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Summary

Multi-Attribute Optimisation (MAO) is proposed as a tool for delivering high value products within
the systems engineering approach taken in the automotive industry. This work focuses on MAO
methods that use Computer Aided Engineering (CAE) analyses to build a metamodel of system
behaviour.

A review of the literature and current Jaguar Land Rover optimisation methods showed that
the number of samples required to build a metamodel could be estimated using the number of
input variables. The application of these estimation methods to a concept airbox design showed
that this guidance may not be sufficient to fully capture the complexity of system behaviour in the
metamodelling method. The use of the number of input variables and their ranges are proposed
as a new approach to the scaling of sample sizes. As a corollary to the issue of the sample size
required for accurate metamodelling, the sample required to estimate the error was also examined.
This found that the estimation of the global error by additional samples may be impractical in the
industrial context.

CAE is an important input to the MAO process and must balance the efficiency and accuracy
of the model to be suitable for application in the optimisation process. Accurate prediction of
automotive attributes may require the use of new CAE techniques such as multi-physics methods.
For this, the fluid structure interaction assessment of the durability of internal components in the
fuel tank due to slosh was examined. However, application of the StarCD-Abaqus Direct couple and
Abaqus Combined Eularian Lagrangian was unsuitable for this fuel slosh application. Further work
would be required to assess the suitability of other multi-physics methods in an MAO architecture.

Application of the MAO method to an automotive airbox shows the potential for improving both
product design and lead time.
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Chapter 1

Introduction

1.1 Thesis Summary

There are many pressures on companies operating within the automotive industry. Overcapacity
in manufacturing[1] and a decline in sales during the recent ‘credit crunch’[2] prompted vehicle
manufacturers to reduce costs in all areas of business. Increasing demand for new products and
a recovery in sales[3][4] now require the automotive industry to design better products in a shorter
space of time[5]. Systems Engineering is a method that can deliver customer-focused products
whilst reducing the time and cost taken to design new vehicles[6][7].

Systems Engineering is an interdisciplinary approach to delivering customer requirements[8].
This approach relies heavily on systematic processes and tools to enable system designers to
understand the requirements and constraints of systems. Optimisation is a core component of the
Systems Engineering process, which ensures that designs best meet the product requirements[9].

Within automotive design, a product will have many different and potentially conflicting attributes.
Computer Aided Engineering (CAE) methods have been utilised to predict a product’s attributes
early in the design process[10]. Each of these attributes need to be optimised in order to deliver
a high value product. However, conflicts between attributes must be resolved by methods which
trade-off one attribute against another. Historically, iterative processes have been used to achieve
this, whereby each attribute is optimised in isolation and trade-off occurs in a sequential process
(see Section 3.3.1). The issue with this approach is that it may not produce the optimal design, as
the inter-relationship between the attributes is not considered. Multi-Attribute Optimisation (MAO)
methods consider the multi-attribute nature of systems and may therefore provide an improvement
in product design, in a reduced development time. In order for the MAO approach to be effectively
utilised in an industrial setting, the processes and enablers need to be better understood.

When optimising the design of a system, exploration of the potential design space allows
the relationships between the attributes of the product to be established. Metamodelling is a
tool that can be used to explore the design space as part of an MAO approach[11]. With this
tool, a mathematical function is fitted to predictions or measurements of the attributes within the
design space. The function can then be used to predict attribute behaviour in other regions of the
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design space. However, there are some problems with using the metamodelling technique; namely,
the sample size required versus the cost of collecting those samples[12][13][14] and the cost of
calculating the error in the metamodel[11][15]. When using MAO as a tool, ways of exploring the
design space, trading attributes and selecting the final design that delivers the best value product
must also be considered[16].

The building of metamodels can be based on CAE methods. The method used must be
appropriate to the attribute under investigation. While most attributes can be analysed by a single
domain CAE code, the multi-disciplinary nature of a system’s attributes may cross the traditional
CAE domains[17]. In these instances, multi-physics CAE methods are sometimes required in order
to capture attribute behaviour accurately[18]. However, there is an issue of the additional cost of
such methods versus the improved accuracy of the attribute prediction.

While research in these methods is ongoing to develop new metamodelling, sampling, error
estimation, trade-off and CAE techniques, this thesis focuses on the application of such techniques
as a systems engineering tool. For this, the constraints of a systems engineering design environment
must be considered. In this thesis, the Jaguar Land Rover product design and optimisation processes
are used as a casestudy, providing the context and constraints in which an MAO tool must operate.
Within this context, issues connected with metamodelling and multi-physics CAE methods are
addressed by two projects. The first is an MAO airbox project that examines sample size, error
estimation, trade-off methods and the benefit of a multi-attribute approach to optimisation. The
second project is a multi-physics analysis of a fuel tank that investigates the cost versus the benefit
of using multi-physics methods. Both projects were constrained to use Jaguar Land Rover software
and procedures.

A constructive research approach is taken, using practical application of CAE and optimisation
methods. The airbox MAO problem examines the use of the metamodelling approach to the trade-
off between three conflicting attributes. The impact of using the current Jaguar Land Rover single
attribute optimisation approach to sample size and error estimation is assessed. After a number of
improvements to the sampling and error estimation methods are made, an optimised airbox design
is presented. The multi-physics analysis of the fuel tank investigates Fluid-Structure-Interaction
(FSI) methods for the durability of fuel tank components. The multi-physics problem is outlined and
the application of a number of FSI approaches is examined. The results from these projects are
then used to build a set of recommendations for using MAO as a systems engineering tool and the
implications of these discussed within the context of the Jaguar Land Rover design environment.

The design of automotive components and systems should utilise optimisation to deliver the best
value product. The optimisation process must be able to encapsulate the multi-attribute nature of
systems. This thesis examines the use of MAO methods within a systems engineering environment,
to enable designers to improve product performance by exploration of the design space and reduce
development times. The contribution of this thesis is in guiding the use of MAO methods as a
systems engineering tool and in particular provides a new approach to scaling MAO projects,
allowing the tool to be applied throughout the systems engineering process.
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1.2 Research Aims & Objectives

The aim of this research is to investigate the challenges and key benefits of adopting a MAO method
as a systems engineering tool to improve product development times and component design. The
objectives to achieve this aim are:

1. To review the current knowledge and issues in automotive systems optimisation methods
within a systems engineering approach. From this key research areas will be identified as
the use of metamodelling to model attribute behaviour within the design space and the use
of multi-physics CAE methods as an enabler within MAO. To investigate these areas, further
objectives can be specified as:

2. To examine the role of optimisation within an automotive design environment allowing sub-
projects to be scoped and bounded.

3. Investigate key enablers and methods required to implement MAO within an automotive
design environment, including:

(a) Examine issues of sample size and distribution in the generation of metamodels and the
estimation of the error in the model fit.

(b) Examine techniques and methods for attribute trade-off.

(c) Examine the benefits and costs of a multi-physics approach to CAE for use in an MAO
architecture.

(d) Use an automotive case-study to understand the potential application of MAO methods.

1.3 Contribution to Knowledge

This thesis contributes to systems engineering by guiding the use of MAO for the optimisation of
systems. This is intended to be for the use of system designers and CAE engineers working in a
systems engineering environment. While this thesis focuses on the application of MAO within an
automotive environment, the recommendations suggested for MAO implementation could be used
in any design and optimisation process. Other contributions include the development of a method
for predicting the capacity of an automotive airbox as well as improving the design by application
of the MAO method. Finally, the assessment of a number of multi-physics methods highlights
implementation issues within the software codes used.

This thesis takes a systems engineering approach to the implementation of MAO within the
context of Jaguar Land Rover Powertrain CAE. This includes a system of systems viewpoint analysis
to gather requirements for projects. This analysis is shown in Chapter 3 and was presented to the
2010 IEEE International Conference on System of Systems Engineering.

The key recommendations are focused on the sampling size and error estimation methods used
within a metamodelling approach to MAO. These can be summarised as:
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1. Based on application of an MAO method to the design of an airbox, scarce sampling is
unsuitable for large generic metamodels.

2. To increase predictive accuracy, the number of samples taken to capture attribute behaviour
must be increased.

3. However, the guidance from literature for the required sample sizes may be insufficient and
lead to unsatisfactory metamodels.

4. This work proposes that the sample size guidance in the literature cannot capture the complexity
of large design spaces and suggests the design variable range method as an alternative.

As a corollary to the findings on sample size required to build metamodels, the sample sizes
required to evaluate their error was also investigated. The literature showed little consensus for the
sample size and distribution that should be applied for metamodel error estimation and concerns
were raised over the application of ‘leave one out’ errors. Key knowledge contributions in error
estimation are:

1. That the estimation of true error requires a very large uniform sample which would prove
impractical in an industrial setting.

2. The use of alternative ‘leave one out’ error estimation methods may be misleading.

3. This work suggests the use of both methods.

The metamodelling MAO method was applied to the design of an automotive airbox, this process
included developing an empirical model to predict the capacity of the air filter. The model used
capacity measurements obtained from physical tests of Jaguar Land Rover airboxes and correlated
these values to the dimensions of the airbox and a prediction of the flow uniformity from a CFD
model. The correlation equation provides a simpler method for prediction of the capacity when
compared to other methods found within the literature. The application of the MAO method to the
concept design of the Jaguar Land Rover XK airbox also yielded improved attribute performance
as follows.

1. The pressure loss was reduced by 360 Pa, giving approximately 7 b.h.p. improvement in
power output at full load.

2. A 25 gram improvement in the dust capacity of the airbox.

3. This improved breathing was also matched by a 23% improvement in the NVH characteristics
over the concept baseline.

Recommendations and contributions to knowledge were also gained from the application of
multi-physics CAE methods to a fuel tank as follows.

1. The multi-physics fluid structure interaction methods available in standard Jaguar Land Rover
CAE codes was not applicable to fuel tank applications.
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2. The StarCD CCM+ and Abaqus CAE direct couple approach was shown to be unstable due
to the implicit time-step.

3. For the direct couple these results led to the vendor changing the recommended application of
the method to air and solid coupling problems only and also to further development of explicit
models of multi-fluid couples[19].

4. The element size and penalty methods in the Abaqus CEL (Combined Eularian Lagragian)
method led to poor hydrostatic pressure and free surface predictions.

5. The CEL limitations were passed on to the vendor and software updates and new implementation
advice and revised software were issued[20].

1.4 Structure of this Thesis

This thesis is divided into three parts. The first part contains a review of literature, research and the
industrial context relevant to this thesis. Within this, Chapter 2 reviews the literature and research
to give an overview of Systems Engineering and Systems optimisation methods. The review then
focuses on the issues of using CAE based optimisation methods. Chapter 3 reviews the operation
of optimisation methods within an automotive design process. This allows a series of research
questions, caveats and constraints to be discussed. Using this as a starting point, the project areas
for research in this thesis are defined.

The next part of the thesis contains the research completed on the airbox MAO problem and the
multi-physics analysis of a fuel tank.

Chapter 4 defines the airbox problem and the approach taken to the sample size and error
estimation dilemmas. The impact of this approach is examined in Chapter 5 where the airbox
attribute metamodels are built and their accuracy assessed. The findings of this chapter are
supported by additional experiments presented in appendix A. The metamodels generated are
then used to examine methods of optimisation and attribute trade-off in Chapter 6. Supporting
documentation for the airbox project is given in Appendix B.

Chapter 7 examines the multi-physics approach to the fuel tank analysis. This chapter includes a
review of multi-physics approaches to fluid structure interaction in fuel tank simulations. In addition,
the findings of applying a number of multi-physics approaches is detailed. Here, the cost and
accuracy of the simulation are evaluated. This chapter is supported by a number of appendices:

C A description of the fuel tank design stages.

D Correlation of the StarCD free surface analysis method using a half scale rig test.

E Exploration of the fuel slosh boundary condition.

F Example scripts for StarCD and multi-physics models.
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The final part of this thesis closes the work. Chapter 8 uses the findings from the airbox and
fuel tank projects to build a set of recommendations for using MAO as a systems engineering tool.
Chapter 9 draws the final conclusions and specifies areas for further research.
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Part I

Systems and Optimisation in the
Computer Aided Engineering

Environment
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Chapter 2

Literature Review

2.1 Introduction

The aim of this chapter is to review the current knowledge and issues in automotive systems
optimisation within a systems engineering approach.

This chapter starts by defining systems engineering and examining the processes and tools that
are utilised in such an approach. Within this, the optimisation of systems was shown to be a key
part of the process. However, the optimisation of systems is complicated by multiple and conflicting
requirements, the crossing of distinct engineering domains and issues of robustness. Here, the use
of MAO can be used to overcome these complexities.

From this, the review then investigates how systems can be modelled and optimised with a focus
on system component design optimisation within the automotive industry. CAE methods were seen
to enable early problem solving and attribute modelling for physical components. The final part of
the review focuses on investigating the methods used in CAE based optimisation. Here, the use of
metamodelling is shown to be an efficient way to explore the design space. The issues connected
with the metamodelling approach are then examined.

2.2 Systems Engineering

The automotive industry is an extremely competitive industry. Many vehicle manufacturers compete
for sales in various global and vehicle role markets. Problems of overcapacity [1] and the recent
reduction in sales due to the ‘credit crunch’, increased the financial pressures on vehicle manufacturers.
In the US, year on year light vehicle sales dropped by 27% in September (2007 to 2008) [2]. These
pressures have prompted the industry to reduce costs in all areas of business. The subsequent
recovery in sales caused by expansion into emerging markets [3] and the drive for new and improved
products [4] shows the change in pressures on automotive manufacturers. Products must be
developed cheaper and more quickly, while also improving on previous models.

The automotive industry’s interest in the Systems Engineering method is part of the natural
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progression of design, development and manufacturing methods. While the standard production
line process had been utilised for some time, limited resources in Japan have led to more efficient
manufacturing methods being developed[21]. The success of the Toyota Production and Kanban
System method led to the application of related methods across more of the company’s activities[10].
The emphasis on early problem solving has been encapsulated into many automotive product
development strategies such as concurrent engineering. The increasing complexity of vehicles
means that there is a need to advance product development methods in order to meet future
customer demands. Systems Engineering is seen as the next step[6][7].

2.2.1 What is Systems Engineering?

The Systems Engineering approach is summarised by the International Council on Systems Engineering
(INCOSE) as:

‘An interdisciplinary approach and means to enable the realization of successful
systems. It focuses on defining customer needs and required functionality early in the
development cycle, documenting requirements, then proceeding with design synthesis
and system validation while considering the complete problem:

• Operations

• Performance

• Test

• Manufacturing

• Disposal

• Training & Support

• Cost & Schedule

Systems Engineering integrates all the disciplines and speciality groups into a team
effort forming a structured development process that proceeds from concept to production
to operation. Systems Engineering considers both the business and the technical needs
of all customers with the goal of providing a quality product that meets the user needs.’
INCOSE[8] website: http://www.incose.org/practice/whatissystemseng.aspx

This definition shows that a ‘systems’ approach is required to ensure that the work completed
by individual teams working on various aspects and features of a product conform to the overall
system and customer requirements. However, this presents the systems engineer with a complex
problem, as there may be many different and often conflicting requirements which may require the
expertise of many engineers. In order to design systems, this complexity needs to be encapsulated.
A Systems Engineering method can be considered a method which enables the practitioner to
consider a system as a set of entities with discrete properties, capabilities and behaviours derived
from the customer requirements. This method encapsulates the complexity as a function of discrete
parts, allowing the problem to be solved[9]. A generalised Systems Engineering process centres
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on solving customer problems to deliver a product or service which meets their requirements.
Hitchins[9] (pg 199-200) gives the following sequence of activities which constitute this problem
solving process:

1. Explore/bound the dynamic problem space.

2. Synthesise a dynamic solution.

3. Develop viable solution concepts.

4. Choose the optimum solution concept

5. Design the dynamic system solution.

6. Select, connect and configure parts to meet the design.

7. Test and tune the dynamic system solution in a representative dynamic problem space

8. Adjust/modify parts and interactions to realise/optimise properties, capabilities and behaviours
of the whole.

9. Fit dynamic solution into dynamic problem space.

10. Resolve the dynamic problem.

When this list is considered with the INCOSE definition of Systems Engineering, a number of
key points about what constitutes Systems Engineering can be generated. Firstly the structured
nature of the list indicates that a Systems Engineering project requires a systematic approach that
takes a holistic view of the problem and focuses on developing requirements and solutions[22].
This focus carries through all subsequent steps. Austin [6] describes this as a ‘formal process’
which manages the support, processes and deliverables of a project. Also, there is a focus on the
optimisation of the system in order to best meet the customer requirements. Hitchins argues that
balancing the properties, capabilities and behaviours of the whole system is core to the Systems
Engineering process [9].

The next step in this chapter is to examine formal Systems Engineering processes that are used
in the design of automotive systems. This will include the operation of the processes and the use
of optimisation.

2.2.2 Systems Engineering Processes

Within the automotive Systems Engineering, two examples of formal Systems Engineering processes
are the ‘V-Model’ [6][23][24] and the ‘DCOV’ approach[25][26]. The former is used as an approach
to program design while the latter is used for smaller design based projects.
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‘V’ Model Systems Engineering

One Systems Engineering approach is characterised by the ‘V’ model[6], shown in Figure 2-1
(derived from Austin[6]). The initial stages on the left hand side concern the analysis, development
and allocation of the customer requirements. This can been seen as a cascade of requirements
in a top-down process. Top level requirements are gathered, then translated and cascaded down
as system requirements, then further down to sub-system requirements and verification plans are
created at each level. Design and optimisation occurs at the bottom of the Systems Engineering
‘V’, where the customer requirements are transformed into product features. In the final stages,
the design is integrated and verified. This is completed by a bottom-up process. The verification
plans created in the requirements stages are used to ensure the product conforms to customer
requirements. This process is one of the most widely used Systems Engineering models used[6],
as there is a strong focus on customer requirements. The ‘V’ process is at the core of a number
of automotive program design strategies, such as the Ford product development systems for whole
program management [23] and the BMW Systems Engineering process [24]. However, as this
process is intended to be used as a whole program approach, the optimisation stage is not detailed.
For this, the ‘DCOV’ method for individual design projects can be used.

Overall Requirements

Component Design

Sub-System Requirements

Component Requirements

System Requirements

Design Verification

Design Optimisation

Overall Validation
& Verification

System Validation
& Verification

Sub-System Validation
& Verification

Conponent Validation
& Verification

Allocate

Allocate

Allocate

Allocate

Integrate

Integrate

Integrate

Integrate

Verification Plan

Verification Plan

Verification Plan

Verification Plan

Figure 2-1: The Systems Engineering ‘V’ model

6-Sigma Methodologies & The ‘DCOV’ Process for Projects

6-Sigma is a culmination of a number of design and engineering philosophies (Statistical Process
Control, Total Quality Management, Lean Engineering, etc.) and utilises the strengths of each[25].
Stamatis[25] and Perreira & Andreassa [27] working at Ford describes two applications of the 6-
Sigma approach, both aimed at improving system design reliability. The first is to solve problems of
process variability in product manufacturing and the second is as a preventative measure to avoid
variability in the design. The second of these is called Design for Six Sigma (DFSS) and in Ford
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applications, employs a ‘DCOV’ (Define, Characterise, Optimise and Verify) method to product
design[26]. The application of this method allows for greater upfront engineering whereas the
traditional DMAIC (Design, Measure, Analyse, Implement and Control) model is used predominantly
in manufacturing.

The ‘DCOV’ Process can be summarised as follows;

• Define: gather and understand the customer requirements, translate these into “Critical To
Satisfaction” (CTS) and functional targets.

• Characterise: Here the CTSs are cascaded down and translated to “Critical To Quality” (CTQ)
design parameters, these should be used to understand the system and select the concept
designs.

• Optimise: The design should be optimised to best meet the CTQs and CTSs with an emphasis
on product sensitivity.

• Verify: Assess the system performance against functional targets.

This method features both a strong connection to the customer requirements and an optimisation
phase. It is used by Ford and associated partners within its product development cycle for design
projects[27]. To complete the ‘DCOV’ stages, various tools are used, some of which have been
demonstrated in the Systems Engineering application examples. Typical tools used in DCOV are
shown in Table 2.1 [26]. Specific tools are used at certain times to ensure that each stage is
completed effectively and remains focused on the customer requirements. Tools are used to help
model requirements and system behaviours to enable the designer to make decisions.

Table 2.1: Tools commonly used in DCOV methods [25][26].
Define Characterise Optimise Verify
Consumer Insight Concept Generation,

Modelling and Selection
Numeric/Heuristic
Optimisation

Model Validation

Kano Model Designed Experiments Designed
Experiments

Test Results

QFD P Diagrams CAE Methods Robustness and
Reliability

Market Research System Functional Taguchi Methods, Control Plans
Diagrams Parameter &

Tolerance Design
Historical Data Parameter & Tolerance Control Planning
Benchmarking Axiomatic Design

28



2.2.3 Case studies of the Application of Systems Engineering to
Automotive Design Problems

There are many cases in literature where the application of Systems Engineering has enabled more
customer-focused design in automotive applications. In these examples the use of the Systems
Engineering analysis and tools are highlighted, together with the benefits for the design

When optimising the light-up emissions of a catalytic converter system, the designers were
faced with a number of different customer groups, each of which needed to be satisfied. The major
groups were the overall vehicle customers and the legislation on emission standards[28]. The
requirements for a catalytic converter design were obtained from the customer and the legislation.
The requirements for the design were then analysed using a Systems Engineering P-Diagram.
When using this tool, the key inputs, control factors and noise factors are all identified along with
the ideal function and error states of the system. By analysing the system operation and interfaces
with surrounding systems, the P-Diagram allowed the interactions and behaviours of the system
to be understood. The knowledge of the system was then used to focus the physical testing and
Design of Experiments (DoE) optimisation tool (see section 2.5.2) to specific problem areas. The
benefit of this approach was that the new design met the stringent emissions standard with fewer
physical tests conducted.

In the design of Occupant Protection Systems (OPS) at Delphi[29], the need for Systems
Engineering was driven by the increasing complexity within the system. A Systems Engineering
approach was used to capture the requirements for an OPS in various different crash modes. This
allowed the critical and conflicting requirements to be identified and appropriate concept designs to
be proposed. From the key requirements, the most important system input variables were identified
along with the correct boundary conditions. Again, focusing on the key requirements allowed the
number of CAE analyses to be reduced to a few specific cases. This example also demonstrated the
use of DoE methods as an optimisation tool to understand how the inputs to the system affect the
performance. In this example, the application of Systems Engineering enabled a customer-focused
product to be developed due to the preliminary work completed gathering the requirements and
understanding the system.

Ford applied a ‘top-down’ approach to vehicle chassis design[30]. The problem featured many
part-to-part interactions of the suspension components as well as non-linear interactions between
the tyre and the road. This Systems Engineering method allowed the decomposition of this problem
into a number of sub-system analyses, but due to the use of Systems Engineering tools, the
requirements and interactions were captured at a high level and cascaded down. The top-down
approach allowed the engineer to investigate the requirements and the interactions. This allowed
assessment of the system as a whole rather than as individual components. A number of systems
modelling tools based on CAE approaches were then used to examine the effects of design changes
on component parts and the part-to-part interaction. The use of this approach was said to reduce
the development time whilst improving the simulation accuracy.

A systems approach was taken to the design and development of an air intake system at
Mahindra & Mahindra[31]. This approach took a holistic view of the air intake system in order
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to derive customer requirements and develop a system design specification. The targets from this
specification were then cascaded down to individual components and the design requirements
developed. The approach featured the use of a number of tools to understand and optimise
the system. To provide the optimum design, the air intake system was modelled with the CFD
(Computational Flow Dynamics) software Fluent to allow the flow through the system to be visualised.
This visualisation allowed the engineer to identify regions of poor airflow and then eliminate them.
The quality of the design was developed using a ‘Failure Modes and Effects Analysis’ (FMEA) tool
to focus on high risk areas of the design and reduce the amount of failures. The use of these
tools allowed the requirements for the system to be met and improved upon. For example, the
CFD optimisation reduced the pressure drop by 18% and improved fuel economy by 1% over the
baseline.

These four examples have shown that a Systems Engineering focus on customer requirements
has enabled improved design. The Systems Engineering process was required to cope with
the increasing complexity of the systems being designed, be it multiple customers with varying
requirements or high levels of interaction between parts and surrounding systems. The Systems
Engineering approach enabled the complexity that these issues presented to be captured then
simplified, allowing the design work to be focused on specific issues. Within the Systems Engineering
process, tools were used to help the engineer understand the requirements or the behaviours and
interactions within the systems. Optimisation tools such as DoE and systems modelling were shown
to be important in delivering best value systems to the customer. Improving optimisation tools for a
Systems Engineering approach would be of benefit in enabling further improvements in the design
of systems.

The Systems engineering methods utilised in the casestudies presented in this section were
a response to increasing complexity of the product being designed. As systems become larger
and involve a greater degree of communication and interaction with other surrounding systems,
the design problem becomes increasingly difficult. To analyse such problems, ‘System of Systems’
engineering methods have been proposed[32]. These methods allow for greater uncertainty in
operational behaviour that requires a highly complex and dynamic design space. In such problems
the objective of design may no longer be to optimise, rather to satisfy and sustain required system
behaviour[33]. The optimisation of a system in an uncertain, highly complex and dynamic design
space can be characterised as a ‘WICKED’ problem as defined by Rittel and Webber[34]. ‘WICKED’
problems are those which lack a definitive problem formulation and are unique. They also have
multiple solutions which are difficult to measure, compare and validate, requiring a ‘one shot’
solution that does not allow an opportunity to use trial and error[35]. As the scope of an optimisation
problem is increased, such characteristics may need to be considered.
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2.3 Optimisation

Hitchins describes optimisation as a core element of the Systems Engineering process[9]. This
section introduces optimisation and will discuss how this can be used to obtain best value systems.
The complexities of optimisation of systems are discussed in section 2.4, followed by a discussion
of the approaches to system design optimisation in section 2.5.

2.3.1 Definition of Optimisation

There are two definitions of optimisation:

1. The mathematical process of finding the maxima or minima of a specified function[36].

2. The action or process of making the best of something; (also) the action or process of
rendering optimal; the state or condition of being optimal[37].With optimum being the best
or most favourable point, degree, amount, etc. The greatest degree or best result obtained or
obtainable under specific conditions[37].

While the mathematical definition implies a hard and fast point, the second definition suggests
a more generalised concept. From the systems approach above Hitchins argues that an optimal
system is one where the performance, capabilities and behaviours of one system configuration are
of greater value than others[9]. This concept of value is a central idea in decision theory [16], and
provides some form of measure that will allow designs to be compared. Capturing what is of value
to the customer is a vital part of gathering requirements.

2.3.2 Classical Optimisation

In a classical optimisation problem, algebraic equations are used to model the system so that the
output is a function of the inputs, common terms used are listed below [38].

• Design Variables: Design variables are the inputs into the design optimisation problem that
are used to characterise the range of the design space. These can be continuous or discrete
with ranges defined by the side constraints.

• Design Parameters: Design parameters, or dependent design variables, are non-variable
inputs to the optimisation problem.

• Design Space: The design space of a system is defined by the upper and lower limits of all
the design variables. For n design variables the space is n-dimensional and represents the
area that will be searched for the optimal value.

• Design & Objective Functions: The design/objective function is the model of the behaviour of
the system given a set of inputs. It is this model that is to be optimised.
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• Constraints: A system is subject to constraints that also need be taken into account in the
solution of the optimisation problem. A design space limited by constraints is called a feasible
domain or set. Three types of constraints exist; side, equality and inequality.

– Side: Defines the range of the design space.

– Equality: Behaviour or performance that must be met and defines a value of feasibility.

– Inequality: Behaviour or performance that defines a region of feasibility.

2.3.3 Solution Methods

The solution to the optimisation problem is to find the point of maximum value (be it maximisation or
minimisation). Andersson[16] notes that there are two methods of solving optimisation problems;
derivative methods and non-derivative methods (or meta-heuristic methods). Derivative methods
follow point paths using gradients to find the next point that would give an improved objective
function. The iteration continues until the objective function can no longer be improved. For a
given objective function, there may be numerous local optimum points but only one global optimum
(the point best value in the feasible domain). This can lead to the optimisation process being
trapped at a local optimal point but not the global point. Meta-heuristic or non-derivative methods
were developed to overcome this issue and are more efficient than the application of derivative
methods[39]. Examples of Meta Heuristic methods are simulated annealing and genetic algorithms.

Simulated annealing mathematically replicates the heating then cooling of materials to organise
the internal structure. After starting with an initial design, a small population of local designs is
generated and the changes in the objective function measured. Where new samples exceed the
initial sample, they are accepted and the process repeats. If the sample is worse, acceptance is
judged using a Boltzman probability function. Initially the probability of accepting degradation is
high. As the sequence iterates, this probability is reduced in a pseudo cooling effect. The process
is continued until the probability drops to a minimum level [39].

In genetic algorithms, the design variables are imagined to be genes and the system performance
the output of this combination. From an initial population, the outputs are measured and the best
performing genes are selected for mating. In a mating sequence, the genes are swapped over
to produce the next generation. The children are then measured and compared as the process
iterates. The progression of the algorithm continues until either the genes converge to a single set
of parameters or a given number of generations occurs [39].

These two examples are just some of the meta-heuristic methods suggested, for further information
texts such as Collette and Siarry [39] detail other methods and formulations. Extensions of these
solution methods to other optimisation problems such as multiple objectives are also discussed.
Many of the commercially available optimisation software codes feature a variety of standard optimisation
strategies and formulations [40][41]. Application of these enables non experts in optimisation
algorithms to apply advanced optimisation techniques.
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2.4 Optimisation of Systems

The discussion of optimisation has included the basics of optimisation theory. However, the application
of optimisation to a system poses different challenges, which will be considered in this section.

2.4.1 Multiple and Conflicting Objectives

In the design of systems, it is common to have to optimise for more than one objective, for example
minimising the deflection of a structure as well as minimising the weight. Not only does this problem
have two objectives but they are opposed to each other. This has the potential to lead to multiple
solutions being found, of which only a small subset will be of interest to the designer. The solutions
will show how the different objectives are related and in particular the dominance of a solution[39].
The dominance of a particular solution can be defined by the solution being as good as other
solutions in most attributes but largely better for a single attribute. Solutions which are dominated
by other solutions are of little interest to the designer. Pareto optimal (or non-dominated) solutions
can be defined as solutions which are dominant over others but are not themselves dominated.
A set of non-dominated solutions is called the Pareto frontier. The possible Pareto frontiers for
a double objective optimisation are shown in Figure 2-2. A utopian point can be defined as the
solution which satisfies each objective simultaneously. This is also indicated in Figure 2-2.

Figure 2-2: Pareto-Sets and Optimisation Objectives
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2.4.2 Optimisation of Multiple Domains & Disciplines

The INCOSE definition of Systems Engineering stated that it is “an interdisciplinary approach and
means to enable the realization of successful systems” [8]. This means that the optimisation of a
system must be able to cover multiple engineering disciplines. In the optimisation of a maniverter for
a Fiat gasoline engine [5], the cost of the design was estimated along with a number of engineering
attributes. This required a number of different domain analyses to be built using the advice from
a number of domain experts. This made the building of the optimisation project a team process.
Multidisciplinary projects are inherently a team activity [42] and the optimisation of a design is no
longer dependent solely on the optimisation processes but also the on the teamwork within the
process. This human factor adds to the complexity of optimisation projects that cover multiple
disciplines [43] as not only must the technical aspects of the process be addressed, but so too
must enabling effective team working [44] and communication [45].

2.4.3 Robustness

The optimisation of a system will yield a set of design parameters to which the system will be
built. However, these input parameters will be subject to variation, either in the manufacturing
of the system or noise within the operational environment. If a design is centred on the optimal
performance point, then design parameter variability will move the system away from this position.
Steep response behaviour could lead to large changes in system performance (Point A Figure-2-
3). However, more stable system response behaviours will only lead to small system performance
variability (Point B Figure-2-3). The assessment of the robustness requires the examination of the
attribute behaviour in the local design space so the stability can be assessed, this requirement
increases the complexity of systems optimisation [46].

Figure 2-3: Global Optimum Performance Variation and Robust Optimum Point.
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2.5 Approaches to Systems Optimisation

The previous section highlighted the complexities of systems optimisation. In this section some
of the tools and methods used for optimisation will be reviewed and the case for using MAO
established. The literature has shown a number of approaches for the optimisation of systems,
these are:

1. Systems Modelling & Problem Solving

2. DoE Methods

3. Single Attribute Optimisation

4. Multi-Disciplinary Design Optimisation

5. Multi-Attribute Optimisation

Each of these will now be examined for their applicability to systems optimisation.

2.5.1 Systems Modelling & Problem Solving

Under the list of optimisation tools in the Ford ‘DCOV’ process, CAE systems modelling is cited as
one of the potential methods for optimisation [25][26]. An example of this was shown in the Systems
Engineering case-study of the airbox presented in section 2.2.3. This used a CFD systems model
to visualise the airflow and allow problems to be identified[31], which could then be solved by the
engineer. While these methods allow the engineer to investigate the behaviour of a design, the CFD
system model used is for one set of design parameters. This means that the potential design space
is not fully explored and it is unknown whether it is the best value design. Systems optimisation
requires exploration of the design space[9].

2.5.2 Design of Experiment (DoE) Methods

The DoE method is also an approach used in the Ford ‘DCOV’ processes[25][26]. This method
proposed by R.A. Fisher [47] uses a number of experiments to explore the potential design space.
The number of experiments required for the method is determined by the number of inputs and
levels. Statistical analyses such as Analysis of Variants (ANOVA) can then be used to find the
effect and interactions of the input parameters on the system behaviour [48]. Knowing which input
parameters and interactions yield an improved system performance, the designer can exploit the
relationships to maximise the beneficial effects. However, the use of ANOVA, methods may be
limited requiring a different approach to the analysis of DoE data. Examples of the DoE method
include the optimisation of the light-up emissions of a catalytic converter system and the design of
an occupant protection system used in section 2.2.3. In these examples, a mathematical model was
fitted to the data collected from the experiment to create a response surface [28][29]. This response
surface (or metamodel) can then be used to predict the system behaviour in untested regions of
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the design space. The DoE approach has also been extended by both advanced metamodelling
and sampling techniques such as Monte Carlo Methods to consider robust optimisation. This
allows parameter and tolerance design to be examined to meet quality targets[49]. This advanced
sampling and response surface (or metamodelling) method forms the basis for some approaches in
advanced optimisation (Single Attribute, Multi-Disciplinary Design and Multi-Attribute Optimisation)
and is fully described in section 2.6.

2.5.3 Single Attribute Optimisation

Single Attribute Optimisation (SAO) is used to find the best value design for a system that is
characterised by a single output behaviour. In many systems, this optimisation approach may
not reflect the true nature of the design as there will not be just a single output behaviour. However,
if there is one dominant attribute of the system, or all of the attributes can be amalgamated into a
single value metric then this approach can be used. SAO has been applied to the crash structures
of automotive vehicles at Ford[50] and Hyundai[51]. In both cases, the objective was to minimise
the weight of a number of key components of the crash structures. However, the optimisation was
constrained to ensure that the new crash structures still provided an expected level of safety. While
both projects achieved some reduction in weight, there was a reduction in the safety performance
of the new designs. For the Ford case the weight of the crash component was reduced by 15.6kg,
but the roof crush resistance was reduced from 34.7kN to 31.3kN [50]. In the Hyundai case a 7.4kg
saving came at the expense of increased head injury criterion and chest acceleration in a high
speed crash[51]. While these vehicles still met the expected level of safety, these results raised
an important issue of trade-off; how much safety is the engineer willing to trade-off against weight
gain? In the SAO taken here, this trade-off is not considered.

While a single attribute optimisation approach may be used in simple cases, its application to the
optimisation of systems may not provide the best value design for the system as a whole. Hitchins
argues that an optimal system is ‘comprised of sub-optimal parts’ [9] (page 197), meaning there
may need to be some trade-off to provide the best design. A Systems Engineering tool must be
capable of allowing the engineer to explore and exploit the trade-offs within a system.

2.5.4 Multi-Disciplinary Design Optimisation

Multi-disciplinary Design Optimisation (MDO) is an approach to problems that cross the traditional
domains in engineering. These have been extensively studied by NASA and other Aerospace
engineering companies[42]. Here, the separate domains of aerodynamics and structural mechanics
have been combined in a single optimisation project. The MDO approach must consider both the
technical and human aspects of completing such projects[43].

In a review of MDO, a number of technical frameworks have been created [52][53] that control
the optimisation process and the flow of data. To make the project more manageable, it must
be decomposed into domain specific analyses. This is driven by the need to distribute tasks
between resources, allowing the design time to be compressed[43]. However, this decomposition
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and distribution can lead to disciplines becoming isolated. This is where the optimisation framework
is used, coordinating the flow of data to the various domains. Details of these frameworks can be
found in works by Sobieski[52][53].

The communication of data in an MDO approach may be complicated when the analysis requires
the interaction between domains to be evaluated. For example, where the fluid and structure
interact[54]. The fluid flow around the wing is resolved to find the pressure distribution as well
as the lift and drag coefficients. From this, the deflection and stresses in the wing structure can
be calculated. This requires that the output from one domain is applied as a boundary condition
in a ‘coupled’ approach. The coupling of analysis disciplines in the automotive sector has enabled
MDO methods to be applied at the system level[18]. The application of such methods has been
seen in the minimisation of weight of key components of a crash structure whilst considering
crashworthiness, durability or NVH attributes as constraints on the design [50][51].

To enable such projects, the coordination and communication between teams working in the
different domains must be facilitated. As cultural and organisational issues may prevent full integration
of the domains[18], traditional aspects of team working and communication should enable the
process. For enabling effective team work Waszak et al [44] found that clarity of mission, quality
of communication among team members, involvement of key experts, experience, willingness to
be a team player, team processes, balancing of technologies and high leverage interventions were
important to MDO projects[44]. In many projects, the different domain teams will not be co-located,
so communication must be mediated by means other than face-to-face conversation. Here, the
technological aspects, particularly with regards to communication, are a major area of computer
science research such as Computer Supportive Co-operative Work (CSCW) [45].

This section has shown that the MDO approach can address the multi-disciplinary nature of
Systems Engineering projects. However, these projects have mainly focused on single attribute
problems. The next step for MDO methods is to consider cases that have multiple objectives or
attributes[18][43].

2.5.5 Multi-Attribute Optimisation

Multi Attribute Optimisation is a method that addresses the varying number of conflicting requirements
that are present in the design of systems. This approach finds the best value system by trading-off
attributes against each other, meaning that the design may have sub-optimal performance for one
or more attributes to gain performance in other areas[9]. The solution of MAO problems requires
that the design space be explored to find the Pareto set of solutions[16][39]. For this, algorithms
such as the Multi Objective Genetic Algorithm (MOGA-II) and the Non-Dominated Sorting Genetic
Algorithm (NSGA-II) can be used [41]. These algorithms automatically explore the design space
and find the Pareto Frontier. The selection of the final design can be completed using methods
which enable the designer to use their preferences or by utilising a visual means to display and sort
the Pareto solutions.
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Decision Analysis Methods

The selection of design is based on the designer specifying a preference for certain solutions over
others. These choices will be based upon the overall requirements of the system and many of the
techniques employed are based on decision analysis and decision theory[16]. Techniques such
as Design Utility[55] and Figure of Merit [56] are methods of multi-objective decision making that
use mathematical modelling and functional relationships to weight the objective functions. These
methods base the decisions on the system requirements given by users.

With Utility methods, a function is generated that ranks the performance within the possible
range. A common approach is to use linear or exponential functions so that the worst utility attains
a value of zero and the highest utility a value of one [16]. However, other arbitrary functions within
the range may be utilised in order to tune the function to the particular needs of the system. To
reduce complexity, the utilities for multiple objectives are normally aggregated by weighted additive
or multiplicative functions to produce a single objective function. The utility functions and weightings
should all be derived from the customer requirements [56].

The application of designer preferences can occur before, during or after the optimisation process;
priori, progressive and posteriori methods respectively [16][39]. In these methods the objectives
are weighted against each other, enabling the optimiser to distinguish which objectives it is most
important to satisfy. Details of the methodologies used in each of these instances can be found in
a review by Andersson[16].

• In a priori optimisation cycle, weighted objective functions are used within the optimisation
process to balance which attributes are most prevalent within the design. These types of
methods can be called aggregated as the weighted objectives transform the multi-objective
problem into a single-objective optimisation[39].

• Progressive methods stop during the analysis and request decisions from the designer. This
method is used when the priori preferences are not available and the designer uses the
information given about the current solution set to make the design selection. These methods
can be slow due to the interaction needed between designer and process [16][39].

• Posteriori methods do not require the designer to limit the possible solution set before or
during the optimisation process[39]. All Pareto optimal solutions within the design space are
found and presented independently of the designer’s initial preferences [16]. Due to this, these
methods are associated with high computational costs, however they are the most flexible and
allow for greater exploration of the design space.

While the application of these methods may provide a single optimised result, it may not represent
the best trade-off between attributes. The methods of setting the weights and preferences must
be carefully considered. Such methods may be required to enable final design selection when
presented with a large Pareto set and should be considered when using MAO methods.
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Visualisation Methodologies

With increasing numbers of system objectives, there is an increasing amount of data which needs
to be viewed. How to present the data in such a way as to best enable the designer is a complex
problem. This issue has roots in the computer science domain of data mining[57]. The visualisation
of data is a key enabler for successful data mining. However, as the number of dimensions
increases it becomes increasingly complex to display the required data. There are numerous
methods to plot one, two and even three dimensional data, but more dimensions require increased
sophistication[57].

When using the iSight software for the multi-objective optimisation of an automotive maniverter,
it was found that the use of glyphs and other built in methods were not intuitive enough to be
used[5]. To increase the visual impact and intuitiveness of the data mining, a new ‘Rainbow Plot’
was created. This used coloured contours to rank the objectives from minimum to maximum. The
‘Rainbows’ for each objective were laid next to each other, enabling easier selection of design.

Another method of visualising highly dimensional data is the parallel coordinates plot [58]. In
these plots, each input and output parameter is assigned a vertical axis and each potential design
is represented by a line crossing each of the axes at its respective value. Slider bars on the axes
allow the design space to be reduced to guide the designer to the optimum design. Even with slider
bars and more advanced selection techniques such as brushing [59], increasing the number of
samples increases the difficulty for the user to see trends within the data and make the final design
selection.

Self Organising Maps (SOM) have the potential to overcome the complexity of large potential
design sets in highly dimensional optimisation. These maps are a neural network trained with
learning algorithms that allow the data to be visualised on a hexagonal grid [60]. These algorithms
cluster designs of similar performance, allowing the whole data set to be seen in groups. The
application of this method was found to be most effective when applied to the Pareto data in the
optimisation of supersonic wing and fuselage design [61].

The multi-dimensional plots discussed here enable the visualisation and exploration of the
design and trade-off space. This provides an opportunity for the designer to learn and understand
the effects and interactions that the input parameters have on the system. Such methods are
essential for using MAO as a Systems Engineering tool. Many of these methods are included in
commercially available optimisation software such as modeFRONTIER [41].

2.5.6 System Modelling

All of the approaches to systems optimisation have been based upon the use of systems modelling
to provide data to the optimiser. In the simplest sense, a model takes the system inputs and
boundary conditions, simulates the functionality and predicts the behaviour of the proposed configuration.
This could be as simple as a flow diagram, as long as it allows for system to system comparison.
In the automotive industry, two methods for predicting system behaviour are physical prototypes,
as shown in the catalytic converter[28] case study and CAE models as shown in the occupant
protection system[29] and the airbox optimisation[31].
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Physical prototyping involves the creation of components that represent the system and demonstrate
some of its functionality. There are many techniques for the rapid manufacture of components
that can show some of the behaviours of the system. However, in the concept design stage,
this represents a substantial investment in both time and engineering effort. The application of
CAE methods allowed BMW to run a total of 91 crash simulations in the design development
process, the results of which gave a 30% increase in side impact crashworthiness [10]. For physical
experiments, the number of prototypes needed to gain this level of detail would have proved costly
in terms of both time and resources. The increasing proliferation of computers within the industry
has led a movement to replace physical prototyping with CAE in early design stages[10].

The use of CAE has not only helped to reduce costs and development times, it has also
changed the design process itself. In a 2007 interview for AEI[62], John L. Givens, Director for
Engineering Math Processes at GM Powertrain, addressed the changes brought about by math-
based analysis. In previous experiment-based methods, the CAE analyst was mainly used for
forensic purposes. Only once a part had failed would the analysis methods be used. However, CAE
allows the behaviour of systems and components to be partially predicted, allowing simulation to
be used before failure occurs[62]. But the changes were not limited to when simulation was used;
the inclusion of CAE required both organisational and process changes. CAE was moved from
a supporting role to a mainstream position within the product development process, allowing for
greater use of virtual prototyping. In some cases, this method of proof is now robust enough to be
sufficient as a sign off method, allowing physical testing resources to be utilised more effectively[62].
This is confirmed by the use of CAE in powertrain analysis at Jaguar Land Rover [63]. Here, the
CAE teams provide a number of different types of analyses in order to meet the requirements of
the system design teams. These can be summarised as[63]:

• Problem Solving: This type of analysis is used when there is an issue with design or an
unexplained failure. The CAE can be used to gain further insight into the root cause of the
issue so the failure mode can be removed.

• Change Analysis: A change analysis occurs when the CAD designer has to change the
design and the new component needs to be verified, this is usually due to a manufacturing or
process issue.

• Measurement Support: A measurement support methodology is used to gain insight into the
operation of a component when physical tests cannot give the required detail.

• Design Optimisation: Optimisation involves exploration of the design space to enable the
optimal design to be found.

• Design Verification: Design verification analyses allow the designs to be signed off via a
virtual analysis.

Figure 2-4 shows the change in analysis methods used since CAE methods were introduced to
Jaguar Land Rover[63]. Increasing confidence in CAE technologies has resulted in a shift from
issue-based analyses to an increasing amount of design optimisation and verification.
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Figure 2-4: CAE methods within Jaguar Land Rover powertrain CAE. Diagram from Pierson[63]

2.5.7 Summary

The review of Systems Engineering processes showed that the optimisation of systems was a
core part of delivering high value products. The previous section described optimisation as a
mathematical method that can be applied to select input parameters that yield the best value
output. However, this approach was complicated when applied to systems due to multiple and
often conflicting objectives, multiple domain considerations and robustness.

For the optimisation of systems, a single system model is insufficient to explore the design space
and SAO methods do not consider the multi-attribute nature of systems. DoE methods based on
ANOVA may explore the design space and interaction. However, the limitations of such approaches
have resulted in advanced DoE methods which can be utilised to explore the design space, model
the system behaviour and analyse the system robustness. These approaches can be used in
SAO, MDO and MAO. While the MDO approach considers the multi-disciplinary nature of systems,
these methods have been used mainly for single attribute optimisation. However, moving to a multi-
attribute approach was seen as the next step. MAO methods that model different disciplines and
explore the design space (globally for optimisation, locally for robustness) can be used as a systems
optimisation tool.

The MAO approach was shown to be a method that can encapsulate the system optimisation
complexities. However there are issues over how the data from such methods can be used in
attribute trade-offs. Finally, it was noted that the systems optimisation techniques were all built on
systems modelling methods for attribute prediction. CAE methods were highlighted for their ability
to provide accurate attribute predictions early in the design process. From this, MAO enabled by
CAE methods is suggested as an automotive systems optimisation tool. However, the use of CAE
based optimisation problems requires further investigation.
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2.6 CAE Based Optimisation Problems

This review has previously discussed the modelling of automotive systems using CAE techniques
as an enabler in an optimisation process (DoE, SAO, MDO or MAO). These models use the design
geometry and boundary conditions to predict attribute behaviour. When these CAE methods are
used in the optimisation of design problems there are a number of key issues[64]:

• The design problem features many input parameters and output objectives (H - High dimensionality).

• The designs are evaluated by computationally expensive and potentially multiple simulation
programs (E - Expensive).

• The system behaviour within the design space is unknown (B - Black-box)

The issues surrounding such HEB problems will be explored in this section. Firstly the methods
used to reduce complexity, computational time and engineering hours will be discussed, then the
application of metamodelling is examined.

2.6.1 Reducing Problem Complexity

In a review of strategies to tackle high dimensionality and complexity in HEB problems, Shan and
Wang summarised the five different methods that have been applied. These are decomposition,
screening, mapping, space reduction and visualisation [64].

1. Decomposition: In order to reduce the complexity of a large scale problem, analysis can be
reformulated into a number of smaller, more manageable problems. These problems could
be independent or coupled but these are simpler and more efficient to complete. This is a
common approach in MDO [53] which can provide methods to maintain the required coupling
between analyses.

2. Screening: Screening of the optimisation problem removes parameters which are less important
or sources of noise within the design space. ANOVA methods on small samples are useful
in understanding the main effects and interactions of the design variables. This can reduce
the dimensionality of the problem. However, the accuracy may suffer as a consequence.
The application of this may be limited in multi-attribute problems due to differential powers of
parameters and interaction in each behaviour of individual attributes.

3. Mapping: There are two methods of mapping; firstly to reduce dimensionality by removing
correlated variables and attributes and secondly the space mapping method. With this, coarse
and fine attribute maps are generated for the same design space. The coarse map is based
on a simpler and less expensive CAE model and the fine map is a local map generated with
more expensive, accurate methods. The two maps can then be used in conjunction with the
predictions from the coarse map being adjusted by the fine map in the local regions. These
methods have limited applications to highly dimensional models.
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4. Space Reduction: The design space is the region encapsulated by the ranges of the input
parameters. Reducing these ranges decreases the amount of potential samples and the effort
required to gather data points. However, this reduction may come at the cost of removing
potential regions of interest and may be difficult in multi-objective cases where the optimums
are in separate regions of the design space.

5. Visualisation: The need for visualisation methods for highly dimensional problems has already
been discussed. It is seen as a key enabler in understanding the design space and enabling
informed choices about the complexity reduction methods mentioned here or design selection.

2.6.2 Reducing Computational Time

High numbers of variables increase the complexity and require more samples to be taken, resulting
in high computational expense. High fidelity models such as finite elements and CFD are used
by CAE for accurate simulations during the design process. However, such models come with
high computational cost[65]. The literature shows a number of methods employed in an attempt to
address this issue.

In order to reduce computational effort, approximate models could be used, replacing more
costly system models[65]. In the optimisation problem of the High Speed Civil Transport wing, a
full factorial design resulted in 59049 experiments[66]. Using a low fidelity model, each of these
experiments was completed in 2-3, seconds giving a total runtime of approximately fifty hours. For
the same wing problem, a medium fidelity model runs in 1.5-2 minutes. This could not be completed
for the full factorial design, as the computational expense would be substantial. Instead, the low
fidelity model was used to screen the possible data sets to reduce the design space.

However, the use of fast analysis models can affect the accuracy of the optimisation result.
The maniverter optimisation tool used a laptop with an Intel Pentium 4 processor[5]. This severely
limited the CAE models that could be used in the optimisation. In order to have a faster analysis
time, key analyses for the maniverter had to be neglected or the accuracy compromised. The fluid
flow analysis over the catalyst was deemed too computationally expensive and the elements used
in the frequency analysis were unsuitable.

The previous applications have been methodologies where total runtime has been reduced
through reducing the number of experiments or by using lower fidelity models. The use of High
Performance Computing (HPC) offers another approach[50]. The minimisation of the weight of a
vehicle was conducted using a 512 CPU SGI Origin super computer. This allowed not only for the
individual CAE runs to be executed on multiple cpus (4 processors per simulation), but for many
simulations to be completed simultaneously. If this were to be completed on a single CPU then the
total runtime would be estimated to be 22,500 hours, whereas the actual time taken using HPC was
70 hours.
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2.6.3 Reducing Engineering Hours

The requirement for solution points requires the simulation to be run with many different sets of input
variables, this requires many models to be set up. This requirement has led to models becoming
parameterised, where key features of the system model have constraints which can be modified.
In the optimisation of a maniverter there were 46 geometrical variables that could be changed
within the optimisation[5]. To complete the geometry by hand for each optimisation iteration would
consume a large amount of time and render the process unusable. To avoid this, a CAD package
that featured model parameterisation was used.

This reduction of manual input to the CAD can be applied across the rest of the CAE and
optimisation process. The optimisation of a maniverter also featured auto-meshing methods and
automatic results capture in an integrated optimisation architecture [5]. Such architectures not only
reduce the human input to the system but also aid inter-operability and multi-disciplinary problems
[67]. While these two examples show customised optimisation architectures, there are commercial
software packages that fulfil these roles [40][41]. These codes feature the integration of many CAD
and CAE packages, as well as providing in-built DoE, metamodelling and optimisation methods.
This allows the user, an expert in CAD/CAE, to focus on the product design and requires only a
systems level understanding of the optimisation process. This does mean that there must be close
collaboration between the CAE user and the optimisation software vendor to ensure that the most
efficient method is applied and the state of the art is maintained in the optimisation code.
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2.6.4 Application of Metamodelling

As CAE methods only allow the simulation to be completed for one set of input variables giving a
single solution point, the derivatives of the attribute behaviour cannot be calculated. This prevents
the application of classical gradient-based optimisation techniques [11]. In order to gain the data
needed to predict the system behaviour, the model must be run multiple times. To optimise these
systems, meta-heuristic methods are applied by one of two different ways. Firstly, by directly
coupling the optimisation software to the CAE. With this method, samples will be gathered for
each iteration of the meta-heuristic algorithm applied. Examples of this application approach are
shown in the optimisation of a maniverter [5], truck body weight [68], internal combustion airbox
[69] and engine components [70]. The aforementioned examples show a high reliance on the
optimisation architectures which exploit automation methods. However, the serial natures of such
projects makes them increasingly impractical as the cost of the CAE functions increase[11].

As an alternative, the metamodelling or response surface method can be used. The metamodelling
approach was developed from the DoE methods and can be used in SAO, MDO or MAO. Here an
upfront sample is used to build a low cost model of the system behaviour that can be used to predict
the behaviour of the system throughout the feasible domain [71]. This method has a number of
distinct advantages. Metamodel methods are seen as more efficient as they are non-sequential and
greater degrees of parallelisation can be obtained. The cost of applying the optimisation algorithm is
comparatively lower than when using optimisation based on direct sample approaches. Finally, the
whole design space will be explored, this gives greater opportunity for the designer to investigate
the system behaviour and may reveal different regions of interest than expected [11]. However,
questions have been raised about the use of such methods with increasing dimensionality [18][64].

The relationships within the metamodelling method are shown in Figure 2-5. It can be seen
that the key enablers in HEB problems are still applicable, but other issues about metamodels such
as the sample method and size, model selection and fitting are now important. The optimisation
method must balance each of these competing factors within the constraints of the design system to
deliver an improved product. For example, a constraint on analysis time will limit the dimensionality
and maximum sample size that can be obtained. This could cause the optimisation method to fail.
Thus, the maximum level of information must be obtained for the smallest amount of work possible.
The controlling methods in metamodelling must now be explored to see how this can be achieved.
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Automation

Figure 2-5: Key Controlling Parameters in Meta-Modelling

Examples of Metamodelling

The metamodelling method will be examined using examples from the literature. Tables 2.2 to 2.4
give the details of numerous examples of metamodelling techniques applied to engineering issues.
Studies based on mathematical functions alone have not been included. While these tables are
not an exhaustive list of all applications, it does represent a cross-section of applications within the
field. The table lists the author(s), the type and size of sampling method used plus any additional
samples gained, the metamodelling method used, any given errors and comments on the CAE
used. A table of the abbreviations used is given in table 2.5.
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Table 2.5: Abbreviations used in examples table.
Initials Name

Sampling Methods
CCD Central Composite Design
FF Full Factorial
LH Latin Hypercube
NG Not Given
OLH Optimal or Orthogonal Latin Hypercube
ROA Random Orthogonal Array

Metamodelling Methods
KR Kriging
LR Linear Regression
MARS Multi Adaptive Regression Splines
MLS Moving Least Squares
QR Quadratic Regression
RBF Radial Basis Function
SVR Support Vector Regression
SWR Step Wise Regression

Selection of Meta-Model Type

The principle of metamodelling methods is to build an empirical model of the system. The choice
of metamodel can heavily influence its accuracy [87]. There are two distinct types of metamodel;
parametric (based upon a fixed underlying formula) and non-parametric (sample point fitting techniques)
[64]. In the table of examples there are a number of different methods that have been utilised, the
most common of which are parametric regressional models and non-parametric Kriging, Radial
Basis Functions and Support Vector Regression.

• Regression Methods: With these models, predefined functions such as linear or polynomial
lines and surfaces are fitted to the data. It has been found that such methods are only
suitable when the underlying system behaviour matches the selected function, thus they have
limited applicability to complex system behaviour[64]. As the dimensionality increases, they
also require increasing amounts of samples to resolve all of the constants. Regressional
methods are best used on local metamodels (small parameter ranges) and simple system
responses[14].

• Radial Basis Functions: In a Radial Basis Function (RBF) each sample point has an associated
n-dimensional centred symmetric function and a multiplying weight. The system behaviour is
then the total sum of all of the functions in the design domain. These functions can be used
in conjunction with a non-uniform set and have been shown to model complexity in surfaces
well [12]. There are a number of formulations which can be used, the details of which can be
found in work by Buhmann[88] and the modeFRONTIER technical documentation[89].

• Kriging: Here the system response behaviour is modelled by an underlying response function
and a localised departure. The underlying function captures the bulk behaviour of the data
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while the complex surface comes from the departure equations which are based on a probabilistic
approach [71]. Both parts of the Kriging method have a number of formulations that can be
used, the details of which can be found in the modeFRONTIER technical documentation[90].
The Kriging models have also been found to be applicable to complex and noisy response
behaviours.

• Support Vector Regression: This method is a relatively new metamodel and is based on the
machine learning technique “support vector machines” [84]. This method fits numerous n-
dimensional hyperplanes to the data which are then mapped in the design space. The function
is then approximated as the sum of the various vectors and weighted map functions. There
are a number of examples in the literature to suggest this method may out-perform the more
common Kriging and Radial Basis Functions for predictive power on complex surfaces[11].
Details of this improvement, including examples of formulation and application, can be found
in work by Clarke et al [73] and Wang, Li and Li[84].

These are just some of the metamodel methods that have been applied to engineering optimisation
problems. There are also examples of Gaussian Processes [91], Multi Adaptive Regression Splines
(MARS) [92] and neural networks [11][85]. There have also been efforts to create ensemble
models with multiple types of metamodel on a weighted sum function [93]. Many of the commercial
optimisation software codes feature metamodelling modules with various formulations of common
models [40].

The large number of methods presents the user with a difficult choice when selecting the
metamodel, while non-parametric methods are considered an improvement over parametric regression
models, there is no consensus over the best application. There are examples of each being
preferable (Kriging [83], RBF [81][74][12] & SVR [11][73][84]). This would seem to suggest that the
selection of the metamodel must be made on a case by case basis, balancing the cost undertaken
to produce the model with its accuracy. When selecting a metamodelling method, the user should
try all approaches with the same sample and error estimation methods to find the model which is
most appropriate.

Sampling Methods

Traditional methods of experimental sampling are based on Design of Experiment (DoE) methods.
These can be combined with statistical techniques, such as ANOVA, to understand the system
behaviour response to the design variables and any interactions. Traditional DoEs use a full
factorial approach where every combination of variable and level is examined. As dimensionality
and complexity increase, requiring more intervals, the size of the required sample set increases
dramatically. The optimisation of wing design of a High-Speed Civil Transport aircraft involved the
examination of 10 design variables, each with three intervals, leading to a total of 310 (59049)
experiments[66]. The runtime and resource requirements of some CAE would prohibit this many
experiments. Thus, there is a need for an alternative approach which efficiently searches the design
space.
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Fractional DoEs are a structured method that allow for efficient use of simulation points[48]. This
is achieved by reducing the number of sampling points. In the design of a rear wing on a Formula
Student car there were 7 variables at 3 levels equating to 2187 samples. With a runtime of 12 to
15 hours per simulation, a full factorial approach could not be achieved. Here, the fractional DoE
Taguchi orthogonal array method allowed the optimisation to be based on just 18 samples. When
using such methods for CAE based optimisation problems there are two issues; firstly repeated
sampling and secondly capturing of complexity.

CAE, unlike physical experiments, is not subject to repeat experiment variability. The same
input conditions will always give the same results, meaning repeated experiments are a waste of
resources. As well as repeat points, traditional DoEs tend to place samples on the boundary of
regions [11]. This can be an issue as the complexity of behaviour within the design regions is not
resolved. Sacks et al [94] stated that ‘space filling’ sampling approaches were more appropriate to
computer experiments. This is supported by Simpson et al [95] and Jin, Chen and Simpson[12].
This approach is termed Design and Analysis of Computer Experiments (DACE)[94]. There are
many methods suggested for ‘space filling’ techniques. In a review of sampling techniques, Abdallah
et al found that latin hypercube methods were an efficient and accurate method of sampling [96].
This method of sampling does not repeat any previous input states, allowing CAE resources to be
maximised [65]. The precedence for use of the latin hypercube method is demonstrated in tables
2.2 to 2.4. There are many different formulations of latin hypercube that have been demonstrated,
where orthogonal and uniform designs are commonly cited. Ford provide an optimal set of latin
hypercubes for sampling the design space[97]. This set of latin hypercube designs was based on
methods proposed by Ye [98]. Here the design space is optimally filled by maximising the minimum
distance between samples.

Sample Size

The number of sample points is also a key consideration in the metamodelling method. Too few
samples will not capture the complexity of the system behaviour sufficiently, but too many make
the method less efficient to operate. As the complexity of the black box function is unknown there
is no direct formula to calculate how many samples are required. There have been a number
of suggestions for approximate sample sizes based upon the number of input variables (N). The
guidance from a number of literature sources is summarised in table 2.6. Jin, Chen and Simpson
[12] break the sample sizes into three distinct regions defined by the 3 equations given in table 2.6.
Kaufmann suggests a size 1.5*N to 4.5*N samples [13], while Yang at Ford used 3-9*N [50][85]. The
work of Wang and Beeson[14] at GE Aviation suggested a sample size of 10*N. A larger set based
on the number of unknown variables in quadratic regression models is suggested by Jin, Chen and
Simpson[12]. Conversely, in the optimal latin hypercube set, provided by Ford, a minimum sampling
approach is taken[97], the governing equation is given in table 2.6.

The sample sizes from the examples presented in tables 2.2 to 2.4 is plotted against the number
of input parameters in Figure 2-6, along with the different regimes indicated by Jin, Chen and
Simpson[12]. While Figure 2-6 shows there is some variance between the number of variables and

52



the size of sample used, most examples fall within the scarce to small regimes used by Jin, Chen
and Simpson[12]. However, there are examples where the sampling size exceeds this guidance,
this will be to increase the accuracy of the metamodel. As the behaviour within the design space is
unknown, these guides should be used as a starting point when defining MAO projects.

The problem of sample size presents a dilemma when using MAO as a Systems Engineering
tool within a design process. The requirement for accuracy pushes the user towards increased
sampling sizes. However, the time and resource constraints mean that smaller samples are preferable
in an industrial setting. It can then be seen that the eventual number of samples used will be a
trade-off within this conflict.

Table 2.6: Guidance for regions of sample sizes (where N is the number of variables)
Region Sample Size Author(s)

1.5 ·N Kaufmann [13]
Scarce 3 ·N Jin, Chen & Simpson[12], Yang[50][85]

4.5 ·N Kaufmann [13]
9 ·N Yang[50][85]

Small 10 ·N Jin, Chen & Simpson[12], Wang & Beeson[14]
Large 3·(N+1)·(N+2)

2 Jin, Chen & Simpson[12]

Minimum 2
N+2

2 + 1 Gromping[97]
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Figure 2-6: Examples of sample sizes in literature and regions, as defined by Jin, Chen and
Simpson [12]
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Error Estimation

Parametric models use regression methods to fit the metamodel within the region sample data.
However, the fitted model does not necessarily pass through the sampled points. This allows the
error to be estimated at every sample point. Non-parametric metamodels are interpolative, i.e. the
model goes through all the data samples. This means the estimation of error cannot be judged
as easily. There are two approaches that are used to assess error of non-parametric metamodels;
additional sample points and leave one out methods [11][15].

Additional samples require that the CAE simulations are completed on a second independent
sample set. This allows the actual results to be compared to the values predicted by the metamodel.
Samples in isolation can only indicate the error in that vicinity; for an estimation of the global error
numerous samples must be taken. However, the examples presented in tables 2.2 to 2.4 give no
clear guidance on the size or distribution of such samples. However, where multiple points are used
there are common methods of measuring the global error such as the R2 and Root Mean Squared
Error (RMSE) found using equations 2.1 and 2.2 respectively. Here a good fit is indicated by an R2

value approaching 1 and a reducing RMSE (this has the same value as the output but can also be
normalised to give a percentage).

R2 = 1−

m∑
i=1

(yi − ŷi)2

m∑
i=1

(yi − ȳ)2
(2.1)

RMSE =

√√√√ m∑
i=1

(yi − ŷi)2

m
(2.2)

Where yi is the observed value, ŷi is the predicted value from the metamodel and ȳ is the mean of
all the observed values.

The gathering of additional points increases the cost of the optimisation process, thus there
is an incentive to use methods which do not require additional samples. For this, ‘leave one out’
methods have been suggested [15]. If there are a total of x samples taken in the sampling stage,
then a total of x metamodels can be generated based on x-1 points. The error in predicting the
remaining point can then be calculated. This process is shown in Figure 2-7. Graph a in Figure 2-7
shows three points on an arbitrary (x, y) coordinate system. x is the input value and y the output.
A quadratic curve (blue) has been fitted to these three to create a relational behaviour for x and y.
The process of calculating the leave one out error is then shown in graphs b-d in Figure 2-7. One
of the points is removed from the set and a line fitted to the remaining points (red). The error can
then be estimated by extrapolating or interpolating the behaviour of the red line to the known input
value and the difference calculated (green line). Once this has been completed for every point in
the sample, the global error can be estimated using the R2 and RMSE methods. The formulations
of the Kriging and Radial Basis Functions metamodels allow this to be calculated at only a small
additional amount of computational expense [89]. However, the use of such methods has been
questioned as the error is not based upon the final surface created on the whole sample set. Some
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consider it to be a measure of sensitivity to the sample points and could potentially be misleading
[11].

Figure 2-7: The ‘leave one out’ error estimation process

Understanding the error in a metamodel is key in selecting which metamodelling method is
used and for gaining confidence that the metamodel is correct. The assessment of metamodel
error presents another dilemma when using MAO as a Systems Engineering tool within a design
process. The use of additional samples to estimate error will increase the cost of using the process,
however there are a number of unknowns. Firstly, the literature lacks guidance for the number and
distribution for the samples used to estimate error. Secondly, it is unclear if the low cost ‘leave one
out’ error method is an accurate prediction of the metamodel error.

Resampling Methods

Where the fitting of the metamodel does prove poor, additional samples are required. Additional
points should help to resolve the localised complexities within the metamodel behaviour, allowing
for increased predictive performance. Two strategies for the inclusion of additional samples are an
optimal guided process and a global sequential method [64].

In an optimal guided approach an initial sample and metamodel generation is conducted, the
optimal point is found, then validated. If the metamodel prediction is poor then the design space is
reduced and further local samples are taken to improve local performance. This approach is not
without risk, as if the initial metamodel is poor then the optimal point may just be an error in the
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surface and drive the process away from the true optimal point[64].
To overcome this risk, the additional sample set should be made to improve the predictive

power over the whole design space. These samples would have to be guided to ensure that the
additional sample points are placed in regions of error or complexity. The literature shows a number
of suggestions as to how this can be achieved and it is the focus of much research in the field[84]
[99][100]. There are also examples of implementation of intelligent sampling methods in commercial
optimisation software such as the Lipschitz [101] and Multivariate Adaptive Crossvalidating Kriging
(MACK)[102] methods in modeFRONTIER. With the Lipschitz method the complexity is measured
by gradients between samples while the MACK sampler examines error on a Kriging metamodel
fitted to a subset of the whole sample. The ability of intelligent sample methods has the potential
to reduce the error in the metamodel more quickly than simply adding additional points based
on a secondary latin hypercube or other applicable method. This is due to the resolution of
complexity [99]. When used in conjunction with a sensible initial sample, there is a large potential
for computational efficiency savings[100].

2.6.5 Multi-physics CAE Methods

This section has examined the use of CAE methods to model the system and provide predictions
of attributes. In order to model multi-disciplinary systems and attributes a new approach is needed
within CAE[17]. Traditionally, CAE methods have been split into specific domains, each with a
distinctive strategy for solving the physics of that domain[103]. For example, fluids modelled by CFD
typically use a finite volume solver, whereas solid mechanic simulations tend to be based on finite
elements. However, the multi-domain analyses that are part of MDO present a new challenge[18].
MDO methods specialise in optimisation projects that cross the traditional analysis domains and
within this the need to simulate domain interaction was identified. Here, domains would need to
be ‘coupled’ to allow the exchange of data at the boundary interface. Such analyses are termed
multi-physics analyses and are of interest to CAE users as both a stand alone CAE tool and an
enabler in optimisation projects. Examples of multi-physics problems are[103]:

1. Fluid Structure Interaction

2. Thermo-Mechanical

3. Thermo-Fluid

4. Piezo-Electric

These analyses require the exchange of data at the domain interface to set the boundary
conditions for the neighbouring domain. For this, the various domain analyses must be coupled
together[17]. The degree of coupling is dependent on the strength of the interactions between the
domains[103]. Low level, loose or one-way coupling can be used when one domain significantly
affects another but is itself unaffected. A fully coupled solution is required when all domains show
significant interaction. The level of coupling has a large impact on the cost and complexity of the
multi-physics method.
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The desire for such methods has led CAE software vendors to include multi-physics analysis
methods within their codes. There are two distinct approaches. The first is to use domain specific
codes that communicate with each other via external pathways. The second is to use a single
multi-physics code where all domains are solved in a single model and the coupling is handled
internally[103]. The use of multiple domain specific codes is seen as more expensive as separate
domain models and CAE engineers are required, as well as support for communication during the
simulation. However, in a single model approach, accuracy sacrifices may be made as a non-
specific software code is used.

The additional costs and benefits of such methods require further investigation if they are to be
used as an enabler in MAO/MDO projects. In particular, the attribute prediction accuracy benefits
and costs should be established for the various levels of coupling, as well as single versus multi-
code approaches.

2.7 Examples of Optimisation in Literature

The previous sections have highlighted many of the complexities that arise when using optimisation
within real engineering design problems. However, the cost of applying these methods must be
traded off against the benefits that such methods can bring.

The design of vehicle engines has many instances of multiple and conflicting objectives. In the
case of port development of SI Engines, both economy and the performance were optimised[104].
Combustion stability is influenced by the tumble number which needed to be optimised for maximum
economy. The flow coefficient is used to measure the performance of the engine and this also
needed to be maximised. However, there is a trade-off as increased tumble number led to degradation
of the flow coefficient. The application of multi-objective genetic algorithms allowed the system to
converge on a solution which simultaneously optimised both the tumble number and flow coefficient.
This approach yielded information on the effects of the design parameters on the trends in the
tumble number and flow coefficient. This was then used to optimise the intake port design which
was then applied to a test engine and the improvements verified.

The design and multi-objective optimisation of the Maniverter[5] led to the torque performance
index, 1st natural frequency and the catalyst inlet temperature all being improved upon while
the cost and weight of the system were minimised when compared to a baseline solution. The
Figures are shown in table-2.7. The approach used an integrated approach with parameterised
CAD models. The 1st natural frequency was assessed using an MSC.Patran model with 8 mm
4 noded tetra elements and an AVL boost model used to predict the torque performance index
and catalyst inlet temperature. This model is a 1D fluid simulation code, flow through the catalyst
was not assessed due to the time constraints of the project. The cost and weights were obtained
from estimates based on the CAD. While the results may be questioned due to the lack of high
fidelity CAE models and some accuracy sacrifices made to enable fast optimisation, the process
has shown that it can be used to guide the design. The process also showed significant time and
cost advantages. The total development time was reduced from sixty plus days to fourteen (using
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Table 2.7: Maniverter Design Improvements enabled by use of MDO[5] page 164.
Performance Attribute Optimisation Baseline Selected Difference

Target Solution
Torque Performance Index ⇑ 129.70 152.96 17.94%
Cost (C) ⇓ 36.83 18.56 -18.27
1st Natural Frequency (Hz) ⇑ 340.71 415.26 74.55
Catalyst Inlet Temperature (◦C) ⇑ 1178.68 1204.38 25.70
Mass (g) ⇓ 5945.63 5556.17 -389.46

low-fidelity methods) and development costs were lower. It was also discussed that high fidelity
CAE (CFD flow over catalyst) could be included but would require the use of HPC. With increased
computing power it was predicted that the design optimisation could take as little as seven days.

High performance computing has been used to optimise crash structures of automotive bodies[50].
An MDO procedure that accounted for full and offset frontal crash simulations, a roof crush model,
human occupant modelling and NVH analyses, yielded approximate weight savings of 15kg in the
crash structure components. This was achieved while still meeting all safety requirements. The
optimisation was completed using HPC at NASA and took a total of three days to complete.

The examples shown in this section demonstrate that a CAE based Multi-Attribute approach to
design optimisation could not only provide improved design and trade-off strategies, but also reduce
the time it takes to develop system solutions.

2.8 Conclusion

In this review, Systems Engineering was shown to be an interdisciplinary approach to the design
of systems. The Systems Engineering approach relies on tools and processes that ensure the
product is designed to meet customer requirements. Optimisation is a key part of this process and
enables improved products to be designed. However, the optimisation of systems is complicated by
multiple and conflicting objectives, multiple domain considerations and robustness. MAO methods
were suggested as an approach to system optimisation that could be utilised to overcome these
complexities. A key issue identified with these methods is how visualisation and decision analysis
methods can be applied to the data obtained from the optimisation process to understand the
system and enable attribute trade-offs. Such methods are important for enabling design decisions
to be made and should be explored when creating a MAO systems engineering tool.

The systems optimisation methods were shown to be based on systems modelling methods
which allow the system attributes to be predicted. For this, CAE methods for modelling physical
components are used within the engineering industry as they enable early problem solving and are
more cost-effective than physical testing methods. A review of CAE based optimisation revealed two
approaches that can be used, firstly direct application of the optimisation algorithm and secondly,
using the metamodelling approach.

Metamodelling methods are an advancement of the design of experiment and statistical methods.
Direct approaches were shown to be enabled by integration architectures that allowed the automation
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of the sampling process. However, the metamodelling approach provides a more efficient use of
parallelisation and the sampling of the whole design space within this approach is seen as an
improvement over direct application methods. However, as there is still a high cost associated with
metamodelling, methods which enable improved models at reduced costs are important. Within
this area, there are a number of issues with setting the sample size and estimating the error in the
metamodel which affect the cost. These need to be better understood in order to use MAO as a
systems engineering tool.

For CAE based experiments, the literature agreed that sample distributions that filled the design
space are the most appropriate, an example of which is the optimal latin-hypercube used by
Ford[97] based on the work of Ye[98]. However, the guidance over sample size was less clear.
Wang and Beeson[14] working at GE Aviation suggested a sample size of ten times the number
of inputs. A larger sample size, based upon methods required to solve the unknowns for quadratic
regression models, was given by Jin, Chen and Simpson [12]. However, smaller sample sizes
are suggested by the minimum latin hypercube approach used in Ford[97] and in the scarce
sets suggested by Kaufman[13], Wang & Beeson[14] and from Jin, Chen and Simpson[12]. This
presents a major dilemma when using metamodelling within a systems optimisation tool. As the
sample size has a large influence on the duration and scale of an optimisation project and the
accuracy of the metamodel, there is a conflict between completing the project within the time
constraints of the design system and a robust optimisation.

The selection of the type of metamodel used is based on an estimation of the fitting error.
The error estimator also gives confidence that the metamodel is sufficiently accurate for use in
an optimisation tool. The two approaches for error estimation of non-parametric metamodels are
using additional sample points and using ‘leave one out’ methods. This presents another dilemma
in using MAO as a systems optimisation tool in a constrained design environment. The use of
additional sample points represents an increase in cost of the process but there are accuracy and
interpretation issues associated with the low cost of ‘leave one out’ method.

The MAO approach is built on CAE methods which have been traditionally split into domain
specific applications. However, in instances where an attribute requires a solution covering multiple
domains, a new CAE approach is required. Here a multi-physics approach could be used to
increase the accuracy of the simulation, but this must be balanced against the additional cost of
such an approach. This cost benefit analysis requires further investigation.
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Chapter 3

Rationale and Criteria for MAO

3.1 Introduction

The aim of this chapter is to examine the role of optimisation within an automotive design environment
and allow technical research projects to be defined. This aim will be achieved by analysing the
interaction of the optimisation method with other systems within the design environment, using
a ‘System of Systems’ Engineering viewpoint analysis. While the literature review examined the
methods of systems optimisation based on CAE methods, this chapter further explores optimisation
within the context of the Jaguar Land Rover product development system.

The chapter begins with a discussion of the ‘System of Systems’ engineering viewpoint, followed
by an examination of the current Jaguar Land Rover optimisation method and the surrounding
systems in the design environment. This is then extended to examine the potential effects of
introducing a multi-attribute method into the CAE analysis process from a system of systems
viewpoint. The previous chapter reviewed the use of metamodelling based MAO and raised specific
issues about the implementation of the methods with regards to sampling, error estimation and
the CAE used. This analysis provides further insight into the operation of MAO methods in a
automotive design environment. The System of Systems viewpoint helps to identify the key roles
and enablers within the design process and raises key questions which need to be addressed about
the application of MAO as a Systems Engineering tool. The research areas and key questions
identified are then focused in to two sub-projects that focus on the application of MAO to an
automotive airbox and the multi-physics analysis of a fuel tank. The key questions are then prioritised,
then research projects and structures for multi-attribute and multi-physics methods are outlined.

Much of this chapter has been extracted from a paper presented at the 2010 IEEE International
Conference on System of Systems Engineering, Loughborough University, 22nd - 24th June [105].
Some sections are extended to include the multi-physics and other aspects of the work that followed
on from this paper.
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3.2 System of Systems Engineering

Systems Engineering captures the complexity of design problems by viewing the properties, capabilities
and behaviours in discrete systems and sub systems. However, a change in viewpoint could allow
the observer to see that these systems do not exist in isolation, but as part of many interconnected
systems. The term ‘System of Systems’ can be applied to this situation. This term is used widely
within Systems Engineering. Although no hard and fast definition exists[106], it can be used to
describe large-scale systems whose components are systems in their own right. A ‘System of
Systems’ approach should be taken in order to gain a holistic view of the system and operational
environment. The System of Systems Engineering approach can be considered a development of
traditional Systems Engineering. The approach is a useful tool when considering the integration
of complex systems in a dynamic environment and allows new challenges to be addressed [32].
Eisner et al provides the following definition of ‘System of Systems’ (cited from [107]):

‘A set of independently acquired systems, each under a nominal Systems Engineering
process; these systems are interdependent and form in their combined operation a
multi-functional solution to an overall coherent mission. The optimisation of each system
does not guarantee the optimisation of the overall system of systems.’(pg 486)

A system of systems approach calls for the dynamic nature of system-to-system interaction
as well as for each individual system to be characterised. The characteristics of a system of
systems are autonomy, belonging, connectivity, diversity and emergence [33]. The autonomy
characteristic can be used to differentiate between individual systems and a system of systems.
Decisions in an individual system can only be taken at the highest system level, not at the sub-
system or component level. Using this definition of decision making, the boundaries of systems
in a system of systems can be drawn where each individual system is free to make decisions
in order to achieve functionality. This decision making allows systems to belong to a system of
systems and add functionality where there is sufficient benefit. This changes how systems are
connected. In Systems Engineering, much of this communication is defined at the design stage and
hidden in encapsulated systems. However, a system of systems demands a dynamic approach to
connectivity. The dynamic nature of autonomy, connectivity and belonging in a system of systems
increases its diversity and allows the system to respond to new and unexpected changes in the
operational environment. In Systems Engineering, the emergent behaviours of a system are either
designed in when beneficial or removed when detrimental. In a system of systems approach,
any detrimental emergent behaviour can be eliminated by adaptation (autonomous changes of
belonging and connectivity) and any beneficial behaviour can be kept.

3.3 Feasibility of Using MAO as a Systems Engineering Tool

While it could be argued that a vehicle constitutes a System of Systems, this is not the focus of this
chapter, instead a System of Systems viewpoint is taken of the automotive design environment;
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Figure 3-1: Current optimisation methods

treating the application of a MAO tool as the system that is to be implemented by the CAE team
within this environment. The first part of this section focuses on current optimisation methods and
the environment in which these are completed. To gather the requirements for the assessment of
feasibility of using MAO methods, an initial Systems Engineering approach is adopted. This is then
expanded to a System of Systems Engineering approach in order to gain a greater understanding
of the issues involved. The key questions that could be addressed are raised, considering the
System of Systems Engineering characteristics.

3.3.1 Current Optimisation Methods in Jaguar Land Rover

To design a high value vehicle, an automotive manufacturer must first define what is of value to the
customer. Targets for attributes such as price, fuel economy and maximum performance are set
early in the development of new model programs. Harder to measure attributes, such as aesthetics
and refinement, are subjective. In these cases, the targets will be set by strategically placing the
vehicle programs according to the company design, brand philosophy and image. The buyer of a
vehicle may be the direct customer, but there are also other sources of requirements and targets.
Vehicles must conform to various industry and legal standards governing their usage. Once all of
these targets, requirements and constraints are finalised, they are decomposed and cascaded to
the system, sub-system and component levels. Solutions can then be created to meet the design
requirements.

The designs must be analysed to compare competing solutions against each other and against
the requirements. Product development attributes such as performance, NVH (Noise, Vibration
and Harshness) and durability are analysed using multiple CAE techniques, shown in Figure 3-1.
To create a product with the highest value to the customer, the system must then be optimised.
Due to the decomposition of disciplines within CAE, the assessment of each attribute is carried
out in isolation in a sequential optimisation process. When a system is optimised for one attribute,
the performance of other attributes may suffer. Engineering judgement and expertise are used
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Figure 3-2: Relationships between major design systems

subjectively to trade-off attributes and optimise the whole system. This approach requires several
iterations of design and optimisation cycles to allow for attribute trade-offs, conflict resolution and
re-assessment of the system.

The serial optimisation method does include methods of single attribute optimisation within
the Jaguar Land Rover powertrain CAE process, this is part of the ‘DCOV’ approach to design
problems. In a single attribute process the system behaviour is assessed using the Ford provided
optimal latin hypercube method with the minimum number of samples[97]. The data from these
CAE points is analysed by the application of metamodels (depending on accuracy) or statistical
methods such as ANOVA[26]. These methods provide the CAE user and designer with clear
indications on the direction the design should be progressed in.

3.3.2 A System of Systems Viewpoint of The Design Environment

In a System of Systems Engineering approach, the surrounding systems would also be included
in the analysis. This will help the engineer to envisage the live design environment in which the
process will operate. The overall total vehicle design system, shown in Figure 3-1, has been re-
arranged to show the interactions between the major systems for the optimisation of a product in
Figure 3-2 . Considering the optimisation method as a system within the live design environment, it
can be seen that it must operate on the design of the physical system within the constraints of the
other systems. For clarity, in this analysis, the word ‘product’ is used to describe the artefact which
is the subject of the design and optimisation process. This product could be a single component,
an assembly, sub-system or even a system of a vehicle.

The Product Strategy Team

The product strategy team is the interface that links products to customer demand. It is here that the
top level requirements for a vehicle will be formulated before these are decomposed and cascaded
within the total vehicle design method. It is also at this level that assumptions of commonality
(across different vehicle lines) and carry over components are created. This represents much
of the early advanced design work which precedes the detailed design operations of the system
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design teams.

The Vehicle Design Process

Automotive design processes use a Systems Engineering approach to total vehicle design; an
example is the Ford Product Development System [23]. This approach takes the requirements
of the whole vehicle (customer, legal and corporate) and decomposes them down into systems
and sub-systems. The systems approach manages the resources, targets, assumptions, quality,
design and timing of new vehicle programs. The system design and CAE teams operate within
this framework, with work milestones and targets set by the required product progression targets.
The total vehicle design system can be considered the central authority in guiding the efforts of the
system design and CAE teams.

The System Design Team

Under the total vehicle design process, there are multiple autonomous system design teams each
designing a single on-vehicle system (product). It is the job of the system design teams to translate
the system requirements into detailed physical products using methods such as the design for 6-σ
and ‘DCOV’[25]. These methods require the behaviour of the system to be predicted in order that
it can be optimised and verified against its requirements. In order to facilitate early fault detection
without expensive prototyping loops, CAE methodologies are applied to the system. The system
design teams must use the data from CAE and other verification methods to create the best design
possible. This is complicated due to the interaction with other vehicle systems, where there is
competition for space and attribute weightings (where one or more vehicle systems contribute to a
single customer attribute, relative targets must be set).

The CAE Team

The CAE team supports the total vehicle design system by using various modelling approaches
to predict the behaviour of the vehicle systems or components from multiple system design teams.
The CAE team uses specialised methodologies that allow particular physical domains to be analysed,
e.g. finite element methods for structure and solids and computational fluid dynamics for fluids.
These methodologies require various resources such as specialist personnel, computer hardware
and software.

The CAE method used must be able to provide data to enable design behaviour prediction.
However, CAE methods with increased fidelity may be required to model this system behaviour
accurately. This necessitates newer, more advanced CAE techniques, such as multi-physics approaches.
To use such methods a number of issues must be addressed, these include evaluation of the
maturity, stability and validity of the method. Such methods may also necessitate multi-discipline
approaches with one or more CAE analysts included in the process. The use of such methods must
balance the need for the multi-physics evaluation against these issues and the available resources.
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The Optimisation Method

The optimisation of the product is aimed at delivering the best value product. The selection of
an optimisation method depends greatly on the complexity of the product that is being designed
and the attributes which are being considered. Although the optimisation of a single component
may involve multiple analyses, the optimisation is simpler than one where physical domains and
system boundaries are crossed. This is where the MDO formulations have proved successful [52].
Extensions of MDO architectures, by modifications in the degree of control at each hierarchical
level, have allowed the optimisation of products that are systems of systems in their own right
[108]. This demonstrates a relationship in the requirements for an optimisation method and the
product to which it is applied. Any optimisation method must balance the complexity of the method
with the capability and constraints of the CAE system and the need for the optimisation method.

The Product

There are many systems on a vehicle which must be integrated. Each will be optimised to meet
the specific requirements of each individual system but this may not directly result in an optimised
vehicle. For example, the optimisation of a vehicle chassis for weight may cause a deterioration
of performance in terms of crashworthiness and NVH [50]. Thus, the boundaries to other vehicle
systems may change as the design progresses. This increases the complexity of any optimisation
as both the inputs and outputs could be altered.

Support Systems

The completion of the optimisation method will require a number of supporting systems to be in
place. The chief among these is the training of the CAE analysts, the resources available and the
architectures for information and communication.

The MAO method may require the CAE analyst to use new tools and processes that are not
within their current skill set. This is especially evident in cases where the analysis crosses over
between specific CAE domains. In this instance the CAE analyst will require training. This will
ensure new tools and processes can be used effectively.

The CAE analyses and the optimisation methods require the utilization of hardware, software
and engineering time. The requirement of each of these is dependant on the complexity of the
CAE analyses and optimisation methods, the size of the product design space and the levels of
automation that can be introduced. Thus, there is not a standard requirement for resources and it
will vary by application. This will increase the difficulty of planning for optimisation applications.

The CAE analyst can also be considered as a resource within the CAE Team. In order to
complete the analysis the person with the correct skill set must be available. Where CAE domain
boundaries are crossed, multiple CAE analysts may be required to cover all the necessary analyses
within the MAO application.

There are a number of supporting architectures that need to be in place in order to use MAO
methods. There is the computing and I.T. infrastructure that is used to deliver the resources to
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Figure 3-3: A possible MAO application

the CAE analyst and also the structure that supports the wider functionality of the CAE Team.
This wider support structure must facilitate the bureaucracy of the MAO method ensuring that the
requirements and constraints are understood. There is also a need for the collaborative aspects of
the MAO methods to be supported.

Another valuable support structure is the software vendors. These are experts in the operation
of the various CAE and optimisation codes that they produce. Their expertise on the set up and
coding of the software can help to resolve technical issues. However, there is also the opportunity
for close collaboration to develop aspects of the code to suit the specific needs of Jaguar Land
Rover, or to inform and train when new technologies become available.

Human-to-human interaction and collaboration is key in the communication of requirements,
results and conflicts. While there are many methods to support communication using computers
(Computer Supported Collaborative Work (CSCW)) [45], the design process may include many
informal forms (telephone, face to face etc). The information contained within such communication
may be vital to an optimisation process. When requirements are cascaded from the system design
team, it may be in a formal document that lists the hard limits of various attributes. However,
communication that is more informal may illicit designer preference for attributes that would guide
the optimisation process and help with conflict resolution. Also, the communication of results from
the process is of high importance. In many cases, the optimum design point may not represent the
best design, especially in areas of trade-off or robustness. In this instance, details of the system
behaviour over the whole design range would be of greater interest.

3.3.3 A Systems Engineering Approach to a MAO Tool

The application of a MAO tool would introduce a new stage to the design cycle, shown in Figure 3-3.
The optimiser would take input from the CAE performed on a vehicle system, then output a single
optimised design. If the optimisation method is isolated from the surrounding system and treated
as a ‘black box’ CAE tool, then the main requirements for a feasible system become the need to
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optimise the system with respect to all design attributes and to operate within the time constraints
of the design loop.

Meeting these requirements would be controlled by the CAE used, where a trade-off would
be required between accuracy of predicted attribute behaviour and computational time. The use
of the stable boundaries in this analysis has limited the scope and impact that the application of
MAO may have. The assumption of stable boundaries has simplified the interaction between the
system design and CAE team so that only rigid requirements and a single optimised solution are
communicated. This approach also neglects to assess the effects of reaching an optimal design
earlier in the design process. Both of these could affect the fundamental operation of the MAO
process and the design system as a whole. The Systems Engineering approach is negating the
desired benefits of the MAO approach, thus it is clear that the dynamic boundaries between systems
within the design environment need to be considered.

3.3.4 A System of Systems Engineering Approach to a MAO Tool

One of the perceived benefits of MAO is conflict resolution between system attributes. Where
a MAO process cannot resolve conflicts then there has to be some negotiation of the system
requirements. This could be at the system level or even up to the product strategy level. This could
change the assumptions made for common and carry over parts affecting the cost of the product.
The MAO process must consider how such negotiations are initiated, directed and justified.

The tool could also affect the total design system as the early optimisation of a product will
change the design process downstream. This could affect the timing of various design progression
targets and the steps required to integrate all the systems within a vehicle. Possible questions
regarding the total design system are:

1. How are the post-optimisation design iterations affected by the introduction of a MAO tool?

2. Does the system require greater or fewer design iterations?

3. Does the method require longer or shorter design iterations?

If the goal of the design process is to deliver a high value product while reducing cost and
time of design, then the applicability of a MAO tool to every system must be considered. The
resources such a method may use within the System Design and CAE teams may inhibit the
analysis application to every product. Such a method may only be cost effective in areas where
there are high amounts of conflict between systems or attributes. This raises a number of questions:

1. If the MAO tool is to be considered autonomous, how and when is it decided that the MAO
tool should be adopted for a given system?

2. Is this decided by the CAE team alone or by input from both the CAE and system design
teams?

3. Does every vehicle system and sub-system require the use of the MAO tool?
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4. At what level should the MAO tool be applied?

5. How would process cost trade-off be assessed to find where the MAO tool would be most
effective?

6. How would a MAO tool use its perceived effectiveness to belong to the design process?

7. How are the results of a MAO tool integrated with other analyses and optimisations provided
by other methods?

8. Where are the various analyses integrated and how are they connected?

The discussion of the optimisation method showed a direct link between the product and the
analysis method used to capture its behaviour. Increasing the level of the product from component
level to system or system of systems level will require a different approach. Thus, the questions
to be asked are, at what design level should the MAO approach be used and what level of detail
would this application be able to resolve?

The introduction of a new tool to the work of the CAE team will affect its operation. The analysis
of a system with more than one attribute will cross traditional CAE domains. This may require the
use of a multi-physics CAE method. Questions addressing team composition and CAE working
practices are:

1. Is it beneficial to have experts in domain or system when carrying out an analysis?

2. How would CAE operations change with MAO resource usage?

3. What additional resources are required for MAO?

4. What additional training is required?

5. The new process may also affect the communication and interaction between the system
design and CAE teams. How must this be facilitated in the architecture of the support system?

6. What is the best method to input requirements to the MAO tool?

7. What is the most effective use of MAO results?

8. What system architectures need to be in place to facilitate the MAO input and output requirements?

When using multi-physics or other advanced CAE methods within the optimisation, consideration
must be given to the following issues:

1. Has the CAE method been validated to ensure that the analysis can predict the system
behaviour?

2. Is the new method stable enough to be used for the type and range of boundary conditions
within the analysis application?

3. What additional support is required for the analysis method?
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Finally, the emergent behaviour poses an unknown risk to the effectiveness of the total vehicle
design system. The system of Systems Engineering approach does not attempt to control emergent
behaviour as does the Systems Engineering approach. Instead, adaptation from other constituent
systems is used to quell any undesirable effects. The risk for the total vehicle design system is that
the initial introduction of a MAO tool may actually increase the time and cost required to develop
a product, until such time as the other systems adapt. This risk may be unacceptable and prevent
the inclusion of the MAO tool.

3.4 Requirements for projects

The System of Systems Engineering method has fundamentally changed how the feasibility of
a MAO tool would be assessed. Using the Systems Engineering approach, the feasibility would
be established by conformance to the requirements for such a tool. The System of Systems
Engineering approach means that feasibility will be assessed on the dynamic emergent behaviour
of the design system. The tool would be introduced to the design system and both improvements
and deteriorations in the system performance must be measured. Then a cost benefit analysis
would need to be established. From here, the requirements for applicability of such methods could
then be defined.

However, this approach risks the deterioration in the performance of the product design system.
A preliminary pilot tool that runs alongside but is not integrated within the design process should
be used to investigate MAO methods that mitigate this risk. For this, strategies to overcoming the
issues of design trade-off, sample size, error estimation and CAE modelling raised in the literature
review should be further investigated. However, as the pilot project is ‘offline’ the interaction
questions raised cannot be addressed. Instead, the pilot would be used to understand the MAO
tool. Here, perceived detrimental effects could be removed or counteracted. This project may not
be able to address all the possible effects, as some emergent behaviour may only be evident when
the MAO tool is implemented or scaled up for high usage. Thus, any feasibility assessment should
address the method over these timescales.

The feasibility study for a MAO tool in the automotive environment may require a number of
projects in order to fully understand its effect on enabling an effective design. Firstly, the MAO tool
needs to be understood and piloted. From this some implications on the affects of such a tool may
be inferred. Secondly, a project examining the long term implications must be performed during the
introduction and scaling up use of the tool.

The use of new CAE techniques within a MAO tool, such as the multi-physics fluid structure
interaction available in Jaguar Land Rover standard CAE codes, represents a substantial risk. The
methods are as yet unvalidated and the application resource requirements, stability and run-time is
unknown. Application within a MAO tool may lead to failure due to the CAE being unable to return
the system behaviours as required. To mitigate these risks the methods should be first examined
as a stand alone tool and the potential impact on MAO inferred.
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3.5 Research Methodology

The project requirements call for separate projects to assess the use of multi-attribute and multi-
physics methods within the Jaguar Land Rover CAE environment. The methods need to be better
understood so risk mitigation factors can be applied to ‘online’ methods. This requires that the
issues of MAO and multi-physics CAE raised in the literature review are addressed. For this,
projects based on application of the CAE simulation methods to known powertrain problems will
be used.

Firstly, the assessment of multi-attribute methods will be carried out by the application of MAO
to a known powertrain trade-off problem, allowing the investigation of trade-off methods, sample
size and error estimation dilemmas. Secondly, the maturity of new multi-physics capabilities for
fluid structure interaction methods within Jaguar Land Rover-preferred powertrain CAE codes (CD-
Adapco StarCD and Abaqus) must be assessed for the cost and benefits of such an approach.

Finally, a discussion of the use of MAO as a systems engineering tool will draw on the findings
of both projects. This will be supported by a casestudy to set the findings of the technical projects
within the context of the Jaguar Land Rover product development system. The technical research
projects are outlined in the following sections.

By applying the MAO and multi-physics methods to known Powertrain problems, the issues
raised in the literature review can be explored as well as gaining an understanding of how the
methods work in a design environment. The use of a casestudy then allows the opportunities and
constraints that the design system could apply when using such methods to be explored.

3.5.1 The Jaguar XK Airbox Multi Attibute Problem

For the MAO project, the attribute trade-off that occurs in the airbox of the air intake system has
been selected as the area of application. The design of an automotive airbox is characterised by the
trade-off between the pressure loss and NVH attenuation and is a known issue within Jaguar Land
Rover powertrain programs. The project will use the Jaguar XK sports car as a baseline for the
airbox attributes. For the Jaguar XK Supercharged (SC) model, single attribute optimisation was
applied to the design to minimise the pressure loss. However, this process delivered airboxes which
were poor for NVH attenuation. This resulted in further work to correct the issue and a compromise
on the pressure loss performance. The MAO method will be used to examine the airbox design
space and the trade-off between conflicting attributes. To mitigate risk and allow the project to
focus on the MAO problem, the CAE methods utilised should be mature and governed by Jaguar
Land Rover standards. The project will require the following stages:

1. A review of the air intake system will be conducted to find the role of the airbox and outline the
required attributes. The methods to assess the attributes should also be outlined along with
the MAO approach, in particular the sampling size and error estimation methods. Here, the
current single attribute optimisation procedures for metamodelling will be used as a starting
point. A baseline for the performance of the Jaguar XK SC program should also be established.
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2. The next stage is to apply the sampling methods to the system attributes, establish the
metamodels and examine the accuracy of fit. The output of the CAE for each model should
be interrogated to ensure that the model is providing a stable and correct attribute. Once
verified the error in the metamodels should be investigated and a preliminary assessment
of predictive behaviour established. From this, decisions about further sampling can also be
completed.

3. Next, the metamodels should be used to find the best value design possible. Here, the various
multi-attribute trading tools and methods available within modeFRONTIER will be used in
order to find the best value design according to the criteria from the airbox problem definition.
Finally, the optimised design selected from the trade-off methods should be tested with the
CAE to find whether the method can deliver improved performance.

3.5.2 The Fuel Tank multi-physics Analysis Project

As there are no standard procedures for the use of coupled Fluid Structure Interaction (FSI) methods
within Jaguar Land Rover, potential applications for the multi-physics methods need to be found.
For this, the fuel tank was identified as the system of application. This had two distinct advantages,
firstly there was a perception that the fuel tank contains opportunities for using FSI methods and
secondly, some CAE applications for the fuel tank were in the process of being brought ‘in-house’
from suppliers. This provided an opportunity to review the analyses that the powertrain CAE
department could supply. To assess the maturity of the multi-physics methods available within
Jaguar Land Rover powertrain preferred CAE codes, the project will require the following stages:

1. The design progression and CAE requests at the various stages of the fuel tank design
process should be explored. These explorations should culminate in the identification of
the application for the multi-physics method and the various requirements that constrain the
problem.

2. The boundary conditions and customer-use scenarios for the selected application should be
explored and characterised. From this, the worst case scenario for the application can be
established. This load case can be used to assess the coupling level requirement. Next,
the characterisation of the new multi-physics CAE methods, should establish the suitability
of the methods for the application. This should be done on simplified models to allow quick
assessment of predictive behaviours of the fuel tank attributes.

3. For any applicable methods, the multi-physics CAE model parameters can be examined to
see how the model can be set up for the required CAE method attributes stability, accuracy
and resource utilisation. This would then require verification to assess the accuracy of the
model. The model should be compared to a rig or in vehicle test to ensure that the model can
predict the real behaviour of systems.
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3.6 Conclusion

This chapter has used the application of optimisation methods in the CAE environment to examine
the key enablers within the Jaguar Land Rover product design system. A ‘System of Systems’
viewpoint analysis was used as a tool to understand the design environment and explore the
operation of a MAO method.

The potential impact of multi-attribute and multi-physics methods has been addressed in both
a system and System of Systems manner. This identified key research areas, however, as the
implementation of MAO methods presented a potential risk to the performance of the design
system, risk mitigation strategies were the top priority. For this, the issues of trade-off methods,
sample size, error estimation and multi-physics CAE methods raised in the literature review need
to be addressed.

From this, a multi-attribute project of the airbox, in the air intake system, was scoped. The
sample size and error estimation issues present two dilemmas which must be addressed to mitigate
the risks of accuracy of the optimisation and the project time scale. This project will also investigate
techniques which can be used to ‘trade-off’ attributes in the design process. This project will
address these issues in three stages; firstly defining the airbox MAO project and the CAE methods
to be used, secondly, building the metamodels to assess sample size and error estimation guidance,
then finally, optimisation of the airbox design using trade-off techniques, here the benefits of the
approach will also be examined. The context of the Jaguar Land Rover design system constrains
the project to use standard CAE techniques and current sampling guidance as an initial starting
point.

The multi-physics will be applied to the fuel tank, the first stage in this process is to find an
application to develop an appropriate multi-physics CAE method. From this, the implementation
of multi-physics CAE analyses to the selected application will be explored. This project intends
to evaluate the efficiency and accuracy of the multi-physics when compared to single domain
approaches. The multi-physics approaches are limited to only methods available within the Jaguar
Land Rover tool-set at the time of the project.
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Part II

Project Research
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Chapter 4

The Airbox MAO Problem

4.1 Introduction

This chapter aims to define the airbox MAO problem, the approach taken to model the system and
the sampling of the design space.

This project is based around the current Jaguar XK Super-Charged (SC) airbox. This airbox was
designed using the current Jaguar Land Rover optimisation method, where the CAE methods used
were completed serially and in isolation. CFD methods first minimised the airbox for least restriction
of airflow, this was then compromised when the design failed to meet NVH requirements. This was
remedied by the application of diffusers on the dirty side inlet of the airbox. However, these devices
restrict airflow and increase the pressure loss across the airbox, representing a major trade-off
between attributes.

This chapter describes the role of the airbox, defines the MAO problem and the optimisation
approach that is taken. Also, the key performance attributes and relevant control factors are
identified. From this, it can be seen that the pressure loss, capacity and NVH attenuation must
be modelled with CAE.

The standard CFD modelling approach within Jaguar Land Rover for pressure loss is presented,
then extended by using an empirical equation to yield the capacity of the airbox. The Ricardo WAVE
method is then presented as the standard NVH attenuation analysis approach.

The parameterised CAD is detailed and the CAE modelling approach to the design space
verified. The sample size dilemma is addressed and the minimum sample approach is taken in-line
with the context of the project. Finally the base line performance of the Jaguar XK SC airbox is
established.
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4.2 The Automotive Airbox

4.2.1 Key Role and Operation

The airbox is a part of the air intake system, its key roles are to take ambient air from the environment
to the engine, filter out any particulates and reduce engine noise. To achieve this, the airbox is
designed with a number of key features such as a shaped volume, porous filter and NVH devices.
Components and items before the filter are denoted as ‘dirty side’ elements and those after the
filter as ‘clean side’.

The shaped volume is determined by the breathing requirements of the engine and the packaging
space available. Typical examples are rectangular cuboid and cylindrical shapes. The airbox
volume must house the air filter. This represents a restriction on the airflow which can reduce
the available power of the engine. This flow restriction causes a pressure loss across the airbox
which must be minimised[69].

The airbox must also prevent any contaminants, such as dust and water, from entering the
engine. For this, a porous filter is used to trap particulates but allow the passage of air. Over
time, the filters become clogged, increasing the pressure loss of the air intake system and requires
replacement at regular service intervals. The filter should be sized so it has sufficient capacity to
meet scheduled service interval periods[31].

The airbox also forms part of the NVH package to remove the noise generated by the pistons
and other ancillary intake components such as super and turbo chargers that is transmitted through
the air intake system. This noise must be attenuated to meet noise standards and sound quality
targets. While the volume of the airbox is a key contributor to the NVH attentuation, other devices
such as diffusers and resonators can be utilised to reduce noise transmission[31].

The airbox also features Mass Airflow (MAF) sensors which measure the airflow rate through
the air intake system to control fuel injection systems. This component should be kept free of
contamination and requires uniform airflow in order to provide an accurate reading. These devices
are mounted on the clean side of the filter after the airbox[109].

4.2.2 CAE analysis and Optimisation of Airboxes

There are a number of CAE methods that have been applied in the design of airboxes. Full 3D CFD
techniques have been applied as a part a Systems approach to air intake development at Mahindra
& Mahindra[31] and in the development of a prototype racing car at the University of L’Aquila[110].
Both of these examples used 3D CFD to view the airflow through the airbox volume. From this,
design changes could be made to improve the flow characteristics. The research at Mahindra &
Mahindra also included the application of 1-D gas dynamic analysis methods to NVH prediction[31].
Again, the CAE was used to understand the NVH characteristics of the design allowing design
improvement to be targeted. Such methods have been standardised within the Jaguar Land Rover
product development system (CFD methods[111] & NVH methods[112]) and are used in the design
of all airboxes.
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The next step on from using single CAE models for airbox design is to incorporate an optimisation
method into the process. Branney[69] used genetic algorithms to optimise the design of a simple 3D
airbox volume. The approach used StarCCM+ as the CFD analysis tool integrated with modeFRONTIER
in an automated optimisation process. The research developed an optimisation tool to minimise the
pressure loss across the airbox volume. Examples of metamodelling methods for airbox design are
provided by Hoyle[113]. Hoyle[113] used a 2D simulation of an airbox for a racing car parameterised
by 16 variables. 200 DoE points were used to build a Kriging metamodel of the pressure recovery
coefficient, which was then maximised to give best breathing performance for the engine. Both
examples show that the optimisation method can be used on airboxes to improve the design.

4.2.3 Airbox Design Within Jaguar Land Rover

Single attribute optimisation has previously been used at an early design stage on the Jaguar XK
SC airbox to minimise the pressure loss, however, this design failed to meet the NVH targets. In a
sequential approach to trading-off the airbox attributes, a diffuser was introduced on the dirty side
inlet to the airbox and the diameter of duct was also reduced. The diffuser is an NVH device used
to improve the attenuation performance of an airbox. The introduction of this device improved the
NVH attenuation but increased the pressure loss of the airbox. The effect of this change is detailed
in Figure 4-1 and Table 4.1. Figure 4-1 shows that the attenuation of the traded off airbox (blue line)
is higher than the airbox optimised for pressure loss alone (red line). However this improvement
comes at the cost of increasing the pressure loss from 1733 Pa to 2545 Pa. (N.B. These values
are based on the simplified geometry and CAE used in this optimisation process, this is to negate
the effect of other design changes allowing a direct comparison). This project examines the use of
a Multi-Attribute approach to the optimisation and trade off of attributes in the airbox to find if an
improved design can be found over the XK SC NVH Trade-Off airbox (hereafter referred to as the
baseline).

Table 4.1: Parameters and pressure loss for XK SC pressure loss single attribute optimisation and
NVH trade-off designs

Parameter XK SC Pressure Loss XK SC NVH Trade-Off
Optimised

Breadth (mm) 140.0 140.0
Clean Duct Dia. (mm) 73.0 73.0

Clean Ingress (%) 0.0 0.0
Dirty Duct Dia. (mm) 93.0 68.5

Dirty Ingress (%) 0.0 0.4
Height (mm) 265.0 265.0

Inlet Runner (mm) 11.0 5.0
Length (mm) 233.0 233.0

Pressure Loss (Pa) 1733 2545
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Frequency (Hz)

Figure 4-1: Attenuation spectra for XK SC pressure loss single attribute optimisation and NVH
trade-off designs

4.2.4 Approach to the Multi-Attribute Airbox Optimisation Problem

The airbox multi-attribute optimisation problem will use a metamodelling approach to build a generic
metamodel of the airbox design space. The metamodelling approach has been chosen because
the CAE methods require manual input to the setup process. The literature review has shown there
are a number of dilemmas when approaching metamodelling based MAO projects. The first is
setting the sample size on which to build the metamodel. The second dilemma concerns the cost
of estimating the error in the metamodel. The project must also reflect the constraint of working in
the Jaguar Land Rover design environment. This means that:

1. The project must use standard Jaguar Land Rover procedures for attribute prediction.

2. The project would use the standard Jaguar Land Rover optimisation code (modeFRONTIER).

3. Due to the cost of the CAE methods, a minimal sample approach would be taken for building
the metamodel and error estimation. For this, the standard single attribute optimisation
sampling method (Ford optimally distributed latin hypercube[97]) will be used as a starting
point. Initially no additional samples will be used as the error will be estimated using modeFRONTIER
‘leave one out’ methods.

4.2.5 Gathering the Airbox Requirements

This section follows the requirements gathering process that was employed in the optimisation of
the airbox. The focus is around the examination and decomposition of the Air Intake System (AIS)
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P-Diagram down to the airbox P-Diagram. From this, the attributes are discussed and targets and
baselines for the optimisation set.

The operation and environment of the AIS is summarised in the P-Diagram in Figure 4-2 on page
79. The airbox is one of the key components in meeting the various challenges of the air intake
system. It houses the filter and a number of expansions and contractions that restrict the air flow
and effect noise attenuation behaviour. As structural behaviours are not the prime functions within
this system at the concept stage, much of the structural detail remains undefined and will play no
part in the optimisation of the airbox. This allows the P-Diagram to be reduced to the form shown in
Figure 4-3 on page 80. This reduction also assumes that the airbox is a generic rectangular volume
with a filter separating a dirty side inlet duct on the bottom and a clean side outlet duct on the top.
Also, the input signal can be reduced to the engine pressure pulsations and the inlet of ambient
dirty air as the hydrocarbon trap will not be considered. The key effects of this reduction can be
seen in the noise and control factors and ideal function categories of the P-Diagram.

• Noise Factors: Some noise factors are out of the control of the designer, such as driver
usage and environmental conditions. Other factors, such as part to part variation, require the
component performance to be robust against the noise that these factors can introduce.

• Control Factors: While the first P-Diagram treated the control factors for the air intake system
generically, the reduction to the airbox allows these to be explored in greater detail. Here,
the key factors can be considered as the NVH devices, component volume, filter size and
duct geometry. These generic terms can be further translated into more specific variables
for the airbox such as the length and breadth which contributes to both volume and filter size
and height, which contribute to the volume. The NVH devices and duct geometry can be
parameterised by the diameter, length and entrance location of any diffusers.

• Ideal Function: Focusing on the airbox has allowed more detailed targets for the airbox to be
specified; most notably the minimisation of the pressure loss, setting of filter efficiency and
capacity targets subject to expected product usage, setting of broadband attenuation (10-600
Hz) and finally the need to provide the MAF sensor with a clean signal.
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Using Figure 4-3 the requirements for the multi-attribute optimisation of a supercharged V-8 XK
airbox can be summarised as:

• The optimisation method must consider the core control factors as variables, these are:

– Component volume

– Filter size

– NVH devices in the form of diffusers on the clean and dirty side

– Duct geometry

– While this method is aimed at the XK SC airbox a more generic approach will be taken
to encompass a larger design space.

• Standard CAE Methods will be utilised as the project focus is on multi-attribute methods rather
than CAE procedures.

• The geometry will be simplified to represent the concept stage of the concept design phase.

• The standard CFD method applied to air intake systems will be used to measure the pressure
loss.

• The pressure loss should be minimised to reduce the restriction effect on the engine.

• To assess filter life, an estimate of the capacity should be predicted from the standard CFD
approach for the pressure loss.

• The capacity will be maximised to enable a longer service life.

• Assessment of attenuation must cover both V-8 fourth order noise (433 Hz) and supercharger
whine (400-600Hz), using the standard Ricardo WAVE white noise simulation.

• The attenuation over this range must be maximised or approach the air intake system transmission
loss target shown in Figure 4-4 and modelled by equation 4.1.

f(Hz) = −1.74168E − 17 ·Hz6 + 9.72247E − 14 ·Hz5 − 2.34060E − 10 ·Hz4...
+3.23952E − 7 ·Hz3 − 2.72478E − 04 ·Hz2 + 1.23293E − 01 ·Hz

(4.1)

• The Mass Air Flow (MAF) sensor must be included in the analysis with representative size
and attached to the outside of the airbox.

• As no standard CAE method is available that can predict the MAF performance from the CFD
model, the conditions that give preferable MAF signals will be implemented in the form of
design guidelines and constraints. These requirements will be taken from supplier data and
the experience of the AIS Team.

• The XK SC performance will be used as a baseline, this requires that:
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– The optimisation method can maintain current attribute performance for one or more
metrics if there are significant gains to be made on others.

– At the early concept stage there is a preference for pressure loss gains over NVH
attenuation, this is due to the sporting image of the product. If NVH performance is
met then the pressure loss becomes the optimisation priority.

– The current Jaguar XK SC airbox must be simplified into the concept form to enable
baseline performance to be established.

– The packaging in the Jaguar XK means that a twin system will be used and there will be
a volume limit of 9 litres for each single airbox.

– The Jaguar XK requires a total dust capacity of 200g for the whole air intake system or
100g per side.

– The maximum airflow rate is 1700 kg/hr for the total system or 850 kg/hr for a single
airbox.
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Figure 4-4: Air intake system transmission loss target
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4.3 Standard CAE Approaches for Attributes

This section presents the justification for using the standard Jaguar Land Rover CAE methods to
predict the pressure loss of an airbox, the capacity of the filter and the NVH attenuation performance.

4.3.1 CFD Methods for Pressure Loss Prediction

CFD is used as a standard method to predict the pressure loss across the air intake system during
the design process. This approach has been developed to model the operation of the airbox in the
vehicle at full load conditions which is the worst case scenario for pressure loss. The CFD model
must represent a number of elements of the airbox such as geometry, filter elements and turbulent
flow. To ensure robustness of the analysis, the CFD approach to air intake systems analysis has
been standardised within Jaguar Land Rover[111]. The software Star-CCM+ version 3.64 is used
at all stages of the airbox project.

Geometry Representation

The geometry representation begins with the CAD model. The detailed internal surfaces are
extracted from the CAD and imported into the CFD software. From the geometry, a volume
meshing strategy is applied, where the type and density is dependent on the geometry, software
and computer platform on which the analysis will be completed. Star-CCM+ features three distinct
mesh types; tetrahedral, trimmed and polyhedral. Of these, the tetrahedral meshes may not perform
as accurately as polyhedral and trimmed meshes and require a more refined mesh [114]. The
selection of mesh type and size should be determined using mesh dependence studies, where local
refinements can also be investigated. Another important mesh feature is the prism layers applied
to the wall boundaries. These aid in the solution of the boundary layers when using turbulence
models[114]. Again, the number and size is determined by the modelling methods used and the
geometry.

Filter Modelling in Star-CCM+

The filter representation within Star-CCM+ uses the porous media method. The filter is separated
into its own region and then the flow conditions are restricted to represent the effects of a porous
filter. The Jaguar Land Rover approach to porous media uses a directional set of viscous and
inertial resistances that correspond to the directional features of the filters. Directionality comes
from the pleated design of the filter as shown in Figure 4-5. The filter resistance parameters are
described in Table 4.2, where ρ is the density of air and µ the dynamic viscosity. These have been
provided by the Jaguar Land Rover standard approach to air filter analysis[111]. In Star-CCM+,
these values are implemented by user field functions to calculate the resistances which can then
be applied in the filter regions.
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Figure 4-5: Directionality of the filter

Table 4.2: Filter resistance parameters
Direction Pleat Alignment Viscous Inertial

XX Aligned 4193000 · µ 43.76 · 0.5 · ρ
YY Across 419300000 · µ 4376 · 0.5 · ρ
ZZ Normal 41930000 · µ 437.6 · 0.5 · ρ

Fluid, Flow & Turbulence Modelling

In the setup of the CFD model there are a number of other parameters that need to be set according
to the standard. The flow solvers are set to second order segregated method[114]. The flow is
modelled as an ideal gas where the material properties are set to air, using the standard parameters
specified in Star-CCM+ material library. The fluid is initialised at a temperature of 298.0 K and zero
velocity in all regions [111]. The model is initially solved assuming that the gas is incompressible
until a stable solution is reached, then the compressible formulation is used. This approach aids
the stability of the analysis.

The analysis standard calls for the realizable K-Epsilon turbulence model with two layer boundary
modelling [111]. The initial fluid turbulent conditions are defined by a turbulent dissipation rate of
16.0 kJ/kg · s and a turbulent kinetic energy of 4.0 J/kg. The turbulence must also be specified at
the inlet and outlet boundaries, this is done by setting the turbulence specification to a length scale.
The standard setting calls for a value of 10% of the diameter. Within the filter, the turbulent intensity
and viscosity ratios are set to 0 and 1 respectively, this specifies the non-turbulent conditions within
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the porous region.

Examples of Application

Figure 4-6 shows the correlation of the pressure losses predicted by CFD methods (blue bars) to
that of the measured losses taken during rig (purple bars) or dynomometer (white bars) testing at
various flow rates of Jaguar Land Rover airboxes [115]. When the CFD predictions are compared
to the actual performance for the 11 air intake system designs, Figure 4-6 demonstrates that the
CFD method can be used to predict the absolute values and the trends in pressure loss behaviour
and thus is fit for purpose in the airbox project.

Figure 4-6: Correlation studies for pressure loss [115]

4.3.2 Capacity

The airbox project requires the assessment of the capacity of the air filter which gives an indication
of filter lifetime so this can be compared to service intervals. A 100 gram capacity approximates to a
30,000 miles lifetime based on normal driving conditions [116]. Currently, the capacity is determined
using a rig test, then this value is used to estimate the service life [116][117]. An attempt to predict
capacity with CFD utilised a particle tracking method in a transient simulation[118]. This approach
would require a separate analysis within the project. There was a need for a similar analytical
predictor for the capacity within the airbox project, using the CFD model that predicts the pressure
loss. This section examines the approach taken to fulfil this need. Current understanding of the filter
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is that the capacity of the filter is dependent on the uniformity of the flow through it. The capacities
obtained from physical rig tests were combined with uniformity predictions from CFD models of the
same tests to derive an empirical formula for capacity prediction.

Flow Rig Testing

The capacity of an air filter is assessed using a standard rig test as outlined in BS ISO 5011:2000
[119]. As part of the validation of new vehicle programs, all Jaguar Land Rover airboxes undergo
this test. The airbox is attached to a flow rig that allows the injection of dust particles upstream of
the filter. Air and dust are put through the airbox at the expected maximum engine flow rate until
the buildup of dust on the filter causes a pressure rise of either 20 or 25 mBar. Then the weight of
the filter before and after the test is compared to find the capacity[119]. There are a number of test
reports available for various models and engines. These have been summarised in Table 4.3 for six
tests conducted with a 20 mBar pressure rise and Table 4.4 for the five 25 mBar tests.

Flow Uniformity from CFD Models

The flow uniformity (or gamma value) has been used to rate the performance of catalysts in
analyses of exhaust systems. Here, the flow through the catalyst is given a rating based upon
the flow velocity normal to the plane compared to the average velocity. The equation for Uniformity
is given in equation 4.2 and is taken from the Ford Standard CETP 03.01-C-415 [120]. The CFD
method used to obtain the pressure loss across the airbox has been applied to geometries for which
capacity data is available. The flow uniformity was obtained from the filter side of the interface
between the dirty side of the airbox and the porous region.

γ = 1−

n∑
i=1

√
(Ui − Ū)2 ·Ai

2 · Ū ·Atot
(4.2)

γ = The flow uniformity.
n = The total number of faces on the surface.
ui = Velocity of flow normal to the face.
Ū = Average normal velocity through surface.
Ai = Area of face.

Atot = Total area of surface.

4.3.3 Results

The results of the capacity rig tests, uniformity predictions from CFD modelling methods and
geometric data for a number of Jaguar Land Rover airboxes is presented in Tables 4.3 and 4.4.
The two tables represent the two different pressure rise conditions in the flow rig tests. This data
was used to derive an empirical formula that links the capacity of an airbox to its geometric shape
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and the uniformity of the flow through the filter. For this, the following logic is used to understand
the processes that occur during the rig test:

1. The total weight of dust on the filter is proportional to the mass flow through the filter and the
total testing time.

W = ṁ · dt (4.3)

2. The time taken for the test is proportional to the required pressure rise but inversely proportional
to to the rate of pressure change over time.

dt =
4P

(dP/dt)
(4.4)

3. The rate of change of pressure is a function of the change in resistance over the course of
the experiment and the velocity of air through the filter.

dP

dt
= f

(
dK

dt
, V

)
(4.5)

4. Velocity through the filter is dependent on the area, density and mass flow.

V =
ṁ

ρ ·Af
(4.6)

5. Resistance will increase as mass flow increases.

6. Resistance will decrease if area is increased.

7. Resistance will decrease if utilisation increases.

dK

dt
= f

(
ṁ

Af · γ

)
(4.7)

8. Relating all these equations, the capacity of the filter can be considered a function of the
pressure rise, frontal area, utilisation and the mass flow.

W = f

(
4P ·A2

f · γ
ṁ

)
(4.8)
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Table 4.3: 20 mBar (4P ) pressure loss test samples
Model Engine Flow Rate Capacity Filter Size Gamma

(ṁ) (W ) bf by lf γ
(kg/hr) (g) (mm) by (mm) (CFD)

LR322[121] V8TD 960 420 172 by 370 0.6248
LRT5[122] V8PSC 992 400 212 by 280 0.6705

LR322/T5[123] AJ133 850 248 150 by 330 0.6477
LR538[124] DW12C 670 202 241.5 by 163 0.6765
LR538[124] SI6 720 195 241.5 by 163 0.6686

Table 4.4: 25 (4P ) mBar pressure loss test samples
Model Engine Flow Rate Capacity Filter Size Gamma

(ṁ) (W ) bf by lf γ
(kg/hr) (g) (mm) by (mm) (CFD)

X150 (XK) [125] AJ133 850 99.15 148 by 230 0.7823
LR359[126] SI6 686 168.3 165 by 250 0.5436
LR359[126] DW12 662 180.9 165 by 250 0.5443
LR538[124] DW12C 670 202 241.5 by 163 0.6765
LR538[124] SI6 720 195 241.5 by 163 0.6686

Figure 4-7 shows the relationship between the capacity and the right hand side of equation 4.8
for both the 20 and 25 mBar test cases. Examining the two rig tests as discrete sets, the R2 values
are 0.9719 and 0.9588 for the 20 and 25 mBar test respectively. The linear functions for both are
also given in Figure 4-7, the finalised equation for the 25 mBar test case is given in equation 4.9
where the length (lf ) and breadth (bf ) are in mm, 4P is in mBar and ṁ is in kg/hr.

The rig assessment for capacity is completed at the maximum flow rate for the product in
question. As this is also the worst case scenario for the pressure loss, the same CFD model
can be used to assess the capacity and pressure loss.

This empirical model for the capacity is a significant contribution to knowledge. Previous attempts
to calculate the capacity have required physical testing with prototyped parts or expensive CAE
models[118]. As this model can obtain the capacity based upon a standard CAE method then
there is a potential cost save for the design process. However, a number of assumptions have
been made during the formulation of this empirical relationship. The uniformity is assumed to be
constant throughout the rig test. This may not be true due to dust accumulation on different parts of
the filter which will affect local flow conditions, changing the uniformity. The range of airboxes was
also limited by availability of rig data and does not consider many different sizes ans aspect ratios.
This could be an area for further work and investigation.

W = 10.29 · 4P · (lf · bf )2 · γ
1000000 · ṁ

− 174.27 (4.9)
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Figure 4-7: The empirical filter capacity model

4.3.4 Transmission Loss of an Airbox

This section examines the use of the 1-D gas dynamic code Ricardo WAVE to assess the NVH
characteristics of air intake systems. The standard rig test of NVH attenuation is outlined along
with the method used to approximate this test in Ricardo WAVE. The attenuation characteristics of
a Jaguar XK Naturally Aspirated (NA) airbox obtained from both a rig test and WAVE analysis will
be compared to examine the fitness for purpose of 1D gas dynamic methods.

NVH Rig Testing

The rig procedure for NVH transmission loss evaluation is based around the transfer matrix method[112].
This method is applied as the rig test cannot be conducted in a true anechoic (non-echoing)
termination of the airbox as utilised in the WAVE model. To model these conditions, two frequency
spectra measurements are taken using a four microphone system. One measurement is taken with
the end of the airbox open into the NVH assessment chamber and the other is taken with the end of
the airbox closed. A transfer matrix method is then applied to the two known boundary conditions
and the anechoic condition calculated. The results from the rig measurements for the Jaguar XK
NA airbox is presented as the blue line in Figure 4-10.
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Transmission Loss Simulation with Ricardo Wave

As with the CFD model of the airbox, the geometry used in the WAVE model must also be discretised.
Meshing breaks down the airbox volume into a network of ducts and complex y-junctions. WAVE
provides two methods of doing this. Firstly, simplified shapes and ducts can be created in WaveBuild3D.
However, this is limited to simple boxes as some finer detail may not be captured. The second
method involves the use of surface geometry files, which are imported, then manually partitioned
into the required mesh. The principal advantage of using the WaveBuild3D method is that the
geometry definition can be automated, allowing for a shorter pre-processing time where multiple
boxes need to be analysed. Also, the simplified geometry allows for a denser mesh for any given
box size.

Meshing the Jaguar XK NA airbox

The complexity of the Jaguar XK NA geometry means that WaveBuild3D methods cannot be used
and the airbox model must be derived from CAD. The mesh is imported into WaveMesher in .stl
format which is then repaired and the boundary openings added. From here the geometry must be
discretised into smaller volumes, ensuring that relevant expansions and contractions are captured.
This is achieved by cutting the volume using various planes. The spacing of these planes will give
various refinement levels in the simulation. Closer spacing gives greater mesh refinement and the
ability to capture higher frequencies. Figure 4-8 shows three meshing strategies applied to the
Jaguar XK NA airbox; coarse refinement (using planes approximately 60 mm apart), median (60
mm through the breadth and height and 40 mm on the length) and refined (40 mm in all directions).
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Figure 4-8: Meshing of the XK NA airbox

WAVE White Noise Transmission Loss Study Implementation

The white noise test introduces sound waves of various frequencies at the clean side of the air
box where the intensity is measured by two microphones 40 mm apart. The sound waves then
travel through the airbox volume where wave construction or destruction occurs depending on
the various interaction effects between the geometric lengths and volumes within the airbox and
the sound frequencies. The intensity of the sound waves when exiting the box is also captured
by two microphones separated by the same distance on the dirty side ducts. When these two
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signals are compared, the attenuation of various frequencies can be calculated. The WAVE model
set up is outlined in Figure 4-9 with Table 4.5 detailing the setup of the various elements. The
sound waves are introduced into the airbox by an acoustic piston. The airbox is represented by
numerous complex y junction volumes, with the dirty side duct venting into the open represented by
an anechoic termination. The ducts connecting the acoustic piston and the anechoic termination to
the airbox are at the same diameter as the clean and dirty side ducts. This is so that no additional
expansions or contractions are introduced into the system.

Table 4.5: WAVE transmission loss CAE setup
Tab Parameter Value
Acoustic Piston

Noise - Multi Sine

Steady Velocity Component 0.2 m/s
Amplitude 0.2 m/s
Upper Frequency Limit 2000 Hz
Lower Frequency Limit 10 Hz

Transmission Loss

Upstream Duct wnp duct 1
Downstream Duct wnp duct 2
Up 1 & 2 0.4 & 0.8
Down 1 & 2 0.2 & 0.6

Ambient Conditions Pressure 1.0 bar
Temperature 283 K

Initial Fluid Composition Fresh Air 1.0
Anechoic Termination
Initial Fluid Composition Fresh Air 1.0
wnp duct 1 & 2

Duct data

Diameters Experiment
Shape Circular
Discretization Length 25 mm
Overall Length 100 mm

Ambient Conditions Pressure 1.0 bar
Temperature 283 K

Initial Fluid Composition Fresh Air 1.0
Simulation Control

General Parameters

Simulation Duration 10 Cycles
Time Step Multiplier 0.8
Max Degree Step 1.0 deg
End of Cycle Angle auto deg

Fluid Properties Ideal Gas N/A
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Figure 4-9: Example setup of transmission loss experiment in Ricardo WAVE

Results

Figure 4-10 shows the measured and simulated attenuation spectra for the Jaguar XK NA air box.
The blue line shows the results from the physical test on the XK NA airbox. The three yellow
lines show the simulated attenuation spectra at the various mesh sizes. The plot shows that the
simulation is able to predict the trend of the box to frequencies of up to 600 Hz, after which the
correlation becomes poor. This could be due to the oblique angles used in the airbox. These
angles cause non-normal wave reflections in the airbox which cannot be fully captured by the
meshing method. At frequencies below 200 Hz, the refined mesh correlates most closely to the
measured data. As the frequency rises, the coarse mesh predicts values lower than either of the
median or refined meshes, giving a better prediction within the 200-400 Hz range. In the 400-600
Hz range the median and refined meshes more closely correlate to the measured attenuation. As
V-8 fourth order frequencies are dominant within the 67 Hz ( 1000 rpm) to 433 Hz ( 6500 rpm)
region and super-charger whine within the 400-600 Hz region, WAVE models using a median to
refined mesh can be used to capture the attenuation performance. To improve the NVH prediction
above 600 Hz would require further refinement of the mesh. While this may be acceptable for
smaller volume airboxes, larger volume airboxes may encounter software stability issues and poor
computational performance during the meshing process. A median mesh is considered the best
trade-off between speed and software stability for all regions of the design space.

93



0 100 200 300 400 500 600 700 800 900 1000

Frequency (Hz)

0

5

10

15

20

25

Tr
an

sm
is

si
on

 L
os

s 
(d

B
)

Rig: XK NA Airbox WAVE: Median WAVE: Refined WAVE: Coarse

Figure 4-10: Correlation studies for transmission loss

4.4 Variables and Parametrised CAD Geometry

The core control parameters from the airbox P-Diagram and requirements list could be represented
by many different design variables in the airbox. This section will show the selection of appropriate
input variables, detail the range of the design space and the application of the Ford minimum
latin hypercube sampling method[97]. Finally, the translation into a parametrised CAD model is
discussed.

4.4.1 Selection of Variables

Some of the potential variables are outlined in Figure 4-11, each of these relates to one of the core
control methods discussed in the P-Diagram (Figures 4-3). The first variables to be selected are
the length, breadth and height of the airbox volume. These three values are important as they effect
the pressure loss, NVH characteristics and the size of the filter.

The optimisation must also consider the NVH characteristics of the airbox design. For this,
diffusers will be added to both the inlet and outlet sides. These diffusers are NVH devices that
are used to tune the attenuation frequencies within the airbox. They also affect the airflow around
the airbox and filter, which will change the pressure loss and capacity attributes. For example,
large inlet and outlet diameters would improve the pressure loss attribute as the flow restriction is
reduced, but decrease the NVH attenuation as the expansion ratio is reduced. As NVH attenuation
is a wavelength problem, the diffuser lengths can be used to tune out undesirable frequencies but
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would effect the flow uniformity through the filter. The key parameters for the NVH diffusers are the
duct diameters, the length of the diffuser inside the airbox, the entry points and angles.

Increasing the number of variables would require an increase in the number of samples required
to examine the design space. However, it is important to ensure that the key variables are selected.
It was deemed important that the clean and dirty side diffusers be kept independent, doubling the
number of NVH device variables. The key variables selected were the duct diameters (x2), diffuser
lengths (x2) and the inlet runner length. This provides a total of 8 variables. All components before
the filter are denoted as the dirty side and after the filter, the clean side.

Figure 4-11: Simplified airbox with various potential variables

4.4.2 Selection of Variable Ranges

There is a requirement to approach this optimisation in a generic manner that will allow airboxes
not commonly used within Jaguar Land Rover to be examined. The lengths, breadths and volumes
of the airboxes used to derive the capacity equation are provided in Table 4.6. From these, the
approximate heights can be estimated. These are only estimates as the airbox lids feature sloping
faces and other complexities. The table shows that all of the current airboxes have an aspect ratio
of greater than one (length is greater than breadth). It is desirable to examine airboxes that have
an aspect ratio of less than one. Also desirable would be to include the effect of a larger variation
in height. To incorporate this, the lengths and breadths will vary between 140 mm and 370 mm and
the height between 260 and 330 mm.

The duct ingresses can be more difficult to set as they must be shorter than the airbox length to
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Table 4.6: Current Jaguar Land Rover airbox volumes, breadths and lengths
Model Variant Volume Breadth Length Height

m3 mm mm mm
L322 V8 Diesel 17.0 172 370 267
T5 V8 Petrol 14.9 212 280 251
T5 V6 Diesel 14.9 212 280 251
T5 V6 Diesel 13.9 150 330 281

L322/T5 AJ133 9.2 148 230 270
L359 DW12C 9.8 165 250 237
L538 DW12C 9.8 163 242 248

ensure a valid geometry, limiting the potential range that could be investigated. To overcome this
obstacle, the diffuser lengths would be defined as fractions of the overall length ranging from 0 to
0.75.

The duct diameters and inlet runner lengths were specified after discussions with the air intake
systems team leader. The duct diameters will range from 50 to 80 mm and the inlet runner length
from 5 to 300 mm. These ranges are broader than the potential use on vehicles allowing more
atypical airboxes to be examined.

The minimum latin hypercube method requires a set of 33 samples to be used when the
optimisation project involves 8 design variables[97]. This is slightly larger than the 3N scarce set
specified by Jin, Chen and Simpson[12]. Using the macro provided from Ford[97], with the variables
and ranges discussed, the 33 samples are presented in Table 4.7.

4.4.3 Development of a Parametrised CAD Model

From these eight variables, a parametrised CAD model was produced. This model is representative
of an airbox concept within the package space. This includes a 48 mm filter section with the clean
and dirty side ducts set evenly on either side. The airbox also features a 10 mm lip around the filter
that is visible on the current Jaguar Land Rover airboxes. The MAF is of a representative size from
measurements taken from the current sensor in use on the Jaguar XK SC airbox. This is so the
duct blockage effect can be included in the CFD model. However, no internal details have been
included. The MAF is not included in the WAVE model as it does not effect the NVH attenuation.
The specification of variables in the CAD model is further detailed in appendix section B.1. The
final airbox WAVE and StarCMM+ CAD models for design 17 are presented in Figures 4-12 and
4-13.

4.5 Using the Standard CAE for Airbox analysis

While the general use of CFD and 1-D gas dynamics for the pressure loss and airbox attenuation
has been justified, this section will contain the setup strategy and mesh studies for the airbox.
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Table 4.7: Variables for 33 latin hypercube sample
Design Height Length Breadth Clean Duct Dirty Duct Inlet Runner Clean Dirty

Diameter Diameter Length Ingress Ingress
mm mm mm mm mm mm % %

1 305.94 226.25 183.12 63.12 50.94 263.12 0.45 0.70
2 303.75 290.94 175.94 59.38 62.19 5.00 0.02 0.21
3 319.06 183.12 283.75 56.56 58.44 272.34 0.05 0.45
4 316.88 334.06 290.94 57.50 51.88 143.28 0.54 0.02
5 312.50 190.31 240.62 74.38 64.06 281.56 0.68 0.09
6 314.69 312.50 211.88 75.31 52.81 87.97 0.35 0.75
7 308.12 240.62 319.69 68.75 50.00 180.16 0.09 0.07
8 299.38 298.12 312.50 69.69 53.75 14.22 0.75 0.40
9 321.25 140.00 247.81 50.94 66.88 106.41 0.52 0.56

10 330.00 341.25 161.56 62.19 70.62 189.38 0.33 0.16
11 323.44 247.81 370.00 58.44 73.44 51.09 0.19 0.52
12 297.19 348.44 341.25 51.88 72.50 244.69 0.59 0.33
13 325.62 204.69 147.19 65.94 74.38 78.75 0.63 0.26
14 310.31 355.62 233.44 77.19 75.31 235.47 0.14 0.47
15 301.56 147.19 305.31 80.00 68.75 97.19 0.26 0.12
16 327.81 276.56 355.62 76.25 69.69 170.94 0.47 0.61
17 295.00 255.00 255.00 65.00 65.00 152.50 0.38 0.38
18 284.06 283.75 326.88 66.88 79.06 41.88 0.30 0.05
19 286.25 219.06 334.06 70.62 67.81 300.00 0.73 0.54
20 270.94 326.88 226.25 73.44 71.56 32.66 0.70 0.30
21 273.12 175.94 219.06 72.50 78.12 161.72 0.21 0.73
22 277.50 319.69 269.38 55.62 65.94 23.44 0.07 0.66
23 275.31 197.50 298.12 54.69 77.19 217.03 0.40 0.00
24 281.88 269.38 190.31 61.25 80.00 124.84 0.66 0.68
25 290.62 211.88 197.50 60.31 76.25 290.78 0.00 0.35
26 268.75 370.00 262.19 79.06 63.12 198.59 0.23 0.19
27 260.00 168.75 348.44 67.81 59.38 115.62 0.42 0.59
28 266.56 262.19 140.00 71.56 56.56 253.91 0.56 0.23
29 292.81 161.56 168.75 78.12 57.50 60.31 0.16 0.42
30 264.38 305.31 362.81 64.06 55.62 226.25 0.12 0.49
31 279.69 154.38 276.56 52.81 54.69 69.53 0.61 0.28
32 288.44 362.81 204.69 50.00 61.25 207.81 0.49 0.63
33 262.19 233.44 154.38 53.75 60.31 134.06 0.28 0.14
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Figure 4-12: Finalised WAVE model geometry for design 17

Figure 4-13: Finalised CFD model geometry for design 17

4.5.1 CFD Mesh dependence Study

While the standard procedure for the CFD analysis of airboxes calls for a global mesh size of 4mm
[111], the dependency on the mesh should be known. The symmetry within the airbox model is
exploited to reduce the model size and runtime. Initial experiments using the standard meshing
procedure failed to yield a stable setup, this was shown by poor convergence in the measurable
outputs. Using designs 7 and 10, a mesh refinement strategy was developed. This included
refinement to 2 mm in the clean duct and dirty duct elbow and 1 mm around the bell mouth and
MAF surfaces. This helped the convergence of the outputs and enabled a stable solution to be
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found for compressible flow. The global mesh size was then varied to ascertain dependence on
global mesh size. Tables 4.8 and 4.9 show that there are only small changes on pressure loss and
gamma values except with the 2 mm mesh applied to design 7. When this was further investigated
it was found that reducing to this mesh size introduced a pseudo-transient phenomena. The smaller
cells were beginning to resolve large eddies around the jetting airflow from the dirty side duct. This
meant that a single solution could not be reached causing the the pressure and gamma ratio to
change between a number of states. To resolve this would require a fully transient model, which
would increase the runtime and complexity of the simulation. Meshing with a 4 mm global size
was selected for use in all models. The stability of this set up was then verified on designs 7 and
32, as these were considered worst case scenarios due to the small inlet and outlet ducts. The
refinements to the mesh are displayed in Figures 4-14 and 4-15.

Table 4.8: Pressure loss mesh dependency study
Design Mesh Size Average Max Min Delta %

(Pa) (Pa) (Pa) (Pa)

7

2 mm 7754 7773 7743 31 0.40
3 mm 8000 8004 7996 8 0.09
4 mm 8028 8037 8017 20 0.25
5 mm 8043 8047 8040 7 0.08
6 mm 7997 8004 7991 13 0.16

10

2 mm 2868 2868 2868 0 0.00
3 mm 2878 2878 2878 0 0.00
4 mm 2877 2877 2876 1 0.02
5 mm 2881 2881 2880 1 0.02
6 mm 2936 2936 2936 0 0.00

Table 4.9: Gamma mesh dependency study
Design Mesh Size Average Max Min Delta %

7

2 mm 0.379 0.387 0.376 0.011 2.817
3 mm 0.419 0.420 0.419 0.000 0.060
4 mm 0.429 0.429 0.429 0.001 0.130
5 mm 0.430 0.430 0.430 0.000 0.045
6 mm 0.466 0.466 0.465 0.001 0.139

10

2 mm 0.839 0.839 0.839 0.000 0.008
3 mm 0.839 0.839 0.839 0.000 0.000
4 mm 0.839 0.839 0.839 0.000 0.002
5 mm 0.839 0.839 0.839 0.000 0.011
6 mm 0.839 0.839 0.839 0.000 0.005
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Figure 4-14: Mesh refinement around the clean side diffuser and MAF

Figure 4-15: Mesh refinement around the dirty side diffuser

Setup Procedure

Star-CCM+ allows for automation of some of the setup procedure by use of java scripts. These
must be recorded while one airbox was prepared by hand. This recording can then be played to set
up other airbox designs. Not all steps in the CFD model setup could be recorded and these had to
be completed manually instead. The geometry and mesh repairs also required some intervention
as well as setting the face for gamma. The following is the procedure for the standard set up of the
CFD model:
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1. Export the airbox geometry from CATIA V5 as a step (.stp) file, import this into Star-CCM+
and repair.

2. Split the airbox into regions using the surface topology. This step introduces an inconsistency
in the surface naming, meaning that the gamma functions must be manually set to the correct
surface.

3. Run the setup java script, this sets up the physical and mesh conditions to the different regions
in the model, sets up the porous media and all user coding. The solver parameters and data
outputs are also included.

4. Set the gamma face to the front face of the porous region.

5. Surface mesh the airbox and repair if necessary.

6. Volume mesh the airbox and submit to the parallel solvers.

Once the job has been completed, i.e. the observed monitors and residuals have levelled off,
the CFD model can be post-processed. This includes examining the residual plots, pressure loss
and gamma convergence, then visualising the pressure and velocity distributions. The pressure
loss and gamma measurements are then exported to data files for processing in Matlab. Here
the average of the two attributes is taken over the last 200 iterations and the variance between
maximum and minimum calculated, this was to gain a measure of the convergence of the model.
The setup of a single airbox model takes an average of 60 minutes, the runtime 4-8 hours and the
post processing 10 to 20 minutes on 16 cores in the Jaguar Land Rover HPC machines.

4.5.2 Ricardo WAVE Modelling

The approach taken in Ricardo WAVE was based on the standard procedure discussed in section
4.3.4. This showed that a median to refined mesh should be used, meaning that the volume should
be partitioned at intervals of between 40 and 60 mm. However, initial applications showed that two
key issues needed to be addressed. Firstly, the need to keep partitioning similar for each airbox and
secondly, using the smallest discretisation length on the largest volume without causing instabilities
within WaveMesher. Here, the large number of partitioned volumes for larger airboxes would cause
the software to crash. This meant that a general 60 mm partitioning rule was applied to all the
geometries. As the full geometry was used, the partitioning process was completely manual and
required that the following features were captured:

1. Dirty and clean side diffuser expansion: As the diffuser opens into the airbox volume the
expansion needs to be captured. A cut plane is placed 1 mm behind the front face of the
diffuser bell mouth.

2. Dirty and clean side bell mouths: The expansion within the bell mouth needs to be captured,
for this a section is placed at the beginning of the bell mouth.
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3. Filter expansion: The airbox opens out slightly to allow the filter to be fitted, this expansion
needs to be captured with planes just after clean and dirty side sections, i.e. the top and
bottom faces of the filter.

4. Airbox volume: The volume must be divided up into 40-60 mm spaced sections.

5. Dirty side duct bend: Here a section plane is placed on the joint between the inlet runner and
the inlet bend.

After the geometry has been partitioned, the resultant model is imported into WaveBuild. Here, the
airbox is manually connected to the white noise generator and anechoic termination. The simulation
is then completed. To obtain the NVH spectra, the Ricardo WavePost software is used. From this,
the frequency and attenuation file have to be manually exported to a data file. The set up time for
each wave job varies from 30 to 60 minutes and the runtime varies from 5-10 minutes depending
on the volume of the airbox in question. Post processing the model and exporting the attenuation
data file takes approximately 10 minutes per airbox.

4.6 XK Supercharged Airbox Base Line

Figure 4-16 shows the simplified geometry that represents a Jaguar XK SC airbox that will be used
as a baseline. The airbox input variables are given in Table 4.10. The application of the Star-CCM+
CFD method yielded a pressure loss across the airbox of 2545 Pa and a capacity of 231 g. Images
taken from the post-processing of this model give the pressure distribution (Figure 4-17) on the
symmetry plane. The gamma metric is a measure of the uniformity of the z velocity through the
front face of the filter. A contour plot of the z velocity displayed in Figure 4-18 allowed the uniformity
to be visually assessed. The application of WAVE gave the NVH attenuation spectra shown in
Figure 4-19 compared to the AIS target. These images along with the residuals were used to
ensure that the CAE methods were operating correctly. The values were agreed as an acceptable
baseline with the AIS team.

Table 4.10: Parameter & attribute values for XK SC airbox

Height 265.00
Length 233.00
Breadth 140.00
Clean Duct Diameter 73.00
Dirty Duct Diameter 68.50
Inlet Runner Length 5.00
Clean Ingress 0.000
Dirty Ingress 0.391
Pressure Loss (Pa) 2544.77
Capacity (g) 230.90
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Figure 4-16: XK SC baseline geometry (CFD model)
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Figure 4-17: XK SC pressure distribution

Figure 4-18: XK SC z-directional velocity through the filter
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Figure 4-19: XK SC attenuation spectra

4.7 Conclusion

This chapter has defined the MAO problem for a Jaguar XK SC airbox. The trade-off attributes are
the pressure loss, capacity and NVH attenuation of the airbox. The key control factors identified
have been developed into a parametrised CAD model, with eight variables controlling the airbox
volume and NVH devices. The specification for CAE methods were also set, allowing the pressure
loss, capacity and NVH attenuation to be predicted with standard CAE methods. The application
of standard Jaguar Land Rover approaches has been examined and verified throughout the design
space. While there were further requirements to ensure that the airbox provides a clean signal
for the MAF sensor, no CAE methods could be used to analyse this. The requirements would be
implemented in the form of constraints in the optimisation.

The ranges of the input variables have been set to take a generic approach to allow exploration
of the design space. As a starting point, a minimum sample approach has been taken to the
metamodel build and error estimation process. This means that a scarce 33 latin hypercube sample
has been used and initially, no additional error samples will be taken. Error estimation will be based
on the ‘leave one out’ error methods in-built within modeFRONTIER.

The CAE methods were applied to a simplified version of the Jaguar XK SC airbox to establish
a baseline in performance. The pressure loss baseline is 2454 Pa and a capacity of 230 g. The
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attenuation spectra for the baseline was also presented in Figure 4-19.
With the requirements for airbox MAO project outlined, along with the definition and justification

for the CAE methods used, the design optimisation can proceed. The next chapter details the use
of the CAE, sampling and error estimation methods to build the airbox attribute metamodels. The
metamodels are then used to find the optimum airbox design in chapter 6.
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Chapter 5

Building the Airbox Metamodels

5.1 Introduction

The aim of this chapter is to build the attribute metamodels for the airbox MAO problem. In building
the metamodels, the issues of sample size and error estimation will be addressed.

The dilemma between sample size and available time was raised in the previous chapter and
for this work, a minimum sample approach was taken. This means that the scarce Ford minimum
latin hypercube[97] and ‘leave one out’ error methods were used. This chapter explores the impact
of this approach.

Firstly, the NVH attribute is examined. A single value metric is established and the error
assessed. Based upon this result, further experiments on sample size and error estimation are
carried out (detailed in appendix A). Further samples are then taken to improve the NVH metamodel.

Finally, the CFD results for pressure loss and capacity are presented. From this the metamodels
are built then their accuracy is assessed.

5.2 NVH Meta-Modelling

This section addresses the assessment of NVH attenuation via a single value metric. The application
of a radial basis function metamodel is detailed, along with the attempts to improve the predictive
performance.

5.2.1 NVH Metric

The results from the Ricardo WAVE model come in the form of an attenuation spectrum (see Figure
5-1), which must be reduced to a single value metric to enable a metamodel to be fitted. The metric
must capture the order of preference that distinguishes good NVH performance from poor NVH
performance, by measuring conformance to the AIS NVH target model.
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Figure 5-1: Attenuation spectrum for airbox design 4

Table 5.1: Rough airbox ranking orders
Group Airbox Designs
Good 12, 27, 30, 31 & 32
Median 4, 9, 16 & 18
Poor 13 & 21

The 33 attenuation spectra were presented to a senior CAE NVH technical specialist who put
them into an approximate ranking order by grouping the images (given in Table 5.1). While it
was difficult to establish an exact best order, the groupings were used to help tune an attribute
metric. Figure 5-1 shows that the NVH spectra may exceed the attenuation target in some areas
but underachieve in others. While it is useful to exceed the target, there is no real gain compared to
missing the target. A metric was derived that examines the area of the spectrum compared to the
given target model which considered areas where attenuation is better than target and less than
target. The areas above and below the target line were calculated. An individual weighting was
then applied to each of these values and the results were added together. The weightings were
then adjusted to give the same approximate airbox rankings. The finalised ranking order is given in
Table 5.2. The calculation of the NVH metric was completed using the script in Appendix B.2.
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Table 5.2: Airbox NVH metric and ranking
Design NVH Metric Rank Design NVH Metric Rank Design NVH Metric Rank

1 -1030 19 12 91 1 23 -576 9
2 -2021 28 13 -3888 33 24 -2888 31
3 -1047 20 14 -1193 21 25 -1924 26
4 -662 14 15 -2140 29 26 -903 17
5 -1666 24 16 -989 18 27 -4 5
6 -587 12 17 -622 13 28 -1600 23
7 -576 10 18 -696 15 29 -3361 32
8 44 2 19 -544 8 30 11 4
9 -1839 25 20 -823 16 31 -419 6

10 -2002 27 21 -2787 30 32 14 3
11 -586 11 22 -493 7 33 -1375 22

5.2.2 Initial Metamodel and Further Sampling Experiments

Initially, a radial basis function (Hardy’s Multi-Quadratic) was applied to the data. However, the
modeFRONTIER error estimator suggested that the metamodel had a poor fit as the calculated
‘leave one out’ normalised root mean square error was 0.1174 or 11.74%. Further research is
required to understand the requirements for sample size and error estimation, however the high
costs of the CAE prevent an in-depth study. The use of known mathematical functions to test
new metamodelling methods has been demonstrated in the literature[74]. The Branin function has
been used in a number of metamodel tests as it has a complex shape and is cheap to compute.
Five experiments have been carried out to assess error estimation methods, sample size and
distribution. The full details of the experiments are given in appendix A and the summaries are
given below.

• Experiment 1: Examination of the Literature Guidance on Sample Size

The literature gave three boundaries for sample size guidance (as outlined in Table 2.6 on
page 53) and scales the sample size by the number of inputs alone. For a two-dimensional
function the smallest sample size would be 6 samples and the largest 20. This experiment
incrementally increased the sample size from the smallest to the largest to assess whether
this guidance can capture the complexity of the Branin function.

This experiment found that sample sizes guided by the literature are not sufficient to model
the complexity in the Branin function. This also suggests that the scaling of sample sizes by
the number of inputs alone may not be sufficient.

• Experiment 2: Sample Size and Distribution for Error Estimation

As a corollary of increasing the sample size to improve the metamodel fit, the estimation of
global error in a metamodel would also be improved by increased sample numbers. The
literature gave no clear indication to the size and distribution of any error estimation sample.
This experiment examined the requirements for error estimation samples.

The experiment found that the sample size required for error estimation is potentially larger
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than that required to build a metamodel. This may make the estimation of global metamodel
error impractical. One potential method is to use small additional samples focused on local
areas of interest (optimums or expected design regions) to understand local error.

• Experiment 3: Comparing Seeded and Uniform Latin Hypercubes

Within this project there are two latin hypercube methods available, the Ford minimum latin
hypercube[97] and the seeded modeFRONTIER method. The Ford approach distributes
the points uniformly through the design space whereas the seeded method does not. An
examination is required to ascertain which approach should be used.

A uniform distribution of sample points is more robust and efficient than a non-uniform sample.
This experiment also confirmed the conclusion from experiment 1. A sample size of 20 is
insufficient for the Branin function, instead 33 samples are required. This value is 16.5 times
the number of inputs.

• Experiment 4: Comparing Sequential Sampling Methods

The literature showed there is an interest in sequential sampling methods that place further
samples in regions of interest. This experiment assessed the various sequential sampling
methods available to the project to see if they can be used to improve metamodel performance.

This experiment showed that a smaller initial sample followed by sequential sampling methods
can be more efficient than a larger initial sample. This is because these methods place
samples in regions of high error or complexity allowing them to be resolved. Of the three
methods available the MACK and EbL methods perform better but are harder to implement
than the Lipschitz sampler.

• Experiment 5: Examining the ‘Leave One Out’ Error Estimation Method

The ‘leave one out’ error assessment method is seen as more efficient than the use of
additional samples, however, concerns have been raised over how this metric can be interpreted.
This experiment assesses whether this measure is fit for use in the airbox project.

The ‘leave one out’ error estimation should be interpreted as a dependency metric rather than
an error measure. Used in isolation it can be mis-leading and has the potential to under or
over estimate the error depending on the model. As this estimator is cheap to obtain it should
be used, however, only in conjunction with error estimation based on additional samples.

From these experiments it is clear that further work on the NVH attribute metamodel is required.
There is a dilemma as the cheap to compute ‘leave one out’ error estimation was shown to be a
poor measure of the fit, yet the number of additional samples required for a global error estimate
is prohibitive in a time constrained design environment. To overcome this the error should be
assessed in areas of interest. For this the global maximum and minimum NVH attribute performance
should be found, also the error on the baseline performance and additional airbox designs similar
to the baseline should be used. The fitting error of these samples should then be used to assess
the need for further samples.
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The dilemma for further sampling is that the complexity of the NVH attribute behaviour within
the design space is unknown, so it is not known if the sample size guidance in literature will be
sufficient. However, the project is still operating in a time constrained environment meaning the
minimum sample constraint still applies. As experiment 4 showed that sequential sampling methods
can be used to resolve complexity in the metamodel this should be the first step.

5.2.3 Local Error Estimation & Lipschitz Sampling

To estimate the local error, the baseline Jaguar XK SC airbox, the maximum and minimum NVH
performance airbox designs (obtained by applying a MOGAII optimisation on the NVH metamodel)
and three alternative airboxes were selected. The variables for additional samples, the WAVE
predicted NVH attribute performance values and the metamodel predicted values are given in Table
5.3.

Table 5.3: Additional airbox designs for NVH evaluation
Parameter Maximum Minimum Base Line Add 1 Add 2 Add 3

Breadth 370.00 140.00 140.00 140.00 140.00 140.00
CDD 52.00 80.00 73.00 73.00 73.00 73.00
CDI 0.66 0.45 0.00 0.00 0.00 0.00
DDD 50.00 80.00 68.50 68.50 80.00 76.00
DDI 0.65 0.38 0.39 0.00 0.00 0.00

Height 265.50 330.00 265.00 265.00 265.00 265.00
IRL 105.50 5.00 5.00 11.00 11.00 11.00

Length 370.00 140.00 233.00 233.00 233.00 233.00
NVH Metric 346 -5989 -2846 -3522 -4187 -3996

RBF Predicted 1055 -4841 -3086 -2999 -3193 -3125

The error assessment on additional samples showed that further samples would be required to
improve the surface fit. The re-sampling examples shown in experiment 4 in appendix A demonstrated
that the Lipschitz sequential sampler could be used to improve the metamodel performance. This
method was applied to ascertain the effect of doubling the sample size. The additional Lipschitz
sample points are included in Table 5.4. The error in the form of the R2 and RMSE was estimated
from the six sample points in Table 5.3 and the modeFRONTIER ‘leave one out’ error estimator was
also used as a guide.

Figure 5-2 shows the changes in the error estimators when the number of samples was increased.
All three error estimation methods suggested that the introduction of additional samples did deliver
a small improvement in the metamodel performance, after an initial reduction in predictive power.
However, the errors were still substantial. Table 5.4 shows that the points were mainly on the
borders of the design space, meaning that the interior complexity was not being resolved. It was
clear that a much larger sample would be required.

When the ‘leave one out’ errors are compared to the local R2 and RMSE error estimation
measures, the conclusion of experiment 5 in Appendix A is confirmed. While there is a loose
correlation between the trends of the three measures, this is not true throughout the Lipschitz
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Table 5.4: Parameters for additional sample points
Lipschitz Height Length Breadth Clean Duct Dirty Duct Inlet Runner Clean Dirty
Sample Diameter Diameter Length Ingress Ingress

(mm) (mm) (mm) (mm) (mm) (mm) (%) (%)
1 260.00 370.00 140.00 50.00 80.00 107.00 0.00 0.00
2 260.00 241.00 247.00 80.00 50.00 63.00 0.00 0.75
3 330.00 370.00 140.00 50.00 71.00 39.00 0.75 0.75
4 330.00 140.00 370.00 80.00 50.00 198.00 0.00 0.75
5 260.00 220.00 140.00 80.00 80.00 5.00 0.00 0.74
6 260.00 140.00 140.00 50.00 50.00 225.00 0.00 0.00
7 330.00 370.00 140.00 80.00 50.00 300.00 0.75 0.00
8 330.00 140.00 140.00 80.00 50.00 300.00 0.75 0.75
9 260.00 294.00 260.00 50.00 50.00 300.00 0.54 0.12

10 330.00 220.00 271.00 58.00 80.00 84.00 0.75 0.75
11 260.00 140.00 370.00 50.00 50.00 265.00 0.49 0.00
12 330.00 191.00 140.00 80.00 80.00 188.00 0.11 0.24
13 330.00 140.00 204.00 50.00 50.00 217.00 0.00 0.30
14 260.00 370.00 245.00 50.00 50.00 104.00 0.00 0.00
15 260.00 140.00 140.00 50.00 80.00 134.00 0.75 0.00
16 330.00 328.00 140.00 50.00 63.00 111.00 0.07 0.00
17 330.00 269.00 262.00 50.00 80.00 240.00 0.75 0.75
18 260.00 140.00 246.00 80.00 50.00 233.00 0.75 0.00
19 260.00 305.00 140.00 80.00 50.00 174.00 0.73 0.38
20 330.00 151.00 370.00 80.00 80.00 300.00 0.75 0.75
21 260.00 338.00 187.00 80.00 80.00 299.00 0.06 0.74
22 330.00 370.00 283.00 50.00 50.00 300.00 0.75 0.72
23 272.00 140.00 370.00 80.00 50.00 5.00 0.02 0.66
24 330.00 297.00 212.00 80.00 50.00 300.00 0.75 0.75
25 260.00 296.00 140.00 50.00 50.00 70.00 0.00 0.00
26 330.00 261.00 184.00 80.00 50.00 188.00 0.03 0.75
27 330.00 140.00 174.00 67.00 50.00 139.00 0.75 0.75
28 260.00 281.00 213.00 51.00 80.00 216.00 0.71 0.37
29 260.00 370.00 370.00 50.00 61.00 95.00 0.75 0.75
30 330.00 140.00 284.00 80.00 80.00 183.00 0.73 0.02
31 329.00 205.00 221.00 50.00 50.00 10.00 0.25 0.00
32 315.00 322.00 222.00 50.00 80.00 153.00 0.54 0.29
33 330.00 370.00 370.00 50.00 80.00 5.00 0.23 0.02

sampling procedure. After sample 48, the metamodel prediction of the 6 additional samples becomes
poorer, however, the ‘leave one out’ error shows the metamodel to be improving. Again this
demonstrates the risk of using the ‘leave one out’ error estimation in isolation.
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Number of Samples

Figure 5-2: Error estimation with increasing Lipschitz samples

5.2.4 Increasing the Sample Size

The use of the Lipschitz sampler has shown that a larger sample is required. As the complexity
of the NVH attribute behaviour is still unknown there is a dilemma over how large this sample
size should be. The large sample guidance in the literature for an 8 variable problem suggests a
sample size of 135 and the estimates from the Branin function 132 points. The closest uniform latin
hypercube available is 129 samples, however the 30 to 60 minute set up time per design with the
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conventional Ricardo WAVE method was prohibitive. To overcome this time cost the model needed
to be simplified and the automation within WaveBuild3D exploited. The approach, automation and
set up procedure of the NVH assessment models is described in appendix B.3. This allowed the
set up time to be reduced to 10 minutes per design. Due to the simplified geometry a more refined
mesh could be applied to the airbox with the discretisation length set to 40 mm. The first step was
to assess the effect of the simplified method by comparing the NVH metrics generated by the full
geometry with the metrics generated by the simplified method on the original 33 latin hypercube
sample. The metrics and airbox ranks are given in Table 5.5.

Table 5.5 shows that the simplification to the WaveBuild3D method changed the airbox ranking
orders. For a few geometries, designs 4 and 28 for example, the change is significant. However,
generally the approach ranked the designs similarly with most airbox rankings only changing position
by one or two places. Some of this could be due to the simplifications made in the geometry used in
the WaveBuild 3D method, or the increase in discretisation refinement. The approach was accepted
and applied to the 129 sample latin hypercube. The simplified model data, from the original 33
sample, was used to assess the errors in the surface and allowed the various metamodels to be
compared.
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Table 5.5: Airbox ranking changes for full geometry to simplified WaveBuild3D
Design WB3D Metric Full Geometry Metric WB3D Rank Full Geom Rank

1 -1633 -1030 23 19
2 -1890 -2021 24 28
3 -1326 -1047 21 20
4 -500 -662 6 14
5 -2249 -1666 27 24
6 -873 -587 16 12
7 -664 -576 11 10
8 -347 44 5 2
9 -2338 -1839 28 25

10 -2125 -2002 26 27
11 -896 -587 18 11
12 -340 91 4 1
13 -4061 -3888 33 33
14 -1510 -1193 22 21
15 -2483 -2140 29 29
16 -1277 -989 19 18
17 -828 -622 15 13
18 -639 -696 9 15
19 -601 -544 8 8
20 -878 -823 17 16
21 -3337 -2787 31 30
22 -777 -493 14 7
23 -563 -576 7 9
24 -2601 -2888 30 31
25 -2121 -1924 25 26
26 -741 -903 12 17
27 86 -4 1 5
28 -758 -1600 13 23
29 -3641 -3361 32 32
30 54 11 2 4
31 -653 -419 10 6
32 -237 14 3 3
33 -1304 -1375 20 22

Metamodel Selection

modeFRONTIER has a number of different metamodels which can be applied to the data. The
scarce number of samples meant that the polynomial regression model could not be used. However,
the literature shows that polynomial methods perform poorly in real examples and for global metamodels.
The main metamodels to be examined were Kriging, Gaussian Processes, Radial Basis Functions
and Neural Networks. The metamodel was fitted to 129 samples and the R2 and RMSE calculated
for the 33 latin hypercube sample. Within the main metamodel methods there are a number of
different formulations and model optimisation methods that can be applied:

• In Kriging (KR) there are 6 formulations and 3 optimisation methods giving a total of 18
variations.

• With Radial Basis Functions (RBF) there are 3 applicable methods; Hardy’s multi-quadratic,
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inverse multi-quadratic and gaussian. Two non-applicable methods were the polyharmonic
spline which failed during application and Wendland’s compactly supported, which supports
no more than 5 input variables.

• There are two optimisation methods on Gaussian Processes (GP).

• One formulation for Neural Networks (NN).

The error estimation of the metamodel formulation is compared in Table 5.6.

Table 5.6: Error estimators of metamodelling methods based on 129 sample points with 33 error
estimation points

Name Formulation Optimisation RSQD NRMSE LOOE
KR 0 Gaussian

Max Likelihood

0.8508 0.0965 0.0801
KR 1 Matern 5/2 0.8557 0.0949 0.0790
KR 2 Matern 3/2 0.8551 0.0951 0.0795
KR 3 Exponential 0.8470 0.0977 0.0872
KR 4 Rational Quadratic 0.5 0.8566 0.0946 0.0785
KR 5 Rational Quadratic 2.0 0.8557 0.0949 0.0787
KR 6 Gaussian 0.8486 0.0972 0.0798
KR 7 Matern 5/2 Max Leave One 0.8543 0.0953 0.0788
KR 8 Matern 3/2 Out Predictive 0.8557 0.0949 0.0796
KR 9 Exponential Probability 0.8470 0.0977 0.0872
KR 10 Rational Quadratic 0.5 0.8559 0.0948 0.0783
KR 11 Rational Quadratic 2.0 0.8542 0.0954 0.0784
KR 12 Gaussian 0.7614 0.1220 0.1023
KR 13 Matern 5/2 0.7940 0.1134 0.0980
KR 14 Matern 3/2 Min Leave One 0.7985 0.1121 0.0982
KR 15 Exponential Out Errors 0.7923 0.1138 0.1023
KR 16 Rational Quadratic 0.5 0.7953 0.1130 0.1031
KR 17 Rational Quadratic 2.0 0.7976 0.1124 0.0987
RBF 0 Hardy’s Multi-Quadratic 0.8563 0.0947 0.0786
RBF 1 Inverse Multi-Quadratic 0.8570 0.0945 0.0784
RBF 2 Gaussian 0.8597 0.0935 0.0904
GP 0 Max Likelihood 0.7932 0.1136
GP 1 Min Interpolation Errors -12.2970 0.9108
NN 0 0.3095 0.2075

Table 5.6 shows that there is little difference between the various Kriging and Radial Basis
Function formulations with the Radial Basis Functions performing marginally better. It is quite clear
that the application of Gaussian Processes and Neural Networks has led to large errors and should
not be used for this application. The Radial Basis Functions will be used in this airbox project.

5.2.5 Comment on the NVH Metamodel

The increase in the number of samples for the NVH metric has shown that the global metamodel
fit can be improved. However, there are still considerable errors in the surface. The additional 33
samples allowed the error to be estimated in the various metamodelling and input methods but the
final metamodel surfaces should be made from all available points. This will be further discussed
and validated in section 5.4.
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5.3 Attributes Assessed by CFD Methods

There are two results from the Star-CCM+ CFD models that must be examined; the pressure loss
across the airbox and the gamma value which is then used to calculate the capacity using equation
4.9. To examine the stability of the predicted results, the average value of the attributes over the last
200 iterations of the model is given, as well as the maximum and minimum allowing the variation to
be assessed. The pressure loss results are given in Table 5.7 and the gamma results in Table 5.8.
The script for data extraction is given in appendix B.4.

Table 5.7: Variation of pressure loss measurements over last 200 iterations of CFD model
Design Average (Pa) Max (Pa) Min (Pa) Variation (Pa) Change (%)

1 7682 7713 7660 53 0.69
2 3846 3847 3845 2 0.05
3 5030 5030 5030 0 0.00
4 7441 7463 7409 54 0.73
5 3532 3544 3514 30 0.86
6 6099 6117 6082 34 0.56
7 8028 8037 8017 20 0.25
8 5867 5868 5867 2 0.03
9 5109 5218 5030 189 3.70
10 2877 2877 2876 1 0.02
11 2699 2699 2698 0 0.00
12 4193 4193 4192 1 0.04
13 2717 2751 2668 82 3.03
14 1842 1845 1837 7 0.40
15 2605 2609 2600 9 0.37
16 2366 2366 2366 0 0.00
17 3365 3375 3358 17 0.51
18 2177 2178 2177 1 0.03
19 2829 2831 2826 5 0.17
20 2406 2406 2405 1 0.03
21 2098 2101 2095 6 0.30
22 3800 3801 3800 1 0.02
23 3304 3312 3292 20 0.60
24 2356 2356 2355 0 0.00
25 2359 2360 2358 2 0.08
26 3383 3383 3381 2 0.04
27 4224 4233 4211 22 0.52
28 5295 5329 5236 93 1.75
29 4504 4505 4504 1 0.01
30 5609 5616 5601 15 0.26
31 6919 6937 6890 47 0.68
32 6364 6370 6357 14 0.22
33 5282 5287 5274 13 0.25

When examining the pressure loss results, it can be seen that most of the models exhibit very
little variation (less than 1%) and can be considered to be converged. However, there are a number
of airbox designs where there are large changes between the maximum and minimum. Designs 9,
13 and 28 all have variations of over 1%. These variations would seem to indicate some issue in
the convergence and that the assumptions made during the mesh dependence study were not true
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Table 5.8: Variation of gamma measurements over last 200 iterations of CFD model
Design Average Max Min Variation Change (%)

1 0.594 0.595 0.594 0.001 0.123
2 0.743 0.743 0.743 0 0.003
3 0.637 0.637 0.637 0 0
4 0.529 0.53 0.529 0.001 0.188
5 0.732 0.732 0.732 0 0.034
6 0.447 0.448 0.447 0.001 0.28
7 0.429 0.429 0.429 0.001 0.13
8 0.387 0.388 0.387 0.001 0.134
9 0.813 0.818 0.806 0.011 1.41
10 0.839 0.839 0.839 0 0.002
11 0.612 0.612 0.612 0 0.002
12 0.635 0.635 0.635 0 0.046
13 0.853 0.856 0.85 0.007 0.817
14 0.739 0.739 0.739 0 0.008
15 0.722 0.723 0.722 0 0.03
16 0.55 0.55 0.55 0 0
17 0.599 0.6 0.598 0.001 0.215
18 0.664 0.665 0.663 0.002 0.315
19 0.602 0.602 0.602 0 0.006
20 0.703 0.703 0.703 0 0.005
21 0.796 0.796 0.795 0 0.008
22 0.588 0.589 0.587 0.002 0.398
23 0.723 0.723 0.722 0 0.049
24 0.813 0.813 0.813 0 0.001
25 0.825 0.825 0.824 0 0.004
26 0.637 0.637 0.637 0 0.005
27 0.563 0.563 0.563 0 0.085
28 0.778 0.779 0.778 0.001 0.139
29 0.821 0.821 0.821 0 0.003
30 0.396 0.397 0.395 0.001 0.359
31 0.612 0.613 0.611 0.001 0.219
32 0.585 0.585 0.585 0.001 0.088
33 0.765 0.765 0.765 0 0.018

in all cases. In the mesh dependency study, a stable and mesh independent method was derived
around design 10 then the stability checked on the assumed worst case scenarios of designs 7 and
32. As these proved to be stable, it was assumed that the method could be applied to all airbox
designs. In the airboxes with convergence issues, some region of the flow was not being resolved
properly and would require adjustment in the mesh. As these variations represent only a small
percentage of the attribute value, they were accepted. However, this may have some effect on the
fit of a metamodel. The gamma values showed significantly less variation over the last 200 CFD
iterations than the pressure loss and were all accepted as converged. Using the gamma values
and the airbox length and breadth, the capacity values can be calculated with equation 4.9. These
values were used in the metamodels.
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5.4 Validation

This section will examine the validation of the pressure loss and capacity attributes metamodels built
from 33 sample optimal latin hypercubes. The NVH metric attribute was based on the combined
161 samples (there was one repeat point at the centre which was only counted once). To assess
the R2 and RMSE error estimators, additional samples were used; The maximum and minimum
for each attribute, the baseline XK SC airbox and the three additional samples. The maxima and
minima were obtained by applying the modeFRONTIER NSGA II algorithms to the metamodels.
The ten additional airbox designs are presented in Table 5.9. Each of the suitable Radial Basis
Functions were also assessed. As the error was based on only a few points it is unlikely that it
yielded a true estimation of the global error. The results should therefore be treated as a guide.

Table 5.9: Additional error estimation airbox designs
Design 1 2 3 4 5 6 7 8 9 10

Parameter Pressure Loss Capacity NVH Metric Baseline Additional
Max Min Max Min Max Min XK SC A1 A2 A3

Breadth (mm) 319 289 370 140 280.5 140 140 140 140 140
Clean Duct Dia. (mm) 51.5 80 50 65 50 80 73 73 73 73

Clean Ingress (%) 0.73 0.47 0.75 0.75 0.75 0.35 0 0 0 0
Dirty Duct Dia. (mm) 50 80 80 69 50 78.5 68.5 68.5 80 76

Dirty Ingress (%) 0.57 0.4 0.75 0.57 0.28 0.19 0.39 0 0 0
Height (mm) 316 297 330 260 260 326 265 265 265 265

Inlet Runner (mm) 226 152 300 50.5 300 151 5 11 11 11
Length (mm) 311.5 256 370 158 271.5 140 233 233 233 233

Pressure Loss (Pa) 9685 1537 4345 3726 10293 2537 2545 3700 2425 2752
Capacity (g) 976 1523 4238 32 798 -14 231 175 218 212
NVH Metric -489 -1507 -1117 -4829 505 -6407 -3170 -3565 -4085 -3915

5.4.1 Pressure Loss Prediction

Table 5.10 shows the actual pressure losses for the 10 additional airboxes as well as the predicted
values from the Radial Basis Functions. The three formulations for this metamodel method are
the Hardy’s Multi-Quadratic (HMQ), Inverse Multi-Quadratics (IMQ) and Gaussian (G) methods.
Examining the overall trends, it can be seen that the metamodelling method can distinguish between
airbox designs of good system performance and bad system performance. However, it cannot fully
resolve the correct airbox attribute orders. Comparing designs 1 and 5, 3 and 4, 7, 9 and 10, it
can be seen that the order in which they would be placed based on actual system behaviour does
not equal the order in which the metamodel sets them. Also, it can be seen that the prediction
of maximum pressure loss was affected by the poor metamodel. Design 5 was derived to give
the maximum NVH performance but this airbox also exhibited a greater pressure loss than design
1. The predicted values on the metamodels show why this error has occurred; the prediction
of the pressure loss of design 1 is greater than the prediction at design 5 (see Table 5.10). This
transposition of order has large potential risks when using this metamodel in an optimisation process
and would reduce the confidence in any result taken from it.

The table also shows that there is very little difference in the performance of the different Radial
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Table 5.10: Pressure loss on 10 additional airbox designs
Design Actual HMQ IMQ G

(Pa) (Pa) (Pa) (Pa)
1 9685 8199 8080 8243
2 1537 492 429 388
3 4346 3859 3949 4122
4 3726 4121 4129 4182
5 10293 8027 7792 7990
6 2537 1507 1635 1562
7 2545 2714 2737 2669
8 3700 2861 2892 2805
9 2425 1641 1858 1789

10 2752 2003 2139 2051
R2 0.862 0.853 0.864

RMSE 1086 1122 1078
LOOE 0.096 0.098 0.111

Basis Functions. Based on the highest R2 value and lowest RMSE value, the Gaussian formulation
would seem to be the most suitable. However, the modeFRONTIER ‘leave one out’ error estimator
suggests the Hardy’s Multi-Quadratic would be the better option. The assessment of the Branin
Function showed that the leave one out error could be misleading and as such the Gaussian
formulation will be used.

5.4.2 Capacity Prediction

Design 6 of the additional airboxes assessed shows that there is potentially some error in the
capacity estimation method. The negative capacity of additional design 6 in Table 5.9 is not
physically feasible. The capacity attribute is derived from combining the capacity data from a
number of rig tests on Jaguar Land Rover airboxes, the filter size and the uniformity index of flow
through the filter from CFD models. As the empirical method only looked at available airboxes, the
range of geometries tested was limited. Design 6 represents an airbox that is much smaller than
any of the analysed airboxes. This shows that further work is required to examine more airbox
designs over the working range to improve the empirical capacity model.

The predictive capabilities of the capacity metamodel show similar trends to that of the pressure
loss. The overall trends of high and low capacity are captured but the absolute attribute prediction
and airbox order ranking is poor. The lowest errors are seen using the Hardy’s Multi Quadratic
formulation, therefore this will be utilised.
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Table 5.11: Capacity on 10 additional airbox designs
Design Actual HMQ IMQ G

(g) (g) (g) (g)
1 976 1825 1819 1815
2 1523 1445 1448 1451
3 4238 4159 4096 4057
4 32 -246 -220 -200
5 798 1182 1178 1170
6 -14 -29 -4 17
7 231 710 723 736
8 175 762 782 801
9 218 858 876 889

10 212 823 842 858
R2 0.846 0.841 0.835

RMSE 481 488 495
LOOE 0.076 0.076 0.077

5.4.3 NVH Attribute Prediction

The NVH metric metamodel is based on a much larger sample of 161 points, which should improve
the surface predictions. It can be seen from Table 5.12 that the absolute predictions are still poor but
the metamodel can predict the trends and airbox attribute ranking orders of the additional points.
For example, the ranking order for additional designs using the Hardy’s Multi-Quadratic metamodel
is correct. The ranking order for the actual designs and the Hardy’s Multi-Quadratic metamodel
shows the best design is airbox 5, then 1, 3, 2, 7, 8, 10, 9, 4 and the worst design is airbox 6 (from
Table 5.12). However, there are large errors in the absolute metric prediction. This shows that
some of the surface complexity has been resolved in these regions but there are still errors to be
addressed. For the NVH metric the most suitable metamodel based on this sample is the Hardy’s
Multi Quadratic.

Table 5.12: NVH metric on 10 additional airbox designs
Add. Design Actual HMQ IMQ G

1 -489 -305 -407 -625
2 -1507 -1248 -1200 -1113
3 -1117 -576 -1071 -2103
4 -4829 -4272 -4148 -4445
5 505 298 99 -349
6 -6407 -5991 -5862 -6124
7 -3170 -1986 -1878 -1703
8 -3565 -2982 -2916 -3058
9 -4085 -3306 -3168 -3232

10 -3915 -3203 -3090 -3164
R2 0.909 0.888 0.860

RMSE 614 681 762
LOOE 0.077 0.077 0.083
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5.4.4 Discussion

Final Metamodels

From the error estimators it can be seen that the scarce sampling has produced metamodels that
have significant errors in terms of absolute attribute performance prediction and correct ranking of
the airboxes. This suggests that the complexity of the system behaviour can not be resolved with
the scarce sample set. The increase in the sampling of the NVH metric did show improvements
in the errors of the surface. However, this does not address how many more samples would be
required to reach an appropriately refined metamodel. Table 5.13 shows the improvements made
on the prediction of the additional ten sample points based on a Hardy’s Multi Quadratic Radial
Basis Function. While some airboxes see substantial increases in predictive performance, designs
4 and 6 for example, increasing the number of samples deteriorates the performance in other
regions (design 7). The sample set size has been increased beyond the large set suggested in
the literature (8 input variables would require 135 samples). Despite this it is clear that there are
significant errors and that the design space is undersampled. This could be due to the size of the
design space which is not accounted for when deciding the sample size. The range of each variable
will have a large impact in the complexity that can occur.

Table 5.13: NVH metric on 10 additional airbox designs with increasing sample size
Design Actual 33 129 161

1 -489 -187 -357 -305
2 -1507 -1991 -1151 -1248
3 -1117 -1475 -830 -576
4 -4829 -2953 -4225 -4272
5 505 593 614 298
6 -6407 -5233 -5987 -5991
7 -3170 -3424 -1782 -1986
8 -3565 -3124 -2745 -2982
9 -4085 -3426 -3245 -3306

10 -3915 -3319 -3093 -3203
R2 0.845 0.885 0.909

RMSE 801 690 614
LOOE 0.107 0.078 0.077

The NVH metric behaviour within the airbox design space is quite clearly complex and does
require more samples. From the small sample error estimation methods it would be difficult to say
precisely how many more are required as these may not reflect the true global error. There are
larger uniform latin hypercubes that could be applied to ascertain this, however it is beyond the
time constraints of this project. The assessment of the additional sample points does suggest that
the bulk behaviour of the system attributes has been captured. These surfaces could be used in an
optimisation method to examine whether the behaviour captured is sufficient to deliver an improved
airbox. This is not without risk, as the poor predictive power of the metamodels would lead to low
confidence that any selected trade-off point is the best possible within the design region.

The final metamodels generated, that will be used in the optimisation, will include the data
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from the uniform latin hypercube sample and the additional points given in Table 5.9. This gives a
final modeFRONTIER ‘leave one out’ error estimator for the pressure loss metamodel of 0.07715,
0.05256 for the capacity attribute and 0.05833 for the NVH metric.

Cost of Metamodel Generation

Another important aspect of the metamodel build process is understanding the time it would take to
build these models. This will allow the MAO project time to be compared to the optimisation intervals
available within the Jaguar Land Rover design process. To allow this, a number of assumptions
have been made. The first is only methods and samples obtained to build the final metamodel
should be taken into account with no time added for the additional experiments completed in
Appendix A. The process time does include time to define the requirements and for an experienced
CAE engineer to build the necessary CAE methods and any scripts required for process automation
and attribute extraction. Another assumption is that only the engineering input is considered. This
assumption is made due to the computing facilities available at Jaguar Land Rover and parallelisation
of the various jobs involved with the MAO process. Finally, a working week of 35 hours is used.
The approximate timings are detailed within Table 5.14, this includes the work completed in the
definition stage of the project completed in chapter 4. The total time for the project is given as
277.5 hours or approximately 8 weeks. This breaks down to 2 weeks for defining the airbox MAO
problem and 6 weeks for the sampling and metamodel build process.

Table 5.14: Airbox MAO process times
Activity Time

(hours)
Defining the multi-attribute airbox problem and CAD geometry (Chapter 4) 70.0
Defining StarCCM+ meshing and automation strategies 35.0
Latin hypercube StarCCM+ setup (1 hr by 33 designs) 33.0
Latin hypercube StarCCM+ post-process (0.5 hrs by 33 designs) 16.5
Error sample StarCCM+ setup (1 hr by 10 designs) 10.0
Error sample StarCCM+ setup (0.5 hr by 10 designs) 5.0
Defining WAVE meshing and automation strategies 20.0
Large latin hypercube WAVE setup (10 mins by 129 designs) 21.5
Large latin hypercube WAVE post-process (10 mins by 129 designs) 21.5
Small latin hypercube WAVE setup (10 mins by 33 designs) 5.5
Small latin hypercube WAVE post-process (10 mins by 33 designs) 5.5
Error sample WAVE setup (10 mins by 10 designs) 2.0
Error sample WAVE post-process (10 mins by 10 designs) 2.0
Attribute processing, metamodel build & error estimation 30.0
Total 277.5

123



5.5 Conclusion

This chapter examined the impact to the approach taken of the sample size versus MAO project
time dilemma. In this instance the ‘leave one out’ error suggested that the scarce sample size
is not sufficient to model the airbox NVH attribute. To investigate this issue more thoroughly,
further experiments were carried out, as detailed in appendix A. The conclusions of this detailed
investigation were:

1. The guidance of sample size suggested in the literature may not be sufficient to capture the
complexity of the attribute behaviour in the design space.

2. The ‘leave one out’ error is not an accurate measure of the fit of a metamodel and should be
interpreted as a dependency of the sample size, it should be used in conjunction with other
error estimation methods.

3. Estimations of the true fitting error with additional samples would require a very large number
to be collected, this would be prohibitive in a time constrained environment.

4. Sequential sample methods can be used to resolve local complexity in the metamodel.

Based on these findings it was concluded that the sample size for the NVH model would need to be
increased and additional samples should be used to estimate the error. To keep the error sample
size to a minimum, the additional samples were obtained in regions of interest (attribute global
optimums, baselines and expected trade-off regions). While this would not be able to estimate the
global error in the metamodel fit, it would give some inference in the local conditions.

The first stage in increasing the NVH attribute sample size was to use the Lipschitz sampling.
However, after doubling the sample size it became clear that this method would require significantly
more points to reduce the error to an acceptable level. As the high cost of the set up time per
airbox was also prohibitive to large samples, the airbox model was simplified which allowed for
some automation of the setup. The reduced setup time allowed a 129 point latin hypercube sample
to be taken with an additional 33 latin hypercube for error estimation. This increase was in-line
with the guidance within the literature. However, the error estimation of the metamodel still showed
significant errors, confirming the conclusions of the experiments in appendix A. The estimation of
local error using ten additional boxes on a metamodel built from both latin hypercubes also showed
little improvement in the fit. This was represented by an in-ability to place the airboxes in the correct
order. The final NVH attribute metamodel was then built using both the 129 and 33 point samples
plus the additional ten airboxes used for local error estimation.

For the pressure loss and capacity metamodels the error estimation based upon ten additional
samples also showed significant issues with the fit. However, the runtime of such models prohibited
further sampling. The final metamodels for these attributes were built from the 33 latin hypercube
sample points plus the ten additional samples gained for error estimation.

The literature guidance for sample size is based on the number of inputs. However, this chapter
has shown that this approach may lead to undersampled metamodels that cannot capture the
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attribute behaviour. To use MAO as a systems engineering tool, other methods to scale the sample
size for metamodelling projects may be required.

The pressure loss and capacity attributes also showed a potential issue with the application of
the CAE method throughout the design space. Some of the airboxes did display some convergence
issues where some portion of the fluid flow could not be resolved. While the variation this caused
was small in this case, it raises issues of the suitability of the meshing/CAE method throughout the
design space.

Finally, the time taken to complete the initial stage of the project is eight weeks. This includes
two weeks for the project definition and six weeks to sample and build the attribute metamodels.
The time taken for the optimisation of the airbox will be considered in the next chapter allowing a
total time for the project to be defined.

125



Chapter 6

Optimisation of the Airbox Problem

6.1 Introduction

The aim of this chapter is to investigate techniques that enable attribute trade-off and the benefits
of the MAO approach to the airbox. The optimisation will use the metamodels built in the previous
chapter and the requirements gathered during the definition of the airbox.

The approach taken to address the dilemma of sample size and project time has resulted
in metamodels which contain large errors in the prediction of additional samples. Using these
metamodels presents the risk that the optimisation may not yield an improved design of the Jaguar
XK SC airbox. However, it does provide an opportunity to examine various approaches to optimise
the airbox. Examination of approaches includes reduction of the dimensionality, attribute visualisation
and utility value techniques.

The optimisation will be centred on the baseline Jaguar XK SC performance established in
section 4.6 on page 102. The benefits of the approach will be established compared to this baseline.

6.2 Inputs to the Optimisation Process

The optimisation of the airbox uses a set of requirements, constraints and baselines derived from
the P-Diagram analysis. The requirements outlined in chapter 4 showed the need to optimise an
airbox so that both the NVH attenuation and filter capacity are maximised, whilst minimising the
pressure loss. The final requirement was to ensure favourable conditions for the MAF signal. For
the NVH attenuation, filter capacity and pressure loss, standard CAE techniques were applied and
appropriate metamodels built (as outlined in chapter 5). As no standard CAE techniques at Jaguar
Land Rover are used to predict the MAF signal, favourable conditions would be implemented using
constraints. These conditions were obtained from the supplier design guides [109] and can be
summarised as:

1. The minimum duct diameter for the clean side diffuser is 67.5 mm for a mass flow rate of 850
kg/hr.
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2. The MAF sensor should be 36.5 ±15 mm from the clean side duct entrance.

3. The smallest length of box should be 150 mm.

4. Where the clean side diffuser penetrates the airbox volume, the diffuser length should be less
than 25% of total airbox length.

Other constraints are a maximum volume of 9 litres and a capacity of 100 g for a single airbox.
Whilst there is some drive to increase the capacity above this target, there is little extra gain
for additional capacity. This target can be included as a maximisation or as a constraint. The
optimisation of the airbox aims to improve the design over the current baseline. Thus, the baseline
for the simplified Jaguar XK SC airbox has a pressure loss of 2545 Pa and an NVH attribute of
-3170 (from chapter 5 Table 5.9). As the Jaguar XK SC is a high performance product, there is a
greater emphasis on pressure loss reduction than NVH improvements. However, it is still desirable
to improve the NVH attenuation beyond the Jaguar XK SC baseline.

These requirements and constraints can be implemented in modeFRONTIER by two methods;
use of constraint nodes and limiting the variable ranges. The set up of modeFRONTIER is outlined
in Appendix B.5 and the limits on input ranges given in Table 6.1. The input variables have also
had a step applied, this is to limit the number of decimal places that each variable can change for
numerical simplicity.

Table 6.1: Design variable input parameters in modeFRONTIER
Parameter Min Max Step

Breadth (mm) 140.00 370.00 0.050
Clean Duct Dia. (mm) 67.50 80.00 0.050

Clean Ingress (%) 0.00 0.25 0.001
Dirty Duct Dia. (mm) 50.00 80.00 0.001

Dirty Ingress (%) 0.00 0.75 0.001
Height (mm) 260.00 330.00 0.050

Inlet Runner (mm) 5.00 300.00 0.05
Length (mm) 150.00 370.00 0.050

6.3 Comments on Optimisation Algorithms

ModeFRONTIER features many different types of DoE sampling methods and optimisation strategies.
These can have a great impact on the effectiveness and speed of an optimisation when the samples
are gained from an external link. However, when the internal modeFRONTIER metamodelling
method is used as the predictor, there is a large increase in the processing speed. In this airbox
example, the sampling of 10,000 points took less than two minutes. The rapid assessment allowed
many different algorithms to be applied to the same project. This reduces the significance of
the applied method and allows approaches considered as computationally expensive, such as full
factorial DoE methods, to be applied to the metamodel. In this project the NSGA II algorithm within
modeFRONTIER was found to the the most applicable with a large initial DoE, such as a 2 level full
factorial DoE.
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ModeFRONTIER also features many useful tools for rapidly sorting large sets of data. In
particular the selection of feasible and pareto designs is easily completed. Data sorting can be
applied to columns to find the maximum and minimum in particular categories. The control of data
sets for plotting is also aided by the use of work Tables which can limit the visible points on a graph
or chart.

6.4 Understanding the Attributes

When using the metamodelling method it is important to be able to verify the predictive behaviour
of the data. For a given metamodel, this can be completed by the use of additional sample points,
as shown in chapter 5. But this only considers predictive behaviour at a single point. It is a useful
check to visualise what affect each of the main variables will have on the system. This can be
achieved using the main effects plots, in this case shown in Figure 6-1 for the pressure loss based
upon 43 samples. Here, the main affects are given by changing the duct diameters, which has an
inverse affect on the pressure loss. This would be expected as reducing the diameters increases
the restriction on the flow. Figure 6-1 also shows the statistical significance of each effect, this can
be used to signify effects which are due to the changes in the geometry and which ones occur by
chance. The t-student values indicate that it is over 95% certain that the top three main effects are
caused by the changes in the geometry. The effect size along with the t-student (or significance)
values can be used to look for error and assessing the impact of an input on an attribute.

The main effects plot does not indicate the interactions between the input variables. There
are a number of methods to visualise these interactions, such as the box and whiskers plot as
well as surface plots. Issues arise with these methods as the dimensionality of the input variables
increases. ModeFRONTIER only includes methods of calculating the two-way or second order
interactions and the surface plots can only visualise the interaction of two variables while others are
maintained constant. This can prevent the user from interpreting the underlying relationships in the
system behaviour.
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Figure 6-1: Main effects plot for pressure loss based on 43 samples

6.5 Single-Attribute Methods

It is useful to examine the boundaries of performance that the airbox can produce. To do this,
each attribute will be optimised in turn within the limits of the Jaguar XK SC baseline for NVH
metric, pressure loss and capacity. In Table 5.9 of Chapter 5 (page 119), it can be seen that the
maximisation of the NVH metric led to a higher pressure loss than was obtained by optimisation
of the pressure loss metamodel itself. This shows that the single shot optimisation method may
not deliver the overall global optimums. To overcome this issue, a sequential approach was taken
and the design space successively reduced. In the first stage of the pressure loss optimisation, an
initial DoE of 25 points was used in conjunction with the NSGA II algorithm with 100 generations.
The feasible designs are then extracted and sorted so that the minimum pressure loss was found
and selected. The function plot for the metamodel was then examined with the minimum pressure
loss design displayed, as shown in Figure 6-2. From this, any further gains were assessed and
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the ranges of the design variables reduced. For example, Figure 6-2 shows that the ranges for
the clean and dirty ingresses can be reduced to < 0.1 and 0.3 < DI < 0.5 respectively. Where
the optimum of an input variable occurs on the boundary, then the range can be replaced with this
value, for example setting the breadth equal to 140mm. The DoE was then reset with the reduced
design ranges on all design variables.

Figure 6-2: Function plot during the first single attribute optimisation stage

This process was repeated until no further improvements were found. Applying this method to
each of the attributes in turn provides the airbox designs given in Table 6.2. This shows that there
are substantial gains to be made, particularly in the pressure loss attribute. While this approach
is more thorough, these points may still not deliver the maximum and minimum achievable in the
system. The range reduction was based on the use of function plots which did not consider any
interactions amongst individual primary variables.
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Table 6.2: SAO airbox designs
Max NVH Metric Min Pressure Loss Max Capacity

Height (mm) 260.20 269.05 261.15
Length (mm) 201.15 238.75 238.35
Breadth (mm) 171.95 140.00 144.55

Clean Duct Diameter (mm) 67.50 67.50 73.85
Dirty Duct Diameter (mm) 69.20 79.75 71.60
Inlet Runner Length (mm) 9.75 5 286.55

Clean Ingress (%) 0.000 0.127 0.000
Dirty Ingress (%) 0.543 0.421 0.639

Delta P (Pa) 2487 1178 2483
Capacity (g) 279 281 478
NVH Metric -2154 -3055 -3041

The results from the metamodels of the single attribute optimisation approach suggest that
there could be significant gains for the airbox design. The optimisation for pressure loss could
be approximately halved whilst maintaining the current NVH attribute and capacity. When pressure
loss and capacity are maintained the metamodels suggest there is potential for a 32% improvement
in the NVH attribute metric. Finally the maximisation of the filter capacity leads to an improvement
of around 100%. While individually these represent a significant improvement in one area of airbox
design, it mat not be the best trade-off. However, this analysis shows that there is a large potential
trade-off region which must be explored.

6.6 Multi-Attribute Trading Methods

The airboxes found in Table 6.2 represent improvements of attribute performance but may not
represent the best trade-off between all three. This section will examine the various trade-off
approaches that can be utilised within modeFRONTIER. In the following images, a large initial
DoE of 50 samples was used in conjunction with the NSGA II algorithm and 100 generations. The
optimisation used the baseline values as constraints (i.e. airbox designs that failed to improve on
current performance were rejected), whilst maximising the NVH metric and capacity and minimising
the pressure loss. The pareto data was then extracted as a separate dataset and is presented in
the following images.

In Section 6.4, a brief examination of the methods used to understand attribute behaviour
found that increased dimensionality increased the complexity. This made the behaviours difficult
to visualise and comprehend. This issue is also true for increasing numbers of attributes. Two
attributes create a pareto curve and three attributes a pareto surface. These can be seen in Figures
6-3 and 6-4. When just the pressure loss and NVH metrics are considered, Figure 6-3 shows the
pareto curve represented by the boundary of blue points. When the capacity is also considered,
the three way trade can be seen, this is plotted as a surface in Figure 6-4. This pareto surface is
bounded by the three airbox designs in Table 6.2.

The number of attributes that can be visualised in modeFRONTIER can be extended to four
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dimensions in a bubble plot as shown in Figure 6-5. Here, the principal visual representations
are the NVH metric (X axis), pressure loss (Y axis), the utility (discussed later in section 6.6.4) as
distinguished by colour and volume as distinguished by bubble diameter. The parallel line chart, a
non-dimensional visualisation technique, is available within the software, as shown in Figure 6-6.
Here, the boxes can be selected using the sliding bars on each axis. However, with a large number
of samples, airbox design selection and trend spotting can be difficult due to the number of samples
involved.

While there are methods of visualising high dimensionality, they become complex when examining
a large number of sample points over a large design region. There are approaches that can be
used to reduce this complexity and enable the analysts to understand the design space and select
a finalised set of design variables. Examples are:

1. Dimensionality Reduction

2. Clustering methods

3. Self-Organising Maps

4. Utility-based methods

Figure 6-3: Pareto designs for three way trade
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6.6.1 Dimensionality Reduction

Figure 6-3 shows that all of the boxes on the pareto front between the NVH metric and the pressure
loss satisfy the minimum capacity criteria. One way to reduce the complexity of this optimisation
problem is to remove the maximise modeFRONTIER node on the capacity and leave this as a
constraint of feasibility. This reduction of the attribute dimensionality allows the trade-off to be
conducted between just two attributes, which in turn allows the simpler visualisation methods to be
used on smaller data sets, reducing the amount of data that the user must interpret.

6.6.2 Clustering Methods

ModeFRONTIER features algorithms that analyse a set of data to find regions of design that have
similar inputs and performance. These are grouped together in clusters. Figure 6-7 shows the
application of a clustering algorithm to the data set from Figure 6-3. Here, the data has been split
into two distinct groupings; cluster 0 around the high capacity samples and cluster 1 around the
NVH/pressure loss pareto front.

This can help to simplify the visualisation of the trade space. The number of clusters displayed
can be controlled using the dendrogram shown in Figure 6-8. Here, the number of clusters has
been increased to ten. Viewing each attribute trade-off in pairs and in turn on a 2D axis allows
for clusters that satisfy all attribute requirements to be identified. In Figure 6-8 it can be seen that
clusters 7, 8 and 9 are the areas which best meet the trade-off between the NVH and pressure
loss attributes. This process can be repeated for the other attribute pairs until the cluster/s that
represent the best trade-off region is identified. Once a cluster has been identified as the best
trade-off region, then the work table can be examined. The clustering algorithm also applies the

Figure 6-4: Pareto surface for three way trade-off of airbox attributes
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Figure 6-5: An example of a 4-D bubble plot

cluster groups to the work table, where the ranges of design variables and attributes of samples in
that cluster are summarised. This helps to reduce the design space. However, as the work table
still displays input ranges, there is still a large potential for permutation of design. So, the selection
of a final set of design variable values is not fully facilitated. The clustering method can also be
applied to the parallel line chart, as shown in Figure 6-9. Here, the application has simplified the

Figure 6-6: Parallel line chart for pareto airbox designs
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Figure 6-7: 2 Cluster grouping for airbox attributes

number of lines to coloured groupings. This method would help the user to spot design trends and
select appropriate clusters in highly dimensional cases.

Figure 6-8: Increasing the number of clusters in a visualisation
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Figure 6-9: Reduction of complexity in parallel line charts via clustering

6.6.3 Self Organising Maps

Another method of visualising highly dimensional data in modeFRONTIER is to apply the self
organising map to the data. These are generated by algorithms that are trained on the data set
and enable the reduction of highly dimensional data into a simplified map. The maps for each input
variable and output attribute is presented in a chart, shown in Figure 6-10. The user can then click
on any of these maps and use the slider bar on the side of the chart to see the effect of selecting
ranges for specific design variables or attributes. This updates all the other associated maps so that
the effect of this selection is transferred across all remaining variables and attributes. The selection
removes designs that are not of interest to the designer leaving only designs which are within the
selected ranges. Once the user has specified the necessary ranges, the airboxes remaining in
any region of the map can be selected and the design variables extracted, either visually from the
legends on each map or generating work tables from specific areas of one map. This approach is
similar to the clustering method as it can help the user to reduce the design space in order to select
a feasible region for the design, but may not necessarily facilitate the selection of a final design.
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Figure 6-10: SOM applied to the airbox Project

6.6.4 Utility Function Methods

All the methods used up until this point have attempted to reduce the complexity and enable the
user to reduce the design space. However, these do not aid in the selection of the final design
variables. The utility function method can be used to rank the preference of each of the attributes.
A utility function should be derived from the requirements and express the ranking of any attribute
within the working range. The functions can then be tuned in order to drive the optimisation in
a particular trade direction. In this section, the utility functions for the Jaguar XK SC airbox are
derived via the requirements and discussions with the AIS designers.

The initial requirement was to improve the pressure loss of the airbox beyond the initial baseline.
However, this was relaxed for utility-based optimisation. The utility at the current baseline was set
to an 0.3 acceptance value, with an exponential reduction in utility above this point. An airbox with a
pressure loss 30% beyond the baseline was considered to have zero utility. The minimum pressure
loss from the single attribute optimisation was used to define the point of maximum utility, given a
value of 1. The rise in utility function between the baseline and minimum was then assumed to be
linear. The equations for the pressure loss utility function are given in 6.1 and displayed in Figure
6-11.
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Utility(PL) =


1 if PL < 1160 Pa

1.62751− 5.40958× 10−4 · PL if 1160 ≤ PL < 2545 Pa

−2.19736× 10−3
(

1− e6.88646·PL−3260
1000

)
if 2545 ≤ PL < 3260 Pa

0 if PL ≥ 3260 Pa

(6.1)
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Figure 6-11: Pressure loss utility function

The original requirement for the capacity utility function called for a minimum target of 100
g, once met there were no significant gains for extra capacity. This utility could be modelled as
a simple switch function. However, discussions on this requirement yielded further acceptance
criteria details. While 100 g is the expected capacity target across all Jaguar Land Rover products,
the reality is that airboxes that deliver below target may be accepted. This is due to the Jaguar
XK SC being a high performance product where the customer usage may not be as high as other
Jaguar Land Rover products. Thus, an exponential penalising function for capacities below targets
was applied, the equations for which are detailed in 6.2 and shown in Figure 6-12.

Utility(Cap) =


0 if Cap < 80 g

−6.66667× 10−2
(

1− e−13.86294·PL−80
100

)
if 80 ≤ Cap < 100 g

1 if Cap ≥ 100 g

(6.2)
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Figure 6-12: Capacity utility function

The utility function for the NVH metric was assumed to be a linear function between the maximum
NVH attribute and the baseline. This is shown in Figure 6-13 and the function detailed in equation
6.3.

Utility(NVHM) =


0 if NVHM < −3000

2.60870 + 8.69565× 10−4 ·NVH if −3000 ≤ NVHM < −1850

1 if NVHM ≥ −1850

(6.3)

Traditional utility methods have then used the weighted sum methods to optimise the design.
Here the utility would be a linear function of of the sum of the attributed values. However, these
can be limited as the weighting function can only be set at the start of the optimisation. This does
not account for the way in which attribute weightings may change based on current performances.
Instead, an attribute trade surface can be used as shown in Figure 6-14. Here, the attribute utilities
are used as input to a higher utility function. This surface was obtained by stating higher utility at the
four corner points characterised by the maximum and minimum attribute performances, as follows:
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Figure 6-13: NVH attenuation utility function

1. Minimum NVH Utility, Minimum Pressure Loss Utility: These attribute performances would not
be acceptable and the higher utility is set to 0%.

2. Maximum NVH Utility, Maximum Pressure Loss Utility: This would form the utopia point,
where both metrics are at best performance giving a higher utility of 100%.

3. Minimum NVH Utility, Maximum Pressure Loss Utility: As this surface is for the trade in the
Jaguar XK SC airbox there is a slight preference for pressure loss over NVH metric. This can
be achieved by setting the higher utility at this point than at the inverse position. Here the
utility is set to 20%.

4. Maximum NVH Utility, Minimum Pressure Loss Utility: To set the slight preference for pressure
loss, the higher utility is set to 10%.

The surface is assumed to be linear between these points and the higher utility can be found using
two dimensional interpolation. The surface generated is shown in Figure 6-14. This surface now
gives a single value for the utility of the NVH attribute and pressure loss attributes. This must be
combined with the capacity metric to give the overall airbox utility. As the capacity utility varies
between 0 and 1 and behaves like a switch, it can be used as a multiplier for the higher utility
value. Only airboxes below the capacity target will be affected and when above the target, only the
trade between the NVH attribute and pressure loss will be examined. The final utility function was
maximised in the optimisation and is given in equation 6.4.
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Figure 6-14: Pressure loss & NVH attenuation trade surface

UtilityAirbox = UtilityCap · TradeSurfaceFunction(UtilityPL, UtilityNVH) (6.4)

The utility functions above were implemented in a Matlab script called by modeFRONTIER. The
implementation is given in Appendix B.6. This external interaction slows down the assessment
of sample points and means that the large DoEs and optimisation methods take longer to run
(approximately three hours for 10000 samples). To reduce this assessment time, a two stage
process was used. The first stage was to obtain the pareto front without the utility function evaluation.
For this, the baseline constraints on attribute performances were removed and only the trade-off
between the NVH metric and pressure loss was optimised. The design parameter values for the
pareto boxes were then used as the initial DoE for the second stage of the optimisation. As the
pareto front was used, the optimisation focused on the feasible region within the design constraints
and contained samples close to the optimum. The utility function was then maximised using fewer
NSGAII generations in approximately 20 minutes. The airbox with the maximised utility is given in
Table 6.3.

6.7 Verification of Optimal and Trade-off Designs

The airbox designs presented in Tables 6.2 and 6.3 represent large gains in performance of each
of the attributes. However, it was known from chapter 5 that the attribute metamodels contained
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significant errors. The CAE models were completed on the three optimal airbox designs and the
trade-off airbox design to understand whether the gains made were achievable. The results of the
CAE are presented in Table 6.4.

Comparing the predicted values from the metamodels with the CAE results shows that there
are still large errors in the predictions. There are also issues with the airbox attribute ranking, which
can be seen by the way the lowest pressure loss is delivered by the ‘utility optimised’ airbox rather
than the design optimised for this attribute. This is also the case with the maximum capacities and
NVH metrics. These issues led to low confidence that the ‘utility optimised’ airbox is the best design
possible in the design region.

However, when the CAE results for the utility optimised airbox are compared to the Jaguar
XK SC baseline results (Table 6.5) it can be seen that the proposed design does give some
improvements. While there is a small improvement in the capacity and pressure loss, the main
gain was the NVH attribute. The NVH spectra for the baseline and optimised airbox are shown
in Figure 6-15 and show that while the design improves over the whole range of frequencies, the
greatest improvement is in the 400-600 Hz range where supercharger whine is prevalent. The
pressure loss improvement is important for the XK customer as the 360 Pa reduction in pressure
loss would correlate to an increase of approximately 7 b.h.p at max load.

When the optimised airbox is compared to the baseline design it can be seen that the volume of
the airbox is slightly larger. The breadth remains the same at 140 mm, the height has been reduced
by 5 mm and the length increased by 15 mm. While this will have an improving effect on the airbox
attributes, the significant changes will be due to the diffusers and duct diameters. The original

Table 6.3: Attribute trade-off airbox design
Optimised

Height (mm) 260.00
Length (mm) 247.25
Breadth (mm) 140.00

Clean Duct Diameter (mm) 67.50
Dirty Duct Diameter (mm) 77.20
Inlet Runner Length (mm) 11.60

Clean Ingress (%) 0.017
Dirty Ingress (%) 0.536

Pressure Loss (Pa) 1395
Capacity (g) 343
NVH Metric -2680

Table 6.4: Comparing metamodel predictions with CAE results
Pressure Loss (Pa) Capacity (g) NVH Metric
Predicted Actual Predicted Actual Predicted Actual

Max NVH Metric 2487 2547 279 238 -2154 -2596
Min Pressure Loss 1178 2300 281 218 -3055 -3344

Max Capacity 2483 2361 478 248 -3041 -2673
Utility Optimised 1395 2179 343 256 -2680 -2439
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design has a clean side duct diameter larger than the dirty side. However, in the trade-off design
this has been reversed. The smaller duct diameter on the clean side gives a larger expansion ratio,
improving the NVH performance. While this would restrict the airflow out of the airbox, the larger
dirty air duct reduces the velocity of the incoming air. This lowers the pressure loss by reducing the
shear resistance in the dirty side airflow. The longer dirty side diffuser may also help to improve the
flow uniformity over the filter as well as acting as an NVH device.

The reversing of the clean and dirty duct sizes is a key contribution to the design of Jaguar Land
Rover airbox design and further investigation should be undertaken to see if such gains are made
on airbox designs in other vehicle programs.

This exploration and optimisation process took approximately two weeks. Combining this with
the eight weeks to define the project and generate the metamodels, a total of ten weeks would be
required for the MAO optimisation of the airbox.

Table 6.5: Comparing CAE results for utility optimised and baseline designs
XK SC Base Trade-Off

Height (mm) 265 260
Length (mm) 233 247.25
Breadth (mm) 140 140

Clean Duct Diameter (mm) 73 67.5
Dirty Duct Diameter (mm) 68.5 77.2
Inlet Runner Length (mm) 5 11.6

Clean Ingress (%) 0 0.017
Dirty Ingress (%) 0.391 0.536

Pressure Loss (Pa) 2545 2179
Capacity (g) 231 256
NVH Metric -3170 -2439
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Figure 6-15: Utility optimised attenuation spectra

6.8 Conclusion

This chapter examined techniques to trade-off multiple attributes in an airbox. The first step was
to apply reduction techniques allowing the simplification of the design space. The first reduction
technique was to use single attribute optimisation for each attribute in turn whilst using the baseline
performance of the other attributes as a constraint. While this approach may not present the design
with the best attribute trade-off, it does aid the designer to understand what the potential attribute
ranges are within the constrained optimisation. A second reduction technique was available within
the airbox optimisation as the capacity attribute requirements could be fulfilled by realising the other
attributes. However, as these methods do not reflect the best attribute trade-off other methods were
examined.

To aid with the attribute trade in the airbox a number of visualisation techniques were then
employed. These techniques helped to understand the interactions and relationships. Here, the
clustering or mapping techniques proved to be particularly useful in reducing large data sets into
patterns and regions. This understanding may help to reduce the design space but due to the large
number of potential designs it is difficult to select final design parameters that will be used. This is
where utility methods can be employed. The utility functions used in this project were derived from
the baseline performance, the single attribute optimised limits and the design requirements. These
were then tuned to find the design which had the greatest utility. These methods help select the
final design, but further research is required to link the derivation of utility functions to requirements
in a systems engineering method. For future projects it is recommended to use both methods first
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to explore the design space then select the optimum design.
The optimisation of the airbox also confirmed that the metamodels were under-sampled giving

poor attribute predictions. However, when the optimum trade-off design was verified using the
CAE methods, the performance was beyond the current XK SC performance. There were modest
improvements in the pressure loss and capacity, but the largest gain was in the NVH performance,
particularly in the 400-600 Hz range where the supercharger whine is most prevalent. The total time
for this analysis was approximately ten weeks. However, this improvement was against the large
risk of failure due to undersampling of the design space resulting in the poor metamodels. The
improvement in airbox attributes showed that the scarce sampling of the design space had picked
up on some of the underlying attribute behaviour. But the insensitivity in discriminating between
similar airbox designs means that there is low confidence that the final design is the best within the
design space. The sensitivity can only be improved by increasing the number of samples in the
design space.

Chapters 4, 5 and 6 have examined the sampling and error estimation methods within a metamodelling
method, as an enabler in an MAO method applied to an automotive airbox. Another enabler
identified in the Literature Review was the use of multi-physics CAE methods. Such approaches
may be required due to the inter-disciplinary nature of systems optimisation to improve attribute
prediction. The investigation of such methods, outlined in chapter 3, is presented in the next
chapter.
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Chapter 7

The Multi-Physics Fuel Tank
Problem

7.1 Introduction

This chapter aims to assess the costs and benefits associated with a multi-physics approach to
CAE, as both a stand alone CAE tool and for use as an attribute predictor in MAO projects. The
assessment is based around the effect of fuel sloshing within a fuel tank and goes through a number
of stages. Firstly, the key drivers for this project are re-iterated and the research area identified,
this is followed by a brief review of the operation and application of multi-physics methods within
fuel tanks. From this, the current CAE analyses for fuel tanks are investigated to find a suitable
application for the multi-physics project and the requirements for the CAE method detailed. Finally,
the multi-physics methods available to this project are assessed using representative boundary
conditions and test cases.

7.2 Project Drivers

From the review of CAE based optimisation, the accuracy of attribute prediction was found to be a
key element in the building of attribute metamodels. Applications of MDO identified cases where
a system attribute may cross the traditional CAE domains requiring the use of a multi-physics
analysis. These analyses come with additional accuracy benefits but at the expense of simulation
cost. Within the multi-physics analyses there are two issues which require further investigation; the
degree of coupling and the software approach. The degree of coupling determines the strength of
interaction between domains and should be appropriate for the application. Two different software
approaches can be taken to handle the coupling of domains; using multiple domain specific analysis
codes supported by communication methods to exchange data and a single code approach which
covers both domains. While the multiple domain specific code may incur an increased modelling
cost over a single code approach, there are no accuracy sacrifices in the modelling of domains.
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Within the context of Jaguar Land Rover Powertrain CAE, the cost of using a tool includes
training and available skill-set. To minimise these costs, the project was constrained to use tools
which are available within current Jaguar Land Rover CAE software. The area of application was
selected to be the fuel tank, this was due to the high degree of interaction and the potential impact
of the tool on future designs.

7.3 Fuel Tank Multi-Physics CAE Methods

The analysis of the motion of fuel within a tank has many applications in guiding design. The
phenomenon affects many different design aspects of the vehicle and can provide data before
prototyping. The use of CFD has been used to verify the location of valves within the tank to ensure
correct operation[127] and for reducing NVH issues[128]. These cases primarily looked at the effect
the shape of the tank had on the motion of the fuel.

Initial methods to assess fluid slosh in structural analyses have been to use the Finite Element
Method (FEM) and apply pressure boundary conditions to the model[129], or to use software
that approximated the mass distribution of a moving fluid[130]. Another method can be to use
acoustical elements in a structural solver[131]. However, these elements are better suited to small
displacement simulations rather than hydrostatic Fluid Structure Interaction (FSI)[132]. None of
these methods properly accounts for the motion of the fluid.

Thus, the FSI multi-physics analysis will need to solve two different physical domains that are
linked to each other at a boundary interface. Recalling section 2.6.5 in the literature review the
different degrees to which the domains can be coupled are[103]:

• Uncoupled: This is where the different domains do not have significant interactions that greatly
affect the result. The simulations can be carried out independently using mature methods with
a manual exchange of the interface data.

• Loose/One-way coupled: In a one way couple one domain will significantly affect another but
is itself unaffected. This is similar to the uncoupled approach, however, in a one way couple
the one directional exchange of data occurs in an automated fashion, i.e. within a multi or
single code multi-physics approach.

• Fully coupled: In a fully coupled system the different domains will have a significant affect on
each other. This requires the solution of both domains at the same time with exchanges at the
interface at regular intervals. This requires a high level of automation within the multi-physics
approach.

For FSI methods the uncoupled and one way approaches can be used for small deflections
such as thermal problems, but fully coupled methods are required where the displacement of the
solid is large and would affect the fluid flow[133]. The coupling of the two FSI domains requires
the exchange of surface pressures from the fluid domain and displacements from the solid domain.
This exchange can be handled in two different ways; using a single multi-physics code or using a
coupled Multi-Code approach.

147



Multi-physics CAE codes have modules within then to deal with different physics domains. The
software is set up to enable the solution of both modules within one global algorithm[132][134]. The
Combined Eularian Lagrangian (CEL) in Abaqus CAE is one such approach to the FSI problem.
This features an additional Equation of State (EoS) that simulates the fluid flow and boundary
loading, which is then directly applied to the structural model. This EoS is not a full fluid analysis
like a CFD code, thus the fluid may not be modelled as accurately as required.

The use of a Multi-Code approach requires that an exchange of data be used as a boundary
condition for the other simulation. There are two methods of exchanging this data. Firstly, a
third party software such as MpCCI (Mesh-based parallel Code Coupling Interface)[135] can be
used. This code automatically takes mapped data from one code to another allowing unmatched
meshes to be used in the analysis. Secondly, software vendors are integrating direct couples
into their software that allows the data to be exchanged automatically[136]. These approaches
require separate models of the different domains and additional computing power to exchange
data. However, as domain specific software codes are used, there are no sacrifices in the accuracy
of the simulation.

Within these approaches there are a number of methods and algorithms to simulate the interaction
between the domains. The type of algorithms affects how the boundaries and interfaces are
tracked. Wasfy and Smith[137] outline the different methods of FSI. Fixed fluid meshes with
separate deformable meshes for solid elements, Arbitrary Lagrangian Eularian (ALE) and particle
methods were discussed.

• Fixed Fluid Meshes: The methodology used in the Abaqus CEL uses a fixed Eularian mesh
that covers the whole domain of possible fluid movement. Within this large Eularian mesh
there is solid Lagrangian mesh. The fluid is then free to move through the Eularian mesh but
the boundary of the Lagrangian mesh is enforced by penalty methods. This prevents the fluid
penetrating the solid-[132][134].

• Arbitrary Lagrangian Eularian: An ALE analysis is based around an Eularian fluid mesh that
conforms to a Lagrangian solid mesh. When the solid mesh is deformed, the nodes of the
fluid mesh are then moved to conform to this new deformed state. This method was used
to find the ballooning of fuel tanks under impact loading[138] and to estimate hydroplaning
of tyres[135]. In both of these examples the meshes were critical to the outcome of the
simulation. In the ballooning simulation the effect of fluid pressure on the internal structures
was also investigated but this increased the runtime of the simulation due to the increased
mesh density. The hydroplaning simulation raised another issue with using the ALE method.
The deformable fluid mesh led to some local distortion when contact between tyre and road
was lost as the fluid mesh did not fill the gap produced. This was rectified using additional
modules in the CFD solver but added significantly to the run time. There were also issues
with the mesh sizing used; the CFD mesh required a finer grid than did the solid solver. This
resulted in non-matching meshes and the requirement for an interpolation algorithm.

• Particle Methods: Particle methodologies model the fluid as a set of discrete Lagrangian
elements in a mesh-less method. This provides a number of advantages over Eularian
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fluid methods as free surface break up, large deformations and surface tracking are easily
modelled[139]. The solid is modelled with Lagrangian mesh and the interface is enforced
using a penalty condition imposed on the particle elements[140].

This review has shown a number of issues that need to be addressed when using a multi-
physics method to evaluate fuel slosh problems. The first is selecting the correct degree of coupling.
Increasing the coupling incurs a higher cost yet may be required for accuracy. The need for a fully
coupled solution should be evaluated. The second issue concerns the relative cost and accuracy
of the multiple and single code approaches to multi-physics CAE. The method should be able to
provide an accurate attribute prediction at a cost feasible within the design or optimisation process.

7.4 Exploring the Project Opportunity

The fuel tank is a system that stores the petrol or diesel liquid for use in the engine and is vital
to the safe operation of a vehicle. The tank contains internal components such as Fuel Delivery
Modules (FDM) and various valves, all of which contribute to the operation of the fuel tank. These
components are mounted to an internal carrier system, which is inserted during the manufacturing
process. When the fuel tank is designed, CAE is used to support the design process by analysing
the component to ensure manufacturability and performance. The design and manufacture of the
system is capital intensive and requires a long lead-time. This is due to the production method
of blow moulding which requires the manufacturing of specifically shaped dies which are resource
intensive in both cost and time.

Currently, the early designs are sent to the supplier who will conduct CAE on the tank to examine
various attributes and manufacturability. Prototype testing is then used to verify and sign off the tank
design. While much of the CAE work is completed by suppliers there are efforts to either bring some
analyses into the remit of the Jaguar Land Rover Powertrain CAE team or develop new methods to
understand the fuel tank in greater depth. The application of a multi-physics analysis was part of
this effort. This section details the exploration of fuel tank CAE analyses for the potential application
of multi-physics methods. From this relevant applications were identified and the requirements for
the project outlined.

7.4.1 Fuel Tank Design Stages

The design stages of a fuel tank are discussed together with the relevant CAE requested in Appendix
Section C. The current CAE requests for the fuel tank are given in Table 7.1. The examination of
the CAE requests resulted in a revised CAE list for ‘in-house’ analysis as shown in Table 7.2. The
move from supplier completed to ‘in-house’ CAE required a number of changes such as delaying
a number of the structural simulations so that the tank wall thickness data from a supplier analysis
can be used. This move also allowed a number of the analyses to be separated, such as the
durability and NVH evaluations due to slosh events. While the CAE for these issues is requested,
much of the evaluation is completed with physical rig testing. Within this separation a number of
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potential applications for multi-physics CAE analyses were found (highlighted in bold in Table 7.2).
These examples were identified as the applications where a multi-physics analysis would have the
largest impact on the design of a fuel tank.

7.4.2 Multi-Physics CAE Project Application Opportunities

The operation of fuel tanks in vehicles provides an opportunity to used multi-physics CAE. The
sloshing of fuel within the tanks is currently the object of NVH and fluid flow CAE. But there is an
opportunity to apply FSI methods to gain new insight into the design of fuel tanks. The four possible
areas of application are outlined below:

1. The effect of sloshing on tank shell durability.

2. The effect of sloshing on the durability of the tank mounting mechanism.

3. The effect of sloshing on internal component durability.

4. The effect of sloshing on radiated noise from tank surface.

With these applications, the feasibility of each of the new techniques and methods could be assessed
on a small scale before being ramped up to larger systems. For a method development project, one
of these was selected using a selection matrix, the details are given in Table7.3.

When selecting the area of application a number of assessments were made. The first is that
if a methodology already exists then there would be no extra benefit gained from completing this
area within the feasibility study. As methods are already applied to the mounting straps and the
tank shell, these areas were marked down.

The second assessment was that the new technologies available would be able to solve both
a fluid and solid domain, so only analyses which would require this should be selected. As the
radiated noise could be completed without additional domain methods, this area was marked down.

The third assessment was that this project focuses on the application of a FSI method, thus
any additional CAE methods beyond the fluid and structure were deemed unnecessary. As the
strap and mounting analysis would require the addition of the fatigue code and the radiated noise
required then the analysis of the transfer of sound from the tank to the driver, these areas were
marked down.

The final assessment was the need to address issues within Jaguar Land Rover fuel tank design.
Here, it is desirable to analyse the effect of sloshing on internal components and the NVH issues
this causes. These areas are therefore marked up.

From table 7.3, it can be seen that the effect of sloshing on internal component durability has a
total of four, meaning that this is the analysis area on which the application of multi-physics methods
will have the most effect.

7.4.3 Scope and Requirements

The analysis of the CAE methods applied to the fuel tank revealed a need for an analysis to examine
the durability of the internal structures and components. This analysis would need to account for

150



Ta
bl

e
7.

1:
Fu

el
ta

nk
C

A
E

Li
st

s
1
s
t

D
es

ig
n

Ite
ra

tio
n

2
n
d

D
es

ig
n

Ite
ra

tio
n

3
r
d

D
es

ig
n

Ite
ra

tio
n

D
es

ig
n

Ve
rifi

ca
tio

n
In

iti
al

pr
es

su
re

/v
ac

uu
m

cy
cl

in
g

an
al

ys
is

of
fu

el
ta

nk
(s

up
pl

ie
r/

in
-h

ou
se

)
P

re
ss

ur
e/

va
cu

um
cy

cl
in

g
an

al
ys

is
of

fu
el

ta
nk

re
pe

at
ed

In
iti

al
st

re
ss

/s
tra

in
an

al
ys

is
of

fu
el

ta
nk

(s
up

pl
ie

r/
in

-h
ou

se
)

S
tre

ss
/s

tra
in

an
al

ys
is

of
fu

el
ta

nk
re

pe
at

ed
In

iti
al

bl
ow

m
ou

ld
si

m
ul

at
io

n
of

fu
el

ta
nk

(s
up

pl
ie

r)
B

lo
w

m
ou

ld
si

m
ul

at
io

n
of

fu
el

ta
nk

re
pe

at
ed

,
in

cl
ud

in
g

in
iti

al
as

se
ss

m
en

t
of

ca
rr

ie
r

ov
er

-m
ou

ld
in

g
(if

ap
pl

ic
ab

le
)(

su
pp

lie
r)

B
lo

w
m

ou
ld

si
m

ul
at

io
n

of
fu

el
ta

nk
re

pe
at

ed
,

to
fin

al
is

e
ca

rr
ie

r
ov

er
-m

ou
ld

pa
ra

m
et

er
s

(s
up

pl
ie

r)

In
iti

al
N

V
H

/s
lo

sh
ev

al
ua

tio
n

of
fu

el
ta

nk
N

V
H

/s
lo

sh
ev

al
ua

tio
n

of
fu

el
ta

nk
re

pe
at

ed
(in

iti
al

ta
nk

in
te

rn
al

fe
at

ur
es

ad
de

d,
e.

g.
ba

si
c

m
od

el
s

of
ba

ffl
es

,
FD

M
)

N
V

H
/s

lo
sh

ev
al

ua
tio

n
of

fu
el

ta
nk

re
pe

at
ed

,
us

in
g

la
te

st
in

te
rn

al
ch

ild
pa

rt
m

od
el

s

In
iti

al
cr

as
h

w
or

th
in

es
s

an
al

ys
is

(fu
el

ta
nk

,f
ue

lfi
lle

r,
fil

te
rs

)
C

ra
sh

w
or

th
in

es
s

an
al

ys
e

re
pe

at
ed

C
ra

sh
w

or
th

in
es

s
an

al
ys

es
re

pe
at

ed

V
ib

ra
tio

n/
m

od
al

an
al

ys
es

to
ve

rif
y

m
ou

nt
in

gs
de

si
gn

an
d

fix
in

g
po

in
t

lo
ca

tio
ns

V
ib

ra
tio

n/
m

od
al

an
al

ys
es

re
pe

at
ed

Ta
bl

e
7.

2:
R

ev
is

ed
fu

el
ta

nk
C

A
E

Li
st

s
1
s
t

D
es

ig
n

Ite
ra

tio
n

2
n
d

D
es

ig
n

Ite
ra

tio
n

3
r
d

D
es

ig
n

Ite
ra

tio
n

D
es

ig
n

Ve
rifi

ca
tio

n
In

iti
al

cr
as

h
w

or
th

in
es

s
an

al
ys

is
(fu

el
ta

nk
,f

ue
lfi

lle
r,

fil
te

rs
)

C
ra

sh
w

or
th

in
es

s
an

al
ys

e
re

pe
at

ed
C

ra
sh

w
or

th
in

es
s

an
al

ys
es

re
pe

at
ed

In
iti

al
bl

ow
m

ou
ld

si
m

ul
at

io
n

of
fu

el
ta

nk
(s

up
pl

ie
r)

B
lo

w
m

ou
ld

si
m

ul
at

io
n

of
fu

el
ta

nk
re

pe
at

ed
,

in
cl

ud
in

g
in

iti
al

as
se

ss
m

en
t

of
ca

rr
ie

r
ov

er
-m

ou
ld

in
g

(if
ap

pl
ic

ab
le

)(
su

pp
lie

r)

B
lo

w
m

ou
ld

si
m

ul
at

io
n

of
fu

el
ta

nk
re

pe
at

ed
to

fin
al

is
e

ca
rr

ie
r

ov
er

-m
ou

ld
pa

ra
m

et
er

s
(s

up
pl

ie
r)

In
iti

al
sl

os
h

ev
al

ua
tio

n
of

fu
el

ta
nk

ba
se

d
up

on
ea

rly
in

te
rn

al
ge

om
et

ry
to

de
te

rm
in

e
ne

ed
fo

rb
af

fli
ng

S
lo

sh
ev

al
ua

tio
n

to
de

te
rm

in
e

po
ss

ib
le

da
m

ag
e

to
in

te
rn

al
co

m
po

ne
nt

s
ba

se
d

up
on

de
ta

ile
d

C
A

D
of

in
te

rn
al

co
m

po
ne

nt
s

S
lo

sh
ev

al
ua

tio
n

fo
r

N
V

H
ba

se
d

up
on

de
ta

ile
d

ta
nk

th
ic

kn
es

se
s

S
lo

sh
ev

al
ua

tio
n

fo
r

du
ra

bi
lit

y
of

m
ou

nt
in

gs
P

re
ss

ur
e/

Va
cu

um
cy

cl
in

g
an

al
ys

is
of

Ta
nk

P
re

ss
ur

e/
va

cu
um

cy
cl

in
g

an
al

ys
is

of
fu

el
ta

nk
re

pe
at

ed
*

S
tre

ss
/s

tra
in

an
al

ys
is

of
ta

nk
S

tre
ss

/s
tra

in
an

al
ys

is
of

fu
el

ta
nk

re
pe

at
ed

151



Table 7.3: Pugh selection matrix for multi-physics project
Existing Technology Additional Current Total

Methodology Availability CAE Required JLR Need
Tank Shell Durability 0 1 1 0 2
Tank Strap Durability 0 1 0 0 1
Internals Durability 1 1 1 1 4

Radiated Noise 1 0 0 1 2

the loading that occurs when the fuel is sloshed. This loading can cause internal components in
the tank to fail, causing the vehicle customer to be dissatisfied. Currently there is no standard CAE
method in place to analyse this issue.

Fuel sloshing occurs with most vehicle manoeuvres. Intensity of direction, velocity and acceleration
changes during these manoeuvres will affect the levels of sloshing within the tank. The loading
changes on the internal tank components caused by different events should be assessed, along
with tank conditions that could have significant effects on the internal components.

This analysis aims to find the best multi-physics approach for assessing the durability of internal
tank components exposed to fuel slosh. The scope of this analysis will include all internal components.
The analysis will not include NVH issues, nor the assessment of durability of the fuel tank shell or
external components of the fuel tank system. The software to be used will be limited to current
availability and expertise within powertrain CAE. However, within these restrictions, any viable
method can be explored.

Fuel System Design Team

The Critical-To-Quality (CTQ) requirement for the fuel system design team is that the analysis
should provide an accurate and timely result to enable data driven design. As a stand alone tool, this
means that the analysis method will need to be completed within the virtual series loop. This gives
the requirement that the CAE process must report out within eight weeks of the job request[141].
Within an MAO method, the analysis will need to be repeated a number of times when building the
attribute metamodel, the sampling must be completed within the MAO project time.

Vehicle Customer

The CTQ requirement for the vehicle customer is ensuring that the structural integrity and safety of
the internal components within the tank are not compromised due to the sloshing of the fluid during
road usage. The assessment of structural integrity requires that the analysis examines metrics
related to component failure, for example stress, strain and safety factors. The analysis must also
be able to incorporate road acceleration load data as an input, to ensure that customer usage is
modelled.
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Powertrain CAE Team

The CTQ for the powertrain CAE team is to deliver an accurate and timely analysis that uses an
acceptable amount of resources. The CAE method should be able to measure the desired attributes
and must be robust enough to meet the model requirements. The resource metrics here will be the
usage of computer cores, software licences, solver runtime and engineering hours. The accuracy
will be dependent on the type of analysis used and the parameters specific to each code. However,
these represent a trade-off; increased accuracy will use a greater amount of resources and will
greatly effect the timeliness of the reporting out.

7.4.4 Summary

From these requirements it is clear that there are two issues that need to be addressed before any
application of a fluid structure interaction method can be applied to a full tank geometry. Firstly the
correct boundary condition needs to be explored to ensure that the inputs requirement is met. And
Secondly, the stability and accuracy of the various coupling methods available must be investigated.
This is to ensure that the methods can predict the required attributes robustly. The first issue is
addressed in appendices D and E, the details of which are summarised below. The investigation
into available multi-physics methods forms the remainder of this chapter.

The current Jaguar Land Rover approach to free surface analysis is to use the Volume of
Fraction (VoF) model within StarCD. To justify this approach, a correlation study was carried out.
The work and results of this is presented in Appendix D. While full correlation could not be achieved
due to issues with the accelerometer used, the work did show that the VoF method could predict
pressure loading of the correct magnitude.

The assessment of multi-physics methods requires the evaluation of fuel slosh load cases that
are representative of vehicle use. A boundary condition exploration was conducted on a simplified
fuel tank with an internal baffle. The approach and results of this exploration is presented in
Appendix E. This study established that the worst case scenarios for fuel slosh was a 16 KpH
frontal crash for single event loading and Kerb Island Strike for multiple event loading. The maximum
loading in these events occurred with a 60% fill volume.

7.5 Approach to Multi-Physics CAE Evaluation

There are a number of multi-physics methods available for use within the current Jaguar Land
Rover tool-set. This section will describe the approaches and define the steps required to assess
the degree of coupling required.

Previous work in Jaguar Land Rover had examined the application of acoustical elements for
fluid slosh in Abaqus. This method was used in the assessment of fatigue of external components,
such as the fuel tank straps and mounting points [131]. This method applied prototype testing
event data to a finite element model of a fuel tank, internal and external components and used
acoustic elements to model the fuel. Closer inspection of the acoustical element revealed that the
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acoustical elements were not suitable for large deformation, non-linear or hydrostatic fluid structure
interactions [132]. This means that for the assessment of internal component durability this method
would not be able to capture the loading caused by the fluid flow around the tank. A different
approach was required.

At the time of this project there were four possible methods that can be used to assess the
structural integrity of fuel tank components. These were:

1. An un-mapped un-coupled method, where the surface pressures generated by the CFD model
are exported and applied to a structural model of the fuel tank internal components. Each
model was run in isolation and sequentially. First the surface pressures were obtained for the
whole load case, then applied to the structural model. As this method does not require any
specialist simulation software, additional programming or support for communication between
the simulations, it was the simplest to use. However, the un-mapped un-coupled nature meant
that it would also be the least accurate.

2. The CFD code StarCD includes a finite volume solid domain model. In this simulation method,
both the fluid and solid domains are modelled within StarCD and the pressures on the boundaries
of the fluid domain are used to calculate the stress and deflection of the solid domain.
However, these deflections are not used to move the fluid domain. This method is an example
of a single multi-physics code with a one way couple approach. This means the method is
most suited to applications with only small solid deflections. As Most specialised solid domain
solvers use the finite element approach, the finite volume approach to the solid domain may
not be the most efficient or accurate.

3. The StarCD-Abaqus Direct Coupling method is an example of a two code approach where
domain specific solvers are used, an Eularian finite volume approach for the fluid and a
Lagrangian finite element for the solid. The direct coupling method can operate as both a
one way couple or a fully coupled approach. The one-way coupling approaches, here fluid
to solid for stress and deformation and solid to fluid for thermal multi-physics analyses, are
applicable for small deflections. This is extended to the fully coupled approach using the
mesh-morphing capability in StarCD for large deformation. This method requires two models
and additional resources to support the communication between the codes, however, using
domain specific solvers means that no accuracy or efficiency sacrifice has been made for
either domain.

4. The Abaqus Combined Eularian (CEL) method is a single code, fully coupled multi-physics
approach. Within this method the fluid is modelled by a simpler Equation of State rather than
the full Navier-Stokes equations. This means that there is a compromise on the fluid modelling
which may effect the accuracy. However, this approach requires only a single model which
covers both domains meaning that there are no additional solver requirements.

The first step in evaluating the multi-physics CAE methods was to understand the requirements
for using more advanced methods. As both the direct couple and CEL method show significant
disadvantages in overall costs (modelling, setup and running), the uncoupled method would be

154



first used. This is due to the speed and simplicity of the method. By examining the deformations
and structural behaviour of a test case, the need for fully coupled methods can be evaluated. To
support this evaluation the two high load cases (kerb island strike and 16KpH frontal crash) and
the simplified fuel tank and baffle were used in the assessment of the unmapped and uncoupled
multi-physics methods.

7.6 Unmapped & Uncoupled Analysis Case Study

The average pressure loading on each of the individual surfaces on the baffle was output from the
StarCD models in the engineering data file. These pressures could be applied to a simple finite
element model of the baffle in an uncoupled approach. This section details the model setup and
results of this investigation. The aim of this section is to explore the need for fully coupled methods
given the example loadings from the fuel slosh study.

7.6.1 Finite Element Model and Pressure Loading

The baffle surfaces from the CAD model were imported into Abaqus CAE viewer. The solid volume
was then meshed with polynomial tetrahedral elements at an approximate size of 3mm, which
allowed three elements to be placed across the baffle thickness. The four baffle feet were given
non-displacement boundary conditions in the three principal directions locking the baffle in position.
The material selected for the baffle was high density polyethylene which has a density of 876
kg/m3, a Young’s modulus of 903.114 MPa and a Poisson’s ratio of 0.39. The model was assumed
to remain linear elastic as this allowed for a simpler model.

The pressures from the StarCD model needed to be applied to the individual surfaces on the
finite element model of the baffle. This was done by creating surface sets and applying a pressure
load boundary condition on that surface. Each surface then had its own boundary condition that
allowed the pressures through the simulation to be varied using the *amplitude card within Abaqus.
A Matlab script was required to extract the pressure data from the StarCD engineering data file
and put it in the correct format for these *amplitude cards. This Matlab script also computed a
running average on the data to reduce the number of increments in the finite element model. For
the kerb island strike the 7000 StarCD timesteps were reduced to 200 increments in Abaqus using
an averaging factor of 35. For the 16 kph crash case the 20,000 StarCD timesteps were reduced to
400 Abaqus increments using an averaging factor of 50.

To assess the need for a fully coupled analysis of the load cases, the deflection of the baffle
needed to be measured throughout the duration of the simulation. To achieve this, the displacement
of all nodes was saved into the simulation output database every 5 increments. The model was run
in Abaqus standard using the *dynamic card to control the time increments. The use of Abaqus
CAE as a preprocessing tool means that the input deck was automatically written.
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7.6.2 Results

The deflections of the baffle are taken at the four points shown in Figure 7-1. For point D, the x-
directional deflection will be of the greatest interest, while the y-directional displacement is examined
at points A, B and C.

Node A

Node B

Node C
Node D

Figure 7-1: Deflection sample locations

Kerb Island Strike

Figure 7-2 shows the deflections of the baffle in the x and y directions along with the load applied
during the kerb island strike case. It can be seen that the maximum deflection is less than 1 mm
away from the starting point in any direction. The deflections also follow the loading and do not
show any vibrational behaviour. This small, steady deflection would not displace the first layer of
cells in a fluid mesh. Hence, the application of a fully coupled fluid structure interaction may not be
appropriate.

16 KpH Crash Case

The displacements from the 16 kph crash case demonstrate the need for a fully coupled method.
Figure 7-3 shows maximum deflections of 12 mm in the x direction and 14 mm in the y direction.
This displacement is greater than the base mesh size within the fluid models. The displacement
also shows some vibrational behaviour, this is clearly seen in the x direction and as the load is
released in the y direction. In reality, the fluid surrounding the baffle would have a dampening effect
on this behaviour. This effect cannot be included in an uncoupled or single directional (fluid to solid)
coupled method. It can be seen that for this tank and baffle combination undergoing the 16 kph
crash loading, a fully coupled method is required.
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Figure 7-2: Kerb island strike deflection and loading for x (top) and y (bottom) directions
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Figure 7-3: 16 Kph crash deflection and loading for x (top) and y (bottom) directions
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7.6.3 Summary

The aim of this experiment was to assess the need for fully coupled methods to assess the durability
of internal components of the fuel tank when exposed to fluid slosh. For this two cases were tested.
The first of these, Kerb Island Strike, had lower loading forces but the event could be repeated
many times during the vehicle usage, while the second, the 16 KpH crash case, was an example
of single event shock loading.

In the first case the internal baffle in the fuel tank experienced only a small deflection meaning
the application of fully coupled methods would not be beneficial for the additional costs involved.
Whereas the high deflection and vibrational behaviour exhibited in the 16KpH crash case indicated
that a fully coupled solution would be required. While the requirements for different degrees of
coupling between these two cases are clearly visible in the results, it is unclear where the switch
over point between different coupling approaches occurs. This should be the subject of future
investigations.

However in this project, the unmapped and uncoupled method was shown not to be applicable
for cases of high deformation and vibrational behaviour, but this result also rules out the use of
the StarCD finite volume solid solve approach. This is because this method only uses a one way
coupling approach meaning the damping effect of high deformation would not be captured. This
case requires a fully coupled domain approach to capture the large deflections and vibrational
behaviour interaction between the fluid and solid domains. The fully coupled methods available
to this project were then tested to see the fluid structure interaction in the 16 KpH crash case is
captured.
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7.7 Multi-Physics Analysis Methods

The project was constrained to use multi-physics methods available within standard Powertrain
CAE codes. This limitation meant that only two approaches could be taken to model the fully
coupled fluid structure interaction analysis. Firstly, a two code direct couple approach between
StarCD version 4.08 and Abaqus version 6.8EF, and secondly a single code Combined Eularian
Lagrangian approach in Abaqus 6.8EF. As these approaches were both new, the first step was to
assess the methods for the key requirements of any CAE analysis, stability and accuracy. As the
direct software couple used well understood single domain solvers, the focus was on the stability of
the coupling method. The CEL method featured a new equation of state model for fluid dynamics,
this is much simpler than the full Navier-Stokes equations solved in most CFD methods. This was
tested to ensure that it could accurately predict the free surface and pressure within the fluid and
on the surfaces. The stability of this method also needs to be established. In order to assess these
methods, simplified cases were generated that represented the requirements of the case. These
models were developed from models provided by the software vendors.

7.7.1 Star-CD & Abaqus Direct Couple

The StarCD/Abaqus direct couple is an explicit code where information between the two distinct
domains is shared only at timesteps. The surface pressures are output from the Star-CD fluid
domain and mapped onto the appropriate solid surfaces. The solid domain is then solved and the
deformation of the surface is written to a file. The mesh in the fluid section then needs to be moved
accordingly, this is achieved using mesh morphing techniques within ProStar.

CD-Adapco provided a proof of technology model that featured air flowing through a duct and
encountering a flexible baffle [142]. This case was then developed to make the model more
representative of the fluid sloshing within the fuel tank. The tank was assumed to be a 3D rectangular
box, featuring a solid baffle. The VoF method was implemented as in the load case study (see
Appendix section E.3) and was assumed to be 50% full of diesel fuel. The geometry setup is shown
in Figure 7-4. To simplify the model, all additional fluid models such as turbulence and surface
tension were removed. A small load would be applied to the fluid by implementing the tip case
via sormom.f (see Appendix F.1). The mesh morphing was implemented using the events method
within StarCD. This called a ProStar sub-routine which moved the mesh in the baffle region. This
sub-routine was provided by CD-Adapco for the proof of technology model and modified to suit this
case, the code is shown in Appendix F.3. The necessary Abaqus deck commands for coupling are
given in Appendix F.4. The force on the baffle was captured within the engineering data file and was
used to examine the progression of the simulation. The baffle was modelled as linear tetrahedral
elements to ensure that the mapping of the surfaces occurred without error. The material for the
baffle was assumed to be the the same high density polyethylene used in the uncoupled case.

As a comparison, the model without the direct couple was completed for 0.2 seconds with a
timestep of 0.001 seconds. The coupling was then engaged for this model and the results shown
in Figure 7-5. It can be seen that the initial predictions of the force on the baffle from the coupled
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Figure 7-4: The geometry and fluid fill conditions used in the direct couple assessment

case agree with the loading in the fluid only case. However, after approximately 0.15 seconds
the loading on the baffle began to oscillate and eventually diverged. In order to understand this
instability two further cases were investigated. In case 2 (Figure 7-6) the timestep was reduced to
0.0005 seconds. This showed a greater amount of instability and again the solution diverged. In
the final case the material of the baffle was changed to steel with a density of 7860 kg/m3 and a
Young’s modulus of 200 GPa. This case was shown to be stable throughout the duration of the
simulation as shown in Figure 7-7. These issues were referred back to CD-Adapco support for
discussion.

The issue displayed in the results is that increasing the density of the fluid compared to the solid
causes the program to diverge. Discussions with CD-Adapco confirmed that this occurs due to the
explicit method used to communicate surface pressures and deformations [19]. As the simulation
increments from one timestep to the next, the solid boundary face will be displaced by a small
amount. This displacement will cause a rebounding force as the fluid opposes this motion. If
the density of the fluid domain is small (e.g. air) then this force is small when compared to other
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Figure 7-5: Comparing the coupled model to the fluid only model
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Figure 7-6: Comparing the coupled model with a reduced timestep to the fluid only model
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Figure 7-7: Comparing the coupled model with a steel baffle to the fluid only model

loadings within the simulation and does not cause a problem. However, if the density of the working
fluid is much larger, then for the same volume of displaced fluid, a much larger rebounding force will
be generated. This causes an unrealistic rebounding effect. These oscillations steadily increase
until the simulation fails. This explains why stability was found in the case completed with the
steel baffle. Further reductions in the timestep could be used to keep the model stable. However,
the limit of stability will be dependent on the loading and deformation and may change during the
simulation. The conclusion was that this approach is not suitable for applications where the density
of the fluid region approaches that of the solid region. The problem has been confirmed with the
vendor (CD-Adapco), whom have since changed the usage guidance and are developing a new
approach to analyse such cases[19]. However, the direct couple could be used for applications
of air-solid coupling. Such applications are beyond the scope of this project but should be part of
future research.

7.7.2 Abaqus Combined Eularian Lagrangian

The CEL method within Abaqus is a very different approach to modelling fluid structure interaction.
The fluid is modelled by a simpler equation of state in an Eularian mesh. However, the interaction
with the solid domain is not modelled by morphing the mesh to conform to the Lagrangian solid.
Instead the Lagrangian meshes are able to pass through the Eularian domain. This approach
reduces the mesh distortion in high deformation cases. A VoF method is used to track the fluid
material interfaces and the interactions defined by the general contact rules within Abaqus.
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Figure 7-8: CEL test case geometry

As the fluid module within Abaqus is new it was tested on a representative test case to ensure
that hydrostatic pressures and free surfaces can be predicted. The case selected was a baffle
with dimensions of a similar order of magnitude to those seen on the internal components of fuel
tanks. The geometry for the test case is shown in Figure 7-8; the radii at the base and top end
of the baffle were 15 mm and the baffle was 150 mm tall. The Eularian mesh size was set to 3
mm as guidelines suggest that radii feature five mesh elements for a right angle. Also, this was
a reasonable representation of a locally refined mesh in a StarCD model. The CEL model was
defined using the example given in the tutorial documentation [134]. For model simplification, the
solid was set as a rigid body which would not deform but act as a wall. It is meshed using 3mm
poly hexagonal elements. The water was defined as an equation of state of type Us − UP with a
EoS shear property. This required the fluid density, speed of sound and viscosity to be defined. As
water is used in this case, the density was 1000 kg/m3, the speed of sound was 1483 m/s and
the viscosity was 0.001 kg/ms. The contact between the solid and fluid was modelled as rough
friction and all exterior contacts were included. The initial water volume was defined using the
volume fraction tool within Abaqus. Here, a part with the same shape as the initial volume of fluid
was used to define what fraction of fluid each mesh element contained. Zero velocity boundary
conditions were applied to Eularian mesh to prevent fluid leakage, encastre boundary conditions
on the base of the baffle and gravity loading on the fluid. To enable the solved free surface and
pressures to be examined the VoF and average pressure in the Eularian domain were output to the
results database. The simplified Abaqus Deck for this problem is supplied in Appendix F.5. The
pressures and VoF free surface for this model are displayed in Figures 7-9 and 7-10 respectively.
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Figure 7-9: Eularian mesh pressure distribution

As gravity is applied as a boundary condition, the pressure should increase with depth according
to ρgh, but the pressure distribution shown in Figure 7-9 shows just noise with no discernible
graduation. The prediction for the free surface is also poor, it can be seen that the instability
increases throughout the duration of the simulation. These issues were raised with Simulia support
in an attempt to find the cause and solution. The following issues were found with this model[20]:

• The simplified model featured a 3 mm mesh which was intended to be representative of the
potential refinement required to capture internal tank geometry. This mesh size is small and
can represent much higher frequency content. Any pressure noise would be dampened by
larger elements in the mesh but small meshes will transmit this information. These small
elements not only slow the simulation down but also cause instability.

• The use of rough friction introduces further noise to the system and should not be used with
the small meshes.

• The formulation of the CEL method allows some fluid to penetrate the solid domain. A penalty
constraint method is then used to enforce the solid boundary. This pushes the fluid back into
the Eularian domain. When the model is initialised with some fluid penetration, the resulting
correction of over closure can result in additional fluid velocity noise being added into the
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Figure 7-10: Free surface at time 0.0 (top left), 0.1 (top right), 0.4 (bottom left) and 0.45 seconds
(bottom right)

Eularian domain. Again, in this case the small mesh has transmitted this noise, resulting in
an unstable free surface. The usual solution for this is to add a fillet to the Lagrangian mesh
and locally refine the Eularian mesh to match the Lagrangian. As this model already has
a fillet which is meshed to the refinement guidelines, another approach needs to be taken.
Once this was raised with Simulia, a new Abaqus environment file was supplied that modified
the initialisation of the VoF surface, which remains untested at this time.

A final suggestion to improve all issues with the CEL model was to ramp the gravity boundary
condition on over time and allow the fluid in the tank to settle. However, this would substantially
increase the runtime of any simulation.

Unfortunately, due to the time constraints of the project and the timing of these discussions
with Simulia, the improvements remain untested in this case. However, from these discussions
it became clear that smaller mesh sizes affect the stability and robustness of the solution and
that larger meshes should be used[20]. This would mean that detailed geometry may not be
captured and the accuracy of the simulation would suffer. Another drawback of this method is the
Eularian meshing method. The element type and implementation mean that it cannot be formed
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into a conformal mesh for complex shapes, nor can the local refinement in areas of interest be
implemented easily. From this it must be concluded that the CEL method is not a feasible FSI
method for the assessment of durability of internal tank components at this time.

7.8 Discussion

The application of the direct StarCD-Abaqus couple and CEL methods have shown that the fully
coupled fluid structure interaction methods available in Jaguar Land Rover are not suitable for the
assessment of internal component durability in large shock events at this time. Due to this, the
relative merits of using a multiple or single code approach to fully multi-physics CAE for this case
could not be established. However, the one directional methods did show suitability for cases where
the deflection of the baffle was small and did not exhibit any vibrational behaviour that would be
dampened by the surrounding fluid. This could be applied to fatigue or NVH slosh evaluations
where lower loading forces are expected.

The aim of this project was to establish the additional costs and benefits of using a multi-physics
approach as a stand alone CAE tool as well as an attribute predictor in MAO projects. From the work
completed on MAO methods it can be seen that establishing the accuracy versus cost balance is
critical in metamodel based MAO projects, as the metamodel is sensitive to both error from unstable
or inaccurate CAE methods as well as the number of samples used. This project has examined
two ways to approach this balance; the first is the degree of coupling and the second the use of
multiple or single code approaches.

The experiment conducted using the two load cases and the uncoupled approach showed that
both the simpler uncoupled/one way and fully coupled approaches would have use in a multi-
physics analysis of a fuel tank. The uncoupled/one way approach can be used for small deflection
and a fully coupled when the solid movement is large. However, what was not detailed was the
switching point between choosing which approach to take. Determination of this would be vital in
the running of a multi-physics analysis as the degree of coupling has a large impact on the cost of
modelling. Resources could be wasted if a fully coupled approach was taken when only a one way
approach was required. The requirement for multi-physics methods should be assessed in further
research.

By using the two fully coupled approaches available to Jaguar Land Rover, the multi-physics
project aimed to allow the efficiency-accuracy balance between the domain specific coupled software
approach and the single multi-physics code to be examined. The direct couple would require two
models to be created; one in StarCD and the other in Abaqus. These would need to be solved
together in an approach that supported communication between the two software codes. As these
codes are specialised to solve that particular domain there would be less compromise with the
accuracy of the model. The single code approach requires only one simulation model for both
domains. However, with this there is a compromise on the accuracy of the fluid flow predictions
due to the simplified ‘equation of state’ model. As both these methods were not suitable for this
case, the impact of the single versus multiple code could not be assessed. Further work should be
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conducted to examine other multi-physics opportunities and methods, examples of which include:

1. Direct Couple: The examination of the fully coupled StarCD-Abaqus showed that this method
could be applied where there are large differences in the densities of the two domains, e.g. air
and plastic or liquids and steel. The need for fully coupled methods involving such materials
should be examined. The direct couple can also be used in a one-way coupling method.
Here the pressures or temperatures can be mapped to an Abaqus model, but in this case the
structural deflections are not used to morph the mesh leaving the shape of the fluid domain
constant. This method would only have applicability in cases of small deflection. A guide
for what constitutes small deflection suggested by this work would be where the maximum
deflection is less than the general cell size used in the fluid mesh and where no oscillating
behaviour is present.

2. CEL Multi-physics: The cause of the poor pressure prediction was found to be the transmission
of noise through the fluid domain due to the small elements used to represent the geometry.
This also contributed to the unstable free surface prediction along with the penalty constraint
resolution for fluid penetration. Simulia support advised the use of larger elements and
released upgraded environment files to fix fluid penetration in the initialisation of the model
which remain untested at this time. The use of larger elements may prohibit assessment of
slosh loading on internal tank components as the small elements would be required to capture
the geometrical detail. However, the application to tank shell assessment, where geometrical
features are larger, requires further investigation. This should also include an assessment of
the updated software code.

3. Un-coupled or One-way Coupled Methods: The manual transfer of pressure data from the
StarCD model to the Abaqus model was an example of an uncoupled FSI method. The next
step on from this is to use a mapped transfer of pressure data. While this could still be
achieved by manual means, (by writing out data files with location and pressure data for each
cell and applying it to a structural model,) the use of one-way couples is more attractive as
this process would be automated. Examples of one-way couples are the finite volume solid
solver within StarCD/CCM+ and the direct couple (when the deflections are not used in mesh
morphing). These could be applied in sloshing cases where the deflection is small, meaning
there is little deformation into the fluid domain. In the fuel tank analysis, this could include NVH
and external tank applications. These two methods also offer an opportunity to investigate
the efficiency-accuracy balance of a two-software code approach and a single multi-physics
approach. In this application the compromise for accuracy is made in the finite volume solid
solver and would need to be compared to more widely used finite element methods.

4. Other Codes: One of the restrictions placed on the project was to limit the fluid structure
interaction methods to preferred Powertrain software codes, primarily StarCD and Abaqus.
These methods have been shown to be unsuitable for the assessment of fuel tank internal
component durability, however, there is still a need to analyse the problem. Another line of
research that could be followed is to expand the CAE tool-set beyond those currently in use
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in Jaguar Land Rover Powertrain CAE. The literature shows examples of LS-Dyna [143] and
MSC-Dytran [144] being used for such applications. Also updates and new methods from
preferred vendors should be investigated.

7.9 Conclusions

Of the three methods applied to the multi-physics analysis of a fuel tank, only the uncoupled,
unmapped method was able to be used. This approach showed that it could be used for loads
which cause small deflections. However, the accuracy of the method is severely affected for high
load events such as the crash case. This event shows a high degree of deflection and cycling
behaviour which would be damped by the fluid, meaning for this load case a one way couple is
insufficient. From the experiments on multi-physics methods assessed in this chapter it can be
concluded that:

1. It is not feasible to use StarCD-Abaqus Direct couple or Abaqus CEL multi-physics codes to
assess the durability of internal components of fuel tanks.

• The explicit timestep in the direct couple approach means that it is unsuitable where
the densities of the solid and fluid domains approach each other. This has since been
referred back to the vendor and guidance for usage has been updated.

• The CEL errors stem from the use of small elements which transmit high frequency
noise through the fluid domain. This could be solved by using a larger mesh. However
this may compromise the ability of the model to capture the detail of the tank internal
structures. These issues were also returned to the vendor, whereupon new guidelines
and environment files were issued. These have yet to be tested within Jaguar Land
Rover.

2. While the analysis of fuel tank internal component durability cannot be assessed by these
methods, other applications and areas of work and research are:

• One-way coupled methods for fatigue life or NVH slosh evaluation. This could be a
further development of the uncoupled method or the application of the finite volume solid
solver in StarCD or the one-way coupling available in StarCD-Abaqus direct couple.

• Using the fully coupled StarCD-Abaqus fluid structure interaction method where the
working fluid is air. This would first need an exploration of application as completed
in the define stage of this project.

• Assessment of the new guidelines and environment files in Abaqus CEL to examine
improvement in performance.

As the multi-physics methods cannot be used for this application at this time, the assessment
of the benefits that such approaches bring to a multi-attribute optimisation architecture could not
be addressed. However examining the different methods it is possible to infer further research
questions that need to be addressed in more suitable applications.
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The various different methods addressed two different approaches to modelling multi-domain
problems. The direct coupling between StarCD and Abaqus represents a two model solution with
each model accounting for a specific domain. This would require two separate models (one CFD
and one FEM) plus additional architecture to support the communication between the two codes.
This would increase the cost of the approach. However, it uses tools specialised to the specific
domain meaning no compromise has to be made with regards to the accuracy of the model.

On the other hand, the Abaqus CEL approach is an example of single code, multiple domain
analysis technique, i.e. both the fluid and the structure are solved in a single model. While this is
cheaper in terms of modelling costs, a compromise is made in the modelling of the fluid. This may
not be as accurate.

Future projects examining multi-physics methods within multi-attribute architectures must address
this balance of the need for simulation accuracy versus the additional cost of such models. This
should include an assessment of the degree of coupling required in a multi-physics analysis, as this
has a large impact on the cost of a simulation. The degree of coupling used should be appropriate
to the case to balance both the accuracy of the simulation and the cost of completion. Further work
should be conducted on the switch over point between coupling methods.
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Part III

Project Closure
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Chapter 8

Discussion

8.1 Introduction

The aim of this chapter is to use the work completed in the airbox MAO problem and multi-physics
analysis of a fuel tank, to demonstrate the use of MAO methods as a systems engineering tool. This
chapter will then use an automotive case study to understand the potential application of a MAO
systems engineering tool. Finally, further research areas to improve MAO as a systems engineering
tool are detailed.

8.2 MAO Methods as a Systems Engineering Tool

In this section, the use of MAO as a systems engineering tool to enable improved design is
discussed. Firstly, a review of the MAO method is given, detailing the MAO process. From this,
key contributors for using a MAO tool are identified. Each of these is then discussed in turn. Where
applicable, further work to improve the MAO contributors is given.

8.2.1 The MAO Method

The MAO of an automotive airbox used a metamodelling approach to trade-off three attributes. The
process and findings of this approach were discussed in Chapters 4 to 6. Using these chapters as
a guide, the metamodel based MAO method can be summarised by the flow diagram presented in
Figure 8-1. This diagram shows the key contributors and processes that occur in the creation and
use of metamodels in a MAO method.

A MAO project should begin with the definition of the key design attributes, the contributing input
variables with appropriate ranges and the requirements and constraints of the design. In the airbox
optimisation these were identified by using a systems engineering P-Diagram (see Figures 4-2 and
4-3 on pages 79 and 80). This tool identifies the inputs, control factors, noise factors, error states
and the required function of the system to be designed. With this understanding of the system, the
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engineer can then focus the optimisation on the most important issues and control factors. From
this, the key attributes and their control factors can be established, along with the requirements and
constraints for the attributes and design parameters that will be used in the optimisation.

Once the key attributes and inputs of the system to be designed have been established, the
parameterised CAD and the CAE analysis methods need to be defined. As multiple attributes may
require multiple CAE models, the CAE build process may need to be repeated a number of times.
There may also be changes to the parameterised CAD model to reflect the use of multiple models,
i.e. the CAD model may have to produce a number of geometries in different formats. The CAE
build process is required to investigate the suitability and stability of the analysis setup to ensure
robust application of the model to the entire feasible design range. In the airbox project, this was
completed by using a number of example airbox designs that were judged to be the worst case
scenario. The airbox project also showed how methods of automation can be used to increase the
efficiency of the analysis process. For the StarCD CCM+ model, automation was achieved through
the use of java scripts which were applied to set up the CFD model. The use of automation for
Ricardo WAVE was limited to the geometry definition for the WaveBuild3D models. The ability to
use automation methods should be examined and the processes set up alongside the initial CAE
build processes.

Once the CAD, CAE and automation methods have been defined, the sample size and distribution
must now be set. At this point, the approach to the accuracy versus sample cost must be defined.
When metamodelling based MAO methods are used within a design environment, there may be
constraints on the time or resource usage, limiting the number of samples that can be taken.
However, for confidence in the metamodel, a larger sample size may be required. The setting of the
sample size may require a trade-off process. Using information from the initial CAE model builds
and an engineer’s experience, the cost and time of running the CAE models can be estimated.
From this, estimation combined with guidance on the sample size required, the total cost and
runtime of the metamodel sample can be estimated. However, if the cost and runtime is greater
than is available, the inputs to the project must be adjusted to allow the cost to be reduced. The
adjustment may be to remove one or more of the attributes or controlling factors. This cost and
runtime analysis must also include the definition of the approach taken to estimate the error in the
metamodel as this also represents a conflict between cost and accuracy. Finally, the estimation
of the sample cost may also need to consider the potential need for further re-sampling methods
should the initial sample prove insufficient.

The next stage is to complete the initial sample and generate the metamodel for each attribute.
To have confidence that the metamodel can be used within the MAO method, the error must be
assessed. From this, the need for further sampling is determined. In the airbox project, a number
of re-sampling methods for the NVH attribute were explored. Firstly, the use of the Lipschitz sampler
available in modeFRONTIER and then secondly, a larger latin hypercube was applied enabled by
a simplification of the CAE. While the application of these methods did reduce the error in the
NVH metamodel, large errors in fit were still present resulting in low confidence in the accuracy of
the metamodel. However, in this case the project proceeded to examine multi-attribute trade-off
methods. For other MAO projects, the re-sampling methods should be used to reduce the error to
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an acceptable level. From this, the metamodels can then be used to optimise the design.
To find the optimum design, the design space needs to be explored. The airbox project used

a number of exploration techniques to understand the effects of the main parameters on design
and the trade-offs within the design space. Use of single-attribute optimisation techniques enabled
the maximum potential performance to be established. However, the designs did not represent the
best attribute trade-off. To enable the multi-attribute trade-off in the airbox the NSGA II algorithm
was applied to the metamodels, this enabled the pareto set to be calculated. These were then
sorted using visualisation and decision method techniques to find the optimum airbox for all three
attributes. These techniques to find the optimum trade-off design were guided by the requirements
and constraints defined at the start of the project.

The final step in the MAO method is to verify the optimum. This can be accomplished using the
same CAE methods or by prototype testing.

8.2.2 MAO Method Contributors

From the description of the MAO method it can be seen that there are a number of key contributors.
The role of the CAE methods, the sample size and distribution method (including re-sampling
techniques), metamodel selection, error estimation and automation of the process can all have
a significant effect on the outcome of a project.

CAE Methods

CAE methods must represent a balance between accuracy and cost. Higher sampling costs will
reduce the number of samples that can be obtained, however lower cost models may not be able
to capture the system behaviour adequately.

In single attribute optimisation, the main effects plot can be used to drive the optimisation in
the correct direction. While there is low confidence that this will result in the global optimum, the
design will be moving towards this point. However, when multiple and conflicting attributes need to
be considered, the metamodel surfaces need to be as accurate as possible so the trade-off region
is correctly defined. The CAE methods have a large influence on the accuracy of a metamodel.

When selecting the CAE models to use, the estimated sample size must be considered in order
to find the most accurate system metamodel for the lowest cost. This can be seen with the Ricardo
WAVE methods used in the airbox project to predict the NVH metric. The manual WaveMesher
method represented a high setup cost and could not be applied when the number of samples
needed to be increased. Thus, a lower cost, WaveBuild3D model was utilised. This method
simplified the airbox designs down to a simple volume and set of pipes, with more complex features
such as bell mouths and fillets removed, allowing automatic generation of the airbox geometries.
This may have affected the accuracy of the result, but did allow more designs to be tested in a
shorter space of time.

The requirement for increased accuracy for attributes which cross traditional analysis domains
was identified as part of MDO methods[18]. Such multi-physics approaches represent an increase
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in modelling cost as multiple domains must be included in the simulation[17]. This can be achieved
by either coupling domain specific codes, requiring multiple models and support for the data exchange,
or a single multi-physics code which solves both domains within a single software[103]. In this
thesis, the multi-physics analysis of a fuel tank was used to examine the relative benefits and costs
of using such methods. However, due to the unsuitability of the available software codes for the
selected application, a direct discussion of using multi-physics CAE methods as an enabler for MAO
cannot be completed at this time. Despite this, some relevant issues were raised in this part of the
work.

Part of the Multi-Physics examination was to look for the degree of coupling required to assess
the durability of internal fuel tank components. This found that for the Kerb Island Strike load case,
the deformation of the structure was small, requiring a one-way couple, but the large un-damped
deformation exhibited by the baffle structure in 16 Kph Crash case would require a more expensive,
fully coupled solution. This raises important questions about the switch over point between various
coupling levels in a multi-physics approach. When using multi-physics methods as an enabler to
MAO, the requirement for coupling must be assessed. The coupling level must be appropriate
to capture the attribute behaviour as well as for cost. Establishing heuristics to guide transition
between the different degrees of coupling should be one area of further research.

The work on the multi-physics methods also showed some of the potential dangers of using
new CAE methods in MAO projects. Both the CEL and direct coupling methods were not ready for
application to fuel tank sloshing problems within powertrain CAE. These methods were unstable
in this application or had poor accuracy on attribute prediction. An optimisation process based on
such methods would fail. One recommendation for future MAO projects is that only mature and
validated analyses are utilised in an optimisation process.

The StarCD CCM+ also demonstrated another important issue with using attributes predicted
by CAE methods. Any errors or convergence issues in the CAE will contribute to the error in the
metamodel. In the airbox project, this is demonstrated by airbox designs 9 and 13 in the initial 33
latin hypercube sample (see Table 5.7 on page 117). When the pressure loss attribute for these
designs was captured over the last 200 iterations of the simulation, the attribute value varied by
over 3%. This convergence issue occurred due to poor resolution of the flow within some region
of the mesh and may have contributed to the poor fit of the metamodel in the design space around
this sample. The root cause of this was the strategy used for meshing the CFD models.

The meshing method was derived by a trial and error approach to ensure stability on the worst
case scenario for the airbox design. The finalised meshing strategy represented a balance between
the runtime and the stability of the CFD model. The approach was then tested on a number of
designs before application to all cases in the latin hypercube. However, this generic ‘one strategy
fits all’ approach led to a number of designs displaying high amounts of variation in the attribute
values. Thus when the CAE approach is developed, it must be robust in all regions of the design
space. Again this emphasises the fact that stable and known CAE methods should be used for
MAO projects.
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Sampling Size for a Metamodel

The discussion of the MAO method showed that the setting of the sample size was important for
both the accuracy of the metamodel and controlling the runtime and resource cost of the project. If
the sampling number is too low, then the attribute behaviour may not be captured, too high and the
project may not be able to be completed within the constraints of the design environment. However,
setting the sample size is not straightforward as the complexity of the attribute behaviour within the
design space is unknown.

The approach taken in the literature to estimate the attribute behaviour complexity is based
on the number of inputs with various multiplication factors applied. The largest sample size given
by Jin, Chen and Simpson[12], was based upon methods required to solve the unknowns for the
quadratic regression model. A sample size of ten times the number of inputs was suggested by
Wang and Beeson for practical applications of metamodelling[14]. Smaller sample sizes have been
suggested by Jin, Chen & Simpson[12], Kaufmann[13] and the minimum sample approach used
in Ford[97]. When testing the performance of various metamodelling approaches Jin, Chen &
Simpson[12] used the regimes defined in Table 8.1 along with the minimum sample size defined by
Gromping at Ford[97]. The literature review also analysed sixteen examples of the metamodelling
method for the number of inputs and samples. This was plotted in graphical form as shown in
Figure 8-2.

Table 8.1: Guidance for sample sizes (where N is the number of variables)& suggested sample
sizes for an 8 variable problem

Size Number 8 Variable
Problem

Scarce[12] 3 ·N 24
Minimum[97] 2

N+2
2 + 1 33

Small[12] 10 ·N 80
Large[12] 3·(N+1)·(N+2)

2 135

The initial sampling of the NVH attribute in the airbox project used the minimum sample latin
hypercube[97]. This meant that 33 samples would be taken in a scarce approach. However, this
was found to undersample the design space requiring a larger sample. The sample size was then
increased to 171, beyond the values suggested in Table 8.1. This suggests that the guidance
in the literature may be insufficient when generating large generic metamodels. This finding was
corroborated by the third sampling experiment carried out in Appendix A. Here, a 2 input variable
metamodel required approximately 33 samples to capture the function behaviour. The work also
shows that the scarce sampling methods used in current Jaguar Land Rover optimisation processes
are not sufficient for large generic metamodels such as the airbox example. Confirmation of this
issue can also be found by examining the sample sizes in the metamodelling examples. Examining
Figure 8-2 again, it can be seen that while most of the sample sizes for the metamodelling examples
are bounded by the regimes suggested by Jin, Chen & Simpson[12], some projects have sample
sizes beyond these. From this, it can be seen that the sampling size for metamodels with large
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design regions cannot be based on the number of input variables alone. However, as the complexity
of the system behaviour is unknown prior to the sampling, the guidance must be based on information
available when defining the attributes, control factors and their ranges.

For any optimisation project, the define stage sets out the principal input variables and their
ranges. The decisions about which variables should be included is based on prior experience and
judgement over what the main factors are that contribute to system performance. Increasing the
number of inputs increases the complexity of the problem, so the sample size should be scaled
by the input dimensionality. The ranges are then set based on available packaging space, current
designs or ideas about potential improvement. However, increasing the range allows for more
variation in the attribute behaviour within the design space, increasing the complexity. Thus, the
range of variables should also be included when scaling the sample size.

When considering the airbox optimisation detailed in this work, it can be seen that the parameterised
design featured eight input variables over a wide range to enable many different airbox designs to
be considered. The input variables and their ranges are given in Table 8.2. Within each of the
ranges of these variables there are only a finite number of designs that could realistically be used.
For example, for the length parameter, a reasonable design step may be every one millimetre or
every quarter millimetre on the duct diameters. Applying this step to the variable range will give a
total number of potential designs for a given input. However, in optimisation problems with a large
design space, the number of potential designs will be high. To reduce this, the sensitivity of the
attribute behaviour to the design variable could be used to scale the number of potential designs.

The application of scaling factors would rely on the experience of the engineer, knowledge of
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the underlying physics of the attribute or a small main effects study to understand which inputs
have the greatest affect on the attribute behaviour. The operation of the sensitivity scaling factor
can be seen as a need to test one out of a number of designs. For highly sensitive inputs the
scaling value should be low (one or two) and as sensitivity decreases higher scaling factors should
be used. The estimated sample size for each variable can be found using equation 8.1. Where
Vn(max) and Vn(min) are the limits of the input variable range, Vstep is the variable design step
and SFn is the variable sensitivity scaling factor. The inclusion of the number of variables (n)
allows the sample size (S) to vary with dimensionality as before, however now the range is also
considered. Once this has been calculated for each variable, the maximum and minimum values
can be used as a guide for the upper and lower bounds of the sample size required. Although
no firm value for the sample size required to produce an accurate metamodel of the NVH metric
was found, it should be greater than the 171 samples used. The application of this range variable
method to the airbox problem is shown in Table 8.2. Each of the design variables was assigned
a reasonable step; one or two mm for the main box lengths, a quarter of a mm on each of the
duct diameters, five mm on the runner and 0.005 on the percentage ingress. The P-Diagram in the
definition of the airbox optimisation problem detailed the importance of the volume and expansion
ratios to NVH performance. This led to low sensitivity factor values on the height, length, breadth
and duct diameters. This process indicates that the number of samples for the NVH attribute should
be between 187 and 320 samples.

Sn = n ·


(

Vn(max)−Vn(min)
Vstep

)
SFn

 (8.1)

Table 8.2: XK SC airbox input variable ranges and sensitivity factors for the NVH attribute values
Parameter V(min) V(max) Step SF Sample Size
Height (mm) 260 330 1 3 187
Length (mm) 140 370 2 3 307
Breadth (mm) 140 370 2 3 307
Clean Duct Diameter (mm) 50 80 0.25 3 320
Dirty Duct Diameter (mm) 50 80 0.25 3 320
Inlet Runner Length (mm) 5 300 2 5 236
Clean Ingress (%) 0 0.75 0.005 5 240
Dirty Ingress (%) 0 0.75 0.005 5 240
Max 320
Min 187

This method will require further work to see if it provides a better guide to the sample size than
the number of input variables alone. The first stage in this validation should be to use a number of
mathematical functions, such as the Branin surface function, shown by Fang et al [74] and others
such as those as shown in Jin, Chen and Simpson [12], over different variable ranges. If this
proves to be an improved guide then further tests should be conducted on CAE-based optimisation
problems.

179



A recommendation for future metamodelling-based MAO projects is that all available guidance
should be used when deciding on the number of samples that are to be taken; the variable based
method from literature and the range variable method proposed here. However, the cost of this
must be traded off against the time constraint of the project. Therefore, the estimated time for
completion of the CAE is required. This will account for setup, run, and post-processing time. If
the time taken to obtain the results for the sample exceeds the time available, then the project must
be simplified. Previously this may have required that an input variable was removed to simplify the
attribute behaviour in the design space[64]. However, the ranged variable method may provide a
different approach. As the required sample size for each variable is known, the user can identify
the variables that are increasing the sample number or are less significant. This would allow the
number of inputs to be reduced or a reduction in the ranges of significant variables.

Sampling Distribution Methods and Re-sampling

As well as the sample size, the distribution of the sample points was shown to to be highly influential
on the performance of the metamodel. The examples in Tables 2.2 to 2.4 on pages 47 to 49 in the
literature review showed that the latin hypercube is commonly used. This is due to its space filling
ability[94]. Experiment 3 conducted in Appendix A showed that a uniform distribution of the latin
hypercube sample points helped to reduce the variability in metamodel performance. However, the
use of the minimum Ford latin hypercubes is limited due to the discrete sample size available[97].

The literature also discussed the potential use of intelligent sampling methods to improve metamodel
performance. These methods use some measure of the localised complexity or error within the
metamodel to select new sample points[84][99][100][101][102]. The literature showed a number of
potential methods of implementation, however the scope of this work limited re-sampling methods
to those available within modeFRONTIER. These were the Lipschitz[101] and MACK[102] sampling
methods. Experiment 4 in appendix A tested these methods on the Branin function and showed
that they have the capacity to improve metamodel performance, however there was the potential
for degradation in the performance. New methods should be implemented within modeFRONTIER
and research into new re-sampling methods continued.

While research into new re-sampling methods should be continued, their effect on the sample
size and metamodel build costs must be investigated. When selecting sampling size and methods
to be used in metamodelling projects, the balance between efficiency and complexity resolution
should be considered. Large initial samples allow for a greater degree of parallelisation to be
applied. However, this efficiency is lost when sequential methods are applied as the placement
of a new sample is based on all other points. There is potential use for a heuristic measure that
guides the user to the ratio of initial samples versus sequential samples and the potential efficiency
savings. This heuristic can then be used to guide the setting of the sample and estimation of the
cost and runtime of building the metamodel. Such heuristic measures require further research.
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Metamodel Selection

The literature review showed a number of metamodel formulations, out of which the Radial Basis
function was selected for use in the airbox optimisation project. This metamodel was selected as it
minimised the error in the metamodel predictions of ten additional box samples. The selection of the
metamodel was limited to those available within modeFRONTIER. While modeFRONITER included
the most commonly used metamodel formulations, it did not include the Support Vector Regression
model cited in the literature. In such instances where new metamodels are not available, collaboration
with the software vendor is key in ensuring that the state of art is maintained within the code and
the advantages are communicated to the users.

Error Estimation

This discussion has twice mentioned the examination of metamodel errors to guide further work in
optimisation projects. This is necessary in deciding whether further samples should be obtained
and the selection of the metamodels. The literature review demonstrated two approaches; the
use of additional samples and ‘leave one out’ errors[11][15]. These approaches held a dilemma;
additional samples incur higher costs but the ‘leave one out’ method may not be accurate.

When using additional samples, Tables 2.2 to 2.4 on pages 47 to 49 showed there was no
consensus in the literature as to the size and distribution of samples needed to assess error. The
requirements for additional sample size and distribution for global metamodel error estimation were
investigated in experiment 2 in appendix Chapter A. The experiment found that small samples
could lead to variability in the prediction of error. However, large and uniform samples would tend
towards a true error value. This has the potential to make the prediction of metamodel global error
impractical to find in the time-constrained design environment. Samples in regions of potential
interest such as maxima and minima for attributes, as well as any baselines and trade-off points
were suggested as an approach to assess local error.

Error estimation methods that do not require additional samples are attractive when it comes
to practical applications. However, the literature raised issues about what error the approach
measured[11]. It was suggested that ‘leave one out’ errors were a measure of sample dependency,
this idea was confirmed in experiment 5 in Appendix A. The ‘leave one out’ errors in the modeFRONTIER
Kriging and Radial Basis Functions were found to be more a measure of dependence on the sample
point rather than the overall global error. This experiment also showed that the method can both
under and over estimate the error in the metamodel, reducing confidence in using the method in
isolation.

It can also be argued that a metamodel with a close fit to the attribute behaviour may have a
large ‘leave one out’ error. Section 8.2.2 discussed the use of re-sampling methods that placed
samples in regions of complexity to resolve the model. In a ‘leave one out’ error estimation method,
each sample is removed in turn, a metamodel built out of the remaining samples and the error
estimated to the left out sample. The total ‘leave one out’ error of the metamodel is then a function
of all the individual ‘leave one out’ errors. In the case where an intelligent re-sampling method has
placed a sample in a region of complexity, the ‘leave one out’ error may be large. When there are a
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large number of intelligent samples, the total ‘leave one out’ error of the metamodel may be large. It
follows then that the minimisation of ‘leave one out’ errors could lead to over sampling of the design
space.

A recommendation for future metamodelling and MAO projects is that both error estimation
methods should be used. When using additional samples a uniformly distributed sample should
be used for global error, or samples in regions of interest for local error. However, this area of
metamodelling needs further research to develop error estimation methods that consider both the
accuracy of the error prediction and additional costs to the process. Here, sampling methods for
building metamodels which include samples for error estimation will be of interest.

MAO Process Automation

A number of the examples in the literature described automation mechanisms as a key method in
reducing the engineering expense of CAE based optimisation projects[5][40][41][67]. The work on
the airbox also demonstrated these benefits by using java scripting methods within the StarCCM+
set up and in the automation of WaveBuild3D. In the latter, the use of a Matlab script to edit the base
files for the NVH analysis allowed the geometry for 129 airboxes to be generated in minutes rather
than weeks. Interaction with common CAD and CAE codes is a core feature of modeFRONTIER.
The use of MAO as a systems engineering tool should utilise such interfaces within the current
CAD/CAE technology setup.

The use of automation takes the user away from the pre and post-processing of the CAE. While
this saves time, it removes the opportunity for model review, issue identification and scrutinising the
results. In the case of the airbox, some variation was found in a number of designs for the pressure
loss attribute. In this project, each airbox was not only post-processed to gain the attribute values,
but also to view the flow field. This was to identify issues with the setup and solution of the CFD. If
the attributes were obtained automatically, then there is a potential for unstable results to be used
in the metamodelling process, increasing the error in the metamodel behaviour.

However, as the number of samples increases, it becomes prohibitive to check each model.
The instance of CAE model failure can be reduced by using known and stable methods and, where
applicable, with mesh parameters verified for expected worst case scenarios for model instability.
While this approach was completed for the StarCCM+ airbox model, some of the designs did show
convergence issues. Here, the inclusion of attribute value checks in the automation scripts could
be used to flag up models that have not run correctly and require interaction with the CAE user.

8.2.3 Using MAO as a Systems Engineering Tool for the Selection of Component
Design

The airbox optimisation project examined the use of modeFRONTIER visualisation methods and
showed how they can be used to explore the design space. A combination of the optimisation
algorithms and the function plots were used to explore single attribute optimisation but were limited
as interactions between the design variables could not be considered.
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The clustering and mapping techniques seemed the most useful at aiding the spotting of trends
and the reduction of highly dimensional data. While these methods were good at reducing the
whole design space to a region of interest, these methods do not lend themselves to the final
selection of design. This was achieved by using design utility functions for each attribute. The
functions ranked the attributes according to the obtainable scale and the baseline performance.
A tuned ‘trade plane’ was then used to drive the higher utility trade-off between NVH metric and
pressure loss. This project outlined the use for such methods and derived utility functions and
higher trade surfaces from the customer requirements. However, there is scope for developing
these methods further to relate them directly to the customer satisfaction measures. There are
systems engineering tools available to gather these requirements in use in the 6-Sigma and ‘DCOV’
processes employed[25][26]. Further research should investigate the interaction of a MAO systems
engineering tool and other common tools used to find enablers for the MAO design selection
process.

The metamodelling method may have use as a bargaining tool. Each project will have constraints
that are imposed on the design by the packaging of the analysis component within the vehicle
space. This will be a trade-off between all systems that compete for space. The metamodel can
be used to examine regions beyond the component constraints and detail the potential gains that
could be made by adjusting them. For example, the volume constraint on the airbox. Figure 6-5
(page 134) shows that if the volume is allowed to increase then there are gains to be made in
all attributes, particularly the NVH performance. A data driven bargaining process would be most
useful in the packaging or early concept design stages where there is more freedom to make design
changes. However, this could be problematic as this bargaining process may need metamodels of
other systems to examine impact on design.

8.3 Casestudy: The Jaguar Land Rover Product Design System

This discussion has so far examined the enabling aspects of MAO, in this section the application
of the process within a systems engineering process is examined. The Jaguar Land Rover product
design system is used as the example in this study. This section will examine the application of the
MAO method within the available design process windows. From this, changes to the airbox project
to improve the metamodels and timing of the analysis is discussed.

8.3.1 MAO Project Timings

A review of the process was conducted and found that the critical aspect for the application of such
methods is the duration of the project and the resource utilisation[141]. This research has shown
that the cost and runtime of a MAO project is determined by the sample size required to model
the attribute behaviours in the design space. Also, the number of samples is highly dependant
on the dimensionality and size of the model. This could lead to sample sizes that prohibit practical
implementation within a design process. The review of the Jaguar Land Rover product development
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system also revealed that potential application of multi-attribute methods may occur within three
time-scales during the design process[141]:

1. Offline - characterised by no time constraints on an MAO project.

2. Early / concept design phase - characterised by an application window of approximately six
months.

3. Design iteration loops - characterised by an application window of approximately eight weeks.

For the two time constrained periods, the MAO project would have to be defined, completed and
results reported within the analysis window.

In an ‘offline’ application of MAO, the time constraint from the design process would be removed,
allowing large generic models to be built. To maximise the use of such models, the model should be
made highly generic to allow the concept designs for projects across the whole Jaguar Land Rover
program range to be derived from a single set of metamodels. Such an approach would require
highly detailed models across the whole range of potential designs. This would lead to models that
are highly dimensional and require a very large number of samples. These projects should be used
for known attribute trade-off problems that occur in every vehicle program.

Consideration should be given to the allocation of resources for ‘offline’ MAO projects. The
generic nature of such metamodels would be highly valuable in packaging an early concept design
work. Once the generic metamodel has been built it could be applied to multiple Jaguar Land
Rover programs by changing the constraints applied during the optimisation and attribute trade-off.
However, the generic model must cover every possible design scenario, requiring a large amount
of samples and a high computational cost. As this cost is not directly connected with any vehicle
or engine program, resources must be specifically allocated or obtained for such projects. There is
also the potential to outsource such projects.

The review of the design process at Jaguar Land Rover indicated that there is a six month
window during the concept design stage, where MAO methods could be applied. Within this
timescale there would need to be one month allocated to defining the project, implementation
methods and parameterised CAD model. Another month would be required at the end to change
the design and trade-off with other systems. This would leave approximately four months to gather
the initial metamodel build and error estimation samples as well as to carry out any additional
sampling. Here, some accuracy may have to be traded against the time allowed. The sample size
and approximate CAE runtime would need to be estimated and from this the number and range of
variables would then need to be adjusted to suit the time available. This type of approach would be
more suited to focused optimisation problems where use is limited to only one Jaguar Land Rover
design program.

The application of the MAO method within the design iteration loops is highly constrained by the
time available. During these stages, the CAD will be more mature and the simplification of the CAE
methods may not be possible. In these cases, the application should focus on only a few design
variables over small ranges.

184



The decision of when to apply MAO as a systems engineering tool to product design raises the
dilemma of whether the tool should be used as a design or development tool. When MAO is used
later the design process, some of the major trade-offs may have already been made which may
limit the impact of the approach when compared to the ‘offline’ and ‘early / concept design phase’
applications. The impact of early trade-off on designs was one of the key questions identified in
Section 3.3.4 on page 67 and should be subject to further investigation.

The application of MAO to offline and early/concept design phase projects was said to require
metamodels which covered the whole potential design space in a generic approach. From this it
can be seen that if a metamodel is built to be generic enough that it could be used in multiple vehicle
programs, then there is a large potential for reuse. While such metamodels would require a large
initial cost in terms of time and resources, the reuse of multiple vehicle programs means that large
savings in time and computational expense can be achieved. The application of the metamodelling
process to such applications should be subjected to further research.

However, the reuse of metamodels will require a much larger design space and may push the
optimisation problem towards the characteristics of a ‘WICKED’ problem[34][35]. The constraints
and the time available to optimise a design during the design iteration loops meant that only a
limited analysis could be carried out. This simplifies the design space and means the problem
is constrained and does not exhibit the characteristics of a ‘WICKED’ problem. However, when
considering using MAO during the two earlier application windows (offline and the concept design
stage), such characteristics become more prevalent. Not only is the design space more complex,
due to the need to reuse the metamodels, but the effect of early optimisation of one system will
affect the design of others. Thus, the early optimisation of design may result in the need to use
optimisation techniques guided by research in the ‘System of Systems’ and ‘WICKED’ problem
domains.

8.3.2 The Airbox Optimisation Example

The airbox MAO optimisation used two CAE methods to analyse the pressure loss, capacity and
NVH attenuation within a generic design space. The process used a minimum sampling technique
to build metamodels for the three attributes, these were then used to optimise the airbox performance.
When completed by a CAE expert, the process would take approximately ten weeks. While the
optimisation of the airbox did deliver an improvement in performance, there were still significant
errors in the attribute metamodels which need to be improved. The airbox example could be
revised to enable completion of the project within any of the three windows described in the previous
section. The changes to the input variables and sampling within the project would depend on which
application window is chosen.

To complete the airbox as an ‘offline’ project a more generic metamodel would be required to
examine a wider range of potential designs. This could also include introducing more variables to
the parameterised model or increasing the input variable ranges. The sample size would have to
be increased in-line with estimations from the ranged variable method. This metamodel would have
a large potential for reuse in future programs.
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Improved Jaguar XK SC attribute metamodels could be produced for the early/concept design
phase by increasing the number of samples. This project would retain the original eight variables,
but larger samples would be taken to improve the metamodel performance. The number of samples
should be increased to fill a large proportion of the six month window. While this metamodel will not
be as generic as the one generated in the ‘offline’ approach, there is still some potential for reuse
for similar vehicle programs, i.e. next generation XK and other high performance products.

The airbox project took approximately ten weeks and produced metamodels with large fitting
errors. Both the time and error would need to be reduced in order to complete the optimisation
within the eight week window given for a design iteration loop. To achieve these reductions, the
project would have to become more focused by reducing the number of variable inputs and their
ranges. For example, if the volume of the airbox was fixed, then the metamodel could focus on the
trade-offs caused by the design of NVH devices. However, such metamodels may only solve issues
for a single vehicle program, limiting the the potential reuse.

Finally, further verification work could include the rapid prototyping and physical testing of a
number of the designs. This would allow the accuracy of the CAE throughout the design space
to be examined. This prototype testing could also be extended to include finding the capacity of
designs, enabling improvement in the empirical capacity model presented in this work.

8.4 Airbox Capacity Calculation

The pressure loss CFD analysis of the airbox was extended to use the uniformity of the flow in
the filter to predict the dust holding capacity. This extension was based on an empirical formula
derived from physical and CAE tests on current Jaguar Land Rover airboxes. However, one of the
additional airboxes, obtained for the error estimation of the airbox attribute metamodels, gave a
negative capacity in the CFD analysis. The airbox designed for the minimum NVH attribute gave
a capacity of -14 grammes (data from table 5.9 on page 119). This result shows that further work
is required to confirm or revise the empirical formula given by equation 4.9. The equation was
derived from a limited data set, representing only a small range of the design space assessed in
the airbox optimisation problem. The empirical equation also assumed that the flow uniformity in the
filter would remain constant during the test however, this will not be the case. Further tests should
be carried out on some of the more extreme airbox designs presented in the latin hypercube and
additional samples shown in tables 4.7 and 5.9. This would also provide an opportunity to gather
more data; the capacities at numerous pressure losses should be taken as well as the time for such
tests. Methods that can measure the flow uniformity through the filter should also be investigated
and compared to the StarCD CFD model.

8.5 Further Work: Metamodelling-based MAO Methods

The discussion of further work for metamodelling-based MAO methods can be split into two areas;
improvements in the MAO method enablers and implementation of the method within an automotive
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systems engineering approach to product design.
This discussion has outlined guidance for the number of samples that attempts to scale the

project by both the number of inputs and the size of the design space, this must be examined
for suitability. The distribution of the sample points was also shown to be of importance and
further research into initial distribution and effective re-sampling methods would be advised. As the
sampling and re-sampling methods are implemented in modeFRONTIER, along with the metamodelling
methods, there should be collaboration with the software vendor (Esteco) to ensure that the newest
methods are available in the software and implemented in projects.

The estimation of error also poses significant challenges in MAO projects. Obtaining the value
of true error requires a large uniform sample to be taken, error estimates based on small samples
and ‘leave one out’ methods were found to be unreliable. Improving the reliability of error estimation
should be further explored and would have significant value to industrial application of MAO methods.
This should examine the use of additional samples as well as error estimation methods that only
use information based on the single sample set. The latter of these should look to building the error
estimation method within the initial sample size and distribution.

The automation methods used in the airbox optimisation project, the java scripting in StarCCM+
and the geometry file modifier written in Matlab, showed that these can reduce the cost of building
large samples. Methods of automation and integration with modeFRONTIER should be pursued.

Many questions raised about the implementation of MAO within the Jaguar Land Rover design
environment (Section 3.3.4 page 67) required the method to be operating within the environment
so the downstream effects could be measured. As this presented a risk of deteriorating the
performance of the design process, the initial experiments using MAO methods were required to
be conducted ‘offline’, allowing the benefits and issues of the method to be investigated. The work
on the Branin function and airbox showed that the sample size is critical to the effectiveness of
the method. Highly complex behaviour and/or expensive CAE methods could render the process
unusable within the time constraints of the design process. The solution suggested here was to
scale the size of the MAO project accordingly; a highly dimensional large generic model for ‘offline’
projects, single system models for early concept work and specific design for projects within the
design iteration loops. As the timescales shorten, the number of input variables and their ranges
should be reduced. The scaling of a MAO project can be achieved using the ranged variable
method and estimations of the cost to run the sample size. Using this approach the risks of a MAO
project can be mitigated allowing ‘online’ projects to be completed addressing the questions raised
in Section 3.3.4. The most pressing of these are the logistical aspects of MAO application. The
integration of MAO projects into the design process will require resources such as CAE personnel,
computers, software and licenses. The I.T. structures supporting powertrain CAE may need to be
modified to allow the automation of CAE jobs. MAO projects that utilise different domain analyses
may require a number of CAE engineers to work together, the structure and hierarchy of which
needs to be arranged. Once these issues have been addressed, the downstream effects of MAO
on the design process can be observed.
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Chapter 9

Conclusions

The aim of this project was to investigate the challenges and key benefits of adopting a MAO method
as a systems engineering tool to improve product development times and component design. Within
this research the objectives were:

1. To review the current knowledge and issues in automotive systems optimisation methods
within a systems engineering approach.

A review of systems engineering methods used within the automotive industry showed that
the optimisation of systems is used to deliver products that meet customer requirements.

The optimisation of systems was shown to be complicated by the presence of high dimensionality
in both the input variables and output attributes, working across multiple disciplines, the large
number of potential solutions and robustness issues. CAE methods were shown to be an
enabler in systems optimisation methods.

For CAE based optimisation of systems, metamodelling methods were presented as an
approach that enabled the user to explore the entire design space as well as to optimise
designs. However, this process required further investigation into issues of sample size, test
point distribution method and error estimation.

From this, two significant research areas were identified; the use of metamodelling to model
attribute behaviour within the design space and the use of multi-physics CAE methods as an
enabler within MAO.

2. To examine the role of optimisation within an automotive design environment allowing sub-
projects to be scoped and bounded.

The potential application of MAO was explored in relation to the surrounding design systems
to identify potential opportunities and issues with implementing the method. This identified a
potential for risk of deterioration in design system performance and required an ‘offline’ MAO
application to explore the method and find risk mitigation factors.

The airbox was selected for application for the MAO method and the project was scoped.
Within the MAO method there was also a need to explore the potential of new multi-physics
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methods. To explore this need, opportunities in the fuel tank would be found and an application
defined. The project would then explore the benefits and costs of multi-physics methods within
a multi-attribute architecture.

3. Investigate key enablers and methods required to implement MAO within an automotive
design environment, including:

(a) Examine issues of sample size and distribution in the generation of metamodels and the
estimation of the error in the model fit.

The work on the airbox MAO problem and the experiments conducted in Appendix A
investigated the issue of sample size. The results showed that a scarce sample was
not sufficient to capture the complex behaviour in large generic metamodels. Attempts
to increase the sample sizes in both studies, in accordance with guidance from the
literature, resulted in limited improvement in metamodel performance. The implication
of this result is that the number of samples required cannot be predicted by the number
of input variables alone. Based upon this, an alternative method is suggested using both
the number of input variables and their ranges to scale the sample size.

As well as sample size, the distribution of the test points was important for metamodel
accuracy. This work suggests the use of an initial space-filling uniform sample, where
the size is guided by the literature or ranged variable method. Then, based on an
assessment of error, intelligent sampling methods can be applied to improve the metamodel
fit.

The estimation of error was also examined in Appendix A. A significant result of this was
showing that the two commonly used error estimation methods, small additional sample
set and ‘leave one out’ methods, are unreliable. However, the sample size required
to find the true value of error would be prohibitive in a practical application. This work
suggests the use of a small number of additional samples in regions of interest to assess
the local error in the metamodel, as well as using the ‘leave one out’ error as a guide.

(b) Examine techniques and methods for attribute trade-off.

The airbox project used visualisation techniques and utility based decision methods to
explore the design space and select the final design. Visualisation techniques were
useful in examining the potential design space and exploring design options. However,
the selections of a single design was difficult due to the high number of potential designs.
To overcome this difficulty, utility functions and trade surfaces were used to guide the
optimisation according to the product requirements. Both approaches should be taken
when using MAO as a systems engineering tool to understand the design space.

(c) Examine the benefits and costs of a multi-physics approach to CAE for use in an MAO
architecture.

The work to examine multi-physics methods first explored CAE usage for fuel tank
applications. The durability of internal components of the fuel tank due to fuel slosh
was identified as a multi-physics problem and the boundary condition explored. The
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need for fully coupled multi-physics methods was established by examination of two load
cases in an un-mapped, uncoupled approach. Following this, the project then examined
the application of the StarCD-Abaqus direct couple and the Abaqus CEL multi-physics
method to the analysis of the fuel slosh problem. However, both of these methods were
shown to be unsuitable for this application, meaning the relative benefits and costs of
both approaches could not be established.

While the costs and benefits of the multi-physics methods could not be established
for this application, the use of such methods in MAO requires consideration of the
degree of coupling and the software approach. The degree of coupling is important in
determining the cost and accuracy of a multi-physics method and should be assessed for
each application. The software approach may incur additional modelling costs (multiple
domain specific codes) or sacrifices to accuracy due to non-domain specific solvers
being used (single multi-physics code). The balance between accuracy and simulation
cost must be established to maximise the use of resources.

(d) Use an automotive case-study to understand the potential application of MAO methods.

Using the Jaguar Land Rover design process as a case-study, three potential applications
of MAO were identified; offline, early concept work and design development. The examination
of these applications showed that early application came with a larger time frame to
complete the optimisation. However, these projects would be larger as they would need
to address more potential designs. Conversely, covering a larger design space gives the
possibility that the metamodels can be used again for other vehicle programs. This poses
a dilemma for the use of MAO in the automotive design environment. Use in the early
stages of a design project resulting in higher modelling costs for a larger design space,
or use in later development projects in which the design could already be compromised.

Other issues in the metamodelling approach to MAO can be summarised as:

• Metamodel accuracy is also dependent on the stability and robustness of the CAE
analysis methods used to obtain data points. For future MAO projects applied within
an automotive product design system, only mature, stable and validated CAE methods
should be used.

• Automation was cited as a key enabler in the MAO method. This can reduce the human
input needed in the sample gathering process, reducing the time required to set up each
model. However, some consideration must be given to methods that allow unstable or
poorly converged simulations to be identified as variation in the attribute behaviour could
affect the fit of the metamodel.

• Collaboration with the MAO software vendor is also important in maintaining the state of
art in the various sampling methods, metamodel formulations and visualisation techniques.

The benefit of the MAO approach can be shown in the Airbox project. The application of
the MAO method to the attribute trade-off of a concept design level Jaguar XK SC airbox
showed a reduction in the pressure loss of 366 Pa. This was achieved whilst improving the
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NVH performance by 23% (as measured by the single value NVH metric) and increasing the
dust capacity by 24 g. This result demonstrated the potential of MAO methods to deliver
improved product design. The improvement in the design came from increasing the dirty side
duct diameter whilst reducing the clean side diameter, this is contrary to Jaguar Land Rover
design philosophy. Further experiments should be conducted to see if airbox attribute gains
could be made within other programs by following this example.

The opportunities for further work can be identified in three different areas; improving metamodel
sampling techniques, exploring the application of MAO and metamodelling within a larger design
system and examining new multi-physics techniques to improve attribute prediction.

1. The work on the airbox showed that the number of inputs alone was not sufficient to determine
the sample size required to build an adequate metamodel. In the discussion, the ranged
variable method was suggested for the estimation of sample sizes in MAO projects. However,
this required further research to support or improve the method. Here, the examination of a
number of mathematical functions over varying range sizes could be used to test and improve
the method. From this, the ranged variable method could be applied to real optimisation
problems. This project should also seek to improve the understanding of and guidance on
sampling and re-sampling methods, including:

(a) Establishing heuristic measures to guide the balance between initial and re-sample
sizes.

(b) Investigating new methods for guiding re-sampling.

(c) Improving the error prediction when using both additional samples and ‘leave one out’
methods.

2. To explore the application of MAO and metamodelling within a larger design system, further
optimisation projects should be completed on known attribute trade-offs. These projects
should explore the timing of the MAO project and its effect on the design process. Of interest
would be:

(a) The interaction of a MAO tool with other systems engineering tools. In particular, establishing
methods to derive utility functions and trade surfaces based on customer requirements
and satisfaction data. This will enable large generic metamodels to be applied to different
vehicle programs by a simple change of utility function.

(b) Examining the operation of MAO within powertrain with a focus on logistical and resource
issues. The impact on other projects and programs would also need to be monitored.

(c) Establishing the downstream effect of early attribute trade-off on the number of design
changes throughout the product development process.

(d) Establishing the requirements for enabling metamodel reuse across programs and investigate
the benefits of this approach.
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3. Finally, due to the unsuitability of the available multi-physics software codes for the fuel tank
application, there is still a requirement to examine the use of such methods as an enabler in
MAO. Examining other opportunities and applications for multi-physics analyses would allow
the relative benefits and costs to be assessed. This should include an assessment of the
degree of coupling required to model the system attribute accurately. Here, the development
of heuristics to guide what degree of coupling is required would be of interest. These methods
should then be validated against a suitable rig test case.

192



References

[1] KPMG International. Kpmg concerned over automotive industry’s view of over-capacity,
January 7, 2005.

[2] KPMG International. A rough road: The effects of today’s financial crisis on the global
automotive industry, November 2008.

[3] KPMG International. Kpmg’s global automotive executive survey 2011, 2011.

[4] KPMG International. Issues monitor: Sharing knowledge on topical issues in the automotive
industry, October 2010.

[5] M. Usan. Automotive component product development enhancement through multi-attribute
system design optimisation in an integrated concurrent engineering framework. Master’s
thesis, Massachusetts Institute of Technology, 2005.

[6] T.E. Austin. Why have a systems engineering (se) capability for automotive product
development? questions and answers. (2007-01-0782), 2007. SAE International,
Warrendale, Pennsylvania, USA.

[7] G. Loureiro, P.G. Leaney, and M. Hodgson. A systems engineering framework for integrated
automotive development. Systems Engineering, 7(2):153–166, 2004. Copyright 2004 Wiley
Periodicals, Inc.

[8] Incose. http://www.incose.org/practice/whatissystemseng.aspx (Accessed 20/03/2012).

[9] D.K. Hitchins. Systems engineering in search of the elusive optimum. Engineering
Management Journal.

[10] S. Thomke and T. Fujimoto. The effect of front-loading problem-solving on product
development performance. Journal of Product Innovation Management, 17, March 2000.

[11] G. Wang and S. Shan. Review of metamodeling techniques in support of engineering design
optimization. Journal of Mechanical Design, 129(4):370–380, 2007.

[12] R. Jin, W. Chen, and T.W. Simpson. Comparative studies of metamodelling techniques under
multiple modelling criteria. Structural and Multidisciplinary Optimization, 23:1–13, 2001.
10.1007/s00158-001-0160-4.

193



[13] M.D. Kaufmann. Variable-complexity response surface approximations for wing structural
weight in hsct design. Master’s thesis, virginia polytechnic institute and state university, April
1996.

[14] L. Wang and D. Beeson. Valuable theoretical lessons learned from the application
of metamodels to a variety of industrial problems. ASME Conference Proceedings,
2009(49026):789–804, 2009.

[15] M. Meckesheimer, A.J. Booker, R.R. Barton, and T.W. Simpson. Computationally inexpensive
metamodel assessment strategies. AIAA Journal, 40:2053–2060, 2002.

[16] J. Andersson. A survey of multiobjective optimization in engineering design. Technical report,
Department of Mechanical Engineering, Linkoping University, 2000.

[17] D.P. Mahoney. Multiphysics analysis. Computer Graphics World, 23(6), June 2000.

[18] J. Agte, O. de Weck, J. Sobieszczanski-Sobieski, P. Arendsen, A. Morris, and M. Spieck. Mdo:
assessment and direction for advancementan opinion of one international group. Structural
and Multidisciplinary Optimization, 40:17–33, 2010. 10.1007/s00158-009-0381-5.

[19] R. Fitzsimmonds. Personal correspondence: Cd-adapco support, 2009.

[20] L. Cordingley and A.M. Lambert. Personal correspondence: Simulia support, 2010.

[21] Y. Kusunoki, K. Cho, F. Uchikawa, and S. Sugimori. Toyota production system and kanban
system materialization of just-in-time and respect-for-human system. International Journal of
Production Research, 15(0020-7543):553–564, 1977.

[22] D.K. Hitchins. Putting Systems to Work. John Wiley & Sons, Inc., New York, NY, USA, 1993.

[23] M. Lubraico, J.C. Frias, and T. de Sousa Pereira. Vehicle program management concept.
novembro 2003.

[24] J. Schlosser. Requirements for automotive system engineering tools. In Computer Design:
VLSI in Computers and Processors, 2002. Proceedings. 2002 IEEE International Conference
on, pages 364–369, 2002.

[25] D. H. Stamatis. Design for six sigma (dfss) and reliability. (2003-01-1374), 2003. SAE
International, Warrendale, Pennsylvania, USA.

[26] Dcov 110: Dcov process fundamentals, 2006. Internal Jaguar Land Rover Intranet.

[27] M.C. Andreassa and G.A. Parreira. Applying six sigma with the theory of inventive problem
solving (triz) to reduce the time to solve problems. (2007-01-2585), 2007. SAE International,
Warrendale, Pennsylvania, USA.

[28] R. Hurley, D. Eade, A. Fraser, S. Brett, R. Shrieves, J. Kisenyi, and B. Rutter. Robustness
design of experimental approach to the optimization of fast light-off of catalytic vehicles
emission systems. IMechE Conference Transactions, 1996.

194



[29] H.L. Zhang and D. Ma. A systems engineering approach to occupant protection system
design and optimization through modeling and simulation. Systems Engineering, 8(1):51–
61, 2004.

[30] B. Shahidi, U.K. Stuhec, B. Shahidi, S. Tavakkoli, Y.Q. Liu, and N. Nelson. System
level durability engineering in cae. (2006-01-1981), 2006. SAE International, Warrendale,
Pennsylvania, USA.

[31] A.S. Patil, K.C. Vora, and V.G. Halbe. A system approach to automotive air intake system
development. (2005-26-011), 2005. SAE International, Warrendale, Pennsylvania, USA.

[32] M. Jamshidi. System of systems engineering - new challenges for the 21st century.
Aerospace and Electronic Systems Magazine, 23(5):4–19, 2008.

[33] J. Boardman and B. Sauser. System of systems - the meaning of of. System of Systems
Engineering, 2006.

[34] H. W. J. Rittel and M. M. Webber. Dilemmas in a general theory of planning. Policy Sciences,
4:155–169, 1973. 10.1007/BF01405730.

[35] R.E. Horn and R.P. Weber. New tools for resolving wicked problems: Mess mapping and
resolution mapping. Online, 2007. MacroVU Inc, Strategy Kinetics LLC.

[36] The concise oxford dictionary of mathematicas (online). http://www.oxfordreference.com
(Accessed 14/01/2010).

[37] Oxford english dictionary online. www.oed.com (Accessed 14/01/2010).

[38] P. Venkataraman. Applied Optimisation with MATLAB Programming. Wiley-Interscience,
2001.

[39] Y. Collette and P. Siarry. Multiobjective Optimization Principals and Case Studies. Springer,
2003.

[40] G.J. Park, U.P. Hong, and K.H. Hwang. A comparative study of software systems from the
optimization viewpoint. Structural and Multidisciplinary Optimization, 27(6):460–468, March
2000.

[41] Esteco. The concept behind modefroniter, 2008. Introductory Course Material.

[42] J. Haftka and R.T. Sobieszczanski-Sobieski. Multidisciplinary aerospace design optimization:
survey of recent developments. Structural Optimization, 14(1):1–23, 1997.

[43] K. Lewis and F. Mistree. The other side of multidisciplinary design
optimization: Accomodating a multiobjective, uncertain and non-
deterministic world. Engineering Optimization, 31(2):161–189, 1998.
http://www.informaworld.com/10.1080/03052159808941369.

195



[44] M.R. Waszak, J.F. Barthelemy, K.M. Jones, R.J. Silcox, W.A. Silva, and R.H. Nowaczyk.
Modeling and analysis of multidiscipline research teams at nasa langley research center: A
systems thinking approach. Technical report, 1998.

[45] A. May and C. Carter. A case study of virtual team working in the european automotive
industry. International Journal of Industrial Ergonomics, 27(3):171–186, 2001.

[46] S. Mahadevan. Design optimization for reliability and robustness. (2004-01-0237), 2004.
SAE International, Warrendale, Pennsylvania, USA.

[47] J. Fisher-Box. R. a. fisher and the design of experiments, 1922-1926. American Statistician,
34(1):1–7, 1980.

[48] G.R. Mutha, N.H. Walke, N.V. Marathe, S A. Gothekar, and K.C. Vora. Design of experiments:
A systems approach to engine optimization for lower emissions. (2007-26-012), 2007. SAE
International, Warrendale, Pennsylvania, USA.

[49] H.M. Junior, J.B. Turrioni, J.F. Mologni, and M.M. Fernandes. Capability prediction through
design of experiments (doe) and monte carlo simulation on automotive innovation activities.
outubro 2008.

[50] R. J. Yang, L. Gu, C. H. Tho, and J. Sobieszczanski-Sobieski. Multidisciplinary design
optimization of a full vehicle with high performance computing. 2001. AIAA-2001-1273.

[51] M.S. Kim, S.J. Heo, and B.J. Kim. Aluminum space frame biw optimization considering
multidisciplinary design constraints. International Journal of Automotive Technology,
6(6):635–641, 2005.

[52] R. J. Balling and J. Sobieszczanski-Sobieski. Optimization of coupled systems - a critical
overview of approaches. AIAA Journal, 34(1):6–17, 1996.

[53] S. Sobieszczanski-Sobieski and J. Kodiyalam. Multidisciplinary design optimization - some
formal methods, framework requirements, and application to vehicle design. International
Journal Of Vehicle Design, 25(1):3–22, 2001.

[54] J.J. Reuther and J.R.R.A. Martins. Complete configuration aero-structural optimization using
a coupled sensitivity analysis method. 9th AIAA/ISSMO Symposium on Multidisiplinary
Analysis and Optimization, (AIAA 2002-5406), Sept 2002.

[55] J.V. Carnahan, D.L. Thurston, and T. Liu. Optimization of design utility. Journal of Mechanical
Design, 116(3):801–808, 1994.

[56] D.L. Thurston. A formal method for subjective design evaluation with multiple attributes.
Research in Engineering Design, 3(2):105–122, 1991.

[57] D.J. Hand, H. Manila, and P. Smyth. Principles of Data Mining. MIT Press, 2001.

196



[58] K. Witowski, M. Liebscher, and T. Goel. Decision making in multi-objective optimization for
industrial applications - data mining and visualization of pareto data. 7th European LS-DYNA
Conference, Salzburg Austria, (May 14-15), 2009.

[59] H. Hauser, F. Ledermann, and H. Doleisch. Angular brushing of extended parallel
coordinates. In Proceedings of the IEEE Symposium on Information Visualization
(InfoVis’02), INFOVIS ’02, pages 127–, Washington, DC, USA, 2002. IEEE Computer
Society.

[60] S. Parashar, N. Fateh, V. Pediroda, and C. Poloni. Self organising maps (som) for design
selection in multi-objective optimisation using modefroniter. (2008-01-0874), 2008. SAE
International, Warrendale, Pennsylvania, USA.

[61] S. Obayashi and D. Sasaki. Visualization and data mining of pareto solutions using self-
organizing map. In Carlos Fonseca, Peter Fleming, Eckart Zitzler, Lothar Thiele, and
Kalyanmoy Deb, editors, Evolutionary Multi-Criterion Optimization, volume 2632 of Lecture
Notes in Computer Science, pages 71–71. Springer Berlin / Heidelberg, 2003. 10.1007/3-
540-36970-8 56.

[62] B. Morey. Improving product development at general motors powertrain. Automoive
Engineering, 115(3):28, March 2008.

[63] S.R. Pierson. Jaguar land rover presentation to leeds university, 2005. Internal Jaguar Land
Rover Intranet.

[64] S. Shan and G. Wang. Survey of modeling and optimization strategies to solve high-
dimensional design problems with computationally-expensive black-box functions. Structural
and Multidisciplinary Optimization, 41:219–241, 2010. 10.1007/s00158-009-0420-2.

[65] V. Toropov, A. Wood, and P. Zadeh. Metamodel-based collaborative optimization framework.
Structural and Multidisciplinary Optimization, 38(2):103–115, 2009.

[66] A. A. Giunta, V. Balabanov, D. Haim, B. Grossman, W.H. Mason, L.T. Watson, and R.T.
Haftka. Multidisciplinary optimisation of a supersonic transport using design of experiments
theory and response surface modelling. Aeronautical Journal, 101(1008):347–356, 1997.

[67] F. Maier, W. Mayer, M. Stumptner, and A. Muehlenfeld. Ontology-based process modelling for
design optimisation support. In John S. Gero and Ashok K. Goel, editors, Design Computing
and Cognition ’08, pages 513–532. Springer Netherlands, 2008. 10.1007/978-1-4020-8728-
8 27.

[68] M. Khandare, F.P. Pan, and R. Schoon. A multi-objective design optimization for an integrated
tractor trailer vehicle. (2011-01-0066), 2011. SAE International, Warrendale, Pennsylvania,
USA.

[69] C., G. Cunningham, S. Spence, and G. McCullough. Development of optimization techniques
for the design of an internal combustion engine airbox. November 2006.

197



[70] W. Zottin, A.P. Curty Cuco, M. Vinı́cius, F. dos Reis, R. Ferraz, and A.F. da Silva. Application
of optimization techniques in the design of engine components. April 2008.

[71] T.W. Simpson, T.M. Mauery, J.J. Korte, and F. Mistree. Comparison of response surface and
kriging models for multidisciplinary design optimization. 1998. AIAA-98-4755.

[72] M. de Freitas, L. Giovanni, I. Kotinda, S. Butkewitsch, and J.A.F. Borges. Meta-modelling,
optimization and robust engineering of automotive systems using design of experiments.
(2001-01-3848), 2001. SAE International, Warrendale, Pennsylvania, USA.

[73] S.M. Clarke, J.H. Griebsch, and T.W. Simpson. Analysis of support vector regression
for approximation of complex engineering analyses. Journal of Mechanical Design,
127(6):1077–1087, 2005.

[74] H. Fang, M. Rais-Rohani, Z. Liu, and M.F. Horstemeyer. A comparative study of
metamodeling methods for multiobjective crashworthiness optimization. Computers &
Structures, 83(25-26):2121–2136, 2005.

[75] X. Fang, L. Wang, D. Beeson, and G. Wiggs. A practical robust and efficient rbf metamodel
method for typical engineering problems. ASME Conference Proceedings, 2008(43253):873–
882, 2008.

[76] F. Gerhorst, M. Wirth, and K. Kuhlbach. Application of monte-carlo-simulation and most
probable limit state on gasoline di combustion system optimization. (2010-01-0712), 2010.
SAE International, Warrendale, Pennsylvania, USA.

[77] C.A. Toropov, V.V. Thompson, H.M. Wilson, M.C.T. Foxley, N.A. Gilkeson, and P.H. Gaskell.
Aerodynamic shape optimization of a low drag fairing for small livestock trailers. 12th
AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Proceedings. 12th
AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 10 - 12 September
2008, Victoria, British Columbia Canada, 2008. (AIAA 2008-5903).

[78] L. Gu, R.J. Yang, C.H. Tho, M. Makowskit, O. Faruquet, and Y.Li. Optimization and robustness
for crashworthiness of side impact. Int. J. of Vehicle Design, 26(4):348–360, 2001.

[79] H. Sakurai, M. Jasper, and K. Rudell. The application of design of experiments to cfd studies
of racecar wing configurations. (2006-01-3645), 2006. SAE International, Warrendale,
Pennsylvania, USA.

[80] K.H. Lee and D.H. Kang. Structural optimization of an automotive door using the kriging
interpolation method. Proceedings of the Institution of Mechanical Engineers, Part D: Journal
of Automobile Engineering, 221(12):1525–1534, 2007. 10.1243/09544070JAUTO403.

[81] M. Martinelli and R. Duvigneau. On the use of second-order derivatives and metamodel-
based monte-carlo for uncertainty estimation in aerodynamics. Computers & Fluids,
39(6):953–964, 2010.

198



[82] F. Pan, P. Zhu, and Y. Zhang. Metamodel-based lightweight design of b-pillar with twb
structure via support vector regression. Computers & Structures, 88(1-2):36–44, 2010.

[83] T.W. Simpson, J.J. Korte, T.M. Mauery, and F. Mistree. Kriging models for global
approximation in simulation-based multidisciplinary design optimization. AIAA Journal,
39:2233–2241, Dec 2001.

[84] H. Wang, E. Li, and G.Y. Li. Probability-based least square support vector regression
metamodeling technique for crashworthiness optimization problems. Comput. Mech.,
47:251–263, March 2011.

[85] R.J. Yang, N. Wang, C.H. Tho, J.P. Bobineau, and B.P. Wang. Metamodeling development for
vehicle frontal impact simulation. Journal of Mechanical Design, 127(5):1014–1020, 2005.

[86] M. Xiao, P. Breitkopf, R.F. Coelho, C. Knopf-Lenoir, M. Sidorkiewicz, and P. Villon. Model
reduction by cpod and kriging. Structural and Multidisciplinary Optimization, 41(4):555–574,
2010. 10.1007/s00158-009-0434-9.

[87] K. Shimoyama, J.N. Lim, S. Jeong, S. Obayashi, and M. Koishi. Practical implementation of
robust design assisted by response surface approximation and visual data-mining. Journal
of Mechanical Design, 131(6):061007, 2009.

[88] M.D. Buhmann. Radial basis functions. Acta Numerica, 9:1–38, 2000.

[89] E. Rigoni. Technical report 2007-001: Radial basis functions response surfaces. Technical
report, Esteco, April 2007.

[90] A. Lovison. Technical report 2007-003: Kriging. Technical report, Esteco, Dec 2007.

[91] D.J.C. MacKay. Introduction to gaussian processes. NATO ASI SERIES F COMPUTER AND
SYSTEMS SCIENCES, 168:133–166, 1998.

[92] J.H. Friedman. Multivariate adaptive regression splines. The Annals of Statistics, 19(1):1–67,
March 1991. Institute of Mathematical Statistics.

[93] E. Acar. Various approaches for constructing an ensemble of metamodels using
local measures. Structural and Multidisciplinary Optimization, 42:879–896, 2010.
10.1007/s00158-010-0520-z.

[94] J. Sacks, W.J. Welch, T.J. Mitchell, and H.P. Wynn. Design and analysis of computer
experiments. Statistical Science, 4(4):409–423, November 1989. Institute of Mathematical
Statistics.

[95] T.W. Simpson, A.J. Booker, D. Ghosh, A.A. Giunta, P.N. Koch, and R.J. Yang. Approximation
methods in multidisciplinary analysis and optimization: a panel discussion. Structural and
Multidisciplinary Optimization, 27:302–313, 2004. 10.1007/s00158-004-0389-9.

199



[96] A.A. Abdallah, B. Avutapalli, G. Steyer, Z, Su, and K. Yang. Effective nvh analysis and
optimisation with cae and computer experiments. International Journal of Vehicle Noise and
Vibration, 3(1):1–26, 2007.

[97] U. Gromping. Catalogue of orthogonal column latin hypercube designs according to ye
(1998). Technical report, Ford, 2001. Available from Jaguar Land Rover Intranet.

[98] K.Q. Ye. Orthogonal column latin hypercubes and their application in computer experiments.
Journal of the American Statistical Association, 93(444):1430–1439, Dec 1998. American
Statistical Association.

[99] R. Rai and M.I. Campbell. Qualitative and quantitative sequential sampling. ASME
Conference Proceedings, 2006(4255X):381–391, 2006.

[100] D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of
expensive black-box functions. Journal of Global Optimization, 13:455–492, 1998.
10.1023/A:1008306431147.

[101] A. Lovison. Technical report 2008-002: Lipschitz sampling for improving metamodels in
modefrontier. Technical report, Esteco, July 2008.

[102] Esteco. modefrontier documentation: Multivariate adaptive crossvalidating kriging. Technical
report, Esteco, 2009. Version 4.2.2 Documentation, Accessed November 2009.

[103] M. Cross and A. Slone. Fenet - multi-physics analysis (mpa) theme: A review of commercial
mpa capability in 2005. PROCEEDINGS OF FENET MEETING, 2005.

[104] A. Schmidt, O. Lang, P. Schmitt, P. Adomeit, and M. Hopp. Cae-based port development
and flow design for si engines. (2005-01-0243), 2005. SAE International, Warrendale,
Pennsylvania, USA.

[105] P. Sutton. Requirements for a feasibility assessment for multi-attribute optimisation
techniques: A system of systems engineering approach. In System of Systems Engineering
(SoSE), 2010 5th International Conference on, pages 1–7, june 2010.

[106] M.W. Maier. Architecting principles for systems-of-systems. Systems Engineering, 1(4):267–
284, 1998.

[107] A. Gorod, B. Sauser, and J. Boardman. System of-systems engineering management: A
review of modern history and a path forward. IEEE Systems Journal, 2(4):484–499, 2008.

[108] J.E. Jr Dennis, S.F. Arroyo, E.J. Cramer, and P.D Frank. Problem formulations for systems
of systems. IEEE International Conference on Systems, Man and Cybernetics, 2005. DOI:
10.1109/ICSMC.2005.1571123.

[109] Installation guidelines of afm: Aflos5, 2010. Denso Corporation.

200



[110] A. De Vita, L. Andreassi, and L. Di Angelo. Experimental and computational study for the
optimization of race car intake air flow. 12 2001.

[111] Air intake system analysis. Procedure Reference: PPR-600100-01.

[112] R. Cheung. Transfer matrix method. Technical report, Land Rover, 2003.

[113] N. Hoyle, N.W. Bressloff, and A.J. Keane. Design optimization of an engine air intake. 2005.

[114] User guide: Star-ccm+ version 5.06.007. Technical report, CD-Adapco, 2010.

[115] S.R. Pierson. Cfd preformance for air intakes. Internal Jaguar Land Rover Work.

[116] N.J. Bugli. Service life expectations and filtration performance of engine air cleaners. outubro
2000.

[117] N.J. Bugli. Automotive engine air cleaners - performance trends. March 2001.

[118] B. Huurdeman and H. Banzhaf. Cfd simulation of flows in air cleaners with transient dust
loading of the filter element. April 2006.

[119] Inlet air cleaning equipment for internal combustion engines and compressors - perfromance
testing. Technical Report BS ISO 5011:2000, British Standards Institutes, 2000.

[120] Steady state analysis for catalytic converter gas flow, 2005. Ford Procedure: CETP: 03.01-
C-415, page 18.

[121] Land rover l322 v8 diesel air cleaner test results. Technical report, Mann & Hummel, 2006.

[122] Land rover t5 v8 petrol n/a air cleaner test results. Technical report, Mann & Hummel, 2004.

[123] Component testair cleaner land rover l322/t5 v8 n/a s/c. Technical report, Mann & Hummel,
2008.

[124] L. Wolf. Test report: Air filter element, jaguar land rover l538. Technical report, Mann &
Hummel, 2009.

[125] C. Harris. Jaguar x150 na - air induction system: Ais filter efficiency & capacity testing.
Technical report, Siemens VDO Automotive, 2005.

[126] M.A. Pinch. Laboratory report: Pv tests on vp6h5u-9601-ac (ag1628). Technical report,
SOGEFI Filtration Ltd, 2006.

[127] F. Fortunato, P. Oliva, N. Fiore, M. Martinetto, and L. Di Matteo. Sloshing analysis of an
automotive fuel tank. (2006-01-1006), 2006. SAE International, Warrendale, Pennsylvania,
USA.

[128] S.H. Cho, J.I. Park, and W.J. Roh. Simulation of sloshing in fuel tanks and parametric study
on noise reduction by decreasing impact pressure. (2005-01-1913), 2005. SAE International,
Warrendale, Pennsylvania, USA.

201



[129] H. Kumagai, K. Morohoshi, and H. Himeki. Fatigue behavior analysis and durability evaluation
of plastic fuel tank. (2006-01-0782), 2006. SAE International, Warrendale, Pennsylvania,
USA.

[130] P. Qin and S.F. D’Souza. Cae fatigue prediction of fuel tank straps using proving ground
loads. (2005-01-1405), 2005. SAE International, Warrendale, Pennsylvania, USA.

[131] Internal jlr work. Completed by Richard Tyrrell.

[132] Abaqus manual. Simulia Doccumentation for Version 6.8EF.

[133] S.M. Rifai, Z. Johan, J.A. Landers, A.B. Glendinning, and J.C. Buell. Automotive engineering
applications of multiphysics simulation. (1999-01-1022), 1999. SAE International,
Warrendale, Pennsylvania, USA.

[134] DSS Simulia. Coupled eularian-lagrangian analysis with abaqus/explicit. Technical report,
Dassult Systemes, 2008. CEL Training Course Material.

[135] C. Dinescu, B. Leonard, O.U. Baran, A.W. Platschorre, R. Alessio, D. Belluzzo, and Charles
Hirsch. Fluid-structure interaction model for hydroplaning simulations. (2006-01-1190), 2006.
SAE International, Warrendale, Pennsylvania, USA.

[136] Starcd user guide. Cd Adapco Doccumentation for Version 4.08.

[137] S. Smith, T.M. Wasfy, and J. O’Kins. Experimental validation of a time-accurate finite element
model for coupled multibody dynamics and liquid sloshing. (2007-01-0139), 2007. SAE
International, Warrendale, Pennsylvania, USA.

[138] B.R. Tang, S. Guha, T. Tyan, J. Doong, L. Shaner, and D. Bhalsod. Simulation of sloshing and
ballooning in fuel tanks for high speed impacts. (2006-01-0314), 2006. SAE International,
Warrendale, Pennsylvania, USA.

[139] N.E. Bedewi and T. Omar. Modelling of automotive fuel tanks using smoothed particle
hydrodynamics. (2007-01-0682), 2007. SAE International, Warrendale, Pennsylvania, USA.

[140] C. Riedel, M. Brusoe, and Z. Penzar. Improvement of an ls-dyna fuel delivery module (fdm)
crash simulation. (2008-01-0253), 2008. SAE International, Warrendale, Pennsylvania, USA.

[141] P. Sutton. Internal report: Jaguar land rover design process and virtual series. Technical
report, Jaguar Land Rover, 2008.

[142] Cd-adapco starcd example: Direct-coupling method, 2009. Available from CD-Adapco
Support.

[143] M. Anghileri, L.M.L. Castelletti, and Maurizio Tirelli. Fluid-structure interaction of water
filled tanks during the impact with the ground. International Journal of Impact Engineering,
31(3):235–254, 2005.

202



[144] E. de Vries and K. Kamiya Y. Yamaguchi. Simulation studies of sloshing in a fuel tank. (2002-
01-0574), 2002. SAE International, Warrendale, Pennsylvania, USA.

[145] Djb instruments website: Piezo-electric accelerometers - a/131/v. Website.
http://www.djbinstruments.com/ (Accessed 20/03/2012).

[146] Fuel tank internal component slosh test, 2004. Ford Procedure: CETP: 10.01-L-300, page
18.

203



Appendix A

Sample Size, Distribution and Error
Estimation Experiments

A.1 Introduction

The aim of this chapter is to investigate the issues of sample size and error estimation to support the
work in the airbox project. The review of the literature and the Jaguar Land Rover CAE environment
highlighted a number of issues regarding the number and distribution of sample points for building
metamodels and estimating error. This chapter examines the use of various sampling methods of a
known function that features some complexity that can be computed cheaply. A metamodel based
upon the sampling technique will then be created and the performance assessed on the prediction
of the function at known points.

A.2 Experiment Outlines and Methods

The large leave one out error obtained from the NVH attribute metamodel, based upon a 33 latin
hypercube sample, requires a greater understanding of a number of issues around sample size
and error estimation. As the CAE is costly in both computational effort and time, some simple
experiments of fitting a metamodel to a two-dimensional mathematical function will be used to
assess sampling and error estimation issues. The five experiments are outlined below.

1. Experiment 1: Examination of the Literature Guidance on Sample Size

The literature gave three boundaries for sample size guidance (as outlined in Table 2.6)
and scales the sample size by the number of inputs alone. For a two-dimensional function
the smallest sample size would be 6 samples and the largest 20. This experiment will
incrementally increase the sample size from the smallest to the largest and assess whether
this guidance can capture the complexity of the mathematical function.

2. Experiment 2: Sample Size and Distribution for Error Estimation
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As a corollary of increasing the sample size to improve the metamodel fit, the estimation of
global error in a metamodel would also be improved by increased sample numbers. The
literature gave no clear indication to the size and distribution of any error estimation sample.
This experiment will cover both issues to assess the requirements for error estimation samples.

3. Experiment 3: Comparing Seeded and Uniform Latin Hypercubes

Within this project there are two latin hypercube methods available, the Ford minimum latin
hypercube[97] and the seeded modeFRONTIER method. The Ford approach distributes the
points uniformly through the design space whereas the seeded method is not. An examination
is required to ascertain which approach should be used.

4. Experiment 4: Comparing Sequential Sampling Methods

The literature showed there is an interest in sequential sampling methods that place further
samples in regions of interest. This experiment will assess the various sequential sampling
methods available to the project to see if they can be used.

5. Experiment 5: Examining the ‘Leave One Out’ Error Estimation Method

The ‘leave one out’ error assessment method is seen as more efficient than the use of
additional samples, however, concerns have been raised over how this metric can be interpreted.
This experiment seeks to assess whether this measure is fit for use in the airbox project.

The result of these experiments will then be used to guide the next steps in the airbox optimisation
project.

The experiments will use the two-dimensional mathematical Branin function which has been
used to test metamodels in the literature [74]. This is discussed along with the available sampling
methods and error estimation methods in the following sections.

A.2.1 The Branin Function

In order to understand the operation of the various sampling methods, a representative surface is
required that features some complexity as well as changing features. The function selected is the
Branin function from Fang et al [74]. The equation for the surface is given in equation A.1 which is
then plotted in Figure A-1:

f(x) =

(
x2 −

5 · x21
4 · π2

+
5 · x1
π
− 6

)2

+ 10 ·
(

1− 1

8 · π

)
cos(x1) + 10 (A.1)

As this experiment is to assess the various sampling methods, only a single metamodelling
method will be used. Fang et al [74] found the Radial Basis Function (RBF) using Multi-Quadratic
approximations was the best at predicting the surface. The Branin function has a global maximum
of 305.9563 located at x1 = −5 and x2 = 0 as well as a local maximum located at x1 = 6.2 and
x2 = 15 (FBranin = 215.5444). Figure A-1 shows that there are a number of local minima, but the
global minimum of 0.4018 is located at x1 = 9.4 and x2 = 2.2. These points will be used to assess
the sensitivity of the fitted metamodel to the maximum and minimum.
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Figure A-1: The Branin function

A.2.2 Upfront and Sequential Sampling Methods

This experiment assesses the various sampling methods available, which are as follows:

1. Latin Hypercubes (LH)

2. Lipschitz (L)

3. Multivariate Adaptive Crossvalidating Kriging (MACK)

4. Error based Lipschitz (EbL)

These can be split into two generic methods; upfront methods (LH) and sequential sampling (L,
MACK and EbL). Of the sequential sampling methods, the Lipschitz and MACK methods are in-
built within modeFRONTIER, while the EbL method was developed within this project as a new
approach to using the Lipschitz sampler.

Latin Hypercubes

There are two Latin Hypercube methods which can be utilised in this project. The first is a seeded
latin hypercube available within modeFRONTIER and the second is the Ford minimum latin hypercube
designs which are optimally distributed through the design space[97].

The modeFRONTIER latin hypercube methods are based on a seeding point and have 1000
variations. The sample points in this method are not uniformly distributed throughout the design
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space. This means that in some areas of the design space the samples are more densely packed
than others. The distribution also varies with the seeding number used which can lead to variability
in the robustness of the sampling. Unless stated otherwise, in these experiments the default seed
of 1 value was used.

The Ford minimum latin hypercube designs[97] are based on the work of Ye [98]. In these
designs the sample points are distributed throughout the design space with optimal uniformity. This
means that all areas of the design space have the same sample point density. 9, 17, 33, 65, 128,
and 257 sample designs are available for use.

Lipschitz Sampling

The Lipschitz sampler is a sequential method that uses an assessment of the surface complexity
to judge the next best position for a sample [101]. The process is as follows:

1. An initial sample of the design space is taken.

2. An n-dimensional Delauney tessellation on normalised data is applied to the sample set and
the Voronoi vertices calculated

3. The Lipschitz criterion (based upon gradients in the output values) is calculated at each of the
Voronoi points

4. At the Maximum of these a point is placed which can then be obtained from the analysis
function either automatically (when using CAE tools integrated with modeFRONITER) or
manually running the analysis and inputting the result

5. The information from this sample is then added to the total design space

6. The process then repeats

Multi-Variate Adaptive Cross-Validating Kriging Sampling

This method again needs an initial sample of the design space, then using a kriging metamodel on
a defined number of points it calculates the interpolation error. New points are then placed where
the interpolation error is largest [102]. The new sample point is assessed and the process repeated.
This method requires an automatic assessment of new sample points and does not work for cases
where manual intervention is required.

Error Based Lipschitz Sampling

The Lipschitz sample uses a simplified gradient function to assess complexity in the metamodel
surface, which does not consider error. In the creation of the radial basis function metamodel,
‘leave one out’ errors can be captured. As ‘leave one out’ error can be interpreted as a dependence
on that point. Lipschitz sampling on this would highlight large changes in dependence/error and
place samples to resolve these. The process for this method is completely manual and more time
consuming than others mentioned. The process is as follows:
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1. Import initial Branin sample and create and an RBF model, exporting the leave one out errors
to an .xls file.

2. Arrange the error data so that it shows the sample point locations and error estimation.

3. Import error sample set into another modeFRONTIER file.

4. Perform a Lipschitz iteration to get the next sample point.

5. Sample this point and add it to the Branin data sample.

6. Create a new RBF model and repeat the process.

A.2.3 Error Estimation Methods

There are a number of error assessment methods that can be applied to compare metamodel
predictions with actual computed data. The review of literature suggested the R2 and RMSE given
in equations 2.1 and 2.2. These measures are limited in the fact that only the global fit of the
metamodel is assessed. While this may be acceptable in terms of a global optimisation, it gives no
information as to the localised errors, i.e. the measures may suggest a poor global fit. This could
be the product of poor fit in only one area but generally there is good correlation else where.

It must be noted that the radial basis function is interpolative, i.e. the model will return the
sample value at a given sample point. This means that either additional sample points or leave one
out methods are required for error assessment.

The advantage of using additional sample points is that the error estimation can be made on the
final surface. However, this comes at the cost of reduced efficiency of use as these points must be
generated. This may be acceptable for low cost CAE functions but becomes increasingly prohibitive
as CAE cost functions rise. When CAE costs are increased, leave one out error estimators become
attractive as no additional samples are required to assess the error in a surface.

Leave one out methods function by building a total of n surfaces each based on n-1 data
points, where n is the total sample size. The prediction error to this remaining point can then
be assessed and the final surface error estimated by an averaged value across all the surfaces
created. modeFRONTIER quotes this as the root mean square for Kriging metamodel methods
and normalised root mean square for radial basis functions. As these errors are not assessed
on a surface of all data points, the error measurement is not an absolute figure. Instead it can be
interpreted as a dependency on a given sample point. A large leave one out error at one point would
be given by a metamodel where the fit to other local points does not capture the true behaviour. The
behaviour of these errors must be compared to errors assessed by additional samples to confirm
that it is fit for use within projects.
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A.3 Experiments

A.3.1 Experiment 1: Examination of the Literature Guidance on Sample Size

The guides for sample size in the literature are given in Table 2.6 on page 53. for a two-dimensional
function, such as the Branin function, the smallest sample size suggested is 6 (3 times the number
of inputs) and the largest 20 (based on the small set 10 times the number of inputs, for the two
dimensional case the large sample set would require 18 samples). In this experiment the sample
size of the modeFRONITER default seeded latin hypercube was increased incrementally from 6 to
20. In this case the small set The changes in metamodel fit were measured using the R2 and RMSE
based upon an additional sample of 20 points. This additional sample used a modeFRONTIER latin
hypercube with a seed of zero. The measured error results are presented in Figures A-2 and A-3.
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Figure A-2: Variation of the R2 error estimator of seeded latin hypercube sampling method with
increasing numbers of samples

From both the error measures it can be seen that increasing the sample size does improve the
fit of the metamodel as the R2 value increases and the RMSE reduces. However, it can be seen
that from samples 8 to 9, 11 to 12 and 17 to 19 that the inclusion of additional points has reduced
the fit of the metamodel. This is due to the new sample revealing a region of complexity that was
not present in the previous model. The local fit of the metamodel would be improved in the region
of the new sample, however the global fit may be severly affected.

For 6 samples the low R2 value of 0.3 and high RMSE value of over 30 show that the scare
sample size is insufficient to model the complexity of the Branin function. At 20 samples the
R2 value has been improved to approximately 0.97 while the RMSE reduced to approximately
5. This would suggest that 20 samples is sufficient to capture the complexity of the Branin function.
However, when the metamodel is visualised, it would suggest that the metamodel has a poor fit.
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Figure A-3: Variation of the RMSE error estimator of seeded latin hypercube sampling method with
increasing numbers of samples

Figure A-4 compares 20 sample metamodel surface (Red Surface) with the actual plotted surface.
From this it can be seen that there are still significant errors, particularly in the global maximum
region (x1 = −5,x2 = 0). This would seem to suggest that the error measures are under-estimating
the total error in the fit. This should be further investigated.

Figure A-4 also suggests that the guideline of 20 samples may also be insufficient to capture
the complexity of the Branin function. This means that the use of number of inputs to scale the size
of samples may also need to be examined and another method scaling devised.

A.3.2 Experiment 2: Sample Size and Distribution for Error
Estimation

The error in the metamodels created in the previous section were assessed using an additional
twenty sample points created by the modeFRONTIER latin hypercube algorithm. However, the use
of the error sample was questioned when comparing the measured error results with a visualisation
of the metamodel surface. The fit of the metamodel was shown to be sensitive to the number of
samples. A corollary of this is that any error estimation using this sampling method would also
show the same sensitivity and variability. A consequence of this is a need to understand the best
sampling method for error estimation as well as for metamodel creation.

This experiment was conducted using the metamodel created from the twenty point sample
modeFRONTIER latin hypercube (shown in Figure A-4). To assess the requirements for error
estimation of metamodels three different sampling methods of varying sizes were applied to the
Branin function. The error was assessed by the RSQD and RMSE measures.

Figures A-5 and A-6 show the effect of increasing the sample size used in the error estimation
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Figure A-4: Metamodel surface based on 20 modeFRONTIER non-uniform latin hypercube sample
points

for three different sampling methods. A full factorial with increasing numbers of levels and two types
of latin hypercube methods have been employed; the minimum Ford and modeFRONTIER seeded
method. From these plots it can be seen that as the sample size increases, the error estimation
tends towards a single value. However, it is subject to a diminishing return with increasing the
sample size. The uniform latin hypercube method can under-predict the error, however, it tends
towards the true error value in fewer samples than the full factorial method. In all error sample
distribution methods, the number of samples required for assessment of the error is much larger
than expected, this is suggesting that a metamodel built with 20 samples may require more than
257 samples to assess the error.

The initial error estimation of the 20 sample metamodel suggested an R2 value of 0.97 and
a RMSE of 5. The visualisation of the surface in Figure A-4 suggested that these values may
have underestimated the metamodel error. This suggestion is confirmed as the true global error is
approximately 0.9 and 18 according to the R2 and RMSE measures respectively. Based on these
results it also confirms that a sample size of 20 is insufficient for this example. The sample size
required to assess the Branin function needs further investigation.

The large sample sizes required to estimate the global error present a dilemma as it requires
a large cost to complete in a constrained environment. While global error estimation by additional
samples may be impractical, small focused samples in regions of interest could be used to predict
the local error. This may be a more practical method of estimating the error and could include
samples of the predicted optimums and baselines.
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Figure A-5: R2 error estimator comparing sampling method and size
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Figure A-6: RMSE error estimator comparing sampling method and size

A.3.3 Experiment 3: Comparing Seeded and Uniform Latin
Hypercubes

The Latin Hypercube method used in modeFRONTIER is based upon an initial seed value. Therefore,
variations in this initial seed can lead to perturbations in performance. This occurs as the positions
of the sample points change, meaning different regions will be captured. Figure A-7 show the
variation of the radial basis function surfaces for a nine point latin hypercube at four different seed
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values.

Figure A-7: Variation of RBF approximation with 9 point latin hypercube (top left seed=1, top right
seed=2, bottom left seed=3 & bottom right seed=4)

Surfaces show large amounts of variation depending on the seed point and could result in non-
robust metamodels. In this experiment, the efficiency of this method is compared with performance
of an uniformly distributed latin hypercube, as provided by Ford[97]. The Ford minimum latin
hypercube method provides 9, 17, 33, 65, 129 & 257 sample point designs for two-dimensional
problems. These are compared to the default seed modeFRONTIER latin hypercube of the same
size. The global metamodel errors are estimated based on 5776 additional data points from a full
factorial design.

Seeding of the initial sample set can have a substantial effect on its predictive power. This
is not advantageous for an unknown function as it could give variable results from application to
application. By all measures the optimal latin hypercube outperforms the modeFRONTIER method.
This happens up until a critical sample density where they then perform equally, as shown in Figures
A-8 and A-9. From this it could be argued that global metamodel performance is a function of the
complexity of the surface, number of inputs and the distribution of the sample.

Both methods seem to indicate a diminishing returns behaviour for increasing the number of
sample points as the fit tends toward that of the actual surface. This suggests that there is a trade-
off point at which increasing the number of samples becomes inefficient when compared to the
gains made. This trade-off point would be vital to any industrial application as sampling beyond
this point would be a waste of resources. For this example the trade-off sample density seems to
be at around 33 optimal samples, there is little change in the R2 value and the RMSE represents
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Figure A-8: Variation of the R2 error estimator of various sampling methods with increasing
numbers of samples
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Figure A-9: Variation of the RMSE error estimator of various sampling methods with increasing
numbers of samples

approximately 2% of the function range. This is where the prediction performance of the surface
is traded off against the effort required to gain further data. At 17 there are insufficient samples to
correctly predict global bulk behaviour, i.e. the trends in the metamodel do not match the trends in
the function. However, the improvement gained from 65 samples is small. The literature guidelines
called for three times the number of inputs for scarce sampling and ten times for small sets.
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However, this surface required 16.5 times the number of inputs. This also supports the findings
of experiment 1, that the guidance in the literature may not be sufficient to capture complexity. A
new approach considering the potential complexity of the surface may be required.

A.3.4 Experiment 4: Comparing Sequential Sampling Methods

The previous section demonstrated that a sample size of approximately 33 points would be sufficient
to model the Branin function. In this experiment the sequential sampling methods available within
modeFRONITER are used to examine whether this value can be reduced by better placement of
samples in regions of interest. The experiment will start with an initial sample, in this case the 17
sample Ford latin hypercube, which represents an under-sampling of the design space. Each of
the sequential methods are then used to increase the sample numbers up to 33. To compare the
methods the R2 and RMSE values for each increment is measured using 5776 full factorial sample.
The methods are also compared by examining the location of the global maximum and minimum.
A more efficient sampling method would reduce the global error and find the global maximum and
minimum in fewer samples than other methods.
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Figure A-10: RMSE with increasing numbers of sample points

Figures A-10 and A-11 demonstrate the fit performance of the various sampling methods with
increasing numbers of samples. The plots show that the sequential methods can both improve
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Figure A-11: RMSE with increasing numbers of sample points

and reduce the fit performance of the model on the introduction of a new point. However, all of the
sequential methods reach a similar level of performance as the 33 optimal latin hypercube in a fewer
number of samples. This suggests that complexity of surfaces can be resolved using sequential
methods. In these examples, the methods based on error estimations (MACK and EbL) outperform
the Lipschitz method, but these methods are limited by their implementation requirements. The
MACK sampler requires automation and the EbL requires a greater degree of human interaction.

However issues can occur with sequential sampling methods. Figure A-12 demonstrates how
the metamodel performance can be reduced when new samples are introduced. The addition of a
new point may improve the local performance of the model in the region of the sample, but it can
affect the overall fit of the function. In the illustrated case, the new sample point dramatically alters
the prediction along the borders, increasing the error.

Global Maximum and Minimum Predictions

As well as error sensitivity, the metamodel should also be able to predict the global maximum
and minimum locations. In this assessment the maximum and minimum are located using the full
factorial sampler used to generate the surface meshes. The maximum locations are given in Table
A.1 and the minimum locations in Table A.2. The results from these are displayed in Figures A-13
and A-14.

Viewing the original function (Figure A-1) it can be seen that the maximum is in a region of large
gradients on the boundary of the Branin region. This means that the application of the sequential
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Figure A-12: Increasing the number of points via the MACK sampler with 20 (left) and 21 (right)
samples

sampling methods are able to capture this point within a few samples. The large gradients will draw
in the lipschitz sampling method and the low sample density will lead to large error in this region,
forcing the MACK and EbL methods to add points in this region. However, this is not the case for
finding the global minimum as this is located in a shallow trough surrounded by low gradients with
multiple local minima. The steep gradient assumption in the formulation of the lipschitz sampling
method means that this area is not sampled and therefore is insensitive to this minimum. The
relatively low complexity in this region would lead to lower error estimators resulting in the MACK
and EbL methods also being insensitive. Any optimisation based on surfaces created using these
methods may not deliver the global minimum.
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Table A.1: Global maxima predictions for the various sampling methods
Sample EbL Lipschitz MACK LH

x1 x2 x1 x2 x1 x2 x1 x2

17 6.00 15.00 6.00 15.00 6.00 15.00 6.00 15.00
18 6.00 15.00 6.00 15.00 5.60 15.00 - -
19 6.00 15.00 6.60 15.00 5.80 15.00 - -
20 7.00 15.00 6.80 15.00 5.80 15.00 - -
21 6.80 15.00 6.00 15.00 -5.00 0.00 - -
22 6.80 15.00 6.00 15.00 -5.00 0.00 - -
23 6.00 15.00 6.00 15.00 -5.00 0.00 - -
24 5.80 15.00 6.20 15.00 -5.00 0.00 - -
25 -5.00 0.00 6.00 15.00 -5.00 0.00 - -
26 -5.00 0.00 6.00 15.00 -5.00 0.00 - -
27 -5.00 0.00 6.00 15.00 -5.00 0.00 - -
28 -5.00 0.00 -5.00 0.00 -5.00 0.00 - -
29 -5.00 0.00 -5.00 0.00 -5.00 0.00 - -
30 -5.00 0.00 -5.00 0.00 -5.00 0.00 - -
31 -5.00 0.00 -5.00 0.00 -5.00 0.00 - -
32 -5.00 0.00 -5.00 0.00 -5.00 0.00 - -
33 -5.00 0.00 -5.00 0.00 -5.00 0.00 -5.00 0.00

(Actual=(x1 = −5.0,x2 = 0.0))
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Figure A-13: Predicted global maxima locations
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Table A.2: Global minima predictions for the various sampling methods
Sample EbL Lipschitz MACK LH

x1 x2 x1 x2 x1 x2 x1 x2

17 10.00 0.00 10.00 0.00 10.00 0.00 10.00 0.00
18 10.00 0.00 10.00 0.00 4.60 0.00 - -
19 3.60 2.00 10.00 0.00 4.60 0.00 - -
20 10.00 0.00 10.00 0.00 10.00 0.00 - -
21 10.00 0.20 10.00 0.00 -5.00 15.00 - -
22 4.60 0.00 10.00 0.00 10.00 0.00 - -
23 3.80 1.80 10.00 0.00 10.00 0.00 - -
24 3.60 2.00 4.60 0.20 10.00 0.00 - -
25 5.80 0.00 3.80 1.20 4.20 2.40 - -
26 4.20 1.20 3.80 1.20 4.20 2.40 - -
27 4.40 0.80 3.60 1.40 3.80 2.60 - -
28 5.00 0.00 4.80 0.00 10.00 1.40 - -
29 -3.60 15.00 -3.40 12.60 3.60 2.40 - -
30 4.40 1.40 4.40 0.20 3.60 2.20 - -
31 4.40 1.20 4.40 0.20 3.60 2.20 - -
32 4.00 1.80 4.80 0.00 3.60 2.20 - -
33 10.00 0.00 4.60 0.00 3.60 2.20 10.00 5.40

(Actual=(x1 = 9.4,x2 = 2.2))
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Figure A-14: Predicted global minima locations
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A.3.5 Experiment 5: Examining the ‘Leave One Out’ Error Estimation Method

modeFRONTIER uses the normalised RMSE based on a ‘leave one out’ (LOOE in the following
figures) method to estimate the surface fit of the radial basis function. This method is meant to
guide the user in understanding the fit of the surface without the need for additional data points.
While this may be more efficient, as no additional samples are required, it may also not reflect the
true state of errors in the model. This experiment compares the use of the modeFRONTIER error
estimator against measures taken from additional samples. The experiment also examines how the
‘leave one out’ error can be interpreted and what the changes mean in terms of surface fit. For this
experiment the RMSE values obtained in experiments 3 and 4 are normalised against the range
and compared to the ‘leave on out’ errors obtained from the same experiments.

Firstly, comparing the additional sample error estimators, hereafter called the measured error,
with the modeFRONTIER ‘leave one out’ error over the 9 to 257 sample uniform latin hypercubes
shows the general trend of the predictors. However, the Figures A-15 and A-16 show that the error
can be over-estimated which increases the risk of gathering more samples than required. These
plots demonstrate that the leave one out method can pick up errors in the predictions when there
are large variations in the surface fit. But it must be questioned if the ‘leave one out method’ can
pick up on differences when there may be only small changes in surface fit?

While Figures A-15 and A-16 show there is a general correlation of the two error estimation
methods when there are large variations in the surface fit, Figures A-17 and A-18 show that this
may not be true for small variations. Some of the trends shown in Figures A-17 and A-18 show
correlation in the ‘leave one out’ and the additional sample error measure. However, the trend is
not followed when the sample size is increased from 25 to 26 using the Error based Lipschitz re-
sampling method (Figure A-17). This figure shows that while this increase in sample size leads
to a reduction in the measured error, there is a corresponding rise in the ‘leave one out’ error.
This may drive the user to obtain more samples, however this type of error holds less risk than an
underestimation of error.

When the two error estimation methods are compared in the MACK method (Figure A-18) it
can be seen that an overall rise in the measured error, from samples 20 to 21, corresponds to
a reduction in the ‘leave one out’ error. This introduces a large risk in the use of the surface as
the user perceives the model performance to be better than it actually is. The source of these
differences needs to be understood.

High leave one out errors show that the final surface requires that point to be there as the other
local sample points cannot predict the surface at that point. Conversely, low leave one out errors
mean other local samples can be used to predict that point accurately. This means that the ‘leave
one out’ error can be seen as a measure of dependence on points in the data set. With this in mind,
the two scenarios above can be understood.

In the first case, where a decrease in the measured error corresponded to an increase in the
leave one out error, the new sample point resolves a region of complexity which was previously
unknown. Thus, when the ‘leave one out’ error is formulated there is a large error at this point
as the model surface is highly dependant on that sample. This is demonstrated by Figure A-
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Figure A-15: Comparing error estimates based upon ‘leave one out’ error and actual error for
modeFRONTIER latin hypercubes
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Figure A-16: Comparing error estimates based upon ‘leave one out’ error and actual error for Ford
minimum latin hypercubes
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Figure A-17: Comparing error estimates based upon ‘leave one out’ error and actual for EbL
sampling

19. Here, the increase in sample points via the MACK sampler has improved the global fit of
the model, particularly on the border regions, but without this point the error estimation would be
based on the previous surface. The second scenario is also demonstrated in the MACK sampler,
examining Figure A-12 again shows that the global surface prediction has been reduced. However,
this corresponds to a steep decrease in the ‘leave one out’ error as shown in figure A-18. This would
occur when the introduction of a new point improves local performance but drastically changes the
surface in other regions . When the ‘leave one out’ surfaces are created, the local improvement
reduces the dependence on the metamodel on each sample point, leading to lower ‘leave one
out’ errors. Both of these scenarios mean that using the modeFRONTIER error estimator without
additional samples increases the risk of the optimisation method failing.

This section has shown that the ‘leave on out’ error value can be misleading with both optimistic
and pessimistic predictions of the metamodel error. This was particularly significant for small
sample sizes. However, as the number of sample sizes increases, so does the confidence in
this value. This would mean that fewer additional points would be required to verify the metamodel.
This error estimator may be used when no additional points are available, but only as a guide for
the surface fit.

A.4 Conclusions

The conclusions from each experiment are as follows:
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Figure A-18: Comparing error estimates based upon ‘leave one out’ error and actual error for MACK
Sampling

Figure A-19: Increasing the number of points via the MACK Sampler with 24 (left) and 25 (right)
samples.

• Experiment 1: Sample sizes guided by the literature are not sufficient to model the complexity
in the Branin function. This also suggests that the scaling of sample sizes by the number of
inputs alone may not be sufficient.

• Experiment 2: The sample size required for error estimation is potentially larger than that
required to build a metamodel. This may make the estimation of global metamodel error
impractical. One potential method is to use small additional samples focused on local areas
of interest (optimums or expected design regions) to understand local error.
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• Experiment 3: A uniform distribution of sample points is more robust and efficient than a non-
uniform sample. This experiment also confirmed the conclusion from experiment 1. A sample
size of 20 is insufficient for the Branin function, instead 33 samples are required. This value
is 16.5 times the number of inputs.

• Experiment 4: A smaller initial sample followed by a sequential sampling methods can be
more efficient than a larger initial sample. This is because these methods place samples
in regions of high error or complexity allowing them to be resolved. Of the three methods
available the MACK and EbL methods perform better but are harder to implement than the
Lipschitz sampler.

• Experiment 5: The ‘leave one out’ error estimation should be interpreted as a dependency
metric rather than an error measure. Used in isolation it can be mis-leading and has the
potential to under or over estimate the error depending model. As this estimator is cheap
to obtain it should be used, however, only in conjunction with error estimation based on
additional samples.
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Appendix B

Supporting Documentation for
Airbox Project

B.1 Airbox Geometry

This section shows how the airbox input parameters are included in a parametrised CAD model.
The simplified geometry is shown in Figure B-1, the primary parameters are listed in Table B.1,
these will be varied using the in the optimisation. Table B.2 lists the secondary parameters which will
be used, these were used to adjust the final shape of the airbox but are not used in the optimisation.
The clean and dirty duct lengths are calculated as a percentage of the total length.

MAF Region

Box Height

Clean Duct Length

Dirty Duct Length

Inlet Runner length

Box Length

Box Breadth

Clean Duct
Diameter

Dirty Duct
Diameter

Figure B-1: Simplifed Airbox Geometry
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Table B.1: Primary Parameters
Parameter Abbreviation

Total Height H
Length L
Breadth B

Clean Duct Diameter CDD
Dirty Duct Diameter DDD

Clean Diffuser Length CDL
Dirty Diffuser Length DDL
Inlet Runner Length IRL

Table B.2: Secondary Airbox Parameters
Parameter Abbreviation Value

Bell mouth Radius BMR 10 mm
Diffuser Thickness DT 2 mm

Lip Length LP 10 mm
Filter Thickness FT 48 mm
Filter Clearance FC 2 mm

Inlet Runner Radius IRR 75 mm
Filter Fillet Radii FFR 2 mm
Box Fillet Radii BFR 10 mm

The geometry heights was assumed to be symmetrical about the y axis, with the diffuser centre
lines an equal distance either side of the filter. The heights are shown in Figure B-2, and the
relationships can be defined as;

1. BH=(H-FT-2FC)/2 (Box Height)

2. DH=(TH-FT-2FC)/4 (Duct Height)

3. DCL=DH+FT/2+FC (Duct Center Line)
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Figure B-2: Airbox Height Definitions

The box length and breaths are defined in a similar manner with an additional 10 mm around the
filter section. The length and breath planes are shown in Figure B-3 with the relationships defined
as;

1. HLP=L/2 (Half Length Plane)

2. HTLP=L/2+LP (Half Total Length Plane)

3. BLP=B/2 (Half Breadth Plane)

4. BTLP=B/2+LP (Half Total Breadth Plane)

The implementation clean and dirty side ducts are shown in Figure B-4. Given that the duct
length are defined by percentage ingress parameters (Clean Duct Ingress = CDI and Dirty Duct
Ingress = DDI), the relationships governing the ducts are;

1. BBM=C/D DL-DT (Back of Bell Mouth)

2. SBM=C/D DL-BMR (Start of Bell Mouth)

3. DOR=DD/2+DT (Duct Outer Radius)

4. DMR=DD/2+BMR (Duct Mouth Radius)

5. BOR=BMR-DT (Bell Outer Radius)
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Figure B-4: Airbox Height Definitions

The inlet runner is assumed to be attached to the outside of the box and begins with a 90◦ bend.
The outline of the geometry is given in Figure B-5 and the relationships as;

1. IBH=-DCL+IRR (Inlet Bend Height)

2. IRS=-L/2-IRL-IRR (Inlet Runner Start)

The MAF sensor geometry was derived from measurements taken of current Jaguar Land Rover
devices. This is aimed to be a representative size and shape. The height is proportional to the
diameter of the clean air duct. It is also assumed that the MAF is connected directly to the side of
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Figure B-5: Airbox Height Definitions

Table B.3: MAF Parameters
Letter Description Value (mm)

a MAF Width 14.5
b MAF Box Length 29.8
c MAF Rounded Length 14.9
d Difference from Front L/2 Plane 20.0
e Top rounded distance 10.0

the airbox. The fixed geometry sizes and relationships are shown in Figure B-6 with details in Table
B.3.

1. 0.74*CDD

Figure B-6: Airbox Height Definitions
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B.2 NVH Metric Method

This NVH metric Matlab script was written to reduce the NVH spectra results to a single value. This
was developed by examining preferences expressed by a lead NVH engineer and trying to get the
metric to replicate these preferences. The airbox result spectra is compared to the NVH target line
and the areas above and below the lines assessed, The two areas are then added together with
weightings. these bias the metric to highlight areas of poor performance by giving a larger weight
to the area under target.

After the data has been clipped and the target model built, the next step is to find the intersections
between the airbox attentuation spectra and the target model. This is done by subtracting the target
model from the airbox data. From this the zeros can be found and the intersections added to the
data.

NTLDATA(:,box)=TLDATA(:,box)-TLTARGET;

flag1=0;

if NTLDATA(1,box)>0

flag1=0;

else

flag1=1;

end

FQOUT=[];

len=length(NTLDATA);

n=1;

while n<60

while flag1==0;

if NTLDATA(n+1,box)<0

freq=FQDATA(n,1)-(NTLDATA(n,box)*(FQDATA(n+1,1)...

-FQDATA(n,1)))/(NTLDATA(n+1,box)-NTLDATA(n,box));

FQOUT=[FQOUT;box n n+1 freq];

n=n+1;

if n==60

break

break

break

end

flag1=1;

else

n=n+1;

if n==60

break

break

break
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end

end

end

while flag1==1;

if NTLDATA(n+1,box)>0

freq=FQDATA(n,1)-(NTLDATA(n,box)*(FQDATA(n+1,1)...

-FQDATA(n,1)))/(NTLDATA(n+1,box)-NTLDATA(n,box));

FQOUT=[FQOUT;box n n+1 freq];

n=n+1;

if n==60

break

break

break

end

flag1=0;

else

n=n+1;

if n==60

break

break

break

end

end

end

end

[x,y]=size(FQOUT);

boxdata=[FQDATA NTLDATA(:,box)];

for i=1:1:x

L1=FQOUT(i,2)+i-1;

L2=FQOUT(i,3)+i-1;

boxdata=[boxdata(1:L1,:); FQOUT(i,4) 0; boxdata(L2:end,:)];

end

NTLBox{box}=boxdata;

clear x
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end

Once the intersections have been found, the positive and negative areas can be found. The
metric is then calculated by adding together 90% of the negative area and 10% of the positive area.

Pos_Factor=0.1;

Neg_Factor=0.9;

AREA_POS=[];

AREA_NEG=[];

ATTRIBUTE=[];

for B=1:1

L=length(NTLBox{B});

PA=0;

PN=0;

for j=1:L-1

area=0.5*((NTLBox{B}(j+1,2)+NTLBox{B}(j,2))*(NTLBox{B}(j+1,1)...

-NTLBox{B}(j,1)));

if area>0

PA=PA+area;

else

PN=PN+area;

end

end

AREA_POS=[AREA_POS; PA];

AREA_NEG=[AREA_NEG; PN];

ATTRIBUTE=[ATTRIBUTE; Pos_Factor*PA+Neg_Factor*PN];

end

format long

Output(finum,:)=[finum ATTRIBUTE AREA_POS AREA_NEG];

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

B.3 WaveBuild 3D Automation

When using the WaveBuild 3D automation script, the latin hypercube data is first imported into
Matlab. Running this script will then take each box in turn to generate the appropriate WaveBuild
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3D model. The first step is to calculate the required coordinates and lengths then place these
values in the correct location of the base files. The script below shows the coding for placing the
geometry values in the file. The variable ‘line v’ contains the line number and the new geometry
value. The geometry value is entered by replacing it using the appropriate regexprep command in
Matlab. The amended file is then saved in the appropriate directory. The final step is to open the
file and mesh the model, then connect the airbox ducts to the test rig in the WaveBuild software.

% open inFile

fin = fopen(inFile);

% open outFile for writing

fout = fopen(outFile,’w’);

% start on line 1

lineCount = 1;

% get the current line

currentLine = fgetl(fin);

% continue while characters are returned (fgetl returns -1 at EOF)

while ischar(currentLine)

%check if current line is target line

if lineCount==line_v(v,1)

newValue=line_v(v,2);

currentLine=regexprep(currentLine,’value="(.*?)"’,[’value="’,num2str(newValue),’"’]);

v=v+1;

if v>13

v=13;

end

end

%print out the current line to the outfile

fprintf(fout,’%s\n’,currentLine);

% get the next line

currentLine = fgetl(fin);

% increment the line count

lineCount = lineCount + 1;

B.4 CCM+ Attribute Processing

This script processes the gamma and pressure loss attributes. These are exported from the CCM+
model as a comma separated variable file, these are imported into Matlab as GAMMADATA and
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DELTAPDATA matrices. The average and variation of the attribute is then taken over the last 200
increments of the model.

NUMITER=200;

%gamma

SIZE=size(GAMMADATA);

ULIMIT=SIZE(1,1);

LLIMIT=SIZE(1,1)-NUMITER;

gamma=GAMMA1DATA(LLIMIT:ULIMIT,2);

size_gamma=size(gamma);

ave_gamma=sum(gamma)/size_gamma(1,1);

max_gamma=max(gamma);

min_gamma=min(gamma);

delta_gamma=max_gamma-min_gamma;

pc_delta_gamma=100*delta_gamma/ave_gamma;

%Pressure Drop

SIZE=size(DELTAPDATA);

ULIMIT=SIZE(1,1);

LLIMIT=SIZE(1,1)-NUMITER;

deltap=DELTAPDATA(LLIMIT:ULIMIT,2);

size_deltap=size(deltap);

ave_deltap=sum(deltap)/size_deltap(1,1);

max_deltap=max(deltap);

min_deltap=min(deltap);

delta_deltap=max_deltap-min_deltap;

pc_delta_deltap=100*delta_deltap/ave_deltap;

%Tabulating data

gamma_table(i,:)=[i,ave_gamma,max_gamma,min_gamma...

,delta_gamma,pc_delta_gamma];

deltap_table(i,:)=[i,ave_deltap,max_deltap,min_deltap...

,delta_deltap,pc_delta_deltap];

end
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B.5 ModeFrontier Implementation

Figure B-7 shows the implementation of ModeFrontier for a Multi Objective Optimisation. Here the
constraints limit the volume to 9l and the diffuser length to 40 mm. These are entered into the
dialogue boxes and entered as equations using the variable names. The DoEs and optimisation
approach are entered in at the scheduler and the calculator is set to 100% RSM calculation.

Figure B-7: ModeFrontier implementation for internal assessment of meta models

Figure B-8 shows the implementation of ModeFrontier with the utility function. The Matlab
interface automatically calls Matlab and runs the named script. The variable names in Matlab
need to be matched to the input and output variable names in ModeFrontier. The input, running
and output of this node takes around 1 second per sample and represents a major restriction the
process. The script for the utility function is given in Section B.6.
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Figure B-8: ModeFrontier implementation with Matlab Utility function

B.6 Utility Script

This script calculates the utility of each airbox design. The script is called by the Matlab node in
ModeFrontier.

%Read in variables from ModeFrontier

Cap=Capacity;

dP=Delta_P;

NVH=NVH_Metric;

%Utility Function for Capacity

if Cap<80

Cap_U=0;

elseif Cap<100

a=-6.6666667e-02;

k=-13.862944;

Cap_U=a-a*exp(-k*((Cap-80)/100));

elseif Cap>=100

Cap_U=1;

end
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%Utility Function of Pressure Drop

if dP<1160

P_U=1;

elseif dP<2545

x=[1160;2545];

y=[1;0.3];

P_U=interp1(x,y,dP);

elseif dP<3260

a=-2.197364e-3;

k=6.886464;

P_U=a-a*exp(-k*((dP-3260)/1000));

elseif dP>=3260

P_U=0;

end

%Utility Function of NVH Metric

if NVH<-3000

NVH_U=0;

elseif NVH<-1850

x=[-3000; -1850];

y=[0.3;1];

NVH_U=interp1(x,y,NVH);

elseif NVH>=-1850

NVH_U=1;

end

%Calculate Utility

ut_nvh=[0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1];

ut_p=[0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1];

pref=[0,1.25,2.5,3.75,5,6.25,7.5,8.75,10;

2.5,4.84375,7.1875,9.53125,11.875,14.21875,16.5625,18.90625,21.25;

5,8.4375,11.875,15.3125,18.75,22.1875,25.625,29.0625,32.5;

7.5,12.03125,16.5625,21.09375,25.625,30.15625,34.6875,39.21875,43.75;

10,15.625,21.25,26.875,32.5,38.125,43.75,49.375,55;

12.5,19.21875,25.9375,32.65625,39.375,46.09375,52.8125,59.53125,66.25;

15,22.8125,30.625,38.4375,46.25,54.0625,61.875,69.6875,77.5;

17.5,26.40625,35.3125,44.21875,53.125,62.03125,70.9375,79.84375,88.75;

20,30,40,50,60,70,80,90,100;];

pval=interp2(ut_nvh,ut_p,pref,NVH_U,P_U);

Utility=Cap_U*pval
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Appendix C

Fuel Tank Design Study

C.1 Fuel Tank Design Stages

C.1.1 Concept Design

In the Concept Design stage the overall shape of the tank is defined by packaging engineers. The
preliminary locations for accessory components are added based on experience. For this, carry
over parts from previous vehicle programs or generic models are used as an initial guide for design.
The initial wall thickness is estimated from experience and added to the tank shell. These are only
preliminary at this stage due to the iterative nature of the supplier analyses. Finally, the tank shell is
given rudimentary radii and fillets based upon previous tank models and knowledge of tank forming
processes.

The CAE at this stage is completed within the fuel system design team using internal methods.
The indicative tank capacity is calculated along with a tank weight calculation. These are then
used to generate an initial system cost, which allows the assessment of alternative designs and
comparisons to competitor vehicles.

C.1.2 Concept Finalisation

After the concepts have been judged in the Concept Design stage, the design iteration continues
with overall shape modifications to allow for the inclusion of clearances and tolerances. The
overall tank shape can be modified due to tight packaging space or the need to maximise the
total volume within the tank. The methods of locating and placing internal modules within the
tank are now included and confirmed with the requirement of a carrier mechanism assessed and
detailed. Contact points to the body are located and foam added where required. The external
shell is modified to include the tank carrier grooves for straps and fixings. The tank shell thickness
is modified as required. However, this is still only estimated until later CAE is completed. Possible
materials will be examined to see if any new moulding material grades from suppliers offer better
performance. This would allow reduced wall thickness and a weight saving. All sharp edges are
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removed by adding in all major external corner and edge radii.
Again the CAE is completed within the fuel system design team. The tank studies include a

tip/vent analysis, based on the CAD model, which is used to identify indicative positions for vapour
and roll over valves. A low fuel pick-up study is used to identify indicative positions for FDM, jet
pumps and senders. The tank capacity calculation is repeated using the latest refined tank CAD
models and input from vent valve positions, along with another weight calculation to ensure that the
tank is still on target to meet the system requirements.

C.1.3 1st Design Iteration

At the 1st Design Iteration stage, the CAD geometry is becoming more mature as the detail of
the model increases. The blanking of CAD models for different variants of camlock ring is given.
Detailed internal accessory component geometry including the FDM is completed. The overall tank
shell and external geometry is modified to suit the location of fixings to the body. The method of
locating fixings are added to the CAD model. This iteration also includes remodelling of the base
and sides to suit straps and cradles. The geometry for manufacture, including weld line location
and pinch points, is also detailed.

The 1st Design Iteration stage heralds the first usage of the heavyweight CAE applications, with
the requests for ‘in-house’ and supplier analyses. The initial pressure/vacuum cycling, stress/strain
and fuel tank blow moulding analyses are completed by the supplier. These processes are iterative
and use wall thickness estimates in order to determine the required optimum wall thickness.

The initial ‘in-house’ crash CAE is requested using initial model data. This analysis uses a
generic constant wall thickness and can only approximate the behaviour of multilayer tanks. It must
be noted that crash simulations are completed by the crash CAE Team and are not in the remit of
powertrain CAE.

Also, the initial ‘in-house’ NVH slosh evaluation is requested. However, this may not be possible
with this level of CAD maturity, as NVH analysis would require accurate tank thicknesses and these
will not be detailed until the supplier has reported out. Other slosh evaluations could, however, be
completed at this time. These could include the assessment of the need for baffles within the tank
or the durability of the internal components. This offers an opportunity for projects to look at fluid
structure interaction, for example within the durability analysis of the tank carrier mechanism.

The internal fuel system design team analyses are repeated. The CAE low fuel pick-up study is
re-examined and the positions of the FDM, jet pumps and senders are adjusted. The tank capacity
is measured on CAD, using the latest refined tank CAD models (including wall thickness), revised
vent valve positions and gross volumes of surrogate child-part models (FDM/sender) for comparison
to target.

C.1.4 2nd Design Iteration

In this stage the changes to the CAD will be based on the output of the 1st Design Iteration cycle.
The exterior tank surface is re-modelled to suit child parts such as weld pads, fuel pipe gullies,
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carrier mechanism, pads and kiss-off points. The external fixing locations and the internal and
external accessory models are also refined.

The heavyweight CAE is repeated to verify the changes from 1st Design Iteration. The supplier
pressure/vacuum cycling analysis is repeated for tank expansion and collapse along with supplier
stress/strain analysis. These simulations verify the tank wall thickness by identifying the effects of
contact points and the tearing of internal components and joining seams. The supplier also repeats
the blow moulding simulation. At this point, the moulding simulations chiefly concentrate on the
over-moulding of carrier armatures.

The ‘in-house’ CAE analysis of crash worthiness of the tank is also completed. The tank
mounting durability is assessed using surrogate road load data. Also, initial CAE vibration/modal
analyses are used to verify mounting point design and fixing point locations. The tank is again
evaluated for NVH and slosh using the tank wall thickness from 1st Design Iteration. The evaluation
of slosh could require two or more test iterations; at the start and end of the 2nd Design Iteration
design phase. Firstly, fluid motion within an empty tank shell is examined to determine if and where
baffles are required. Then secondly, as baffles may be mounted to other internal components within
the tank, the effect of introducing these components and their durability need to be examined. This
is an opportunity for the application of a multi-physics CAE.

Again, the tip study and vent test are carried out using the frozen tank CAD model along with a
capacity calculation. This includes final vent valve positions and detailed child-part models.

C.1.5 3rd Design Iteration

This is the final iteration of the virtual series. The exterior of the fuel tank is frozen and the final
details of internal fixings/geometry for auxiliary components are completed. The final CAE loop
is to verify the final tank design and allow engineering sign-off. The CAE analyses are repeated
and examine the effects of newly available data such as new exhaust routes. The blow moulding
simulation, NVH, slosh evaluation, pressure/vacuum cycle simulation, modal analysis and tank
mountings durability are all repeated using the latest tank features.

C.2 Summary

This examination of the fuel tank has discussed the maturity of CAD at the various design stages. At
the UNV0 stage, the CAE request for an NVH analysis could not be completed due to an insufficient
level of CAD maturity. This analysis required the model to have the full tank thickness rather than
the basic tank thickness, however the correct data would not be available until the supplier CAE
had been completed.

Currently the supplier completes most of the CAE relating to the tank shell. The effort to bring
more of the analyses in house may cause some issues. The blow-moulding analysis is part of the
supplier’s manufacturability test and this provides the tank shell thickness data. The supplier can
then use this to complete the other CAE analyses. If the pressure cycling and stress-strain analysis
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were brought ‘in-house’ there may issues, as the supplier may not release the thickness data until
the end of 1st Design Iteration. This would delay the analysis to 2nd Design Iteration.

C.3 Application of Method throughout fuel system design team

One of the main aspects of this top-down analysis was to look at when CAE for the fuel system
design team would be requested. This would have to be leveraged by the maturity of the available
CAD. The process completed from the case study of the fuel tank was then applied across all the
systems within the fuel system remit. The results are displayed in tables C.1 and analysing the
potential for new CAE processes to cover other areas of issues produced Table C.2. Opportunities
for possible research projects in this work are highlighted in bold.
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Appendix D

Slosh Rig Experiments

D.1 Introduction

The aim of this chapter is to discuss the approach taken to correlated the CFD approach to fuel
slosh with phyiscal rig tests. StarCD uses the the finite volume method with the VoF scalar to
predict surface pressures and free surfaces within multi-fluid systems. This must be validated for
use as a CAE tool within Jaguar Land Rover powertrain for liquid sloshing in fuel tanks. To achieve
this an experiment is required that can measure both the pressures on the walls of a fuel tank and
the free surface of the liquid. This chapter discusses the experimental setup, procedure and results
obtained in the correlation study for the characterisation of the fuel tank boundary condition.

D.2 Experimental Setup

The experiment will be carried out on the 1/2 scale NVH fuel tank testing rig. This rig was built to
study the noise from sloshing of fuel in the tank. The fuel tank to be examined is a saddle style tank,
that features two distinct volumes connected by a bridge. The tank is filled with either 4 or 6 litres
in the initial tests to examine the effects of fill volume. This experiment required that the pressures
and free surfaces within a sloshing fuel tank were measured. Pressure transducers mounted to
the tank surfaces were able to detect the pressure changes due to fluid slosh. Rapid prototyping
methods allowed for half scale fuel tanks to be created where the surfaces were translucent. The
fluid was marked with red, green and blue natural food dyes. This allowed the free surface to be
visualised using the marked fluid and a high speed camera. To enable the slosh event to be applied
to the StarCD model an accelerometer was used to capture the acceleration profiles during the test.
Each of these items and the experimental setup will be described in this section.
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D.2.1 The NVH Slosh Rig

The NVH slosh rig features a moving trolley to which the half scale tank is mounted. The trolley is
accelerated down the track by a belt drive driven by an electric motor. The speed of the trolley is
controlled by varying the voltage and current supplied to the motor. In these experiments the motor
is supplied with 15 volts and allowed to draw 8 amps. The trolley is accelerated over a 1.22m long
section where it is then released. The tank is brought to a sudden stop using a high tension belt.
This action simulates the start stop motion of a vehicle in heavy traffic. The rig is shown in Figure
D-1.

Figure D-1: The slosh rig physical test

D.2.2 High Speed Camera

The high speed camera used was a Kodak HS54540. This camera takes 3072, 256 by 256 pixel,
greyscale images. The image sample frequency was set to 250 frames per second which gave 12
seconds of recording time. The field of vision was set to capture the tank as it reached the sudden
stop as this was when the most dynamic slosh would occur. The camera was initialised using a 5
Volt input impulse from a switch on the rig. This switch was activated when the trolley was released
from the belt drive. Once captured, the video footage was recorded on a laptop at 25 frames per
second using the Windows Media Codec pack.

245



D.2.3 Pressure Transducers

The pressure transducers need to be able to measure both air and water as the sloshing of the
fluid will expose the devices to both. The most suitable transducers available within Jaguar Land
Rover Instrumentation were the PMP 317 3038 devices manufactured by Druck. These transducers
can measure pressures of ±100mBar, this was the smallest range available within the Company.
These transducers feature the ‘quick fit connectors’ (see Figure D-2), which protect the sensing
diaphragm and allow for a standard connection. These were mounted directly on to the tank, where
the end of the connector protruded into the fluid. The transducers were connected to data logging
equipment via a mil-spec connector and required an input voltage between 7 and 30 Volts. In the
initial experiments 8 pressure transducers were used, the calibration is given in Table D.1. The
sensitivities and offsets were used in the LMS Testlab setup to to give readings in Pascals. The
grade represents the accuracy of the device and the channel number gives the location during the
experiment, see Figure D-4.

Figure D-2: PMP 317 3038 pressure transducers
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Table D.1: Pressure transducer calibration
Serial Number Sensitivity Offset Grade Channel

(V/mBarG) (Bar/V)
45580 0.02501240 -0.100612 0.03 1
55199 0.02496886 -0.099791 0.04 6
55201 0.02496962 -0.100246 0.01 8
55202 0.02497505 -0.100053 0.04 7
55203 0.02497610 -0.100548 0.03 5
58546 0.02502863 -0.100981 0.07 4
59537 0.02502154 -0.100902 0.04 2
59538 0.02492091 -0.100927 0.09 3

D.2.4 Accelerometer

The accelerometer used on the rig was supplied by the NVH testing departement and was a DJB
triax charge accelerometer (A31 371) Jaguar Land Rover serial number IS22345. This sensor was
aligned with the principal vehicle axes then attached to the tank using Araldite. The calibration of
this sensor is given in Table D.2.

Table D.2: Accelerometer calibration
Axis Frequency Sensitivity Phase

Hz pC/g ◦

X 160 5.61303 -1.71
Y 160 5.58347 -1.55
Z 160 5.57584 -1.76

D.2.5 Communications & Channel Locations

The pressure and accelerometer traces from the experiments were recorded using a Testlab data
logger and software. The data connections are shown in Figure D-3. The data logger could only
take BNC connections as inputs and could not supply power to the pressure transducers. This
problem required the use of 2 break out boxes. These converted the Mil-Spec connectors to BNC
whilst supplying 12 volts to the pressure transducers. In order to activate the camera a 5 volt signal
pulse was used, this came from the motor cut-off switch on the rig. The signal from this switch was
also recorded to enable the accelerometer and pressure traces to be synchronised with the camera
images.

The location of the 8 pressure transducers is given in Figure D-4. Channels 1 and 4 are located
on the base of the tank, channels 5 & 7 and 6 & 8 are on the front face of the tank either side of the
saddle, while 2 and 3 are on the back face. Channel 2 is exposed to air as it is above the stable fill
lines in both the 4 and 6 litre cases. An estimation of the hydrostatic pressures is given in Table D.3,
these have been estimated from co-ordinate data taken from the StarCD model. The estimated free
surface height for the 4 and 6L fill levels are 500.25 and 529.00 mm respectively. The hydrostatic
pressures are taken with reference to these values. The pressure in channel 2 is set to zero as this
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Free Surface

Pressure Transducer
Mil-Spec Cables x8

Figure D-3: Communication routes in the experiment

channel is initially exposed to the air and is assumed to be atmospheric.

Ch 3 Ch 2

Ch 8 Ch 6 Ch 7 Ch 5

Ch 1 Ch 4

X

Y

4L Fill
6L Fill

Tank Opening

Ch 2

Ch 3

Ch 1 & 4
Ch 5 & 7

Vehicle Coordinate System

Ch 6 & 8

X

Z

Figure D-4: Pressure transducer channel numbers
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Table D.3: Predicted hydrostatic pressures from ρgh approximation
Channel Height (mm) 4L Pressure (Pa) 6L Pressure (Pa)

1 425.982 727.112 1008.585
2 533.759 0.000 0.000
3 491.451 86.146 367.619
4 425.990 727.034 1008.507
5 483.033 168.561 450.034
6 468.033 315.417 596.890
7 483.033 168.561 450.034
8 468.033 315.417 596.890

D.2.6 Procedure

The procedure for each experimental run is:

1. Move the tank to the start position on the rig, and ensure that it is connected to the belt drive.

2. Allow the fluid to settle and check that the fluid is the same depth on both sides of the saddle.

3. Reset the motor and check the input voltage and current.

4. Set the camera ready to record.

5. Arm the data logger and start acquiring data. Testlab is set up to acquire data at 20480
hz, thus the Nyquist frequency is 10240 hz, this should be much greater than any slosh
frequencies contained within the experiment.

6. Press the start button on the rig.

7. Once the trolley has come to a stop and the sloshing has died away stop the data logger.

8. Save the recorded data from the run in Testlab and save the high speed video to a .avi file.

9. To process the data, the Testlab files are exported as a Matlab file, here a 50 hz low pass filter
is applied to the data and the relevant plots obtained.

D.3 4 & 6 Litre Pressure Results

The experiment was run three times at the two different fill levels, the pressure traces are shown in
Figures D-5 to D-10. Both the 4 & 6L analyses show expected behaviour of channels 2, 5 & 7 and
3, 6 & 8 in terms of nodes and anti-nodes. As sensors are at opposite ends of the tank one would
expect that high pressure at one end, caused by liquid impacting on that wall, would correspond
to a low pressure seen on the other side. Differences in pressures and timing could be due to the
non-rectangular shape of the tank and the sensors being placed at different levels.

In order to compare initial hydrostatic pressures, the average pressure of the first 10 points of
each channel is taken, then the average pressure from channel 2 (sensor in air) is subtracted from
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all of these values. Table D.4 shows the adjusted values for the 4L cases and Table D.5 the 6L
cases. The expected order (based on hydrostatic prediction) would be 1(deepest), 4, 6=8, 5=7,
3 & 2. While some variation between 1 & 4 could be explained by fill level variation, one would
expect 6 & 8 and 5 &7 to be equal, however this is not the case. While channels 5 & 7 are within
20 Pa of each other, channels 6 & 7 show a variation in the region of 100 Pa. One potential reason
for this could be aliasing of the sensors during setup or some errors in calibration. However, the
pressures are at the correct magnitude and do show some relation to the hydrostatic pressures.
When Channels on the Y+ (Channels 1, 3, 6 & 8) side of the saddle change, the opposite change
is seen in the Y- side indicating the sensors have some sensitivity to the initial fill levels. However
the head changes will not be the same as cross-sectional areas on either side of the saddle are not
equal.

Table D.4: 4 litre tests
Channel Raw Data (Pa) Adjusted Data (Pa) Hydrostatic
Number Run 1 Run 2 Run 3 Run 1 Run 2 Run 3 (Pa)

1 964.52 865.72 1015.64 881.97 879.58 1000.67 727.11
3 155.23 31.08 180.07 72.69 44.94 165.10 86.15
6 399.01 311.50 459.19 316.47 325.36 444.23 315.42
8 277.33 177.59 322.01 194.79 191.45 307.05 315.42
4 832.75 743.16 663.91 750.21 757.02 648.95 727.03
2 82.54 -13.86 14.96 0.00 0.00 0.00 0.00
5 265.05 190.10 113.18 182.50 203.96 98.22 168.56
7 277.69 169.54 89.29 195.15 183.40 74.33 168.56

Table D.5: 6 Litre Tests
Channel Raw Data (Pa) Adjusted Data (Pa) Hydrostatic
Number Run 1 Run 2 Run 3 Run 1 Run 2 Run 3 (Pa)

1 1107.38 964.19 916.79 1216.11 1135.81 1113.24 1008.59
3 262.24 117.42 72.15 370.97 289.04 268.60 367.62
6 535.37 390.43 344.24 644.11 562.05 540.68 596.89
8 419.79 270.67 229.70 528.53 442.29 426.15 596.89
4 835.02 802.63 796.96 943.75 974.25 993.41 1008.51
2 -108.73 -171.62 -196.45 0.00 0.00 0.00 0.00
5 256.90 184.47 159.13 365.64 356.09 355.57 450.03
7 248.38 178.98 159.03 357.11 350.60 355.47 450.03
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All channels also show a degree of drift over the course of the slosh experiment with the
pressure being higher at the end of the test than at the start. The drift seems largest after the
large slosh event and in the 6l cases. In the 6l cases this pressure rise is approximately 200-400
Pa. Also, the sensors that can be exposed to both air and water seem to be more affected by this
than the two channels in the base of the tank. Potential causes of this drift could be:

• The rig test features a shock event which could have caused some vaporisation of the fluid
and could potentially change the pressure in the air.

• The experiment was conducted in the presence of a 1000W light for the camera, this continued
to run once the rig was stationary until the camera had finished. This could have provided
some heating to the tank.

• The design of the pressure transducers with the quick fit connectors could potentially lead to
bubbles of air and fluid becoming trapped, this would affect the pressure reading.

These issues require further investigation.
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Figure D-5: 4 litre run 1 pressure traces

Figure D-6: 4 litre run 2 pressure traces
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Figure D-7: 4 litre run 3 pressure traces

Figure D-8: 6 litre run 1 pressure traces
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Figure D-9: 6 litre run 2 pressure traces

Figure D-10: 6 litre run 3 pressure traces
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D.4 Revised Pressure Transducers

The ‘quick fit connector’ features a small passage of 3.5mm diameter that takes the fluid from
the test region to the diaphragm chamber. This passage opens up to a diameter of 22 mm in the
sensing chamber with a 1 mm gap to the diaphragm. One theory is this volume is small enough that
in tests with multiple fluids, air or fluid may become trapped in the sensing chamber. After the event
this fluid is released and the pressure slowly returns to baseline. To test this theory, four pressure
transducers were machined to remove the quick fit connectors. The effect of machining is shown
in Figure D-11. This is a delicate operation due to the fragility of the diaphragms. To ensure that
the transducers were still operational, the calibration exercise was performed before and after the
machining process. The calibration data is shown in Table D.6. It was noted during the calibration
that the offset of the machined transducer was highly sensitive to the mounting method in the
calibration machine. Slight loadings on the sides used to lock the transducer in place would affect
the readings. However, the sensitivity of the device was unaffected. This meant that the transducer
could no longer be used as an absolute measure of pressure, but could measure relative change
during the slosh events.

Figure D-11: The machined pressure transducers

Table D.6: Machined pressure transducer calibration
Channel Serial Number Sensitivity Offset Grade

(V/mBarG) (Bar/V)

Before

CH1 IS48288 0.02504667 -0.100028 0.04
CH2 IS45587 0.02501069 -0.103994 0.16
CH3 IS44764 0.0249481 -0.101757 0.18
CH4 IS59676 0.02500105 -0.100205 0.05

Before

CH1 IS48288 0.02502571 -0.108226 0.04
CH2 IS45587 0.02508476 -0.10124 0.03
CH3 IS44764 0.02499905 -0.107313 0.03
CH4 IS59676 0.0249859 -0.0877238 0.04

As only 4 sensors were made available for machining, the setup has been revised as shown in
Figure D-12. The pressure transducer calibration data relating to each channel is given in Table
D.6. The calibration data was used in the setup of LMS Testlab and the offset was removed in the
post-processing phase. The fill level has been set to 5l for these experiments. However, the water
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and marker used remained the same. The lighting position was moved to reduce any heating affect
from the 1000W lamps.

Ch 4

Ch 1

Ch 3 Ch 2

X

Y

5L Fill

Tank Opening

Ch 4

Ch 2 & 3
Ch 1

Vehicle Coordinate System
X

Z

Figure D-12: Revised pressure transducer channel numbers

D.5 Testing With Revised Transducers

D.5.1 Hydrostatic Tests

As there were issues with the calibration of the revised pressure transducers, a hydrostatic test
was carried out to ensure that the pressure transducers could measure changes in head. The fluid
was put on one side of the tank, then siphoned off before refilling. This was repeated twice on
both sides of the tank, the results are displayed in Figure D-13 for channels 1, 2 and 4, and Figure
D-14 for channel 3. The head losses were measured with a ruler from the starting fill level to the
estimated centre of the pressure transducers. The results, in Table D.7, show that the transducers
were working correctly.

Table D.7: Hydrostatic pressure tests
Channel Head Trans Meas Head Trans Meas
Number (Pa) (mm) (mm) (Pa) (mm) (mm)

Test 1

CH1 624.92 63.83 65.00 621.78 63.51 65.00
CH2 791.38 80.83 80.00 788.74 80.56 80.00
CH3 127.45 13.02 10.00 123.34 12.60 10.00
CH4 408.84 41.76 42.00 410.16 41.89 42.00

Test 2

CH1 621.12 63.44 65.00 620.20 63.35 65.00
CH2 749.64 76.57 77.00 747.08 76.31 77.00
CH3 122.93 12.56 10.00 118.88 12.14 10.00
CH4 430.47 43.97 44.00 431.24 44.05 44.00
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Figure D-13: Hydrostatic test on channels 1, 2 & 4

Figure D-14: Hydrostatic test on channel 3
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D.5.2 Motored Slosh Tests

As the pressure transducers can give relative pressure changes adequately, the rig was then used
for 3 motored runs. The results are displayed in Figures D-15 through D-17. The data from
the exposed transducer faces indicates that there are multiple wave forms acting on the tank,
particularly present on channel 1. This was confirmed by the high speed camera footage and visual
observations of the tank. However, these plots show that the pressure rise behaviour has not been
improved by the machining of the pressure transducers. This pressure rise is most notable on the
channel exposed to air (channel 4). The test with the revised sensors has eliminated the trapping of
fluid in the pressure transducers as a source of error, although the machining of the sensors could
have introduced drift or other forms of error. However, as the pressure rise behaviour is present in
both tests, the transducers have captured some underlying behaviour in this rig setup that has not
been accounted for. As other steps were taken to mitigate the heating of the tank via the lighting,
the next step is to consider atomisation or phase changes during the event. Figure D-18 shows
the effervescence of the fluid as it was siphoned during the hydrostatic tests, here the dyed fluid
gains and holds a froth in the container. This suggests that either the marker fluid or potential
contaminants in the test water supply (potentially gasoline or diesel fuels) could be affecting the
behaviour in the test. To eliminate this, the tank was emptied and rinsed to remove contaminants
and 5 l of unmarked water from a non-contaminated supply were used in the tank.

Figure D-15: Full test run 1, channels 1, 2, 3 & 4
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Figure D-16: Full test run 2, channels 1, 2, 3 & 4

Figure D-17: Full test run 3, channels 1, 2, 3 & 4
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Figure D-18: Frothing issue found during hydrostatic tests

D.5.3 Revised Water Supply

The pressure traces from the experiments with the revised water supply are shown in Figures D-19
through D-21. In these tests the pressure rise behaviour has been replaced by a pressure drop of
approximately 200 Pa. This could be due to the acceleration in the z direction causing the rig to
push down on the top surface of the tank. This has two effects; firstly, the tank is deformed reducing
the volume and secondly, the deformation opens up gaps in the seals and cracks in the tank surface
allowing air to escape. Once acceleration has reduced, the crack and holes are sealed or become
smaller and the volume returns to normal size. However, some small volume of air is lost, creating
a pressure loss but the smaller holes and small pressure gradient mean that the pressure rises
slowly over time. Assuming a P1 ·V1 = P2 ·V2 relationship, it can be calculated that a pressure drop
of 200 Pa requires a volume loss of 0.012l.

Figure D-19: Clean water full test run 1, channels 1, 2, 3 & 4
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Figure D-20: Clean water full test run 2, channels 1, 2, 3 & 4

Figure D-21: Clean water full test run 3, channels 1, 2, 3 & 4
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D.6 Correlation Study

This section focuses on the steps taken to correlate the StarCD VoF model to the half scale rig.

D.6.1 Rig Test Results

Figure D-22 shows the pressure trace for the front wall transducer, channel 1 (see Figure D-12 on
page 256 for transducer locations), for the duration of experiment 33. The initial acceleration of the
tank from rest causes the fluid to slosh towards the back of the tank, reducing the head pressure
on the front wall. The fluid then sloshes back and forth before the stop event of the rig causes a
large pressure rise. This consists of both an increase in hydrostatic head and dynamic pressure as
the fluid surges toward the front wall. Within this event the dynamic pressure with be the dominant
part. After the stop event, the pressure fluctuates rapidly as the fluid moves about the tank before
settling down and forming stationary waves. This run shows an overall pressure drop then slow rise
after the stop event. This behaviour is explored in Appendix D.5.3 and will not be discussed here.

Figure D-22: Run 33 channel 1 pressure trace

D.6.2 CFD Modelling

The StarCD model of the half scale tank uses a 3 mm polyhedral mesh with 3 boundary layer
prisms, generated in StarCCM+. This mesh was then imported into StarCD version 4.12.038. The
model uses the standard volume of fraction representation of the free surface where the two fluids
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are modelled as scalars. The material properties were set to air for the light fluid and H2O(l) for
the heavy fluid. The initial 5 litre fuel fill volume was set by changing cell types based on heights
from the tank base and initialising the scalar volume fractions within the cell types accordingly. The
input of the acceleration pulse was implemented by using the source momentum user sub-routine
sormom.f given in Appendix F.1. This read the acceleration profiles from a data file and applied the
load as body forces in the three principal directions. The timestep was set to 0.001 seconds for a
total runtime of 6 seconds. To compare data, surface pressures at the transducer locations were
output along with volume of fraction data at set intervals during the simulation.

D.6.3 Correlation Results

To understand the correlation between the measured rig data and the StarCD model, the pressures
traces for Channel 1 will be compared for magnitude and timing. The free surface will also be
compared with still images taken from the high speed camera and the VoF fraction from approximately
the same time. The red line displayed on the following pressure traces indicated the first frame of
the video and was used to synchronise the events with the relevant changes on the pressure traces
in Figures D-24, D-31 and D-24.

Accelerometer Input

The first case completed used the filtered x, y and z acceleration pulse from run 33, shown in Figure
D-23 with the pressure transducer and model pressure traces shown in Figure D-24. Comparing
the StarCD pressures to the rig test shows that the CFD model is severely under-predicting the
pressure loading of the fluid. This is seen in both the initial fluid motion and during the sudden stop
event. The free surfaces captured in Figure D-25 show the surface approximation in the lead up to
the stop event (top). There is less fluid motion predicted after the stop event than actually occurs in
reality.

Comparing the free surface images from the StarCD model and high speed camera is difficult to
interpret as both are two-dimensional representations of a three dimensional surface and the effect
through the tank cannot be visualised. So it is therefore not known if the distribution is across the
whole surface or is a near surface effect. However, this visualisation does allow the progression
of the slosh event to be examined and help understand the pressure loading events. The reduced
amount of sloshing in the initial stages of the StarCD model could mean that the surging behaviour
is not correctly predicted as the fluid does not have the correct condition before impact. This caused
the reduced peak pressure seen in the StarCD prediction.
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Figure D-23: Run 33 acceleration pulse

Figure D-24: Channel 1 pressure trace for run 33 acceleration profiles
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Figure D-25: Free surface comparisons at 3.23 (top images) and 3.40 seconds (bottom images)

There are a number of potential sources for this error in either the rig test or the StarCD model,
as follows:

• Rig Test

– Accelerometers

* Type

* Set up

* Data capture

* Filtering & processing

– Pressure transducers

* Effect of modification

* Type

* Set up

* Data capture
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* Filtering & processing

• StarCD model

– Meshing

* Global size

* Local refinement

* Prism layers

– Acceleration input methods

– CFD set up and included models

D.7 Camera Acceleration Input

The selection, set up and use of the accelerometer was reviewed with the equipment owner, where
the potential for error was discussed. The result from this was that the accelerometer used may not
have been suitable for this application as it behaves like a high pass filter, removing low frequency
acceleration signals, the frequency response for the accelerometer is show in Figure D-26 [145].
While this may not have been an issue during the stopping event, it may have removed some of the
initial accelerations. One check for this was to reconstruct the loading pulse from still images from
the high speed camera. While the stopping section of test was covered some assumptions were
required to reconstruct the initial motion. Here the terminal velocity was estimated from the camera
and a velocity profile assumed that met the necessary distance and velocity requirements of the
rig.

Figure D-26: Accelerometer Frequency Response, taken from [145]

Figure D-26 shows that the low frequency (<5Hz) accelerations have not been captured [145],
thus another acceleration profile is required. This can be constructed from measurements on the
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high speed video and assumptions about the initial motions of the rig. The third run of the unmarked
water experimental test was used and the following steps taken:

1. Establishing scale of the video images.

2. Measurement of distances travelled by known points on the trolley and tank, these can then
be scaled to give the actual distances travelled.

3. Post-processing of the distance data to obtain velocity and acceleration profiles.

4. Reconstructing an acceleration pulse for the whole rig test.

Due to the lack of clearly defined edges in video and basic measurement methods, this process can
only provide an approximation of the scales and distances travelled. Also, the effect of the change
in distance from the camera to the measuring point as the rig moves through the frame is not taken
into account.

D.7.1 Establishment of Scale

Establishing scale requires the comparison of known distances to the measured distance in the
computerised images. The scaling factors were obtained on later frames where the motion of the
tank had subsided. The various points used in the scale and distance measurements are given in
Figure D-27, with the scale taken at points labelled B, C, D, E and F. Table D.8 gives the results of
the scaling measurements.

Table D.8: Scaling measurements
Point Description Measurement (mm) Scale

Actual Video
A Leg Width 19.0 N/A N/A
B Front Bolt 8.0 6.0 1.33
C Mount Bolt 9.5 7.0 1.36
D Mount Bolt End 15.0 12.0 1.25
E Bolt Distance 148.0 123.0 1.20
F Tank Plug Dia 30.0 23.0 1.30

Average 1.29

D.7.2 Measurement of Distances

The distances were measured at three points; the front Leg (1), the front bolt (2) and the mounting
bolt (3). The Front leg was only measurable for a short duration of the video as it became aliased
with the leg behind. For all measurements a maximum and minimum was taken either side of the
fringes in an attempt to reduce error. The measured data was then scaled and the results are
shown in Figure D-28.
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Figure D-27: Measuring points for scale and distance on the fuel tank

Figure D-28: Measured distances travelled in video images

D.7.3 Processing the Data

The rough nature of the distance measurements led to noise in the velocity and acceleration
plots. This was rectified by smoothing the distance data using a 12Hz Filter. The velocity and
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accelerations have been calculated using 4th order accurate finite differencing schemes. The
acceleration profile is compared to the data obtained from the accelerometer in figure D-29. The
acceleration derived from the video gave a reasonable approximation of the loading from the
accelerometer. However, as this portion of the rig event is high frequency (>5Hz), it is the initial
motions that need to be captured.

Figure D-29: Comparing acceleration profiles from the accelerometer and video

D.7.4 Reconstructing the Pulse

The first step in reconstructing the initial tank motion was to fit a 2nd degree polynomial to the
distance data from point 1 only. The fitted polynomial gave a distance (y) time (x) relationship of:

y = 0.3229x2 − 1.25x+ 0.2414 (D.1)

dy

dx
= 0.6458x− 1.25 (D.2)

d2y

dx2
= 0.6458 (D.3)

This meant that the initial velocity at t=0 (in this instance, when the camera is activated) was
-1.25 m/s. From the accelerometer pulse it can be seen that the initial acceleration occurred at 1.04
seconds. Thus, known velocities were 0 m/s at 1.04 seconds and -1.25 m/s at 2.629 seconds when
the camera was activated. To obtain the acceleration profile through the simulation an assumption
must be made about the velocity of the tank. The assumption was that the velocity followed a
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cosine function in the region of 0 < f < π. The time taken to accelerate the tank to terminal velocity
was then tuned to cover the correct distance from the start to the camera switch (1.22 m). Once at
terminal velocity, the rig was motored up until the switch, when cart was released, after which there
was a steady deceleration present as defined in equation D.3. Approximately 0.6 seconds after the
switch (3.2 second total simulation time), the acceleration profile was of points 2 and 3 was cover
the impact event, the acceleration profile was continued until the 4 second mark. The acceleration
pulse is shown in figure D-30. While this acceleration profile cannot be used to correlate the StarCD
model, it should indicate that accelerometer issues are impacting on the slosh predictions.

Figure D-30: Assumed acceleration profile compared to accelerometer data

D.7.5 Application of the Video Derived Acceleration Pulse

After using this acceleration pulse, the pressure trace (Figure D-31) shows that the initial fluid
motions are not captured. However, the peak pressures in the stop event are captured. When
the acceleration pulses are compared, the peak loading obtained from the camera is higher than
that obtained by the accelerometer, although the difference is not enough on its own to explain the
degree in magnitude by which the predicted pressure changes by. In the first test, with a measured
peak acceleration of 20 ms−2, the channel 1 StarCD predicted peak pressure is approximately
500 Pa. The peak acceleration as measure by the camera is approximately 24 ms−2, yet the
channel 1 StarCD predicted peak pressure rises to nearly 2000 Pa. This is a close approximation
with the peak pressure measured during the rig test. As the camera acceleration pulse improves
the prediction of the initial slosh motion then the fluid surge has also been capture. This better
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Figure D-31: Channel 1 pressure trace for high speed video derived acceleration profile

represents the velocity conditions within the fluid prior to the stop event must also be acting on the
results. However, when the free surface images (figure D-32) are examined the free surface prior
to the stop event (3.23 seconds) is much flatter than the camera suggests it should be. Yet, during
the stop event (3.40 seconds) the prediction is good. One reason for this could be that the initial
rearwards slosh has not been fully captured, but the lower frequency acceleration pulse is giving
the fluid some of the surging behaviour that leads to higher peak pressures.
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Figure D-32: Free surface comparisons at 3.23 (top images) and 3.40 seconds (bottom images)

Modified Accelerometer Input

In order to improve the initial slosh behaviour prediction the two acceleration pulses can be combined,
this would then include the assumed low frequency acceleration which may not have been captured
by the accelerometer. The revised acceleration pulse is shown in Figure D-33, the low frequency
content is only included up to the camera switch (red line) after which the pulse is solely derived
from the accelerometer. The pressure trace shown in Figure D-34 shows that the initial behaviour
is improved, however the peak magnitudes of the initial and stop events are still not fully captured.
This result is confirmed by the free surface plots shown in Figure D-35.
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Figure D-33: Run 33 accelerometer and assumed acceleration pulse

Figure D-34: Channel 1 pressure trace for run 33 acceleration profiles
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Figure D-35: Free surface comparisons at 3.23 (top) and 3.40 seconds (bottom)

D.7.6 Summary

The current evaluation showed poor correlation between the pressures and free surfaces. One
potential cause of this was thought to be the high pass filter behaviour of the accelerometer used
in the rig test. The use of the assumed acceleration pulse based on measurements taken from the
high speed camera have indicated strongly that the accelerometer used was not applicable for this
test. This work has also shown that the loading caused by the fuel slosh is highly sensitive to the
fluid condition before the slosh event caused by low frequency accelerations. When acceleration
pulses are obtained for future fuel slosh studies the motion before the event must also be included
to ensure that the load case is fully modelled. Additional rig tests should be carried out using more
suitable instrumentation to capture low frequency acceleration, the velocity or displacement of the
rig trolley. This instrumentation should also be included on any acceleration cases obtained from
vehicle testing, for example a speed sensor on the drive shaft.
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D.8 Conclusion

This chapter has examined the experimental procedure used to obtain pressure loadings and free
surfaces during slosh events of a half scale tank. The initial test showed unexpected pressure
rise behaviour which was thought be caused by trapped fluid and air bubbles within the pressure
transducers. To eliminate this source of error, four pressure transducers were machined. However,
revised tests with these transducers showed similar pressure rise behaviour. Further sources of this
behaviour were then discussed, resulting in a change of the water in the tank to remove the marker
fluid and any contaminants that may have been introduced. The revised water supply then showed
pressure drop behaviour. While this behaviour was also unexpected, this could be explained as a
volume loss from the tank. The third test of this set was used in the CFD correlation study.

To resolve issues with the correlation study, the acceleration profile was derived from distance
measurements from the high speed camera. The pulse for the whole simulation was then reconstructed
using some basic assumptions about the motion of the tank. A review of the CFD shows that the
application of this loading pulse to the StarCD model does improve the predictive performance,
indicating that the accelerometer used may not have been applicable in this situation.

To correlate the StarCD model to the physical data tests, further tests are required with improved
instrumentation to capture low frequency accelerations, velocities or displacement of the tank.
Further tests should also be undertaken to understand the underlying causes of the pressure rise
or drop, such as a vent in the tank to allow pressure equalisation, or a new un-cracked tank with
improved seals.

Although exact correlation has not been achieved, the use of the acceleration pulse from the
high speed camera did show that the StarCD VoF method was able to capture pressure rises of
the correct order of magnitude. Therefore, it would be acceptable to use the VoF modelling method
to compare the various load cases in this exploration of the slosh boundary condition. However,
further revised rig tests and correlation studies should be carried out to enable the setup of the
mesh and StarCD parameters to be finalised for future analyses.
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Appendix E

Exploring the Slosh Boundary
Condition

E.1 Introduction

The analysis of the fluid slosh phenomena will require various different load cases to be applied to
the model. These load cases must be representative of either testing procedures completed for fuel
tanks, or the accelerations the fluid would be subjected to during the use of the vehicle. In the case
of real world data, the accelerations would have to be at the extreme of loading to ensure survival
of the component during such events. The input cases identified for application to the model were:

• Crash pulses

• Prototype vehicle testing road load data

• Tipping rig testing

Another important factor in the input case is the fill level of the tank. When there is less fuel in
the tank, the mass is reduced, leading to lower forces. When the tank is full, the slosh phenomena
is reduced as the reduced air space restricts the movement of the free surface. An investigation
into the fill level will also form part of this input load case study. In all cases, it is assumed that the
fluid is initially in a steady state condition before the acceleration or motion for the event is applied.
In this section, the slosh events will be characterised by the loading on the baffle of a simplified test
tank.
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E.2 Details of the Tank Geometry

The geometry of a real automotive fuel tank is highly complex with many internal and external
features that are more specific car programs. There are also different varieties of fuel tank depending
upon the size of vehicle. The three main classes or shapes of fuel tank are a suitcase, saddle and
cigar.

Using a real complex tank would increase the number of elements and nodes required to
succinctly mesh the tank. Increasing the computer runtime which, in the context of completing
sensitivity studies and method development would prove impractical.

Thus, it was decided that a basic test tank should be set up with a basic baffle to investigate the
various problems posed in a fuel tank FSI analysis. The tank would need to be representative in
both dimensions and volume and would be cigar like in shape.

The geometry set up is shown below in Figure E-1. The general dimensions are a rectangular
volume 1300 x 350 x 250 mm with 30 mm radius fillets on each edge. Within the internal tank
volume there is a baffle 10 mm thick running 700 mm down the centre of the tank, the baffle is 130
mm overall height from the base of the tank and is supported on 3 10 x 10 x 30 mm support legs. At
one end of the central body, there is a plate located perpendicularly of dimensions 10 x 140 x 100
mm supported on a leg of 10 x 10 x 30 mm at one end. The tank shell is 3 mm thick and surrounds
the inner surface. The total volume is calculated in Table E.1, the dead volumes being volumes
removed from the rectangle due to fillet radii. The total volume is 111 litres and is comparable to
the total volume of current tanks.
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Figure E-1: Simplified fuel tank geometry

Table E.1: Simplified fuel tank volume calculation

E.3 The StarCD Procedure used for Fluid Modelling

The fuel tank was modelled in CD Adapco StarCD version 4.08 on a polyhedral mesh generated
in CCM+. The mesh was developed to aid convergence in the 16 kph crash case, although no

278



formal mesh dependency study was carried out. This mesh was then applied to all cases. The free
surface simulation is modelled as two scalars, one representing the air volume and the other the
heavy fluid. The heavy fluid was assumed to be diesel with the initial fill volume set by splitting the
mesh into two different cell sets differentiated by height. The volume of fraction is calculated as an
additional scalar which allows the interface between the two fluids. The timestep for most cases
was set to 0.001 seconds, but to aid convergence in the crash case this was reduced to 0.00001
seconds. The loadings required by the case studies were applied to the tank either by use of the
source momentum user sub-routine or by a moving mesh.

Once the mesh files are loaded into Prostar the slosh problem needs to be defined. The
definition requires details of the fluids as well as all the solver parameters. The problem can be
set up in Prostar either by using the interactive GUI or via the command line. A VOF simulation
requires the following steps to be taken;

• The geometry and mesh need to be imported from ICEMCFD.

• The VOF scalar to be activated, this also requires that the transient solver it turned on and
cavitation models are turned off.

• Both the heavy fluid (diesel) and the light fluid (air) need to be given material properties such
as density and viscosity.

• The fluid properties must then be assigned to the correct cell sets ensuring that the heavy
fluid is always at the bottom of the tank.

• Initially turbulence models need to be turned off. An investigation is required to look at the
possibility of turning the turbulence on after an initial period of the simulation has been run.

• The buoyancy for air must be turned on; this is to allow bubbles of trapped air to escape to
the top of the free surface.

• The parameters for the solver and discretisation scheme need to be set up. For the discretisation
scheme, the MARS method is used. However, for all other parameters the StarCD defaults
have been accepted.

• Any boundary or measurement probes must be set up. Boundary monitors need to be applied
on all baffle surfaces to collect data about the pressures applied to them. This will be outputted
using a .erd file which will be discussed in the post processing of data.

• The time step and simulation duration need applied to cover accurately the duration of the
sloshing event.

• The transient post file needs to be defined. This is the file where the results at given points in
time are written to.

• The load case needs to be applied to the model. This includes gravitational forces. StarCD
allows for many different types of loads to be applied using a variety of methods which will be
discussed in later sections.
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• The geometry, problem and model files that the Star solver will use need to be written.

One the analysis have been ran on the clusters it is then post-processed using StarCD, Ensight
and Matlab. Both the free surface and the engineering data file are interrogated to ensure the
simulation have been successfully completed.

E.4 Crash Impulse Loads

The acceleration data for various different crash loadings has been obtained from crash simulations.
For the side and rear impacts, the tank was subjected to large deformations of the tank which is
beyond the scope of this analysis. The data for the frontal impacts was given in the x-direction only.
The impulses were sampled at the base of the B pillar. It was deemed that the internal components
would not be expected to survive a 56 kph crash. However, after a 16 kph crash, the tank would still
need to operate. The 16 impulse is shown in Figures E-2. To apply the crash accelerations within
the CFD, the data was be written into a .dat file which was then read by the user coding (sormom.f
Appendix F.1) and the impulse applied according to the elapsed time.

Figure E-2: 16 kph crash impulse
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E.5 Prototype Road Testing Event

The prototype road testing event features a number of different obstacles and driving manoeuvres
designed to test new vehicles. Accelerometers were placed on various points in the vehicle to
record the acceleration experienced, this includes the sensors on the fuel tank mountings. These
accelerometers are able to capture the low frequency accelerations of the vehicle during the various
test events. The captured data was filtered to remove noise and is currently used in the durability
assessment of the fuel tank mounting strategy [131]. The maximum and minimum of the data in
the principal directions for all prototype events is given in appendix Table E.2. From this large
number of events, five cases were selected based on the intensity and duration of the events which
allowed a wide range of boundary conditions to be examined. The events are listed below and
the acceleration pulses given in Figures E-3 to E-7. The acceleration is given in the vehicle global
coordinate system. The x direction is from the front to the back of the vehicle, the y direction is from
right to left and the z direction is from bottom to top.

Table E.2: Accelerations in the PASCAR events

The acceleration data in these cases was in a similar format to that of the crash case, allowing
the source momentum user coding to be applied. However, one difference is that the data is given
in all three principal directions. The user coding was modified to apply these additional momentum
sources. An example of user coding is given in Appendix-F.1. The events to be examined were:

• Kerb island strike. This is a violent event in which a vehicle is driven at 50 mph into a 6 inch
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kerb at an angle of 45◦.

• Postal road brake. This represents an extreme braking manoeuvre.

• Acceleration of five bumps. This is representative of driving over speed bumps.

• Chatterbumps. This is a suspension test with out of phase bumps on each side of the car.

• Slalom Cobblestones. This is a steering course on a rough surface where the vehicle is
swerving in between obstacles.

Figure E-3: Kerb island strike x (top), y (middle) & z (bottom) acceleration
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Figure E-4: Postel road brake x (top), y (middle) & z (bottom) acceleration

Figure E-5: Accel on 5 bumps x (top), y (middle) & z (bottom) acceleration
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Figure E-6: Chatterbumps x (top), y (middle) & z (bottom) acceleration

Figure E-7: Slalom cobblestones x (top), y (middle) & z (bottom) acceleration
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E.6 Rig Tip Testing

All fuel tanks are subjected to the internal component slosh test. This evaluates the structural
integrity of internal components. The test mechanically induces slosh to simulate the dynamic
affects of fluid motion due to the acceleration of the vehicle. The test is carried out to Ford procedure
[146]. This calls for the tank to be strapped to a tilt table that will rotate the tank through angles
of ±15◦ over a 15-second cycle (0.067 Hz) for 100,000 cycles. The procedure also calls for the
volume of fuel within the tank to be constantly varied between 25 and 87.5% using the fuel pump
working at 10 litres per hour.

The modelling of the tank rotation in StarCD would required the use of a moving mesh rotated
around the pivot point (see Figure E-8) at the base of the tank. To do this, an event file with user
coding was used. This involved displacing the nodes by an angle determined by the time step.
(Details given in Appendix F.2). As this work is only looking at simplified geometry, the variation
of the fuel fill was not modelled, as this would have added complexity and increased the execution
time of the model. The CFD simulation was only completed for five cycles, this was able to obtain
representative cycle to cycle repeatability of loading during the event.

Figure E-8: Rig test modelling setup.

E.7 Case Loading Forces

The first test was to examine the various load cases for loading on the internal baffle. The pressures
on each of the baffle faces were exported into the engineering data file (.erd), these were then
processed to give the maximum loading in the three principal directions during the event. The
loading from the 16 kph crash case can be seen in Figure E-9. Other checks included examining the
fluid loading on the baffle and free surface within the tank graphically at given timesteps. Examples
of this can be seen in Figures E-10 and E-11.
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Figure E-9: Forces on the Baffle

Figure E-10: Pressures on the Baffle
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Figure E-11: Free surface within the tank

The load cases were compared by measuring the maximum and minimum force loadings on the
baffles in the principal directions. These were obtained from processing the engineering data files
and have been summarised in Table E.3. The durability can be categorised by two regimes; high
force one off shock loadings and lower force repeated events for fatigue cases. For this reason the
number of expected cycles has been included to distinguish between high and low cycle events.
The runtimes are also included to understand which cases can be considered the fastest.

The 16 kph crash case exhibits the highest force loading, this is a shock event where the vehicle
would only be expected to undergo a single cycle. Due to the decreased timestep this event is one
of the longest to run, however due to the strength of the loading this case should be considered
within the coupling study. The forces in all prototype testing events give force loadings that are of a
similar order of magnitude. Out of this set the kerb island strike shows the highest loading and the
fastest turnaround time (this is due to the short duration of the event). However, this is also a low
cycle event but as the forces are of a similar magnitude to other prototype cases it will be used in
the multi-physics assessment (Chapter 7).

The rig case shows considerably lower forces than all other events. Further assessment is
required to examine whether this case is representative of in-vehicle events and is suitable as the
fuel tank evaluation method.
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Table E.3: Maximum and Minimum Forces of the Baffle
Max Force (N) Min Force (N)

X Y Z X Y Z Cycles Run-Times (s)
16 kph crash 62.96 0.82 55.34 338.32 139.73 6.70 1 101563
Chatterbumps 3.41 9.92 11.57 2.96 8.93 1.32 5120 22425

Slalom Cobblestones 4.05 24.24 8.32 3.54 18.58 4.49 768 134955
Accel on 5 bumps 15.85 18.17 12.76 7.00 11.24 0.53 1024 54965
Kerb Island Strike 14.26 29.51 15.66 11.05 43.32 4.49 80 14995
Postal Road Brake 18.95 21.42 12.86 12.44 14.18 0.03 64 47492

Rig-mvmesh 1.85 0.52 6.91 1.80 0.89 4.49 1.00E+005 38259

E.8 Fuel Fill Sensitivity Analysis

The sensitivity of the loading on the baffle to the fuel fill level was explored to enable any following
analyses to be run at the ‘worst-case’ loading for fluid slosh. The fill levels were varied between 40
and 80%. This was measured as a percentage of the tank depth. As this did not take the volume of
the baffle there is some error when examining the exact volumetric fill percentages. The estimated
and actual percentage fill are summarised in Table E.4. The table shows that there is an optimum fill
level that causes the largest forces on the baffle, this is approximately 60 to 65% fill. Above this fill
level, the loadings begin to fall off. This sensitivity to fuel fill is caused by the amount of momentum
of the heavy fluid. At lower fill levels, the mass is decreased but the fluid is free to move. As the
tank is filled, the mass is increased causing the load to rise until the fluid motion is restricted by
decreasing amount of air volume. This reduces velocity, causing the load to lessen.
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Table E.4: Maximum and minimum directional forces for each of the load cases
Fill Level (%) Max X Max Y Min X Min Y
Est Actual (N) (N) (N) (N)

16kph Crash

50 48.66 32.22 0.56 -274.29 -145.58
55 54.25 51.73 2.30 -292.96 -148.13
60 56.66 61.60 0.84 -325.58 -143.93
65 61.77 69.52 0.87 -313.57 -128.79
70 66.96 83.28 2.93 -244.22 -102.10

KIS

40 39.64 9.78 16.42 -12.47 -24.97
45 44.65 11.23 20.74 -13.85 -32.86
50 48.50 12.03 26.36 -14.33 -36.01
55 52.08 12.65 29.42 -13.03 -43.17
60 56.12 13.14 31.28 -12.32 -45.32
65 59.98 14.09 29.83 -11.93 -43.87
80 75.45 11.05 24.46 -11.34 -36.04
80 75.45 10.66 20.86 -11.80 -30.59

Rig

40 39.64 1.91 0.37 -1.58 -1.87
45 44.65 1.92 0.60 -1.35 -1.46
50 48.50 1.98 0.86 -1.52 -1.10
55 52.08 2.03 0.91 -1.72 -0.80
60 56.12 1.85 0.59 -1.84 -0.93
65 59.98 2.13 0.50 -2.07 -0.72
80 75.45 2.22 0.21 -2.94 -0.20

E.9 Conclusions

This chapter examined the steps taken to correlate surface pressures and free surface approximations
of a StarCD VOF model with a rig test. While issues with the input to this model prevented a
definite correlation being made, the method was deemed to be acceptable for the examination of
load cases. The requirements for further correlation work were outlined and discussed the need
for additional instrumentation to accurately capture the rig acceleration, velocity or displacement.
Similar measurement methods would also need to be in place for load cases obtained from vehicle
measurements.

A basic tank was used to examine a number of road load and rig testing cases to find the worst
case scenario for internal component durability. This included an assessment of the sensitivity to
fuel fill. Of the cases examined, the applicability of the 16 kph crash case and kerb island strike at
an approximate fill level of 60% should be the cases considered in any multi-physics method.
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Appendix F

Slosh and MPCAE Scripts

F.1 The User Coding for Source Momentum

The 16 kph crash, kerb island strike and postal road brake load cases were all applied to the CFD
model using the source momentum facility within StarCD. The non-linearity of the data meant that
the data could not be inputted using standard equations, thus, the data was stored in a data file
(.dat) which was read using the source momentum user coding (sormom.f). The code allowed for
acceleration to be applied to the data in the three principal directions, x, y and z. The code given in
the following section is an example of sormom.f.

INTEGER k, n, N1, N2, IOUT

COMMON /ACCEL/ TS(576), ACCX(576), ACCY(576), ACCZ(576)

IF(TIME.LT.11.5)THEN

100 IF(INTFLG(10).EQ.0) THEN

OPEN (200,FILE=’ag08.dat’,STATUS=’UNKNOWN’)

k=1

999 READ (200,200) TS(k), ACCX(k), ACCY(k), ACCZ(K)

200 FORMAT(F10.5,x,F10.5,x,F10.5,x,F10.5)

IF(TS(k).LT.11.5)THEN

k=k+1

GOTO 999

ENDIF

1000 CLOSE(200)

INTFLG(10)=1

ENDIF

IOUT=0

N1=0

N2=0

n=0
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DO WHILE(IOUT.EQ.0)

n=n+1

IF(TS(n).EQ.TIME) THEN

IOUT=1

N2=n

ELSEIF(TS(n).GT.TIME) THEN

IOUT=2

N1=n-1

N2=n

END IF

END DO

IF(IOUT.EQ.1) THEN

VALUEX1 = ACCX(N2)

VALUEX2 = 0

VALUEY1 = ACCY(N2)

VALUEY2 = 0

VALUEZ1 = ACCZ(N2)

VALUEZ2 = 0

ELSEIF(IOUT.EQ.2) THEN

X1 = (TIME - TS(N1))

X2 = (TS(N2) - TS(N1))

FACTOR= X1 / X2

VALUEX1 = ACCX(N1) * (1.0 - FACTOR)

VALUEX2 = ACCX(N2) * FACTOR

VALUEY1 = ACCY(N1) * (1.0 - FACTOR)

VALUEY2 = ACCY(N2) * FACTOR

VALUEZ1 = ACCZ(N1) * (1.0 - FACTOR)

VALUEZ2 = ACCZ(N2) * FACTOR

END IF

S1U=9.81*DEN*(VALUEX1+VALUEX2)

S1V=9.81*DEN*(VALUEY1+VALUEY2)

S1W=9.81*DEN*(VALUEZ1+VALUEZ2)

ELSE

S1U=0

S1V=0

S1W=0

END IF

RETURN

END
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F.2 The Method Taken to Model the JLR Rig Test

The modelling of the rig test utilised the mvmest commands within StarCD. This called for the
creatrion of an event file which moved the tank by a angle proportional to the timestep around an
axis on the base of the tank. The movement was controlled by a change grid file (cgrid.cgrd), the
coding is given below.

!!Moving grid commands for tipping of a fluid filled tank with baffles

!!

!!Written by P Sutton

!!18th June 2008

!!Ext 7214

!!psutto26@jaguarlandrover.com

!!

!!Based upon

!!

!!Moving grid commands for crankcase breather model

!!

!!Written by S Pierson

!!18th October 2004

!!Ext 7087

!!spierso2@jaguarlandrover.com

!!

*IF,TIME,GT,0.

!!Ensures no mesh motion at Time 0.0

!!

*SET,RDS,4. * 0.1047,0

!!rds is radians per second

!!

CSYS,4

!!

!!Moves mesh in each crank bay

!!

*SET,TANG,TIME * RDS,0

*CALC,ADEF,15.,SIN,TANG,0.,1.

*GET,TPOS,Y,33874

*SET,TPOS,TPOS - 90

*SET,TOFF,ADEF - TPOS

cset news fluid

vset news cset

vgen 2 0 vset,,,0,TOFF,0,1.

*ENDIF
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F.3 Morphing Mesh Method

The morphing mesh is implemented via the events module in Prostar, this calls up the events file
which directs Prostar to use StarMorph.MAC. This file was provided by CD-Adapco in the proof of
technology concept for the direct couple.

!-------------------------------------------------------!

!--starting assumptions:

! The coordinates of the vertex on the

! fsi interface (region 5) are from the end of the

! current step and the rest of the vertex are at the

! beginning of the step.

!-------------------------------------------------------!

! main control point length scale of influence (m)

*set scl1 0.05

! scale of boundary point length scale of influence (m)

*set scl3 0.05

!-------------------------------------------------------!

!-set increment frequency for updating reference mesh---!

!- incrm = 0 => reference grid is always initial grid -!

!- incrm = 1 => reference grid is always previous step !

!- incrm = n => reference grid is updated every nth step

!-------------------------------------------------------!

*set incrm 10

!*get x10 x 11882

!*get x20 y 11882

!copy the vertices coordinates into the register

vreg copy,, 0,1

*if time eq 0.

! write out the reference grid

vwrit PROSTAR_VERT1.vrt,,,,bloc

*else

! read in the reference grid

vread PROSTAR_VERT1.vrt,,,,bloc

*endif

!reset the morpher

morp clear

!grab the vertices on the fsi interface (region 5)

bset news rlist 5

vset news bset

!morphing in 2d

293



morp dime xy

! Line added by NF to invoke inverse multi-quadratics

morph kval -1

!limit number of control points to 20 (there is 346 on the fsi surface)

morp tout 20

!set the control points on the fsi surface

morp vreg 1,vset,,, scl1

!fix the vertices on the bottom plane (region 4)

morp gpla regi 4,, scl3

!allow the vertices on the top, left and right to slide along a plane

morp gsym regi 1,, scl3

morp gsym regi 2,, scl3

morp gsym regi 3,, scl3

!excute the morph

morp exe2

!update the reference grid at requested increments

bset news rlist 5

vset news bset

vreg copy vset 1 0

!*get x11 x 11882

!*get x21 y 11882

*if incrm gt 0

*calc modu,,mod,ITER,,incrm

*if modu eq 0

vwrit PROSTAR_VERT1.vrt,,,,bloc

*endif

*endif

F.4 Abaqus Direct Cosimulation Cards

*CO-SIMULATION, NAME=COSIMULATION_1, PROGRAM=DIRECT,

CONTROLS=COSIMULATION_CONTROLS_1

*CO-SIMULATION REGION, TYPE=SURFACE, EXPORT

ASSEMBLY_INTERFACE, U

*CO-SIMULATION REGION, TYPE=SURFACE, IMPORT

ASSEMBLY_INTERFACE, CF

*CO-SIMULATION CONTROLS, NAME=COSIMULATION_CONTROLS_1,

TIME INCREMENTATION=SUBCYCLE, TIME MARKS=YES, STEP SIZE=4.0E-5
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F.5 Example Abaqus CEL Deck

*Heading

** Job name: dam Model name: Model-1

** Generated by: Abaqus/CAE 6.9-1

*Preprint, echo=NO, model=NO, history=NO, contact=NO

**

** PARTS

**

*Part, name=Part-1 %(Solid Baffle)

*Node

(Node Definitions)

*Element, type=C3D8R

(Element Definitions)

%Node, element and surface sets

*Nset, nset=_PickedSet9, internal, generate

*Elset, elset=_PickedSet9, internal, generate

*Nset, nset=s-base

*Elset, elset=s-element, generate

*Nset, nset=s-pos-z, generate

*Nset, nset=s-node, generate

*Nset, nset=s-neg-z, generate

*Elset, elset=_s-force_S3, internal

*Elset, elset=_s-force_S5, internal

*Surface, type=ELEMENT, name=s-force

** Section: Section-1

*Solid Section, elset=_PickedSet9, material=HDPE

,

*End Part

**

*Part, name=Part-2 %(Eularian Volume)

*Node

(Node Definitions)

*Element, type=EC3D8R

(Element Definitions)

%Node, element and surface sets

*Nset, nset=_PickedSet20, internal, generate

*Elset, elset=_PickedSet20, internal, generate

*Nset, nset=f-node, generate

*Elset, elset=f-element, generate

*Nset, nset=f-pos-x, generate
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*Nset, nset=f-pos-z

*Nset, nset=f-pos-y, generate

*Nset, nset=f-neg-x, generate

*Nset, nset=f-neg-y, generate

*Nset, nset=f-neg-z

** Section: Section-2

*Eulerian Section, elset=_PickedSet20, controls=EC-1

Water, Part-1-1

*Surface, type=EULERIAN MATERIAL, name=Part-1-1

Part-1-1

*End Part

**

*Part, name=Part-3

*End Part

**

**

** ASSEMBLY

**

*Assembly, name=Assembly

**

*Instance, name=Part-1-1, part=Part-1

*End Instance

**

*Instance, name=Part-2-1, part=Part-2

*End Instance

**

*Instance, name=Part-3-1, part=Part-3

*End Instance

**

*Nset, nset=_PickedSet9, internal, instance=Part-2-1, generate

*Elset, elset=_PickedSet9, internal, instance=Part-2-1, generate

*Nset, nset=f-node-ini, instance=Part-2-1

*Elset, elset=MySet, instance=Part-2-1

**

**

** INTEGRATED OUTPUT SECTIONS

**

*Integrated Output Section, name=I-Section-1,

surface=Part-1-1.s-force, project orientation=NO

*End Assembly

**
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** ELEMENT CONTROLS

**

*Section Controls, name=EC-1, hourglass=VISCOUS

0.2, 1., 1.

**

** MATERIALS

**

*Material, name=HDPE

*Density

8.76e-10,

*Elastic

903.114, 0.39

*Material, name=Water

*Density

9.98e-10,

*Eos, type=USUP

1.5e+05,0.,0.

*EosShear, type=VISCOUS

1.003e-09,

**

** INTERACTION PROPERTIES

**

*Surface Interaction, name=IntProp-1

*Friction, rough

**Contact Damping, definition=CRITICAL

**0,

**4,

**

** BOUNDARY CONDITIONS

**

** Name: f-neg-x Type: Velocity/Angular velocity

*Boundary, type=VELOCITY

Part-2-1.f-neg-x, 1, 1

*Boundary, type=VELOCITY

Part-2-1.f-neg-y, 2, 2

*Boundary, type=VELOCITY

Part-2-1.f-neg-z, 3, 3

*Boundary, type=VELOCITY

Part-2-1.f-pos-x, 1, 1

*Boundary, type=VELOCITY

Part-2-1.f-pos-y, 2, 2
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*Boundary, type=VELOCITY

Part-2-1.f-pos-z, 3, 3

**

** PREDEFINED FIELDS

**

** Name: Predefined Field-1 Type: Material assignment

*Initial Conditions, type=VOLUME FRACTION

(Element Volume Fraction Definitions)

**

***Initial Conditions, type=STRESS, GEOSTATIC

***MySet, 0.0, 120, -1.174e-03, 0.0, 1.0, 1.0

**

** INTERACTIONS

**

** Interaction: Int-1

*Contact, op=NEW

*Contact Inclusions, ALL EXTERIOR

*Contact property assignment

, , IntProp-1

*Contact Controls Assignment, Type=SCALE PENALTY

,,0.1

** ----------------------------------------------------------------

**

** STEP: Step-1

**

*Step, name=Step-1

*Dynamic, Explicit

, 1

*Bulk Viscosity

0.06, 1.2

**

** BOUNDARY CONDITIONS

**

** Name: BC-1 Type: Symmetry/Antisymmetry/Encastre

*Boundary

Part-1-1.s-base, ENCASTRE

** Name: solid-side-2 Type: Symmetry/Antisymmetry/Encastre

*Boundary

Part-1-1.s-pos-z, ZSYMM

** Name: solid-sides Type: Symmetry/Antisymmetry/Encastre

*Boundary
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Part-1-1.s-neg-z, ZSYMM

**

** LOADS

**

** Name: Load-1 Type: Gravity

*Amplitude, name=Amp-1, definition=SMOOTH STEP

0., 0., 1., 1.

**

*Dload

, GRAV, 9806.6, 0., 0., -1.

**

** OUTPUT REQUESTS

**

*Restart, write, number interval=1, time marks=NO

**

** FIELD OUTPUT: F-Output-1

**

*Output, field, variable=PRESELECT

**

** FIELD OUTPUT: F-Output-2

**

*Output, field

*Element Output, directions=YES

PRESSVAVG

*Contact Output

CFORCE

**

** HISTORY OUTPUT: H-Output-2

**

*Output, history

*Integrated Output, section=I-Section-1

SOF,

**

** HISTORY OUTPUT: H-Output-1

**

*Output, history, variable=PRESELECT

*End Step
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