), replacing the first CA-MRSA strain observed in the US, USA400 

(ST-1), in all of North America and is considered to have caused the most severe 
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outbreak globally (296). CA-MRSA strains are highly associated with skin and soft-

tissue infections (296, 297) and under rare circumstances can cause more severe, 

often fatal diseases such as necrotizing pneumonia, Waterhouse-Friderichsen 

syndrome and necrotizing fasciitis (298).  

 

Comparative genomics of HA- and CA- MRSA strains was essential in 

assessing the molecular basis for CA-MRSA pathogenic success. Two mobile 

genetic elements were highlighted as possible markers for the enhanced virulence 

associated with CA-MRSA: SCCmec type IV and prophage ΦSA2pvl (299). In 

general terms, HA- and CA-MRSA differ substantially in terms of antibiotic 

resistance. The elucidation of a new, shorter SCCmec belonging to CA-MRSA (types 

IV,V or VII), highlighted a possible reason for the observed increased dominance 

and transmissibility, as these SCCmec elements (particularly SCCmec IV) were 

shown to cause less of a fitness burden than those SCCmec elements associated with 

HA-MRSA (namely SCCmec I, II and III) (300). CA-MRSA isolates are usually 

sensitive to most non-beta-lactam antibiotics, while HA-MRSA, due to the selection 

imposed on them by their environment, are generally multidrug resistance (301). 

Importantly, differences in the antibiotic minimum inhibitory concentration (MIC) 

are significantly different, with HA-MRSA requiring much higher antibiotic 

concentrations for efficient killing (296).  

 

The association between the Panton-Valentine Leukocidin (PVL) and CA-

MRSA has been carved into the history books of S. aureus as one of its most 

controversial chapters. PVL is a bi-component beta-barrel forming leukocidin 

(reviewed in section 1.3.5.2.2). Enormous interest surrounding the role of PVL in 

CA-MRSA infections began after epidemiological studies showed a positive 

association between the presence of pvl genes and CA-MRSA (302). In an attempt to 

unravel the role of PVL in CA-MRSA disease, isogenic mutants of lukS-PV (or lukF-

PV) were created and the effect this mutation had on either human neutrophils, or 

specific animal models, examined. The controversy stemmed from experimental 

practice: culture supernatants proved strongly dependent on growth media used 

(303), while different groups, using different animal models, observed contradictory 
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results (304-307). Recently, a receptor for PVL has been identified (C5a receptor 

(308)), explaining the low sensitivity of mouse neutrophils to PVL and the earlier 

results stating a non-involvement of PVL in CA-MRSA disease. PVL is important; 

however its importance is disease specific. Rabbit neutrophils are sensitive to PVL, 

in a range similar to humans (309), and it has been observed that PVL plays a 

significant role in the development of pneumonia (310). PVL involvement is less 

clear in skin infections, where it has been shown that α-haemolysin and phenol 

soluble modulins (PSMs)  involvement is critical (311). Finally, the observation that 

increasing numbers of CA-MRSA strains do not contain pvl genes (301), suggests 

that although PVL may be important in some diseases, it is not the only factor 

contributing to CA-MRSA enhanced virulence.  

 

Increased expression of core genes rather than the acquisition of novel 

elements is suspected to be behind the high virulence of CA-MRSA strains. 

Enhanced expression of two classes of toxin; α-haemolysin and phenol-soluble 

modulins (reviewed in section 1.3.5.2), have been implicated in the success of CA-

MRSA (312, 313). α-haemolysin is one of the most widely studied and well 

characterised of the staphylococcal toxins, forming pores in susceptible cells such as 

erythrocytes and macrophages (314). Studies investigating the effects of hla deletion 

in CA-MRSA resulted in a negative impact on virulence, particularly in pneumonia 

(315) and skin and soft tissue models of infection (311), highlighting its central role 

in CA-MRSA pathogenesis. PSMs are small amphipathic peptides, which do not 

require a proteinaceous receptor and can lyse a variety of cells including 

erythrocytes, macrophages and neutrophils (312, 316). PSMs are produced in huge 

quantities in CA-MRSA, and although the psm genes are present in HA-MRSA, they 

are expressed at significantly lower levels (312). This higher expression of PSMs is a 

major factor involved in the observed increase in virulence in CA-MRSA strains, 

complemented by the fact that deletion of the psmα operon significantly reduces the 

mortality rates in skin infections (311) and bacteremic mouse models (312). PSMs 

exhibit high antimicrobial activity, which may also be important for colonisation and 

spread in the population in which out-competing competitors is suspected to be 

important (317). Both toxins are regulated by the central virulence regulator, Agr, 
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which is highly active in CA-MRSA (318). The specific events and minute genetic 

changes in central regulators, such as Agr, may be behind the increase expression of 

core genes, the specifics of which have yet to be determined.   

 

CA-MRSA strains have undergone a rapid global expansion, and 

understanding the basis behind this is required if novel intervention strategies are to 

be developed. Factors that can enhance fitness and the ability to successfully colonise 

the host, are of major importance in the spread and epidemiological success of CA-

MRSA in the population. The arginine catabolic mobile element (ACME) is specific 

to the USA300 strain, physically linked to SCCmec IV (IVa), and considering its 

dominance in North America and growing success in Europe (319, 320) and South 

America (321), it was hypothesized that ACME may be important in overall fitness, 

enhancing colonisation and transmissibility (322). The ACME element, originally 

acquired from S. epidermidis, encodes two main clusters; an arginine deiminase (arc) 

hypothesized to reduce the acidic environment of the skin through production of 

ammonia, and the oligopeptide permease (opp) which may be important in nutrient 

uptake (322). No significant impact on virulence was established for the ACME 

element, and its role is enhanced colonisation and skin survival remains to be 

established.  

 

Polyamines are aliphatic compounds which have pleiotropic effects in many 

aspects of cellular biology particularly important in wound healing and inflammation 

(323). Interestingly, S. aureus is hyper-sensitive to polyamines, inhibiting rather than 

enhancing survival, a feature almost unique to S. aureus (324). However, USA300 

clones are the notable exception, illustrating resistance to such compounds (325). 

The polyamine-resistant dependent phenotype depended upon the expression of a 

spermine/spermidine acetyl transferase (speG) located within the ACME element 

(325), and this polyamine resistance phenotype was shown to contribute a major 

fitness advantage in SSTI models (326). Considering that CA-MRSA are a major 

cause of SSTI, and that these infections are likely to have increased polyamine 

production,  this particular resistance feature may contribute to the dominance of 

USA300 in North America.  
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Other factors including the presence of additional superantigen genes 

(se1Q(327)) and virulence regulators (AryK, in the Australian clone, ST93 (328)) 

may also impact on the hyper-virulence of CA-MRSA. The higher incidence of CA-

MRSA in the US compared to Europe cannot be solely attributed to different clonal 

lineages as USA300 is present in Europe, but factors such as low socioeconomic 

standards, high rate of incarceration and lack of access to adequate  healthcare (292) 

may all help in perpetuating the transmission and success of CA-MRSA.  

 

 

 

Figure 1.7: Molecular traits associated with CA-MRSA. Outlined are the general traits associated 

with CA-MRSA concerning antibiotic resistance and elements which may contribute to increased 

transmission and enhanced virulence.  
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1.3.4 Virulence gene regulators   
 

Virulence gene expression in S. aureus is regulated in a temporal, growth-phase 

dependent manner, through a complex regulatory network employing two-

component systems (TCS), multiple DNA binding proteins and a subset of regulatory 

RNAs. These systems are sensitive to environmental signals and allow the bacterium 

to adapt to niche habitats and are central in pathogenesis.  

 

1.3.4.1 Quorum sensing and the accessory gene regulator (Agr) 

 

Quorum sensing is a cell-to-cell communication system mediated by diffusible 

signalling molecules, or auto-inducing peptides (AIP), which allow bacteria to 

synchronise the expression of specific genes. This sophisticated chemical 

communication is used by S. aureus to modulate the activation of selected virulence 

genes (329). One of the most well-characterised genetic elements in S. aureus is the 

quorum sensing accessory gene regulator (agr) system, which decreases the 

expression of surface proteins and increases the expression of secreted 

toxins/enzymes as a function of bacteria density, specifically during the transition 

from late exponential to early stationary phase of in vitro growth (329, 330).  

 

 The agr system is encoded on a 3kb locus consisting of five genes (agrACDB 

and hld) composed of two divergent transcripts, RNAII and RNAIII,  driven by two 

distinct promoters, P2 and P3 respectively (Fig 1.8) (331). The agr-activating ligand 

is a post-translationally modified peptide, encoded by the agrD gene, which is 

processed and digested by the polytopic transmembrane protein agrB, which secretes 

a mature AIP composed of seven to nine aminoacyl residues, containing a 

functionally critical thiolactone (332). This AIP forms the basis of the proceeding 

regulatory circuit, where upon reaching a critical AIP threshold, dependent on the 

bacterial density, the agr system is activated. AgrC is a transmembrane protein, 

consisting of several extracellular loops which interact with the AIP and a 

cytoplasmic C-terminal histidine kinase domain. This protein acts as the sensor 

component of the agr system, undergoing homodimerisation after AIP binding, 

leading to trans-phosphorylation of the histidine domain (333). This phosphate is 
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transferred to the response regulator, AgrA, leading to a conformational change 

permitting binding of this protein to the promoter regions of P2 and P3 (also binds to 

the promoter region of psm operons (215)). This activation of the P2 and P3 

promoters drives the expression of the two transcripts in a positive feed-back loop 

manner (329).  

 

 

 

Figure 1.8: The accessory gene regulator (agr) system. The agr regulatory circuit consists of two 

divergently transcribed transcripts, RNAII and RNAIII. The RNAII transcript contains agrACDB 

operon. agrB encodes a transmembrane protein responsible for processing the autoinducing peptide 

(AIP), encoded from agrD. After reaching a critical threshold, AgrC (sensor kinase) senses AIP 

concentration, resulting in the phosphorylation of AgrA (response regulator) which interacts with 

promoter regions, resulting in expression of RNAIII and other genes. RNAIII is a regulatory RNA 

composed of 14 stem-loops and modulates the expression of virulence factors in S. aureus. RNA 

molecule was taken from (334). 

 

 

The regulatory RNAIII molecule is the pleiotropic effector of the agr regulon and 

encodes a toxin gene, delta (hld) toxin, (335). The RNAIII molecule has a complex 

secondary structure containing 14 stem-loops which are important in the up-

regulation of extracellular toxin transcripts and repression of cell surface proteins 
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during transition into the late-exponential phase of growth (335). RNAIII directly 

targets three specific mRNA encoding virulence factors, hla, spa and coa mRNA. 

Binding of the 5’ end of RNAIII to the Shine-Dalgarno (SD) sequence of hla mRNA 

results in conformational changes, conducive to translation of hla mRNA (336). In 

contrast, RNAIII represses the synthesis of protein A via direct binding of the 3’ end 

of stem-loop 13 to spa mRNA preventing ribosome interaction and initiating mRNA 

degradation by activation of the RNaseIII specific endoribonuclease (337). For coa 

inactivation, RNAIII utilises two distal regions which base-pair with nucleotides in 

the coa SD sequence forming an imperfect duplex complex, preventing protein 

activation and causing mRNA degradation through RNaseIII (338).  

 

Genome wide analysis of several S. aureus strains suggest that there are at 

least sixteen two-component systems present in the S. aureus genome (339). After 

AgrCA, there are four major two-component systems which have been implicated in 

virulence gene expression: SaeRS (S. aureus exoprotein expression), SrrAB 

(Staphylococcal respiratory response), ArlRS (Autolysis-related locus) and LytRS 

(Lytic-related genes).   

 

1.3.4.2 Two-component systems 

 

The sae locus contains four open reading frames, two of which illustrate strong 

homology to response regulators (SaeR contains an aspartate phosphorylation site) 

and histidine kinases (SaeS contains an aspartate autophosphorylation site) (340). 

Upstream of the saeRS genes exist two additional genes, saeP and saeQ, likely to 

contribute to saeRS activity (341). Four transcripts are expressed from two 

promoters, P1 and P3, with P1 being strongly activated by hydrogen peroxide and α-

defensins, suggesting a role of saeRS in activation of virulence factors important for 

neutrophil killing (342), with other factors such as high salt, low pH and 

subinhibitory antibiotics also affecting sae activity (329). Interestingly, the activation 

by α-defensins is strain specific, therefore other factors either interacting with sae 

leading to activation, or activation being a result of structural changes in the cell 

envelope between the different strains may be responsible for this activity (342).  
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The most abundant transcript, T2, has been suggested to be processed from transcript 

T1, following endoribonucleolytic cleavage, possibly acting as an important method 

of enhancing the half life of this transcript (342).  

 

sae mutants are deficient in α-, β-, γ-toxins, proteases, DNase, coagulase, and 

surface proteins such as fibronecting binding protein A and protein A, and do not 

affect the transcription of agr, sarA or sigB. (343, 344). Sae locus is activated by agr, 

but repressed by sigB highlighting the possibility that it acts downstream in the 

global regulatory cascade (340, 342, 344). Inactivation of sae or agr has a reduced 

effect in virulence in animal models, however the respective virulence genes they 

regulate are different (341, 343). For example, inactivation of agr causes an increase 

in the expression of certain surface proteins whereas sae mutation has the opposite 

effect on identical proteins (345). Recently, it has been reported that a methionine 

residue (M31) in the predicted extracellular loop domain of SaeS is essential for 

transcription of toxins genes (hla, lukA/B/lukG/H and hlgA), mutation of which 

drastically reduces cytotoxicity to neutrophils, signifying its importance as a 

virulence regulator (346). 

 

 The srr locus consists of two overlapping open reading frames srrA and srrB 

with one transcriptional start site, producing either srrA or full length srrAB 

transcript (347). This system also shows homology to the B. subtilis resDE system, 

which is important for global regulation under both aerobic and anaerobic conditions 

(348). The srrAB system acts as a global regulator of virulence, down regulating 

RNAIII, toxic shock syndrome toxin -1(tst), icaR and protein A, particularly in low-

oxygen environments (348) but enhances the level of these transcripts (except 

RNAIII) under aerobic conditions (349). SsrA is the response regulator of this 

system, and SrrA binding sites have been discovered at the agr P2 and P3, spa, tst, 

icaA and srr promoters regions highlighting a direct method of regulation by SrrA 

(347, 350).  

 

Polysaccharide intracellular adhesion (PIA) molecule is an important factor 

involved in biofilm formation and is regulated by the icaADBC locus (124). IcaA 
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acts as an N-acetylglucosaminyl transferase important in PIA production (124). 

SrrAB significantly increases icaA transcription leading to a PIA-positive phenotype 

during anaerobic growth (350). This mechanism of ica expression is proposed to 

function through inactivation of icaR, the repressor of the ica locus, by both 

phosphorylated SrrA and SarA (350). This expression of PIA under anaerobic 

conditions has been shown to confer a survival advantage during in vitro anaerobic 

phagocytosis assays (350).  SrrAB also plays a major role in resistance to hypoxia 

and radical nitric oxide, with mutants in ssrAB becoming hyper-sensitive to 

nitrosative stress (351). Under conditions of nitrosative stress srrAB induces the 

expression of genes required for anaerobic metabolism and nitric oxide (NO
°
) 

detoxification (352), conveying the importance of srrAB as a global regulator 

affecting genes important in virulence, stress adaptation and metabolism.   

 

The arl locus consists of two co-transcribed genes, one coding for the 

histidine kinase sensor protein, ArlS, while the other for the response regulator, 

ArlR, which belongs to the PhoB-OmpR family (353). This locus is expressed during 

the transition from the exponential to post-exponential growth phase (353). 

Inactivation of arlS causes autolysis due to an increase in peptidoglycan hydrolase 

activity, suggesting its involvement in cell growth and division (353). The arl locus 

is also intimately involved in global virulence regulation, illustrated by mutation in 

either arlS or arlR increasing the secretion of specific exoproteins (α-, β-haemolysin, 

lipase, coagulase, serine protease) and protein A, in contrast to an agr mutation 

(354). An agr/arl double mutation retains the overall increased exoprotein 

expression, suggesting it regulates certain exoproteins upstream of agr (353, 354). 

The effect on spa expression is through arlRS alteration of DNA supercoiling, where 

relaxed DNA leads to increased spa expression (355). Recently, the involvement of 

arlRS in agglutination and development of infective endocarditis (IE) has been 

investigated, illustrating a positive association between arlRS activity and clumping 

in the presence of human plasma (356). ArlRS negatively effects the expression of 

the extracellular binding homologue, Ebh protein, allowing the formation of stable 

clumps important in IE (356).  
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 The lytRS locus comprises two overlapping, co-transcribed genes, lytS and 

lytR (357). In an analogous fashion to the arl genes, mutation of lytS increases 

autolysis (358). Both lytS and lytR positively regulate the expression of lrgA and 

lrgB, proteins which are important in regulating autolysis, inhibiting the activity of 

murein hydrolases by structurally modifying the bacterial cell wall (359). Reduced 

expression of these proteins leads to increased autolysis and increased susceptibility 

to cell wall acting antibiotics (359).  

 

Other, less well characterised two-component systems (TCS) which affect 

virulence regulation in S. aureus include the KdpDE and GraRS regulatory circuits. 

KdpDE senses external K
+ 

concentrations and regulates virulence genes in response 

to this stimulus (360). DNA microarray analyses revealed a multitude of genes were 

up and down-regulated in a kdpDE mutant, with some of these genes being important 

virulence factors (360). Coupled with the fact that this system is up-regulated by agr, 

the KdpDE system represents an exciting new TCS important in virulence regulation. 

The GraRS system is important for the induction of several genes which determine 

the net positive charge on the bacterial surface, where mutation of graRS leads to 

increased killing by host and bacterial antimicrobials peptides (361, 362). 

 

1.3.4.3 The SarA protein family 

 

The SarA family represents an array of regulatory proteins which are fundamental in 

coordinated virulence expression in S. aureus. The founding member of this family is 

the SarA protein, a 14.7 kDa DNA binding protein encoded from the sarA locus 

(363).  The sarA locus consists of three overlapping transcripts derived from three 

different promoters which are activated during different times of in vitro growth, 

each encoding the SarA protein (364). The P1 and P2 promoters are σ
A
 dependent 

while P3 activation relies on σ
B
 and is activated post-exponentially (364). SarA acts 

as a dimeric, winged helix protein with contains multiple helix motifs allowing for 

efficient DNA binding to AT-rich sequences (365). SarA promotes the synthesis of 

fibronectin and fibrinogen binding proteins and a suite of toxins (α-, β- δ- toxins) 

whereby inactivation of sarA leads to attenuation in multiple models of infection, 
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(366). SarA expression peaks at late exponential phase coinciding with activation of 

agr and RNAIII in particular, and it has been observed that the intergenic region 

between agr P2 and P3 promoters contains SarA binding sites (367). Both SarA and 

SarR, a Sar homolog, can bind these sites, influencing agr activation (368). SarR is a 

13.6 kDa protein which binds P1, P2 and P3 promoters, and when inactivated leads 

to a higher expression of sarA and translated SarA protein (369). AgrA is central for 

P2 and P3 activation, whereby SarA can interact with and enhance AgrA-mediated 

P2 expression, while SarR displaces this protein from the agr promoter region, down 

regulating the combined activation of SarA-AgrA (368).  

 

Through a series of genetic investigations, comparative sequence alignments 

and structural data it was deduced that the SarA family consists of an another 8 

homologs including Sar T, U, V, X, Y, Z, Rot and MgrA (370). The SarA protein 

family can be divided and classified based on structure and size, with the larger 

proteins such as SarS, SarY and Sar U classed as two-domain proteins, with each 

domain homologous to SarA, and single domain proteins, such as SarA, SarR, SarT, 

SarV, SarX and Rot). A further subclass is used based on the sequence similarity of 

MgrA and SarZ to the MarR protein family of Gram-negative bacteria (370). 

 

Rot (repressor of toxins) is a SarA homologue, and acts as a global regulator 

that negatively regulates the expression of several important virulence genes, such as 

lipase, haemolysins, and certain proteases, and positively regulates the expression of 

a number of surface adhesins and genes involved in teichoic acid biosynthesis (371). 

Considering the opposing influences both Rot and RNAIII have on virulence, it was 

hypothesized that these two global regulators must interact at some level. It has been 

observed that RNAIII can represses rot mRNA translation through an anti-sense 

mechanism, base-pairing between multiple RNAIII hairpins and the sequence of 

mRNA leading to rot repression and the upregulation of toxin genes (334). Rot 

directly regulates the expression of sarS, a transcription factors important in 

modulating virulence expression (372). Additionally, rot directly represses the P3 

promoter of sae, leading to repression of α-haemolysin (373). 

 



52 
 

SarS represents another SarA homolog, consisting of a monomeric, rather 

than dimeric structure, with two similar, but non-identical halves, important in 

functioning as winged helical protein (372). SarS is a 29.9kDa protein, important in 

the upregulation of protein A, binding directly to the spa promoter (372). SarS is 

repressed by both agr and another SarA homolog, MgrA and is activated by the 

ClpXP proteases (370).  

 

 SarT acts a regulatory mediator between genes regulated by SarA and agr. 

SarT represses hla transcription by binding directly to hla promoter region and is 

itself repressed by SarA and agr (374). SarT can positively influence the expression 

of SarS (374). Interestingly, repression of SarT by agr, is the proposed method of spa 

reduction observed in agr activated cells (374). Neighbouring sarT but divergently 

transcribed is sarU, which is repressed by SarT and is a positive activator of agr, 

observed by a significant decrease in RNAII and RNAIII transcripts in a sarU mutant 

(375). Activation by SarU may represent a secondary amplification of the agr 

regulatory cascade, strengthen by the fact that sarT is down regulated by agr (375).  

 

SarX functions to represses agr activity and is up regulated by MgrA, as two 

consensus MgrA binding sites are embedded within the sarX promoter region (376). 

This highlights the only known SarA protein which negatively affects agr activity 

directly, highlighting another potential regulatory loop complementing the already 

complex interplay surrounding virulence gene regulation. SarZ positively affects agr 

activity as a sarZ mutant results in the reduction of RNAIII transcripts (377). sarZ 

mutant also leads to a decrease in transcription of mgrA, hla and sspA (encoding the 

V8 protease) and  increased spa transcription (377) underpinning its importance in 

virulence gene regulation. The inactivation of sarZ also resulted in an increase in 

sarA, suggesting that both the effect of hla and spa in a sarZ mutant is via agr, and 

that activation of agr by SarZ is through a SarA-independent method (377). SarZ 

also represses biofilm formation through its actions on agr and mgrA, both of which 

effect key genes in biofilm formation (377).  
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MgrA is a key transcription factors which modulates virulence factors in an 

agr-like fashion (378). MgrA also affects autolysis through its repressive affect on 

SarV (378). SarV is a key transcription factor in modulating autolysis, whereby 

mutation of sarV results in an increased resistance of cells to detergents and beta-

lactam mediated lysis compared to wild-type levels (370, 379). This decrease in 

susceptibility maybe due to sarV acting as a positive regulator of murein hydrolase 

(379), a decrease of which would render cells more resistance to autolysis. Mutation 

in mgrA increases autolysis, sarS and spa transcripts and decreases agr, highlighting 

its global regulatory activity (380). mgrA causes increased hla transcription through 

interaction with agr, leading to its enhanced activation, but also through direct 

binding at the hla promoter (380). MgrA downregulation of spa transcription occurs 

through increased agr activity as stated above, but also by direct repression of sarS, 

whereby MgrA binds directly to the sarS promoter (380). MgrA is also a regulator of 

antibiotic resistance, activated through the oxidation of a critical cysteine residue 

located at the interface of the protein dimer (381). Antibiotic therapy can introduce 

oxidative stress which leads to the downstream activation of resistance genes by 

MgrA.   

 

1.3.4.4 Other regulatory proteins 

 

Several other factors are important in virulence regulation in S. aureus including, but 

not limited to, CodY, rsr, ClpXP and alternative sigma factor (σ
B
). In many gram-

positive organisms CodY has been shown to be a global regulator, controlling the 

expression of genes involved in metabolism, nutrient adaptation and virulence (382). 

The deletion of codY in S. aureus causes the over-expression of several virulence 

genes and RNAIII, highlighting its potential role as a repressor of virulence (383). 

CodY acts as a link between metabolism and virulence owing to is activation by 

branch-chained amino acids (BCAAs), particularly isoleucine, leading to strong 

repression of target genes (383). Interestingly, under conditions of isoleucine 

limitation, the agr system is not repressed and becomes activated prematurely. This 

activation of agr has been hypothesised to work as an escape mechanism for S. 

aureus, as the expression of toxins and other spreading factors are unregulated during 
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times of nutrient limitation (383). The exact mechanism in which CodY regulates agr 

is not known, however it has been observed that CodY can regulate certain cell 

surface proteins independently of agr (383).  

 

 rsr (repressor of sarR) is located adjacent to sarR and acts as a repressor not 

only to sarR but also to agr (384). Not surprisingly, deletion of rsr confers a hyper-

virulent phenotype in a murine abscess model due to the upregulation of virulence 

genes associated with agr activation (384). Little is known about this regulator, and 

whether its repressive functions act directly on agr or through an as of yet-unknown 

mediator is under investigation; however this repression is independent of sarR.  

 

 Clp proteolytic complexes are very well conserved in bacteria, playing a vital 

role in cell physiology, and recently, observed to be important in virulence regulation 

(385). Clp proteases consist of an ATPase factor determining substrate specificity 

(ClpX in S. aureus) and a core protease barrel-like structure (ClpP). Comparisons of 

DNA microarray experiments between wild-type (8324-5) and ΔclpP illustrate the 

global regulatory activity of this protein, conferring a strong impact of genes 

involved in virulence, stress response, DNA repair and cell homeostasis (385). 

Recently, a whole spectrum of ClpP substrates were identified using the ‘clpP
TRAP

’ 

system, which uses a ClpP variant which can retain the substrate but not degrade it, 

highlighting central regulators such as CodY and PerR as targets (386). Specifically, 

mutants illustrate reduced RNAIII, hla, and sspA (serine protease) transcription and 

reduced virulence in a murine skin abscess model (387). Hypothetically, the link 

between agr and ClpXP may involve the degradation of virulence regulators after 

interaction with RNAIII. ClpX can function as an independent chaperone and is 

essential for spa transduction. Rot induces the transcription of spa directly by 

binding to the spa promoter and indirectly by positively activating sarS (388). 

Deletion of clpX results in a 3-fold reduction of Rot, abolishing Protein A 

production. This reduction of Rot was due to ClpX involvement in Rot translation, 

illustrating the regulatory importance of specific chaperone in virulence regulation 

(389).  
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 Sigma (σ) factors are highly conserved transcription initiation factors 

working in concert with RNA polymerase (RNAP) to promote expression from 

specific genes under specific conditions (390).  σ
B
 is the most studied σ factor in S. 

aureus and plays a role in cell physiology, stress survival and virulence (391). σ
B
 is 

transcribed from a four gene operon, rsbUVWsigB encoding anti-sigma factor 

(RsbW), an anti-anti-sigma factor (RsbV) and RsbU, an anti-RsbV phosphatase. 

Under certain environmental conditions, RsbU removes the phosphate group of 

RsbV allowing RsbV to bind RsbW, removing RsbW from sig B, freeing its 

interaction with RNAP to transcribe target genes (390).  

 

Deletion of sigB also affects virulence. Historically, studies investigating the 

role of sigB were hampered due to use of 8325-4 strain and derivatives which 

contained an rsbU mutation. Studies have now revealed that sigB does play a role in 

repressing agr, hla and sspA (391). Microarray analysis of three phylogenetically 

distinct strains revealed sigB influence in excess of 200 genes, with many adhesins 

upregulated while many toxins and exoproteins were repressed (392). Interestingly, 

this data also showed sigB increases the activity of sarA, particularly during late 

exponential to early stationary phase (392), in contrast to Horsburgh et al (391). σ
B 

also modulates the transcription of a downstream operon, yabJ-spoVG, whereby 

inactivation leads to the repression of a set of enzymes, nuclease, lipase and certain 

proteases (393) again conveying sigB importance as a virulence regulator.   

 

 Virulence regulation in S. aureus is complex and involves a major cross-talk 

of virulence regulators comprising TCS and DNA binding proteins which can all be 

altered depending on growth conditions and environmental stimuli. Figure 1.9 

illustrates an overview of some of the interactions of the known regulators and how 

communication between these elements affects overall virulence, divided on the 

outcome on overall toxicity (T), adhesiveness (A) and evasiveness (E) (96). Adding 

to the complexity of these interactions is the strain specific activities of certain 

regulators. Therefore, we need a greater understanding of how these regulators act in 

different genetically distinct clinical strains, while evaluating the inactivation of 
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regulators in specific animal models of infection will help fully comprehend their 

relevance in in vivo disease. 

 

 

 

Figure 1.9: Virulence regulatory network of S. aureus. The known virulence regulators (sRNAs are 

omitted) are illustrated inside the oval shapes, where their respective effect on one another is 

represented by arrows (positive effect) or bars (negative effect). The outside of the circle represents 

the known effect each regulator has on adhesiveness (A), toxicity (T) and evasiveness (E). A question 

mark illustrates that either there is no information regarding its effect on a particular phenotype or the 

information regarding this effect is conflicting. Image taken from (96). 

 

 

1.3.4.5 RNome  

 

As stated previously, S. aureus adapts to a wide variety of environments using 

multiple TCS and transcription factors to modulate gene expression in response to 

several environmental cues. Another layer of regulatory complexity is added through 
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the use of a wide spectrum of small, non-coding RNAs (sRNAs) (394, 395). For 

clarity, these have been omitted from figure 1.9, however they are extremely 

important in rapid regulation of genes, including those coding for virulence factors. 

The classic representative of this group, RNAIII, which couples quorum sensing 

regulation to the expression of virulence genes, is the most widely studied member of 

this group and has been discussed in the previous sections. psm-mec represents 

another important sRNA located on certain SCCmec elements and exhibits virulence 

inhibitory properties, and has been reviewed in section 1.3.1.2. This section will 

discuss three other recently discovered sRNAs (sprD, SSR42 and artA) and their 

impact on virulence.  

 

 The SprD (small pathogenicity island rNAs) molecule is an interesting 

example of a sRNA, as it is encoded within a pathogenicity island, but regulates the 

expression of genes found on the core genome. SprD is expressed during the 

exponential phase of growth, and is independent of RNAIII (396). The Sbi immune 

evasion protein was identified as a target for SprD and molecular analysis revealed 

that SprD interacts with the sbi mRNA specifically covering (SD) sequence 

preventing the initiation of translation (396). The deletion of sprD caused a 

significant decrease in mouse lethality in a sepsis model of infection, highlighting the 

role SprD in overall virulence (396).  

 

 Another important regulatory RNA involved in virulence alteration is the 

891-nt S. aureus regulatory RNA, SSR42, molecule (397). This molecule is part of a 

family of small stable RNAs (SSRs) which are produced and/or stabilised in 

response to specific growth phases and harsh conditions, hypothesised to help enable 

the organism to adapt to unfavourable conditions (398). SSR42 is expressed and 

predominantly stabilised during stationary phase of growth with deletion of SSR42 

(in a UAMS-1 (USA200) strain) affecting the expression of 82 transcripts during this 

phase of growth (397). Interestingly, deletion of SSR42 resulted in the upregulation 

of cell surface virulence determinants such as spa and sbi. Deletion of SSR42 in 

strain LAC (USA300) resulted in a different set of genes being modified; 

highlighting specific genes are affected depending on their genetic background. In 
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LAC, SSR42 contributes to pathogenicity in a SSTI mouse model of infection, is 

important in lysing erythrocytes and confers a survival advantage against 

polymorphonuclear cells through its positive effect on hla, hlgC and lukF-PV 

expression (397).  

 

 A recently discovered sRNA affecting virulence has been shown to interact 

with other virulence regulators to modulate toxin production. The ArtA (AgrA-

repressed, toxin regulating sRNA) sRNA represents another RNA molecule that is  

regulated, in this case repressed, by AgrA through direct binding to the artA 

promoter (399). Deletion of artA resulted in a decrease in α-haemolysin, which was 

mediated via increased sarT expression (399). It was shown that the regulatory 

activity of ArtA centred on the repression of sarT, via stable interaction with sarT 

mRNA providing a substrate for RNaseIII (399). This sRNA illustrates how 

important these regulatory molecules are in overall pathogenicity and provide clues 

on how the complex interplay between known regulators occurs.   

 

1.3.5 Virulence determinants 

 

S. aureus expresses a plethora of virulence determinants, a Swiss-army knife of 

surface proteins, toxins, enzymes, immune inhibitory proteins, superantigens and 

biofilm specific components, resulting in an extremely formidable pathogen. These 

factors are differentially expressed depending on growth phase and environmental 

conditions. Expression patterns are strain-dependent, with certain factors specific in 

particular diseases. Table 1.1 illustrates the known virulence factors and their 

primary function. In the proceeding section an overview of some of the most 

important virulence factors and their relevance in disease will be discussed, sectioned 

into the two main categories of virulence investigated in this thesis, adhesion and 

toxicity, focusing primarily on cell wall and cytolytic proteins.  
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1.3.5.1 Cell wall proteins  

 

S. aureus comprises an impressive reservoir of 24 different cell wall-anchored 

(CWA) proteins which are differentially regulated depending on the environmental 

conditions (for example, IsdA is up-regulated during iron-limiting conditions (400)) 

and growth phase (98). CWA proteins exhibit conserved features. An amino-terminal 

secretory signal is required for Sec-dependent protein secretion, while the carboxyl-

terminal end contains several domains: a wall-spanning element rich in either proline 

or glycine residues, or composed of serine-aspartic acid repeats, an LPXTG motif, 

followed by a membrane-spanning hydrophobic domain and lastly a region 

composed of a series of positively charged residues (401). Cleavage of the LPXTG 

motif between the threonine and glycine residues results covalently linkage of the 

protein to the peptidoglycan cell wall, carried out by the transpeptidase activity of the 

sortase A enzyme (402). 

 

 The most predominant proteins are those that belong to the microbial surface 

component recognizing adhesive matrix molecules (MSCRAMMs), which are 

defined by their tandemly linked IgG-like folded domains in the A region (98). A 

large degree of functional redundancy exists between CWA proteins, whereby 

multiple proteins can bind the same host ligand (at least 5 CWA proteins bind 

fibrinogen). CWA proteins are fundamental for the initial attachment phase, which is 

a precursor for colonization and infection. These proteins are important virulence 

factors which can promote adhesion to the extracellular matrix, mediate invasion of 

specific host cells, and evasion and inhibition of the innate and adaptive immune 

system. 

 

Virulence Factor Function 

Secreted Factors  

Superantigens  

Toxic Shock Syndrome Toxin -1 (TSST-1) Immunomodulation 

Staphylococcal enterotoxins (SE) SEA to SEG Immunomodulation, gastrointestinal 

toxicity 

Staphylococcal enterotoxin like (Sel) SelX Immunomodulation  
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Cytolytic Toxins Cytotoxicity/Membrane requirement 

α-haemolysin (hla) Monocyte, erythrocyte - ADAM-10, 

inflammation 

β-haemolysin (hlb) Monocyte, erythrocyte - sphingomyelin 

γ-haemolysin (hlgACB) Erythrocyte and neutrophil - unknown 

δ-haemolysin (hld) Neutrophils, erythrocytes, monocytes 

lymphocytes, biofilm * 

PSMα1  Neutrophils, erythrocytes, monocytes 

lymphocytes, biofilm * 

PSMα2 Neutrophils, erythrocytes, monocytes 

lymphocytes, biofilm* 

PSMα3 Neutrophils, erythrocytes, monocytes 

lymphocytes, biofilm* 

PSMα4 Weakly cytotoxic- erythrocytes, 

lymphocytes, biofilm* 

PSMβ1 Weakly cytotoxic - erythroctyes, biofilm* 

PSMβ2 Weakly cytotoxic - erythroctyes, biofilm* 

PVL (lukSF-PV) Neutrophil, monocyte cytotoxicity - C5aR 

LukAB/GH Neutrophils - CD11b 

LukED Neutrophils, monocyte, lymphocyte -

CCR5, CXCR1/2 

  

Enzymes  

Coagulase (coa) Clotting and abscess formation 

Hyaluronidase (hysA) Hyaluronic acid degradation - 

dissemination  

Catalase (katA) Inactivates H2O2 - defence  

DNase Degrades eDNA – biofilm 

Elastase  Degrades elastin - dissemination 

V8 protease  Serine protease - protein degradation 

Superoxide dismutase Defence against reactive oxygen species 

Exfoliative toxin (eta, etb) – serine protease Cleavage of desmosomal cadherins  

Glycerol ester hydrolases (lip, geh) Degrades triacylglcerols 

Fatty-acid modifying enzyme (FAME) Inactivates bactericidal fatty acids 

O-aceyltransferase (oatA) Lysosome resistance 

Phosphotidylinositol-specific phospholipase C 

(plc) 

Degrades phospholipids 
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ACME enzymes,  (arc, opp, speG) Colonisation, resistance to polyamines 

  

Immune evasins  

Staphylokinase (sak) Anti-opsonic  

Aureolysin - metalloprotease (aur) Cleavage of C3 - inhibition of phagocytosis 

 

Staphylococcal complement inhibitor (SCIN) 

protein 

 

Binds C3 convertases, inhibits C3b 

deposition 

Extracellular fibrinogen binding protein (Efb) Binds, Fb, C3b and C3d, inhibits 

opsonisation 

Formyl-like 1 inhibitory protein (FLIPr) Inhibits chemotaxis 

Staphylococcal immunoglobulin-binding 

protein (Sbi) 

Binds IgG and C3 protein 

Chemotaxis inhibitory protein (CHIPS)  Inhibits chemotaxis and extravasation 

Extracellular adherence protein (Eap) Interferes with neutrophil recruitment and 

extravasation 

Staphylococcal superantigen-like protein 5 

(SSL-5) 

Inhibits PMN recruitment  

Staphylococcal superantigen-like protein 7 

(SSL-7) 

Binds C5, inhibits complement 

Extracellular complement binding protein, 

Ecb 

Inhibits C3 convertase 

  

Cell wall associated virulence factors:  

Surface proteins/polymers/polysaccharides  

Fibronectin binding proteins A and B, 

FnBPA/B 

Binds ECM proteins - colonisation and 

invasion 

Clumping factor A, ClfA Binds Fb - Inhibits phagocytosis 

Clumping factor B, ClfB Binds Fb, Ln and C10 - nasal colonisation  

S. aureus protein A (Spa) Binds multiple proteins - inhibits 

phagocytosis 

Serine-aspartic acid-rich proteins (SdrC, D) Binds ECM - nasal colonisation  

SdrE Binds complement factor H 

S. aureus surface proteins (Sas) Binds ECM - nasal colonisation  

SasG Binds ECM - nasal colonisation and biofilm 

Collagen binding protein (Cna) Binds type I and IV collagen - septic 

arthritis  

Iron surface determinants (Isd) A Binds ECM proteins - Nasal colonisation 

IsdB Binds haemoglobin and hemin 
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IsdC Binds hemin 

IsdH Binds haptoglobin and haptoglobin-

hemoglobin complex 

Bone sialoprotein-binding protein (Bbp) Binds sialoprotein and Fb 

Elastin binding protein (EbpS) Binds elastin and tropoelastin 

Serine-rich surface protein (SraP) Binds platelets  

Von Willebrand factor binding protein 

(vWbp) 

Binds and activates prothrombin, Fb and 

vW factor 

Wall Teichoic acids (WTA) Binds ECM - Nasal colonisation 

Capsular polysaccharide (CPS) Anti-phagocytosis  

  

Miscellaneous   

Staphyloxanthin  Protect against reactive oxygen species  

Dlt operon (dltABCD)  D-alanylation of teichoic acids  

Mulitple peptide resistance factor F (MprF) Lysinylation of phospholipids - prototects 

against neutrophil killing 

 

Table 1.1 

Abbreviations: Fb, fibrinogen; IgG, immunoglobulin; PMN, polymorphonuclear 

leukocyte; ECM, extracellular matrix; Ln, loricrin; C10, cytokeratin 10;  

*No receptor required 

 

 

Arguably the most important CWA proteins involved in pathogenicity are the 

fibronectin-binding proteins A and B (FnBPA/B), clumping factor A and B (ClfA/B) 

and S. aureus protein A (Spa).   

 

1.3.5.1.1 Fibronectin binding proteins  

 

The majority of S. aureus clinical strains (77%) encode both fibronectin binding 

proteins (FnBPs), FnBPA and FnBPB (403). FnBPs exhibit similar structural 

characteristics, and along with Clf, Sdr and Cna proteins, belong to the MSCRAMM 

family of surface proteins (404). FnBPs are composed of an amino-terminal A 

domain, which is subdivided into three subdomain N1, N2 and N3, and a region 

distal to the A domain composed of 11 and 10 non-identical repeats in FnBPA and B 

respectively (405, 406). The A domain of FnBPs are surface exposed and can interact 
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with ECM proteins such as fibrinogen (Fb) and elastin (407). The FnBP binding of 

Fb and elastin is hypothesised to occur through an elegant ‘dock, lock, latch’ (DLL) 

mechanism, which is based on the predicted binding of ClfA to Fb (407). This 

involves the docking of the γ-chain domain of Fb to region between the N2 and N3 

domains of the A domain, inducing residues in the N3 C-domain to undergo a 

conformational change resulting in the formation of an extra β-strand, locking and 

trapping the Fb molecule (408). Interestingly, the N23 subdomains of FnBPB are 

also capable of binding an extra ECM protein, fibronectin (Fn), by an as of yet 

unknown mechanism (409). Fn binding by the FnBPs is also mediated by the 

multiple repeat regions (410). Fn acts as a molecular bridge, allowing S. aureus to 

interact with and induce clustering of host surface expressed α5β1 integrins (411). 

Clustering of integrins triggers intracellular phosphorylation activating a signalling 

cascade resulting in the alteration of the cellular architecture and uptake of S. aureus 

(412). In FnBPA, it has been shown that at least one high-affinity fibronectin-binding 

repeat is required for rapid and efficient invasion of non-professional phagocytes 

(410).  

 

This invasive phenotype mediated by FnBPs is important in immune and 

antibiotic avoidance and for promoting dissemination to other anatomical sites (404). 

FnBPs have been shown to be important in numerous animal models of infection 

particularly in sepsis and endocarditis development (410, 413). Finally, FnBPs have 

been implicated in MRSA biofilm development under specific environmental 

conditions, where residues which are central for ligand binding do not play a role 

(414), highlighting another potential protein-protein interaction activity of these 

already multifunctional proteins. 

 

1.3.5.1.2 Clumping factor proteins  

 

ClfA and ClfB contain a series of Serine/Aspartic acid dipeptide repeats linking the 

subdomains of the A-domain to the carboxyl-terminal cell wall anchoring region 

(415). These proteins share significant sequence similarity, 41% and 47% identity at 

the N- and C- terminal respectively, while the A domain shares only 26% similarity 
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(415). ClfA and ClfB are expressed during different stages of growth with maximum 

clfA expression occurring during stationary phase, whereas clfB expression is highest 

during early exponential phase and is undetectable during stationary phase (415, 

416). Given the low level similarity of the A domain it was surprising that ClfB also 

bound fibrinogen promoting adhesion and clumping (415). However, both proteins 

bind different regions of the Fb molecule, with ClfA interacting with the γ-chain of 

Fb, while ClfB binds with the alpha chains, both predicted to occur through the DLL 

mechanism (404). The ability of two related proteins binding the same molecule but 

to different regions is not uncommon in S. aureus and may be important in binding 

firmly to ECM proteins or thrombi when under flow.  

 

 ClfA has been shown to confer resistance to neutrophil-mediated 

phagocytosis, involving the binding of Fb molecules, preventing the deposition of 

oposins on the bacterial surface or masking any recognition of opsonins by immune 

cells (417). Recently it was shown that ClfA mediates this bacterial resistance in a 

Fb-dependent and independent manner, highlighting another role of ClfA in immune 

evasion. Subsequently, it was revealed that the A-domain of ClfA could trigger the 

cleavage of C3b to iC3b by interacting with and inducing the action of serum factor I 

(418). C3b is an important opsonin, central in the elimination of microbes, whereby 

cleavage of C3b to iC3b reduces the impact of this important clearance mechanism. 

ClfA can stimulate the activation of platelets leading to aggregation, an important 

prerequisite to the onset of infective endocarditis (419). This activation requires the 

binding of several Fb molecules by ClfA aided by the simultaneous interaction with 

immunoglobulin G (IgG) molecules leading to the clustering of platelet receptors 

GPIIb/IIIa and FcγRIIa inducing intracellular signalling cascades culminating in 

platelet aggregation (419). This multifunctional protein has been shown to be 

important in rat endocarditis (420), murine septic arthritis (421) and infective 

endocarditis (422) models of infection. ClfB plays an important role in adhesion and 

nasal colonisation, through its interaction with cytokeratin 10 and loricin as 

described previously in section 1.3.2.  
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1.3.5.1.3 Protein A 

 

S. aureus protein A (SpA) is structurally distinct from the other CWA proteins, 

containing five homologous modules, designated EABC and D. Each of the modules 

contains a separately folded three-helical bundle structure which can interact with 

multiple ligands (404). Separating this region and the cell wall domain is the Xr 

region composed of octapeptide repeats which vary in number followed by a 

constant region known as Xc (404). SpA is best known for its ability to bind to the 

Fcγ region of the IgG, decorating the bacterial surface with IgGs orientated in the 

incorrect fashion, preventing recognition by neutrophils and activation of the 

classical complement pathway impairing phagocytosis (423). However, SpA also 

performs an immunomodulatory function, interacting with the Fab variable regions, 

VH3, of IgM molecules which are exposed on the surface of B cells (424). This 

interaction can lead to the cross-linking and stimulation of B cells resulting in 

apoptosis, leading to B cell depletion and immunosuppression (424).  

 

 S. aureus is a primary cause of pneumonia in infants and the 

immunocompromised and evokes an intense host response characterised by high 

recruitment and infiltration of PMNs to the site of infection (425). This effect is 

mediated by the expression of SpA and its interaction with tumour necrosis factor 

receptor-1 (TNFR-1) on lung epithelium, inducing TNF-α like pro-inflammatory 

responses resulting in PMN mobilisation and recruitment (425). This hyper-

recruitment has an adverse effect on lung epithelia resulting in cell damage, 

respiratory dysfunction and pneumonia. 

 

 SpA enables S. aureus to bind directly to the essential blood glycoprotein, 

von Willebrand factor (vWF) (426). The main function of vWF is to interact with 

exposed collagen and capture and direct circulating platelets for immobilization at 

the site of damaged blood vessels, promoting the formation of blood clots (426). 

Thus, binding of SpA to vWF allows S. aureus to adhere to damaged blood vessels 

and exposed sub-endothelial tissue when under flow conditions (426). This adhesive 

feature may play a role in enhanced survival in the blood and, in conjunction with 
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ClfA, attachment and induction of platelet aggregation, important features in the 

development of infective endocarditis.  

 

1.3.5.2 Cytolytic proteins 

 

A key component in the S. aureus artillery is the secretion of membrane-damaging 

proteins, essential in colonization and pathogenesis. S. aureus strains are capable of 

expressing numerous polypeptides which can be classified into haemolysins (α- and 

β-haemolysins), bi-component leukocidins (gamma-(γ-) haemolysin, leukocidins 

LukAB and LukED and Panton-Valentine Leukocidin PVL) and small amphipathic 

lytic peptides (δ-haemolysin and Phenol Soluble Modulins (PSMs)). The vast 

majority of clinical S. aureus strains contain the genes for the haemolysins and PSM 

peptides (312, 427). In contrast the genes for PVL are observed in approximately 5% 

of clinical strains and are highly associated with CA- S. aureus strains. The true 

distribution of LukAB and LukED genes in clinical isolates is unknown but has been 

suggested to be between 30-70% (100). It is important to note that the presence of 

the gene does not mean the protein is expressed as SNPs within toxin genes, 

mutations in virulence regulators and environmental conditions can impact on the 

expression of above cytolytic proteins, as discussed in more detail in Chapter 7. 

 

1.3.5.2.1 Haemolysins 

 

α-haemolysin is the model pore-forming toxin (PFT) and research into its structure, 

mechanism of action and role in disease from the last forty years has made it one of 

the most well-characterized virulence factors. α-haemolysin is composed of seven 

monomers which initially form a homoheptamer prepore, transitioning into a mature 

β-barrel transmembrane pore on the surface of susceptible cells (314). This causes an 

osmotic imbalance leading to the movement of molecules such as K
+ 

and Ca
2+

 in and 

out of the cell, resulting in cell death. Historically, the deposition of α-haemolysin 

monomers was shown to occur on phosphatidylcholine containing liposomes, 

underlining the requirement of these phospholipids (153). However, the differences 

in susceptibilities of rabbits and human erythrocytes to purified α-haemolysin 
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suggested another important receptor required in α-haemolysin activity. Recently, the 

identification of A Disintegrin and Metalloprotease Domain-containing protein 10, 

(ADAM10) highly expressed on rabbit erythrocytes (among other cell types) was 

shown as an important receptor for α-haemolysin activity (428).  

 

 α-haemolysin is responsible for the lysis of several other cell types including 

lymphocytes and monocytes (309, 314, 429) and binding with ADAM-10 activates 

the intrinsic metalloprotease activity of this protein resulting in degradation of E-

cadherin and disruption of the epithelial barrier (100). Sub-lytic concentrations of 

this toxin can induce pro-inflammatory responses through activation of the 

inflammasome, a complex signalling platform, resulting in necrotic tissue injury 

(430). The cytolytic, immunomodulatory and barrier disruptive activity conferred by 

this single toxin confirms α-haemolysin as a main virulence factor in in vivo 

experiments. This toxin has been implicated as a critical factor in S. aureus 

pneumonia (315), sepsis (431), brain abscess (432) and SSTI (311).  

 

 The β-haemolysin is a neutral sphingomyelinase, which targets 

sphingomyelin, a specific type of membrane lipid resident in the plasma membrane 

(433). This lipid is highly associated with cholesterol and is enriched in lipid ordered 

membrane microdomains (433). This enzyme hydrolyses sphingomyelin into 

ceramide and phosphorylcholine leading to aggregation of microdomains, possibly 

affecting the fluidity and stability of the membrane resulting in cell lysis, although 

the exact mechanism is poorly understood (433). The classic hot-cold lysis assay to 

investigate β-haemolysin activity highlights the relative inactivity of this toxin to 

erythrocytes, compared to other cytolytic peptides. Similarly, β-haemolysin is toxic 

to monocytes, but at a reduced level, about 50% activity compared to α-haemolysin 

(100). The gene for β-haemolysin, hlb, is also a site for bacteriophage insertion, 

which results in disruption of the gene. The majority of phages which integrate at this 

site carry with them components of the immune evasion cluster (IEC) such as 

staphylokinase and chemotaxis inhibitory protein (CHIPS) (434) and the majority of 

clinical strains carry components of the IEC and thus are β-haemolysin negative 

(435), questioning the relevance of this toxins contribution to overall virulence.    
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 In spite of the low prevalence of hlb clinically, it has been shown to be 

important in promoting lung epithelial damage and inflammation in a mouse model 

(436) most likely through the release of ceramide after hydrolysis of the cell 

membrane. Ceramide is believed to activate the inflammasome through interaction 

with NLRP3 receptor, promoting pro-inflammation and resulting tissue damage.  

 

1.3.5.2.2 Bi-component toxins 

 

Bi-component toxin activity requires the involvement of two polypeptides, 

designated S (slow) and F (fast) based on their electrophoretic mobility. The most 

studied of these toxins is the γ-haemolysin, but the mechanism of action is believe to 

be similar for all, consistent with the significant homology shared among these 

proteins (437). In a similar fashion to α-haemolysin, each monomer of the bi-

component toxins binds to the cell membrane before oligomerizing into a pre-pore 

composed of four S components alternatively arranged with four F components 

(438). Prepore transition into a mature homo-octamer transmembrane β-barrel results 

in host cell lysis. 

 

 There are four members of this family of PFTs: γ-haemolysin, composed of 

two S subunits, HlgA or HlgC, and F subunit HlgB; PVL, consisting of LukS-PV 

and LukF-PV; LukAB and LukED. These toxins are responsible for the lysis of a 

broad spectrum of host cells. γ-haemolysin and LukED are haemolytic whereas PVL 

and LukAB are not (439). The specific binding requirements of these toxins to 

erythrocytes is not fully understood, however for γ-haemolysin the architecture and 

membrane components plays a major role in pore-formation (440). γ-haemolysin and 

PVL are very toxic to neutrophils and macrophages, but LukAB is only toxic at the 

same level when the concentration is increased 100-fold (437), suggesting that this is 

not the primary target for LukAB. Recently, LukED has been shown to bind to the 

CCR5 receptors and efficiently lyse T-lymphocytes, ending a decade long 

investigation into its specific cell target (441). Recent works has also elucidated the 

specific receptors required for binding of the other bi-component toxins to 

susceptible cells. The common theme among these receptors is their importance in 
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immune function. LukAB lyses neutrophils by binding to the CD11b subunit of the 

integrin Mac-1, an important receptor involved in leukocyte adhesion and 

chemotaxis (442). Recent work has shown that after exposure to neutrophils, 

USA300 preferentially activates the expression of the promoter of lukAB operon 

(443). This pre-emptive attack on ensuing neutrophils is coupled with the continued 

expression upon phagocytosis promoting escape, underlying the dual role played by 

this toxin (443). Spaan et al showed that PVL targets the human complement 

receptors C5aR and C5L2, possibly underlying the reason why murine PMNs were 

more resistant to PVL than human or rabbit PMNs (308). CCR5, C5aR and C5L2 are 

G-protein coupled receptors involved in cytokine sensing and response to 

inflammatory mediators resulting in neutrophil recruitment to the site of infection 

(444).  

   

 Toxins’ acting on the same cell types highlights the degree of redundancy 

which exists within this family, in an analogous fashion observed with some of the 

CWA proteins binding the same ECM proteins. However, investigating the effects of 

sub-lytic concentrations of these toxins opens up a new area of investigation, 

potentially uncovering new functions for these virulence factors (100). For example 

sub-lytic concentrations of PVL can lead to neutrophil activation, or priming, 

resulting in the secretion of potent inflammatory mediators such as IL-8 and 

leukotriene B4 (445). The resulting release of such chemicals triggers massive 

inflammation, and when occurring within the lung, contributes to the development of 

pneumonia, a disease in which PVL plays a central role (310). Clinical PVL positive 

strains also displayed enhanced adhesion to collagen and laminin, two important 

matrix proteins, enabling the attachment to damaged airway epithelium, potentially 

playing a significant role in the development of necrotizing pneumonia (446). The 

ability to confer the observed increased adhesion was attributed directly to the signal 

peptide of the LukS-PV (446).  

 

The importance of these toxins is further shown using isogenic deletion 

mutants and assessing the impact in animal models. These experiments illustrate the 

direct role of toxins in specific diseases, further distancing the idea that these toxins 



70 
 

are redundant in S. aureus. As described above, PVL has been shown to be a key 

virulence factor in rabbit pneumonia model but also in rabbit osteomyelitis (447). 

The importance of the leukocidins in immune evasion and destruction of neutrophils 

is highlighted by their role in human blood survival (437) and murine model of 

bacteraemia (448).  

 

1.3.5.2.3 Small amphipathic lytic peptides 

 

The δ-haemolysin and PSM peptides represent a class of small amphipathic 

membrane damaging toxins affecting a broad repertoire of host cells, requiring no 

proteinaceous receptor for activity. The δ-haemolysin is encoded with the rnaIII 

gene while the PSM peptides form two classes encoded on the core genome; psmα 

operon encoding the small (20-25 amino acid) PSMα1-4 peptides and psmβ operon 

expressing the larger (44 amino acids) PSMβ1-2 (312).  

 

 The exact mechanism of action of the PSM peptides is unknown but assumed 

to be similar to that proposed for δ-haemolysin (449). The hypothesis is based on 

whether the toxin is expressed at low or high concentration. At low concentration, it 

is suggested that δ-haemolysin dimers lie horizontal to the surface of the membrane, 

at the interface of the polar head groups and acyl chains. These dimers can either 

aggregate forming small and large channels resulting in osmotic imbalance, or can 

self assemble on the surface causing a bilayer curvature strain leading to membrane 

instability in a ‘sinking-raft like’ model (450). At high concentration, δ-haemolysin 

seems to act like a detergent, leading to the rapid solubilisation of the membrane 

forming micelles, resulting in cell lysis (449).  

 

 PSM peptides are multifunctional and are influential in many aspects of S. 

aureus pathogenesis. These peptides have been shown to lyse neutrophils and 

erythrocytes (312, 316), and in this thesis, lymphocytes (T cells) (Chapter 6). 

Intriguingly, although the PSM peptides are very similar, possibly arising through 

sequential gene duplication events, PSMα3 has a significantly higher lytic activity to 

neutrophils than the other peptides (70). This peptide has been implicated as a key 
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element responsible for the highly virulent phenotype of CA-MRSA strains (312). 

However, the same pattern of lysis observed with PSMs and neutrophils is not 

observed with erythrocytes or vesicles, most likely due to differences in the 

membrane composition. One of the key features of highly virulent CA-MRSA is the 

ability to survive and lyse neutrophils following phagocytosis (296). The role of 

PSMs in intracellular escape from the phagosome was predicted after it was shown 

that serum lipoproteins reduced the cytolytic activity of PSMs (451). In an 

experiment similar to that illustrating the activation of the lukAB promoter in the 

presence of neutrophils, it was shown through psmα promoter-GFP constructs that 

PSMs were expressed after phagocytosis (451). The fact that S. aureus employs two 

toxins to mediate escape and lysis of neutrophils after phagocytosis illustrates the 

importance of neutrophils for controlling S. aureus survival.  

 

 At sub-lytic concentrations PSMs attract, stimulate and induce the release of 

cytokines from neutrophils through their interaction with the formyl peptide receptor 

2 (FPR-2) (312, 452). At first this activation may seem counter-productive to 

survival, however overexpression of neutrophil mediators may lead to the tissue 

destruction and future dissemination. The FPR receptor is also present on mouse 

dendritic cells, whereby PSM can bind to these receptors and modulate the activity of 

these cells, reducing the expression of proinflammatory cytokines such as TNFα and 

IL-6 but inducing anti-inflammatory cytokines such as IL-10 (453). This 

immunomodulation results in a decreased activation of CD4
+ 

T cells and reduced 

Th1 differentiation, hypothesized to contribute to S. aureus immune evasion (453).  

 

 PSMs are instrumental in biofilm formation, particularly in facilitating 

intricate channel development important for nutrient and waste transport (128). The 

biophysical characteristics of these molecules, namely their amphipathic property, 

suggest that they play a central role in the release of cells or cell clusters from the 

biofilm surface (128). In vivo animal experiments highlight the importance of PSM is 

specific infections. Deletion of the psmα operon exhibited reduced virulence in a 

mouse bacteraemia model, whereas deletion of psmβ operon displayed no effect 

(312). In analyzing the main virulence factors involved in SSTIs, PSM and α-
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haemolysin were highlighted as the main contributors in a rabbit skin infection 

model (311). Considering their presence in virtually all clinical S. aureus strains in 

addition to the many roles played in pathogenicity, it has been proposed that PSMs, 

along with α-haemolysin, are the primary virulence factors responsible for S. aureus 

toxicity (454).    
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1.4 Summary, aims and objectives of PhD 

___________________________________________________________________________________________ 

 

This thesis consists of an interdisciplinary approach to understanding, measuring and 

identifying factors important for bacterial virulence. For clarity in highlighting the 

aims and objectives of this project, the thesis is divided into two main parts:  

 

1)  Investigating bacterial mediated lysis of phospholipid vesicles: implications 

for the development of ‘smart’ burn wound dressings and novel assays to 

measure specific surface acting virulence factors. 

 

2) Examining factors and identifying virulence loci which alter toxicity in 

Staphylococcus aureus 

 

1.4.1 Investigating bacterial mediated lysis of phospholipid vesicles 

 

The main objective of the Bacteriosafe project (European Commission, Seventh 

Framework Programme) was the development of a ‘smart’ or ‘active’ burn-wound 

dressing. This project consisted of a pan-European consortium, composed of 

interdisciplinary scientists from the fields of cell biology and wound healing, 

physical and nano-chemistry and microbiology. The basis of the wound dressing is 

illustrated in figure 1.10 and consists of a phospholipid vesicle containing a 

fluorescent dye. Importantly, the fluorescent dye used in this system is self-

quenchable at high concentrations, as is the case within the aqueous cavity of the 

phospholipid vesicle. The ‘activity’ of the wound dressing depends on the lysis of 

these vesicles by ‘active’ bacterial exofactors (toxins, enzymes, glycolipids) causing 

a switch from a non-fluorescent to fluorescent state, signalling an infection, 

highlighting the ‘smart’ aspect of the dressing. Our role at the University of Bath was 

to develop these phospholipid vesicles as sensors for bacterial detection. Briefly, this 

required the identification of several vesicle types which met the criteria for stability 

at different pH, temperatures, and in specific polymer matrices or hydrogels, while 

monitoring the sensitivity to bacterial exofactors (165, 455, 456). My primary 

objective was to identify these ‘bacterial lytic agents’. The identification of these 



74 
 

exofactors lead to the development  of two assays to actively measure important 

virulence factors expression in two of the most important burn wound colonisers, 

Staphylococcus aureus and Pseudomonas aeruginosa, highlighted in Chapters 3 and 

4 respectively.  

 

 

 

Figure 1.10: Concept behind Bacteriosafe burn wound dressing. The Bacteriosafe prototype 

dressing consists of self-quenchable fluorescent dye encapsulated phospholipid vesicles, which are 

immobilised within a protective polymeric hydrogel. Burn wounds are susceptible to infection 

particularly by S. aureus and P. aeruginosa. After colonisation, bacteria at the burn site express 

certain exofactors which are lytic to membranes. The phospholipid vesicles mimic biological 

membranes and are lysed by these exofactors, releasing the dye which is no longer quenched and 

fluoresces, signalling an infection.  

 

 

1.4.2 Examining factors and identifying virulence loci which alter 

toxicity in Staphylococcus aureus 

 

Staphylococcus aureus is a versatile human pathogen and this second project 

intended to gain a better understanding of how internal and external factors can 

modulate virulence factor expression. Keeping with the theme of the first project, 

one objective was to investigate the lytic activity of toxic shock syndrome toxin-

1(TSST-1) positive S. aureus strains, as discussed in chapter 5. This was preformed 

as previous results suggested that TSST-1, as well as modulating its own regulation, 
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also down-regulated overall exoprotein expression (457), and therefore may hinder 

the trigger for vesicle lysis and early bacterial sensing.  

 

 Medical intervention of bacterial infection historically consists of treatment 

of the infection with antimicrobial agents. This comes at a cost, as antimicrobial 

intervention imposes a positive selection on bacteria to mutate and become resistant. 

Another treatment avenue is to prevent bacteria producing virulence factors by 

interrupting with virulence gene regulation. Chapter 6 investigates the potential of 

using subinhibitory oxacillin to attenuate virulence in community-acquired 

methicillin resistant S. aureus CA-MRSA (CA-MRSA) strains.  

 

Due to the advancement in sequencing technology in the last decade, there 

has been an explosion of genomic data made available for various bacterial species, 

particularly S. aureus. The objective in Chapter 7 was to investigate whether it was 

possible to utilise the genomes sequences of 90 closely related ST239 S. aureus 

strains to identify novel virulence loci by associating genetic polymorphisms with 

phenotypic traits, specifically toxicity and adhesion, using a genome-wide 

association study (GWAS) approach. This work was done in collaboration with Dr. 

Mario Recker from the College of Engineering, Mathematics & Physical Sciences, at 

the University of Exeter. 
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2 

Materials & Methods 
 

 

2.1 Materials 
__________________________________________________________________________________________ 

 

A list of all materials can be found in Table 2.1.  

Product Description Supplier 

Acetic acid  Solvent Sigma 

Acetone Solvent Sigma 

Agarose DNA/RNA gels Promega 

Anhydrous tetracycline Used for pRMC2 induction Sigma 

Ampicillin Beta-lactam; cell wall inhibitor Sigma 

APS Ammonium persulfate Sigma 

BHI Brain heart infusion Fluka 

Bis-polyacrylamide 40% polyacrylamide solution Bio-Rad 

Bovine Serum Albumin Used as a blocking reagent in binding 

assays 

Sigma 

Bradford reagent Protein quantification Sigma 

1-butanol Solvent Fisher Scientific 

CaCl2 Calcium chloride Sigma 

Chloramphenicol Broad-spectrum, protein synthesis inhibitor Sigma 

Chloroform HPLC-grade Solvent Fisher Scientific 

Costar 96-well plate 96-well plate used in vesicle studies Costar 

Crystal violet Bacterial stain Sigma 

DMEM Dulbecco’s Modified Eagle’s Medium Invitrogen 

Dream Taq DNA polymerase and PCR reagents Fermentas 

EDTA Ethylenediaminetetraacetic acid Sigma 

Erythromycin Macrolide antibiotic; protein synthesis 

inhibitor 

Sigma 

Ethanol Solvent Fisher Scientific  

EZBlue Protein gel staining solution Sigma 
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FastRead counting 

chamber 

Cell counting slide Immune Systems 

FBS Foetal bovine serum Gibco 

Fibrinogen Extracellular matrix protein Sigma 

Fibronectin Extracellular matrix protein Sigma 

Gene Jet Midi Kit Plasmid purification midi kit Fermentas 

Gene Ruler 1 kb DNA ladder Fermentas 

Gentamicin Aminoglycoside; protein synthesis inhibitor Gibco 

Glycerol Used in -80°C bacterial stocks Sigma 

Goat anti-spa Goat polyclonal against protein A (HRP) Abcam 

GPS solution L-Glutamine-Penicillin-Streptomycin Sigma 

Guava ViaCount Viability stain Millipore 

HyClone DMEM Culture media Fisher Scientific 

Isopropanol Solvent Fisher Scientific 

LB Luria-Bertani agar/broth Fluka 

Lysostaphin Glycyl-glycine endopeptidase  Cell Sciences 

Mouse anti-lukS Monoclonal antibody against LukS-PV IBT bioservice 

NaCl Sodium chloride Sigma 

NaOH Sodium hydroxide Sigma 

Nap-25 columns Sephadex G-25 DNA grade packed 

columns 

GE Healthcare 

Nunc 24-well plates Tissue culture plates Nunc 

Nunc 96-well plates Binding assay plates Nunc 

Olive oil Substrate in lipase plate assay Sigma 

Opti4CN substrate kit Colorimetric (HRP) substrate  Bio-Rad 

Oxacillin Beta-lactam, cell wall inhibitor Sigma 

Page Ruler Plus Pre-stained protein ladder Fisher Scientific  

Paraformaldehyde Fixative in binding assay Sigma 

PBS Tissue grade phosphate-buffered saline Gibco 

PCR purification kit Purification of PCR products Fisher Scientific 

Mouse anti-mecA Mouse monoclonal antibody to PBP2a Abnova 

peqGreen DNA/RNA dye peqLab 

Phusion DNA 

polymerase 

High-fidelity DNA polymerase New England 

Biolabs 

Proteinase K Broad-spectrum serine protease Sigma 

Protein G-HRP Protein G-Horseradish peroxidase 

conjugate  

Invitogen 
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PSM peptides Peptide toxins Severn Biotech 

Rabbit anti-hla Polyclonal whole antiserum against α-

haemolysin 

Sigma 

Rabbit anti-tst Polyclonal antibody against TSST-1 Abcam 

Raffinose Trisaccharide; used in sphaeroplast buffer Sigma 

Random Hexamer Primers used in reverse transcription  Qiagen 

Reverse transcriptase Superscript II reverse transcriptase Invitrogen 

Rhamnolipid R-95 Pure rhamnolipid; glycolipid Sigma 

Rhodamine B Fluorescent dye, used in lipase plate assay Sigma 

RNAprotect Immediate stabilisation of RNA Qiagen 

RNeasy Midi Kit RNA purification kit Qiagen 

RPMI 1640 Roswell Park Memorial Institute cell 

culture media 

Gibco 

SDS Sodium dodecyl sulphate Sigma 

Skim milk powder General blocking reagent Sigma 

T-75 Tissue culture flask Corning 

TAE Tris-acetate EDTA buffer Sigma 

TEMED N, N, N, N’-tetramethylethylenediamine Sigma 

Triton X-100 Detergent Sigma 

Trypan Blue Vital cell stain Sigma 

Trypsin-EDTA (0.25%) Cell detachment solution Gibco 

TSA Tryptic Soy Agar Sigma 

TSB Tryptic Soy Broth Sigma 

TSST-1 Toxic shock syndrome toxin-1  Sigma 

Turbo DNAse Fast acting DNAse Ambion 

Qubit RNA assay kit Fast and accurate RNA quantification Invitrogen 

Virkon Disinfectant Fisher Scientific 

 

Table 2.1: List of materials used 

 

 

2.2 Lipid vesicle development 

___________________________________________________________________________________________ 

 

Aqueous buffer solutions used in the development of phospholipid vesicles are given 

in Table 2.2 and 2.3. These compounds were dissolved in deionised water, sonicated 

and left at 4°C overnight.  



79 
 

  

    

    

                                                                   

 

Table 2.2: HEPES buffer solution, pH 7.4 

Abbreviations: HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; NaCl, 

sodium chloride; NaOH, sodium hydroxide; EDTA, ethylenediaminetetraacetic acid 

 

 

 

 

 

 

 

Table 2.3 50 mM 5(6)-carboxyfluorescein buffer  

 

 

Stock solutions of vesicle components were separately dissolved in 1 mL of 

chloroform and stored in glass vials at -20°C, according to Table 2.4.  

 

Compound Mr (g mol
-1

) Mass (mg) Concentration (mol dm
-3

) 

TCDA 346.55 34.6 0.10 

DPPC 734.04 73.4 0.10 

DPPE 691.96 69.1 0.10 

CHO 386.65 38.6 0.10 

 

Table 2.4: Stock solutions of vesicle components: Abbreviations: TCDA, 10, 12-

Tricosadiynoic acid; DPPC 1, 2-dipalmitoyl-sn-glycero-3-phosphocholine; DPPE 1, 

2-dipalmitoyl-sn-glycero-3-phosphoethanolamine; CHO, cholesterol.  

 

 

Compound Mass (mg / L) 

HEPES 2382 

NaCl 6240 

NaOH 224 

EDTA 292.2 

Compound Mass (mg / 100 mL) 

5(6)-Carboxyfluorescein 

HEPES 

1877 

238.2 

NaCl 58.4 

NaOH 540.4 

EDTA 28.4 
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Vesicle suspensions were prepared by mixing lipid and fatty acid components in 

chloroform at a 3 X concentration: 1 X concentration was prepared by using 25 

mol% of 10, 12-tricosadiynoic acid (TCDA), 53 mol% 1, 2-dipalmitoyl-sn-glycero-

3-phosphocholine (DPPC), 2 mol% 1, 2-dipalmitoyl-sn-glycero-3-

phosphoethanolamine (DPPE) and 20 % of cholesterol (CHO). This mixture of lipids 

and fatty acid in chloroform was dried under nitrogen. Figure 2.1a and b illustrate the 

various steps in the production and determination of lipid vesicles formation. The 

dried lipid was (1) rehydrated using 5 mL of 5(6)-carboxyfluorescein (CF) 

(molecular structure shown in figure 2.1) buffer solution, vortexed and heated in a 

hot water bath at 75°C for 10 min. CF is self-quenched at high concentrations (i.e. 

encapsulated within vesicles), but fluoresces when diluted to lower concentrations 

(i.e. when vesicles are lysed). Three freeze/thaw cycles were carried out by initially 

immersing the lipid-containing vial in liquid nitrogen and then heating the vial back 

to room temperature to homogenize the solution (164). A turbid solution was an 

indication of vesicle formation. Vesicles were then (2) extruded five times at 55°C 

using a Liposofast vesicle extruder (Avestin, USA) through 2 × 0.1 μm 

polycarbonate filters under nitrogen pressure. The initial opaque vesicle solution 

becomes translucent after extrusion. The vesicle solution was then (3) purified using 

Illustra Nap-25 columns to remove any un-encapsulated CF dye. The columns were 

washed with 15 mL of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) 

buffer to remove the 0.15% Kathon CG/ICP biocide. 2 mL of vesicle solution was 

added to each column and allowed to load. 1 mL of HEPES buffer was then added 

and left to drain. After this a further 2 mL of HEPES buffer was added and the 

resultant pure vesicle was collected and stored at 4°C overnight. These 

polydiacetylene containing lipid vesicles were then (4) cross linked and photo 

polymerised using a CL1000 Ultraviolet cross linker (Hamamatsu, Japan) on setting 

one for 6 s. Section (4) of figure 2.1 illustrates a TCDA molecule undergoing a 

conformational change after exposure to UV. The cross linking of the TCDA 

molecules leads to higher stability, while retaining sensitivity to bacterial  

supernatant (165).  
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Figure 2.1: Development and validation of lipid vesicles. A)  Steps in the production of vesicles 

beginning with 1) rehydration of the lipid film using the 50 mM carboxyfluorescein (chemical 

structure shown), 2) extrusion through 100 nm polycarbonate filters, 3) purification using sephadex 

columns and 4) UV cross linking lipid-polydiacetylene vesicles. B) Size distribution of the vesicles 

using nanosight tracking analysis and dynamic light scattering illustrates vesicle size between 90-110 

nm. Use of 0.01% Triton X-100 and HEPES buffer as positive and negative controls showing 

maximum fluorescence release with the addition of 0.01% Triton X-100.  
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Size distribution and concentration of vesicle was measured via dynamic light 

scattering (Malvern) and nanosight tracking analysis (Nanosight Ltd) respectively, 

producing a size distribution of 90-110 nm and concentration of 1 x 10⁸ particles/μL. 

All chemicals were purchased from Sigma-Aldrich, UK, and lipids and cholesterol 

from Avanti Polar Lipids, USA. These vesicles were stored at 4°C and were stable 

for up to 12 days under these conditions before leakage of CF was observed.  

 

 

2.3 Bacteria 

___________________________________________________________________________________________ 

 

2.3.1 Bacterial strains and culture conditions 

 

Bacterial strains used are listed in Appendix A. Bacterial strains were routinely 

stored at -80°C in 15% glycerol/broth stocks until required. Unless stated otherwise, 

S. aureus strains were streaked onto Tryptic Soy agar (TSA) and single colonies 

transferred to 5 mL Tryptic Soy broth (TSB). Pseudomonas aeruginosa and 

Escherichia coli strains were routinely plated onto Luria Bertani (LB) agar and 

single colonies transferred to 5 mL of LB broth. All bacterial cultures were 

propagated in a shaking incubator for 18 h at 37°C at 180 rpm. For detection of 

Panton-Valentine Leukocidin, bacterial strains were grown in casein hydrolysate and 

yeast-extract containing medium (CCY) (458). Bacterial strains were grown in 25 

mL glass universal tubes which were decontaminated using Virkon disinfectant, 

washed thoroughly to prevent any residual disinfectant remaining and subsequently 

autoclaved. Single point bacterial growth measurements were analysed using a micro 

plate reader (BMG LABTECH) at OD600.  Where continuous bacterial growth curve 

analysis and/or dual absorbance/fluorescence was required, bacteria were measured  

at OD600 at 37°C and shaking at 300 rpm in Costar 96-well round-bottomed plates 

using a dual absorbance/fluorescence script. To identify specific roles of 

toxins/enzymes/glycolipids in vesicle lysis, bacterial supernatants were heated to 

95°C for one hour. Where appropriate antibiotics were used with the following 

concentrations; S. aureus strains: tetracycline (10 μg/mL), oxacillin (0.5 μg/ml); 
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chloramphenicol (10 μg/mL), erythromycin (5 μg/mL).  P. aeruginosa strains: 

tetracycline (200 μg/mL), gentamicin (100 μg/mL). E. coli DH5α: ampicillin (100 

μg/mL).       

 

 

2.4 Cell culture 

___________________________________________________________________________________________ 

 

2.4.1 T2 cell toxicity assay  

 

Cell culture 

 

In the cell toxicity assay, immortalized human T2 cells (459) were used in 

accordance with guidelines form the American Type Culture Collection. T2 cells are 

derived from a mutant TxB hybrid cell line T cells were grown in T75 tissue culture 

flasks containing Roswell Park Memorial Institute (RPMI) 1640 cell culture media 

supplemented with 10% heat-inactivated foetal bovine serum (FBS), 1 μM L-

glutamine, 200 units/mL penicillin and 0.1 mg/mL streptomycin (GPS), at 37°C in a 

humidified incubator with 5% CO2 in air. Cells were routinely viewed 

microscopically and split every 48-60 hours. Cells were harvested by centrifugation 

at room temperature for 10 min at 1500 g, gently washed and resuspended in tissue-

culture grade phosphate buffered saline (PBS) to a final concentration of 1–1.5 x 10
6
 

cells/mL using a FastRead counting chamber. This procedure typically yielded > 95 

% viability of cells, as determined by trypan blue exclusion using 0.4 % trypan blue 

solution.  

 

Toxicity assays 

 

T cells were subjected to three types of treatment: 1) Bacterial supernatant (active 

and heat-inactivated), 2) purified phenol soluble modulin (PSM) and δ-haemolysins 

and 3) purified rhamnolipid. For the first two treatments, 20 μL of cells were 

incubated with 20 μL of staphylococcal supernatant or toxin for 12 min at 37°C. 
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Following incubation, 260 μL of Guava ViaCount viability strain was added and left 

to incubate for 5 min at room temperature. Viability of cells was then analysed using 

the Guava easyCyte flow cytometer (Millipore) under the following conditions: flow 

rate of 0.59 μL/s, with 250-300 cells/μL; adjustment of FSC threshold and viability 

marker to correct for cell debris and for increased discrimination between viable and 

non-viable cells, according to manufacturer’s instructions. For treatment 3), P. 

aerugionosa supernatants and purified rhamnolipid, 15 μL of cells and 15 μL of 

supernatant or purified rhamnolipid were incubated for 12 min. 15 μL of 0.4% trypan 

blue was added and mixed with the above solution and added to a FastRead counting 

chamber and viability assessed through trypan blue exclusion and examination under 

an Olympus CX31 light microscope. This method was preferred in this treatment as 

neat P. aeruginosa supernatant and high concentrations of purified rhamnolipid 

caused total cell lysis and release of genomic DNA (addition of DNAse caused 

viscous cell mixture to return to normal fluid solution) inhibiting viability counts 

using the flow cytometer. Cell toxicity experiments were done in duplicate three 

times. 

 

2.4.2 Erythrocyte and polymorphonuclear leucocytes harvesting and 

lysis assay 

 

Polymorphonuclear leukocytes (PMNs) were isolated from heparinized venous blood 

obtained from healthy adult volunteers. Whole-blood samples were layered onto 

density gradient medium (Lympholyte cell separation medium) and centrifuged as 

described by the manufacturer (Cederlane). The PMN-containing band was harvested 

and diluted with an equal volume of culture medium (HyClone Dulbecco’s modified 

Eagle’s medium [DMEM]–10% fetal calf serum [FCS] cell medium) at a 

concentration of 0.5 N to restore normal osmolality. The cells were further diluted 

with 2 volumes of culture medium and washed by centrifugation for 10 min at 400 g. 

The cells were suspended in 5 mL of 0.2% NaCl and incubated for 120 s to lyse 

erythrocytes by osmotic shock, followed by the addition of 5 mL of 1.6% NaCl for 

120 s to normalize the osmolality and centrifugation at 400 g for 10 min. Purified 

PMNs were then washed in PBS and enumerated by using a haemocytometer. Purity 
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was assessed by trypan blue and flow cytometric analyses. The final PMN count was 

adjusted to 1-2 x 10
6
 cells/mL with culture medium. 30 μL of PMNs were incubated 

with 30 μL of bacterial supernatant for 30 min, and cell viability was assayed by 

using Guava ViaCount and easyCyte flow cytometer as above. Experiments were 

done in duplicate three times.  

 

Erythrocytes were isolated from the same blood samples and washed twice by 

gentle resuspension with a 10 mL volume of sterile saline (0.9% NaCl) and 

centrifugation at 1,000 g for 10 min. Erythrocytes were diluted to 1% (vol/vol), and 

200 μL of cells were incubated with 50 μL of 30% bacterial supernatant for 30 min, 

using free saline as a negative control and 1% Triton X-100 as the positive control. 

Intact cells and cellular debris were removed by centrifugation at 1,000 g for 10 min. 

RBC lysis was assayed by determining the absorbance of the resulting supernatant at 

an OD404 nm using a micro plate reader (BMG LABTECH). These assays were 

performed in duplicate three times. 

 

2.4.3 Endothelial cell invasion assay 

 

Cell culture 

 

The EA. Hy926 cell line was constructed by the fusion of human umbilical 

endothelial cells (HUVEC) and the permanent lung epithelial carcinoma cell line 

A549 (460).  EA. Hy926 cells were routinely cultured in DMEM media 

supplemented with 10% FCS and GPS at 37°C and 5% CO2. These cells were 

cultured in T75 flasks to approximately 95% confluency and routinely observed 

microscopically. Cells were liberated using trypsin-EDTA, resuspended in culture 

medium and approximately 5x10
5 

cells (in 0.5 mL medium) were seeded into each 

24-well tissue culture plates. Following incubation for 48 h, cell culture medium was 

aspirated and cell monolayers were washed gently in PBS. New cell culture medium 

was added with the exception of the GPS supplement (450 μL per well). 
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Invasion assay 

 

 To each well, 50 μL of washed bacteria were added (approximately 1x10
7 

CFU/mL) 

and incubated for 15-60 min. After the specific time point, the medium was aspirated 

and wells gently washed once in PBS and replaced with 500 μL DMEM/10% FBS 

supplemented with 200 μg/mL gentamicin and incubated at 37°C in 5% CO2 for 60 

min. This medium was removed and wells gently washed twice in PBS. 500 μL of 

0.5% Triton X-100 was added and resuspended to fully lyse the endothelial cells and 

the CFU was enumerated by serial dilution and plating onto TSA agar plates and 

incubated overnight at 37°C. Invasion assays were perfomed in duplicate three times. 

 

 

2.5 DNA/RNA  

___________________________________________________________________________________________ 

 

2.5.1 RNA isolation 

 

Overnight cultures of S. aureus were diluted 1:1000 into fresh TSB and grown at    

37 °C for 8 h (late exponential phase), at which time, samples were collected for 

RNA isolation after normalisation of optical densities. Cultures were treated with 

two volumes of RNAprotect, incubated at room temperature for 10 min, centrifuged 

and resuspended in Tris 0.05 M (pH 7.5). The pellet was further treated with 300 μL 

of 0.5 M EDTA/ lysostaphin (5 mg/mL) and incubated for 1 h. RNA was then 

isolated using the Qiagen RNeasy Midi Kit according to the manufacturer’s 

instructions with the addition of Turbo DNase after the purification step. RNA purity 

was checked by running 5 μL of sample on a 1% agarose gel and absence of DNA 

further verified by PCR using standard primers. Typical RNA samples are shown in 

figure 2.2. The RNA was quantified using the Qubit RNA assay kit.  
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Figure 2.2: RNA isolation. Four representative RNA samples isolated from S. aureus cultures after 

DNAse treatment. 23S and 16S ribosomal RNA are indicated. 

 

 

2.5.2 Reverse transcription and qRT-PCR 

 

Reverse transcription of messenger RNA to complementary DNA (cDNA) was 

generated using the SuperScript II Reverse Transcriptase according to 

manufacturer’s instructions using random hexamers. Primers were designed using 

Primer 3 software (http://bioinfo.ut.ee/primer3/) to produce a PCR product between 

80-120 bp with an annealing temperature of 60 °C. Primer binding sites were 

constructed on the RNA sequence in areas with no complex secondary structure 

using mfold software (http://mfold.bioinfo.rpi.edu). Primers used for gyrase B (gyrB) 

and RNA III are listed in Appendix A. Standard curves were generated for both 

primer sets on serial dilutions of cDNA to determine primer efficiency. The reverse-

transcriptase PCR (RT-PCR) was performed as follows: 5 mL cDNA, 7.5 mL SYBR 

reagent, 0.5 ml forward and reverse primer and RNase-free water to a total volume of 

15 mL. The cDNA was subjected to real-time PCR using the Applied Biosystems 

Step-One Real Time PCR detection system (Applied Biosystems). Cycling 

conditions were 95°C for 10 min followed by 40 cycles of 95°C for 15 s and 60°C for 

1 min and a dissociation step 95°C for 15 s and 60°C for 1 min. Cycle threshold 

values were determined for 3 biological repeats in duplicate. For each reaction, the 

ratio of RNA III and gyrB transcript number was calculated as follows: 2
(Ct gyrB – Ct 

RNAIII)
. RT-PCR experiments were performed in duplicate three times.  

 

 

 

http://bioinfo.ut.ee/primer3/
http://mfold.bioinfo.rpi.edu/
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2.5.3 PCR and cloning techniques 

 

In order to examine the effect of single nucleotide polymorphisms (SNPs) on 

virulence factor expression, plasmid constructs were created containing wild type 

sarS (amplified from N315, psarS1) and sarS containing two amino acid 

substitutions, N221D and N243D (amplified fromMRSA252, psarS2). Plasmid 

constructs were also created to examine the effect of SNP presence in mecA, 

containing wild type mecA (amplified from TW20, pmecA1), and mecA containing 

two SNPs at nucleotide positions T78097C (E736G) and C78222A (K611N), or the 

‘CA’ SNPs, (amplified from strain HU24, pmecA2), mecA containing the ‘CA’ SNPs 

and SNP T78396A (K437N), or the ‘A’ SNP, (amplified from strain IU11, pmecA3) 

and mecA containing the ‘CA’, ‘A’ and SNP C78119T (E714K), (amplified from 

strain HU13, pmecA4).  

 

Primers designed to amplify the whole sarS and mecA genes with the 

respective restriction enzyme cleavage sites are listed in Appendix A. Polymerase 

chain reaction (PCR) conditions were similar for all PCR reactions, apart from 

annealing temperature and duration and elongation duration. General PCR 

parameters consisted of: 1) initial denaturation (95°C, 1 min), 2) denaturation (95°C, 

30 s), 3) annealing temperature (dependent on primers (sarS (62°C) and mecA 

(65°C)) 4) elongation (72°C, duration dependent on PCR product; sarS (45s) mecA 

(1.5 min), 30 cycles of step 2-4, 5) final elongation (72°C, 5 min) and 6) storage 

(4°C, unlimited). High-fidelity phusion polymerase was used to generate PCR 

products. PCR products were cleaned using PCR purification kit, subjected to double 

digest using BglII and KpnI in NE buffer 2 for sarS and KpnI-HF and SacI-HF in 

CutSmart buffer for mecA. Digested PCR products were cleaned in PCR purification 

kit and ligated into previously digested, tetracycline inducible pRMC2 plasmid 

(461).  
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2.5.4 Production of competent cells 

 

Two 50 mL conical flasks of LB broth were inoculated 1:1000 with an overnight 

culture of E.coli DH5α and incubated for 2-4 h at 37°C with shaking at 180 rpm until 

an OD600 of 0.5-0.7. Cells were chilled on ice for 30 min before centrifugation at 

3,000 rpm for 10 min at 4°C. Cells were washed in ice-cold deionised H2O, 

centrifuged and gently resuspended in 15 mL of ice-cold, sterile 0.1M CaCl2. Cells 

were left on ice for 1-2 h, centrifuged at 4°C and resuspended in 500 μL ice-cold, 

sterile 0.1M CaCl2 containing 15% glycerol. 50 μL aliquots were snap frozen using 

1.5 mL Eppendorfs previously placed in dry ice and stored at -80°C until use.  

 

2.5.5 Plasmid transformations 

 

Following ligation reaction, 5 μL of mixture containing ligated plasmid/PCR product 

was transformed into CaCl2 competent DH5α by heat shock at 42°C for 2 min. Cells 

were recovered in 900 μL of LB and incubated for 45 min after which they were 

centrifuged and resuspended in 100 μL and plated onto LB agar plates containing 

100 μg/mL ampicillin. 

 

 Transformation of plasmid into S. aureus requires initial transformation into 

the restriction and modification deficient S. aureus RN4220 strain (462). 

Transformation of plasmids into RN4220 and all subsequent S. aureus strains was 

performed by electroporation using a Micro Pulser (Bio-Rad) and 1mm gap pre-

sterilised electroporation cuvette (Molecular BioProducts). Overnight cultures were 

subcultured 1:500 and were grown in BHI for 2-4 h to an OD600 of 0.4-0.6. Bacterial 

cells were washed three times in ice-cold 500 mM sucrose to remove salts. After 

centrifugation at 4°C, the pellet was resuspended in 500 μL of 500 mM sucrose and 

left on ice for 30 min. Cells were further centrifuged and resuspended in 100 μL of 

500 mM sucrose. 100 μL of bacterial cells were added to a pre-chilled cuvette with 

5-10 μL of plasmid and pipette mixed. Cells were electroporated using the settings 

for S. aureus (25 μF, 2.5 KV and 100 Ω; pulse time of 2.5 msec), and recover cells in 
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750 μL of BHI. Cells with plasmid were incubated for 1 h at 37 °C, centrifuged for 1 

min and resuspended in 100 μL and plate on TSA containing chloramphenicol (10 

μg/mL).  For bacterial cells transformed with pRMC2 plasmid, 0-100 ng/mL 

anhydrous tetracycline was added to the growth medium. 

 

 

2.6 Protein and Glycolipid Analysis 

__________________________________________________________________________________________ 

 

2.6.1 Protein extraction techniques 

 

Whole cell lysate 

 

Overnight bacterial cultures were grown and optical densities normalised. 20 mL of 

culture was harvested by centrifugation for 10 min at 5,000 rpm after which cells 

were washed with 50 mM Tris, 150 mM NaCl and 5 mM MgCl (pH 7.5) and 

resuspended in 500 μL of the same buffer. Lysostaphin (200 μg/mL), RNase          

(10 μg/μL) and DNase (20 μg/μL) were added to the cell suspension and incubated at 

37°C for 45 min. The cells were disrupted by sonication on ice and the insoluble cell 

fraction was pelleted by centrifugation at 14,000 rpm for 15 min at 4°C. Supernatant 

was then transferred to a new Eppendorf and protein concentration calculated using 

Bradford reagent after generation of a standard curve using known concentrations of 

bovine serum albumin. 5 μL of sample and 250 μL of prewarmed Bradford reagent 

were mixed and left for 30 min at room temperature after which the absorbance was 

read at OD595nm.  

 

Surface expressed proteins 

 

Bacteria were grown to specific growth phases; either to exponential phase (OD600 of 

0.45-0.55) or stationary phase, which was defined as 18 h growth. Cultures were 

normalised and 25 mL of exponential phase or 10 mL of stationary phase were 

harvested by centrifugation as above. Bacterial pellet was washed twice in PBS and 
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resuspended in 500 μl of sphaeroplasting buffer (SB) and incubated for 1 h at 37°C 

with shaking at 180 rpm. SB consisted of: 30% raffinose, 0.05 M Tris (pH 7.5), 

0.145 M and 200 μg/mL. Bacterial cells were centrifuged for 15 min at 5,000 rpm, 

after which supernatant was transferred to a new eppendorf and further centrifuged 

for 10 min at 14,000 rpm. Protein concentrations were calculated using Bradford 

reagent as above.  

 

Supernatant proteins 

 

Bacteria were grown for 18 h and optical densities were normalised as above. 

Bacteria were removed by centrifugation at 14,000 rpm for 10 min and supernatant 

was transferred to a new eppendorf. Supernatant proteins were precipitated using 

trichloroacetic acid (TCA) at a final concentration of 20 % for 1 h on ice. Samples 

were centrifuged at 14,000 rpm for 20 min at 4°C and washed three times in 300 μL 

of ice cold acetone. Protein pellet was resuspended in 80 µL of solubilising buffer    

(8M urea with 6.25 mM NaOH).  

 

2.6.2 Western blot 

 

For analysis of α-haemolysin, toxic shock syndrome toxin-1 (TSST-1), LukS-PV 

(Panton-Valentine Leukocidin), protein A and penicillin binding protein 2a (PBP2a), 

20 μL sample protein was mixed with 10 μL 2X concentrated sample buffer and 

heated at 95°C for 5 min before 10 μL of sample was subjected to 12% SDS-PAGE. 

Separated proteins were electroblotted onto nitrocellulose membrane using a semi-

dry blotter at 25V for 30 min (BioRad). Membranes were blocked overnight at 4°C 

with 5 % semi-skimmed milk and then incubated with rabbit polyclonal antibodies 

specific for TSST-1 (1:1000) or α-haemolysin (1:3000) or mouse monoclonal 

antibodies specific for LukS-PV (1:500), or PBP2a (1:1000) or goat polyclonal 

antibodies specific to protein A (1:1000) for 2 h at room temperature. Immunoblots 

were washed 5 times in PBS and incubated with horseradish peroxidise-coupled 

protein G (1:1000) for 1 h at room temperature (apart from antibodies directed 

against protein A as these were HRP-conjugated). Proteins were detected using the 
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Opti-4CN detection kit and left to develop for 30 min. Band intensities were 

measured using Image J software (version 1.43). Experiments were done in triplicate 

and the mean band intensity was used for statistical analysis.  

 

2.6.3 Peptide extraction and quantification 

 

Overnight S. aureus cultures were diluted 1:1000 into 50 mL TSB in a 250-mL 

conical flask and grown for 20 h at 37 °C to an OD600 of 2.0. Bacteria were removed 

by centrifugation at 5,000g for 10 min and supernatant passed through a 0.22 μM 

pore. 30 mL of cell-free supernatants was mixed with 10 mL 1-butanol. Extraction 

was performed by shaking mixed solutions for 3 h at 37 °C. Samples were then 

centrifuged for 3 min for complete separation, and the upper organic phase was 

collected, aliquoted into 1.5-mL eppendorf tubes, and concentrated by using a 

vacuum overnight. Dried samples were dissolved in 200 μL of 8 M urea. Proteins 

(10 μL of each sample) were mixed with 2X-concentrated sample buffer and heated 

at 95°C for 5 min before SDS-PAGE (12% acrylamide) was performed. The 

individual PSMs were quantified by using mass spectroscopy as described previously 

(317) . This assay was performed in triplicate. 

 

2.6.4 Circular dichroism and helical wheel analysis 

 

The structures of synthetic PSM peptides were analyzed by circular dichroism (CD) 

using a Chirascan spectrometer (Applied Photophysics) and a path length of 0.2 cm. 

Solutions of PSMs were prepared in 1 mL PBS at concentrations between 30-60 μM. 

Due to the hydrophobic nature of the PSMβ1 and 2 peptides, they were dissolved in 

10 μL DMSO initially and then to the required concentration with PBS. This buffer 

was also used in subsequent studies with these respective peptides. PSMβ peptides 

were also dissolved in DMSO 50% Trifluoroethanol to induce secondary structure. 

Experiments with PSMβ peptides in 50% TFE were conducted using a 0.5 mm 

cuvette. Measurements were converted to mean residual molar ellipticity (θ) and 

were performed in triplicate and the resulting scans were averaged, smoothed, and 

the buffer signal was subtracted. Analysis of secondary structure content was 
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performed using the Pro-data and CDNN software (463). Helical wheel projections 

were constructed using helical wheel analysis software (http://rzlab.ucr.edu/) and the 

primary amino acid sequence of the PSMs in Appendix A.  

 

2.6.5 Thin layer chromatography  

 

Rhamnolipids were extracted from filtered culture supernatants using ethyl acetate in 

a 1:1 v/v ratio. Samples were mixed by vortexing with subsequent phase separation 

by centrifuging for 1 min at 14,000 rpm. The upper, rhamnolipid containing phase 

was transferred to a new Eppendorf tube and the procedure repeated three times. The 

organic solvent was removed by evaporation using a vacuum centrifuge. For 

detection of rhamnolipids, this dried pellet was dissolved in 10 μL of ethanol. 5 μL 

of this solution was spotted on silica 60 TLC-plates (Fisher). In addition, 5 μl of a 

0.1% rhamnolipid solution containing mono- and di-rhamnolipid (R-95) was used as 

a standard. TLC was performed using chloroform/methanol/acetic acid in a ratio of 

65:15:2 as a running buffer. For visualisation, the dried plate was briefly submerged 

in a detection agent composed of 0.15 g orcinol, 8.2 mL sulphuric acid (60% v/v) 

and 42 mL deionised H2O. The plate was left to dry at room temperature and then the 

sugar moieties were stained by incubating the plates at 110°C for 10 min.  

 

2.6.6 Dry weight analysis of rhamnolipids 

 

Dry weight analysis was based on the procedure by Gunther et al (464). Briefly, 

supernatant was separated from overnight culture (100 mL) by centrifugation at 

7,000 rpm. Supernatant was then acidified to pH 2.0 by the drop-wise addition of 12 

M hydrochloric acid. This solution was then centrifuged at 13,000 rpm and the RL 

containing precipitate was extracted three times with a chloroform-ethanol (2:1) 

mixture. This was then evaporated away leaving the characteristic honey-like 

appearance. This oily residue was dissolved in methanol and transferred to a 

previously weighted container, where the methanol was evaporated giving the total 

rhamnolipid yield.  

 

http://rzlab.ucr.edu/
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2.7 Phenotypic assays 

___________________________________________________________________________________________ 

 

2.7.1 Vesicle lysis assay 

 

The vesicle toxicity assay was designed de novo were experimental conditions were 

optimised before use. Fluorescence intensity was measured at excitation and 

emission wavelengths of 485–520 nm respectively on a FLUOROstar fluorimeter 

(BMG Labtech). Depending upon the experiment, two different assays were 

employed, one utilising whole bacterial cells and the other using bacterial culture 

supernatant/purified PSM/pure rhamnolipid. In the first method, bacterial culture was 

normalised to a specific CFU/mL achieved through correlation with optical density. 

250 μL of bacterial culture was added to 50 μL of vesicle solution in triplicate. The 

fluorescence of each sample was then measured at 5 min intervals for 18 h. Positive 

and negative controls were pure vesicles with 0.01% Triton X-100 and HEPES 

respectively.  

 

For the second assay, bacteria were grown for 18 h, supernatant (neat and 

heat-inactivated) was harvested by centrifugation at 14,000 rpm for 10 min and filter 

sterilized through a 0.22 mm filter. 50 μL of vesicle solution was incubated with     

50 μL of bacterial supernatant or differing concentrations of purified PSMs 

(Biomatik; 99% purity) or rhamnolipid and measured for 30 min with the above 

parameters. Normalised fluorescence was achieved using the equation                   

(Ft–F0) / (Fm/F0) where Ft is the average fluorescence value at a specific time point, 

F0 is the minimum and Fm is the maximum fluorescence value in that particular 

experiment. All vesicle lysis assays were performed in triplicate three times.  

 

2.7.2 Solid-phase fibrinogen/fibronectin binding assay 

 

The adhesion of bacteria to human fibronectin (Fn) and fibrinogen (Fb) was assessed 

using a protocol adapted from Edwards et al (410). Fn or Fb (1 μg/100 μL PBS per 

well) was immobilised onto Nunc Maxisorp Immuno plates and incubated at 4°C 
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overnight, with the remaining binding sites blocked with 300 μL 5% bovine serum 

albumin (in PBS) at room temperature for 2-3 h. Well contents were discarded, and 

100 μL of bacteria corresponding to approximately 1x10
8
 CFU/mL (and 

corresponding to a specific phase of growth, section 2.6.1) were added to wells and 

incubated at 37°C for 1 h. Non-adherent bacteria were removed through three rounds 

of washing with PBS. Adherent bacteria were fixed with 50 μL per well of 2.5% 

paraformaldehyde for 5 min. Wells were washed a further two times before the 

staining of fixed bacteria with 50 μL of 0.5% crystal violet for 2 min. After a further 

three PBS washes, adherent, fixed bacteria were enumerated by solubilisation of 

crystal violet with 100 μL of 7% acetic acid. Quantification was achieved through 

measurements of well absorbance at 595nm using a microplate reader. Both Fb and 

Fn reading were blanked against bacteria bound to BSA coated wells. Absorbance 

measurements were converted to bacterial numbers by use of standard plots of 

known bacteria numbers against absorbance 595nm reading (410). All adherence 

assays were perfomed in duplicate three times. 

 

2.7.3 Lipase plate assay 

 

Lipase plate assay was designed as described previously with some minor 

modifications (465). Olive oil (1 %) and rhodamine B (0.001 %) were used as 

substrate and added to the agar medium after sterilization and cooling to 60°C. 3-

mm-diameter holes were punched into the agar and 50 mL of cell-free supernatant 

harvested from 18 h stationary phase bacterial cultures were added and left to 

incubate for 18 h at 37°C. Plates were irradiated with a UV light and images captured 

on a Nikon camera. 

 

2.7.4 CAMP assay 

 

The conventional method to determine or measure Agr activity is via δ-haemolysin 

production. This was determined by streaking the β-haemolysin positive S. aureus 

RN4220 strain on washed sheep blood agar (SBA) plates. The test strains were 

streaked perpendicular to this strain and any enhanced zone of haemolysis where the 
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δ-haemolysin (466) or PSMs (316)  overlaps with the β-haemolysin zone was scored 

Agr positive. 

 

2.7.5 Beta-haemolysis assay 

 

Haemolysis plates consisted of TSA with 5% defibrinated Sheep blood (Thermo 

Scientific). Sheep blood was added under sterile conditions after TSA was 

autoclaved and cooled to 40-45°C. Bacterial strains, previously plated onto TSA 

plates, were streaked to achieve single colonies on blood plates and incubated 

overnight at 37 °C. After overnight incubation at 37°C, plates were incubated and 

4°C for 2 h.  

 

2.7.6 Orcinol assay 

 

Culture supernatants were obtained by centrifugation and 300 μL of this was 

extracted twice with 1 mL of diethyl ether. The samples were pooled and evaporated 

to dryness using a vacuum centrifuge and then 0.5 mL of sterile H2O was added. To 

each 100 μL sample, 900 μL of a solution containing 0.19% orcinol (in 53% H2SO4) 

was added. This solution was heated to 80°C for 30 min, after which the samples 

were cooled at room temperature for 15 min. The absorbance of the samples were 

measured at 421nm (BMG labtech) and concentration of rhamnolipids compared to 

those generated using a standard (R-95 Sigma). These assays were performed in 

duplicate three times. 
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2.8 Statistical and genotypic analysis 

___________________________________________________________________________________________ 

 

2.8.1 Statistics  

 

For adhesion, invasion, cell and vesicle lysis assay and protein expression 

experiments, statistical analyses were performed with a Student’s t test. Values that 

were stastically significantly different than the wildtype or control values are 

indicated by asterices in the figures. Error bars indicate the mean average ± the 95% 

confidence interval of multiple independent experiments.  

 

2.8.2 Genome wide association studies using PLINK 

 

We conducted a quantitative association study on a set of 90 isolates of the S. aureus 

clone ST239 to identify single nucleotide polymorphisms (SNPs) that were 

significantly associated with toxicity, using the PLINK software package 

(http://pngu.mgh.harvard.edu/purcell/plink/) (467). From the original set of 3060 

intragenic SNPs we identified 102 SNPs with a statistical significance of p < 0.05 

after quality control (using PLINK options -geno 0.9 and -maf 0.05, which restricted 

SNPs which were present in 90% of isolates or less than 5%). Association study was 

undertaken using command: 

 

./Plink__file(name)__assoc__adjust 

 

where all files were in .map format. SNPs were only chosen that has a statistical 

significance of  p<0.05 after Bonferroni correction. P-values are used todetermine the 

significance of a result. These values allow the interpretation of the result based on 

rejecting the null hypothesis, the default position where there is no relationship 

between two measured factors. Bonferroni correction undertakes an assessment of 

the statistical significance of multiple assessments. With multiple assements there is 

a higher probablility that one of the assessments is statistical significant by pure 

chance. Therefore in cases with multiple assessments a lower p-value is used to 

assess whether something is stastically significant and this is achieved by using 



98 
 

Bonferroni correction, where .05 is divided by the number of tests that are done. A 

similar association study was performed using the insertion and deletion 

polymorphism data (InDel), where inserts, deletions, and wild types were coded as 

+1, -1, and 0, respectively. This identified 22 unique InDels quantitatively associated 

with toxicity and present in at least five strains.  
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3 
Staphylococcus aureus Interaction with Phospholipid 

Vesicles – A New Assay to Determine Accessory Gene 

Regulator (Agr) Activity and Insights into PSM Activity 

 

3.1 Abstract 

___________________________________________________________________________________________ 
 

Accurate and sensitive measurement of Agr activity is central in understanding the 

virulence potential of Staphylococcus aureus, especially in the context of Agr 

dysfunction, which has been linked with persistent bacteraemia and reduced 

susceptibility to glycopeptide antibiotics. Agr function is typically measured using a 

synergistic haemolysis CAMP assay, which is believed to report on the level of 

expression of one of the translated products of the Agr locus, δ-haemolysin. In this 

study we develop a vesicle lysis test (VLT) that is specific to small amphipathic 

peptides, most notably delta and Phenol Soluble Modulin (PSM) toxins. To 

determine the accuracy of this VLT method in assaying Agr activity, we compared it 

to the CAMP assay using 89 clinical Staphylococcus aureus isolates. Of the 89 

isolates, 16 were designated as having dysfunctional Agr systems by the CAMP 

assay, whereas only three were designated as such by VLT. Molecular analysis 

demonstrated that of these 16 isolates, the 13 designated as having a functional Agr 

system by VLT transcribed RNAIII and secreted δ-haemolysin, demonstrating they 

have a functional Agr system despite the results of the CAMP assay. The Agr locus 

of all 16 isolates was sequenced, and only the 3 designated as having a dysfunctional 

Agr system by the VLT method contained mutations, explaining their Agr 

dysfunction. Given the potentially important link between Agr dysfunction and 

clinical outcome, we have developed an assay that determines this more accurately 

than the conventional CAMP assay. Additionally, this study provides an insight into 

how the PSMs differ in lytic potentials against specific vesicles, confirming that 

differences in their alpha helicity impact on peptide-mediated vesicle lysis.  
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3.2 Introduction 

___________________________________________________________________________________________ 
 

taphylococcus aureus expresses many different secreted and surface -

associated virulence factors which are utilised during all stages of infection 

(276). The staphylococcal accessory gene regulator (Agr) quorum sensing 

system is central in the ability of this organism to promote infection, through 

coordinated, temporal expression of specific virulence genes, in which cell surface 

adhesins are synthesised and expressed before secreted toxins and enzymes (329, 

468). Previous studies have shown that a functional Agr system is important in 

several infection models including a murine arthritic (469) and subcutaneous 

abscesses model (470) as well as rabbit endocarditis (471). The shift in gene 

expression is tightly correlated with population density and sensing of a diffusible 

signal molecule by the Agr two-component system (see section 1.3.4.1 and Fig 1.8 

for more details). This complex alteration in expression of virulence genes occurs in 

conjunction with many global regulators namely the DNA-binding Sar family of 

proteins (363, 370), the alternative sigma factor (472) and other two component 

systems such as saeRS (340) and arlRS (354) (see section 1.3.4 for more details). 

 

 Recently, there has been much research into Agr dysfunction, particularly on 

the outcomes of infection with isolates containing mutations in the Agr locus, which 

can range in prevalence from 10-20% of S. aureus clinical isolates (473, 474). These 

mutations can occur during infection in a patient (475) and have been implicated in 

an increased mortality for patients suffering from bacteraemia (474, 476). The 

increased survival of Agr defective strains observed in persistent bacteraemia has 

been hypothesised to involve a defect in autolysis (477), owing to the fact that 

several murein hydrolase genes are regulated by Agr (358). This phenotype has been 

implicated in the increased survival of Agr dysfunctional strains in the presence of 

platelet derived antimicrobial peptides and reduced sensitivity to gylcopeptide 

antibiotics, namely vancomycin (477).  

 

The conventional method of assessing Agr function is to demonstrate the 

haemolytic activity of δ-haemolysin using a blood agar plate assay in combination 

S 
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with a β-haemolysin positive strain, usually RN4220 (466). Additionally, Agr 

activity can be monitored through other methods such as Northern blotting or 

quantitative reverse transcriptase-PCR (qRT-qPCR) with probes or primers directed 

at RNA III, and recently, by whole-cell matrix assisted laser desorption ionization-

time-of-flight (MALDI-TOF) mass spectrometry (478). However, Northern blotting 

and qRT-PCR are time consuming and expensive, but considerably more sensitive 

than the CAMP assay, and a MALDI-TOF mass spectrometer costs several hundred 

thousand dollars to purchase, although running costs are low (479).  

 

Here we describe the development of a new methodology that determines Agr 

activity in a fast, high throughput, sensitive and quantitative manner. This method is 

based on the interaction of delta and Phenol Soluble Modulin (PSM) toxins, both 

used as surrogate markers for RNAIII and RNAII activity respectively, with lipid 

vesicles containing encapsulated self-quenched fluorescent dye. One fundamental 

element in the transition from inactive toxin monomers into fully functional 

membrane-damaging agents is the lipid and protein composition of the target 

membranes, particularly important in artificial membranes. We have formulated a 

lipid vesicle system that is responsive to specific peptide toxins; the small alpha 

helical, amphipathic delta and PSM toxins. When compared to the conventional 

CAMP assay this method proved more accurate, identifying all the isolates in a 

collection of 89 clinical S. aureus isolates that had mutations in the Agr locus, unlike 

the CAMP assay that had 13 false positives. As such, if Agr dysfunction becomes 

more widely accepted as being a critical determinant in the clinical outcome of 

infection, the accuracy of the VLT assay suggests that it should be used ahead of the 

plate based CAMP assay.  

 

In additional experiments, we observed differences in the lytic potentials 

between the different PSM peptides (alpha and beta classes) and within the PSMα 

class, contrary to previous studies (316). In an attempt to understand this observation, 

experiments were designed to investigate peptide amphipathic properties and 

secondary structure. Ultimately, the nature of peptide secondary structure and lipid 

bilayer composition dictate the lytic capacities of these peptides. Here we highlight 
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differences in the degree of alpha helicity through circular dichroism experiments 

and hypothesize how this structural property explains why certain PSM are less, or 

non-cytolytic.   

 

3.3 Results and Discussion 

___________________________________________________________________________________________ 
 

3.3.1 Vesicle breakdown correlates with early stationary phase 

growth  

 

Methicillin-susceptible S. aureus strain MSSA476 is a community-acquired invasive 

isolate for which a genome sequence is available (480). To determine if and at what 

stage of growth MSSA476 lysed lipid vesicles, a range of concentrations of bacteria 

were used to inoculate broth containing vesicles. Toxin production in bacteria is 

strictly growth-phase regulated and density dependent, with bacteria relying on the 

secretion of auto-inducing peptides to communicate and regulate genes (330). Figure 

3.1 shows the vesicle breakdown/fluorescence response, observed for the three start 

inocula were growth phase dependent; being triggered in the early stationary phase in 

each case.  

 
 

Figure 3.1: Vesicle lysis occurs during early stationary phase growth.  Different starting inocula 

(10
4
, 10

5
, and 10

6
 CFU/mL) of MSSA 476 were used to assess vesicle lysis during bacterial growth. 

Bacteria were grown for 18 h with lipid vesicles and by monitoring optical density and fluorescence it 

was evident that vesicle lysis occurs at early stationary phase. Experiments were done in triplicate 

three times and error bars represent the 95% confidence interval.  
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3.3.2 Identification of the toxins lysing the lipid vesicles 

 

S. aureus expresses a number of toxins that are up-regulated in the stationary phase 

by the Agr system. These toxins differ in their mode of action and host receptor 

specificity, resulting in different toxins lysing different cell types. To determine 

which staphylococcal toxins were causing vesicle lysis, a number of isogenic 

mutants were assayed.  

 

α- and β-haemolysin 

 

The S. aureus 8325-4 laboratory strain and the isogenic hla (α-haemolysin) and hlb 

(β-haemolysin) mutants were used to assess the role of these two toxins (Fig 3.2a). It 

has been known that α-haemolysin damages protein free liposomes and that 

phosphatidylcholine head groups play a vital role in initial association (149, 314). α-

haemolysin mediated lysis requires the clustering of phosphatidylcholine head 

groups within membrane microdomains enriched in cholesterol and sphingomyelin 

while the absence of either membrane proteins or the absence of sufficient clustering 

lead to the inhibition of monomer heptamerization (149) and therefore no lytic event. 

1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) is a major component of the 

vesicles under study (53%) and for this reason we explored the role of α-haemolysin 

mediated breakdown of vesicles. Figure 3.2a clearly shows that both the alpha and β-

haemolysin knockout strains caused vesicle lysis at virtually identical levels as the 

wild type strain, showing that neither toxin were critical in vesicle lysis or caused 

maximum fluorescence release in these experiments.  

 

Importantly, in the lipid vesicles used here, 10, 12-tricosadiynoic acid 

(TCDA) was included to stabilize the membrane via cross-linking of the acyl chains 

of DPPC, and this is believed to prevent such head group clustering, rendering the 

monomers incapable of binding and penetrating the membrane. The β-haemolysin is 

an enzyme which acts as on sphingomyelin (481) and consistent with its activity, no 

difference in vesicle lysis was observed using the β-haemolysin mutant. 
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Bi-component leukocidins 

 

The Panton-Valentine leukocidin (PVL), γ-haemolysin and the leukocidin family 

(notably LukAB and LukED) belong to the bi-component pore-forming family of 

toxins. In a similar fashion to the α-haemolysin, these leukocidins require specific 

receptor(s) for lysing biological membranes (150, 308, 441, 442) but may still lyse 

artificial membranes (151). Therefore, we wanted to investigate whether any 

measurable difference could be seen between supernatants derived from USA400 

MW2 wild type and isogenic PVL mutant and strain Newman and the respective 

lukAB, lukED and hlgACB mutants. Due to the reported high levels of toxin 

production by these strains and sensitivity of vesicles, a series of dilutions of 

supernatants were tested. No measurable difference was observed between wild type 

and mutant strains with our vesicle type.  

 

It has been shown previously that γ-haemolysin can permeate liposomes 

composed of PC head groups (151); however our results are consistent with two 

pieces of evidence which also proves that this toxin does not have the capacity to 

bind and permeabilize our vesicle type. Firstly, the lipid composition is crucial for 

this toxins’ activity with short (less than 13 carbon atoms) acyl chains being vital for 

pore-forming ability (440). The vesicles in question are composed of longer (16 

carbon atoms) chains causing cholesterol to integrate below the DPPC head groups 

permitting packaging not conducive to monomer binding (440). Secondly, this toxin, 

as with α-haemolysin, is susceptible to heat-inactivation at 65°C for 30 minutes (152)  

and since heat inactivated supernatants were still able to lyse vesicles with the same 

ability as un-treated supernatant (Fig 3.2e) over a defined period (20 min exposure), 

demonstrating that these toxins were not involved in vesicles lysis. 
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Figure 3.2: Characterising the toxins and enzyme involved in vesicle lysis. A) Deletion of α-or β-

haemolysin had no measurable effect on vesicle lysis. B) 5-fold dilutions of MW2 and MW2Δpvl 

mutant and C) Newman, NewmanΔlukAB, NewmanΔlukED and NewmanΔhlgACB illustrate the lack 

of involvement of the Panton-Valentine leukocidin and leukocidin AB, leukocidin ED and the γ-

haemolysin in lysis of vesicles. D) Phospholipase plate assay showing phospholipase activity as an 

orange halo around un-treated supernatant filled wells in contrast to no activity with heat-inactivated 

supernatants. E) 95°C Heat-treatment of supernatants retains vesicle lysis ability, suggesting no 

involvement of either phospholipases or γ-haemolysin in vesicle lysis (see text for details). Lipid 

vesicles were incubated with bacterial supernatants for 30 min. Vesicle lysis experiments were 

performed in triplicate three times with error bars representing the 95% confidence interval.  
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Phospholipase 

 

S. aureus also produces a number of enzymes, some with lipolytic activity such as 

(phospho) lipases. These enzymes are heat-sensitive and to investigate whether these 

enzymes had an effect on vesicle lysis, we first demonstrated the inactivation of 

these enzymes in the bacterial supernatant of a selection of clinical isolates following 

heat treatment using a lipase plate assay (Fig 3.2d). These heat-treated supernatants 

retained their vesicle lytic activities, demonstrating that these enzymes were not the 

main lytic agent of this system. 

 

Delta and PSM peptide toxins 

 

It has been previously shown that δ-haemolysin can retain its alpha helical structure 

in phosphatidylcholine bilayers and causes membrane perturbation and lysis in a 

concentration dependent manner (449). Therefore, we examined the effect of δ-

haemolysin and related PSM toxins on the vesicles described in this chapter. Lysis of 

vesicles was observed with δ-haemolysin and also for the PSMα1, 2 and 3 toxins 

whereas PSMα4 and PSMβ1 and 2 had reduced lytic activity (Fig 3.3a). Given the 

effect of δ-haemolysin and PSMα3 in our assays and their published effect on 

polymorphonuclear leukocyte cells (312) we focused on their activity in greater 

detail.  

 

Above a concentration of 2.5 μM and 1.5 μM for δ-haemolysin and PSM3α 

respectively, vesicle lysis occurs rapidly, whereas below this magnitude, lysis is 

reduced by approximately 20–30 % of maximum fluorescence (Fig 3.3b and d). The 

concentration of δ-haemolysin and PSM3α required to lyse 50 % of vesicles (V50) is 

1.5 μM and 0.25 μM respectively. By comparing this to the LD50 for biologically 

relevant T cells which are derived from an immortalized T cell line (482) the 

sensitivity of the vesicles to these peptides is illustrated. A 50-fold (δ-haemolysin) 

and 16-fold (PSM3α) increase in toxin concentration is required to cause lysis of 50 

% of T cells (Fig 3(c) (e). It has been shown previously that PSM concentrations of 

greater than 30 μg/mL were required to cause lysis of human neutrophils [41]. When 
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using PSM3α as an example, this roughly equates to a concentration of 

approximately 11.5 μM, whereas for the immortalized T cells, a concentration of 

approximately 5 μM results in lysis of 50% of T cells, highlighting the differences in 

susceptibility of different cell types to PSMs.   

 

 

 

Figure 3.3: Effect of purified toxins on lipid vesicles and T – cells. A) Vesicle rupture as a result of 

incubation with 10 μM synthetic PSM and δ-haemolysin peptides for 30 min B) Lysis of vesicles and 

C) T cells subjected to selected concentrations of purified δ-haemolysin. D) Lysis of vesicles and E) T 

cells subjected to selected concentrations of purified PSM3α toxin. The vesicle system is highly 

sensitive to both toxins at low concentrations, while PSM3α is more potent at lysing both vesicles and 

T cells than δ-haemolysin. T cells were incubated for 15 min at 37 °C with purified toxins. 

Experiments were performed in triplicate three times with error bars representing the 95% confidence 

interval.  
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3.3.3 Comparison of two assays in measuring Agr activity 

 

Having developed an assay that responds to the activity of δ-haemolysin, we next 

wanted to establish how this vesicle lysis test (VLT) assay compared to the 

conventional δ-haemolysin plate CAMP assay in determining Agr function. 89 

clinical S. aureus strains were tested including 51 hospital acquired and 38 

community acquired isolates from diverse genetic backgrounds (427). (The strains 

used in this study are derived from CC1 (n=7), CC5 (n=5), CC8 (n=5), CC9 (n=1), 

CC12 (n=4), CC15 (n=6), CC16 (n=5), CC22 (n=7), CC25 (n=10), CC30 (n=24), 

CC39 (n=5), CC45 (n=9) and CC51 (n=1)). Of the 89 strains assayed using the 

CAMP assay, 17.98% (16 of 89) exhibited no synergy between δ- and β-haemolysins 

on the blood agar plates (Fig 3.4a) and as such were designated as having a 

dysfunctional Agr system. Using the VLT only 3.3 % (3 of 89) had no lytic activity, 

as measured by fluorescence comparable to the negative control (HEPES buffer) and 

were classified as Agr dysfunctional (Fig 3.4b). Using LAC and its isogenic hld 

mutant it was also shown that the synergistic effect of haemolysis could also be 

observed in the absence of translated δ-haemolysin (Fig 3.4a), an observation also 

made by that Cheung et al (316) where other PSMs were shown to be involved. Of 

the CC used, CC30 showed the highest percentage of agr dysfunction when 

examined using the CAMP assay, with 13 of 24 strains showing no haemolysis, 

however no association between CC type and agr dysfunction is shown when using 

the VLT assay.  
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Figure 3.4: Differences in Agr activity observed using two methods. A) δ-haemolysin plate assay 

of agr positive (RN6390B) and negative (RN6911) strains, 17 S. aureus clinical isolates, 16 which are 

designated as agr negative, one agr positive isolate (MRSA325) and agr positive LAC and its 

corresponding isogenic hld mutant strain, signifying the effects of δ-haemolysin and PSMs on the 

haemolysin plate assay. B) Normalized fluorescence measurements of 89 clinical S. aureus strains 

using the vesicle-supernatant method, highlighting the three strains causing no vesicle lysis. 

Experimetns were performed in triplicate three times with error bars representing the 95% confidence 

interval. 

 

 

3.3.4 Validation of the sensitivity of the VLT test 

 

To determine which of the two assays (CAMP or VLT) were assaying Agr activity 

accurately we measured the level of expression on RNAIII in all 16 isolates defined 

as Agr dysfunctional by the CAMP assay by qRT-PCR (Fig 3.5). Only the three 

isolates defined as Agr dysfunctional by both the CAMP and the VLT assays were 
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impaired in the expression of RNAIII (MSSA71, MRSA378 and MSSA707). We 

also qualitatively assayed the secretion of small amphipathic peptides (i.e. δ-

haemolysin and the PSMs) by these isolates (Fig 3.6). Although variability existed in 

the secretion of these peptides across all 16 isolates, only the three designated as 

being Agr dysfunctional by VLT had no detectable amount of peptide. One of the 

limiting factors of using this extraction technique is that it doesn’t differentiate 

between the PSMs and may not be sensitive enough to detect them all, especially if 

they are expressed at a low-level. Therefore, we extracted the sample and analysed it 

by liquid chromatography mass spectrometry (LC/MSMS) where only δ-haemolysin 

was detected in this band. (LC/MSMS was done at the Central Proteomics Facility at 

the University of Oxford, United Kingdom).  

 

 

 

Figure 3.5: Measurement of RNAIII transcription. Real - time qPCR results of 19 strains 

consisting of the positive and negative control RN6390B and RN6911 respectively, the 3 negative 

vesicle lysis test strains (MSSA 71, MRSA 378 and MSSA 707), 13 non-haemolytic strains and the 

haemolytic strain MRSA 325. RNAIII transcription is observed in those strains designated agr 

positive by vesicle method and no transcription is evident in those 3 strains which show no lysis of 

vesicles. 
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Figure 3.6: SDS-PAGE of concentrated Agr regulated peptides. Concentrated and extracted 

proteins using 1-butanol from several S. aureus strains, showing the presence of protein bands, 

indicating δ-haemolysin. Purified δ-haemolysin and RN6390B used as a positive control and RN6911 

as a negative control. Figure shows the absence of bands in those strains which cause no lysis of 

vesicles. 

 

 

3.3.5 Agr sequencing 

 

The Agr loci of all the 16 isolates, designated as having dysfunctional Agr system by 

the CAMP assay, were sequenced. We aligned the agr sequence of these isolates to 

the known sequence of the agr locus in the respective clonal complex (Fig 3.7). Only 

the three designated as Agr negative by both VLT and CAMP were found to have 

mutations in this locus and the mutational effect on the protein sequence is 

summarised in figure 3.9. All three isolates had 1 bp deletions occurring within a run 

of adenine (MSSA71 and MRSA378) or thymine (MSSA707) residues. In MSSA71, 

this lead to a premature stop codon in AgrA truncating the protein at amino acid 

position 49; in MRSA378 this caused a frame shift mutation and the addition of 22 
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amino acids at the C-terminal end of AgrA protein; and in MSSA707 this lead to the 

truncation of the AgrC protein at position 176. With regards to the other non-

haemolytic but VLT positive strains, (MSSA41, MRSA69, MSSA101, MRSA119, 

MSSA144, MSSA215, MRSA252, MSSA304, MRSA312, MRSA354, MRSA393, 

MSSA406, and MRSA448) and one haemolytic strain (MRSA325), had the same 

Agr sequence apart from MRSA69 and MRSA325 which were identical with each 

other and of a different Agr group (Agr-1 as opposed to Agr-3) from the rest of the 

strains. Therefore Agr dysfunctional strains were resolved only by the VLT assay 

and not the CAMP assay as summarised in table 3.1. 

 

 

 

Figure 3.7: Mutations in VLT negative isolates. Isolates MSSA71, MRSA378 and MSSA707 all 

contained 1 bp deletions (red bold) which led to truncation or alteration of essential Agr proteins. The 

reference strain is given (top) along with the strain in which the mutation was shown to occur in 

(bottom). Nucleotide positions are given at the 5’ end of the sequence. 
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Strain CC CAMP VLT (N 

Fluor)
¶ 

RNAIII 

Expression* 

Agr locus/ 

mutation 

MSSA41 30 Negative 0.71±.04 5.7±1.4 Identical to 

MRSA252 

MRSA69 30 Negative 0.95±.09 8.9±2.1 Identical to 

MRSA325 

MSSA71 1 Negative 0.05±.01 0.02±.01 -1bp(nt147) AgrA 

MSSA101 30 Negative 0.98±.07 11±3.1 Identical to 

MRSA252 

MRSA119 30 Negative 0.85±.02 10.9±3.7 Identical to 

MRSA252 

MSSA144 30 Negative 0.99±.07 11.2±4.6 Identical to 

MRSA252 

MSSA215 30 Negative 0.80±.09 9.7±1.4 Identical to 

MRSA252 

MRSA252 30 Negative 0.73±.11 9.5±4.2 MRSA252 

MSSA304 39 Negative 0.91±.03 9.4±3.1 Identical to 

MRSA252 

MRSA312 30 Negative 0.65±.05 5.9±1.7 Identical to 

MRSA252 

MRSA325 30 Positive 0.92±.05 8.8±1.4 Identical to 

MRSA69 

MRSA354 30 Negative 0.73±.11 4.8±1.6 Identical to 

MRSA252 

MRSA378 30 Negative 0.03±.01 0.05±0.03 -1bp(nt705) AgrA 

MRSA393 30 Negative 0.64±.16 4.64±1.2 Identical to 

MRSA252 

MSSA406 30 Negative 0.92±.07 10.6±2.9 Identical to 

MRSA252 

MRSA448 30 Negative 0.95±.14 7.4±1.9 Identical to 

MRSA252 

MSSA707 16 Negative 0.05±.02 0.83±.3 -1bp(nt487) AgrC 

 

Table 3.1: Key characteristics of CAMP and VLT assayed strains 

Abbreviations: CC; clonal complex, CAMP; synergistic haemolysis plate assay, 

VLT; vesicle lysis test 

¶ Values shown in normalised fluorescence  

* qRT-PCR after 8 hour 
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3.3.6 Secondary structure and alpha helical wheel analysis of PSM 

peptides 

 

The differences in PSM mediated vesicle lysis observed in section 3.3.2 and PSM 

cytotoxicity assays shown in section 6.3.1 and by others (312), highlights that 

different PSMs have the different lytic activities. PSMs are generally classified as 

small, amphipathic, alpha helical peptides which can target cell indiscriminately, not 

requiring a proteinaceous receptor. For these reasons we sought to investigate which 

structural parameters are important in determining PSM lytic activity.  

 

Studies of antimicrobial peptides (AMPs) suggest that there are two 

functional requirements needed for active membrane destabilisation: a net positive 

charge to facilitate interaction with the negatively charged phospholipid membrane; 

and the potential to form amphipathic structures which allow incorporation into the 

membrane (483, 484). Other parameters which can strengthen the incorporation of 

peptides into lipid membranes include the overall hydrophobicity of the peptide, the 

ratio of hydrophobic to charged residues (h:c) and the degree of structuring (485-

487). In light of these parameters and using the hypothesis that PSMs act in a similar 

fashion to AMPs and δ-haemolysin, we investigated these properties in an attempt to 

understand the observed different lytic activities of these related peptides.  

 

The δ-haemolysin and PSMα1-3 peptides consist of 46-54% hydrophobic 

residues, which is consistent with the requirement for an amphipathic helical 

structure (483). However, the PSMα4 peptide contained 70% hydrophobic residues, 

giving the highest hydropathicity score using the Kyte and Dolittle algorithm, where 

a high hydropathicity value indicates high hydrophobicity (Table 3.2) (488). 

Previous studies using short AMPs observed that increased hydrophobicity lead to a 

decrease in interaction with negatively charged membranes and under certain 

conditions the more hydrophobic a peptide, the lower its membrane lytic capability 

(483, 489).  PSMα4 also has the highest hydrophobicity to charge (h:c) ratio among 

the PSM peptides, which may further explain its lower lytic capacity. Overall charge 

on the δ and PSMα1-4 toxins was positive, (Table 3.1) PSMα2> 
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PSMα1=PSMα3=PSMα4> δ, within the limits of charge typical for lytic peptides, as 

excessive charge is potentially damaging towards lytic activity by preventing suitable 

structuring (490). The PSMβ1 peptide has an overall negative charge whereas 

PSMβ2 displays a neutral charge while both peptides have a high h:c ratio which 

may in part explain the low lytic phenotype.  

 

PSM Hydropathicity Charge 

Delta 0.135 0 

PSMα1 0.957 +2 

PSMα2 0.890 +3 

PSMα3 0.305 +2 

PSMα4 1.700 +2 

PSMβ1 0.570 -1 

PSMβ2 0.607 0 

 

Table 3.2 Hydropathicity and charge of PSM peptides 

 

 

Helical wheel projections of these peptides (Fig 3.8) illustrate that like δ-haemolysin, 

all the PSMα peptides have a predicted helical structure with a high degree of 

amphiphilicity, with PSMα3 showing the largest hydrophobic moment (PSMα3 > δ > 

PSMα4 > PSMα2 > PSMα1, ranging from 9.16 to 5.96) and PSM1 and 2 

relatively lower (6.23 and 4.29, respectively). PSMα3 is the most toxic towards 

polymorphonuclear leukocytes (PMNs) (312) and in this thesis, is most lytic to lipid 

vesicles and T cells (Figure 6.3b). It has been observed that ionic or salt bridges may 

form when negatively charged residues are spaced 3- to 4- positions from positively 

charged residues, which may promote helix formation (491). PSMα3 shows the 

largest number of charged residues (positive and negative) on the hydrophilic phase 

of the predicted helix, indicating the potential formation of helix stabilizing ionic 
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bonds. This coupled with the large hydrophobic moment for PSMα3 will likely 

increase both peptide agglomeration in solution and partitioning of the peptide into 

the lipid bilayer (492).  

 

 Circular dichroism (CD) spectroscopy can be used to investigate the alpha 

helicity of proteins. CD measures differences in the absorption of left-handed 

circularly polarized light and right-handed polarized light over a range of 

wavelengths, generating a distinct CD spectral signature for specific biological 

molecules, such as proteins. CD spectral analyses demonstrate that the PSM peptides 

that were highly lytic (PSMα1-3) displayed a higher degree of alpha helical 

secondary structure (Fig 3.9a), whereas PSMα4 and particularly PSMβ1-2 showed 

reduced helical characteristics (Fig 3.9b) (alpha helical content is shown by the peaks 

at 190 and 210 nm). Alpha helicity is important in the ability of small peptides to 

integrate within the lipid membrane and cause disruption as this type of structure 

allows for the formation of both hydrophilic and hydrophobic faces (493-495). The 

structuring is influenced by both the overall hydrophobicity of the peptide, which 

will govern initial interaction with the bilayer surface and subsequent interactions 

between individual residues on the hydrophobic face of the peptide and the bilayer 

interior. It is worth noting that the PSMα1-3 peptides possess helix stabilizing 

alanine residues at position 5 whereas PSMα4 contains a helix destabilizing glycine 

in this position which may reflect the observed difference in alpha helicity.  

 

δ-haemolysin displays high a degree of amphipathicity and alpha helicity, 

with well defined hydrophobic and hydrophilic phases, but had a lower cytolytic 

activity than PSMα2-3 (Figure 6.3b). The lower lysis activity is intriguing and may 

be due to the low hydropathicity value and a neutral charge affecting efficient initial 

interaction and insertion within the membrane. Previous studies have demonstrated 

that aliphatic residues decreasingly promote alpha helix stability in the order 

Leu>Ile>Ala>Val> in a lipid environment (496, 497). The combined number of all 

aliphatic residues within each peptide (discounting glycine), varies in the order; 6 

(PSMα3), 8 (PSMα2), 9 (PSMα1), 9 (δ toxin) and 12 (PSMα4). Of those residues 

PSM alpha 3 has proportionately the highest leucine content while PSMα4 has the 
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lowest. The number of aliphatic residues a peptide contains therefore shows an 

inverse correlation with vesicle and cell lysis. 

 

 

 
 

Figure 3.8: Helical wheel projections of δ-haemolysin (top), PSMα1, α2, α3, α4 (middle, from left to 

right) and PSM1 and 2 (bottom, from left to right). Hydrophobicity is color coded from dark green 

(most hydrophobic) to yellow (zero hydrophobicity). Hydrophilic amino acids are shaded from red 

(most hydrophilic) to yellow, charged residues are shown in light blue (reference; 

http://rzlab.ucr.edu/). The arrows indicate the directions of the hydrophobic moments. 

http://rzlab.ucr.edu/
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It is important to note that δ-haemolysin and PSMα1-3 illustrated good alpha helical 

spectra in the absence of lipid membranes and alpha helical inducing solvents such as 

2, 2, 2- trifluoroethanol (TFE). The PSMβ1-2 peptides, which show the lowest lytic 

potential, are relatively unstructured in the absence of TFE. The negative peaks at 

202nm and minimal negative peaks at 220nm indicate random coil secondary 

structure, a property which is not amenable to lysis. However, under our conditions, 

PSMβ1-2 shows increasing alpha helicity with 50% TFE as shown in figure 3.9b 

table 3.3b. Previous results have shown that all PSM possess alpha helicity, however 

these peptides were dissolved in 50% TFE (312) which is known, and observed by 

us, to induce alpha helicity. Our results suggest that the ability to form alpha helical 

structure is extremely important in lysing CHO containing lipid vesicles, as those 

PSM which have poor alpha helical folding also have poor lytic activity. 
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Figure 3.9: Circular dichroism (CD) spectra of synthetic PSMs. A) CD spectra of PSMα1-4 and δ-

haemolysin prepared in PBS. B) CD spectra of PSMβ1 peptide in 50% TFE (trifluoroethanol), PSM 

β1 peptide in PBS buffer, PSM β2 peptide in 50% TFE and PSM β2 peptide in PBS buffer. The peaks 

at 190 and 210nm are indicative to alpha helicity. The negative peaks at 202nm and minimal negative 

peaks at 220nm indicate random coil secondary structure. 

 

 

3.4 Conclusions 

___________________________________________________________________________________________ 

 

Lipid vesicles have been extensively used to study toxin membrane interactions 

(149-151, 153, 440). Synthetic lipid vesicles allow different membrane components, 

such as cholesterol, glycolipids and phospholipids to be incorporated at varying 

concentrations allowing the possibility of being able to tune the vesicles response to 

different lytic toxins (455). In this study we formulate a lipid vesicle that is lysed by 

a specific group of small, amphipathic, alpha-helical peptides, regulated by the 

staphylococcal Agr system but unresponsive to other known Agr regulated toxins. 

This vesicle contains some features consistent with certain eukaryotic membranes, 

most notably comprising a percentage of cholesterol reflecting that of erythrocyte 

membranes (20–25% (498)) and featuring two very common membrane 

phosphoglycerides, phosphatidylcholine and phosphatidylethanolamine. However, 
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our vesicles lack any glycolipids or sphingomyelin, which can be in high proportion 

in certain cell types (498).  

 

The similarity in composition of our vesicle system to some eukaryotic 

membranes is reflected in the similar concentrations of purified toxins required to 

lyse erythrocytes and our vesicles. In general, erythrocytes lysis occurs after 

incubation with 10 mg/mL (approximately 3.85 μM) of individual PSMs (316), 

whereas our vesicles require in the range of 1.5–2.5 μM depending on the peptide 

toxins, both systems requiring incubation at 37°C for 30 min. If we compare this to 

the results of PSM interaction with 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphocholine (POPC) vesicles used by Duong et al we see a stark difference in the 

concentration of PSMs used and incubation time required to cause lysis (499). For 

POPC vesicles, PSM concentrations were in the range of 0.5–1.0 μM and incubated 

for 200 s to reach maximum lysis. Moreover, the order in which the PSM peptides 

caused lysis of POPC vesicles is quite different to the order for normal cellular lysis 

and order of our vesicles, with the PSM β1 and β2 peptides and PSM4α causing the 

highest degree of lysis in POPC vesicles whereas these peptides have the lowest lytic 

capabilities under physiological conditions (312) and our vesicles (Fig 3.3a). The 

increase in time and toxin concentration required to lyse our vesicle type in 

comparison to pure POPC is based a number of factors, but largely dependent on the 

cholesterol composition in our vesicle type. Cholesterol plays a major role in 

membrane fluidity and the transition temperature of lipids, which has an overall 

impact on the mechanical rigidity of the lipid membrane (500) and which we have 

shown has a profound effect on toxin-mediate lysis of vesicles (Laabei, M et al. 

2014: Investigating the lytic activity and structural properties of Staphylococcus 

aureus Phenol Soluble Modulin (PSM) peptides, under review). The POPC vesicles 

are also unsaturated and are therefore packed less tightly which may influence toxin 

binding and disruption of the membrane; unsaturation also lowers the transition 

temperature and is more prone to oxidation (501) again affecting membrane 

integrity.  
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Agr dysfunction is an increasingly important issue due to its relevance with 

regard to persistent bacteraemia and decreased antibiotic glycopeptide susceptibility 

such as to vancomycin (476, 477). Loss of Agr activity is also implicated in 

increased biofilm formation and attachment to inert surfaces, which is important as 

the majority of bloodstream hospital acquired infections are catheter associated (502, 

503). However, the majority of these studies looking at correlations between Agr 

dysfunction and clinical outcomes use the CAMP assay. We suggest that the use of 

the CAMP assay for determining Agr activity may not be sufficiently sensitive in 

determining Agr function. Using our VLT assay we correctly identified the only 3 

isolates from a collection of 89 that had mutations in the Agr locus (summarised in 

Table 3.1). A possible confounder of the VLT method is their sensitivity to the other 

PSM toxins. It has been shown previously that psm genes can be regulated in an 

RNAIII independent manner, with AgrA being important in this upregulation (215). 

However, this also affects the outcome of the CAMP assay, as we show in figure 

3.4a, where the LAC δ-haemolysin mutant exhibits a positive CAMP assay. We must 

also keep in mind that the vast majority of strains that produce detectable levels of 

PSMs are the highly toxic community acquired type IV SCCmec strains, which 

produce considerably higher concentrations of δ-haemolysin than PSM (312). No 

examples of Agr dysfunction have been reported amongst this group, indeed Agr 

function is believed to be critical to their emergence and virulence (318), suggesting 

that neither the VLT or the CAMP assay will be of use clinically for these types of 

infection. The question that this study also touches on is how much Agr activity is 

required in determining a strain to be functional, semi-functional or have complete 

inactivity? We have suggested that those strains which were VLT negative and non-

haemolytic were the only true Agr inactive isolates, acquiring mutations leading to 

truncation of essential proteins. This VLT is a sensitive, rapid assay which is quick 

and easy to perform and amenable to 96-well plate high-throughput analysis and may 

help us in redefining the Agr activity of clinical isolates. 

 

 Physico-chemical properties of peptides affect their ability to both penetrate 

and lyse phospholipid membranes. On the basis of the results presented here, the 

degree of alpha helicity is the most important property for correct insertion and lysis 
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of membranes for PSM peptides. The PSMβ1-2 peptides, which show the lowest 

lytic potential, are relatively unstructured in the absence of TFE, instead possessing a 

random coil structure which is not conducive to high lytic activity. Why the PSMα4 

or PSMβ1-2 peptides have lower alpha helicity is not completely understood as yet 

but maybe due to the presence of helix breaking residues. Therefore, we suggest 

refining this class of peptides, as not all of the members have alpha helicity, which is 

an important factor in membrane lysis.  

 

The ability of these PSM to act synergistically with other toxins has been recently 

reported and shown to be involved in S. aureus escape from epithelial and 

endothelial phago-endosomes (504). This study reported the synergistic effect of δ-

haemolysin or PSMβ1-2 with the sphingomyelinase β-haemolysin in disrupting the 

endosomal membrane. Interestingly, no synergistic effect was observed with the 

PSMα peptides, which are more related to δ-haemolysin than the PSMβ peptides. 

Currently, it is unknown if PSMs can act synergistically with each other, and what 

molecular interaction may dictate such effects. Experiments designed to investigate 

how PSMs acting in synergy affect different phospholipid vesicle membranes and 

how they influence the structure of one another are ongoing and will hopefully shed 

light onto how these interesting peptides act during pathogenesis. 
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4 

A New Assay for Rhamnolipid Detection – 

Important Virulence Factors of Pseudomonas 

aeruginosa 

 

4.1 Abstract 
__________________________________________________________________________________________ 
 

Rhamnolipids [RL] are heterogeneous glycolipid molecules that are composed of one 

or two L-rhamnose sugars and one or two β-hydroxy fatty acids, which can vary in 

their length and branch size. They are biosurfactants, predominantly produced by 

Pseudomonas aeruginosa and are important virulence factors, playing a major role in 

P. aeruginosa pathogenesis. Here, the ability to detect RL producing P. aeruginosa 

strains with high sensitivity, based on an assay involving phospholipid vesicles 

encapsulated with a fluorescent dye is shown. This vesicle-lysis assay is confirmed to 

be solely sensitive to RL, confirming the importance of the expression of this 

virulence factor for sensing in a putative smart dressing application. We illustrate a 

half maximum concentration for vesicle lysis (EC50) of 40 μM (23.2 μg/mL) using 

pure commercial RL, and highlight the ability to semi-quantify RL directly from the 

culture supernatant, requiring no extra extraction or processing steps or technical 

expertise. We show that this method is consistent with results from thin layer 

chromatography detection and dry weight analysis of RL, but find that the widely 

used orcinol colorimetric test significantly underestimated RL quantity. This assay 

was used to compare RL production among strains isolated from either chronic or 

acute infections. We confirm a positive association between RL production and acute 

infection isolates (p = 0.0008), highlighting the role of RL in certain infections. 
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4.2 Introduction 
__________________________________________________________________________________________ 
 

Pseudomonas aeruginosa is an opportunistic human pathogen, ubiquitous in the 

environment and capable of causing a multitude of infections in the immune-

compromised host (505, 506). The ability of this organism to cause such a wide array 

of infections is based in part on the large arsenal of virulence factors it produces 

(507). Virulence factor regulation in P. aeruginosa is achieved through a density-

dependent cell-to-cell communication network, involving two acylhomoserine 

lactone (AHL)-mediated quorum sensing (QS) systems; the las, rhl (508, 509)  and 

Pseudomonas quinolone signal system (82, 510). The las and rhl systems are LuxRI 

homologues, where lasI and rhlI direct synthesis of  N-3-oxododecanoylhomoserine 

lactone (3-oxo-C12-HSL) and N-butanoylhomoserine lactone (C4-HSL) 

respectively; these are diffusible signalling molecules which activate their respective 

DNA binding response regulators LasR and RhlR, which in turn induces the 

expression of a wide range of genes, approximately 6% of the genome (509, 511-

513). The other cell-to-cell signalling system responds to the quinolone compound 2-

heptyl-3-hydroxy-quinolone (the Pseudomonas quinolone signal, PQS), acting with 

the transcriptional activator, PqsR (82, 514). An elegant hierarchy system 

predominates in this global regulatory network, with the las system positively 

regulating both the rhl and quinolone signalling systems (82, 83, 515).  

 

One of the most interesting extracellular factors produced by P. aeruginosa are 

rhamnolipids [RL]. RL are surfactant-acting molecules, composed of a hydrophilic 

head, of one or two rhamnose molecules, defining mono- and di-rhamnolipid, and a 

hydrophobic tail portion of one or two fatty acids (Fig 4.1). RL have been utilised in 

a wide variety of industrial applications involving emulsification, detergency, 

wetting, foaming and solubilisation procedures, bioremediation and food additives 

(516). The amphiphilic nature of RL allows these biosurfactants to partition into 

biological and artificial membranes altering their biophysical properties, previously 

shown in model membranes using 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphocholine POPC vesicles and purified RL (517, 518). RL are also very 

important virulence factors for P. aeruginosa, central in immune cell and erythrocyte 
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destruction (519, 520), swarming and twitching motility (90, 91), biofilm formation 

and protection (120, 521). Furthermore, they have been implicated in the 

deterioration of patients with ventilator associated pneumonia (522) and disruption 

and permeablization of epithelial cells, a prerequisite to P. aeruginosa invasion 

(523).   

 

 

 

Figure 4.1: Molecular structure of rhamnolipid. RL are composed of a one or two hydrophilic 

rhamnose sugar head groups attached to either one or two hydrophobic fatty acid chains.  

 

 

Clearly an accurate and rapid method to assess RL production is important. Current 

methods can be qualitative; the cetyltrimethylammonium bromide (CTAB) 

methylene blue (MB) agar test (524), which signals RL expression through the 

formation of blue halos due to the complexation of the anionic RL and cationic 

CTAB and MB. Although this method is quick, it suffers from a time delay of 

incubation for 48 h for best results and also through distortion of halo formation due 

to fluorescent pigments produced naturally by certain P. aeruginosa strains. Other 

methods measure the tensioactive properties of the surfactant (525) however these 

methods employ sensitive instruments and are laborious, and not amenable to being 

utilised in a high-throughput manner. Quantitative methods consist of 

spectrophotometric analysis, using the orcinol test (526), chromatographic methods 
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including thin layer chromatography (TLC), high performance liquid 

chromatography (HPLC) (527), infrared spectroscopy (IR) (528) and dry weight 

analysis of rhamnolipids following solvent extraction (464). 

 

In this chapter, a new methodology in detecting and quantifying RL using 

carboxylfluorescein encapsulated phospholipid vesicles is presented, which came to 

light through my attempts to identify the factors produced by P. aeruginosa to lyse 

vesicles as part of the larger Bacteriosafe project. In this report we confirm that RL 

can be detected and quantified directly from overnight culture supernatants using the 

vesicle lysis assay, decreasing preparation time, hazardous extraction techniques or 

expert analysis.  

 

 

4.3 Results and Discussion 
__________________________________________________________________________________________ 
 

4.3.1 Bacterial mediated lysis of vesicles occurs during early 

stationary phase of growth 

 

To investigate at what stage of growth P. aeruginosa PAO1 wild type lysed lipid 

vesicles, a range of starting inocula were used to initiate growth in a combination of 

nutrient rich broth and lipid vesicles (Fig 4.2a). Expression of specific genes is 

essential at different stages of growth, particularly in the expression of virulence 

factors (529), capable of lysing lipid vesicles. Therefore, we investigated the ability 

of P. aeruginosa to break down vesicles and correlated this with the respective 

growth rate with and without vesicles within the media (Fig 4.2b). Differences in 

optical density (OD600) observed between the two experiments are most probably due 

to the vesicles impacting on light scattering, resulting in higher absorbance values. 

Nonetheless, vesicles did not have a negative impact on bacterial growth (Fig 4.2b). 

By using different starting inocula of 1x10
4
-1x10

6 
CFU/mL we determined that a 

time delay exists in lysis of vesicles with respect to smaller starting inoculum. With a 

starting inoculum of 1x10
6
 CFU/mL bacteria reach late exponential/early stationary 
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phase of growth after approximately 400 min (Fig 4.2b) (blue line in both Fig 4.2a 

and b represent 400 min time point) the approximate time point when vesicles begin 

to breakdown followed by increasing fluorescence release over the next 150 min (Fig 

4.2a). This signifies that bacterial mediated breakdown of vesicles occurs during 

early stationary phase, when the local concentrations of bacteria reach a critical 

threshold, leading to the expression of quorum sensing (QS) regulatory genes known 

to be involved in the expression of virulence factors capable of causing membrane 

damage. 

 

 

Figure 4.2: Lysis of vesicles occurs during early stationary phase of growth of Pseudomonas 

aeruginosa. A) The breakdown of vesicles by different starting inoculums (10⁶-10⁴ CFU/mL) was 

measured over 18 h of growth, shown here by the detection of carboxyfluorescein released from lysed 

vesicles. B) The growth curves of P. aeruginosa, with and without vesicles added to the medium, are 

illustrated over 18 hours from a starting inoculum of 10⁶ CFU/mL. Experimetns were performed in 

triplicate three times with error bars representing the 95% confidence interval. 

 

 

4.3.2 Identification of rhamnolipids as the vesicle lysing agent 

 

The production of toxins/enzymes in P. aeruginosa is governed by a hierarchical cell 

to cell QS system, which when activated, leads to the production of a whole suite of 

virulence factors, some of which are excreted into the extracellular environment. 

Therefore, we investigated the ability of QS mutants to lyse lipid vesicles (Fig 4.3a), 
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to determine the factor(s) involved. The quinolone signalling system contains the 

pqsABCDE operon, in which the pqsABCD section is required for the synthesis of 

the hydrophobic quinolone signal which interacts with a LysR-like regulator PqsR, 

modulating the expression of genes known to function in virulence (79, 530). 

Therefore, we assayed the culture supernatant of a pqsA mutant to identifying any 

deleterious effects on lipid vesicle lysis; however no difference between WT and 

mutant strain was evident (Fig 4.3a). It has been shown previously that a pqsE 

mutant, although not impacting on the production of the PQS signal, negatively 

affects PQS-controlled virulence factors (80, 531) and has been shown to enhance 

the rhl system (532). However, no difference was seen in lysis of lipid vesicles with 

culture supernatants derived from the pqsE mutant (Fig 4.3a). Unlike the signalling 

molecules of the las and to an extent, rhl system, the PQS is very hydrophobic, 

inhibiting free diffusion between bacterial communities (533). To circumvent this, 

these PQS signals are encapsulated within membrane vesicles (MVs), derived from 

the outer membrane of the bacterial cell envelope (534). Interestingly, PQS has been 

shown to induce membrane curvature in erythrocytes, leading to haemolysis (535). 

The formation of bacterial MVs requires the expression of PqsH, which is a 

monooxgenase, essential for the conversion of 2-heptyl-4-quinolone (HHQ) to PQS 

(531). Therefore, in a pqsH mutant there is a reduced capacity to form membrane 

vesicles due to reduced quinolone formation to induce membrane blebbing and 

structural perturbations. However, no difference was seen in vesicle lysis with 

culture supernatants derived from this mutant and WT, suggesting that the quinolone 

signalling system did not play a role in lysis of this specific vesicle type (Fig 4.3a).  

 

The lasRI and rhlRI regulatory systems are the most well characterised QS 

systems in P. aeruginosa. To investigate which secreted factor(s) caused lysis we 

examined culture supernatants from deletion mutants of the signal synthase (lasI and 

rhlI) and the response regulators (lasR and rhlR) (Fig 4.3a). The results demonstrated 

that an active rhlRI system was required for vesicle lysis. P. aeruginosa expresses 

three quorum-regulated phospholipases C (PLC) enzymes: a haemolytic PLC (PlcH), 

a non-haemolytic PLC (PlcN) (536) and a PLC involved in phospholipid chemotaxis 

(537) (PlcB). PlcH causes cytolysis, with a preferred substrate affinity for 
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phosphatidylcholine (PC) and sphingomyelin (536), importantly PC is the most 

abundant lipid in our vesicle. For this reason, we examined the effect of a plcH 

deletion mutant on the capacity to lysis the vesicle (Fig 4.3b). By using serial 

dilutions of supernatants, it was evident that PlcH did not have any effect on lysis. 

Most proteins are denatured and inactivated at high temperatures, therefore to 

understand what was causing vesicle breakdown, supernatants were heat treated and 

compared to non -treated supernatants (Fig 4.3b), however, no difference in vesicle 

lysis activity was observed. This suggested that a heat-resistant glycolipid could be 

involved in overall vesicle lysis.  

 

 RL are biosurfactant glycolipids, in which the synthesis of these molecules is 

under the control of the rhlABC operon, where the rhlA gene is itself directly 

regulated by the rhl QS system (538). We performed TLC on solvent extracts of the 

supernatant in order to detect RL from P. aeruginosa strains that were either vesicle 

lysis positive or negative (Fig 4.3c and Table 1). In all cases where strains caused 

vesicle lysis, RL was detected by TLC, whereas the opposite was true in those strains 

which were vesicle lysis negative. To understand conclusively what caused P. 

aeruginosa mediated breakdown of lipid vesicles, culture supernatants from an rhlA 

mutant were used and no vesicle lysis was observed (Fig 4.3d). The rhlA gene is 

critical in the formation of RL precursors (90) and thus without this neither mono- 

nor di- RL are formed.  
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Figure 4.3: Identification of vesicle lysing agent. A) Culture supernatants of several quorum-sensing 

mutants (ΔpqsA, ΔpqsE, ΔpqsH, ΔlasR, ΔlasI, ΔrhlR, ΔrhlI) were tested against lipid vesicles, 

highlighting the important role of the rhlRI QS system in vesicle lysis. B) Culture supernatants of 

wild-type (WT) PAO1, a lipase mutant PAO1ΔplcH and heat treated (HT) PAO1 culture supernatant 

at various dilutions (neat, 75, 50, 25, 10, 1) were tested against lipid vesicles, with no significant 

differences observed. C) TLC was used to detect the presence of rhamnolipid from two strains, PAO1 

(vesicle lysis positive) and PA45100 (vesicle lysis negative) D) Comparison of WT PAO1 and the 

isogenic rhlA mutant. Experimetns were performed in triplicate three times with error bars 

representing the 95% confidence interval. 
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4.3.3 Estimation of secreted rhamnolipid concentration from P. 

aeruginosa  

 

To investigate whether this vesicle-lysis assay could be used to quantify RL secreted 

from culture supernatants, we created a standard curve (Fig 4.4a) incubating vesicles 

and purified R-95 rhamnolipid, a mixture of the highly abundant mono- and di-

rhamnolipids congeners from P. aeruginosa. This graph illustrates the EC50, the 

concentration of purified rhamnolipid to cause 50% lysis of vesicles, as 23.2 μg/mL 

(40μM). Using this value, the quantity of RL from culture supernatants can be 

estimated (Fig 4.4b), by graphing the respective normalised fluorescence obtained 

from serial dilutions of culture supernatants, using a sigmoidal curve fit, generating 

the best fit line, giving the dilution constant required for EC50 and multiplying to give 

an estimation of RL in the original culture (92.8 μg/mL for PAO1). This PAO1 RL 

value generated from the vesicle-lysis assay was relatively consistent with that of our 

dry weight analysis of PAO1 RL (172.5 ±56.4 μg/mL). It is important to note that 

quantity and structure of RL is dependent on many factors, including carbon source, 

reaction vessel and conditions, temperature and strain-specific details and that very 

high concentration of RL have been recorded using optimised growth medium and 

bioreactors (539, 540). The growth conditions and reaction conditions we have 

employed are not conducive to high levels of RL production, as this was not the aim 

of this study.  

 



132 
 

 

 

 

Figure 4.4: Estimation of rhamnolipids in culture supernatants. A) Vesicle-purified rhamnolipid 

interaction illustrating the EC50, the amount of purified rhamnolipid required to cause 50% of vesicle 

lysis as measured by fluorescence release. B) Estimation of rhamnolipid concentration via serial 

dilutions of PAO1 culture supernatant exposed to vesicles, generating different fluorescence values. 

EC50 value obtained using 25% supernatant, thus EC50 times 4 giving the estimated starting RL 

quantity (23.2 μg /ml x 4 = 92.8 μg /ml). Experimetns were performed in triplicate three times with 

error bars representing the 95% confidence interval.   
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4.3.4 Comparison of vesicle assay with orcinol and TLC assays 

 

A comparison was made between the vesicle-lysis assay and the orcinol and TLC 

methods of RL detection and quantification. We selected 16 strains, 8 derived from 

acute infections and 8 derived from chronic infections and measured their respective 

RL content using the above methods (Table 4.1). The orcinol assay was chosen as 

this colorimetric assay is widely used. However, this method provided a significant 

underestimation of RL values compared to our results, perhaps due to loss of RL 

during the extraction procedure, which were produced at small quantities initially. 

This was not the first study which has highlighted erroneous results using the orcinol 

assay (540). The orcinol method can also suffer from contamination from the growth 

media and also other components of the cellular envelope which has rhamnose as a 

component in their structure, namely lipopolysaccharides.  

 

The TLC method was used qualitatively and complemented the results of our 

vesicle-lysis assay, whereby vesicle lysis positive strains were also shown to secrete 

RL (Table 4.1). The CTAB method can suffer from distortion of RL complexation 

circles due to pigment production (524) and we were not able to generate consistent 

results using this method. The RL values of clinical isolates examined here (Table 

4.1), are consistent with values shown by other groups (539). Although the vesicle-

lysis assay is dependent on fluorescence detection from lysed vesicles, this is not 

influenced by fluorescent molecules being expressed by P. aeruginosa (data not 

shown): pyoverdine is typically excited by low wavelength light (UV) whilst 

carboxyfluorescein is excited by blue (490 nm) light (541). 
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Strain 

(acute) 

Orcinol 

Test* 

Lipid 

Vesicle 

Test* 

TLC Strain 

(chronic) 

Orcinol 

Test* 

Lipid 

Vesicle 

Test* 

TLC 

44883 21.7 125.4 + PA00856 22.2 85.5 + 

44981 8.6 25.6 + PA00887 20.83 30.9 + 

45197 16.7 86.9 + PA00889 21.7 91.1 + 

45445 32.5 150.2 + PA00935 16.2 90.1 + 

45076 2.3 NL - PA00261 3.2 NL - 

45100 15.2 NL - PA00848 3.9 NL - 

45122 1.88 NL - PA00918 3.4 NL - 

45394 2.83 NL - PA00929 3.7 NL - 

 

Table 4.1 Detection and quantification of rhamnolipids 

* Quantification of rhamnolipids derived from these techniques in μg/mL; No lysis, NL. 

 

 

4.3.5 Rhamnolipid expression is associated with acute infections 

 

It has been shown previously that RL are important virulence factors as they have 

been implicated in cell death and essential in correct biofilm construction and 

protection. We wanted to explore the use of this assay to determine rhamnolipid 

expression among clinical isolates. We performed vesicle-supernatant experiments 

on a range of clinical strains (n=78), from a chronic (n=48; isolated from cystic 

fibrosis patients) and an acute (n=30; isolated from blood stream and wound 

infections) infection background to gain an understanding of the clinical importance 

of RL in these two classes of infection (Fig 4.5). There was a positive association 

between RL expression and acute infection isolates (Fisher test p = 0.0008), which 

suggests that RL play an active role during acute infections, and that this assay can 

determine this from culture supernatant.  
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Figure 4.5: Positive association between rhamnolipid expression and isolates from acute 

infections. Vesicle-supernatant assay exploring the rhamnolipid producing capacity of clinical P. 

aeruginosa isolates derived from either a A) chronic (blue; n=48) or B) acute infection (red; n=30). A 

positive association between rhamnolipid production and isolates from acute infections was observed, 

using an exact fisher test, p=0.0008. Experimetns were performed in triplicate three times with error 

bars representing the 95% confidence interval. 

 

 

4.4 Conclusions 
__________________________________________________________________________________________ 
 

The vesicle-lysis assay is responsive to QS regulated factors, which are expressed 

during the transition from late exponential to early stationary phase of growth (Fig 

4.2). P. aeruginosa expresses a wide spectrum of exofactors, some of which are 

important in membrane damage. Using isogenic mutants in key regulatory QS genes 

and virulence determinants we investigated which factor was important in the 

observed lysis. Due to their hydrophobic nature, PQS molecules induce the formation 

of MVs through an interaction with lipopolysaccharide on the bacterial outer 

membrane facilitating cell-to-cell communication, and this is dependent on the 

expression of the pqs operon (Mashburn and Whiteley 2005). Interestingly , it has 

also been reported that exogenously added PQS molecules can also induce 

membrane curvature in erythrocytes, lacking any of the receptors important for MV 

formation, leading to haemolysis in a concentration dependent manner (535). 

Additionally, after the blebbing of MVs from the bacterial cell envelope these 

structures are then able to fuse with recipient cells, transferring their cargo in an 

elegant transport mechanism (535). Considering these observations we investigated 
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whether the PQS signalling system was influencing lysis of vesicles used in this 

study. Genetic inactivation of pqsA, pqsE or pqsH conferred no reduction in vesicle 

lysis (Fig 4.3a), suggesting no role for the PQS system in disruption of these vesicles.  

 

Surprisingly, the phospholipase C enzyme (PlcH), a key component in the 

degradation of lipids due to their affinity for phosphatidylcholine head groups, did 

not play a role in lipid vesicle lysis as no reduction in fluorescence was observed in 

the plcH mutant or heat treated supernatants (Fig 4.3b). Work on phospholipase 2 

(PLA) has shown that the degree of saturation and most importantly, the acyl chain 

length of the phospholipids impact on the ability of this lipase to lyse lipid bilayers 

(542). The structure of the vesicles in this study are composed of DPPC and DPPE, 

which are saturated phospholipids containing 16 carbon chain length fatty acids 

which may not be efficient substrates for PLC activity.  

 

Inactivation of the rhl QS system leads to a reduction in vesicle lysis (Fig 4.3a). 

RL expression is under the control of rhlABC operon, where rhlA, a gene which 

encodes a rhamnosyltransferase which catalyses the transfer of L-rhamnose to 3-(3-

hydroxyalkanoyloxy) alkonic acid (HAA) and is required for subsequent RL 

formation, is regulated by the rhl system. RL are also heat-resistant molecules, and 

our results show heat-treatment was insufficient to inhibit the lytic function of 

bacterial supernatants derived from P. aeruginosa strain PAO1 (Fig 4.3b). Finally, 

deletion of the rhlA gene confers a non-lytic phenotype, consistent with TLC results 

showing no RL production in strains which do not lyse vesicles (Fig 4.3c-d), 

confirming RL as the sole vesicle lytic agent from P. aeruginosa, and fulfilling one 

of the objectives of the Bacteriosafe project.  

 

As a result of these experiments, we sought to develop a new method to quantify 

RL based on the lysis of carboxyfluorescein-encapsulated phospholipid vesicles. 

Here we illustrate that this assay is more rapid, sensitive and easier to perform than 

current methods. The vesicle-lysis assay requires no extraction procedure and 

therefore is not susceptible to contamination or sample loss. We have shown that this 

assay is semi-quantitative and can estimate the amount of RL present in culture 
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supernatants (Fig 4.4). We observe that our results are in contrast to the values 

generated using the orcinol assay but are consistent with TLC and dry weight 

analysis. However, the orcinol test relies on the extraction of RL from the 

supernatant, the measurement of the rhamnose content by use of orcinol and 

concentrated sulphuric acid and applying these absorbance values to a standard curve 

(526). This procedure can be susceptible to contamination from other rhamnose 

containing molecules such as lipopolysaccharides or from un-extracted media 

components and can also give erroneous results due to differences in incubation 

temperature and sample loss (540).  

 

RL production also had a positive association with isolates derived from 

acute infections; however this link is somewhat tenuous. It is difficult to determine 

any association between an infection and a specific bacterial factor, particularly 

when comparing between such different infections. A more informative study should 

include strains derived from different time periods during the length of specific 

chronic infection (e.g infection in cystic fibrosis patient) to evaluate whether a 

specific time point exists that leads to the reduction of RL expression. Equally, a 

more informative clinical history of the isolate derived from acute infections is 

necessary in order to make an accurate judgement on the above association. However 

the superficial association that is illustrated in figure 4.5 is used only as an example 

of how this novel phenotypic assay may be employed. Another important 

consideration would to use genotyped strains to examine any polymorphisms that 

may result in an alteration in RL expression, in an analogous fashion to the 

experiemtns designed in chapter 7. It is known that genetic changes occur during 

chronic infections, which can lead to the down regulation of extracellular virulence 

factors (84) with loss of function mutations in the central regulator lasR being most 

frequent in chronic infections, but other QS mutants involving the rhl system are 

evident (543-545). Since las and rhl system are intricately linked, with the las system 

controlling the rhl system at a transcriptional and post-translational level, it was 

conceivable that mutations in lasR were causing this RL negative-phenotype in 

certain clinical strains. However, in PAO1 we did not see any statistically significant 

difference in lysis potential between lasR mutant and WT strains. This leads us to 
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believe that mutations in either the rhl system or the rhlABC operon are the most 

likely reasons for RL negative phenotype. Novel point mutations in quorum 

regulators genes and mutations in the multitude of quorum regulators may also be 

responsible for the RL negative phenotype and work into elucidating this in ongoing. 

 

Following from these observations, we envisage that this vesicle lysis test 

may be applied as a rapid phenotypic assay, useful for screening large numbers of 

clinical strains in an effort to determine novel mutations that may affect the 

expression of this important virulence factor. Given the specificity of this assay it 

could be an important tool in analysing the highly complex and interconnected QS 

systems of P. aeruginosa. The effects of mutation on candidate putative regulatory 

genes or single base pair mutations of known regulators could be assayed quickly to 

in order to determine their effect on a key QS-regulated virulence factors.  

 

Determining whether an isolate is a strong- or weak-RL producer maybe 

important considering that specific concentration of RL are required to lyse 

important immune cells and disrupt the cellular barrier which prevent invasion and 

dissemination (519, 523). One limitation of this assay is that it is susceptible to other 

microbial surfactants, notably the phenol-soluble modulin (PSM) peptide toxins of S. 

aureus (546). Therefore, isolation of pure P. aeruginosa isolates is required before 

this assay can be used to detect and quantify RL production.  
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5 

Investigating the effects of Toxic Shock Syndrome 

Toxin-1 on global exoprotein expression in 

Staphylococcus aureus 
 

5.1 Abstract 
__________________________________________________________________________________________ 
 

The main etiologic agent of toxic shock syndrome (TSS) is the toxic shock syndrome 

toxin-1 (TSST-1) protein secreted by Staphylococcus aureus. Diagnosis of TSS is 

difficult and is significantly under-reported in young children with burns, due to the 

nonspecific presentation coupled with a rapid deterioration in patient condition. 

Previous reports have observed a downregulation of exotoxin production mediated 

by the expression of the TSST-1 protein using a lab strain, RN4282. To investigate 

this further, the lytic and cytolytic activity of a number of clinical and laboratory 

TSST-1 positive strains of methicillin-susceptible S. aureus (MSSA) (101, 253, 279 

and RN4282) were tested in vitro using the phospholipid vesicle and T cell toxicity 

assay. In addition, the activity of lytic exotoxins such as the δ-haemolysin/ PSM 

peptide toxins, β-haemolysin, α-haemolysin and non-lytic TSST-1 toxin was 

measured over the 20-hour growth of RN4282 and the isogenic tst negative strain, 

RN6938, with both strains presenting toxic phenotypes. It is important to note that 

the clinical TSST-1 positive methicillin-susceptible S. aureus strains exhibited lytic 

exotoxin production as well as TSST-1 expression as confirmed by Western blot. We 

suggest that there is no correlation between the expression of TSST-1 and lack of 

exotoxin production which has been previously described. We also suggest that 

purulence in an S. aureus infected burn wound in a child should not be used to rule 

out toxic shock syndrome. 
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5.2 Introduction 

__________________________________________________________________________________________ 

 

oxic shock syndrome (TSS) is a serious complication of burn infections, 

primarily affecting children less than 4 years of age due to a lower level of 

antibody-mediated protection (547-549). TSS presents clinically as a range 

of symptoms including shock, pyrexia, an erythematous rash, gastrointestinal 

disturbance and central nervous system signs including lethargy or irritability (550). 

TSS is often observed in infants with smaller partial thickness scalds, possibly due to 

more conservative treatment and the absence of surgical debridement (547). The TSS 

clinical picture is of a young child with a small burn who deteriorates and rapidly 

becomes moribund within hours unless treatment is started promptly. Untreated 

mortality rates are around 50% (551). A study by Guggenheim et al showed that the 

majority of children with burn infections had Staphylococcus aureus as the primary 

infective agent (73). Various strains of S. aureus are known to secrete the small        

22 kDa toxic shock syndrome toxin-1(TSST-1) protein, which is highly associated 

with menstrual TSS (mTSS) and, along with staphylococcal enterotoxin (SE) B and 

SEC, with non-mTSS which can develop during burn wound infection (283, 552, 

553). 

 

 The tst gene (which encodes TSST-1) can be found on one of three mobile 

staphylococcal pathogenicity islands (SaPIs) that can integrate close to tyrB gene 

(SaPI1), or within trp locus (SaPI2) (554). A third tst gene is found on SaPIbov, a 

pathogenicity island associated with certain bovine S. aureus strains (555). 

Approximately 20% of S. aureus strains carry a tst-containing pathogenicity island 

(554) however, TSS is fortunately rarely seen, occurring in approximately 0.6 cases 

per 100,000 people (556). This is most likely due to the tight control and complex 

regulation of this toxin. Multiple environmental factors and molecular mechanisms 

all play a role in modulating tst expression. Environmental stimuli such as elevated 

carbon dioxide and oxygen are associated with high levels of toxin production, 

possibly through the SsrAB two component system, which is hypothesised to 

differentially regulate certain virulence genes under aerobic and anaerobic conditions 

(349, 557) (see section 1.3.4.2). TSST-1 production is also inhibited by glucose 

T 



141 
 

(558), and this has been demonstrated to be dependent on the binding of the 

catabolite control protein CcpA, with catabolite responsive elements (cre) situated in 

all known tst promoter regions (559). Other factors such as NaCl and magnesium 

concentration and the relative pH all play a role in altering production of this toxin 

(560-562), factors which were all implicated in the correlation observed between 

tampon use and mTSS. Furthermore, the role of vaginal mircobiota has been 

highlighted in the induction and suppression of TSST-1 production (563) and cyclic 

dipeptides produced by the human vaginal isolate, Lactobacillus reuteri RC-14, has 

been shown to interfere with the accessory gene regulator (Agr) quorum sensing 

system, resulting in reduced TSST-1 expression (564). Importantly, the most direct 

evidence of tst regulation is via the SarA DNA-binding protein, with SarA directly 

binding to at least one site within the tst promoter (565). Moreover, deletion of sarA 

leads to a more deleterious tst transcription than deletion of the effector molecule of 

the Agr system, RNAIII (565), highlighting the central role of SarA in tst regulation. 

 

TSST-1 is part of a class of proteins known as super antigens (SAg), due to 

their ability to massively and non-specifically over activate T cells. SAg can bridge 

the major histocompatibility complex (MHC) class II expressed on antigen 

presenting cells and surface attached T cell receptors on CD4+ T cells without the 

requirement of a specific antigen (Fig 5.1). This action stimulates a much larger and 

disproportional release of cytokines including tumour necrosis factor, interleukins 

and gamma-interferon. The downstream effect is the activation of up to 30% of the T 

cell population and interruption of normal immune surveillance (566). Recent studies 

have shown that a related staphylococcal enterotoxin, SEB, interacts with the CD28 

co-stimulatory molecule, which is required for full T cell activation and cytokine 

production (567). Such nonspecific cytokine release leads to rapid clinical 

deterioration which can result in capillary leakage leading to hypotension, shock and 

multiple organ failure. This activation of T cells and resulting ‘cytokine storms’ 

occurs only after induction of cytokine production from mucosal epithelial cells, a 

process known as ‘outside-in’ signalling. Pro-inflammatory cytokine and chemokine 

production is stimulated at the mucosal epithelial layers causing increased mucosal 
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permeability, allowing SAg penetration through these layers and subsequent 

recruitment of T cells and distortion of the immune system  (568).  

 

 

 

 

Figure 5.1: Mode of action of superantigen TSST-1. The TSST-1 protein (SAg) generates powerful 

immune responses by binding to both the MHC II on the antigen presenting cell (APC) and TCR on 

the CD4+ T cell and is hypothesised to interact with the co stimulatory molecule CD28, which 

normally ligates with the B7 molecule. SAg mediated bridging bypass normal antigen (Ag) 

presentation (left) and results in the activation of downstream signalling cascades, leading to the 

massive stimulation and non-specific proliferation of T cells and secretion of cytokines. Figure 

adapted from reference (568).  

 

 

The work described in this chapter is important regarding the aims of the 

Bacteriosafe project; designing a bacterial sensor mechanism dependent on the 

expression of bacterial membrane damaging factors. As part of this project, TSST-

1producing S. aureus were studied to investigate whether exotoxins from such 

bacteria would lyse phospholipid vesicles. This was in relation to a proposed method 

of tst regulation described by Vojtov et al demonstrating that TSST-1 undergoes auto 
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repressive regulation and strongly represses the expression of virtually all 

exoproteins (457). As a consequence, we investigated the toxin production and 

vesicle lysis capabilities of the TSST-1 producing S. aureus strain, RN4282 and the 

isogenic tst deletion mutant, RN6938, which were used in the original study 

performed by Vojtov et al. Additionally, we also investigate the toxic activity of 

three other TSST-1 positive clinical S. aureus strains (community-acquired 

methicillin sensitive S. aureus strains 101, 253 and 279) while simultaneously 

analysing TSST-1 expression through western blotting.   

 

 

5.3 Results and Discussion 

___________________________________________________________________________________________ 

 

One of the primary modes of pathogenicity of bacteria such as S. aureus is via the 

action of their secreted exotoxins. Exotoxins such as δ-haemolysin target the 

eukaryotic cell membrane by adsorbing to target membranes and disrupting 

membrane integrity leading to osmotic shock and cell death. As described 

previously, the phospholipid vesicles used in this work were designed to roughly 

mimic the eukaryotic cell membrane and be susceptible to such toxins.  

 

5.3.1 Vesicle response to bacterial strains 

 

The dilution of self-quenched and ‘switch on’ of carboxylfluorescein (CF) is a 

simple way to follow vesicle membrane damage by toxins, as release and dilution of 

encapsulated dye switches on fluorescence, resulting in an easily observable / 

measureable response to vesicle lysis. Figure 5.2 shows the fluorescence response of 

vesicles to Triton X100 and HEPES buffer (positive and negative control 

respectively); and the strains under investigation as described earlier. RN6390B (Agr 

+) and RN6911 (Agr -) strains where used as positive and negative toxin producers 

as the Agr quorum sensing system plays a central role in general toxin expression 

and activates the expression of δ-haemolysin and phenol-soluble modulin (PSM) 

toxins, known to lyse the vesicles used in this study (Chapter 3). We investigated the 

potential of the TSST-1 secreting strain, RN4282, and the isogenic tst knockout 
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strain, RN6938, to lyse vesicles, in order to examine any influence that TSST-1 

expression may have on toxin mediated vesicle lysis.  Finally, three clinical 

methicillin sensitive S aureus (MSSA) strains which were annotated as tst positive 

by PCR (427) were also used to examine their vesicle lytic potential. BothRN4282 

and RN6938 and the three TSST-1 positive strains caused lysis of vesicles equal to 

that of the positive control, suggesting that this protein did not downregulate the 

toxins that are required to lyse vesicles. 

  

 

 

Figure 5.2: Fluorescence response as a result of vesicle lysis by bacterial exotoxins after 

exposure to overnight bacterial culture supernatant. All strains, except the Agr deletion strain 

(RN6911) caused lysis of vesicles. Triton X100 and HEPES buffer were used as positive and negative 

controls respectively. Experimetns were performed in triplicate three times with error bars 

representing the 95% confidence interval.  

 

 

5.3.2 T cell cytotoxicity assay  

 

As discussed later (Chapter 6), the T cells used in the cytotoxicity assay are 

susceptible to a suite of toxins including the α-, β-, γ- and δ-haemolysin and PSMs. 

Using this assay we wanted to investigate any deleterious effect on these toxins 
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associated with the presence/expression of  the tst gene. T cell survival thus 

negatively correlates with bacterial pathogenicity / exotoxin production. Hence, the 

histogram shown in figure 5.3 is almost a mirror image of figure 5.2, with RN6390B, 

RN4282 and the clinical MSSA strains being toxic to T cells, whereas RN6911 

caused no T cell death and was comparable to the HEPES value.  

 

 

 

Figure 5.3: T cell toxicity assay. Bacterial supernatant mediated lysis of T cells illustrating toxic 

phenotype of all strains except RN6911 (Agr negative). Importantly, both the tst positive and negative 

strains show T cell lysis. Experimetns were performed in duplicate three times with error bars 

representing the 95% confidence interval 

 

 

5.3.3 Whole cell lysate and exoprotein analysis of RN4282 and 

RN6938 

 

The previous results have contradicted the role of TSST-1 in repressing global 

exoprotein secretion, as supernatants derived from both RN4282 and RN6938 caused 

vesicle and T cell lysis. An investigation into the effects of tst deletion on protein 

profiles was performed in these lab strains to understand if any specific toxins were 

repressed, as vesicle lysis and T cell death could have been caused by a single toxin 

and therefore this assay would not accurately reflect global exoprotein analysis. Prior 
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to further protein analysis, the growth curves of both strains were compared and no 

deviation in growth was observed (Fig 5.4a). Western blot analysis on TSST-1 

expression was also performed (Fig 5.4b), confirming expression of TSST-1 under 

these experimental culture conditions, as toxin expression can be affected by growth 

in different media (569). Whole cell lysate (Fig 5.4c) and tricholoroacetic acid 

(TCA) precipitated supernatant protein analysis (Fig 5.4d) was performed to 

investigate any global deleterious effects caused by TSST-1 expression. These results 

clearly show no decrease in exoprotein secretion associated with effect of TSST-1. 

Additionally, the potential effects of tst on specific toxin expression was examined 

by use of butanol-1 peptide extraction of peptide toxins (δ-haemolysin and PSMs), 

western blot analysis of the hepatameric pore-forming α-haemolysin and the 

detection of beta haemolysin on sheep blood agar through the ‘hot-cold lysis’ method 

(Fig 5.4 e-g). Again, no deleterious effect was observed in the TSST-1 producing 

strain as both strains were positive for the above toxin phenotypes.  
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Figure 5.4: Protein analysis of RN4282 (tst positive) and RN6938 (tst negative). A) Growth curves, 

B) western blot analysis highlighting TSST-1 expression from the tst positive RN4282, C) whole cell 

lysate protein preparations and D) supernatant proteins analysis of RN4282 and RN6938. E), F) and 

G) illustrate both strains are positive for delta-lysin, α-haemolysin and beta-toxin respectively.  
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5.3.4 Real-time analysis of S. aureus clinical isolates: Growth rates, 

exotoxin production and TSST-1 secretion 

 

The high degree of toxicity to T cells, the response of the phospholipid vesicles to 

the TSST-1positive S. aureus RN4282, and the positive expression of three exotoxins 

confirms that this strain, as well as producing the super-antigen TSST-1, also 

expresses and secretes lytic membrane-damaging agents. Although RN4282 was 

isolated from the clinic, it has been a laboratory strain since 1983 (462) and therefore 

maybe harbouring mutations that affect its virulence regulation. To fully confirm that 

the TSST-1 protein had no measurable effect on global exotoxin synthesis, we 

switched from the laboratory strain (RN4282) to clinical tst positive strains             

(S. aureus 101, 253 and 279). Further measurements were carried out, analysing the 

correlation between growth rate, vesicle lysis as a function of fluorescence and 

detection of TSST-1 (Fig 5.5). These results show that the lytic exotoxin secretion 

(not TSST-1) commences early in the bacterial growth phase, with a clear change in 

fluorescence being measureable (and observable by eye) within 6-8 hours from an 

initial starting inoculum of 10
5
 CFU / mL.  In all three strains (Fig 5.5a-c), vesicle 

lysis is observed during the post-exponential phase of growth, approximately 

corresponding to 10
8
 CFU/mL. TSST-1 secretion does not commence until later on 

in the growth phase, at approximately 7–11 hours (Fig 5.5a-c). The Western blot 

analysis therefore confirms not only that the three clinical strains tested here do 

secrete TSST-1, but are also highly lytic to vesicles and that in an in vitro 

experiment, the putative detection system will signal before or at the onset of   

TSST-1 expression. We also observed α-, β- and δ-haemolysin expression and 

explored the respective supernatant protein profiles of these three clinical strains, all 

illustrating no exotoxin repression (data not shown). This has important implications 

for the clinical arena and potential early diagnosis of infection via a putative smart 

dressing that incorporates such vesicles, which is currently being developed (165, 

570). 

 

 



149 
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Figure 5.5: Real time analysis of TSST-1 positive clinical strains. Strains MSSA 101, 253 and 279 

were analysed based on the association between TSST-1 production (B) and vesicle lysis (C) as a 

measure of growth rate (A). All three strains grew in a characteristic fashion and secreted TSST-1 at 

approximately 7-11 hr of growth. Vesicle lysis was significantly apparent between 6-8 hrs of growth. 

Experimetns were performed in triplicate three times with error bars representing the 95% confidence 

interval.  

 

 

5.4 Conclusions 

 

 

The results of this chapter suggest that TSST-1 expression does not have a negative 

or global repressive effect on overall exotoxin synthesis in S. aureus. Importantly, we 

see no significant difference in exotoxin profile between the TSST-1 positive and 

negative strains, which was substantial in the Vojitov et al study (457). It was noted 

previously that TSS causing clinical isolates had lower production of haemolysin, 

lipase and nuclease, than strains which were not producing the TSST-1 protein 

(formally known as pyrogenic exotoxin C) (571). However, these virulence genes are 

regulated by the Agr regulon, the two component SaeRS system and SarA DNA 

binding protein (329) . Therefore, any deleterious mutation in these regions could 

impact on the levels of virulence expression, which may have been misrepresented as 
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TSST-1 global regulatory effects. In this study we show that the presence of the tst 

gene has no repressive effect in the production of three main virulence genes; α-, β-

haemolysin and the δ-haemolysin/PSM peptides. Three more clinical strains were 

also tested (Fig 5.5a-c) with no indication of repressive effect by this SAg. These 

results are consistent with studies designed to assess the contribution of SAg’s in 

modulating the secretome expression in Streptococcus pyogenes (572). This study 

concluded that neither the streptococcal pyrogenic exotoxin A (SPEA) nor 

streptococcal mitogenic exotoxin Z (SMEZ) had any regulatory effect on protein 

expression (572).  

 

 An important element in the design of the smart dressings outlined in section 

1.4.1 is the role of toxins in damaging dye loaded vesicles for use in signalling 

responses. Considering that the overall aim was the development of a prototype for 

use in burn care, with a particular focus on paediatric burn patients, coupled with the 

fact that TSS can be potentially fatal in young children, highlighted the need for an 

investigation into whether these putative signalling system could respond to TSST-1 

positive S. aureus strains, at least in vitro. One important factor in disease 

progression is the speed at which the patient’s health declines. Children with TSS 

deteriorate rapidly (1–2 hours) and are unresponsive to antibiotics alone. In Figure 

5.5, vesicle lysis occurs after 6-8 hours of growth whereas TSST-1 production begins 

after 7-11 hours and is strain dependent.  Therefore, in this in vitro model, these 

vesicles could be used to signalling infection before or at the same time as TSST-1 

production begin. We are concerned that over interpretation of the article by Vojtov 

et al could lead to a potentially incorrect differential diagnosis of TSS because the 

authors suggest that S. aureus RN4282 downregulates exotoxin production, in 

contradiction to findings presented here. The in vitro data presented suggests that 

clinicians should not discount the possibility of toxic shock in a child with evidence 

of lytic exotoxin production/cytotoxic infection including direct tissue damage, 

inflammation and purulence (Dr. Amber Young MB, ChB personal communication).   
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6 

Oxacillin Alters the Toxin Expression Profile of 

Community-Associated Methicillin-Resistant 

Staphylococcus aureus 
 

6.1 Abstract 

___________________________________________________________________________________________ 
 

Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) is 

an emerging global concern. CA-MRSA strains are known to be highly virulent due 

to increased expression of core-genome-encoded and phage-encoded toxin genes. It 

has been shown previously than hospital-acquired (HA)-MRSA strains have high-

level expression of the alternative penicillin-binding protein, PBP2a, encoded by the 

mecA gene on type II staphylococcal cassette chromosome mec (SCCmec) elements. 

This high PBP2a expression caused a reduction in toxicity by interfering with the 

Agr quorum sensing system. CA-MRSA strains express significantly lower levels of 

PBP2a than other MRSA types, which is believed, in part, to explain their relatively 

high toxicity. We hypothesized that since oxacillin increases mecA expression, use of 

this antibiotic could attenuate virulence gene expression by interfering with global 

regulatory systems. This chapter illustrates the use of a subinhibitory concentration 

of oxacillin which induced PBP2a expression while repressing RNAIII expression. 

Consequently, this repression caused a decrease in phenol-soluble modulin (PSM) 

secretion, but increased α-haemolysin and Panton-Valentine Leukocidin (PVL) 

expression consistent with other studies. As oxacillin treatment had both positive and 

negative effects on toxin expression, the net effect of these changes on three different 

cell types were examined. Where PSM and α-haemolysin are important, oxacillin 

reduced overall lysis, but where PVL is important oxacillin increased lysis. We also 

examined the effect of oxacillin on bacterial binding to extracellular matrix proteins 

specifically fibrinogen and fibronectin, invasive capacity in an endothelial cell 

invasion assay and on the surface expression of the multifunctional protein A protein. 



153 
 

Where we found no difference in invasion capacity, a positive association between 

subinhibitory oxacillin treatment and binding to fibrinogen in strain LAC and 

decreased protein A expression in both CA-MRSA strains was recorded, 

demonstrating the pleiotropic effect of oxacillin on virulence gene expression in CA-

MRSA.  

 

 

6.2 Introduction  

___________________________________________________________________________________________ 

 

ince the mid-1940s, consecutive waves of antibiotic-resistant 

Staphylococcus aureus strains have posed difficult challenges to healthcare 

professionals (289). Infections caused by methicillin-resistant S. aureus 

(MRSA) have reached epidemic proportions globally and incidence rates are 

increasing, both in the health care and community environments (282, 573, 574). 

Historically, MRSA infections were associated with predisposed patients in a 

nosocomial setting, however, the recent emergence of MRSA infecting patients 

lacking any contact with hospitalisation or any healthcare individual/facility, lead to 

the introduction of the term, community-associated MRSA (CA-MRSA) (575, 576). 

There are specific factors which discriminate between these two MRSA groups 

which involve the acquisition of certain mobile genetic elements and virulence 

determinants (292, 296, 301) (see section 1.3.3.1 for more details). In the United 

States, the CA-MRSA USA300 clone (ST-8, PVL
+
, type IV SCCmec) has caused the 

most severe outbreak, in terms of frequency and infection severity (577, 578). CA-

MRSA strains are considered hyper-virulent, possessing extra virulence genes 

encoded on staphylococcal pathogenicity islands (SaPIs), such as the phage-encoded 

Panton-Valentine Leukocidin (PVL) and having increased expression of core-

genome encoded toxins genes, notably α-haemolysin and Phenol-soluble Modulin 

peptide toxins (PSMs) (313).  

 

 All MRSA strains possess staphylococcal cassette chromosome mec 

(SCCmec) elements (reviewed in section 1.3.1.2), which confer resistance to β-

lactam antibiotics (579, 580). These elements, vary in size (20 to 70 kb), genetic 

S 
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content and metabolic burden (581-583), but share common features, namely the 

mecA gene, which encodes the alternative penicillin binding protein, PBP2a (584). 

Also contained within the SCCmec elements are recombinases (ccrA and ccrB) 

which permit correct integration and excision at orfX on the staphylococcal 

chromosome, other mobile genetic elements integrated within, which contribute to 

resistance to other antibiotics and heavy metals, and repressor (MecI) and signal 

transduction (MecR) proteins involved in mecA regulation and expression (585, 586). 

Based on their protein homology with BlaI and BlaR1 and experimental data, MecI 

and MecR are believed to regulate inducible transcription of mecA (587). MecR can 

detect and respond to the presence of β-lactam antibiotics through the penicillin-

binding domain, activating the cytoplasmic protease domain by autocatalytic 

cleavage, leading to the cleavage of the mecI repressor and inducing mecA 

transduction (588). The BlaRI S. aureus signal/transduction system directly acts 

against β-lactams, through the induction of β-lactamase expression (589) as shown in 

figure 6.1. The BlaR1 protein has three domains; C-terminal sensor domain, a trans-

membrane domain and a cytoplasmic domain which is hypothesised to possess a 

zinc-dependent protease (590). In a similar fashion to the mecA complex, in the 

presence of a β-lactam antibiotic, the surface domain of the BlaR1 protein interacts 

with the antibiotic, inducing a conformational change which activates a downstream 

signalling cascade, culminating in the induction of a zinc protease, relieving the 

action of the repressor and subsequent BlaZ activation. Interestingly, this system also 

causes the expression of mecA independently of a functional mecR, highlighting the 

importance of S. aureus response to β-lactams (591). This dual activation is 

extremely important as CA-MRSA strains possess a type IV SCCmec element, 

containing a class B mec gene complex, which has a non functional, truncated MecR 

gene (209). 
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Figure 6.1: Sensing of β-lactam antibiotics in S. aureus. In the absence of β-lactam antibiotics 

(shown here as oxacillin) the repressor proteins, BlaI and MecI, are blocking the transcription of blaZ 

and mecA respectively.  Oxacillin enters the environment and interacts with the sensor domains in the 

MecR and BlaR proteins, causing a signal transduction event, leading to the activation of proteases 

and degradation of the repressors and expression of blaZ and mecA. 

 

 

It has been observed by us and others that HA-MRSA strains express higher levels of 

PBP2a than do CA-MRSA strains in the absence of β-lactam antibiotics (238, 592). 

This lab has also shown that high levels of PBP2a expression in HA-MRSA strains 

caused a significant downregulation in toxicity (238). CA-MRSA strains also express 

PBP2a, but this expression does not affect their toxicity, which was shown to be due 

to relatively lower basal levels of expression (238). As shown in figure 6.2, PBP2a 

expression can be induced by the presence of oxacillin (585, 586, 589, 591) and high 

PBP2a expression can attenuate toxicity by interrupting Agr signalling (238), we 

hypothesized that subinhibitory concentrations of oxacillin (determined to be 0.5 

μg/mL (593)) could stimulate PBP2a expression, thus reducing toxicity and therefore 

the severity of CA-MRSA infections.  However, a number of studies have 
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investigated the effects of subinhibitory oxacillin on toxin gene transcripts, where an 

increase, rather than a decrease in activity of α-haemolysin and PVL was observed 

(594-596). In this chapter, we sought to test our hypothesis by examining the lytic 

effect of bacterial supernatants after growth in medium containing subinhibitory 

concentrations of oxacillin (shown not to have any deleterious effect on growth 

(593)), on three important cell types. We also investigated the expression of an 

important cell surface protein, protein A, under these conditions, and whether any 

differences were observed in solid-phase binding assay and endothelial invasion 

assays. We found that the expression of PSMs can be repressed by inducing higher 

levels of PBP2a following subinhibitory oxacillin exposure. However, this treatment 

also induced an overall increase in exoprotein expression levels and specifically an 

increase in α-haemolysin and PVL expression. In our cytotoxicity assay, we found 

that where PSM and α-haemolysin are known to be important, oxacillin reduced cell 

lysis, but where PVL is important, it increased cell lysis. No difference was seen in 

cell invasion assays, but an increase in binding to fibrinogen during exponential 

phase binding with LAC was observed. Subinhibitory oxacillin also reduced the 

levels of protein A expression significantly, illustrating the pleiotropic effect of 

oxacillin of protein synthesis.  

 

 

 

Figure 6.2: Oxacillin-induced expression of PBP2a in CA-MRSA strain LAC (USA300) and 

MW2 (USA400). Western blot of whole-cell lysates illustrating PBP2a expression in CA-MRSA 

strains. Lane 1, Molecular weight ladder; Lane 2, LAC after growth in antibiotic-free medium; Lane 

3, LAC after growth in medium containing 0.5 μg/mL oxacillin; Lane 4, MW2 after growth in 

antibiotic-free medium; Lane 5, MW2 after growth in medium containing 0.5 μg/mL oxacillin. Figure 

taken from reference (593).  
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6.3 Results and Discussion 

__________________________________________________________________________________________ 

 

Previous results have shown that oxacillin-induced expression of PBP2a caused a 

decrease in toxicity in T cell survival experiments (593). The mechanism behind this 

reduced toxicity was shown to be dependent on Agr with quantitative real-time PCR 

experiments illustrating a decrease in RNAIII expression, the effector molecule of 

the Agr system, in LAC and MW2 grown in subinhibitory oxacillin (593). This 

chapter investigated the effects of subinhibitory oxacillin on secreted proteins, 

namely α-haemolysin and PVL toxin, and how this affects the outcome of cell lysis 

and on the S. aureus surface proteins, which are known to be important in adhering 

to matrix protein, evading the immune system and invading cells. The strains used in 

this study can be found in Table 3.2.  

 

6.3.1 T cells are susceptible to specific staphylococcal toxins 

 

As stated previously, a statistically significant decrease in lytic activity was observed 

after treatment with oxacillin in a subset of type IV CA-MRSA strains  (593). The 

immortalised T2 cell line was used in this study, so we therefore wanted to first 

analyse which staphylococcal toxins were important in T cell lysis using a variety of 

mutants and synthetic peptide toxins as shown in figure 6.3 a and b.  

 

The T cells were shown to be sensitive to α-, β-, γ-, and δ-haemolysin as well 

as highly susceptible to PSMα1, PSMα2 and PSMα3, but not susceptible to PVL, or 

the leukocidins, LukAB or LukED (Fig 6a). It has been shown recently that PVL 

requires the expression of human complement receptors C5aR and C5L2 for cell 

toxicity (308). Additionally, the LukAB and LukED cytotoxins require other specific 

host leucocytes surface receptors such as the CD11b subunit of the Mac-1 integrin 

for LukAB (443) and the CCR5 receptor for LukED (441) and it is possible that none 

of these receptors are expressed on T2 cell surface.  

 

Interestingly, the importance of specific toxins were shown to be strain 

specific; in the 8325-4 background, α-haemolysin was shown to be significant in T 
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cell lysis, as the hla mutant caused significantly lower lysis in all but the 0.125 

dilution factor. However, when hla was deleted in the Newman background, there 

was no significant difference in lysis potential across any of the dilutions used (Fig 

6.3a). To understand this discrepancy, western blot analysis on α-haemolysin was 

performed on both 8325-4 and Newman, and it was observed that strain 8325-4 

expresses 4.1 fold higher α-haemolysin than strain Newman under our growth 

conditions, possibly highlighting why α-haemolysin is important for strain 8325-4 

lysis (Fig 6.4c).  

 

Despite this, strain Newman has a higher lytic capacity than strain 8325-4, as 

shown by decrease in T cell viability resulting from differing supernatant 

concentrations (Fig 6.3a). To investigate whether other small peptides such as the 

PSMs are involved, hydrophobic peptide extractions were performed which 

demonstrated a 1.7 and 1.3 fold  higher concentration of δ-haemolysin/PSM peptides 

from strain Newman than from 8325-4 and LAC respectively (Fig 6.4d), which may 

in part explain the highly lytic potential of strain Newman, despite the lower levels of 

α-haemolysin secretion. PSM peptides have been shown previously to be highly lytic 

to a variety of cells and artificial membranes (312, 316, 546) and have been shown 

here to efficiently lyse T cells, in a lytic pattern consistent with other cell types with 

the PSMα1-3 and delta being lytic, while PSMα4 is lytic only at high concentrations, 

while the PSMβ1 and 2 peptides have no lytic capability.  
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B) 

A) 
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Figure 6.3a-d: Specific toxins cause T cell lysis. A) Using isogenic mutants from three different 

genetic backgrounds allowed for the evaluation of staphylococcal toxin lytic capacity against the 

immortalised T2 cell line. We show that deletion of α-, β-, γ-, and δ-haemolysin results in a 

statistically significant decrease in T cell viability (all p values are lower than 0.05). B) Synthetic 

PSM peptides were used and illustrate the highly lytic capacity of the PSMα1-3 toxins and δ-

haemolysin to T cells C) Higher expression of α-toxin in 8325-4 than in Newman and D) Higher 

expression of δ-haemolysin and PSMs from Newman than 8325-4 and LAC, may explain the strain-

specific roles of some toxins in T cell lysis. T-cell experiments were done in duplicate three times 

with error bars representing the 95% confidence interval. * denotes a stastically significant difference 

using students t test P<0.05.  

 

 

6.3.2 Oxacillin alters the toxin expression profile of CA-MRSA 

 

The overall effect of treatment with subinhibitory oxacillin on the exoprotein 

expression profile of two clinically important CA-MRSA strains, LAC (USA300 

clone) and MW2 (USA400 clone), was determined. The supernatants of these strains 

grown with or without 0.5 μg/mL oxacillin were precipitated using trichloroacetic 

acid and further analysed. Despite the decrease in RNAIII expression (593) there was 

an overall increase in the expression levels of exoproteins by LAC and MW2 

following growth in subinhibitory oxacillin (Fig 6.4a). We next investigated the 

effects of oxacillin on specific toxins, known to be important in infection, namely the 

α-haemolysin and PVL toxin. Previous publications have reported increases in 
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transcript levels of important cytolytic toxins, specifically, α-haemolysin and PVL in 

response to subinhibitory oxacillin treatment (594-596). Western blots of these CA-

MRSA supernatant extracts demonstrated that although there was an increase in α-

haemolysin for both strains, this was not statistically significant (1.8- and 1.4- fold 

for LAC and MW2 respectively) as illustrated in figure 6.5b and table 6.1. However 

the level of PVL expression had increased significantly for both LAC and MW2 

(3.01- and 4.1- fold respectively) as shown in figure 6.5c and table 6.1. This 

complemented the results of previous qRT-PCR directed against lukS, where a 

significant increase in lukS transcript taken at 10 and 20 h growth correlated with 

oxacillin treatment (593).  

 

 PSMs are extremely important virulence factors, which are intimately 

associated with CA-MRSA strains (296, 301). Therefore we wanted to investigate 

the effect of subinhibitory oxacillin on PSM secretion qualitatively using a butanol- 

extraction process for hydrophobic peptides (546). These peptide toxin range in size 

from 2.3-4.5 kDa and therefore cannot be separated from each other and migrate as a 

signal band during sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS- 

PAGE); however a clear reduction in band intensity can be seen upon exposure of 

the bacterial cultures to subinhibitory oxacillin concentrations (Fig 6.5d). To fully 

examine and quantify these changes, supernatants were sent for HPLC/ mass 

spectrometry analysis (performed by Hwang-Soo Joo and Micheal Otto, NIAID, 

NIH, Bethesda, Maryland, USA), which showed a statistically significant reduction 

in the secretion of PSMα type peptide and δ-haemolysin in both LAC and MW2 (Fig 

6.4e), confirming the down-regulatory effect that subinhibitory oxacillin had on the 

Agr operon and associated peptide toxins regulated by this system.  
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Figure 6.4a-e: Oxacillin alters the toxin expression profile of CA-MRSA. Bacterial cultures were 

grown in the presence or absence of 0.5 μg/mL oxacillin as indicated. A) Exoprotein profile, Western 

blot using B) anti-LukS antibodies or C) anti-α-haemolysin antibodies. D) SDS-PAGE of butanol 

extracted PSM. E) Results of HPLC/MS signal intensities of each of the PSMs from LAC and MW2 

culture filtrates with and without oxacillin (error bars represent the 95% confidence). Western blot 

analysis was done three times and band intensity analysed by using Image J software.  
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Isolate, locus Fold change ( +ox vs –ox) Significance (P) 

LAC, hla ↑ 1.8 0.19 

MW2, hla ↑ 1.4 0.29 

LAC, lukS ↑3.01 0.008* 

MW2, lukS ↑4.1 0.011* 

LAC, spa (Stationary phase) ↓2.6 0.024* 

MW2, spa (Stationary phase) ↓2.1 0.036* 

 

Table 6.1 Protein expression level changes in response to subinhibitory oxacillin 

treatment through western blot and band intensity analysis using Image J software. 

Arrows indicate the direction of the fold change in response to oxacillin (ox).             

* Indicates statistically significant values using student t test, P<0.05 

 

 

6.3.3 The effects of oxacillin on the cytolytic potential of bacterial 

supernatants are cell-specific  
 

S. aureus expresses a vast array of membrane-damaging toxins, a formidable arsenal 

which has been central to its success as a globally important pathogen. S aureus has 

evolved to employ an ‘insurance policy’ with regards toxins expression, where the 

activity of a subset of toxins is enough to lysis most human cells. Therefore, in order 

to understand the overall cytolytic effect, bacterial cultures, treated with and without 

oxacillin, were harvested and supernatants tested against a set of three cell types: the 

T cells, included here as a reference, human red blood corpuscles (RBCs), sensitive 

to α-haemolysin and PSMs and human polymorphonuclear leucocytes (PMNs) which 

are sensitive PVL and the PSMs.  

 

The effects of oxacillin on the lytic potential of both LAC and MW2 were 

compared across these cell types (Fig 6.5 a-f). PVL has been known to be 

overexpressed when grown in casein hydrolysate and yeast-extract containing 

medium (CCY) (458, 597) and here we show that growth in CYY causes differential 

exoprotein expression and higher PVL expression (Fig 6.5g-h). Therefore the effect 

of oxacillin treatment when LAC and MW2 were cultured in this medium was also 

compared in these assays. Subinhibitory oxacillin increased T cell survival in both 

LAC and MW2 and when grown in both culture media (Fig 6.5a-b). Despite an 
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increase in α-haemolysin expression, oxacillin decreased the lysis of RBC 

significantly in both TSB (LAC, P=0.0172 and MW2, P=0.0169 and CYY (LAC, 

P=0.0361 and MW2, P=0.0336). Therefore, with regards RBC lysis, the decrease in 

PSM secretion had more of a dominant effect than the increase in α-haemolysin. 

Contrarily, although human PMNs are sensitive to both PSMs and PVL, when LAC 

and MW2 were grown in CYY, the increase in the expression of PVL had more of a 

dominant effect, with PMN survival decreasing upon oxacillin exposure and 

statistically significant for LAC (P=0.0197) and MW2 (P=0.042) (Fig 6.5f). 

However, this was not the case when either strain was grown in TSB (Fig 6.5e), 

where an increase in survival was observed for both LAC (P=0.022) and MW2 

(0.01). These results illustrate that where PVL expression is important, oxacillin 

causes a decrease in PMN viability, but as shown here, specific conditions are 

required for maximum PVL expression, and how this relates to in vivo conditions 

remains to be determined. 
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Figure 6.5a-h. Oxacillin differentially alters the sensitivity of cells to lysis. Oxacillin decreased the 

ability of CA-MRSA to lyse immortalized T cells when strains were grown in A) TSB or B) CYY. 

Oxacillin decreased the ability of CA-MRSA to lyse fresh human RBCs when strains were grown in 

C) TSB or D) CYY. Oxacillin decreased the ability of CA-MRSA to lyse fresh human PMNs when 

grown in E) TSB, but increased the ability of CA-MRSA to lyse fresh human PMNs when grown in 

F) CYY. G) Comparison of exoprotein profile of LAC and MW2 grown in TSB or CYY. H) Higher 

PVL expression of LAC and MW2 grown in CYY rather than MW2. T-cell experiments were done in 

duplicate three times with error bars representing the 95% confidence interval. * denotes a stastically 

significant difference using students t test P<0.05.  

 

 

 

6.3.4 Oxacillin modulates surface protein expression 

 

A major part of S. aureus pathogenesis is the expression of surface proteins, 

collectively designated as microbial surface component recognising adhesive matrix 

molecules (MSCRAMMs). These proteins are intimately involved in initial host 

colonisation, attachment to extracellular matrix proteins and cell uptake/invasion.  
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Although the Agr system plays a major role in downregulating the expression of 

these factors in the transition from late exponential to early stationary phase of 

growth, further complex regulatory networks involving other two-component 

systems, DNA-binding proteins and non-coding regulatory RNAs are also important 

in regulation, many of which may be induced or repressed upon external stimuli, 

such as subinhibitory antibiotics.   

 

Here the effect of oxacillin treatment on the expression of a major surface 

protein protein A (SpA) was investigated. SpA is present in over 90% of S. aureus 

strains, (598) and is an important multifactorial virulence factor. SpA binds to a 

variety of ligands, including the Fc domain of IgG (599), von Willebrand factor 

(426) and tumour necrosis factor receptor-1 (TNFR-1) (600). This protein also 

allows the adherence to specific cells such as osteoblasts (601) and is an important 

component in disrupting opsonisation (423) (see section 1.3.5.1.3 for more details).  

 

Examining the overall surface protein profile of these two important CA-

MRSA strains reveals that LAC is affected quite substantially with many proteins 

being overexpressed when grown in subinhibitory oxacillin (Fig 6.6a). However, 

protein A expression was reduced significantly, as shown by the western blot in 

Figure 6.6b and Table 6.1. A 2.6- and 2.1- fold reduction was observed in LAC and 

MW2 respectively. Protein A expression is growth phase dependent and controlled 

by complex regulatory networks acting at the transcriptional, translational and post-

translational level (355, 370, 372, 389, 598, 602, 603). Previous studies have shown 

the reduction of spa mRNA after subinhibitory antibiotic treatment with clindamycin 

and linezolid (604, 605).  Both antibiotics inhibit protein synthesis, albeit through 

different mechanisms, which may result in the differential inhibition of one or more 

regulatory proteins.  
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Figure 6.6a-b: Subinhibitory oxacillin reduces protein A expression in CA-MRSA strains. A) 

Oxacillin modulates surface protein expression in LAC and MW2 strain shown by SDS-PAGE of 

surface proteins isolated from raffinose mediated spheroplasts. B) Western blot of protein A showing 

decreased expression in both LAC and MW2 following growth in subinhibitory oxacillin. 

 

 

As subinhibitory oxacillin causes a reduction in RNAIII expression it was 

hypothesised that these strains would become hyper-adhesive after oxacillin 

exposure as RNA III expression is in part responsible for the down regulation of 

surface adhesins (329). To gain a greater understanding of this, a solid phase binding 

assay was performed using two important matrix proteins, fibrinogen (Fb) and 

fibronectin (Fn). The ability of S. aureus to bind to both of these molecules have 

been studied in depth, requiring primarily, clumping factor A (ClfA) for Fg (407, 

408)  and the fibronectin binding proteins (FnBPs) FnBPA and FnBPB which can 

interact with both Fb and Fn (405, 409). The results of the binding assay 

complemented the pattern of overexpression of surface proteins in LAC, as a 

statistically significant increase in binding to fibrinogen was observed with LAC 

(P=0.016) but not with MW2 during exponential phase (Fig 6.7 a).  
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Figure 6.7a-d: Effect of oxacillin on solid-phase binding of LAC and MW2 to fibrinogen (Fg) 

and fibronectin (Fn). A) Exponential phase binding to Fg and B) Fn showing a statistically 

significant increase in binding capacity of LAC grown with oxacillin. No difference in binding was 

observed for MW2 grown with or without oxacillin. Stationary phase binding to C) Fb and D) Fn 

illustrating no statistically significant difference in binding potential for LAC or MW2 with and 

without oxacillin. Solid-phase binding assays were done in duplicate three times with error bars 

representing the 95% confidence interval. * denotes a stastically significant difference using students t 

test P<0.05.  

 

 

 

Interestingly, no difference was observed in the binding affinity to fibronectin by 

either of these strains, which suggests that the FnBPs are not overexpressed, but 

further experimentation is required to confirm this. These results are in contradiction 

to a previous study which observed a hyper-adhesive phenotype with subinhibitory 
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oxacillin (606), however these strains were not CA-MRSA and cultures were grown 

in different media and using a different sub-MIC. During stationary phase of growth, 

no difference was observed in the binding potential of LAC or MW2 grown with and 

without oxacillin (Fig 8 c-d), suggesting an induction of surface proteins seen in 

LAC is relieved during stationary phase of growth. 

 

S. aureus is well equipped to invade cells, relying heavily on the expression 

of FnBPs. Through their interaction with Fn they initiate integrin-mediated 

intracellular uptake/invasion by non-professional phagocytes such as keratinocytes, 

osteoblasts and endothelial cells (607-609). Due to the importance of invasion in         

S. aureus pathogenicity, the invasive capacity of LAC and MW2 with and without 

oxacillin over three time points (15, 30 and 60 min) was investigated (Fig 6.8a-c) 

using an endothelial cell invasions assay. Consistent with a previous publication 

which observed no difference in invasion of osetoblasts (606), no difference was 

observed over the three time points between untreated control and oxacillin treated 

culture. As a side observation, after 60 min incubation with endothelial cells, LAC 

grown with and without oxacillin displayed a statistically higher invasive capacity 

than MW2 under the same conditions (P=0.016), highlighting differences in 

invasiveness between these two CA-MRSA strains.  
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Figure 6.8a-c: Effect of oxacillin on invasion of endothelial cells. LAC and MW2 were grown with 

and without oxacillin and their invasive capacity assessed using an endothelial cell line. No difference 

in invasion was observed over the three time points A) 15min, B) 30min and C) 60 min. Cell invasion 

experiments were done in duplicate three times with error bars representing the 95% confidence 

interval. * denotes a stastically significant difference using students t test P<0.05.  
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6.4 Conclusions 

___________________________________________________________________________________________ 

 

Previous work in this group demonstrated that increased PBP2a expression reduced 

disease severity in vivo by downregulating cytolytic toxin expression (238). We 

hypothesized that as this β-lactam antibiotic induced the expression of PBP2a, shown 

by RT-PCR (593) and western blotting (Fig 6.2), it could be used as an anti-virulence 

agent in conjunction with other antibiotics to attenuated virulence and therefore 

decrease disease severity in infected patients. The main findings show that although 

subinhibitory oxacillin interrupts and decreases Agr activity and PSM secretion in 

strains that represent two prominent CA-MRSA clones, it also up-regulates other 

cytolytic toxins.  

 

 One of the most widely studied and best characterised virulence factors of         

S. aureus is the heptameric β-barrel pore-forming α-haemolysin (314). At high 

concentrations it causes pore-formation depending on critical membrane domains 

and receptors (428), whereas at lower, sub-lytic concentrations, it has been shown to 

alter the cell signalling pathways that govern cell proliferation, inflammatory 

responses, cytokine secretion and cell-cell interactions (430). In this chapter, we 

show that in concordance with other studies, subinhibitory oxacillin increased the 

level of α-haemolysin expression; however this was not statistically significant when 

densitometry of the bands were analysed. Human red blood cells are the classical cell 

type used to study α-haemolysin, but previous studies have shown that the small, 

amphipathic alpha-helical PSM peptide toxins also lysis RBC (316). LAC/MW2 

supernatant-RBC lysis assays revealed that the overall effect on lysis of this type of 

cell decreased upon exposure to oxacillin, as the decrease in PSM secretion had a 

greater overall effect than the small increase in α-haemolysin. Like α-haemolysin, the 

PSMs have been shown to contribute to many infection types including skin and soft 

tissue infections (SSTI), bacteraemia, and osteomyelitis (610). PSMs are unique in 

that they do not require a proteinaceous receptor, but are only limited in their lytic 

ability based on the lipid membrane composition, permitting lysis on a broader range 

of cell types. The downregulating effect of oxacillin on PSMα1 and -β1 and δ-

haemolyin secretion by USA300 strain LAC was shown previously (611) and here 
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we show that it also affects the expression of PSMα2, -α3, and -α4 and PSMβ2 for 

LAC and MW2. 

 

 PVL is a member of the bi-component class of S. aureus leukocidins, 

consisting of two proteins synthesised and secreted separately which are inactive 

individually but act synergistically to efficiently damage white blood cells (612). 

This toxin has been the subject of debate concerning its role in CA-MRSA 

infections, but it is believed to contribute to necrotic and recurrent SSTIs, necrotizing 

pneumonia and bone and joint infections (296, 301). PMNs are one of the primary 

lines of defence against bacterial infections. The fact S. aureus employs both PVL 

and PSMs to lyse these cells is unsurprising given the importance for bacteria to 

survive this arm of host cell-mediated immunity. Oxacillin had opposite effects on 

the expression of these toxins, and as such, it was important to test which change had 

the more dominant effect on PMN killing. When bacterial cultures were grown in 

TSB, this lead to weak or no expression of PVL and therefore oxacillin caused a 

reduction of PMN death in both LAC and MW2. However, growth in CYY induces 

PVL expression (Fig 6.5h), and in this condition oxacillin stimulates higher 

expression of PVL and thus there was an increased killing of PMNs. However, the 

translation of these findings to infection models that are sensitive to α-haemolysin, 

PSMs, and PVL is critical to test the gross effect that oxacillin has on toxicity and 

virulence. 

 

 Full pathogenesis of S. aureus depends on the expression of a wide range of 

cell wall associated proteins which promote colonisation of host tissue and evasion 

of the immune system (98). Of these surface proteins, the FnBPs, ClfA and SpA are 

arguably the most important. FnBPs contain an A domain required for Fb binding 

and multiple non-identical repeat regions with differing affinities for Fn, which is 

required for host invasion and sepsis in a murine model (410). The ClfA protein 

binds to Fb, and mediates bacterial attachment to platelets and plasma clots, which is 

believed to be an important mechanism for initiating endocardial infection (613, 

614). SpA, like FnBPs and ClfA, is a cell wall LPXTG anchored protein, and has 

multiple domains, important in binding IgG and adhering to susceptible cells. We 
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investigated the effects of oxacillin of the surface protein expression profile, and 

specifically on SpA. In both LAC and MW2, oxacillin caused a statistically 

significant reduction of SpA (Fig 6.6b). This was the first time that a reduction in 

SpA was observed after subinhibitory oxacillin treatment and as SpA is anti-

phagocytic, it would be interesting to assess the effects of subinhibitory oxacillin in a 

phagocytosis assay, which may reveal an important anti-virulence effect. The ability 

of LAC and MW2 to bind Fb and Fn was assessed and observed that, during 

exponential phase, LAC bound to Fb a statistically higher capacity when grown in 

oxacillin then without (Fig 6.7 a). No difference was recorded for MW2 under the 

same conditions. In contrast to previous publications, no difference in binding to Fn 

was observed (606). To further investigate the effects of oxacillin on surface 

expression, an endothelial cell invasion assay was performed, however growth in 

subinhibitory oxacillin confirmed no benefit or loss in the invasion capacity of LAC 

or MW2 (Fig 6.8a-c). 

 

 S. aureus virulence gene expression is regulated by specific elements 

clustered into complex networks driving specific interactions. Important within this 

regulatory network are the two-component regulatory systems, composed of a sensor 

domain and response regulator, which are sensitive to environmental signals, such as 

the agr (335), autolysis-related locus arlRS (353), S. aureus exoprotein expression 

saeRS (343)  and staphylococcal respiratory response srrAB (348) systems (see 

section 1.3.4 for more details).  DNA-binding proteins, such as SarA (615) and its 

homologues SarR (369), Rot (616), SarS (372), SarT (617) and SarU (375) also 

regulate virulence factor expression. Subinhibitory oxacillin reduces toxicity directly 

by down regulating RNAIII and δ-haemolysin expression by an as yet unidentified 

mechanism, but it is proposed to affect the cell wall peptidoglycan and interfere with 

auto-inducing peptide signalling (238). The PSMs and δ-haemolysin are regulated 

directly by the Agr system in an RNA-dependent and independent fashion (215). 

Although Agr is important for regulating toxicity and adhesins, many of the other 

factors may be involved.  
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Previous studies analysing the effects of subinhibitory antibiotics observed an 

increase in alpha and PVL toxins (594-596). Others have shown that the induction of 

the saeRS system after subinhibitory β-lactam exposure caused an increase in α-

haemolysin at the transcript level using hla::blaZ promoter fusions (618).  saeRS 

differentially regulates many virulence genes but also modulates an additional 22 

genes including sarA and sarT, resulting in reduced transcript levels. Accordingly 

using this model, saeRS induction after subinhibitory oxacillin exposure could 

account for the increase in α-haemolysin and PVL toxin expression, even in the 

context of RNAIII reduction. The effect of reducing sarT transcript levels may also 

increase α-haemolysin expression, as sarT is a repressor of this haemolysin (617). 

The potential decrease in SarA/T may also explain the reduced SpA levels, as SarT 

induces the expression of another SarA homologue, SarS, which directly binds to the 

spa promoter stimulating SpA expression  (372). Work by Dumitrescu et al, 

observed an induction of SarA and a reduction in Rot mRNA levels which conferred 

an increase in PVL expression when grown with imipenem and oxacillin (596). In 

terms of regulatory elements effecting PVL expression, they observed no relevant 

contribution of the saeRS system as opposed to Kuorda et al (618). However 

different strains, β-lactams antibiotics and MIC were used which may trigger 

different signalling pathways affecting different regulatory elements. To understand 

the exact mechanisms causing this oxacillin-mediated pleiotropic effect, specific 

regulatory elements must be assessed in this context under these conditions. These 

experiments using subinhibitory antibiotics highlighted how bacteria differentially 

regulated important virulence genes in response to their environment. These changes 

may help us understand how the complex regulatory network which governs S. 

aureus virulence interacts upon external stimuli.  

 

Exposure of bacteria to sub-lethal levels of β-lactam antibiotics can also lead 

to the activation of several stress responses, most notably the SOS-response (619). 

The SOS system is a global response to DNA damage and is classically governed by 

two major genes: lexA and recA (620). The LexA protein acts as a repressor binding 

to specific operator sites of SOS-regulating genes, inhibiting their expression. In 

response to DNA damage, the RecA protein becomes activated and acts a protease, 
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enabling full cleavage of the LexA protein and this inducing the expression of some 

SOS-regulated genes. The affinity of LexA to each SOS-regualted gene promoter is 

different leading to a temporal expression of genes, where some genes are expressed, 

partially expressed or only expressed under conditions of high or persistent DNA 

damage (621). Once DNA damage has been repaired, RecA and LexA restore 

repression to the system. Previous work has highlighted that induction of the SOS-

response by sub-inhibitory antibiotics can result in the expression of virulence genes 

for example the adhesins, FnBPB (622), or can trigger the induction of 

staphylococcal prophage carrying virulence determinants such as TSST-1 (623). 

Recently it has been shown that sub-inhibitory levels of oxacillin (and other 

antibiotics which target PBP-1) triggers the SOS-response in a lexA/recA dependent 

fashion which lead to an increased mutation rate and selection of homogenous high 

level resistance (624). Therefore it would be interesting to investigate the effects of 

sub-inhibitory oxacilin in a recA mutant to determine whether this SOS-response 

plays a role in modulating toxicity in S. aureus.  

 

Future work to evaluate the potential of other cell-wall-active antibiotics that 

can mediate PBP2a-dependent agr repression will be of interest in the context of 

virulence attenuation, but ultimately, the potential of beta-lactams and related 

antimicrobials as anti-virulence drugs may depend on the site of infection, the          

S. aureus strain, and the relative contribution of individual toxins to specific 

infections. 
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7 

Identifying virulence associated SNPs in the Genome of 

Methicillin Resistant Staphylococcus aureus 
 

 

7.1 Abstract 
__________________________________________________________________________________________ 
 

Staphylococcus aureus employs hundreds of genes which are dedicated to the 

regulation and expression of virulence factors. Virulence is a complex and often 

multifactorial process. This chapter attempts to investigate genetic polymorphisms 

which are associated with a specific virulent phenotype. Toxicity, the ability to 

destroy host cell membranes, and adhesion, the ability to adhere to human tissues, 

are the major virulence factors of many bacterial pathogens, including S. aureus. 

Here, we assayed the toxicity and adhesiveness of 90 closely related MRSA 

(methicillin resistant S. aureus) ST239 isolates derived from four hospitals in 

Turkey. We found that while there was remarkably little variation in adhesion, 

toxicity varied by over an order of magnitude between these isolates, suggesting that 

different evolutionary selection pressures acts on these two traits and that significant 

variation exists within specific S. aureus lineages. To understand the genetic factors 

responsible for this observed variation a genome wide association study was 

performed on the genomes of these 90 clinical isolates. 124 single nucleotide 

polymorphism (SNPs) and insertion/deletions (InDels) were identified to be 

associated with toxicity. By using a transposon mutagenesis library we highlight four 

novel genetic loci associated with a decrease in toxicity, underlying the applicability 

of this approach in determining genetic polymorphism associated with toxicity.  
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7.2 Introduction 
__________________________________________________________________________________________ 
 

taphylococcus aureus is a major human pathogen, the treatment of which has 

been complicated by the worldwide emergence of multiple lineages that 

have acquired resistance to methicillin (275, 276, 296). Its virulence is 

conferred by the activity of many effector molecules (reviewed in section 1.3.5) 

which can be broadly grouped into being either toxins – factors that cause specific 

tissue damage in the host, or adhesins – factors that facilitate adherence to and 

invasion of host tissues. A complex network of regulatory proteins controls the 

expression of many individual toxins (reviewed in section 1.3.4) such that various 

sites on the S. aureus chromosome contribute to the overall toxicity of an individual 

isolate. The ability of S. aureus cells to bind human glycoproteins, such as fibrinogen 

and fibronectin, is another critical determinant in disease outcome. It facilitates 

attachment to and damage of host tissues, host cell invasion, and systemic 

dissemination (404). Several genes encode fibronectin- and fibrinogen-binding 

proteins (e.g., fnbA, fnbB, clfA, clfB, eap, isdA, emp, ebh, see table 1.1.), whose 

expression is again controlled by a complex regulatory network (96). Similar to 

toxicity, many sites on the chromosome can therefore contribute to the overall 

adhesiveness of S. aureus, with many regulators common to both adhesion and 

toxicity (96).  

 

A key factor affecting the severity and outcome of any infection is the 

virulence potential of the infecting organism. Since the first whole genome sequence 

of a free-living organism, Haemophilus influenzae, was published (625) sequencing 

technology has advanced to a stage where a bacterial genome can be sequenced in a 

matter of hours (479, 626). This has led to an explosion of genomic data that has 

revolutionised molecular epidemiology allowing the close monitoring of outbreaks in 

hospitals (224, 225, 627), tracking strains transitioning from carrier to invasive status 

(627), and performing detailed epidemiological studies to understand aspects of 

pathogen biology (180, 241, 628, 629). This huge advancement in sequencing 

technology and what can be done with the ensuing enormity of genomic data 

provides the motivation behind this chapter.   

S 



178 
 

 

 If the virulence phenotype could be determined directly from its genome 

sequence, next generation sequencing technology would provide for the first time an 

opportunity to make predictions of virulence at an early stage of infection. While 

there has been some success in predicting the antimicrobial resistance from the 

genome (241, 630) complex phenotypes such as virulence, involving the contribution 

of several genes, as discussed above, has not yet been possible. The success of 

epidemic MRSA clones such as USA300 and ST239 may be attributed to the 

variation in the expression of their toxin or adhesion genes, presumably through 

modification of the main virulence regulatory genes. The ability to identify virulence 

associate genetic polymorphisms may help firstly in unravelling the complex genetic 

regulatory network, highlighting which regulators and specifically which residues are 

important in cross regulation, but could also be implemented in a predictive model, 

which may infer virulence directly from the genome sequence.  

 

 Here we addressed this by first adopting a direct approach analysing the 

sequence variation in virulence regulators from a diverse collection of sequence 

types (STs) in an attempt to explain why strains from different STs are more virulent 

than others. We investigated the impact of SNPs on the SarS virulence regulator, 

known to be important in the regulation of protein A. The second approach used a 

more general approach, measuring the lytic and adhesive potential of a collection of 

90 closely related ST239 MRSA clinical isolates derived from four hospitals in 

Turkey. ST239 contains a type III SCCmec element and is a highly transmissible, 

highly antibiotic resistant MRSA clone, which is associated with a strong biofilm 

phenotype and enhanced ability to adhere and invade airway epithelial cells (631). 

Epidemiological studies suggest that at least 90% of the cases of HA-MRSA within a 

geographical region encompassing >60% of the world’s population can be attributed 

to this single clonal subgroup (234, 632, 633). ST239 has evolved through a large 

scale recombination event, involving the construction of a mosaic chromosome 

composed of a majority CC8 genetic background while approximately 20% of the 

genome is derived from a CC30 lineage (634). To investigate genetic polymorphisms 

associated with virulence we adopted a genome-wide association study (GWAS) 
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which highlighted novel loci which were associated with either an increase or 

decrease in toxicity. Using this information we were able to functionally verify four 

novel loci which when inactivated resulted in a decrease in toxicity. 

 

 

7.3 Results and Discussion 
__________________________________________________________________________________________ 
 

7.3.1 Investigating the effect of SNPs in the virulence regulatory 

activity of SarS 
 

A bioinformatics approach addressing the sequence variability within the virulence 

regulatory genes across ten S. aureus strains that represented a diverse collection of 

sequence types highlighted two strains (MRSA252 and TW20) which contained two 

SNPs in the virulence regulator SarS (96). These SNPs conferred an asparagine-to-

aspartic acid substitution at positions 221 and 243. Additionally, mapping of the 

SNPs onto the crystal structure of the SarS protein confirmed that these SNPs were 

localised within a region predicted to interact with RNA polymerase (96). Given the 

change in local charge associated with the above N221D and N243D mutations, an 

investigation into the effect of these polymorphisms on SarS regulatory activity was 

examined. As described in section 1.3.4.3, SarS is a DNA binding regulatory protein 

which induces the expression of protein A by directly binding and activating the spa 

promoter (372). Therefore, we investigated the regulatory potential of WT SarS and 

SarS containing the above SNPs using protein A expression as an indication of SarS 

activity (Fig 7.1). Both genes were cloned into the inducible plasmid, pRMC2, and 

electroporated into a sarS knockout strain, ALC1927, creating ALCML1 (WT SarS) 

and ALCML2 (N221D & N243D SarS) (Table 7.1). Probing for protein A 

expression as an end-stage measure of SarS activity illustrated no detectable 

difference via western blot analysis (Fig 7.1). A series of concentrations of the 

inducible chemical (10-100 nM; anhydrous tetracycline) was used to investigate any 

minor changes which may have been masked due to high expression of SarS from 

the plasmid resulting in high protein A expression, but again no differences were 
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observed, suggesting that these two SNP changes did not affect the ability of SarS to 

induce protein A expression.  

 

 

Figure 7.1: Investigating the effect of SNPs in the virulence regulatory activity of SarS by 

analysing protein A expression via western blotting. WT SarS and SarS containing the N221D & 

N243D SNPs were cloned into the pRMC2 plasmid and transformed into the sarS knockout 

ALC1927, generating ALCML1 and ALCML2 respectively. Analysis of protein A expression using a 

series of concentrations of the inducible chemical revealed no difference in the protein A expression. 

ALCML1 is designated * and ALCML2 is designated ‡. 

 

 

7.3.2 Analysis of toxicity and adhesiveness between closely related 

ST239 strains  
 

As the direct approach in identifying SNPs important in virulence did not yield 

positive results we opted to look more broadly for the effect of SNPs on virulence 

across the whole genome. In order to investigate this, we chose to look within a 

single clone as there would have been too much variation across many different 

clones. The strain collection chosen was previously described by Castillo-Ramiriez et 

al and comprises of 90 clinically derived ST239 strains, isolated from one of four 
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hospitals in Turkey. These strain have been previously sequenced using an Illumina 

Genome Analyser with 75 base paired-end reads and mapped onto the chromosome 

of S. aureus TW20 (180).  

 

To investigate SNP association with virulence, we first assayed the ability of 

90 closely related clinically derived ST239 strains to bind two important matrix 

proteins, fibrinogen (Fb) and fibronectin (Fn) during both the exponential and 

stationary phase of growth (Fig 7.2 a-d). As expected the adhesiveness was higher in 

the exponential phase of growth. However, across the 90 isolates only two were 

significant from the others (DEU16 and HU2) with strain HU2 retaining the adhesive 

phenotype during stationary phase. The limited variability of this virulence 

phenotype suggests it may be under strong stabilizing selection and would provide 

limited information on which to base a prediction of disease severity. Comparing the 

core genomes of DEU16 and HU2 with the reference strain, TW20, highlighted no 

mutation in any of the known virulence regulators, adhesin genes or proteases which 

may account for the highly adhesive phenotype. Results of gene association studies 

were inconclusive in providing statistically significant SNPs associated with high or 

low phenotypes, possibly due to the limited variability.  
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Figure 7.2: Adhesive activity of clinical ST239 isolates. (a) adherence of 90 ST239 isolates to 

fibrinogen in exponential phase of growth. (b) adherence of 90 ST239 isolates to fibronectin in 

exponential phase of growth. (c) adherence of 90 ST239 isolates to fibrinogen in stationary phase of 

growth. (d) adherence of 90 ST239 isolates to fibronectin in stationary phase of growth. 
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Secondly, the gross lytic activity of the 90 ST239 isolates was measured using the T 

cell assay and vesicle lysis test (VLT) described previously. As illustrated in the 

previous chapters, the T cell assay is sensitive to α- β-, γ-, δ-haemolysins and 

PSMα1-3 peptides whereas the vesicles are sensitive to the δ-haemolysin and 

PSMα1-3 toxins. No differences were observed between the two assays, illustrated in 

figure 7.3a, where the data from each assay from a representative sample of seven 

high and seven low toxic isolates is presented. This suggests the effect is either 

largely PSM driven for the ST239 clone, or that the toxins assayed here are co-

regulated. Due to the important role α-haemolysin plays in in vivo pathogenesis we 

also investigated the expression of this toxin from this set of clinical strains; however 

no α-haemolysin was detected, illustrated here by a western blot negative phenotype 

in a subset of strains both of high and low toxic background (Fig 7.3b).  

 

 

Figure 7.3: ST239 supernatants lyse T cell and vesicles equivalently and do not express α-

haemolysin. A) The ST239 MRSA isolates used in this study lysed T cells and lipid vesicles 

equivalently. A subset of 14 isolates is shown for illustrative purposes. Their ability to lyse T cells is 

represented in blue and on the left hand Y axis, and their ability to lyse the lipid vesicles is represented 

in red and on the right hand Y axis. B) The ST239 isolates used in this study do not express detectable 

amounts of α-haemolysin. Western blots using anti-α-haemolysin antibodies were performed on TCA 

precipitated 18h bacterial supernatants of all 90 isolates. A subset of seven isolates is shown for 

illustrative purposes. As a positive control the laboratory strains 8325-4 was included as it produces 

detectable amount of α-haemolysin. 
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The full set of toxicity data from the vesicle assay is presented in figure 7.4a. Despite 

the lack of α-haemolysin expression, many isolates were highly lytic and the 

combined activity of the other toxins varied widely between the 90 isolates, with an 

18-fold difference between the most and least toxic isolates. Interestingly, both the 

highly adhesive isolates identified above expressed low level toxicity. (NB: This 

clone does not contain the Panton-Valentine leukocidin [PVL] containing phage 

(180)).  

 

To understand how differences in toxicity are distributed across the genetic 

variability that exists within this collection of isolates we divided the data into three 

classes, scoring isolates as expressing either high (red: levels of >63,000 units), 

medium (amber: levels of 30,000:63,000 units) or low (green: levels of <30,000 

units) toxicity. These three data ranges were selected so that a mid-toxicity range was 

included to account for possible cumulative effects of genetic polymorphisms. This 

was mapped onto a maximum likelihood tree based on the genome sequences of 

these isolates, showing a broad distribution of toxicity phenotypes across the 

genotypes as well as some clustering (Fig 7.4b; this figure was constructed by Dr. 

Daniel Wilson, University of Oxford, United Kingdom ). 
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Figure 7.4: Toxic activity of clinical ST239 isolates. (A) The toxic activity of 90 ST239 isolates was 

assayed by incubating their supernatants with lipid vesicles containing a fluorescent dye. Dye release 

due to toxin-mediated vesicle lysis is determined using a fluorometer. (B) A maximum likelihood tree 

based on whole-genome sequences of the 90 isolates illustrating the distribution of the toxic activities 

of each isolate. Toxicity has been colour-coded (red for highly lytic, yellow/amber for moderately 

lytic and green for low level lysis). Clusters 1–4 are indicated for use in the stringent GWAS analysis. 

 

 

7.3.3 Toxicity correlates with disease severity in vivo 
 

To verify that toxicity correlated with disease severity, two isolates shown to have 

the highest and the lowest levels of toxicity in vitro (HU13 and MU9, respectively) 

were selected and their in vivo pathogenicity compared in a model of invasive 

infection (635). Mice were injected intravenously with two different inoculum sizes; 

and murine survival, the development of septic arthritis, and weight loss were 

monitored over two weeks as a measure of disease severity (Animal experiments 

were carried out by Dr. E. Josefsson, University of Gothenburg, Sweden). 

Uninfected control mice did not die, did not develop septic arthritis, and did not lose 
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weight over the duration of this experiment. In each aspect of disease measured here, 

the highly toxic HU13 isolate caused the most severe disease symptoms (Fig 7.5a-f). 

It led to more deaths at both doses, although this was not statistically significant, 

caused significantly more severe arthritis at both doses at day 4, and resulted in 

significantly greater weight loss at both doses across many time points.  

 

The isolates tested here are from the same sequence type but are not isogenic, 

and so other virulence-related traits may have played a role in the disease outcome. 

However, as toxicity is well established to affect disease severity, its variability even 

within this closely related group of isolates suggests that the ability to predict toxicity 

at an early stage of infection would be valuable clinical information. 
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Figure 7.5: Predicted toxicity correlates with disease severity in vivo. Using high and low doses 

(7.8–8.0 and 3.7–4.1 x 10
7
 CFU, respectively), mice were inoculated intravenously with the high and 

low toxic isolates (HU13 and MU9, respectively), and survival of the mice, the development of septic 

arthritis, and weight loss were recorded as indications of disease severity. In each case the highly toxic 

HU13 isolate caused the most severe disease symptoms. (A) n = 10–15. (B) n = 8–10. (C) n = 10–20. 

(D) n = 10. (E) n = 10–19. (F) n = 10. Significant P-values (<0.05) are indicated (*). 
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7.3.4 Identifying virulence associated loci 

 

To identify the genetic polymorphisms that may be associated with the toxic 

phenotype, a genome-wide association study (GWAS) was adopted on the genomes 

of the 90 S. aureus isolates using the genome association tool Plink (467). Out of a 

total of 3060 SNPs, we identified 102 that associated significantly with toxicity (with 

P <0.05 after Bonferroni correction) as shown in figure 7.6 and listed in table 7.1 

(polymorphisms associated with an increase in toxicity) and table 7.2 

(polymorphisms associated with a decrease in toxicity), using a frequency cut off for 

the occurrence of a polymorphism across the population of >90% and a minor allele 

frequency of >5%.  We further identified 22 toxicity associated InDels, using the 

same cut offs for quality control. These SNPs and InDels were distributed across the 

genome amongst mobile genetic elements, genes involved in metabolism and 

regulation, in hypothetical genes, and in intergenic regions (Table 7.1 and 7.2). Two 

genes previously shown to affect the expression of toxins contained significantly 

associated SNPs: mecA (238) and agrC (636, 637) which provided some proof of 

principle for the validity of our approach. Mobile genetic elements, such as the S. 

aureus pathogenicity Island I (SaPI1) (196) and the β-haemolytic converting phage 

(638) also contained several associated genetic changes, implying that variability in 

many diverse regions of the genome contributes to the toxicity of a given isolate. 

Some of the polymorphisms appeared to be in linkage disequilibrium which will 

increase the rate of false positive associations, but many were uniquely occurring 

(i.e., unique patterns of polymorphisms across isolates).  

  

 This GWAS approach only requires an excess association between a SNP and 

the phenotype in question, and as such is likely to produce false positives with 

linkage disequilibrium and phylogenetic structure affecting the outcome. We 

therefore performed a second, more stringent approach, similar to those described in 

other recent work (630, 639) which instead requires repeatable independent evolution 

of a marker to be associated with the phenotype (toxicity). Although this approach 

should have a lower false positive rate, it is likely to produce a higher false negative 

rate. We focused on four clusters of isolates (indicated on Fig 7.4b): cluster 1 
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(isolates IU20–IU2), cluster 2 (isolates HU16–HU13), cluster 3 (isolates MU2–IU7), 

and cluster 4 (isolates DEU3– DEU19). Clusters 1 and 2 contained the majority of 

the highly toxic isolates in this study, whereas clusters 3 and 4 represent the closest 

related clusters of low toxicity isolates to clusters 1 and 2. When toxicity-associated 

polymorphisms are found in both clusters 1 and 2 but are absent from clusters 3 and 

4 suggest that they have arisen independently. As such they are likely to be causative 

as they are independent of phylogeny. Of the 124 polymorphic sites that associated 

significantly with toxicity, only four were found in both high toxicity clusters (1 and 

2) but not in their sister, low-toxicity clusters (3 and 4). All four of these 

polymorphisms (SNPs 78396, 2128192 and InDels 2111134 and 2147199, see 

Tables 7.2 and 7.3) reside on mobile genetic elements, suggesting they may have 

been acquired horizontally. Of these four polymorphic loci, the mecA gene (in which 

SNP78396 resides) confers methicillin resistance and has previously been shown to 

affect toxin expression (238). 

 

 

 

Figure 7.6: Identification of SNPs significantly associated with toxicity. GWAS was used to 

identify toxicity associated SNPs; shown here on the X axis which represents the S. aureus genome 

with 0 representing the origin of replication and the Y axis representing the statistical significance of 

each SNP associating with increased or decreased toxicity. Using a cut-off of –log (p) of 5 (illustrated 

by red dots representing a p<0.05 after Bonferroni correction) left 104 SNPs and 20 InDels 

significantly associated with toxicity. 
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Table 7.2 Polymorphisms associated with an increase in toxicity  

 

 

Table 7.3 Polymorphisms associated with a decrease in toxicity 



192 
 

7.3.5 Functional verification of effect of polymorphisms on toxicity  

 

Two SNPs (78119 and 78396) which were hypothesised to affect toxicity were 

present in the mecA gene, which codes for the alternative penicillin binding protein 

2a. Recently, the deletion of the SCCmec element from a HA-MRSA background 

drastically affected toxicity leading to a statistically significant increase in toxicity 

measured by the T cell assay (238). Complementation of this strain with the mecA 

gene expressed from an inducible plasmid restored the non-toxic phenotype 

illustrating that mecA negatively affected toxicity. The exact mechanism for this 

repression is unknown but does involve agr interference possibly through 

peptidoglycan modifications imposed by PBP2a (238). Therefore, we sought to 

investigate the contribution of these SNPs to toxicity. As described in section 2.5.3, 

four mecA genes were amplified, cloned into the inducible plasmid pRMC2and 

electroporated into the SCCmec deletion mutant BHICCΔSCCmec. Four mecA 

constructs were required due to SNP78119 and SNP78396 only occurring in mecA 

genes which already had two SNPs present which differed from the WT, which were 

SNP78097 and SNP78222. These SNPs were not highlighted as modulating toxicity 

from the GWAS studies. Nonetheless we constructed pRMC2 containing TW20 WT 

mecA (pmecA1; ML122), TW20 mecA containing SNPs 78097 & 78222 (pmecA2; 

ML123), mecA containing the SNPs of pmecA2 and SNP78396 (pmecA3; ML124) 

and mecA containing the SNPs of pmecA3 and SNP78119 (pmecA4l ML125). All 

strains containing the mecA plasmid constructs when induced conferred resistance to 

oxacillin up to128 μg/mL when induced with anhydrous tetracycline and therefore 

were considered to be expressing the PBP2a, whereas those induced with the empty 

plasmid (pRMC2; ML121) did not (data not shown). However, toxicity did not differ 

significantly from strains expressing the 4 different mecA alleles suggesting that 

these two SNPs were not involved in increasing toxicity (Fig 7.7). Interestingly, 

unlike previous work in the laboratory where the BH1CC mecA gene was used to 

restore methicillin resistance, none of these mecA genes when used to complement 

the SCCmec mutant restored the non toxic phenotype. The sequence of mecA from 

TW20 differs from mecA derived from BH1cc (CC8) in three positions (K146N, 

K204N and E246G, whereby the first amino acid is found in TW20 at the indicated 
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position and the second amino acid is present in BH1cc). This suggests that mecA 

from different SCCmec backgrounds may differentially regulate toxicity.      

 

 

Figure 7.7: Effect of mecA SNPs on toxicity. pmecA constructs were electroporated into a 

BH1ccΔSCCmec background to assess the affect of mecA SNPs on toxicity using the T cell assay.  

Deletion of SCCmec leads to a decrease in T cell survival (an increase in toxicity). Complementing 

this strain with 4 different mecA alleles did not restore a non-toxic phenotype nor illustrate a 

difference between the mecA alleles. 

 

  

With the initial GWAS approach likely to produce a high number of false positive 

associations, we sought to obtain an estimate of this by determining the functional 

effect of a subset of these polymorphisms. We focused on 14 of the intergenic 

polymorphisms that could either affect the transcription of neighbouring genes, or 

encode novel regulatory RNA molecules. We obtained transposons insertions in 

these intergenic polymorphic loci, ranging from 10 to 304 bp distal to the 

polymorphic site from the Nebraska Transposon Mutant library (640), and 

determined the effect of this insertion on the toxicity of the mutant. The transposon 

(Tn) library was constructed in the USA300 LAC background cured of plasmids 

(JE2 strain) using a mini-mariner bursa aurealis plasmid containing a transposon 

region, generating random mutations in S. aureus. This delivery vector contains and 

erythromycin resistance gene (ermB) for selection and AciI sites used for cleavage of 

DNA isolated form Tn clones. Cleavage of AciI sites closest to the insertion sites 
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occurs and DNA is circularized and amplified by inverse PCR using primers 

complementary to regions on the Tn insertion site. Sequencing of the genomic 

regions identifies site of disruption (640).   

 

Five of the 14 insertions affected toxicity (Fig 7.8a) verifying that these loci 

contain toxicity-regulating activity. The SNP at position 301,089 (represented by the 

transposon insertion in strain 95E07 in Fig 7.8) is in between the tarK and tarF genes 

that are involved in the synthesis of wall teichoic acids (641). The SNP at position 

1,121,452 (represented by the transposon insertion in strain 207A03 in Fig 7.8) is 

between a hypothetical gene and fmt, which is involved in methicillin resistance and 

autolysis (642) both activities known to contribute to staphylococcal virulence. The 

SNP at position 1,503,110 (represented by the transposon insertion in strain 90D01 

in Fig 7.8) is in a locus annotated as a pseudogene in TW20, but as intergenic 

between genes encoding a TelA-like protein and a putative branched-chain amino 

acid transporter protein in FPR3757. The SNP at position 2,532,617 (represented by 

the transposon insertion in strain 108B09 and 184F11 in Fig 7.8) is annotated in 

FPR3757 as intergenic between a hypothetical and an AcrB/AcrD/AcrF family 

protein-encoding gene; however, in TW20 it has been annotated as a hypothetical 

gene. To determine more specifically the effect these transposons have on specific 

expression of toxins we examined their protein expression profiles. As shown in 

figure 7.8 b-d, the protein profiles, α-haemolysin and PSM expression are 

significantly affected in two strains with more subtle differences in the others. The 

two with significant effect were108B09 and 184F11 are in the same locus and further 

molecular characterization is underway to determine the activity of these loci, but 

this work demonstrates that although this approach produces false positive 

associations, having looked at only 13 polymorphisms it has identified four novel 

toxicity-affecting loci. 
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Figure 7.8: Functional verification using transposon mutagenesis. A) Mutated S. aureus isolates 

with transposon insertions in 15 of the 124 toxicity associated loci were isolated (all in intergenic 

loci). Four of the 15 transposon insertions affected the toxicity of the isolate. The bars represent the 

mean % T cell survival following incubation with bacterial supernatant, and the error bars the 95% 

confident intervals. Wild type represents the unmutated parent isolate, ΔagrB is a negative control, 
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and the following are the transposon insertion mutants and their associated polymorphism: 95E07: 

301089; 93B09: 761112; 82B04: 787629; 180A03: 799276; 207A03: 1121452; 90D01: 1503110; 

137C12: 1931155; 45D06: 2027204; 179E03: 211134; 108B09: 2532617; 113D01: 2571739; 86C03: 

2640325; 168E05: 2657438; 72A04: 2753734; 64A09: 2810368. B), C) and D) represent the 

exoprotein profile, α-haemolysin and PSM expression respectively of the wild type and toxicity 

deficient strains highlighted from the T cell assay. * highlights that these strains contain a Tn insertion 

in close proximity to each other.  

 

 

As the more stringent approach described above yielded a shortlist of only four 

toxicity-affecting polymorphisms, we also sought to determine whether this 

approach, while reducing the false positive rate, would inadvertently dismiss 

potentially important loci. For example, a SNP in the agrC gene was identified by 

the initial approach as significantly associated with toxicity, but dismissed by the 

secondary more stringent approach. This protein forms part of a critical toxin 

regulatory system (reviewed in section 1.3.4.1), and the SNP results in an A343T 

change to the amino acid sequence of the protein. The particular nucleotide change 

described here had not been identified previously, although other polymorphisms in 

the agrC gene have been shown to delay activation of the Agr system and as a 

consequence reduced the toxicity (475). Using a reporter system the impact of 

SNP2174068 on the function of AgrC was evaluated with respect to activation by 

exogenous AIP 315 (643) (This agr reporter system experiment was constructed by 

Dr. Tim Sloan at the University of Nottingham, United Kingdom). The response of 

AgrC from the ST239 isolate TW20 was compared with the AgrC encoded by the 

SNP2174068 containing agrC variant, by determining the half maximal effective 

concentration (EC50) of exogenous synthetic AIP-1 for both (Fig 7.9). The EC50 for 

the TW20 allele was 17.4 ±3.5 nM, but almost twice as much AIP (29.5 ±3.1 nM) 

was needed for the SNP2174068 containing AgrC variant, which suggests that, like 

previously identified polymorphisms in agrC, SNP2174068 delays the activation of 

the Agr system and as a consequence reduces toxicity. This work functionally 

verified the contribution of this particular polymorphism to the toxic phenotype, 

which would have been disregarded by the more stringent approach. 
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Figure 7.9: SNP2174068 has a major impact on the response of AgrC to AIP and hence toxicity. 

Dose-response curves for the activation of the lux based agrP3 reporter via AIP-1 by the TW20 agrC 

allele (circles) compared with the SNP2174068 variant (squares). 

 

 

7.4 Conclusions 
__________________________________________________________________________________________ 
 

Antibiotic-resistant bacteria are a major global threat to human health. The rate at 

which these organisms acquire resistance to new drugs is such that it is clear that 

novel methods to control disease are required. A greater understanding of bacterial 

virulence is needed to develop such novel control strategies. While new 

antimicrobial compounds are being developed, the introduction of novel drugs into 

the hospital population will undoubtedly select for resistance, highlighting the need 

for clinicians to be able to tailor treatment to the specific requirements of the 

infection. Currently, there is progress in the development of identifying antibiotic 

resistance genes from the microbial genome; however there are no methods in place 

to understand the virulence potential of an infecting strain.  

 

 The production of toxins and the ability to adhere to host proteins are major 

contributors to microbial virulence. Initially, in an effort to understand how genetic 

polymorphisms affect virulence and how this information could be used in 

developing new ways to understand and control disease, experiments were designed 
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to assess the role of SNPs in known virulence regulators. Here we investigated the 

effect of mutations in SarS, an important transcription factor involved in regulating 

protein A. In these experiments we found no difference in the ability of wild type 

SarS and SarS containing the SNPs of interest to activate protein A expression. In a 

separate, more general approach we sought to determine the toxicity and adhesive 

activity in a set of 90 clinical ST239 strains. Although little variation in adhesiveness 

was observed, toxicity varied substantially and to our knowledge this was the first 

time such variation was observed within a single clone of S. aureus, thus, 

understanding the genetic basis of this variation became the main focus of this 

chapter.  

 

 GWAS has been used extensively to identify disease loci associated with the 

five most common cancer types (644). Although phylogenetic structure may affect 

the application of this to a prokaryotic system, GWAS is still a useful tool to identify 

candidate virulence affecting loci. Bacteria possess a single chromosome and have 

high mutation rates enabling the phenotypic effects of these mutations to be detected 

immediately. Furthermore, bacteria readily undergo horizontal gene transfer which is 

independent of phylogeny. Taking these considerations into account we used GWAS 

to investigate the association of genetic polymorphisms with toxicity resulting in 124 

polymorphisms (102 SNPS and 22 InDels) significantly associated. Initially we 

anticipated that the majority of the polymorphisms associated with a change in 

toxicity would be present in the known virulence regulators. However, only one SNP 

(2174068) associated and verified with a decrease in toxicity was found in the agrC 

gene, a histidine kinase known to be a central component in toxin regulation (329). 

Surprisingly, SNPs associated with toxicity variation were found in diverse regions 

on the chromosome, with many of them never been associated with toxicity or 

virulence before. A more stringent analysis was also used and reduced the number of 

SNPs to a more manageable number, highlighting only four candidate loci. While 

this is an easier number to functionally verify, at least one functional locus (agrC 

SNP) was lost by this method. Although one method produced a high rate of false 

positives and the other dismissed potentially important loci, both have proven to be 

informative. When we attempted to functionally verify a subset of loci (n = 13) from 
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the long list of 121 by testing transposon insertion mutants in these regions, four 

proved to have toxicity regulating activity. This provided an indication of the false 

positive rate associated with the GWAS approach, and demonstrated that it is an 

effective means of prioritizing candidate genes for further functional 

characterization.  

 

 The results of this chapter have shown that virulence regulation, particularly 

in toxin expression, is highly complex. In addition to the already intricate virulence 

regulatory system discussed in section 1.3.4 the results of this chapter suggest that 

there is an added layer of virulence regulation yet to be defined. Transposon insertion 

within the intergenic regions outlined in section 7.3.5 caused a statistically 

significant reduction in toxicity. Based on the location of this region and preliminary 

analysis of the sequence of this site illustrating a high level of secondary structure in 

the single stranded form, we hypothesise that the Tn insertions lead to inactivation of 

small noncoding RNA molecules (sRNAs) which are playing a role in modulating 

global toxicity. Generally sRNAs regulate gene expression by either base-pairing 

with target mRNAs in an anti-sense mechanism preventing translation and assisting 

degradation of the target RNA or interact with proteins and modify their activities 

(394). This represents a rapid method of gene regulation and future work into 

unravelling these structures is underway.  

 

 The identification of SNPs and InDels associated with variation in toxicity 

has been used in the development of predictive models designed to assess the toxic 

phenotype of clinical isolates solely from the genomic sequence (645). Here a 

machine learning algorithm has been used to run a series of decision trees based on 

the presence of significant polymorphisms associated with toxicity to generate a 

predication on the likely phenotypic outcome. The results are promising with the 

majority of isolates predicted correctly. This approach of toxicity prediction is an 

attractive control strategy, as knowledge of the virulence potential of an infecting 

organism allows for the patient to be isolated, administered with virulence-

modulating antibiotics and monitored more stringently for potential complications. In 

summary, the identification of SNPs associated with phenotypic variability can be 
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used in identifying new virulence regulatory circuits and developing new control 

strategies, with future work in fully characterising these genetic polymorphisms and 

identifying new mutations associated with other phenotypes.  
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8 

Conclusions 

 

Burn injury represents one of the most frequent causes of hospitalisation. Globally in 

2004, approximately 11 million people required medical attention due to burn trauma 

(646). Infection complications following burn injury account for 75% of burn-related 

deaths (3, 4). Two major factors contribute to the predisposition of burn victims to 

infection: firstly the skin and gastrointestinal epithelium barrier fails, which can lead 

to bacterial translocation and subsequent burn wound infection derived from the 

patients’ endogenous flora. Secondly, the immune system becomes dysfunctional, 

expressing anti-inflammatory mediators which can interfere with immune cell 

(PMNs and macrophages) microbial killing potential. Therefore, the natural barriers 

to infection in the burn victim are distorted resulting in colonisation by opportunistic 

microorganisms.  

 

 S. aureus and P. aeruginosa are regarded as the most frequent burn wound 

colonisers. Currently, there is no burn wound dressings which can report on the 

microbiological content of the burn. The Bacteriosafe project was established to 

address this medical requirement. The objective of the Bacteriosafe project was to 

develop a smart wound dressing that would signal infection in a burn wound through 

the development and immobilisation of novel nanocapsules onto specific wound 

dressings.  

 

In this thesis the use of phospholipid vesicles (vesicles) as the core 

nanocapsule central in the smart dressing, is described. Vesicles are produced 

naturally in the body, consisting of a lipid bilayer membrane trapping a specific 

solution, generally used for transport within the cells (transport vesicles) or for 

housing enzymes important in cellular or microbial digestion (lysosomes). Vesicles 

used in this project are synthesised through sonication and extrusion of a cocktail of 

synthetic phospholipids, cholesterol and polydiacetylene molecules. These vesicles 
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are formed in a solution of self-quenchable fluorescent dye which remains non-

fluorescent in intact vesicles.  

 

A major contributor to the pathogenic success of S. aureus and P. aeruginosa 

is the ability to secrete membrane damaging factors.  The active secretion of bacterial 

cytolytic exofactors is also fundamental in the application of this microbial signalling 

system. Here, the vesicle represents a mimic of the eukaryotic membrane, susceptible 

to bacterial mediated lysis culminating in the release and switch on of the fluorescent 

cargo, which can be observed and measured. The identification of the bacterial 

factors which resulted in vesicle lysis is critical to the development of a smart 

dressing. Both S. aureus and P. aeruginosa secrete a number of factors which could 

have been important in lysing the vesicle membrane. In this thesis we highlight the 

role of molecules with surfactant-like properties; the phenol-soluble modulin (PSM) 

peptides α1-3 and δ-haemolysin secreted from S. aureus and the glycolipid molecule, 

rhamnolipid (RL), from P. aeruginosa as the sole agents in rupturing vesicles.  

 

δ-haemolysin is the translatable product of rnaIII, the effector molecule of 

the accessory gene regulator (agr) system, which is involved in the up-regulation of 

toxins/enzymes in S. aureus. The importance of Agr in disease progression in animal 

models is well documented. Therefore, this toxin is a prime candidate in which to act 

as a trigger for a microbial sensing system (i.e. the smart wound dressing) as 

expression of rnaIII appears to be a conserved feature required for S. aureus 

pathogenesis. This conserved expression of δ-haemolysin is represented by the high 

percentage of clinical isolates (96.6%) that caused vesicle lysis (Fig 3.4). This toxin 

is also involved in measuring the activity of agr using the CAMP assay. In chapter 3 

we highlight the use of the Vesicle Lysis Test (VLT) in measuring agr activity. Our 

results suggest that the CAMP assay is not sensitive enough to fully discriminate 

between agr positive and negative strains and therefore over- represents agr-negative 

strains and thus agr dysfunction.  These results may have important clinical 

implications as it has been reported that agr dysfunction is associated with increased 

vancomycin resistance and persistent bacteraemia (474, 476, 477). Many of these 

studies used the CAMP assay as the sole measure of agr activity. For this reason it 
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would be interesting to see whether the same associations are confirmed using the 

more sensitive VLT.  

 

Using vesicles to investigate the lytic potential of toxins is well documented. 

In the second part of chapter 3 we demonstrate that the PSMα and β class of PSMs 

have different lytic activities. The pattern of lysis observed using vesicles outlined in 

this thesis is similar to that observed using immortalised T cell line (Figure 6.4b). To 

investigate why such differences in lysis were observed in such related peptide 

toxins, we analysed some of the structural parameters of the PSMs and highlighted 

the alpha helicity of the peptide through circular dichroism measurements as the 

single most important factor involved in vesicle, and by extension, cell lysis. 

Recently, we have shown that the percentage of cholesterol in the membrane plays a 

major role in the ability of PSMs to lyse vesicles (647). We hypothesise that 

cholesterol shifts the membrane form a liquid disordered to a liquid ordered state, 

making the lipid membrane more stable and less susceptible to PSM integration and 

permeablization. The results of these experiments may help to explain why PSMs 

lyse certain cells more efficiently than others, considering that no proteinaceous 

receptor is known to be involved.  

 

RL were identified as the only P. aeruginosa factor lysing vesicles. Like δ-

haemolysin and PSMs, this molecule has a surfactant-like property enabling the rapid 

solubilisation of membranes. In chapter 4 we highlight the development of a novel 

assay designed to measure RL directly from the supernatant. As with δ-haemolysin, 

we wanted to examine the percentage of P. aeruginosa clinical strains that expressed 

RL that was detected by our vesicles system. Interestingly, we show a significant 

difference in RL expression from strains derived from acute infections (wound and 

bloodstream) and chronic infections (cystic fibrosis patients) (Fig 4.5). This assay 

may be useful in quantifying RL expression from strains isolated from different 

infections to gain an understanding of the role of this virulence factor in specific 

diseases.  
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As described previously, two parameters are essential for a working vesicle 

signalling system: sensitivity and stability. The results reported in this thesis show 

that the vesicles are more sensitive to bacterial factors than eukaryotic cells. This 

suggests that in a wound environment if toxins are actively secreted and can diffuse 

to the signalling system then vesicles would lyse first and would signal infection 

before the onset of cellular and tissue destruction. These factors (δ-haemolysin/PSMs 

and RL) are also very important in biofilm formation and maintenance. Current 

unpublished work form our group has shown that our vesicles also respond to 

microbial biofilm growth, important as biofilms have been recently implicated in 

burn infection (102-104). In chapter 5 we demonstrate that the proposed repressive 

role of toxic shock syndrome toxin-1 (TSST-1) on global exoprotein expression not 

only has no impact on vesicle lysis but does not appear to down-regulated toxin 

production. Considering that TSST-1 has been implicated in rapid mortality in young 

burn victims, our in vitro experiments show that TSST-1 expression occurs at the 

same time or after the expression of toxins suggesting that if this is reflected in a 

burn wound, vesicles will lyse and respond before or at the same time as TSST-1 is 

expressed. As a group we have investigated the impact of different environmental 

conditions on the stability of vesicles. Various temperature, pH and stability in 

human serum and in the presence of growing skin cells (HaCATs) has been 

examined extensively with high levels of stability shown (165, 456).  

 

However, they are also limitations associated with this vesicle signalling 

system which require attention. Although toxicity contributes to pathogenesis, the 

results shown in chapter 7 highlight that strains within certain S. aureus lineages 

have low or no toxin production. Here we show that 70% of a set of related clinical 

ST239 strains were shown by the vesicle lysis assay as non-toxic and would not 

signal infection in a burn wound in which a vesicle-based smart dressing was 

applied. Future work requires analysing the toxicity associated with burn wounds 

isolates. It would be interesting to further determine the epidemiology of burn wound 

isolates, whether a specific S. aureus lineage is dominant in burn wounds, to 

compare the toxicity of strains isolated from burn wounds and other diseases 

(abscess/bacteraemia/SSTI) and to what extent strains isolated from burn wounds are 
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MSSA, MSSA, HA- or CA-MRSA. Other burn wound colonisers such as Klebsiella 

pneumoniae and Acinetobacter baumannii do not express vesicle lysing agents (data 

not shown) and therefore would not signal infection in a burn wound using this smart 

wound dressing, highlighting another limitation. However, in spite of this, vesicle 

signalling infection of the most common burn wound colonisers is still an advantage 

over current systems in use. Presently we do not know the diffusion constant of these 

toxins through a hydrogel; an important consideration as these vesicles will be 

immobilised within a hydrogel for improved stability and shelf-life. Preliminary in 

vitro experiments show switch on of vesicles within this hydrogel triggered using 

bacterial supernatant however how this will act within a wound is currently 

unknown.  

 

Although vesicles are stabile in human serum, their stability in a sterile burn 

wound environment is unknown. Phospholipases A2 (PLA2) molecules are central in 

inducing inflammation as they lead to the degradation of phospholipids important in 

stimulating the formation of eicosanoid and related bioactive lipid mediators (648). 

(PLA2) attacks the sn-2 position of phospholipids, including those present in our 

vesicles. The concentration of (PLA2) required to lyse vesicles used in this study and 

that present in a burn wound needs to be measured to investigate whether in a non-

infected wound, vesicles will remain stable. In summary, the primary objective of 

identifying the vesicle lysing agents of S. aureus and P. aeruginosa has been 

achieved. An extension of this work saw the development of two novel, highly 

sensitive assays for measuring agr and RL activity (chapters 3 and 4). We also 

question the validity of the proposed TSST-1 mediated global exoprotein repression 

as discussed by Vojtov et al (457). However there is still much work required to 

evaluate the role smart wound dressing may play in the future of burn wound 

management. 

 

In chapter 6 we investigated the use of sub-inhibitory concentrations of 

oxacillin as a means of anti-virulence treatment in CA-MRSA strains. Previous work 

in the Massey lab demonstrated that over-expression of the mecA gene, encoding the 

alternative penicillin binding protein PBP2a, decreased toxicity in HA-MRSA 



206 
 

strains. CA-MRSA strains are considered highly toxic but have considerably lower 

PBP2a expression. Therefore, treatment of CA-MRSA stains with sub-inhibitory 

oxacillin was hypothesised to induce higher levels of PBP2a expression with the 

added effect of decreasing toxicity. In this chapter we demonstrate that oxacillin 

treatment does in fact interfere with agr signalling resulting in altered toxin 

expression in CA-MRSA strains. As S. aureus expresses many different cytolytic 

toxins we assessed the impact of oxacillin treatment on three cell types.  Our results 

demonstrate that oxacillin treatment leads to a decrease in PSM expression but also 

an increase in PVL expression. Therefore, where PSMs are important in cell lysis, 

such as with T cells and erythrocytes overall cell lysis is reduced, however where 

PVL is important such as lysing PMNs, overall cell lysis is increased with respect to 

oxacillin treatment. The impact on protein A and bacterial adherence to extracellular 

matrix proteins and invasion of endothelial cells following oxacillin treatment was 

also assessed. We show that oxacillin treatment results in a decrease in protein A 

expression but causes increased binding of the USA300 strain LAC to Fb in response 

to sub-inhibitory oxacillin treatment. No difference in the invasiveness of CA-MRSA 

strain was observed.  

 

The results presented demonstrate that sub-inhibitory oxacillin modulates 

global virulence regulation, down regulating Agr and associated agr-dependent 

virulence factors but up-regulating other cytolytic toxins such as PVL. RNAseq 

analysis should help unravel how the complex regulatory network involved in S. 

aureus toxicity responds to sub-inhibitory antibiotics. Future work in analysing the 

impact of other cell wall antibiotics which may mediate PBP2a-dependent agr 

repression is ongoing and may facilitate our initial application of using sub-inhibitory 

antibiotics for virulence attenuation. The mechanism of how overexpression of 

PBP2a leads to reduced agr-specific toxins such as δ-haemolysin and PSMs is 

unknown. Previous work highlighted that removal of the cell wall by-passed this 

repression (238). This suggests that PBP2a expression leads to changes in the 

architecture of the cell wall which inhibits agr signalling and/or response. It has been 

shown before that the methicillin resistance strains produce abnormal peptidogylcan 

when grown in the presence of β-lactam antibiotics (649). It is possible that subtle 
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changes in the cell wall as a result of PBP2a expression may lead to a charge 

difference preventing the AIP from diffusing through the cell wall to reach AgrC. 

The identification of novel chemically distinct peptide cross-bridges present in 

MRSA cell walls and the role of the other PBPs may highlight the mechanism of 

PBP2a mediated agr repression.    

 

Keeping with the theme of S. aureus toxicity, in chapter 7 we investigate the 

potential of using the genomes of 90 closely related ST239 strains to identify genetic 

polymorphisms associated with variation in toxicity, as measured by the VLT and T 

cell assay. Here we evaluate two methods to identify specific single nucleotide 

polymorphisms (SNPs) and insertion/deletions (InDels) present in the core genomes 

that are associated with either an increase or decrease in toxicity. The genome wide 

association study (GWAS) is a robust method, requiring only an association between 

polymorphism and phenotype and therefore is likely to result in false positives. The 

second approach is much more stringent and requires the repeated independent 

evolution of the polymorphism to be associated toxicity variation. Although the 

GWAS approach results in false positives the stringent approach failed to identify a 

SNP known to affect toxicity (SNP identified in AgrC, verified to reduce agr 

activity) and thus produce a higher false negative rate.    

 

Using the GWAS approach we sought to functional verify some of the 

genetic polymorphisms associated with a decrease in toxicity. Interestingly, we 

identified and verified four novel genetic loci, which, when mutated through 

transposons insertion, resulted in a drastic and significant decrease in toxicity. This 

suggested that there is an added layer of virulence regulation yet to be defined. 

However, inactivation of the gene does not tell us if the SNP in question caused the 

predicted decrease in toxicity. Future work is in place to complement mutant strains 

with wild type and SNP containing gene to fully understand the role of individual 

SNPs in toxicity variation. The elucidation of the impact the specific SNP plays in 

modulating toxicity is important in investigating or predicting the virulence potential 

of a strain directly from its genome sequence. This prediction approach has been 
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employed by our group and has been shown to be an effective model with the 

toxicity of the majority of isolates predicted correctly.   

 

In this chapter we show that the GWAS approach is a good method in 

identifying SNPs responsible for variation in toxicity. In addition to using the 

Turkish collection of ST239 strains, we have also investigated the toxicity of other 

ST239 strains from other geographical regions. Preliminary experiments illustrate a 

large difference in the toxicities of strains derived from the Turkish collection and 

global collection of ST239 clinical isolates (Figure 8.1). The box plot in figure 8.1 

shows that the majority of isolates from the global collection are highly lytic, 

whereas the opposite is true for the Turkish collection. The line within the box 

represents the median value, again highlighting the vast difference in toxicity 

between these related groups within this S. aureus lineage. 

  

 

Figure 8.1: Differences in vesicle lysis from strains derived from the Turkish and global 

collection of ST239 strains. The box plot represents the differences in the lytic activity defined by 

fluorescence release from vesicles. 

 

 

Both groups of ST239 strains have been isolated from the hospital environment. The 

degree of antibiotic resistance, particularly to beta-lactam antibiotics, between the 

two ST239 groups may determine the observed toxicity as resistance to beta-lactams 

conferred by the mecA gene has been shown to influence toxicity in HA-MRSA 
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containing the type II SCCmec element (238). Differences in resistance to 

antimicrobial peptides, which has been linked to thicker cell walls (650), may also 

interfere with agr signalling and affect overall toxin output. Another possibility 

which may explain the large deviation in toxicity profiles from the two ST239 groups 

may lie within the sequencing technology used. One of the limitations of the 

genomic data used in these studies is that DNA not found in the reference genome 

(TW20) is ignored. Therefore, ST239 strains form the Global collection may possess 

mobile genetic elements which express novel genes conferring the observed highly 

toxic phenotype. The improvement of sequencing technology and de novo assembly 

of genome sequences will report on the entire sequence of the strains highlighting all 

genetic differences between strains. 

 

This thesis represents an interdisciplinary approach to investigating bacterial 

virulence in areas of detection, identification and prevention. Work in this thesis has 

assisted collaborative work in developing an active wound dressing for burn wound 

management. In areas of prevention we address the use of sub-inhibitory oxacillin to 

reduced overall toxicity, highlighting mixed results. Finally, we develop a novel 

method to identify genetic polymorphism associated with, and verify four novel loci 

affecting, toxicity. These results have future implications in areas of elucidating 

novel virulence regulatory circuits and in developing predictive models for assessing 

virulence from the genomes of S. aureus.  
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Appendix A: Strain Collection 
 

Chapters 3 and 6: 

Strain/peptide/primer Description Reference 

RN6390B                                                        NCTC8325 cured of three prophages  (331) 

RN6911                 RN6390B Δagr::tetM        (335) 

8325-4                                          Lab strain NCTC8325 cured of three prophages  (651) 

DU1090                                                                           
 

8325-4 Δhla::Em
r 
      (652) 

DU5719                                      β- haemolysin - ve Phage 42E lysogen of 8325-4  (652) 

LAC (USA300)      Community acquired MRSA strain      (305) 

LAC Δhld            LAC hld deletion mutant; hld start codon 

changed from ATG to ATT 

(317) 

MW2 (USA400)   Community acquired MRSA strain        (305) 

MW2 Δpvl                                                                            MW2 ΔlukF/S-PV::spcm        (305) 

MSSA 476           Community-acquired invasive MSSA strain       (427) 

RN4220                                 Restriction negative derivative of 8325-4          (462) 

Newman                                                                    MSSA lab strain         (437) 

NewmanΔlukAB     Constructed using pKOR-1 plasmid  (437) 

NewmanΔlukDE      Constructed using pKOR-1 plasmid (437) 

NewmanΔhlg           NewmanΔhlg::tetM  (653) 

   

Purified toxins    

Δ-haemolysin               fMAQDIISTIGDLVKWIIDTVNKFTKK  

PSMα1                      fMGIIAGIIKVIKSLIEQFTGK  

PSMα2                                                   fMGIIAGIIKFIKGLIEKFTGK  

PSMα3                      fMEFVAKLFKFFKDLLGKFLGNN   

PSMα4                      fMAIVGTIIKIIKAIIDIFAK   

PSMβ1                      fMEGLFNAIKDTVTAAINNDGAKLGTSIVSI

VENGVGLLGKLFGF 

 

PSMβ2                      fMTGLAEAIANTVQAAQQHDSVKLGTSIV

DIVANGVGLLGKLFGF 

 

   

Primers   

gyrB Forward                CCAGGTAAATTAGCCGATTGC  

gyrB Reverse                 AAATCGCCTGCGTTCTAGAG  

RNA III Forward            GAAGGAGTGATTTCAATGGCACAAG  

RNA III Reverse     

 

   

GAAAGTAATTAATTATTCATCTTATTTTT

TAGTGAATTTG 
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Chapter 4: 

Strain Description Reference 

PAO1 Nottingham collection wild type P. aeruginosa strain (654) 

PAOlΔrhlR rlhlR mutant of PAO1 (655) 

PAOlΔrhlI PAO1 derivative with a Tc cassette insertion into the 

rhlI gene, Tc
r 

 

(656) 

PAOlΔlasR PAO1 mutant with a Gm cassette insertion into the 

lasR gene, Gm
r
 

(657) 

PAOlΔlasI PAO1 mutant with a Gm cassette insertion into the 

lasI gene, Gm
r
 

(656) 

PAOlΔplcH plcH mutant of PAO1 (658) 

PAOlΔpqsA pqsA mutant of PAO1 (659) 

PAO1ΔpqsE pqsE mutant of PAO1 (79) 

PAO1ΔpqsH pqsH mutant of PAO1 (79) 

PAO1ΔrhlA rhlA mutant of PAO1 (660) 

   

Chronic isolates n=48 isolated from patients with cystic fibrosis Gift from 

M.C. Enright 

Acute isolates n=30 isolated from patients with acute injury Gift from 

Southmead 

Hospital, 

Bristol 

 

Chapter 5: 

Strain Description Reference 

RN6390B NCTC8325 cured of three phages (331) 

RN6911 RN6390BΔagr::tetM (335) 

RN4282 Wild type TSST-1 producing strain (462) 

RN6938 RN4282Δtst::tetM (661) 

MSSA 101 Invasive CA-MRSA strain tst+
 

(427) 

MSSA 253 Invasive CA-MRSA strain tst+ (427) 

MSSA 279 Invasive CA-MRSA strain tst+ (427) 
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Chapter 7: 

Strain/primer/plasmid Description Reference 

Strain   

RN4220 Restriction negative derivative of 8325-4          (462) 

RN6390B                                                        NCTC8325 cured of three prophages  (331) 

ALC1927  RN6390ΔsarS::ermC  (372) 

ALCML1 ALC1927 with pRMC2ML1 This work 

ALCML2 ALC1927 with pRMC2ML2 This work 

BH1CC Clinical isolate, type II MRSA CC8 (414) 

BH1CCΔSccmec SCCmec excised using plasmid pSR2  (581) 

ML121 BH1ccΔSccmec complemented with pRMC2 This work 

ML122 BH1ccΔSccmec complemented with pmecA1 This work 

ML123 BH1ccΔSccmec complemented with pmecA2 This work 

ML124 BH1ccΔSccmec complemented with pmecA3 This work 

ML125 BH1ccΔSccmec complemented with pmecA4 This work 

FPR3757 Wild type USA300 isolate (640) 

AgrB- FPR3757 Tn::agrB (640) 

95A07 FPR3757 Tn::298351 (640) 

93B09 FPR3757 Tn::690868 (640) 

82B04 FPR3757 Tn::717257 (640) 

180A03 FPR3757 Tn::728946 (640) 

207A03 FPR3757 Tn::1050930 (640) 

90D01 FPR3757 Tn::1429479 (640) 

137C12 FPR3757 Tn::1907464 (640) 

45D06 FPR3757 Tn::2003286 (640) 

179A03 FPR3757 Tn::2087951 (640) 

108B09 FPR3757 Tn::2380097 (640) 

184F11 FPR3757 Tn::2379899 (640) 

86C03 FPR3757 Tn::2487759 (640) 

168A05 FPR3757 Tn::2504661 (640) 

72A04 FPR3757 Tn::2601159 (640) 

Plasmid   

pRMC2 Plasmid containing a tetracycline-inducible 

promoter  

(461) 

pRMC2ML1 pRMC2 containing sarS amplified from strain  

N315 

This work 

pRMC2ML2 pRMC2 containing sarS amplified from strain 

252 

This work 

pmecA1 pRMC2 containing mecA amplified from  

strain TW20 

This work 

pmecA2 pRMC2 containing mecA1 harbouring SNPs 

78097 and 78222  

This work 

pmecA3 pRMC2 containing mecA2 harbouring 

SNP78396 

This work 
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pmecA4 pRMC2 containing mecA3 harbouring 

SNP78119 

This work 

Primer   

sarS Fw GGCGGTACCGGAGATAGAACAATG This work 

sarS Rv CCGAGATCTGAATACAGCACACTTGCG This work 

mecA Fw TTTGGTACCAGTCTTATATAAGGAGGA

TATTGATG 
(238) 

mecA Rv AAAGAGCTCCGTTATCGCTGAAATTAC (238) 

ST239 Strains    

Isolate Hospital Infectious source Reference 

DEU1 Dokuz Eylul University, Turkey. Abscess (180) 

DEU2 Dokuz Eylul University, Turkey. Aspiration (180) 

DEU3 Dokuz Eylul University, Turkey. Blood (180) 

DEU4 Dokuz Eylul University, Turkey. Blood (180) 

DEU5 Dokuz Eylul University, Turkey. Wound (180) 

DEU6 Dokuz Eylul University, Turkey. Wound (180) 

DEU7 Dokuz Eylul University, Turkey. Blood (180) 

DEU8 Dokuz Eylul University, Turkey. Wound (180) 

DEU9 Dokuz Eylul University, Turkey. Aspiration (180) 

DEU10 Dokuz Eylul University, Turkey. Catheter (180) 

DEU11 Dokuz Eylul University, Turkey. Blood (180) 

DEU12 Dokuz Eylul University, Turkey. Sputum (180) 

DEU14 Dokuz Eylul University, Turkey. Bronchoalveoler 

lavage 
(180) 

DEU15 Dokuz Eylul University, Turkey. Aspiration (180) 

DEU16 Dokuz Eylul University, Turkey. Blood (180) 

DEU17 Dokuz Eylul University, Turkey. Blood (180) 

DEU19 Dokuz Eylul University, Turkey. Peritoneum fluid (180) 

DEU20 Dokuz Eylul University, Turkey. Blood (180) 

DEU22 Dokuz Eylul University, Turkey. Wound (180) 

DEU23 Dokuz Eylul University, Turkey. Urine (180) 

DEU25 Dokuz Eylul University, Turkey. Blood (180) 

DEU27 Dokuz Eylul University, Turkey. Catheter (180) 

DEU28 Dokuz Eylul University, Turkey. Blood (180) 

DEU29 Dokuz Eylul University, Turkey. Blood (180) 

DEU30 Dokuz Eylul University, Turkey. Wound (180) 

DEU35 Dokuz Eylul University, Turkey. Tracheal secretion (180) 

DEU36 Dokuz Eylul University, Turkey. Plevral fluid (180) 

DEU37 Dokuz Eylul University, Turkey. Blood (180) 

DEU38 Dokuz Eylul University, Turkey. Aspiration (180) 

DEU39 Dokuz Eylul University, Turkey. Catheter (180) 

DEU40 Dokuz Eylul University, Turkey. Wound (180) 

DEU41 Dokuz Eylul University, Turkey. Blood (180) 
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DEU42 Dokuz Eylul University, Turkey. Blood (180) 

DEU43 Dokuz Eylul University, Turkey. Blood (180) 

DEU46 Dokuz Eylul University, Turkey. Blood (180) 

DEU47 Dokuz Eylul University, Turkey. Wound (180) 

DEU49 Dokuz Eylul University, Turkey. Blood (180) 

DEU50 Dokuz Eylul University, Turkey. Tracheal secretion (180) 

HU2 Hacettepe University, Turkey. Blood (180) 

HU4 Hacettepe University, Turkey. Tracheal secretion (180) 

HU5 Hacettepe University, Turkey. Catheter (180) 

HU6 Hacettepe University, Turkey. Sputum (180) 

HU7 Hacettepe University, Turkey. Abscess (180) 

HU8 Hacettepe University, Turkey. Abscess (180) 

HU9 Hacettepe University, Turkey. Liver cyst (180) 

HU10 Hacettepe University, Turkey. Catheter (180) 

HU11 Hacettepe University, Turkey. Blood (180) 

HU12 Hacettepe University, Turkey. Catheter (180) 

HU13 Hacettepe University, Turkey. Brain abscess (180) 

HU14 Hacettepe University, Turkey. Catheter (180) 

HU15 Hacettepe University, Turkey. Catheter (180) 

HU16 Hacettepe University, Turkey. Spinal fluid (180) 

HU17 Hacettepe University, Turkey. Brain abscess (180) 

HU18 Hacettepe University, Turkey. Catheter (180) 

HU19 Hacettepe University, Turkey. Tracheal secretion (180) 

HU21 Hacettepe University, Turkey. Spinal fluid (180) 

HU23 Hacettepe University, Turkey. Spinal fluid (180) 

HU24 Hacettepe University, Turkey. Blood (180) 

HU25 Hacettepe University, Turkey. Abscess (180) 

HU26 Hacettepe University, Turkey. Blood (180) 

IU1 Istanbul University, Turkey. Blood (180) 

IU2 Istanbul University, Turkey. Blood (180) 

IU3 Istanbul University, Turkey. Blood (180) 

IU4 Istanbul University, Turkey. Sputum (180) 

IU6 Istanbul University, Turkey. Blood (180) 

IU7 Istanbul University, Turkey. Catheter (180) 

IU8 Istanbul University, Turkey. Blood (180) 

IU9 Istanbul University, Turkey. Nasal swab (180) 

IU10 Istanbul University, Turkey. Blood (180) 

IU11 Istanbul University, Turkey. Blood (180) 

IU12 Istanbul University, Turkey. Abscess (180) 

IU13 Istanbul University, Turkey. Abscess (180) 

IU14 Istanbul University, Turkey. Sputum (180) 
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IU15 Istanbul University, Turkey. Transtracheal asp. 

fluid 

(180) 

IU16 Istanbul University, Turkey. No info. (180) 

IU17 Istanbul University, Turkey. No info. (180) 

IU18 Istanbul University, Turkey. No info. (180) 

IU19 Istanbul University, Turkey. No info. (180) 

IU20 Istanbul University, Turkey. No info. (180) 

MU1 Marmara University, Turkey. Blood (180) 

MU2 Marmara University, Turkey. Blood (180) 

MU3   Marmara University, Turkey. Wound (180) 

MU4  Marmara University, Turkey. Abscess (180) 

MU5  Marmara University, Turkey. Wound (180) 

MU6  Marmara University, Turkey. Blood (180) 

MU7  Marmara University, Turkey. Blood (180) 

MU9  Marmara University, Turkey. Wound (180) 

MU11  Marmara University, Turkey. Blood (180) 

MU19 Marmara University, Turkey. Blood (180) 

MU20 Marmara University, Turkey. Blood (180) 



I 
 

Bibliography 
 

1. Hunt JL (2000) The 2000 presidential address. Back to the future: the ABA and burn 
prevention. The Journal of burn care & rehabilitation 21(6):474-483. 

2. Klein MB, et al. (2008) Hospital costs associated with pediatric burn injury. Journal 
of burn care & research : official publication of the American Burn Association 
29(4):632-637. 

3. Atiyeh BS, Gunn SW, & Hayek SN (2005) State of the art in burn treatment. World 
journal of surgery 29(2):131-148. 

4. Bang RL, Sharma PN, Sanyal SC, & Al Najjadah I (2002) Septicaemia after burn 
injury: a comparative study. Burns 28(8):746-751. 

5. Jenkins AT & Young A (2010) Smart dressings for the prevention of infection in 
pediatric burns patients. Expert review of anti-infective therapy 8(10):1063-1065. 

6. Cagle KM, Davis JW, Dominic W, Ebright S, & Gonzales W (2006) Developing a 
focused scald-prevention program. Journal of burn care & research : official 
publication of the American Burn Association 27(3):325-329. 

7. Monafo WW & West MA (1990) Current treatment recommendations for topical 
burn therapy. Drugs 40(3):364-373. 

8. Moritz AR & Henriques FC (1947) Studies of Thermal Injury: II. The Relative 
Importance of Time and Surface Temperature in the Causation of Cutaneous Burns. 
Am J Pathol 23(5):695-720. 

9. Evers LH, Bhavsar D, & Mailander P (2010) The biology of burn injury. Experimental 
dermatology 19(9):777-783. 

10. Gibran NS & Heimbach DM (2000) Current status of burn wound pathophysiology. 
Clinics in plastic surgery 27(1):11-22. 

11. Jackson DM (1953) [The diagnosis of the depth of burning]. Br J Surg 40(164):588-
596. 

12. Al-Ghoul WM, Khan M, Fazal N, & Sayeed MM (2004) Mechanisms of postburn 
intestinal barrier dysfunction in the rat: roles of epithelial cell renewal, E-cadherin, 
and neutrophil extravasation. Critical care medicine 32(8):1730-1739. 

13. Lund T, Onarheim H, & Reed RK (1992) Pathogenesis of edema formation in burn 
injuries. World journal of surgery 16(1):2-9. 

14. Pellegrini JD, et al. (2000) Relationships between T lymphocyte apoptosis and 
anergy following trauma. The Journal of surgical research 88(2):200-206. 

15. Tredget EE & Yu YM (1992) The metabolic effects of thermal injury. World journal of 
surgery 16(1):68-79. 

16. Carter EA, Udall JN, Kirkham SE, & Walker WA (1986) Thermal injury and 
gastrointestinal function. I. Small intestinal nutrient absorption and DNA synthesis. 
The Journal of burn care & rehabilitation 7(6):469-474. 

17. Cakir B & Yegen BC (2004) Systemic Responses to Burn Injury. Turk J Med Sci 
34:215-226. 

18. Czaja AJ, McAlhany JC, & Pruitt BA, Jr. (1974) Acute gastroduodenal disease after 
thermal injury. An endoscopic evaluation of incidence and natural history. The New 
England journal of medicine 291(18):925-929. 

19. Maejima K, Deitch EA, & Berg RD (1984) Bacterial translocation from the 
gastrointestinal tracts of rats receiving thermal injury. Infection and immunity 
43(1):6-10. 



II 
 

20. Ziegler TR, Smith RJ, O'Dwyer ST, Demling RH, & Wilmore DW (1988) Increased 
intestinal permeability associated with infection in burn patients. Archives of 
surgery 123(11):1313-1319. 

21. Deitch EA (1990) Intestinal permeability is increased in burn patients shortly after 
injury. Surgery 107(4):411-416. 

22. Magnotti LJ & Deitch EA (2005) Burns, bacterial translocation, gut barrier function, 
and failure. The Journal of burn care & rehabilitation 26(5):383-391. 

23. Chen LW, Hsu CM, Wang JS, Chen JS, & Chen SC (1998) Specific inhibition of iNOS 
decreases the intestinal mucosal peroxynitrite level and improves the barrier 
function after thermal injury. Burns 24(8):699-705. 

24. Zhang C, et al. (2004) The role of oxygen-free radical in the apoptosis of enterocytes 
in scalded rats after delayed resuscitation. The Journal of trauma 56(3):611-617. 

25. Moore KW, de Waal Malefyt R, Coffman RL, & O'Garra A (2001) Interleukin-10 and 
the interleukin-10 receptor. Annual review of immunology 19:683-765. 

26. Rivas JM & Ullrich SE (1994) The role of IL-4, IL-10, and TNF-alpha in the immune 
suppression induced by ultraviolet radiation. Journal of leukocyte biology 56(6):769-
775. 

27. Angele MK & Faist E (2002) Clinical review: immunodepression in the surgical 
patient and increased susceptibility to infection. Critical care 6(4):298-305. 

28. Lederer JA, Rodrick ML, & Mannick JA (1999) The effects of injury on the adaptive 
immune response. Shock 11(3):153-159. 

29. Yamada Y, et al. (2000) Tumor necrosis factor-alpha and tumor necrosis factor 
receptor I, II levels in patients with severe burns. Burns 26(3):239-244. 

30. Moran K & Munster AM (1987) Alterations of the host defense mechanism in 
burned patients. The Surgical clinics of North America 67(1):47-56. 

31. Xing Z, et al. (1998) IL-6 is an antiinflammatory cytokine required for controlling 
local or systemic acute inflammatory responses. The Journal of clinical investigation 
101(2):311-320. 

32. Gosain A & Gamelli RL (2005) A primer in cytokines. The Journal of burn care & 
rehabilitation 26(1):7-12. 

33. Edwards-Jones V, Greenwood JE, & Manchester Burns Research G (2003) What's 
new in burn microbiology? James Laing Memorial Prize Essay 2000. Burns 29(1):15-
24. 

34. Ramirez F, Fowell DJ, Puklavec M, Simmonds S, & Mason D (1996) Glucocorticoids 
promote a TH2 cytokine response by CD4+ T cells in vitro. Journal of immunology 
156(7):2406-2412. 

35. Faist E, et al. (1986) Depression of cellular immunity after major injury. Its 
association with posttraumatic complications and its reversal with 
immunomodulation. Archives of surgery 121(9):1000-1005. 

36. Goebel A, et al. (2000) Injury induces deficient interleukin-12 production, but 
interleukin-12 therapy after injury restores resistance to infection. Annals of 
surgery 231(2):253-261. 

37. DiPiro JT, et al. (1995) Association of interleukin-4 plasma levels with traumatic 
injury and clinical course. Archives of surgery 130(11):1159-1162; discussion 1162-
1153. 

38. Essner R, Rhoades K, McBride WH, Morton DL, & Economou JS (1989) IL-4 down-
regulates IL-1 and TNF gene expression in human monocytes. Journal of 
immunology 142(11):3857-3861. 



III 
 

39. Fiorentino DF, Zlotnik A, Mosmann TR, Howard M, & O'Garra A (1991) IL-10 inhibits 
cytokine production by activated macrophages. Journal of immunology 
147(11):3815-3822. 

40. Hart PH, et al. (1989) Potential antiinflammatory effects of interleukin 4: 
suppression of human monocyte tumor necrosis factor alpha, interleukin 1, and 
prostaglandin E2. Proceedings of the National Academy of Sciences of the United 
States of America 86(10):3803-3807. 

41. Church D, Elsayed S, Reid O, Winston B, & Lindsay R (2006) Burn wound infections. 
Clinical microbiology reviews 19(2):403-434. 

42. Grogan JB (1976) Suppressed in vitro chemotaxis of burn neutrophils. The Journal of 
trauma 16(12):985-988. 

43. Butler KL, et al. (2010) Burn injury reduces neutrophil directional migration speed in 
microfluidic devices. PloS one 5(7):e11921. 

44. Schwacha MG (2003) Macrophages and post-burn immune dysfunction. Burns 
29(1):1-14. 

45. Loose LD & Turinsky J (1979) Macrophage dysfunction after burn injury. Infection 
and immunity 26(1):157-162. 

46. Kupper TS, Green DR, Durum SK, & Baker CC (1985) Defective antigen presentation 
to a cloned T helper cell by macrophages from burned mice can be restored with 
interleukin-1. Surgery 98(2):199-206. 

47. Bowler PG, Duerden BI, & Armstrong DG (2001) Wound microbiology and 
associated approaches to wound management. Clinical microbiology reviews 
14(2):244-269. 

48. Erol S, Altoparlak U, Akcay MN, Celebi F, & Parlak M (2004) Changes of microbial 
flora and wound colonization in burned patients. Burns 30(4):357-361. 

49. Mayhall CG (2003) The epidemiology of burn wound infections: then and now. 
Clinical infectious diseases : an official publication of the Infectious Diseases Society 
of America 37(4):543-550. 

50. Engrav LH, Heimbach DM, Reus JL, Harnar TJ, & Marvin JA (1983) Early excision and 
grafting vs. nonoperative treatment of burns of indeterminant depth: a randomized 
prospective study. The Journal of trauma 23(11):1001-1004. 

51. Gray DT, et al. (1982) Early surgical excision versus conventional therapy in patients 
with 20 to 40 percent burns. A comparative study. American journal of surgery 
144(1):76-80. 

52. Vindenes H & Bjerknes R (1995) Microbial colonization of large wounds. Burns 
21(8):575-579. 

53. Luterman A, Dacso CC, & Curreri PW (1986) Infections in burn patients. The 
American journal of medicine 81(1A):45-52. 

54. Mooney DP & Gamelli RL (1989) Sepsis following thermal injury. Comprehensive 
therapy 15(9):22-29. 

55. Nasser S, Mabrouk A, & Maher A (2003) Colonization of burn wounds in Ain Shams 
University Burn Unit. Burns 29(3):229-233. 

56. Pruitt BA, Jr., McManus AT, Kim SH, & Goodwin CW (1998) Burn wound infections: 
current status. World journal of surgery 22(2):135-145. 

57. Altoparlak U, Erol S, Akcay MN, Celebi F, & Kadanali A (2004) The time-related 
changes of antimicrobial resistance patterns and predominant bacterial profiles of 
burn wounds and body flora of burned patients. Burns 30(7):660-664. 

58. Cook N (1998) Methicillin-resistant Staphylococcus aureus versus the burn patient. 
Burns 24(2):91-98. 



IV 
 

59. Singh NP, et al. (2003) Changing trends in bacteriology of burns in the burns unit, 
Delhi, India. Burns 29(2):129-132. 

60. Prasanna M & Thomas C (1998) A profile of methicillin resistant Staphylococcus 
aureus infection in the burn center of the Sultanate of Oman. Burns 24(7):631-636. 

61. Dodd D & Stutman HR (1991) Current issues in burn wound infections. Advances in 
pediatric infectious diseases 6:137-162. 

62. Mason AD, Jr., McManus AT, & Pruitt BA, Jr. (1986) Association of burn mortality 
and bacteremia. A 25-year review. Archives of surgery 121(9):1027-1031. 

63. Daikos GL, Lolans VT, & Jackson GG (1988) Alterations in outer membrane proteins 
of Pseudomonas aeruginosa associated with selective resistance to quinolones. 
Antimicrobial agents and chemotherapy 32(5):785-787. 

64. Livermore DM (1995) beta-Lactamases in laboratory and clinical resistance. Clinical 
microbiology reviews 8(4):557-584. 

65. Poole K (2001) Multidrug efflux pumps and antimicrobial resistance in 
Pseudomonas aeruginosa and related organisms. Journal of molecular microbiology 
and biotechnology 3(2):255-264. 

66. Strateva T & Yordanov D (2009) Pseudomonas aeruginosa - a phenomenon of 
bacterial resistance. Journal of medical microbiology 58(Pt 9):1133-1148. 

67. Richards MJ, Edwards JR, Culver DH, & Gaynes RP (2000) Nosocomial infections in 
combined medical-surgical intensive care units in the United States. Infection 
control and hospital epidemiology : the official journal of the Society of Hospital 
Epidemiologists of America 21(8):510-515. 

68. Santucci SG, Gobara S, Santos CR, Fontana C, & Levin AS (2003) Infections in a burn 
intensive care unit: experience of seven years. The Journal of hospital infection 
53(1):6-13. 

69. Hodle AE, Richter KP, & Thompson RM (2006) Infection control practices in U.S. 
burn units. Journal of burn care & research : official publication of the American 
Burn Association 27(2):142-151. 

70. Wang Z, Rong XZ, Zhang T, & Liu LZ (2009) [Distribution and drug resistance analysis 
of bacteria in different wound infections]. Nan fang yi ke da xue xue bao = Journal 
of Southern Medical University 29(1):82-83, 89. 

71. Chim H, Tan BH, & Song C (2007) Five-year review of infections in a burn intensive 
care unit: High incidence of Acinetobacter baumannii in a tropical climate. Burns 
33(8):1008-1014. 

72. Becker WK, et al. (1991) Fungal burn wound infection. A 10-year experience. 
Archives of surgery 126(1):44-48. 

73. Guggenheim M, et al. (2009) Changes in bacterial isolates from burn wounds and 
their antibiograms: a 20-year study (1986-2005). Burns 35(4):553-560. 

74. Sato H, Okinaga K, & Saito H (1988) Role of pili in the pathogenesis of Pseudomonas 
aeruginosa burn infection. Microbiology and immunology 32(2):131-139. 

75. Rumbaugh KP, Griswold JA, Iglewski BH, & Hamood AN (1999) Contribution of 
quorum sensing to the virulence of Pseudomonas aeruginosa in burn wound 
infections. Infection and immunity 67(11):5854-5862. 

76. Pavlovskis OR & Wretlind B (1979) Assessment of protease (elastase) as a 
Pseudomonas aeruginosa virulence factor in experimental mouse burn infection. 
Infection and immunity 24(1):181-187. 

77. Bejarano PA, Langeveld JP, Hudson BG, & Noelken ME (1989) Degradation of 
basement membranes by Pseudomonas aeruginosa elastase. Infection and 
immunity 57(12):3783-3787. 



V 
 

78. Saelinger CB, Snell K, & Holder IA (1977) Experimental studies on the pathogenesis 
of infections due to Pseudomonas aeruginosa: direct evidence for toxin production 
during Pseudomonas infection of burned skin tissues. The Journal of infectious 
diseases 136(4):555-561. 

79. Diggle SP, et al. (2007) The Pseudomonas aeruginosa 4-quinolone signal molecules 
HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. 
Chemistry & biology 14(1):87-96. 

80. Diggle SP, et al. (2003) The Pseudomonas aeruginosa quinolone signal molecule 
overcomes the cell density-dependency of the quorum sensing hierarchy, regulates 
rhl-dependent genes at the onset of stationary phase and can be produced in the 
absence of LasR. Molecular microbiology 50(1):29-43. 

81. Kay E, et al. (2006) Two GacA-dependent small RNAs modulate the quorum-sensing 
response in Pseudomonas aeruginosa. Journal of bacteriology 188(16):6026-6033. 

82. Pesci EC, et al. (1999) Quinolone signaling in the cell-to-cell communication system 
of Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of 
the United States of America 96(20):11229-11234. 

83. Pesci EC, Pearson JP, Seed PC, & Iglewski BH (1997) Regulation of las and rhl 
quorum sensing in Pseudomonas aeruginosa. Journal of bacteriology 179(10):3127-
3132. 

84. Van Delden C & Iglewski BH (1998) Cell-to-cell signaling and Pseudomonas 
aeruginosa infections. Emerging infectious diseases 4(4):551-560. 

85. Venturi V (2006) Regulation of quorum sensing in Pseudomonas. FEMS 
microbiology reviews 30(2):274-291. 

86. Feldman M, et al. (1998) Role of flagella in pathogenesis of Pseudomonas 
aeruginosa pulmonary infection. Infection and immunity 66(1):43-51. 

87. van Schaik EJ, et al. (2005) DNA binding: a novel function of Pseudomonas 
aeruginosa type IV pili. Journal of bacteriology 187(4):1455-1464. 

88. Doig P, et al. (1988) Role of pili in adhesion of Pseudomonas aeruginosa to human 
respiratory epithelial cells. Infection and immunity 56(6):1641-1646. 

89. Burrows LL (2012) Pseudomonas aeruginosa twitching motility: type IV pili in 
action. Annual review of microbiology 66:493-520. 

90. Deziel E, Lepine F, Milot S, & Villemur R (2003) rhlA is required for the production of 
a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-
(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. 
Microbiology 149(Pt 8):2005-2013. 

91. Caiazza NC, Shanks RM, & O'Toole GA (2005) Rhamnolipids modulate swarming 
motility patterns of Pseudomonas aeruginosa. Journal of bacteriology 
187(21):7351-7361. 

92. Yates SP & Merrill AR (2004) Elucidation of eukaryotic elongation factor-2 contact 
sites within the catalytic domain of Pseudomonas aeruginosa exotoxin A. The 
Biochemical journal 379(Pt 3):563-572. 

93. Moller PC, et al. (1994) The effect of anti-exotoxin A on the adherence of 
Pseudomonas aeruginosa to hamster tracheal epithelial cells in vitro. Tissue & cell 
26(2):181-188. 

94. Ostroff RM & Vasil ML (1987) Identification of a new phospholipase C activity by 
analysis of an insertional mutation in the hemolytic phospholipase C structural gene 
of Pseudomonas aeruginosa. Journal of bacteriology 169(10):4597-4601. 

95. Nicas TI & Iglewski BH (1985) Contribution of exoenzyme S to the virulence of 
Pseudomonas aeruginosa. Antibiotics and chemotherapy 36:40-48. 



VI 
 

96. Priest NK, et al. (2012) From genotype to phenotype: can systems biology be used 
to predict Staphylococcus aureus virulence? Nature reviews. Microbiology 
10(11):791-797. 

97. Foster TJ (2004) The Staphylococcus aureus "superbug". The Journal of clinical 
investigation 114(12):1693-1696. 

98. Foster TJ & Hook M (1998) Surface protein adhesins of Staphylococcus aureus. 
Trends in microbiology 6(12):484-488. 

99. Foster TJ (2005) Immune evasion by staphylococci. Nature reviews. Microbiology 
3(12):948-958. 

100. Vandenesch F, Lina G, & Henry T (2012) Staphylococcus aureus hemolysins, bi-
component leukocidins, and cytolytic peptides: a redundant arsenal of membrane-
damaging virulence factors? Frontiers in cellular and infection microbiology 2:12. 

101. Stoodley P, Sauer K, Davies DG, & Costerton JW (2002) Biofilms as complex 
differentiated communities. Annual review of microbiology 56:187-209. 

102. Schaber JA, et al. (2007) Pseudomonas aeruginosa forms biofilms in acute infection 
independent of cell-to-cell signaling. Infection and immunity 75(8):3715-3721. 

103. Kennedy P, Brammah S, & Wills E (2010) Burns, biofilm and a new appraisal of burn 
wound sepsis. Burns 36(1):49-56. 

104. Trafny EA (1998) Susceptibility of adherent organisms from Pseudomonas 
aeruginosa and Staphylococcus aureus strains isolated from burn wounds to 
antimicrobial agents. International journal of antimicrobial agents 10(3):223-228. 

105. O'Toole G, Kaplan HB, & Kolter R (2000) Biofilm formation as microbial 
development. Annual review of microbiology 54:49-79. 

106. O'Toole GA, Gibbs KA, Hager PW, Phibbs PV, Jr., & Kolter R (2000) The global carbon 
metabolism regulator Crc is a component of a signal transduction pathway required 
for biofilm development by Pseudomonas aeruginosa. Journal of bacteriology 
182(2):425-431. 

107. Morgan R, Kohn S, Hwang SH, Hassett DJ, & Sauer K (2006) BdlA, a chemotaxis 
regulator essential for biofilm dispersion in Pseudomonas aeruginosa. Journal of 
bacteriology 188(21):7335-7343. 

108. Klausen M, et al. (2003) Biofilm formation by Pseudomonas aeruginosa wild type, 
flagella and type IV pili mutants. Molecular microbiology 48(6):1511-1524. 

109. Makin SA & Beveridge TJ (1996) The influence of A-band and B-band 
lipopolysaccharide on the surface characteristics and adhesion of Pseudomonas 
aeruginosa to surfaces. Microbiology 142 ( Pt 2):299-307. 

110. Branda SS, Vik S, Friedman L, & Kolter R (2005) Biofilms: the matrix revisited. Trends 
in microbiology 13(1):20-26. 

111. Garrett ES, Perlegas D, & Wozniak DJ (1999) Negative control of flagellum synthesis 
in Pseudomonas aeruginosa is modulated by the alternative sigma factor AlgT 
(AlgU). Journal of bacteriology 181(23):7401-7404. 

112. Ma L, et al. (2009) Assembly and development of the Pseudomonas aeruginosa 
biofilm matrix. PLoS pathogens 5(3):e1000354. 

113. Ryder C, Byrd M, & Wozniak DJ (2007) Role of polysaccharides in Pseudomonas 
aeruginosa biofilm development. Current opinion in microbiology 10(6):644-648. 

114. Leid JG, et al. (2005) The exopolysaccharide alginate protects Pseudomonas 
aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. Journal 
of immunology 175(11):7512-7518. 

115. Matsukawa M & Greenberg EP (2004) Putative exopolysaccharide synthesis genes 
influence Pseudomonas aeruginosa biofilm development. Journal of bacteriology 
186(14):4449-4456. 



VII 
 

116. Vasseur P, Vallet-Gely I, Soscia C, Genin S, & Filloux A (2005) The pel genes of the 
Pseudomonas aeruginosa PAK strain are involved at early and late stages of biofilm 
formation. Microbiology 151(Pt 3):985-997. 

117. Whitchurch CB, Tolker-Nielsen T, Ragas PC, & Mattick JS (2002) Extracellular DNA 
required for bacterial biofilm formation. Science 295(5559):1487. 

118. Sakuragi Y & Kolter R (2007) Quorum-sensing regulation of the biofilm matrix genes 
(pel) of Pseudomonas aeruginosa. Journal of bacteriology 189(14):5383-5386. 

119. Davey ME, Caiazza NC, & O'Toole GA (2003) Rhamnolipid surfactant production 
affects biofilm architecture in Pseudomonas aeruginosa PAO1. Journal of 
bacteriology 185(3):1027-1036. 

120. Pamp SJ & Tolker-Nielsen T (2007) Multiple roles of biosurfactants in structural 
biofilm development by Pseudomonas aeruginosa. Journal of bacteriology 
189(6):2531-2539. 

121. Boles BR, Thoendel M, & Singh PK (2005) Rhamnolipids mediate detachment of 
Pseudomonas aeruginosa from biofilms. Molecular microbiology 57(5):1210-1223. 

122. Patti JM, Allen BL, McGavin MJ, & Hook M (1994) MSCRAMM-mediated adherence 
of microorganisms to host tissues. Annual review of microbiology 48:585-617. 

123. Otto M (2008) Staphylococcal biofilms. Current topics in microbiology and 
immunology 322:207-228. 

124. Cramton SE, Gerke C, Schnell NF, Nichols WW, & Gotz F (1999) The intercellular 
adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm 
formation. Infection and immunity 67(10):5427-5433. 

125. Vuong C, et al. (2004) A crucial role for exopolysaccharide modification in bacterial 
biofilm formation, immune evasion, and virulence. The Journal of biological 
chemistry 279(52):54881-54886. 

126. Rohde H, et al. (2005) Induction of Staphylococcus epidermidis biofilm formation 
via proteolytic processing of the accumulation-associated protein by staphylococcal 
and host proteases. Molecular microbiology 55(6):1883-1895. 

127. Hussain M, Herrmann M, von Eiff C, Perdreau-Remington F, & Peters G (1997) A 
140-kilodalton extracellular protein is essential for the accumulation of 
Staphylococcus epidermidis strains on surfaces. Infection and immunity 65(2):519-
524. 

128. Periasamy S, et al. (2012) How Staphylococcus aureus biofilms develop their 
characteristic structure. Proceedings of the National Academy of Sciences of the 
United States of America 109(4):1281-1286. 

129. Valdez JC, Peral MC, Rachid M, Santana M, & Perdigon G (2005) Interference of 
Lactobacillus plantarum with Pseudomonas aeruginosa in vitro and in infected 
burns: the potential use of probiotics in wound treatment. Clinical microbiology and 
infection : the official publication of the European Society of Clinical Microbiology 
and Infectious Diseases 11(6):472-479. 

130. Shakespeare P (2001) Burn wound healing and skin substitutes. Burns 27(5):517-
522. 

131. Dunn K & Edwards-Jones V (2004) The role of Acticoat (TM) with nanocrystalline 
silver in the management of burns. Burns 30:S1-S9. 

132. Yin HQ, Langford R, & Burrell RE (1999) Comparative evaluation of the antimicrobial 
activity of ACTICOAT* Antimicrobial Barrier Dressing. Journal of Burn Care & 
Rehabilitation 20(3):195-200. 

133. Lansdown AB (2002) Silver. I: Its antibacterial properties and mechanism of action. 
Journal of wound care 11(4):125-130. 



VIII 
 

134. Poon VK & Burd A (2004) In vitro cytotoxity of silver: implication for clinical wound 
care. Burns 30(2):140-147. 

135. Roberts RR, et al. (2009) Hospital and societal costs of antimicrobial-resistant 
infections in a Chicago teaching hospital: implications for antibiotic stewardship. 
Clinical infectious diseases : an official publication of the Infectious Diseases Society 
of America 49(8):1175-1184. 

136. Murphy PS & Evans GR (2012) Advances in wound healing: a review of current 
wound healing products. Plastic surgery international 2012:190436. 

137. Boateng JS, Matthews KH, Stevens HN, & Eccleston GM (2008) Wound healing 
dressings and drug delivery systems: a review. Journal of pharmaceutical sciences 
97(8):2892-2923. 

138. Jones I, Currie L, & Martin R (2002) A guide to biological skin substitutes. British 
journal of plastic surgery 55(3):185-193. 

139. Lang EM, Eiberg CA, Brandis M, & Stark GB (2005) Biobrane in the treatment of 
burn and scald injuries in children. Annals of plastic surgery 55(5):485-489. 

140. Lal S, et al. (2000) Biobrane improves wound healing in burned children without 
increased risk of infection. Shock 14(3):314-318; discussion 318-319. 

141. Kumar RJ, Kimble RM, Boots R, & Pegg SP (2004) Treatment of partial-thickness 
burns: a prospective, randomized trial using Transcyte. ANZ journal of surgery 
74(8):622-626. 

142. Hubik DJ, Wasiak J, Paul E, & Cleland H (2011) Biobrane: a retrospective analysis of 
outcomes at a specialist adult burns centre. Burns 37(4):594-600. 

143. Steer JA, Papini RP, Wilson AP, McGrouther DA, & Parkhouse N (1996) Quantitative 
microbiology in the management of burn patients. II. Relationship between 
bacterial counts obtained by burn wound biopsy culture and surface alginate swab 
culture, with clinical outcome following burn surgery and change of dressings. 
Burns 22(3):177-181. 

144. Steer JA, Papini RP, Wilson AP, McGrouther DA, & Parkhouse N (1996) Quantitative 
microbiology in the management of burn patients. I. Correlation between 
quantitative and qualitative burn wound biopsy culture and surface alginate swab 
culture. Burns 22(3):173-176. 

145. Gelfand JA (1984) Infections in burn patients: a paradigm for cutaneous infection in 
the patient at risk. The American journal of medicine 76(5A):158-165. 

146. Szoka F, Jr. & Papahadjopoulos D (1980) Comparative properties and methods of 
preparation of lipid vesicles (liposomes). Annual review of biophysics and 
bioengineering 9:467-508. 

147. Orynbayeva Z, et al. (2007) Vaccinia virus interactions with the cell membrane 
studied by new chromatic vesicle and cell sensor assays. Journal of virology 
81(3):1140-1147. 

148. Vidal M & Hoekstra D (1995) In vitro fusion of reticulocyte endocytic vesicles with 
liposomes. The Journal of biological chemistry 270(30):17823-17829. 

149. Valeva A, et al. (2006) Evidence that clustered phosphocholine head groups serve 
as sites for binding and assembly of an oligomeric protein pore. The Journal of 
biological chemistry 281(36):26014-26021. 

150. Gauduchon V, Werner S, Prevost G, Monteil H, & Colin DA (2001) Flow cytometric 
determination of Panton-Valentine leucocidin S component binding. Infection and 
immunity 69(4):2390-2395. 

151. Ferreras M, et al. (1998) The interaction of Staphylococcus aureus bi-component 
gamma-hemolysins and leucocidins with cells and lipid membranes. Biochimica et 
biophysica acta 1414(1-2):108-126. 



IX 
 

152. Gemmell CG, Peterson PK, Townsend K, Quie PG, & Kim Y (1982) Biological effects 
of the interaction of staphylococcal alpha-toxin with human serum. Infection and 
immunity 38(3):981-985. 

153. Watanabe M, Tomita T, & Yasuda T (1987) Membrane-damaging action of 
staphylococcal alpha-toxin on phospholipid-cholesterol liposomes. Biochimica et 
biophysica acta 898(3):257-265. 

154. Immordino ML, Dosio F, & Cattel L (2006) Stealth liposomes: review of the basic 
science, rationale, and clinical applications, existing and potential. International 
journal of nanomedicine 1(3):297-315. 

155. Schoen P, Chonn A, Cullis PR, Wilschut J, & Scherrer P (1999) Gene transfer 
mediated by fusion protein hemagglutinin reconstituted in cationic lipid vesicles. 
Gene therapy 6(5):823-832. 

156. Tanford C (1978) The hydrophobic effect and the organization of living matter. 
Science 200(4345):1012-1018. 

157. Israelachvili JN, Mitchell DJ, & Ninham BW (1976) Theory of Self-Assembly of 
Hydrocarbon Amphiphiles into Micelles and Bilayers. J Chem Soc Farad T 2 72:1525-
1568. 

158. Luckey M (2008) Membrane structural biology: with biochemical and biophysical 
foundations Cambridge University Press. 

159. Nagle JF & Tristram-Nagle S (2000) Structure of lipid bilayers. Biochimica et 
biophysica acta 1469(3):159-195. 

160. Luzzati V & Tardieu A (1974) Lipid Phases: Structure and Structural Transitions 
Annual Review of Physical Chemistry 25:79-94. 

161. Kornberg RD & McConnell HM (1971) Inside-outside transitions of phospholipids in 
vesicle membranes. Biochemistry 10(7):1111-1120. 

162. Rawicz W, Olbrich KC, McIntosh T, Needham D, & Evans E (2000) Effect of chain 
length and unsaturation on elasticity of lipid bilayers. Biophysical journal 79(1):328-
339. 

163. Akbarzadeh A, et al. (2013) Liposome: classification, preparation, and applications. 
Nanoscale research letters 8(1):102. 

164. Traikia M, Warschawski DE, Recouvreur M, Cartaud J, & Devaux PF (2000) 
Formation of unilamellar vesicles by repetitive freeze-thaw cycles: characterization 
by electron microscopy and 31P-nuclear magnetic resonance. European biophysics 
journal : EBJ 29(3):184-195. 

165. Zhou J, et al. (2011) Development of a prototype wound dressing technology which 
can detect and report colonization by pathogenic bacteria. Biosensors & 
bioelectronics 30(1):67-72. 

166. Corvera E, Mouritsen OG, Singer MA, & Zuckermann MJ (1992) The permeability 
and the effect of acyl-chain length for phospholipid bilayers containing cholesterol: 
theory and experiment. Biochimica et biophysica acta 1107(2):261-270. 

167. Chen RF & Knutson JR (1988) Mechanism of fluorescence concentration quenching 
of carboxyfluorescein in liposomes: energy transfer to nonfluorescent dimers. 
Analytical biochemistry 172(1):61-77. 

168. Wang XQ, Duan XM, Liu LH, Fang YQ, & Tan Y (2005) Carboxyfluorescein diacetate 
succinimidyl ester fluorescent dye for cell labeling. Acta biochimica et biophysica 
Sinica 37(6):379-385. 

169. Ogston A (1882) Micrococcus Poisoning. Journal of anatomy and physiology 17(Pt 
1):24-58. 

170. Kaito C & Sekimizu K (2007) Colony spreading in Staphylococcus aureus. Journal of 
bacteriology 189(6):2553-2557. 



X 
 

171. Tsompanidou E, et al. (2011) Requirement of the agr locus for colony spreading of 
Staphylococcus aureus. Journal of bacteriology 193(5):1267-1272. 

172. Clauditz A, Resch A, Wieland KP, Peschel A, & Gotz F (2006) Staphyloxanthin plays a 
role in the fitness of Staphylococcus aureus and its ability to cope with oxidative 
stress. Infection and immunity 74(8):4950-4953. 

173. Pelz A, et al. (2005) Structure and biosynthesis of staphyloxanthin from 
Staphylococcus aureus. The Journal of biological chemistry 280(37):32493-32498. 

174. Tzagoloff H & Novick R (1977) Geometry of cell division in Staphylococcus aureus. 
Journal of bacteriology 129(1):343-350. 

175. Schmitt M, Schuler-Schmid U, & Schmidt-Lorenz W (1990) Temperature limits of 
growth, TNase and enterotoxin production of Staphylococcus aureus strains 
isolated from foods. International journal of food microbiology 11(1):1-19. 

176. Prescott LM, Harley JP, & Klein DA (2005) Microbiology. McGraw-Hill (sixth edition). 
177. Lindsay JA & Holden MT (2006) Understanding the rise of the superbug: 

investigation of the evolution and genomic variation of Staphylococcus aureus. 
Functional & integrative genomics 6(3):186-201. 

178. Holden MT, et al. (2010) Genome sequence of a recently emerged, highly 
transmissible, multi-antibiotic- and antiseptic-resistant variant of methicillin-
resistant Staphylococcus aureus, sequence type 239 (TW). Journal of bacteriology 
192(3):888-892. 

179. Lindsay JA & Holden MT (2004) Staphylococcus aureus: superbug, super genome? 
Trends in microbiology 12(8):378-385. 

180. Castillo-Ramirez S, et al. (2012) Phylogeographic variation in recombination rates 
within a global clone of methicillin-resistant Staphylococcus aureus. Genome 
biology 13(12):R126. 

181. Gouy M & Gautier C (1982) Codon usage in bacteria: correlation with gene 
expressivity. Nucleic acids research 10(22):7055-7074. 

182. Dufour P, et al. (2002) High genetic variability of the agr locus in Staphylococcus 
species. Journal of bacteriology 184(4):1180-1186. 

183. Novick RP, et al. (1995) The agr P2 operon: an autocatalytic sensory transduction 
system in Staphylococcus aureus. Molecular & general genetics : MGG 248(4):446-
458. 

184. Ji G, Beavis R, & Novick RP (1997) Bacterial interference caused by autoinducing 
peptide variants. Science 276(5321):2027-2030. 

185. Shittu AO, Udo EE, & Lin J (2007) Insights on virulence and antibiotic resistance: A 
review of the Accessory genome of S. aureus. Wounds 19(9):237-244. 

186. Thomas CM & Nielsen KM (2005) Mechanisms of, and barriers to, horizontal gene 
transfer between bacteria. Nature reviews. Microbiology 3(9):711-721. 

187. Morikawa K, et al. (2003) A new staphylococcal sigma factor in the conserved gene 
cassette: functional significance and implication for the evolutionary processes. 
Genes to cells : devoted to molecular & cellular mechanisms 8(8):699-712. 

188. Morikawa K, et al. (2012) Expression of a cryptic secondary sigma factor gene 
unveils natural competence for DNA transformation in Staphylococcus aureus. PLoS 
pathogens 8(11):e1003003. 

189. Lindsay JA (2014) Staphylococcus aureus genomics and the impact of horizontal 
gene transfer. International journal of medical microbiology : IJMM 304(2):103-109. 

190. Guglielmini J, de la Cruz F, & Rocha EP (2013) Evolution of conjugation and type IV 
secretion systems. Molecular biology and evolution 30(2):315-331. 



XI 
 

191. McCarthy AJ & Lindsay JA (2012) The distribution of plasmids that carry virulence 
and resistance genes in Staphylococcus aureus is lineage associated. BMC 
microbiology 12:104. 

192. Kaneko J, Kimura T, Narita S, Tomita T, & Kamio Y (1998) Complete nucleotide 
sequence and molecular characterization of the temperate staphylococcal 
bacteriophage phiPVL carrying Panton-Valentine leukocidin genes. Gene 215(1):57-
67. 

193. Betley MJ & Mekalanos JJ (1985) Staphylococcal enterotoxin A is encoded by 
phage. Science 229(4709):185-187. 

194. Yamaguchi T, et al. (2000) Phage conversion of exfoliative toxin A production in 
Staphylococcus aureus. Molecular microbiology 38(4):694-705. 

195. Novick RP, Christie GE, & Penades JR (2010) The phage-related chromosomal 
islands of Gram-positive bacteria. Nature reviews. Microbiology 8(8):541-551. 

196. Ruzin A, Lindsay J, & Novick RP (2001) Molecular genetics of SaPI1--a mobile 
pathogenicity island in Staphylococcus aureus. Molecular microbiology 41(2):365-
377. 

197. de Haas CJ, et al. (2004) Chemotaxis inhibitory protein of Staphylococcus aureus, a 
bacterial antiinflammatory agent. The Journal of experimental medicine 199(5):687-
695. 

198. Rooijakkers SH, et al. (2005) Immune evasion by a staphylococcal complement 
inhibitor that acts on C3 convertases. Nature immunology 6(9):920-927. 

199. Dearborn AD & Dokland T (2012) Mobilization of pathogenicity islands by 
Staphylococcus aureus strain Newman bacteriophages. Bacteriophage 2(2):70-78. 

200. Khan SA & Novick RP (1983) Complete nucleotide sequence of pT181, a 
tetracycline-resistance plasmid from Staphylococcus aureus. Plasmid 10(3):251-259. 

201. Nucifora G, Chu L, Misra TK, & Silver S (1989) Cadmium resistance from 
Staphylococcus aureus plasmid pI258 cadA gene results from a cadmium-efflux 
ATPase. Proceedings of the National Academy of Sciences of the United States of 
America 86(10):3544-3548. 

202. Amagai M, et al. (2002) Staphylococcal exfoliative toxin B specifically cleaves 
desmoglein 1. The Journal of investigative dermatology 118(5):845-850. 

203. Novick RP (1987) Plasmid incompatibility. Microbiological reviews 51(4):381-395. 
204. Jensen LB, et al. (2010) A classification system for plasmids from enterococci and 

other Gram-positive bacteria. Journal of microbiological methods 80(1):25-43. 
205. Phillips S & Novick RP (1979) Tn554--a site-specific repressor-controlled transposon 

in Staphylococcus aureus. Nature 278(5703):476-478. 
206. Rowland SJ & Dyke KG (1989) Characterization of the staphylococcal beta-

lactamase transposon Tn552. The EMBO journal 8(9):2761-2773. 
207. Ubukata K, Nonoguchi R, Matsuhashi M, & Konno M (1989) Expression and 

inducibility in Staphylococcus aureus of the mecA gene, which encodes a 
methicillin-resistant S. aureus-specific penicillin-binding protein. Journal of 
bacteriology 171(5):2882-2885. 

208. Noto MJ, Kreiswirth BN, Monk AB, & Archer GL (2008) Gene acquisition at the 
insertion site for SCCmec, the genomic island conferring methicillin resistance in 
Staphylococcus aureus. Journal of bacteriology 190(4):1276-1283. 

209. International Working Group on the Classification of Staphylococcal Cassette 
Chromosome E (2009) Classification of staphylococcal cassette chromosome mec 
(SCCmec): guidelines for reporting novel SCCmec elements. Antimicrobial agents 
and chemotherapy 53(12):4961-4967. 



XII 
 

210. Gryczan TJ, Contente S, & Dubnau D (1978) Characterization of Staphylococcus 
aureus plasmids introduced by transformation into Bacillus subtilis. Journal of 
bacteriology 134(1):318-329. 

211. Chatterjee SS, et al. (2011) Distribution and regulation of the mobile genetic 
element-encoded phenol-soluble modulin PSM-mec in methicillin-resistant 
Staphylococcus aureus. PloS one 6(12):e28781. 

212. Kaito C, et al. (2008) A novel gene, fudoh, in the SCCmec region suppresses the 
colony spreading ability and virulence of Staphylococcus aureus. PloS one 
3(12):e3921. 

213. Kaito C, et al. (2013) Mobile genetic element SCCmec-encoded psm-mec RNA 
suppresses translation of agrA and attenuates MRSA virulence. PLoS pathogens 
9(4):e1003269. 

214. Kaito C, et al. (2011) Transcription and translation products of the cytolysin gene 
psm-mec on the mobile genetic element SCCmec regulate Staphylococcus aureus 
virulence. PLoS pathogens 7(2):e1001267. 

215. Queck SY, et al. (2008) RNAIII-independent target gene control by the agr quorum-
sensing system: insight into the evolution of virulence regulation in Staphylococcus 
aureus. Molecular cell 32(1):150-158. 

216. Queck SY, et al. (2009) Mobile genetic element-encoded cytolysin connects 
virulence to methicillin resistance in MRSA. PLoS pathogens 5(7):e1000533. 

217. Luong TT, Ouyang S, Bush K, & Lee CY (2002) Type 1 capsule genes of 
Staphylococcus aureus are carried in a staphylococcal cassette chromosome genetic 
element. Journal of bacteriology 184(13):3623-3629. 

218. Maiden MC, et al. (1998) Multilocus sequence typing: a portable approach to the 
identification of clones within populations of pathogenic microorganisms. 
Proceedings of the National Academy of Sciences of the United States of America 
95(6):3140-3145. 

219. Enright MC, Day NP, Davies CE, Peacock SJ, & Spratt BG (2000) Multilocus sequence 
typing for characterization of methicillin-resistant and methicillin-susceptible clones 
of Staphylococcus aureus. Journal of clinical microbiology 38(3):1008-1015. 

220. McDougal LK, et al. (2003) Pulsed-field gel electrophoresis typing of oxacillin-
resistant Staphylococcus aureus isolates from the United States: establishing a 
national database. Journal of clinical microbiology 41(11):5113-5120. 

221. Frenay HM, et al. (1996) Molecular typing of methicillin-resistant Staphylococcus 
aureus on the basis of protein A gene polymorphism. European journal of clinical 
microbiology & infectious diseases : official publication of the European Society of 
Clinical Microbiology 15(1):60-64. 

222. Deurenberg RH & Stobberingh EE (2008) The evolution of Staphylococcus aureus. 
Infection, genetics and evolution : journal of molecular epidemiology and 
evolutionary genetics in infectious diseases 8(6):747-763. 

223. Harris SR, et al. (2010) Evolution of MRSA during hospital transmission and 
intercontinental spread. Science 327(5964):469-474. 

224. Koser CU, et al. (2012) Rapid whole-genome sequencing for investigation of a 
neonatal MRSA outbreak. The New England journal of medicine 366(24):2267-2275. 

225. Harris SR, et al. (2013) Whole-genome sequencing for analysis of an outbreak of 
meticillin-resistant Staphylococcus aureus: a descriptive study. The Lancet infectious 
diseases 13(2):130-136. 

226. Feil EJ, et al. (2003) How clonal is Staphylococcus aureus? Journal of bacteriology 
185(11):3307-3316. 



XIII 
 

227. Enright MC, et al. (2002) The evolutionary history of methicillin-resistant 
Staphylococcus aureus (MRSA). Proceedings of the National Academy of Sciences of 
the United States of America 99(11):7687-7692. 

228. Grundmann H, Aires-de-Sousa M, Boyce J, & Tiemersma E (2006) Emergence and 
resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat. 
Lancet 368(9538):874-885. 

229. Wu S, Piscitelli C, de Lencastre H, & Tomasz A (1996) Tracking the evolutionary 
origin of the methicillin resistance gene: cloning and sequencing of a homologue of 
mecA from a methicillin susceptible strain of Staphylococcus sciuri. Microbial drug 
resistance 2(4):435-441. 

230. Wu SW, de Lencastre H, & Tomasz A (2001) Recruitment of the mecA gene 
homologue of Staphylococcus sciuri into a resistance determinant and expression 
of the resistant phenotype in Staphylococcus aureus. Journal of bacteriology 
183(8):2417-2424. 

231. Wielders CL, et al. (2001) In-vivo transfer of mecA DNA to Staphylococcus aureus 
[corrected]. Lancet 357(9269):1674-1675. 

232. Robinson DA & Enright MC (2003) Evolutionary models of the emergence of 
methicillin-resistant Staphylococcus aureus. Antimicrobial agents and 
chemotherapy 47(12):3926-3934. 

233. Sanches IS, et al. (1995) Evidence for the geographic spread of a methicillin-
resistant Staphylococcus aureus clone between Portugal and Spain. Journal of 
clinical microbiology 33(5):1243-1246. 

234. Feil EJ, et al. (2008) Rapid detection of the pandemic methicillin-resistant 
Staphylococcus aureus clone ST 239, a dominant strain in Asian hospitals. Journal of 
clinical microbiology 46(4):1520-1522. 

235. Roundtree P & Freeman V (1955) Infections caused by a particular phage type of 
Staphylococcus aureus. The Medical Journal of Australia 42:157-161. 

236. Robinson DA, et al. (2005) Re-emergence of early pandemic Staphylococcus aureus 
as a community-acquired meticillin-resistant clone. Lancet 365(9466):1256-1258. 

237. DeLeo FR, et al. (2011) Molecular differentiation of historic phage-type 80/81 and 
contemporary epidemic Staphylococcus aureus. Proceedings of the National 
Academy of Sciences of the United States of America 108(44):18091-18096. 

238. Rudkin JK, et al. (2012) Methicillin resistance reduces the virulence of healthcare-
associated methicillin-resistant Staphylococcus aureus by interfering with the agr 
quorum sensing system. The Journal of infectious diseases 205(5):798-806. 

239. Johnson AP, et al. (2001) Dominance of EMRSA-15 and -16 among MRSA causing 
nosocomial bacteraemia in the UK: analysis of isolates from the European 
Antimicrobial Resistance Surveillance System (EARSS). The Journal of antimicrobial 
chemotherapy 48(1):143-144. 

240. Grundmann H, et al. (2010) Geographic distribution of Staphylococcus aureus 
causing invasive infections in Europe: a molecular-epidemiological analysis. PLoS 
medicine 7(1):e1000215. 

241. Holden MT, et al. (2013) A genomic portrait of the emergence, evolution, and 
global spread of a methicillin-resistant Staphylococcus aureus pandemic. Genome 
research 23(4):653-664. 

242. Li M, et al. (2012) MRSA epidemic linked to a quickly spreading colonization and 
virulence determinant. Nature medicine 18(5):816-819. 

243. Feng Y, et al. (2008) Evolution and pathogenesis of Staphylococcus aureus: lessons 
learned from genotyping and comparative genomics. FEMS microbiology reviews 
32(1):23-37. 



XIV 
 

244. Francois P, et al. (2008) Methicillin-resistant Staphylococcus aureus, Geneva, 
Switzerland, 1993-2005. Emerging infectious diseases 14(2):304-307. 

245. Taneike I, et al. (2006) Molecular nature of methicillin-resistant Staphylococcus 
aureus derived from explosive nosocomial outbreaks of the 1980s in Japan. FEBS 
letters 580(9):2323-2334. 

246. Roberts GA, et al. (2013) Impact of target site distribution for Type I restriction 
enzymes on the evolution of methicillin-resistant Staphylococcus aureus (MRSA) 
populations. Nucleic acids research 41(15):7472-7484. 

247. Williams RE (1963) Healthy carriage of Staphylococcus aureus: its prevalence and 
importance. Bacteriological reviews 27:56-71. 

248. Kluytmans J, van Belkum A, & Verbrugh H (1997) Nasal carriage of Staphylococcus 
aureus: epidemiology, underlying mechanisms, and associated risks. Clinical 
microbiology reviews 10(3):505-520. 

249. Peacock SJ, de Silva I, & Lowy FD (2001) What determines nasal carriage of 
Staphylococcus aureus? Trends in microbiology 9(12):605-610. 

250. Shuter J, Hatcher VB, & Lowy FD (1996) Staphylococcus aureus binding to human 
nasal mucin. Infection and immunity 64(1):310-318. 

251. von Eiff C, Becker K, Machka K, Stammer H, & Peters G (2001) Nasal carriage as a 
source of Staphylococcus aureus bacteremia. Study Group. The New England 
journal of medicine 344(1):11-16. 

252. Weinstein HJ (1959) The relation between the nasal-staphylococcal-carrier state 
and the incidence of postoperative complications. The New England journal of 
medicine 260(26):1303-1308. 

253. Luzar MA, et al. (1990) Staphylococcus aureus nasal carriage and infection in 
patients on continuous ambulatory peritoneal dialysis. The New England journal of 
medicine 322(8):505-509. 

254. Nguyen MH, et al. (1999) Nasal carriage of and infection with Staphylococcus 
aureus in HIV-infected patients. Annals of internal medicine 130(3):221-225. 

255. Yu VL, et al. (1986) Staphylococcus aureus nasal carriage and infection in patients 
on hemodialysis. Efficacy of antibiotic prophylaxis. The New England journal of 
medicine 315(2):91-96. 

256. Reagan DR, et al. (1991) Elimination of coincident Staphylococcus aureus nasal and 
hand carriage with intranasal application of mupirocin calcium ointment. Annals of 
internal medicine 114(2):101-106. 

257. Wertheim HF, et al. (2005) The role of nasal carriage in Staphylococcus aureus 
infections. The Lancet infectious diseases 5(12):751-762. 

258. Peacock SJ, et al. (2003) Determinants of acquisition and carriage of Staphylococcus 
aureus in infancy. Journal of clinical microbiology 41(12):5718-5725. 

259. Cole AM, et al. (2001) Determinants of Staphylococcus aureus nasal carriage. 
Clinical and diagnostic laboratory immunology 8(6):1064-1069. 

260. Lipsky BA, Pecoraro RE, Chen MS, & Koepsell TD (1987) Factors affecting 
staphylococcal colonization among NIDDM outpatients. Diabetes care 10(4):483-
486. 

261. van Belkum A, et al. (2009) Reclassification of Staphylococcus aureus nasal carriage 
types. The Journal of infectious diseases 199(12):1820-1826. 

262. Noble WC (1974) Carriage of Staphylococcus aureus and beta haemolytic 
streptococci in relation to race. Acta dermato-venereologica 54(5):403-405. 

263. Kaliner MA (1991) Human nasal respiratory secretions and host defense. The 
American review of respiratory disease 144(3 Pt 2):S52-56. 



XV 
 

264. Cole AM, Dewan P, & Ganz T (1999) Innate antimicrobial activity of nasal 
secretions. Infection and immunity 67(7):3267-3275. 

265. Pynnonen M, Stephenson RE, Schwartz K, Hernandez M, & Boles BR (2011) 
Hemoglobin promotes Staphylococcus aureus nasal colonization. PLoS pathogens 
7(7):e1002104. 

266. Schlievert PM, et al. (2007) Alpha and beta chains of hemoglobin inhibit production 
of Staphylococcus aureus exotoxins. Biochemistry 46(50):14349-14358. 

267. van den Akker EL, et al. (2006) Glucocorticoid receptor polymorphism affects 
transrepression but not transactivation. The Journal of clinical endocrinology and 
metabolism 91(7):2800-2803. 

268. Emonts M, et al. (2008) Host polymorphisms in interleukin 4, complement factor H, 
and C-reactive protein associated with nasal carriage of Staphylococcus aureus and 
occurrence of boils. The Journal of infectious diseases 197(9):1244-1253. 

269. Iwase T, et al. (2010) Staphylococcus epidermidis Esp inhibits Staphylococcus 
aureus biofilm formation and nasal colonization. Nature 465(7296):346-349. 

270. Mulcahy ME, et al. (2012) Nasal colonisation by Staphylococcus aureus depends 
upon clumping factor B binding to the squamous epithelial cell envelope protein 
loricrin. PLoS pathogens 8(12):e1003092. 

271. Wertheim HF, et al. (2008) Key role for clumping factor B in Staphylococcus aureus 
nasal colonization of humans. PLoS medicine 5(1):e17. 

272. Corrigan RM, Miajlovic H, & Foster TJ (2009) Surface proteins that promote 
adherence of Staphylococcus aureus to human desquamated nasal epithelial cells. 
BMC microbiology 9:22. 

273. Sanderson AR, Strominger JL, & Nathenson SG (1962) Chemical structure of teichoic 
acid from Staphylococcus aureus, strain Copenhagen. The Journal of biological 
chemistry 237:3603-3613. 

274. Weidenmaier C, et al. (2004) Role of teichoic acids in Staphylococcus aureus nasal 
colonization, a major risk factor in nosocomial infections. Nature medicine 
10(3):243-245. 

275. Lowy FD (1998) Staphylococcus aureus infections. The New England journal of 
medicine 339(8):520-532. 

276. Gordon RJ & Lowy FD (2008) Pathogenesis of methicillin-resistant Staphylococcus 
aureus infection. Clinical infectious diseases : an official publication of the Infectious 
Diseases Society of America 46 Suppl 5:S350-359. 

277. Klein E, Smith DL, & Laxminarayan R (2007) Hospitalizations and deaths caused by 
methicillin-resistant Staphylococcus aureus, United States, 1999-2005. Emerging 
infectious diseases 13(12):1840-1846. 

278. Richards MJ, Edwards JR, Culver DH, & Gaynes RP (1999) Nosocomial infections in 
medical intensive care units in the United States. National Nosocomial Infections 
Surveillance System. Critical care medicine 27(5):887-892. 

279. Naber CK (2009) Staphylococcus aureus bacteremia: epidemiology, 
pathophysiology, and management strategies. Clinical infectious diseases : an 
official publication of the Infectious Diseases Society of America 48 Suppl 4:S231-
237. 

280. Klein EY, Sun L, Smith DL, & Laxminarayan R (2013) The changing epidemiology of 
methicillin-resistant Staphylococcus aureus in the United States: a national 
observational study. American journal of epidemiology 177(7):666-674. 

281. Boucher HW & Corey GR (2008) Epidemiology of methicillin-resistant 
Staphylococcus aureus. Clinical infectious diseases : an official publication of the 
Infectious Diseases Society of America 46 Suppl 5:S344-349. 



XVI 
 

282. Klevens RM, et al. (2007) Invasive methicillin-resistant Staphylococcus aureus 
infections in the United States. JAMA 298(15):1763-1771. 

283. McCormick JK, Yarwood JM, & Schlievert PM (2001) Toxic shock syndrome and 
bacterial superantigens: an update. Annual review of microbiology 55:77-104. 

284. Ladhani S (2003) Understanding the mechanism of action of the exfoliative toxins of 
Staphylococcus aureus. FEMS immunology and medical microbiology 39(2):181-189. 

285. Lina G, et al. (1999) Involvement of Panton-Valentine leukocidin-producing 
Staphylococcus aureus in primary skin infections and pneumonia. Clinical infectious 
diseases : an official publication of the Infectious Diseases Society of America 
29(5):1128-1132. 

286. Diekema DJ, et al. (2004) Antimicrobial resistance trends and outbreak frequency in 
United States hospitals. Clinical infectious diseases : an official publication of the 
Infectious Diseases Society of America 38(1):78-85. 

287. Simoens S, Ophals E, & Schuermans A (2009) Search and destroy policy for 
methicillin-resistant Staphylococcus aureus: cost-benefit analysis. Journal of 
advanced nursing 65(9):1853-1859. 

288. Chambers HF (2001) The changing epidemiology of Staphylococcus aureus? 
Emerging infectious diseases 7(2):178-182. 

289. Chambers HF & Deleo FR (2009) Waves of resistance: Staphylococcus aureus in the 
antibiotic era. Nature reviews. Microbiology 7(9):629-641. 

290. Klein E, Smith DL, & Laxminarayan R (2009) Community-associated methicillin-
resistant Staphylococcus aureus in outpatients, United States, 1999-2006. Emerging 
infectious diseases 15(12):1925-1930. 

291. Kock R, et al. (2013) Livestock-associated methicillin-resistant Staphylococcus 
aureus (MRSA) as causes of human infection and colonization in Germany. PloS one 
8(2):e55040. 

292. Witte W (2009) Community-acquired methicillin-resistant Staphylococcus aureus: 
what do we need to know? Clinical microbiology and infection : the official 
publication of the European Society of Clinical Microbiology and Infectious Diseases 
15 Suppl 7:17-25. 

293. Miller LG, et al. (2007) Clinical and epidemiologic characteristics cannot distinguish 
community-associated methicillin-resistant Staphylococcus aureus infection from 
methicillin-susceptible S. aureus infection: a prospective investigation. Clinical 
infectious diseases : an official publication of the Infectious Diseases Society of 
America 44(4):471-482. 

294. Prev.) CCDC (1999) Four pediatric deaths from community-acquired methicillin 
resistant Staphylococcus aureus—Minnesota and North Dakota, 1997-1999. JAMA 
282:1123-1125. 

295. Mediavilla JR, Chen L, Mathema B, & Kreiswirth BN (2012) Global epidemiology of 
community-associated methicillin resistant Staphylococcus aureus (CA-MRSA). 
Current opinion in microbiology 15(5):588-595. 

296. Otto M (2010) Basis of virulence in community-associated methicillin-resistant 
Staphylococcus aureus. Annual review of microbiology 64:143-162. 

297. Fridkin SK, et al. (2005) Methicillin-resistant Staphylococcus aureus disease in three 
communities. The New England journal of medicine 352(14):1436-1444. 

298. Miller LG, et al. (2005) Necrotizing fasciitis caused by community-associated 
methicillin-resistant Staphylococcus aureus in Los Angeles. The New England journal 
of medicine 352(14):1445-1453. 

299. Baba T, et al. (2002) Genome and virulence determinants of high virulence 
community-acquired MRSA. Lancet 359(9320):1819-1827. 



XVII 
 

300. Lee SM, et al. (2007) Fitness cost of staphylococcal cassette chromosome mec in 
methicillin-resistant Staphylococcus aureus by way of continuous culture. 
Antimicrobial agents and chemotherapy 51(4):1497-1499. 

301. Otto M (2013) Community-associated MRSA: what makes them special? 
International journal of medical microbiology : IJMM 303(6-7):324-330. 

302. Vandenesch F, et al. (2003) Community-acquired methicillin-resistant 
Staphylococcus aureus carrying Panton-Valentine leukocidin genes: worldwide 
emergence. Emerging infectious diseases 9(8):978-984. 

303. Graves SF, et al. (2010) Relative contribution of Panton-Valentine leukocidin to 
PMN plasma membrane permeability and lysis caused by USA300 and USA400 
culture supernatants. Microbes and infection / Institut Pasteur 12(6):446-456. 

304. Bubeck Wardenburg J, Palazzolo-Ballance AM, Otto M, Schneewind O, & DeLeo FR 
(2008) Panton-Valentine leukocidin is not a virulence determinant in murine 
models of community-associated methicillin-resistant Staphylococcus aureus 
disease. The Journal of infectious diseases 198(8):1166-1170. 

305. Voyich JM, et al. (2006) Is Panton-Valentine leukocidin the major virulence 
determinant in community-associated methicillin-resistant Staphylococcus aureus 
disease? The Journal of infectious diseases 194(12):1761-1770. 

306. Brown EL, et al. (2009) The Panton-Valentine leukocidin vaccine protects mice 
against lung and skin infections caused by Staphylococcus aureus USA300. Clinical 
microbiology and infection : the official publication of the European Society of 
Clinical Microbiology and Infectious Diseases 15(2):156-164. 

307. Labandeira-Rey M, et al. (2007) Staphylococcus aureus Panton-Valentine leukocidin 
causes necrotizing pneumonia. Science 315(5815):1130-1133. 

308. Spaan AN, et al. (2013) The staphylococcal toxin Panton-Valentine Leukocidin 
targets human C5a receptors. Cell host & microbe 13(5):584-594. 

309. Loffler B, et al. (2010) Staphylococcus aureus panton-valentine leukocidin is a very 
potent cytotoxic factor for human neutrophils. PLoS pathogens 6(1):e1000715. 

310. Diep BA, et al. (2010) Polymorphonuclear leukocytes mediate Staphylococcus 
aureus Panton-Valentine leukocidin-induced lung inflammation and injury. 
Proceedings of the National Academy of Sciences of the United States of America 
107(12):5587-5592. 

311. Kobayashi SD, et al. (2011) Comparative analysis of USA300 virulence determinants 
in a rabbit model of skin and soft tissue infection. The Journal of infectious diseases 
204(6):937-941. 

312. Wang R, et al. (2007) Identification of novel cytolytic peptides as key virulence 
determinants for community-associated MRSA. Nature medicine 13(12):1510-1514. 

313. Li M, et al. (2009) Evolution of virulence in epidemic community-associated 
methicillin-resistant Staphylococcus aureus. Proceedings of the National Academy 
of Sciences of the United States of America 106(14):5883-5888. 

314. Bhakdi S & Tranum-Jensen J (1991) Alpha-toxin of Staphylococcus aureus. 
Microbiological reviews 55(4):733-751. 

315. Bubeck Wardenburg J, Bae T, Otto M, Deleo FR, & Schneewind O (2007) Poring over 
pores: alpha-hemolysin and Panton-Valentine leukocidin in Staphylococcus aureus 
pneumonia. Nature medicine 13(12):1405-1406. 

316. Cheung GY, Duong AC, & Otto M (2012) Direct and synergistic hemolysis caused by 
Staphylococcus phenol-soluble modulins: implications for diagnosis and 
pathogenesis. Microbes Infect 14(4):380-386. 



XVIII 
 

317. Joo HS, Cheung GY, & Otto M (2011) Antimicrobial activity of community-
associated methicillin-resistant Staphylococcus aureus is caused by phenol-soluble 
modulin derivatives. The Journal of biological chemistry 286(11):8933-8940. 

318. Cheung GY, Wang R, Khan BA, Sturdevant DE, & Otto M (2011) Role of the 
accessory gene regulator agr in community-associated methicillin-resistant 
Staphylococcus aureus pathogenesis. Infection and immunity 79(5):1927-1935. 

319. Witte W, Strommenger B, Cuny C, Heuck D, & Nuebel U (2007) Methicillin-resistant 
Staphylococcus aureus containing the Panton-Valentine leucocidin gene in Germany 
in 2005 and 2006. The Journal of antimicrobial chemotherapy 60(6):1258-1263. 

320. Patel M, et al. (2013) Successful control of nosocomial transmission of the USA300 
clone of community-acquired meticillin-resistant Staphylococcus aureus in a UK 
paediatric burns centre. The Journal of hospital infection 84(4):319-322. 

321. Reyes J, et al. (2009) Dissemination of methicillin-resistant Staphylococcus aureus 
USA300 sequence type 8 lineage in Latin America. Clinical infectious diseases : an 
official publication of the Infectious Diseases Society of America 49(12):1861-1867. 

322. Diep BA, et al. (2008) The arginine catabolic mobile element and staphylococcal 
chromosomal cassette mec linkage: convergence of virulence and resistance in the 
USA300 clone of methicillin-resistant Staphylococcus aureus. The Journal of 
infectious diseases 197(11):1523-1530. 

323. Moinard C, Cynober L, & de Bandt JP (2005) Polyamines: metabolism and 
implications in human diseases. Clinical nutrition 24(2):184-197. 

324. Zhang M, Wang H, & Tracey KJ (2000) Regulation of macrophage activation and 
inflammation by spermine: a new chapter in an old story. Critical care medicine 
28(4 Suppl):N60-66. 

325. Joshi GS, Spontak JS, Klapper DG, & Richardson AR (2011) Arginine catabolic mobile 
element encoded speG abrogates the unique hypersensitivity of Staphylococcus 
aureus to exogenous polyamines. Molecular microbiology 82(1):9-20. 

326. Thurlow LR, et al. (2013) Functional modularity of the arginine catabolic mobile 
element contributes to the success of USA300 methicillin-resistant Staphylococcus 
aureus. Cell host & microbe 13(1):100-107. 

327. Diep BA, et al. (2006) Complete genome sequence of USA300, an epidemic clone of 
community-acquired meticillin-resistant Staphylococcus aureus. Lancet 
367(9512):731-739. 

328. Chua KY, et al. (2014) Hyperexpression of alpha-hemolysin explains enhanced 
virulence of sequence type 93 community-associated methicillin-resistant 
Staphylococcus aureus. BMC microbiology 14:31. 

329. Novick RP (2003) Autoinduction and signal transduction in the regulation of 
staphylococcal virulence. Molecular microbiology 48(6):1429-1449. 

330. Yarwood JM & Schlievert PM (2003) Quorum sensing in Staphylococcus infections. 
The Journal of clinical investigation 112(11):1620-1625. 

331. Peng HL, Novick RP, Kreiswirth B, Kornblum J, & Schlievert P (1988) Cloning, 
characterization, and sequencing of an accessory gene regulator (agr) in 
Staphylococcus aureus. Journal of bacteriology 170(9):4365-4372. 

332. Mayville P, et al. (1999) Structure-activity analysis of synthetic autoinducing 
thiolactone peptides from Staphylococcus aureus responsible for virulence. 
Proceedings of the National Academy of Sciences of the United States of America 
96(4):1218-1223. 

333. Lina G, et al. (1998) Transmembrane topology and histidine protein kinase activity 
of AgrC, the agr signal receptor in Staphylococcus aureus. Molecular microbiology 
28(3):655-662. 



XIX 
 

334. Boisset S, et al. (2007) Staphylococcus aureus RNAIII coordinately represses the 
synthesis of virulence factors and the transcription regulator Rot by an antisense 
mechanism. Genes & development 21(11):1353-1366. 

335. Novick RP, et al. (1993) Synthesis of staphylococcal virulence factors is controlled 
by a regulatory RNA molecule. The EMBO journal 12(10):3967-3975. 

336. Morfeldt E, Taylor D, von Gabain A, & Arvidson S (1995) Activation of alpha-toxin 
translation in Staphylococcus aureus by the trans-encoded antisense RNA, RNAIII. 
The EMBO journal 14(18):4569-4577. 

337. Huntzinger E, et al. (2005) Staphylococcus aureus RNAIII and the endoribonuclease 
III coordinately regulate spa gene expression. The EMBO journal 24(4):824-835. 

338. Chevalier C, et al. (2010) Staphylococcus aureus RNAIII binds to two distant regions 
of coa mRNA to arrest translation and promote mRNA degradation. PLoS pathogens 
6(3):e1000809. 

339. Kuroda M, et al. (2003) Two-component system VraSR positively modulates the 
regulation of cell-wall biosynthesis pathway in Staphylococcus aureus. Molecular 
microbiology 49(3):807-821. 

340. Giraudo AT, Calzolari A, Cataldi AA, Bogni C, & Nagel R (1999) The sae locus of 
Staphylococcus aureus encodes a two-component regulatory system. FEMS 
microbiology letters 177(1):15-22. 

341. Steinhuber A, Goerke C, Bayer MG, Doring G, & Wolz C (2003) Molecular 
architecture of the regulatory Locus sae of Staphylococcus aureus and its impact on 
expression of virulence factors. Journal of bacteriology 185(21):6278-6286. 

342. Geiger T, Goerke C, Mainiero M, Kraus D, & Wolz C (2008) The virulence regulator 
Sae of Staphylococcus aureus: promoter activities and response to phagocytosis-
related signals. Journal of bacteriology 190(10):3419-3428. 

343. Giraudo AT, Cheung AL, & Nagel R (1997) The sae locus of Staphylococcus aureus 
controls exoprotein synthesis at the transcriptional level. Archives of microbiology 
168(1):53-58. 

344. Rogasch K, et al. (2006) Influence of the two-component system SaeRS on global 
gene expression in two different Staphylococcus aureus strains. Journal of 
bacteriology 188(22):7742-7758. 

345. Mainiero M, et al. (2010) Differential target gene activation by the Staphylococcus 
aureus two-component system saeRS. Journal of bacteriology 192(3):613-623. 

346. Flack CE, et al. (2014) Differential regulation of staphylococcal virulence by the 
sensor kinase SaeS in response to neutrophil-derived stimuli. Proceedings of the 
National Academy of Sciences of the United States of America 111(19):E2037-2045. 

347. Pragman AA, Yarwood JM, Tripp TJ, & Schlievert PM (2004) Characterization of 
virulence factor regulation by SrrAB, a two-component system in Staphylococcus 
aureus. Journal of bacteriology 186(8):2430-2438. 

348. Yarwood JM, McCormick JK, & Schlievert PM (2001) Identification of a novel two-
component regulatory system that acts in global regulation of virulence factors of 
Staphylococcus aureus. Journal of bacteriology 183(4):1113-1123. 

349. Pragman AA, Ji Y, & Schlievert PM (2007) Repression of Staphylococcus aureus 
SrrAB using inducible antisense srrA alters growth and virulence factor transcript 
levels. Biochemistry 46(1):314-321. 

350. Ulrich M, et al. (2007) The staphylococcal respiratory response regulator SrrAB 
induces ica gene transcription and polysaccharide intercellular adhesin expression, 
protecting Staphylococcus aureus from neutrophil killing under anaerobic growth 
conditions. Molecular microbiology 65(5):1276-1287. 



XX 
 

351. Richardson AR, Dunman PM, & Fang FC (2006) The nitrosative stress response of 
Staphylococcus aureus is required for resistance to innate immunity. Molecular 
microbiology 61(4):927-939. 

352. Kinkel TL, Roux CM, Dunman PM, & Fang FC (2013) The Staphylococcus aureus 
SrrAB two-component system promotes resistance to nitrosative stress and 
hypoxia. mBio 4(6):e00696-00613. 

353. Fournier B & Hooper DC (2000) A new two-component regulatory system involved 
in adhesion, autolysis, and extracellular proteolytic activity of Staphylococcus 
aureus. Journal of bacteriology 182(14):3955-3964. 

354. Fournier B, Klier A, & Rapoport G (2001) The two-component system ArlS-ArlR is a 
regulator of virulence gene expression in Staphylococcus aureus. Molecular 
microbiology 41(1):247-261. 

355. Fournier B & Klier A (2004) Protein A gene expression is regulated by DNA 
supercoiling which is modified by the ArlS-ArlR two-component system of 
Staphylococcus aureus. Microbiology 150(Pt 11):3807-3819. 

356. Walker JN, et al. (2013) The Staphylococcus aureus ArlRS two-component system is 
a novel regulator of agglutination and pathogenesis. PLoS pathogens 
9(12):e1003819. 

357. Brunskill EW & Bayles KW (1996) Identification of LytSR-regulated genes from 
Staphylococcus aureus. Journal of bacteriology 178(19):5810-5812. 

358. Brunskill EW & Bayles KW (1996) Identification and molecular characterization of a 
putative regulatory locus that affects autolysis in Staphylococcus aureus. Journal of 
bacteriology 178(3):611-618. 

359. Groicher KH, Firek BA, Fujimoto DF, & Bayles KW (2000) The Staphylococcus aureus 
lrgAB operon modulates murein hydrolase activity and penicillin tolerance. Journal 
of bacteriology 182(7):1794-1801. 

360. Xue T, You Y, Hong D, Sun H, & Sun B (2011) The Staphylococcus aureus KdpDE two-
component system couples extracellular K+ sensing and Agr signaling to infection 
programming. Infection and immunity 79(6):2154-2167. 

361. Yang SJ, et al. (2012) The Staphylococcus aureus two-component regulatory system, 
GraRS, senses and confers resistance to selected cationic antimicrobial peptides. 
Infection and immunity 80(1):74-81. 

362. Kraus D, et al. (2008) The GraRS regulatory system controls Staphylococcus aureus 
susceptibility to antimicrobial host defenses. BMC microbiology 8:85. 

363. Cheung AL, Koomey JM, Butler CA, Projan SJ, & Fischetti VA (1992) Regulation of 
exoprotein expression in Staphylococcus aureus by a locus (sar) distinct from agr. 
Proceedings of the National Academy of Sciences of the United States of America 
89(14):6462-6466. 

364. Manna AC, Bayer MG, & Cheung AL (1998) Transcriptional analysis of different 
promoters in the sar locus in Staphylococcus aureus. Journal of bacteriology 
180(15):3828-3836. 

365. Liu Y, et al. (2006) Structural and function analyses of the global regulatory protein 
SarA from Staphylococcus aureus. Proceedings of the National Academy of Sciences 
of the United States of America 103(7):2392-2397. 

366. Cheung AL, Bayer AS, Zhang G, Gresham H, & Xiong YQ (2004) Regulation of 
virulence determinants in vitro and in vivo in Staphylococcus aureus. FEMS 
immunology and medical microbiology 40(1):1-9. 

367. Chien Y & Cheung AL (1998) Molecular interactions between two global regulators, 
sar and agr, in Staphylococcus aureus. The Journal of biological chemistry 
273(5):2645-2652. 



XXI 
 

368. Reyes D, et al. (2011) Coordinated regulation by AgrA, SarA, and SarR to control agr 
expression in Staphylococcus aureus. Journal of bacteriology 193(21):6020-6031. 

369. Manna A & Cheung AL (2001) Characterization of sarR, a modulator of sar 
expression in Staphylococcus aureus. Infection and immunity 69(2):885-896. 

370. Cheung AL, Nishina KA, Trotonda MP, & Tamber S (2008) The SarA protein family of 
Staphylococcus aureus. The international journal of biochemistry & cell biology 
40(3):355-361. 

371. Said-Salim B, et al. (2003) Global regulation of Staphylococcus aureus genes by Rot. 
Journal of bacteriology 185(2):610-619. 

372. Cheung AL, Schmidt K, Bateman B, & Manna AC (2001) SarS, a SarA homolog 
repressible by agr, is an activator of protein A synthesis in Staphylococcus aureus. 
Infection and immunity 69(4):2448-2455. 

373. Li D & Cheung A (2008) Repression of hla by rot is dependent on sae in 
Staphylococcus aureus. Infection and immunity 76(3):1068-1075. 

374. Schmidt KA, Manna AC, & Cheung AL (2003) SarT influences sarS expression in 
Staphylococcus aureus. Infection and immunity 71(9):5139-5148. 

375. Manna AC & Cheung AL (2003) sarU, a sarA homolog, is repressed by SarT and 
regulates virulence genes in Staphylococcus aureus. Infection and immunity 
71(1):343-353. 

376. Manna AC & Cheung AL (2006) Expression of SarX, a negative regulator of agr and 
exoprotein synthesis, is activated by MgrA in Staphylococcus aureus. Journal of 
bacteriology 188(12):4288-4299. 

377. Tamber S & Cheung AL (2009) SarZ promotes the expression of virulence factors 
and represses biofilm formation by modulating SarA and agr in Staphylococcus 
aureus. Infection and immunity 77(1):419-428. 

378. Luong TT, Dunman PM, Murphy E, Projan SJ, & Lee CY (2006) Transcription Profiling 
of the mgrA Regulon in Staphylococcus aureus. Journal of bacteriology 188(5):1899-
1910. 

379. Manna AC, Ingavale SS, Maloney M, van Wamel W, & Cheung AL (2004) 
Identification of sarV (SA2062), a new transcriptional regulator, is repressed by 
SarA and MgrA (SA0641) and involved in the regulation of autolysis in 
Staphylococcus aureus. Journal of bacteriology 186(16):5267-5280. 

380. Ingavale S, van Wamel W, Luong TT, Lee CY, & Cheung AL (2005) Rat/MgrA, a 
regulator of autolysis, is a regulator of virulence genes in Staphylococcus aureus. 
Infection and immunity 73(3):1423-1431. 

381. Chen PR, et al. (2006) An oxidation-sensing mechanism is used by the global 
regulator MgrA in Staphylococcus aureus. Nature chemical biology 2(11):591-595. 

382. Majerczyk CD, et al. (2008) Staphylococcus aureus CodY negatively regulates 
virulence gene expression. Journal of bacteriology 190(7):2257-2265. 

383. Pohl K, et al. (2009) CodY in Staphylococcus aureus: a regulatory link between 
metabolism and virulence gene expression. Journal of bacteriology 191(9):2953-
2963. 

384. Tamber S, et al. (2010) The staphylococcus-specific gene rsr represses agr and 
virulence in Staphylococcus aureus. Infection and immunity 78(10):4384-4391. 

385. Michel A, et al. (2006) Global regulatory impact of ClpP protease of Staphylococcus 
aureus on regulons involved in virulence, oxidative stress response, autolysis, and 
DNA repair. Journal of bacteriology 188(16):5783-5796. 

386. Feng J, et al. (2013) Trapping and proteomic identification of cellular substrates of 
the ClpP protease in Staphylococcus aureus. Journal of proteome research 
12(2):547-558. 



XXII 
 

387. Frees D, Sorensen K, & Ingmer H (2005) Global virulence regulation in 
Staphylococcus aureus: pinpointing the roles of ClpP and ClpX in the sar/agr 
regulatory network. Infection and immunity 73(12):8100-8108. 

388. Oscarsson J, Harlos C, & Arvidson S (2005) Regulatory role of proteins binding to the 
spa (protein A) and sarS (staphylococcal accessory regulator) promoter regions in 
Staphylococcus aureus NTCC 8325-4. International journal of medical microbiology : 
IJMM 295(4):253-266. 

389. Jelsbak L, et al. (2010) The chaperone ClpX stimulates expression of Staphylococcus 
aureus protein A by Rot dependent and independent pathways. PloS one 
5(9):e12752. 

390. Senn MM, et al. (2005) Molecular analysis and organization of the sigmaB operon in 
Staphylococcus aureus. Journal of bacteriology 187(23):8006-8019. 

391. Horsburgh MJ, et al. (2002) sigmaB modulates virulence determinant expression 
and stress resistance: characterization of a functional rsbU strain derived from 
Staphylococcus aureus 8325-4. Journal of bacteriology 184(19):5457-5467. 

392. Bischoff M, et al. (2004) Microarray-based analysis of the Staphylococcus aureus 
sigmaB regulon. Journal of bacteriology 186(13):4085-4099. 

393. Schulthess B, et al. (2011) The sigmaB-dependent yabJ-spoVG operon is involved in 
the regulation of extracellular nuclease, lipase, and protease expression in 
Staphylococcus aureus. Journal of bacteriology 193(18):4954-4962. 

394. Felden B, Vandenesch F, Bouloc P, & Romby P (2011) The Staphylococcus aureus 
RNome and its commitment to virulence. PLoS pathogens 7(3):e1002006. 

395. Tomasini A, et al. (2014) The importance of regulatory RNAs in Staphylococcus 
aureus. Infection, genetics and evolution : journal of molecular epidemiology and 
evolutionary genetics in infectious diseases 21:616-626. 

396. Chabelskaya S, Gaillot O, & Felden B (2010) A Staphylococcus aureus small RNA is 
required for bacterial virulence and regulates the expression of an immune-evasion 
molecule. PLoS pathogens 6(6):e1000927. 

397. Morrison JM, et al. (2012) Characterization of SSR42, a novel virulence factor 
regulatory RNA that contributes to the pathogenesis of a Staphylococcus aureus 
USA300 representative. Journal of bacteriology 194(11):2924-2938. 

398. Olson PD, et al. (2011) Small molecule inhibitors of Staphylococcus aureus RnpA 
alter cellular mRNA turnover, exhibit antimicrobial activity, and attenuate 
pathogenesis. PLoS pathogens 7(2):e1001287. 

399. Xue T, Zhang X, Sun H, & Sun B (2014) ArtR, a novel sRNA of Staphylococcus aureus, 
regulates alpha-toxin expression by targeting the 5' UTR of sarT mRNA. Medical 
microbiology and immunology 203(1):1-12. 

400. Clarke SR, Wiltshire MD, & Foster SJ (2004) IsdA of Staphylococcus aureus is a broad 
spectrum, iron-regulated adhesin. Molecular microbiology 51(5):1509-1519. 

401. Schneewind O, Fowler A, & Faull KF (1995) Structure of the cell wall anchor of 
surface proteins in Staphylococcus aureus. Science 268(5207):103-106. 

402. Mazmanian SK, Liu G, Ton-That H, & Schneewind O (1999) Staphylococcus aureus 
sortase, an enzyme that anchors surface proteins to the cell wall. Science 
285(5428):760-763. 

403. Peacock SJ, Day NP, Thomas MG, Berendt AR, & Foster TJ (2000) Clinical isolates of 
Staphylococcus aureus exhibit diversity in fnb genes and adhesion to human 
fibronectin. The Journal of infection 41(1):23-31. 

404. Foster TJ, Geoghegan JA, Ganesh VK, & Hook M (2014) Adhesion, invasion and 
evasion: the many functions of the surface proteins of Staphylococcus aureus. 
Nature reviews. Microbiology 12(1):49-62. 



XXIII 
 

405. Keane FM, et al. (2007) Fibrinogen and elastin bind to the same region within the A 
domain of fibronectin binding protein A, an MSCRAMM of Staphylococcus aureus. 
Molecular microbiology 63(3):711-723. 

406. Burke FM, McCormack N, Rindi S, Speziale P, & Foster TJ (2010) Fibronectin-binding 
protein B variation in Staphylococcus aureus. BMC microbiology 10:160. 

407. Deivanayagam CC, et al. (2002) A novel variant of the immunoglobulin fold in 
surface adhesins of Staphylococcus aureus: crystal structure of the fibrinogen-
binding MSCRAMM, clumping factor A. The EMBO journal 21(24):6660-6672. 

408. Ganesh VK, et al. (2008) A structural model of the Staphylococcus aureus ClfA-
fibrinogen interaction opens new avenues for the design of anti-staphylococcal 
therapeutics. PLoS pathogens 4(11):e1000226. 

409. Burke FM, Di Poto A, Speziale P, & Foster TJ (2011) The A domain of fibronectin-
binding protein B of Staphylococcus aureus contains a novel fibronectin binding 
site. The FEBS journal 278(13):2359-2371. 

410. Edwards AM, Potts JR, Josefsson E, & Massey RC (2010) Staphylococcus aureus host 
cell invasion and virulence in sepsis is facilitated by the multiple repeats within 
FnBPA. PLoS pathogens 6(6):e1000964. 

411. Pilka ES, et al. (2006) Structural insight into binding of Staphylococcus aureus to 
human fibronectin. FEBS letters 580(1):273-277. 

412. Schwarz-Linek U, Hook M, & Potts JR (2004) The molecular basis of fibronectin-
mediated bacterial adherence to host cells. Molecular microbiology 52(3):631-641. 

413. Que YA, et al. (2001) Reassessing the role of Staphylococcus aureus clumping factor 
and fibronectin-binding protein by expression in Lactococcus lactis. Infection and 
immunity 69(10):6296-6302. 

414. O'Neill E, et al. (2008) A novel Staphylococcus aureus biofilm phenotype mediated 
by the fibronectin-binding proteins, FnBPA and FnBPB. Journal of bacteriology 
190(11):3835-3850. 

415. Ni Eidhin D, et al. (1998) Clumping factor B (ClfB), a new surface-located fibrinogen-
binding adhesin of Staphylococcus aureus. Molecular microbiology 30(2):245-257. 

416. O'Brien L, et al. (2002) Multiple mechanisms for the activation of human platelet 
aggregation by Staphylococcus aureus: roles for the clumping factors ClfA and ClfB, 
the serine-aspartate repeat protein SdrE and protein A. Molecular microbiology 
44(4):1033-1044. 

417. Higgins J, Loughman A, van Kessel KP, van Strijp JA, & Foster TJ (2006) Clumping 
factor A of Staphylococcus aureus inhibits phagocytosis by human 
polymorphonuclear leucocytes. FEMS microbiology letters 258(2):290-296. 

418. Hair PS, et al. (2010) Clumping factor A interaction with complement factor I 
increases C3b cleavage on the bacterial surface of Staphylococcus aureus and 
decreases complement-mediated phagocytosis. Infection and immunity 78(4):1717-
1727. 

419. Loughman A, et al. (2005) Roles for fibrinogen, immunoglobulin and complement in 
platelet activation promoted by Staphylococcus aureus clumping factor A. 
Molecular microbiology 57(3):804-818. 

420. Moreillon P, et al. (1995) Role of Staphylococcus aureus coagulase and clumping 
factor in pathogenesis of experimental endocarditis. Infection and immunity 
63(12):4738-4743. 

421. Josefsson E, Hartford O, O'Brien L, Patti JM, & Foster T (2001) Protection against 
experimental Staphylococcus aureus arthritis by vaccination with clumping factor A, 
a novel virulence determinant. The Journal of infectious diseases 184(12):1572-
1580. 



XXIV 
 

422. Vernachio J, et al. (2003) Anti-clumping factor A immunoglobulin reduces the 
duration of methicillin-resistant Staphylococcus aureus bacteremia in an 
experimental model of infective endocarditis. Antimicrobial agents and 
chemotherapy 47(11):3400-3406. 

423. Peterson PK, Verhoef J, Sabath LD, & Quie PG (1977) Effect of protein A on 
staphylococcal opsonization. Infection and immunity 15(3):760-764. 

424. Silverman GJ & Goodyear CS (2006) Confounding B-cell defences: lessons from a 
staphylococcal superantigen. Nature reviews. Immunology 6(6):465-475. 

425. Gomez MI, et al. (2004) Staphylococcus aureus protein A induces airway epithelial 
inflammatory responses by activating TNFR1. Nature medicine 10(8):842-848. 

426. O'Seaghdha M, et al. (2006) Staphylococcus aureus protein A binding to von 
Willebrand factor A1 domain is mediated by conserved IgG binding regions. The 
FEBS journal 273(21):4831-4841. 

427. Peacock SJ, et al. (2002) Virulent combinations of adhesin and toxin genes in 
natural populations of Staphylococcus aureus. Infection and immunity 70(9):4987-
4996. 

428. Wilke GA & Bubeck Wardenburg J (2010) Role of a disintegrin and metalloprotease 
10 in Staphylococcus aureus alpha-hemolysin-mediated cellular injury. Proceedings 
of the National Academy of Sciences of the United States of America 107(30):13473-
13478. 

429. Valeva A, et al. (1997) Transmembrane beta-barrel of staphylococcal alpha-toxin 
forms in sensitive but not in resistant cells. Proceedings of the National Academy of 
Sciences of the United States of America 94(21):11607-11611. 

430. Berube BJ & Bubeck Wardenburg J (2013) Staphylococcus aureus alpha-toxin: 
nearly a century of intrigue. Toxins 5(6):1140-1166. 

431. Powers ME, Kim HK, Wang Y, & Bubeck Wardenburg J (2012) ADAM10 mediates 
vascular injury induced by Staphylococcus aureus alpha-hemolysin. The Journal of 
infectious diseases 206(3):352-356. 

432. Kielian T, Cheung A, & Hickey WF (2001) Diminished virulence of an alpha-toxin 
mutant of Staphylococcus aureus in experimental brain abscesses. Infection and 
immunity 69(11):6902-6911. 

433. Ira J & Johnston LJ (2008) Sphingomyelinase generation of ceramide promotes 
clustering of nanoscale domains in supported bilayer membranes. Biochimica et 
biophysica acta 1778(1):185-197. 

434. van Wamel WJ, Rooijakkers SH, Ruyken M, van Kessel KP, & van Strijp JA (2006) The 
innate immune modulators staphylococcal complement inhibitor and chemotaxis 
inhibitory protein of Staphylococcus aureus are located on beta-hemolysin-
converting bacteriophages. Journal of bacteriology 188(4):1310-1315. 

435. Monecke S, Kuhnert P, Hotzel H, Slickers P, & Ehricht R (2007) Microarray based 
study on virulence-associated genes and resistance determinants of Staphylococcus 
aureus isolates from cattle. Veterinary microbiology 125(1-2):128-140. 

436. Hayashida A, Bartlett AH, Foster TJ, & Park PW (2009) Staphylococcus aureus beta-
toxin induces lung injury through syndecan-1. The American journal of pathology 
174(2):509-518. 

437. Dumont AL, et al. (2011) Characterization of a new cytotoxin that contributes to 
Staphylococcus aureus pathogenesis. Molecular microbiology 79(3):814-825. 

438. Konig B, Prevost G, & Konig W (1997) Composition of staphylococcal bi-component 
toxins determines pathophysiological reactions. Journal of medical microbiology 
46(6):479-485. 



XXV 
 

439. Morinaga N, Kaihou Y, & Noda M (2003) Purification, cloning and characterization 
of variant LukE-LukD with strong leukocidal activity of staphylococcal bi-component 
leukotoxin family. Microbiology and immunology 47(1):81-90. 

440. Potrich C, et al. (2009) The influence of membrane lipids in Staphylococcus aureus 
gamma-hemolysins pore formation. The Journal of membrane biology 227(1):13-24. 

441. Alonzo F, 3rd, et al. (2013) CCR5 is a receptor for Staphylococcus aureus leukotoxin 
ED. Nature 493(7430):51-55. 

442. DuMont AL, et al. (2013) Staphylococcus aureus LukAB cytotoxin kills human 
neutrophils by targeting the CD11b subunit of the integrin Mac-1. Proceedings of 
the National Academy of Sciences of the United States of America 110(26):10794-
10799. 

443. DuMont AL, et al. (2013) Staphylococcus aureus elaborates leukocidin AB to 
mediate escape from within human neutrophils. Infection and immunity 
81(5):1830-1841. 

444. Sengelov H (1995) Complement receptors in neutrophils. Critical reviews in 
immunology 15(2):107-131. 

445. Konig B, Prevost G, Piemont Y, & Konig W (1995) Effects of Staphylococcus aureus 
leukocidins on inflammatory mediator release from human granulocytes. The 
Journal of infectious diseases 171(3):607-613. 

446. Tristan A, et al. (2009) The signal peptide of Staphylococcus aureus panton 
valentine leukocidin LukS component mediates increased adhesion to heparan 
sulfates. PloS one 4(4):e5042. 

447. Cremieux AC, et al. (2009) Panton-valentine leukocidin enhances the severity of 
community-associated methicillin-resistant Staphylococcus aureus rabbit 
osteomyelitis. PloS one 4(9):e7204. 

448. Alonzo F, 3rd, et al. (2012) Staphylococcus aureus leucocidin ED contributes to 
systemic infection by targeting neutrophils and promoting bacterial growth in vivo. 
Molecular microbiology 83(2):423-435. 

449. Verdon J, Girardin N, Lacombe C, Berjeaud JM, & Hechard Y (2009) delta-hemolysin, 
an update on a membrane-interacting peptide. Peptides 30(4):817-823. 

450. Pokorny A & Almeida PF (2005) Permeabilization of raft-containing lipid vesicles by 
delta-lysin: a mechanism for cell sensitivity to cytotoxic peptides. Biochemistry 
44(27):9538-9544. 

451. Surewaard BG, et al. (2012) Inactivation of staphylococcal phenol soluble modulins 
by serum lipoprotein particles. PLoS pathogens 8(3):e1002606. 

452. Kretschmer D, et al. (2010) Human formyl peptide receptor 2 senses highly 
pathogenic Staphylococcus aureus. Cell host & microbe 7(6):463-473. 

453. Schreiner J, et al. (2013) Staphylococcus aureus phenol-soluble modulin peptides 
modulate dendritic cell functions and increase in vitro priming of regulatory T cells. 
Journal of immunology 190(7):3417-3426. 

454. Otto M (2014) Phenol-soluble modulins. International journal of medical 
microbiology : IJMM 304(2):164-169. 

455. Thet NT, et al. (2013) Visible, colorimetric dissemination between pathogenic 
strains of Staphylococcus aureus and Pseudomonas aeruginosa using fluorescent 
dye containing lipid vesicles. Biosensors & bioelectronics 41:538-543. 

456. Marshall SE, Hong SH, Thet NT, & Jenkins AT (2013) Effect of lipid and fatty acid 
composition of phospholipid vesicles on long-term stability and their response to 
Staphylococcus aureus and Pseudomonas aeruginosa supernatants. Langmuir : the 
ACS journal of surfaces and colloids 29(23):6989-6995. 



XXVI 
 

457. Vojtov N, Ross HF, & Novick RP (2002) Global repression of exotoxin synthesis by 
staphylococcal superantigens. Proceedings of the National Academy of Sciences of 
the United States of America 99(15):10102-10107. 

458. Coleman G & Abbas-Ali B (1977) Comparison of the patterns of increased in alpha-
toxin and total extracellular protein by Staphylococcus aureus (Wood 46) grown in 
media supporting widely differing growth characteristics. Infection and immunity 
17(2):278-281. 

459. Salter RD & Cresswell P (1986) Impaired assembly and transport of HLA-A and -B 
antigens in a mutant TxB cell hybrid. The EMBO journal 5(5):943-949. 

460. Edgell CJ, McDonald CC, & Graham JB (1983) Permanent cell line expressing human 
factor VIII-related antigen established by hybridization. Proceedings of the National 
Academy of Sciences of the United States of America 80(12):3734-3737. 

461. Corrigan RM & Foster TJ (2009) An improved tetracycline-inducible expression 
vector for Staphylococcus aureus. Plasmid 61(2):126-129. 

462. Kreiswirth BN, et al. (1983) The toxic shock syndrome exotoxin structural gene is 
not detectably transmitted by a prophage. Nature 305(5936):709-712. 

463. Bohm G, Muhr R, & Jaenicke R (1992) Quantitative analysis of protein far UV 
circular dichroism spectra by neural networks. Protein engineering 5(3):191-195. 

464. Gunther NWt, Nunez A, Fett W, & Solaiman DK (2005) Production of rhamnolipids 
by Pseudomonas chlororaphis, a nonpathogenic bacterium. Applied and 
environmental microbiology 71(5):2288-2293. 

465. Kouker G & Jaeger KE (1987) Specific and sensitive plate assay for bacterial lipases. 
Applied and environmental microbiology 53(1):211-213. 

466. Elek SD & Levy E (1950) Distribution of haemolysins in pathogenic and non-
pathogenic staphylococci. The Journal of pathology and bacteriology 62(4):541-554. 

467. Purcell S, et al. (2007) PLINK: a tool set for whole-genome association and 
population-based linkage analyses. American journal of human genetics 81(3):559-
575. 

468. Recsei P, et al. (1986) Regulation of exoprotein gene expression in Staphylococcus 
aureus by agar. Molecular & general genetics : MGG 202(1):58-61. 

469. Abdelnour A, Arvidson S, Bremell T, Ryden C, & Tarkowski A (1993) The accessory 
gene regulator (agr) controls Staphylococcus aureus virulence in a murine arthritis 
model. Infection and immunity 61(9):3879-3885. 

470. Bunce C, Wheeler L, Reed G, Musser J, & Barg N (1992) Murine model of cutaneous 
infection with gram-positive cocci. Infection and immunity 60(7):2636-2640. 

471. Cheung AL, et al. (1994) Diminished virulence of a sar-/agr- mutant of 
Staphylococcus aureus in the rabbit model of endocarditis. The Journal of clinical 
investigation 94(5):1815-1822. 

472. Nicholas RO, et al. (1999) Isolation and characterization of a sigB deletion mutant of 
Staphylococcus aureus. Infection and immunity 67(7):3667-3669. 

473. Shopsin B, et al. (2008) Prevalence of agr dysfunction among colonizing 
Staphylococcus aureus strains. The Journal of infectious diseases 198(8):1171-1174. 

474. Schweizer ML, et al. (2011) Increased mortality with accessory gene regulator (agr) 
dysfunction in Staphylococcus aureus among bacteremic patients. Antimicrobial 
agents and chemotherapy 55(3):1082-1087. 

475. Traber KE, et al. (2008) agr function in clinical Staphylococcus aureus isolates. 
Microbiology 154(Pt 8):2265-2274. 

476. Fowler VG, Jr., et al. (2004) Persistent bacteremia due to methicillin-resistant 
Staphylococcus aureus infection is associated with agr dysfunction and low-level in 



XXVII 
 

vitro resistance to thrombin-induced platelet microbicidal protein. The Journal of 
infectious diseases 190(6):1140-1149. 

477. Sakoulas G, et al. (2005) Reduced susceptibility of Staphylococcus aureus to 
vancomycin and platelet microbicidal protein correlates with defective autolysis 
and loss of accessory gene regulator (agr) function. Antimicrobial agents and 
chemotherapy 49(7):2687-2692. 

478. Gagnaire J, et al. (2012) Detection of Staphylococcus aureus delta-toxin production 
by whole-cell MALDI-TOF mass spectrometry. PloS one 7(7):e40660. 

479. Didelot X, Bowden R, Wilson DJ, Peto TE, & Crook DW (2012) Transforming clinical 
microbiology with bacterial genome sequencing. Nature reviews. Genetics 
13(9):601-612. 

480. Holden MT, et al. (2004) Complete genomes of two clinical Staphylococcus aureus 
strains: evidence for the rapid evolution of virulence and drug resistance. 
Proceedings of the National Academy of Sciences of the United States of America 
101(26):9786-9791. 

481. Doery HM, Magnusson BJ, Gulasekharam J, & Pearson JE (1965) The properties of 
phospholipase enzymes in staphylococcal toxins. Journal of general microbiology 
40(2):283-296. 

482. Collins J, Buckling A, & Massey RC (2008) Identification of factors contributing to T-
cell toxicity of Staphylococcus aureus clinical isolates. Journal of clinical 
microbiology 46(6):2112-2114. 

483. Tossi A, Sandri L, & Giangaspero A (2000) Amphipathic, alpha-helical antimicrobial 
peptides. Biopolymers 55(1):4-30. 

484. Chen Y, et al. (2005) Rational design of alpha-helical antimicrobial peptides with 
enhanced activities and specificity/therapeutic index. The Journal of biological 
chemistry 280(13):12316-12329. 

485. Jenssen H, Hamill P, & Hancock RE (2006) Peptide antimicrobial agents. Clinical 
microbiology reviews 19(3):491-511. 

486. Dathe M, et al. (1997) Hydrophobicity, hydrophobic moment and angle subtended 
by charged residues modulate antibacterial and haemolytic activity of amphipathic 
helical peptides. FEBS letters 403(2):208-212. 

487. Epand RM & Vogel HJ (1999) Diversity of antimicrobial peptides and their 
mechanisms of action. Biochimica et biophysica acta 1462(1-2):11-28. 

488. Kyte J & Doolittle RF (1982) A simple method for displaying the hydropathic 
character of a protein. Journal of molecular biology 157(1):105-132. 

489. Wieprecht T, et al. (1997) Peptide hydrophobicity controls the activity and 
selectivity of magainin 2 amide in interaction with membranes. Biochemistry 
36(20):6124-6132. 

490. Matsuzaki K, et al. (1997) Modulation of magainin 2-lipid bilayer interactions by 
peptide charge. Biochemistry 36(8):2104-2111. 

491. Kumar S & Nussinov R (2002) Close-range electrostatic interactions in proteins. 
Chembiochem : a European journal of chemical biology 3(7):604-617. 

492. Lewis RN, et al. (2007) Studies of the minimum hydrophobicity of alpha-helical 
peptides required to maintain a stable transmembrane association with 
phospholipid bilayer membranes. Biochemistry 46(4):1042-1054. 

493. Blondelle SE & Houghten RA (1991) Probing the relationships between the 
structure and hemolytic activity of melittin with a complete set of leucine 
substitution analogs. Peptide research 4(1):12-18. 



XXVIII 
 

494. Dathe M & Wieprecht T (1999) Structural features of helical antimicrobial peptides: 
their potential to modulate activity on model membranes and biological cells. 
Biochimica et biophysica acta 1462(1-2):71-87. 

495. Perez-Paya E, Houghten RA, & Blondelle SE (1995) The role of amphipathicity in the 
folding, self-association and biological activity of multiple subunit small proteins. 
The Journal of biological chemistry 270(3):1048-1056. 

496. Monera OD, Sereda TJ, Zhou NE, Kay CM, & Hodges RS (1995) Relationship of 
sidechain hydrophobicity and alpha-helical propensity on the stability of the single-
stranded amphipathic alpha-helix. J Pept Sci 1(5):319-329. 

497. Li SC & Deber CM (1994) A measure of helical propensity for amino acids in 
membrane environments. Nat Struct Biol 1(8):558. 

498. Karp G (2009) Cell and molecular biology: Concepts and Experiments 6th Edition. In: 
The structure and function of the plasma membrane (Wiley) p 13. 

499. Duong AC, Cheung GYC, & Otto M (2012) Interaction of Phenol-Soluble Modulins 
with Phosphatidylcholine Vesicles. Pathogens 1(1):3-11. 

500. Bhattacharya S & Haldar S (2000) Interactions between cholesterol and lipids in 
bilayer membranes. Role of lipid headgroup and hydrocarbon chain-backbone 
linkage. Biochimica et biophysica acta 1467(1):39-53. 

501. Pratt DA, Tallman KA, & Porter NA (2011) Free radical oxidation of polyunsaturated 
lipids: New mechanistic insights and the development of peroxyl radical clocks. 
Accounts of chemical research 44(6):458-467. 

502. Sakoulas G, Moise PA, & Rybak MJ (2009) Accessory gene regulator dysfunction: an 
advantage for Staphylococcus aureus in health-care settings? The Journal of 
infectious diseases 199(10):1558-1559. 

503. Vuong C, Saenz HL, Gotz F, & Otto M (2000) Impact of the agr quorum-sensing 
system on adherence to polystyrene in Staphylococcus aureus. The Journal of 
infectious diseases 182(6):1688-1693. 

504. Giese B, et al. (2011) Expression of delta-toxin by Staphylococcus aureus mediates 
escape from phago-endosomes of human epithelial and endothelial cells in the 
presence of beta-toxin. Cellular microbiology 13(2):316-329. 

505. Bodey GP, Bolivar R, Fainstein V, & Jadeja L (1983) Infections caused by 
Pseudomonas aeruginosa. Reviews of infectious diseases 5(2):279-313. 

506. Driscoll JA, Brody SL, & Kollef MH (2007) The epidemiology, pathogenesis and 
treatment of Pseudomonas aeruginosa infections. Drugs 67(3):351-368. 

507. Strateva T & Mitov I (2011) Contribution of an arsenal of virulence factors to 
pathogenesis of Pseudomonas aeruginosa infections. Annals of Microbiology 
61(4):717-732. 

508. Smith RS & Iglewski BH (2003) P. aeruginosa quorum-sensing systems and 
virulence. Current opinion in microbiology 6(1):56-60. 

509. Schuster M, Sexton DJ, Diggle SP, & Greenberg EP (2013) Acyl-homoserine lactone 
quorum sensing: from evolution to application. Annual review of microbiology 
67:43-63. 

510. Dubern JF & Diggle SP (2008) Quorum sensing by 2-alkyl-4-quinolones in 
Pseudomonas aeruginosa and other bacterial species. Molecular bioSystems 
4(9):882-888. 

511. Schuster M & Greenberg EP (2006) A network of networks: quorum-sensing gene 
regulation in Pseudomonas aeruginosa. International journal of medical 
microbiology : IJMM 296(2-3):73-81. 



XXIX 
 

512. Wagner VE, Gillis RJ, & Iglewski BH (2004) Transcriptome analysis of quorum-
sensing regulation and virulence factor expression in Pseudomonas aeruginosa. 
Vaccine 22 Suppl 1:S15-20. 

513. Williams P, Winzer K, Chan WC, & Camara M (2007) Look who's talking: 
communication and quorum sensing in the bacterial world. Philosophical 
transactions of the Royal Society of London. Series B, Biological sciences 
362(1483):1119-1134. 

514. Diggle SP, Cornelis P, Williams P, & Camara M (2006) 4-quinolone signalling in 
Pseudomonas aeruginosa: old molecules, new perspectives. International journal of 
medical microbiology : IJMM 296(2-3):83-91. 

515. Williams P & Camara M (2009) Quorum sensing and environmental adaptation in 
Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal 
molecules. Current opinion in microbiology 12(2):182-191. 

516. Banat IM, Makkar RS, & Cameotra SS (2000) Potential commercial applications of 
microbial surfactants. Applied microbiology and biotechnology 53(5):495-508. 

517. Aranda FJ, et al. (2007) Thermodynamics of the interaction of a dirhamnolipid 
biosurfactant secreted by Pseudomonas aeruginosa with phospholipid membranes. 
Langmuir : the ACS journal of surfaces and colloids 23(5):2700-2705. 

518. Sanchez M, et al. (2010) Permeabilization of biological and artificial membranes by 
a bacterial dirhamnolipid produced by Pseudomonas aeruginosa. Journal of colloid 
and interface science 341(2):240-247. 

519. Jensen PO, et al. (2007) Rapid necrotic killing of polymorphonuclear leukocytes is 
caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas 
aeruginosa. Microbiology 153(Pt 5):1329-1338. 

520. Fujita K, Akino T, & Yoshioka H (1988) Characteristics of heat-stable extracellular 
hemolysin from Pseudomonas aeruginosa. Infection and immunity 56(5):1385-
1387. 

521. Alhede M, et al. (2009) Pseudomonas aeruginosa recognizes and responds 
aggressively to the presence of polymorphonuclear leukocytes. Microbiology 155(Pt 
11):3500-3508. 

522. Kohler T, Guanella R, Carlet J, & van Delden C (2010) Quorum sensing-dependent 
virulence during Pseudomonas aeruginosa colonisation and pneumonia in 
mechanically ventilated patients. Thorax 65(8):703-710. 

523. Zulianello L, et al. (2006) Rhamnolipids are virulence factors that promote early 
infiltration of primary human airway epithelia by Pseudomonas aeruginosa. 
Infection and immunity 74(6):3134-3147. 

524. Pinzon NM & Ju LK (2009) Improved detection of rhamnolipid production using agar 
plates containing methylene blue and cetyl trimethylammonium bromide. 
Biotechnology letters 31(10):1583-1588. 

525. Morikawa M, Hirata Y, & Imanaka T (2000) A study on the structure-function 
relationship of lipopeptide biosurfactants. Biochimica et biophysica acta 
1488(3):211-218. 

526. Koch AK, Kappeli O, Fiechter A, & Reiser J (1991) Hydrocarbon assimilation and 
biosurfactant production in Pseudomonas aeruginosa mutants. Journal of 
bacteriology 173(13):4212-4219. 

527. Schenk T, Schuphan I, & Schmidt B (1995) High-performance liquid 
chromatographic determination of the rhamnolipids produced by Pseudomonas 
aeruginosa. Journal of chromatography. A 693(1):7-13. 



XXX 
 

528. Leitermann F, Syldatk C, & Hausmann R (2008) Fast quantitative determination of 
microbial rhamnolipids from cultivation broths by ATR-FTIR Spectroscopy. Journal 
of biological engineering 2:13. 

529. Winzer K & Williams P (2001) Quorum sensing and the regulation of virulence gene 
expression in pathogenic bacteria. International journal of medical microbiology : 
IJMM 291(2):131-143. 

530. McKnight SL, Iglewski BH, & Pesci EC (2000) The Pseudomonas quinolone signal 
regulates rhl quorum sensing in Pseudomonas aeruginosa. Journal of bacteriology 
182(10):2702-2708. 

531. Gallagher LA, McKnight SL, Kuznetsova MS, Pesci EC, & Manoil C (2002) Functions 
required for extracellular quinolone signaling by Pseudomonas aeruginosa. Journal 
of bacteriology 184(23):6472-6480. 

532. Farrow JM, 3rd, et al. (2008) PqsE functions independently of PqsR-Pseudomonas 
quinolone signal and enhances the rhl quorum-sensing system. Journal of 
bacteriology 190(21):7043-7051. 

533. Mashburn-Warren L, Howe J, Brandenburg K, & Whiteley M (2009) Structural 
requirements of the Pseudomonas quinolone signal for membrane vesicle 
stimulation. Journal of bacteriology 191(10):3411-3414. 

534. Mashburn LM & Whiteley M (2005) Membrane vesicles traffic signals and facilitate 
group activities in a prokaryote. Nature 437(7057):422-425. 

535. Schertzer JW & Whiteley M (2012) A bilayer-couple model of bacterial outer 
membrane vesicle biogenesis. mBio 3(2). 

536. Ostroff RM, Vasil AI, & Vasil ML (1990) Molecular comparison of a nonhemolytic 
and a hemolytic phospholipase C from Pseudomonas aeruginosa. Journal of 
bacteriology 172(10):5915-5923. 

537. Barker AP, et al. (2004) A novel extracellular phospholipase C of Pseudomonas 
aeruginosa is required for phospholipid chemotaxis. Molecular microbiology 
53(4):1089-1098. 

538. Pearson JP, Pesci EC, & Iglewski BH (1997) Roles of Pseudomonas aeruginosa las 
and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis 
genes. Journal of bacteriology 179(18):5756-5767. 

539. Rikalovic MG, Gojgic-Cvijovic G, Vrvic MM, & Karadzic I (2012) Production and 
characterization of rhamnolipids from Pseudomonas aeruginosa san-ai. Journal of 
the Serbian Chemical Society 77(1):27-42. 

540. Perfumo A, et al. (2013) Rhamnolipids are conserved biosurfactants molecules: 
implications for their biotechnological potential. Applied microbiology and 
biotechnology 97(16):7297-7306. 

541. Meyer JM & Abdallah MA (1978) The Fluorescent Pigment of Pseudomonas 
fluorescens : Biosynthesis, Purification and Physicochemical Properties. Journal of 
general microbiology 107:319-328. 

542. Haimi P, Hermansson M, Batchu KC, Virtanen JA, & Somerharju P (2010) Substrate 
efflux propensity plays a key role in the specificity of secretory A-type 
phospholipases. The Journal of biological chemistry 285(1):751-760. 

543. Hoffman LR, et al. (2009) Pseudomonas aeruginosa lasR mutants are associated 
with cystic fibrosis lung disease progression. Journal of cystic fibrosis : official 
journal of the European Cystic Fibrosis Society 8(1):66-70. 

544. Smith EE, et al. (2006) Genetic adaptation by Pseudomonas aeruginosa to the 
airways of cystic fibrosis patients. Proceedings of the National Academy of Sciences 
of the United States of America 103(22):8487-8492. 



XXXI 
 

545. Wilder CN, Allada G, & Schuster M (2009) Instantaneous within-patient diversity of 
Pseudomonas aeruginosa quorum-sensing populations from cystic fibrosis lung 
infections. Infection and immunity 77(12):5631-5639. 

546. Laabei M, Jamieson WD, Massey RC, & Jenkins AT (2014) Staphylococcus aureus 
interaction with phospholipid vesicles--a new method to accurately determine 
accessory gene regulator (agr) activity. PloS one 9(1):e87270. 

547. Young AE & Thornton KL (2007) Toxic shock syndrome in burns: diagnosis and 
management. Archives of disease in childhood. Education and practice edition 
92(4):ep97-100. 

548. Bergdoll MS, Crass BA, Reiser RF, Robbins RN, & Davis JP (1981) A new 
staphylococcal enterotoxin, enterotoxin F, associated with toxic-shock-syndrome 
Staphylococcus aureus isolates. Lancet 1(8228):1017-1021. 

549. Quan L, Morita R, & Kawakami S (2010) Toxic shock syndrome toxin-1 (TSST-1) 
antibody levels in Japanese children. Burns 36(5):716-721. 

550. Cole RP & Shakespeare PG (1990) Toxic shock syndrome in scalded children. Burns 
16(3):221-224. 

551. White MC, Thornton K, & Young AE (2005) Early diagnosis and treatment of toxic 
shock syndrome in paediatric burns. Burns 31(2):193-197. 

552. Bohach GA, Fast DJ, Nelson RD, & Schlievert PM (1990) Staphylococcal and 
streptococcal pyrogenic toxins involved in toxic shock syndrome and related 
illnesses. Critical reviews in microbiology 17(4):251-272. 

553. Schlievert PM (1986) Staphylococcal enterotoxin B and toxic-shock syndrome toxin-
1 are significantly associated with non-menstrual TSS. Lancet 1(8490):1149-1150. 

554. Lindsay JA, Ruzin A, Ross HF, Kurepina N, & Novick RP (1998) The gene for toxic 
shock toxin is carried by a family of mobile pathogenicity islands in Staphylococcus 
aureus. Molecular microbiology 29(2):527-543. 

555. Fitzgerald JR, et al. (2001) Characterization of a putative pathogenicity island from 
bovine Staphylococcus aureus encoding multiple superantigens. Journal of 
bacteriology 183(1):63-70. 

556. Smit MA, Nyquist AC, & Todd JK (2013) Infectious shock and toxic shock syndrome 
diagnoses in hospitals, Colorado, USA. Emerging infectious diseases 19(11):1855-
1858. 

557. Yarwood JM & Schlievert PM (2000) Oxygen and carbon dioxide regulation of toxic 
shock syndrome toxin 1 production by Staphylococcus aureus MN8. Journal of 
clinical microbiology 38(5):1797-1803. 

558. Schlievert PM & Blomster DA (1983) Production of staphylococcal pyrogenic 
exotoxin type C: influence of physical and chemical factors. The Journal of infectious 
diseases 147(2):236-242. 

559. Seidl K, Bischoff M, & Berger-Bachi B (2008) CcpA mediates the catabolite 
repression of tst in Staphylococcus aureus. Infection and immunity 76(11):5093-
5099. 

560. Kass EH (1989) Magnesium and the pathogenesis of toxic shock syndrome. Reviews 
of infectious diseases 11 Suppl 1:S167-173; discussion S173-165. 

561. Sarafian SK & Morse SA (1987) Environmental factors affecting toxic shock 
syndrome toxin-1 (TSST-1) synthesis. Journal of medical microbiology 24(1):75-81. 

562. Wong AC & Bergdoll MS (1990) Effect of environmental conditions on production of 
toxic shock syndrome toxin 1 by Staphylococcus aureus. Infection and immunity 
58(4):1026-1029. 



XXXII 
 

563. MacPhee RA, et al. (2013) Influence of the vaginal microbiota on toxic shock 
syndrome toxin 1 production by Staphylococcus aureus. Applied and environmental 
microbiology 79(6):1835-1842. 

564. Li J, Wang W, Xu SX, Magarvey NA, & McCormick JK (2011) Lactobacillus reuteri-
produced cyclic dipeptides quench agr-mediated expression of toxic shock 
syndrome toxin-1 in staphylococci. Proceedings of the National Academy of 
Sciences of the United States of America 108(8):3360-3365. 

565. Andrey DO, et al. (2010) Control of the Staphylococcus aureus toxic shock tst 
promoter by the global regulator SarA. Journal of bacteriology 192(22):6077-6085. 

566. Marrack P & Kappler J (1990) The staphylococcal enterotoxins and their relatives. 
Science 248(4956):705-711. 

567. Arad G, et al. (2011) Binding of superantigen toxins into the CD28 homodimer 
interface is essential for induction of cytokine genes that mediate lethal shock. PLoS 
biology 9(9):e1001149. 

568. Brosnahan AJ & Schlievert PM (2011) Gram-positive bacterial superantigen outside-
in signaling causes toxic shock syndrome. The FEBS journal 278(23):4649-4667. 

569. Ray B, Ballal A, & Manna AC (2009) Transcriptional variation of regulatory and 
virulence genes due to different media in Staphylococcus aureus. Microbial 
pathogenesis 47(2):94-100. 

570. Zhou J, Loftus AL, Mulley G, & Jenkins AT (2010) A thin film detection/response 
system for pathogenic bacteria. Journal of the American Chemical Society 
132(18):6566-6570. 

571. Schlievert PM, Osterholm MT, Kelly JA, & Nishimura RD (1982) Toxin and enzyme 
characterization of Staphylococcus aureus isolates from patients with and without 
toxic shock syndrome. Annals of internal medicine 96(6 Pt 2):937-940. 

572. Russell HH & Sriskandan S (2008) Superantigens SPEA and SMEZ do not affect 
secretome expression in Streptococcus pyogenes. Microbial pathogenesis 
44(6):537-543. 

573. Kaplan SL, et al. (2005) Three-year surveillance of community-acquired 
Staphylococcus aureus infections in children. Clinical infectious diseases : an official 
publication of the Infectious Diseases Society of America 40(12):1785-1791. 

574. Hope R, et al. (2008) Non-susceptibility trends among staphylococci from 
bacteraemias in the UK and Ireland, 2001-06. The Journal of antimicrobial 
chemotherapy 62 Suppl 2:ii65-74. 

575. Salgado CD, Farr BM, & Calfee DP (2003) Community-acquired methicillin-resistant 
Staphylococcus aureus: a meta-analysis of prevalence and risk factors. Clinical 
infectious diseases : an official publication of the Infectious Diseases Society of 
America 36(2):131-139. 

576. Herold BC, et al. (1998) Community-acquired methicillin-resistant Staphylococcus 
aureus in children with no identified predisposing risk. JAMA : the journal of the 
American Medical Association 279(8):593-598. 

577. Francis JS, et al. (2005) Severe community-onset pneumonia in healthy adults 
caused by methicillin-resistant Staphylococcus aureus carrying the Panton-
Valentine leukocidin genes. Clinical infectious diseases : an official publication of the 
Infectious Diseases Society of America 40(1):100-107. 

578. Moran GJ, et al. (2006) Methicillin-resistant S. aureus infections among patients in 
the emergency department. The New England journal of medicine 355(7):666-674. 

579. Katayama Y, Ito T, & Hiramatsu K (2000) A new class of genetic element, 
staphylococcus cassette chromosome mec, encodes methicillin resistance in 
Staphylococcus aureus. Antimicrobial agents and chemotherapy 44(6):1549-1555. 



XXXIII 
 

580. Inglis B, Matthews PR, & Stewart PR (1988) The expression in Staphylococcus 
aureus of cloned DNA encoding methicillin resistance. Journal of general 
microbiology 134(6):1465-1469. 

581. Collins J, et al. (2010) Offsetting virulence and antibiotic resistance costs by MRSA. 
The ISME journal 4(4):577-584. 

582. Deurenberg RH, et al. (2007) The molecular evolution of methicillin-resistant 
Staphylococcus aureus. Clinical microbiology and infection : the official publication 
of the European Society of Clinical Microbiology and Infectious Diseases 13(3):222-
235. 

583. Ender M, McCallum N, Adhikari R, & Berger-Bachi B (2004) Fitness cost of SCCmec 
and methicillin resistance levels in Staphylococcus aureus. Antimicrobial agents and 
chemotherapy 48(6):2295-2297. 

584. Hiramatsu K, Cui L, Kuroda M, & Ito T (2001) The emergence and evolution of 
methicillin-resistant Staphylococcus aureus. Trends in microbiology 9(10):486-493. 

585. Tesch W, Ryffel C, Strassle A, Kayser FH, & Berger-Bachi B (1990) Evidence of a 
novel staphylococcal mec-encoded element (mecR) controlling expression of 
penicillin-binding protein 2'. Antimicrobial agents and chemotherapy 34(9):1703-
1706. 

586. Suzuki E, Kuwahara-Arai K, Richardson JF, & Hiramatsu K (1993) Distribution of mec 
regulator genes in methicillin-resistant Staphylococcus clinical strains. Antimicrobial 
agents and chemotherapy 37(6):1219-1226. 

587. Zhang HZ, Hackbarth CJ, Chansky KM, & Chambers HF (2001) A proteolytic 
transmembrane signaling pathway and resistance to beta-lactams in staphylococci. 
Science 291(5510):1962-1965. 

588. Sharma VK, Hackbarth CJ, Dickinson TM, & Archer GL (1998) Interaction of native 
and mutant MecI repressors with sequences that regulate mecA, the gene encoding 
penicillin binding protein 2a in methicillin-resistant staphylococci. Journal of 
bacteriology 180(8):2160-2166. 

589. Hackbarth CJ & Chambers HF (1993) blaI and blaR1 regulate beta-lactamase and 
PBP 2a production in methicillin-resistant Staphylococcus aureus. Antimicrobial 
agents and chemotherapy 37(5):1144-1149. 

590. Thumanu K, et al. (2006) Discrete steps in sensing of beta-lactam antibiotics by the 
BlaR1 protein of the methicillin-resistant Staphylococcus aureus bacterium. 
Proceedings of the National Academy of Sciences of the United States of America 
103(28):10630-10635. 

591. Memmi G, Filipe SR, Pinho MG, Fu Z, & Cheung A (2008) Staphylococcus aureus 
PBP4 is essential for beta-lactam resistance in community-acquired methicillin-
resistant strains. Antimicrobial agents and chemotherapy 52(11):3955-3966. 

592. Okuma K, et al. (2002) Dissemination of new methicillin-resistant Staphylococcus 
aureus clones in the community. Journal of clinical microbiology 40(11):4289-4294. 

593. Rudkin JK, et al. (2014) Oxacillin Alters the Toxin Expression Profile of Community-
Associated Methicillin-Resistant Staphylococcus aureus. Antimicrobial agents and 
chemotherapy 58(2):1100-1107. 

594. Ohlsen K, et al. (1998) Effects of subinhibitory concentrations of antibiotics on 
alpha-toxin (hla) gene expression of methicillin-sensitive and methicillin-resistant 
Staphylococcus aureus isolates. Antimicrobial agents and chemotherapy 
42(11):2817-2823. 

595. Dumitrescu O, et al. (2007) Effect of antibiotics on Staphylococcus aureus producing 
Panton-Valentine leukocidin. Antimicrobial agents and chemotherapy 51(4):1515-
1519. 



XXXIV 
 

596. Dumitrescu O, et al. (2011) Beta-lactams interfering with PBP1 induce Panton-
Valentine leukocidin expression by triggering sarA and rot global regulators of 
Staphylococcus aureus. Antimicrobial agents and chemotherapy 55(7):3261-3271. 

597. Hongo I, et al. (2009) Phenol-soluble modulin alpha 3 enhances the human 
neutrophil lysis mediated by Panton-Valentine leukocidin. The Journal of infectious 
diseases 200(5):715-723. 

598. Cheung AL, Eberhardt K, & Heinrichs JH (1997) Regulation of protein A synthesis by 
the sar and agr loci of Staphylococcus aureus. Infection and immunity 65(6):2243-
2249. 

599. Cedergren L, Andersson R, Jansson B, Uhlen M, & Nilsson B (1993) Mutational 
analysis of the interaction between staphylococcal protein A and human IgG1. 
Protein engineering 6(4):441-448. 

600. Gomez MI, O'Seaghdha M, Magargee M, Foster TJ, & Prince AS (2006) 
Staphylococcus aureus protein A activates TNFR1 signaling through conserved IgG 
binding domains. The Journal of biological chemistry 281(29):20190-20196. 

601. Claro T, et al. (2011) Staphylococcus aureus protein A binds to osteoblasts and 
triggers signals that weaken bone in osteomyelitis. PloS one 6(4):e18748. 

602. Tegmark K, Karlsson A, & Arvidson S (2000) Identification and characterization of 
SarH1, a new global regulator of virulence gene expression in Staphylococcus 
aureus. Molecular microbiology 37(2):398-409. 

603. Benito Y, et al. (2000) Probing the structure of RNAIII, the Staphylococcus aureus 
agr regulatory RNA, and identification of the RNA domain involved in repression of 
protein A expression. Rna 6(5):668-679. 

604. Herbert S, Barry P, & Novick RP (2001) Subinhibitory clindamycin differentially 
inhibits transcription of exoprotein genes in Staphylococcus aureus. Infection and 
immunity 69(5):2996-3003. 

605. Otto MP, et al. (2013) Effects of subinhibitory concentrations of antibiotics on 
virulence factor expression by community-acquired methicillin-resistant 
Staphylococcus aureus. The Journal of antimicrobial chemotherapy 68(7):1524-
1532. 

606. Rasigade JP, et al. (2011) Impact of sub-inhibitory antibiotics on fibronectin-
mediated host cell adhesion and invasion by Staphylococcus aureus. BMC 
microbiology 11:263. 

607. Sinha B, et al. (2000) Heterologously expressed Staphylococcus aureus fibronectin-
binding proteins are sufficient for invasion of host cells. Infection and immunity 
68(12):6871-6878. 

608. Ahmed S, et al. (2001) Staphylococcus aureus fibronectin binding proteins are 
essential for internalization by osteoblasts but do not account for differences in 
intracellular levels of bacteria. Infection and immunity 69(5):2872-2877. 

609. Edwards AM, Potter U, Meenan NA, Potts JR, & Massey RC (2011) Staphylococcus 
aureus keratinocyte invasion is dependent upon multiple high-affinity fibronectin-
binding repeats within FnBPA. PloS one 6(4):e18899. 

610. Periasamy S, Chatterjee SS, Cheung GY, & Otto M (2012) Phenol-soluble modulins 
in staphylococci: What are they originally for? Communicative & integrative biology 
5(3):275-277. 

611. Joo HS, Chan JL, Cheung GY, & Otto M (2010) Subinhibitory concentrations of 
protein synthesis-inhibiting antibiotics promote increased expression of the agr 
virulence regulator and production of phenol-soluble modulin cytolysins in 
community-associated methicillin-resistant Staphylococcus aureus. Antimicrobial 
agents and chemotherapy 54(11):4942-4944. 



XXXV 
 

612. Dinges MM, Orwin PM, & Schlievert PM (2000) Exotoxins of Staphylococcus aureus. 
Clinical microbiology reviews 13(1):16-34, table of contents. 

613. Gong K, Wen DY, Ouyang T, Rao AT, & Herzberg MC (1995) Platelet receptors for 
the Streptococcus sanguis adhesin and aggregation-associated antigens are 
distinguished by anti-idiotypical monoclonal antibodies. Infection and immunity 
63(9):3628-3633. 

614. Yeaman MR, Sullam PM, Dazin PF, Norman DC, & Bayer AS (1992) Characterization 
of Staphylococcus aureus-platelet binding by quantitative flow cytometric analysis. 
The Journal of infectious diseases 166(1):65-73. 

615. Cheung AL & Projan SJ (1994) Cloning and sequencing of sarA of Staphylococcus 
aureus, a gene required for the expression of agr. Journal of bacteriology 
176(13):4168-4172. 

616. McNamara PJ, Milligan-Monroe KC, Khalili S, & Proctor RA (2000) Identification, 
cloning, and initial characterization of rot, a locus encoding a regulator of virulence 
factor expression in Staphylococcus aureus. Journal of bacteriology 182(11):3197-
3203. 

617. Schmidt KA, Manna AC, Gill S, & Cheung AL (2001) SarT, a repressor of alpha-
hemolysin in Staphylococcus aureus. Infection and immunity 69(8):4749-4758. 

618. Kuroda H, Kuroda M, Cui L, & Hiramatsu K (2007) Subinhibitory concentrations of 
beta-lactam induce haemolytic activity in Staphylococcus aureus through the SaeRS 
two-component system. FEMS microbiology letters 268(1):98-105. 

619. VanBogelen RA, Kelley PM, & Neidhardt FC (1987) Differential induction of heat 
shock, SOS, and oxidation stress regulons and accumulation of nucleotides in 
Escherichia coli. Journal of bacteriology 169(1):26-32. 

620. Courcelle J, Khodursky A, Peter B, Brown PO, & Hanawalt PC (2001) Comparative 
gene expression profiles following UV exposure in wild-type and SOS-deficient 
Escherichia coli. Genetics 158(1):41-64. 

621. Anderson DG & Kowalczykowski SC (1998) Reconstitution of an SOS response 
pathway: derepression of transcription in response to DNA breaks. Cell 95(7):975-
979. 

622. Bisognano C, et al. (2004) A recA-LexA-dependent pathway mediates ciprofloxacin-
induced fibronectin binding in Staphylococcus aureus. The Journal of biological 
chemistry 279(10):9064-9071. 

623. Maiques E, et al. (2006) beta-lactam antibiotics induce the SOS response and 
horizontal transfer of virulence factors in Staphylococcus aureus. Journal of 
bacteriology 188(7):2726-2729. 

624. Plata KB, Riosa S, Singh CR, Rosato RR, & Rosato AE (2013) Targeting of PBP1 by 
beta-lactams determines recA/SOS response activation in heterogeneous MRSA 
clinical strains. PloS one 8(4):e61083. 

625. Fleischmann RD, et al. (1995) Whole-genome random sequencing and assembly of 
Haemophilus influenzae Rd. Science 269(5223):496-512. 

626. Parkhill J & Wren BW (2011) Bacterial epidemiology and biology--lessons from 
genome sequencing. Genome biology 12(10):230. 

627. Young BC, et al. (2012) Evolutionary dynamics of Staphylococcus aureus during 
progression from carriage to disease. Proceedings of the National Academy of 
Sciences of the United States of America 109(12):4550-4555. 

628. Didelot X, et al. (2012) Microevolutionary analysis of Clostridium difficile genomes 
to investigate transmission. Genome biology 13(12):R118. 

629. McAdam PR, et al. (2012) Molecular tracing of the emergence, adaptation, and 
transmission of hospital-associated methicillin-resistant Staphylococcus aureus. 



XXXVI 
 

Proceedings of the National Academy of Sciences of the United States of America 
109(23):9107-9112. 

630. Farhat MR, et al. (2013) Genomic analysis identifies targets of convergent positive 
selection in drug-resistant Mycobacterium tuberculosis. Nature genetics 
45(10):1183-1189. 

631. Amaral MM, et al. (2005) The predominant variant of the Brazilian epidemic clonal 
complex of methicillin-resistant Staphylococcus aureus has an enhanced ability to 
produce biofilm and to adhere to and invade airway epithelial cells. The Journal of 
infectious diseases 192(5):801-810. 

632. Chongtrakool P, et al. (2006) Staphylococcal cassette chromosome mec (SCCmec) 
typing of methicillin-resistant Staphylococcus aureus strains isolated in 11 Asian 
countries: a proposal for a new nomenclature for SCCmec elements. Antimicrobial 
agents and chemotherapy 50(3):1001-1012. 

633. Ko KS, et al. (2005) Distribution of major genotypes among methicillin-resistant 
Staphylococcus aureus clones in Asian countries. Journal of clinical microbiology 
43(1):421-426. 

634. Robinson DA & Enright MC (2004) Evolution of Staphylococcus aureus by large 
chromosomal replacements. Journal of bacteriology 186(4):1060-1064. 

635. Josefsson E, Higgins J, Foster TJ, & Tarkowski A (2008) Fibrinogen binding sites P336 
and Y338 of clumping factor A are crucial for Staphylococcus aureus virulence. PloS 
one 3(5):e2206. 

636. Ji G, Beavis RC, & Novick RP (1995) Cell density control of staphylococcal virulence 
mediated by an octapeptide pheromone. Proceedings of the National Academy of 
Sciences of the United States of America 92(26):12055-12059. 

637. Novick RP & Geisinger E (2008) Quorum sensing in staphylococci. Annual review of 
genetics 42:541-564. 

638. Bae T, Baba T, Hiramatsu K, & Schneewind O (2006) Prophages of Staphylococcus 
aureus Newman and their contribution to virulence. Molecular microbiology 
62(4):1035-1047. 

639. Sheppard SK, et al. (2013) Genome-wide association study identifies vitamin B5 
biosynthesis as a host specificity factor in Campylobacter. Proceedings of the 
National Academy of Sciences of the United States of America 110(29):11923-
11927. 

640. Fey PD, et al. (2013) A genetic resource for rapid and comprehensive phenotype 
screening of nonessential Staphylococcus aureus genes. mBio 4(1):e00537-00512. 

641. Qian Z, et al. (2006) Genomic characterization of ribitol teichoic acid synthesis in 
Staphylococcus aureus: genes, genomic organization and gene duplication. BMC 
genomics 7:74. 

642. Komatsuzawa H, et al. (1997) Cloning and characterization of the fmt gene which 
affects the methicillin resistance level and autolysis in the presence of triton X-100 
in methicillin-resistant Staphylococcus aureus. Antimicrobial agents and 
chemotherapy 41(11):2355-2361. 

643. Jensen RO, Winzer K, Clarke SR, Chan WC, & Williams P (2008) Differential 
recognition of Staphylococcus aureus quorum-sensing signals depends on both 
extracellular loops 1 and 2 of the transmembrane sensor AgrC. Journal of molecular 
biology 381(2):300-309. 

644. Easton DF & Eeles RA (2008) Genome-wide association studies in cancer. Human 
molecular genetics 17(R2):R109-115. 

645. Laabei M, et al. (2014) Predicting the virulence of MRSA from its genome sequence. 
Genome research 24(5):839-849. 



XXXVII 
 

646. Peck MD (2011) Epidemiology of burns throughout the world. Part I: Distribution 
and risk factors. Burns 37(7):1087-1100. 

647. Laabei M, Jamieson WD, Yang Y, van den Elsen J, & Jenkins AT (2014) Investigating 
the lytic activity and structural properties of Staphylococcus aureus phenol soluble 
modulin (PSM) peptide toxins. Biochimica et biophysica acta 1838(12):3153-3161. 

648. Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. 
Science 294(5548):1871-1875. 

649. de Jonge BL, Chang YS, Gage D, & Tomasz A (1992) Peptidoglycan composition of a 
highly methicillin-resistant Staphylococcus aureus strain. The role of penicillin 
binding protein 2A. The Journal of biological chemistry 267(16):11248-11254. 

650. Mishra NN, et al. (2011) In vitro cross-resistance to daptomycin and host defense 
cationic antimicrobial peptides in clinical methicillin-resistant Staphylococcus 
aureus isolates. Antimicrobial agents and chemotherapy 55(9):4012-4018. 

651. Novick R (1967) Properties of a cryptic high-frequency transducing phage in 
Staphylococcus aureus. Virology 33(1):155-166. 

652. O'Reilly M, de Azavedo JC, Kennedy S, & Foster TJ (1986) Inactivation of the alpha-
haemolysin gene of Staphylococcus aureus 8325-4 by site-directed mutagenesis and 
studies on the expression of its haemolysins. Microbial pathogenesis 1(2):125-138. 

653. Supersac G, Piemont Y, Kubina M, Prevost G, & Foster TJ (1998) Assessment of the 
role of gamma-toxin in experimental endophthalmitis using a hlg-deficient mutant 
of Staphylococcus aureus. Microbial pathogenesis 24(4):241-251. 

654. Klockgether J, et al. (2010) Genome diversity of Pseudomonas aeruginosa PAO1 
laboratory strains. Journal of bacteriology 192(4):1113-1121. 

655. Diggle SP, Winzer K, Lazdunski A, Williams P, & Camara M (2002) Advancing the 
quorum in Pseudomonas aeruginosa: MvaT and the regulation of N-acylhomoserine 
lactone production and virulence gene expression. Journal of bacteriology 
184(10):2576-2586. 

656. Beatson SA, Whitchurch CB, Semmler AB, & Mattick JS (2002) Quorum sensing is 
not required for twitching motility in Pseudomonas aeruginosa. Journal of 
bacteriology 184(13):3598-3604. 

657. Popat R, et al. (2012) Quorum-sensing and cheating in bacterial biofilms. 
Proceedings. Biological sciences / The Royal Society 279(1748):4765-4771. 

658. Wargo MJ, et al. (2011) Hemolytic phospholipase C inhibition protects lung function 
during Pseudomonas aeruginosa infection. American journal of respiratory and 
critical care medicine 184(3):345-354. 

659. Aendekerk S, et al. (2005) The MexGHI-OpmD multidrug efflux pump controls 
growth, antibiotic susceptibility and virulence in Pseudomonas aeruginosa via 4-
quinolone-dependent cell-to-cell communication. Microbiology 151(Pt 4):1113-
1125. 

660. Heurlier K, et al. (2004) Positive control of swarming, rhamnolipid synthesis, and 
lipase production by the posttranscriptional RsmA/RsmZ system in Pseudomonas 
aeruginosa PAO1. Journal of bacteriology 186(10):2936-2945. 

661. Sloane R, et al. (1991) A toxic shock syndrome toxin mutant of Staphylococcus 
aureus isolated by allelic replacement lacks virulence in a rabbit uterine model. 
FEMS microbiology letters 62(2-3):239-244. 

 


