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Abstract 

Consumption of energy is a key medium through which humans adversely affect their 

environment. Sustainable transition in the scale and composition of total primary 

energy demand in the 21st century is also a requirement for sustainable development of 

human civilisations in the face of diminishing resources of fossil fuels. 

One possible approach to reducing energy consumption is the energy efficient 

utilisation of existing energy consuming systems. This approach is less costly and time 

consuming than replacing the existing systems with new energy efficient ones. In 

addition to that, methods developed through this approach can, in principal form, be 

applied to more efficient future generations of systems too. Information about a 

quantitative measure of energy efficiency at different states of operation of a system 

can be utilised for optimisation of its energy consumption through computation of its 

most efficient state(s) of operation subject to a given set of constraints. 

The main contribution of this research is to develop a novel mechanistic model for 

energy consumption of a CNC machine tool, as an energy consuming system, in order 

to analytically construct a mathematical relationship between the machine tool’s overall 

power consumption and its operating parameters, i.e., spindle speed, feed rate and 

depth of cut. The analytically derived formula is experimentally validated for the case of 

straight slut milling of aluminium on a 3-axis CNC milling machine. 

The research provides evidence for substantial performance improvement in the case 

of the mechanistic model developed here in comparison with the currently most widely 

used model for energy consumption of CNC milling machines, i.e., Gutowski et al. 

2006, through further analysis of the empirical data acquired during the validation 

experiments. 
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1. Introduction to mechanistic modelling of energy 

consumption of CNC milling machines 

1.1 Introduction  

It is a common knowledge that there are some concerns about the consequences of 

human energy consumption behaviour. The major risks known to be associated with 

human energy consumption behaviour are discussed in section 1.3. 

A brief history of human energy consumption is presented in section 1.2. The status 

quo in composition of world primary energy demand is illustrated and its forecast is 

discussed next in that section. 

Energy efficient utilisation of energy consuming systems is discussed as an approach 

to reducing energy consumption in section 1.4. The role of energy consumption 

models of such systems in making this approach possible is also discussed in that 

section. 

Mechanistic modelling of energy consumption in electro mechanical systems is 

discussed in section 1.5. The principles of choosing a sample system to apply this 

methodology on to are discussed next in that section and a CNC milling machine is 

found to be a perfect match. 

In section 1.6, research questions are identified and the structure of the thesis is 

explained. 

1.2. History of human energy consumption 

1.2.1. Past and present 

Global energy demand is met by supply from different primary energy sources. These 

sources are categorised into renewables, e.g., fossil fuels and mineral fuels, and non-

renewables, e.g., hydroelectric and biomass. Figure 1.1 illustrates the composition of 

total primary energy demand, TPED, since 1820 until 2010.  
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Figure 1.1. Composition of Total Primary Energy Demand, TPED, from 1820 to 2010. [Data from Smil, 
2010, pp.155] 

In figure 1.2 the share of each primary energy source in TPED is represented for year 

2010.  

 

Figure 1.2. Breakdown of total primary energy demand by source in 2010 [WEO 2012] 

TPED reached 12.73 Gtoe (Giga tonnes of oil equivalent) in 2010, of which fossil fuels 

accounted for 81% [WEO, 2012]. Bio energy with 10% and Nuclear energy with 6% 

are the second and third largest primary energy sources. Hydro and other renewables 

provide only 3% of the TPED [WEO, 2012]. 
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1.2.2. Future 

The total reserves of fossil fuels are limited. So the current rate of consumption of 

fossil fuels may not continue indefinitely and the composition of global energy 

consumption must eventually change. Based on estimations of the magnitude of total 

proven reserves of each fossil fuel and its current rate of consumption, a time scale 

could be defined, expected reserve life, as the division of the former by the latter. 

Expected reserve life provides a rough estimation of the time that it would take for the 

share of a fossil fuel in TPED to decrease to values substantially lower than current 

figures. Table 1.1 provides expected reserve life for different fossil fuel sources. 

 

Fuel type 

Proven reserves 

(toe) 

(2010 est.) 

Consumption rate 

(toe/yr) 

(2010) 

Reserves life (yr) 

(2010 est.) 

Oil 2.1 x 1011 4.5 x 109 47 

Natural Gas 1.74 x 1011 3.12 x 109 56 

Coal 6.76 x 1011 6.05 x 109 112 

Total fossil fuels 1.06 x 1012 1.33 x 1010 80 

Table 1.1. Proven reserves, rate of consumption and expected reserves life of fossil fuels as of 2010 

In 2012, the International Energy Agency, IEA, in its annual World Energy Outlook 

report introduced three different scenarios for the future of energy consumption until 

2035. These scenarios differ in the level of government policy action and are defined 

in WEO 2012 as: 

• Current Policies Scenario: This scenario “assumes no implementation of 

policies beyond those adopted by mid-2012”. 

• New Policies Scenario: This scenario “takes into account the existing policy 

commitments and assumes that those recently introduced are implemented”.  
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• 450 Scenario: This scenario assumes policy action consistent with limiting the 

long-term global temperature increase 2 OC above pre-industrial levels. This is 

considered to be the threshold for preventing dangerous anthropogenic 

interference with climate system. 

In figure 1.3, from top to bottom, the curves represent IEA’s 3 predictions for future of 

TPED for Current Policies, New Policies and 450 Scenarios respectively. 

 

Figure 1.3. TPED by 2035 through three IEA-envisaged scenarios [WEO 2012] 

1.3. Concerns about human energy consumption 

1.3.1. Adverse effects on environment and life 

I. Atmospheric CO2 level  

The level of CO2 concentration in Earth’s atmosphere has been between 200 and 300 

ppm during the past 160 thousand years [Hartmann, 1996]. Figure 1.4 illustrates CO2 

concentration level for the period between years 1750 and 2000. 
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Figure 1.4. Atmospheric CO
2
 concentration level between 1000 A.D. and 2000 A.D. [Etheridge et al., 1996] 

Figures 1.1 and 1.4 shows a strong correlation between atmospheric CO2 levels and 

global rate of fossil fuel consumption. 

Greenhouse effect of CO2 makes it a key player in the determination of the average 

temperature of the Earth surface. The higher the atmospheric CO2 concentration, the 

more pronounced the greenhouse effect and the higher the equilibrium average 

temperature of the Earth surface. Figure 1.5 shows the correlation between the 

Antarctic temperature and the atmospheric CO2 content during the last 350 thousand 

years. 

 

Figure 1.5. Correlation between atmospheric CO
2
 concentration and the Antarctic temperature [GRID-

Arendal, 2003]. 
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II. Pollution 

Human energy consumption is considered responsible for some pollution-related 

problems, either directly or indirectly. Air pollution in large cities and the health 

problems related to it are results of burning fuel in motor vehicles. Pollution in areas 

close to power plants is caused by the consumption of electricity somewhere else. 

Some pollution related problems, like nuclear power plant waste, could persist for 

generations or leave permanent damage. 

III. Loss of biodiversity  

The extinction rate of species has not been constant through time. Figure 1.6 shows 

extinction rate during Phanerozoic eon, i.e. roughly the last five hundred million years. 

 

Figure 1.6. The species extinction rate during the Phanerozoic eon [Global extinction, Unknown date]. 

The green line in figure 1.6 shows the background extinction rate, which has dropped 

from just over 10 species per million species year to 1 during the last 600 million 

years. During the extinction events, however, the extinction rate has been higher by 

about one order of magnitude. However, measurements of contemporary extinction 

rate suggest values between 2000 and 5000 species per million species [Reid, 1995]. 

Comparison between these figures and the highest extinction rate during the 

extinction events – 50 species per million species year – suggest that the biosphere 

could be experiencing an extinction event, which is believed to have been caused by 
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humans through phenomena such as climate change and pollution which are in turn 

induced by human energy consumption 

1.3.2. Sustainable transition to post-fossil fuel era 

Expected reserve lives of fossil fuels given in table 1.1 suggest that the available time 

for sustainable transition of societies and economies from the current state in which 

81% of the global primary energy demand is met by fossil fuels to an almost fossil 

fuel-free state is of the order of magnitude of a few decades or a century at most. 

Fossil-fuel-free energy production is practically challenging. Current nuclear fusion 

technology is still incapable of producing positive energy balance. Nuclear fission 

needs Uranium, which is another limited resource that will not last more than fossil 

fuels. The overall potential in hydro, wind, tide and other natural kinetic energy 

sources is not scalable to global energy demand. Biofuels are very resource intensive 

as their production requires large amounts of water and arable land per unit of energy 

produced and also interfere with food production as they share same resources. Solar 

energy, which is the only scalable available source, is still problematic when it comes 

to large-scale economical energy production [Smil, 2009]. 

The arguments presented above, and many more, provide the basis for the idea that 

there is an urgent need for efforts to reduce the global human energy consumption, 

which is the starting point for the research documented in this thesis. 

1.4. Efficient utilisation of energy consuming systems as an 

approach to reduce global energy consumption 

As established in the previous section, there are serious concerns over the future of 

human energy consumption, both from environmental and economical viewpoints. 

Management of the future of human energy consumption in a way to avoid 

environmental disasters and economic catastrophes is therefore a major task before 

the global human society. Humans consume energy through energy consuming 

systems or devices to perform tasks, e.g., burning fuel in a car’s engine to move from 

point A to point B or consuming electric energy in a refrigerator to keep foods cool. 

The global energy consumption is the sum of energy consumptions in all such 

systems. To reduce the global energy consumption it is necessary to reduce the 

energy consumed to perform such tasks.  
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1.4.1. Different approaches to energy efficient utilisation of systems 

Lets consider an energy consuming system S  that consumes E  amount of energy to 

perform a task F . To reduce E , one may choose one of the below: 

i. Not perform F  

ii. Replace S  with another system !S , which performs the same task F  

consuming less energy than E   

iii. Use the same system S  to perform F in a way that the consumed energy is 

less than E  

Limiting the scope of research to the cases in which the task F  is chosen to be 

performed, the first approach becomes irrelevant.  

To replace S  with !S , the latter must either exist and be acquired or be designed 

and manufactured and it would be costly. Also, since !S  is not readily at hand, it 

would take some certain time to apply the second approach. On the other hand, if the 

knowledge of using the same system S  in a more energy efficient way is at hand 

there would be neither extra cost for a new system nor a waiting time. Also, it is 

possible to combine the second and third approaches. Energy efficient utilisation of 

the systems may also be applied on the next generations of systems, systems like !S  

that are designed to be more energy efficient, as well as the existing ones. There is 

also a considerable potential in reducing overall energy consumption through 

improvement of energy efficiency. For example, in 2009 it was found to be possible for 

the US to reduce its overall energy consumption by 23 percent by 2020 only by 

applying efficiency measures [Granade et al., 2009]. 

For the above reasons, the approach chosen in this research is to look into the 

methods for energy efficient utilisation of energy consuming systems rather than 

building energy efficient systems.  
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1.4.2. Expression of energy consumption behaviour of systems 

To utilise a system S  for performing a task F  efficiently there must be choice on how 

the system may be used at the first place. If there were only one way of using S  to 

perform F  then there would be no room to change the amount of energy E  that is 

consumed. However, if there are different ways of utilising S  to perform F , each 

consuming a certain amount of energy, then it might be possible to find an optimum 

way of performing F  using S  consuming a minimum amount of energy Eopt .  

To investigate the energy consumption behaviour of S  during performing F  , and 

consequently find the optimum way of performing F using S , there must exist a set 

of quantified parameters, p1 , p2 ,…, pn , a certain collection of which describes a 

certain way of utilising S . Then, the consumed energy may be expressed in terms of 

those parameters. 

E = E p1, p2,..., pn( )     (1.1) 

The above equation is the piece of information about the energy consumption 

behaviour of a system S , which makes investigation for an optimum way of utilising it 

to perform a certain task F  possible. The overall approach in this research is to 

develop a methodology for constructing such equations. 

1.4.3. Mechanistic modelling of energy consumption behaviour of 

systems 

From energy optimisation point of view, the aim of modelling energy consumption 

behaviour of a system is to construct an equation of the type described in equation 

1.1. For a given systemS , Parameters p1 , p2 ,…, pn  must be defined and the 

relationship between the consumed energy, E , during performing a task F and 

those parameters must be constructed. 

The author has chosen a mechanistic approach to modelling of the system subject to 

investigation due to the reasons below: 
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• The proposed mechanistic methodology may be used for modelling a wide 

range of systems with minor adjustments to match the requirements and 

characteristics of each system, without changing the basic structure of the 

modelling process. 

• Since the proposed methodology identifies and distinguishes between the 

mechanisms of energy consumption during the performance of the systems, it 

can provide valuable insight into the details of energy consumption behaviour 

of the systems subject to investigation. 

The next steps would be to choose an energy consuming system, mechanistically 

model its energy consumption behaviour and experimentally verify the constructed 

model. 

1.4.4. Choice of system 

For an energy consuming system, S , to be chosen as a case to apply the mechanistic 

modelling on, the author defines the below criteria: 

i. The functioning parameters of the system, pi , should be easy to define and 

measure. 

ii. The consumed energy, E , should be easy to measure. 

iii. There should exist evidence of significant potential for saving energy in a 

system of the chosen type. 

iv. The collective potential for energy saving through efficient utilisation of such 

systems are significant. 

v. At least one such system must be available to conduct experiments on. 

A CNC milling machine was found by the author to meet all the above criteria. The 

functioning parameters of a CNC milling machine such as feed rate, depth of cut and 

spindle speed can be precisely controlled through the machine’s. The machine’s 

power consumption, P , may be precisely measured at its electricity supply point and 

the total energy, E , consumed  during performing a task may be calculated 

precisely by integrating P  over the time the task is performed. 
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It has been reported in literature that, normally, only 15-25 percent of the energy 

consumed in machining processes is actually used for removing material and the rest 

is consumed to keep the machine tool running and may be considered as potential for 

energy saving [Dietmair and Verl, 2009-A], [Dietmair and Verl, 2009-B] and [Dahmus, 

2007]. This almost 80±5% energy saving potential will be explained in section 2.3.2 of 

this thesis to be translated into a saving potential of around £1.6b per annum for the 

UK mechanical engineering sector. 

1.5. Thesis structure 

A review of literature in the area of energy efficient manufacturing is presented in 

chapter 2. The framework of the current research, including research aims, objectives, 

scope and boundaries are presented in chapter 3. In chapter 4, the theoretical 

foundation of this research is developed and the mathematical relationship between 

power consumption of a CNC milling machine and its functioning parameters is 

carried out. Design of experiments for testing the validity of the mathematical model is 

presented in chapter 5. Chapter 6 is dedicated to the investigation of the results of 

experiments and verification of the mathematical model. In chapter 7, additional 

findings are extracted from the results of experiments, which provide further proof for 

the usefulness of the proposed methodology to the applications beyond the 

optimisation of energy consumption in the system subject to study. Discussions on 

the results and findings of the research are presented in chapter 8. Conclusions of the 

research and the opportunities for further work are presented in chapter 9.  
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2. Review of the literature in energy efficient 

manufacturing 

2.1. Introduction 

In this chapter the research literature of the area of Energy-Efficient Machining (EEM) 

and its peripheral research fields are reviewed. Then, through the methodological 

classification of the research already carried out in the area of EEM, the state of the art 

in this area is demonstrated and the research gaps are identified. One of the identified 

gaps is subsequently chosen as the area of investigation for the current research. 

In chapter 1, it was explained that how the author’s concern about the human effects 

on sustainability of life on Earth along with the available data on the scale of the effect 

of human activities contributing to the subject of concern had led the author to the 

choice of EEM as the core area of research. 

Through the searches of literature in the area of EEM the research area has been 

categorised as below: 

i. Investigations on broader areas of research that contained EEM. Two such 

broader areas were identified: 

a. Green manufacturing: Researches that study of methods for reducing 

the adverse effect of manufacturing activities. 

b. Energy-conscious machining: Researches that involve the energy 

consumption of machine tools in any way, for instance, as an 

instrument, indicator, etc. 

ii. Research that investigated the area of the metal cutting mechanics and 

contained results about energy consumption in metal cutting as auxiliary 

research outputs. 

iii. A limited amount or research that specifically investigated the area of Energy-

efficient machining, i.e. with the aim to minimise the energy consumption of 

machining tools. 

This means that “energy-efficient machining” has been categorised as the intersection 

of three major areas: 
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a. Green manufacturing, 

b. Energy-conscious machining and 

c. Metal cutting mechanics. 

Figure 2.1 shows a graphical representation of these major areas of research and their 

intersection as the core area of the present research in form of a Venn diagram. 

 

Figure 2.1. A Venn diagram graphically representing three major areas containing EEM 

In sections 2.2, 2.3 and 2.4 the research literature of the 3 major areas listed above are 

reviewed separately.  

In section 2.5 the research literature specific to the core area of the current research – 

EEM – is reviewed and state of the art of research in this area is portrayed. For that 

purpose, the previous researches in this area are categorised according to their 

methodologies. As a result of this categorisation, methodological gaps in research of 

the area of EEM are then identified. 
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2.2. Green manufacturing  

2.2.1. Aspects of green manufacturing 

Despite being a matter of concern for scholars and thinkers from as early as the 10th 

century [Gari, 2002], the adverse impacts of human activities on the environment were 

not taken seriously by the thinkers until the late 19th century [Urbinato, 1994]. It was 

just in the recent decades that the public became aware of the severity of this issue. 

Manufacturing, the core of industrial activities, has naturally been a focal point in 

environmental impacts studies. Being a key element in manufacturing, machining has 

played a major role in measuring the magnitude of these adverse impacts.  

A great deal of research has been conducted at both system-level and process-level 

to evaluate the environmental impacts of machining and to find practical methods to 

reduce these impacts [Dahmus and Gutowski, 2004], [Popke et al., 1999] and 

[Zolgharni et al., 2008]. Environmental impacts of machining processes have been 

identified to take place through the use of energy, generation of waste materials and 

chemical emissions [Dahmus and Gutowski, 2004]. 

Sustainable manufacturing in its broadest definition can include all three components 

of manufacturing: technology, energy and material. A generic three-dimensional 

system approach towards sustainable manufacturing was proposed by Yuan et al. to 

provide a unified method for sustainable manufacturing in its broad meaning [Yuan et 

al., 2012]. 

The motivation for investigations regarding reduction in chemical emission and waste 

usually comes from legislation [Popke et al. 1999]. Consumption of cutting fluid has 

been identified as an important source of chemical pollution and waste in machining 

and methods for cutting with a minimum amount of cutting fluid have been 

investigated [Popke et al. 1999]. This also led to economic efficiency and, 

consequently, it has been shown that there is a potential for economic benefit as a by-

product of research purely driven by environmental motivations. 

In 1995, Munoz and Sheng [1995] proposed an analytical approach for determining 

and assessing the environmental impacts of machining processes through different 

mechanisms. In the same year, sheng et al. [1995] identified the computational 
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complexity of evaluating the impact of numerous alternative processes and the 

comparative assessment of different waste streams as a major issue in 

environmentally conscious process planning. To reduce the level of complexity, waste 

streams were decomposed into different dimensions like energy, time and material. 

Vijayaraghavan and Dornfeld [2010] introduced an event stream processing-based 

framework to temporally analyse the energy consumption of machine tools and other 

manufacturing equipment. This framework identifies 5 different levels of manufacturing 

analysis scales, each with its own temporal decision scale and manufacturing analysis 

scale. Table 2.1 shows this categorisation. 

Level of analysis of 

manufacturing 
Manufacturing analysis scale Temporal decision scale 

Supply chain management, 

Enterprise asset management 
Manufacturing supply chain Days-Hours 

Production planning and 
scheduling 

Manufacturing enterprise Hours-Seconds 

Macro-planning Manufacturing equipment Hours-Second-milliseconds 

Micro-planning Sub-components Seconds-milliseconds 

Process control Tool-chip interface milliseconds 

Table 2.1. Categorisation of manufacturing analysis scales. Adapted from [Vijayaraghavan and Dornfeld, 
2010]. 

Gungor and Gupta [1999] investigated a range of issues in environmentally conscious 

manufacturing with the focus on product recovery and end-of-life management of the 

manufactured products. This study identified a variety of environmental issues such as 

disassembly, material recovery, remanufacturing and pollution prevention to be 

involved in environmentally conscious manufacturing. 

Due to the various types of adverse environmental effects of the manufacturing 

systems, the assessment of their environmental performance can be a source of 
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complexity. Hermann et al. [2007] aimed to resolve the complexity by developing a 

methodology to combine life cycle assessment, multi-criteria analysis and 

environmental performance assessment of such systems. This methodology was built 

upon the concept of environmental performance indicator and was expanded to 

include life-cycle assessment indicators. A weighting and aggregation step was also 

added to make the comparison between different systems possible through either a 

single indicator or a limited number of indicators. 

2.2.2. Green manufacturing and energy consumption 

As highlighted earlier in section 1.3, a major part of industrial impact on the 

environment is the adverse effect of energy consumption. This fact has been 

increasingly forcing the regulatory bodies to encourage reduction of energy 

consumption in different sectors through a variety of methods, ranging from taxing 

energy consumption itself to introducing CO2 emission allowance for large industrial 

consumers [Herson and McKenna, 2007]. These regulations along with the high price 

of energy have provided a powerful incentive for research around the methods of 

reduction in energy consumption, especially in the highest consuming sectors such as 

chemical and mineral products. 

In tandem with such strategies, switching to more sustainable and environment-

friendly sources for the production of energy has been one of the proposed solutions 

for reducing the adverse environmental impacts regardless of the level of total energy 

consumption. Nuclear energy, for example, has always been an alternative to the more 

environment-damaging fossil fuel energy [Hammond, 1996]. Biofuels are another 

example of sustainable sources of energy that are currently subject to huge amount of 

investigation as an alternative for the fossil fuels in the future [Hammond et al., 2008].  

Another investigated approach to more sustainable energy production is the local 

micro generation of electricity at the household scale. Independence from a central 

system of generation and supply reduces the required network infrastructure and 

paves the way for the introduction of new sustainable solutions. Micro generators and 

Micro turbines have both been thoroughly investigated as alternatives for future 

electricity micro generation in the UK [Allen et al., 2008-A] and [Allen et al., 2008-B]. 
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In addition to research efforts towards cleaner supplies of energy, a huge amount of 

research is taking place on the demand side. A wide range of different methods of 

reduction in industrial demand for energy was identified in Dyer et al. [2008]. This 

study, however, points out that the economical and technical barriers limit the 

potential of demand cut to about 30%. However, since industry is responsible for a 

large portion of the national energy consumption, 24% in 2012 [DECC 2013], a 30% 

cut in this sector’s energy consumption can make a significant contribution to 

reduction of the total national energy demand, about 15 Mtoe, and carbon emissions.  

A thermodynamical approach to the concepts of engineering sustainability and 

industrial energy analysis was introduced in 2004 [Hammond, 2004-A] and 

[Hammond, 2004-B]. A revised and extended version of the same concepts were 

developed and published in 2007 [Hammond, 2007-A] and [Hammond, 2007-B]. The 

most noticeable outcomes of these studies have been the examination of the scope of 

increasing energy efficiency and the extent of exergy improvement potential. Exergy 

losses in combustion and heat transfer processes are also identified in these studies 

to be responsible for the poor thermodynamic performance in the industries. 

Sustainable production and consumption of energy has also been under investigation 

at the national level in the UK. Hammond [1998] investigated the different energy 

strategies for the UK. As a part of this research, the effects of market competition on 

sustainability were discussed and strategies for pushing the market towards 

sustainable production and consumption of energy were proposed. Hammond [2000] 

continued this work to present the conflict between energy market liberalisation and 

sustainability and to describe the likely options for a sustainable energy strategy. 

Exergy analysis of the UK energy system was carried out in 2001 [Hammond and 

Stapleton, 2001]. This study concluded that electricity generation, domestic 

consumption and transport account for 80 percent of the theoretical maximum 

improvement potential in the energy consumption, which is defined as the maximum 

possible reduction in energy consumption without violating the second law of 

thermodynamics. Industrial energy consumption was identified to be just one of the 

many sectors which are collectively responsible for the remaining 20 percent. 

Worrell and Galitsky [2004] identified considerable potentials in energy efficiency 

improvement in cement production, one of the major industrial energy consuming 
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sectors. Worrell et al. [2001] found opportunities for reduction in energy consumption 

and CO2 emissions in the iron and steel sector. 

In addition to the research on the extent and different aspects of the adverse effects 

of machining processes, some efforts have also been made to pave the way for 

practical reduction of these impacts. A process planning support system for green 

manufacturing was described in He et al. [2007]. This study described a process 

planning support system that is designed specifically to engage the optimisation 

problems that are results of environmental considerations in machining processes. 

The relationship between sustainable and energy-efficient manufacturing and product 

quality is a major issue that defines some of the limitations on the extent at which the 

sustainability considerations may be applied. One study proposes an integrated 

approach for evaluation of the environmental performance of manufacturing 

processes [Li et al., 2012]. A study specifically conducted on grinding processes 

investigates the effect of choice of green manufacturing strategies and the method of 

their application on surface quality of the product and, hence, resource efficiency 

[Helu et al., 2012]. 

Different methods of evaluation of energy consumption and efficiency of 

manufacturing systems may result in different results and cause confusion. A study 

critically compares the different methods of determining energy inputs for the case of 

discrete manufacturing processes and proposes unified methods for each type of 

manufacturing operation [Duflou et al., 2012 (2)]. 

Assessment of the environmental performance of the working industrial plants and 

current technologies has been a matter of investigation. Different measures have been 

taken into consideration as environmental performance indicators. Laurent et al. 

[2010] proposed carbon footprint as an appropriate indicator for the environmental 

performance of manufacturing industry. 

2.3. Energy-conscious machining 

In usual metal cutting processes, mechanical work must be performed on the 

workpiece material in order to remove some of the material and manufacture a part. 

Therefore, consumption of energy is inevitable in manufacturing. In this section, the 

share of metal cutting in the total energy consumption of manufacturing process is 
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discussed and the research considering consumption of energy in manufacturing and 

machining processes in particular are reviewed. 

2.3.1. Share of machining in total energy consumption of 

manufacturing processes 

Dahmus and Gutowski [2004] in a comprehensive system-level investigation of the 

environmental impact of machining identified six different environment-effecting 

processes present in machining as: 

• Material production 

• Material removal 

• Cutting fluid preparation 

• Machine tool construction 

• Tool preparation 

• Cleaning 

Dahmus and Gutowski [2004] suggest that energy use is the main cause in the 

majority of the environmental impact of the identified activities in material removal 

processes. Additionally, since the energy consumed by machine tools is, typically, 

provided by the electricity grid, the true environmental impact of their electricity 

consumption must be calculated with the effects of electricity production and transfer 

being taken into account. The other significant point is that the energy consumed in 

the material production process can sometimes be much greater than the entire 

amount of energy consumed during the material removal process. This is specifically 

true for very energy intensive materials such as virgin aluminium utilised in higher size 

to weight ratio aerospace structures. However, for recycled steel or any other non-

energy-intensive material, the energy used in material production and material removal 

processes are of the same order of magnitude [Dahmus and Gutowski, 2004]. As a 

result, machining processes are responsible for a considerable part of the total energy 

consumed in manufacturing processes and are the second largest consumer after 

metal production processes. 

The energy consumed in other processes in relation with the machining, like cutting 

fluid preparation, tool preparation, machine tool construction and cleaning is small in 

comparison with the two high-energy-consuming processes: material production and 
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material removal. However, they can still have environmental impacts through means 

other than their consumption of energy, e.g. chemical emissions [Dahmus, 2007]. 

2.3.2. Energy consumption in the UK’s “mechanical engineering and 

metal products” sector 

In 2009, the total final energy consumption used by end users in the UK has been 

equivalent to 143.9 million tonnes of oil [DECC, 2010]. The industry sector has been 

responsible for about 18.5% of the total energy consumption, which makes its energy 

consumption equal to 26.6 million tonnes of oil equivalent. “Mechanical engineering 

and metal products”, has been responsible for 1.289 million tonnes of oil equivalent of 

the industrial consumption.  This is slightly less than 1% of the total energy 

consumption of the UK. Considering the fact that the efficiency of the electricity 

generation and transmission is no more than 30% at its best [Smil, 2009], one may 

conclude that the actual annual consumption of energy resources by UK mechanical 

engineering and metal products sector must be around 4 million tonnes of oil 

equivalent. Considering the volume of an oil barrel being about 159 litres 

[http://physics.nist.gov/Pubs/SP811/appenB8.html#B] and the density of crude oil 

being 880±10%(kg/m3) [http://www.engineeringtoolbox.com/liquids-densities-

d_743.html] each barrel should contain about 140±10% (kg) of oil. This would make 

the UK mechanical engineering sector’s energy consumption equivalent to almost 30 

million barrels of oil. OPEC basket’s average price of oil in 2012 has been $109.45 

[http://www.opec.org/opec_web/en/]. Therefore, the yearly cost of the energy 

consumption of UK’s mechanical engineering and metal products sector, through oil 

imports only, has been more than $3.3b or roughly £2.1b. Taking the value added to 

the energy that is provided to the industrial end users, the actual payable amount 

must be many times larger than what was calculated. However, even the calculated 

figure of £2.1b per annum for the cost of this sector’s energy consumption would 

mean that, considering 80% energy saving potential in machining processes, there is 

a saving potential of more than £1.6b per annum in the cost of primary energy 

delivered to mechanical engineering and metal products sector. This justifies the scale 

and intensity of the research being conducted in this area. 
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2.3.3. Potential for reduction in energy consumption in machining 

processes 

Minimising the embodied energy of manufactured products has also been 

investigated as a way of increasing energy-efficiency of the manufacturing systems. 

Rahimifard et al. [2010] carried out a methodological investigation on the performance 

of the manufacturing system from the energy efficiency point of view. This study 

concludes that: by taking energy consumption into consideration in all stages of 

manufacturing, i.e. product development ideas, product design, process planning and 

manufacturing, the embodied energy of manufactured products can be reduced more 

effectively than just focusing on a single stage of the whole system.  

At the machining level, however, studies are recently being conducted to investigate 

the profile of energy consumption in typical machine tools and the sources of energy 

loss in the machining processes are. These studies show that, normally, only 15-25% 

of the power delivered to a machine tool is actually used for the cutting process and 

75-85% of that is consumed in processes other than material removal, such as 

coolant pump, tool change, etc. [Dietmar and Verl, 2009-A].  

Different researchers suggest that there is a positive correlation between the share of 

the consumed energy during a cutting process that is actually utilised for metal 

removal and the relative size of workpiece and the machine tool being used. It was 

shown in [Mishima, 2007] that the smaller the size of the workpiece relative to the size 

of the machine tool, the lower the efficiency of the cutting process. This efficiency is 

even much smaller – as small as 10-6 – in the case of nanomanufacturing, where the 

size of the workpiece is extremely small compared to the size of the machine tool 

[Gutowski, 2010]. This shows that, wherever possible, using smaller machine tools 

may result in lower energy consumption for cutting the same part. This has also 

sparked the idea of making very small machine tools – of the same typical size as the 

workpiece – as a way of saving energy in metal cutting [Mishima, 2007 and 

Neugebauer et al., 2009]. 
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2.3.4. Energy consumption as an indicator for indirect measurement 

and monitoring 

The energy consumed in machining processes is a matter of investigation, not only for 

its environmental impact, but also as an indicator for other phenomena during the 

machining processes. Indirect monitoring of tool conditions, such as tool wear, by 

measuring the electrical power consumption of the machine tool is an example of 

such applications. This indirect measurement method has proven to be a low cost, 

highly reliable, flexible and quick method for tool condition monitoring [Al-Sulaiman, 

2005]. Astakhov and Xiao [2008] proved the energy spent in a cutting system can be 

utilised to evaluate the cutting force indirectly. 

Peklenik and Dolinsek [1995] showed that monitoring and analysis of a machine tool’s 

consumption of energy can help explain the cutting processes’ behaviours. By 

analysing the power spectra of the machine tool and defining a new quantity, called 

energy quanta, they developed a connection between this quantity and the entropy 

change during the cutting process to the physical conditions of the cutting process. 

2.4. Metal cutting mechanics 

In a metal cutting process, a hard and sharp piece of metal, the cutting tool, is used to 

remove a layer of material off the surface of another piece of metal, the workpiece. 

calculating the forces involved in the cutting process has been a matter of interest 

since the invention of machine tools. Being able to calculate these forces, one would 

be able to design a machine tool fit for a certain cutting purpose.  

2.4.1. Merchant’s single shear plane model 

A major breakthrough took place when Ernst and Merchant published their work in 

1945. In their theory, they assumed that the mechanism of metal cutting includes the 

failure of metal on a straight shear plane ahead of the tool tip. This straight shear plane 

was assumed to at a constant angle with the direction of tool path. This angle is called 

the shear plane angle and is usually shown by  [Merchant, 1945 and Childs and 

Rowe, 1973]. This simple assumption made Merchant able to create a model for the 

cutting process. As a result, establishing a relation between the physical quantities, 

i.e. forces, mechanical properties of workpiece metal, friction properties of the tool-

φ
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workpiece contact and geometric quantities became possible. Figure 2.2 shows the 

fundamental quantities involved in calculating the forces in cutting process based on 

Merchant’s shear plane hypothesis.  

 

Figure 2.2. Mechanics of metal cutting according to Merhcant’s model [Now Publishers, unknown date] 

Using this model one can calculate the minimum force needed to be provided by the 

tool to maintain the cutting process. The result is [Astakhov, 2006 and Astakhov, 

1999]: 

   (2.1) 

Where  is the friction coefficient between the tool surface and the workpiece 

material at their contact surface and 

    (2.2) 

Fs  is the shear force acting on the shear plane, causing the fracture of the workpiece 

metal on the shear plane. In the above equation, denotes the shear strength (rigid-

Fc =
Fs cos µ −γ( )
cos ϕ +µ −γ( )

µ

Fs =
τwt
sin ϕ( )

τ
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plastic yield shear stress) of the workpiece material, , is the width of cut and  is 

the depth of cut. 

2.4.2. Improvements to the Merchant’s model: Theoretical approach 

Merchant’s model provided a platform for further investigations into the mechanics of 

metal cutting. To explain the deviations of the experimental data from the theoretical 

predictions made by Merchant’s standard shear plane model, further modifications to 

his model were later proposed.  

Most of the theoretical modifications of Merchant’s model suggest the integration of 

some modification factors into the standard model. Atkins suggests a “friction 

correction factor” defined as [Atkins, 2003]: 

    (2.3) 

, where  is the friction angle, defined as an angle for which: . 

The effect of this factor in the cutting force is described in the following equation: 

      (2.4) 

Where is the toughness of the workpiece material and  is the shear strain along 

the shear plain and is defined as: 

    (2.5) 

Other theoretical modifications to Merchant’s standard shear plane model include the 

consideration of the plastic deformation of the metal in the cutting region and 

therefore, a more complex form of deformation than just straight simple shear plane 

[Astakhov and Shvets, 2004]. 
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Astakhov et al. [1998] also took the effect of vertical flexibility in tool position into 

account. A dynamic model for the tool was created and the vibrations that occur in 

such a system were modelled and investigated. 

Fang and Jawahir [2002] developed an analytical approach to modelling the cutting 

conditions based on the universal slip-line model. This model was able to predict the 

cutting force, the chip thickness and the chip back flow angle in the specific case of 

restricted contact machine tools. The predictions made by this model closely matched 

the experimental results [Fang and Jawahir, 2002]. 

Astakhov [2005] argued that the standard shear plane model, though being widely 

used as the basis for theoretical and numerical investigations in metal cutting, is far 

too unrealistic to be capable of providing a good approximation of the real cutting 

mechanics. The argument was based on the fact that the simple shear plane model 

cannot satisfy all the boundary conditions of the problem and gives infinite values for 

some physical quantities like shear strain. This proves that there is still a major 

opportunity for further investigations into theoretical understanding of the mechanism 

of metal cutting. 

2.4.3. Improvements to the Merchant’s model: Numerical approach 

 Another way of approaching the metal cutting mechanism problem is to numerically 

solve the basic equations of metal deformation. However, due to the complexity and 

the huge volume of the numerical calculations involved, this method was not used 

until the last few decades when sufficiently fast computers became available. The first 

efforts towards a numerical solution for the metal cutting problem were made in 1976. 

A concise bibliography of the numerical methods in the first two decades of numerical 

modelling of metal cutting can be found in Meckerle [1998]. Using the numerical 

simulation of the cutting process, it is possible to create a suitable model for every 

single situation with specific material characteristics. 

As explained before, the oversimplification involved in the standard Merchant’s model 

makes it an weak tool for the analysis of some aspects of the mechanics of metal 

cutting, e.g. tool vibrations. However, when it comes to the calculation of the average 

cutting forces the Merchant’s model is still capable of providing a very good 

approximation in most practical conditions with only few calculations in comparison 
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with other slightly more precise models some of which were discussed earlier. 

Therefore it is still used to predict the cutting force in most engineering cases without 

causing a significant error. 

2.5. Energy-efficient machining: state of the art 

Energy-efficient machining, EEM, refers to any effort towards performing machining 

activities with energy-efficiency consideration. An extensive literature review on the 

state of the art in energy and resource efficiency in manufacturing identifies three 

possible approaches towards energy efficient machining at machine tool level [Deflou 

et al., 2012]: 

• “Redesign of machine tools and selective control can significantly increase the 

energy efficiency without affecting productivity. Case studies illustrate these 

improvements with a factor 1.2 to 3. The obvious lack of priority for energy 

efficiency among machine tool builders leaves on average substantial space 

for improvement requiring only well-known methods and techniques.  
• When allocating machine tools during process and production planning, an 

appropriate choice at near nominal capacity level is highly recommendable. 

Case studies demonstrate an influence on the energy requirements of up to a 

factor 2.  
• Optimisation of process parameter settings and well-optimised control allow to 

reduce the energy consumption. A factor 1.1 is a typical order of magnitude of 

the achievable improvements.” 

The first approach involves redesign of machine tools and controllers and is mostly 

about building more energy efficient machining hardware. The second and third 

approaches, however, are about the optimal utilisation of the available hardware. So 

two main types of approaches towards using the potential for energy saving in 

machining processes at the machine level can be identified as: 

• Hardware improvement: Building more energy-efficient machine tools and 

cutting hardware 

• Software improvement: Using the available machine tools and hardware in a 

more energy-efficient manner 
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The ultimate solution could be the combination of both approaches, i.e.: using energy 

efficient machine tools in an energy efficient way. The state of the art in both of the 

above approaches is discussed in sections 2.5.1 and 2.5.2. 

2.5.1. Energy-efficient machining hardware of future 

A systematic approach was defined in Neugebauer, 2009 to make sure that the 

evolution of the machine tools will take place in a direction that ensures higher energy 

efficiency in the next generations of machine tools [Neugebauer, 2009]. This begins 

with the energy efficiency analysis of the existing machine tools and the identification 

of prime energy consumers. Then the identified major consumers are systematically 

addressed to reduce their energy consumption. The result is expected to be the 

development of enhanced machine tools with lower energy consumption.  

As mentioned in 2.3.3, there are a significant number of research results confirming 

the fact that the size of a machine tool has a positive correlation with the extent of its 

energy inefficiency [Neugebauer, 2009, Mishima, 2007 and Gutowski, 2010]. This has 

sparked the idea of making smaller and lighter machine tools, which are capable of 

performing the same cutting process. 

In some cases, however, performing the machining process at smaller scales may 

improve the energy-efficiency. This happens, for example, in the case of Electro 

Discharge Machining – EDM. The energy efficiency of Micro-EDM processes are 

shown to may be many times – 14 times in the studied case – higher than that of the 

Macro-EDM processes. The reason for that is described to lie in the particular 

mechanism of cutting used in EDM and the fact that Micro-EDM utilises much smaller 

electrical sparks and that helps limiting the loss of electrical energy in the form of heat 

[Zahiruddin and Kuneida, 2012]. 

Improving the tool-workpiece contact conditions has been also a matter of 

investigation for the purpose of reduction in energy consumption in cutting processes. 

A study on high efficiency face milling tools has shown that the geometry of the tool-

workpiece contact can have a notable effect on the value of the contact forces, and 

therefore, the consumed energy [Chang, 2000]. Zolgharni et al. [2008] investigated the 

improvements in energy efficiency of machine tools by using Diamond-Like Carbon 
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(DLC) deposited tools. This method was shown to be able to reduce the cutting power 

consumption of the machine by 36%. 

There are also energy efficiency technologies from other fields that can be transferred 

to the machine tools for the goal of increasing the energy efficiency. For instance, 

Kinematic Energy Recovery Systems (KERS), which are used as a means of increasing 

the energy efficiency in systems with highly alternating kinematic energies – like 

Formula 1 cars – have been identified to be a good candidates for this purpose [Diaz 

et al., 2009]. 

A brief classification of the literature on energy-efficient machining hardware is shown 

in figure 2.5. 

 

Figure 2.3. A brief classification of the literature on energy-efficient machining hardware 

2.5.2. Energy efficient utilisation of machine tools 

The actual cutting energy used in a typical machine tool in a typical material removal 

process accounts for only 15-25 percent of the whole energy consumed by the 

machine during the material removal process [Dietmair and Verl, 2009-B]. The rest of 

the energy is consumed in other parts inside the machine; the controller, fluid pump, 

fan and other ancillary devices are all responsible for parts of the total energy 

consumed by the machine [Dahmus and Gutowski, 2004], [Vijarayaghavan and 
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Dornfeld, 2010]. The spindle’s free rotation and machine’s idle running consumes 

energy when no actual cutting is in progress. The gap between the energy consumed 

by the machine tool and the actual energy required for material removal is the total 

potential for saving energy in the CNC metal cutting process [Dietmair and Verl, 2009-

A]. 

At system level, one of the major reasons for the low energy-efficiency of machine 

tools is the fact that in a typical factory, the machine tools perform the cutting 

operation for only a relatively small fraction of the time those are run. Therefore, using 

Energy-Aware Scheduling (EAS) approach may be applied to maximise the operative 

time fraction of machine tools in a factory and, hence, increase the energy-efficiency 

in a manufacturing system [Bruzzone et al., 2012]. 

For a systematic assessment of energy consumption of machine tools and to be able 

to make valid comparisons between the energy efficiencies of different proposed 

methods and strategies of machining, this is essential to have standardised part 

specifically designed for this particular purpose. An effort has been made specifically 

to achieve this goal in designing such a standard part along with a standard cutting 

procedure that makes the comparison between different machine tools possible 

[Behrendt et al., 2012]. The designed part – without the designed cutting operation – 

may be used for making comparison between different cutting strategies on a single 

machine. 

At machine level, to use a machine tool in an energy efficient manner for a cutting 

process, one needs to plan the cutting process in order to minimise the total amount 

of consumed energy. This is an approach to process planning which takes the total 

energy consumption of the machine during the process into account as a criterion. Liu 

et al. [2005] described a framework for analysis of process plans in manufacturing 

systems. This study also illustrated the general form of the algorithms to be designed 

for green manufacturing.  

One of the methods towards energy-efficient use of machine tools has been the 

qualitative, and mostly descriptive, approach. The researchers using this method have 

been trying to identify the behaviour of the total amount of energy consumed for a 

certain cutting process as a function of different cutting parameters through 

conducting experiments [Diaz et al., 2009], [Diaz et al., 2010 (a)] and [Diaz et al., 2010 
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(b)]. The final description resulting from the experiments would then help the 

researchers to gain an idea of the energy-efficient region of the process parameters 

domain. Santos et al. [2010] used the same approach to investigate energy-efficient 

utilisation of a press-brake. In this case, the parameters are different from the cutting 

parameters of, for instance, a milling machine. However, the same descriptive 

approach is used to illustrate the behaviour of consumed energy as a function of 

process parameters. The same approach was described in [Ghosh et al., 2008] for 

high-efficiency deep grinding processes. Another example of such qualitative 

approaches can be found in the study of the effect of cutting angle on energy 

efficiency in ball end milling on 5-axis milling machines [Oda et al., 2012].  

The other method is based on a quantitative approach, which aims to find the 

optimum process plan for cutting a designed part. The methods using the quantitative 

approach can be categorised further into two subcategories: 

• Predictive methods 

• Non-Predictive methods 

Predictive methods use a mathematical formula, which relates the power consumption 

of a machine tool to the cutting parameters. Such a formula makes it possible to 

predict the amount of energy to be used in a designed cutting process. Therefore, an 

algorithm can be developed based on that formula to find the optimum process plan 

based on a set of criteria including the total amount of energy that is consumed during 

the process. Predictive methods can be further categorised into two subcategories: 

• Analytical methods 

• Statistical methods 

An analytic method uses an analytical approach to derive the mathematical formula 

relating the power consumption of the machine tool to the cutting parameters that is 

needed for prediction of the energy usage of a cutting process. Statistical methods, 

however, use the experimental data and a suitable curve-fitting method to develop the 

power predicting formula based on statistical data.  

The approach used in the current study is the analytical method and is predicted to 

have some advantages over the statistical methods. The main source of this 

advantage is that because of the analytical origin of this approach, the final formula 
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will contain mathematical terms with specific physical translation. This connection with 

the physics of the phenomena taking place during the cutting process can be useful 

in: 

• Indirect recognition of the main sources of energy inefficiency, and 

• Comparison between the efficiencies of different machine tools. 

The non-predictive methods are mostly based on a simple methodology which is to 

perform different possible process plans for a certain designed part and to measure 

the total used energy for each process plan and finally choose the least energy 

consuming plan – or the best plan according to weighted criteria. The advantages of 

these methods over the predictive methods are: 

• No need for a mathematical formula or optimisation algorithm. 

• Can be more precise because they do not involve the error, which is inherently 

associated with the mathematical power-predictive formula. 

There are, however, some disadvantages about non-predictive methods as well. For 

example: 

• They need a considerably large number of cutting tests which can be 

extremely resource consuming to conduct if the number of independent 

variables, e.g. cutting parameters, is not sufficiently limited. 

• Since there is no idea about the amount of energy to be used during cutting, 

no energy model can be developed and therefore no effort can be made during 

the part design stage for energy efficiency. 

• Due to the large amount of resources, e.g. material, time and human 

resources, to be used during the experiments, this method is only justifiable for 

production of parts in very large quantities. 

One of the first efforts for finding a mathematical formula for the power consumption 

of a machine tool as a function of the cutting processes was made through defining 

the efficiency of cutting process as the ratio of specific consumed energy to the 

necessary specific energy for cutting. Then, by fitting a second order polynomial with 

independent variables as the natural logarithms of working parameters of a machine 

tool, a mathematical model for the form of dependence of power consumption of a 

machine tool to its working parameters was developed [Draganescu et al., 2003]. In 
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that research, the Response Surface Methodology was utilised to find the closest 

fitting mathematical function of a certain type to a set of collected experimental data. 

Dietmar and Verl [2009-B] proposed a statistical predictive method that uses the same 

methodology to achieve the required mathematical predictive formula. This proves the 

possibility of considerable reduction in energy consumption in cutting processes by 

integrating energy as a criterion into process planning. 

2.6. Research classification and research gaps 

A classification of the core area of the research is presented in fig 2.6 to illustrate the 

methodology of the current research. The author has identified that there is a lack of 

research in the area of “analytical predictive methods” and has thus formed this as the 

major investigative area for this research. 

The location of analytical predictive methods within the core area of this research 

(Energy-efficient metal cutting) is shown on figure 2.6. in black. 

 

Figure 2.4. A schematic of the core investigation area. The black box characterises the methodology of 
the current research 
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3. A Research framework for mechanistic modelling of 

power consumption in CNC milling machines 

3.1. Introduction 

A review of the literature of the chosen research area revealed a gap in the literature 

that was chosen as the core area of research focus. In this chapter, the research aims 

are clearly introduced in terms of research final outputs. Research objectives are 

subsequently defined coherently in the form of achievable milestones to draw the 

design of the research path towards the research aims. Subsequently, the scope of 

research is defined and the research boundaries are drawn. 

The latter part of the chapter describes the development of a novel methodology 

based on reductionist mechanistic modelling of energy consumption in CNC machine 

tools that leads to the derivation of a closed-form expression for power consumption 

of a typical CNC milling machine in terms of cutting process’ parameters. The 

characteristics of this methodology will be presented the final section of this chapter. 

The incentive for taking this mechanistic approach is the intuitive guess that  

3.2. Research Aims  

The aim of this research is to relate the electrical power consumption of CNC milling 

machines to cutting parameters through a formula based on a reductionist 

mechanistic model of energy consumption mechanisms in a typical CNC milling 

machine.  

Parameters such as tool size, material’s strength and machine’s characteristics, 

implicitly affect the formula through its free constants that need to be measured 

experimentally for each individual combination of tool, material and CNC milling 

machine. 

The formula will be proved through this research to conform to the experimental data 

to an acceptably small uncertainty over the whole accessible domain of cutting 

parameter. 
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The formula will make it possible to calculate the total energy consumption of a given 

process plan. Therefore it can be used to incorporate the energy requirements of 

milling processes into the optimisation criteria during process planning.  

3.3. Scope and boundaries of research 

The scope of this research is defined by the limitations and boundaries that are 

exerted upon it. These limitations and boundaries are identified below. 

As defined in the aim of this research, the scope of this research is limited to finding a 

mathematical relationship between the power consumption of a typical CNC milling 

machine and the cutting process parameters, based on a reductionist mechanistic 

methodology. Therefore: 

The types of machines that are dealt with are limited to CNC milling machines. 

However, because most of the assumptions made in this research about the nature of 

the energy consumption in CNC machine tools are valid in a wide range of machines, 

the same methodology may be applicable for modelling the energy consumption 

behaviour of other machines as well. This, however, is outside the scope of this 

research. 

Another limitation that is applied to this research is that the parameters whose 

relationship to the total electrical power consumption of a CNC machine tool studied 

are limited to the cutting process parameters, e.g., spindle speed, feed rate and depth 

of cut. The main reason for this limitation is the fact that the cutting process 

parameters can be designed very late in the manufacturing process planning without 

affecting the design of other phases of manufacturing. Therefore, the model 

constructed in this research enables the process planning department in a company 

to optimise machining energy consumption without causing any external conflict. 

Further research may be conducted to develop an understanding of the relationship 

between those constants and the different variables that affect them. Such research 

can expand the range of utility of the model presented in this research. 

One of the sources of limitations applied to this research is the research methodology. 

Being based upon a reductionist mechanistic methodology, the scope of research is 

limited to the knowledge conceivable through such a methodology. For instance, any 

purely holistic phenomenon cannot be studied through the chosen methodology for 
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this research. However, the accuracy of the assumption about the effect of any such 

phenomena being negligible, if existent at all, is confirmed through the experiments. 

3.4. Research objectives 

To achieve the defined research aim, a number of objectives are set to materialise. 

These objectives play the role of milestones on the path to accomplishment of the 

defined research aim. These objectives are listed below. 

i. An introduction to the background of the research is provided to explain the path 

that led to the definition of the current research aim. This includes both the 

ethical concerns of the author over the long-term global environmental issues 

and the genuine demand from the manufacturing industry for such an approved 

formula that could facilitate the incorporation of consumed energy of machining 

processes into machining process planning.  

ii. A comprehensive literature review is executed to: 

a. Recognise the research areas that have intersection with the research 

area defined by the aim of the current research or encompass it 

b. Ensure the thorough study of the literature in those research areas 

iii. A reductionist mechanistic model of the energy consumption mechanisms in a 

CNC milling machine will be constructed to provide a platform for the analysis 

and mathematical formulation of such mechanisms and therefore the overall 

power consumption of the machine. The final result of this analysis will be a 

mathematical formula expressing the power consumption of a CNC milling 

machine in terms of cutting process parameters in a closed form. 

iv. To test the validity of the model and the formula based on that, a set of 

experiments will be designed and conducted. The validity of the model will be 

verified through an analysis of the experimental data acquired. 

3.5. Research Methodology  

3.5.1. General approach: Hardware vs. Software improvement 

To improve the energy efficiency of CNC metal cutting processes it is necessary to 

either improve the hardware used for the cutting processes or to improve the way 

those hardware is utilised, i.e., software improvement. The methodology developed in 
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this research aims primarily to help the latter efforts. However, the application of the 

results of this research are not necessarily limited to existing machine tools and may 

be similarly employed for energy-efficient operation of the future machine tools as 

long as their operating mechanisms are not principally evolved. 

3.5.2. Description method: Qualitative vs. Quantitative 

One of the approaches towards energy-efficient use of machine tools has been the 

qualitative description of the behaviour of a machine tool’s energy during a certain 

cutting process as a function of different cutting parameters based on the acquisition 

analysis of experiments [Diaz et al., 2009, Diaz et al., 2010 (a) and Diaz et al., 2010 (b)]. 

The final description resulting from the experiments would then help the researchers 

to have a rough idea of the energy-efficient region of the process parameters domain. 

Santos et al. [2010] is an example of applying the same approach to investigate 

energy-efficient utilisation of a press-brake, in which case the parameters are different 

from the cutting parameters of a milling machine but the same qualitative approach is 

used to describe the behaviour of consumed energy as a function of process 

parameters. The same approach was used in [Ghosh et al., 2008] for high-efficiency 

deep grinding processes.  

Contrasting the qualitative approach explained above is the quantitative approach that 

aims to construct a quantitative relationship between the energy consumed during a 

CNC cutting process and the process parameters. The availability of such a 

quantitative relationship would make it possible to evaluate the overall energy to be 

consumed during a cutting process based on the process parameters and, therefore, 

to design cutting processes for optimal energy demand. 

The quantitative approach provides more detailed information about the energy 

consumption behaviour of cutting processes and for that reason is chosen as the 

description method employed in this research 

3.5.3. Analysis approach: Holistic vs. reductionist 

A CNC machine tool performing a cutting process may be thought of as a system with 

certain inputs and outputs. The energy consumption behaviour of such a system can 

be studied through either considering the system as a whole (the holistic view) or 
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through holding the position that the energy consumption of such a system can be 

considered as the sum of the energy consumption of a number of energy consuming 

mechanisms inside that system (the reductionist view).  

The reductionist analysis of energy consumption of CNC machines provides more 

intuitive and in-depth knowledge of the actual energy-consuming mechanisms inside 

the system. Therefore it provides a useful instrument for the identification of 

opportunities for substantial improvement in the energy consumption performance of 

CNC machine tools. A reductionist analytical approach has been chosen for the 

author’s research. 

3.5.4. Model type: Empirical vs. Mechanistic 

One of the earliest efforts for finding a mathematical formula for the power 

consumption of a machine tool as a function of the cutting process parameters was 

made through defining the efficiency of the cutting process as the ratio of specific 

consumed energy to the necessary specific energy for cutting and, then, by fitting a 

predefined mathematical form onto a sufficiently large set of experimentally acquired 

data [Draganescu et al., 2003]. The same empirical approach to modelling the power 

consumption behaviour of a CNC machine tool was employed more recently to 

achieve the required mathematical formula [Dietmair and Verl, 2009-B]. 

On the other hand, a mechanistic approach to modelling the energy consumption 

behaviour of CNC machine tools can be utilised to construct the model based on the 

reductionist philosophical position, chosen to be held in this research, over the nature 

of the energy-consuming phenomena during the cutting processes.  

The reductionist view chosen in this research considers the total energy consumption 

during a CNC cutting process as the sum of energy consumptions of a number of 

physical mechanisms. A mechanistic model is proposed for every identified energy-

consuming mechanism. Combining all the proposed models develops the overall 

energy consumption model of the CNC machine tool. 

3.5.5. Verification method: Experimental 

The validity of the reductionist mechanistic model of energy consumption of CNC 

milling machines constructed in this research and the formula resulted from that 
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model will be verified experimentally through a set of designed experiments. The 

design and realisation of these experiments will be discussed further in this thesis.  

Figure 3.1 provides an illustrative description of the methodological position of the 

current research among other methodologies applied to the similar problems. 

 

Figure 3.1. Schematic of the methodological position of the current research – the box with dashed 
orange line. 
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4. A mechanistic model for electric power consumption 

of CNC milling machines 

4.1. Introduction  

In this chapter, a relationship between the electrical power consumption of a CNC 

milling machine and cutting parameters is constructed through the development of a 

mechanistic model. This model reduces the total energy consumption of a machine to 

the total sum of energy consumptions of certain energy-consuming mechanisms. By 

linking the parameters that decide the energy consumption behaviour of each 

mechanism to the cutting parameters, a mathematical relation is constructed that 

expresses the energy consumed through that mechanism in terms of cutting 

parameters. The total sum of these specifically constructed relations is then produced 

as the final mathematical relationship between Energy consumption of a CNC milling 

machine and the cutting parameters during slot cutting 

4.2. A mechanistic model for energy consumption of a typical 

CNC milling machine 

A closed-form mathematical relation between the total consumed energy in a cutting 

process and the cutting parameters makes it possible to predict the amount of energy 

to be consumed during the process and, therefore, optimise the design of cutting 

process to achieve optimum energy efficiency. 

The cutting parameters are instant quantities and can change during the cutting 

process. The total energy consumed during the cutting process, however, is an 

integral quantity and can be defined for the whole cutting process. Therefore, to be 

able to relate energy to the cutting parameters, an intermediate quantity is required. 

This intermediate quantity needs to have the following properties: 

i. Be an instant quantity, i.e. can be defined at instants of time. 

ii. The total consumed energy in a cutting process must be possible to calculate if 

this intermediate quantity is known at all times during the cutting process. 

iii. Can be related to and expressed as a single-valued function of the cutting 

parameters. 
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One quantity that has the properties (i) and (ii) is the “rate of energy consumption by 

the machine tool at any time during the cutting process” or, in short, the machine 

tool’s “power consumption”. This power is mathematically defined as [Feynman et al., 

2005]: 

     (4.1) 

where,  is the energy being used by the machine tool during the cutting process, 

 is its power consumption and  is time. 

Due to its definition,  is an instant quantity and has the first property. The total 

energy consumed during the cutting process can be calculated if the power is known 

for all the instants during the cutting process. The reason is that equation (4.1) implies 

that: 

    (4.2) 

Therefore  has the property (ii) as well. 

To have this property, the power consumed by a machine tool must remain 

unchanged when the machine using a certain cutting tool on a certain material with 

certain cutting parameters performs a certain cutting process. This is confirmed 

experimentally through the repetition tests explained in section. 

After an instant quantity with the necessary properties is found, it would be required to 

find out the form of the mathematical relation between the power consumption and 

the cutting parameters. As mentioned earlier, a holistic empirical approach to this goal 

has been previously examined in [Draganescu et al., 2003]. This approach can lead to 

an expression of the power consumed by a machine tool as a function of the cutting 

parameters. This closed-form expression is what is needed for the integration of 

energy into process planning. However, this method, being holistic, is incapable of 

providing any insight to the mechanisms of energy consumption during the cutting 

process. Therefore the results of this method have a very limited range of application. 
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A number of limitations to the application of this method and other holistic empirical 

methods are:  

• The information enclosed in the mathematical relationship that comes out of 

this method or other holistic empirical methods is specific to the very case that 

the experiments have been designed and conducted for and cannot provide 

any prediction in the case of changing any of the settings in the experiments. 

• There is no information about the share of different machine elements or 

different mechanisms in consuming energy and therefore cannot be used for 

the purpose of further modifications in the machine tools to make them more 

energy efficient.  

A reductionist mechanistic approach to the question of finding the form of 

mathematical relation between the power consumption of a machine tool and the 

cutting parameters, which would take the mechanisms of energy consumption in a 

machine tool into account, did not exist prior to this research. This research is 

designed to fill this gap in the knowledge by providing a reductionist mechanistic 

model and constructing a mathematical relationship based on that model between the 

power consumption of a CNC milling machine and cutting parameters. The author 

expected that a mechanistic model could be easily generalised onto other systems 

with similar energy consuming mechanisms and could provide a more precise 

prediction of the system’s power consumption. The latter is proved experimentally in 

this research (chapters 6 and 7) and the former is considered as possible future work 

as it is outside the scope of this research. 

The method used in this research for finding a closed-form expression for this 

relationship consists of the following steps: 

• Recognising the sources of energy consumption during the cutting process. 

• Investigating the physical nature of each source as a subsystem.  

• Realising a mathematical model for each subsystem, which relates its rate of 

energy consumption to cutting parameters.  

• Adding up the power used in all subsystems, develop a closed-form 

expression that relates the total power consumption of the machine tool to the 

cutting parameters. 
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To follow these steps, a cutting condition with constant cutting parameters is 

considered. After developing the required mathematical relation, any complex cutting 

process can be divided into a series of such simple cutting conditions with no loss of 

generality of the solution.  

The case investigated in this study is a milling machine, which cuts a straight slot of: 

• Constant depth of , out of a metal workpiece of  

• Shear strength , using a  

• Cutting tool with  cutting teeth and radius , with  

• Spindle angular velocity of  –  or equivalent spindle speed s  – and 

• Feed – per cutting tooth – of .  

The power delivered to the machine at any time is denoted by . Figure 4.1 shows 

the identified power consuming subsystems in a CNC milling machine schematically. 

 

Figure 4.1. Different power consumption scenarios in a machine tool 

can be consumed in the following ways: 

• Dissipation in electrical resistance of internal circuits of the machine,  

• Dissipation inside the machine in bearings, gears and so on due to internal 

friction,  

• Mechanical work done by tool on the workpiece,  

• Increasing the kinetic energy of moving elements,  
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• Power consumption of other mechanical devices such as fans, coolant pump, 

etc.,  

The sum of these consumed powers must be equal to the power delivered to the 

machine. Therefore: 

    (4.3) 

The next step is to find a closed-form expression for each of the terms on the right 

side the above equation in terms of the cutting parameters 

4.2.1. Electric resistive dissipation,  

Some of the electric dissipation takes place in linear circuits, such as rotor coils, and 

is denoted here by . If the equivalent resistance of the machine, as a black box with 

end points at the power supply points, is , the dissipative power of the internal 

circuits will be: 

      (4.4) 

where  is part of the electrical current entering the machine that goes into the linear 

circuits of the machine, at any given time. 

The rest of the electric dissipation happens in non-linear elements, like the machine’s 

computer, which will be denoted by hereafter. If the voltage of the device is  

and the current of the device is , the nonlinear power would be: 

     (4.5) 

Since the voltages of the DC non-linear devices are usually constant, this is the 

current, which determines the power. Moreover, the current in such devices are 

almost unchanged for most of the time that the machine is on. Thus it is reasonable to 

assume that the whole nonlinear electric power consumption of a machine is a 

constant. 
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The total electric resistive dissipation, as a result, can be written as the sum of linear 

and nonlinear terms: 

     (4.6) 

4.2.2. Friction dissipation,  

There are many moving elements inside a typical machine tool. Some of these moving 

elements are in contact with each other or with the stationary elements. Relative 

motion between solids in contact with other solids or fluids causes friction – except for 

the extremely rare case of super fluids. Friction dissipates mechanical energy to heat. 

Friction dissipation occurs in different locations and through different friction 

mechanisms. The total friction dissipation is equal to the sum of all these dissipations. 

Each one of the dissipation mechanisms will be separately discussed and 

mathematically modelled in this section. 

i. Friction dissipation of the machine elements whose speeds are 

proportional to the spindle speed 

There are some machine elements whose motion is linked linearly to the spindle’s 

motion. The electromotor that turns the spindle and any gears and bearings along the 

way from that electromotor to the spindle, are examples of such elements. All these 

moving elements dissipate some power through friction whose magnitude is a 

function of their speed. Since their speed is proportional to the spindle’s speed, the 

power dissipated by these elements via friction is a function of the spindle’s speed.  

Frictional forces, and therefore torques, are from three different origins [Feynman et 

al., 2005]: 

a. Solid or dry friction torque , is caused by solid surfaces in contact with 

each other with relative tangential movement. This is almost independent of 

the relative speed of motion: 

M fd = cte      (4.7) 
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Here,  means independent of the speed of the moving surface and not 

necessarily independent of all parameters. For those elements whose speeds 

are proportional to the spindle speed, independence of the dry friction torque 

from their speed is, therefore, equivalent to the independence of the dry 

friction torque from the machine spindle’s speed, . Thus: 

∂M fd

∂ω
= 0

     (4.8) 

b. Low Reynolds wet friction, , is produced by the laminar motion of 

lubricants in between the moving machine elements, mostly in fluid 

bearings, and is proportional to the relative speed of the two solid walls 

which is itself proportional to , the rotational speed of the machine: 

M fwl ∝ω      (4.9) 

There are a number of moving elements in a machine tool such as the 

machine’s table, which are not linearly linked to the spindle and, therefore, 

their speed and the relative speed between the moving surfaces in their 

bearings, are not defined strictly by the spindle speed, . In these cases,  

must be replaced by the element’s speed. However, sometimes it is possible 

to construct a mathematical relationship between the speed of such elements 

and the spindle speed. For instance, the table’s feed rate is proportional to the 

product of the spindle speed by the feed per cutting tooth. Therefore, it is 

possible to express the table’s speed as a quantity proportional to the 

spindle’s speed, by using the feed per tooth as a linking parameter, despite the 

fact that the bed’s movement is not linearly linked to the spindle’s motion 

through geometrical constraints. Similar techniques can usually be used to 

express the speed of different moving elements in proportionality with the 

spindle’s speed. This makes it possible to write the frictional dissipations of 

such elements – and the overall frictional dissipation – as a function of 

spindle’s speed, instead of the element’s speed. 

c. High Reynolds wet friction,  can be from the same origin as the 

previous one but in the turbulent regime and also from the air resistance 

against the moving elements. This is proportional to the relative speed of 

cte

ω

M fwl

ω

ω ω

fwhM
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the moving elements squared and therefore the spindle speed – for those 

elements whose speeds are proportional to the spindle’s speed: 

     (4.10) 

Thus, the total internal friction torque, , can be written as: 

   (4.11) 

   (4.12) 

The rate of work done by a torque exerted on a rotating object is equal to the scalar 

product of the torque vector and the angular velocity vector of the rotating object. In 

case of the friction torque on a rotating object with rotational symmetry, the torque 

vector is in the opposite direction of the rotation vector and the rate of work done on 

the object by friction will be: 

   (4.13.a) 

where is the vector of angular velocity of the rotating object. 

To keep the rotational speed of the object (and therefore its kinetic energy) constant, 

the rate of total mechanical work done on the object must be zero. For the case of a 

rotating element of the machine, the other work done on the object is provided but 

whatever that drives the object and its rate is called . This denotes the power that is 

needed to overcome the frictional forces acting on that particular object, or simply the 

friction power. So: 

     (4.13.b) 

    (4.13.c) 

For the case of machine elements whose rotating speed are proportional to the 

spindle speed: 

     (4.13.d) 

Where  is a particular constant for each of such elements. Therefore: 

M fwh ∝ω
2

fM

M f =M fd +M fwl +M fwh

M f = A
*
1 + A

*
2ω + A3

*ω 2

Wf =

M f ×


ωobj = −M fωobj


ωobj

Pf

Pf + Wf = 0

⇒ Pf =M fωobj

ωobj = kobjω

kobj
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     (4.13.e) 

Combining (4.12) and (4.13.e) will yield the following equation for the frictional power 

of rotation elements of the machine whose rotation speed is proportional to the 

spindle speed 

   (4.13.f) 

Defining: 

     (4.13.g) 

The frictional power of such elements of the machine can be written in this final form: 

   (4.14) 

Equation (4.14) shows the form of dependence of the frictional power consumption in 

a machine tool, , to its spindle speed, . The dependence of  on any parameter 

other than  is reflected in the s. Generally, the  coefficients can be functions of 

the net force and torque exerted on the tool by the workpiece while in operation. The 

reason is that the force can change the loads on bearings inside the machine, and 

therefore, their frictional torque. The torque on the tool affects the torques of the gears 

inside the machine and their frictional torques. Since the geometry of the machine 

remains almost unchanged during the process, except for the moving table, the loads 

on the bearings and gears of the machine are linear functions of the components of 

this torque and force because they are calculated from the linear equations of static 

equilibrium of rigid parts of the machine. So: 

   (4.15) 

Where and are the component of the net force vector and the torque 

exerted on the tool by the workpiece respectively. This model can be further simplified 

for specific types of machines. 

Pf =M f kobjω
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ii. Friction dissipation in machine elements with speeds proportional to 

the machine table 

An argument similar to the one that led to equations (4.14) leads to a similar equation 

for the frictional dissipation of energy in parts moving with the machine table. 

However, this is the table speed, , which plays the same role as the angular 

velocity of the spindle now. Therefore: 

    (4.16) 

 are quantities, independent of the table’s speed and, like the  in (4.14), 

represent the dependence of on parameters other than the table’s speed. 

4.2.3. Work performed on the workpiece by the machine,  

Finding the mean force between the tool and the workpiece is essential for calculating 

the torque needed to turn the tool and, therefore, the work done on the workpiece by 

the tool. 

i. The force between the tool and the workpiece 

The forces exerted by the cutting tool on the workpiece at the contact point – or area 

– can be modelled as shown in figure 4.2, with and being the tangential and 

radial components. For a cutting tool, with depth of cut  and width of cut cutting 

through a metal with shear strength , the magnitude of the tangential component is 

given by [Astakov, 1999]: 

     (4.17) 

, the specific cutting stiffness divided by , is a constant which depends on the 

geometry of the tool and the workpiece contact, material properties, the friction 

coefficient on the tool and the material contact surface and the cutting mechanism. 

This is usually of the order of magnitude of 1. The magnitude of the radial component,

, is, by a good approximation, proportional to the tangential component,  

[Astakhov, 1999]: 
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     (4.18) 

with  being a constant which can be either positive or negative. 

 

Figure 4.2. Geometry of material removal by a milling cutting tool 

To model the force and torque between the tool and the workpiece, the following 

notation is used: 

: Tool radius 

: Feed per cutting edge 

: Depth of cut 

: Angular velocity of the tool 

: Number of cutting edges  

Every point on the tool including the tip moves on a cycloid. As the table speed is 

much smaller than its turning linear velocity this cycloid can be approximated by a 

circle. From the geometry shown in figure 4.2 it can be seen that:  

      (4.19) 

Using equations (4.17), (4.18) and (4.19), the following can be concluded: 

FR = µFT

µ

r

a

h

ω

N

d = asin θ( )
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, for    (4.20) 

     (4.21) 

   (4.22) 

  (4.23) 

Also: 

    (4.24) 

  (4.25) 

Averaging these two forces over one revolution of the tool: 

     (4.26) 

(4.27) & (4.24)    (4.27) 

     (4.28) 

(4.26) & (4.29)    (4.29) 

Since the feed per cutting tooth, , is negligibly smaller than the cutting tool’s radius, 

 in most actual cutting cases, for the torque exerted on the tool, it can be inferred 

that: 

    (4.30) 

Averaging this torque over one revolution of the tool would result in: 

     (4.31) 

     (4.32) 

Finally, having N cutting edges on the tool: 

FT θ( ) = khaτ sin θ( ) πθ 〈〈0

FR θ( ) = µkhaτ sin θ( )

Fx θ( ) = FT θ( )sin θ( )+FR θ( )cos θ( )

⇒ Fx = khaτ sin
2 θ( )+µ sin θ( )cos θ( )"# $%

Fy = FT cos θ( )−FR sin θ( )

⇒ Fy = khaτ sin θ( )cos θ( )−µ cos2 θ( )#$ %&

Fx =
1
2π

Fx θ( )dθ
0

π

∫
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1
4
khaτ
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π
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     (4.33) 

     (4.34) 

The force exerted on the work can, thus, be written in terms of the torque exerted on 

the work by tool as: 

     (4.35) 

ii. Calculation of the work done on the workpiece by the machine,  

By having the torque exerted on the workpiece by the tool, the rate of work done on 

the workpiece by tool can be written as: 

      (4.36) 

     (4.37) 

In addition, the rate of work performed by the table’s motor for displacing the table in 

the Y direction should be considered. 

      (4.38) 

The force exerted by the workpiece on the tool is equal and opposite to the force 

exerted on the workpiece by the tool. Since the table velocity is in the Y direction, the 

above equation can be written as: 

     (4.39) 

(4.36) & (4.40)    (4.40) 

The table velocity is: 

      (4.41) 

Therefore: 


Ftool =

N
4
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    (4.42) 

So, the total mean rate of work being performed on the tool-work contact can be 

found as: 

  

(4.37)&(4.43)   (4.43) 

4.2.4. Friction dissipation revisited 

Now, equipped with the force and torque of the tool, equations (4.33) , (4.34) and 

(4.15), which give the power dissipated by internal frictions for the spindle and the 

elements moving with it, can be rewritten. Since the tool force has only two non-zero 

components X and Y, equation (4.15) can be rewritten as: 

    (4.44) 

Equation (4.36) suggests a linear relationship between the tool force vector’s 

components and the tool torque. So by defining: 

     (4.45) 

This can be written: 

      (4.46) 

The friction dissipation function for the spindle and the elements moving with the 

spindle can be rewritten as: 

      (4.47) 

And finally, replacing  by its equivalent gives: 

    (4.48) 
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The dissipation in the elements moving with the table is given in (4.16). By replacing 

the table speed with its equivalent: 

       (4.49) 

It can be concluded: 

      (4.50) 

Thus, the total friction dissipation function can be found by the sum of (4.48) and 

(4.50): 

  (4.51) 

   (4.52) 

4.2.5. Rate of increase in the kinetic energy of the moving elements, 

 

The power consumed to increase the kinetic energy in the machine’s moving 

elements, gets dissipated either via a number of sources of friction or turns into work 

performed on the workpiece. Therefore, although being responsible for a considerable 

fraction of the machine’s total instant power consumption at some times, such as in 

start up, there is no need to take this into account while studying the mean power 

consumption of the machine. Moreover, during the process, which is studied in this 

research, the linear and angular velocities of moving and turning elements are almost 

constant and there is no significant change in their kinetic energies. 

4.2.6. Power consumption of other mechanical devices like fans, 

coolant pump, etc.,  

There are some devices, like fans and the coolant pump, which work consistently and 

independently during the process. Therefore, the total power consumed by these 

devices during the time that cutting is taking place can be assumed as a constant . 
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4.2.7. The total power consumption function for a milling machine 

By replacing the five terms on the right side of equation (4.4) by their equivalents 

calculated in previous sections 4.3.1 – 4.2.6, the total rate of energy consumption by a 

CNC milling machine can be written as: 

 

(4.53) 

As mentioned in sections 4.3.1 and 4.3.7, the nonlinear electric dissipation and the 

power consumed by auxiliary devices can be assumed as constants. So, adding them 

together into a constant, A, the above equation can be simplified into: 

 (4.54) 

Moreover, the last term on the right hand of the above equation can be embedded 

into the previous term, just by adding one unit to , i.e. replacing  by a new : 

     (4.55) 

Consequently, the above equation can be simplified further into: 

  (4.56) 

 can be embedded into  and, therefore, set to zero. However,  and are 

non-zero.  

Equation (4.56) is the final form of the power consumed by a milling machine while 

cutting a slot of constant depth out of a workpiece. In this equation: 

• : Total power consumed by the machine 

• : The total apparent resistance of the machine’s linear circuits, measured at 

the power input nodes of the machine. 
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• : Part of the electric current entering the machine from the grid, which goes 

into the linear circuits of the machine 

• : Constant, depending on the nature of the machine’s non-linear electrical 

circuits and its auxiliary mechanical elements (To be found throughout the 

experiments on every single machine)  

• , and : Constants, containing information about the form of 

dependence of the power consumption of the machine on any parameter other 

than those taken into account as variables in (4.56). Parameters like the 

machine’s geometry and the nature of its moving elements’ contact surfaces, 

its bearings and aerodynamics of its moving elements (To be found throughout 

the experiments on every single machine). 

• : Number of teeth on the milling tool 

• : A coefficient of proportionality defined in equation (4.17). A constant 

depending on the cutting process mechanism. Equation (4.17) models the 

dependence of the tangential cutting force as proportional to the width and 

depth of cut and the workpiece material’s shear strength, and claims that this 

force is independent of the spindle speed. Therefore,  is independent of 

these four parameters as long as (4.17) holds. However,  is likely to change 

with changes in other process parameters like the angle of the cutting teeth 

with the direction of cutting and the material characteristics other than its 

strength. This is assumed in this research that the error in equation (4.18) over 

the domain of investigation of the cutting parameters is negligible and the 

change due to alterations in feed, speed and the depth of cut is not significant 

for a specific tool and material. However, the extent of the accuracy of this 

assumption must be verified through experiments.  
• : The depth of cut 

• : Feed per tooth 

• : The material’s shear strength 

• : Tool radius 

• : Spindle speed 

Equation (4.56) provides a closed-form expression as a model for the power 

consumption of a CNC milling machine in terms of cutting parameters. Experimental 

validation of this model is the subject of chapters 5 and 6.  
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5. A theoretical framework for experiments 

5.1. Introduction 

In chapter 4 a mathematical relationship between the power consumption of a CNC 

milling machine performing a full-width slot milling process, P , and the parameters 

and conditions of the process was developed through a mechanistic model, 

conceived for the flow and consumption of electric energy through such a process. 

Experimental validation of the developed model is the subject matter of this chapter 

and chapter 6. 

Validation of the developed model would have two major consequences. One, with 

intellectual significance, would be an evidence for the claim that the conceived 

mechanistic model correctly describes the actual energy consumption mechanism in 

the aforementioned processes in the physical world as they both produce matching 

outputs. Therefore, the model could be assumed valid and used as a starting point for 

further studies. The other major consequence, with more practical significance, would 

be the fact that the constructed formula may be used as a tool for predicting the 

energy consumption in such processes.  

The proof for the validity of the hypothesis is provided through design and conduct of 

a set of experiments and the analysis of its results. In this chapter the process of 

formation of the concept of such set of experiments, recognition of its scope and its 

design is described. 

In section 5.2 the concept of the experiment is formed and its scope is identified. A list 

of assumptions and practical considerations will be discussed and, as a result, a 

number of independent variables are chosen to design the experiments upon. Also a 

modified form of the mathematical relationship is developed to match the selection of 

the independent variables. 

In section 5.3 a linear regression method is introduced and explained. This method is 

chosen as the method of experimental verification of the hypothesis. 

In section 5.4 constraints and limitations on the values of the independent variables 

are discussed and their governing equations are constructed. 
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In section 5.5 the equations constructed in section 5.4 are utilised to specify the valid 

domain of investigation in the space of the independent variables for a certain choice 

of tool and material.  

In section 5.6 a set of points in the valid domain of variables are chosen in order to 

perform the experiments. The number and positions of the points are chosen in a way 

to ensure the sufficiency of the acquired experimental data to support or reject the 

hypothesis to an assuring predefined statistical certainty. 

5.2. Concept and scope of the experiment  

According to the developed model the form of dependence of power consumption of 

a CNC milling machine to the cutting parameters, tool properties and material 

properties is described by equation 5.1. 

   (5.1) 

To investigate the hypothesis introduced earlier, this is required to perform 

measurements of the quantities given in the above equation during actual cutting 

processes and examine if the equation holds. This is the basic concept of 

experimental verification of the constructed model. Also, the experiments must be run 

in accordance with the conditions subject to which the model is constructed and the 

equation is derived. For instance, the model considers full-width straight slot milling 

and, therefore, this should be the case with the experiments as well.  

There are 6 independent variables:N , h , a , τ , r ,  and 10 constants:A , B1 , 

B2 , B3 , E1 , E2 , E3 , G1 , G2  and G3  on the right side of the equation and one 

dependent variable P  on the left. However, not all of the 6 independent variables are 

of main interest from the process planning perspective, as there is no control on some 

of those variables at the process planning cutting level, e.g., the material of the part 

being cut. For that reason, this is important to distinguish between the variables that 

are of interest from the process planning viewpoint and those that are not so. This is 

done through categorisation of the elements of equation (5.1). 
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5.2.1. Categorisation of the elements of equation (5.1) 

Equation (5.1) expresses the overall power consumption of a CNC machine tool as a 

function of: 

• Material properties: shear strength, τ  

• Tool parameters: tool radius r  and number of cutting teeth, N  

• 10 constant, which can generally depend on  

a. Machine properties, coolant properties, tool geometry 

b. Mechanism of material deformation at the tool-material contact 

c. The physical conditions of the environment such as temperature and 

pressure. 

d. Cutting parameters 

• Cutting parameters: feed per tooth, a , depth of cut, h , and spindle speed, ω  

From the process planning perspective, the main application of an equation that 

predicts the power consumption of a machine tool would be in the minimisation of the 

overall energy consumption during a given cutting process. Therefore, only the form of 

dependence of the power consumption to those parameters that are controllable 

during process planning is inside the scope of this research. 

i. Material properties and tool parameters 

Normally, the type of material is chosen at the early stages of the design of a part. 

Therefore, there is no control over the choice of material in process planning and the 

optimisation problem does not include finding the optimum material.  

The type and size of cutting tools are usually determined by the characteristics of 

material being cut and the geometry of material removal respectively. Therefore, as far 

as concerned with process planning, the material properties and the tool parameters 

can be absorbed into the constants of the equation (5.1). This would result in equation 

(5.2) 
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ii. Constants of equation (5.1): assumptions 

Of the four categories of parameters a, b, c and d introduced on previous page on 

which the constants of the equation (5.1) may depend, those in sets a, b and c are not 

controllable in process planning. The mechanism of material deformation and material 

removal may generally depend on cutting parameters, which are controllable in 

process planning. If this is the case, the constants of equation (5.1) can implicitly 

depend on the cutting parameters through the change in the mechanism of material 

removal. However, an assumption has been made that the change in the value of this 

set of constants due to change in material deformation and removal mechanism is 

negligible over the valid domain of variables that is dealt with in process planning. The 

validity of this assumption is automatically put to test through the experimental 

verification of the model. 

5.2.2. Choice of independent variables 

In equation (5.2) the independent variables are: 

- Feed rate,  

- Depth of cut, , and 

- Spindle speed,  

Any set of 3 combinations of the above variables, , may be used as 

independent variables to address the domain of parameters, if and only if the new set 

of variables are internally independent. In other words, the Jacobian matrix of the 

transformation from to must be non-singular all over the domain of 

parameters: 

    (5.3) 

An example of a useful change of variables is to replace the depth of cut, , by the 

rate of material removal rate, . This will transform (5.2) to: 
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Absorbing the constant, 2, into gives: 

   (5.4) 

This form of power function is specifically useful in the investigation of the energy 

consumption in interchangeable process plans due to the fact that constant rate of 

material removal is identical to constant material removal time. 

However, since they are directly controllable on the CNC machines, feed rate, depth 

of cut and the spindle speed are chosen as the independent variables for the 

experimental verification of the proposed mechanistic model and therefore the 

equation (5.2) will be the form of mathematical representation of this model to be 

verified experimentally. 

5.3. Method of experiment 

The goal of the experiments is to investigate the validity of the hypothesis that the 

proposed mechanistic model for the power consumption of a CNC milling machine in 

its reduced form expressed in equation (5.2) is capable of describing the energy 

consumption behaviour of such system sufficiently precisely. This is performed 

through these steps: 

- A linear regression model will be used to reformulate equation (5.2) in terms 

of 10 unknown constants.  

- Then, by minimising the sum of the square of the errors, the constants will 

be calculated.  

- Then the standard error in the calculated constants will be analysed and 

calculated.  

- The experiments will be designed in a way to comply with the limitations on 

variables and to provide sufficient number of data points to have a 

sufficiently low standard error in the calculated constants. 
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- Finally, it is checked if the overall contribution of each of the 10 terms of 

the equation to total power consumption is larger than the error term. This 

will be done through the comparison of the sum of the squares of each 

term in the equation and the sum of the squares of the error.  

 5.3.1. A linear regression model based on the proposed power 

consumption model 

In equation (5.2), the radius of the cutting tool, r , being constant through the 

experiment, may be absorbed into the constants Hi  to form new Hi  constants and 

the equation will change to: 
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 (5.5) 

The hypothesis of this thesis is that the constants A , Bi , Hi  and Gi  may be 

chosen in a way that the above equation gives a reasonably precise prediction of the 

power consumption of a CNC milling machine for any given set of . These 

constants, however, may vary for each combination of CNC milling machine, cutting 

tool and workpiece material. 

Assuming that n  experiments are conducted at n  different sets of f ,h,ω( )  and for 

each set the value of power consumption of the machine is measured. The values of 

the variables at the ith  experiments are fi,hi,ωi( ) . The measured power of the 

machine is Pi
E  and the power predicted by equation (5.5) is Pi . It is possible to state: 

Pi
E = Pi +εi       (5.6) 

In the above equation εi  denotes the error in prediction by equation (5.5). The sum of 

squares of the errors at all sets of fi,hi,ωi( ) , L , is defined as a measure of accuracy 

of equation (5.5) in predicting the actual power consumption of the machine over the 

domain of investigation. 

f ,h,ω( )



 
 
 
 

62 

L = εi
2

i=1

n

∑       (5.7) 

Using the method of least squares, the constants of equation (5.5) should be chosen 

in a way to minimise L.  A linear regression model is used below to generally 

formulate the method of finding the optimum values of those constants. 

Expanding equation (5.5) will result in: 

P = A+B1ω +H1hf +G1 f +B2ω
2 +H2hfω +G2 f

2 +B3ω
3 +H3hfω

2 +G3 f
3
 (5.8) 

There are 10 terms on the right side of the above equation. Each term is made of the 

product of one unknown constant and a function of the independent variables. 

Therefore, (5.8) may be written in this form: 

P = gj f ,h,ω( )β j
j=1

m

∑     (5.9.a) 

where:      

m =10      (5.9.b) 

β j  are the unknown constants of equation (5.8) that have to be found through the 

experiments. gj  are known functions of the variables. Therefore, for any combination 

of f ,h,ω( ) , gi  can be calculated. If the ith  experiment is conducted with a set of 

variables fi,hi,ωi( ) , by defining: 

Xij = gj fi,hi,ωi( )     (5.10) 

g functions and β  constants are listed in table 5.1. 
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j  1 2 3 4 5 6 7 8 9 10 

gj  1  ω  hf  f  ω 2
 hfω  f 2  ω 3

 hfω 2
 f 3  

β j  A  B1  H1  G1  B2  H2  G2  B3  H3  G3  

Table 5.1. List of g functions and β  constants 

The predicted value of the power consumption of the machine tool for the ith  

experiment can be written as: 

Pi = Xijβ j
j=1

m

∑   (for i =1..n )   (5.11) 

The above equation can be written in matrix format. 

P[ ]n×1 = X[ ]n×m β[ ]m×1     (5.12) 

Or simply:   

P = Xβ       (5.13) 

Combining (5.6) and (5.13): 

PE = Xβ +ε       (5.14) 

In (5.14), PE  and ε  are n×1( )  matrices representing the observed power 

consumption and the difference between the observed and predicted power in n  

experiments respectively.  

Rewriting (5.14): 

ε = PE − Xβ       (5.15) 
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The sum of squared errors can now be written in matrix form: 

L β( ) = ε tε

⇒ L β( ) = PE − Xβ( )
t
PE − Xβ( )

   (5.16) 

The entries of matrix β  should be found in order to minimise L . This would mean: 

∀i ∈ 1, 2,...,m{ } :
∂L
∂βi

= 0     (5.17) 

Or more concisely: 


∇L = 0       (5.18) 

Labelling the particular β  matrix for which equation (5.18) holds as β̂ , then equation 

(5.17) provides a system of m  equations for m  unknown β̂i . It is possible to 

explicitly express the solution vector β̂  in terms of the known parameters by 

combining (5.16) and (5.18) as below. 

(5.16)&(5.18)⇒

∇L =


∇ PE( )

t
PE − PE( )

t
Xβ −β tX tPE +β tX tXβ$

%&
'
()
= 0 (at β = β̂ ) 

⇒−2XtPE + 2XtXβ̂ = 0  

⇒ β̂ = XtX( )
−1
XtPE     (5.19) 

Equation (5.19) explicitly expresses the unknown constants as a function of the values 

of cutting parameters and the measured values of power consumption of the milling 

machine in the experiments. The minimal error matrix may be found by replacing β  in 

equation 5.15 by β̂  from equation 5.19.  

ε̂ = In − X XtX( )
−1
Xt"

#$
%
&'P

E     (5.20) 
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5.4. Constraints and limitations on variables 

Material and tool properties exert limitations on the possible choice of cutting 

parameters. Such limitations can be expressed in the form of mathematical 

constraints on the value of cutting parameters. Those points of the cutting variables 

space that satisfy all of the mathematical constraints would form the domain of the 

power function, . The limitations and the mathematical constraints representing 

them are listed and discussed in this section. 

5.4.1. Limitation on cutting speed 

The relative speed of the cutting edge of the cutting tool and the material that is being 

cut should usually be in a certain range for an acceptable cutting quality to be 

achieved. The boundaries of this range can generally depend on: 

• Type of the material being cut 

• Tool material and geometry 

• Cutting conditions, e.g., temperature, use of coolant, etc. 

The actual acceptable range for any combination of the above conditions can be 

found in the machining handbooks. This limitation on the cutting speed can be 

mathematically expressed in the form of an inequality of this form: 

    (5.21) 

As explained above  and  should be found from the handbooks for each 

combination of material and cutting tool. 

To be able to use equation (5.21) as a constraint on the independent variables of the 

function , ω, f ,h{ } , it is needed to express  in term of those variables. In the 

case of milling, since the tool rotates around an axis with an angular velocity of , 

any point on the edge of the cutting tool moves on a circle a linear velocity of: 

     (5.22) 

P

vmin ≤ v ≤ vmax

vmin vmax

P v

ω

v =ωr
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In (5.22),  denotes the radius of the cutting tool. Combining equations (5.21) and 

(5.22), the constraint applied to the independent variables of function  by the 

limitation of cutting speed may be written as: 

 

⇒
vmin
r

≤ω ≤
vmax
r

    (5.23) 

A graphical interpretation of equation 5.23 is presented in figure 5.1. 

 

Figure 5.1. Acceptable range of spindle’s angular velocity as given by equation 5.23 

This should be noted that for finishing operations, where the material removal rate is 

considerably smaller than normal material removal operations, the cutting speed might 

be larger than the upper limit introduced by the above equations. However, that would 

only affect the value of the upper limit and not affect the form and logic of the 

equation. 

5.4.2. Limitation on feed per tooth 

Feed per tooth is also limited to a certain range for any combination of material and 

cutting tool. Cutting with a feed per tooth out of that range would result in either 

unacceptable surface characteristics and tool wear or is simply impossible to perform. 

The upper and lower limits of this range can be found in machining handbooks for 

different materials and cutting tools. 

This limitation can also be mathematically expressed in the form of an inequality: 

    (5.24) 

In the above equation  denotes the feed per tooth.  

r P

vmin ≤ωr ≤ vmax

amin ≤ a ≤ amax

a
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If the cutting tool has  cutting edges (flutes) and the spindle speed is , the feed 

rate, , can be written as: 

     (5.25.a) 

In the above equation should be expressed in terms of radians per unit of time. In 

the case of expressing the spindle speed in terms of revolutions per unit of time, the 

above equation would turn into: 

     (5.25.b) 

In this thesis, however, radian is the preferred unit of angle, unless stated otherwise 

and, therefore, equation (5.25.a) is used. 

Combining equations (5.24) and (5.25) will result in: 

    (5.26.1) 

Or equivalently: 

    (5.26.2) 

Figure 5.2 shows the geometry of the range of feed rate and spindle angular velocity 

that is in agreement with the constraints set by equation (5.26.2) 

N ω

f

f = Naω
2π

ω

f = Naω

amin ≤
2π f
Nω

≤ amax

Namin
2π

≤
f
ω
≤
Namax
2π
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Figure 5.2. A section of plane that lies between the green lines is the area containing points with 
coordinate values in agreement with equation (5.26.2). 

5.4.3. Limitation on depth of cut 

For any combination of cutting tool and workpiece material there is a maximum depth 

of cut recommended by the tool manufacturers. This maximum value can be found in 

the tool manufacturers’ catalogues. This limitation can be expressed as: 

    (5.27) 

Figure 5.3 shows the graphical representation of the constraint set by equation 5.27. 

 

Figure 5.3. Equation 5.27 limits the depth of cut to a certain maximum value. 

h ≤ hmax



 
 
 
 

69 

5.4.4. Limitation on machine power 

The power of the spindle motor in any CNC machine tool is limited to a certain value. 

Therefore any cutting process requiring more power than that value would be 

impossible to execute on that particular machine tool. 

The power of the spindle motor during a milling process can be written as (definition of 

efficiency): 

    (5.28) 

In the above equation: 

• Spindle motor power,  

• Rate of material removal,  

• Specific cutting energy and,  

• Overall efficiency of the power transmission from the spindle motor to the tool 

tip and the cutting mechanism,  

By writing  in terms of the chosen set of independent variables ω, f ,h{ } , equation 

(5.28) can be rewritten as: 

    (5.29) 

The limitation on the power of the spindle motor can, therefore, be expressed as: 

   (5.30.1) 

Or equivalently: 

    (5.30.2) 

Pm =
Vu
η

Pm
V
u

η

V

Pm =
2rhfu
η

2rhfu
η

≤ Pmmax

hf ≤ ηPmmax
2ru
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The constraints imposed by equation 5.30.2 on the choice of feed rate and depth of 

cut is illustrated in figure 5.4. 

 

Figure 5.4. Points under the red curve have coordinate values that satisfy equation 5.30.2 

Although the specific cutting energy can depend on cutting conditions, an 

approximate value for that can be found for different materials in manufacturing 

handbooks. Also, the efficiency of the power transmission is very difficult to precisely 

determine and can highly depend on the cutting conditions as well.  

5.5. Domain of parameters for the experiments 

Aluminium is chosen as the preferred material for the experiments. The reasons for 

this choice are: 

• Relative ease of machining 

• Availability and relatively low cost 

• Being one of the most widely used materials in machining processes 

• Providing a broad domain of machining parameters 

A 14mm end mill is chosen as the cutting tool as it is a standard tool commonly used 

in many CNC applications. 

Having decided the material and the cutting tool, it was then possible to recognise the 

domain of parameters by evaluating the numerical values of the limits of different 

constraints.  
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The domain of acceptable cutting parameters is the collection of all points in the 3-D 

space of cutting parameters constructed by spindle speed, S , feed rate, F  and 

depth of cut, h , for which the coordinate values are compatible with equations 5.20, 

5.23, 5.24 and 5.27. Each of these four equations defines a surface in the 3-D space 

of cutting parameters that performs as a boundary of the domain. Therefore, these 

equations are the equations of the boundaries of the domain in that 3-D space. In the 

subsections 5.5.1, these equations are rewritten for the specific case of Aluminium 

and the 14 mm end-mill cutting tool. 

5.5.1. Limitation on cutting speed 

Equation 5.21 represents the limitation of cutting speed. The minimum and maximum 

cutting speed for aluminium using carbide end mill cutter are given in different sources 

differently. There is more agreement on the minimum cutting speed between different 

sources. 

vmin = 75m / min    (5.31.1) 

For the maximum cutting speed, however, a wider range of values is available. 

vmax =105− 250m / min   (5.31.2) 

The midpoint of this interval is chosen as the maximum speed. 

vmax =175m / min    (5.31.3) 

Using these numerical values, equation 5.23 can be rewritten (in SI units) for 

aluminium and carbide cutting tool as: 

1.25<ωr < 2.917    (5.32) 

For the case of a 14mm tool: 

r = 0.007m     (5.33) 

Therefore: 
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178.57 <ω rad /s( ) < 416.67   (5.34) 

Spindle speed is, customarily, expressed in rpm. Transforming equation (5.34) into a 

new form with rpm as unit and S  as “spindle speed expressed in rpm” leads to: 

1705< S rpm( ) < 3978    (5.35) 

Or roughly:   

1.7×103 < S(rpm) < 4.0×10
3   (5.36) 

Figure 5.5 provides a geometrical representation of equation (5.36) and the boundary 

surfaces defined by it. 

 

Figure 5.5. Boundary surfaces defined by equation (5.36) 

5.5.2. Limitation on feed per tooth 

Equation 5.26.2, applies a constraint on feed rate and spindle speed due to the fact 

that the feed per tooth – or chip load – must lie between two certain values. If F
denotes chip load in mm, equation 5.26.2 changes to: 

N CLmin( ) < F
S
< N CLmax( )   (5.37) 
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The values of minimum and maximum chip load can be found for different tool sizes 

and materials in manufacturing handbooks and tool catalogues. For the 2-flute 12mm 

tool used for the experiments, the recommended range of chip load for cutting 

aluminium is: 

0.15mm <CL < 0.25mm   (5.38) 

Combining equations 5.37 and 5.38 yields: 

0.3<
Fmm/min( )

S rpm( )

< 0.5    (5.39) 

Figure 5.6 illustrates the geometrical interpretation of equation (5.39), the boundaries 

defined by it and the section of space whose points make the inequalities in (5.39) 

hold. 

Applying both limitations applied by equations (5.36) and (5.39), the intersection of the 

set of points acceptable by (5.36) on S −F  plane and the set of points acceptable by 

(5.39) on the same plane, define a trapezoidal domain on the S −F  plane. Figure 5.6 

illustrates this domain. 

 

Figure 5.6. A trapezoidal domain is defined on S −F  plane by equations (5.36) and (5.39) 
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5.5.3. Limitation on depth of cut 

For cutting aluminium with the chosen 14mm end mill the upper limit of depth of cut is 

given to be 8mm. However, for not putting too much pressure on the machine and the 

cutting tool, the maximum depth of cut was chosen to be 4mm instead.  

h < 4mm     (5.40) 

Application of the constraint on depth of cut, equation (5.40), on top of the two 

constraints already applied would define a prismatic domain with trapezoidal base 

consisting of the points with coordinates that satisfy all three inequalities in equations 

(5.36), (5.39) and (5.40). Figure (5.7) illustrates the prismatic domain constructed by the 

constraints. 

 

Figure 5.7. The prismatic domain in the 3-D space of cutting parameters constructed by constraints 
expressed in equations (5.36), (5.39) and (5.40) 

5.5.4. Limitation on machine power 

The spindle motor of the CNC milling machine used for the experiments has a rated 

power of 13 kW.  

Pmmax =13kW     (5.41) 

The maximum specific cutting energy for aluminium is Dahmus and Gutowski [2004]: 
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u =1.1J /mm3    (5.42) 

Replacing these values into 5.30.2 yields: 

hf ≤ 3.2×104 mm
2

min
   (5.43) 

Figure 5.8 provides an illustration of the boundary surface defined by 5.43 in red. This 

surface remains entirely out of the cuboid shown in dashed green, which contains the 

prismatic domain.  

 

Figure 5.8. The curved surface in red is defined by equation 5.43  

Therefore, the constraint set by equation (5.43) does not eliminate any of the points in 

the prismatic domain. Therefore, the final domain of possible combinations of cutting 

parameters is not affected by this constraint and remains the same prismatic domain 

with trapezoidal base illustrated in figure 5.6.  

5.6. The design of experiments for aluminium 

A geometric transformation of the prismatic domain is applied on the parameters to 

transform it to a unit volume cubic domain that is easier to view. One set of equations 

that define a transformation with such property is listed in equation set 5.44. 
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β = 5 F
S
− 0.3

"

#
$

%

&
'

σ =
1

2300
S −1700( )

γ =
h
4

(

)

*
*
*

+

*
*
*

     (5.44) 

The inverse transformation is also given in equation set 5.45. 

h = 4γ

F = β
5
+ 0.3

!

"
#

$

%
& 1700+ 2300σ( )

S =1700+ 2300σ

'

(
))

*
)
)

   (5.45) 

The objective of the experiment is to test the performance of the developed model in 

predicting actual power consumption of a milling machine during slot cutting. To 

provide a symmetric design, full factorial design has been used with the same number 

of levels l  for all 3 parameters. A symmetric design makes the acquired data equally 

useful in testing the performance of other possible models. The number of design 

points will therefore be 

n = l3     (5.46) 

Since the model to be examined through the experiments is in third order relationship 

with spindle speed, the number of levels, l , could not be less than 5 because for 4 

data points it is always possible to find a third order fit. Considering the available 

resources, l  larger than 5 would be uneconomical. Therefore: 

l = 5     (5.47) 

Therefore, the number of design points will be 125. The set of values for each of the 

parameters β , γ  and σ  will, therefore, be: 

V = 0, 1
4
, 1
2
, 3
4
,1

!
"
#

$
%
&

  (5.48) 

The design in βγσ  space can be written as: 
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ψ = β,γ,σ( ) :β ∈V ∧β ∈V ∧γ ∈V{ }  

or simply:   ψ =V 3     (5.49) 

To find the design in FSh  space, however, the inverse transformation equations in 

equation set 5.45 must be used. The relation between h  and γ  is independent of 

other variable and it is easiest to find values of h  using the first equation of equation 

set 5.45. This will lead to: 

h mm( )∈ 0,1, 2,3, 4{ }   (5.50) 

Each combination of F  and S  with any of h  values from the above equation 

specifies a particular designed experiment. To finish the design, it is needed to find 

the 25 combinations of F  and S  through the second and third equations of equation 

set 5.45. The results are given in table 5.2. 

             β             
σ  

0 0.25 0.5 0.75 1 

0 
S=1700 

F=510 

S=2275 

F=682 

S=2850 

F=855 

S=3425 

F=1027 

S=4000 

F=1200 

0.25 
S=1700 

F=595 

S=2275 

F=796 

S=2850 

F=997 

S=3425 

F=1199 

S=4000 

F=1400 

0.5 
S=1700 

F=680 

S=2275 

F=910 

S=2850 

F=1140 

S=3425 

F=1370 

S=4000 

F=1600 

0.75 
S=1700 

F=765 

S=2275 

F=1024 

S=2850 

F=1282 

S=3425 

F=1541 

S=4000 

F=1800 

1 
S=1700 

F=850 

S=2275 

F=1137 

S=2850 

F=1425 

S=3425 

F=1712 

S=4000 

F=2000 

Table 5.2. The 25 different sets of feed rate and spindle speed designed for the experiments.  
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6. Experimental verification of the hypothesis 

6.1. Introduction 

In this chapter the experimental part of this research is described. The experiment set 

up and the process of data extraction are explained and the extracted data are 

presented. The extracted data are then analysed, using the linear regression model 

explained in 5.3.1, to verify the proposed mathematical model constructed in chapter 

4.  

6.2. Experiment set up and conduct 

6.2.1. Equipment and material 

The 3-axis CNC milling machine used for the experiment was a Bridgeport VMC 610 

XP2. The cutting tool chosen for the experiments was a 2-flute 14mm carbide end mill. 

The material was aluminium alloy 6082, which came in identical blocks of size 230 X 

150 X 37.5 mm3. The power measurement device used in the experiment was a 

“HIOKI 3169-20 Clamp on Power Hitester”. Three HIOKI 9695-02 clamp-on sensors 

were also used along with the Hitester as current probes. The Hitester used three 

direct connections to the machine’s power supply wires for voltage measurements.  

6.2.2. Measurement routines 

As a result of the design of experiments derived in chapter 5, the experiments were 

run in 25 sets, with each set containing 5 measurement routines designed for 5 

different values of β  at each specific combination of σ  and γ . A measurement 

routine is defined as the measurement of power consumption of the machine tool 

during cutting a single straight slot at a certain spindle speed, feed rate and depth of 

cut. As an example, the set of measurements representing the combinations: 

σ ,γ( ) = 2
4
, 3
4

!

"
#

$

%
&

    (6.1) 

contains 5 measurement routines designed for 5 combinations of σ ,γ,β( )  as listed in 

the below set. 
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σ ,γ,β( )∈ 1
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+
,
-  (6.2) 

Figure 6.1 shows an aluminium block after undergoing a few measurement routines. 

 

Figure 6.1. A block of aluminium after execution of a number of measurement routines 

6.3. Data extraction from raw collected data 

An example of the raw data acquired from a set of measurement routines is presented 

in figure 6.2. The data presented in figure 6.2 presented data belongs to the set of 5 

measurement routines with equal spindle speeds and depths of cut equivalent to 

combination σ ,γ( ) = 1
2
, 3
4

!

"
#

$

%
& . Figure 6.2 shows only the first 23 rows of data out of 118. 

Columns of data in figure 6.2 represent the measured value of distinct quantities. For 

instance: 

- Column M: Real power 

- Column N: Reactive power 

- Column O: Apparent power, i.e., magnitude of complex power 

- Column P: Power factor 
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Figure 6.2. An example of the raw data acquired during a set of measurement routines 
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The apparent power, column O, is the quantity of main concern in this research. The 

elements of column O for the same set of data are represented in figure 6.3. 

 

Figure 6.3. Apparent power readings during measurement routine for σ ,γ( ) = 1
2
, 3
4

!

"
#

$

%
&  

The 5 plateaus observed in figure 6.3 represent power readings during the 5 actual 

slot cutting processes. Since the power consumption of the machine tool during slot 

cutting is the only part of the graph that is modelled in this research, only these 

plateaus are the subject of this research and experiment. The first plateau represents 

β = 0  and on moving to the right, β  increases discretely to β =1  for the 5th cut. 

Since β  is linearly and cotonally related to feed rate (equation 5.44) and since the 

total length of each cut is constant for all measurement routines, the cutting time 

decreases as β  increases. Therefore, the lengths of the plateaus decrease on 

moving right on the graph. 

To extract the values of power consumption of the machine during each measurement 

routine, the average of the measured value for apparent power at each plateau is 

defined as the machine’s power consumption at the corresponding combination of σ
, γ  and β . Also, the standard deviation of the acquired values must be calculated, 

as it is needed for further uncertainty analysis. Applying this procedure to the set of 
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data using which the graph presented in figure 6.3 is produced will lead to the values 

presented in table 6.1. 

σ  γ  β  PE α,γ,β( ) VA[ ]  
S PE( ) VA[ ]

 

S PE( )
PE

%[ ]
 

0.5 0.75 0 3184 10 0.31 

0.5 0.75 0.25 3266 9 0.27 

0.5 0.75 0.5 3348 12 0.36 

0.5 0.75 0.75 3426 11 0.32 

0.5 0.75 1 3488 10 0.29 

Table 6.1. Data extracted from the set of measurement routine presented in figure 6.2. 

As an example of measurement report, the first line of table 6.1 may be written as: 

PE 0.5, 0.75, 0( ) = PE 0.5, 0.75, 0( )± S PE( )   

⇒ PE 0.5, 0.75, 0( ) = 3184±10 VA[ ]   (6.3) 

This process of data extraction is repeated for all 25 measurement sets and the 

extracted data are presented in the section 6.3. 

6.4. Repetition test 

In addition to measuring the value of power consumption at the designed 

combinations of cutting parameters, it is also necessary to evaluate the magnitude of 

uncertainty in the measured values for power consumption. One of the sources of 

uncertainty in the measured value is the random error. To evaluate the magnitude of 

this error, the measurements of each designed combination of cutting parameters 

must be repeated a number of times and the acquired data must be statistically 

analysed, i.e. the repetition test. The standard deviation of the measured values at 
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each combination of cutting parameters is an indicator for the magnitude of random 

error at that particular point of domain. 

However, when dealing with a large number of experiment points – 125 in the case 

dealt with in this thesis – it is not necessary to perform this procedure in all the 125 

points. To have an estimate of the magnitude of the random error, a repetition test 

with a considerably smaller number of data points would suffice to carry out an 

estimation of the magnitude of the random errors in measured values of power.  

In the case of our experiments a cubic 23 design is used, i.e. 8 combinations out of 

125 total.  

crepj = Fj,Sj,hj( ) : j =1,2,...,8   (6.4) 

At each of those 8 combinations 5 measurements are made. The results would be: 

Prep
j = Pj1,Pj2,Pj3,Pj4,Pj5{ }    (6.5) 

For each set of 5 values measured at the same combinations of parameters, Cj
rep , it 

is possible to define an arithmetic mean and a standard deviation.  

Pj
rep =

Pj1 +Pj2 +Pj3 +Pj4 +Pj5
5

  (6.6) 

Srepj = S Pj( )      (6.7) 

Prep
j is an estimator for machine’s actual power consumption. Srepj , however, defines 

the magnitude of random measurement error in the value of Prep
j . Thence there will be 

8 measurements of standard deviation of the power measurements. 8 relative 

uncertainties in measured power due to random sources of error can be defined as: 

η j
rep =

Sj
rep

Pj
rep      (6.8) 
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Arithmetic mean and standard deviation of these 8 values, then, define the average 

magnitude of relative random measurement errors over the domain. 

ηrep =
1
8

ηrep
j

j=1

8

∑     (6.9) 

S ηrep( ) = 1
7

ηrep
j −η

rep( )
2

J=1

8

∑   (6.10) 

6.5. Error estimation 

 The experimental values of power consumption obtained through the procedure 

explained in section 6.3 are subject to some uncertainties and errors. This is 

necessary to recognise and evaluate all the sources of error and to calculate an 

estimation of the total uncertainty in the measured values of power consumption 

based on the values of uncertainties imposed by each source of error. 

The sources of error include: 

• Random measurement error, Srep  

• Measurement uncertainty, Smeas  

• Measurement equipment’s precision error, Seqp  

These sources of error are investigated further below. 

6.5.1. Random error 

An estimate of Srep  may be found from the result of repetition experiment.  

Srep ≈ηrepPE     (6. 11) 

6.5.2. Measurement uncertainty 

Smeas  is already known as S PE( )  from the results of data extraction. This would be 

useful to define a relative measurement uncertainty for each measured value as: 
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ηmeas =
Smeas

PE     (6.12) 

This quantity, unlike ηrep , may be different for each measured value.  

6.5.3. Equipment  

Measurement equipment’s precision error should be estimated using its catalogue. 

The catalogue suggests that the accuracy in power readings may be found through 

equation 6.13 [Hioki, pp. 188]. 

Seqp = ±0.5%rdg.± 0.14% f .s.   (6.13) 

where,  

• rdg. stands for “reading”, i.e., the reading value of power and 

• f.s. stands for “full scale”, i.e., the maximum nominal power measurable by the 

certain combination of sensors and range selection used in the experiments, 

which is equal to 60[KVA] 

Using the numerical value of f.s., equation (6.13) may be rewritten as: 

Seqp = ±0.5%PE ±84 VA[ ]   (6.14) 

Since the two parts of the above equation are independent random errors, they can be 

regarded as two different sources of error, Therefore: 

S1
eqp = 0.5%PE     (6.15.a) 

S2
eqp = 84 VA[ ]     (6.15.b) 

A relative uncertainty may be defined for equipment error similar to the other two 

errors as: 

η1
eqp =

S1
eqp

PE = 0.5%     (6.16.a) 



 
 
 
 

86 

η2
eqp =

S2
eqp

PE =
84 VA[ ]
PE    (6.16.b) 

Since the above error sources are independent, it is possible to use the equation 

below to find the overall uncertainty in the measured value, SE . 

SE = Srep( )
2
+ Smeas( )

2
+ S1

eqp( )
2
+ S2

eqp( )
2!

"#
$
%&

1
2

   (6.17.a) 

And equivalently for relative uncertainty: 

ηE =
SE

PE = η
rep( )

2

+ ηmeas( )
2
+ η1

eqp( )
2
+ η2

eqp( )
2!

"#
$

%&

1
2

  (6.17.b) 

The above quantity, ηE , is the overall error of the measured power values. Therefore, 

the final reported value would have the form: 

P = PE ± SE       (6.18.a) 

or equivalently: 

P = PE 1±ηE( )      (6.18.b) 

6.5.4. Example 

Taking the first row of data on table 6.1 as an example, the error calculations will 

follow as below. 

From table 6.1: 

PE = 3184 VA[ ]      (6.19.a) 

Smeas =10 VA[ ]      (6.19.b) 

From repetition experiments: 
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ηrep = 0.8%  

⇒ Srep ≈ηrepPE = 0.008×3184 ≈ 25 VA[ ]   (6.20) 

For equipment errors: 

S1
eqp = 0.5%PE = 0.005×3184 ≈16 VA[ ]   (6.21) 

and 

S2
eqp = 84 VA[ ]       (6.22) 

Therefore, the overall error will be: 

SE = 102 + 252 +162 +842!" #$
1
2

 

⇒ SE ≈ 90 VA[ ]       (6.23) 

and 

ηE =
SE

PE =
90
3184

≈ 2.8%      (6.24) 

Therefore, the measured value should be reported as either 

P = 3184± 90 VA[ ]      (6.25.a) 

or 

P = 3184 VA[ ] 1± 0.028( )      (6.25.b) 

or 

P = 3184 VA[ ]± 2.8%      (6.25.c) 



 
 
 
 

88 

6.6. The acquired data and qualitative study of its behaviour  

6.6.1. Error analysis 

Using the equations derived in the previous section, it would be possible to calculate 

the overall error of the measured values of power. A graph of the calculated overall 

error for the 125 points of experiment is presented in figure 6.4. 

 

Figure 6.4. Overall error in power readings for 125 measurements 

The mean and standard deviation of the error values are: 

SE = 90 VA[ ]    (6.26.a) 

stdev SE( ) = 2.3 VA[ ]   (6.26.b) 

The reason for SE  being almost constant is the fact that the overall error is 

dominated by the 84 VA constant error of the second equipment error, S2
eqp . This 

suggests that to increase the accuracy of data acquisition process, this would be 
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necessary to focus on reducing this type of error. Using more precise measurement 

devices could lead to a smaller error of this type and, therefore, smaller overall error. 

Figure 6.5 shows the values of relative error for the same set of data. 

 

Figure 6.5. Relative error values for 125 measurements 

The mean value and standard deviation of relative errors are: 

ηE = 3.04%     (6.27.a) 

stdev ηE( ) = 0.43%   (6.27.b) 

Equation (6.27.a) imposes an essential limit on the extent to which the collected data 

may be used for making arguments, as it is the average relative uncertainty in the 

measured values of machine tool’s power consumption. 

6.6.2. The collected data on machine tool’s power consumption 

There are 125 combinations of the three cutting parameters for which data has been 

collected. The results are presented in 5 sets of 25, each set representing a constant 

depth of cut of (i) 0mm, (ii) 1mm, (iii) 2mm, (iv) 3mm and (v) 4mm. 
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i. Zero depth of cut 

Table 6.2 lists 25 values of machine tool’s power consumption for zero depth of cut, 

i.e., no actual material removal. Figure 6.6 shows a 3-D graph of the data listed on 

table 6.2. 

               
 

0 0.25 0.5 0.75 1 

0 2427 2357 2351 2411 2375 

0.25 2426 2356 2345 2410 2379 

0.5 2439 2365 2351 2419 2383 

0.75 2431 2366 2355 2424 2386 

1 2420 2366 2356 2415 2395 

Table 6.2. Power consumption of the machine tool in VA for D=0 

 

Figure 6.6. Machine tool’s power consumption at D=0 (cutting air) 

σ
β
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ii. 1mm depth of cut 

Table 6.3 lists 25 values of machine tool’s power consumption for 1mm depth of cut. 

            
 

0 0.25 0.5 0.75 1 

0 2558 2549 2623 2663 2727 

0.25 2582 2579 2660 2692 2768 

0.5 2620 2614 2693 2731 2804 

0.75 2665 2661 2729 2769 2845 

1 2692 2710 2762 2784 2866 

Table 6.3. Power consumption in VA of the machine tool for D=1mm 

Figure 6.7 shows a 3-D graph of the data listed on table 6.3. 

 

Figure 6.7. Machine tool’s power consumption at D=1mm 

 

σ
β
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iii. 2mm depth of cut 

Table 6.4 lists 25 values of machine tool’s power consumption for 2mm depth of cut. 

               
 

0 0.25 0.5 0.75 1 

0 2743 2786 2890 2974 3103 

0.25 2786 2827 2943 3047 3184 

0.5 2816 2880 2997 3100 3245 

0.75 2853 2923 3042 3175 3285 

1 2889 2964 3090 3224 3348 

Table 6.4. Power consumption in VA of the machine tool for D=2mm 

Figure 6.8 shows a 3-D graph of the data listed on table 6.4. 

 

Figure 6.8. Machine tool’s power consumption at D=2mm 

σ
β
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iv. 3mm depth of cut 

Table 6.5 lists 25 values of machine tool’s power consumption for 3mm depth of cut. 

                  
 

0 0.25 0.5 0.75 1 

0 2945 3045 3184 3299 3467 

0.25 3013 3110 3266 3392 3576 

0.5 3062 3191 3348 3490 3679 

0.75 3119 3246 3426 3589 3782 

1 3183 3315 3488 3649 3873 

Table 6.5. Power consumption in VA of the machine tool for D=3mm 

Figure 6.9 shows a 3-D graph of the data listed on table 6.5. 

 

Figure 6.9. Machine tool’s power consumption at D=3mm 

σ
β
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v. Depth of cut, 4mm 

Table 6.6 lists 25 values of machine tool’s power consumption for 4mm depth of cut. 

                
 

0 0.25 0.5 0.75 1 

0 3162 3286 3498 3733 3894 

0.25 3237 3393 3623 3837 4033 

0.5 3296 3497 3736 3936 4153 

0.75 3355 3586 3844 4045 4292 

1 3429 3669 3944 4104 4410 

Table 6.6. Power consumption in VA of the machine tool for D=4mm 

Figure 6.10 shows a 3-D graph of the data listed on table 6.6. 

 

Figure 6.10. Machine tool’s power consumption at D=4mm 

σ
β
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6.7. Data analysis and model verification 

In this section the collected data are analysed to find out whether the predictions 

made by the developed model fits the empirical data. 

6.7.1. Calculating the constants of the linear model 

Linear regression method introduced in chapter 5 is utilised here to find the set of 

constants that make the overall error in prediction of power minimum. The algorithm 

of performing this analysis is shown in figure 6.11. 

 

Figure 6.11. The algorithm used to produce matrix β̂  

This algorithm was implemented in MATLAB and the result for matrix β̂  was found to 

be: 
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β̂ =

2.9027×103

−0.3354
0.3701
−0.1525
8.7442×10−5

−6.0680×10−5

1.3454×10−5

−6.1348×10−9

4.4859×10−9

−2.5333×10−9
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(       (6.28) 

Therefore, the linear regression model for power consumption function may be written 

as below. 

P = 2.9027×103 − 0.3354S + 0.3701hF − 0.1525F
+8.7442×10−5S2 − 6.0680×10−5hFS +1.3454×10−5F 2

−6.1348×10−9S3 + 4.4859×10−9hFS2 − 2.5333×10−9F3
 (6.29) 

Where:  

• P : Machine’s power consumption predicted by linear regression model 

• h : Depth of cut 

• S : Spindle speed 

• F : Feed rate 

6.7.2. Model verification  

The difference between the value given by equation (6.29) for the power consumption 

of the machine and its actual measured value at the same combination of cutting 

variables is what was defined as “prediction error” by equation (5.6): 

       (5.6) 

(5.6)⇒ εi = Pi
E −Pi       (6.30) 

The (125x1) matrix ε  contains the information we have acquired through experiments 

that are in relation with the question: 

Pi
E = Pi +εi
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“If equation (6.4) has managed to satisfactorily model the behaviour of actual 

measured power consumption with regards to cutting parameters”.  

The values of the elements of matrix ε  are shown in figure 6.12. 

 

Figure 6.12. An illustration of error values, i.e., the elements of matrix ε  

The arithmetic mean and unbiased standard deviation of this set of data are: 

ε = −3×10−9 ≈ 0    (6.31) 

S = 4.4×101 VA( )    (6.32) 

Since the arithmetic mean of elements of ε  is zero, S  would be a plausible indicator 

of how large are the errors. The arithmetic mean of the measured power is 

P = PE = 3.0×103 VA( )   (6.33) 

Comparing the values of S  and P  it is found that the ratio between the typical size 

of errors and the typical size of measured power is  
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S
P
=
4.4
3.0

×10−2 ≈1.5%   (6.34) 

This particular quantity has major practical significance as it gives a rough idea of the 

scale of expected error in predictions made by equation 6.4. Figure 6.13 presents the 

frequency graph of the 125 error values with more than 70% of the errors being 

smaller than 1.5%, as expected from equation 6.34. 

 

Figure 6.13. Frequency of the error values.  

The average magnitude of error in predicting the actual power consumption of the 

machine tool used in the experiments is given by the quantity 
S
P

. This error is, in fact, 

the difference between the measured and the predicted values of power consumption, 

as stated in equation (6.30). However, the measured value has an average uncertainty 

of ηE .  

If,  ηE >
S
P

  (6.35) 
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then the uncertainty in the measured value would be larger than the prediction error 

and therefore, the prediction error may not be regarded as a genuine non-conformity 

of the model from the actual system. In other words, the experiment would not be able 

to disprove the model.  

Equations (6.34) and (6.27.a) make equation (6.35) hold true. Therefore, it can 

confidently be stated that the proposed model is verified within the limits of the 

conducted experiments. 

6.8. Summary 

In this chapter, the procedure of data acquisition on a CNC milling machine’s power 

consumption during slot cutting at 53 different combinations of cutting parameters, 

ω, f ,h{ } , is explained. A linear regression method is used to calibrate the model to 

fit the empirical data as closely as possible. RMS of the errors in predictions made by 

the model was calculated to be 44 VA. Since the uncertainty of measurement is more 

than twice as large in this experiment, at 90VA, the conducted experiment is not 

conclusive in observing error in predictions made by the developed model. 
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7. Further findings from the experiments  

7.1. Introduction 

The mechanistic model constructed for the energy consumption of a CNC milling 

machine was verified experimentally for a certain combination of machine, material 

and cutting tool and a certain cutting scenario, i.e. tool width straight slots. After the 

experimental verification of the model, the collected data may be used to study further 

questions. Some of such further questions are discussed in this chapter. 

7.2. Emergence of new understandings: an advantage of 

reductionist modelling  

In chapter 6 it was experimentally verified that the power consumption of a CNC 

milling machine during cutting a particular material with a specific cutting tool behaves 

as predicted by the reductionist model developed in this research. As a result of being 

a reductionist model, the footprints of different energy consumption mechanisms may 

be individually identifiable in the terms of the final equation. This, in turn, may open 

opportunities to new understandings about the machine’s overall energy consumption 

profile. In this section, this concept is being used to both develop a novel hypothesis 

about the energy consumption profile of the machine and to conjecture a simplified 

model that still works with the same order of magnitude of certainty, i.e., less than 

90VA. 

7.2.1. Investigation of the scale of equation terms  

Equation 6.29 is made of the summation of 10 terms, each being a certain function of 

cutting parameters. The scales of the contributions made by these terms to the overall 

power consumption are not necessarily equal, either at a certain combination of 

parameters or all over the domain of parameters. Knowledge about these scales can 

pave the way for answering further questions such as: 

- Which energy consumption mechanisms consume more/less? 

- Are there any certain mechanisms whose effect on the overall energy consumption 

of the machine may be ignored? 
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- Would that be possible to find a more concise form of the equation without losing 

practical performance of the model? 

To be able to study the contributions of different terms, it is necessary to define a 

quantity that measures such contributions for each term of the equation 6.29 all over 

the domain of parameters. A non-negative quantity that intuitively may be considered 

to represents such effects would be the RMS of the values produced by each term at 

the set of parameter combinations used for the experiments. This is particularly a 

good measure, because it makes it possible to identify those terms that have 

negligible contribution to the overall power consumption and could help simplify the 

model. Starting from equation 5.9, the “weight” of the jth term may be defined as: 

Wj =
Xijβ j( )2

ni=1

n

∑     (7.1) 

(with: j =1..10  and n =125 ) 

The same principle was applied to error values to produce an indicator for the scale of 

error values in a process that led to equation 6.7. That value may be defined as an 

eleventh “weight”, so making a comparison between error scale and terms’ scales 

becomes easier. 

W11 = S = 4.4×10
1 VA( )    (7.2) 

Values of “weights” of different terms of equation (6.29), calculated according to 

equation (7.1), are given in table (7.1) below. 

i 1 2 3 4 5 6 7 8 9 10 11(err) 

Wi(VA) 2903 1542 1693 285 2225 1536 60 935 680 30 44 

Table 7.1. Weights of the 10 terms of equation 6.29 in the collected data. The eleventh term is the error. 

Figure 7.1 shows a bar chart of the same values given in table 7.1. 
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Figure 7.1. Weights of terms of equation 6.29 in the collected data. 

7.2.2. Downsizing the model 

Figure 7.1 shows that the effects of the 7th and 10th terms are of the same order of 

magnitude of the error term. That means that it is likely that the error term would not 

grow largely if those terms are dropped from the model. By dropping those two terms 

and carrying out the same calculations, a new set of weights are found. The new set 

of weights is presented in table 7.2. 

i 1 2 3 4 5 6 7 8 9(err) 

Wi(VA) 2903 1576 1691 248 2275 1528 958 675 44 

Table 7.2. Weights of 8-term model. Error remains unchanged. 

Figure 7.2 shows a bar chart of the same set of data presented in table 7.2.  
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Figure 7.2. Weights of terms in 8-term model. 

By dropping the two noted terms, the error remains unchanged at 44 VA, which is 

another indicator of the insignificance of the dropped terms. 

The dropped terms are proportional to second and third powers of feed rate,F 2  and 

F3 . The source of these terms is the wet friction loss due to the movements of the 

machine bed. This gives a hint that this source of energy loss might have a very small 

effect on the total energy consumption of the machine. The other hint comes from the 

fact that the next small term, the 4th term, is also related to the dry friction loss due to 

the movement of the machine bed, as it is linearly proportional to F . The dry friction 

loss, however, is not as small as the dropped terms, as the dissipating force 

corresponding to this term does not depend on the speed of the bed and is almost 

constant. However, at least from a practical point of view, it is interesting to see if 

dropping the 4th term would considerably increase the error and damage the precision 
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of the model. Dropping the 4th term would result in a new set of weights given in table 

7.3.  

i 1 2 3 4 5 6 7 8(err) 

Wi(VA) 2903 1806 1673 2275 1528 958 675 61 

Table 7.3. Weights of the terms of the 7-term model. Error has risen to 61 VA, up from 44. 

A bar chart of the same set of data is presented in figure 7.3. 

 

Figure 7.3. Weights of terms in a 7-term model. The 8th term is the weight of error. 

As a result of the downsizing of the model it can be observed that under the particular 

conditions that the experiment has been conducted the effect of wet friction energy 

dissipation of the machine bed on the total power consumption is very small. Also the 

share of dry friction of the machine bed is very small and may be ignored for the price 

of a small rise in the error of the model from 44VA to 61VA. It is still, however, below 

the measurement uncertainty of 90VA and could be tolerated. However, the 
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emergence of such a hypothesis is a result of the reductionist modelling of the 

problem that keeps the relation between the physics of the system and its 

mathematical description.  

7.3. Optimising energy consumption at constant process time: 

An example of application of the model in process planning 

One application of a predictive formula for power consumption of a CNC machine tool 

is that it provides a prediction tool for the amount of energy to be consumed for 

cutting a designed part, given the cutting scenario. This would enable the 

consideration of energy consumption as a design criterion in the process planning 

stage.  

However, the total process time is another major criterion for process planning. An 

interesting process planning question, therefore, would be: 

Would it be possible to optimise energy consumption while the cutting time is kept 

constant? 

Since the total volume of removed material is constant, then a constant total time 

would mean a constant material removal rate, MRR or . To deal with the above 

question, it would be useful to rewrite equation 6.29 in terms of . Assuming the 

hypothesis of negligibility of friction of the machine bed, as explained in previous 

section, a reduced form of equation 6.29 can now be written as: 

P = β1 +β2S +β3hF +β5S
2 +β6hFS +β8S

3 +β9hFS
2   (7.3) 

Where the β  constants are found in equation 6.28 for the specific case of the 

experiments. The rate of material removal may be written in terms of cutting 

processes as: 

V = DhF     (7.4.a) 

or: hF =
V
D

    (7.4.b) 

V
V
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With D  being the diameter of the cutting tool. 

Combining 7.3 and 7.4.b would result in: 

P = β1 +β2S +β3
V
D
!

"
#

$

%
&+β5S

2 +β6
V
D
!

"
#

$

%
&S +β8S

3 +β9
V
D
!

"
#

$

%
&S2   (7.5.a) 

or:P = β1 +β2S +β
*
3
V +β5S

2 +β *6 VS +β8S
3 +β *9 VS

2    (7.5.b) 

where:  β *i =
βi
D

       (7.5.c) 

Rearranging (7.5.b) would result in: 

P = β1 +β2S +β5S
2 +β8S

3( )+ β *3 +β
*
6S +β

*
9S

2( ) V    (7.6) 

By defining two polynomial functions of spindle speed: 

µ S( ) = β1 +β2S +β5S2 +β8S3       (7.7.a) 

ν S( ) = β *3 +β *6S +β *9S2        (7.7.b) 

Equation (7.6) may be rewritten in a concise form: 

P = µ S( )+ν S( ) V         (7.8) 

Equation (7.8) provides an insight to representation of the downsized form of equation 

6.29. It shows a linear relation between power consumption and MRR at a constant 

spindle speed. It also depends on two variables only, the MRR and spindle speed, 

unlike 6.29 that depends on 3 independent variables. This is, however, true only for 

the 7-term form of that equation as feed rate and depth of cut appear in it in the form 

of one combination only and that is hF , which is proportional to MRR. 

It is also possible to find an optimum spindle speed for any given constant MRR – 

constant cutting time – using equation (7.8). Differentiating (7.8) with respect to S  

would result in: 
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∂P
∂S

= "µ S( )+ "ν S( ) V
     (7.9) 

The optimum spindle speed may be found by solving equation below: 

∂P
∂S

= 0        (7.10) 

⇒ β2 + 2β5S +3β8S
2 + β6

* + 2β9
*S( ) V = 0

 

⇒ 3β8S
2 + 2β5 + 2β9

* V( )S + β2 +β6
* V( ) = 0   (7.11) 

Equation (7.11) is a second order algebraic equation, which may be solved as soon as 

all the coefficients are known. The solutions, Ŝ1  and Ŝ2 , indicate the spindle speeds 

at which the power consumption is at its extremum. To find out which one is the 

minimum it is necessary to check the sign of the second derivative at those spindle 

speeds. The second derivative of the power function is given below: 

∂2P
∂S2

= 6β8S + 2β5 + 2β9
* V( )

    (7.12) 

If the optimum spindle speed found using equations (7.11) and (7.12) is not inside the 

valid domain of parameters, then it would be necessary to look for the optimum 

spindle speed on the boundaries of the domain. 

7.4. Summary 

Investigation of contributions of different terms of the developed model in the overall 

predicted power led to a simplified version of the model expressed in terms of spindle 

speed and MRR only as equation 7.8. This shorter version provides a memorable and 

useful tool for practical uses. 
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8. Discussion 

8.1. Introduction 

In this chapter, an overview is presented of the scope, methodology and the main 

findings of this research and the boundaries of applicability of its results are briefly 

discussed. 

8.2. Scope and methodology 

The process of using the chemical energy of fossil fuels by humans normally includes 

different energy transformation steps and the transfer of energy to the end 

consumption point where it is used to perform a desired function. Since the whole 

process from the extraction of fossil fuels to the consumption point is a very complex 

and subject to many different variables, it was decided by the author to limit his 

research to the consumption point systems, the systems through which the energy is 

used to perform desired functions.  

8.2.1. Energy efficient utilisation of the existing systems 

One possible approach to increase the energy efficiency of the energy consuming 

systems without changing their overall function, is to physically improve the systems 

so they use less energy than previously. However, such solutions normally have two 

disadvantages. The results of this approach take time to come to effect and they are 

costly, as the systems need to be physically changed.  

Another approach that does not have the aforementioned disadvantages of the first 

approach is to use existing systems more efficiently. Due to these advantages, the 

author limited his research to finding methods for using the existing systems more 

energy efficiently. 

8.2.2. Necessity of obtaining knowledge about energy consumption 

behaviour of energy consuming systems 

The scenario proposed by the author for the improvement in energy efficiency of 

energy consuming systems has been to search for methods, which can materialise 



 
 
 
 

109 

such improvements with neither changing systems’ structure nor the output of their 

function. So the existing systems could be utilised to perform the same functions at 

the cost of less energy.  

To be able to do so it is necessary to know about the energy consumption behaviour 

of such systems in a way that it becomes possible to analyse the difference between 

the amounts of energy consumed by a system of such sort to perform a given function 

in different possible ways, so a more energy efficient way of performing that function 

may be proposed. 

8.2.3. State of the system: description through instantaneous 

quantities 

To perform a certain function or produce a certain output, systems may go through 

different stages and perform different processes. The total energy consumed by such 

a system then would be affected by many factors, each of which may affect the total 

energy consumption during certain processes. 

In some systems, however, it is possible to describe the instantaneous state of the 

system at work, at least from the energy consumption point of view, by a set of instant 

variables. If the rate of energy consumption, an instant quantity itself, may be linked to 

such variables, then there is a possibility of finding a set of states through which the 

system may pass, producing the same outputs but consuming less energy. The focus 

of this research has been on systems that their state of function may be described 

with instantaneous variables. 

8.2.4. Proposed methodology for energy efficient utilisation of 

energy-consuming systems 

Considering a system whose state during its function may be described by a set of 

instantaneous variables, if there exists a relation that links the system’s rate of energy 

consumption to the instantaneous state variables, this would be possible to make 

comparisons between different function scenarios which produce the same system 

outputs. 

E = E p1,..., pn( )     (8.4.a) 
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⇒ E = E p1,..., pn( )
ti

t f

∫ dt    (8.4.b) 

If the form of the relation shown in equation (8.4.a) is known then it would be possible 

to design the function of this system in a way that it performs a certain function and 

produces a certain output at a smaller level of energy consumption. This research 

focuses on the design of a methodology for finding such a relation for a given system. 

The proposed hypothesis in this research is that this may be possible to derive a 

relation of the type introduced by equation (8.4.a) by a reductionist decomposition of 

the system’s energy consumption to a set of distinct mechanisms of energy 

consumption and, then, mechanistically modelling of each mechanism. 

8.3. Case study: A CNC milling machine cutting straight slots 

8.3.1. Choice of the system 

To test the research hypothesis, an energy consuming system was needed whose 

state of function could be sufficiently easily described by a set of instantaneous 

variables. To be able to experimentally test the model, this was also necessary for the 

rate of energy consumption of the system to be possible to measure instantaneously. 

An electro mechanical system, which receives its energy in the form of electricity, 

could be an ideal choice as its rate of energy consumption may be easily measured at 

the system’s electric supply point. The state of the system, during functioning, should 

also be possible to be described by instantaneous variables as well.  

A CNC milling machine was found to have all the necessary characteristics, as its 

energy consumption may be measured at the supply mains and its state of functioning 

is possible to be described by a set of instantaneous variables. To narrow down the 

test domain, only 3 functioning variables were decided to be subject to change during 

the research, the spindle speed of the machine, its feed rate and depth of cut. 

Everything else was kept constant during the tests, such as the cutting tool’s size and 

shape and type of material being cut by the machine. 
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8.3.2. State of the art in modelling CNC machines’ energy 

consumption 

Before starting to model the system and construct a relation between the machine’s 

rate of energy consumption and its functioning parameters, the state of the art in the 

field of describing the energy consumption behaviour of such a system was reviewed. 

It was found that the existing methods for constructing such relations rely on pure 

statistical curve fitting techniques to find the best fit of functions of certain form onto 

the empirical data collected through experiments. The form of fitting functions used in 

the existing methods is determined by the statistical approach used in these methods.  

Despite being successful in producing a relation of the form of equation (8.4.a), and 

therefore being successful at helping energy efficient use of CNC machines, the 

relations created through the existing methods provide no information about the 

nature of energy consumption in the machine tool. The method proposed in this 

research, however, is not only more precise in describing the energy consumption 

behaviour of such a system, but also the relation constructed through this method is 

capable of providing useful information about the nature of energy consumption in the 

system. 

8.3.3. Mechanistic modelling of A CNC milling machine’s energy 

consumption 

It was hypothesised by the author that the energy received by a CNC milling machine 

performing a cutting process, would eventually be consumed through a set of distinct 

mechanisms such as friction, electrical dissipations, removing material and so on. 

Each of these mechanisms was mechanistically modelled and a relation between the 

rate of energy consumption through each mechanism and the machine’s state 

variables was constructed. The total rate of energy consumption of the machine tool, 

being the sum of rate of energy consumption by all the energy consuming 

mechanisms, was obtained as a function of the state variables of the machine tool, i.e. 

the form of equation (8.4.a). One form of expression of the resulting equation is given 

in equation 5.5. 
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  (5.5) 

8.3.4. Experimental verification of the model and further findings 

through experiments 

A set of experiments were designed and conducted to test the validity of the 

mathematical relation obtained from mechanistic modelling of the energy 

consumption of a CNC milling machine. Apart from the three instantaneous state 

variables, spindle speed, depth of cut and feed rate, everything else was kept 

unchanged throughout the experiments and the experiment was limited to cutting 

straight slots out of aluminium blocks with a certain cutting tool. 

The mathematical relation constructed through mechanistic modelling of the energy 

consumption mechanism in the CNC machine tool was experimentally verified, as 

reported in chapter 6, to be able to predict the energy consumption behaviour of the 

machine used in the experiments. 

As a result of being a mechanistic model, the terms of the constructed relation would 

have physical interpretations. By investigating the magnitude of the share of different 

terms of the equation in the overall energy consumption of the machine, it was found 

that the share of friction in the machine bed is considerably smaller than the share of 

other mechanisms of energy consumption in the machine tool during a cutting 

process. Therefore, by dropping the terms relating to that particular mechanism the 

precision of the model would remain almost unaffected but the relation becomes 

simpler and easier to use for practical purposes. One form of expression of the 

simplified model was presented in equation 7.8. 

    (7.8) 

In the above equation, µ S( )  and ν S( )  are third and second order polynomials. 

µ S( ) = β1 +β2S +β5S2 +β8S3   (7.7.a) 

   (7.7.b) 
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8.3.5. Limitations of the developed model 

The proposed mechanistic model, despite being proven to be valid, is not yet capable 

of predicting the total energy consumption by a CNC milling machine during the 

production of a part, as it only describes the rate of energy consumption in a certain 

cutting scenario. For achieving a complete model, major expansions are required to 

be made to the proposed model so it covers all the possible actions made by the 

machine tool during a cutting process, e.g. rapid moves, tool changes and cutting 

features other than straight full-width slots, which are all outside the scope of this 

research. 

8.4. Contribution to the knowledge 

The main contribution of this research to knowledge may be stated as: 

The development of a mechanistic model for power consumption in a CNC milling 

machine during slot cutting process, experimental validation of this model and 

simplification of it using empirical data acquired through validation experiment. 

This model provides a mathematical relation between the machine’s rate of energy 

consumption and its instantaneous state variables. This relationship could be used as 

a means for operating the system more efficiently by providing a mathematical 

instrument for calculating optimum state variables. 
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9. Conclusions and future work 

9.1. Introduction 

In this chapter the major conclusions drawn from this research are presented. A list of 

future works is also included in this chapter. 

9.2. Conclusions 

A mechanistic methodology was applied for modelling energy consumption in CNC 

milling machines during full-width straight slut milling. It was achieved through dividing 

the electrical power in-flow of a system composed of a CNC milling machine and a 

workpiece to different physical energy consuming mechanisms and mechanistically 

modelling the behaviour of each mechanism. The analytical representation of the 

model is a mathematical formula that relates the consumed power of the system to its 

functioning parameters, i.e. cutting parameters. 

The developed mathematical formula was validated experimentally. Values predicted 

by the formula for the power consumption of the system complied with the 

experimental data over the domain of cutting parameters defined by technical 

constraints, e.g., machine’s limited power and allowed range of cutting speed. 

Standard deviation of the ratio of errors in predicted values to the measured values of 

power, i.e. relative error, were found to be 1.5% that, compared to 3.0% average 

uncertainty in the measured values of power, shows that the conducted experiment 

cannot disprove the validity of the model.  

The mathematical formula, as calibrated for the case investigated through the 

validation experiments, was observed to be possible to be simplified to a concise form 

with only a slight increase in the relative error in predicted power to 2.3%, still smaller 

than the uncertainty of the measured power value. The simplification of the formula 

involved omitting three of the ten terms of the complete model that turned out to have 

negligible contribution to the overall energy consumption of the system. The three 

omitted terms were found to originate from the friction losses in the machine bed. This 

observation is regarded by the author as a result of the mechanistic nature of the 

proposed model, which keeps the contributions of different mechanisms decomposed 

in the final formula and makes it possible to access further insight into the 
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composition of energy consumption in the system without direct measurement of rate 

of energy consumption through different mechanisms. 

9.3. Future work 

Future work drawn from this work may be categorised into the following: 

i. Expansion of the tests on the model to include further variables, e.g., material 

strength or tool radius 

ii. Investigation of non-cutting energy consumption in CNC milling machines 

iii. Repeating test on other CNC milling machines 

iv. Generalisation of the model towards other types of electromechanical systems 

v. Development of a representation system for CNC machines’ power 

consumption behaviour 

9.3.1. Expansion of the tests of the model to include further variables 

The case at which the validity of the model was tested was limited to variations in 

cutting parameters during a certain cutting process. For practical utilisation of the 

proposed model, it would be necessary to provide experimental proof for the validity 

of the model at conditions outside the boundaries defined in the experimental section 

of the current study. The first step would be to test the validity of the model in linking 

the power consumption of the CNC machine to other parameters arising in equation 

5.1. Tool diameter, material yield stress, cutting fraction of the tool and the local 

geometry of the tool path (direction, path radius, etc.) are a number of examples of 

generalisation directions for the tests.  

9.3.2. Investigation of non-cutting energy consumption of CNC 

milling machines 

A considerable part of a CNC machine’s energy consumption takes place during the 

time that the machine is not cutting material. These times include rapid moves, tool 

changes, idle running time, etc. To have a complete picture of a CNC machine’s 

energy consumption behaviour, this would be necessary to understand such 

behaviour during the non-cutting times as well as cutting times. 
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9.3.3. Repeating the tests on other CNC milling machines 

The case study of this research was carried out on one CNC milling machine. 

Expanding the tests to other CNC milling machines would provide necessary data for 

further investigations on the causes of different energy consumption behaviours of 

different machines. This, in turn, would be helpful for finding solutions to making more 

energy efficient CNC milling machines. 

9.3.4. Generalisation of the model towards other types of 

electromechanical systems 

The main idea of modelling the energy consumption of a system by reducing the total 

energy consumption into specific mechanisms and mechanistically modelling each 

mechanism may also be used for modelling electro mechanical systems and machines 

other than CNC milling machines. A general investigation on the properties that such 

systems must have, so the same modelling method could be applied for modelling its 

energy consumption behaviour, would draw the boundaries of applicability of the 

methodology proposed in this research 

9.3.5. Development of a representation system for CNC machines’ 

energy consumption behaviour 

According to this study, the energy consumption behaviour of the CNC machine used 

in the case study may be fully expressed within the range of the experiment, by a 

number of constants that were found through the experiments. A similar set of 

constants could describe the energy consumption behaviour of another machine 

within the same range of parameters. By extending the experiments to more general 

cases, a generalised form of such set of constants would be able to describe the 

energy consumption behaviour of a CNC machine in a wide range of functioning 

scenarios. Therefore, such a set of constants provides a signature of the machine’s 

energy consumption behaviour.  

This would help not only distinguish between energy efficient machines and not so 

efficient machines, but also to choose the most efficient machines according to the 

cutting scenarios for which the machines would be used most. It also helps the 

identification of the main energy consuming mechanisms in different machining 
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processes and scenarios and proposing the most effective changes to be made in the 

design of future generations of machine tools.  
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