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Abstract 

 

From the individual to species level, it is common for animals to have connections with 

one another. These connections can exist in a variety of forms; from the social 

relationships within an animal society, to hybridisation between species. The structure of 

these connections in animal systems can be depicted using networks, often revealing non-

trivial structure which can be biologically informative.  

 

Understanding the factors which drive the structure of animal networks can help us 

understand the costs and benefits of forming and maintaining relationships. Multivariate 

modelling provides a means to evaluate the relative contributions of a set of explanatory 

factors to a response variable. However, conventional modelling approaches use 

statistical tests which are unsuitable for the dependencies inherent in network and 

relational data. A solution to this problem is to use specialised models developed in the 

social sciences, which have a long history in modelling human social networks. 

 

Taking predictive multivariate models from the social sciences and applying them to 

animal networks is attractive given that current analytical approaches are predominantly 

descriptive. However, these models were developed for human social networks, where 

participants can self-identify relationships. In contrast, relationships between animals 

have to be inferred through observations of associations or interactions, which can 

introduce sampling bias and uncertainty to the data. Without appropriate care, these issues 

could lead us to make incorrect or overconfident conclusions about our data. 

 

In this thesis, we use an established network model, the multiple regression quadratic 

assignment procedure (MRQAP), and propose approaches to facilitate the application of 

this model in animal network studies. Through demonstrating these approaches on three 

animal systems, we make new biological findings and highlight the importance of 

considering data-sampling issues when analysing networks. Additionally, our approaches 

have wider applications to animal network studies where relationships are inferred 

through observing dyadic interactions. 
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I. Introduction 

 

1. Introduction 

 

1.1 Thesis Overview 

 

Networks are often used to model interconnected systems across a range of scientific 

disciplines. The broad interest in networks has been one of the reasons why the field of 

network science has progressed so rapidly. However, the types of networks studied and 

the questions asked of them vary considerably across different scientific disciplines; as 

such, care is required when new terminology, metrics or analytical techniques cross over 

disciplines (Croft et al. 2008; James et al. 2009; Krause et al. 2014). In biology, 

particularly whole-organism biology, we are often interested in explaining a network in 

terms of a number of explanatory variables; identifying the factors which shape network 

structure. Describing a network in terms of more than one explanatory variable principally 

requires statistical modelling. However, the dependencies inherent in network data 

prevent the use of many conventional statistical tests (Krackhardt 1988;  Snijders 2011). 

These tests assume that data-points are independent from each other; this is not true for 

networks or often the explanatory variables used to describe them (see: Snijders 2011). 

Biologists have thus looked to other fields that have had a head-start in the multivariate 

statistical analyses of network data. This thesis concerns ways in which approaches used 

to model networks may be taken from the social sciences and adapted for the study of 

animal networks. 

 

Numerous multivariate network modelling techniques have been developed in the social 

sciences (Goldenberg et al. 2010). Taking these predictive, multivariate models and 

applying them to animal networks is attractive (see Pinter-Wollman et al. 2014). In studies 

of animal networks, statistical approaches have often been descriptive as opposed to 

predictive and univariate as opposed to multivariate; this has been due, in part, to the 

difficulties in observing animal interactions and producing reliable networks (Croft et al. 

2008). In the social sciences, multivariate network models have been developed primarily 

for the study of human social networks, where the researcher has had more control over 

the sampling of the study system and has been able to determine the presence or absence 

of ties between individuals with a high degree of certainty. In contrast to humans, animals 
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cannot be surveyed to find out with whom they are socially affiliated or otherwise. Taking 

models developed for human networks and applying them to animal networks could place 

undue trust in unreliable data, given the difficulty in inferring social ties between animals 

(see Croft et al. 2008; Krause et al. 2014).  

 

This thesis proposes novel approaches to determine the factors which shape networks 

associated with animals. Three animal networks are studied to illustrate each approach: 

the first representing hybridisation between warbler species (family: Parulidae) (chapter 

4); the second depicting workers that drift between nests in populations of the paper-wasp 

Polistes canadensis (chapter 5) and the third representing associative relationships within 

a herd of dairy cattle Bos taurus (chapter 6). The first of these networks is not strictly a 

social network, as interactions take place between different species and consist of mating 

events; however, all of these networks present challenges to multivariate analysis which 

stem from observing wild animals. In the first network, the presence of edges (reported 

hybridisation between two species) is relatively reliable, but the absence of edges cannot 

be trusted. In the second, the network is more reliable, but currently available statistical 

procedures are too generic for the study system and consequently need modification. In 

the third system, the method used to generate the network also biases the strength of edges 

(association time between pairs of cows), which has to be controlled prior to modelling.  

 

The major focus of this thesis is to find means to apply the modelling techniques 

developed in the social sciences on animal networks, thus allowing multivariate analyses 

to be conducted on animal networks whilst addressing the issues in data-quality. After 

considering network fundamentals (chapter 2) and how network approaches are typically 

conducted (chapter 3), this thesis focuses on three animal network case studies (chapters 

4-6). In each of these case studies, a unique approach to facilitate the use of multivariate 

analytical models is demonstrated. The first of these approaches involves restricting the 

use of multivariate models to just the explanatory variables (chapter 4) and using these 

modified explanatory variables to perform more complex and powerful hypothesis testing 

(see Croft et al. 2011). Explanatory variables may be easier to quantify reliably in animal 

network studies than the interactions which form the response variable, the network itself. 

An example being that if we expected a social network to be structured such that 

similarly-sized individuals were more likely to be connected, measuring the sizes of 

individuals and then calculating the difference might be easier than identifying patterns 

of interactions between all individuals in the population. The second approach is based 
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on modifying facets of the models themselves to control for some of the issues associated 

with animal data (chapter 5), in particular, adjusting the null models behind these 

procedures from those common to human social networks towards those often used in 

animal networks. The third approach is to take steps to increase the reliability of animal 

network data before modelling takes place so that data are evenly sampled; in performing 

this step, we bring the quality of animal network data closer to the human social network 

data for which many multivariate network models were developed (chapter 6). 

 

 

1.2 The Importance of Studying Networks  

 

 

There is a ubiquitous familiarity with the term “network” in society (Castells 2011). The 

increase in use of online social networking and social media has brought the concept of 

networks to the forefront of everyday life. According to the Pew Research Centre 

(PewResearch 2014), 74% of online adults use social networking sites. Electrical power 

grids (Xu et al. 2004), transport networks (Sen et al. 2003) and the world-wide web (Tadić 

2001) can all be considered as networks with which we might be familiar. At the same 

time, networks are popular in science; at present, over 63,000 articles in the 

multidisciplinary journal Nature contain the term “network” (www.nature.com, accessed: 

21-06-15). Networks offer a departure from the idea that the world can be described via 

the objects it is made up of and their properties, highlighting the importance that the 

relationships between objects can have. Network studies are part of a wider trend (Rhoten 

2004) in science towards interdisciplinary research, uniting numerous scientific fields 

including maths, physics biology, economics and the social sciences (Porter & Rafols 

2009). Through the collaborative study of networks, we have made rapid progress in 

understanding of physical (Iida 1999; Faloutsos et al. 1999; Carreras et al. 2002), social 

(see: Borgatti et al. 2009) and biological processes (see: Proulx et al. 2005; Wey et al. 

2008).  

 

A network, or graph, can be defined as a system of discrete entities, known as nodes, 

connected by ties, known as edges. In a diagrammatic representation of a network, nodes 

are depicted using symbols (circles, squares etc.) and edges are depicted as lines 

connecting pairs of nodes. Networks are used to model systems where the pattern of the 

connections is heterogeneous and this structure can affect both the local and global 
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properties of a system. The importance of the structure of interactions is otherwise missed 

through studying pairwise interactions in isolation of each other or analysing the average 

properties of the system as a whole. Some broad examples of network include: social 

networks, where individuals may form the nodes of the network linked through identified 

social relationships (Otte & Rousseau 2002); physical networks, where nodes may take 

the form of circuit components or powers stations and edges represent physical 

connections such as wiring (Belevitch 1962), or data connections in a computer network 

(Faloutsos et al. 1999); economic networks (see: Allen & Babus 2010), where nodes 

which could take the form of banks (Iori et al. 2008; Gai & Kapadia 2010), businesses 

(Coviello & Munro 1997) or countries (Smith & White 1991; Garlaschelli & Loffredo 

2005) and edges may represent trade (Garlaschelli & Loffredo 2005) or monetary lending 

(Masi et al. 2011) between them, and biological networks, where nodes may take the form 

of individual organisms (Lusseau 2003) or the biological components that make up an 

organism (Jeong et al. 2001; Abouheif & Wray 2002; Papp et al. 2004) and edges the 

physiological, behavioural, or evolutionary connections they may have. Networks can 

also be purely theoretical, not directly representing any real-world system at all. 

Simulated typical networks are constructed to study emergent properties associated with 

different network topologies- helping us identify properties of networks observed in the 

real-world (e.g. Bolland 1988; Watts & Strogatz 1998; Pastor-Satorras & Vespignani 

2001; Hałaj & Kok 2013).   

 

Uncovering the biophysical explanations underlying the structure of animal systems is 

important given both the inherent value in understanding the natural world and the 

potential applied uses of network theory. Social networking alone has been one of the 

fastest growing subject matter areas in the US patent office. In 2003, only a handful of 

patents had been published regarding social networks, by 2011 there were at least 3500 

(Nowotarski 2011). Through the study of biological networks, a new field of network 

medicine has arisen from the holistic understanding of the interactions between proteins, 

genes and metabolic agents (Barabási et al. 2011) leading to the earlier identification and 

targeted treatment of new disease modules and pathways. Further, the study of 

epidemiological networks has led to the theoretical development of different network-

based targeted vaccination strategies, creating “herd immunity”, where a disease cannot 

propagate in a society with the lowest vaccination effort ( Pastor-Satorras & Vespignani 

2002; Christakis 2004; Fine et al. 2011). In machine learning and cognitive science, 

artificial neural networks form a method of statistical learning based on animal neural 
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networks, excelling in tasks such as speech and visual recognition which otherwise pose 

a challenge to conventional rule-based programming (Hagan et al. 1996). National 

security services can be concerned with how organised crime syndicates and terrorist cells 

operate, network theory has contributed to their understanding of these systems ( Krebs 

2002; Qin et al. 2005; Xu & Chen 2005; Natarajan 2006; Ressler 2006). In domestic 

security, networks can enrich our understanding of phenomena such as riots and social 

epidemics- such as the spread of extremist ideologies ( Kennedy et al. 1997; Patten & 

Arboleda-Flórez 2004; Amblard & Deffuant 2004; Franks et al. 2008; Martins 2008; 

Radil et al. 2010). The study and refinement of logistic networks has made the transport 

of goods more efficient and less damaging to the environment (Bell & Iida 1997; 

Richardson 2005). In the field of engineering, inspirations from biological networks have 

been applied to the design of sensor networks (Dressler et al. 2005; Barbarossa & Scutari 

2007), communication  networks (Dressler 2005; Carreras et al. 2007) and swarm 

intelligence (Webb 2002). However, that is not to say everything about networks is known 

or that we are getting the most benefit from what we do know. A lack of predictive 

multivariate models suitable for use on animal networks has impeded our ability to both 

effectively analyse many networks occurring in nature and apply what we learn for the 

purposes of improving conservation and agricultural practises. 

 

1.3 Networks in Evolution, Ecology and Behaviour 

 

The networks studied in this thesis are biological, with nodes consisting of either whole 

organisms or species; this section serves as an introduction into some of the ways 

networks have been used to study biological systems. In particular, this section highlights 

how the structure of interconnected biological systems can be important to their properties 

and function, and how these structures may have evolved. For a review of the role of 

networks in studying biological systems, the reader is pointed towards: Proulx et al. 

(2005) for a biochemistry and ecology-based perspective, and Krause et al. (2009) for 

perspective from behavioural biology. 

 

The theory of evolution has been highlighted as the main unifying concept in Biology 

(Smocovitis 1996). The currency of evolutionary biology is fitness, the amount of genes 

an organism passes down to successive generations; this can be directly, through having 

offspring, or indirectly through increasing the reproductive success of closely related kin, 

which share some of the same genes, as outlined in inclusive fitness theory (Hamilton 
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1964; Bijma & Wade 2008). Typically, heritable traits that confer a fitness advantage 

spread throughout populations, whereas those that confer a disadvantage are lost. If the 

structure of a biological system can vary, and is somewhat heritable, then it is a viable 

target for selection and evolution (Hall 2008). Biologists may seek to understand how 

evolutionary forces shape network structure and whether certain networks structures 

observed in nature are adaptive, conferring fitness advantages to all or most of their 

members (Proulx et al. 2005).  Biological networks can range from those governing sub-

cellular processes through to those happening at the level of the organism and beyond. 

Molecular biologists may be concerned with whether the structure of gene-regulatory, 

metabolic, or protein interaction networks may be robust to random faults that happen 

across the genome (von Dassow et al. 2000; Edwards & Palsson 2000; Jeong et al. 2001). 

Behavioural biologists may seek to understand how the underlying social network of 

group-living animals affects individual and collective behaviour (Krause et al. 2009). 

Ecologists may examine the interactions between collections of organisms, such as 

populations of species, to better understand ecosystem function and fragility- informing 

conservation action and furthering our understanding of biodiversity (Iida 1999; Solé & 

Montoya 2001).  

 

At the molecular-level, genes are the fundamental blueprints of living organisms, 

regulating and encoding the production of different proteins. However, genes are 

continually subject to mutations, many of which get enzymatically repaired, whilst some 

of which persist (Alberts et al. 2002). Mutations are occasionally beneficial, conferring a 

fitness advantage, but most often deleterious (Peck 1994). Mutations of genes affect the 

production of proteins, which can guide metabolism through acting as catalysts of 

different biological reactions (Alberts et al. 2002). Although mutation rates vary across 

different parts of the genome (Wolfe et al. 1989) - they are broadly assumed to occur at 

random with respect to individual genes. Therefore, gene, protein and metabolic networks 

would theoretically benefit from having a structure robust to the random loss of their 

nodes (the individual genes, proteins, or metabolic agents). Both gene-regulatory and 

protein-protein interaction networks have been characterised (Uetz et al. 2000; Jeong et 

al. 2001; Abouheif & Wray 2002; Mittler et al. 2004), showing links between network 

structure and evolution at the molecular level. In protein interaction networks, Jeong et 

al. (2001) showed that the most highly connected proteins were three times more likely 

to be essential for survival than were weakly connected proteins. Subsequent studies 

found that these proteins were also more pleiotropic (Promislow 2004), evolved more 
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slowly (Fraser et al. 2002), and were less likely to be lost over evolutionary time (Krylov 

et al. 2003). The gene-regulatory network that governs sex determination may have 

evolved robustness in Drosophila; maintaining its function in the face of a relatively large 

variety of different mutations (MacCarthy et al. 2003). In contrast, the gene-regulatory 

network governing worker-wing development in ants may be more fragile. In species 

where workers develop wings the gene regulatory network appears to have been highly 

conserved for millions of years, however, in each of four species which do not develop 

wings, a unique single gene was disrupted in each case (Abouheif & Wray 2002). The 

structure of metabolic networks can offer additional resilience to changing environments 

than genetic redundancy alone (Wagner 2005). The metabolic network of Escherichia 

coli for example, is highly robust to damage. For most enzymes in the network, a change 

in concentration or complete loss has little effect on overall network function (Edwards 

& Palsson 2000; Lemke et al. 2004). 

 

The behaviour of an individual can be governed by both intrinsic and extrinsic factors 

(Vallerand & Bissonnette 1992). Intrinsic factors may be any attribute of that individual, 

its gender or size for instance.  Extrinsic factors take the form of both its abiotic and biotic 

environment (Croft et al. 2008). For many animal species, an important aspect of an 

individual’s biotic environment is its social environment, often made up of non-random 

heterogeneous interactions and relationships (Hinde 1976; Krause & Ruxton 2002). 

Sociality is widespread in the animal kingdom, considered to be one of the major 

evolutionary transitions of life (Maynard Smith & Szathmary 1995). Networks allow 

behavioural biologists to quantify an individual’s social environment to allow a better 

understanding of how it might influence an individual’s behaviour. An individual’s 

behaviour also may in turn influence its social environment. The structure of social 

interactions and relationships within a social group may also have global effects on the 

fitness of its constituent members (Bergstrom 2002). Further, the position of an individual 

within its native social network can also influence its fitness (Von Rueden et al. 2010). 

An animal’s social environment has been shown to influence a wide range of behaviours 

from mate-seeking and mate-choice (McDonald 2007), predator-inspection (Croft et al. 

2006), foraging (Ramos-Fernández et al. 2006), and the development and maintenance of 

cooperative behaviours (Croft et al. 2006). An element of evolutionary game theory 

underpins the study of animal social networks, where the payoffs to the strategies adopted 

by individuals depend on the strategies of other individuals in its social environment ( 

Gibbons 1992; Ohtsuki et al. 2006; Slikker & den Nouweland 2012).  
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In ecology, networks can be used to represent the feeding, or trophic, interactions between 

different species, also known as food webs (Kormondy 1969). Mutualistic networks can 

be used to represent symbiotic associations between organisms, such as plant species and 

their pollinators (Bascompte et al. 2003). The structures of food webs and mutualistic 

networks are thought to have a key role in determining the long-term stability and 

resilience of ecological communities ( Solé & Montoya 2001; Neutel et al. 2002; Krause 

et al. 2003; Emmerson & Yearsley 2004; Montoya et al. 2006; Thébault & Fontaine 

2010). Historically, ecological communities have been mathematically modelled under 

the assumption that all species interact with each other, that there is uniform or saturated 

network structure (Berlow et al. 2004). Through these approaches, mathematical 

ecologists have explored how the size and connectivity of food webs affect community 

stability in the face of fluctuations in population densities (May 2001), the introduction 

of an invasive species (Case 1990), and the long-term persistence of the community under 

non-linear population dynamics (Hastings & Powell 1991). However, real-world 

ecological networks are not uniform and network theory has increased our understanding 

of them through incorporating heterogeneity (Proulx et al. 2005). Ecologists have 

identified that networks with more links often show decreased strength in those links, thus 

decreasing the dependency of one species on any other and increasing robustness to the 

loss of individual species (Vázquez et al. 2007). Further, cascading extinctions are less 

likely in compartmentalized ecological networks, where the network is divided into 

relatively independent sub-networks, on the basis of body size or spatial location for 

example. As effects of species losses are limited to the original compartment, the overall 

community is isolated to the loss (Krause et al. 2003). 

  

In epidemiology, both compartmental models have been used to understand the dynamics 

of the spread of disease across populations (Amitai et al. 2004). The term compartmental 

comes from the assignment of members of a population into one of a number of 

compartments, perhaps the most famous compartmental model is the SIR model 

developed by Kermack and McKendrick (1927). Within a population N at a time t, St 

represents the number of susceptible individuals, It the number of infectious infected 

individuals and Rt the number of removed individuals (i.e. having recovered and now 

have immunity, or having died). A key assumption underpinning these equations is that 

there is homogeneous mixing in the population N, meaning that all individuals have an 

equal probability of contracting the disease with an infection rate of  β (Anderson et al. 
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1992) . Therefore, an infected individual makes contact and is able to transmit the disease 

with βN others per time unit and the fraction of contacts by an infected with a susceptible 

is S/N (Brauer et al. 2001). However, contacts within many human and animal 

populations often form heterogeneous networks- with structure that can affect the spread 

of disease through a population (Morris 1993; Keeling & Eames 2005). For instance, the 

sexual contact networks of humans exhibit a power-law like distribution (see section 2.5), 

with most individuals having one sexual partner each year, but few having in the tens or 

even hundreds; this allows diseases with very low transmission rates, like the Human 

Immuno-Deficiency Virus (HIV), to spread rapidly through a population (Andersen & 

May 1988; Liljeros et al. 2001; Pastor-Satorras & Vespignani 2001; May & Lloyd 2001). 

Conversely, clustered networks with dense local connections between individuals (see 

section 2.2) slow the rate of contagion throughout a population, as clustering increases 

both the size of the epidemic, but also the threshold for an epidemic to occur decreases ( 

Newman 2002b ;Shirley & Rushton 2005). 
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2. Network Theory 

 

 

In the substantive chapters (4-6) of this thesis, network-specific metrics and terminology 

are used which might be unfamiliar to a reader who does not have a background in 

studying networks. The purpose of this second chapter is to provide a basic introduction 

to some aspects of network theory. In particular, we highlight three important issues. 

Firstly, that dependency inherent in network-data prevents us from using modelling 

approaches common in the biological sciences. Secondly, that the history of network 

science leads us to look for models developed in the social sciences as a solution. Thirdly, 

that borrowing models from the social sciences comes with a big warning label as animal 

and human networks are not as similar as we might initially suspect. The following 

section provides an introduction to some of the terms, metrics and properties associated 

with networks. It is not intended as an exhaustive review of networks, just a presentation 

of the information required to understand the forthcoming chapters. For a more complete 

description of networks from the perspective of a behavioural biologist (the perspective 

perhaps most relevant to this thesis) see Croft et al. (2008). 

 

2.1 Fundamentals 

 

Typically, a network is depicted in diagrammatic form as a set of dots or symbols for the 

nodes, joined by lines or curves for the edges (Trudeau 2013). Networks can be referred 

to as “undirected” (figure 1 A) or “directed” (figure 1 B) on the basis of the interactions 

or relationships they represent. An undirected network is one where the nature of a tie or 

edge is symmetrical, such as two nodes being in a given proximity of each other (Krause 

et al. 2013) or persistently occurring in the same social groups (Whitehead & Dufault 

1999). In directed networks, or “digraphs”, interactions take place from one node to 

another, in other words, there may be both a “sender” and “recipient” of the interaction. 

In a directed network, arcs are a term which may be used to denote a directed interaction 

between nodes, although “edge” or “directed edge” can also be used. Examples of 

directed edges could be advice seeking (e.g. Creswick & Westbrook 2006) or sent emails 

(e.g. Newman et al. 2002), or lending between banks (e.g. Iori et al. 2008). 
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Figure 1 - A: An example of an undirected network. The filled circles are the nodes of 

the network, and the lines connecting nodes are edges. This network is unweighted and 

can also be described as a “simple graph”. B: An example directed network, the arrows 

between nodes indicated the direction of the given interaction. Interactions can take place 

in both directions in this example as depicted by the edges between nodes C and D, or in 

a single direction, as depicted by nodes C and F. 

 

At this point we make the distinction between two types of data:  relational and attribute. 

Attribute data are measures assigned to individual agents, such as body-length, or gender. 

Relational data considers the relations or interactions between a set of actors. A network 

is a (structured) relational dataset and so is edge-attribute data (such as measures of the 

similarity between actors), in the sense that any data-point belongs to two nodes and one 

node can share data with many others (Croft et al. 2008). Relational data are commonly 

stored in matrices where each row and corresponding column refers to a specific actor, 

known as actor-by-actor matrices, so any element will represent a measure between the 

actors on the corresponding row and column.  

 

An adjacency matrix (or a sociomatrix in the social sciences) refers to a matrix which 

represents the connections within a set of nodes. Although an adjacency matrix is 

typically an actor-by-actor matrix, in certain instances, such as when the nodes of 

networks can take two distinct forms (known as a bipartite network – see Dormann et al. 

2009), the number of rows and columns may differ- an example would be a pollinator 

network where one set of nodes would represent pollinators and the other plants (e.g. 

Vázquez et al. 2007). A non-zero value in an element of an adjacency matrix tells us that 
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there is an edge between the nodes in the corresponding to the row and column. If the 

non-zero value is a number other than 1 (i.e. the matrix is non-binary), then this value 

may imply the strength of an edge in a weighted network (figure 2 A) or the number of 

edges between nodes (figure 2 B). If the non-zero value lies on the lead diagonal of the 

matrix, then that may infer that there is a looped or self- edge, as the row and column 

number will be the same (figure 2 B). In an undirected adjacency matrix, there is 

symmetry about the lead diagonal, so the values across row a will be the same as the 

values down the column a. In other words, if a node in row a shares a value of 1 with the 

node in column b, then the node in row b also shares a value of 1 with the node in column 

a. In a digraph, there does not have to be symmetry about the lead diagonal, the row 

usually refers to the sender of a tie or interaction, and the column refers to the receiver 

(see Wasserman & Faust 1994). A limitation of using an adjacency matrix format to store 

network-data is that it is inefficient when the number of nodes in the network becomes 

very large relative to the number of edges. In these instances, a mapping of connections 

between nodes may be used instead (i.e. node A to node F), which may be called an 

“edgelist” (e.g. Csardi & Nepusz 2006). On the other hand, an advantage of using 

adjacency matrices is that there is a large body of mathematical techniques which can be 

applied to them with direct use in network analysis (see: Mohar 1997). In animal 

networks, nodes are often in the hundreds (Croft et al. 2008) as opposed to the hundreds 

of thousands or millions (e.g. the internet (Faloutsos et al. 1999)), for this reason, 

adjacency matrices are a sufficient means of storing animal network data. 
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Figure 2- A: An example of a simple weighted network, the various thicknesses of edges 

connecting nodes is used to depict the strength of an edge (i.e. the number of times 

individuals made contact in a given period). B: An example of a “multigraph”, where 

multiple edges can exist between nodes and self-edges or “loops” can be present (node C 

for example). In this example, the variable size of nodes might be used to represent a 

given continuous node attribute (such as body-size), whereas the shape of nodes could be 

used to depict a categorical node attribute (such as gender).  

 

 

In some networks, edges can be both directed and undirected; these are referred to 

as mixed graphs (e.g. Richardson 2003).  Furthermore, some graphs can have loops, 

representing an interaction with itself, such as auto-feedback in gene regulatory networks 

(e.g. Tsang et al. 2007) or multiple edges between any two nodes, often referred to as a 

“multigraph” (figure 2 B). If a graph is undirected and has no loops it is often referred to 

as a simple graph (Bollobás 1998a). Thus far, we have only described edges or arcs in the 

sense that they are present or absent. However, in many cases it is important to consider 

the strength of the tie or interaction which forms an edge or arc. Networks or graphs which 

contain this edge attribute data are called weighted networks (figure 2 B). We can thus 

have weighted versions of directed, undirected and mixed networks (Fletcher et al. 1991). 

 

Directed edges are often depicted using arrows as opposed to lines in the network (figure 

1 B), the arrows point from the sender to the receiver of the interaction that constitutes 

the arc. Edges can also take varying thickness to indicate their weight as previously 

described (figure 2 B), such as to indicate the amount of trade between countries (e.g. 

Manna 2008) . Further, nodes can be sized differently to represent continuous node 

attribute data, such as an individual’s body length (e.g. Croft et al. 2006). The use of 

different symbols or colours can also be ascribed to different nodes to represent 

categorical attribute data such as gender and disease status (e.g. VanderWaal et al. 2013) 

(see figure 2 A). Edges may also be dashed, dotted or coloured differently to represent a 

different category of interaction in a network, such as gene co-expression and protein-

protein interactions in a gene network (e.g. Obayashi et al. 2009) (see section 1.3). 

 

 

Thus far, we have only described what are known as static networks. However, dynamic 

or temporal networks can be used represent systems where nodes, or the edges between 
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them, may change throughout the observation period. The transient nature of both edges 

and nodes in these systems may affect the dynamics of process which occur on them (Wey 

et al. 2008). If we supposed that node F caught a disease in figure 1 A, we might expect 

it to be able to spread to nodes B, C, and E. However, if F’s contacts had happened with 

B, C and E, before F became infected, then the disease would not be able to spread. 

Temporal network data are considered in chapter 6, where close-proximity events are 

measured over time in a herd of Dairy Cattle, Bos taurus. 

 

2.2 Network measures  

 

In this thesis, we use certain network measures to explain some of the variation in the 

structure of animal systems (see chapter 4 and 5). For a comprehensive review of network 

measures, the reader is directed towards Wasserman & Faust (1994) - a perspective from 

the social sciences. For a review of network measures from the perspective of behavioural 

biologists, Croft et al. (2008) provide a review within their book and Wey et al. (2008) 

have published a review article on this subject. In this section of the introduction, some 

network measures relevant to the rest of this thesis are introduced. An ongoing theme in 

this thesis is that given animals are harder to observe than humans, animal networks can 

be rife with uncertainty and the sampling of the data used to construct the network often 

cannot be assumed to be free from bias (Lusseau et al. 2008; Rendell & Gero 2013). 

Different network measures have varying sensitivity to missing and unreliable data - a 

common issue associated with animal data (see James et al. 2009 for a commentary) 

which we revisit later in section 2.5. 

 

 

A number of metrics can be used to measure and describe a network at different levels, 

ranging from those relevant to the individual node to those relevant to the whole network. 

The first network measures we might consider are paths and walks, as these also form the 

basis of other network measures. A path is a sequence of nodes connected by edges that 

can be followed to from one node to another in the network without any node or edge 

being used twice. We are often interested in identifying the shortest path between any two 

nodes - the path which uses the fewest number of edges to get from one node to another. 

Path length is the number of edges traversed in a path, and the shortest between any two 

nodes in a network is also referred to as their “geodesic distance” (Bouttier et al. 2003). 

The distribution of path lengths in a network gives us an impression of how easy the 
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network is to navigate (i.e. how efficiently one node can be reached from another) which 

in turn affects how quickly things can spread across the network (Watts & Strogatz 1998; 

Shirley & Rushton 2005).  

 

2.2.1 Node-level network metrics 

 

Most node-based measures used in networks consider phenomena known as centrality. 

Centrality is a measure of how influential or how involved an individual is in the greater 

network structure. The simplest node-based measure of centrality is “degree”. Degree 

measures the number of connections a given node has, in a directed network. Degree may 

be split into in-degree, the number of incoming connections from other nodes, and out-

degree, the number of connections being sent out to other nodes. In a weighted network, 

the term “strength” can be added to all of the above terms to indicate that the sum of edge-

weights is being used instead of the raw number of connections. Degree strength can also 

be referred to as node-strength; in-degree can be called in-strength and out-degree called 

out-strength. Two other prominent node-centrality measures are “closeness centrality” 

and “betweenness centrality”.  Closeness centrality measures the shortest path length 

between a focal individual and all other members of the social group. Betweenness 

centrality refers to the number of shortest paths between all pairs of nodes in the network 

that pass through a given node.  

 

2.2.2 Intermediate level metrics 

 

From node-level measures we can progress to what Wey et al. (2008) describe as 

intermediate measures of network structure, these include the “clustering coefficient” and 

“cliquishness”. In undirected networks, clustering coefficient is used to measure how 

close a node’s immediate network neighbourhood is to forming a clique, or a complete 

graph (Watts & Strogatz 1998); in other words, how densely (or sparsely) the network is 

clustered around the focal individual. Cliquishness describes to what extent the network 

is divided into cohesive subgroups. A clique is a set of nodes where each node is directly 

tied to each other (Luce & Perry 1949). Both of these terms link into the concept of 

network “communities” and the presence of subgraphs or motifs. A community is a group 

of nodes densely connected to each other, but sparsely connected to the rest of the 

network, they are identified using algorithms such as random walks - a random walk will 

spend a long time within a community, but a short time between communities (Pons & 



23 
 

Latapy 2006); this is because the high clustering within communities makes them slow 

to cross (Watts & Strogatz 1998). Within a community there may be more triangle motifs 

or subgraphs. Motifs and subgraphs are small structural patterns that may be present in 

the wider network; a triangle or triad being a set of three nodes with three edges, in this 

sense a triangle is a clique. Another intermediate network measure is the “component”, a 

component is could be described as a network fragment, consisting of a set of nodes 

interlinked with each other, but not interlinked with the rest of the network. A researcher 

may be interested in the number of components in a network or the size of the largest 

component, sometimes referred to as a giant connected component (GCC) (see Bollobás 

2001).  

 

2.2.3 Global network metrics 

 

There are many global measures which can be used to describe the properties of whole 

networks. Perhaps the most simple of these measures is edge or network “density”; this 

refers to the proportion of edges that exist out of those possible. In an undirected network, 

the mean degree of nodes is two times the number of edges over the number of nodes, as 

an edge is always connected to two nodes. The mean degree and edge density in a network 

are thus closely linked as the total number of possible edges in a network is the n2- n 

where n is the number of nodes (Newman 2003). Instead of taking a single statistic (such 

as mean degree) to examine the connectivity of the network, the distribution of node 

degrees across the network (the degree distribution) can reveal interesting features of the 

network, such as a high abundance of highly connected nodes (sometimes called “hubs”) 

which may otherwise be overlooked (see chapter 4). The assortativity of a network is a 

correlation coefficient which depicts the tendency for nodes to be linked by edges on the 

basis of a given node attribute, such as their degree (Newman 2003). Degree assortativity 

is the tendency for nodes to connect to others on the basis of having either a similar 

(positive assortativity) or dissimilar (negative assortativity, or dissortativity) number of 

connections. Both types of degree assortativity can generate meso-scales network 

features. Positive degree correlation causes a dense core to form in the centre of the 

network called a core-periphery structure, whereas negative assortativity can cause 

decentralised network structures with hubs distributed evenly across the network 

(Newman 2003;Rombach et al. 2014). A final global measurement to mention is the 

global clustering coefficient, a measure of how many closed triangles there are relative to 

how many connected triplets of nodes there are (which look like “V”s) in the network 
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(see Wasserman and Faust 1999); this gives a network wide perspective on how often the 

connections of individual nodes are also connections of each other. 

 

In both chapters 4 and 5 we look for assortativity in networks based not on structural 

metrics such as degree, but external explanatory factors such as the physical distance 

between nodes (a particular type of assortativity called propinquity) or the similarity of 

nodes for a given trait (a particular type of assortativity called homophily) (see 

McPherson & Smith-Lovin 1987). Given that there are expected resource costs to edges 

existing, be it time spent maintaining a social relationship, and/or lost reproductive 

output, knowing which factors promote nodes to be connected can inform us as to the 

potential fitness payoffs of having or not having connections (see Krause & Ruxton 

(2002) for review of costs and benefits associated with group living). Given that many 

network features are known to depend on edge-density (see Croft et al. 2008), it is 

something that we preserve when testing certain features of our observed networks in 

chapter 4 and 6 (see chapter 3.5).  

 

2.3 Dependence  

 

Recall that one of the main themes of this thesis is to explain network structure in terms 

of a number of explanatory variables. One way in which this can be achieved is through 

statistical modelling, which allows the effect of each explanatory variable to be evaluated 

in light of other explanatory variables thought to influence the presence and strength of 

ties in the network. Modelling relational data, such as networks, requires a different set 

of statistical approaches to those commonly used for attribute data; due to the various 

sources of dependence in networks (see Snijders 2011 for a review). In this section, we 

are introduced to one widely-used multivariate modelling approach; the multiple linear 

regression (MLR). When an MLR is used with attribute data, the significance of each 

explanatory variable and the model as a whole are often evaluated using tests which have 

distributional assumptions (such as the t and F-test) (see Sokal & Rohlf 1987). In the first 

part of this section, the MLR is briefly introduced using a hypothetical example based on 

attribute data. Some of the assumptions that underpin both the fitting and the testing stage 

of the model are highlighted- including those based on independence. One set of 

independence assumptions are nearly always violated in relational data, which make 

conventional significance tests invalid. The second half of this section covers the causes 
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and consequences of dependence in relational and network data and one way in which 

significance testing is conducted in light of them. 

 

 2.3.1 Modelling attribute data 

 

To demonstrate why and where approaches to model relational data differ from those 

used to model attribute data, consider a hypothetical example: suppose we wanted to 

understand the factors which determine the mass of a species of solitary fish in a pond, 

we have reason to suspect that mass is related to mean daily caloric intake (DCI) and age. 

Body mass measurements, DCI and age are attribute data, as they are measured from 

individual fish in the population. The fish have been randomly and independently 

sampled and can more or less be considered as representative of the pond population.  

 

One generic statistical modelling approach used to evaluate the contribution of a set of 

explanatory variables to a response variable is multiple linear regression (MLR); the 

multivariate extension of simple linear regression (SLR) (see Sokal & Rohlf 1987). If we 

take just part of our fish example, where the response variable body mass Y is described 

in terms of just one explanatory variable, daily caloric intake (DCI) X1, a SLR would 

involve fitting a regression line with the formula Y=β1X1+c (+Ɛ), to depict the 

relationship between body mass and DCI. In this equation, β1 is the gradient of the 

regression line, representing the strength of the effect of DCI (X1) on body mass Y, c is 

the intercept (the mean body mass when all predictor variables are set to 0) and Ɛ is an 

error term representing the spread of the data around that line, or the final set of residuals 

left after the model is fitted.  

 

The gradient β1 of the regression line between body mass and DCI may be fitted using 

ordinary least squares (OLS) estimation; this gradient is useful for biological 

interpretation as it provides us with a measure of the strength of the effect of the 

explanatory variable on the response variable, i.e. how much body mass is expected to 

increase with increasing DCI. In OLS estimation, the sum of the squared value of the 

residuals is used to fit the gradient of the line through the data, with the best fit minimising 

the mean squared error (the average of the squares of the residuals, see Neter et al. 1996). 

The extension for a multiple linear regression, where there can be two or more 

explanatory variables. In our example, we now include a second explanatory variable, 

https://en.wikipedia.org/wiki/Expected_value
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age X2. Using a common intercept term c, the same estimation procedure is performed for 

X2 using the residuals left from the first regression with X1 as the new response variable; 

this provides a gradient for the second regression line β2 and an effect-size for X2. Note 

that the intercept term c may not always be biologically interpretable if either of the 

explanatory variables cannot feasibly take a value of 0. 

 

There are a few assumptions associated with MLR worth highlighting at this point. These 

assumptions can be split into those which affect the “mechanics” of the OLS estimation 

procedure which will lead to inaccurate parameter estimation (the βs and the c) and poor 

model fit, and those which predominantly affect inference using parametric statistical 

tests. These tests rely on distributional assumptions allow certain properties of a 

distribution to be estimated using approximations; a key example being the standard error 

of the mean being approximately the sample standard deviation divided by the square root 

of the sample size. It should be noted that inaccurate estimates of parameter values from 

poor OLS estimation will, in turn, lead to poor statistical inference, but that poor inference 

does dot effect parameter estimation using OLS (although it might lead to the researcher 

making poor choices regarding model specification). 

 

The major assumptions that affect the mechanics of the OLS estimation procedure are as 

follows: 

 

Linearity 

 

OLS estimation makes some assumptions about the nature of the relationship between the 

explanatory variables and the outcome, namely that the relationships are linear with 

respect to the βs. By this, we mean that the explanatory variables can be transformed (i.e. 

squared), but the relationship between the final explanatory inputs into the model and 

response variable has to be linear (i.e. a unit increase of X of leads to the same increase 

(or decrease) in Y over all values of X). In MLR, it has been shown that if the relationship 

between an explanatory variable and a response variable is in fact not linear, then the 

relationship between the two variables will be under-estimated by OLS estimation. At the 

point of statistical inference, this carries the risk of increased type 2 error (falsely 

accepting the null hypothesis) with respect to the non-linear variable, and increased type 

1 error (falsely rejecting the null hypothesis) for any other variables in the regression 

which shares some variance with the non-linear variable in question (Osborne & Waters 
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2002). The linearity of the relationship between two variables can be checked by studying 

the residuals from a simple linear regression to see if the variation in the size of residuals 

remains zero-centred over all predicted values of Y- known as a zero conditional mean 

(Pedhazur 1997).  

 

Negligible error in explanatory variables 

 

The primary assumption of OLS estimation is that there is zero or negligible error in the 

independent variable, given that the OLS method only attempts to minimise the mean 

squared error in the dependent variable when fitting the model. 

 

At the point of inference, if there is a high amount of error, or unreliability in any of the 

measured variables (including the response variable), then the strength of a relationship 

between the response and explanatory variable(s) will be underestimated by OLS 

estimation- increasing the risk of type 2 error (accepting the null hypothesis when it is in 

fact false). High type 2 error for one variable is linked to a higher risk of type 1 error with 

any variables which share some variance with the unreliable variable; this is because each 

succeeding variable entered in the MLR has the opportunity to claim part of the error 

variance left over by the unreliable variable(s) in the OLS estimation. In MLR, if the 

unreliability in the variables can be estimated, using Cronbach alphas (Cronbach 1951) 

for example, then the analyses can be corrected to avoid error. Osborne and Waters (2002) 

provide a correction for unreliable measurements where the correlation between a 

dependent and independent variable is divided by the square root of the product of 

reliability estimates (which range between 0 and 1) for each of the two variables; this has 

the effect of increasing the strength of the correlation to compensate for unreliable data- 

a β in the model is a multiple of a correlation coefficient. 

 

Independent explanatory variables 

 

The assumption of independence between explanatory variables can be violated in any 

multivariate model. Collinearity, also known as multicollinearity, refers to situations 

where any two explanatory variables have a linear relationship with each other (see Wold 

et al. 1984; Alin 2010)- violating the assumption of independence between explanatory 

variables. Due to the way in which OLS estimation is calculated (see  
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Davidson & MacKinnon 1993), small changes in the data or model can lead to erratic 

changes in parameter estimation when variables are highly collinear. Further, the effects 

of highly collinear variables on the response variable cannot be separated, leading to 

model non-identifiability (Dormann et al. 2013). Collinearity may not reduce the power 

of the model as a whole when predicting within the range of data sampled (Harrell 2013), 

however, extrapolation is likely to be erroneous if the relationship between collinear 

factors does not remain constant (Meloun et al. 2002). Further, collinearity can be 

problematic because it inflates the variance of regression parameters and hence 

potentially leads to the wrong identification of significant predictors in the model- as 

some important factors may be falsely rejected from the model (type 2 error) (Wheeler 

2007).  

 

Common causes of collinear variables can be: intrinsic, where two measures are linked 

through a common factor, such as arm and leg-length both being reflective of height; 

compositional, such as proportion-data, where a high proportion of factor A in a sample 

means that there will be lower proportion of factor B and C; incidental, where collinearity 

occurs by chance due to poor experimental design (such as a small sample-size); or the 

result of model misspecification, where two variables are in fact the measure of the same 

thing, such as age and date-of-birth (an example of “perfect” collinearity) (Dormann et 

al. 2013). There are numerous tests for collinearity, including the condition number test 

(Goldstein 1993) and the Farrar-Glauber test (Farrar & Glauber 1967). Solutions to the 

presence of collinear variables are numerous, including: mean centring data, omitting one 

of the variables when they are highly collinear, to using a single latent (unobserved) 

variable to represent multiple collinear variables (see Dormann et al. 2013 for a review).  

 

Normality 

 

Normality is the first of a set of distributional assumptions which we will now consider 

that primarily affect statistical inference based on distributional assumptions (see Winer 

et al. 1971), with lesser or irrelevant effects on model fitting using OLS estimation. 

 

An MLR typically assume that there is a multi-normal distribution of the data (normal for 

each variable). OLS estimation has been shown to be relatively robust to moderate 

departures from normality (Berry & Feldman 1985), but given that each data-point is 

treated equally in OLS estimation, large outliers can bias estimation if not removed prior 
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to fitting. Analyses by Osborne (2001) showed that removing these outliers reduces the 

probability of type 1 and type 2 errors in significance testing and improves accuracy of 

estimates.  

 

One of the assumptions of significance tests, such as the F-test and t-test, is that the 

distributions of errors in the model to be normal, and as such may be sensitive to 

departures from normality. Given that the effects on significance testing depend on both 

the test being considered and the way the errors in the model depart from normality, the 

reader is directed to Box & Watson (1962) for review on how robust regression tests are 

to this assumption. 

 

Homoscedasticity 

 

One assumption of an MLR which mainly pertains to significance testing is that the error 

distribution from the model is assumed to be homoscedastic. Homoscedasticity refers to 

the variance in the error from an MLR being constant across all values of the independent 

variable. Berry and Feldman (1985) state that slight departures from homoscedasticity 

(known as heteroscedasticity) have little effect on significance testing, but marked 

heteroscedasticity can lead to an increase in the possibility of type 1 error. One way in 

which heteroscedasticity is identified is through looking at the distribution of residuals 

(error) on the Y-axis for all predicted values of the response variable (shown on the X-

axis), if there is an even scatter around the line Y=0 then there is no heteroscedasticity. 

Tests for certain patterns of heteroscedasticity also exist, such as the  Goldfeld-Quandt 

test (Goldfeld & Quandt 1965) (when variance is proportional to the response variable) 

and the Glejser test (Glejser 1969) (when variance is greatest at the extremes of the 

observations). One solution to heteroscedastic error distributions in an MLR is through 

the use of mixed effects models, which contain terms which can control for unobserved 

causes of heterogeneity in the error distribution, i.e. by allowing the variance of error to 

be different at different sampling sites, or for the variability in error to be the response of 

an independent variable (see Zuur et al. 2009). Other solutions involve using tests which 

do not require distributional assumptions (introduced in section 2.3.2).  

 

Heteroscedasticity is not a violation of the assumption of OLS per se (estimators will still 

be unbiased), but it does violate the assumptions of significance tests in potentially three 

ways, firstly modelling error is not homoscedastic (by definition), secondly, there will 
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most likely be some form of dependence in modelling error and finally, the distribution 

of modelling error may depart from normality (Berry & Feldman 1985; Osborne & 

Waters 2002). 

 

Independence of errors 

 

One of the assumptions used when for significance testing in an MLR is that each 

observation of the response variable is independent from all others; more specifically, 

that the residuals or errors from the model are independent from each other. The 

assumption of independent errors is a particularly important in terms of this thesis, as it 

is one of the principal reasons why some network-based modelling approaches use a 

permutation-based approach to infer significance (which does not require distributional 

assumptions) (see Manly 1997 for a review of this type of significance testing).  The 

assumption of independent errors may be violated in a number of scenarios, examples 

include: time-series data, when an observation at a given point in time may be dependent 

on those before it, known as temporal autocorrelation; model-misspecification, where the 

response variable is dependent on an explanatory variable not included in the model and 

in relational data, where data consists of comparisons or interactions between individuals 

in a group. In all cases, significance tests based on assumptions of independence are 

invalid. In time-series data, the mean square error may be seriously underestimated. The 

impact of this is that the standard errors are underestimated and the partial t-tests used to 

determine the significance of variables inflated - leading to type 1 error (Pindyck & 

Rubinfeld 1998). The Durbin-Watson test (Durbin & Watson 1950; Durbin & Watson 

1951) is one means with which to identify non-independence of this sort and the methods 

proposed by (Judge et al. 1985) a means to correct this issue.  

 

The non-independence of network observations often resulting in underestimated 

variability of a sample, which in turn increases the chance of type 1 error (Hanneman & 

Riddle 2005). In relational data in general, there can be autocorrelation amongst the rows 

and columns of an actor-by-actor matrix, as all measures in a row or column depend on a 

specific actor. Krackhardt (1988) showed that row-column autocorrelation can seriously 

undermine tests based on assumptions of independence. The incidence of type 1 error was 

shown to increase drastically as the degree of correlation along rows and columns of an 

actor-by-actor matrix increased, from 10% at r<0.2 to 60% at r≥0.7 when an F-test was 

used to determine significance of a MLR. 
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2.3.2 Modelling relational data 

 

To illustrate how significance testing is conducted in an MLR using relational data, 

consider a new species of social fish in a pond; this species of fish has the strange habit 

(for fish) of feeding each other, trophylaxis. Trophylaxis is by its nature a relational 

behaviour, as it involves both a donor and recipient. For the sake of using OLS as a means 

to fit the model, we are particularly interested in the weighted trophylaxis network, not 

just whether trophylaxis has taken place (if the network was binary maximum likelihood 

estimation might be used- see Huber 1967). We believe that trophylaxis can be explained 

by the relatedness of individuals (their genetic similarity) and preferentially takes place 

between of similar sizes- perhaps for reasons relating to prey handling. For reasons 

highlighted in this section, each observation of the response variable cannot be assumed 

independent of the each other. We have highlighted in section 2.3.1 that this may have 

little effect on the fitting of a model using OLS estimation, but will invalidate the 

distributional assumptions of parametric tests, such as t and F-tests.  

 

Statistical independence broadly means that each data-point in a dataset, however we 

define them, conveys no information about any other. A number of dependencies can be 

present in networks. In this thesis, these are categorised into the “structural” factors where 

existing network structure affects new network structure i.e. the presence of some edges 

affect where others might form; “external” factors, those which are not driven by the 

structure of the network itself, but may drive network structure, and “nuisance” factors, 

those which serve no useful information about why a network looks the way it does, but 

affects our choice of statistical analyses. For a description of the effect of nuisance factors 

see Krackhardt (1988), for an excellent review on structural dependencies in networks 

and how they can be incorporated into  network models, see Snijders (2011). 

 

At a fundamental level, a network is a structured form of a relational dataset. If there is a 

reason to believe a network is not random structure, there may be merit in trying to explain 

it in terms of another relational variable, as in our example, where fish trophylaxis might 

be explained by kin structure and size similarity. Recall that an actor-by-actor matrix is a 

common way of storing relational data. In cases where an actor-by-actor matrix contains 

information regarding the differences (genetic difference in for example) between a set 

of actors, it might be referred to as a distance matrix. Two data points on the same row of 

a distance matrix, belonging to dyad (a,b) and dyad (a,c) are not independent of each other 
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as both points involve the same actor in the measurement; the same is true between two 

data points on the same column. To return to our new example, if fish a is the largest in 

the network then all of the values along row a of the distance matrix will be positive, and 

all values down column a  negative - except for the diagonal value, which will be 0 (as 

the fish is being compared with itself). Thus there is often correlation amongst rows and 

columns of a distance matrix, with the values in a given row or column being more similar 

to each other than with other values in the matrix; this is known as row-column or 

structural autocorrelation (Krackhardt 1988). Row-column autocorrelation (a “nuisance” 

factor by our definition) both violates the assumption of independent data-points which 

underlies a t-test or F-test and also creates heteroscedastic error distributions- where the 

variability of a variable is unequal across the range of values of a second variable that 

predicts it (see figure 3). The effects of heteroscedasticity on model inference are 

described in section 2.3.1. 

 

 

 

Figure 3- A: A heteroscedastic error distribution from a 70-actor distance matrix, 

generated by comparing the differences between individuals randomly assigned a number 

from a normal distribution with a mean of 0 and standard deviation of 1 (n=4900). The 

striped pattern of errors is one characteristic signature of row-column autocorrelation. B: 

A homoscedastic error distribution generated by randomly assigning 4900 data-points 

from a normal distribution with a mean of 0 and standard deviation of 1. 
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There are a number of other potentially informative dependencies that have been found 

through the empirical study of networks (see Snijders 2011 for a review). If we return to 

the idea of an external explanatory factor influencing the presence of edges between 

nodes, there have been numerous studies which have found that ties are more likely 

between nodes that are similar on the basis of a given trait - known as homophily 

(McPherson et al. 2001). Homophily is a specific example of assortativity (which also 

includes nodes being more likely to attach if they are different on the basis of a given 

trait). Assortativity can be both an “external” or “structural” factor in our classification 

system. In the fish trophylaxis example, nodes of similar size would be more likely to be 

connected in the network- an external factor. However, if nodes were to assort on the 

basis of degree or a structural measure (how many fish a given fish feeds and is fed by), 

then assortativity is, in this instance, a structural factor. Homophily can also take place 

relative on the categorical status of nodes - such as nodes of the same gender being more 

likely to feed each other.  

 

Another form of structural dependency that can be observed in many directed networks 

is reciprocation (Garlaschelli & Loffredo 2004). Reciprocation refers to the presence of 

one tie increasing the likelihood of another being present in the immediate network 

neighbourhood. In the fish trophylaxis example, one fish feeding another would result in 

a greater tendency for the fish to be fed back by the recipient. A simple measure of the 

amount of reciprocity in a network is the number of bi-directional links divided by the 

total number of links in the network (see Wasserman & Faust 1994). This phenomenon 

doesn’t have to be contained to pairs of nodes, but can consist of longer cycles. Individual 

a could feed b, which increases the likelihood that b feeds c, who may then subsequently 

feed a - creating a cyclic triad (see: Boyd & Richerson 1989; Molm et al. 2007). 

Reciprocity violates the notion that the occurrence of one event does not affect the 

probability of the other, as once a link between a and b is formed there is a higher 

probability of a link leaving b and a link returning to a.  

 

Networks can also exhibit transitivity and clustering. Transitivity refers to the tendency 

for there to be closed triangles in a network. If two nodes a and b  have an edge between 

them, as do nodes a  and c , then there is a higher likelihood that nodes b and c  will also 

have an edge between them, closing the triangle (Girvan & Newman 2002). A network 
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with a high number of closed triangles present will also be highly clustered. The term 

transitive triangle refers to a motif in a directed network where the exact pattern of ties is 

a to b, b to c, then a to c. A transitive triangle is different from a three-cycle where a is 

linked to b, b to c, then c to a (like the above reciprocal feeding example). In a transitive 

triangle, there is a clear dominant node, in our example a, the same cannot be said in a 

three-cycle. Hierarchies are another form of dependency in some directed networks 

exhibited by a high number of transitive triangles and few three-cycles. In our fish feeding 

example, feeding can be directed from low degree individuals to high degree individuals. 

In animal networks hierarchies can present themselves when an alpha male or female 

tends to dominate over a beta male or females and both tend to dominate over omega 

male and females (see Drews 1993); this kind of social structure is common, for example, 

in primates (e.g. Sade et al. 1988; Sapolsky 2005). 

 

The presence of hierarchies in networks leads onto another structural form of network 

dependence known as degree differentials (Snijders 2011). If we return to our trophylaxis 

example, every time a fish gets fed it may firstly gain a little more energy, perhaps 

increasing its ability to solicit more food. The fish may now attract even more food from 

low-degree individuals in what is sometimes known as the rich-gets-richer phenomenon 

(de Solla Price 1976). Conversely, a fish may get known as a feeder and attract more and 

more hungry fish. Assortativity of the basis of degree is a form of homophily when 

positive, i.e. high degree nodes being linked to high degree nodes, but it can also be 

negative (Newman 2002a). Social networks generally have positive assortativity (see 

Rombach et al. 2014), while biological and technological networks are generally 

dissortative (i.e., negative assortativity) (Stanton & Pinar 2011). Both forms of 

assortativity of the basis of degree mean that the connections in a network are not 

independent of one another. 

 

The presence of all types of structural and nuisance dependencies in real-world networks 

and their corresponding relational data mean that a common assumption of statistical 

tests, that data are independent and identically distributed iid, does not hold (see section 

1.4 of Clauset 2011 for a description of iid). Indeed, using models which rely on 

distributional assumptions for inference on relational data with a moderate amount of 

correlation amongst column and rows (a structural autocorrelation) biases significance 

testing to such an extent that it is not uncommon for type I errors of t -statistics to exceed 

50% (Krackhardt, 1988). Network models may take one of two main approaches to deal 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798974/#CR19
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with this issue. The first is to specify a model with parameters which represent aspects of 

network dependency, so that the remaining error in the model is said to be conditionally 

independent given these parameters and suitable for conventional significance tests (see 

Snijders’ (2011) description of the “p2 model” as an example). Another approach is to 

use reference distributions, generated through a resampling procedure, instead of 

distributional assumptions (see Good 2012 for a general review on reference distributions 

and resampling). Reference distributions are created from creating numerous “null” 

datasets (4999 in this thesis), where in each dataset, some aspects of the original dataset 

has been randomised, and other aspects constrained to provide a reflection of the 

scenarios expected under a null hypothesis. The null datasets can provide a distribution 

of the test statistic (measured from each null dataset) which can be used to determine if 

the observed statistic is especially high or low without making any assumptions as to what 

that distribution should look like (see Manly 1997).  

 

2.4 A Brief History of Network Science 

 

To understand why a large number of the network modelling techniques come from the 

social sciences and why many network measures and related algorithms come from the 

physical sciences, it is important to understand the timeline of some of the historical 

developments in network science.  

 

Network theory has its earliest roots in graph theory- a branch of mathematical 

combinatorics. Graph theory began with prominent mathematician and physicist 

Leonhard Euler in the early eighteenth century. Euler created the abstract mapping of 

nodes and edges which we would describe as a network or graph. Early applications of 

graph theory involved physical (see Oldham (2008) for an example), chemical (e.g. 

Cayley 1875) and mathematical systems (e.g. Lhuilier 1813). The book “Graph Theory, 

1736-1936” covers the “pre-social science” history of network studies (Biggs et al. 1976). 

Biology was certainly established in the nineteenth century, resembling the modern day 

discipline (see Mayr 1982; Hull & Ruse 1998). However, the inherent variability and 

randomness in biological data combined with the difficulty in observing some biological 

systems high likelihood of data inaccuracy may have posed an insurmountable challenge 

for mathematical techniques available at this time (Von Mering et al. 2002). The first 

attempts to incorporate randomness into mathematical modelling did not arise until the 
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late nineteenth century with the work of Thiele (1880), whom described the mathematics 

behind Brownian motion- a stochastic process.  

 

The first applications of network science to a social system was conducted by 

psychologist Moreno in the early 1930s (Moreno & Jennings 1934), over half a century 

before the first network studies of animals (such as Sade et al. 1988). Moreno hoped to 

explain why there had been an unusually high incidence of girls whom had ran-away from 

Hudson school in upstate New York – 14 within a period of two weeks. Moreno suspected 

that the spate of runaways was more to do with the position of the girls in an underlying 

social network rather than individual personality traits or circumstance. Moreno 

developed a quantitative method for measuring social relationships known as 

“sociometry”. Using this technique, he created a mapping which depicted the patterns of 

social relationship between the girls at the school; this mapping was a network, which 

Moreno coined as a “sociogram”. Moreno proposed that social influence and information 

would flow through this network and that it was the girl’s network position that 

determined whether they ran away. Moreno had come up with “the social network”, 

which was to become a fruitful area of research in the social sciences (see Borgatti et al. 

2002) and later be applied to animal societies (see Croft et al. 2008) - providing a means 

to model the social environment of the individual. 

 

A significant development in network science came with the introduction of random 

graph theory in 1959 – which united probability theory and graph theory. Random graph 

theory arose from the independent works of Gilbert (1959) and Erdȍs and  Rényi (1959). 

A random graph is one which is generated via a random process. In Gilbert’s G(n,p) 

random graph, edges occur independently of each other between n nodes with a 

probability p between 0 and 1. In G(n,p) random graphs, the total number of edges 

between nodes is not fixed. In contrast, Erdȍs - Rényi  G(n.m) graphs do have an 

explicitly fixed number of edges. In G(n,m) random graphs, any version of the graph 

which satisfies the condition of having n nodes and m edges has an equal probability of 

occurring. When n is large, G(n,m) and G(n,p) graphs are nearly equivalent, where m≈pN 

where N is the maximum possible number of edges for the graph (see Bollobás 1998b). 

The addition of random graph theory suited the analysis of systems which were not 

deterministic and those which exhibit complex features difficult to formalise 

mathematically. Random graph theory would aid the study of social networks, where 

nodes may represent individual humans are often small in size with irregular structure.  

https://en.wikipedia.org/wiki/Thorvald_N._Thiele
https://en.wikipedia.org/wiki/Alfr%C3%A9d_R%C3%A9nyi
https://en.wikipedia.org/wiki/Alfr%C3%A9d_R%C3%A9nyi
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In the early 1970s, a number of conceptual advances were made in the study of social 

networks by social scientists. One of the advances that is touched upon in this thesis 

(chapter 5) regards the importance of weak ties in social networks (Granovetter 1973). 

The idea was that strong ties between individuals are often clumped together, in the sense 

that an individual’s close contacts tend to know each other. As a result, some of the 

information they pass along is redundant. However, weak ties representing acquaintances 

can easily be unconnected to the clique of the individual, and therefore more likely to be 

sources of novel information. Weak ties were linked to better jobs and faster promotions- 

leading to the notion of individuals having social capital (Inkpen & Tsang 2005). 

 

The 1970s also saw social scientists begin to develop model networks and network 

models. Krause et al. (2014) later distinguish these two terms on the basis that a model 

network is one generated at random with rules or constraints used to preserve some typical 

properties, whereas a network model is a statistical modelling procedure focussed towards 

network data. Model networks would provide the basis for some upcoming network 

models, being used to produce reference distributions for significance testing (see section 

2.3.2). Producing these reference distributions required substantial computational power 

relative to what was available at the time, whereas using more conventional statistical 

tests based on distributional assumptions (many of which were developed in the 1940s) 

could be conducted without computation. The rapid advances in computational power 

made through the 1970s and 1980s facilitated the greater use of computationally derived 

reference distributions by academics, which was no doubt a catalysing factor in the 

development of both model networks and network models. 

 

One type of model network developed at this time was conditionally uniform graphs 

(Holland & Leinhardt 1976), which feature in both chapters 5 and 6 of this thesis. 

Conditionally uniform graphs (CUGs) are “random” networks which all exhibit a given 

set of statistical property constrained by the researcher. Every version of a network that 

satisfies the constraints has an equal probability of being included in the set of CUGs, 

whereas networks which don’t satisfy the constraints have no probability of being 

included. In a conditionally uniform model, the significance of a test statistic is inferred 

via the “conditionally uniform distribution” (a reference distribution, see section 2.3.2), 

in other words, through seeing how frequently the test statistic could occur in the set of 

CUGs. For example, we might want to preserve the number of reciprocated ties when 
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testing if reciprocation is more likely between nodes with a similar trait. The conditionally 

uniform approach is somewhat limited by only being descriptive in nature (not capable 

of providing effect sizes); the researcher would know whether the observed feature of the 

network is significant, but not how it would fit into a predictive model in light of other 

explanatory factors. Another limitation of the approach is the difficulty in producing sets 

of CUGs with a high number or complex set of conditioning statistics (the things being 

constrained). Due to this, CUGs were not commonly used in the social sciences as more 

powerful predictive models superseded the approach in immediate years to follow. 

However, CUGs were to find use in the later study of animal social networks, where they 

provided a means to control for uneven sampling protocols common in animal network 

studies and produce null models which were more representative of the expectation of the 

null hypotheses being tested (see Croft et al. 2011).  

 

 

The 1980s saw the first multivariate attempts to statistically model networks by social 

scientists and statisticians. Many of these approaches are covered in detail in Snijders 

(2011). Some prominent examples of network models developed at this time included 

variations on latent-space models. Latent space models developed in the 1960s provided 

a foundation to model unknown sources of dependency as unobserved latent variables 

(those that are not directly observed but are rather inferred). The p1 model was the first 

latent-space type approach to be suitable for use in directed networks. It used two 

parameters to describe the potential for each node to send and receive edges, as well as 

parameters for the total number of ties and the tendency toward reciprocation. A weakness 

of the model was that it required a large number of explanatory factors, at least 2 for each 

node which led to issues regarding over-parameterisation of the model, it also assumed 

that dyads were independent of each other (see section 2.3.2 as to why this is often not 

the case) (Holland & Leinhardt 1981). Various modifications were proposed to reduce 

dimensionality and later the p2 model would broadly replace the p1 model altogether 

(Robins et al. 2007). In the p2 model, the presence or absence of ties would be regressed 

on the actor and dyad-based explanatory variables with the addition of terms to partition 

the error in the model on the basis of both the “sender” and “receiver” of the tie (making 

the error distribution conditionally independent, see section 2.3.2); thus the p2 model is a 

random effects model (Snijders 2011).  
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An important class of multivariate statistical method developed in the social sciences at 

this time was the MRQAP (Multiple Regression Quadratic Assignment Procedure) (see 

Krackhardt 1988). The MRQAP used OLS estimation to fit a multiple linear regression 

(MLR) as previously described (see section 2.3.1). The significance testing in the model 

was achieved through the use of a permutation procedure to produce reference 

distributions of the model statistics; specifically a node-label randomisation called the 

quadratic assignment procedure (QAP) (Hubert & Schultz 1976). Unlike many other 

approaches, the MRQAP was not developed with the goal of assigning effect-sizes to the 

structural causes of dependency in networks (see section 2.3.2), only the external factors 

which explain the presence and absence and/or the weight of edges. An advantage of the 

approach over the “p” models was that it allowed the analysis of almost any type of 

relational dataset: weighted, binary, directed, non-directed, and networks with loops. The 

MRQAP (and its variations) is the central network model used for many purposes in this 

thesis. 

 

Another type of network model developed around this time could also provide meaningful 

effect sizes for the structural causes of network dependency; this family of model was 

originally named the p* model (Wasserman & Pattison 1996) and later the “exponential 

random graph model” (ERGM) (see Snijders 2011). ERGMs enabled the examination of 

the underlying mechanisms of network factors and processes that generate non-random 

network structures (Anderson et al. 1999, Robins et al. 2007). ERGMs, closely related to 

logistic regression, use stochastic modelling to determine the probability that a social link 

exists among individuals based on a set of predictor variables, which initially could only 

take the form of structural measures, such as number of edges or counts of subgraphs such 

as triangles and stars (see Robins et al. 2007).  ERGMs represented the dependency 

between ties directly, instead of conditioning on latent variables. When using structural 

measures as sufficient statistics (i.e. that these measures can capture all the dependence 

in the network), ERGMs were based on conditional independence assumptions between 

the observed tie variables. A key conceptual advance underpinning ERGMs was the 

assumption that the observed network was generated by a process where existing ties 

could affect the formation of new ties - which replicates how we might expect real 

networks to form. Given this assumption, ERGMs had the ability to meaningfully test for 

the effect of structural sources of dependency on the observed network. 

 

http://beheco.oxfordjournals.org/content/early/2013/06/13/beheco.art047.full#ref-2
http://beheco.oxfordjournals.org/content/early/2013/06/13/beheco.art047.full#ref-105
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Moving away from multivariate statistical models, the return of physicists to the study of 

networks in the latter portion of the twentieth century transformed the types of question 

asked of networks. Physicists were suited to describe the overall shape and statistical 

properties of empirical networks- i.e. those based on measures of real-world phenomena 

(Newman 2008). Drawing upon a background in statistical mechanics, they could provide 

analytical results for those networks which were large enough that both the number of 

nodes and edges could be assumed infinite and the ratio between them as constant (Hill 

1963; Albert & Barabási 2002; Castellano et al. 2009). As pointed out in Newman (2008), 

the addition of physicists to the study of networks provided new theories, analytical 

techniques, models and algorithms; all but the most-recent of these are summarised in 

Newman (2003).  

 

Network theory has seen appreciable uptake by behavioural biologists to study the 

behaviour of group living animals over the last two decades (see Croft et al. 2008; Krause 

et al. 2014). Networks provided a means to represent an animal’s social environment and 

further determine how that environment influences individual behaviour. One main 

difference between studies of human and animal social systems is in the sampling and 

construction of the social network. Humans can self-identify their social bonds, whereas 

animal networks have to be inferred from observing social interactions (behaviours such 

as allogrooming) or patterns of association. Constructing animal social networks was, and 

still is challenging, requiring rich relational datasets often hard to obtain from wild 

animals (Whitehead & Dufault 1999; Croft et al. 2008). One particular framework 

developed to infer social relationships from repeated associations was the “Gambit of the 

Group” (GoG) (see Franks et al. 2010). The idea behind GoG is to infer social ties 

between individuals through seeing how often they occurred in the same social group 

over repeated observations. In early studies, observations had to be carried out directly 

by human observers, which introduced a number of biases; animals more accustomed to 

the presence of human observers may be sighted more often and unsighted animals may 

still be in a group together (Croft et al. 2008). Indices primarily developed for use in 

ecology were employed to determine the strength of association (edges) between two 

individuals, such as the half-weight index (Cairns & Schwager 1987), which provided an 

estimate to the likelihood that two individuals would be seen together compared with the 

likelihood of seeing any of the two individuals upon encountering a group.  
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The most recent development in network science involves the study of the temporal 

dynamics of networks (see Hanneke et al. 2010; Blonder et al. 2012; Holme & Saramäki 

2012). Temporal networks consider the order in which edges are formed, maintained and 

dissolved over time within a potentially changing set of actors. Temporal networks have 

particular importance when the ties between actors are transient or when the network’s 

structure evolves and changes substantially with time. Static networks do not consider the 

order of ties between actors, just a representation of those that have occurred, and perhaps 

the strength of their occurrence over a given time period. If these ties are not persistent, 

then the order in which they occur could affect spreading and navigation processes on the 

network (e.g. Gauvin et al. 2013).  

 

Recent advances in radio-frequency identification technology have allowed interactions  

in animal systems to be monitored in real-time; this has both been referred to as the 

remote-sensing and the reality mining of social interactions (see Krause et al. 2013). For 

example, insects can be tracked travelling between nest-colonies using passive radio 

frequency identification tags (RFID) (e.g. Sumner et al. 2007), active RFID tags such as 

radio-proximity loggers can be used to identify when larger animals are within a given 

proximity of each other (e.g. Hamede et al. 2009; Drewe et al. 2013; Weber et al. 2013), 

and the reduction in size of GPS tracking systems, although not a radio-based, can be 

used to provide the positions of wide-ranging animals in space (e.g. Wolf et al. 2007; 

Zbinden et al. 2011). These technologies have provided the high resolution data required 

to study the temporal aspects of animal networks in fine detail. They have also allowed 

the contacts between animals to be monitored over longer continuous timeframes than 

previously possible (Ryder et al. 2012). A number of modelling approaches have been 

developed for temporal networks (e.g. Hanneke et al. 2010). Relational events models are 

one recently developed means to model the sequence of events that unfold in a network, 

with the particular advantage of taking into account different ways in which data can be 

collected (e.g. Patison et al. 2015). Temporal networks are still a relatively young and 

developing branch of network science; for now, many metrics are generalisations and 

models extensions of existing techniques for static networks (see Holme & Saramäki 

(2012) for a comprehensive review). 
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2.5 Lost in Translation 

 

The multidisciplinary background of network science has fostered a range of different 

approaches to describe and analyse networks (see reviews by Wasserman & Faust 1994; 

Newman 2003; Snijders 2011; Croft et al. 2011). Given the history of the network science, 

many of the techniques and metrics used in the study of animal networks have been 

borrowed from other disciplines with a longer pedigree in network analysis. As 

highlighted in Croft et al. (2008) and James et al (2009), care has to be taken when 

techniques, measures and terminology are used outside of the context for which they were 

developed. This is especially true in the study of animal networks, which sit apart from 

human and physical networks on account that they are often unevenly sampled and rife 

with uncertainty (Lusseau et al. 2008). In a thesis where statistical approaches developed 

in the social sciences are taken and applied them to animal networks, it is worth recapping 

some of the issues which have been highlighted by others in the field. 

 

2.5.1 Borrowed Metrics 

 

There are a wide variety of metrics which exist to measure certain network features, some 

of which might be very sensitive to the way in which animal network data are sampled. 

Animal network data can often be biased in certain ways which should be considered 

when choosing metrics. For a review of these issues and their effects on the choice of 

network metrics, the reader is directed towards James et al. (2009) and more recently 

Farine and Whitehead (2015); in this section, a couple of relevant issues from that article 

are highlighted.  

 

The first issue concerns how sampling protocol can influence network metrics. Consider 

a typical animal network, constructed via gambit of the group (GoG). It has been 

recognised that this method of generating networks results in a higher incidence of 

transitive closure (James et al. 2009); this means the networks produced are more 

clustered. Due to this, when determining whether there is significant clustering in this 

network, the manner in which it was constructed needs to be recognised as contributing 

some clustering regardless of the “true” social structure; this can be achieved through 

comparing the observed network to null networks constructed under the same protocol as 

the observed from a permuted null dataset (Bejder et al. 1998; Krause et al. 2011). Note 

that null models such as the QAP from the social sciences do not control for sampling 
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biases in such a manner, and treat the structure of edges in the network as given (see Croft 

et al. 2008). 

 

 

The second issue concerns how certain network metrics have varying sensitivity to 

missing or unreliable data. For illustrative purposes, we will consider the sensitivity of 

two node-based measures: degree and betweenness (see section 2.2), to misplaced or 

misallocated edges. If a hypothetical network is partitioned into two communities, where 

one individual acts as a bridge between the two; this individual will have a very high 

betweenness, featuring in any short path between two individuals of different 

communities. Other individuals in this particular individual’s immediate network 

neighbourhood (which may also be referred to as the “first-order zone” - see Wasserman 

& Faust 1994) may also have high betweenness as many paths will pass through them on 

their way to traversing this bottleneck in the network. However, now consider that an 

interaction has been missed which also linked these two communities in the network. In 

terms of degree, this is not disastrous, as two individuals in the network have one fewer 

edges attached to them then they should. However, a new route between the two network 

communities could have near global consequences to the betweenness values attributed 

to individuals (James et al. 2009; Farine & Whitehead 2015). Perhaps this is a worst case 

scenario, but it does highlight that we should consider the protocol used to determine the 

presence of edges when borrowing metrics from the social sciences, where “betweenness” 

originated (Freeman 1977). Degree is by no means safe either if there are issues pertaining 

to how nodes are defined. Falsely lumping actors in a network could artificially inflate 

their degree to an extent where they perhaps become a hub (see chapter 4); hub individuals 

are very important in network processes such as the spreading of information or disease 

(Pastor-Satorras & Vespignani 2001; Pastor-Satorras & Vespignani 2002). 

 

2.5.2 Borrowed Models 

 

Models developed in the social sciences present themselves as powerful predictive tools 

for the study of networks. However, just like the above-stated network metrics, many of 

these models were developed in the social sciences for evenly-sampled, reliable datasets. 

Rendell and Gero (2014) and Krause et al. (2014) both highlight the potential dangers in 

taking models developed for human social networks and applying them to animal 

networks which may be unevenly sampled and rife with uncertainty (Lusseau et al. 2008). 
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If we take a p* or ERGM as an example (Wasserman & Pattison 1996) (note that these 

models are not used in the substantive chapters of this thesis), we must first appreciate 

that these models are essentially just an extension of a logistic regression (where the 

presence of a network tie is the “event”) conditioned on some structural measures, such 

as subgraph counts (triangles, stars etc.). Sometimes, with animal data, the presence of 

edges are known with confidence, but questions may be raised as to whether the absences 

of edges result from the sampling protocol or the true biology of the system. In such a 

situation the researcher should consider the appropriateness of using a model based on a 

response variable of 1s and 0s when the 0s are not trustworthy. Logistic regression 

implicitly assumes that both sensitivity and specificity of the response variable are 100% 

(Copeland et al. 1977; Quade et al. 1980; Magder & Hughes 1997). By sensitivity, we 

mean that we can detect the presence of edges with perfect resolution- i.e. that there are 

no false negatives. By specificity, we mean that there are no false positives i.e. 

misallocated or falsely allocated edges. When either sensitivity or specificity is less than 

100%, estimated logistic regression coefficients tend to be too close to zero; this makes 

it harder to detect relationships between explanatory and response variables. At the same 

time, the precision of the estimated coefficients is overstated, resulting in confidence 

intervals that tend to be too small (Magder & Hughes 1997).  

 

For another example, if we take a MRQAP (Krackhardt 1988) (these models feature 

heavily substantive chapters of this thesis), the node-label permutation procedure (the 

QAP) assumes that the structure of edges in the networks is fixed. Croft et al. (2008) 

highlight that the QAP randomisation procedure, which is focussed on permuting the 

aspects of the network, can have limitations when the network is derived structure 

generated from sampling associations between animals. They highlight that null models 

centred on permuting the raw-data can better account for sampling biases and point to the 

works of Whitehead & Dufault (1999) and Whitehead et al. (2005). However, these raw-

data or “data-stream” (specifically used to refer to GoG raw-data) (see Bejder et al. 1998) 

based permutation procedures are not used in an MRQAP model and, as such, we should 

be wary about applying these models to animal networks based on measures of 

associations as they currently stand.  In this thesis, the edges in the network are not 

derived from group associations, but instead are measured directly (in this sense they are 

raw-data); however, this does not mean that the data are free from sampling issues. In 

chapter 4, the use of a MRQAP would require what is essentially missing data to be 



45 
 

assumed as indicative of an absence of an edge, whereas in chapter 5, the null model 

behind a QAP would allow physically impossible null networks to occur, reducing the 

relevance of the reference distribution for significance testing. 

 

2.5.3 Summary 

 

The concept of known-knowns (what we know that we know about a network), known-

unknowns (what we know that we don’t know about a network) and unknown-unknowns 

(things that exist about the network which we haven’t thought about or yet been able to 

characterise) should be at the forefront of anyone analysing animal networks. These 

concepts have been popularised in statistical thinking by Silver (2013). When considering 

metrics and analyses of animal networks, choices should be geared to be as reliant upon 

known-knowns as possible, whilst being as robust to known-unknowns as possible. There 

is perhaps nothing that can be done with regards to unknown-unknowns, only to accept 

that overtime some of these will become known unknowns and as such we should be 

adaptable in the techniques we choose and prepared to re-evaluate what we know and the 

techniques we use as this information comes available.  
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3. Typical approaches to analyse a network 

 

3.1 Preface 

 

This chapter introduces some of the typical questions asked of networks across different 

disciplines and some of the broad methodologies used to answer them. The unique 

challenges faced in the study of animal networks are highlighted, along with some of the 

current approaches used to overcome them. The beginning of this chapter is roughly 

partitioned on the basis of discipline, although it should be noted that many network 

studies are interdisciplinary in nature. The weighting assigned to each discipline in this 

section increases as we go on; this is not a reflection of the relevant contributions of each 

discipline. The weighting instead reflects the goals of this thesis, to incorporate network 

modelling approaches from the social sciences into the study of animal networks. At the 

end of this chapter, we introduce the three approaches we will use in this thesis to facilitate 

the multivariate statistical analysis of animal network data and some of the relevant 

computational tools used in these approaches. 

 

3.2 Network studies in Physics 

 

The network studies conducted by physicists are often based on empirical studies of large 

real-world networks, such as the internet. The large size of these networks allows the use 

of approximations developed in the field of statistical mechanics (Hill 1963; Croft et al. 

2008; Newman 2008). In contrast to animal networks, the networks studied by physicists 

often contain little uncertainty; their edges being inferred from electronic (e.g. Faloutsos 

et al. 1999), physical (e.g. Crucitti et al. 2004) or chemical signatures (e.g. Uetz et al. 

2000). Physicists are often interested in the broader scale properties of a network, its 

shape and its statistical properties (Newman 2008). The focus on network properties and 

behaviour differs from the interests of social scientists, whom may be concerned with 

how the position of individuals in a network might affect their behaviour and the factors 

which determine the structure of social networks. A review into the interests and 

developments in studying networks by physicists is provided in Newman (2008). 

 

Physicists, computer scientists and mathematicians all have their own ways of 

constructing models which can help us to understand the important structural properties 

of an empirical network.  These models can help us understand the interplay between a 
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network’s structure and the processes that take place on it, such as the flow of traffic in a 

transport system (e.g. Holden & Risebro 1995) or the spreading of a computer virus (e.g. 

Pastor-Satorras & Vespignani 2001; Newman et al. 2002). The majority of network 

models constructed and studied by physicists are often directly practical. If a network 

model is to be used over the observed network, the model will be based on some important 

features or dynamics observed in the real-world. Newman (2008) summarises the 

principal approach as being to list possible mechanisms that might be responsible for 

determining the shape or statistical property of a network and then make a model 

incorporating some or all of those mechanisms. The networks produced by the model can 

be examined and used for further modelling, such as how different immunisation 

strategies might affect the spreading of disease (Pastor-Satorras & Vespignani 2002) or 

how robust the flow around a transport network is to road closures (Jenelius et al. 2006).  

 

3.3 Network studies in Social Sciences 

 

Many social networks exhibit neither perfectly random nor perfectly regular structure, 

which can make them difficult to model algebraically, and they are often too small for 

some of the approximations that physicists use (Newman 2008). In the physical sciences, 

a key research goal has been describing the global characteristics of large empirical 

networks. In contrast, social scientists have tended to focus on the variation in structure 

across a network, using these variations to explain differences in individual characteristics 

and the outcome of individual actions. Another common goal of network studies in the 

social sciences is to explain the formation of ties between individuals in terms of a number 

of explanatory factors (Borgatti et al. 2009). These factors may be structural in nature 

(e.g. degree assortativity), or take the form of non-network derived relational data, such 

as the differences in individual’s salaries. A number of statistical models have been 

developed (see Snijders 2011) to facilitate the multivariate analysis of social networks.  

In this section, we will particularly focus on how one model, the multiple regression 

quadratic assignment procedure (MRQAP) (Krackhardt 1988) and its extensions (Dekker 

et al. 2007; Butts 2014) are used to investigate the structure of social networks. 

 

 

Let’s now consider an example network, Y, to provide an example of a network with 

features typical to those studied in the social sciences. Y is a static network consisting of 

fifty nodes representing individual academics; the edges between nodes have been 
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inferred through summing the email messages sent to and from colleagues in an academic 

institution. For the sake of argument, let’s pretend we know the explanatory factors which 

determine the formation of ties in this network: ties are more likely between: colleagues 

in the same department X1; colleagues with a similar Erdȍs number X2 (the distance in a 

citation network to Paul Erdȍs, a network scientist and mathematician with the most 

publications of any mathematician in history); colleagues with similar salaries X3, and 

ties are likely to form closed triangles X4. We can summarise this by saying that Y~f(β1X1, 

β2X2, β3X3, β4X4) +Ɛ, in other words that Y is a function f of the four explanatory variables- 

f is a logistic function in this case. The betas β denotes the contribution of each 

explanatory variable to the outcome. X4 is the only factor in this hypothetical example that 

is purely generated through network structure. We will add that individuals can belong to 

more than one department with regards to X1 and that there is some substantial collinearity 

between salary X3 and Erdȍs number (Grossman 2002) X2.  Recall that collinearity is 

where the two explanatory variables have strong covariance. Anderson & Robinson 

(2001) and Dekker, Krackhardt, and Snijders (2007) showed that collinearity can also 

cause problems when permutation procedures are used to test for the significance of 

explanatory variables.  

 

There are a number of models a social scientist could use to determine the relationship 

between the response variable Y and the four explanatory variables. One choice which 

may be considered is the MRQAP (Krackhardt 1988). The MRQAP consists of two parts; 

the first is a multiple linear regression, fitted using typical procedures such as ordinary 

least squares (OLS) estimation and partial regression coefficients. The second part is a 

Quadratic Assignment Procedure (QAP) (node-label) permutation, used to evaluate the 

significance of the coefficients (denoted as β1 through to β4) and the fit of the model as a 

whole. The QAP leaves the structure of edges in-tact; this is attractive as it preserves the 

row-column interdependence in each permuted dataset used to evaluate the observed data. 

The original MRQAP procedure was developed by Krackhardt (1988) under the 

restrictive assumption of independence between all variables (including between the 

independent variables and the response variable), but it was still valuable in the sense that 

it provided a way of testing significance which didn’t require distributional assumptions 

such as iid.  

 

An advantage of this approach is it is based on a linear regression (but has also been 

extended to a logistic regression in Butts (2014)) so the researcher could use the number 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798974/#CR2
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798974/#CR2
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of emails to create a weighted network Y, retaining as much information as possible about 

the system.  In the MRQAP, the response and explanatory variables are stored as square 

matrices. Categorical variables such as “belonging to the same department” X1 can be 

scored as a 1 or 0 to denote membership of the same or different departments respectively. 

If the researcher believed that the tendency to send and receive emails was different 

between departments, then this could only be modelled using a set of dummy variables. 

Dummy variables are categorical variables which can shift the intercept of the model with 

the Y-axis, in this case, depending on the department. 

 

A minor limitation of the MRQAP might be that there are no “random-effect” capabilities 

which could otherwise be used to attach terms to partition and represent the error in the 

model. In our email example, we might want to use a random effect to describe the 

different error around a model fit in different departments. This would be informative if 

we expected that one department had a large variation in the emails people sent and 

received compared to another, but that each department’s pattern of emails was driven by 

the same combination of factors. The lack of random-effects in a MRQAP is not limiting 

for significance testing as no assumptions are required about the error distribution, as the 

QAP generates a reference distribution to test the significance of the fit of the betas and 

the model as a whole. One of the uses for random effects in “conventional” mixed effects 

models (which typically use distributional assumptions to infer significance) is that the 

error in the model can be made conditionally independent and normally distributed 

through the use of these variables (see Zuur et al. 2009). 

 

A more pronounced limitation of the MRQAP is that the only way to incorporate network-

based dependencies such as X4, reciprocity, would be to have them represented as 

covariates. A dichotomous version of matrix Y could be reflected along the lead diagonal 

to represent X4. However, the dynamics of social networks are complicated because 

structural network dependencies such as reciprocity are endogenous feedback effects (i.e. 

as the network forms, the presence of edges early in that process affects where the latter 

edges are placed) - so a model such as an MRQAP, which only considers the end-product 

of this process could only ever be descriptive of these traits (see Snijders 2011). In 

contrast, the membership of an individual to an academic department will remain largely 

constant throughout the formation of the network. 
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When a QAP is used to evaluate the contribution of each explanatory factor in the model, 

the null hypothesis varies depending on whether the X variables or the Y variable is 

permuted. When a given X is permuted, the null hypothesis is that this factor has no 

relationship with Y, but the other variables (we will refer to these as the “controlled 

variables” in the regression) may still have a relationship with Y. X-permutations destroy 

the relationship between the X variable being permuted and the controlled variables in the 

regression; this is justified when there is no relationship between explanatory variables, 

but not when there is collinearity (see section 2.3.1). Collinearity means that an X-

permutation would violate what is known as the “ancillarity principle” (Godambe 1982), 

which states that any dependence between independent variables should be kept intact. 

The violation of this principle can lead to incorrect type I error rates (Welch, 1990; Ter 

Braak, 1992; Anderson & Legendre, 1999). The null model when permuting Y is subtly 

different, that Y is not related to the X variable at hand and not related to the controlled 

variables in the regression. It hence is a test for the hypothesis that the β being tested is 0 

as is the coefficient of the controlled factors in the regression (Dekker et al. 2007). 

 

Different researchers have taken different stances on which variable should be permuted 

by the QAP. Manly (1997) recommended that the response variable should be 

permutated, but others have argued against this (Kennedy and Cade 1996), especially 

when non-pivotal statistics are used (a pivotal statistic is a function of observations and 

random effects and has a distribution not influenced by any unknown “nuisance” 

parameters). However, partial regression coefficients (βs) and t-statistics often used to 

access significance are often pivotal under multivariate normal distributions. I.e. the 

probability distribution of the statistic under the null hypothesis does not depend on 

unknown or nuisance parameters. The t-statistic may become non-pivotal when Y shows 

strong row-column autocorrelation (see section 2.3.2) or if it depends on the “latent” 

coefficient describing the collinearity between two X variables i.e. X2 and X 3, for instance.  

 

Due to the fact that there definitely is collinearity in our theoretical example, we would 

opt for a residual-based QAP permutation known as a “double semi partialling” QAP 

(QAP-DSP) (see Dekker et al. 2007 for a more detailed explanation). The QAP-DSP and 

another similar approach, Freedman-Lane Semi-Partialling (FLSP) (Freedman & Lane 

1983) are both residual permutation procedures. In this thesis, we use the QAP-DSP 

https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Parameter
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(chapter 5) so we will use this approach as our main example. In essence, the QAP-DSP 

first converts the X variable being tested into its residuals through modelling X against 

the controlled variables (the other X variables combined); this partials out the effect of 

the control variables on X and thus conditions X to be independent of the control variables. 

The X-residuals are then permuted and then regressed against the Y and the controlled 

variables. As such the controlled variables enter the regression twice, once against the X-

variable being tested, and again when the residuals of X are regressed against Y, hence 

the term “double.” The QAP-DSP approach thus minimizes the correlation between the 

focal variable and the control variables under permutation. The QAP-DSP therefore does 

not violate the ancillarity principle through conditioning on the nuisance statistics- any 

correlation between any given X and the controlled variables. The DSP and FLSP 

approaches are the most resilient of the QAP type approaches, identified to be robust to 

row- column autocorrelation, and all but extreme levels of spuriousness (the effect of a 

confounding factor) and skewness in the data (Dekker et al. 2007).   

 

To truly gauge the effect that reciprocity X4 has on the system (given one important 

assumption), a different approach to the MRQAP is required. Exponential random graph 

models (ERGMs) or p* models (Holland & Leinhardt, 1981; Frank & Strauss, 

1986; Wasserman & Pattison, 1996; Snijders et al. 2006) are often used to model 

networks in terms of their structural dependencies (see section 2.3.2), and on this basis 

warrant a mention in this chapter even if not explicitly used in this thesis. In theory, 

ERGMs can provide predictive analysis of network effects such as reciprocity X4 on a 

single static network Y. ERGMs are a family of models for dichotomous or other discrete 

network data with a greater focus on modelling the specific network-related dependence 

structure. The logic behind an ERGM is that the observed network is the outcome of a 

stochastic process, where a network is grown edge-by-edge through a combination of 

chance and perhaps other network effects and node attributes. In other words, the network 

is treated as a self-organising system of relational ties. The observed network is thus 

regarded as one realisation from a larger set of possible networks with similar important 

characteristics; this is a fundamentally different standpoint to an MRQAP which regards 

the observed network as a fixed entity. To begin with, we don’t know what the exact 

process which generated Y was, so we seek to form a model based on a plausible and 

principled hypothesis as to what this could be (see Robins et al. 2007 for an introduction).  

 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798974/#CR12
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798974/#CR8
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798974/#CR8
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798974/#CR42
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798974/#CR38
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We will follow a simple example where we are just interested in the structural effect of 

reciprocation X4 on the observed network Y. To help determine whether it is worth 

including X4 in the ERGM model, we could take a turn back to the MRQAP. Given our 

example Y~f(β1X1, β2X2, β3X3, β4X4) +Ɛ, the MRQAP may have identified that 

reciprocated ties in the network were associated with edges, alternatively, we could 

compare the observed amount of reciprocated ties with a suite of random networks to 

show that the amount observed rarely happens by chance. If so, we can conclude that the 

structural characteristic of reciprocated ties is the outcome of a social process and not 

chance. Then, as a starting point, we may posit a stochastic network model with two 

parameters, one that reflects the propensity for ties to occur at random and one that 

reflects our suspicions that there is a propensity for reciprocation to occur. Further 

constraints can be imposed on the model such as keeping the same set of nodes and the 

same number of edges. Adding reciprocation into the model reflects an expectation about 

what sort of networks are more likely to occur. The range of possible networks, and their 

probability of occurrence under the model, is represented by a probability distribution on 

the set of all possible graphs that satisfies the constraints of the model i.e. the number of 

nodes and edges. In this distribution of graphs, those with a high amount of reciprocation 

will have higher probabilities than those with little reciprocation. The precise probabilities 

associated with these graphs, of which the observed graph is a part, depend on the value 

of the reciprocity parameter. At this point, we don’t know what that value of this 

parameter is. Akin to logistic regression, a form of likelihood estimation is used to assign 

values to parameters so that the most probable amount of reciprocation in the ensemble 

of networks generated matches that which is seen in the observed network. Monte Carlo 

maximum likelihood techniques are often used for estimation (Snijders 2002). The Monte 

Carlo approach simulates a distribution of random graphs from a starting set of parameter 

values, and subsequently refines the parameter values through repeated comparison of the 

distribution of graphs produced against the observed graph, with this process repeated 

until the parameter estimates become stable (known as convergence). We can then 

explore the range of network outcomes predicted by the model and make inferences about 

model parameters. We can infer whether any model parameter is significantly different 

from zero through examining whether the corresponding configuration is present in the 

observed graph to a greater or lesser extent than expected by chance, given other 

parameter values. In the example, a model that is a good fit to the data in terms of 

reciprocation would be expected to have a positive reciprocity parameter. A well-fitted 
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ERGM will predict networks structurally similar to the observed network using few 

parameters. 

 

The MRQAP and ERGM each has its strengths and weakness, both models were 

developed with high quality data in mind. Although both of these models are multivariate 

and have been described as predictive, it is worth noting that cause and correlation can be 

very hard to determine without experimental manipulation of the system (as highlighted 

in: Croft et al. 2008; Pinter-Wollman et al. 2014; Farine and Whitehead 2015). In our 

example, Y could very well be the factor that causes X2 and X3. Individuals that send more 

emails may very well end up in higher paid jobs and engage in more collaborations than 

those that shun their inbox. 

  

3.4 Network studies in in Behavioural Biology 

 

Behavioural biologists may be motivated to study many of the same phenomena in animal 

social networks as social scientists study in human social networks. However, 

the study of animal social networks requires fundamentally different methodologies than 

the study of human social networks. Animal networks, like human social networks, are 

often small and neither completely random nor completely regular. An initial interest of 

a behavioural biologist might be to investigate how the societies of group- living animals 

are organised. However, there are challenges unique to studying animals as opposed to 

humans or physical systems- many of which are covered in Croft et al. (2008). The first 

hurdle that may present itself is how individuals are identified, animals do not come with 

an Internet Protocol (IP) address like most computers, nor do they have faces which we 

have evolved to recognise. As such a mechanism is needed to identify individuals, or even 

groups of individuals. In many studies individuals have been identified through their 

markings. To use an example from Croft et al. (2008), it will be easier for species such as 

giraffes than it will be for ants, however, ants can be painted with nail varnish to make 

unique markings and contained in a laboratory setting- giraffes cannot. There is always 

an underlying risk that individuals may be misidentified in the wild when marking-based 

identification is used. An alternative is using tags to identify individuals; however, even 

this type of approach can lead to missing or misplaced data. Tags are designed to be 

unobtrusive to the animal, but practical to the researcher, this trade off means that 

sometimes an individual may be orientated so that its tag cannot be seen, the tag may get 

dirty, or fall off entirely (as experienced in chapter 6). 
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Once individuals have been identified, the researcher may then choose the manner in 

which he or she wants to construct the social network of the group. Defining the group is 

often more complex for animals than humans, as humans social interactions may be 

partitioned into easily identifiable groupings, such as school classes, companies or other 

institutions (Croft et al. 2008). In cases where these groupings may be questionable, 

techniques such as snowball sampling can be used (see Wasserman & Faust 1994). In 

human systems this type of sampling might be easier to achieve than with animal 

networks, where data-collection can be laborious and sampling limited by resources.  

 

Unlike humans, animals cannot be surveyed for their social ties directly, so the social 

network has to be inferred through studying their behaviour as a proxy. This can range 

from directly observing direct interactions such as trophylaxis or allogrooming (e.g. 

Carter & Wilkinson 2013), to inferring social ties through associations (such as proximity 

(e.g.  Zhang & Horvath 2005; Handcock et al. 2009; Haddadi et al. 2011), shared use of 

space (e.g. Bailey et al. 2001; Dyo et al. 2010), repeated co-occurrence in social groups 

(Franks et al. 2010). Associations carry the risk that there is indeed no social relationship 

and that animals are linked only by routine or resource aggregation. However, as Rendell 

and Gero (2013) state “It is difficult to envisage a situation where social structure would 

ever exist independently of spatial ecology—the former evolves within the constraints of 

the latter”. Many primate studies have employed the first approach (O’Brien 1993), 

constructing social networks from ethograms outlining the behaviour of individuals with 

a particular interest in the social interactions (such as allogrooming); this requires a high 

amount of human observation and a single observer is limited by how many individuals 

can be observed concurrently. Social networks constructed through observations of social 

interactions are often small in size, in the tens of individuals. Recall that inferring ties 

through association via repeated co-occurrence in the same social groups is known as 

using “the Gambit of the group” (GoG) (Franks et al. 2010); this approach has been used 

on lots of aquatic organisms  (Krause et al. 2014) such as guppies Poecilia reticulata 

(Croft et al. 2004), bottlenose dolphins Tursiops truncates (Lusseau 2003), and sperm 

whales Physeter macrocephalus (Lusseau et al. 2008). The addition of radio-proximity 

technology such as RFID tags and radio proximity collars and tags to studies of animal 

behaviour has allowed the continual monitoring of individuals for instances of close 

proximity. A social network can be constructed under the assumption that individuals 

who spend a lot of time within a pre-defined distance of each other are social partners 
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(e.g. Hirsch et al. 2013). Further, these technologies provide interaction data in 

continuous time, and have been used in the study of temporal animal contact networks 

and disease transmission dynamics in general (e.g. Böhm et al. 2008; Böhm et al. 

2009;Hamede et al. 2009; Marsh et al. 2011; Drewe et al. 2013; Hirsch et al. 2013b).  

 

In animal network studies, we are often left with data which has some undesirable 

properties. Early studies had the choice either had very small sample sizes as the result of 

having to observe animals directly for interactions, or used GoG to construct a network 

from samples taken at intervals (e.g. Croft et al. 2004; Gero et al. 2008; Godfrey et al. 

2009; Best et al. 2013; Aplin et al. 2013; Farine & Milburn 2013). It is understandable 

therefore, that there has been a reluctance to use many of the approaches developed in 

social sciences for evenly-sampled, rich datasets where the social network has been 

constructed through the amalgamation of self-identified social ties (Rendell & Gero 2013; 

Krause et al. 2014). To demonstrate some methods used to analyse which of a set of 

variables influence the structure of an animal network, consider a new example network 

Y, the social network of fifty animals created using the GoG. For simplicity, we assume 

that the animal society has fission-fusion dynamics, and as such each set of observations 

(separated by fission events) of group co-occurrence can be counted as independent of 

others (see Croft et al. 2008 for more details). We have reason to believe the presence of 

ties in Y is determined by kinship X1, gender X2, and dominance X3 and that there are five 

predominant kinship groups or families in the network. The explanatory variables X1 and 

X2 have been inferred through taking saliva samples upon fixing standard identification 

tags to the individuals. The saliva samples have provided genetic information used to 

identify gender and also determine relatedness between individuals and infer kinship 

grouping. A proxy for dominance has been obtained through observing feeding order on 

a set of independent occasions X3. 

 

A common methodology to statistically analyse an animal social network is “Null Model 

Based Hypothesis Testing” (NMBHT) (outlined in Croft et al. 2011), which could be 

described as a design-based approach. A design-based approach is purely descriptive and 

inference is restricted to the finite population being studied (see Sterba 2009). In the 

context of animal networks, NMBHT begins with choosing a statistic that best represents 

the network-feature of interest we want to test. If we return to our example, we may want 

to test whether there are stronger ties between closely related animals (X1). The test 

statistic chosen may therefore represent the relationship between edge-strength and 
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relatedness in the network. The statistic may also be chosen to depend on the most reliable 

aspects of the observed network whilst being robust to suspected sources of uncertainty 

and bias (Lusseau et al. 2008). For example, if a network was constructed from video 

footage of a laboratory population, the absence of ties between individuals may be as 

trustworthy as the presence of ties. In this instance, we may want to take a test statistic 

that was informed by both the presence and absence of edges. In contrast, if the network 

was constructed from aerial photographs using GoG, unreported edges may not 

necessarily mean that social ties are absent. Associations could have occurred in-between 

sampling periods or outside of the reach of the sampling protocol (such as under canopy 

or cloud cover). In which case, a test statistic might be chosen which bears little weighting 

on absent reports. Incidentally, missed associations are a reason why Franks et al. (2010) 

advise keeping GoG-derived networks weighted where possible.  

 

The statistic chosen in our example is the sum of the edge-weights in Y multiplied by their 

corresponding kinship values X1 (where higher values indicate closer kin), which we will 

call “wk”. We hypothesise that the value of wk is higher than expected by chance, 

reflecting a tendency for strong ties to occur between closely related individuals. To 

assess whether wk is statistically significant, the observed value of wk can be compared 

to an ensemble of wks generated by a randomisation procedure known as a null model - 

a general outline to randomisation-based significance testing is provided in Manly (1997). 

The null model is a procedure to generate networks which could occur as the outcome of 

a given null hypothesis; typically that the observed statistic is the result of chance. In our 

example, each null network is then measured against the kinship data X1 to produce a null 

version of wk. The process is repeated a large number of times (typically between one 

thousand and ten thousand times) to produce a probability distribution of wk under the 

null hypothesis; this distribution is also known as a reference distribution. The p-value of 

the observed wk can be deduced by measuring the proportion of null wk values with a 

value equal to or greater than the observed value of wk. The observed value of wk is 

included in the null distribution, as it must be a viable product of the null hypothesis; this 

also ensures that the p-value from the permutation test can never be 0 in line with the 

recommendations of Smyth and Phipson (2011). In our example, if the observed wk was 

in the 99th percentile of the reference distribution, we would determine that the observed 

value of wk was significantly high with a p-value of 0.01. 
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In NMBHT, there will be choices made by the researcher as to which aspects of the 

observed network to constrain (e.g. the number of nodes) and which to randomise (e.g. 

the allocation of edges) in the null model (Croft et al. 2008). The design of the null model 

employed is very important (see Croft et al. 2011); a null model which is too generic, 

such as an unconstrained edge randomisation (see section 2.4), may prove to be a “straw-

man” null model i.e. a weak representation of the null hypothesis (Croft et al. 2011; 

Pinter-Wollman et al. 2014). A “straw-man” null model might, for example, allow edges 

to exist in null networks which could never occur in nature due to physical constraints, or 

fail to capture some fundamental biological aspects of the system. A reference distribution 

which contains measures from impossible network combinations means that the p-value 

loses its interpretation (see Croft et al. 2008; Croft et al. 2011). Controlling for the 

sampling procedure used to produce the observed network is perhaps one of the most 

important constraints when testing animal networks. The sampling protocol can 

drastically effect the properties of animal networks (James et al. 2009; Krause et al. 2011; 

Farine & Whitehead 2015). Controlling for the sampling protocol is usually achieved 

through constrained randomisations of the raw-data instead of the observed network 

(Croft et al. 2011). Bejder et al. (1998) showed permuting a GoG-derived animal social 

network directly can easily lead to biases and overestimates of statistical significance. 

 

 

To demonstrate how sampling protocol can be controlled for via the use of a raw-data 

permutation procedure, we return to our GoG dataset Y. The raw-data used to construct Y 

might typically look like a “stream” of point-samples over time. Each point-sample would 

contain a list of individuals partitioned into the social groups they were observed in at 

that time. The raw dataset for a particular point-sample would thus form a bipartite 

network, with individuals as one set of nodes and the groups they belonged to as another. 

There might be temporal autocorrelation in the “data-stream”, where two neighbouring 

point-samples are more likely to contain similar data. Furthermore, each point-sample 

may contain a different set of individuals, along with a different number of social groups 

of different sizes. The size and number of groups observed and the frequency with which 

different individuals were observed in these point-samples are important factors which 

can influence the structure of Y (Croft et al. 2008). A “data-stream permutation” (Farine 

& Whitehead 2015) may preserve the number and sizes of the groups as well as the set of 

individuals observed in each point-sample; randomising the allocation of individuals 

between these groups ( Bejder et al. 1998; Croft et al. 2011). From each permutated data-
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stream, an actor-by-actor matrix (the social network) would be constructed using the same 

procedure as the observed dataset. Employing the GoG assumption and using an index 

which takes into account how many times a pair of animals were observed in the same 

group relative to how much they were observed in any group (see Cairns & Schwager 

1987). 

 

A data-stream permutation null model ensures that the influence of the sampling protocol 

on the observed network is preserved in every null network and corresponding null value 

of wk (Bejder et al. 1998; Croft et al. 2011). We can expand this null model further to test 

more complex hypotheses. If we suspected that the observed wk is actually just the 

product of the tendency for ties to form between individuals in the same kinship group 

with no extra preference beyond, we may add a constraint to the null model which 

requires the kinship group structure to be represented in every null network, i.e. that 

individuals can only be swapped between groups into the positions occupied by another 

member of the same kinship group. This constraint may shift the reference distribution of 

wk towards the observed value, increasing the chance that the observed wk could occur 

under this new null hypothesis. Using NMBHT to control for one factor on top of more 

fundamental constraints (like the sampling protocol) is possible. However, NMBHT 

becomes increasingly computationally complex to perform as the number of factors we 

wish to control for gets large, resulting in its limited multivariate capacity (similar to 

conditionally uniform graphs- see section 2.4). 

 

Thus far, we have considered an example where the network has been constructed from 

association data. Animal networks may also be constructed from interactions. Interactions 

are a strong form of evidence for a relationship given that they require a choice to be 

made by the animal (Croft et al. 2008). In the case where Y is an undirected network 

created through observations of affiliative interactions between individuals, the raw-data 

and observed network may be the same i.e. an edge with a weight of 5 would represent 5 

observed social interactions. In which case, a simple and commonly used null model in 

human and animal network studies is a node-label permutation (a QAP). If a QAP is used 

to examine the significance of wk; this type of test is a single variable Mantel test (1967). 

The test statistic wk is a z-score and the two matrices Y and X1 are distance matrices - each 

is symmetric about the lead diagonal. Mantel tests can also be stratified so that nodes may 

only be permuted between individuals in the same block (e.g. family group); this could 

be used to investigate whether the observed relationship between strength of tie and 
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kinship does not extend beyond kinship group. A Mantel test can also use a correlation 

coefficient as a test statistic, when this statistic is a Pearson’s product correlation 

coefficient the Mantel test becomes almost identical to a MRQAP with one explanatory 

variable. However, a MRQAP multiplies the Pearson’s correlation coefficient according 

the unit values of the dependent variable to make it a regression coefficient β (so for every 

unit change of X, you see a β change in Y). 

 

One method of testing for a correlation between two variables while accounting for a third 

variable is to use a partial Mantel test (see Legendre & Legendre 2012). Partial Mantel 

tests provide a means to examine the relationship dominance X3 and Y whilst partialling 

out the effect of kinship X1 on Y. Partial Mantel tests also permute the response variable 

and can also have a block structure- which could be used such that nodes labels were only 

reassigned to individuals of the same gender, to provide a new example. A partial Mantel 

test is a step towards performing a multivariate analysis on animal data as one factor can 

be evaluated in light of another through partialling.  

 

3.5 Multivariate analyses in Behavioural Biology 

 

There are many problems associated with the analysis of animal networks, many of which 

stem from the methods used to collect animal network data. Over the last decade, the 

availability and quality of animal network data has gone through somewhat of a 

revolution through the miniaturisation of radio-tracking and global position system (GPS) 

devices to the point where they can be mounted directly upon animals. At the same time, 

advances in video analysis software has allowed us to track and monitor multiple 

individuals simultaneously (see Krause et al. 2013; Krause et al. 2014). The data 

generated through these approaches are still perhaps a way off the quality of data which 

can be obtained in the social sciences (Prange et al. 2006; Watson-Haigh et al. 2012; 

Drewe et al. 2012; Boyland et al. 2013; Rutz et al. 2015, see chapter 6). Despite this, some 

believe that we are at a point where models from the social sciences can be used on animal 

networks, and many do not. Pinter-Wollman et al. (2014) rallied for the greater adoption 

of modelling approaches from the social sciences to be used in animal networks; this call 

was criticised as being overly-enthusiastic by Krause et al. (2014) and Rendell and Gero 

(2014). The main argument rightly being that animal networks are not sampled evenly, 

are rife with uncertainty (Lusseau et al. 2008) and can have other forms of dependence 
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(see Whitehead 1995 for a good example) not accounted for in models developed for 

human social networks. 

 

Data censoring is a central problem in animal network analysis. In the social sciences, 

datasets can be complete in the sense that the relevant individuals can be accurately 

determined, the presence or absence of all possible associations sampled-evenly and 

network boundaries identified  (see Hanneman and Riddle 2005). Animal networks are 

often incomplete in the sense that individuals, or relationships between individuals may 

be missed, especially in non-laboratory populations; certain network metrics and 

structural features can be very sensitive to the inclusion of missed data (James et al. 2009; 

Farine & Whitehead 2015). In contrast to human networks, animal network data can also 

contain biases relating to the sampling regime used and the attributes of nodes, such as 

variation in identifiability (one sex of a species may be more conspicuous) or personality 

of the individuals studied (whether they are neophyllic or neophobic for instance) (Croft 

et al. 2008). Therefore, applying these models as they stand without addressing sampling 

issues common in animal data is ill-advised, yet the power of these approaches is a 

dangling carrot which has become the motivation for this thesis (and perhaps the recent 

review by Farine and Whitehead (2015)). The remainder of this chapter considers some 

rudimentary steps which can be taken to better marry these models to animal network 

data. 

 

3.5.1 Improving animal network data  

 

Whitehead and James (2015) took a MRQAP type approach to generate network indices 

from remotely sensed data. The approach was to model the duration of association 

between animals in terms of a number of confounding factors, such as having similar 

patterns of use of habitat in time and space, gregariousness and differential association 

rates among age/sex classes. The confounding factors would form a model to predict the 

association time, the residuals between the actual association times and those predicted 

by the confounding variables was taken as a more direct measure of social preference.  

 

This example shows that the MRQAP can be employed to remove many biases in network 

data. For many types of network enquiry the researcher can be more certain he or she is 

examining a social network instead of one depicting concurrent non-social activity- such 

as feeding at the same location. However, using the residuals from one MRQAP type 
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approach in another MRQAP instead of including the confounding and “useful” 

explanatory factors in one model will mask potential relationships between confounding 

and “useful” variables, which may lead to violations of the ancillarity principle (see 

section 3.4). 

 

Remote-sensing technologies present the most potential for the collection of rich animal 

association data used which can be used to construct a social network. Active radio-

frequency identification (RFID) technology allows instance where individuals are within 

a predefined distance to be captured, or can be used to provide continuous distance 

approximations. In theory, if a social group can be identified and fitted with loggers, then 

we have complete coverage for associative relationships. What we may not have is even-

sampling (see chapter 6 and Boyland et al. 2013). However, given that the readings on 

one collar or tag should be reciprocated by the other, we show that it is possible to 

characterise and correct for the biases of these individual tags and collars. Through post-

hoc corrections of logger data, we might be able to drastically improve the quality of data 

gathered through these approaches and remove most of the sampling bias. Given that 

most models employed in the social sciences implicitly assume even-sampling, removing 

the bias from animal network data would improve their suitability for these approaches.  

 

3.5.2 Modifying explanatory variables 

 

In some animal network studies, the explanatory variables may be trustworthy, but the 

response variable, i.e. the animal network, questionable. If a single or explanatory 

variable is untrustworthy, then the corresponding β estimated by the model for that 

variable may also be untrustworthy, but the model as a whole will be increasingly robust 

to the variable with more explanatory variables included, as long as they do not share 

variance with the questionable one. However, if the response variable is untrustworthy, 

then every beta assigned to every explanatory variable will also be untrustworthy. These 

systems may therefore be the most unsuitable for conventional modelling approaches 

which regress multiple explanatory variables on a given response variable, but with the 

right approach, may still provide useful biological insight.  In light of a questionable 

response variable, the flexibility afforded by NMBHT with respect to the choice of test 

statistic and null model may be the favoured option to test explanatory variables against 

an untrustworthy response variable (see Croft et al. 2011). 

.   
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However, one limitation of NMBHT is that only one variable can be analysed at a time. 

If the researcher wants to know how the network is linked to one factor, X1, after 

controlling for two or more other explanatory variables, then it gets very complex to 

develop a null model which can control for this many factors when testing X1 (see Snijders 

2011). If the X-variables are trustworthy, then a MRQAP can be used to model the X1 in 

light of the other explanatory variables. A model X1~ f(β2X2+ β3X3 )+ε can be constructed. 

The residuals between the observed X1 and those predicted by the model can become the 

new variable, rX1. The values in rX1 can then be used to make a given test statistic S1 to 

represent the unique influence of this factor on the network. A similar type of approach 

has been employed Whitehead & James (2015), who took the residuals from an 

association matrix as a form of association index from a model where confounding factors 

were included as explanatory variables.  

 

 

The use of MRQAPs to modify explanatory variables would provide the researcher with 

a multivariate analysis where the contribution of each variable to a response variable has 

been evaluated whilst controlling for all of the other variables tested. This allows more 

flexibility for the researcher to tailor the null model used to test the significance of a given 

statistic, such as S1, to control for data sampling issues. The final output will multivariate, 

but still descriptive for each variable given the NMBHT approach. However, through 

scaling all of the explanatory variables to range between the same values, comparative 

effect sizes could be obtained. 

 

3.5.3 CRAN R 

 

The primary tool used to conduct all of the analyses in this thesis is the programming 

language R. R is an open-source, object-orientated programming language geared 

towards statistical computing and graphics which first appeared in 1993 (R Core Team 

2013). R is based on a command line interface; with several graphical front-

ends available. R is most commonly used by statisticians and data-scientists, but has seen 

a broad and substantial increase in popularity in recent years compared to other statistical 

programming languages (Muenchen 2012). The popularity of R has extended to the 

biosciences, where several books have been published on the topic of using R for the 

analysis of biological data (e.g. Gentleman et al. 2006; Gentleman 2008; Logan 2011). 

https://en.wikipedia.org/wiki/Command_line_interface
https://en.wikipedia.org/wiki/Graphical_user_interface
https://en.wikipedia.org/wiki/Graphical_user_interface
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R is such a powerful statistical programming language thanks, in part, to the large 

community of users who support it. There are over six thousand specialised statistical 

packages currently available, each package containing a number of functions geared 

towards a certain goals and published with supporting documentation. Further, several 

free graphical user interfaces (GUIs) are available, including integrated text-editors such 

as R-studio. 

 

There are two R packages which have predominantly been used to visualise and analyse 

networks in this thesis, they are: 

 

“igraph” ; a package (Csardi & Nepusz 2013) which contains all the functions needed to 

plot networks and measure their features- such as assortativity (used in chapter 5). 

“igraph” stores network data as a dyadic “edgelist”, which takes the format: “node A-> 

node B”, “node  C -> node  E”; this is especially efficient for very large networks, and 

igraph is especially suited to visualising networks with millions of nodes- far in excess of 

the size required for animal networks. In this thesis, all of the network visualisation has 

been conducted using this package. 

 

“sna”; a package (Butts 2014) which contains a range of tools for network analysis, 

including node and graph-level indices, structural distance and covariance methods, 

structural equivalence detection, network regression, random graph generation, and 

2D/3D network visualization. Importantly, this package contains the MRQAP-based 

functions “netlm” and “netlogit” which provide the basis for many of the analyses in this 

thesis. 

 

Pre-made functions offer significant shortcuts to the user- especially when the type of 

analysis performed is complex. A simple example of a function in R is “sd”, which is 

used to find the standard deviation of a set of numbers. In R, whatever precedes a set of 

round brackets is typically the function and whatever is first listed within the round 

brackets is the data that the function will be performed on. Simply, “sd(c(1,3,3,1))” could 

be entered into the R console where “c” dictates that the numbers are being combined 

into a vector and R would return 1.15 – the standard deviation of the sample. Many 

functions allow the specification of additional arguments which may tailor how they work 

after the inclusion of the data. An advantage of R is that if the source code behind the 
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function “sd” was required, the function could be entered into the console followed by no 

brackets and R would return something like “sqrt(var(x))”; this is an example where the 

function has been made using “lower-level” R-functions. Sqrt is the function for square 

root and var is the function for variance. Many, if not most packaged R functions are 

made from R source code, although some call upon other languages such as C. R therefore 

offers some of the accessibility of other non-command line based statistical programmes 

through GUIs and huge amounts of packaged functions, but with much greater flexibility 

- a basic level of tailoring is offered through the arguments supplied with functions, but 

often the source code behind a function is visible and can be modified (see chapter 5 for 

an example with the “netlogit” function). R packages are thus easily extendable, allowing 

for the timely incorporation of new methods and/or refinements; often based on code that 

can be inspected (and hence modified) by the community and portable, allowing use by 

researchers on a variety of computing platforms; and freely available (Butts 2008b). 

 

3.5.4 Adapting the MRQAP 

 

The MRQAP procedures in the “sna” package can currently be specified with any one of 

eight different null model arguments, including: QAPs on the explanatory variables, a 

QAP on the response variable, the QAP-DSP, or the choice of some basic CUGs (Butts 

2014) (explained in section 2.4). These nulls may all be too generic for many animal 

systems, having been developed for use in the social sciences. However, through 

accessing the source codes of the “netlogit” and “netlm” functions, we can include null 

models which better suit use the animal system being studied. Through this we marry 

together the call to produce more realistic null models from many behavioural biologists 

(Krause et al. 2011; Pinter-Wollman et al. 2014; Farine & Whitehead 2015) and another 

call to use more predictive modelling approaches in animal network analysis. Given the 

findings of Dekker et al. (2007) and Krackhardt (1988) we would still be careful as to 

using an animal based CUG with regards to issues such as row-column autocorrelation, 

skewedness and collinearity. If the response variable is to be permutated, it would also be 

under the assumption of pivotal test statistics. 

 

Each of the three methods covered in this section (3.5) are now used in the following 

three data-containing chapters. 

 

 



65 
 

II. Multivariate analysis of a report-based network 

 

4. Avian hybridisation networks  

 

4.1 Abstract 

 

There has been growing interest in understanding the behavioural and ecological factors 

which drive interspecific hybridisation (Randler 2006, Willis 2013). Many previous 

comparative studies have been limited through having to maintain the assumption that 

hybrid pairs are independent from one another. In taxa where hybridisation is frequent, 

we show that cases are often interlinked. To take advantage of rich hybridisation datasets, 

we need to account for dependency in the data this creates. Here we show that 

methodologies often used to study social networks can identify historical, ecological, and 

behavioural factors which underlie the structure of hybrid complexes. Using published 

reports of hybridisation, we find that the wood warblers, a group of recently radiated 

passerines, form a single hybrid network encompassing all hybridising species. Through 

using a network-based analytical approach which addresses both the quality of hybrid 

report data and the shared phylogenetic history of species, our results suggest that close 

relation, breeding proximity, song and plumage similarity are associated with 

hybridization in this system. Although this study is currently limited by the quality of 

hybrid data available, with the increasing use of genomics to identify introgression 

between species and identify hybrid offspring, we see promising avenues for the 

networks-based approach.  

 

4.2 Introduction 

 

Many definitions have been offered for hybridisation (summarised in Harrison 1993). 

Broadly speaking, hybridisation is where two genetically divergent individuals 

reproduce. The amount of genetic divergence required to separate hybridisation from 

typical mating can range from a single genetically heritable character to the amount of 

genetic variation which separates species, depending on the definition (See Arnold 1997). 

For the purpose of this chapter, we are interested in hybridisation between incipient 

species; the term ‘incipient’ being added for reasons later described. Further, we are 
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interested in what Arnold (1997) describes as “natural hybridisation”: that which occurs 

in a natural setting as opposed to experimentally or in captivity. We only consider natural 

hybridisation which results in the production of offspring in order to use the presence of 

hybrid offspring to identify meaningful hybridisation which has taken place in nature. 

Hybridisation which produces offspring may also be the most important in an 

evolutionarily sense, as hybrid offspring nearly always have some level of fertility either 

with each other, or one of the parent species (Grant 1963).  

 

Interspecific hybridisation is not a rare event confined to few species with questionable 

species boundaries. Mallet (2005) reported that 25% of plant species and 10% of animal 

species hybridise. Numerous crosses have been reported between species of different 

genera (see McCarthy 2006) and, rarely, different families in both the wild (Liptack & 

Druehl 2000) and in captivity (Billingham et al. 1961; Ohno et al. 1964; Kisaka et al. 

1997). Of all major animal taxa, hybridisation is perhaps best recorded in birds (Randler 

2002; Randler 2004; Aliabadian & Nijman 2007), where between 9.3% (Grant & Grant 

1992) and 19% (Randler 2006; McCarthy 2006) have been reported to hybridise. Mallet 

(2005) noted that most hybridisation occurs between evolutionarily young species; those 

which have recently diverged from a common ancestor. In this study, we focus on 

collections of avian species, some of which are evolutionarily young through recent 

radiation events (see Jetz et al. 2012). 

 

The tendency for evolutionarily young species to hybridise challenges our notions of what 

constitutes a species. The biological species concept (Dobzhansky 1937; Mayr 1942) 

defines species as “groups of actually or potentially inbreeding natural populations, which 

are reproductively isolated from other such groups”. Arnold (1997) noted that a strict 

usage of this definition means that species do not hybridise. Mayr (1942) argued that if 

species hybridised than they were in fact sub or semi-species, adding that any offspring 

produced by two separate species are either sterile or exhibit low fitness and would 

quickly be removed by natural selection (Mayr 1963). Other prominent species 

definitions such as the phylogenetic (Cracraft 1989), cohesion (Templeton 1989) and 

recognition species (Paterson 1985) concepts take a similar standpoint: that hybridisation 

is either non-existent between species, or produces offspring which are more or less 

evolutionarily inconsequential. To err on the side of caution, we use the species 
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definitions supplied by most recent molecular phylogenies published for a given taxa and 

add the term “incipient” to describe those species reported to hybridise; “incipient” 

referring to the fact that these species are not completely reproductively isolated from 

others. 

 

The role of hybridisation in producing novel evolutionary lineages in animal taxa may be 

questionable (see Arnold 1997 for a review), but its role in shaping biodiversity and the 

evolutionary trajectory of species is well-supported. Firstly, hybridisation can generate 

genetic variance in a population through the introgression of new genetic material- a 

regular occurrence in rapidly radiating groups of species (Seehausen 2004; Mallet 2005; 

Grant et al. 2005). Natural selection acts on genetic variance in populations and 

introgressed genetic material may traverse species boundaries if it confers a selective 

advantage (Baack & Rieseberg 2007). Viable hybrid offspring may have some level of 

fertility (Grant 1963), but often the heterozygous sex are rare or sterile, known as 

Haldane’s rule (Haldane 1922). The absence or sterility of one sex does however present 

a formidable obstacle to the formation of a hybrid lineage. Secondly, hybridisation can 

prompt the evolution of diversity by selecting for character displacement and other 

isolation mechanisms (Brown & Wilson 1956; Schluter 2001). The “Wallace effect” 

describes the process of selection for reproductive isolation mechanisms (Grant 1966), 

otherwise known as reinforcement. In cases where two spatially proximate populations 

are genetically divergent to the extent that any offspring produced through hybridisation 

exhibit lower fitness, individuals who do not hybridise have a comparatively higher 

fitness than those that do. The mechanisms which promote isolation are therefore under 

selection and, over generations, may spread through the population prompting 

diversifying speciation (Butlin 1987; Howard 1993). In warblers, Martin et al. (2015) 

suggests that reinforcement may drive the plumage coloration in migratory warblers. 

 

Hybridisation can also serve to reduce diversity, posing an extinction threat and 

conservation challenge. Climate change, habitat loss or modification, and the direct 

introduction of species to new areas can bring recently diverged, previously isolated 

species into contact with each other (Rhymer & Simberloff 1996). In these situations, 

hybridisation can lead to genetic mixing, where genetic introgression across a species 

barrier can cause species to converge genetically- reducing diversity. An example of this 
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is seen in the New Zealand Grey Duck Anas superciliosa and the Mallard duck Anas 

platyrhynchos. The introduction of the Mallard duck has been one of the reasons for the 

decline of the native Grey Duck. Mitochondrial DNA analysis suggests that the loss of 

the Grey Duck to the Mallard duck is a real possibility (Rhymer et al. 1994), with existing 

Grey Duck populations becoming increasingly similar to mallard ducks morphologically 

(Wiegand 1935). Genetic mixing can also lead to outbreeding depression, where co-

adapted gene complexes are broken apart and local-adaptions of one or both species are 

lost (Rhymer & Simberloff 1996). An example of this has been observed in two species 

of clam, Mercenaria mercenaria and M. campechiens, which have been introduced into 

each other’s native range and concurrently into new uncolonised areas. Hybridisation 

between the two species is common, with hybrid offspring more susceptible to the disease 

gonadal neoplasia, resulting in reduced hybrid fitness through increased mortality and 

reduced reproduction (Bert et al. 1993). 

 

Despite its importance, most of our knowledge about hybridisation come from studies of 

focussing on only two species (examples include: Szymura & Barton 1986; Bert et al. 

1993; Gante et al. 2004; Tracey et al. 2008; Hayden et al. 2010; Tyler et al. 2013; Huyse 

et al. 2013). The implicit assumption in these studies is that the focal pair of species is 

independent from hybridisation with other species. In some situations, this assumption is 

justified, to return to a previous example, as far as we know there are no reports of 

hybridisation of either species of Mercenaria clam with any other species. However, if 

we consider a different example, hybridisation between the Hermit warbler Setophaga 

occidentalis and Townsend’s warbler Setophaga townsendi the same assumption is not 

justified. Studies (such as Harrison 1990; Rohwer & Wood 1998; Pearson & Rohwer 

2000; Rohwer et al. 2001) into genetic variation, asymmetries in behaviour, gene flow 

and aggression across the Hermit-Townsend’s hybrid-zone link their findings to 

hybridisation between the two species. However, both the Hermit and Townsend’s 

warbler hybridise with another sympatric west-coast migratory warbler species, the 

Black-throated gray warbler (Setophaga nigrescens) (see McCarthy 2006). There is a 

chance that any effects of hybridisation with this third species are confounding the studies 

across the hybrid zone. Mutual hybridisation with a third species offers another route for 

gene flow and may also affect the evolutionary dynamics of processes such as 

reinforcement, potentially amplifying variations in character displacement and other traits 

associated with reproductive isolation. 
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Only a few studies have analysed multiple hybrid pairs simultaneously. An example can 

be seen in Randler (2006), where a general linear model was used to identify that pairs of 

Western Palearctic bird species produced more hybrids when they were parapatric, have 

low levels of paternal investment and at least one species was classified as endangered. 

To maintain an assumption of the modelling approach used, that each case of 

hybridisation was independent of any other, multiple phylogenetically independent 

hybrid types were selected and those crosses linked through mutual hybridisation were 

discarded. Willis et al. (2014) was perhaps the first published multispecies study to 

include interconnected hybrid pairs using a methodology which can control for the 

dependency in the data this can create. The advantage of the approach that Willis et al. 

used was that recently radiated collections of species could be studied in detail at the 

familial level, whereas Randler’s approach would require the removal of much if not all 

of the data and is thus restricted to broad-scoped taking few samples from numerous 

families of organisms.  

 

Networks are often used to model systems where multiple agents are interconnected via 

multiple ties. A common theme of network studies is a focus on how edges, or 

interactions, are structured with respect to each other and attributes associated with the 

nodes, or agents, in the system. Hybrid networks have previously been created to 

represent intra-species hybridisation in plants (Lenz 1959 depicted in Arnold 1997), and 

depict avian genera which cross in certain taxa (McCarthy 2006). However, networks 

have not yet been used to visualise hybridisation between what we might regard as species 

and network analyses has not yet been applied to hybrid-networks. Network analyses 

provide a means to consider cases of hybridisation within the context of others; allowing 

multiple interlinked cases to be compared simultaneously. Further, the visualisation of 

interspecific hybrid-networks could potentially alter how we think about the speciation 

process- clades with rampant hybridisation potentially representing a snapshot of a 

radiation. In a network depicting hybridisation between incipient species, the species 

would form the nodes of the network and identified cases of hybridisation between them 

would form the edges.  
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Avian species which have undergone recent radiations are a good place to begin looking 

for candidate taxa with underlying hybrid-networks. Firstly, recall that hybridisation is 

perhaps the best recorded in birds out of all major animal taxa (Randler 2002; Randler 

2004; Aliabadian & Nijman 2007), with between 9.3 and 19% of species reported to 

hybridise (Grant & Grant, 1992; Randler, 2006 and McCarthy, 2006). A recent 

compilation of all reported bird hybrids has been published by McCarthy (2006), 

providing a comprehensive data-source with which to generate hybrid-networks. 

Secondly, recall that hybridisation is the most frequent between evolutionarily young 

taxa. A recent publication of an avian super-tree by Jetz et al. (2012) provides a visual 

indication of how recently and rapidly speciation has occurred in many avian clades. 

Using these two criteria as a guide, we chose two orders of species, the Anseriformes and 

Galliformes, to illustrate this approach; the Galliformes being a more ancient clade 

according to Jetz et al. 2012. Further, two avian families, the migratory New-World 

warblers Parulidae and the Birds of Paradise Paradisaeidae were chosen as a 

representation of hybridisation at the familial level.  

 

Using hybrid reports to construct hybrid networks has some inherent problems, but is 

currently the best available form of evidence for comparative studies across numerous 

species. The four avian taxa chosen in this study are likely to be well observed for a 

number of different reasons; this is important as we can only be sure of the presence of 

reports as indicative of whether hybridisation has taken place between two species. The 

Anseriformes may be well observed given that they typically breed near and around water 

sources, which is also where a large proportions of human settlements are found (World 

Health Organisation 2005). Many of the Galliformes are commonly hunted for sport and 

food (Keane et al. 2005)  and both the Parulidae and Paradisaeidae have diverse and 

diverse and colourful  male plumages (see Beehler et al. 1986; Curson et al. 1994) . Given 

that males are the homogametic sex in avian species, conspicuous male plumage patterns 

may aid the identification of hybrids. Haldane’s rule dictates that hybrid offspring in birds 

are more likely to be male, the homogametic sex in birds (see Orr 1993 for an explanation 

of the causes of Haldane’s rule). The migratory species in the family Parulidae were 

chosen as they are more evolutionarily recent and breed in more densely populated areas 

in North America than their non-migratory counterparts in the same family which remain 

in Central and South America year-round.  
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The hybrid networks of each of the four taxa are shown in figure 4. To create the four 

hybrid networks, reports of natural hybridisation were taken from McCarthy (2006). The 

wood warbler hybrid network also includes later evidence from Griffiths et al. (2008) and 

Bonter and Lovette (2007) whom provided evidence for a new and a previously 

questionable cross. Species, the nodes of the networks, were defined using recent 

molecular phylogenies published on each of the four taxa (Lovette et al. 2010; Kimball 

et al. 2011; Gonzalez et al. 2009; Irestedt et al. 2009). Edges were weighted qualitatively 

based on the extent of hybridisation between species using the classifications defined in 

McCarthy (2006); this ranged from reports of infrequent (2), ongoing (3) to extensive-

ongoing (4) hybridisation. The very weakest edges in the networks represented crosses 

with which there was some questionable evidence, typically just a sighting (1); crosses 

which could not be narrowed down to one pair of species were omitted. The networks 

were visualised using the “igraph” package (Csardi & Nepusz 2006) in R (R Core Team 

2013). Species that had not been reported to hybridise but were present in each of the four 

groups, were omitted from the networks.   
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Figure 4: Examples of natural avian hybrid networks: (A) Anseriformes, (B) Galliformes, 

(C) Parulidae breeding in North America, and (D) Paradisaeidae.  Each edge represents 

a hybrid specimen recorded in nature weighted by the quality of evidence for the cross as 

defined by McCarthy (2006). Each node represents a species: as defined by (A) Gonzalez 

et al. (2009), (B) Kimball et al. (2011), (C) Lovette et al. (2010), (D) Irestedt et al. (2009). 

For clarity, species not reported to hybridise were omitted: (A) 62, (b) 124, (C) 17 and 

(D) 18. The number of species in the largest connected component in each hybrid network 

totals: (A) 96, (B) 30, (C) 38 and (D) 16. 
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In figure 4, a large interconnected component is observed in each hybrid network. A 

component being a collection of nodes all linked to each other. This may be surprising 

when you consider that in these networks, only 0.4% to 3.1% of possible edges exist. We 

might therefore expect that there is some biological explanation behind the formation of 

these network components. However, the large components in each of these networks are 

no bigger than expected by chance, which suggests that the presence of hybrid networks 

may just be the product of the frequency of hybridisation. We can show this by randomly 

allocating hybridisation events between the same number of species for each of the four 

taxa and record how often random networks contain a component larger than observed to 

derive a p-value (see Manly 1997). The results show that there is nothing especially large 

about the large components in these hybrid networks (p=0.9998, p=0.9096, p=0.4438, 

p=0.3068 respectively). For very large collections of nodes, network theory states that a  

large component will form when, on average, each node has at least one edge attached to 

it (see Newman, 2003). In the context of hybridisation; this would translate to a large 

component emerging when there are many cases of hybridisation as there are defined 

species in taxon. In each of the hybrid networks shown in figure 4, we find that the number 

of hybrid reports per species in the group is: Anseriformes 1.317; Galliformes 0.415; 

Parulidae 0.855, and Paradisaeidae 0.590. In three of four cases, there are fewer reports 

per species than expected to form a large component using theory designed for large 

networks; this suggests that the threshold of one report per species may be overly 

conservative for small collections of species. 

 

Given that the presence of hybrid networks (with large components) are an expected 

product of frequent hybridisation we are left asking what, if anything, is biologically 

interesting about these structures? Closer visual examination of the networks reveals non-

trivial structural features that suggest hybridisation does not take place randomly between 

species. The Parulidae network is partitioned into two halves, one of which contains 

predominantly species in the genus Setophaga and the other Geothlypis. The network of 

Anseriformes is partitioned into at least three communities (see Girvan & Newman 2002) 

representing species belonging to the whistling ducks Dendrocygninae, dabbling ducks 

Anatinae and the swans and geese Anserinae. Guimera, Sales-Pardo, & Amaral (2004) 

showed that random networks can exhibit community structure. However, the community 



74 
 

structure in at least two of our networks appear to be on preferential hybridisation between 

species of the same genus or subfamily, in line with the notion that hybridisation happens 

between evolutionarily recent species (see Mallet 2005). Community structure of this sort 

provides an indication that network structure is being influenced by homophily (see 

section 2.3.2) on the basis of certain traits. 

 

Another starting point to investigate hybrid networks may be to look at the number of 

connections each species has. Degree is perhaps the most suitable node-based measure to 

consider in hybrid networks. A missed hybrid report may have far reaching consequences 

on measures based on the shortest paths through the network, such as betweenness, but 

would only alter the degree of the two species involved by one. The degree of species in 

the hybrid network indicates how prolifically they hybridise with other species. If degree 

cannot be explained by chance, we might expect that certain factors promote some species 

to be prolific hybridisers. Using the same edge randomisation procedure previously 

stated, we find that some species have higher degree (they hybridise with more species), 

than we would expect. In the Anseriformes, we would only expect to see a species 

hybridise with four or more others once in every five thousand random networks 

(equivalent of a p-value of 0.0002), but the mallard duck Anas platyrhynchos is reported 

to hybridise with over thirty in nature. In Parulidae, the observation of three species with 

six or more connections is only expected in two of a thousand random networks. Species 

with unexpectedly high degrees under random hybridisation also exist in both the 

Galliformes and Paradisaeidae. To date, no study has considered the factors associated 

with prolific hybridisers such as these. In the Anseriformes hybrid network, there is visible 

centralisation (see figure 4 A), where many nodes are connected to one central node 

(Freeman 1979)- the mallard duck in this case. Clearly, the null expectation we might 

have, that hybridisation occurs randomly in these networks, is unlikely to be true. It seems 

plausible that specific traits of species may affect how much they hybridise and traits 

shared between species may therefore affect the species that any given species hybridises 

with. 

 

Assortment is the term that refers to the preferential attachment of nodes on the basis of 

a certain trait (Newman 2003). The non-random structural features of the four hybrid 

networks support the notion that there are factors which affect, or are otherwise linked to 
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hybridisation between species in each network. Finding these factors is important as they 

will provide a family or order-level indication of the patterns of hybridisation early in the 

speciation process, and indicate how these may promote, or limit, the diversification of 

the taxon. Furthermore, these factors may be able to help inform conservation action 

through directing observation efforts to those species with compatible traits. In Parulidae 

for example, the observed northward shift in the distribution of North American birds (La 

Sorte and Thomson 2007) may push many new pairs of species into contact. Given that 

these species are evolutionarily young (Bermingham et al. 1992; Jetz et al. 2012; Willis 

et al. 2014) and that the population of warbler species are also likely to decline in the 

future (Strode, 2003), hybridisation may pose a real conservation threat in the near future. 

 

The migratory wood warblers (family: Parulidae) are a good candidate system to look 

for assortment in a hybrid network. Sixty-nine percent of species have been reported to 

hybridise (McCarthy, 2006) and both species and hybrids in this group are often well 

observed and characterised (e.g. Curson et al. 1994). A study by Willis et al. (2014) (see 

section 4.1) suggested that hybridisation in wood warblers tends to take place between 

species that are evolutionarily young, have large breeding range overlap and sing similar 

mating songs. Migratory wood warblers, which we define on the basis of species which 

breed on the North American continent, are known for undergoing large scale northward 

migrations from South America to breed; adopting diverse and often brightly coloured 

male breeding plumages (see Curson et al. 1994).  This migratory behaviour is thought to 

have developed in periods of intermittent glaciation in the Pleistocene era where rapid 

speciation may have occurred in the clade (Bermingham et al. 1992; Price et al. 1998). 

The annual spring-summer migrations predominantly take place up the more densely 

populated coastal regions of North America. Thus, the assumption can be made that the 

migratory wood warblers are well observed in their breeding season, which is attractive 

when the identification of hybrid offspring is required to confirm a cross. There are also 

comprehensive libraries of data on wood warblers with which to examine the patterns of 

hybridisation in the network, including distribution maps (Birdlife International 2013), 

song records (Borror and Gunn 1985), plumage illustrations (Curson, Quinn and Beadle 

1994) and importantly, a recent molecular phylogeny (Lovette et al. 2010). 
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4.2.1 Hypotheses 

 

Reproductive isolation, the barrier to interspecific hybridisation, is achieved through 

numerous mechanisms, some of which happen before fertilisation, known as pre-zygotic 

isolation, and some after, known as post-zygotic isolation (Mayr 1963). Pre-zygotic 

isolation mechanisms can take a number of forms. Ecological isolation mechanisms 

restrict the co-occurrence of two separate species either spatially or temporally. In 

migratory warblers (family: Parulidae) for instance, there is variation both in the use of 

space for breeding and variation in the times of breeding migrations. Behavioural 

isolation is another pre-zygotic isolation mechanism which maintains the integrity of 

species. In species with distinct male and female organisms, certain behaviours associated 

with finding and choosing a mate also serve as isolation mechanisms. Birdsong is a 

mating ritual linked to reproductive isolation (King et al. 1980; Brambilla et al. 2008) 

and, although not a behaviour directly, male-plumage may also be linked to species 

recognition and isolation (Sæther et al. 2007; Martin et al. 2015). 

 

Breeding range and habitat 

 

To hybridise, two species must first come into contact, achieved either through 

translocation or sympatry. Species with large breeding ranges may have a greater 

opportunity to hybridise with others through being in sympatry with more compatible 

species, or smaller translocations being required to encounter them. Species with larger 

breeding ranges may therefore have a larger degree than those with smaller breeding 

ranges through increased contact with each other. Those species which use the same 

breeding habitats may not only be more likely to come in contact with each, but may also 

be better adapted to build nests and raise offspring together in these habitats. Species that 

are generalists with respect to breeding habitat may be more prolific hybridisers than 

those that are specialists through having breeding habitat in common with a greater 

number of species.  

 

Pairs of species which are geographically proximate will have more opportunity to 

hybridise, but may also have developed stronger barriers to introgression than those more 

isolated. In a recently radiated taxon such as the new world warblers we might expect that 



77 
 

barriers may not be fully formed, as such there would be a tendency for species with large 

breeding range overlaps to hybridise and there to be resulting positive assortment with 

respect to this trait in the warbler hybrid network. In a similar sense, species which use 

the same habitat types to breed may also be more inclined to hybridise, if so, we would 

expect to see positive assortment in the hybrid network on the basis of this trait. 

 

Breeding song and plumage 

 

Morphological and behavioural factors associated with mate choice, can vary 

significantly between families and orders of species. In the family of the New-world 

warblers Parulidae, song and breeding plumage are important for intra-species mate 

choice (Weatherhead and Shutler 1990; Byers, 2007; Taff et al. 2012), whereas the same 

may not hold true in other taxa. In the order Galliformes, plumage and visual displays 

may be important with intra-mate choices (Madge et al. 2002; Kolm et al. 2007; Lislevand 

et al. 2009; Kimball et al. 2011). Mating rituals have been identified in a number of cases 

to be potent isolation mechanisms (King et al. 1980; Sæther et al. 2007; Brambilla et al. 

2008; Martin et al. 2015) . We might expect warbler species with similar breeding 

plumage and song to hybridise, with these sexually selected traits only functioning as 

sufficient isolation mechanisms when significantly different to each other. If so, there will 

be positive assortment in the hybrid network for both song and male plumage traits. Song 

and plumage characteristics have been shown to be important factors for mate recognition 

in many species of birds (Searcy 1992; Bennett et al. 1997; Ballentine & Hill 2003; Hill 

& Mcgraw 2004; Byers & Kroodsma 2009; Toomey & McGraw 2012) 

 

Sexual selection has been linked to hybridisation in other species, such as the Yellow 

Swordtails Xiphophorus clemenciae (Schumer et al. 2013). If sexual selection does 

promote hybridisation, we would expect to see more sexually selected species to have 

higher degrees. 
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Phylogeny 

 

When pre-zygotic isolation mechanisms are underdeveloped or otherwise break down. 

The newly formed zygote is now subject to a number of post-zygotic isolation 

mechanisms which reduce the chance of a hybrid lineage being produced. Firstly, the 

accumulation of genetic incompatibilities between the parent species may lead to the 

zygote becoming inviable; this is part of the Bateson-Dobzhansky-Muller Model of 

speciation (Orr 1996). Species with recent common ancestors may be more likely to 

produce hybrid offspring, not having had enough time to accrue genetic incompatibilities 

(Orr 1996). We may therefore expect the hybrid network to assort such that hybridising 

species are often recently diverged; this would support the findings of Mallet (2005) and 

Willis et al. (2014). Further, we might expect that species that sit in large clades of the 

phylogeny will have higher degrees, having many recently diverged species with which 

to hybridise. 
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4.3 Methods 

 

Data Collection 

 

To look for network assortment and explain the variation in the degree of hybridising 

warbler species, data were collected for five traits thought to be associated with 

hybridisation. These traits broadly fall into the categories of phylogenetic, morphological, 

behavioural and biogeographic and ecological factors.  In particular, data were collected 

on song similarity, distance in a phylogeny, plumage similarity, the extent of sympatry, 

the amount of shared breeding habitat, and the distance between the breeding ranges of 

pairs of species. A summary of this data can be observed in figure 5. Species attribute 

data were taken to explain the number of connections each species has; these data were: 

the size of the species breeding range, the size of the clade of the phylogeny the species 

belongs to, the difference in the male and female plumages of the species as a proxy for 

the amount of sexual selection, and the number of habitats used to breed as a measure of 

ecological specialism. 
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Figure 5: Examples of datasets used for network analysis of hybridisation. (A) Breeding 

ranges. Levels of sympatry were studied through the presence or absence of breeding 

range overlap. Breeding range overlaps of specific species that hybridise are displayed, 

with the species centroids proportional to the size of breeding range. (B) Phylogeny. Date 

since last common ancestor was investigated for correlation with hybridisation events. 

Intra-genera hybridisations are within parentheses on the cladogram and genera are 

connected by “links” proportional to the number of inter-genera hybridisations. (C) 

Birdsong. Quantitative data were collected on the following, maximum frequency (i), 

bandwidth (ii), minimum frequency (iii), inter-song interval (iv), strophe duration (v) and 

number of distinct syllables (vi). The song of the blue-winged warbler (Vermivora 

cyanoptera) was used for visualisation. (D) Plumage. Quantitative data were collected on 

the following, crown patch (1), eye (2), lore (3), bill (4), head (5), supercilium (6), 

auricular (7), throat (8), nape (9), breast (10), tail (11), rump (12), mantle (13), wing bars 

(14), flank (15), undertail (16), belly (17) , legs/feet (18), wing (19*). * Not depicted on 

diagram. 
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Phylogeny 

 

It is accepted that hybridising species are often recently diverged (Mallet 2005; Willis et 

al. 2014). Phylogenetic data for the wood warblers were obtained from Lovette et al. 

(2010). The phylogeny was also used to control for the confounding effects of shared 

ancestry whilst assessing whether hybridising species had more similar plumage and song 

traits. For each pair of species, the amount of time since their last common ancestor 

(TLCA) was measured relative to the scale-bar provided in the phylogeny. The arbitrary 

scale ranged from 0 (present-day) to 1 (which links the Parulidae to other allied families). 

Given that the phylogeny was constructed using molecular markers, TLCA might be a 

good proxy for the amount of genetic differentiation between species. For each species, 

the number of migratory warbler species in the same genus was also recorded to identify 

whether species from more speciose genera have higher degrees. 

 

Breeding range  

 

To the measure the size, amount of overlap and distance between breeding ranges, 

electronic distribution data were obtained from Birdlife International (NatureServe & 

BirdLife International 2012 http://www.birdlife.org/). Distance was measured between 

the centroids of each breeding range. The proportion of breeding range overlap for each 

pair of species was calculated using a Jaccard index (Jaccard 1912). Breeding ranges were 

projected with an Azimuthal equidistant projection for measurements of centroid 

distances and an Albers equal area projection (see: Snyder 1987) for measurements of 

area and proportion overlap. All measurements were conducted using the R-packages 

“rgeos” (Bivand et al. 2014) and “sp” (Pebesma & Bivand 2005). A diagrammatic 

representation of the breeding ranges of the most extensive warbler crosses is shown in 

figure 6 A. 
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Habitat 

 

Species that are ecological generalists in their breeding season may hybridise with more 

species than those that are ecological specialists. The rationale for this hypothesis is that 

species which thrive in a wide array of habitats will encounter more species which also 

utilise the same habitat types than those which use few types of habitat. To determine 

whether hybridising species share a greater proportion of habitat in their breeding season, 

the different types of breeding habitat used by each species was obtained from Birdlife 

International (NatureServe & BirdLife International 2012). A Jaccard index was used to 

measure the proportion of shared habitat for different species pairs.  

 

Plumage 

 

In order to compare the plumages of large number (703) of pairs of warbler species, we 

developed a new methodology which only required a human observer to quantify the 

plumage of the individual (38) warbler species using a fixed quantitative system. The 

plumage profiles generated for each species could then be compared computationally. To 

quantitatively measure the plumage of hybridising warblers, illustrations were obtained 

from Curson et al. (1994). Artist-produced illustrations were used due to a lack of 

standardised photos for all of the species in the system. For each species, plumage was 

broken down into 19 distinct patches depicted in figure 5 D - an adaption of the plumage 

topography in Curson et al. (1994). The coloration of each patch was quantified using the 

Munsell colour system (Munsell 1912) under standard light conditions by a single 

observer. Matching the colour of each plumage patch to the corresponding colour-card in 

the New Munsell Colour Set (Long & Luke 2011) provided a measure of “value”, the 

light or darkness of the colour; “chroma” the saturation of colour and “hue”, the type of 

colour. Black white and grey patches were only assigned a value, being ascribed as 

“neutral colours” in the Munsell system (see insert 1).  
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Insert 1: A diagrammatic representation of the Munsell colour system. © 2007, Jacob 

Rus. The image is licensed under the Creative Commons Attribution-Share Alike 3.0 

Unported license. 

 

To calculate the plumage similarity between two species, the mean difference over all 

plumage patches were summed for each of the three Munsell colour measures. Patches 

which had a neutral colour in one species and not the other were only compared on the 

basis of their value alone. In the Munsell system, hue is depicted on a colour “wheel” 

with values between 0 and 100, we scored the difference in hue as the shortest distance 

around the wheel between the two hues. For example, the hue red would be scored as a 

5, yellow-red 15 and red-purple 95. The distance between red and either other colour in 

this example would be 10. The mean difference over plumage patches for each of the 
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three metrics were weighted equally and summed to make an overall similarity index 

which ranged between 0 and 1. In this index, a value of 0 would correspond to identical 

plumage and a value of 1 would correspond to the most different plumages observed with 

respect to the three Munsell colour metrics. This procedure was used to determine the 

difference between the plumages of breeding males and adult females between different 

species. For a measure of plumage dimorphism, breeding male and adult female plumages 

were compared within the same species.  

 

Our overall method has the advantage of reducing the amount of time taken to make 

comparisons through the use of computation.  This allows large quantitative datasets to 

be generated by one observer, as opposed to having many observers rank pairs directly 

(see Martin et al. 2015).  

 

Song 

 

A similar procedure was used to quantify song similarity. To see if hybridising species 

sing similar mating songs after controlling for ancestry, song recordings were taken from 

Borror and Gunn’s Warbler Songs of North America (Borror & Gunn 1985), part of the 

Macaulay library from the Cornell Lab of Ornithology and Xeno-Canto 

(http://www.xeno-canto.org/ - accessed on 04/10/2012). Five separate recordings were 

taken for each species and 4 strophes, as defined by Darolová et al. (2012), were randomly 

selected from each recording. Seven traits were measured in each of the 20 selected 

strophes using the programmes Audacity® (Audacity Team 2008) and Syrinx (Burt 

2005). These 7 traits were: highest frequency, lowest frequency, bandwidth defined as 

the difference in the highest and lowest frequency, maximum number of syllables as 

defined by Catchpole (1986), minimum number of syllables, strophe duration and the rest 

period between the selected and subsequent strophe in the recording (see figure 6 C). For 

each species, an average was taken for each song trait. A principal components analysis 

(Jolliffe 2002) was used to reduce the resulting dataset down to 4 principal components 

accounting for 96% of the variation in the data. The index was calculated as the sum of 

the absolute differences across the 4 components. The sum of differences was scaled such 
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that a 0 would represent identical songs within the remit of the measured traits and 1 the 

most disparate pair of species in the dataset.  

 

Data analysis 

 

Hybridisation data are relational by nature, as each case involves two species. The non-

independence of relational data (see section 2.3) coupled with the perceived threat of 

unreported hybrids means that care has to be taken with the choice of statistical analyses.  

As advocated in Croft et al. (2011), we opt for null model based hypothesis testing 

(NMBHT) of our hybrid networks (see section 3.5). Recall that in NMBHT, a test-statistic 

is chosen to represent a feature of interest in the observed network. To determine the 

statistical significance of the statistic, it is compared to a reference distribution of the 

same measure generated by a null model. Statistical significance is derived through 

examining how often the observed measure of the trait occurs in the networks produced 

by the null model, as outlined in Manly (1997).   

 

To look for assortativity in the hybrid-network, a test statistic was chosen to represent the 

tendency for species to hybridise on the basis of a given trait; we will refer to this statistic 

as the median-edge value (MEV). To calculate the MEV for a given trait, a median is 

taken of all of the trait values attributed to the edges present in the network. A median 

was chosen as opposed to a mean as it makes fewer assumptions about the distribution of 

the data it describes. The MEV has the advantage of only looking at the edges which are 

present in the network rather than those which are absent, which is very important given 

the perceived likelihood of unreported hybrids. Given the focus of our analyses on species 

which have been reported to hybridise, we restricted our explanatory datasets to include 

just these 38 species. 

 

To first see if recently diverged species were more likely to hybridise in the hybrid 

network, the MEV for Time Since Last Common Ancestor (TLCA) was taken as a test 

statistic. To determine if this observed MEV for TLCA was lower than we would expect 

if hybridisation was uncorrelated with this trait, the species labels on the warbler 
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phylogeny (Lovette et al. 2010) were permuted whilst keeping the observed network 

fixed. Some pairs of species, often those that are allopatric, have diverged from their 

common ancestor so recently that their classification as separate species may be 

questionable. Recall that the whole hybrid-network may be lumped into one species under 

the strictest interpretation of the Biological Species Concept (Mayr 1982). To try and 

account for questionable species definitions, the analysis was repeated three times with 

the edges belonging to 5,6 and 13 pairs of species with a TLCA more recent than 0.05, 

0.10, and 0.15 (relative to the time-scale bar provided in Lovette et al. (2010)) fixed. 

Fixing the presence of certain edges so that they occur in every null network effectively 

freezes out their contribution to the significance of the test statistic. Given that the edges 

with a weight of 1 in the network have only been identified through sightings of hybrids, 

there is a risk that some of these may have been allocated to the wrong pair of species or 

are misidentified conspecific offspring. To check that any signal observed was not reliant 

on edges with which there was questionable evidence, the analyses were repeated on both 

the complete network and a version of the network with the weakest edges removed, 

which we will refer to as the reduced network. 

 

Further tests were carried out to see if hybridising species shared a greater proportion of 

breeding range, habitat usage, had more similar song, plumage, or were more 

geographically proximate than expected by chance. Using Mantel tests (Mantel 1967) on 

our more reliable independent variables, we revealed that both male song and plumage 

similarity were significantly correlated with TLCA and a trend was observed with female 

plumage similarity (male plumage: RSpearman’s=0.1345, p=0.0082; male song: RS =0.200, 

p=0.0106; female plumage: RS=0.077, p= 0.0998). This correlation creates a problem, as 

recently diverged species have been identified to be more inclined to hybridise. Using 

raw plumage or song similarity data may give us a positive result based on the underlying 

phylogenetic signal alone. A method was needed to control for the phylogenetic signal 

present in these datasets. A Multiple Regression Quadratic Assignment procedure 

(MRQAP) (Krackhardt 1988; Dekker et al. 2007) was used  to remove the phylogenetic 

signal from song and plumage traits. TLCA was used as the independent variable in the 

MRQAP and male song similarity, male plumage or female plumage the dependent 

variable in turn. Residuals were taken as being representative of each trait after removing 

the similarity contributed through shared ancestry. A MEV was taken from these sets of 
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residuals and used in the analysis outlined above; no other traits were significantly 

correlated with TLCA. 

 

In the studies of interspecific hybridisation using reports, the absence of reports is 

essentially missing data, providing little information that a hybrid has not at some point 

occurred. Hybrid offspring can be rare, in many cases only one confirmed hybrid may 

indicate that two species can cross and produce offspring (see McCarthy 2006). Adopting 

this conservative standpoint means that using a hybrid network as a response variable for 

model-based approaches is unwise. In the hybrid network of the new world warblers 

Parulidae, as few as 3.2% of possible edges were reported, meaning the other 96.8% are 

potentially missing data. Some network models have been developed with the ability to 

cope for some level of missing data (e.g. Robins et al. 2004; Koskinen et al. 2010). 

However, modelling approaches simply cannot function when there is no variation in the 

response variable, there needs to be at least some edges with which we can be confident 

of their absence. Using MRQAPs to partial out some of the phylogenetic signal from 

explanatory variables allows more complex multivariate hypotheses to be tested on 

networks which are unsuitable for use as a response variable in conventional modelling 

approaches. The approach is multivariate in the sense that the effect of one variable is 

evaluated using NMBHT (outlined in Croft et al. 2011) whilst controlling for one or more 

others. However, there are no effect sizes unlike purely model-based approaches.  

 

An assumption of using MRQAPs to remove the phylogenetic signal in song and plumage 

is that the relationship between TLCA and the trait in question is constant across the 

whole phylogeny. It is possible that the relationship between plumage or song similarity 

and TLCA varies with different clades of the phylogeny. For example, most Geophlypis 

species have yellow colourations whereas species in Setophaga exhibit more diverse 

plumage colourations. We resolve this issue when testing the subsequent effect of a 

modified explanatory variable on the hybrid network. The null model used to test these 

modified variables conserves the amount of hybridisation occurring in and between 

different clades of the phylogeny, allowing a comprehensive control for phylogenetic 

effects on the traits being tested. An advantage of the approach is that factors which may 

otherwise have been controlled for via the development of elaborate null networks with 

many constraints have instead been accounted for through modelling on the explanatory 
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variables. This allows the null model to be tailored to constrain for other biological or 

structural features of the focal system. 

 

The null model developed to assess the significance of the MEVs of traits other than 

TLCA randomly allocated edges between species, but conserved the number of crosses 

between species that were: sympatric within the same genera, sympatric between different 

genera and allopatric within the same genera - there were no allopatric crosses involving 

species of two different genera.  For the purposes of this study we use the term sympatric 

to denote any pair of species with a breeding range overlap. The phylogenetic constraint 

was necessary to account for the assumption of using a MRQAP to control for TLCA, 

which would only control for phylogenetic effects driven by patristic distance which may 

vary within and between different clades in the phylogeny. The constraint also ensured 

that null networks did not under-sample within-genera crosses, which account for the 

significantly high (pperm<0.0002) proportion (65%) of edges in the observed network but 

only 35% of all pairs of migratory warbler species. The biogeographic constraint 

conserved the high proportion of sympatric pairs of species in the observed network (42 

pairs, 89%) which is significantly higher (pperm<0.0002) than expected if 47 pairs of 

species were chosen at random, as only 55% of pairs of migratory warblers are sympatric. 

 

At this point, it could be argued that the null networks produced to determine the 

significance of traits correlated with TLCA would control for phylogeny as they 

contained the same number of within and between-genus crosses as the observed network 

and because of this the use of the MRQAP is unnecessary. However, the null networks 

produced were not conditionally uniform with respect to the MEV for TLCA as this 

would be difficult to constrain explicitly whilst controlling simultaneously for sympatry. 

The production of networks with high or low MEVs for TLCA would increase the 

variance of the test statistic under the null and affect hypothesis testing. A null network 

with a very low MEV for TLCA will tend to have very low plumage disparity and vice 

versa.  

 

Conserving the amount of crosses within and between genera, and those which were 

sympatric and allopatric, represented the null expectation that closely related species 
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which come into contact with each other were the most likely to hybridise. The null model 

had enough degrees of freedom such that no two identical null networks were produced 

in 4999 random replicates. The analysis was repeated on both the complete and reduced 

network using both our own dataset and that used in Willis et al. (2014). In each case, the 

analysis was repeated with the edges fixed between species that had a TLCA lower than 

the three given thresholds. 

 

The degree of warbler species observed to hybridise in the complete network was 

correlated with node attribute data to see if a species propensity to hybridise could be 

explained by clade size, breeding range area, habitat usage or sexual dimorphism. For 

each trait, a Spearman’s correlation coefficient (Spearman 1904) was taken as a test 

statistic, as the distribution of the degrees of species was non normal, exhibiting heavy 

right-hand skew. The correlation coefficient between degree and each trait in question 

was compared to a distribution of coefficients produced by using a null model. In this 

case, the null model kept the network structure fixed and randomised the attribute data 

assigned to each node. The analysis was repeated for traits which were found to be linked 

to hybridisation on the reduced network to test the robustness of the results to uncertainty 

in our observed crosses. 

 

4.4 Results 

 

The warbler hybrid network 

 

In figure 6, we have taken a closer look at the hybrid-network of wood warblers. Of the 

55 species that breed in North America, 38 interbreed with 47 recorded crosses between 

them – 32 of these occur between species of the same genera and 42 occur between 

sympatric species. Although the network of hybridisation events between migratory wood 

warbler species is sparse, containing only 3.2% of possible edges, the network forms one 

connected component. The component is dominated by species in the genus Setophaga 

(blue nodes in figure 6) which account for 22 of the species in the complex. All 5 

allopatric crosses occur between species of the same genus. Removing the 8 weakest 

edges in the network, which McCarthy defines as reports to which there is some 
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questionable evidence, leaves a large component containing 35 species excluding the 

Belding's yellowthroat 3 (Geothlypis beldingi); Hooded warbler 21 (Setophaga citrina); 

and Kirtland's warbler  23 (Setophaga kirtlandii) . 

 

 

 

Figure 6: Network depicting cases of interspecific hybridisation in the wood warblers. 

Nodes depict species as defined in Lovette (2010), labelled to represent the identity of 

each species. The size of the nodes represents the breeding range area of species and the 

colour represents genus as defined in Lovette (2010).  Edges are weighted based on the 

extent of the cross as defined in McCarthy (2006); solid lines represent crosses between 

sympatric species, dashed lines allopatric. Species labels: 1 American redstart (Setophaga 

ruticilla); 2 Bay-breasted warbler (Setophaga castanea);  3 Belding's 
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yellowthroat (Geothlypis beldingi); 4 Black-and-white warbler (Mniotilta varia); 5 

Black-throated blue warbler (Setophaga caerulescens); 6 Black-throated gray 

warbler (Setophaga nigrescens);  7 Black-throated green warbler (Setophaga virens); 8 

Blackburnian warbler (Setophaga fusca); 9 Blackpoll warbler (Setophaga striata); 10 

Blue-winged warbler (Vermivora cyanoptera); 11 Canada warbler (Cardellina 

canadensis); 12 Cape May warbler (Setophaga tigrina); 13 Cerulean warbler (Setophaga 

cerulea); 14 Common yellowthroat (Geothlypis trichas); 15 Connecticut 

warbler (Oporornis agilis); 16 Crescent-chested warbler (Oreothlypis superciliosa); 17 

Golden-winged warbler (Vermivora chrysoptera); 18 Grace's warbler (Setophaga 

graciae);  19 Gray-crowned yellowthroat (Geothlypis poliocephala);  20 Hermit 

warbler (Setophaga occidentalis); 21 Hooded warbler (Setophaga citrina); 22 Kentucky 

warbler (Geothlypis formosa); 23 Kirtland's warbler (Setophaga kirtlandii); 24 

MacGillivray's warbler (Geothlypis tolmiei); 25 Magnolia warbler (Setophaga 

magnolia); 26 Mourning warbler (Geothlypis philadelphia); 27 Nashville 

warbler (Oreothlypis ruficapilla); 28 Northern parula (Setophaga americana);29 

Northern waterthrush (Parkesia noveboracensis*); 30 Palm warbler (Setophaga 

palmarum); 31 Pine warbler (Setophaga pinus); 32 Prothonotary warbler (Protonotaria 

citrea); 33 Tennessee warbler (Oreothlypis peregrina); 34 Townsend's 

warbler (Setophaga townsendi); 35 Tropical parula (Setophaga pitiayumi); 36 Yellow-

rumped warbler (Setophaga coronata); 37 Yellow-throated warbler (Setophaga 

dominica);  38 Yellow warbler (Setophaga petechia). 

 

Factors associated with the degree of hybridising species 

 

Of the factors tested, breeding range provided the best explanation of why some species 

hybridise with many others and some with few. The degree of a species was correlated 

with the number of species its breeding range intersected (RS=0.506, p=0.0012). Species 

with larger breeding ranges also hybridised with a greater number of others (RS= 0.334, 

p=0.0240), unsurprising given that larger breeding ranges intersect a greater number of 

breeding ranges (RS=0.572, p<0.0002). There was also weak evidence that sexual 

selection measured through plumage dimorphism correlates with the number of 

hybridization events exhibited by a given species. The amount of dimorphism between 

the female and breeding male plumage of a given species may be weakly correlated with 

degree (RS=0.212, p=0.0946). However, these correlations are reliant on crosses with 

http://en.wikipedia.org/wiki/Northern_waterthrush#cite_note-Chesser-2
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weak supporting evidence; removing these 8 edges from the network reduces both the 

correlation between degree and the number of intersected breeding ranges RS=0.180, 

p=0.1598), breeding range area (RS=0.192, p=0.1394) and plumage dimorphism (RS= -

0.070, p=0.6646). There was no evidence to suggest that species which use a greater 

number of habitats to breed have higher degrees (RS=0.1269, p=0.9397), nor do those 

belonging to more speciose genera (RS=0.0341, p=0.8387). 

 

Assortativity in the hybrid network 

 

Hybridising species have a more recent common ancestor than expected if hybridisation 

was independent of phylogenetic history. The observed MEV for the TLCA of 

hybridising species in the complex was 0.315; this was significantly lower (p=0.0004) 

than expected given the null model, which produced networks with a median MEV of 

0.579. The network remained significantly assorted on the basis of TLCA when species 

more recently diverged than a given threshold (TLCA<0.05, 0.1, 0.15) were lumped 

through fixing their edges in each null network (MEV=0.315, p= 0.0074; MEV=0.315, 

p=0.0098; MEV=0.315, p=0.0226); this was to account for uncertainty in species 

definitions. Upon removing the weakest edges in the network, the analysis was repeated 

at each stated threshold. Without lumping, the hybrid network remained significantly 

assorted with an MEV of 0.315 and a p-value of 0.0018. The result was stable to having 

the weakest edges removed and the four pairs of species with a TLCA less than 0.05 

lumped (MEV=0.315, p=0.0280). Upon the removal of hybrid reports with questionable 

supporting evidence and lumping species which had recent ancestors more recent than 

0.1 and 0.15 lumped, the result became statistically non-significant (MEV=0.315, 

p=0.0564; MEV=0.315, p=0.0890) 

 

The observed hybrid network was also assorted such that hybridising species tended to 

be geographically close and had more similar plumage and song traits after controlling 

for phylogenetic history and preserving the number of within-genera, between-genera, 

sympatric and allopatric crosses in the null model. The results are summarised in Table1, 

complete results can be found in Table 2 and Table 3. Hybridising species had 

significantly closer breeding range centroids under all of the conditions tested. In the 
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complete network, hybridising species had consistently more similar song and plumage 

traits. The reduced network was significantly assorted on the basis of male plumage, but 

this was reduced to a trend when any species were lumped. If the observed network was 

taken as given, there was a trend for species that share more breeding range to hybridise 

as was there a trend for species that are closer longitudinally to hybridise, whereas 

latitudinal distance between breeding ranges was not significant (see Table 2). The 

observed network was not found to be assorted with respect to TLCA in this analysis 

given that the number of hybridising species within the same genera and between different 

genera was preserved in each null network. Hybridising species did not share significantly 

more habitat than expected given the null model.  
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Table 1: Assortativity of the warbler hybrid network  

 

 Complete  network Reduced network 

Threshold 0 0.05 0.1 0.15 0  0.05 0.1  0.15 

Overlap . . . * * * * * 

Male plumage ** * * * * * . . 

Female- 

plumage 

* * . * * . ns . 

Song ** ** ** *** ns ns ns * 

Longitudinal- 

distance 

ns ns . ns . . * . 

Latitudinal- 

distance 

ns ns ns ns ns ns ns ns 

Direct 

distance 

* * * * * * * * 

Habitat ns ns ns ns . ns ns ns 

TLCA ns ns ns ns ns ns ns ns 
 

 

Notes: Table 1 depicts the traits with which the warbler hybrid network was tested for 

assortativity on the complete and reduced hybrid network as defined in the methods. Tests 

were conducted on the complete network and the reduced network with species lumped 

with a TLCA lower than the stated threshold.  Statistical significance indicated by period 

and asterisk: ns p≥0.1; . p<0.1; * p<0.05; ** p<0.01; or *** p<0.001. 
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Table 2: P-values of the assortativity analyses depicted in Table 1. 

 

 Complete  network     Reduced network 

Threshold 0 0.05 0.1 0.15 0  0.05 0.1  0.15 

Overlap 0.0740 0.0702 0.0666 0.0434 0.0302 0.0232 0.0288 0.0152 

Male- 

plumage 

0.0044 0.0198 0.0284 0.0320 0.0112 0.0404 0.0558 0.0672 

Female- 

plumage 

0.0250 0.0376 0.0772 0.0358 0.0438 0.0822 0.1052 0.0524 

Song 0.0086 0.0026 0.0010 0.0006 0.2404 0.1466 0.1018 0.0374 

Longitudinal- 

distance 

0.1274 0.1124 0.0796 0.1048 0.0752 0.0536 0.0460 0.0532 

Latitudinal- 

distance 

0.3596 0.1970 0.1516 0.1568 0.2930 0.1366 0.1060 0.1268 

Direct 

distance 

0.0402 0.0186 0.0168 0.0232 0.0456 0.0204 0.0158 0.0180 

Habitat 0.1176 0.1406 0.1958 0.3414 0.0860 0.1112 0.1602 0.3290 

TLCA 0.3694 0.5552 0.7222 0.8252 0.8042 0.9174 0.9478 0.9790 
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Table 3: MEVs of the assortativity analyses depicted in Tables 1 and 2 

 Complete network Reduced network 

Overlap (%) 20.0 22.0 

Male- plumage -0.0381 -0.0458 

Female- plumage -0.0458 -0.0492 

Song -0.0775 -0.0445 

Longitudinal- distance (km) 574.49 540.27 

Latitudinal- distance (km) 1296.63 1296.63 

Direct distance (km) 1453.10 1453.10 

Habitat (%) 40 40 

TLCA 0.3150 0.3150 

 

 

Comparison with Willis et al. (2014) 

 

We obtained similar findings using the same American wood warbler hybridization 

dataset, consisting of only post-1980 hybrid reports, as that presented in Willis et al. 

(2014) using our analytical approach in place of Willis et al’s use of Mantel (Mantel 1967) 

and partial Mantel tests (Legendre & Legendre 2012). By lumping most recent evolved 

species (TLCA<0.05) and by assuming complete trust in the quality of the evidence for 

each cross, we find that hybridising species tend to have more similar song (MEV=-0.039, 

p=0.0644), but this trend was lost either when the reports with the most questionable 

evidence were removed (MEV=0.019, p=0.2628), or when none of the species in the 

dataset were lumped (MEV=-0.039, p=0.1066). Similar to our cross list, when weakly 

supported hybridisation events are omitted from the dataset, there is only a significant 

result upon lumping species with a TLCA less than 0.15, 7 of which are reported to 

hybridise (MEV =-0.019, p=0.0146). Full results using our methodologies on the list of 

hybrid crosses used in Willis et al. (2014) can be found in Tables 4 and 5. 
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Table 4: P-values of the assortativity analyses conducted on the hybridisation dataset in 

Willis et al. (2014) 

 

 Complete  network    Reduced network 

 

Threshold 0 0.05 0.1 0.15 0  0.05 0.1  0.15 

 

Overlap 0.5696 0.4004 0.3482 0.3480 0.6070 0.4482 0.3920 0.3882 

Male- 

plumage 

0.0396 0.1458 0.1572 0.2292 0.0982 0.3574 0.3914 0.4948 

Female- 

plumage 

0.1530 0.2672 0.3128 0.1992 0.1090 0.1984 0.2248 0.1276 

Song 0.1044 0.0614 0.0254 0.0058 0.2410 0.2720 0.0984 0.015 

Longitudinal- 

distance 

0.1396 0.1340 0.0956 0.1224 0.2032 0.2146 0.1620 0.2176 

Latitudinal- 

distance 

0.4088 0.2050 0.2082 0.1712 0.3666 0.1482 0.1678 0.1246 

Direct 

distance 

0.1248 0.0644 0.0706 0.0732 0.2176 0.1054 0.1424 0.1698 

Habitat 0.2926 0.3824 0.5466 0.7448 0.3210 0.4328 0.6146 0.8478 

TLCA 0.0002 0.0018 0.0046 0.0470 0.0002 0.0008 0.0010 0.0590 
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Table 5: MEVs of the assortativity analyses (Table 4) conducted on the hybridisation 

dataset in Willis et al. (2014) 

 Complete Network Reduced Network 

Overlap (%) 15.5 16.0 

Male- plumage -0.04361 -0.0482 

Female- plumage -0.0287 -0.0387 

Song -0.0390 -0.0194 

Longitudinal- distance  (km) 405.29 412.20 

Latitudinal- distance (km) 1251.02 1296.63 

Direct distance (km) 1358.63 1494.88 

Habitat (%) 50 50 

TLCA 0.2677 0.2677 

 

 

4.5 Discussion 

 

Interspecific hybridisation is an important evolutionary process with profound 

implications to biodiversity, but to better understand its consequences we also need to 

understand its causes. If we know which traits makes species prone to hybridise, then 

perhaps we can learn more about the evolutionary trajectories of those traits early in the 

speciation process. Perhaps the traits that show the most disparity in a family or order of 

species are those which bear the closest links to hybridisation in their evolutionary 

histories. Finding definitive causes of natural hybridisation has remained a challenge due 

to the inherent difficulties in performing manipulative experimentation. Instead we are 

left in the realms of comparative biology to gain insight, further complicated by 

incomplete hybrid data-sets, interlinked hybridisation events in recently diverged taxa 

and species which are linked through shared ancestry.  Studies have often been able to 

tackle one or two of these issues at a time; we have presented an approach which allows 

all three to be addressed simultaneously, opening up some of the richest hybrid data-sets 

we currently have; such as those documented in McCarthy (2006). 

 

Identifying pairwise correlates of hybridisation requires large datasets of explanatory 

variables. Every pair of species needs to be compared so that appropriate null or 
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permutated datasets can be constructed. Automating some of the data generating process 

serves both to save time and reduce bias. Martin et al. (2015) required multiple human 

observers to score plumage similarity between pairs of New World Warblers. Our  novel 

approach requires one human observer to quantify the coloration of plumage patches of 

individual species using a quantitative approach based around the Munsell Colour system 

(Munsell 1912; Long and Luke 2011). The species are then compared computationally; 

producing quantitative measures of similarity and reducing the number of human 

assessments by (n-1)/2 where n is the number of species in the study system. Although 

direct computational measures of plumage may provide increased accuracy at measuring 

colour saturation, hue or brightness than a human observer, finding standardised photos 

for multiple species can prove difficult; our approach only requires illustrations. Studies 

show that human observations correlate highly with spectrophotometer readings, and that 

although there is individual variation in human vision, our colour discrimination abilities 

are usually superior to technology (Bowers 1956, Armenta et al. 2008). 

 

Using a network-based approach, we have illustrated for the first time, the interconnected 

nature of hybridisation between species providing new insight into how studies of 

hybridisation in evolutionarily young collections of species can be structured. We have 

demonstrated that large network components are an expected feature in taxa when every 

species hybridises, on average, with at least one other; the significance of hybrid networks 

may hinge on how freely genetic information can flow through them. Undirected 

networks may however be misleading when it comes to representing genetic flow through 

a hybrid network; mtDNA analysis shows that, in the blue-winged/golden-winged 

warbler cross, blue-winged warbler genes are moving into golden-winged populations, 

but not vice versa (Gill 1994). As more molecular data becomes available, it may be 

possible to make and analyse these directed networks using network modelling 

approaches, such as those outlined in Snijders (2011). Regardless, networks may provide 

a useful framework with which to study hybridisation in systems where it is frequent; 

dyadic approaches have often required the removal of large quantities of data to maintain 

the assumption that one dyad is independent of another. In the wood warblers, we have 

started to identify the factors that may dictate or at least correlate with structural aspects 

of the hybrid network. In doing so, we have found some behavioural and ecological 

factors which may promote hybridisation between a pair of species and cause some 

species to hybridise more than others.   
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Mallet (2005) found that evolutionarily young species were more likely to hybridise, not 

having had enough time to develop complete reproductive barriers (see Seehausen et al., 

2014). Our study supports Mallet as the warbler hybrid-network was assorted such that 

hybridising species had recent TLCAs on the whole. Mallet made a general inference 

about the relationship between ancestry and hybridisation across many taxa, whereas our 

finding is taxon-specific. We have been able to sample many cases from a recently 

radiated family of species (Jetz et al. 2012) and show that even within such an 

evolutionarily young collection of species, there is still a further tendency for 

hybridisation to occur between the most recently diverged species within.  

 

The warbler hybrid network was assorted by breeding range. Hybridising species were 

close together and species with larger breeding ranges also had higher degrees. This may 

be unsurprising as two individuals of different species have to come into contact to mate, 

which is more likely if they are geographically close. However, the large number of 

sympatric hybrid pairs in the hybrid network may be surprising given the belief that 

sympatric species are supposed have more developed isolation mechanisms than their 

allopatric counterparts as result of the “Wallace effect” (Sawyer and Hartl 1981; Gillespie 

1991). Given the observed northward shift in the distribution of North American birds 

(La Sorte and Thomson 2007), we might expect previously allopatric species to become 

sympatric and a subsequent increase in the incidence of hybridisation. An increase in the 

incidence in hybridisation in the warblers is supported by the forecast that the population 

of warbler species are likely to decline in the future (Strode, 2003) and species pairs where 

one is endangered have been found to produce more hybrids in other taxa (Randler 2006). 

Rhymer & Simberloff (2012) highlight that hybridisation can pose a credible threat of 

extinction to rare species. 

 

Willis (2013) made a call for a greater understanding of the behavioural factors associated 

with hybridisation to better understand the process of diversification and inform 

conservation action. Behavioural factors associated with mate choice can be taxa-specific. 

In the Parulidae family, song and breeding plumage is important for intra-species mate 

choice ( Weatherhead and Shutler, 1990; Taff et al. 2012; Byers 2007), whereas the same 
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may not hold true in other taxa. In the Galliformes, plumage and visual displays may be 

important with intra-mate choices ( Madge et al. 2002; Kolm et al. 2007; Lislevand et al. 

2009; Kimball et al. 2011). The network-based approach has allowed us to study the 

behavioural factors associated with hybridisation in warblers specifically. We found that 

species that hybridise sing similar songs and have more similar male plumage after 

accounting for shared ancestry. Furthermore, the trend for species with greater plumage 

dimorphism, a proxy for sexual selection, to hybridise more is also likely to be system 

specific, as we see degree variation in taxa such as the Accipitriformes, which often show 

little, if any plumage dimorphism. Further work is needed to clarify if species with greater 

levels of sexual selection do indeed hybridise more, using different systems and different 

measures as a proxy for sexual selection in birds.   

 

There are multiple pitfalls associated with analysing hybrid networks. Inference can hinge 

on how we choose and define species, which could be a contentious issue when analysing 

crosses between recently diverged species. The likelihood of missing edges in network 

data restricts us from performing certain analyses and looking at network measures that 

are sensitive to the addition of edges (see section 2.5 or James et al. 2009). The qualitative 

weightings of edges restrict us from taking more informative, weighted network measures 

and asking detailed questions about the factors that affect the extent of hybridisation 

between species. Further, some of these crosses are so rare that some may argue that they 

have no evolutionary value; many of our findings currently depend on trusting rare 

crosses with questionable evidence. The warbler hybrid network was tested in scenarios 

where recently diverged species were lumped and the least reliable edges in the network 

removed. When numerous species in the network are lumped together and weak edges 

are removed, many of the findings of this study became statistically non-significant. 

Further, although we have focussed our analyses on the presence rather than absence of 

edges, the results have not been tested against the simulated inclusion of missed or newly 

reported hybrids nor have they been tested against situations where the species needed to 

be split instead of lumped. With the increasing availability of genomic data, it will be 

easier to identify and quantitatively weight hybridisation through genetic introgression 

and define nodes more accurately.  
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The approach of Willis et al. (2014) could further our understanding of the links between 

behavioural and ecological factors and hybridisation. However, the methods they used 

have requires the absence of evidence to be equivalent to evidence of absence, which is a 

questionable assumption for less observed pairs species. Through comparing our results 

to that of a previous study attempting to address some of the same questions (Willis et al. 

2014), we suggest that their assertion that song similarity is linked to hybridisation was 

likely incorrect given their data (see Table 4). There is a temptation to use analytical 

approaches which have been developed for high quality data-sets beyond that which is 

currently available across multiple species pairs. We chose to avoid approaches which 

bear undue emphasis on the absence of hybrid reports until molecular measures of 

hybridisation are available for all species in a given group. Treating absent reports as 

“true” negatives could potentially bias results given the nature of report data. We applied 

our analytical methods (see: data analysis), which were weighted solely on the presence 

of hybrid reports, to the same hybridisation dataset as used in Willis et al. (2014). A 

parallel can be observed in the study of animal social networks, where the field has 

historically had to cope with data with similar issues as those observed in hybrid report 

data. Akin to the increasing use of molecular methods to improve hybridization datasets, 

the field of animal social behaviour is undergoing a revolution in the quality of data 

available through the adoption of remote-sensing technologies (Krause et al. 2013). The 

change in data quality is being reflected in the choice of analyses often employed in such 

studies; providing a hotbed of analytical methods for future studies of hybrid networks.  

 

Our conservative approach of choosing to ignore all hybrid pairs is not without its own 

fault. We assume that absent hybrid reports are equivalent to absence of evidence, 

whereas we might more logically assume that there has been sampling effort directed at 

observing most if not all hybrid pairs. There is a centre ground between the study 

presented in this chapter and that of Willis et al. (2014) where a proxy of sampling effort 

for hybrids can be constructed from sightings data on each species. For instance, if two 

warbler species both have a very incidence of sightings, then we might assume that there 

is also a high sampling effort for hybrids between those two species. Conversely, if two 

species are seldomly sighted, then we might assume the sampling effort for hybrids of 

those two species is lower. Entering that sampling index into a logistic model (such as the 

netlogit logistic MRQAP by Butts 2014) along with other factors of interest will help 
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control for variable sampling whilst evaluating the contribution of biologically interesting 

factors.  

 

The novelty of the work presented in this chapter is that it is the first study to implicitly 

link male plumage traits to hybridisation across a whole family of species. In doing so it 

builds on a growing body of literature (such as Martin 2015) which builds on the notion 

of hybridisation shaping plumage evolution in some taxa. Secondly, the study is the first 

to directly test the biology behind hybrid network structure, perhaps with trivial results, 

finding that the most widely distributed species are also those which tend to hybridise 

with the most others- acting as hub individuals in the hybrid network. Thirdly, our study 

is the first to take a network modelling approaches, the MRQAP, and use it to partial out 

phylogenetic signal from explanatory variables linked to ancestry, allowing network 

assortment on the basis plumage and song traits to be evaluated more or less 

independently of ancestry using NMBHT. Using MRQAPs to partial out nuisance signals 

from variables are now also being used in animal social network studies (see James et al. 

2015). Using a tailored null model in combination with the MRQAP has allowed the 

phylogenetic signal to be removed from associated variables not just through partialling 

out the signal explained by patristic distance, but also accounting for phylogenetic 

structure through the null model used in NMBHT. Overall, we have presented a new 

approach to model networks where we can be confident in the quality of our explanatory 

variables, but have to explain a response variable (the observed network) which may for 

a number of reasons be unsuitable for a generic network modelling approach. 

 

To conclude, taking a network-based approach to hybridisation allows multiple cases of 

hybridisation to be compared simultaneously in a biologically distinct group of species. 

The method has yielded significant findings which we may interpret as indications given 

the quality of our hybrid-data, helping further our understanding of the formation and 

structure of hybrid networks, which may be viewed as a form of species complex in light 

of their connectivity. The details of all reported avian crosses are available in McCarthy 

(2006), which can be used as source to create hybrid networks. Data with which to 

compare hybrid networks can often be found freely available to download from various 

sources (see methods). Both R and the associated packages used to create and analyse the 

networks in this study are freely available from http://www.r-project.org/.There are many 
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opportunities to expand and develop the approach presented in this study. There are many 

other avian systems where hybridisation between species is likely to form complexes. A 

fast route to identifying these systems is to look for those where there are at least as many 

hybridisation events as species. Further studies should address sampling effort to avoid 

both the limitations of our own study and that of Willis et al. (2014).  
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III. Multivariate analysis of remotely sensed network data 

 

5. Inter-nest drifting in Paper wasps Polistes canadensis 

 

5.1 Abstract 

 

Stable social groups usually consist of families. However, recent studies have revealed 

higher-level social structure, with interactions between family groups across different 

levels of social organisation. These interactions seemingly challenge our notions of kin 

selection as a driver of eusociality as workers appear to help non-natal nests over their 

own natal nest. In this chapter, we use automated radio-tagging data and social network 

analyses to uncover the adaptive value of interactions across levels of social organisation 

in the primitively eusocial paper wasp Polistes canadensis. We detected three levels of 

social organisation (nest, aggregation, community) which exchange ‘drifter’ individuals 

within and between levels. Using a variation of the MRQAP, stratified to account for 

study design, networks of drifter movements were explained by distance between nests, 

group size of donor nests and the worker to brood ratios on both donor and recipient nests. 

Drifters responded to experimental manipulation of the worker to brood ratios on natal 

nests, by drifting preferentially to smaller sized nests. These findings suggest an adaptive 

role for multi-level social interactions. 

 

5.2 Introduction 

 

The abundance of inter-nest drifting in paper wasps Polistes canadensis poses a major 

challenge to kin-selection, the predominant theory used to explain many aspects of social 

evolution, such as eusociality. In a leading study of wild populations of paper-wasps, 

“drifting” of workers from natal to non-natal nests was detected in 94% of nests 

monitored, with 56% of female paper-wasps identified to drift (Sumner et al. 2007), a 

thirty-fold increase on previous reports of drifting in a natural eusocial insect population 

(Paar et al. 2002). Under kin-selection theory, workers would be expected to only help 

their natal colony, receiving indirect fitness benefits through helping to raise closely 
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related brood. Understanding the mechanisms which underpin inter-nest drifting can thus 

reveal more about both the evolution and social organisation of eusocial societies. 

 

Sociality in animals can be described as the tendency for individuals in animal 

populations to associate into social groups and form cooperative societies (Croft et al. 

2008), regarded by Maynard Smith & Szathmary (1995) as one of the major evolutionary 

transitions of life. Eusociality is a highly organised form of sociality where some 

individuals in a cooperative society forfeit their direct reproductive success to help raise 

the reproductive success of closely related kin. Eusocial societies are also defined by: the 

use of a common nest site; the presence of parents, offspring and overlapping adult 

generations in the same nest; cooperative care of young; the reproductive division of 

labour, and a caste system – where individuals are specialised into groups which perform 

certain roles in the colony (Wilson 1971; Crespi & Yanega 1995; Wilson & Hölldobler 

2005; Nowak et al. 2010).  

 

Eusociality is an evolutionarily interesting phenomenon, as many of the individuals 

involved in eusocial societies do not pass on their genes directly through the generation 

of offspring. Given this, one might ask how the genes encoding worker-like behaviours 

could spread across populations given the apparent costs to the individual. There are a 

number of hypotheses which have been proposed explaining how a system like 

eusociality could evolve, many of which are mutually compatible. All social societies are 

also affected by the benefits and costs associated with group-living. Advantages may 

include reduced predation through mobilised defence strategies and faster predator 

detection, what Hamilton refers to as the “selfish herd” as each individual has lower 

mortality risk (Hamilton 1971). Information sharing may lead to increased foraging 

efficacy- Many eusocial organisms have strategic advantage when acquiring food in 

groups (Clark & Mangel 1986; Valone 1989). In areas where predation is high or 

resources are hard to come by, there may be more merit in staying in the natal nest with 

the chance of inheriting it, than risking dispersal (e.g. Lovegrove 1991). These benefits 

however must offset some common costs of living in groups such as increased risk of 

disease and parasites, and easier detection of the group by predators (see Krause & Ruxton 

2002). However, group-living alone does not explain the occurrence of eusociality within 

a group (see Crespi 1994). 
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The widespread incidence of eusociality in Hymenoptera, which includes paper wasps, 

may be attributed to a haplodiploid sex determination system. In Hymenoptera, males are 

haploid, having one copy of each chromosome, and arise from the development of 

unfertilised eggs. In contrast, females are diploid having chromosome pairs, like most 

eukaryotic organisms developing from fertilised eggs. The consequences of a 

haplodiploid sex determination system is that sisters are very closely related to one 

another, always containing the same set of chromosomes from the father and having a 

fifty percent chance of receiving the same complementary chromosomes from the mother. 

The haplodiploidy hypothesis proposes that the high relatedness amongst full 

haplodiploid sisters is responsible for the frequency of evolution of eusocial behaviour in 

hymenopterans (Foster et al. 2006). In kin selection, genes may increase in frequency 

when Br>C , where r is the genetic relatedness of the recipient to the actor, B the 

reproductive benefit gained by the recipient of the altruistic act is greater than the 

reproductive cost C to the individual performing the act (Hamilton 1964). The high 

relatedness between haplodiploid sisters facilitates the adoption of behaviours more 

costly to the individual. However, the haplodiploid hypothesis alone has been shown not 

to be in itself sufficient to explain the occurrence of eusociality given the presence of 

eusociality in non-haplodiploid species (Wilson & Hölldobler 2005; Nowak et al. 2010). 

 

The concept of inclusive fitness is a popular, yet debated (see Nowak et al. 2010), 

explanation of how eusociality can exist as a strategy (Bourke 2011). Inclusive fitness, 

the defining feature of kin selection theory, states that as related individuals share genes, 

acts carried out by one individual to increase the fitness of a related individual will lead 

to more of that individual’s genes being passed into the next generation, even if it does 

not breed itself. This can be more formally described as Hamilton’s rule (Hamilton 1964), 

as outlined above. Increasing the relatedness between individuals in a colony may 

facilitate the development of eusociality, allowing more costly acts in terms of an 

individual’s direct fitness to aid the reproductive success of closely related kin. In 

hymenoptera, haplodiploidy facilitates higher relatedness than observed in many other 

species. For both haplodiploid and diploid organisms, if the queen is monogamous for the 

duration of her lifetime, her progeny will be equally related to each other as well as any 

offspring they have, which means that natural selection will favour strategies to raise 

siblings if they are more efficient than those directed at raising offspring (Boomsma 2007; 

https://en.wikipedia.org/wiki/Altruistic


108 
 

Boomsma 2009). In eusocial hymenoptera, lifelong monogamy is a ubiquitous ancestral 

feature (Hughs et al. 2008).  

 

The observation of nest-drifting, where workers visit nests other than their natal nest, 

challenges many of the notions associated with eusociality. Firstly, if we consider that 

eusocial organisms often live in patchy resource environments, with often hostile 

conditions outside of the nest, there is substantial risk associated with leaving the nest 

(see Perrin & Lehmann 2001). Eusocial thrips, aphids, shrimps, mole-rats, beetles and 

some ant and termite species all manage to harvest many of the resources required for 

reproduction within the confines of the natal nest. Individuals who do leave these nests 

to found new colonies may receive huge fitness benefits which may offset some of the 

risk of dispersal. Yet drifting behaviour has been detected in social wasps, such as vespine 

wasps (Akre et al. 1976), stenogastrine wasps (Cervo et al. 1996) and polistine wasps 

(e.g. Sumner et al. 2007); honeybees (Paar et al. 2002; Chapman et al. 2010; Neumann et 

al. 2000), sweat bees (Ulrich et al. 2009), and bumblebees ( Birmingham et al. 2004; 

Lopez-Vaamonde et al. 2004; Takahashi et al. 2010; O’Connor et al. 2013; Zanette et al. 

2014). In all of the examples above, individuals leave the nest to forage, which may 

provide some indication that these environments are less hostile relative to the adaptions 

of these individuals. However, it does not explain why individuals drift to other nests, 

apparently having no fitness benefits for themselves or their close kin. Visiting other nests 

may also the risk of bringing parasites and disease back to the natal nest (see Schmid-

Hempel (1995) for review on the parasites of social insects). Without apparent fitness 

payoffs to kin, the presence of nest drifting would contradict inclusive fitness theory, as 

it carries potential costs to the individual. Further, under group-selection, groups with nest 

drifters would be less efficient than those whose workers performed tasks solely for the 

good of the nest (Nowak et al. 2010).  

 

In some cases, inter-nest drifting has been attributed to discrimination errors by the 

individuals involved. In Apis and Bombus bee species drifting has been attributed to social 

parasitism, where workers lay eggs in a non-natal nest but do not help with raising young 

or have any positive role in the colony. The parasitic offspring may take advantage of 

colonies without a queen or reproductively out-compete resident workers (Lopez-

vaamonde et al. 2004; Nanork et al. 2005; Chapman et al. 2009; Takahashi et al. 2010). 
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However, in some species the payoffs of inter-nest drifting are unclear; this includes 

paper-wasps (Birmingham et al. 2004; Sumner et al. 2007; Blacher et al. 2013). Other 

explanations of nest drifting in primitively eusocial insects, such as Polistes, where all 

females have the potential to lay eggs, include attempts to usurp a queen or queue as what 

is known as a “reproductive hopeful” (Nonacs & Reeve 1995). However, in our focal 

species, P.canadensis, females that engage in nest drifting behaviour, were all found to 

be reproductively inactive. It was suggested that workers appeared to gain indirect fitness 

benefits by helping on several related colonies in a viscous population structure, being 

observed to perform helping behaviours such as delivering food (Sumner et al. 2007). 

This structure is created by nest-founding through a process of budding or fission, where 

a reproductively mature female moves a short distance from a natal nest to found a new 

nest, often in abandoned buildings or near human settlement (Strassmann 1981; Reeve 

1981; Lengronne et al. 2012), often it is not clear whether these high-level social 

interactions are a general, persistent phenomenon, and whether they are driven by 

adaptive traits, such as fitness payoffs. 

 

In Sumner et al. (2007), to determine whether or not drifting in paper-wasps was due to 

discrimination errors, a hypotheses was constructed that stated that accidental drifting 

would result in a relationship between drifting and the geographic distance between nests, 

but not between drifting and the relatedness between nests. Drifting wasps would 

supposedly be most likely to mistake a nest close to their natal nest as their own. If drifting 

was not due to discrimination errors, there would be a relationship between drifting and 

the relatedness between drifters and the nest they drifted to. Sumner et al. found that 

drifters were both more likely to visit nearby nests (Mantel test, r = −0.442, p < 0.001) 

and that drifters were more closely related to the adults on nests that they visited than 

those on nests they did not visit (t = 3.39, p = 0.005). However, the study also reported 

that wasps on neighbouring nests tend to be closely related (Mantel test, r = −0.138, p < 

0.05); known as a viscous population structure. Given that no control for distance was 

made when testing relatedness in this study, and the identified correlation between 

distance and relatedness, it is difficult to accept the paper’s conclusions that drifting is 

not due to discrimination errors. The signal that wasps are drifting to nests with which 

they are closely related could just be a by-product of the relationship between the distance 

and relatedness between nests. Instead the viscous population structure selecting for 

drifting behaviour through indirect fitness, it may just weaken the selection on accurate 
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nest recognition through reducing the costs. Therefore, a new study was needed to further 

probe the mechanisms which promote drifting between nests to try and discern whether 

drifting in wasps is indeed adaptive. If drifting was adaptive, we would expect to see 

consistent and non-random patterns of drifting, with drifting preferentially take place 

from nests with the smallest cost of drifting to those that would receive the largest benefit. 

Further, we would expect to see wasps drift to nests with which they were closely related. 

 

5.3 Methods 

 

Monitoring nest drifting using RFID 

 

To investigate the factors which influence patterns of drifting in paper wasps, inter-nest 

drifting was monitored in a different site consisting of four abandoned buildings near 

Colón, Panama (insert 2 a) in both 2009 and 2010. This data was combined with drifting 

data collected in a separate field site in 2005 by Sumner et al. (2007). Each of the 2005 

and 2009/2010 field sites consisted of a number of abandoned buildings which contained 

numerous paper-wasp nests. These collections of buildings were located far away from 

other similar buildings (see insert 2), which provided a means to which to set boundaries 

for the study population and the subsequent drifting networks produced. 
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Insert 2: Two separate field sites (a) the 2009 and 2010 field site situated near Punta 

Galeta near Colón (9°24'08.28''N, 79°52'19.41''W) and (b) the 20056 field site situated 

near Panama city (8°54’17.42”N, 79°34’35.41”W), Panama. These images were acquired 

from Lengronne (2013) who modified them from images taken from Google Earth. 

 

In order to remotely monitor drifting between paper-wasp nests, individuals were 

captured and fitted with passive integrative transponder (PIT) tags. PIT tags are 

cylindrically shaped, small (between 8-32 mm long, and 1-4 mm in diameter) tags which 

act as a unique identifier for an individual. Originally developed to track fish (see Gibbons 

& Andrews 2004), the size of PIT tags makes them an attractive option for tracking large 

insects such as paper-wasps. The small size is possible because PIT tags are dormant until 

activated and therefore do not require any internal source of power throughout their 

lifespan. To activate the tag, a low-frequency radio signal is emitted by a scanning device 

or an antenna that generates a close-range electromagnetic field (Smyth & Nebel 2013). 

Upon encountering this field, the tag sends a unique alpha-numeric code back to the 

reader (Keck 1994). The readers attached to antennae have an internal clock to log the 

date and time that different PIT tags (GiS TS-Q5Bee Tags) come within a given proximity 
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of an antenna. PIT tags were mounted on the backs of adult paper-wasps using an 

adhesive as shown in insert 3. 

 

 

Insert 3: A paper wasp with a PIT tag mounted on the back of the abdomen. This photo 

is taken from Lengronne (2013). 

 

1599 individuals from 93 nests were tagged across the three studies. Given that paper-

wasps have no fixed nest entrances due to the lack of a nest-envelope, the nests were 

partially enclosed in acetate sheeting, leaving one open face where the antennae of a 

reader were placed (insert 4). This step was taken to ensure that the antennae of readers 

could efficiently detect drifters, with 80% of the  remaining entrance within range of 

detection (see Lengronne et al. 2012). Given that wasps could be detected upon entering 

or exiting a non-natal nest, 80% coverage would result in an estimated 96% chance of 

detection (using binomial probability). There was no reason to believe that the presence 

of missing drifting events would bias our analyses as the coverage was more or less 

constant across nests. Continuous automated RFID monitoring was conducted from 8am 

to 6pm (the main foraging period) for each day of each study period. 
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Insert 4: A paper wasp nest with two copper antennae placed over the nest entrance. This 

image is taken from Lengronne (2013). 

 

In 2005, all 33 nests across 3 buildings in which nests were present were monitored using 

RFID simultaneously. In 2009, there were substantial periods of overlapping monitoring 

(insert 5- black coloured blocks), with the potential presence for previously tagged wasps 

to drift from nests in previously monitored buildings to nests currently being monitored 

(insert 5- indicated by grey coloured blocks. This is because pit tags were not actively 

removed from individuals once the study period had ended. In 2010, nests from different 

buildings were observed at different times with no overlap, thus drifting between 

buildings was impossible to detect given the study design. 
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Insert 5: Monitoring periods in the 2009 study. This image is taken from Lengronne 

(2013) 

 

There are some additional issues with sampling drifting interactions. The orientation of 

entrances may favour drifting to and from certain nests, perhaps. Upon tagging 

individuals, the nest the individual is present on at the time of tagging is assumed to be 

its natal nest. However, wasps may be tagged whilst at a non-natal nests; as such the 

individual may then be recorded to have a very high number of supposed drifting events 

with a nest that is in fact its true natal nest. Further, paper-wasps were observed to sit on 

the antennae in front of nests, providing multiple readings. Given this, the analyses of 

drifting data were conducted using networks where the number of unique drifting wasps 

was used to weight edges as opposed to the raw number of drifting logs recorded. 

However, for the purposes of network visualisation, the raw number of drifting events 

has been used.  
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Visualising drifting networks 

 

To create visualisations of networks depicting drifting between nests, the “igraph” 

package (Csardi & Nepusz 2006) in R (R Core Team 2013) was used. Nests formed the 

nodes of the networks and the edges represented the presence of drifting wasps recorded 

between them. Edges were directed with arrows pointing from the donor to the recipient 

nest and weighted based on the number of times drifting wasps were detected. Figure 7 

shows the drifting networks of both the 2005 and 2009 populations where there was 

simultaneous or overlapping monitoring of nests between different buildings. 

 

Figure 7: Networks depicting the number of drifting events recorded between nests in 

2005 (A) and 2009 (B). Nodes represent nests and the edges (connecting lines) between 

them represent drifting between nests. Nodes are shaded to reflect the building the nest 

was in and edges were weighted to represent the number of drifting events recorded.  
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Drifting partitioned by native building 

 

The visually striking aspect of the 2005 drifting network, where nests from different 

buildings were monitored simultaneously (figure 7 A), is that it is partitioned into 

communities on the basis of the abandoned buildings present at the study site. To test if 

this partitioning was statistically significant, a mixing matrix was created from a binarised 

version (whether there was drifting from nest A to nest B) of the network; this contained 

the relative proportion of edges within each building and between each pair of buildings. 

From the mixing matrix, a Newman’s assortativity coefficient r was calculated (Newman 

2003) using the R package “igraph” (Csardi & Nepusz 2006); this provided a measure of 

the amount of within-building drifting relative to between-building drifting. 

 

The statistical significance of r was determined by jackknifing the network as described 

in (M. E. J. Newman 2003). Jackknifing provided a variance from which the standard 

deviation was derived. Significance was inferred through how many standard deviations 

the observed r value was away from 0 - the value expected if there was no partitioning of 

the network on the basis of building. If the observed value was greater than 2 standard 

deviations away from 0, it would be significant at a 95% confidence level. This test was 

also conducted on the 2009 data (figure 7 B) where nests from different buildings were 

not monitored simultaneously, but had substantial periods of overlapping monitoring. For 

the 2010 data, it was not possible to examine between- aggregation drifting since both 

2010SF and 2010MH were monitored at 2 consecutive, but non-overlapping, time 

periods. 

 

In contrast to 2005, nests were not monitored simultaneously in 2009. Given this, we also 

used a null model to check our results were robust to the fact that drifting in certain 

directions could not occur between buildings that did not have overlapping monitoring 

periods. We compared the trace of the directed mixing matrix Tr(e) (proportion of within-

building drifting) to an ensemble of traces under the null. In each of 4999 null networks, 

the out-degree or number of edges leaving each nest was fixed, but the destinations of 

those edges were randomised within given constraints. These constraints were that edges 
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can go both ways between C1 and C2 nests and C3 and C4 as these had periods of 

simultaneous monitoring. However, edges were only allowed to go from C1 or C2 to C3 

or C4, as C3 and C4 were monitored later in time than C1 and C2 with no overlap, but 

wasps were still present with RFID tags from C1 and C2. C4 was monitored for a day 

when tagged wasps from C1 could have been present; given this, the large distance 

between these aggregations (750m) and the absence of any observed drifters between 

these aggregations, no drifting events were randomly allocated between these 

aggregations. A p-value was calculated by examining the proportion of null networks 

with a trace higher than the observed network. 

 

Social differentiation 

 

Heterogeneous and consistent drifting patterns are the expected features of drifting 

networks which have underlying factors which promote the occurrence of drifting as 

opposed to it being a random process. Social differentiation refers to one edge-weight 

based measure of how different a given network is compared to what is expected by 

chance. 

 

If drifting within each aggregation was a random process, the resulting networks would 

be homogeneous, with each nest typically receiving an equal share of drifting wasps 

leaving each donor nest. We examined how heterogeneous the drifting networks were in 

each aggregation from the 2005, 2009 and 2010 studies though comparison with networks 

generated by a null model. For this analysis, edges were weighted representing the 

number of unique drifting wasps between nests. In the null model, the total number of 

wasps “donated” by each nest (the out-strength) was preserved, but the recipient nest for 

each individual wasp was randomised. Out-strength was preserved to control for the 

tendency of more populous nests to send more drifters (RS=0.33, pperm=0.0008). For the 

observed and null networks, a measure of social differentiation, S, was taken from 

Whitehead (2008) as a measure of heterogeneity:  
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𝑆 =
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Where Oij is the observed number of unique wasps that drifted from nest i to nest j, Eij is 

the expected number if the network was homogeneous, and N is the total number of nests 

in the aggregation. 

 

Under the null hypothesis, the expected value E for each edge would be the out-strength 

of the donor nest divided by the number of recipient nests in the aggregation. S therefore 

measures how heterogeneous the network is through taking a sum of squares of the 

difference between the observed numbers of unique drifting wasps from one nest to 

another and the expected numbers if drifting patterns are homogeneous. Given that S sums 

the raw differences between the observed and expected number of wasps observed to drift 

in each dyad, aggregations with many recorded drifting events will tend to have higher 

values of S compared to those aggregations where drifting is less common. Therefore, S 

should not be used to compare how socially differentiated two or more aggregations are 

relative to each other, only how differentiated an aggregation is relative to its reference 

distribution which is generated using a null model where the incidence of drifting is 

preserved. If the observed aggregation produced a value of S greater than 95% of the 

values of S in the reference distribution (generated by measuring S from null networks), 

the observed network was deemed to be significantly socially differentiated. The 

observed network was always counted as a network which could have arisen as result of 

the null model, which meant that p-values could never be zero.  

 

Temporal consistency of drifting patterns 

 

Consistent patterns of drifting between nests over time would be indicative of stable 

factors that regulate drifting and infer that the snapshots of these systems that we have 

observed are generalisable. To identify if there were fewer transient and a greater number 

of consistent or recurring edges than we would expect if wasps drifted without preference, 

the number of edges that were present between the same nests for greater or equal to one, 
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two, three and all four of the observation periods were measured. Data collected from the 

2005 population was used, which consisted of two main nest aggregations (2005S1, 

2005S2) monitored simultaneously for drifting over four consecutive periods of five days, 

although the spatial structure within aggregations may still shape the non-randomness of 

the system. 

 

The significance of the number of edges recorded at each of four consistency thresholds 

was determined via comparison with an ensemble of networks generated by a null model. 

For each observation period, edges were randomly allocated between nests, preserving 

the total number of edges found within and between aggregations, whilst also preserving 

the out-degree of each nest. The number of transient and recurring edges in each resulting 

null network was measured. This process was repeated many times to generate a 

distribution of null frequencies for each consistency threshold with which the observed 

figures could be assessed for significance. A p-value was derived based on the proportion 

of null networks which had an equal or more extreme number of edges at the given 

threshold than the observed network. 

 

Factors which might drive patterns of drifting 

 

Given the seemingly non-random and consistent nature of drifting between P.canadensis 

nests, the next step taken was to determine if drifting could be modelled in terms of 

relevant explanatory factors, in particular those pertaining to nest need for help. 

 

In addition to the native building of nests, the size of individual nests combined with the 

distance, relatedness, and difference in worker-brood ratios between nests were suspected 

to influence patterns of drifting between nests. If drifting was an adaptive behaviour, 

drifters may direct their help not only to close nests, with which they are also related, but 

also those with the greatest need for help, having fewer workers to look after brood or 

being smaller in size and more liable to perturbation events. 
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Censuses of the numbers of wasps were performed every 3 days at night to estimate the 

group size (number of adults) and number of brood; these were used to provide a weekly 

estimate of nest size and worker to brood ratio for each nest in each aggregation. Wasps 

from both sites (Panamá City and Colón) were collected at the end of the experiment for 

molecular analyses (except for 2010). Samples from 2009 were genotyped for estimating 

relatedness using 7 specific markers (Pcan01, Pcan05, Pcan09, Pcan15, Pcan16, Pcan23 

and Pcan24 (Lengronne et al. 2012)). Relatedness was calculated by Lengronne using the 

program RELATEDNESS 5.0.8 and weighting nests equally (Goodnight & Queller 

1999). Standard errors were estimated by jackknifing over loci. Relatedness data for 2005 

dataset was obtained from (Krieger et al. 2000).  

 

The number of adult wasps which belonged to a given nest was taken as its size. The 

difference in worker-brood ratios between nests was calculated as the difference in the 

number of workers divided by the number of brood for each nest in the dyad - this was a 

directional measure.  Relatedness data was not available for the 2010 data set and some 

missing data were present in 2009. As missing data poses a considerable problem for 

many network modelling approaches (James et al. 2009), distance was used as a proxy 

for relatedness given both the significant inverse correlation between the two (RS= -0.554, 

pperm=0.001, n=290) and the findings of Sumner et al. (2007). This correlation was 

identified through comparing the relatedness and distance between pairs of nests for 

which there was complete data. To determine the significance of the coefficient, the 

relatedness values between nests were permuted within each aggregation, holding the 

position of nests constant; this was repeated 4999 times. The distribution of null 

correlation coefficients produced as the product of this null model was used to determine 

significance. 

 

Experimental manipulations of the nests were carried out by Sumner and Lengronne to 

determine which cues were used by drifters when choosing nests to visit; these 

manipulations were carried out prior to any of the analyses regarding the factors 

associated with drifting presented in this chapter. The two likely variables that Sumner 
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and Lengronne suspected would affect patterns of drifting were: the distance between 

nests, group size and need for help (brood number). It was impossible for them to re-

locate nests with wasps within the home range of a nest, as any re-located wasps will re-

orientate back to their original nest location (Sumner pers. obs.). They therefore focused 

on manipulating group size (i.e. number of female adults) and need for help (i.e. brood 

number). To determine the effect of group size on drifting, they permanently removed 

30% of the foragers on 14 nests (3 nests in 2009 (1 in 2009C1, 1 in 2009C2 and 1 in 

2009C3) and 11 in 2010 (6 in 2010SF and 5 in 2010MH)). To determine the effect of 

brood number on drifting they permanently removed 30% of the brood on 9 nests (3 nests 

in 2009 (1 in 2009C1, 1 in 2009C2 and 1 in 2009C3) and 6 in 2010 (6 in 2010MH)). 

Large brood (at least 60% of medium and large larvae) were preferentially removed as 

they represent the most valuable brood, and require the greatest helping effort to rear. 

Cells that had contained the removed brood were also removed to prevent wasps 

perceiving empty cells as a decrease in “queen quality” or nest quality. 

 

To identify which of the explanatory variables served to be significant predictors of 

drifting, a logistic Multiple Regression Quadratic Assignment Procedure (MRQAP) was 

used (Krackhardt 1988; Butts & Carley 2001) where the drifting network was the 

response variable with distance, nest-size and worker-brood ratio the explanatory 

variables of interest. A logistic model was chosen over a linear model due to the 

sparseness of drifting data, which also exhibited little variation in non-zero numbers. The 

effectiveness of the MRQAP has been shown to degrade under conditions of extreme 

skewness (Dekker et al. 2007). To control for an identified tendency for larger nests to 

send more drifters, the nest size of both the donor and recipient nest was included as 

explanatory variables in the model. Due to the various kinds of dependency inherent in 

network data (Snijders 2011), the significance of each individual factor and the model as 

a whole was determined using a randomisation procedure. Due to a slight, but significant 

correlation between a nest’s size and its difference in worker-brood ratio with other nests 

(RS=±0.18, pperm<0.0002), the randomisation procedure chosen was a Double Semi 

Partialling Quadratic Assignment Procedure (QAP-DSP), which has been demonstrated 

to be robust to the effects of autocorrelation and co-linearity when determining 

significance (Dekker et al. 2007). QAP-DSP was a departure from the out-strength 

constrained edge randomisations used thus far. However, the QAP-DSP approach is well 
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established for use in modelling networks. The inclusion of nest-size as a variable in the 

model not only allowed its effect on drifting to be characterised, but also compensated 

for the lack of this constraint in the QAP-DSP. The same analysis was conducted on the 

drifting data following the manipulation experiments (excluding the 2005 aggregations) 

as that applied to the pre-manipulation data. In this dataset, there was a stronger 

correlation between a nest’s size and the difference in worker brood ratio with other nests 

(RS=±0.25, pperm=0.0002).  

 

The use of a QAP-DSP null model in response to an observed correlation between 

explanatory variables of at most 0.25 may seem overly-conservative. Indeed, correlation 

does not necessarily imply collinearity (Alin 2010). However, given that the wasp drifting 

network can be assumed to be evenly-sampled, we believe little is lost using a null model 

common to the social sciences as opposed to using the same null model where the 

recipient nests of unique drifting wasps are randomised. This second choice of null model 

might behave as a typical response variable permutation as outlined in Dekker et al. 

(2007), in which case we would expect that any correlation between the response variable 

and an explanatory variable caused by the presence of a third collinear explanatory 

variable would lead to a high rate of type 1 error. However, this null procedure is not a 

QAP as in Dekker et al. (2007) and may therefore behave differently.  

 

The logistic MRQAP “netlogit” function in the “sna” (Butts 2014) package in R(R 

Development Core Team. 2008) was modified to include stratification, or a block 

structure; this was so that data from all aggregations across all years could be included 

into one model whilst partitioning the QAP-DSP to take place only within blocks that 

could exchange wasps and not across blocks that could not interchange wasps due to 

substantial separation in distance and/or time. Through including all aggregations in one 

model in this way, each aggregation was treated as independent from each other in some 

respect and the analysis was restricted just to look at drifting within-aggregation. This 

step was justified given the strong partitioning of the wasp drifting networks on the basis 

of building in the 2005 and 2009 data. However, one limitation of partitioning the 

randomisation approach underlying the model is that aggregation-wide effects cannot be 

tested.  
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A significant advance in our approach is through the inclusion of a block-structure into 

the MRQAP, without which alternatives might include having to construct a unique 

model for each of the eight aggregations and combining p-values using a Fisher’s 

combination test (Fisher 1948) or the weighted-Z method (Whitlock 2005), for example. 

Two severe drawbacks of this approach are as follows: firstly, maximum likelihood 

estimation (used in the logistic MRQAP) requires more data than other approaches, such 

as Ordinary Least Squares (OLS), for accurate fitting of the model- a general rule of 

thumb being that at least ten events (the least frequent category in the dependent variable 

i.e. drifting present from nest a to b) are required per variable (Peduzzi et al. 1996). 

Splitting the dataset into aggregations reduces the number of events per variable 

considerably, with nearly all aggregations having too few edges (events) for the number 

of variables we include in the model. Secondly, all of the aforementioned combination 

tests assume each “test” (aggregation-based model in this case) is independent of others. 

Given that some study sites are used repeatedly in 2009 and 2010, with the potential for 

the same physical nests to be present in both study periods, such an assumption of 

independent tests might be questionable. The results of the analyses for the various factors 

thought to affect drifting are shown in table 8. 
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5.4  Results 

 

Drifting partitioned by native building 

 

The null model identified that the drifting networks of wasps were significantly 

partitioned (p=0.0002) on the basis of native building with an observed Tr(e)= 0.9125, 

where the mean null Tr(e) was 0.3367175. 

 

Jacknifing the observed networks also confirmed that both the networks in 2005 and 2009 

were significantly partitioned on the basis of buildings into what we describe as 

“aggregations”, with significant assortment with respect to building identity (Newman’s 

assortativity coefficient r for both 2005 (r=0.893) and 2009 (r=0.867); jackknifing 

revealed assortativity values to be 15.1 and 17.8 standard deviations away from 0 

respectively). This partitioned the data into eight different aggregations of nests (two 

aggregations in the 2005 population (2005S1 and 2005S2) (Building 3 had only two 

nests), four aggregations in the 2009 population (2009C1 to 2009C4), and a further two 

aggregations in 2010, (2010SF and 2010MH). The number of nests per aggregation 

ranged from six to 20 (11.3±1.7, mean± standard error). The mean distance between nests 

within an aggregation (7.7±0.3m) was significantly lower than the distance between 

aggregations (298±127m). Inter-nest drifting was detected in all eight aggregations (pre-

manipulation data from 2009C1 to 2009C4, 2010SF, 2010MH, 2005S1 and 2005S2). On 

average 40.4±3.9% of the wasps (n=403 wasps, 93 nests) were drifters. At the nest level, 

92.7±0.1% (66.7-100%) of nests in each aggregation received or produced drifters 

(85.8±0.2% of the nests received and 71.1±0.3% of these nests produced drifters), 

indicating that drifting is a general phenomenon and not restricted to particular nests. 

19.3% of nests show extreme levels of drifting, with >60% of records from drifters. 

Finally, we found rare interactions between aggregations within populations. In each case 

these inter-aggregation edges were attributed to a single drifter which visited only one 

nest in the other aggregation (i.e. unidirectional and never reciprocated), albeit multiple 

times (2005: 1.7±0.7 visits (1-3 visits per drifter); 2009: 3.0±0.9 visits (1-6 visits per 

drifter)). Weak links are known to play potentially important roles in social networks, 
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providing information flow between otherwise segregated populations (Granovetter 

1973).    

 

The partitioning of drifting networks into aggregations creates at least three possible 

levels of social organisation (figure 1). The lowest level was the nest. Most wasps leaving 

a nest returned to the same nest; these nest departures were not drifting events. A median 

of 96% of nest departures return directly to the natal nest; this was 100% in a third of 

nests. Only 25% of nests had fewer than 70% of departures return directly to the natal 

nest. These wasps interact with close relatives (r (adult natal wasps)=0.69±0.02; n=129 

wasps from 26 nests, from the same 2009 study population (Lengronne et al. 2012). The 

second level was between nests forming aggregations (figure 2) and third, identified in 

this study, between aggregations in the population. Social organisation reaches beyond 

the unit of the immediate family group. To our knowledge, our data are the first 

quantitative evidence of interactions across more than two levels of social organisation in 

a eusocial insect. Higher-order interactions influence lower-order interactions, such that 

the traditional ‘social unit’ (i.e. the nest) is not independent of neighbouring units. 

 

Social differentiation 

 

Within seven of the eight aggregations, the patterns of drifting observed were more 

heterogeneous than expected if drifting was a random process (i.e. the observed social 

differentiation S was significantly greater than expected under a null model; Table 6; 

figure 2). The heterogeneous patterns of drifting suggest that drifting is unlikely to be the 

result of accidental events due to discrimination errors. However, the underlying 

heterogeneity could still be driven by the spatial structure within nest aggregations and as 

such, discrimination errors can still not be ruled out entirely. 
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Table 6: Heterogeneity of drifting in each aggregation. “Mean null S” is the mean 

social differentiation observed across 4999 null networks. P-values state the probability 

that a value of S equal to or higher than the observed could be produced by the null 

model. 

Aggregation Mean null S Observed S P-value 

2005S1 0.067 0.108 0.002 

2005S2 0.196 1.111 <0.0002 

2009C1 0.955 9.560 <0.0002 

2009C2 0.741 1.881 <0.0002 

2009C3 0.354 0.988 <0.0002 

2009C4 0.295 0.385 0.1884 

2010SF 0.469 1.063 <0.0002 

2010MH 0.186 0.544 <0.0002 

 

Temporal consistency of drifting patterns 

 

The non-random, persistent nature of interactions between nests suggests there may be 

some adaptive significance to drifting. There was strong evidence of temporal persistency 

in the patterns of drifting between nests, with fewer transient and more persistent and 

recurring links than we would expect if drifting were random or performed only fleetingly 

(Table 7). Over the four consecutive monitoring periods, six pairs of nests had persistent 

edges (8.2% of observed edges). We also found 12 edges (16% of observed edges) that 

were persistent for at least three of the four 5-day monitoring periods and 22 edges (30% 

of observed edges) that were persistent for at least two of the four monitoring periods. 

The remaining 51 edges were more transient with detections occurring during only one 

monitoring period. There were significantly fewer transient edges and significantly more 

recurring edges at each threshold than we would expect compared to null versions of the 

dataset (Table 7). Persistent edges correspond to a higher level of drifting between nests 

than transient edges, with on average 4.3±0.7 drifting events in any pair of nests 

(compared with 2.4±0.6 for more transient edges; Mann-Whitney U, W= 2236, 

pperm<0.0002), and up to 31 drifting events for a pair of nests in a single monitoring period 
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(max value=31 drifting events for persistent edges and 18 drifting events for transient 

edges). 

 

Table 7: Drifting rates are consistent over time. “Observed (cumulative)” shows the 

number of edges observed to meet each of the four consistency thresholds. “Mean null” 

shows the mean number of edges which met each threshold taken from 4999 null versions 

of the dataset, with standard deviation included “σ null”. “p-value” represents the 

proportion of null datasets produced with equal to or more edges meeting the given 

threshold than observed. 1 represents the proportion of null datasets produced with equal 

to or fewer transient edges than observed. 

 

Number of 

observation 

periods 

Observed 

(cumulative) 
Mean null σ null p-value 

>=1 73 96.66 2.74 <0.00021 

>=2 22 16.52 2.48 0.0284 

>=3 12 2.44 1.26 <0.0002 

=4 6 0.17 0.41 <0.0002 

 

 

Factors which might drive patterns of drifting 

 

The output of the logistic MRQAP suggested that a number of factors influence drifting 

in P.canadensis within aggregations. Firstly, drifters were more likely to drift from larger 

nests (Table 8, p=0.003). In general, pay-off per unit of helping effort diminishes with 

group size in eusocial insects (Michener 1964; Krieger et al. 2000); thus drifters appear 

to be maximising the value of their helping effort by drifting away from large natal nests 

in order to help out other nests, where their efforts have higher per unit payoffs. There 

was no significant relationship between the size of the recipient nest and its tendency to 

receive drifters (Table 8).  
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Secondly, drifters were more likely to drift from nests with higher worker-brood ratios to 

nests with a smaller worker-brood ratio (Table 8, p=0.046). Group size (number of wasps) 

is not necessarily indicative of brood number, and so if drifting is a strategy to increase 

fitness by responding to need for help, wasps are expected to visit nests where there are 

few workers relative to brood. Our analyses were restricted to medium and large larvae, 

which are fed the bulk of the forage, indicating that drifters appear to be responding to 

provisioning needs rather than any other form of help.  

 

Finally, drifting was more likely to take place between nests that were close together than 

far apart (Table 8, p<0.0002). Nests in aggregations show significant genetic viscosity 

such that nests close to each other are more closely related than nests further away 

(Sumner et al. 2007). In support of this, we identified a strong inverse correlation in the 

distance between nests and their relatedness (RS=-0.554, pperm=0.001, n=290). Wasps are 

therefore drifting to closely related nests (RS=0.25±0.08 (Sumner et al. 2007)), where the 

indirect fitness benefits of helping are greatest and they appear to use nest proximity as a 

reliable cue for where to drift, however, to confirm this a manipulative experiment 

focussing on altering the locations of nests would be necessary. 

 

Table 8: The results of the logistic model on the pre-manipulation drifting data.  Pr(<=β) 

is used to determine the significance of factors thought to inversely affect the likelihood 

of drifting, whereas Pr(>=β) is used for factors which are thought to have a positive effect 

on the likelihood of drifting. Exp(β) is the exponent of the estimated beta for the given 

factor. The bold font indicates the p-values linked to our given hypotheses. 

Coefficients Estimate Exp(β) Pr(<=β) Pr(>=β) 

(intercept) -0.609 0.544 1.0000 0.0000 

Worker-brood ratio 1.394 0.248 0.0464 0.9536 

Distance -0.003 0.997 0.0000 1.0000 

Donor nest size 0.017 1.017 0.9966 0.0034 

Recipient nest size -0.011 0.989 0.6004 0.3996 
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Lengronne and Sumner experimentally manipulating the worker: brood ratios of nests to 

test the importance of nest proximity and group size as mechanistic cues to workers for 

drifting. The same logistic MRQAP procedure was performed on the drifting data 

recorded in the five days following these manipulations. As shown in table 9, drifters did 

not respond to the change in worker-brood ratio (p=0.998). However, distance remained 

a significant predictor of drifting in the network (p=0.013) as did the tendency for larger 

nests to send more drifters (p=0.0492). Interestingly, small nests became significantly 

more likely to receive wasps despite no significant effect being recorded before the 

manipulation (Table 9).  

 

Table 9: The results of the logistic model on the post-manipulation drifting data.   

Coefficients Estimate Exp(β) Pr(<=β) Pr(>=β) 

(intercept) -0.896 -0.025 0.0000 1.0000 

Worker-brood ratio -0.113 0.893 0.9984 0.0016 

Distance -0.003 0.997 0.0126 0.9874 

Donor nest size 0.023 1.023 0.9508 0.0492 

Recipient nest size -0.025 0.975 0.0028 0.9972 

 

 

5.5 Discussion 

 

Social organisation 

 

The findings presented in this chapter reveal social organisation in P.canadensis similar 

to that observed in other (non-insect) animal societies, providing the first quantitative 

evidence of interactions across more than two levels of social organisation in a eusocial 

insect. Higher-order interactions are likely to influence lower-order interactions, such that 

the traditional ‘social unit’ (i.e. the nest) is not independent of neighbouring units. 

Interactions across multiple levels of social organisation have previously been identified 

in a diverse range of group-living vertebrates, for example in the elephant Loxodonta 
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africana (Wittemyer et al. 2005), gelada Theropithecus gelada (Dunbar & Dunbar 1975), 

hamadryas (Kummer 1968), orca Orcinus orca (Ford et al. 2000), Galapagos sea lions 

Zalophus wollebaeki (M. Wolf et al. 2007), noctule bats Nyctalus lasiopterus (An 2008), 

Colombian ground squirrels Spermophilus columbianus (Manno 2008) and white-fronted 

bee-eater birds Merops bullockoides (Hegner et al. 1982). 

 

Interestingly, the analyses in this chapter reveals an intriguing contrast between social 

organisation in social vertebrates and eusocial insect societies. Hill et al. (2008) noted 

that the sizes of hierarchical social groups of several species of mammal exhibit a 

common scaling factor, each social layer of a society being between three and four times 

the size of the preceding (smaller) grouping level or “Horton order”. Hill et al (2008) 

proposed that this general scaling factor may reveal how societies originated. The 

relatively low value of the scaling factor (3-4) may be due to cognitive constraints (e.g. 

animals can only manage a small number of interactions at a given level (Kudo & Dunbar 

2001); or social time constraints (e.g. the ‘handling time’ needed to maintain relationships 

(Dunbar 1996)). In P. canadensis, the mean scaling factor was 8.4, with rather more 

variation between levels than Hill et al. (2008) found for mammalian societies (size ratios 

16:14:2:1 (2005 data: 420 individuals in 27 nests in two aggregations in one population), 

~20:8:4:1. (2009 data: 665 individuals in 32 nests in four aggregations in one population) 

and 536:28:2:1 (2010 data; 536 individuals in 28 nests in two aggregations in one 

population (figure 8)). These comparisons suggest that the common patterns of social 

organisation in social mammals may not be generalised to more complex societies, like 

eusocial insects. A possible explanation for this may be that social organisation in 

eusocial insects is not constrained in the same way as it is in social vertebrates. For 

example, eusocial insects have evolved complex modes of communication (e.g. queen 

pheromones that regulate worker reproduction) which means that social time constraints 

are less relevant. Moreover, the evolution of decentralised, self-organised processes 

which constitute a defining feature of eusocial insects (Krieger et al. 2000) may also 

enable them to circumvent cognitive constraints that limit the complexity of animal 

societies. Figure 8 shows the scaling between successive levels of organisation in 

P.canadensis (black) and orca Orcinus orca and Elephants Loxodonta Africana as 

reported in Hill et al. (2008). 
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Figure 8. The mean number of individual wasps in successive social layers or Horton 

orders, from sub-population (1), aggregation (2), nest (3) to individual (4). Open circles 

depict data from 2005; crosses, 2009 and diagonal crosses, 2010. The lambda of the line 

of best fit has been calculated using the natural log of the three wasp data-sets combined, 

and is shown in black. Included in grey are examples from Hill et al. (2008), elephants 

are shown as filled diamonds and orcas as filled circles. The lambda for the line of best 

fit for the elephants (dashed) is -1.096 and for the orcas (dotted) -1.334.  
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Factors which explain drifting patterns 

 

The multivariate analysis of the drifting network revealed that the social organisation 

observed in paper-wasps is the result of inter-nest drifting that either confers a fitness 

advantage to individuals, or has such a low cost that any selection pressure against it is 

negligible. The response in drifting patterns observed following the manipulative 

experiment, albeit not in the manner hypothesised, supports the notion that drifting is on 

the whole not accidental, being the result of discrimination error. 

The pre and post-manipulation analyses indicate that wasps are using simple cues in 

deciding which nests to interact with, and that this mechanism is driven primarily by nest 

proximity but also group size. Nest location is fixed, and so this cue is likely to be a first 

order rule that over-rules any other cues. Group size changes steadily as nest size (number 

of cells) increases, presenting an easily perceived visual cue for need for drifting. Brood 

number and composition on the other hand changes rapidly over time as nests move 

through the colony cycle, and requires careful inspection of cells to determine brood stage 

or absence of brood. The significant effect of worker: brood ratios on drifting effort 

observed before the perturbation may reflect an equilibrium state that is achieved over 

time frames longer than our post-manipulation monitoring period of 5 days. Drifters 

respond to rapid changes in group size, but not brood number. Further, the removal of 

workers from nests may have elicited an alarm response, being viewed as an attack by the 

wasps. P.canadensis venom is known to act as an alarm pheromone which stimulates 

alarm behaviour wing buzzing and jerky movements which may attract other wasps 

(Eberhard & West 1969; Sledge et al. 1999) directly attracts other members and lowers 

the threshold for attack ( Richards 1971; Jeanne 1982; Bruschini et al. 2006). Over such 

short time frames, these cues may still be present and skewing drifting behaviour, 

although more focussed investigations would be needed to confirm this. 

Admittedly, there are a number of other statistical approaches which could have been 

applied to hypotheses three and four (the explanatory factors that explain drifting pre and 

post manipulation), such as ERGMs (Holland & Leinhardt 1981), which now have the 

ability to be used on data with block structures (Hunter et al. 2013) and multilevel P2 

models (Zijlstra et al. 2006). An MRQAP based analytical approach was chosen as the 

QAP-DSP null model used is known to be robust under a number of data-conditions such 

as skewness and collinearity is present. Furthermore, at this point of time, we were only 
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interested in explaining the external explanatory factors which may affect drifting to 

resolve hypotheses three and four (such as the distance between nests) whilst controlling 

for network dependencies, not the means in which network dependencies such as 

reciprocation or triad closure may affect network structure. However, that is not to say 

that network dependencies in drifting networks such as reciprocation would not be 

biologically meaningful - reciprocity is one of the key tenets underlying cooperative and 

altruistic behaviours (Trivers 1971). The main advantage of the MRQAP is perhaps 

pragmatic. In the “sna” package (Butts 2014) in R (R Core Team 2013), the randomisation 

procedure underlying the MRQAP can be readily extracted and, with care, modified to 

address issues common in animal social network studies. 

 

Overall Conclusions 

 

Overall, the analyses in this chapter has revealed that social organisation in eusocial 

insects can be highly complex, functioning at different interaction levels and that these 

high-level interactions are likely to be adaptive, conferring a fitness advantage to 

individuals. Using an automated real-time monitoring system of individually tagged 

paper wasps, the interactions within and between levels of societal living were quantified 

to reveal three novel insights into the importance of multi-level social interactions in a 

eusocial insect. Four levels of social organisation were identified, namely the individual, 

nest, aggregation, and community (figure 8). High-level interactions (e.g. at levels above 

the family group/nest) were found to be highly structured and non-random. Furthermore, 

drifters appeared to apportion their help in respect to the needs of the recipient nest for 

help, and that the mechanism for ‘where to drift’ is likely to be nest proximity and group 

size rather than any fine-scale fluctuations for need on individual nests. 

 

The presence of drifting in P.canadensis is not surprising when we consider the concept 

of inclusive fitness and Hamilton’s rule: that altruistic behaviours can exist when 

relatedness multiplied by benefit is greater than the cost of the behaviour. In P. 

canadensis, drifters help raise brood on the nests they visit (Sumner et al. 2007), and this 

tends to be nests close-by with which they have a high relatedness due to the spatial 

viscosity created through the “budding” process of nest founding. This close distance 

potentially also facilitates a reduction in the cost of drifting both in terms of risk of 
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predation, metabolic costs associated with the activity, and the loss of help for the native 

nest. The apportioning of drifting as to help nests with the greatest level of need, 

maximises the fitness benefits to recipients of drifters and minimises the relative fitness 

costs to nests which “donate” drifters, which tend to have more workers to provision 

brood.  

 

The wider implications of the results presented in this chapter is that drifting behaviour 

is not necessarily maladaptive occurring by mistake, or a selfish behaviour driven by 

“reproductive hopefuls” undermining the stability and persistence of eusocial societies. 

Instead, it appears drifting may provide a system-wide fitness benefits through directing 

help at related nests which need it most. 
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6.  Variable performance of radio proximity loggers: implications for multivariate 

analyses. 

 

6.1 Abstract 

 

The use of animal-borne tracking technologies has facilitated the remote collection of 

animal network data. The datasets produced using such methods can be rich and free from 

many of the biases associated with directly observing the interactions or use-of-space of 

free-living animals. However, these technologies also introduce new sampling issues and 

biases which, if not controlled for, will affect network structure and bias subsequent 

analyses. Using a herd of dairy cattle as a case study, issues regarding the variable 

performance of Sirtrack® radio-proximity loggers are highlighted and effects 

characterised on both static and temporal networks. Two correction procedures are 

presented for both static and temporal networks to address biases in the data. The results 

of this chapter highlight the need for appropriate pre-deployment testing of technologies 

used to automatically gather network data and associated corrections to the data before 

the point of modelling. 

 

6.2 Introduction 

 

Over the last decade, there has been a transition in the way that animal social network 

data are collected. This has been facilitated by the miniaturisation of tracking technologies 

to the point where devices can be mounted upon animals directly to monitor their use-of-

space (Ropert-Coudert & Wilson 2005; Krause et al. 2011; Krause et al. 2013).  

Collecting  spatial-data remotely provides a significant advance over  “traditional” 

methods of directly observing associations between animals (Krause et al. 2013). Animal-

borne remote-sensing devices can produce datasets which are more reliable, contain less 

uncertainty, and are more rich than directly-observed data; this has led some believe that 

these datasets are suitable for multivariate modelling (Krause et al. 2013; Pinter-

Wollman, Hobson, et al. 2014). However, a number of issues regarding the performance 

of some types of spatial-proximity logging devices have been reported ( Prange et al. 

2006; Watson-Haigh et al. 2012; Drewe et al. 2012; Rutz et al. 2015; Boyland et al. 2013; 

Bettaney et al. 2015). In this chapter, we add to these issues through the discovery of 

persistent logging biases in Sirtrack® radio-proximity loggers. We show that these biases 
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can affect both static and temporal network structure.  Two corrections are proposed to 

correct for the biased sampling of loggers so that the data collected can be used in either 

a static network model, such as the MRQAP (Krackhardt 1988), or a temporal model, 

such as the relational events model ( Butts 2008a ; Patison et al. 2015). 

 

In traditional animal social network studies, humans observe associations between 

animals directly. There can be advantages with using direct observation (DO) to identify 

associations. The nature of an association and the context in which it took place can be 

recorded in detail. DO can allow the researcher distinguish whether associations were 

socially motivated, or driven by ecological constraints. Furthermore, animals may not 

need to be captured if readily identifiable (Croft et al. 2008). However, the advantages of 

DO are often outweighed by substantial drawbacks. Firstly, DO can be expensive and 

labour-intensive. The number of undirected relationships that can exist between n 

individuals is 0.5(n2-n), a large amount of data is thus required to determine whether each 

of these relationships exists. The presence of a human observer may also disturb the 

natural behaviour of the animals being observed; the observer may, for example, be 

treated as a potential predator (Frid & Dill 2002; Beale & Monaghan 2004; Krause et al. 

2011). Species which live in hostile habitats for humans or are hard to individually 

identify may also present challenges to using DO (Drewe & Perkins 2014). Further, it is 

often only practical to carry out DO opportunistically, or at intervals, so social 

associations and confounding events can be missed if they occur outside of an observation 

period (Croft et al. 2008). Therefore, a concern with traditional studies of animal social 

dynamics is whether the quantity and quality of field data is sufficient and can adequately 

describe population-level processes (Krause et al. 2014). Furthermore, most traditional 

studies identify patterns from data collected over long timeframes through repeated 

observations, ignoring short-term temporal dynamics (Croft et al. 2008; Krause et al. 

2013).  

 

Remote-sensing (RS) refers to a set of techniques used to acquire information about an 

object or phenomenon without having to observe it directly. In this sense, RS has the 

potential to remedy many of the issues associated with DO. RS could be used to describe 

instruments set up in field-sites to automatically collect climatic data (e.g. Gillies & 

Carlson 1995), the analysis of satellite imagery to determine habitat types and change 
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(e.g. Skole & Tucker 1993), or the use of devices to monitor anthropogenic or animal 

activity in an area, an example being the use of passive sonar devices to measure oceanic 

traffic or the songs of cetaceans (e.g. Zimmer et al. 2003; Ogden et al. 2011). Animal-

attached RS, or bio-logging devices allow various types of data to be collected from an 

animal’s perspective, without the presence of a human observer. Animal-borne devices 

have been around for a long time; perhaps the first example of the use of animal-borne 

RS was Eliassen (1960), who used a device that transmitted the heart and wing-beat rates 

of ducks.  The increasing sophistication and miniaturisation of animal-borne devices have 

extended their use to a wide range of species to measure a multitude of factors with high 

temporal resolution. Many early uses of animal-borne RS devices focussed on  

physiological traits or the location of animals (Ropert-Coudert & Wilson 2005), but have 

since been used to record data about an individual’s external abiotic environment, i.e. the 

medium through which the animal is moving, rather than simply concentrating on the 

carrier itself (Boehlert et al. 2001). One of the latest uses of animal-borne RS technologies 

is to measure the social environment of animals through identifying social relationships 

though means of association via spatial coincidence (use of same area) or proximity 

(Krause et al. 2011; Krause et al. 2013). 

 

The RS of animal spatial associations in terrestrial species is often, but not exclusively, 

conducted using any of the three following tools: Global Position System (GPS) trackers, 

video surveillance and radio-proximity loggers. In aquatic species, acoustic systems tend 

to be used over radio based systems due to more efficient signal propagation compared 

to radio-waves (Krause et al. 2013). GPS-based systems have the advantage of providing 

information on not only the distance between individuals, which can be used to infer 

relationships between them, but also where individuals are in space. Given that the focal 

individuals can first be captured to fit loggers, GPS systems are especially suited to 

capturing movement data on long-ranged or cryptic species. One limitation of GPS 

trackers is that they have a point accuracy of, at best, 3.5m (U.S. Air Force 2014) in 

unobstructed terrain; this restricts their applicability to certain collections of organisms 

where socially meaningful distances between individuals may be in the tens of metres 

(e.g. Haddadi et al. 2011). Video-recording of animal social interactions has the 

advantages of being unobtrusive; especially if individuals do not require marking. Video 

footage can provide detailed information as to the precise nature and context of an 

interaction (e.g. was it aggressive? did it take place whilst feeding?). Automated video 
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tracking and identification of animal contact interactions have become increasingly 

prominent in laboratory studies of insects (e.g. Otterstatter & Thomson 2007; Mersch et 

al. 2013). However, unless video cameras are affixed directly to individuals in wild 

populations of animals (perhaps in combination with GPS trackers), the location of the 

animals needs to be predicted ahead of time so that cameras can be set-up in suitable 

locations; this restricts the applicability of these technologies to animals with predictable 

movement patterns. Further, the analysis of videos can be labour intensive for free-living 

populations of animals (Drewe & Perkins 2014). Radio-based systems are perhaps 

becoming the most popular tool to study free-living populations of animals which inhabit 

predictable geographic areas (e.g. Böhm et al. 2008; Hamede et al. 2009; Rutz et al. 2012). 

 

The use of radio frequency identification (RFID) to identify social interactions can be 

broken down into “passive” tag-to-reader and “active” tag-to-tag systems. In passive 

systems, the tags affixed to animals can be very small (8-32mm long, 1mm to 4mm 

diameter (Smyth & Nebel 2013)) as the contents of the tag consist of only an integrated 

circuit chip, a capacitor, and an antenna coil, which may be encased in glass (Roussel et 

al. 2000). The small size of these tags means they can be fitted to a very wide number of 

species, including those too small for active RFID devices (see chapter 5 for an example). 

Upon a tag passing through the antenna of a fixed reader, a low-frequency radio signal 

emitted by the reader generates a close-range electromagnetic field. The field excites the 

tag which broadcasts a unique signal back to the reader (Keck 1994) which is logged 

along with the time of the interaction. PIT tags thus have the advantage of not requiring 

a battery, a limitation of other technologies. However, the data captured using PIT tags is 

limited to spatial coincidence, where tagged animals are read by the same fixed reader at 

a given site. In chapter 5, we used PIT tags to study the movement of paper-wasps Polistes 

canadensis between nests.  

 

In active RFID systems the predictable decay of radio signals from a point source is 

exploited to infer the distance between loggers. Loggers both emit a unique radio signal 

whilst being open to receive the signal of other loggers, the strength of a signal received 

from another logger can be stored explicitly or binarised to represent a contact when a 

given threshold strength has been exceeded. The strength of the transceiver (a radio 

transmitter and receiver) in the loggers can be adjusted to change the distance required to 



139 
 

initiate and terminate contact logs. In active RFID systems, instances of close proximity 

between individuals can be captured in real-time, as loggers contain their own internal 

clocks. The advantages of these systems are that they can provide high resolution spatial 

and temporal data, with the timing and duration of contacts recorded. However, there are 

drawbacks associated with RFID based technologies; animals must first be captured to fit 

tags or loggers which may also require retrieval to collect data and RFID technologies (in 

general) cannot provide information regarding the nature or reasons behind a contact 

event (Krause et al. 2014).  

 

The active RFID technology we use in this chapter to remotely sense close proximity 

between animals is the spatial proximity loggers manufactured by Sirtrack Tracking 

Solutions® (Havelock North, New Zealand). These loggers can be attached to individuals 

via an ear-tag, collar, directly using glue, or alternatively can be placed in the field to 

monitor use of space or aggregation around a particular resource. The loggers contain a 

radio-transceiver, which transmits and receives radio-waves between 148 to 174 MHz in 

frequency, an internal clock, and internal memory capable of recording up to 17000 logs, 

each up to 65535 seconds.  Each logger pulses a unique signal up to 40 times per minute 

that identifies itself to other loggers, whilst simultaneously being open to receive the 

unique signal of any other loggers. A contact begins when a logger detects a signal from 

another logger within a proximity chosen by adjusting the strength of the transceiver. The 

contact ends upon losing that signal for user-controlled amount of time between 1 and 

255 seconds (we call this the “separation time”); at which point, the start-time, contact 

duration and identification of the encountered logger are recorded (we call this a “contact 

log”). To adjust detection distance, the transceiver settings can be altered on a scale 

between 0 and 62, the lower half (0-31) alters the signal strength while the upper half (32-

62) affects the detection sensitivity, meaning that only one of these can be controlled at 

any one time. Up to 250 loggers can be deployed at once, and an individual logger can 

log up to 8 others simultaneously; making these devices attractive for the real-time study 

of sociality in many group-living mammalian species (Krause et al. 2014). Sirtrack® 

proximity loggers have, for example, been used to study interactions between badgers 

and cattle to help better understand transmission of Bovine Tuberculosis (Böhm et al. 

2009; Weber et al. 2013); discover seasonal variability in the social behaviour of 

Tasmanian Devils, helping characterise the epidemiology of devil facial tumour disease 

(Hamede et al. 2009); examine spatial and temporal heterogeneities in the contact 
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behaviour of rabbits (Marsh et al. 2011); show that racoon social structure is independent 

of genetic relatedness between individuals (Hirsch et al. 2013a); and study the changes in 

temporal and spatial associations between pairs of cattle during the process of 

familiarisation (Patison et al. 2010). 

 

Previous studies have found issues with the reliability of Sirtrack® spatial proximity 

loggers. Prange et al. (2006) and Drewe et al. (2012) demonstrated that continuous 

contacts between two loggers placed within both of their detection ranges can be 

represented by one or both loggers as a series of intermittent contacts; known as “broken 

contacts”. Broken contacts can affect contact duration and frequency; increasing the 

frequency and decreasing the duration of contacts. Drewe et al. (2012) suggested 

annealing contacts which occur within a set timeframe, or “amalgamation window”, of 

each other as a solution to this problem. In the same study, Drewe et al. (2012) also noted 

that the detection distances of loggers reduce over time, potentially as battery life 

decreases. Another issue with Sirtrack® loggers is the frequent recording of one second 

contacts, dubbed “phantom contacts”, thought to occur when loggers are just outside of 

their detection ranges (Prange et al. 2006). It has been suggested that phantom contacts 

are best removed early in data processing (Drewe et al. 2012; Watson-Haigh et al. 2012). 

There is some debate as to the extent to which loggers misidentify each other or record 

erroneous logs, with Prange (2006) stating that loggers were correctly identified in all 

cases in their study, but Watson-Haigh et al. (2012) stating that logs can be erroneously 

attributed to loggers which were not deployed. The logs collected from Sirtrack® loggers 

can also show poor corroboration, or “reciprocal agreement” over time (Hamede et al. 

2009; Watson-Haigh et al. 2012). Reciprocal agreement (RA) referring to instances where 

loggers concurrently record each other as opposed to only one logger recording the 

presence of another. The recommendation made by Watson-Haigh et al. (2012) was to 

remove pairs of loggers with poor RA, whereas Hamede (2009) opted for using an 

approach which Watson-Haigh et al. (2012) refers to as “pseudo-contacts”; where a 

contact is said to be occurring when one or both of the loggers involved are recording a 

contact at a given time. 

 

Watson-Haigh et al. (2012) left open  the question as to what the causes of poor RA could 

be, although they did suggest that a lack of date/time synchronisation, different detection 
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distances or a lack of free memory in a logger would bias the use of pseudo-contacts 

(Hamede et al. 2009) as a means to solve issues with poor RA. The varying height of 

loggers off the ground (we will call this “elevation”) could be described as a contributing 

factor to poor RA, with loggers close to the ground performing less effectively than those 

raised (Böhm et al. 2009). A recent potential cause of poor RA was made by Rutz et al. 

(2015), who highlighted the effect that the relative orientation of a pair of loggers might 

have on signal propagation. Rutz et al. (2015) stated that the antennae fixed to these 

devices would have an anisotropic (doughnut-shaped) radiation pattern, radiating (and 

receiving) more power to (and from) some directions than others. Little radiation would 

be produced (or received) along the axis of the antenna, and the direction of maximum 

power would be perpendicular to this axis. The study by Rutz et al. (2015) was largely 

orientated towards another radio-proximity based system known as “Encounternet” 

(Encounter Net project; http://encounternet.net/). However, their findings are supported 

by the observation of Prange (2006) that Sirtrack® loggers detect a greater range when 

antennae are vertical as opposed to horizontal.  

 

In this chapter, Sirtrack ® loggers are tested on two separate herds of dairy cattle to 

identify sampling issues inherent in the technology and to develop subsequent 

corrections. Dairy cattle are an economically important livestock species in the UK. In 

2013, the dairy industry contributed £4.27 billion to the UK economy, with milk 

accounting for 16.1% of all agricultural output (Baker 2015). In a typical UK dairy herd, 

25% of individuals are replaced per year (DairyCo industry data). On average, dairy cows 

undergo 3.6 lactation cycles in their lifetimes, short of the economic optimum of 4.9 (Stott 

1994). One of the main reasons why lifespan is shorter than the economic optimum is that 

50% of culling is conducted not on the basis of milk yields, but instead in response to 

poor welfare traits (e.g. excessive lameness) (DairyCo industry data). Given that many 

production animals are reared in social environments and that pairwise social interactions 

have been linked to production and welfare traits (Bijma et al. 2007; Ellen et al. 2008; 

Bergsma et al. 2008), understanding and managing the social structure in a herd of dairy 

cattle may provide a route to improving welfare, lifespan and productivity.  

 

In many modern dairy herds, management practises mean that cows are often held in 

barns and other confined spaces for some, if not all of the day. As such, proximity-based 

http://encounternet.net/
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measures of social structure are likely to produce saturated networks (where every cow 

has recorded contact logs with every other).  The saturated structure of contact networks 

means that little to no insight is gained regarding the effects of social structure through 

looking at the presence or absence of social ties. Instead, the strength of ties (i.e. the 

association times) between individuals can be used and social structure examined in terms 

of the heterogeneity in the weighting of edges (Croft et al. 2008). However, the weights 

of edges are likely to be influenced by the detection distances of the loggers affixed to the 

individuals. In this study, we are left in a position where we might trust any absence of 

interactions between cows as reliable in such confined settings, but could not trust the 

weightings of the contacts which have been recorded as taking place; this is a stark 

contrast to the problem inherent in hybrid networks (chapter 4) where we could trust the 

presence, but not trust the absence of edges. 

 

In the following section of this chapter, it is shown that variation in detection distances is 

indeed a contributing factor to the poor RA of loggers. In addition, we characterise and 

address the wider issue of variability in logger performance, which may also include 

factors such as subtle differences in transmitter components, antenna configurations or 

both (Rutz et al. 2015). In particular, we demonstrate how the variable performance of 

loggers might affect the structure of social networks produced from logger data. The first 

correction proposed to account for the variable performance of loggers is for static 

networks- we will call this the “static correction”. The static correction corrects the total 

association times recorded by loggers over a given time period. Given that radio-

proximity loggers provide time-stamped contact logs; temporal information is lost when 

these logs are condensed into association times. In the final section of this chapter, we 

propose an extension to the static correction in Boyland et al. (2013) which corrects 

contact logs in a manner which preserves temporal resolution; this allows the resulting 

data to be used in multivariate models of temporal networks (e.g. Patison et al. 2015).  

We explore the impact of clock-drift and propose a more informed approach to increasing 

RA over time than either pseudo-contacts outlined by Hamede et al. (2009), or the 

amalgamation window approach proposed by Drewe et al. (2012)- we call this the 

“temporal correction”. The temporal correction is more informed than other approaches 

in that it takes into account whether the loggers of the individuals involved tend to over 

or under-sample interactions as well as correcting for clock-drift as recommended by 

Watson-Haigh et al. (2012). 
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6.3 Static Correction 

 

6.3.1 Methods 

 

Standardised test for detection distance 

 

To test the detection distance of 20 randomly sampled Sirtrack collar-mounted  loggers 

(model E2C 181C), we modified the experimental procedure outlined in Drewe et al. 

(2012). Each collar was mounted, in turn, on plastic stands set at a fixed height (50cm) 

above the ground. Antennae were fixed in a vertical position and loggers were set to a 

fixed setting  (43 - a medium strength detection sensitivity) with a separation time set to 

10 seconds to reduce the time waiting for termination of logs before repeating the 

experiment. A “base-station” (a free standing logger) was mounted at the same elevation 

and moved towards the fixed collar in 10cm increments from a starting point outside of 

both the logger and base-station’s detection range (6m separation). After each increment, 

the base station was held at that distance for 5 seconds to observe whether a signal has 

been picked up, indicated by the flash of the LED  of one or both of the loggers. One-off 

flashes were observed to occur outside of the “consistent” detection range (this had also 

been noted in Prange et al. (2006)), so initiation was recorded as starting once the LEDs 

on both the collar and base-station had flashed consecutively five times. The distance at 

which contact was established, the ‘initiation distance’, was noted for both collar and base 

station. The base-station was then moved away from the collar in 10cm increments, with 

a five second pause after each increment, until one or both of the LEDs stopped flashing. 

The distance at which contact was lost, the ’termination distance’, was recorded for both 

logging devices. The base-station was then moved back to its starting position, well 

outside of the detection range of the collar until the log had been stored (indicated by a 

prolonged LED flash). The process was repeated for eight times with each collar with a 

mean taken of both the initiation and termination distances - the base-station used 

remained the same throughout the experiment. 
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Field deployment  

 

The same twenty proximity collars as used in the standardised test were deployed for 

three weeks on 20 dairy cows, within a herd of 120, on a commercial dairy farm in 

Cullompton, Devon, UK. The herd was housed in a 45x30m barn with a robotic milking 

system. Low-yielding cows were given access to pastures, whereas high-yielding cows 

spent their entire day in the barn. Collars were turned on and then affixed to high-yielding 

cows whilst they were temporally immobilised, either during milking or routine 

husbandry procedures. Following the data-collection period, loggers were removed 

opportunistically during milking. The detection strength setting of the loggers was kept 

the same as in the standardised test, however, to avoid loggers recording too many logs 

and filling up prior to the end of the deployment, the separation time required for a contact 

to be logged was increased to 120 seconds. 

 

Data were collected from three days after collars were affixed to individuals for the 

following three weeks. The three-day period was to allow cows to become used to the 

presence of the loggers. After removing the logs that took place during the first three days 

following collar attachment and those that occurred after the start of collar removal, one–

second logs were removed as recommended by (Drewe et al. 2012). Following these 

steps, an association matrix depicting the total durations each logger had recorded other 

loggers over the deployment was created; this matrix was not symmetrical as two loggers 

within a dyad may have recorded a different duration of contact with each other. To 

calculate the pairwise biases of individual loggers, the percentage difference in total 

contact duration B was calculated for each dyad using the formula: 𝐵𝑖𝑗 = 100 
𝐷𝑖𝑗− 𝐷𝑗𝑖

𝐷𝑖𝑗+𝐷𝑗𝑖  
 , 

where D is the duration from the association matrix for loggers i and j. For example, if 

logger i recorded logger j =Dij = 5000 seconds, and the duration that logger j recorded 

logger i = Dji = 4000 seconds then Bij = +11.1% and Bji = -11.1%. Performing this 

calculation across all dyads created what we will refer to as the pairwise bias matrix B. 

The average logging bias each logger had with all other loggers in the deployment was 

taken; this provided a measure of how each logger performed comparative to all others, 

hereafter referred to as the logging bias. 
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The link between detection distance and logging bias 

 

To determine the role that the observed variation in logger detection distances might have 

on the logging biases observed in the field deployment, we first correlated the measured 

detection distances with logging biases.  

 

To probe the link between detection distances and logging biases, a simple analytical 

model (we will refer to this as “A”) was proposed by James. In this model, each logger i 

has a single distance ri (set as the logger initiation distance from the standardised test) 

within which it detects any other logger j. The model assumes that individuals use space 

uniformly, so the time t that logger i detects any other logger j is proportional to the square 

of i’s initiation distance: ti=αri
2. The constant α is the same for all loggers, depending only 

on the size of the area used, and the total duration of the observations. Using the above 

model, a matrix of pairwise logger biases Aij was constructed using the derived formula: 

 

𝐴𝑖𝑗 = 100 
𝑟𝑖

2 −  𝑟𝑗
2

𝑟𝑖
2 +  𝑟𝑗

2 

In this formula, the percentage difference Aij for each dyad is taken as the difference in 

the square of each logger’s initiation distance (ri and rj respectively) relative to the average 

of both of the logger’s initiation distances. The Aij bias matrix produced using this formula 

was correlated to the Bij matrix observed in the field deployment using a Mantel test 

(Mantel 1967) with a Spearman’s rank correlation coefficient in the package “vegan” 

(Dixon & Palmer 2003) in R (R Development Core Team. 2008). 

 

The Bij bias matrix from the field data was significantly correlated with the Aij biases 

created using the analytical model (RS=0.52, p=0.008); this further confirms that variation 

in the detection distances of loggers does indeed influence logging biases. However, the 

R2
  (of the correlation) suggests that it only explains about 25% of the variation in the 

ranking of logging biases suggesting factors other than initiation distance affects pairwise 

logging biases. 
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Given that A was simplified to consider only the initiation distances of loggers, a 

computational model (we will refer to this as “C”) was used to check that this 

simplification was justified. In this model, 20 agents representing cows wearing loggers 

were allowed to roam around a hypothetical arena (area: 100m2) for 15,000 time steps. 

The simulated loggers affixed to agents in the model had the same initiation and 

termination distances as those observed in the standardised test. Upon an agent entering 

the initiation distance of another logger, a log was started, upon the agent subsequently 

exiting the termination distance of that same logger, the log was finished and the contact 

duration (in terms of time steps) recorded. C was used to produce a pairwise bias Cij  

matrix using the same procedure as with the field deployment. The Cij matrix was 

correlated with the Aij  matrix created by the analytical model using a Mantel test with a 

Spearman’s rank correlation coefficient.  

 

The effect of logging biases on network production 

 

To characterise the consequences of variable logger performance on the construction of 

social networks, we calculated the in and out degree-strength of each of the 20 collared 

individuals in the field deployment (i.e. the total time an individual’s logger recorded or 

was recorded by other loggers respectively). Degree strength could be taken as a measure 

of the overall sociality of different individuals and how central they are in the social 

structure of the herd (Croft et al. 2008). 

 

Static Correction Procedure 

 

One solution to control for the biasing effect of loggers might be to include variables 

which account for this source of bias in a multivariate model. Two options may be 

considered at the point of modelling. The first would be to include logger ID as a 

categorical, or “dummy” (Suits 1957) variable when modelling social structure; this 

would ensure that each logger’s performance is accounted for when determining the effect 

size and significance of other variables in the model. However, a severe drawback of this 
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approach is that it potentially requires a unique explanatory variable for every logger; this 

may lead to both an over-parameterised model and one where individual differences in 

sociality are masked by the logger ID variable. An alternative approach might be to have 

two explanatory variables in the model such as “Focal logger detection area” and 

“Encountered logger detection area”; the advantage of this approach would be that only 

two variables are required to capture the variability in logger performance, so a more 

parsimonious model could be proposed. However, as we show in section 6.3, detection 

distances are a significant, but marginal factor in determining the variability in logger 

performance; explaining about 25% of the variation in logger biases. Therefore, detection 

distances may not account for suspected latent causes of variability in logger performance 

and may fail to sufficiently represent logger bias. 

 

To analyse networks constructed from contact logs collected by radio-proximity loggers, 

an approach is needed which corrects for the variability in logger performance without 

being overly reliant on detection distances or requiring logger-specific explanatory 

variables in a model. With this in mind, we developed a correction to address logger 

biases in static networks (which we refer to as the “static correction”). 

 

To provide a measure of the reciprocity between loggers in each dyad prior to the 

correction, a Spearman’s rank correlation coefficient was calculated between the 

durations recorded in dyads ij and ji over all values of i and j  – we will call this measure 

the “dyad reciprocity”. Prior to the correction being applied to the association matrix from 

the field deployment, the dyad reciprocity was 0.76. If there was perfect reciprocity in the 

deployment (i.e. each logger in a dyad recorded the other for an identical duration) then 

the dyad reciprocity would be 1.  

 

To correct for the variability of logger performance, we proposed that the durations 

recorded by loggers in the association matrix are reduced proportional to how much the 

focal individual’s logger was identified to oversample interactions relative to the weakest 

logger in the deployment. The justification for this approach is that it is conservative, 

removing rather than creating data, and intuitive, as the weakest logger in the deployment 

would provide a representation of the sampling effort. To do this, all logging biases of 
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loggers were first recalculated relative to the least recorded logger in the deployment. In 

our field test, this logger had a bias of -14.8%, so 14.8% was added to all logger biases, 

meaning the strongest logger in the deployment (previously with a bias of +22.1%) over-

sampled interactions by +36.9% relative to the weakest logger. To continue with this 

example, all durations recorded by the strongest logger would be reduced by 36.9%, 

whereas the durations recorded by the weakest logger would not be changed. Note that 

this procedure is reliant on calculating pairwise logger biases to identify the relative 

logging bias of deployed loggers, as such, the approach would not be suitable for sparse 

datasets where few loggers have encountered each other over the duration of the 

deployment. In such cases, the analytical model could be used to provide logging biases 

from the Aij matrix if the distances of loggers have been measured. 

 

6.3.2 Results 

 

Standardised test for detection distance 

 

The standardised tests revealed that there was significant variation in the mean initiation 

and termination distances of loggers, with mean initiation distances ranging from 2.01 to 

3.01m (mean: 2.41m± 0.05m standard error), and mean termination distances ranging 

from 1.99 to 3.25m (mean: 2.59m± 0.07m standard error). The mean initiation distance 

of loggers was found to have a Pearson’s correlation of 0.96 with the mean termination 

distances (p<0.0001). A Pearson’s correlation coefficient was used as the datasets show 

no significant deviations from normality (initiation: W = 0.9619, p-value = 0.5826; 

termination: W = 0.9512, p-value = 0.3864) and have homogenous variances (F = 0.6313, 

df = 19, p= 0.3245). In insert 6, the initiation distances (A) and termination distances (B) 

are shown against for each collar against the fixed base-station. The detection distances 

of loggers were consistent. Across the 8 measurements made for each logger the average 

variance in initiation distance was 1.4cm, four times lower than the variance between 

loggers of 5.6cm. 
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Insert 6: A - The mean contact initiation distance (±standard error) for each of the 20 

loggers tested and the corresponding distances recorded on the base-station. B - The mean 

contact-termination distance (±standard error)  for each of the 20 loggers tested and the 

corresponding distances recorded on the base-station. These figures have been adapted 

into a panel-figure with the permission of Natasha Boyland. 

 

The standardised test thus indicated that the strongest logger in the deployment (~3m 

range) could detect contacts 1.5 times as far away as the weakest logger  (~2m range). If 

we consider that these loggers sample an area for other the presence of other loggers, the 
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strongest logger would sample an area 2.25 times as large as the weakest logger in the 

deployment (~3m2/ 2m2).  

 

Field deployment  

 

The field deployment revealed substantial variation in logging bias, ranging from            -

14.8% to +22.1% (see insert 7). To see if these biases were repeatable and thus consistent 

for each logger, the deployment was split into three one-week observation periods and 

the biases recalculated for each collar using the same procedure as for the whole 

deployment. Repeatability was measured as the variance between loggers divided by the 

sum of the variance between loggers and the residual variance (see Nakagawa & 

Schielzeth (2010) and Schuett et al. (2011) for details). Ninety-five percent confidence 

intervals (CI) for repeatability estimates (r) were obtained from parametric bootstrapping 

(N=1000 simulation iterations) (see Nakagawa and Schielzeth (2010) for details).  

 

The proximity loggers showed a very high degree of consistency in logging bias over the 

three time periods (r=0.992, 95% CI: 0.982 to 0.996). 
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Insert 7: The logging bias of each logger in the deployment shown in descending order. 

This figure was used with permission from Natasha Boyland. 

 

The link between detection distance and logging bias 

 

The logging bias observed in the field study was significantly correlated with the mean 

initiation (RS=0.457, n=20, p=0.043) and termination (RS=0.49, n=20, p=0.028) distances 

of the base station (distance at which the base station detected collars). Similarly, the 

logging bias was significantly correlated with the mean initiation distances (RS=0.460, 

n=20, p=0.041) of the collars (distance at which the collars detected the base station). The 

mean termination distances of collars were not significantly correlated with logging bias, 

though the correlation was in the same direction (RS=0.368, n=20, p=0.111).   
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The analytical and computational model were highly consistent in the calculation of 

logging biases (RS=0.99, p<0.0001); this suggested that A could indeed be used as the 

most parsimonious way to explain logging biases. 

 

The effect of logging biases on network production 

 

We identified a significant relationship between the in-degree strength of an individual 

and logging bias of associated logger. Loggers which tended to oversample other loggers 

had a higher in-degree strength (linear regression with permutation test, n=10,000 

permutations, adjusted -R2 =0.546, F=2.58, p<0.001). However, there was no significant 

relationship between the weighted out-degree strength and logging bias (linear regression 

with permutation test, adjusted -R2 =-0.095, F=0.17, p=0.705). Given this, logging bias 

of an individual’s logger could affect how central we believe an individual is in a social 

network. Individuals fitted with strong loggers will appear more central, whereas those 

fitted with weaker loggers will appear more peripheral. 

 

Static Correction Procedure 

 

After, the correction was performed, dyad reciprocity rose from RS=0.76 to 0.99 using 

the Bij matrix, and 0.84 using the Aij matrix. The increases in reciprocity indicate that the 

correction resolved much of the pairwise discrepancies in contact duration observed in 

dyads prior to the correction. In this study, the Bij matrix provided the most effective 

correction. However, producing the Bij matrix requires every logger to have come into 

contact with each other to function effectively. In captive populations, such as livestock, 

this may be common place, but in free-living animal populations the association matrices 

produced may be too sparse to calculate a Bij matrix rich enough to determine accurate 

logging biases. The Aij matrix provides a suitable alternative for situations where the 

association matrix is sparse, as it only requires the detection distances of loggers to be 

quantified prior to deployment. 
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6.4 Temporal Correction 

 

The static correction outlined in section 6.3 was directed towards adjusting an association 

matrix containing the total durations that loggers had observed each other over a certain 

period of time. One mentioned limitation of the static correction using Bij is that these 

association matrices need to be rich, with all loggers having encountered each other for 

the correction to perform well. Although Aij does not have this specific limitation, it has 

only thus been applied to static networks. Both methods have not had to consider which 

contacts, or parts of contacts, should be removed over continuous time to account for 

logging bias. In this section, a procedure is outlined to increase the reliability of contact 

logs without reducing the temporal resolution of the data. The five principles behind the 

temporal correction are as follows: 

 

1. To synchronise the timing of logs to the logger with the most stable clock for the 

duration of the deployment - we specifically refer to this part of the overall 

correction as the “synchronisation procedure”. 

2. To assume longer contacts are more reliable than shorter contacts. 

3. To assume two contacts between the same loggers are more reliable if they are 

close in time. 

4. To assume that the contacts recorded by under-sampling loggers are more reliable 

indicators of an interaction taking place than the logs of over-sampling loggers. 

5. To assume that times when both loggers in a dyad record each other concurrently 

are more reliable than times where only one logger records the other. 

 

The temporal correction uses these criteria to produce one set of logs for each dyad, 

weighted according to the strength of evidence attributed to whether the contact had 

indeed taken place. The data set can then be filtered to remove all logs less reliable than 

a given threshold. We recommend setting this threshold at a level where all of the logs 

greater than one second in duration from the weakest pair of loggers in the deployment 

are retained and no higher. In this sense, the maximum amount of data is retained whilst 

removing logs driven by oversampling loggers. 
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The synchronisation procedure first increases the alignment of contact logs recorded 

within each dyad through correcting for clock-drift that has taken place over the course 

of the deployment. Secondly, although the weighting of contact logs never generates 

“new data” like the “amalgamation window” approach (Drewe et al. 2012; Bettaney et al. 

2015),  it does allow intermittent interactions by one logger to be annealed if the missing 

interaction time is logged by the other logger in the dyad. However, in contrast to the use 

of pseudo-contacts (Hamede et al. 2009), interactions will not always be annealed under 

a given reliability threshold. If the two loggers involved heavily oversample interactions, 

then interactions missed by one may instead indicate that interactions are towards the 

edge of the detection range of already oversampling loggers, and thus should be removed 

given the desire for unbiased sampling. An advantage of our approach is that it both 

considers the biased performance of loggers, shown to be correlated with detection 

distance, and clock-drift when correcting collar logs. Watson-Haigh et al. (2012), 

highlighted that these two factors would bias existing approaches. 

 

6.4.1 Methods 

 

Field deployment 

 

To demonstrate this correction procedure in full and characterise some of the factors 

which lead to the poor reciprocal agreement of contact logs. A second deployment of 

loggers was carried out in 2014. Ninety-five collar-mounted Sirtrack® radio proximity 

loggers were attached to individuals in a herd of ~120 Holstein dairy cattle situated at 

Evershot Farm, Dorchester in October 2014 for a total of 10 days. Before the deployment, 

new batteries were fitted and all internal clocks of loggers were synchronised. The loggers 

were set to detect contacts from at least 2 metres, which corresponded to them being set 

at UHF 40 in all but 12 cases, which required settings between 1 and 5 to sample at 2m. 

The management system at the farm throughout the duration of the deployment was as 

follows: cattle were held in barns until 8am, at which point they were milked and then 

allowed to graze outdoors in paddocked fields until 3pm, when they were milked and 

returned to the barn until the next morning. Collars were both fixed and removed from 

cows through running the whole herd through a “crush”, a device used for restraining 

cows, usually for routine husbandry procedures.  
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Pre correction data-processing 

 

The downloaded logs from the 95 loggers were amalgamated into one dataset, which was 

subsequently trimmed to remove any logs that occurred before 7am on day 3 and after 

7pm on day 9 were omitted; logs that crossed these times were truncated accordingly. 

Data were removed from the first three days of the deployment to allow time for the cows 

to adjust to the presence of the collars. The proportion of logs with a duration of one 

second was recorded, but in contrast to the recommendations of Drewe et al. (2012) these 

logs were not removed from the dataset, as these may provide evidence that loggers are 

near the edge of their detection range (Prange et al. 2006).  Further, the proportion of logs 

that exceeded the memory limit of the loggers (65535 seconds) was recorded, as these 

have been observed in previous deployments. Contacts where the duration exceeds the 

single-log memory limit of the loggers are recorded as two or more logs with 

simultaneous starting points, with all but the last of these logs having duration of 65535 

seconds. Although far less common than one second logs, these split logs will artificially 

reduce average contact duration and increase contact frequency if not annealed. 

 

Before implementing the correction algorithm, the total time that each pair of loggers 

were in reciprocal agreement across the deployment was recorded. Recall that reciprocal 

agreement is defined as both loggers in a given dyad logging each other simultaneously. 

The amount of time each logger recorded the other without reciprocation was also 

recorded for each dyad; these measures served as a benchmark to evaluate logger 

performance before correction. 

 

To identify potential causes of unreciprocated contacts, all instances where these occurred 

within dyads were identified. First, the logging biases of each collar were used to explain 

lack of reciprocation. Logging biases were determined from a Bij matrix (as outlined in 

Boyland et al. (2013) and section 6.3). Logging biases could provide a measure of how 

often unreciprocated logs were caused by a contact being recorded by just the stronger 

logger in the dyad; this could potentially be the result of cows being at a distance from 

each other outside of the detection radius of weak logger, but within the distance of the 
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strong logger. Secondly, unreciprocated contacts could be the result of clock-drift over 

the course of the deployment, which could lead to one set of logs being recorded at an 

earlier or later time than the other. To quantify this, the total amount of reciprocal contact 

time for each dyad was compared before and after logger’s clocks were synchronised 

using the synchronisation procedure. 

 

Temporal correction algorithm 

 

The first part of the temporal correction is the synchronisation procedure. The first step 

of which is to identify how offset the clocks of loggers are from each other. We will call 

the time offset matrix produced by this process the Tij matrix. Using the Tij matrix, the 

logger with the most stable clock in the deployment can be identified (see: “i. Time 

synchronisation”). The clocks of all other loggers can then be synchronised to this logger 

using the corresponding offsets in the Tij matrix. After synchronisation, all contacts then 

receive a weight based on their duration and proximity in time to the nearest contact with 

the same logger - under the assumption that contacts with a long duration are more reliable 

than those with a shorter duration and that an isolated contact with a given logger is less 

trustworthy than one close in time to another with the same logger. The weights assigned 

to contacts are then scaled down by the logging bias of the logger relative to the weakest 

logger in the deployment. In dense, captive populations, this logging bias would most 

likely be calculated on the Bij matrix, but if the association matrices at the end of the 

deployment are sparse, then we have demonstrated (in section 6.3) that the Aij matrix can 

also provide informative logging biases.  The last step in the correction is to combine the 

two sets of logs for each dyad into one set of weighted contacts; when this step is applied, 

the weights of logs are added together at times when there is reciprocal agreement 

between loggers- as reciprocal agreement is assumed to increase the reliability of logs. 

We now consider the approach in more detail: 
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1. Time synchronisation 

 

For each dyad, the total duration of time that both loggers concurrently registered contact 

with each other was summed over the course of the deployment. The logs from one logger 

were then shifted forwards and backwards in time against the logs from the other in one 

second intervals. After each shift, the new duration of reciprocated contact was summed. 

Logs were shifted until the displacement in time required to generate the first local 

maximum in the sum duration of reciprocated contact was identified. This time-

displacement was taken as indicative of how offset the clocks of two loggers in a dyad 

were relative to each other. Applying this method across all dyads generated a matrix of 

observed time displacements between the loggers in every dyad. In figure 9, the method 

used to identify the offset of the clocks of two loggers are shown in two examples: A- 

depicts two loggers which have clocks that are well aligned, whereas B shows two of the 

least synchronised clocks present in the deployment. 
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Figure 9: A- Time-shift plot showing an identified time-displacement of -8.5 seconds 

(shown in red) between loggers 12 and 5. B- time-shift plot showing an identified time-

displacement of -101s (shown in red) between loggers 86 and 6. 

 

The observed time-displacements between loggers were not perfectly consistent across 

dyads (i.e. Tab=x and Tac=y then Tbc may not always equal y-x), which suggested the clocks 

of some loggers may have drifted relative to others over the course of the deployment. 

An alternative source of inconsistency may have been cases where the synchronisation 

process identified a local maximum which was not representative of the true offset 

between the clocks of two loggers.  Consequently, the Tij matrix alone could not provide 

consistent adjustments required to synchronise the logs from different loggers in the 

deployment. Instead, the clocks of each logger were corrected to the clock of one logger 

whose offsets with other loggers in the Tij matrix could most accurately predict the offsets 

between all loggers in the deployment. To determine which logger to use, a “predicted” 

time-displacement (Pij) matrix was constructed for each logger using the time-

displacements in the Tij matrix. For instance, in logger A’s Pij matrix, if logger A was 

found to be 3 seconds ahead of logger B (TAB=3) and 4 second ahead of logger C (TAC=4), 

then, according to A, the clock of B would be 1 second ahead of the clock of C (PBC=1). 

The mean of the differences between the Tij matrix and each Pij matrix was calculated - 

which we will refer to as the “residual time” (see figure 10). The clock of the logger that 

provided the lowest residual time (we will call this logger θ) was chosen to synchronise 

the clocks of the other loggers to; this was achieved via shifting the logs recorded by other 

loggers forwards or backwards in time according to the offset that they were identified to 

have with θ in the Tij matrix. 
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Figure 10: Mean residual times of the 95 loggers deployed. The blue line indicates the 

average offset between loggers identified through the local maxima in the time-shift plots 

for every dyad (7.32seconds). Logger 17 (red) provided the lowest residual time of 4.75 

seconds. 

 

2. Weighting contact logs 

 

Following the synchronisation process, the contacts recorded by loggers were weighted 

in a four-step process- the criteria used to weight logs was chosen heuristically. The first 

step was to weight assign each log a weighting between 0 and 1 on the basis of their 

duration. The second step was to add a weight between 0 and 1 to logs based on how 

close in time they occurred to other logs between the same loggers. The third step was to 

scale-down the combined weights of logs (which could now range between 0 and 2) 

relative to how much the logger they were recorded on was identified to oversample 
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interactions. The fourth step was to combine the logs recorded by both loggers in a given 

dyad into one set, at times where both loggers recorded a contact, their weights would be 

added together. At the end of this process logs could have a weighting between 0 and 4. 

The rationale behind this process is that the weights of logs would represent how much 

we could trust that they represented a real contact between the animals to which the 

loggers were affixed. Thresholding out the logs with the lowest reliability would, due to 

the scaling of weights, preferentially remove unreliable logs from oversampling loggers, 

thus removing some of this sampling bias and increasing the suitability of the resulting 

data for a multivariate model. 

 

Contact logs were weighted based on their duration under the assumption that contact 

logs with a long duration were more reliable than those with a short duration. The weight 

assigned to each log was calculated as the proportion of logs recorded with a shorter 

length in the deployment. Therefore, the contact log which had the median length of time 

for the deployment would receive a weight of 0.5, the contact with the longest duration 

in the deployment would receive a weight of 1 and the shortest, 0.  

 

Contacts were then weighted based on how close in time they were to another log between 

the same focal and encountered-logger, we call this measure the shortest interval time 

(SIT). The assumption was that isolated contacts with large SITs were less reliable than 

contacts close to others with small SITs. The weight assigned to each log was the 

proportion of SITs in the deployment greater than that of the log being weighted; this 

provided a range of weights where the most isolated contact received a 0 and the least 

isolated, 1. The weights generated by SITs and contact durations were then summed to 

give each contact log a weighting between 0 and 2.  

 

Using the method proposed by Boyland et al. (2013) (section 6.3), logging biases were 

calculated for each logger in the deployment from a Bij matrix. The weights of the contacts 

logged by each logger were then reduced relative to how much the given logger 

oversampled interactions compared to the weakest (most conservative) logger in the 

deployment. If the weakest logger in the deployment sampled at 100%, then a logger with 

a logging bias 20% higher than this was sampling at 120% - we call this the comparative 
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sampling effort (CSE) of that logger. The weights of all contacts recorded by a logger i 

would be multiplied by 100/CSEi. For example, if logger i logged interactions 10% more 

than the most conservative logger, then the logs of logger i represent a CSE of 110%. In 

this example, the weights of logs recorded by logger i would be multiplied by 100/110 to 

reduce the weightings of logs recorded by i. 

 

The scaled contact weights were combined to produce one set of logs for each dyad in the 

deployment (figure 11). At times where two loggers logged each other concurrently the 

weights were added from each logger in the dyad under the assumption that corroborative 

contact between loggers was strong evidence that a contact had taken place. Addition was 

chosen over multiplication to combine logs so that the combined contacts would not have 

their weight reduced to zero in instances where only one logger logged an interaction 

within a given dyad. The final set of logs were then filtered to remove those with a weight 

less than the least reliable log recorded between the two weakest loggers in the 

deployment, excluding 1-second (phantom) contacts. 
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Figure 11: A- weighted contact logs of two weak loggers (purple), two strong loggers 

(green) and two medium sampling loggers (cyan) over time in seconds. The filter 

threshold (0.3862) is shown by the blue horizontal line. B- weighted contact logs of the 

same pair of weak loggers (purple), strong loggers (green) and medium sampling loggers 

(cyan) magnified between 20000 and 23000 seconds. The same filter threshold is shown. 
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Figure 12: A histogram showing the distribution of weights assigned to logs in the 

deployment. 

 

In-field Validation of the correction procedure 

 

The rationale behind taking videos of cows affixed with loggers was to provide an 

external, independent means to validate the temporal correction procedure. The contact 

logs provided by the loggers could be compared to video footage to ensure that contacts 

that received a low reliability weighting from the temporal correction procedure were 

indeed those on the edge of the detection range of loggers and that logs which received 

high weightings corresponded with instances where loggers were indeed close together. 

 

Video footage was taken to record the position and movements of selected cows from 14-

10-2015 to 17-10-2015 of the deployment using a Polaroid ID2020 Full HD Camcorder. 

A cow was selected at random and recorded for 10 minutes with the goal of identifying 

potential contacts with other cows which the loggers may record. Each cow was identified 

either by its logger ID painted on the collar strap, or its freeze-brand/ ear-tag number. If 

the selected cow became isolated from others, or became difficult to video without 
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disturbing other cows, then neighbouring accessible cows would be recorded for the 

remainder of the 10 minutes. The videos were than analysed, with data being collected 

on the position of cows (standing/lying), their orientation relative to each other, and the 

estimated distances between loggers (assuming a Holstein Cow’s body length is 2.5m) 

over time. 

 

Detailed observations were recorded from 15 randomly-selected ten minute videos; 

assisted greatly by two project students at Exeter University, Primrose Manning and Ruth 

Shen. These videos provided 519 complete data entries, where both of loggers involved 

in the interaction could be identified along with the distance separating loggers and the 

time of day that the loggers were separated at a given distance. A statistic V was chosen 

to represent how well the loggers performed; this statistic consisted of multiplying the 

weighting of a log by the inverse (1/distance) of the distance loggers were observed to be 

apart in the video (+0.1m to prevent division by 0) and then summing this score for every 

second logger and video contacts corroborated. Using this statistic, highly weighted logs 

assigned to instances where cows were observed to be very closely together would 

contribute very highly to the final test statistic. 

 

The first test of the weighting procedure was to see if the observed V was greater than 

expected if weights were assigned to contacts randomly- preserving the same distribution 

of contact weights. The null model used to test this involved permuting the contact 

weights assigned to contact logs 4999 times; this generated a distribution of V under a 

null where the logs of loggers had already been synchronised. We had recommended 

setting a weighting threshold that filters the phantom contacts of the weakest pair of 

loggers in the deployment and no more - which worked out as 0.3862 in this deployment. 

The second test conducted was to check that removing logs with a weight less than the 

threshold of 0.3862 did not remove close-contacts identified by the video footage. To test 

whether this was significant, a null model was constructed which randomised contact 

weights and then removed all contacts below the same threshold. 
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6.4.2 Results 

 

Quantifying the effects of the temporal correction  

 

Prior to performing the temporal correction procedure, a number of erroneous logger IDs 

were recorded belonging to loggers which weren’t deployed.  Twenty-nine logger IDs 

were observed to occur above the range of IDs which were deployed, supporting the 

previous observations of Watson-Haigh et al. (2012). It is possible that more erroneous 

logger IDs are present in the data, but have been missed as they exist within the range of 

logger IDs deployed. It was observed that the majority of erroneous logs were recorded 

for duration of only 1 second (91.5%), with the highest duration recorded being 5 seconds. 

Logger IDs which were clearly erroneous were removed prior to the temporal correction. 

Erroneous logger IDs which may exist within the range of deployed logger IDs, and as 

such cannot be easily identified, will be most likely removed during the temporal 

correction procedure on account of their short duration. 

 

Over the whole deployment, 31.9% of logs had a 1 second duration (or were “phantom 

contacts” (Prange et al. 2006)), with loggers recording a range of 26.5 to 54.0% of 

interactions. 40.1% of all interactions in the deployment lasted less than 5 seconds. In this 

deployment of loggers, there were no contacts greater than 65535 seconds (which results 

in split logs starting at the same starting time). Prior to the temporal correction being 

performed, there was a mean reciprocal agreement between dyads of 48.7% ± 2.2% (mean 

± standard error) - measured as the amount of time both loggers were on divided by the 

amount of time either or both loggers were on. A mean of 39.7% ± 2.4% of logs consisted 

of the strong logger recording the weak logger in the dyad without reciprocation. A mean 

of 11.4% ± 0.9%   of logs consisted of the weak logger recording the strong logger in the 

dyad without reciprocation. Before the temporal correction, it was observed that loggers 

with higher logging biases recorded both a higher frequency of interactions 

(RPearson’s=0.399, p=0.0008), and interactions which lasted a longer duration (RP=0.53, 

p<0.0002). The dyad reciprocity in the association matrix for the whole deployment (as 

defined in section 6.3) was RS=0.62.  
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The Tij matrix was highly correlated with differences determined through using the 

Sirtrack® logger software, which provides the amount of time each loggers had drifted 

since the last data download (Mantel test: RS=0.74, p<0.0002). The most stable logger in 

the deployment was logger 17, which on average had a residual time of 4.75 seconds i.e. 

the average amount of time the observed displacement from loggers was different to that 

predicted by the logger’s interaction with logger 17. Uncorrected, loggers were on 

average, 7.32 ± 0.18 seconds out-of-synch with each other (figure 10). The amount each 

logger was suggested to drift was modelled against the times returned upon downloading 

Sirtrack logs (after removing two outliers, logger ID 68 and 86) (see figure 13). The linear 

model suggested the clock-drift identified by the synchronisation procedure Y could be 

predicted by the clock-drift suggested by the Sirtrack software X, (Y ~ -12.38 + 0.313X, 

Adjusted R2 =0.763, p<0.0002). 

 

Figure 13: A plot showing the correlation between the clock-drift of loggers identified 

by logger 17 and those identified by the Sirtrack logger software. In red is the line of best 

fit from the regression. Two outliers have been omitted (logger 68 and 86). 
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Despite the high correlation between the offsets identified from the synchronisation 

procedure and those identified from the Sirtrack® software, adjusting the timing of logs 

by the software-offsets reduced the reciprocal agreement of loggers by 1.6% across the 

deployment. Given that the downloaded logs represent the amount of drifting that has 

occurred over the whole deployment, a temptation might be to take half of the software-

offsets to approximate the amount of drift at the mid-point of the deployment. For 

example, if the Sirtrack® software indicates that a logger had drifted 20seconds over the 

course of the deployment, its logs would be adjusted by 10 seconds. However, taking 

mid-points still serves to reduce reciprocal agreement, by 0.8%. Adjusting the timings of 

logs relative to how much the focal logger was identified to drift by the most stable logger 

in the deployment increased reciprocal agreement by 0.7%, a total of 168,000 seconds; 

this may seem trivial, but the loggers were only deployed for 10 days following the fixture 

of new batteries and a reset of the clocks all to one laptop. In the earlier deployments of 

the loggers, it was noted that synchronising loggers to multiple laptops (which may be a 

necessity in larger deployments) could create large discrepancies in logger synchronicity. 

 

One drawback of the current approach is that it assumes that the time-offset of loggers is 

constant throughout the course of the deployment, and thus corrects the timings of all logs 

from a given logger by a single value. A more intuitive approach would be to treat all 

logs as being synchronised at the beginning of the deployment (an option provided by the 

Sirtrack® software), and calculate the offsets between loggers over successive time-

frames. Using this approach, a linear function could be fitted to represent the rate at which 

the clock of each logger has drifted since the beginning of the deployment. Using this 

function, the logs of loggers could be adjusted differently over time, perhaps leading to 

better alignment then the current method. One limitation of this approach is that, like the 

Bij matrix, the Tij matrix requires loggers to have encountered each other enough to find 

local maxima which reflect the time-displacement between loggers. Over short time-

intervals, there may not be rich enough data to accurately estimate the Tij matrix. One 

solution might be to incorporate the time offsets from the Sirtrack® software, loggers 

could be set up and the drift over time recorded at intervals, through repeated connections 

with a laptop containing the Sirtrack® software. This could reveal more about the patterns 

of clock drift over time (e.g. whether it is linear, a function of logger activity etc.), to the 

extent where we might be able to accurately fit functions to describe clock drift using just 

the data returned upon retrieving the loggers post-deployment. 



168 
 

 

 

In-field Validation of the correction procedure 

 

Sixty-seven of the 95 cows were recorded in the videos. 195 of the 519 data entries were 

logs of cows estimated to be less than 2.5m apart in the videos - involving 43 different 

loggers. The average distance between cows observed in the video was 3.35m±0.09m 

standard error. The temporal correction algorithm was validated against this dataset. The 

observed V for the deployment was 10247.54. 

 

The mean null value of V from the null model was 5197.64, with the upper 95% CI 

6175.46. The p-value of our observed V of 10247.54 was less than 0.0002 given the null; 

this indicates that our weighting strategy is significantly better than chance. Removing 

the weakest logs in the deployment reduced our test statistic V by 0.097% (C=10237.54), 

whilst reducing the total number of logs in the deployment by 17.294%. The null model 

produced a mean null value of V of 8484.68, with a 95% critical value 9741.01, the 

probability that our observed value of V could have occurred as the product of the null 

model was 0.0032. 

 

Overall, both the time synchronisation procedure and the weighting procedure appear to 

increase the reliability of contact logs. The procedure can be used to generate a 

symmetrical set of contact logs suitable to create both temporal networks. However, the 

Bij matrix used to inform this correction requires that the loggers are deployed for a 

duration of time long enough to produce rich association matrices, as the method to 

calculate logger biases is based on Boyland et al. (2013). However, if the data are sparse, 

the Aij matrix from the detection distances of loggers could provide a replacement as 

demonstrated in 6.3. In this study, the Aij and Bij matrices showed a similar level of 

correlation to the Aij and Bij matrices in the 20-logger deployment in section 6.3 with an 

RS of 0.41(compared to 0.52) and a p-value of 0.052. 
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6.5  Discussion 

 

In this chapter, we have discovered that using Sirtrack® proximity logger uncorrected in 

a multivariate modelling approach will introduce biases that would affect the 

interpretation of the model. In static networks, the association matrices which may be use 

to define the strength of a relationship between individuals will be confounded by the 

loggers affixed to animals. We have demonstrated that the variable performance of 

loggers introduces logging biases which in turn create false variation in sociality: 

oversampling loggers will have inflated degree-strengths and pairs of over-sampling 

loggers would record stronger associations than pairs of under-sampling loggers. Without 

correction prior to analyses, it would be difficult to tease apart true social patterns from 

those created by the loggers.  

 

In temporal network studies, the problems caused by logging biases are magnified further. 

The variable performance across loggers not only leads to over and under-sampling of 

association times, but also significantly affects the frequency and duration of recorded 

contacts. That is not to say that we are the first to discover reliability issues in Sirtrack® 

loggers (see Prange et al. 2006; Watson-Haigh et al. 2012; Drewe et al. 2012). Drewe et 

al. (2012) stated that loggers were less reliable at consistently determining the true 

frequency and duration of contacts. We have shown that this property varies between 

loggers and is linked to their logging bias. Thus, one of the conclusions in Drewe et al. 

(2012) that the length of the contact recorded may be a more accurate parameter to use 

than frequency should be taken with great caution, as the lengths of contact recorded are 

significantly correlated with the logging bias of loggers, and to a greater extent than 

frequency. 

 

Overall, the issues and corrections presented in this chapter support an ongoing trend in 

research highlighting the need for appropriate testing of new remote-sensing 

technologies, that extend far beyond Sirtrack ® radio proximity loggers (see James et al. 

2015 for an example). The risk of the sampling method biasing the networks produced is 

not a new one for animal social network studies and the advent of remote sensing as a 

means to sample social network data has brought with it many substantial advantages 

over previous methodologies.  
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IV. General discussion and conclusions  

7. General discussion and conclusions  

 

 7.1 Preface 

 

The objective of this thesis has been to explain the structure of animal networks in terms 

of a number of “external” explanatory variables. Recall that we use the term “external” 

to describe traits which affect network structure that are not the result of the pre-existing 

network structure itself- which we refer to as “structural” variables (see section 2.3.1). In 

many senses we have achieved this goal; we have found multiple factors linked to the 

structure of the hybridisation network of the new world warblers (chapter 4) and multiple 

factors associated with inter-nest drifting by P.canadensis workers (chapter 5). Through 

the course of these chapters, multivariate statistical modelling has been used to evaluate 

the effect of each given explanatory factor on a given network whilst controlling for the 

combined effect of other factors. There are a number of network models, many of which 

have been developed in the social sciences, which allow us to perform multivariate 

statistical analyses on relational datasets such as networks (see Snijders 2011 for a 

review). However, through performing robust statistical analyses in chapters 4 to 6, we 

have demonstrated the risks associated with applying these statistical modelling 

techniques to animal networks without careful consideration for both the system studied 

and protocol used to collect network-data. 

 

In this final chapter, I will argue that further developments in MRQAP methodologies 

provide an avenue to understanding more advanced questions regarding the structure and 

functional consequences of animal networks. In each substantive chapter of this thesis, 

we have presented a different method to allow multivariate analyses on animal networks 

whilst addressing issues associated with animal network data. The first method involved 

using modelling approaches to remove the effect of controlled variables on each 

explanatory variable, and then using each of these modified explanatory variables in null 

model based hypothesis testing (NMBHT) on the observed network (see Croft et al. 

2011). This approach would be useful for studies where explanatory variables could be 

measured accurately, but the network itself may contain issues which prevent its inclusion 
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in a model-based approach- such as a high incidence of missing data. The second method 

involved tailoring aspects of one multiple regression quadratic assignment procedure (the 

MRQAP) to incorporate a more suitable null model for the system being studied; this 

prevented the model statistics being tested against an irrelevant reference distribution 

containing measures from impossible network combinations. The third approach 

considered ways that data collected using radio-based proximity loggers could be 

corrected to remove sampling biases; given that models in the social sciences assume 

even sampling, the resulting data would be more suitable for these approaches. 

 

The goal of this chapter is to show that further developments to the MRQAP provides a 

promising avenue to testing more advanced questions regarding the structure and 

functional consequences of animal networks. We will first revisit some of the issues 

encountered in each of the three systems studied and the potential consequences of failing 

to consider them at the point of analysis. We then consider in more detail how the 

approach taken in chapter 5, to modify the null model behind the MRQAP could perhaps 

provide a general solution to many of sampling and reliability issues that arise when 

trying to perform multivariate analyses on animal networks. The potential merit in 

replacing the null model behind a MRQAP to deal with issues inherent in animal network 

data was first highlighted in Croft et al. (2011). More recently, Farine and Whitehead 

(2015) suggested replacing the QAP in an MRQAP with data-stream permutation 

methods often used in NMBHT with gambit of the group (GoG) data (see  Bejder, 

Fletcher, and Brager 1998; Croft, James, and Krause 2008; Farine 2013; Croft et al. 2011). 

In this thesis, we have been more concerned with analysing networks inferred through 

observing dyadic interactions (see chapter 5). Through developing a thorough 

understanding of the MRQAP and NMBHT, we can contribute to Farine and Whitehead’s 

(2015) idea of adding data-stream permutation methods to the QAP by suggesting some 

of the potential issues which may present themselves using non-standard (e.g.  raw-data 

permutation) approaches and how they might be avoided if they are found. 

 

The issues we cover fit into a wider debate regarding the use of multivariate models in 

the field of studying animal social networks, which can be traced to at least as far back as 

Croft et al. (2008). Although we are concerned with animal networks in general (not 

necessarily social), many of the issues raised pertain to networks created from unevenly-
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sampled data, which unites both hybridisation networks (using currently available data) 

with social networks. One recent protagonist of this debate regarding modelling 

approaches on animal social networks was a review by Pinter-Wollman et al. (2014), who 

led a call for animal social network studies to incorporate more predictive analytical 

approaches - such as those developed in the social sciences. The article received a lot of 

commentary, some of which rightly centred on the idea that just because we can use these 

models on animal social networks, it doesn’t mean that the outputs will be interpretable 

in light of uneven-sampling and uncertainty in animal data (see Rendell and Gero 2013; 

Krause et al. 2014). These responses to Pinter-Wollman et al. (2014) prompted a reply 

from the authors, which was in part a concession to some of these issues and in (greater) 

part a pointer to where these models could be used as they stand; namely, in closed 

laboratory settings and with the use of remote sensing technologies (see Krause et al. 

2013). Although the positives of remote sensing technologies have been demonstrated in 

chapter 5, we have shown that remote sensing technologies by no means “close the 

sampling gap” as expected by Pinter-Wollman et al. (2014) (see chapter 6). Our findings 

support a broader trend of researchers finding issue with remote-sensing technologies (see 

Prange et al. 2006; Böhm et al. 2009; Drewe et al. 2012; Watson-Haigh, O’Neill, and 

Kadarmideen 2012; Boyland et al. 2013; Rutz et al. 2015) and highlight the need for 

appropriate testing prior to deployment.  

 

The debate regarding modelling may have also prompted the very recent “how-to” review 

by Farine and Whitehead (2015) titled: “constructing, conducting and interpreting animal 

social network analysis”; this review provides, amongst other things, suggestions and 

demonstrations as to how modelling approaches may be applied to animal networks 

whilst addressing sampling issues associated with animal data. The suggestions in this 

review are well-considered. Above, we mention that one particular overlap between this 

thesis and their review is that we both see the merit in modifying MRQAPs to increase 

their suitability for animal network studies. In this thesis, we make some more detailed 

suggestions as to how the MRQAP might be developed and issues that might arise in 

development and their potential solutions should they arise. 
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7.2 The consequences of ignoring data-quality issues 

 

The stance currently adopted in this thesis is similar to Rendell and Gero (2013) and  

Krause et al. (2014), that it is dangerous to apply modelling approaches developed for 

human social networks to many animal networks. Throughout this thesis, the 

consequences of ignoring issues with animal social network data have been profound, 

with both multivariate and univariate analyses providing qualitatively different results to 

analyses which have accounted for issues inherent in animal network data. We use 

empirical cases to show where results have differed, but some of the consequences of 

failing to consider the nature of animal network data in statistical analyses have now also 

been shown via simulation in Farine and Whitehead (2015). In this section, a recap of the 

issues encountered in this thesis and the potential consequences of ignoring them are 

highlighted. 

 

In chapter 4, we stated that the absence of reported hybrids between a pair of species may 

not be indicative of absent hybridisation, as only one hybrid report over a large timeframe 

would be required to confirm the presence of an edge between wide-ranging species. One 

recommendation to escape an over-dependence on absent reports is to use weighted edges 

(James et al. 2009). However, the majority of hybrid data are qualitative reports, with the 

extent of crosses ranging from “single” to “ongoing” to “extensive ongoing” (see 

McCarthy 2006). Willis, Symula, and Lovette (2014) performed a partial Mantel test 

(Mantel 1967; Legendre & Legendre 2012) on binarised report data, placing equal trust 

in the presence and absence of hybrid reports. Through using a partial Mantel test, they 

identified that hybridising species had significantly more similar songs after shared 

ancestry was accounted. However, in our analysis, which was based only upon the 

presence of reports in the same hybrid dataset, we found that species did not have more 

similar song than expected after accounting for shared ancestry. It may not be possible to 

know which analysis is correct, but it appears to be the case that the conclusions of Willis, 

Symula, and Lovette (2014) are dependent on a trust in unreliable data.  

 

The new method we presented in chapter 4 used MRQAPs to modify the explanatory 

variables used in our study, so that their unique contributions could be assessed on the 

response variable (the hybrid network). In this sense, the goal of the procedure was similar 
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to a principal components analysis (PCA), to remove the covariance between explanatory 

variables. However, our approach was tailored to account for specific confounding issues 

in the data, such as shared phylogenetic history affecting song and plumage similarity 

between species. Furthermore, our method produced outputs more readily interpretable 

(such as the “plumage similarity not explained by ancestry”) than the “loadings” provided 

from a PCA (see Jolliffe 2002). The explanatory variables were more suitable for the 

MRQAP as they contained no missing data, were sampled evenly and, as far as possible, 

measured without bias. In contrast, the response variable contained a high perceived 

likelihood of false negatives. Therefore, we believe that using modelling approaches 

which assume that both the presence and absence of edges are equally reliable would not 

be suitable given the response variable. Instead, we sacrificed the ability to produce a 

predictive model with effect sizes so that NMBHT could be used (see Krause, Wilson, 

and Croft 2011) on the observed network. A test statistic which focussed only on the 

presence of reports and a null model was developed around an edge randomisation (which 

is also a raw-data permutation in this instance). Edge randomisations are useful for animal 

network data as they place less confidence in the observed network structure than node-

label permutations (see Croft et al. 2011). Molecular methods will, in time, allow us to 

quantify the extent of meaningful hybridisation across species through measuring the 

amount of genetic introgression between species. Once datasets of this variety become 

widely available, it will be possible to use methods such as the MRQAP directly on the 

response variable (the hybrid network). In the meantime, using sightings of individual 

species to as a measure of sampling efforts for hybrids may provide a useful extension to 

some of the approaches presented in chapter 4. 

 

In chapter 5, the pattern of inter-nest drifting in wasps was found to be correlated with 

distance, nest-size, and the difference in the worker-brood ratio of nests.  In this chapter, 

a traditional social science null model was used in the MRQAP: the double-semi 

partialling QAP (QAP-DSP) (Dekker et al. 2007). The justification for a “traditional” null 

model was that there was a significant correlation between explanatory variables, perhaps 

indicative of collinearity to which the QAP-DSP has been demonstrated robust (Dekker 

et al. 2007). Further, in this study, we believed there was even sampling of drifting using 

passive RFID systems. A block-structure was incorporated into the MRQAP in a similar 

way to which block structures have been added to ERGMs (Hunter et al. 2013). Using 

our modified model, we found a significant effect of worker-brood ratio on drifting 
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patterns. However, this effect was lost following the experimental removal of some of the 

workers and brood from nests. The loss of this effect highlights the importance of carrying 

out manipulative experiments on networks to ascertain the causes of network structure, 

as highlighted in Farine and Whitehead (2015), Rands (2014) and in the response of 

Pinter-Wollman et al. (2014). In the analysis of this manipulation in Lengronne (2013- 

chapter 3), a chi-squared test was used to see if drifting patterns changed in hypothesised 

directions. This test firstly ignored the dependency in network data when assessing 

significance (see section 2.3). Secondly, the analysis ignored the potential the effect that 

removing workers would have on the number leaving each nest regardless of drifting. 

Using a network-based analytical approach, the MRQAP, contradicted the findings of 

Lengronne (2013), suggesting that the manipulation caused a loss in the tendency for 

drifting patterns to respond to the worker-brood ratio difference of nests; although other 

factors pertaining to nest-level need were identified. In the chi-squared test, the alternative 

hypothesis was accepted that the manipulation caused an adaptive change in the structure 

of the drifting network.  

 

Through adding a block-structure to the MRQAP, we have made the first steps in 

incorporating biologically realistic null models (see Croft et al. 2008; Croft et al 2011) to 

network modelling approaches. Through doing so, the significance of coefficients and a 

model as a whole have been evaluated against a reference distribution created only from 

null networks which could possibly occur in nature as opposed to those which could never 

occur. For example, an unconstrained QAP procedure would essentially allow wasps 

drifting back in time and/or over huge distances if not for the block-structure. Clearly, 

this step was necessary or the null model would not have accurately reflected the null 

hypothesis and reference distribution not relevant to the question being tested. That is not 

to say we can just approach any set of data and tailor a bespoke null model to underpin a 

MRQAP without further consideration. The approach taken in this thesis has relied on a 

well-characterised QAP-DSP null model (Dekker et al. 2007), which has been shown to 

be robust to a range of issues that can be present in the data; other null-models may be 

more sensitive to some of these issues. We discuss this idea further in section 7.3. 

 

In chapter 6, issues with Sirtrack® loggers, one of many remote sensing technologies 

available to collect animal association data would have resulted in the production of 
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networks with artificial variation in sociality if not corrected.  Given that Pinter-Wollman 

et al. (2014) suggested that these technologies might close the sampling gap between 

animal and human network studies, it is clear that the gap is perhaps larger than initially 

anticipated at the time of Krause et al. (2013). The data we obtained using Sirtrack® 

radio-proximity loggers were not suitable for direct use in a MRQAP, as the variable 

performance of loggers introduced bias to the association matrices (Boyland et al. 2013). 

Logging biases were correlated with the frequency and duration of contacts logged - 

potentially affecting temporal network measures. Our finding supports Rendell and 

Gero's (2014) statement: “just because we can run an analysis, it does not mean that we 

can interpret it correctly” in that we conclude that animal network data may often not be 

suitable for modelling approaches developed in the social sciences. It should be noted that 

a lot of studies into disease transmission have used Sirtrack® loggers (e.g. Hamede et al. 

2009; Böhm et al. 2009) and given that centrality is very important to spreading dynamics 

across networks (Pastor-Satorras & Vespignani 2001; Newman et al. 2002), we can only 

hope that their proximity loggers sampled more consistently than our own. 

 

The first correction for Sirtrack® loggers presented in chapter 6 was for static networks 

(Boyland et al. 2013), which reduced the time recorded by each logger relative to how 

much each logger oversampled interactions compared to the weakest in the deployment. 

Following the use of this correction, the data might be more suitable to for use in a 

modelling procedure like the MRQAP. In the one of two subsequent submitted 

manuscripts, this static correction is used as a prerequisite to the multivariate modelling 

of the social structure of dairy cattle (Bos taurus). The multivariate analysis in this 

manuscript uses a Bayesian mixed effects model (Hadfield 2014) with resampling of the 

response variable to determine the significance of both variables and the model.  

 

The second correction for Sirtrack® loggers was for temporal networks. The procedure 

seemed to perform well, preferentially removing unsubstantiated interactions as shown 

through comparison of the logs with video footage. Without the use of this correction, 

temporal network models based on Sirtrack® logger data, such as the relational events 

model in Patison et al. (2015), may be confounded by the performance of the loggers 

affixed to individual cows. Automated data-collection methods perhaps provide the best 

candidate datasets for models coming across from the social sciences. However, sampling 
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must be made consistent across loggers, either through improving the hardware in these 

technologies, or developing post-deployment procedures such as those presented in this 

thesis (and also in Rutz et al. 2015) to correct for characterised issues with these 

technologies. Many authors have highlighted that thresholding data, particularly on the 

basis of edge values, can cause high incidence of both type 1 and type 2 error (Butts 2009; 

Langer et al. 2013; Farine 2014; Farine & Whitehead 2015). In some sense, the temporal 

correction we have developed does remove contacts which receive a reliability-score 

lower than a given threshold. However, the reliability-score of contacts are scaled down 

relative to how much each logger oversamples interaction relative to the weakest logger 

in the deployment. In this sense, the contacts removed would likely have never existed if 

all loggers performed equal to the weakest in the deployment. 

 

It may be likely that some steps taken in this thesis are overly- conservative. In chapter 4, 

most of the pairs of species that have not been reported to hybridise may truly not 

hybridise; as such, there may be some useful information buried in the absent reports 

which we have broadly treated as missing data. Perhaps a modelling approach could be 

used on a dataset consisting of just the pairs of species which hybridise frequently. Under 

this definition, we might be more confident that the absence of observed frequent 

hybridisation might be genuine, but we would also have to re-evaluate the biology of what 

we are studying. Removing reported hybrids for reasons other than uncertainty might 

amount to a form of network thresholding, which we have mentioned above carries its 

own risks.  

 

In chapter 5, a significant correlation between nest size and worker-brood ratio difference 

meant that a QAP-DSP was chosen as the null model in the MRQAP. However, the 

correlations were only weak (r ≤ 0.25) and may not have been indicative of a linear 

relationship. The QAP-DSP as a null model is a good choice due to its robustness to 

skewed and spurious data (Dekker et al. 2007), but choosing this well-characterised null 

model hindered us from exploring the use of more biologically interpretable null models 

such as randomising the destinations of drifting wasps. To advance the use of MRQAP-

type procedures in animal networks, two things are needed: a greater understanding of 

how sampling and reliability issues in animal data affect these network modelling 

approaches (see Farine and Whitehead 2015 for a review of where we currently stand) 
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and a better understanding how animal-network null models (see Croft et al. 2011) 

perform in light of issues which standard social science null models have been tested 

against. With this information, it will be possible to make more informed null model 

choices. 

 

Despite the potential for our approaches to be overly-conservative, we have discovered 

new biology in both of the systems we have studied. In chapter 4, we are the first to find 

a correlative link between male breeding plumage similarity and hybridization in the new 

world warblers (family: Parulidae). The implications of this finding and other findings 

such as (Martin et al. 2015) suggest that the diverse colourful plumage of wood warblers 

might be driven through selection for reproductive isolation in combination to more 

traditional explanations such as sexual selection (Shutler & Weatherhead 1990). In 

chapter 5, we were the first to identify that the network of inter-nest drifting in the paper-

wasp Polistes canadensis is partitioned into what we called “aggregations” on the basis 

of the native buildings of nests. Incorporating this structure into a modified MRQAP, we 

identified correlates of drifting in Polistes canadensis which suggest that the drifting 

networks of these species shows an adaptive response in the face of catastrophic events 

(i.e. small nests start attracting more help). 

 

7.3 Adapting the MRQAP: issues and future directions 

 

In this section, the potential merit in adapting the MRQAP is outlined, along with the 

considerations which should take place in this process. In a MRQAP, many of the 

assumptions which affect the fitting of a multiple linear regression (MLR) will apply - as 

both techniques use the same estimation procedure to fit the model. In section 2.3.1, we 

cover these issues in detail, which include: linearity, multi-normality, negligible error in 

the explanatory variables, and independent explanatory variables (no collinearity). 

However, issues which concern significance testing in an MRQAP are different to those 

in a typical MLR, as an MRQAP uses a node-label permutation (QAP) to generate a 

reference distribution as opposed to using distributional assumptions when evaluating the 

significance of t-statistics, F statistics, and partial-correlation coefficients. Recall that the 

reason for this is that relational data are not independent; values along rows and columns 
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may be more similar to each other due to the presence of a shared actor (known as row or 

column autocorrelation).  

 

One of the key messages in this thesis developed from Croft et al. (2011) is that there is 

scope to replace the generic QAP null model which underpins an MRQAP with one which 

can better account for aspects of the sampling protocol used to produce animal social 

networks (see Croft et al. 2011 for examples). In chapter 5, we make a cautious first step 

in demonstrating this approach through incorporating a block-structure into the MRQAP. 

All of the networks analysed in this thesis (chapters 4 and 5) are examples where edges 

have been inferred through dyadic interactions or associations as opposed to through 

group co-occurrence (using “gambit of the group”) (see Whitehead and Dufault 1999). 

As such, we have not had the reason to apply a data-stream permutation procedure to a 

MRQAP as recommended by Farine and Whitehead (2015). In chapter 5, where the 

unreliability of the sampling procedure is known (the 80% cover of the antennae), a QAP 

could be replaced with a null model which reflects that there is an 80% chance a drifter 

will be recorded either entering or leaving a non-natal nest. However, this null model 

might be excessive given the 96% chance that drifting wasps are detected at another nest 

on either entry or exit. In situations where coverage at each nest could vary, a null model 

which accounts for the differences in antennae coverage could be very useful. 

 

 A general note regarding the replacement of the QAP with other null models is that we 

might re-expose ourselves to some of the issues which the QAP and variations of the QAP 

(such as residual-permutation based methods (Dekker, Krackhardt, and Snijders 2007)) 

have been developed to control. For instance, the first thing we would likely sacrifice is 

the preservation of structural (row-column) autocorrelation (as outlined in Krackhardt 

(1988)); this will mean that the observed dataset may be compared to a reference 

distribution generated from datasets with less structural autocorrelation. How much of a 

problem this will pose is currently a grey area. It may very well depend on the dataset, 

but given that OLS estimation is unbiased by heteroscedasticity (which will be caused by 

structural autocorrelation), there may be circumstances where this is not a problem. 

Testing the addition of a new null model’s susceptibility to autocorrelation in a similar 

way to Krackhardt (1988) could perhaps confirm this. 
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When working with the MRQAP we should bear in mind that the MRQAP was developed 

by Krackhardt (1988) under a very restrictive set of conditions; using simulated datasets 

where there was no correlation among any of the variables. Dekker, Krackhardt, and 

Snijders (2007) tested the performance of the MRQAP using various different versions 

of the QAP procedure (Y-permutation, X-permutation, residual permutations) on datasets 

which exhibited some non-desirable qualities: collinearity, spuriousness (a confounder 

effect) and skewness; the term “spuriousness” referring to correlation between a response 

variable and an explanatory variable caused by the presence of another explanatory 

variable. Their tests showed that residual permutation procedures (such as the double 

semi-partialling (DSP) used in chapter 5) were the most robust to spuriousness and 

skewness in the data, but that all QAP-based methods (including residual-based methods) 

performed poorly with highly skewed and spurious data. They also found that a QAP 

permutation of the response matrix performed well when the test statistic used (e.g. a t-

statistic) was pivotal. Recall that a statistic is defined to be pivotal when the distribution 

of the statistic under the null hypothesis is independent of the “nuisance” parameters (a t-

statistic and a partial correlation coefficient are pivotal statistics for a multivariate normal 

distribution). “Pure” QAP permutations of explanatory variables performed poorly, with 

high rates of type 1 error. Dekker et al. (2007) suggested that this is, in part, because 

permuting explanatory variables breaks down the dependency that exists between them 

when collinearity is present, violating the ancillarity principle (Welch 1990; Ter Braak 

1992; Legendre & Anderson 1999). Most animal network based null models are 

conducted on the response variable, as such we would not expect to violate the ancillarity 

principle, but may want to consider how susceptible the new null model might be to 

spuriousness and skewness in the data. 

 

A MRQAP with a different null model would require appropriate naming. Examples 

might include a MRRDP in cases where a raw-data permutation is used in place of a QAP 

as a null model, as recommended in Croft et al. (2011). A MRRDP and other novel 

variations of the MRQAP could be sensitive to the aforementioned issues highlighted by 

Dekker et al. (2007). The QAP has been shown to have reduced efficacy when there is 

significant skewness in the data, the test statistic for the procedure is non-pivotal (affected 

by factors outside of the model), or if there is collinearity between independent variables. 
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In these situations, the DSP procedure is a robust alternative (Dekker et al. 2007). 

However, given suitable data (no skewness, collinearity etc.), there is no reason why 

alternative permutation procedures could not be applied to the response variable. In fact, 

there is no particular reason why residual-permutation procedures, such as the DSP, 

should just be restricted to QAPs and not applied to null models tailored for animal social 

networks.  

 

One particularly promising residual permutation procedure which has similar robustness 

to the DSP is the Freedman-Lane semi partialling (FLSP) procedure (Freedman & Lane 

1983; Dekker et al. 2007); this procedure is based on the response variable, which would 

be the most likely target of new null models (as advocated in Manly 1997; Bejder, 

Fletcher, and Bräger 1998; Croft et al. 2011; Farine 2013). However,  caution and testing 

would be advised as the findings of Dekker, Krackhardt, and Snijders (2007) are based 

only on performing the DSP and FLSP in conjunction with a QAP procedure. It is not 

certain whether using a residual-based permutation procedure on top of, let’s say, a raw-

data permutation would have the same favourable qualities as when they are used with a 

QAP. In this sense, pressure-testing the incorporation of novel permutation procedures 

using similar approaches as those outlined in Dekker et al. (2007) might be advised.  

 

A more trivial issue which concerns the MRQAP (and any modifications we may seek to 

make) are missing data. If any data in the explanatory or response matrices are missing,  

then the corresponding elements (where actor and recipient are the same) in all other 

matrices may be removed before the model is fitted (as in Butts 2014). If missing values 

are present, then by default, they will be permuted in the QAP procedure, leading to the 

random omission of data points at the fitting stage where one or more variables contain 

missing data; this means that the permuted datasets can vary in size and composition. 

Although the effect of evaluating the fit of a model on null datasets of varying size and 

composition has not explicitly been characterised, we can safely assume that this issue 

will reduce the trust that can be placed in the reference distribution created by the QAP. 

Solutions to this problem could be to adjust the permutation so that all elements 

corresponding to missing values are fixed across all explanatory and response matrices, 

as such the dataset will always contain the same set of values after each QAP permutation 

– with the same data being removed every time. However, the implementation of MRQAP 
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in the “sna” package in R currently just provides a warning if any elements in the response 

or explanatory matrices are left empty (see Butts 2014). If the QAP was to be replaced, it 

should be considered how non-sampled or missing data in the square matrices will be 

dealt with in the new null model. 

 

A final minor note of caution regards degrees of freedom.  In chapter 5, the degrees of 

freedom were not the same as in a typical MRQAP, as the dataset was not a square matrix 

anymore, instead being restricted to the lead diagonal of in a block structure. In any larger 

replacement of a null model, the degrees of freedom in the analyses may be affected by 

the potential values which can exist and are subject to the permutation procedure and 

those which are otherwise disallowed, perhaps being physically or biologically 

impossible. However, the value behind knowing the degrees of freedom in the model is 

lessened given that these are not used in calculations of significance when permutation 

procedures are used to make reference distributions.  

 

7.4 A note on Exponential random graph models (ERGMs) 

 

One modelling approach not mentioned in Farine and Whitehead (2015) which may prove 

fruitful for modification to suit animal networks are the exponential random graph family 

of network models (ERGMs). Perhaps the best introductory text for the non-statistician 

on this class of model is Robins et al. (2007). ERGMs are powerful in the fact that they 

allow structural variables to be tested meaningfully given the assumption that the network 

is generated by a stochastic process. In this process, relational ties come into being in a 

way that may be shaped by the presence or absence of other existing ties (and possibly 

node-level attributes). This assumption replicates how might think of a network forming 

over time and thus allows meaningful testing of the endogenous feedback events that take 

place in the process (such as ties being reciprocated) of network formation. Another 

potentially attractive quality of ERGMs is that they treat  the observed network as a 

structure which contains uncertainty - a common feature of many animal social networks 

(Lusseau et al. 2008). ERGMs have already been used in some animal network studies 

(e.g. Wey and Blumstein 2010; Dey and Quinn 2014). 
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That is not to say that ERGMs do not have their limitations, Cranmer and Desmarais 

(2011) highlight their inability to handle missing data and issues with “degeneracy”, 

where poor model specifications prevent model fitting. A past limitation to ERGMs has 

been their inflexibility to different types of network data. Until recently, ERGMs were 

restricted to binary static networks without any sort of block structure (i.e. individuals 

being sampled from different classes). However, in the last few years, expansions have 

been proposed to ERGMs which have facilitated weighted edges (as counts) (Krivitsky 

et al. 2012), dynamic networks (known as a tERGM) (Hanneke, Fu, and Xing 2010), 

dynamic networks with weighted edges (known as stERGM) (Krivitsky and Handcock 

2014), hierarchical designs ( known as a hERGM) (Schweinberger and Schweinberger 

2015) and designs with a block structure (known as a blkERGM ) (Hunter, Goodreau, 

and Handcock 2013).  

 

It is this rapid advancement of the ERGM family of models which is both testament to 

their potential and flexibility. As it stands, the most direct route to using these models on 

animal network data may be through rigorous data-cleaning prior to analysis (such as the 

emphasis in chapter 6), or perhaps trying to account for aspects of sampling bias through 

the use of covariates. One common assumption used in ERGMs is “homogeneity of 

isomorphic network configurations”, which means that each node will respond 

homogenously to the relative factors in the model (i.e. males will be as likely reciprocate 

ties as females); this assumption is used to create robust models with few parameters. 

However, the assumption is optional and dropping it may provide an avenue to represent 

some sampling issues. For example, if the females of a species are more conspicuous than 

males and, as a result, ties observed between females may be under-sampled, then 

allowing ties between females to be parameterised differently to ties between males or 

mixed ties may be useful. 

 

Making modifications or extensions to ERGMs for use with animal network datasets will 

require a greater depth of statistical understanding than with the MRQAP. Therefore, to 

echo the sentiments of Krause et al. (2014); the most exciting developments with respect 

to ERGMs would come from the close collaboration of those who have developed null 

models for animal networks (e.g.  Bejder, Fletcher, and Brager 1998; Croft et al. 2011; 

Farine and Whitehead 2015) and those who have worked on extending and developing 
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ERGMs (e.g. Holland and Leinhardt 1981; Wasserman and Pattison 1996; Snijders 2002;  

Krivitsky et al. 2012; Hunter, Goodreau, and Handcock 2013).  

 

7.5 Future Directions 

 

The future role of the MRQAP in animal network studies may be limited as ERGMs can 

now account for both “external” and “structural” variables, whereas an MRQAP will only 

ever be able to consider the former. However, the beauty of the MRQAP is that it is simple 

and well-characterised; this makes it an ideal foundation for incorporating new null 

models which can control for issues in animal network studies. Although we have referred 

to these models as MRQAPs, the use of “pure” QAPs in these models may have been 

confined to history since the introduction of residual-based methods such as the QAP-

DSP. In the “sna” package (Butts 2014) in R (R Development Core Team. 2008) the 

default implementation is now a QAP-DSP. In specific cases where we are very confident 

in the structure of the network (see Croft et al. 2011) and are not interested in the effect 

of structural variables, the MRQAP is and will continue to be a trusted model choice. 

Examples might include captive populations of animals which are both held in confined 

spaces, which might lead to saturated networks, and can be observed intensively through 

the use of video recording or other automated technologies. 

 

 The development which will spell the end of the MRQAP as we know it will be its 

extension to include different data types (count-data, binary data, binomial data etc.) 

through the use of generalised linear models (see McCullagh and Nelder 1989). In static 

networks, the ever-growing adoption of Bayesian modelling approaches (such as the 

mixed effects model by Hadfield (2014)) have just began to be applied seriously to 

network data, some initial studies have coupled the approach with resampling 

(permutation) procedures to determine significance in light of network dependencies (e.g. 

Willis, Symula, and Lovette 2014), some have not (e.g. Rushmore et al. 2013). Basic 

resampling methods are broadly untested and may yet fall short of the complexity 

required to account for issues in animal data. Upon the use of sender and receiver random 

effects in the place of permutation (e.g. Rushmore et al. 2013), a questionable assumption 

is made that none of the structural dependencies outlined in section 2.3.2 and Snijders 

(2011) exist in the data. One lesson we can learn from the MRQAP is that its name and 
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structure places emphasis rightly on the null model used for significance testing. The 

reappearance of ill-considered, unconstrained resampling procedures on the front of a 

Bayesian mixed effects model sends us backwards to the “straw-man” null models which 

the likes of Bejder et al. (1998), Croft et al. (2008) and Croft et al. (2011) argued against 

and led us beyond in past years. Thankfully, Farine and Whitehead (2015) have recently 

demonstrated how more sophisticated null models can be used with these approaches to 

test model statistics whilst controlling for the sampling issues in the data, and we hope 

that these are considered by many in the field. 

 

The future of network analysis may go in a number of directions, it is clear that the remote 

sensing of animal interactions still has a lot of contributions to make and, despite some 

early issues, will only improve in efficacy either through technological innovation and/or 

through the way we interpret the data; this will result in a greater adoption of multivariate 

modelling approaches. There will likely be a large increase in temporal network studies 

facilitated by the new datasets generated- which will also prompt the continued 

development of new temporal statistical procedures. Behaviour observed in other types 

of dynamic systems such as synchronisation, resonance and damping (see Newman 2008) 

may all show themselves in studies of animal temporal networks and become categorised 

as structural factors similar to those described in Snijders (2011) for static networks. 

Further, we currently know little about the driving mechanisms behind temporal 

networks, and future directions may include asking why do interactions and relationships 

between animals happen when they do.  

 

It is clear that the predictive, multivariate approaches coming out of the social sciences 

are powerful multivariate predictive tools. However, powerful tools are only useful if 

used correctly and can be all the more dangerous when used inappropriately. Thus, despite 

the large amount of investigative work needed, we need to familiarise ourselves with how 

sampling issues which affect animal networks can impede the performance of modelling 

procedures and how these issues might be remediated. Currently, it is a shame that the 

study of animal networks often requires intensive or expensive sampling procedures to 

know something about the network structure, but then the statistical analysis which can 

be safely applied to this data often has to be less ambitious due to a current inability to 

address issues pertaining to the modelling of animal networks. The field continues to 
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move fast, in the last three years there has been much energy placed into moving away 

from descriptive approaches. However, this energy has perhaps been misplaced and needs 

to be channelled into rigorous testing and development of network models rather than just 

thinking about their biological applications. Ultimately, the hopes of Krause et al. (2014) 

are shared: that, in future, modifications of network models will be truly robust to 

sampling issues, should they still be as prevalent, whilst retaining test power.  It is also 

agreed that the most exciting developments in this field will be made not by behavioural 

ecologists on their own, but in conjunction with statisticians and those involved with the 

development of these modelling procedures (see Pinter-Wollman et al. 2014; Krause et 

al. 2014).  
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