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Summary

We study the spectral properties of two problems involving small parameters.

The first one is an eigenvalue problem for a divergence form elliptic operator Aε

with high contrast periodic coefficients of period ε in each coordinate, where ε

is a small parameter. The coefficients are perturbed on a bounded domain of

‘order one’ size. The local perturbation of coefficients for such operator could

result in emergence of localised waves in the gaps of the Floquet-Bloch spectrum.

We prove that, for the so-called double porosity type scaling, the eigenfunctions

decay exponentially at infinity, uniformly in ε . Then, using the tools of two-

scale convergence for high contrast homogenisation, we prove the strong two-

scale convergence of the eigenfunctions of Aε to the eigenfunctions of a two-scale

limit homogenised operator A0 , consequently establishing ‘asymptotic one-to-

one correspondence’ between the eigenvalues and the eigenfunctions of these two

operators. We also prove by direct means the stability of the essential spectrum of

the homogenised operator with respect to the local perturbation of its coefficients.

That allows us to establish not only the strong two-scale resolvent convergence

of Aε to A0 but also the Hausdorff convergence of the spectra of Aε to the

spectrum of A0 , preserving the multiplicity of the isolated eigenvalues.

As the second problem we consider the eigenvalue problem for the Laplacian

in a network of thin domains with Dirichlet boundary conditions. We construct

an asymptotic solution to the problem using the method of matched asymptotic

expansions to obtain appropriate boundary conditions for the terms of the asymp-

totics near the junctions of thin domains. We justify the asymptotics and prove

the error bound of order h3/2 , where h is the width of thin domains. We then

derive a limiting model on the graph (which serves as a frame for such domain)

and prove that it gives a proper approximation for the eigenvalues end eigen-

functions of the original problem. An important new result is that the boundary

conditions at the vertices of the graph are mixed boundary conditions involving

the small parameter h . This type of conditions keeps the information about the

interaction between the edges of the graph and at the same time provides a better

approximation than previously known models. We also study the bottom of the

spectrum of the problem, whose corresponding eigenfunctions are confined to the

vertices.
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Introduction: motivation,

literature overview, and

structure of the thesis

The present thesis consists of two parts studying two separate problems: spectral

convergence in homogenisation of high contrast media with a defect, and spectral

asymptotics for networks of thin domains. Both themes are unified by the need to

develop asymptotic analysis for associated spectral problems, employing relevant

tools from asymptotic methods, spectral theory, non-classical homogenisation,

etc. In turn, both topics are motivated by applications such as photonics and

phononics and quantum graphs.

The motivation for the first part of the thesis arises, in particular, from re-

cent growth of interest to photonic and phononic crystals and crystal fibers.

The photonic (phononic) crystals are composite materials that often have a pe-

riodic structure. The fundamental property of the photonic (phononic) crystals

consists in the existence of special regions (bandgaps) of frequencies where no

electromagnetic (elastic) waves can propagate. Mathematically this regions cor-

respond to the gaps in the essential spectrum of the related elliptic operators.

This effect opens large possibilities for various applications in physics. In par-

ticular introduction of a defect in a periodic photonic or phononic fiber can lead

to a spatial localisation of waves near the defect. While photonic applications

come from optics (with problems described mathematically by Maxwell’s equa-

tion of electromagnetism) and phononic applications come from acoustics and

elastodynamics, in both cases the key idea is that appropriate periodic media do

not allow propagation of waves of certain frequency ranges. For example, the

photonic crystal fibers, see e.g. [42], Figure 0-1, are typically represented by a

core surrounded by a periodic cladding. Consequently, on the cross-section of the

fiber the core itself represents a ‘defect’ with regards to the periodic cladding. In
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Figure 0-1: Photonic crystal fibers. Courtesy of P. Russell [42]

addition, it is well known that, in general, the width of the photonic (phononic)

bandgap (which is obviously an important property of a crystal) increases when

the contrast between physical characteristics of components becomes larger.

Inspired by the above mentioned facts we study a simplified mathematical

model of a photonic/phononic crystal, described by a divergence type operator

with high contrast periodic coefficients with a finite size defect and the period-

icity size ε being a small parameter. (See [32] for a comprehensive review of

mathematics of photonic crystals.)

There are several different mathematical aspects concerning the study of this

sort of problems. First of all the above mentioned physical bandgap effect, in

mathematical terms, is described by tools of spectral theory of differential op-

erators with periodic coefficients, known as Floquet-Bloch theory. Namely, the

above ‘forbidden’ frequencies precisely correspond to gaps in the spectra of such

operators. Moreover, the emergence of localised modes due to defects in such pe-

riodic media corresponds in turn to eigenfunctions due to extra point spectrum

appearing in the gaps. We hence first give a brief overview of the Floquet-Bloch

theory, see e.g. [31], [41, v.4]. The Floquet-Bloch theory was originally de-

veloped by physicists to address problems involving periodic potentials, e.g. in
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solid state physics. It was probably first realised by Gelfand [24] that in the

multi-dimensional case it can be described by means of the spectral theory of

self-adjoint operators. The key point here is the Floquet transform of a function

f : Rn → R , initially defined for f ∈ C∞0 (Rn) , and then extended by continuity

to L2(Rn) :

(Uf)(x, k) =
∑

ξ∈Zn
f(x− ξ)eik·ξ.

It has two important properties: quasi-periodicity with respect to x ,

(Uf)(x+m, k) = eik·m(Uf)(x, k), ∀m ∈ Zn; (1)

and periodicity with respect to k ,

(Uf)(x, k + 2πm) = (Uf)(x, k), ∀m ∈ Zn.

So, from considering a function defined on an unbounded domain (Rn ) one passes

to considering a function of two variables defined on a bounded domain: (x, k) ∈
Q × Q∗ , where Q = [0, 1)n is the periodic cell, and Q∗ = [0, 2π)n is the dual

cell of ‘quasimomenta’ (the so-called Brillouin zone). Let us denote by L(x,D)

an elliptic differential operator L(x,D)u = −∇ · A(x)∇u , where A(x) is a

measurable periodic positive definite matrix, i.e. νI ≤ A(x) ≤ ν−1I in the

sense of quadratic forms for some ν > 0 , A(x + m) = A(x) , ∀m ∈ Zn . Due

to its periodicity L(x,D) commutes with the Floquet transform, i.e. for any

f ∈ C∞0 (Rn)

U(Lf)(x, k) = L(x,D)(Uf)(x, k). (2)

However now, on the right hand side of (2), for each k the operator L(x,D)

acts in a different domain of functions satisfying quasi-periodicity condition (1).

So we have a family of operators L(k) acting in spaces of functions defined on a

compact domain. Hence each operator L(k) , appropriately extended to the self-

adjoint one, has a discrete spectrum σ(L(k)) =
⋃∞
i=1 λj(k) . Then the following

central spectral property can be shown for the spectrum σ(L(x,D)) of L(x,D) ,

see e.g. [31]:

σ(L(x,D)) =
⋃

k∈Q∗
σ(L(k)) =

∞⋃
j=1

⋃

k∈Q∗
λj(k) =

∞⋃
j=1

Bj.

The spectrum of L(x,D) has hence a band-gap structure: the bands Bj, j ≥ 1 ,
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may cease to overlap, resulting thereby in the presence of the gaps. Moreover,

if the periodic coefficients of L(x,D) are compactly perturbed, which physically

corresponds to introduction of a defect, the spectral theory assures that the es-

sential spectrum remains unperturbed, and hence the only extra spectrum can

be the discrete spectrum in the gaps.1

Therefore the spectral theory allows us to connect mathematical objects (e.g.

band-gaps and point spectrum in the gaps) with physical effects (e.g. forbid-

den frequencies and localised modes). However, problems of the existence of the

gaps, their location and width, the existence of point spectrum due to defects, the

properties of the related eigenfunctions etc, have no general answer and require

additional analytical or numerical investigation. Our key idea is to advance in

these directions analytically using asymptotic methods, i.e. exploiting the pres-

ence of a small parameter. In our context, ε describes the size of the periodicity,

which is the standard setup of the homogenisation theory2 being reviewed next.

In the presence of a small parameter one normally looks for some asymptotic

approximation to the problem. Namely, periodic rapidly oscillating problems are

usually treated by the means of well developed theory of homogenisation, which

was originated as mathematical discipline probably in the work of De Giorgi and

Spagnolo [25]3. The idea of homogenisation is to approximate a given operator by

some homogenised operator (with constant or slowly varying coefficients). There

are several different approaches to this theory, which often can supplement each

other. One uses the method of asymptotic expansions, which assumes that the

solution to an appropriate differential equation

Lεuε := −∇ · A(x/ε)∇uε = f (3)

can be represented in the form

uε = u0(x, ε−1x) + εu1(x, ε−1x) + ε2u2(x, ε−1x) + . . . , (4)

where the terms are assumed to be periodic in the second variable, ui(x, y+m) =

ui(x, y), m ∈ Zn, i = 0, 1, . . . . Substituting this ansatz into the equation and

1We do not discuss in this thesis the issue of whether embedded eigenvalues can emerge on
the bands as a result of the perturbation.

2Note that there are other ways of applying asymptotics methods in the present context,
not using homogenisation, see e.g. [26, 36].

3Condition of periodicity (on the ε -scale) can be relaxed in various ways or removed alto-
gether, see e.g [27, 47], which we do not address in this thesis.
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equating the coefficients at same powers of ε one arrives at a recurrent sequence

of equations depending on two variables x and y = ε−1x . One first observes

that u0 is function of x only, u0(x, y) = u0(x) . Then the corrector u1(x, y) is

found in the form

u1(x, y) =
n∑

k=1

Nk(y)
∂u0

∂xk
,

where Nk ∈ H1
loc(Rn) is a periodic solution of ‘unit cell’ problems

−∇y · A(y)∇yNk(y) = −
n∑
i=1

∂

∂yi
aik(y),

( aij are entries of the matrix A ). Finally, the solvability condition for u2 leads

to the homogenised equation for u0 :

−∇ · Ahom∇u0 = f,

where Ahom is the homogenised matrix of constant coefficients given by

Ahom =

∫

Q

A(y)(I +∇yN)dy.

Here I is the unity matrix and ∇yN is the matrix with columns ∇yN1, ∇yN2, . . . ,

∇yNn .

The problem of justification, or convergence of uε to u0 , has received consid-

erable separate attention. The above procedure of asymptotic expansion can be

advanced further, using the uniform ellipticity of Lε , to obtain not only the con-

vergence but also error bounds establishing the rate of convergence. For instance

for bounded Ω with Lipschitz boundary ∂Ω and Dirichlet boundary conditions

on ∂Ω one has ‖uε−(u0 +εu1(x, x/ε))‖H1(Ω) ≤ Cε1/2 , see e.g. [5, 10, 27, 43] and

further references therein. An alternative method of directly passing to the limit

is based on selecting appropriate oscillatory test functions in the weak formulation

of (3), using methods of compensated compactness, see e.g. [37, 47].

Another approach to homogenisation is associated with the method of two-

scale convergence. The idea of the two-scale convergence is to preserve in the limit

the information about oscillations of elements of a sequence on ε scale. For exam-

ple, in the sense of the usual convergence in L2 -norm a sequence f(x) sin(ε−1x)

weakly converges to zero (and there is no strong convergence). However, in the

sense of two-scale convergence this sequence strongly converges to the function of
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two variables f(x) sin(y) . In general, the strong two-scale convergence of uε(x)

to u0(x, y) , uε(x)
2→ u0(x, y) , loosely means ‖uε(x) − u0(x, x/ε)‖L2(Ω) → 0 as

ε→ 0 . The first and crucial step in this direction was made by Nguetseng in [38]

where he actually introduced (what we now call) weak two-scale convergence,

proved the weak two-scale compactness of a sequence of bounded in L2 -norm

functions (which is a two-scale analogue of the Banach-Alaoglu theorem), and

derived a formula for the weak two-scale limit of gradients of a bounded in H1 -

norm sequence of functions. He applied these results to the homogenisation of

a periodic uniformly elliptic problem obtaining classical results and also a new

convergence formula for the gradient of the solution of the problem. Later Allaire

[2], relying on the work of Nguetseng, introduced the notion of strong two-scale

convergence and developed further the theory and its applications to some prob-

lems of homogenisation for operators with periodic coefficients. The theory of

two-scale convergence was advanced thereafter, among others, by Zhikov [48], see

below, who in particular extended it for (periodic) measures and applied it to

study the convergence of spectra, see also [50].

Classical homogenisation is incapable of accounting for the above described

effects: the homogenised operator has constant coefficients and therefore its spec-

trum is the whole positive semi-axis with no band gaps. However, certain versions

of non-classical homogenisation do allow one to account for some of these effects,

as we discuss next. On the other hand, the method of two-scale convergence is

applicable not only to the above reviewed ‘classical’ homogenisation, but also to

various ‘non-classical’ versions of homogenisation. The non-classical homogeni-

sation includes higher-order homogenisation, see e.g. [5, 20, 46], exponential

homogenisation [28], non-local homogenisation [9, 15, 17, 18, 19, 21], etc., which

often refer to high contrast in the coefficients (see also [45]), as is the case in

our model. (Notice that, as additional motivation for our simplified model, in

e.g. photonic crystal fibers even low-contrast structures can sometimes display

‘apparent’ high contrast on a cross-section, see e.g. [11] for a physical discussion.)

Following e.g. [2] and [48] we consider a special scaling of the coefficients

a(x, ε) of the operator

−∇ · a(x, ε)∇.

Namely, we let a(x, ε) be of order 1 in the matrix phase and of order δ in the

inclusion phase. The asymptotic behaviour will then crucially depend on the

relation between the two small parameters ε and δ , a phenomenon known in

physical literature as ‘noncommuting limits’, see e.g. [40] and further references
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therein. It is well-known that δ(ε) ∼ ε2 is a critical scaling in this context,

often referred to as a ‘double porosity-type’ scaling.4 This is the only scaling

that leads in the limit to the dependence on the fast variable y (i.e. the main

order term u0(x, y) in the asymptotic expansion (4) retains the dependence on

y 5), whereas other scalings of order εα where α 6= 2 lead to either the classical

homogenised problem with no dependence on y (α < 2 ) or to a degenerate

problem (α > 2 ), see [2] and [48] for more detailed explanations. The problem

of high contrast (or double porosity-type) homogenisation has become a popular

subject in the past two decades, in particular, it was firstly treated by the two-

scale convergence method in [2]. Since the principal interest of our study is in the

spectral characteristics of the problem, we mainly refer to the two works by Zhikov

[48, 49], where the author, in particular, developed further the method of two-

scale convergence, including its application to the high contrast homogenisation,

described the spectrum of the limit homogenised operator in an explicit way and

proved convergence of the spectra of the periodic operators to the spectrum of

the homogenised one in the sense of Hausdorff (see Section 1.1). The spectrum

of the homogenised operator has an explicit band-gap structure, hence so does

the spectrum of the periodic operator for small enough ε .

As it was mentioned earlier, due to the presence of gaps in the spectrum of

the operator one can expect that an introduction of a defect into the periodic

structure of the coefficients may lead to emergence of localised modes, i.e. eigen-

values in the gaps of the essential spectrum with corresponding eigenfunctions

concentrated near the defect. Indeed, it was proven in [23] that for a given gap

in the spectrum of a periodic operator one can introduce a defect in the peri-

odic media, i.e. can perturb locally the coefficients of the operator, so that the

perturbed operator will have at least one eigenvalue inside the gap. Moreover,

as was also proven in [23], under the compact perturbation of coefficients the

essential spectrum of the operator remains unperturbed and the eigenfunctions

corresponding to the eigenvalues in the gaps decay exponentially at infinity. This

type of results is actually quite general in the perturbation theory of self-adjoint

operators (see e.g. [12, 41]).

We now describe our problem and the results in more detail. In the first

chapter we study an elliptic divergence form operator Aε with locally perturbed

4The term ‘double porosity’ originates from mathematically similar problems of fluid flows
in fractured porous rocks [7].

5This relates asymptotically to phenomenon of ‘micro-resonances’, both in phononic and
photonic contexts, found in physical literature, see e.g. [33, 34]
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high contrast (of order ε2 ) ε -periodic coefficients. The behaviour of Aε and its

spectral characteristics as ε→ 0 is the main topic of interest. A similar problem

is considered in [29] using the method of asymptotic expansions, but the present

study pursues different aims and approaches the problem from another direction,

namely developing an appropriate version of the two-scale convergence technique

[2, 38, 49]. As a result we obtain a complete description of the asymptotic (with

respect to ε ) behaviour of the localised modes and other spectral characteristics

for the operator Aε in terms of an explicitly described (two-scale) limit operator

A0 . For other recent applications of the high contrast homogenisation techniques

see also [4, 8, 13, 16, 19, 21, 30, 44].

In the absence of a defect, Zhikov considers in [48] a divergence form elliptic

operator Âε (denoted in [48] by Aε ) with periodic coefficients corresponding to a

double-porosity model [3, 14] (Aε in our notation is obtained from Âε by a com-

pact perturbation of its coefficients). Operators of such type have the Floquet-

Bloch essential spectrum, displaying a band-gap structure. Zhikov proves that

the spectra of Âε converge in the sense of Hausdorff to the spectrum of a certain

two-scale homogenised operator Â0 with constant coefficients, see also [26, 49],

and that Â0 is the limit of Âε in the sense of strong two-scale resolvent conver-

gence. The spectrum of Â0 is purely essential and displays an explicit band-gap

structure. As we already mentioned, in the case of a compact perturbation of

periodic coefficients in the elliptic operator Âε its essential spectrum remains

unperturbed, see e.g. [23, 41]. The only extra spectrum that can emerge in the

gaps due to the perturbation is a discrete one (isolated eigenvalues with finite

multiplicity). Such an extra spectrum does emerge at least under some assump-

tions, e.g. [23, 29]. This corresponds physically to localised modes emerging near

the defect.

One of the main goals of the first part of the thesis is to establish the strong

two-scale convergence of the eigenfunctions of Aε corresponding to the eigenval-

ues in the gaps. In order to achieve this we need the strong two-scale compactness

of the eigenfunctions. This requires in turn an exponential decay of the eigen-

functions uniform in ε .

The problem of wave localisation (i.e. of the existence of eigenvalues with

corresponding eigenfunctions decaying exponentially) in the gaps of the essen-

tial spectrum has been intensively investigated for a wide range of differential

operators over the last decades. The results obtained up to date ensure the ex-

ponential decay of eigenfunctions of Aε for a fixed ε , see e.g. [23]. However
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this is insufficient for establishing the required compactness. Moreover, the de-

veloped methods, e.g. [6] and [23] (the latter using the method of Agmon[1]),

seem to be insufficient for the present purpose. The reason is that in order to

obtain the uniform exponential decay one has to perform some kind of two-scale

asymptotic analysis, investigating the behaviour of the eigenfunctions on small

and large scales simultaneously. To achieve this we supplement the method of

[1] by the related two-scale techniques, which play a crucial role. As a result, we

obtain a uniform estimate with the decay exponent α (see (1.24) and (1.13) be-

low) which ensures the compactness, but may also be of an independent interest.

On one hand, it is sharp in a sense as ε → 0 . On the other hand, it behaves

qualitatively entirely differently compared to e.g. the one in [6]: while the one in

[6] is proportional to the square root of the distance to the gap end, the decay

exponent we derive becomes large on approaching the left end of the gap and

small near the right end.

The structure of the first part is the following. We first define the problem in

Section 1.1, describe the two-scale limit operator A0 and state the main result.

We then consider a subsequence of eigenvalues of Aε converging to some point

λ0 lying in a gap of the spectrum of Â0 . In Section 1.2 we prove (Theorem

1.2.2) the uniform exponential decay for the eigenfunctions of Aε . Section 1.3 is

devoted to the proof of a main auxiliary lemma that is employed in the previous

section, which may also be of an independent interest. In Section 2.1 we list some

properties of the two-scale convergence and several related statements which we

use in the next section. Employing the uniform exponential decay, we establish in

Section 2.2 (see Theorem 2.2.1) the strong two-scale compactness of (normalised)

eigenfunctions of Aε , see e.g. [48, 49]. This implies that, up to a subsequence,

the eigenfunctions two-scale converge to a function, which is eventually proved to

be an eigenfunction of the two-scale limit operator A0 with a defect, which could

be considered as a perturbation of Â0 . Accordingly λ0 is an eigenvalue of A0 .

The two-scale convergence of the eigenfunctions together with the results of [29]

on the existence of the eigenvalues in the gaps and related error bounds allow us

to make a conclusion about the ‘asymptotic one-to-one correspondence’ between

eigenfunctions and eigenvalues of the operators Aε and A0 as ε → 0 . In the

Section 2.3 we prove by direct means (via Weyl sequences) the stability of the

essential spectrum of Â0 with respect to the local perturbation of its coefficients

(see Theorem 2.3.1). Thereby this establishes the convergence of the spectra of

Aε to the spectrum of A0 in the sense of Hausdorff (Theorem 1.1.1).
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Figure 0-2: Graph-like domain Ωh .

Another interesting topic in asymptotic analysis relates to various problems in

thin structures which naturally arise in physics, chemistry, engineering, when one

considers for instance propagation of waves in a network of thin domains. When

the cross-sectional size of such an object is much smaller than its length it is

natural to try to approximate the original problem by a differential (or sometimes

more general) equation on a graph eliminating the transversal dimensions. In this

case one obtains a so-called “quantum graph”, i.e. one-dimensional differential

equation posed on the graph. Probably one of the first quantum graph models

was employed in chemistry where one considered a model of free electron motion

along a carcass of a molecule (see e.g. [79]). Other examples can be found

in nanotechnology and mesoscopic physics where several dimensions of physical

objects are reduced to a size of a few nanometers [54]. Problems in thin domains

appear in many other areas of mathematics and have been studied in different

contexts, see e.g. [52, 53, 55, 56, 57, 61, 63, 75].

First we recall some results obtained for models related to graphs with straight

edges. Consider a domain Ωh given as an h -neighbourhood of a planar graph,

where h is a small parameter, see Figure 0-2. Let Ah be an elliptic self-adjoint

differential operator in Ωh with some boundary conditions. We are interested in

the spectrum of such operator. It is natural to try reducing the given problem in

Ωh to some problem on the graph. In the limit as h tends to zero one normally

obtains a differential operator A , e.g. A = − ∂2

∂s2
, where s is an arclength

along the edges, which must be equipped with appropriate boundary conditions

at vertices. The latter is not always a trivial question, and for some boundary

value problems on Ωh it is still (or was until recently) essentially open, see e.g.

[64] or [71] for the relevant discussion.
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The case of Neumann boundary conditions is probably the easiest one. In this

case the first transversal eigenvalue is zero and bounded states confined to the

junctions of Ωh are absent. The limiting operator is equipped with the so-called

Kirchhoff boundary conditions at each vertex vl :

∑

{j|vl∈ej}

df

dxj
(vl) = 0.

Here ej denotes edges of the graph. The following result in a more or less general

way was obtained by different researchers (see e.g. [59, 70, 77, 78, 80]):

λn(Ah)→ λn(A0) as h→ 0,

where λn is the n -th eigenvalue of a corresponding operator in the ascending

order, counted with multiplicities. The idea of the proof is the following: using

the minimax definition of the eigenvalues one needs to construct a mapping from

the H1 space on graph into the H1 space on Ωh and vice versa such that the

ratio ‖∇f‖2
‖f‖2 does not increase substantially.

The case of the Dirichlet Laplacian is considerably more difficult. There

are two reasons for that. The first one is that the spectrum of the Dirichlet

Laplacian behaves completely differently compared to the Neumann Laplacian

case. The first transversal eigenvalue ν0 for Dirichlet boundary conditions is

non-zero. Hence the corresponding eigenvalues of Ah should behave essentially

as h−2ν0 . Additionally there may be bounded states living below the part of

the spectrum generated by the transversal eigenvalues. Another difficulty lies in

finding appropriate conditions at vertices of the graph for the limiting problem,

as was already mentioned.

A classical and very popular tool for dealing with problems in graph-like do-

mains is the method of matched asymptotic expansions. Employing this method

one considers an inner problem in a neighbourhood of a junction and an outer

problem in an adjacent strip and then one must match the corresponding solu-

tions in some intermediate region in the vicinity of the junction.

Consider the outer problem, i.e. eigenvalue problem for the Dirichlet Lapla-

cian in a thin (of width h ) strip. One can introduce a stretched transversal

variable η = h−1y so that the problem is considered in a fixed rectangle. Then
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Figure 0-3: Junction

the Laplacian in the new variables reads

−∆ = −h−2 ∂
2

∂η2
− ∂2

∂s2
. (5)

One can then seek a solution to the outer problem in the separation of variables

form

uh(s, η) = vi(s)ϕj(η), λh = h−2νj + µi, (6)

where νj and ϕj are the transversal eigenvalues and eigenfunctions satisfying

Dirichlet boundary conditions and µi and vi are eigenvalues and eigenfunc-

tions of the operator − d2

ds2
which is not fully defined due to uncertain boundary

conditions at the vertices of the graph. We restrict ourself to considering the

eigenvalues of Ah generated by the first transversal eigenvalue ν0 .

The inner problem is set in the ‘spider domain’ Π obtained from the rescaled

(by h−1 ) neighbourhood of a junction by attaching straight strips Πj of infinite

length and width 1 , see Figure 0-3. In order to match a solution of the inner

problem with the solution of outer problem one needs to consider the following

equation

−∆g = (ν0 + h2µi)g in Π,

g = 0 on ∂Π.

In general an L2 -solution to this problem does not exist. Assuming the absence of

L2 -solutions one is interested in a ‘scattering solution’ which is defined as follows.

Let m be the number of the adjoint strips. In each strip Πj , j = 1, . . . ,m , we

16



introduce local coordinates (x, y) , so that y is the transversal coordinate. A

function g = gp is called a solution of the scattering problem in Π if it has the

following asymptotic behaviour in each infinite strip Πj , j = 1, . . . ,m :

gp = δpj e
−ih√µixϕ0(y) + spj e

ih
√
µixϕ0(y) +O(e−βx), (7)

where β > 0 is some constant (which depends on h and µi ), δpj is the Kronecker

symbol and ϕ0 is transversal eigenfunction corresponding to ν0 (in our case

ϕ0(y) = sin(πy) ). The first term in (7) can be interpreted as an incident wave

coming from infinity along the strip Πp and all the remaining terms describe the

transmitted (including reflected, j = p ) waves. The matrix

S = [spj]

is called the scattering matrix. S is unitary and depends on h analytically.

Matching the asymptotics of the inner and the outer solutions, one can obtain

a description of the spectrum of Ωh in terms of spectrum of the operator − d2

ds2

acting on the graph with some boundary conditions (gluing conditions) at the

vertices which depends on the scattering matrix. This program was carried out

in recent works [64, 72, 73, 74].

The existence of bound states in strip-like domains is well known from the

waveguide theory, see e.g. [58, 60] (see also [68, 76] for the similar effect in a

thin plates), where bounded states are proven to exist in L -shaped domains or

as induced by a curvature. Thus, below the part of the spectrum induced by

the transversal eigenvalues there can exist eigenvalues of Ωh corresponding to

the bound states with eigenfunctions confined to the junctions of Ωh or ‘sharp’

bends of its channels. Apparently, these eigenvalues cannot be described in terms

of the limiting operator on the graph.

In the present work we study a spectral problem for the negative Dirichlet

Laplacian in a simplified graph-like domain Ω̂h with non-straight strips. Our

main goal is to obtain a delicate asymptotic description of the spectrum of Âh

in terms of limiting operators on the graph. One can start with considering a

symmetric graph that consists of only two edges joining in a single vertex at an

angle less than π . We assume that the edges are straight in some neighbourhood

of the vertex. The corresponding Ω̂h is symmetric with respect to the bisectrix

of the angle between edges of the graph, see Figure 0-4. This implies that the

eigenfunctions of Âh satisfy either Dirichlet or Neumann boundary conditions
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Figure 0-4: Simple symmetric graph-like domain Ω̂h

at the bisectrix. Then it is sufficient to consider the eigenvalue problem for

the negative Laplacian in Ωh , which is a part of Ω̂h lying on one side of the

bisectrix, with Dirichlet or Neumann boundary conditions at the bisectrix (being

now a slanted end of Ωh ) and Dirichlet conditions elsewhere. The limiting graph

for Ωh in this case is a simple curve. The case of Dirichlet boundary conditions

on the slanted end of Ωh is very similar to the Neumann one and yet is simpler.

So we consider only the Neumann case, and denote the corresponding operator

by Ah , see the precise definitions and illustrations in Chapter 3.

We implement the general scheme of matched asymptotic expansions outlined

above. Considering the outer problem we change the variables so as to flatten

the domain and scale the transversal variable by h−1 . The main terms of the

asymptotic solution the eigenvalue problem in the new domain have form (6),

however µi , νi solve now the eigenvalue problem for the operator − d2

ds2
− 1

4
κ2 ,

where κ 6≡ 0 . Hence some eigenvalues µi can be negative (which is different

from already studied problems in [64, 72, 73, 74]). We construct further terms of

the asymptotics to obtain more accurate approximations to the eigenelements of

Ah (namely, the error bound of order h3/2 is proven).

Matching the asymptotics of the outer solution with the asymptotics of the

scattering solution of the inner problem we derive the boundary conditions for

the limiting operator. The scattering matrix S (which is merely a complex

number in our setting of the problem) depends analytically on h . We use its

asymptotic expansion obtained in [66], which is given in terms of the scattering
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matrix corresponding to the threshold case

−∆g = ν0g.

Normally, one has Dirichlet boundary conditions for vi at the end of the curve

corresponding to the slanted end of Ωh . However for some geometric config-

urations (i.e. for some values of the angle of the slant) a Neumann boundary

condition is possible. Namely, this is the case when the scattering solution at the

threshold is bounded in L∞ -norm (i.e. being the so-called generalised bounded

state); we call this the critical case.

We also consider the eigenvalues corresponding to the bounded states in the

semi-infinite straight strip obtained from Ωh by rescaling it in the neighbourhood

of the slanted end. It is well known that there exists at least one bounded

state lying below the transversal eigenvalue ν0 , see [69]. We provide some new

estimates on the number of such bounded states with respect to the value of the

angle of the slant.

In the case of Dirichlet boundary conditions on the slanted end of Ω the

limiting problem always has Dirichlet boundary conditions at the corresponding

end of the curve. There do not exist bounded states for the rescaled semi-infinite

strip in this case.

The structure of the second part is the following. In Chapter 3 we construct

the asymptotics of the problem in Ωh . We state the problem in Section 3.1. In

Section 3.2 we derive a formal asymptotic solution to the outer problem. In the

next section we recall some results on scattering solutions of the inner problem

from [66], also deriving order h term in the asymptotics of the scattering matrix

in the critical case. Then we match the asymptotics of the inner and the outer

solutions and consequently obtain the boundary conditions for auxiliary problems

on the limiting graph for the terms of the asymptotic expansion in Section 3.4.

Section 3.5 is devoted to the justification of the asymptotics. Chapter 4 is devoted

to the construction of the limiting model graph, which is probably the most

important result of the second part. In the last two sections we study properties

of the bottom of the spectrum of the operator Ah , which is related to the bound

states in the rescaled semi-infinite strip lying below the first transversal eigenvalue

ν0 . Notice that the notation that we use in Part II may be different from the

one used in the present introduction.
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Part I

Spectral convergence for high

contrast media with a defect via

homogenisation
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Chapter 1

Uniform exponential decay of

eigenfunctions

In this chapter we first formulate the problem studied in the first part of the

thesis. We then review already known results related to our problem, namely,

the results on spectral convergence for the high contrast homogenisation when

there is no defect [48, 49], and on existence of the eigenvalues of the operator Aε

near the eigenvalues of the limit homogenised operator A0 [29]. We also describe

the structure of the homogenised operators and properties of their spectra. In

the end of Section 1.1 we state the main result of the chapter on the exponential

decay uniform with respect to ε of the eigenfunctions of Aε , which subsequently

implies the two-scale compactness of the sequence of eigenvalues (Chapter 2).

The rest of the chapter is devoted to the proof of the uniform exponential decay.

1.1 Notation, problem formulation, limit oper-

ator and the main result

We will use the following notation for the geometric configuration visualised on

Figure 1-1, cf. [29]. Consider a periodic set of unit cubes

{Q : Q = [0, 1)n + ξ, ξ ∈ Zn}. (1.1)

Let F0 be an open periodic set with period one in each coordinate such that

F0 ∩Q b Q is a connected domain with infinitely smooth boundary. We denote

F0∩Q by Q0 and its complement Q\Q0 by Q1 . Notice that the position of the
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Figure 1-1: A defect in a rapidly oscillating high contrast periodic medium, cf.
[29, Fig. 1].

particular set Q0, Q1 or Q depends on ξ ∈ Zn , however we will not reflect this

in the notation to simplify the latter. Regularity assumptions on the boundary

could be relaxed.1 Let Ω2 be a bounded domain containing the origin and with

a sufficiently smooth boundary; its complement is denoted by Ω1 , Ω1 = Rn\Ω2 .

We define the ‘inclusion phase’ or the ‘soft phase’ Ωε
0 as

Ωε
0 =

⋃
εQ0⊂Ω1

εQ0,

where ε > 0 is a small parameter. The set of inclusions εQ0 which intersect the

boundary of Ω2 is denoted by Ω̃ε
0 . The ‘matrix phase’, denoted by Ωε

1 , is the

complement to the inclusions in Ω1 , i.e. Ωε
1 = Ω1\(Ωε

0 ∪ Ω̃ε
0) . ‘Defect domain’

Ωε
2 is defined by Ω2\Ω̃ε

0 . We also use the notation ΘΩ for the characteristic

function of a set Ω and BR for the open ball of radius R centred at the origin.

We consider an eigenvalue problem

Aεu
ε = λεu

ε (1.2)

1In particular, the results on the two-scale convergence stated in the present work remain
valid at least under the assumption of Lipschitz regular boundaries. The ε1/2 -order bounds,
as obtained in [29], require higher regularity.
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for the point spectrum of an elliptic operator Aε , self-adjoint in L2 (Rn) ,

Aεu
ε := −∇ ·

(
a(x, ε)∇uε(x)

)
, x ∈ Rn, (1.3)

with coefficient a(x, ε) given by the formula

a(x, ε) =





a0ε
2, x ∈ Ωε

0,

a1, x ∈ Ωε
1,

a2, x ∈ Ωε
2,

ã0(x, ε), x ∈ Ω̃ε
0,

(1.4)

where measurable ã0(x, ε) is such that

either Ã0 ε
2−θ ≤ ã0(x, ε) ≤ σ0 ε

2−θ for all ε, or ã0(x, ε) = a0 ε
2 for all ε. (1.5)

Here a0 , a1 , a2 , Ã0 , σ0 and θ are some positive constants independent of ε ,

θ ∈ (0, 2] . Notice that this includes as particular cases e.g. the case of ‘removed’

boundary inclusions, i.e. a(x, ε) = a1 if x ∈ Ω̃ε
0∩Ω1 , a(x, ε) = a2 if x ∈ Ω̃ε

0∩Ω2 ,

and the case of the ‘full’ inclusions, ã0(x, ε) = a0 ε
2 . The domain of Aε is defined

in a standard way via Friedrichs extension procedure with a bilinear form

Bε(u,w) =

∫

Rn

a(x, ε)∇u · ∇w dx

defined on H1(Rn) . By definition, uε ∈ H1(Rn) , uε 6≡ 0 , is an eigenfunction of

the eigenvalue problem (1.2) with an eigenvalue λε if

Bε(u
ε, w) = λε

∫

Rn

uεw dx (1.6)

for all w ∈ H1(Rn) .

Properties of Aε are closely associated with properties of a corresponding

purely periodic high contrast self-adjoint operator Âε , i.e. with no defect present.

The operator Âε is generated (via Friedrichs extension procedure) by a bilinear

form

B̂ε(u,w) =

∫

Rn

â(x, ε)∇u · ∇w dx
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acting on H1(Rn) with a coefficient

â(x, ε) =

{
a0ε

2, x ∈ εF0,

a1, x ∈ ε(Rn\F 0).

It is well known that the spectrum of a periodic operator is so called Floquet-

Bloch spectrum, it is purely essential and has a band-gap structure. This operator

was considered by Zhikov in [48, 49]. He proves that the spectra of Âε converge

in the sense of Hausdorff to the spectrum of a certain homogenised operator Â0 .

By definition, the Hausdorff convergence of spectra, σ(Âε)
H→ σ(Â0) as ε→

0 , means that

• for any λ ∈ σ(Â0) there exists a sequence λε ∈ σ(Âε) such that λε → λ ;

• if λε ∈ σ(Âε) and λε → λ , then λ ∈ σ(Â0) .

The limiting operator Â0 is of a ‘two-scale’ nature. It acts in a Hilbert space

Ĥ0 :=

{
u(x, y) ∈ L2 (Rn ×Q)

∣∣∣∣u(x, y) = u0(x) + v(x, y),

u0 ∈ L2 (Rn) , v ∈ L2
(
Rn; L2(Q0)

)}
,

(1.7)

with the natural inner product inherited from L2(Rn × Q) and Ĥ0 being its

closed subspace. At this point we suppose for definiteness that Q = [0, 1)n . It is

implied that v is extended by zero for y ∈ Q1 . In what follows we will assume

that a function defined for y ∈ Q is extended by periodicity to the whole Rn .

The operator Â0 is defined as generated by a (closed) symmetric and bounded

from below bilinear form B̂0(u,w) acting in a dense subspace

V̂ = H1 (Rn) + L2
(
Rn, H1

0 (Q0)
)

(1.8)

of Ĥ0 = L2 (Rn) + L2 (Rn, L2(Q0)) , which is defined as follows: for u = u0 +

v, w = w0 + z ∈ V ,

B̂0(u,w) =

∫

Rn

Ahom∇u0 · ∇w0 dx+ a0

∫

Rn

∫

Q0

∇yv · ∇yz dy dx. (1.9)

Here Ahom =
(
Ahom
ij

)
is the standard “porous” homogenised (symmetric, positive-

definite) matrix for the periodic medium as described above but when no defect
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is present and with a0 = 0 , see e.g. [27, §3.1]:

Ahom
ij ξiξj = inf

w∈C∞per(Q)

∫

Q1

a1|ξ +∇w|2 dy (ξ ∈ Rn) . (1.10)

Notation C∞per(Q) stands for the set of infinitely smooth functions with periodic

boundary conditions. Then one can see that the form is indeed bounded from

below, densely defined and closed. Hence, according to the standard Friedrichs

extension procedure, e.g. [41], Â0 can be defined as a self-adjoint operator with

a domain D(Â0) ⊂ V̂ .

It is also proved in [49] that the spectrum of Â0 is purely essential and has

a band-gap structure. It can be described in terms of a function β(λ) which

we introduce next, see [48, 49] (cf. also [13]). First we define an operator T as

follows,

Tf := −a0∆f, f(y) ∈ H1
0 (Q0) ∩H2(Q0). (1.11)

Denote by b the solution to

Tb− λb = −a0∆b− λb = 1, b(y) ∈ H1
0 (Q0). (1.12)

Then the function β(λ) is defined by the formula

β(λ) := λ
(
1 + λ〈b〉y

)
, (1.13)

where 〈f〉y :=
∫
Q

f(y) dy denotes a mean value of a function in a unit cell.

One can get a more transparent notion of β(λ) by applying a spectral de-

composition to problem (1.12). Let λi , λ′j and ϕi , ϕ′j , i, j = 1, 2, . . . , be

all eigenvalues (repeated accordingly to their multiplicity) and corresponding or-

thonormalised eigenfunctions of T , where eigenfunctions ϕ′j have zero mean,

〈ϕ′j〉y = 0 . The set of eigenfunctions of T makes a basis in H1
0 (Q0) . Hence we

can write b as

b =
∞∑
i=1

ciϕi +
∞∑
j=1

c′jϕ
′
j.

We substitute this expansion into (1.12) to obtain

∞∑
i=1

(λi − λ)ciϕi +
∞∑
j=1

(λ′j − λ)c′jϕ
′
j = 1.
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Figure 1-2: β(λ) , cf. [48].

Multiplying the latter by ϕi or ϕ′j and integrating we arrive at

ci =
〈ϕi〉y
λi − λ, c′j = 0.

This yields us the following expression for β(λ) ,

β(λ) = λ + λ2

∞∑
i=1

〈ϕi〉2y
λi − λ, (1.14)

see Figure 1-2. The intervals where β(λ) ≥ 0 correspond to the bands of the

spectrum of Â0 . Isolated points of the spectrum of Â0 , i.e. λ′j such that

β(λ′j) < 0 , can also be regarded as degenerate bands. The intervals on which

β(λ) < 0 (excluding λ′j ) are gaps.

The operator Aε is obtained from Âε by a compact perturbation of its coef-

ficient. It was shown in [23] (cf. also [41]) that in this case the essential spectrum

of Aε coincides with the spectrum of Âε and only extra eigenvalues can emerge,

in particular in the gaps. We do not consider possible emergence of embedded

eigenvalues, i.e. eigenvalues in the bands of essential spectrum. Existence of

embedded eigenvalues is believed to be very unlikely, but this supposition has

not been proved. In this work we are interested in convergence properties of

the eigenvalues of Aε lying in the gaps of its spectrum and the corresponding

eigenfunctions. We will prove that if a sequence of eigenvalues converges to a

point lying in the gap of σess(Â0) , then the latter is an eigenvalue of the ’limit’

homogenised operator A0 . The operator A0 can be obtained from Â0 by a com-

pact perturbation of the coefficients. Its definition, analogous to the definition of
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Â0 , is the following. The operator A0 acts in a Hilbert space

H0 :=

{
u(x, y) ∈ L2 (Rn ×Q)

∣∣∣∣u(x, y) = u0(x) + v(x, y),

u0 ∈ L2 (Rn) , v ∈ L2
(
Ω1; L2(Q0)

)}
,

(1.15)

It is defined via a Friedrichs extension procedure by a closed symmetric and

bounded from below bilinear form

B0(u,w) = a2

∫

Ω2

∇u0 · ∇w0 dx+

∫

Ω1

Ahom∇u0 · ∇w0 dx+ a0

∫

Ω1

∫

Q0

∇yv · ∇yz dy dx

(1.16)

acting in a dense subspace

V = H1 (Rn) + L2
(
Ω1, H

1
0 (Q0)

)
(1.17)

of H0 = L2 (Rn) + L2 (Ω1, L
2(Q0)) , u = u0 + v, w = w0 + z ∈ V . By definition

λ0 is an eigenvalue of A0 and u0(x, y) = u0(x) + v(x, y) ∈ V is corresponding

eigenfunction if

B0(u0, w) = λ0(u0, w)H0 , (1.18)

for any w = w0 + z ∈ V . The eigenfunction solves the following problem:

−∇ · a2∇u0(x) = λ0u0(x), x ∈ Ω2,

−∇ · Ahom∇u0(x) = λ0 (u0 + 〈v〉y) , x ∈ Rn\Ω2,

−a0∆yv = λ0 (u0 + v) , y ∈ Q0; v = 0, y ∈ ∂Q0 (x ∈ Rn\Ω2) ,

(u0)− = (u0)+ , a2

(
∂u0

∂n

)

−
=

(∑
i,j

Ahom
ij

∂u0

∂xj
ni

)

+

, x ∈ ∂Ω2.

(1.19)

Here

〈v〉y(x) := |Q|−1

∫

Q

v(x, y) dy

denotes the averaging with respect to y over the periodicity cell Q (extending v

by zero outside Q0 ); (·)− and (·)+ denote respectively the interior and exterior

limit values of the appropriate entities at the boundary ∂Ω2 of Ω2 , n is the

interior unit normal to ∂Ω2 .

A similar problem is considered in [29]. The authors use an asymptotic ex-

27



pansion approach seeking a solution to problem (1.2) in the form

uε(x) = u0(x, x/ε) + εu(1)(x, x/ε) + ε2u(2)(x, x/ε) + . . . ,

λ(ε) = λ0 + o(1).

They prove that if there exists an eigenvalue λ0 satisfying β(λ0) < 0, λ0 6= λ′j ,

then there exists ε0 > 0 and a constant C1 > 0 independent of ε such that for

any 0 < ε ≤ ε0 there exists an isolated eigenvalue λε of operator Aε of finite

multiplicity, such that

|λε − λ0| < C1ε
1/2. (1.20)

Moreover if (u0, v) is an eigenfunction of A0 which corresponds to λ0 then

the function

uappr(x, ε) :=

{
u0(x) + v(x, x/ε), x ∈ Ωε

0,

u0(x), x ∈ Ωε
1 ∪ Ω2 ∪ Ω̃ε

0,
(1.21)

is an approximate eigenfunction for Aε at least in the following sense: there exist

constants cj(ε) such that

‖uappr −
∑
j∈Jε

cj(ε)u
ε
j‖L2(Rn) < C2ε

1/2, (1.22)

where Jε = {j : |λε,j − λ0| < Cε1/2} is a finite set of indices (for each ε ), and

λε,j , uεj(x) are eigenvalues and L2 -normalised eigenfunctions of Aε , and the

constants C1 and C2 are independent of ε .

This assertion partly answers the problem of asymptotic behaviour of the dis-

crete spectrum of Aε . Thus, we know that any eigenvalue of A0 has converging

to it a sequence of eigenvalues of Aε . In this work we study an open question

that consists in the following. Suppose there is a sequence of eigenvalues of Aε

converging to a point in the gap of σ(Â0) , λε → λ0 . Is the limit λ0 an eigen-

value of A0 or not? To answer this question affirmatively one firstly needs to

show a compactness (in the sense of two-scale convergence) of the corresponding

eigenfunctions. Once having the compactness proved one can pass to a limit

in the spectral problem (1.2) to get eventually the spectral problem for the ho-

mogenised operator. In its turn the proof of compactness requires uniform with

respect to ε exponential decay at infinity of eigenfunctions uε corresponding to

a convergent sequence of eigenvalues.
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Now we formulate our main result.

Theorem 1.1.1. The operator Aε converges to A0 in the sense of the strong

two-scale resolvent convergence. Hence the spectral projectors also strongly two-

scale converge away from the point spectrum of A0 . The spectrum of Aε con-

verges in the sense of Hausdorff to the spectrum of A0 . Let λ0 be an isolated

eigenvalue of multiplicity m of the operator A0 in the gap of its essential spec-

trum. Then, for small enough ε , there exist exactly m eigenvalues λε,i of Aε

(counted with their multiplicities) such that

|λε,i − λ0| ≤ Cε1/2, i = 1, . . . ,m, (1.23)

with a constant C independent of ε .2 If for some sequence εk → 0 a sequence

of eigenvalues λεk of Aε converges to λ0 which is in the gap of the essential

spectrum of A0 , then λ0 is an isolated eigenvalue of A0 of a finite multiplicity

m and for large enough k , λεk ∈ {λεk,i, i = 1, . . . ,m} .

1.2 Uniform exponential decay of the eigenfunc-

tions of Aε

The phenomenon of exponential decay of eigenfunctions of various differential

operators corresponding to the eigenvalues in the gaps of essential spectra has

been extensively investigated for the few last decades, see e.g. [6, 22, 23, 39].

For example, in [6] a Schrödinger operator H with random perturbation is con-

sidered. It is shown that the rate of the exponential decay is proportional to√
∆+(E)∆−(E) , where E is an eigenvalue in a gap, ∆+(E) and ∆−(E) are

distances from E to the right and left edges of the gap respectively. Roughly

speaking, the exponent obtained in [6] is proportional to the distance from the

essential spectrum near the centre of the gap and to the square root from the dis-

tance near the both edges of the gap. This estimate is the best of the sort known

at present. Another result, obtained in [23], can be straightforwardly applied to

the operator Aε when ε is fixed. It follows from [23] that an eigenfunction uε

decays exponentially with an exponent proportional to dist(λε, σess(Aε)) . Never-

theless, this is not sufficient for our purposes. To gain compactness of a sequence

2The error bound (1.23) employs the results of [29] requiring, as stated, higher regularity of
∂Q0 . The rest of the statement of the theorem applies potentially to less regular boundaries.
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uε we need uniform decay, i.e. exponential decay with exponent independent of

ε , which previous results do not guarantee. In this section we prove ε -uniform

exponential decay of sequence of uε corresponding to converging in the gap λε .

Remark 1.2.1. We would like to draw attention to the qualitative difference

between the previously obtained estimates for the rate of exponential decay and

the one we prove in this work. As we mentioned above, known results give the

rate of decay proportional to the distance to gap edges or to the square root of the

distance. Our estimate (1.24) is entirely different. For small enough ε the rate of

decay is O
(
dist(λε, σess(Aε))

1/2
)

at the right end of each interval β(λ) < 0 and

proportional to (dist(λε, σess(Aε))
−1/2 at the left end, cf. Figure 1-2 and (1.14).

We formulate the main result of this section (and also one of the principal

results of the first part) in the following

Theorem 1.2.2. Let λεk and uεk be sequences of eigenvalues of the operator

Aε and corresponding eigenfunctions normalised in L2(Rn) , where εk is some

positive sequence converging to zero as k → ∞ . Let λ0 be such that β(λ0) is

negative and λ0 is not an eigenvalue of the operator T given by (1.11). Suppose

that λεk converges to λ0 . Then for small enough εk eigenfunctions uεk decay

uniformly exponentially at infinity, namely, for

0 < α <
√
−β(λ0)/a1 (1.24)

the following holds:

‖eα|x|uεk‖L2(Rn) ≤ C,

uniformly in εk , i.e. for any 0 < εk < ε(α) , with C = C(α) independent of ε .

Proof. We drop the index k in εk for the sake of simplification of notation. So,

when we say, for instance, ‘sequence λε ’ we actually mean ‘subsequence λεk ’.

The plan of the proof is the following. We first derive ‘elementary’ a priori

estimates for the eigenfunction uε outside the set of inclusions Ωε
0 ∪ Ω̃ε

0 . Next

we study the structure of the eigenfunction at the small scale and deduce some

vital inequalities for ε∇uε inside the inclusions. As a central technical step,

we then employ in the integral identity (1.6) a test function with exponentially

growing weight g2(|x|) , see (1.37)–(1.38) below, and perform some delicate two-

scale uniform estimates to achieve the result. Introducing a test function with

exponentially growing weight we use the idea of Agmon, [1]. This on its own does
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not lead to a straightforward conclusion. We have to develop some delicate two-

scale analysis, studying the properties of eigenfunctions of Aε both at large and

small scales at the same time. The main auxiliary technical results are proven in

Lemma 1.2.4 and Proposition 1.3.1.

Step 1. Due to the nature of the operator Aε (coefficient a(x, ε) is very small

on the inclusion phase) one can expect that the eigenfunctions (more precise, their

gradients) oscillate wildly on the inclusion phase. Nevertheless it is possible to

control uε outside the inclusions. Setting w = uε in (1.6) we have

ε2a0‖∇uε‖2
L2(Ωε0) + a1‖∇uε‖2

L2(Ωε1) + a2‖∇uε‖2
L2(Ωε2)+

+‖ã1/2
0 (x, ε)∇uε‖2

L2(eΩε0)
= λε‖uε‖2

L2(Rn) = λε.
(1.25)

Therefore

‖uε‖H1(Rn\(Ωε0
S eΩε0)) ≤ C (1.26)

uniformly in ε . From now on C denotes a generic constant whose precise value

is insignificant and can change from line to line.

Step 2. Now we will represent uε as a sum of two functions, one of them

has ε -uniformly bonded norm in H1 , another preserves the ‘uncontrollable’ os-

cillations of the gradient of uε . Let us consider uε in a cell εQ corresponding to

such ξ = ξ(ε) ∈ Zn , see 1.1, that the respective ‘inclusion’ εQ0 has a nonempty

intersection with Ω1 . There exists an extension ũε of uε|εQ1 to the whole cell

εQ such that

‖ũε‖L2(εQ0) ≤ C‖uε‖L2(εQ1), ‖∇ũε‖L2(εQ0) ≤ C‖∇uε‖L2(εQ1), (1.27)

where C does not depend on ε or ξ , see e. g. [35, Ch. 3, §4, Th. 1], which

is a version of the so-called ‘extension lemma’, see also e.g. [27, §3.1, L. 3.2]. In

particular, we can choose the following extension:

ũε ≡ uε, x ∈ Ωε
1 ∪ Ωε

2,

−∇ · (a(x,ε)∇ũε(x)
)

= 0, x ∈ Ωε
0 ∪ Ω̃ε

0,

which minimises ‖a1/2(x, ε)∇ũε‖L2(εQ0) subject to the prescribed boundary con-

ditions, with (1.4) and (1.5) ensuring that (1.27) still holds. From (1.26) and

(1.27) we conclude that

‖ũε‖H1(Rn) ≤ C. (1.28)
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We represent uε in the form

uε(x) = ũε(x) + vε(x) (1.29)

and consider the function vε ∈ H1
0 (Ωε

0 ∪ Ω̃ε
0) . We assume that vε is extended by

zero to the whole Rn . In each inclusion εQ0 ⊂ Ωε
0 ∪ Ω̃ε

0 we have the following

boundary value problem for vε(x) :

−∇ · (a(x, ε)∇vε)−λεvε = λεũ
ε, x ∈ εQ0,

vε(x) =0, x ∈ ∂(εQ0).
(1.30)

When a(x, ε) = a0ε
2 , i.e. everywhere in Ωε

0 and also in Ω̃ε
0 in the case ã0(x, ε) =

a0ε
2 , after changing the variables x→ y = x/ε we obtain

−a0∆yv
ε(εy)− λεvε(εy) = λεũ

ε(εy), y ∈ Q0,

vε(εy) = 0, y ∈ ∂Q0.
(1.31)

Since λ0 6= λj by the assumptions of the theorem, λε is separated uniformly

from the spectrum of the operator T , (1.11), for small enough ε . Hence the

resolvent of T at λε is bounded uniformly in ε and (1.31) implies

‖vε(εy)‖H1(Q0) ≤ C‖ũε(εy)‖L2(Q0). (1.32)

In the case when Ã0 ε
2−θ ≤ ã0(x, ε) ≤ σ0 ε

2−θ , θ ∈ (0, 2] , we multiply equa-

tion (1.30) by vε and integrate by parts to obtain after rescaling

ε−2

∫

Q0

ã0(εy, ε)|∇yv
ε(εy)|2dy−λε

∫

Q0

(
vε(εy)

)2
dy = λε

∫

Q0

ũε(εy)vε(εy) dy. (1.33)

Notice that ε−2ã0(εy, ε) ≥ Ã0ε
−θ →∞ as ε→ 0 . Then using Poincaré inequal-

ity for functions from H1(Q0)

∫

Q0

f 2 dy ≤ C

∫

Q0

|∇yf |2dy,
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and Hölder inequality



∫

Q0

fg dy




2

≤
∫

Q0

f 2 dy

∫

Q0

g2 dy,

we derive from (1.33) that

(Cε−θ − λε)‖vε(εy)‖2
L2(Q0) ≤ λε‖vε(εy)‖L2(Q0)‖ũε(εy)‖L2(Q0).

The latter immediately implies that

‖vε(εy)‖L2(Q0) ≤ C‖ũε(εy)‖L2(Q0). (1.34)

In fact an even stronger relation is valid, ‖vε(εy)‖L2(Q0) = o
(‖ũε(εy)‖L2(Q0)

)
.

From (1.33) and (1.34) one directly obtains

ε−2‖ã1/2
0 ∇yv

ε(εy)‖2
L2(Q0) ≤ C‖ũε(εy)‖2

L2(Q0), (1.35)

for small enough ε . Returning in (1.32) and in (1.34), (1.35) to the variable x

we arrive at the following inequality that describes the behaviour of vε and its

gradient in Ωε
0 ∪ Ω̃ε

0 ,

‖a1/2∇vε(x)‖2
L2(εQ0) + ‖vε(x)‖2

L2(εQ0) ≤ C‖ũε(x)‖2
L2(εQ0), (1.36)

with an ε -independent constant C .

Step 3. In order to get the uniform exponential decay of the eigenfunctions

we next substitute in (1.6) a test function of a special form:

w = g2(|x|)ũε(x). (1.37)

Here we define function g as follows

g(t) =

{
eαt, t ∈ [0, R],

eαR, t ∈ (R,+∞),
(1.38)

where R is some arbitrary positive number. The exponent α will be chosen

later. This method was employed e.g. by Agmon, see [1], but in the present case

its realisation is not straightforward. Namely, to obtain the desired estimates we
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have to implement the approach of [1] in the context of the two-scale analysis.

We will show that g(|x|)ũε(x) , and consequently g(|x|)uε(x) , are bounded in

L2(Rn) uniformly with respect to R and ε . Then we will show via passing to

the limit as R→∞ that we can replace g(|x|) by eα|x| .

Remark 1.2.3. We cannot use e2α|x|ũε(x) as a test function directly, since it

is not known at this stage that functions eα|x|ũε(x) and eα|x|uε(x) are square

integrable.

The following identity holds by direct inspection

∇ũε∇(g2ũε) = |∇(gũε)|2 − |∇g|2(ũε)2. (1.39)

Notice that the Euclidian norm of ∇g is bounded by g with constant α (uni-

formly with respect to R ):

∣∣∇g(|x|)
∣∣ ≤ αg(|x|). (1.40)

After the substitution of (1.37) into (1.6) we have, via (1.29) and (1.39),

ε2a0

∫

Ωε0

∇uε · ∇(g2ũε) dx+

∫

eΩε0

ã0∇vε · ∇(g2ũε) dx+

∫

Rn\Ωε0

a(x, ε)|∇(gũε)|2 dx−

−a1

∫

Ωε1

|∇g|2(ũε)2 dx− λε
∫

Ωε0∪Ωε1

g2(ũε)2 dx− λε
∫

Ωε0

g2vεũε dx =

= λε

∫

eΩε0

g2uεũε dx+ λε

∫

Ωε2

g2(ũε)2dx+

∫

Ωε2∪eΩε0

a(x, ε)|∇g|2(ũε)2 dx.

(1.41)

Notice that the right hand side is bounded by some constant C independent of

ε and R due to (1.26), (1.28), (1.36) and the boundedness of the domains of

integration.

The rough idea of the remaining part of the proof is the following. We argue

that the second term on the left hand side of the latter is small and the first one

is relatively small (compared to the other terms of the identity). One can notice

that in equation (1.31) the right hand side is ‘almost’ a constant for every fixed

Q0 . Then one can expect that the solution of (1.31) is ‘approximately equal’ to
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the solution of (1.12) corresponding to λ = λε multiplied by λεũ
ε(εy) ,

vε(εy) ∼ λεb(y)ũε(εy).

Rearranging the integrated entities in the last two terms on the left hand side of

(1.41) one obtain ‘approximately’

− λεg2(ũε)2 − λεg2vεũε ∼ − [λε(1 + λεb(y))] g2(ũε(εy))2. (1.42)

The expression in the square brackets resembles the definition of β(λε) , see

(1.13). Rescaling back to variable x and integrating the right hand side of (1.42)

one can obtain

− β(λε)‖gũε‖2
L2(Ωε0∪Ωε1). (1.43)

Notice that as λε → λ0 , β(λε) → β(λ0) < 0 . Hence we obtain ‖gũε‖2
L2(Ωε0∪Ωε1)

multiplied by a uniformly positive coefficient, end we need only to choose appro-

priate exponent α , see (1.38), to ensure that the fourth term on the left hand

side of (1.41),

−a1

∫

Ωε1

|∇g|2(ũε)2 dx > −a1α
2‖gũε‖2

L2(Ωε1),

is compensated by (1.43).

Let us continue the proof. Consider the second term on the left hand side of

(1.41). Since the coefficient ã0(x, ε) is bounded uniformly in ε and the sequence

of domains Ω̃ε
0 is also bounded (so g2|eΩε0 , ∇g

2|eΩε0 ≤ C uniformly) we derive that

∣∣∣∣∣∣∣

∫

eΩε0

ã0∇vε · ∇(g2ũε) dx

∣∣∣∣∣∣∣
≤ C

∫

eΩε0

a
1/2
0 |∇vε|

(|∇ũε|+ |ũε|) dx ≤

≤ C‖a1/2
0 ∇vε‖L2(eΩε0)

(‖∇ũε‖L2(eΩε0) + ‖ũε‖L2(eΩε0)

)
.

Then from (1.28), (1.36) follows that

∣∣∣∣∣∣∣

∫

eΩε0

ã0∇vε · ∇(g2ũε) dx

∣∣∣∣∣∣∣
≤ C‖ũε‖L2(eΩε0).

The right hand side of the latter converges to zero. Indeed, let us take an arbitrary
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subsequence ũε . Since ‖ũε‖H1(Rn) is bounded uniformly in ε , see (1.28), the set

of functions ũε is weakly compact in H1(BR) , hence strongly compact in L2(BR)

for any R ; we take R large enough so that Ω2 b BR . Then there exists a further

subsequence ũε that converges to some function u0 strongly in L2(BR) . Then

‖ũε‖L2(eΩε0) ≤ ‖u0‖L2(eΩε0) + ‖ũε − u0‖L2(eΩε0) → 0 (1.44)

as the Lebesgue measure of the set Ω̃ε
0 tends to zero. Since we have chosen in

the beginning an arbitrary subsequence ũε , (1.44) holds for any sequence of ε .

Hence ∣∣∣∣∣∣∣

∫

eΩε0

ã0∇vε · ∇(g2ũε) dx

∣∣∣∣∣∣∣
→ 0. (1.45)

From (1.36) and (1.44) we also obtain

‖vε‖L2(eΩε0) → 0. (1.46)

Step 4. The following Lemma approximates the last two terms and bounds

the first term (both, in a sense, of a ‘two-scale’ nature) on the left hand side of

(1.41).

Lemma 1.2.4. There exists ε0 > 0 such that for all positive ε < ε0 the following

estimates are valid

∣∣∣∣∣∣∣
λε

∫

Ωε0∪Ωε1

g2(ũε)2 dx+ λε

∫

Ωε0

g2vεũε dx− β(λε)

∫

Ωε0∪Ωε1

g2(ũε)2 dx

∣∣∣∣∣∣∣
≤

≤ C ε
(
‖∇(gũε)‖2

L2(Ωε1) + ‖gũε‖2
L2(Ωε0∪Ωε1)

)
+ C,

(1.47)

and

∣∣∣∣∣∣∣
ε2a0

∫

Ωε0

∇uε∇(g2ũε) dx

∣∣∣∣∣∣∣
≤ C ε

(
‖∇(gũε)‖2

L2(Ωε1) + ‖gũε‖2
L2(Ωε0∪Ωε1) + C

)
, (1.48)

where C does not depend on ε and R .

The proof of this lemma is quite technical and we give it in the next section.

We make use of Lemma 1.2.4 and convergence (1.45) to transform identity (1.41)
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into the following inequality, valid for small enough ε :

a1‖∇(gũε)‖2
L2(Ωε1) − a1‖(∇g)ũε‖2

L2(Ωε1) − β(λε)‖gũε‖2
L2(Ωε0∪Ωε1)−

− 2Cε
(
‖∇(gũε)‖2

L2(Ωε1) + ‖gũε‖2
L2(Ωε0∪Ωε1)

)
≤ C,

where C is independent of ε and R . Notice that β(λε) is negative and uniformly

bounded away from zero as λε → λ0 . Applying (1.40) to the second term on the

left hand side we arrive at

(a1 − 2Cε)‖∇(gũε)‖2
L2(Ωε1) +

(−β(λε)− α2a1 − 2Cε
) ‖gũε‖2

L2(Ωε0∪Ωε1) ≤ C. (1.49)

Hence we should choose α such that −β(λ0)− α2a1 is positive, i.e.

α <
√
−β(λ0)/a1.

Since g(|x|) coincides with eα|x| on the ball BR , taking ε small enough and

restricting the L2 -norms to BR we arrive at

∥∥eα|x|ũε∥∥
L2(BR)

≤ C,

where C does not depend on ε and R . Then passing to the limit as R → ∞
we obtain ∥∥eα|x|ũε

∥∥
L2(Rn)

≤ C. (1.50)

Step 5. Despite the fact that the sequence of ∇vε is unbounded in L2 -norm,

the function vε itself is controlled by ũε , see (1.36). Therefore we can get the

estimate for the function uε analogous to (1.50).

∥∥eα|x|uε
∥∥2

L2(Rn)
≤
∥∥eα|x|ũε

∥∥2

L2(Rn)
+

∑

εQ0⊂Ωε0∪eΩε0

∥∥eα|x|vε
∥∥2

L2(εQ0)
.

In each cell we use inequality (1.36) and

sup
x′∈εQ

eα|x
′| ≤ eα

√
nεeα|x|, ∀x ∈ εQ, (1.51)

to obtain

∥∥eα|x|vε
∥∥
L2(εQ0)

≤ Ceα
√
nε
∥∥eα|x|ũε

∥∥
L2(εQ0)

≤ C
∥∥eα|x|ũε

∥∥
L2(εQ0)

,
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and hence, finally, ∥∥eα|x|uε
∥∥
L2(Rn)

≤ C

uniformly in ε .

Remark 1.2.5. It is easy to see that ∇ũε (unlike ∇uε ) decays exponentially

uniformly in ε with the same rate as uε . Indeed, from (1.51) and (1.27) it follows

that

‖g∇ũε‖2
L2(Ωε0∪eΩε0)

≤
∑

εQ0⊂Ωε0∪eΩε0

sup
x′∈εQ

g‖∇ũε‖2
L2(εQ0) ≤ C‖g∇ũε‖2

L2(Πε),

where Πε :=
{⋃

εQ1|εQ1 is such that correcponding εQ0 ⊂ Ωε
0 ∪ Ω̃ε

0

}
. Since

‖∇ũε‖2
L2(Ωε2) and hence ‖g∇ũε‖2

L2(Ωε2) are bounded uniformly, we have

‖g∇ũε‖2
L2(Rn) ≤ C + C‖g∇ũε‖2

L2(Ωε1) = C + C‖∇(gũε)−∇gũε‖2
L2(Ωε1) ≤

≤ C + C‖∇(gũε)‖L2(Ωε1) + Cα‖gũε‖2
L2(Ωε1).

The latter is bounded uniformly in ε and R due to (1.49) and (1.50). Hence,

passing to the limit as R→∞ , we finally arrive at

∥∥eα|x|∇ũε
∥∥
L2(Rn)

≤ C (1.52)

uniformly in ε .

Remark 1.2.6. Estimate (1.24) is sharp in a sense. As we will show later,

uε strongly two-scale converges to u0 , for which
√
−β(λ0)/a1 is the optimal

estimate for its decay exponent, cf. (2.51).

1.3 Proof of Lemma 1.2.4.

Proof. Step 1. First we decompose the function vε in Ωε
0 into the sum of two

functions:

vε = ṽε + v̂ε, (1.53)

solving the following equations (cf. (1.31)):

−a0∆yṽ
ε(εy)− λεṽε(εy) = λε〈ũε(εy)〉y, y ∈ Q0,

ṽε(εy) = 0, y ∈ ∂Q0,
(1.54)
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−a0∆yv̂
ε(εy)− λεv̂ε(εy) = λε (ũε(εy)− 〈ũε(εy)〉y) , y ∈ Q0,

v̂ε(εy) = 0, y ∈ ∂Q0.
(1.55)

The solution of (1.54) could by written in the form

ṽε(εy) = λε〈ũε〉ybε(y), (1.56)

where bε is a solution of (1.12) with λ = λε . Due to the uniform (with respect

to ε ) boundedness of the resolvent of the operator T in the neighbourhood of

λ0 , the solution of (1.55) is bounded as follows,

‖v̂ε(εy)‖L2(Q0) =
∥∥(T − λε)−1(ũε(εy)− 〈ũε〉y)

∥∥
L2(Q0)

≤

≤ C ‖ũε(εy)− 〈ũε〉y‖L2(Q0) ≤ C ‖∇yũ
ε‖L2(Q0) ,

here we employed the version of Poincaré inequality for functions from H1(Q0) ,

‖f − 〈f〉y‖L2(Q0) ≤ C ‖∇yf‖L2(Q0) .

After the rescaling we obtain that v̂ε is relatively small compared to ∇ũε ,

‖v̂ε(x)‖L2(εQ0) ≤ εC‖∇ũε(x)‖L2(εQ), (1.57)

where C in the inequality does not depend on ε or ξ ∈ Zn .

Step 2. At this stage we will need several inequalities which follow from the

properties of g and ũε .

Proposition 1.3.1. The following estimates are valid for small enough ε with

constants independent of ε and the choice of particular εQ :

∥∥g2ũε
∥∥
L2(εQ)

‖∇ũε‖L2(εQ) ≤ C
(
‖∇(gũε)‖2

L2(εQ1) + ‖gũε‖2
L2(εQ)

)
, (1.58)

‖ũε‖L2(εQ)

∥∥∇(g2ũε)
∥∥
L2(εQ)

≤ C
(
‖∇(gũε)‖2

L2(εQ1) + ‖gũε‖2
L2(εQ)

)
, (1.59)

‖∇ũε‖L2(εQ)

∥∥∇(g2ũε)
∥∥
L2(εQ)

≤ C
(
‖∇(gũε)‖2

L2(εQ1) + ‖gũε‖2
L2(εQ)

)
. (1.60)

Proof. We remind that

sup
εQ

g ≤ eα
√
nεg(x) ≤ Cg(x), x ∈ εQ, (1.61)
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for small enough ε . We apply (1.27), (1.40) and (1.61) to get (1.58):

∥∥g2ũε
∥∥
L2(εQ)

‖∇ũε‖L2(εQ) ≤ C

∥∥∥∥
(

sup
εQ

g

)
g ũε

∥∥∥∥
L2(εQ)

‖∇ũε‖L2(εQ1) ≤

≤ C ‖g ũε‖L2(εQ)

∥∥∥∥
(

sup
εQ

g

)
∇ũε

∥∥∥∥
L2(εQ1)

≤ C ‖g ũε‖L2(εQ) ‖g∇ũε‖L2(εQ1) =

= C ‖gũε‖L2(εQ) ‖∇(gũε)− (∇g)ũε‖L2(εQ1) ≤

≤ C
(
‖gũε‖L2(εQ) ‖∇(gũε)‖L2(εQ1) + ‖gũε‖2

L2(εQ)

)
≤

≤ C
(
‖∇(gũε)‖2

L2(εQ1) + ‖gũε‖2
L2(εQ)

)
.

The last inequality in the chain follows from the elementary

|ab| ≤ 1

2
(a2 + b2).

The proof of (1.59) and (1.60) is analogous:

‖ũε‖L2(εQ)

∥∥∇(g2ũε)
∥∥
L2(εQ)

= ‖ũε‖L2(εQ)

∥∥∇(g2)ũε + g2∇ũε
∥∥
L2(εQ)

≤

≤ C
(∥∥g2ũε

∥∥
L2(εQ)

‖∇ũε‖L2(εQ) + ‖gũε‖2
L2(εQ1)

)
≤

≤ C
(
‖∇(gũε)‖2

L2(εQ1) + ‖gũε‖2
L2(εQ)

)
.

‖∇ũε‖L2(εQ)

∥∥∇(g2ũε)
∥∥
L2(εQ)

= ‖∇ũε‖L2(εQ)

∥∥∇(g2)ũε + g2∇ũε
∥∥
L2(εQ)

≤ C

(
∥∥g2ũε

∥∥
L2(εQ)

‖∇ũε‖L2(εQ) +

∥∥∥∥
(

sup
εQ

g

)
∇ũε

∥∥∥∥
2

L2(εQ1)

)
≤

≤ C
(
‖∇(gũε)‖2

L2(εQ1) + ‖gũε‖2
L2(εQ)

)
.

Substituting (1.53) into the second term on the left hand side of (1.47)) we

obtain

λε

∫

Ωε0

g2vεũε dx = λε

∫

Ωε0

g2ṽεũε dx+ λε

∫

Ωε0

g2v̂εũε dx

Let us show that λε
∫
Ωε0

g2v̂εũε dx is relatively small. Indeed, applying inequalities
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(1.57) and (1.58) in each cell we obtain

λε

∫

Ωε0

g2v̂εũε dx ≤ λε
∑

εQ0⊂Ωε0

∥∥g2ũε
∥∥
L2(εQ0)

‖v̂ε‖L2(εQ0) ≤

≤
∑

εQ0⊂Ωε0

εC
(
‖∇(gũε)‖2

L2(εQ1) + ‖gũε‖2
L2(εQ)

)
.

(1.62)

Considering sets ⋃
εQ0⊂Ωε0

εQ and
⋃

εQ0⊂Ωε0

εQ1,

one can notice that they are “nearly” equal to

Ωε
0 ∪ Ωε

1 and Ωε
1,

respectively. Namely,

Ωε
0 ∪ Ωε

1 =


 ⋃
εQ0⊂Ωε0

εQ


 ∪ Ωε

1,+ \ Ωε
1,−,

Ωε
1 =


 ⋃
εQ0⊂Ωε0

εQ1


 ∪ Ωε

1,+ \ Ωε
1,−,

(1.63)

where
Ωε

1,− =
⋃

εQ0⊂Ωε0

εQ0 ∩ Ω2,

Ωε
1,+ =

⋃

εQ0∩Ω2 6=∅
εQ0 ∩ Ωε

1.

We introduce two ‘correctors’

rε = ‖∇(gũε)‖2
L2(Ωε1,−) + ‖gũε‖2

L2(Ωε1,−), (1.64)

and

rε1 = ‖gũε‖2
L2(Ωε1,+∪Ωε1,−).

Then inequality (1.62) transforms into

∫

Ωε0

g2v̂εũε dx ≤ εC
(
‖∇(gũε)‖2

L2(Ωε1) + ‖gũε‖2
L2(Ωε0∪Ωε1) + rε

)
. (1.65)
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Step 3. Now we consider the term λε
∫
Ωε0

g2ṽεũε dx . We substitute (1.56) to

obtain

λε

∫

Ωε0

g2ṽεũε dx = λ2
εε
n
∑

εQ0⊂Ωε0

∫

Q

g2ũε(εy)bε(y)〈ũε〉y dy,

where bε is considered as a periodic function on Rn , bε(y + ξ) = bε(y), ξ ∈ Zn ,

and 〈ũε〉y = 〈ũε〉y(y) =
∫

Q:y∈Q
ũε(εy′)dy′ is a step function that takes constant

values on each cell Q . Notice also that β(λε)− λε = λ2
ε〈bε〉y . Then, keeping in

mind (1.63), we obtain

Λε :=

∣∣∣∣∣∣∣
λε

∫

Ωε0

g2ṽεũε dx− (β(λε)− λε)
∫

Ωε0∪Ωε1

g2(ũε)2 dx

∣∣∣∣∣∣∣
≤

≤ Cεn
∑

εQ0⊂Ωε0

∣∣∣∣∣∣

∫

Q

g2ũε(εy)bε(y)〈ũε〉y dy − 〈bε〉y
∫

Q

g2(εy)(ũε(εy))2 dy

∣∣∣∣∣∣
+

+ C rε1 ≤ Cεn
∑

εQ0⊂Ωε0

∣∣∣∣∣∣
〈ũε〉y

∫

Q

(
g2ũε − 〈g2ũε〉y

)
bε dy

∣∣∣∣∣∣
+

+ Cεn
∑

εQ0⊂Ωε0

∣∣∣∣∣∣
〈bε〉y

∫

Q

(
g2ũε − 〈g2ũε〉y

)
ũε dy

∣∣∣∣∣∣
+ C rε1.

(1.66)

We will separately estimate terms contained in the last expression. The mean

value of ũε is bounded by its norm in L2 by Hölder inequality

〈ũε(εy)〉2y =



∫

Q

ũε dy




2

≤
∫

Q

(ũε)2 dy

∫

Q

1 dy = ‖ũε(εy)‖2
L2(Q). (1.67)

Similarly,

〈bε〉y ≤ ‖bε‖L2(Q0) ≤ C,

where C does not depend on ε due to the uniform boundedness of the resolvent
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(T − λ)−1 in the neighbourhood of λ0 . Via the Poincaré inequality we derive

∣∣∣∣∣∣

∫

Q

(
g2ũε − 〈g2ũε〉y

)
ũε dy

∣∣∣∣∣∣
≤
∥∥g2ũε − 〈g2ũε〉y

∥∥
L2(Q)

‖ũε‖L2(Q) ≤

≤ C
∥∥∇y

(
g2ũε

)∥∥
L2(Q)

‖ũε‖L2(Q) ,

and, similarly,

∣∣∣∣∣∣

∫

Q

(
g2ũε − 〈g2ũε〉y

)
bε dy

∣∣∣∣∣∣
≤ C

∥∥∇y

(
g2ũε

)∥∥
L2(Q)

, (1.68)

with constants independent of ε and ξ (see (1.1)). Applying inequalities (1.67)–

(1.68) and then (1.59) to (1.66) we arrive at

Λε ≤ εnC
∑

εQ0⊂Ωε0

‖ũε(εy)‖L2(Q)

∥∥∇y(g
2(εy)ũε(εy))

∥∥
L2(Q)

+ C rε1 ≤

≤ εC
∑

εQ0⊂Ωε0

‖ũε‖L2(εQ)

∥∥∇(g2ũε)
∥∥
L2(εQ)

+ C rε1 ≤

≤ εC
∑

εQ0⊂Ωε0

(
‖∇(gũε)‖2

L2(εQ1) + ‖gũε‖2
L2(εQ)

)
+ C rε1 ≤

≤ εC
(
‖∇(gũε)‖2

L2(Ωε1) + ‖gũε‖2
L2(Ωε0∪Ωε1) + rε

)
+ C rε1,

(1.69)

where C is ε -independent. At the last step we used formulas (1.63) and (1.64).

Since the correctors rε, rε1 are uniformly bounded, inequalities (1.65) and (1.69)

together imply the validity of (1.47).

Step 4. Finally, it is not difficult to obtain similarly (1.48) via (1.36), (1.59)
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and (1.60):

∣∣∣∣∣∣∣
ε2a0

∫

Ωε0

∇uε∇(g2ũε) dx

∣∣∣∣∣∣∣
≤ ε2C

∑
εQ0⊂Ωε0

‖∇uε‖L2(εQ0)

∥∥∇(g2ũε)
∥∥
L2(εQ0)

≤

≤ εC
∑

εQ0⊂Ωε0

(‖ε∇vε‖L2(εQ0) + ε‖∇ũε‖L2(εQ0)

) ∥∥∇(g2ũε)
∥∥
L2(εQ0)

≤

≤ εC
∑

εQ0⊂Ωε0

(
‖ũε‖L2(εQ0)

∥∥∇(g2ũε)
∥∥
L2(εQ0)

+ ε‖∇ũε‖L2(εQ0)

∥∥∇(g2ũε)
∥∥
L2(εQ0)

)
≤

≤ εC
(
‖∇(gũε)‖2

L2(Ωε1) + ‖gũε‖2
L2(Ωε0∪Ωε1) + rε

)
≤

≤ εC
(
‖∇(gũε)‖2

L2(Ωε1) + ‖gũε‖2
L2(Ωε0∪Ωε1) + C

)

for small enough ε .

Notice that all the estimates obtained in this section are independent of R .
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Chapter 2

Two-scale convergence of

eigenfunctions and convergence

of spectra

In this chapter we study the convergence properties of the localised eigenfunctions

of the operator Aε and convergence of its spectrum. We list the definitions and

some properties of the two-scale convergence, see [2, 38, 48, 49], in the first section.

We also formulate several auxillary statements (analogous to those in [49]) which

are necessary for obtaining the two-scale convergence of the eigenfunctions of Aε

and for the derivation of the limit equation. In Section 2.2 we prove, relying on

the uniform exponential decay, the main results on the two-scale convergence of

the eigenfunctions and the subsequent convergence of the point spectrum of Aε .

In Section 2.3 we provide a proof of stability of the essential spectrum of the

two-scale homogenised operator with respect to the compact perturbation of its

coefficients, thereby establishing the Hausdorff convergence of the spectra of Aε

to the spectrum of the homogenised operator A0 .

2.1 Some properties of two-scale convergence

Let Ω be an arbitrary region in Rn , in particular Ω = Rn . Denote by � the

unit cube [0, 1)n . We consider all functions of the form u(x, y) to be 1-periodic

in y in each coordinate.

Definition 2.1.1. We say that a bounded in L2(Ω) sequence vε is weakly two-
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scale convergent to a function v ∈ L2(Ω×�) , vε(x)
2
⇀ v(x, y) , if

lim
ε→0

∫

Ω

vε(x)ϕ(x)b
(x
ε

)
dx =

∫

Ω

∫

�

v(x, y)ϕ(x)b(y) dydx

for all ϕ ∈ C∞0 (Ω) and all b ∈ C∞per(�) (where C∞per(�) is the set of 1-periodic

functions from C∞(Rn) ).

Definition 2.1.2. We say that a bounded in L2(Ω) sequence uε is strongly

two-scale convergent to a function u ∈ L2(Ω×�) , uε(x)
2→ u(x, y) , if

lim
ε→0

∫

Ω

uε(x)vε(x) dx =

∫

Ω

∫

�

u(x, y)v(x, y) dy dx

for all vε(x)
2
⇀ v(x, y) .

Proposition 2.1.3. (Properties of the two-scale convergence.)

(i) If uε(x)
2
⇀ u(x, y) and a ∈ L∞per(�) then

a(x/ε)uε(x)
2
⇀ a(y)u(x, y).

(ii) vε(x)
2→ v(x, y) if and only if vε(x)

2
⇀ v(x, y) and

lim
ε→0

∫

Ω

v2
ε dx =

∫

Ω

∫

�

v2 dy dx.

(iii) If fε(x)→ f(x) in L2(Ω) , then fε(x)
2→ f(x) .

(iv) A sequence uε bounded in L2(Ω) is compact in the sense of weak two-scale

convergence.

Proposition 2.1.4. (The mean value property of periodic functions.) Let Φ(y) ∈
L1

per(�) . Then for each φ(x) ∈ C∞0 (Rn) we have

lim
ε→0

∫

Rn

φ(x)Φ(x/ε)dx = 〈Φ〉y
∫

Rn

φ(x)dx.

The potential vector space Vpot is defined as a closure of the set {∇ϕ : ϕ ∈
C∞per(�)} in L2(�)n . We say that a vector b ∈ L2(�)n is solenoidal ( b ∈ Vsol )
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if it is orthogonal to all potential vectors. Thus,

L2(�)n = Vpot ⊕ Vsol,

and

L2(Ω×�)n = L2(Ω, Vpot)⊕ L2(Ω, Vsol).

Lemma 2.1.5. Let uε and ε∇uε be bounded in L2(Rn) . Then (up to a subse-

quence)

uε(x)
2
⇀ u(x, y) ∈ L2(Rn, H1

per),

ε∇uε(x)
2
⇀ ∇yu(x, y),

where H1
per = H1

per(�) is the Sobolev space of periodic functions.

Lemma 2.1.6. Let uε ∈ H1(Rn) ,

uε(x)
2
⇀ u(x) ∈ H1(Rn), (2.1)

and ∇uε is bounded in L2(Rn) . Then, up to a subsequence,

∇uε(x)
2
⇀ ∇u(x) + v(x, y), where v ∈ L2(Rn, Vpot). (2.2)

Lemma 2.1.7. Let (2.1) and (2.2) be valid. Let also

lim
ε→0

∫

Ωε1

a1∇uε(x) · ∇yw(ε−1x)ϕ(x) dx = 0 (2.3)

for any ϕ ∈ C∞0 (Ω1) and w ∈ C∞per(�) . Then the following weak convergence of

the flows takes place:

a1ΘQ1(ε−1x)∇uε(x) ⇀ Ahom∇u(x) in Ω1,

where homogenised matrix Ahom is defined by (1.10).

The proofs of the listed statements repeat the proofs of the corresponding

assertions in [48] with no or only small alterations, and are not given here. The

following is an important definition of the strong two-scale resolvent convergence

of operators.

Definition 2.1.8. Let Aε , ε > 0 , and A0 be non-negative self-adjoint operators

in L2(Rn) and H0 ⊂ L2(Rn × Q) , see (1.15), respectively. We say that Aε
2→
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A0 in the sense of the strong two-scale resolvent convergence if for any λ > 0

(Aε + λI)−1 fε
2→ (A0 + λI)−1 f0 as long as fε

2→ f0 .

2.2 Strong two-scale convergence of the eigen-

functions and multiplicity of the eigenvalues

of Aε

In this section we will show that the normalised eigenfunctions uε are compact

in the sense of strong two-scale convergence. Namely, provided λε → λ0 , a se-

quence of normalised eigenfunctions uε of the operator Aε strongly two-scale

converges, up to a subsequence, to a function u0(x, y) . Using the properties of

two-scale convergence we then pass to a limit in integral identity (1.6) with a

specially chosen test function. As a result we obtain in the limit integral identity

(1.18) which implies that λ0 and u0(x, y) are an eigenvalue and a corresponding

eigenfunction of A0 . This, together with the results of [29], allows us to estab-

lish an ‘asymptotic one-to-one correspondence’ between isolated eigenvalues and

corresponding eigenfunctions of the operators Aε and A0 .

Theorem 2.2.1. Under the assumptions of Theorem 1.2.2 λ0 is an eigenvalue of

the operator A0 . Moreover, there exists a subsequence ε such that eigenfunctions

uε of the operator Aε strongly two-scale converge to an eigenfunction u0(x, y)

of A0 corresponding to the eigenvalue λ0 .

Proof. Step 1. In order to establish strong two-scale convergence of the eigen-

functions uε = ũε + vε we prove it for each of its components separately. The

gradient of ũε is bounded in L2 -norm uniformly in ε . Naively speaking, this

means that ũε itself is a function of slow variation and its two-scale limit should

not depend on the fast variable y . Then one can expect that the sequence ũε is

compact in a usual L2 -norm sense.

From (1.50) it follows that

‖eαRũε‖L2(Rn\BR) ≤ ‖eα|x|ũε‖L2(Rn\BR) ≤ C.

Then

‖ũε‖L2(Rn\BR) ≤ Ce−αR (2.4)

with C independent of ε and R . From this one can easily conclude that ũε is
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weakly compact in H1(Rn) and strongly compact in L2(Rn) . Indeed, since ũε

is bounded in H1(Rn) uniformly in ε (see (1.28)),

ũε(x) ⇀ u0(x) in H1(Rn), (2.5)

up to a subsequence due to the weak compactness of a bounded set in H1(Rn) .

It is well known that H1(Ω) is compactly embedded into L2(Ω) when Ω is

bounded. Hence, for any fixed R function ũε converges to u0 weakly in H1(BR)

and strongly in L2(BR) up to a subsequence. Considering a sequence of balls

BR , R ∈ N , one can use the method of extracting a diagonal subsequence to

obtain a sequence converging in any ball BR ,

ũε → u0 in L2(BR) (2.6)

for any R > 0 .

For any δ > 0 we can choose R such that ‖u0‖2
L2(Rn\BR) < δ/3 and

‖ũε‖2
L2(Rn\BR) < δ/3 for all sufficiently small ε (the latter follows from (2.4)).

From (2.6) it follows that ‖u0 − ũε‖2
L2(BR) < δ/3 for sufficiently small ε . So we

conclude that

‖u0 − ũε‖2
L2(Rn) ≤ ‖u0 − ũε‖2

L2(BR) + ‖u0‖2
L2(Rn\BR) + ‖ũε‖2

L2(Rn\BR) < δ

for small enough ε . Hence, up to a subsequence, we have proved convergence

ũε → u0 in L2(Rn). (2.7)

Then from the properties of two-scale convergence (Proposition 2.1.3 (iii)) we

conclude that

ũε(x)
2→ u0(x). (2.8)

Step 2. Now let us consider vε . Formulas (1.53) and (1.56) show that vε is

of a two-scale nature. One can expect that its two-scale limit depends both on

x and y . Since the coefficient a(x, ε) on Ω̃ε
0 is defined very loosely we consider

the behaviour of vε on Ω̃ε
0 separately. We denote by vε1 and vε2 the restrictions

vε|Ωε0 and vε|eΩε0 respectively, extending them by zero to the rest of Rn .

Lemma 2.2.2. The following convergence properties are valid for vε1 (up to a
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subsequence):

vε1(x)
2→ v(x, y) ∈ L2(Ω1, H

1
0 (Q0)),

ε∇vε1(x)
2
⇀ ∇yv(x, y),

where v(x, y) is a solution to the following problem:

− a0∆yv − λ0v = λ0u0, y ∈ Q0. (2.9)

Here u0 is a function from (2.8).

Proof. The function vε1 ∈ H1(Ωε
0) satisfies the following differential equation:

− ε2a0∆vε1 − λεvε1 = λεũ
ε, x ∈ Ωε

0. (2.10)

Let us rewrite it in the form

− ε2a0∆vε1 − λεvε1 = λεũ
ε
(

ΘQ0(x/ε)−ΘeΩε0(x)
)
, x ∈ Ω1. (2.11)

We understand the term ΘQ0(y) as a characteristic function of Q0 in Q extended

by periodicity on Rn . Since ũε is bounded in L2(Rn) and the Lebesgue measure

of Ω̃ε
0 tends to zero, we have

‖ũε ΘeΩε0‖
2
L2(Rn) ≤ ‖ũε‖L2(Rn)‖ΘeΩε0‖L2(Rn) → 0.

By Proposition 2.1.3 (i) for any fε(x)
2
⇀ f(x, y) it is true that fε(x)ΘQ0(x/ε)

2
⇀

f(x, y)ΘQ0(y) . Since ũε strongly two-scale converges to u0 , by the above and

the definition of the strong two-scale convergence we have

∫

Rn

ũε(x)fε(x)ΘQ0(x/ε)dx→
∫

Rn

∫

Q

u0(x)f(x, y)ΘQ0(y)dx

with arbitrary fε(x)
2
⇀ f(x, y) . But this implies ũε(x)ΘQ0(x/ε)

2→ u0(x)ΘQ0(y) .

Hence we conclude that

λεũ
ε
(

ΘQ0(x/ε)−ΘeΩε0(x)
)

2→ λ0ΘQ0(y)u0(x) ∈ L2(Ω1 ×�). (2.12)

Following [48] we consider the more general problem

zε ∈ H1(Ωε
0), −ε2a0∆zε − λεzε = fε, fε ∈ L2(Ωε

0). (2.13)
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(It is implicit that fε = zε = 0 in Rn\Ωε
0 .)

Proposition 2.2.3. Let

f ε(x)
2
⇀ f(x, y).

Then
zε(x)

2
⇀ z(x, y) ∈ L2(Ω1, H

1
0 (Q0)),

ε∇zε(x)
2
⇀ ∇yz(x, y),

where function z(x, y) solves the following equation:

− a0∆yz − λ0z = f, y ∈ Q0. (2.14)

Proof. One can easily derive an estimate for zε analogous to (1.36), applying to

(2.13) a reasoning similar to those for the solution of equation (1.30):

a0ε
2‖∇zε(x)‖2

L2(Ωε0) + ‖zε(x)‖2
L2(Ωε0) ≤ C‖f ε(x)‖2

L2(Ωε0),

with C independent of ε . Since f ε weakly two-scale converges, it is bounded.

Then zε and ε∇zε are also bounded, and we can apply Lemma 2.1.5:

zε(x)
2
⇀ z(x, y) ∈ L2(Ω1, H

1
per),

ε∇zε(x)
2
⇀ ∇yz(x, y).

Equation (2.14) follows by a straightforward passing to the limit in the integral

identity corresponding to (2.13) with appropriately chosen test functions. The full

proof can be found in [48] and applies to the present situation with no alteration.

Remark 2.2.4. Validity of z ∈ L2(Ω1, H
1
0 (Q0)) , i.e. that z vanishes on the

boundary of Q0 , follows from z ∈ L2(Ω1, H
1
per) and the obvious convergence

property

0 ≡ zε(x)ΘQ1(x/ε)
2
⇀ z(x, y)ΘQ1(y).

The above proposition together with (2.12) establishes a “weak” form of the

statement of the lemma, i.e. weak two-scale convergence of vε1 to the solution

of (2.9). We now prove that the convergence is actually strong, following again

[48]. Multiply (2.10) and (2.13) by zε and vε1 respectively and integrate by parts.

The left hand sides of the resulting equalities are identical. So, equating the right
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hand sides, we obtain the following identity

∫

Ω1

f εvε1 dx = λε

∫

Ω1

ũεzε dx. (2.15)

Since ũε strongly two-scale converges, then by the definition we have

lim
ε→0

λε

∫

Ω1

ũεzε dx = λ0

∫

Ω1

∫

Q0

u0(x)z(x, y) dy dx.

Multiplying (2.9) and (2.14) by z and v respectively and integrating by parts it

is easy to see that

λ0

∫

Ω1

∫

Q0

u0(x)z(x, y) dydx =

∫

Ω1

∫

Q0

f(x, y)v(x, y) dy dx. (2.16)

Since the right hand side of (2.15) converges to the left hand side of (2.16) we

conclude that:

lim
ε→0

∫

Ω1

f εvε1 dx =

∫

Ω1

∫

Q0

f(x, y)v(x, y) dy dx

for any weakly two-scale convergent sequence f ε . Hence, by the definition of the

strong two-scale convergence,

vε1(x)
2→ v(x, y).

Lemma 2.2.5. The sequence of functions vε2 converges to zero in the sense of

strong two-scale convergence:

vε2
2→ 0 as ε→ 0.

Proof. Straightforward from (1.46) and Proposition 2.1.3 (iii).

Combining (2.8) with Lemmas 2.2.2 and 2.2.5, we arrive at

uε(x)
2→ u0(x, y) = u0(x) + v(x, y), (2.17)

where u0 ∈ H1(Rn), v ∈ L2(Ω1, H
1
0 (Q0)) .
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Step 3. Now it remains to show that λ0 and u0(x, y) are an eigenvalue

and the corresponding eigenfunction of the limit operator A0 , i.e. that u0(x, y)

satisfies (1.19). In order to do that we need to choose an appropriate test-function

ψε and pass to the limit in the integral identity

ε2a0

∫

Ωε0

∇uε · ∇ψε dx+ a1

∫

Ωε1

∇uε · ∇ψε dx+

∫

eΩε0

ã0∇uε · ∇ψε dx+

+ a2

∫

Ωε2

∇uε · ∇ψε dx = λε

∫

Rn

uεψε dx

(2.18)

corresponding to the original eigenvalue problem (1.2)–(1.3). Let us take

ψε(x) = ψ0(x) + ϕ(x)b(ε−1x),

ψ0 ∈ C∞0 (Rn), ϕ ∈ C∞0 (Ω1), b(y) ∈ C∞0 (Q0),
(2.19)

and consider each term of (2.18) separately. Let us expand the first term:

ε2a0

∫

Ωε0

∇uε∇ψε dx = ε2a0

∫

Ωε0

∇ũε∇ψε dx+

+ε2a0

∫

Ωε0

∇vε (∇ψ0 + b(ε−1x)∇ϕ) dx+ a0

∫

Ωε0

ε∇vεϕ∇yb(ε
−1x) dx.

Since ∇ũε is bounded in L2 -norm and |∇ψε| ≤ Cε−1 , the first term on the

right hand side tends to zero. Consider the second term. By (1.36) we have

ε‖∇vε‖L2(Ωε0) ≤ C‖ũε‖L2(Ωε0) ≤ C ; then from the boundedness of ∇ψ0 + b∇ϕ (in

L∞ -norm) we conclude that the second term also converges to zero. By Lemma

2.2.2 ε∇vε weakly two-scale converges to ∇yv(x, y) , hence, by the definition of

the weak two-scale convergence, we obtain

lim
ε→0

ε2a0

∫

Ωε0

∇uε∇ψε dx = a0

∫

Ω1

∫

Q0

∇yv(x, y)ϕ(x)∇yb(y) dy dx. (2.20)

The third term on the left hand side of (2.18) converges to zero due to the

smallness of the domain of integration. Indeed, since for small enough ε the test

function ψε is equal to ψ0 on Ω̃ε
0 , ‖ã1/2

0 ∇uε‖L2(eΩε0) ≤ C uniformly in ε (cf.
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(1.25)), and
∣∣Ω̃ε

0

∣∣→ 0 as ε→ 0 , we derive for small enough ε

∣∣∣∣∣∣∣

∫

eΩε0

ã0∇uε∇ψε dx

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

∫

eΩε0

ã0∇uε∇ψ0 dx

∣∣∣∣∣∣∣
≤

≤ C

∫

eΩε0

ã0|∇uε| dx ≤ C
∣∣Ω̃ε

0

∣∣1/2 ã1/2
0 ‖ã1/2

0 ∇uε‖L2(eΩε0) → 0.

(2.21)

The eigenfunction uε coincides with ũε on Ωε
2 . Then, via (2.5) we have

convergence of the last term on the left hand side of (2.18):

lim
ε→0

a2

∫

Ωε2

∇uε · ∇ψε dx =

= lim
ε→0


a2

∫

Ω2

∇ũε · ∇ψ0 dx− a2

∫

eΩε0∩Ω2

∇ũε · ∇ψ0 dx


 =

= a2

∫

Ω2

∇u0 · ∇ψ0 dx,

(2.22)

as

∣∣∣∣∣∣∣
a2

∫

eΩε0∩Ω2

∇ũε · ∇ψ0 dx

∣∣∣∣∣∣∣
≤ C

∫

eΩε0∩Ω2

|∇ũε|dx ≤ ‖∇ũε‖eΩε0∩Ω2

∣∣∣Ω̃ε
0 ∩ Ω2

∣∣∣
1/2

→ 0.

Now we will prove that the second term on the left hand side of (2.18) con-

verges to the second term on the right hand side of (1.16) with w0 = ψ0 . We

need to show that uε satisfies the conditions of Lemma 2.1.7. Let us show that

convergence property (2.3) holds for uε . To this end we substitute into (2.18) a

test function of the form ψε = εw(ε−1x)ϕ(x) , ϕ ∈ C∞0 (Ω1) , w ∈ C∞per(�) , cf.

[48]. Since ∇(εw(ε−1x)ϕ(x)) = O(1) and ‖ε∇uε‖L2(Ωε0) is bounded by (1.25)

we have

∣∣∣∣∣∣∣
ε2a0

∫

Ωε0

∇uε · ∇(εwϕ) dx

∣∣∣∣∣∣∣
≤ εa0‖ε∇uε‖L2(Ωε0)‖∇(εwϕ)‖L2(Ωε0) → 0.

54



∫

eΩε0

ã0∇uε · ∇(εwϕ) dx = 0

for small enough ε because ϕ ∈ C∞0 (Ω1) equals zero in Ω̃ε
0 for small ε and,

obviously,

a2

∫

Ωε2

∇uε · ∇(εwϕ) dx = 0.

Since εwϕ = O(ε) as ε→ 0 ,

λε

∫

Rn

uεεwϕdx→ 0.

Thus all the terms in (2.18) with ψε = εwϕ , except possibly

a1

∫

Ωε1

∇uε · ∇(εwϕ) dx = a1

∫

Ωε1

[∇uε · εw∇ϕ+∇uε(x) · ∇yw(ε−1x)ϕ(x)
]
dx,

converge to zero. Then the latter should also converge to zero. Since

a1

∫

Ωε1

∇uε · εw∇ϕdx→ 0,

we conclude the validity of (2.3).

The eigenfunction ũε converges in the sense of the strong two-scale conver-

gence and its gradient is bounded in L2 -norm, see (2.8) and (1.28). Then by

Lemma 2.1.6

∇ũε 2
⇀ ∇u0(x) + ṽ(x, y),

where ṽ ∈ L2(Rn, Vpot) . As long as ũε coincides with uε on Ωε
1 , we now can

apply Lemma 2.1.7 to obtain

lim
ε→0

a1

∫

Ωε1

∇uε · ∇ψε dx = lim
ε→0

a1

∫

Ωε1

∇uε · ∇ψ0 dx =

∫

Ω1

Ahom∇u0 · ∇ψ0 dx, (2.23)

where ψε is as in (2.19).

Thus, passing to the limit as ε→ 0 on the left hand side of (2.18) via (2.20)–

55



(2.23), and on the right hand side via (2.17), we arrive at

a0

∫

Ω1

∫

Q0

∇yv · ϕ∇yb dy dx+

∫

Ω1

Ahom∇u0 · ∇ψ0 dx+ a2

∫

Ω2

∇u0 · ∇ψ0 dx =

= λ0

∫

Rn

∫

Q

(u0 + v)(ψ0 + ϕ b) dy dx.

Since the space of functions from (2.19) is dense in V (see (1.17)), the latter

is equivalent to (1.18). It follows from (2.17), Proposition 2.1.3 (ii) and the

normalisation of uε that u0(x, y) 6≡ 0 . Thus we have proved that λ0 and

u0(x, y) are respectively an eigenvalue and an eigenfunction of the operator A0 ,

completing the proof of the theorem.

Remark 2.2.6. Let (a, b) be a gap in the spectrum of Â0 and I be an interval

lying strictly inside the gap. As we mentioned earlier, due to results of [48, 49]

σ(Âε) → σ(Â0) in the sense of Hausdorff. This implies that for small enough

ε the interval I belongs to the spectral gap of Âε . Then we can implement

Theorem 2 of [23] which claims that for large enough l small enough a2 , namely

such that l2/a2 > C , the operator Aε with Ω2 = lΩ has at least one localised

eigenvalue λε in I . The constant C depends only on the size and position of I

and geometric properties of Ω . Hence one can extract a converging subsequence

λε satisfying conditions of Theorem 2.2.1. Then from the latter follows the

existence of eigenvalues of A0 in the gaps of its essential spectrum, provided Ω2

is large enough and a2 is small enough.

It is not hard to show that there holds the strong two-scale resolvent conver-

gence Aε
2→ A0 , see Definition 2.1.8. Consider the resolvent equation

Aεw
ε + λwε = f ε, (2.24)

where −λ /∈ σ(A0) . It is well posed for small enough ε since for such ε λ /∈
σ(Aε) . Suppose also that

f ε(x)
2
⇀ f 0(x, y).

Multiplying this equation by wε and integrating by parts we obtain

‖a1/2
0 (x, ε)∇wε‖2

L2(Rn) + λ‖wε‖2
L2(Rn) ≤ ‖wε‖L2(Rn)‖f ε‖L2(Rn).

The weakly two-scale converging sequence f ε is bounded in L2 . If λ is positive,
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then we obviously get

‖wε‖L2(Rn) ≤ C, (2.25)

and

‖a1/2
0 (x, ε)∇wε‖L2(Rn) ≤ C, (2.26)

uniformly in ε . If λ is negative, then ‖wε‖L2(Rn) could be bounded or un-

bounded. The case when ‖wε‖L2(Rn) is unbounded we will consider later. Oth-

erwise we also have (2.25), (2.26).

As when we considered the eigenvalue problem, we can represent the solu-

tion of (2.24) as wε = w̃ε + zε , where w̃ε is a harmonic extension of wε|Ωε1∪Ωε2

to the whole Rn . Obviously ‖w̃ε‖L2(Rn) and ‖∇w̃ε‖L2(Rn) are bounded by

‖wε‖L2(Ωε1∪Ωε2) and ‖∇wε‖L2(Ωε1∪Ωε2) . Then applying Proposition 2.1.3 (iv), Lem-

mas 2.1.5 and 2.1.6 we conclude that

wε = w̃ε + zε
2
⇀ w0(x, y) = w0(x) + z(x, y) ∈ H1(Rn) + L2(Ω1, H

1
per),

ε∇zε(x)
2
⇀ ∇yz(x, y),

∇w̃ε(x)
2
⇀ ∇w0(x) + v(x, y), where v ∈ L2(Rn, Vpot).

As before, we can show that equality (2.3) holds with uε = w̃ε , and then, applying

Lemma 2.1.7 and the above convergence properties, pass to a limit in the weak

form of (2.24) with appropriately chosen test function to obtain

A0w
0 + λw0 = f 0.

Now suppose that f ε
2→ f 0 . We can carry out the same reasoning as in Lemma

2.1.6 (when we proved the strong two-scale convergence of vε1 ) to prove that

wε
2→ w0.

In order to complete the proof of the strong two-scale resolvent convergence

we need to consider the case when λ is negative and the sequence ‖wε‖L2(Rn)

is unbounded. Then there is a subsequence wε with L2 -norms converging to

infinity. We divide equation (2.24) by ‖wε‖L2(Rn) and rename wε

‖wε‖L2(Rn)
and

fε

‖wε‖L2(Rn)
again as wε and f ε to simplify the notation. Then we arrive at

(2.24) with ‖wε‖L2(Rn) = 1 and ‖f ε‖L2(Rn) → 0 . By the properties of two-

scale convergence f ε
2→ 0 . The by the above wε

2→ w0 , and ‖w0‖L2(Rn,Q) =

‖wε‖L2(Rn) = 1 , where w0 satisfy the equation A0w0 + λw0 = 0 . This means
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that −λ has to be an eigenvalue of A0 , which contradicts the initial assumption.

The strong two-scale resolvent convergence implies in particular the strong

two-scale convergence of spectral projectors (Pε(λ)
2→ P0(λ) if λ is not an

eigenvalue of A0 ), see [41, 48], and has other nice properties, however it does not

imply in its own the convergence of the spectra. The latter requires an additional

(two-scale) compactness property to hold, which Theorem 2.2.1 provides.

Remark 2.2.7. The function v(x, y) could be represented as a product of

u0(x)
∣∣
Ω1

and λ0b(y) , where b(y) solves (1.12) with λ = λ0 . Then v(x, ε−1x)

strongly two-scale converges to v(x, y) by the mean value property and the prop-

erties of two-scale convergence. Then

uappr(x, ε) :=

{
u0(x) + v(x, x/ε), x ∈ Ωε

0,

u0(x), x ∈ Rn\Ωε
0,

(2.27)

also strongly two-scale converges to u0(x, y) . Hence it approximates the eigen-

function uε(x) :

‖uappr − uε‖2
L2(Rn) =

=

∫

L2(Rn)

(
uappr

)2
dx+

∫

L2(Rn)

(
uε
)2
dx− 2

∫

L2(Rn)

uappruεdx→ 0.
(2.28)

Using the result of Theorem 2.2.1 we will discuss the multiplicity properties of

the eigenvalues λε and λ0 . Let us assume that the multiplicity of the eigenvalue

λ0 of A0 is m . Suppose that for a subsequence εk → 0 there exist l (accounting

for multiplicities) eigenvalues of Aε , λεk,1 ≤ λεk,2, . . . ≤ λεk,l , such that λεk,i →
λ0 , i = 1, . . . , l . Let uεki be the corresponding eigenfunctions orthonormalised

in L2(Rn) . It follows from Theorem 2.2.1 that there exists a subsequence km

such that

u
εkm
i

2→ u0
i , i = 1, . . . , l,

where u0
i are eigenfunctions of A0 corresponding to λ0 . In particular, due to

the strong two-scale convergence, we have convergence of the inner products:

(u
εkm
i , u

εkm
j )L2(Rn) → (u0

i , u
0
j)H0 . (2.29)

However (u
εkm
i , u

εkm
j )L2(Rn) = δij . Then u0

i , i = 1, . . . , l are also orthonormal

(in H0 ), i.e. there exist at least l linearly independent eigenfunctions of A0
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corresponding to λ0 . Thus, l ≤ m .

The results presented in [29] remain also valid in our setting of the problem,

i.e. when the coefficients of the divergence form operator Aε are of the form

(1.4). By Theorem 4.1 of [29], if λ0 is an eigenvalue of the limit operator A0

lying in a gap of its essential spectrum, then for small enough ε , there exist

eigenvalues (or at least one eigenvalue) of Aε such that

|λε,i − λ0| ≤ Cε1/2, i = 1, . . . , l(ε). (2.30)

Moreover, again by [29, Thm 4.1], for any eigenfunction u0
i of A0 corresponding

to λ0 the related uappr
i , see (2.27), can be approximated by a linear combination

of the eigenfunctions of Aε corresponding to λε,i, i = 1, . . . , l(ε) :

‖uappr
i −

l(ε)∑
j=1

cij(εk)u
ε
j‖L2(Rn) ≤ Cε1/2.

Then it is not hard to show that l(ε) ≥ m . Assume, for contradiction, that it is

not true. Then for some subsequence εk we have

‖uappr
i −

l∑
j=1

cij(εk)u
ε
j‖L2(Rn) ≤ Cε1/2, (2.31)

with l < m . Number of columns l of the matrix (cij(εk)) is less than num-

ber of its rows m , so the latter are linearly dependent vectors, and there exist

coefficients αi(εk), i = 1, . . . ,m not equal to zero simultaneously such that

m∑
i=1

αi(εk)ci(εk) = 0,

where ci(εk) = (ci1(εk), . . . , cil(εk)) . Let coefficients αi(εk) be normalised:∑m
i=1 |αi(εk)|2 = 1 . It is obvious that then

m∑
i=1

αi(εk)
l∑

j=1

cij(εk)u
εk
j ≡ 0. (2.32)
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From (2.31) and (2.32) it follows that

∥∥∥∥∥
m∑
i=1

αi(εk)u
appr
i

∥∥∥∥∥
L2(Rn)

=

∥∥∥∥∥
m∑
i=1

αi(εk)(u
appr
i −

l∑
j=1

cij(εk)u
εk
j )

∥∥∥∥∥
L2(Rn)

→ 0.

But on the other hand, by (2.29),

∥∥∥∥∥
m∑
i=1

αi(εk)u
appr
i

∥∥∥∥∥

2

L2(Rn)

=
m∑

i,k=1

αi(εk)αk(εk) (uappr
i , uappr

k )L2(Rn)

=
m∑

i,k=1

αi(εk)αk(εk)(u
0
i , u

0
k)H0 + o(1) =

m∑

i,k=1

αi(εk)αk(εk)δik + o(1)

=
m∑
i=1

|αi(εk)|2 + o(1)→ 1.

We get a contradiction. Thus, total multiplicity of λ(ε)→ λ0 is at least m .

As a result we come to a conclusion that if λ0 is an eigenvalue of A0 of

multiplicity m then there exist exactly m eigenvalues (counted with their mul-

tiplicities) of Aε converging to λ0 , and estimates (2.30) and (2.31) hold. In

other words there is an “asymptotic one-to-one correspondence” between isolated

eigenvalues and eigenfunctions of the operators Aε and A0 .

2.3 Identity of the essential spectra of Â0 and

A0 , convergence of the spectra of Aε in the

sense of Hausdorff

We recall that Âε and Â0 denote the ‘unperturbed’ operators corresponding to

Aε and A0 , see Section 1.1. It was shown in [48] that σ(Âε)
H→ σ(Â0) (the spec-

tra of both Âε and Â0 are purely essential). In [23] it is proved that the essential

spectrum of a divergence form operator −∇ · a(x)∇ (where a(x) ≥ δ > 0 is a

scalar function) remains unperturbed with respect to the local perturbation of

the coefficient a(x) . Applying this assertion to the operator Âε and its pertur-

bation Aε we conclude that σ(Âε) = σess(Aε)
H→ σ(Â0) . Let us assume that

σ(Â0) = σess(A0) . Then σess(Aε)
H→ σess(A0) . In this case Theorem 2.2.1 to-

gether with the results of [29] imply the convergence of the discrete spectra in the
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gaps (σdisc(Aε)
H→ σdisc(A0) ) and, consequently, we would have σ(Aε)

H→ σ(A0) .

However, we cannot apply the result of [23] as it is stated to the case of the two-

scale operators Â0 and A0 . In this section we prove the stability of the essential

spectrum of Â0 with respect to the local perturbation of its coefficients, estab-

lishing thereby the missing part of the reasoning. We do this by direct means

using the Weyl’s criterion for the essential spectrum of an operator, see e.g. [12].

Theorem 2.3.1. The essential spectra of the operators Â0 and A0 coincide.

Proof. Step 1. First we describe the domains of Â0 and A0 . According to the

Friedrichs extension procedure, see e.g. [41], a function u belongs to D(A0) if

and only if u = u0(x) + v(x, y) ∈ V and there exists h = h0(x) + g(x, y) ∈ H0

such that

B0(u,w) = (h,w)H0 (2.33)

for all w = w0 + z ∈ V , see (1.15)–(1.17).

Let u = u0 + v ∈ D(A0) . Then in order to u0 ∈ D(A0) be fulfilled there

must be a function f ∈ H0 such that

a2

∫

Ω2

∇u0 · ∇w0 dx+

∫

Ω1

Ahom∇u0 · ∇w0 dx = (f, w0 + z)H0 (2.34)

for all w ∈ V . In particular, setting in (2.33) z ≡ 0 we obtain

a2

∫

Ω2

∇u0 · ∇w0 dx+

∫

Ω1

Ahom∇u0 · ∇w0 dx =

∫

Rn

w0(h0 + 〈g〉) dy dx. (2.35)

Comparing (2.34) and (2.35) we infer that their right hand sides are equal and

that f is orthogonal to L2 (Ω1; L2(Q0)) . One can derive that f satisfying (2.34)

is defined by

f =

{
h0, x ∈ Ω2,

|Q1|−1 (h0 + 〈g〉) ΘQ1(y), x ∈ Ω1.

Therefore u0 and, hence, v belong to D(A0) as soon as u = u0 + v ∈ D(A0) .

Due to the regularity properties of solutions of elliptic equations, u0 ∈ H2
loc

everywhere away from the boundary of Ω2 .

Operator Â0 acting in the Hilbert space Ĥ0 was described in [48] and is gener-

ated by a (closed) symmetric and bounded from below bilinear form B̂0(u,w) on a

dense subspace V̂ of Ĥ0 , where Ĥ0 , V̂ and B̂0(u,w) are defined by (1.7)–(1.9).

A function u belongs to domain D(Â0) if and only if u = u0(x) + v(x, y) ∈ V̂
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and there exists h ∈ Ĥ0 such that

B̂0(u,w) = (h,w) bH0

for all w ∈ V̂ . Analogously to the case of D(A0) , if u = u0 + v ∈ D(Â0) then

u0, v ∈ D(Â0) , u0 ∈ H2(Rn) .

Let A be a self-adjoint operator with domain D(A) acting in a Hilbert space

H . By the Weyl’s criterium, see e.g. [12], condition λ ∈ σess(A) is equivalent to

the existence of a singular sequence u(k) ∈ D(A) , i.e. such that

0 < C1 ≤ ‖u(k)‖H ≤ C2, (2.36)

u(k) ⇀ 0 weakly in H, (2.37)

(A− λ)u(k) → 0 strongly in H. (2.38)

Employing this definition we will prove that λ ∈ σess(A0) if and only if λ ∈
σess(Â0) . The operators A0 and Â0 possess very similar properties. The main

difference between them consists in the fact that their domains differ. Luckily, a

function which support does not intersect with Ω2 belongs to D(A0) and D(Â0)

simultaneously. So the idea of the proof is the following. We consider arbitrary

singular sequence of one operator and change it slightly to ensure that its elements

belong the domain of another operator preserving all properties (2.36)–(2.38).

Step 2. Let λ ∈ σess(Â0) and u(k) = u
(k)
0 (x)+v(k)(x, y) be the corresponding

singular sequence in D(Â0) ⊂ Ĥ0 . First notice that the gradient of u
(k)
0 is

bounded in L2(Rn) . Indeed, from (1.9) and (2.38) we have

‖∇u(k)
0 ‖2

L2(Rn) ≤ CB̂0(u(k), u(k)) = Cλ(u(k), u(k)) bH0
+ o(1) ≤ C. (2.39)

Let us define a cut-off function

ηk,R(x) = η

(
1

k
(|x| −R)

)
,

where η ∈ C2(R) is such that

η(t) =

{
1, t ≤ 0,

0, t ≥ 1.

So ηk,R is 1 when |x| ≤ R , 0 when |x| ≥ R+ k and has small gradient if k is
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large.

Consider the following sequence, u(k)ηk,Rk ∈ D(Â0) , where Rk is chosen large

enough so that ‖u(k)(1− ηk,Rk)‖ bH0
≤ 1

k
. This sequence obviously satisfies (2.36)

for large enough k regarding the operator Â0 . Let us check property (2.38).

The operator Â0 acts on a function u ∈ H2(Rn) ⊂ D(Â0) as follows1, cf. [48].

Let

−∇ · Ahom∇u(x) = f(x) ∈ L2(Rn).

Then, by the definition of Â0 , we have

Â0u(x) = |Q1|−1ΘQ1(y)f(x) ∈ Ĥ0.

Note that

‖Â0u‖ bH0
= |Q1|−1/2‖f‖L2(Rn).

For u(k)ηk,Rk we derive

Â0

(
u(k)ηk,Rk

)
= ηk,RkÂ0u

(k)−

−|Q1|−1ΘQ1(y)
(

2∇ηk,Rk · Ahom∇u(k)
0 + u

(k)
0 ∇ · Ahom∇ηk,Rk

)
.

The second term on the right hand side becomes small as k → ∞ . Thus we

arrive at

∥∥∥(Â0 − λ)(u(k)ηk,Rk)
∥∥∥ bH0

≤
∥∥∥ηk,Rk(Â0 − λ)u(k)

∥∥∥ bH0

+

+2|Q1|−1/2
∥∥∥∇ηk,Rk · Ahom∇u(k)

0

∥∥∥
L2(Rn)

+

+|Q1|−1/2
∥∥∥u(k)

0 ∇ · Ahom∇ηk,Rk
∥∥∥
L2(Rn)

=

= o(1) +
1

k
O

(∥∥∥∇u(k)
0

∥∥∥
L2(Rn)

)
+

1

k2
O

(∥∥∥u(k)
0

∥∥∥
L2(Rn)

)
.

(2.40)

Due to (2.36) and (2.39) the latter converges to 0 as k → ∞ . Hence (2.38)

holds regarding Â0 and u(k)ηk,Rk .

Now notice that if supp u∩Ω2 = ∅ , then u ∈ D(Â0) if and only if u ∈ D(A0) ;

besides Â0u = A0u . We hence next shift the supports of u(k)ηk,Rk away from

Ω2 ensuring also that the new sequence is weakly convergent to maintain (2.37).

1If u = u0(x) + v(x, y) then Â0u = h ∈ Ĥ0 implies −∇·Ahom∇u0 = 〈h〉y and −a0∆yv =
h(x, y), y ∈ Q0 .
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Since supp ηk,Rk is a closed ball of radius Rk + k centred at the origin, the shift

of x by ξk := (Rk + 2k + diam(Ω2)) ξ for every k , where ξ is an arbitrary unit

vector from Rn , will do the job. Hence, for the given λ we have constructed a

singular sequence

w(k)(x, y) = u(k)(x+ ξk, y) ηk,Rk(x+ ξk),

satisfying all the properties (2.36)–(2.38) for the operator A0 . Namely, the trans-

lational invariance of Â0 in x ensures that (2.36) and (2.38) are satisfied. Finally,

(2.37) follows from the pointwise convergence of w(k) to zero as k → ∞ (since

for any fixed x , w(k)(x, y) = 0 for large enough k ). Thus λ ∈ σess(A0) .

Step 3. Suppose now that λ ∈ σess(A0) and u(k) = u
(k)
0 (x) + v(k)(x, y) is the

corresponding singular sequence. Let R be such that Ω2 ⊂ BR . The situation

now is more complicated. The elements of the sequence does not belong to D(Â0)

because of the discontinuity of first derivative at the boundary of Ω2 . If we cut off

the elements of the sequence in the neighbourhood of Ω2 we may loose property

(2.36). This may happen when functions u(k) mainly “concentrated” around

Ω2 . In fact there are two possibilities: either functions u(k) decay uniformly at

infinity in H0 or not. In the first case it is possible to prove the compactness of

u
(k)
0 in L2(Rn) . Due to (2.37) the latter implies u

(k)
0 → 0 . Then the sequence

v(k) satisfies all the properties of Weyl sequence for Â0 and belongs its domain.

In the second case we can cut off u(k) in the neighbourhood of Ω2 to obtain

Weyl sequence straight away. In the following we carry out this sketch in more

precise way.

There are only two alternative possibilities2:

• There exists a sequence δi → 0 such that for any i ∈ N

‖u(k)(1−ΘBR+i
)‖H0 ≤ δi (2.41)

for all k .

• There exist a constant M > 0 and subsequences k(j)→∞, i(j)→∞ as

j →∞ such that

‖u(k(j))(1−ΘBR+i(j)
)‖H0 ≥M (2.42)

2Let Aki := ‖u(k)(1−ΘBR+i)‖H0 and let δi := sup
k
Aki . Then either δi → 0 giving (2.41)

or δi 9 0 yielding (2.42).
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for all j .

Let (2.41) take place. The sequence ∇u(k)
0 is bounded in L2(Rn) , cf. (2.39).

From (2.41) and

‖f‖L2(Rn) = ‖f‖H0 , for all f ∈ L2(Rn) ⊂ H0, (2.43)

it follows that

u
(k)
0 → u(x) in L2(Rn), (2.44)

up to a subsequence. The reasoning leading to this assertion is essentially identi-

cal to the one in (2.4)–(2.7) and is not reproduced here. Since u(k) = u
(k)
0 + v(k)

converges weakly in H0 to zero, from (2.44) we conclude that

v(k)(x, y) ⇀ −u(x) weakly in H0.

Hence, on one hand, we have

(
u, v(k)

)
H0
→ − (u, u)H0

= −
∫

Rn

u2 dx

as k →∞ . On the other hand,

(
u, v(k)

)
H0

=

∫

Rn

∫

Q0

u v(k) dy dx =

=

∫

Rn

∫

Q0

u v(k)ΘQ0(y) dy dx =
(
uΘQ0(y), v(k)

)
H0
→

→ − (uΘQ0(y), u)H0
= − |Q0|

∫

Rn

u2 dx.

Comparing the last two formulas, we conclude that u ≡ 0 , i.e.

u
(k)
0 → 0 in L2(Rn). (2.45)

Moreover

v(k)(x, y) ⇀ 0 weakly in H0. (2.46)

Let us consider an arbitrary sequence g(k) = g
(k)
0 + h(k) from H0 converging

to zero. It is simple to prove, but probably not entirely obvious that both g
(k)
0
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and h(k) converge to zero. We can write the terms as g(k) = g
(k)
0 ΘQ1(y) +(

g
(k)
0 ΘQ0(y) + h(k)

)
. We obtain

‖g(k)‖2
H0

= |Q1|
∫

Rn

(
g

(k)
0

)2

dx+

∫

Rn

∫

Q0

(
g

(k)
0 ΘQ0(y) + h(k)

)2

dydx→ 0.

Then it follows that g
(k)
0 converges to zero (in L2(Rn) and H0 ), and, hence,

h(k) converges to zero (in H0 ).

Now we denote A0u
(k) by g(k)(x, y) = g

(k)
0 (x) + h(k)(x, y) ∈ H0 . From (2.38)

we get the following convergence:

‖g(k)
0 − λu(k)

0 ‖L2(Rn) → 0,

‖h(k) − λv(k)‖H0 → 0. (2.47)

Then (2.45) implies that

g
(k)
0 → 0 in L2(Rn). (2.48)

One might expect now that v(k) has to be a Weyl sequence for the operator

A0 (and also for the operator Â0 , as v(k) extended by zero into Ω2 belongs to

its domain). However it is not true. Functions v(k) satisfy the following equation

A0v
(k) = g

(k)
0 ΘΩ1(x)ΘQ0(y) + h(k) − |Q1|−1ΘQ1(y)

〈
g

(k)
0 ΘΩ1(x)ΘQ0(y) + h(k)

〉
y
.

Substituting the expression on the right hand side into ‖A0v
(k) − λv(k)‖H0 one

finds that this entity does not converge to zero. Nevertheless, v(k) turns out to

be a Weyl sequence for an operator Ây , see below, whose spectrum is contained

in the essential spectrum of Â0 ,

σ(Ây) ⊂ σess(Â0), (2.49)

see [49]. We define a self-adjoint operator Ây (cf. [48]) acting in L2(Ω1 × Q0)

by

Âyv = −a0∆yv = p, p ∈ L2(Rn ×Q0).

The domain of the operator, D(Ây) ⊂ L2(Rn, H1
0 (Q0)) , is the set of all the

solution of this equation. It is not difficult to see (by analysing (1.16)) that

Âyv
(k) = g

(k)
0 ΘΩ1(x)ΘQ0(y) + h(k), (2.50)

66



i.e. v(k) ∈ D(Ây) . Combining (2.47), (2.48) and (2.50) we arrive at

‖(Ây − λ)v(k)‖L2(Rn×Q0) = ‖g(k)
0 ΘQ0(y) + h(k) − λv(k)‖L2(Rn×Q0) → 0.

From (2.45) and (2.46) we conclude that other properties of Weyl sequence are

fulfilled, and hence λ ∈ Ây . Hence λ ∈ σess(Â0) , see (2.49).

Now let (2.42) hold. Consider a sequence w(j) = u(k(j))(1 − ηi(j),R) ∈ D(Â0)

(we remind that R is large enough to ensure Ω2 b BR ). Then

‖w(j)‖ bH0
≥ ‖u(k(j))(1−ΘBR+i(j)

)‖H0 ≥M,

i.e. (2.36) is satisfied for w(j) . Since the sequence 1−ηi(j),R tends to 0 pointwise,

(2.37) is valid. Analogously to (2.40) we derive

‖(Â0 − λ)w(j)‖ bH0
= ‖(A0 − λ)w(j)‖H0 → 0,

yielding (2.38). Thus, we conclude that λ ∈ σess(Â0) , completing the proof of

the theorem.

Remark 2.3.2. Theorem 2.3.1 combined with [48] implies that σess(A0) = {λ :

β(λ) ≥ 0} ∪ σ(Ay) . Using the methods of [48] it is not hard to show further

that σess(A0) contains no point spectrum (in particular, no embedded eigenval-

ues) except if λ is an eigenvalue of Ay corresponding to an eigenfunction with

zero mean. It is natural to conjecture (cf. [48]) that, outside these eigenvalues,

the spectrum is absolutely continuous and the “eigenfunctions of the continuous

spectrum” are u(x, y, λ) = u0(x, λ)(1 +λb(y, λ)) , where u0(x, λ) are solutions of

the appropriate scattering problems:

∇ · Ahom∇u0 + β(λ)u0 = 0, x ∈ Rn\Ω2,

a2∆u0 + λu0 = 0, x ∈ Ω2

(2.51)

with the appropriate matching condition at ∂Ω2 and radiation condition at infin-

ity. A detailed study of this as well as of the convergence of the related generalised

eigenfunctions (cf. [48] for the defect-free case) is beyond the scope of the present

study.

Summarising the main results of the chapter we conclude that Theorems 2.2.1

and 2.3.1 together with the results of [23, 29] (see the discussions at the end of
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Section 2.2 and in the beginning of the present section) establish the validity of

Theorem 1.1.1.
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Part II

Spectral asymptotics in networks

of thin domains
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Chapter 3

Asymptotics of eigenfunctions

and eigenvalues

This chapter is devoted to the construction of the asymptotics of the eigenvalue

problem for the Laplacian in a thin curved domain Ωh with Neumann boundary

condition on one slanted end and Dirichlet condition elsewhere. We first state

the problem and make a change of variables so as to pass to a problem in a fixed

rectangle for a differential operator formally given by an asymptotic series. We

then formally construct the asymptotics of the eigenvalues and eigenfunctions

in Section 3.2 (outer problem), where the main order terms are functions of

separated variables - transversal and longitudinal. In order to obtain proper

boundary conditions for the functions of longitudinal variable we use the method

of matched asymptotic expansions. Namely, we match the asymptotics of the

outer problem with the asymptotics of the solution to the inner problem, which

reveals the behaviour of the eigenfunctions of the problem in Ωh in a small

neighbourhood of the slanted end. The solution to the inner problem is described

by means of scattering theory. In the last section of this chapter we provide the

justification of the derived asymptotics and obtain relevant error bounds.

3.1 Problem formulation

We consider an eigenvalue problem for the Laplacian in a thin curved strip

Ωh with a slanted edge described as follows. Let Γ be a smooth curve in

R2 with a natural parametrisation r(s) = (r1(s), r2(s))T , s ∈ [0, 1] . The

length of tangential vector r′(s) is one. The unit normal vector is given by

n(s) = (−r′2(s), r′1(s))T . We assume that r(0) = 0 and the curvature is zero in
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Figure 3-1: Thin curved strip

some neighbourhood of zero, say s ∈ [0, s0], s0 < 1 , for definiteness, and that

r1(s) = s , r2(s) = 0 , s ∈ [0, s0] , i.e. Γ coincides with the positive part of x1

axis in this neighbourhood. Let n be a normal coordinate along n(s) . Then,

for small enough h > 0 we define a thin curved strip Ωh by

Ωh :=

{(
x1

x2

)
=

(
r1(s)− nr′2(s)

r2(s) + nr′1(s)

)∣∣∣∣∣ s ∈ (0, 1), n ∈ (0, h), n < tan(α) s

}
,

(3.1)

where 0 < h � 1 is a small parameter and 0 < α ≤ π/2 is some fixed angle

describing the slant of the left edge, see Figure 1-1. We denote by γ1 the part of

the boundary of Ωh that is described by the equation n = tan(α)s . Respectively

γ2 = ∂Ωh\γ1 .

We study the following spectral problem:

−∆uh = λhuh, x ∈ Ωh,

∂u

∂ν
= 0, x ∈ γ1,

u = 0, x ∈ γ2,

(3.2)

where ν is an exterior unit normal to the boundary of Ωh . Denote the corre-

sponding self-adjoint operator by Ah . We are interested in finding an asymptotic

solution to the problem. The small parameter h describes the thickness of the

domain Ωh , i.e. the shape of the domain changes with h . We next aim at

changing the variables so that the transformed spectral problem is in a fixed

domain.
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Let us rewrite the Laplacian in coordinates (s, n) . First we write the partial

derivatives with respect to s and n :

∂

∂s
= (r′1 − nr′′2)

∂

∂x1

+ (r′2 + nr′′1)
∂

∂x2

,

∂

∂n
= −r′2

∂

∂x1

+ r′1
∂

∂x2

.

(3.3)

Since the curve’s parametrisation is natural, the vector r′′ is normal to the curve

(and hence parallel to n ). In this case the curvature is usually defined as the

length of r′′ . However in order to operate with the notation more conveniently

we define the curvature with sign:

κ = n · r′′. (3.4)

We assume that κ ∈ C2[0, 1] . Obviously, κn = r′′ . This implies that r′′1 = −κr′2
and r′′2 = κr′1 . Substituting the latter into (3.3) we arrive at




∂

∂s

∂

∂n


 =

(
Ar′1

−r′2
Ar′2

r′1

)



∂

∂x1

∂

∂x2


 ,

where A = 1− κn . We inverse matrix on the right to obtain




∂

∂x1

∂

∂x2


 =

1

A

(
r′1

r′2

−Ar′2
Ar′1

)



∂

∂s

∂

∂n


 .

Therefore

∂2

∂x2
1

= A−1r′1

(
r′′1
A

+
κ′nr′1
A2

)
∂

∂s
+

(r′1)2

A2

∂2

∂s2
−

−r
′
1r
′′
2

A

∂

∂n
− κr′1r

′
2

A2

∂

∂s
− 2

r′1r
′
2

A

∂2

∂s∂n
+ (r′2)2 ∂

2

∂n2
,
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and

∂2

∂x2
2

= A−1r′2

(
r′′2
A

+
κ′nr′2
A2

)
∂

∂s
+

(r′2)2

A2

∂2

∂s2
+

+
r′′1r
′
2

A

∂

∂n
+
κr′1r

′
2

A2

∂

∂s
+ 2

r′1r
′
2

A

∂2

∂s∂n
+ (r′2)2 ∂

2

∂n2
.

From the relations r′ · r′′ = 0 , (r′)2 = 1 and (3.4) we derive

∆ =
κ′n
A3

∂

∂s
+

1

A2

∂2

∂s2
− κ

A

∂

∂n
+

∂2

∂n2
.

We can rewrite this in a more convenient form

∆ = (1− κn)−1 ∂

∂s
(1− κn)−1 ∂

∂s
+ (1− κn)−1 ∂

∂n
(1− κn)

∂

∂n
. (3.5)

We will seek an asymptotic solution of (3.2). To obtain an asymptotic approx-

imation of the eigenvalue problem with respect to the small parameter h we

introduce the following rescaling:

η =
n

h
,

and consider an eigenvalue problem in the rectangular domain of variables (s, η) ,

D = (0, 1)× (0, 1).

We use the Taylor’s expansion (1−hκη)−1 = 1+hκη+(hκη)2 + . . . and ∂/∂n =

h−1∂/∂η to write a formal asymptotic expansion of the Laplacian:

−∆ = −h−2 ∂
2

∂η2
+ h−1κ

∂

∂η
+

(
κ2η

∂

∂η
− ∂2

∂s2

)
+

+h

(
κ3η2 ∂

∂η
− 2κη

∂2

∂s2
− κ′η ∂

∂s

)
+O(h2) = −∆h +O(h2).

(3.6)

3.2 Outer problem: asymptotic expansions

In this section we seek a formal asymptotic solution to the eigenvalue problem

for the operator −∆h in a rectangular domain D :

−∆huh = λhuh, (s, η) ∈ D, (3.7)
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satisfying Dirichlet boundary condition uh = 0 on the part of ∂D corresponding

to η = 0 , η = 1 and s = 1 . We do not specify any particular boundary condition

at s = 0 at the moment. The problem of finding a correct boundary condition

at this part of the boundary is one of the main goals of the present chapter and

requires a considerable special attention.

Due to the structure of −∆h it is natural to seek the asymptotic solution to

the spectral problem in the form of a standard regular asymptotic expansion:

uh ≈ u0(s, η) + hu1(s, η) + h2 u2(s, η) + h3 u3(s, η) + . . . (3.8)

λ = λh ≈ h−2λ−2 + h−1λ−1 + λ0 + hλ1 + . . . (3.9)

We substitute (3.8), (3.9) into (3.7) and collect terms at the equal powers of h ,

obtaining a recurrent sequence of differential equations, as follows.

h−2 :

− ∂2

∂η2
u0 = λ−2u0. (3.10)

The variable s in this equation plays the role of a parameter. This, together

with the boundary conditions, implies

u0 = ϕ0(η)v0(s),

ϕ0 = sin(πη),

λ−2 = π2.

(3.11)

Here v0 is some function which will be defined at later stages. Notice that we

restrict our attention to the eigenvalues λh corresponding to the first transversal

mode π2 , the eigenvalues λh ‘produced’ by the transversal modes n2π2, n =

2, 3, . . . are beyond the scope of the present work.

h−1 :

− ∂2u1

∂η2
− λ−2u1 = −κ ∂

∂η
u0 + λ−1u0 = (−ϕ′0κ+ λ−1ϕ0) v0. (3.12)

As above, s is a parameter. This problem is solvable if and only if the right hand
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side is orthogonal to the eigenfunction ϕ0 . So we obtain

1∫

0

(−ϕ′0κ+ λ−1ϕ0) v0 ϕ0 dη = −κv0

2

1∫

0

d

dη
sin2(πη)dη+

+λ−1v0

1∫

0

sin2(πη) dη = λ−1v0

1∫

0

sin2(πη) dη = 0,

from which, assuming v0 6≡ 0 , it follows that

λ−1 = 0.

A general solution to (3.12) can be presented as a sum of the general solution

of the homogeneous equation and some solution of the inhomogeneous equation.

So,

u1 = ϕ1(η)v1(s) + ϕ0(η)w0(s),

v1 = κv0,

ϕ1 =
1

2
ηϕ0,

where w0 is some function which will be defined at a later stage. We will obtain

an equation for v0 at the next step from the solvability condition.

h0 :

−∂
2u2

∂η2
− λ−2u2 = −κ ∂

∂η
u1 −

(
κ2η

∂

∂η
− ∂2

∂s2

)
u0 + λ0u0 =

= −ϕ′1κ2v0 − ϕ′0κw0 − ηϕ′0κ2v0 + ϕ0v
′′
0 + λ0ϕ0v0.

(3.13)

As earlier, the solvability condition for this equation consists in the orthogonality

of the right hand side to ϕ0 for any s ,

1∫

0

(−ϕ′1κ2v0 − ϕ′0κw0 − ηϕ′0κ2v0 + ϕ0v
′′
0 + λ0ϕ0v0

)
ϕ0dη = 0. (3.14)
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One can easily check that

1∫

0

ϕ′0ϕ0dη = 0,

1∫

0

ηϕ′0ϕ0dη = −1

2

1∫

0

ϕ2
0dη

1∫

0

ϕ′1ϕ0dη =
1

4

1∫

0

ϕ2
0dη.

(3.15)

Hence from (3.14) and (3.15) we obtain the equation for v0 :

− v′′0 −
1

4
κ2v0 = λ0v0, s ∈ (0, 1). (3.16)

From the setting of the original problem it follows naturally that the Dirichlet

boundary condition has to be prescribed at the right end of the interval,

v0(1) = 0,

but the condition at the left end is still to be determined. Substituting equation

(3.16) back into (3.13) we transform it into

− ∂2u2

∂η2
− λ−2u2 =

(
−3

4
ϕ0 − 3

2
ηϕ′0

)
κ2v0 − ϕ′0κw0. (3.17)

A solution to this equation is given by the formula

u2 = ϕ2v2 + ϕ1w1 + ϕ0z0,

v2 = κ2v0,

ϕ2 =
3

8
η2ϕ0,

w1 = κw0,

(3.18)

where z0(s) is an arbitrary function. For the purposes of the present chapter we

choose it to be identically zero,

z0 ≡ 0, s ∈ [0, 1].
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In the next step we obtain an equation for w0 .

h1 :

−∂
2u3

∂η2
− λ−2u3 = −κ∂u2

∂η
− κ2η

∂u1

∂η
+
∂2u1

∂s2
−

−κ3η2∂u0

∂η
+ 2κη

∂2u0

∂s2
+ κ′η

∂u0

∂s
+ λ0u1 + λ1u0.

(3.19)

As usual, the right hand side must be orthogonal to ϕ0 . So we multiply the right

hand side by ϕ0 , integrate over the interval [0, 1] with respect to η and work

out all the terms separately. (Note that
1∫
0

ηϕ2
0dη = 1

2

1∫
0

ϕ2
0dη and

1∫
0

η2ϕ′0ϕ0dη =

−1
2

1∫
0

ϕ2
0dη .) As a result,

−
1∫

0

κ
∂u2

∂η
ϕ0dη = −

(
3

16
κ3v0 +

1

4
κ2w0

) 1∫

0

ϕ2
0dη,

−
1∫

0

κ2η
∂u1

∂η
ϕ0dη =

1

2
κ2w0

1∫

0

ϕ2
0dη,

1∫

0

∂2u1

∂s2
ϕ0dη =

(
1

4
(κ′′v0 + 2κ′v′0 + κv′′0) + w′′0

) 1∫

0

ϕ2
0dη,

−
1∫

0

κ3n2∂u0

∂η
ϕ0dη =

1

2
κ3v0

1∫

0

ϕ2
0dη,

1∫

0

2κn
∂2u0

∂s2
ϕ0dη = κv′′0

1∫

0

ϕ2
0dη,

1∫

0

κ′n
∂u0

∂s
ϕ0dη =

1

2
κ′v′0

1∫

0

ϕ2
0dη,

1∫

0

λ0u1ϕ0dη =

(
1

4
λ0κv0 + λ0w0

) 1∫

0

ϕ2
0dη,

1∫

0

λ1u0ϕ0dη = λ1v0

1∫

0

ϕ2
0dη.
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We take the sum of the expressions on the right hand side of the above, equate it

to zero and use equation (3.16) to eliminate the second derivatives of v0 . Thus

the solvability condition gives us the following equation for w0 :

− w′′0 −
1

4
κ2w0 − λ0w0 = λ1v0 − λ0κv0 +

1

4
κ′′v0 + κ′v′0, s ∈ (0, 1). (3.20)

The solution to (3.19) (if it exists) is not unique. We fix a particular one by

imposing the orthogonality condition:

1∫

0

u3(s, η)ϕ0(η)dη ≡ 0. (3.21)

So, in summary, the formal asymptotic approximation to the solution of (3.2)

is given by

u
(3)
h =

3∑
i=0

hiui(s, η),

λ
(3)
h = h−2λ−2 + λ0 + hλ1.

(3.22)

The eigenelements λ0 and v0 (as well as λ1 and w0 ) are not yet defined,

since the boundary condition at the left end of the interval (0, 1) is unclear. In

order to obtain proper boundary conditions on v0 and w0 we need to match the

asymptotics (3.22) with the asymptotics of a solution of the inner problem, i.e.

a solution near the origin which satisfy Neumann boundary condition on γ1 .

3.3 Inner problem and scattering matrix

In order to obtain proper boundary conditions for functions v0 we need to con-

sider the behaviour of the solution of (3.2) in the neighbourhood of the origin.

We will use the method of matched asymptotic expansions, adjusting expansion

(3.22) to the asymptotic expansion of the solution to problem (3.2) near the ori-

gin. From now on we assume that λ0 6= 0 . By the assumptions of this chapter

the domain Ωh in the neighbourhood of the origin coincides with a straight strip

of the width h slanted at the origin. Then we can introduce a stretched variable

y = h−1x (hence ∆x = h−2∆y ) and consider an ‘inner’ eigenvalue problem in a

semi-infinite cylinder (see Figure 3-2)

Πα := {y | y1 > 0, y2 ∈ (0, 1), y2 < tan(α) y1}, (3.23)

78



α

1

y
2

y
1

Γα

1

Γα

2

Γα

2

Πα

Figure 3-2: Semi-infinite cylinder

−∆yg(y) = k2
h g(y), y ∈ Πα,

∂g

∂ν
= 0, y ∈ Γ1

α,

g = 0, y ∈ Γ2
α,

(3.24)

( ν is the exterior normal in the y -coordinates) with

k2
h = (π2 + h2λ0 + h3λ1), (3.25)

via (3.9) and (3.11). Here Γ1
α is the slanted part of the boundary of Πα (i.e.

corresponding to y2 = tan(α) y1 ) and Γ2
α = ∂Πα\Γ1

α . Denote µh =
√
λ0 + hλ1 .

A solution to problem (3.24) depends obviously on the angle α . We therefore

use index α in our notation wherever necessary.

In this section we will make some use of the reasoning and results of [66].

In general, equation (3.24) does not have a nontrivial solution from L2(Πα) .

Nevertheless, there always exists a solution that is given us a sum of the Floquet

waves and of some function decaying exponentially at infinity. Its structure

depends on the values of α and kh . The term ‘Floquet waves’ is used here

for the solutions of the eigenvalue problem akin to (3.24) where the domain Πα

is replaced by the infinite strip 0 < y2 < 1 . These solutions are given by the

following formula

ψ±(y) = exp(±ihµhy1) sin(πy2) if µh 6= 0. (3.26)

Formally setting h = 0 we have k0 = π2 . We call this threshold case. The

Floquet waves then are the following

ψ0(y) = sin(πy2), ψ1(y) = y1 sin(πy2). (3.27)
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When λ0 is positive (super-threshold case) the Floquet waves are oscillating

waves of constant amplitude. They have clear physical meaning. Namely

g+ := exp(−ihµh y1) sin(πy2), (3.28)

is called the incoming wave (as travelling from plus infinity), and

g− := exp(ihµh y1) sin(πy2), (3.29)

is called the outgoing wave (as travelling to plus infinity). When λ0 is negative

(sub-threshold case) the Floquet waves are exponentially growing and exponen-

tially decaying functions. In this case there is no similar intuitive classification.

Nevertheless, for some technical reasons (see [66] for some explanations), it is

convenient to call the following combinations of Floquet waves the incoming and

the outgoing waves respectively:

g+ :=
1√
2

[exp(ihµhy1)− i exp(−ihµhy1)] sin(πy2),

g− :=
1√
2

[exp(ihµhy1) + i exp(−ihµhy1)] sin(πy2).
(3.30)

(Notice that the normalising coefficient 1√
2

is introduced to make the amplitude

of the waves the same as in (3.28), (3.29).)

Problem (3.24) is solvable in weighted spaces, see e.g. [66], and the solution

could be written as a linear combination of incoming and outgoing waves g+ and

g− and some exponentially decaying function z ,

g = g+ + Sg− + z. (3.31)

The function z decays exponentially in the following sense. Let H2
β(Πα) be a

completion in the norm ‖eβy1u‖H2(Πα) of the set of functions in C∞(Πα) with

compact supports vanishing in the neighbourhood of Γ2
α . Then we require z ∈

H2
β(Πα) for some positive β . Finally, S is a unitary scattering matrix (in the

present case it is simply a complex number depending on h and µh , |S| =

1 ), whose asymptotic behaviour as h → 0 determines in fact the boundary

conditions for equations (3.16), (3.20). One can write the asymptotics of S

in terms of the scattering matrix
◦
s relevant to Floquet waves (3.27) on the

threshold, as follows.
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Solutions sin(πy2) and y1 sin(πy2) correspond to the spectral parameter k2
0 =

λ−2 = π2 , i.e. by formally setting h = 0 in (3.25). The incoming and outgoing

waves in this case will be defined as

◦
g

+
:=

1√
2

(1− iy1) sin(πy2),

◦
g
−

:=
1√
2

(1 + iy1) sin(πy2).

(3.32)

We assume that there does not exist a solution of (3.24) with k2
0 = π2 belonging

to L2(Πα) . Then the solution to the problem in a weighted space can be presented

in the form
◦
g =

◦
g

+
+
◦
s
◦
g
−

+ z, (3.33)

where
◦
s , |◦s| = 1 , is a scattering matrix and z ∈ H2

β(Πα) for some β > 0 (this

z is obviously different from the one in (3.31)).

The asymptotics of S can then be written in terms of
◦
s as follows. For

◦
s 6= 1

one can obtain an explicit formula for the second term of the asymptotics of S ,

see [66]. Namely, when λ0 is negative

S = i− h2µh
1 +

◦
s

1− ◦s
+O(h2) = i− h2

√
λ0

1 +
◦
s

1− ◦s
+O(h2); (3.34)

and when λ0 is positive

S = −1 + h2µh
1 +

◦
s

1− ◦s
+O(h2) = −1 + h2

√
λ0

1 +
◦
s

1− ◦s
+O(h2). (3.35)

(In our notation
√
λ0 = i

√
|λ0| for λ0 < 0 .)

It is obvious, that in the case
◦
s = 1 (the critical case) formulas (3.34), (3.35)

are unsuitable. We will derive an asymptotics of the scattering matrix

S =
∞∑
m=0

hmSm (3.36)

when
◦
s = 1 also following the general reasoning from [66]. (Notice in passing

that the following derivation is easily adopted to the simpler non-critical cases

yielding (3.34) and (3.35).) The special solution of (3.24) is given by (3.31),
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(3.30). We seek the asymptotics of the solution in the form

g ≈ g+ +
∞∑
m=0

hmSmg
− for y1 > | log h|, (3.37)

g ≈
∞∑
m=0

hmVm(y) for y1 < 2| log h|. (3.38)

Matching these two expansions in the intermediate region | log h| < y1 < 2| log h|
we can find (3.36).

Substituting (3.38) into (3.24) we obtain the following sequence of boundary

value problems

−(∆ + k2
0)Vm = 0, y ∈ Πα, m = 0, 1,

−(∆ + k2
0)Vm = µ2

hVm−2, y ∈ Πα, m = 2, 3, . . . ,

∂Vm
∂ν

= 0, y ∈ Γ1
α,

Vm = 0, y ∈ Γ2
α, m = 0, 1, . . . .

(3.39)

For m = 0, 1 the solution is given by

Vm = Am
◦
g,

where
◦
g is from (3.33). Then for m = 2 we obtain

−(∆ + k2
0)V2 = A0µ

2
h(
◦
g

+
+
◦
g
−

+ z)

(recall that
◦
s = 1 ). A solution to this problem exists and has the form

V2 = −1

2
A0µ

2
hy

2
1(
◦
g

+
+
◦
g
−

) + Ṽ2. (3.40)

The function Ṽ2 solves the following boundary value problem

−(∆ + k2
0)Ṽ2 = z,

∂Ṽ2

∂ν
=

∂

∂ν
(
1

2
A0µ

2
hy

2
1(
◦
g

+
+
◦
g
−

)), y ∈ Γ1
α,

Ṽ2 = 0, y ∈ Γ2
α.
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Ṽ2 is given by

Ṽ2 = A2
◦
g +B

◦
g
−

+ z̃ (3.41)

where A2 and B are some constants and z̃ ∈ H2
β , see [66].

Let us derive a formula for the coefficient B . We need this because, as we

will see later, B enters in the formula for the first order (O(h) ) term in the

asymptotics of S . In order to obtain the formula we apply integration by parts

to the following integral (bar over a symbol denotes its complex conjugate).

0 =

∫

Πα,R

(∆ + k2
0)
◦
g V 2dy =

∫

Πα,R

◦
g (∆ + k2

0)V 2dy+

+

∫

∂Πα,R

∂

∂ν

◦
g V 2dS −

∫

∂Πα,R

◦
g
∂

∂ν
V 2dS =

= −A0µ
2
h

∫

Πα,R

|◦g|2dy +

∫

∂Πα,R

∂

∂ν

◦
g V 2dS −

∫

∂Πα,R

◦
g
∂

∂ν
V 2dS,

(3.42)

where Πα,R denotes the part of Πα satisfying condition y1 < R . It becomes

clear from the last formula why we integrate over the bounded domain: the reason

is that function
◦
g does not belong to L2(Πα) . Due to the boundary conditions

and asymptotic behaviour of
◦
g and V2 the second term on the right hand side

of the latter converges to zero as R → ∞ . As for the last term, we derive via

(3.32), (3.33), (3.40) and (3.41) the following

∫

∂Πα,R

◦
g
∂

∂ν
V 2dS =

∫

y1=R

◦
g
∂

∂y1

V 2dy2 =

= −
∫

y1=R

sin(πy2)(2A0µ
2
hy1 sin(πy2) + iB sin(πy2))dy2 + o(1) =

= −A0µ
2
hR−

i

2
B + o(1).

(3.43)

From (3.42) and (3.43) we obtain

B = −i2A0µ
2
h lim
R→∞



∫

Πα,R

|◦g|2dy −R


 . (3.44)
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Notice that the limit in the latter formula indeed exists. This is easy to see from

the following observation:

R = R

∫

y1=R

|◦g+
+
◦
g
−|2dy2 =

∫

Πα,R

|◦g+
+
◦
g
−|2dy + const.

Let us denote

σ = lim
R→∞



∫

Πα,R

|◦g|2dy −R


 . (3.45)

Then

B = −i2A0µ
2
hσ.

Let us write the asymptotics for the Floquet waves as h→ 0 and y1 ∼ | log h| :

exp(±ihµhy1) = 1± ihµhy1 − 1

2
h2µ2

hy
2
1 +O(h3| log h|3).

Notice that
1

2
(
◦
g

+
+
◦
g
−

) =
1√
2

sin(πy2),

1

2
(
◦
g
− − ◦g+

) = i
1√
2
y1 sin(πy2).

First we consider case of negative λ0 . Then we can write asymptotics (3.37) as

follows,

g = σ−(
◦
g

+
+
◦
g
−

) + S0σ+(
◦
g

+
+
◦
g
−

) + h[σ+µh(
◦
g
− − ◦g+

)+

+S0σ−µh(
◦
g
− − ◦g+

) + S1σ+(
◦
g

+
+
◦
g
−

)] + h2[−1

2
σ−µ2

hy
2
1(
◦
g

+
+
◦
g
−

)−

−1

2
S0σ+µ

2
hy

2
1(
◦
g

+
+
◦
g
−

) + S1σ−µh(
◦
g
− − ◦g+

) + S2σ+(
◦
g

+
+
◦
g
−

)]+

+O(h3| log h|3),

(3.46)

where we denote

σ± =
1± i

2
.

Now we derive the first two terms of asymptotics (3.36). Matching expansions

(3.37) and (3.38) in the intermediate region | log h| < y1 < 2| log h| we first equate
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main terms of V0 and term of order one in (3.46). From this we obtain

A0 = σ+(−i+ S0).

Equating the terms of order h and collecting the coefficients at
◦
g

+
and

◦
g
−

we

respectively have two equations

A1 = σ+(−µh + iµhS0 + S1)

and

A1 = σ+(µh − iµhS0 + S1).

Hence it follows that
A1 = S1,

S0 = −i,
A0 = 2σ−.

Equating terms of order h2 we obtain

A2 = σ+(iµhS1 + S2)

A2 +B = σ+(−iµhS1 + S2).

Then we arrive at

S1 =
σ+

µh
B = −i2µhσ.

Notice that since µh is purely imaginary the first order corrector S1 is real. So,

the asymptotics of S in case when
◦
s = 1 and λ0 is negative is given by

S = −i− hi2µhσ +O(h2) = −i− hi2
√
λ0σ +O(h2). (3.47)

Analogously we obtain the asymptotics for the case of positive λ0 . Now, the

asymptotics of g is given by

g =
1√
2

(1 + S0)(
◦
g

+
+
◦
g
−

) + h[− 1√
2
µh(

◦
g
− − ◦g+

) +
1√
2
S0µh(

◦
g
− − ◦g+

)+

+
1√
2
S1(

◦
g

+
+
◦
g
−

)] + h2[− 1

2
√

2
(1 + S0)µ2

hy
2
1(
◦
g

+
+
◦
g
−

)+

+
1√
2
S1µh(

◦
g
− − ◦g+

) +
1√
2
S2(

◦
g

+
+
◦
g
−

)] +O(h3| log h|3).

(3.48)
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Equating terms of the same order in (3.38) and (3.48) we derive sequentially

A0 =
1√
2

(1 + S0),

A1 =
1√
2

(µh − S0µh + S1) =
1√
2

(−µh + S0µh + S1),

hence

S0 = 1,

A2 =
1√
2

(−µhS1 + S2),

A2 +B =
1√
2

(µhS1 + S2),

hence

S1 = −i2µhσ.

In this case µh is real and S1 is purely imaginary. Finally we have

S = 1− hi2µhσ +O(h2) = 1− hi2
√
λ0σ +O(h2). (3.49)

Remark 3.3.1. The scattering matrix S depends on the choice of a coordinate

system, i.e. on the position of the domain Πα in a coordinate system. In par-

ticular, the formulas for S in this section are valid only for Πα positioned as

described in (3.23).

3.4 Matching of asymptotics and limit bound-

ary conditions

In this section we will derive proper boundary condition for the function v0 at

the left end of the interval [0, 1] . In order to do this we need to match the outer

asymptotic solution (3.22) to problem (3.7) and asymptotics of the solution to

inner problem (3.24) given by (3.31), (3.36). The matching will be made in some

intermediate region lying near s = 0 . Accomplishing this we will eliminate the

uncertainty about the approximate solution u
(3)
h in (3.22).

Note that due to the straight shape of Ωh when s < s0 the coordinates

are related by the formula (s, η) = (hy1, y2) . In this section we mostly use the

coordinates (s, η) , so we must rewrite formulas from the previous section, in
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particular the Floquet waves (3.26) read

ψ± = exp(±iµhs) sin(πη) = exp(±iµhs)ϕ0(η).

We carry out the matching of the asymptotic expansions in the region s ∈
(h1/3, 2h1/3) . For such s the curvature κ is identically zero. Then it is easy

to see that equation (3.19) locally becomes homogeneous, and due to condition

(3.21) we have u3 = 0 . Also obviously we have u1 = ϕ0w0 and u2 = 0 . Thus

the approximate solution to (3.2) for s < s0 simplifies to

u
(3)
h = ϕ0(η)(v0(s) + hw0(s)), (3.50)

where v0 and w0 locally satisfy differential equations

− v′′0 = λ0v0 (3.51)

and

−w′′0 − λ0w0 = λ1v0,

cf. (3.16) and (3.20). Then v0 is a linear combination of exponents,

v0 = C1 exp(i
√
λ0s) + C2 exp(−i

√
λ0s), (3.52)

and w0 , consequently, can be presented in the form

w0 = C1 exp(i
√
λ0s)

iλ1

2
√
λ0

s− C2 exp(−i
√
λ0s)

iλ1

2
√
λ0

s+

+C3 exp(i
√
λ0s) + C4 exp(−i

√
λ0s).

(3.53)

Let us write an asymptotics of the Floquet wave as h→ 0 . Notice that

µh =
√
λ0 + h

λ1

2
√
λ0

+O(h2).

Then
ψ± = exp(±iµhs) sin(πη) =

= exp(±i
√
λ0s) exp

(
±h iλ1

2
√
λ0

s+O(h2)

)
ϕ0(η) =

= exp(±i
√
λ0s)

(
1± h iλ1

2
√
λ0

s

)
ϕ0(η) +O(h2).

(3.54)
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Consider first the non-critical case and negative λ0 . Let us denote

σ = −i 1 +
◦
s

1− ◦s
. (3.55)

Notice that we use the same notation for the different objects, see (3.45) and

(3.55). We do this because these objects play a similar role in the formulas for

the asymptotics of the scattering matrix. Also there should not be any confusion

since formula (3.45) is only used for the critical case
◦
s = 1 and (3.55) is valid

for the non-critical case
◦
s 6= 1 . Notice further that straightforward calculation

shows that σ is real,

σ =
Im
◦
s

1− Re
◦
s
.

In view of (3.54), employing (3.34) we obtain the following asymptotics for the

solution of (3.24):

g =
1√
2

(
[exp(iµhs)− i exp(−iµhs)] +

+S [exp(iµhs) + i exp(−iµhs)]
)
ϕ0(η) + z =

=
1 + i√

2
exp(i

√
λ0s)ϕ0(η)− 1 + i√

2
exp(−i

√
λ0s)ϕ0(η)+

+
h√
2

(
(1 + i)

iλ1

2
√
λ0

s− i2
√
λ0 σ

)
exp(i

√
λ0s)ϕ0(η)+

+
h√
2

(
(1 + i)

iλ1

2
√
λ0

s+ 2
√
λ0 σ

)
exp(−i

√
λ0s)ϕ0(η)+

+O(h2) + z.

(3.56)

In formulas (3.54) and (3.56) notation O(h2) stands for the remainder that is an

infinitely smooth and uniformly bounded with respect to h function times h2 ,

i.e. this remainder together with all its derivatives is bounded by Ch2 in the L∞ -

norm. (Constant C is independent of h although may depend on the order of the

derivative). Another remainder is exponentially decaying: z = z(y) ∈ H1
β(Πα) .

Since z = z(h−1s, η) , it must be a rapidly decaying function even for relatively

small values of s . However it depends on h as a parameter, since z enters

formula (3.31) for the solution of eigenvalue problem (3.24) where the eigenvalue

depends on h . Fortunately, z(y) is bounded in H1
β(Πα) uniformly in h , see
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[67]. This means that the H1 -norm of z(h−1s, η) in the region s ∈ (h1/3, 2h1/3)

is exponentially small (∼ exp(−h−2/3β) ) uniformly with respect to h .

We match asymptotics of u
(3)
h and Mg , where M is arbitrary constant. This

gives us relations between coefficients in (3.52) and (3.53). Matching the main

terms of the asymptotics we derive from (3.53) and (3.56) that

C2 = −C1 = −1 + i√
2
M. (3.57)

It is obvious from (3.52) and (3.57) that v0(0) = 0 . Thus, v0 and λ0 is a

solution to eigenvalue problem (3.16) with Dirichlet boundary conditions

v0(0) = v0(1) = 0. (3.58)

We assume also that v0 is normalised,

1∫

0

|v0|2ds = 1. (3.59)

This condition fixes some precise value of the coefficients C1 and M . Matching

w0ϕ0 with the coefficient next to h in the asymptotics of Mg we determine the

coefficients in (3.53). We see that C3 and C4 must be the following

C3 = −i
√

2λ0 σM = −(1 + i)
√
λ0 σ C1,

C4 =
√

2λ0 σM = (1− i)
√
λ0 σ C1.

(3.60)

It follows from (3.53) and the latter that w0 must satisfy the following hetero-

geneous the Dirichlet condition at the point s = 0 :

w0(0) = C3 + C4 = −2 i
√
λ0 σ C1. (3.61)

In order that the function u1 = ϕ1v1 + ϕ0v0 comply with Dirichlet condition on

the right end of the strip Ωh we must set

w0(1) = 0. (3.62)

Now we are going to demonstrate that there is a unique choice of λ1 (which was

not defined yet) such that there exists a solution of (3.20) satisfying boundary

conditions (3.61), (3.62). Indeed, it is well known that the aforementioned prob-
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lem has a solution if and only if the right hand side of (3.20) satisfies the following

solvability condition:

1∫

0

(
λ1v0 − λ0κv0 +

1

4
κ′′v0 + κ′v′0

)
v0ds = −w0(0)v′0(0). (3.63)

From (3.52) and (3.57) we have v′0(0) = 2i
√
λ0C1 . Then from (3.61) we obtain

that

−w0v
′
0(0) = 4|λ0||C1|2σ = |v′0(0)|2σ,

since

|v′0(0)|2 = 4|λ0||C1|2.
Notice also that in the neighbourhood of zero where κ = 0 the eigenfunction

v0 has a form C1

[
exp(−

√
|λ0|s)− exp(

√
|λ0|s)

]
. It follow from the theory of

ordinary differential equations that v0 = C1f(s), s ∈ [0, 1] , where f(s) is a real

valued function. In this case v′0v0 = 1
2
(|v0|2)′ and one can apply integration by

parts as follows,
1∫

0

κ′v′0v0ds = −1

2

1∫

0

κ′′|v0|2ds.

Thus solvability condition (3.63) is fulfilled if λ1 is given by:

λ1 =




1∫

0

(
λ0κ+

1

4
κ′′
)
|v0|2ds+ |v′0(0)|2σ


 ‖v0‖−2, (3.64)

where ‖v0‖2 =
∫ 1

0
|v0|2ds .

Therefore, problem (3.20), (3.61), (3.62) has a solution (which actually is not

unique). We need to chose a solution that satisfies (3.53), (3.57) and (3.60) (so

that u
(3)
h would match with the inner solution Mg ). Let us show that this is

possible. We fix some arbitrary solution w̃0 of (3.20), (3.61), (3.62). In the

neighbourhood of zero it has a form

w̃0 = C1 exp(i
√
λ0s)

iλ1

2
√
λ0

s− C2 exp(−i
√
λ0s)

iλ1

2
√
λ0

s+

+C̃3 exp(i
√
λ0s) + C̃4 exp(−i

√
λ0s),

(3.65)

where the coefficients C1 and C2 are as in (3.57), but C̃3 and C̃4 may differ
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from C3 and C4 , cf. (3.51)–(3.53). From the boundary conditions for w̃0 we

have

w̃0(0) = C̃3 + C̃4 = −2i
√
λ0σC1. (3.66)

Notice that function w0 = w̃0 + mv0 , where m is arbitrary constant, is also a

solution of the concerned problem. In the neighbourhood of zero it can be written

as

w0 = w̃0 +mv0 = C1 exp(i
√
λ0s)

iλ1

2
√
λ0

s− C2 exp(−i
√
λ0s)

iλ1

2
√
λ0

s+

+(C̃3 +mC1) exp(i
√
λ0s) + (C̃4 +mC2) exp(−i

√
λ0s).

We can choose m such that C̃3 + mC1 = −(1 + i)
√
λ0σC1 . Then from (3.57),

(3.66) we obtain that C̃4 +mC2 = C̃4 −mC1 = (1− i)√λ0σC1 . Hence for such

choice of m the solution

w0 = w̃0 +mv0

behaves in neighbourhood of zero as described by (3.53), (3.57) and (3.60).

Resuming the above we conclude that such chosen solutions v0 and w0 match

with the asymptotics of inner solution Mg up to the term of order h2 and we

have the following relation in the region s ∈ (h1/3, 2h1/3) :

Mg − u(3)
h = h2f1 + z, (3.67)

where

|f1|,
∣∣∣∣
∂

∂s
f1

∣∣∣∣ ≤ CM,

‖z‖H1((h1/3,2h1/3)×(0,1)) ≤ CM(hm) for any m.

(3.68)

For positive λ0 in the non-critical case we have

g =
(

exp(−iµhs) + S exp(iµhs)
)
ϕ0(η) + z =

=

(
−1 + hi2

√
λ0σ − h iλ1

2
√
λ0

s

)
exp(i

√
λ0s)ϕ0(η)+

+

(
1− h iλ1

2
√
λ0

s

)
exp(−i

√
λ0s)ϕ0(η) +O(h2) + z.
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In this case we set in (3.52) and (3.53)

C2 = −C1 = M,

C3 = −2 i
√
λ0 σ C1,

C4 = 0.

(3.69)

We choose v0 being a solution of (3.16), (3.58) satisfying (3.59) and (3.52), (3.69).

Analogously to the above one can show that for λ1 given by (3.64) there exists

a solution of (3.20), (3.61), (3.62) satisfying (3.53), (3.69). It is easy to see then

that (3.67) holds true.

In the critical case
◦
s = 1 we similarly obtain the coefficients Ci, i = 1, 2, 3, 4 .

For the case of negative λ0 we have

C1 = C2 =
1− i√

2
M,

C3 = (1− i)
√
λ0σC1,

C4 = (1 + i)
√
λ0σC1,

(3.70)

and if λ0 is positive, then

C1 = C2 = M,

C3 = −2 i
√
λ0σC1,

C4 = 0.

(3.71)

These formulas imply that v0 must satisfy Neumann boundary condition at zero.

Thus v0 is a normalised solution of (3.16) subject to boundary conditions

v′0(0) = v0(1) = 0. (3.72)

In this case the solvability condition for the equation for w0 :

1∫

0

(
λ1v0 − λ0κv0 +

1

4
κ′′v0 + κ′v′0

)
v0ds = w′0(0)v0(0). (3.73)

involves the value of w′0 at zero. So we impose the following boundary conditions

w′0(0) = 2λ0σC1, w0(1) = 0,
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from which the first one is implied by (3.53) and (3.70) (or (3.71)). Then

w′0(0)v0(0) = 4λ0|C1|2σ = |v0(0)|2λ0σ. (3.74)

Consequently from (3.73) we obtain that

λ1 =




1∫

0

(
λ0κ+

1

4
κ′′
)
|v0|2ds+ |v0(0)|2λ0σ


 ‖v0‖−2. (3.75)

Then one can show that there exits a solution of (3.20), (3.74) which satisfies

(3.53) and (3.70) (or (3.71)) and we still have (3.67).

Thus w0 is fully defined as a solution of (3.20) with Dirichlet boundary con-

dition at the right end of the interval and satisfying condition (3.53) with an

appropriate coefficients near the left end. For such w0 the solvability condition

for equation (3.19) is fulfilled, hence there exists a solution u3 ∈ C∞(D) such

that u(s, 0) = u(s, 1) ≡ 0 and

1∫

0

u3(s, η)ϕ0(η)dη ≡ 0.

3.5 Error bounds and justification of the

asymptotics

In this section we justify the asymptotics obtained earlier. In order to do this

we first need to construct a function satisfying the boundary conditions in (3.2)

such that after the substitution into equation (3.2) we get asymptotically small

(of order h3/2 ) error on its right hand side. It is well known that the operator Ah

(as elliptic and defined in bounded domain) has a discrete spectrum with the only

accumulation point at infinity. Let λ1,h ≤ λ2,h ≤ . . . be all the eigenvalues of Ah

repeating accordingly to there multiplicity and ui,h, i ∈ N be the corresponding

orthonormalised eigenfunctions. Let us introduce a smooth cut-off function

χ(s) =

{
1, s ≤ 1,

0, s ≥ 2.
(3.76)

We formulate the main results of the present section in the following theorem.
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Theorem 3.5.1. Let λ
(3)
h be given by (3.22) and λ0 6= 0 . Then there exists

h0 > 0 and a constant C independent of h such that for any 0 < h ≤ h0 there

exist an eigenvalue λi,h of the operator Ah such that

|λi,h − λ(3)
h | ≤ Ch3/2. (3.77)

Moreover, a function

uapprh = χ(sh−1/3)Mg + (1− χ(sh−1/3))(u0 + hu1),

where g is a solution of scattering problem (3.24) and M is a constant such that

(3.67) is satisfied, approximates eigenfunctions of Ah in the following sense: for

any d > 0 and any 0 < h ≤ h0 there exist coefficients ci(h) such that

∥∥∥∥∥∥∥
uapprh −

∑

|λi,h−λ(3)
h |≤d

ci(h)ui,h

∥∥∥∥∥∥∥
L2(Ωh)

≤ Cd−1h2. (3.78)

Remark 3.5.2. The error estimate in (3.78) is somewhat deceptive. The fact is

that the norm of uapprh is not of order one. Indeed, roughly speaking the main

term of the asymptotics uapprh is v0(s) sin(h−1πn) , where
∫ 1

0
v2

0ds = 1 . It is

clear then that the norm of v0(s) sin(h−1πn) in uapprh is of order h1/2 . One can

consider normalised uapprh , for which the error estimate (3.78) holds with the

right hand side equal Cd−1h3/2 (which is of the same order as the estimate for

eigenvalues). But in this case the main term of uapprh is of order h−1/2 in L∞ -

norm. This seems to us to be improper in some way, so we prefer to normalise

v0 rather than uapprh .

Proof. We will first mention the regularity properties of the functions g and

u
(3)
h . Obviously ϕ0 = sin(πη) ∈ C∞([0, 1]) . From the general theory of or-

dinary differential equations we know that v0 and consequently w0 belong to

C∞([0, 1]) . Then obviously u0, u1, u2 ∈ C∞(D) as elementary combinations of

C∞ functions. The third term of the asymptotics u3 ∈ C∞(D) as a solution of

ordinary differential equation with respect to η (3.19), where s plays the role

of a parameter and the right hand side belongs to C∞(D) . Furthermore, in the

coordinates (s, η) the operator −∆ is presented in the form

−∆ = −∆h + h2Lh,
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where Lh is a second order differential operator with smooth bounded coeffi-

cients, cf. (3.5), (3.6). Due to equations (3.10), (3.12), (3.13), (3.19) the approx-

imation u
(3)
h solves the following equation

−∆u
(3)
h = λ

(3)
h u

(3)
h + h2f2 in D, (3.79)

where

f2(s, η) = Lhu
(3)
h +

(
κ3η2 ∂

∂η
− 2κη

∂2

∂s2
− κ′η ∂

∂s

)
u1+

+

(
κ2η

∂

∂η
− ∂2

∂s2

)
u2 + κ

∂

∂η
u3−

−h2λ0(u2 + hu3)− h2λ1(u1 + hu2 + h2u3).

It is smooth and hence

|f2| ≤ C (3.80)

uniformly in h .

In order to justify the asymptotics, the approximation to the actual solution

of (3.2) must satisfy boundary conditions imposed in (3.2). To this end we will

slightly modify the function u
(3)
h . Namely, since the functions ui, i = 0, 1, 2,

comply with the proper boundary conditions on γ2 , and u3 vanishes everywhere

on γ2 except the part corresponding to s = 1 , we need only to multiply u3 by

the appropriate cut-off function. Consider function

û
(3)
h =

2∑
i=0

hiui + h3u3χ((s− 1)h−β + 2),

Where β is some positive number. Obviously this function satisfies Dirichlet

boundary condition on the whole of γ2 . We can rewrite it as

û
(3)
h = u

(3)
h + h3u3

[
χ((s− 1)h−β + 2)− 1

]
.

Let us derive the equation for the latter. We will drop the argument of the

function χ((s− 1)h−β + 2) to shorten the notation hoping that this will not lead

to any confusion. From (3.79) we obtain

−∆û
(3)
h = −∆u

(3)
h − h3∆ [u3(χ− 1)] = λ

(3)
h û

(3)
h + h2f2 + h3f3 in D, (3.81)
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where

f3 = −∆ [u3(χ− 1)]− λ(3)
h u3(χ− 1).

Due to formula (3.6) we have

f3 = (−∆u3 − λ(3)
h u3)(χ− 1) + f̃3

∂

∂s
χ+ f̂3

∂2

∂s2
χ =

= (−∆u3 − λ(3)
h u3)(χ− 1) + h−β f̃3χ

′ + h−2β f̂3χ
′′.

The components of the latter formula are bounded as follows.

|f̃3|, |f̂3| ≤ C,

uniformly with respect to h . Since u3 ∈ C∞(D) and bounded together with

its derivatives uniformly in h, and ∆ in the coordinates (s, η) is an operator of

second order with smooth coefficients of order h−2 , we have

|∆u3| ≤ h−2C,

uniformly with respect to h . It is important that support of the functions

χ − 1, χ′ and χ′′ defined on the interval [0, 1] is small, namely, sup(χ − 1) =

sup(χ′) = sup(χ′′) = [1− hβ, 1] . Then we arrive at

|f3| ≤ (h−2 + h−2β)C,

sup(f3) = [1− hβ, 1].
(3.82)

In order to comply with the Neumann boundary condition on γ1 we replace

û
(3)
h (s, hη) by g(hs, hη) in the small neighbourhood of the origin, where g(y1, y2)

is the matching inner solution (3.31). In this neighbourhood κ ≡ 0 and due to

(3.24) we have

−∆g = λ
(3)
h g, (3.83)

and g satisfies conditions
∂g

∂ν
= 0 on γ1,

g = 0 on γ2.

Since on the interval s ∈ [h1/3, 2h1/3] we have relation (3.67), we match there

the outer and inner solutions û
(3)
h and Mg .

We choose the following function as an approximate solution to the eigenvalue
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problem (3.2),

ûapprh (s, η) = χ(sh−1/3)Mg(hs, η) + (1− χ(sh−1/3))û
(3)
h (s, η).

Notice that in the region s ∈ [h1/3, 2h1/3] , since the curvature κ is zero and

the corresponding part of the domain Ωh is a strip parallel to the axis x , the

operator simply has form

−∆ = − ∂2

∂s2
− h−2 ∂

2

∂η2
.

Then we derive via (3.83), (3.81) and (3.67)

−∆ûapprh = −χM∆g − (1− χ)∆û
(3)
h − 2

∂

∂s
χ
∂

∂s
(Mg − û(3)

h )−

− ∂2

∂s2
χ(Mg − û(3)

h ) = λ
(3)
h Mgχ+ (λ

(3)
h û

(3)
h + h2f2 + h3f3)(1− χ)−

−h5/32χ′
∂

∂s
f1 − h4/3χ′′f1 − h−1/32χ′

∂

∂s
z − h−2/3χ′′z =

= λ
(3)
h ûapprh + (h2f2 + h3f3)(1− χ) + h4/3f4 + z̃,

(3.84)

where function

f4 = h1/32χ′
∂

∂s
f1 − χ′′f1

is bounded due (3.68) and has a small support:

|f4| ≤ C,

sup(f4(s, η)) = [h1/3, 2h1/3]× [0, 1],

and function

z̃ = −h−1/32χ′
∂

∂s
z − h−2/3χ′′z,

‖z̃‖L2(Ωh) = O(hm) for any m

(3.85)

due to (3.68).

Now it is easy to estimate in L2(Ωh) (in variables (x, y) ) the discrepancy
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−∆ûapprh − λ(3)
h ûapprh via (3.84), (3.80), (3.82) and (3.84)

‖ −∆ûapprh − λ(3)
h ûapprh ‖L2(Ωh) =

= ‖(h2f2 + h3f3)(1− χ) + h4/3f4 + z̃‖L2(Ωh) ≤

≤ h2‖C‖L2(Ωh) + h3(h−2 + h−2β)‖C‖L2(Ωh∩{s∈[1−hβ ,1]})+

+h4/3‖C‖L2(Ωh∩{s∈[h1/3,2h1/3]}) ≤

≤ (h5/2 + h(3+β)/2 + h(7−3β)/2 + h2)C.

Choosing β = 1 we obtain

‖ −∆ûapprh − λ(3)
h ûapprh ‖L2(Ωh) ≤ Ch2. (3.86)

It is well known that the set ui,h, i ∈ N of the orthonormalised eigenfunctions

of Ah forms a basis in L2(Ωh) . Then ûapprh can be written in the form

ûapprh =
∞∑
i=1

ciui,h. (3.87)

The main term of ûapprh is v0(s) sinh−1πn , v0 is normalised, and other terms

are of order O(h) or have relatively small support. Then one can easily check

that

‖ûapprh ‖2
L2(Ωh) =

∞∑
i=1

c2
i =

1

2
h+ o(h). (3.88)

Substituting (3.87) into (3.86) we obtain

∞∑
i=1

c2
i (λi,h − λ(3)

h )2 ≤ Ch4.

Then from (3.88) follows that

min
i
|λi,h − λ(3)

h | ≤ Ch3/2, (3.89)

which prove the validity of (4.44).

Let us denote by fh the discrepancy −∆ûapprh − λ
(3)
h ûapprh . Then fh =∑∞

i=1 biui,h , where
∑∞

i=1 b
2
i ≤ Ch4 . We can assume that λ

(3)
h 6= λi,h (the case

λ
(3)
h = λi,h is trivial). Then ci = (λi,h − λ(3)

h )−1bi . Let us represent ûapprh as a
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sum of two functions:

ûapprh =
∑

|λi,h−λ(3)
h |≤d

bi

λi,h − λ(3)
h

ui,h +
∑

|λi,h−λ(3)
h |>d

bi

λi,h − λ(3)
h

ui,h =

= ψ1 + ψ2.

It easily follows from the above that

‖ûapprh − ψ1‖L2(Ωh) = ‖ψ2‖L2(Ωh) ≤ Cd−1h2. (3.90)

The asymptotics ûapprh includes high order terms in its formula. They are re-

quired for the justification of (4.44), but not necessary for the approximation

of eigenfunctions of Ah . Consider the function uapprh = χ(sh−1/3)Mg + (1 −
χ(sh−1/3))(u0 + hu1) . It is easy to see that it differs from ûapprh by a term of

order h5/2 in L2(Ωh) norm. Hence the second part of the statement of theorem

follows.
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Chapter 4

Models on graphs

In this chapter we obtain crucial results concerning the structure of the limiting

problem on the graph. We show that in the non-critical case the more accu-

rate model on the graph involves not Dirichlet, but ‘almost Dirichlet’ boundary

conditions at the vertices, namely, the condition of the type

V (0) + hTV ′(0) = 0 (4.1)

at each vertex. Here T is a d×d matrix, where d is the number of all edges inci-

dent to the vertex, V (0) is the vector (v1(0), . . . , vd(0))t of the values at the ver-

tex that the function v attains along the edges, and V ′(0) = (v′1(0), . . . , v′d(0))t

is the vector of the values at the vertex of the derivatives taken along the edges

taken in outgoing directions. This is important for the following reason. If one

imposes Dirichlet boundary conditions at the vertices, the limiting problem on

the graph splits into a number of disjoint problems on its edges, whereas bound-

ary conditions (4.1) insure that the interaction between different edges exists

although it is weak. The boundary conditions at the vertices for the limiting

problem are fully defined by the scattering matrix at the threshold (the first

transversal eigenvalue), which in turn is determined only by the geometry of the

junction (in our simplified model by the angle of the slant). In the last section of

the chapter we provide an explicit example for the case of zero-curvature, κ ≡ 0 .
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4.1 Limiting operator on graph

Let us consider the differential operator

L̂h = L0 + hL1 = − d2

ds2
− 1

4
κ2 + h

(
−κ′ d

ds
− 1

4
κ′′
)

acting on the interval (0, 1) . It follows from (3.16) and (3.20) that

L̂h(v0 + hw0) = λ0v0 + h(λ0w0 + λ1v0 − λ0κv0) + h2L1w0 =

= (λ0 + hλ1)(1− hκ)(v0 + hw0)+

+h2L1w0 − h2(λ1w0 − λ1κv0 − λ0κw0) + h3λ1κw0.

(4.2)

Notice that v0, w0 ∈ C∞([0, 1]) (see the discussion in the beginning of the proof

of Theorem 3.5.1) and κ ∈ C2([0, 1]) by the assumptions of the present chapter.

Notice also that

e−hκ = 1− hκ+O(h2),

where the last term must be understood in terms of the norm L∞(0, 1) . Then

we obtain from (4.2)

L̂h(v0 + hw0) = (λ0 + hλ1)e−hκ(v0 + hw0) +O(h2), (4.3)

where the last term is understood in the norm L∞(0, 1) . The operator L̂h cannot

be symmetric, however we can slightly change it to obtain a symmetric operator.

Indeed,
d

ds

(
ehκ

d

ds

)
= ehκ

(
d2

ds2
+ hκ′

d

ds

)
.

Then multiplying (4.3) by ehκ we obtain

Lh(v0 + hw0) = (λ0 + hλ1)(v0 + hw0) +O(h2), (4.4)

where

Lh = ehκL̂h = − d

ds

(
ehκ

d

ds

)
− 1

4
ehκ(κ2 + hκ′′). (4.5)

In view of (4.4) it is natural to try to approximate the function

ṽh = v0 + hw0

by some eigenfunction of the operator Lh with appropriate boundary conditions,
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which we will derive first. From (3.52), (3.53) we have

ṽh(0) = C1 + C2 + h(C3 + C4),

ṽh
′(0) = (C1 − C2) i

√
λ0 + h

(
(C1 − C2)

iλ1

2
√
λ0

+ (C3 − C4) i
√
λ0

)
.

(4.6)

Then for the non-critical case, λ0 < 0 , via (3.57) and(3.60) we obtain

ṽh(0) = −h2i
√
λ0σC1,

ṽh
′(0) = 2 i

√
λ0C1 + h

(
iλ1√
λ0

− 2 iλ0σ

)
C1.

Hence

ṽh(0) + hσṽh
′(0) = h2

(
iλ1√
λ0

− 2 iλ0σ

)
σC1.

(On the right end we obviously have ṽh(1) = 0 .) This suggests that we need

to consider the self-adjoint operator Lh acting in L2(0, 1) , given by (4.42) with

boundary conditions

v(0) + hσ v′(0) = 0,

v(1) = 0.
(4.7)

Ideally, we would like to describe the asymptotic solution to spectral problem

(3.2) in terms of the eigenvalues and eigenfunctions of Lh .

We slightly modify the function ṽh so that it would satisfy boundary condi-

tions (4.7). Consider the function

v̂h = ṽh + h2N(ei
√
λ0s + e−i

√
λ0s)χ(4s), (4.8)

where

N = −
(

iλ1

2
√
λ0

− iλ0σ

)
σC1,

and χ is from (3.76). Clearly, v̂h satisfies (4.7). Moreover, v̂h is approximate

solution to the eigenvalue problem,

Lhv̂h = (λ0 + hλ1)v̂h +O(h2). (4.9)

The last term is understood in the norm L∞(0, 1) and, hence, it is O(h2) in
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L2(0, 1) . Consider the spectral problem for the operator Lh ,

Lhv
(k)
h = µ

(k)
h v

(k)
h ,

v
(k)
h (0) + hσ

d

dx
v

(k)
h (0) = 0, v

(k)
h (1) = 0.

Applying absolutely the same reasoning as in the previous section when estimates

(3.89), (3.90) have been derived, we conclude that

min
k
|µ(k)
h − (λ0 + hλ1)| ≤ Ch2,

‖
∑

k∈Kd
ck(h)v

(k)
h − v̂h‖L2(0,1) ≤ Cd−1h2,

(4.10)

where µ
(k)
h and v

(k)
h are the eigenvalues and corresponding eigenfunctions of Lh ,

C is an h -independent constant, and summation is taken over the set of indices

Kd such that |µ(k)
h − (λ0 + hλ1)| ≤ d .

The case of the positive λ0 is analogous, and one can easily obtain (4.10) for

function (4.8) with N given by

N = −
(

iλ1

2
√
λ0

+ λ0σ

)
σC1.

Estimates (4.10) show that all the asymptotics λ0 +hλ1 and v0 +hw0 can be

approximated by the eigenvalues and eigenfunctions of Lh . Moreover, an almost

converse statement is valid. But in order to prove this we need to obtain more

precise information about the spectrum of Lh . This is the main purpose of the

next section.

4.2 Spectrum of the limiting operator Lh

We are interested in the behaviour of the spectrum of Lh as h→ 0 , in particular,

in its relation to the spectrum of the operator L0 ,

L0v = −v′′ − 1

4
κ2v,

D(L0) = H1
0 ∩H2 = H1

0 (0, 1) ∩H2(0, 1).

Remark 4.2.1. Notice that if σ = 0 (i.e.
◦
s = −1 ), boundary conditions (4.7)

are purely Dirichlet. In this case the operator Lh is a regular perturbation of
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the operator L0 . Then the spectrum of Lh converges to the spectrum of L0 .

So we assume in the following that σ 6= 0 .

We consider first the operator Lh,0 defined by the same differential operation

as L0 ,

Lh,0 v = −v′′ − 1

4
κ2v,

with the domain D(Lh,0) that consists of all v ∈ H2 satisfying boundary condi-

tions (4.7).

The operators L0, Lh,0, Lh are self-adjoint and their spectra are discrete with

the only limiting point at infinity. Integration by parts yields that the following

bilinear forms correspond to the operators:

Λ0(v, w) =

1∫

0

v′w′ds−
1∫

0

1

4
κ2vwds, v, w ∈ H1

0 = H1
0 (0, 1),

Λh,0(v, w) =

1∫

0

v′w′ds−
1∫

0

1

4
κ2vwds− 1

hσ
v(0)w(0), v, w ∈ H1

(0),

Λh(v, w) =

1∫

0

ehκv′w′ds−
1∫

0

1

4
ehκ(κ2 + hκ′′)vwds− 1

hσ
v(0)w(0), v, w ∈ H1

(0)

(4.11)

respectively, where H1
(0) is the set of functions from H1 vanishing at 1, v(1) = 0 .

We use the minimax definition for eigenvalues of an operator L with a bilinear

form Λ :

µ(k) := inf
dimW=k

sup
v∈W

Λ(v, v)

‖v‖2
, k = 1, 2, . . . , (4.12)

where W denotes a subspace of the domain of the bilinear form, and ‖v‖2

denotes
∫ 1

0
v2ds for short.

Lemma 4.2.2. The eigenvalues of Lh,0 and L0 alternate:

µ
(k)
h,0 < µ

(k)
0 < µ

(k+1)
h,0 , k = 1, 2, . . . .

If σ < 0 , then

lim
h→0

µ
(k)
h,0 = µ

(k)
0 , k = 1, 2, . . . .
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If σ > 0 , then

µ
(1)
h,0 = − 1

(hσ)2
+O (hm) , ∀m > 0,

lim
h→0

µ
(k+1)
h,0 = µ

(k)
0 , k = 1, 2, . . . ,

(4.13)

and the first eigenfunction of Lh,0 can be approximated by the exponentially de-

caying function fh :

‖v(1)
h,0 − fh‖ = O(hm), ∀m > 0, (4.14)

where fh is given by

fh =
exp(−(hσ)−1s)χ(2s/s0)

‖ exp (−(hσ)−1s)χ(2s/s0)‖ . (4.15)

Proof. Since for an arbitrary function v ∈ H1
0 we have Λ0(v, v) = Λh,0(v, v) , it

follows from the minimax principle that

µ
(k)
h,0 ≤ µ

(k)
0 .

Let us consider the spectrum of the self-adjoint operator Lγ corresponding

to the bilinear form

Λγ(v, w) =

1∫

0

v′w′ds−
1∫

0

1

4
κ2vwds+ γv(0)w(0)

defined on H1
(0) , where the parameter γ ∈ Rn . Denote its eigenvalues by µ(k)(γ) .

We have µ(k)(γ) = µ
(k)
h,0 (and the equality of the corresponding eigenfunctions)

provided that γ = − 1
hσ

. Since for any fixed v the bilinear form Λγ(v, v) is a

continuous non-decreasing function of γ , each eigenvalue µ(k)(γ) is a continuous

non-decreasing function of γ as well. Let us fix some µ ∈ R . It follows from

the theory of ordinary differential equations that if v ∈ H1
(0) , v 6≡ 0 , is some

solution of the equation

−v′′ − 1

4
κ2v = µv, (4.16)

then any other solution of (4.16) from H1
(0) is given by Cv , where C is con-

stant. For any µ ∈ R there exists a solution (4.16) from H1
(0) , therefore µ is an

eigenvalue of either Lγ (for some particular value of γ ) or L0 . These observa-

tions imply several important consequences. Firstly, each eigenvalue µ(k)(γ) is a
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continuous strictly increasing function of γ ; secondly,

µ(k)(γ1) < µ
(k)
0 < µ(k+1)(γ2), ∀γ1, γ2 ∈ R, k = 1, 2, . . . ; (4.17)

and, thirdly,

lim
γ→+∞

µ(k)(γ) = µ
(k)
0 = lim

γ→−∞
µ(k+1)(γ), k = 1, 2, . . . .

The statements of the lemma follow immediately except the one concerning µ
(1)
h,0

and v
(1)
h,0 when σ > 0 .

The function fh belongs to the domain of Lh,0 and satisfies the following

equation:

Lh,0fh = −f ′′h = −(hσ)−2fh +O
(
(hσ)−3/2 exp(−(hσ)−1s0/2)

)
. (4.18)

Then it is easy to show in the way absolutely analogous to the proof of error

bounds (3.89), (3.90) the validity of the first equality in (4.13) and asymptotics

(4.14).

Remark 4.2.3. Notice that if σ > 0 , then equally to the case of the operator

Lh,0 we have the following asymptotics for the first eigenvalue and the corre-

sponding eigenfunction of Lh :

Lhfh = −f ′′h = −(hσ)−2fh +O (hm) ,

µ
(1)
h = − 1

(hσ)2
+O (hm) ,

‖v(1)
h − fh‖ = O(hm), ∀m > 0.

(4.19)

The next lemma establishes asymptotic proximity of the eigenvalues of Lh

and Lh,0 . In turn this will provide the desired result on the convergence of the

eigenvalues of Lh to the eigenvalues of L0 .

Lemma 4.2.4. The eigenvalues of the operators Lh and Lh,0 are asymptotically

close:

lim
h→0
|µ(k)
h,0 − µ(k)

h | = 0, k = 1, 2, . . . . (4.20)
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Proof. Let us consider the difference between the bilinear forms Λh and Λh,0 :

|Λh(v, v)− Λh,0(v, v)| =

=

∣∣∣∣∣∣

1∫

0

(ehκ − 1)(v′)2ds−
1∫

0

1

4
(ehκ(κ2 + hκ′′)− κ2)v2ds

∣∣∣∣∣∣
.

It follows immediately from (4.11) that if σ < 0 then

|Λh(v, v)− Λh,0(v, v)| ≤ hC(Λh,0(v, v) + C‖v‖2), (4.21)

where C is some constant independent of h . These estimates allow us to derive

the statement of the lemma using the minimax definition of the eigenvalues.

Indeed, from (4.21) we obtain

Λh(v, v) ≤ Λh,0(v, v) + |Λh(v, v)− Λh,0(v, v)| ≤
≤ Λh,0(v, v) + hC(Λh,0(v, v) + C‖v‖2),

Λh,0(v, v) ≤ Λh(v, v) + |Λh(v, v)− Λh,0(v, v)| ≤
≤ Λh(v, v) + hC(Λh,0(v, v) + C‖v‖2).

Then it follows from definition (4.12) that

µ
(k)
h,0 − hC(µ

(k)
h,0 + C) ≤ µ

(k)
h ≤ µ

(k)
h,0 + hC(µ

(k)
h,0 + C).

The latter implies (4.20) for the case σ < 0 .

If σ > 0 the matter is more complicated. In this case we need to employ the

following lemma, whose proof we provide later.

Lemma 4.2.5. Let v be the following linear combination of the eigenfunction of

either Lh :

v =
k∑
i=2

aiv
(i)
h ,

or Lh,0 :

v =
k∑
i=2

aiv
(i)
h,0.

Then for such v inequality (4.21) is valid.

Notice that fh is almost orthogonal to the eigenfunctions of Lh and Lh,0
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(clearly except for the first ones):

∣∣∣
(
fh, v

(k)
h

)∣∣∣ =
∣∣∣
(
fh − v(1)

h , v
(k)
h

)∣∣∣ = O(hm)‖v(k)
h ‖, ∀m > 0, k ≥ 2,

∣∣∣
(
fh, v

(k)
h,0

)∣∣∣ =
∣∣∣
(
fh − v(1)

h,0, v
(k)
h,0

)∣∣∣ = O(hm)‖v(k)
h,0‖, ∀m > 0, k ≥ 2,

(4.22)

due to (4.19). Here (•, •) denotes the scalar product in L2(0, 1) . Then via

(4.19), (4.18) and (4.22) one has

Λh(fh, v) = (Lhfh, v) = O(hm)‖v‖, ∀m > 0,

Λh,0(fh, v) = (Lh,0fh, v) = O(hm)‖v‖, ∀m > 0,
(4.23)

where v is as in Lemma 4.2.5. Notice also the following obvious observation:

Λh(fh, fh) = − 1

h2σ2
+O(hm) = µ

(1)
h +O(hm),

Λh,0(fh, fh) = − 1

h2σ2
+O(hm) = µ

(1)
h,0 +O(hm), ∀m > 0.

(4.24)

Then from (4.23) and (4.24) we derive

Λh(a1fh + v, a1fh + v) = a2
1Λh(fh, fh) + 2a1Λh(fh, v) + Λh(v, v) ≤

≤ Λh(v, v) +O(hm)‖a1fh + v‖2, ∀m > 0,
(4.25)

and analogously

Λh,0(a1fh + v, a1fh + v) ≤ Λh,0(v, v) +O(hm)‖a1fh + v‖2, ∀m > 0.

Let Wk be a subspace of H1
(0) spanned by the functions fh, v

(2)
h,0, . . . , v

(k)
h,0 and

let Wk−1 be a subspace of H1
(0) spanned by the functions v

(2)
h,0, . . . , v

(k)
h,0 . Clearly

dimWk = k since fh is ‘very close’ to v
(1)
h,0 , see (4.14). Let v ∈ Wk . Then the

function v can be presented in the form v = a1fh + ṽ , where ṽ ∈ Wk−1 , and

‖v‖2 = ‖a1fh‖2 + ‖ṽ‖2 + O(hm)‖a1fh‖ ‖ṽ‖, ∀m > 0 , due to (4.22). Hence we

obtain from (4.25) that

Λh(v, v)

‖v‖2
≤ Λh(ṽ, ṽ)

‖v‖2
+O(hm) ≤ Λh(ṽ, ṽ)

‖ṽ‖2
+O(hm). (4.26)

That is for any v ∈ Wk there exists ṽ ∈ Wk−1 such that (4.26) holds. (We

assumed in the above that v 6= a1fh , otherwise the reasoning is trivial.) Then
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via (4.12), (4.21) and (4.26) we derive for k ≥ 2 that

µ
(k)
h ≤ sup

v∈Wk

Λh(v, v)

‖v‖2
≤ sup

v∈Wk−1

Λh(v, v)

‖v‖2
+O(hm) ≤

≤ sup
v∈Wk−1

Λh,0(v, v) + hC(Λh,0(v, v) + C‖v‖2)

‖v‖2
+O(hm) =

= µ
(k)
h,0(1 + hC) +O(h).

(4.27)

Analogously, let Wk be a subspace of H1
(0) spanned by the functions fh, v

(2)
h , . . . , v

(k)
h

and Wk−1 be a subspace of H1
(0) spanned by the functions v

(2)
h , . . . , v

(k)
h . Then

for k ≥ 2

µ
(k)
h,0 ≤ sup

v∈Wk

Λh,0(v, v)

‖v‖2
≤ sup

v∈Wk−1

Λh,0(v, v)

‖v‖2
+O(hm) ≤

≤ sup
v∈Wk−1

Λh(v, v) + hC(Λh,0(v, v) + C‖v‖2)

‖v‖2
+O(hm) =

= µ
(k)
h + hCµ

(k)
h,0 +O(h).

(4.28)

Estimates (4.27) and (4.28) imply the statement of the lemma.

Proof of Lemma 4.2.5. In order to proof the validity of (4.21) we need to estimate

somehow the term − 1
hσ
v2(0) for the eigenfunctions v

(k)
h and v

(k)
h,0, k = 2, 3, . . . .

The following reasoning is equally valid for both v
(k)
h and v

(k)
h,0 , so we give it only

for the eigenfunctions of Lh . Since κ(s) = 0 for s ∈ [0, s0] ,

− d2

ds2
v

(k)
h = µ

(k)
h v

(k)
h , s ∈ [0, s0]. (4.29)

Let µ
(k)
h be positive. Then

v
(k)
h = a1 sin

(√
µ

(k)
h s

)
+ a2 cos

(√
µ

(k)
h s

)
, s ∈ [0, s0]. (4.30)

From boundary conditions (4.7) it follows that

a2 = −hσ
√
µ

(k)
h a1. (4.31)
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The coefficient a1 is determined by the norm ‖v(k)
h ‖ . Indeed,

‖v(k)
h ‖2 ≥ a2

1

s0∫

0

[
sin2

(√
µ

(k)
h s

)
+ h2σ2µ

(k)
h cos2

(√
µ

(k)
h s

)
−

−2hσ

√
µ

(k)
h sin

(√
µ

(k)
h s

)
cos

(√
µ

(k)
h s

)]
ds =

= a2
1


s0

2

(
1 + h2σ2µ

(k)
h

)
+
−1 + h2σ2µ

(k)
h

4

√
µ

(k)
h

sin

(
2

√
µ

(k)
h s0

)
+

+
hσ

2

(
cos

(
2

√
µ

(k)
h s0

)
− 1

)]
.

(4.32)

If the eigenvalue µ
(k)
h is bounded away from zero uniformly with respect to h ,

µ
(k)
h > C > 0 , we conclude from (4.32) that

‖v(k)
h ‖2 ≥ a2

1C,

for come C > 0 , and hence

|a1| ≤ C‖v(k)
h ‖, (4.33)

where C independent of h . If for some sequence h → 0 we have |µ(k)
h | → 0 ,

then by applying Taylor expansion to the right hand side of (4.32) we arrive at

‖v(k)
h ‖2 ≥ a2

1

[
1

3
µ

(k)
h s3

0 +O

(
hµ

(k)
h +

(
µ

(k)
h

)2
)]

.

Therefore,

|a1| ≤ C√
µ

(k)
h

‖v(k)
h ‖, (4.34)

for small enough h and some constant C independent of h .

At this stage we need to use the following proposition whose proof we provide

after the proof of the lemma.

Proposition 4.2.6. Each eigenvalue µ
(k)
h , k = 2, 3, . . . of Lh is bounded uni-

formly with respect to h , i.e. for any k = 2, 3, . . . there exists a constant C

such that

|µ(k)
h | ≤ C. (4.35)

We obtain from (4.30), (4.31) and either (4.34) or (4.33) and Proposition 4.2.6
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that

|v(k)
h (0)| ≤ Ch‖v(k)

h ‖, k = 2, 3, . . . . (4.36)

The case of negative µ
(k)
h is very similar. In this instance

v
(k)
h = a1 exp

(√
|µ(k)
h | s

)
+ a2 exp

(
−
√
|µ(k)
h | s

)
, s ∈ [0, s0]. (4.37)

From boundary conditions (4.7) it follows that

a1 + a2 = −hσ
√
|µ(k)
h | (a1 − a2). (4.38)

Denote b1 = (a1 − a2)/2 and b2 = (a1 + a2)/2 . Then

‖v(k)
h ‖2 ≥ b2

1

s0∫

0

[(
1− h

√
|µ(k)
h |σ

)2

exp

(
2

√
|µ(k)
h | s

)
+

+

(
1 + h

√
|µ(k)
h |σ

)2

exp

(
−2

√
|µ(k)
h | s

)
− 2

(
1− h2µ

(k)
h σ2

)]
ds =

= b2
1


 1

2

√
|µ(k)
h |

(
1− h

√
|µ(k)
h |σ

)2

exp

(
2

√
|µ(k)
h | s

)∣∣∣∣
s0

0

+

− 1

2

√
|µ(k)
h |

(
1 + h

√
|µ(k)
h |σ

)2

exp

(
−2

√
|µ(k)
h | s

)∣∣∣∣
s0

0

−

−2
(

1− h2µ
(k)
h σ2

)
s0

]
.

(4.39)

If the eigenvalue µ
(k)
h is bounded away from zero uniformly with respect to h ,

|µ(k)
h | > C > 0 , we arrive at

|b1| ≤ C‖v(k)
h ‖,

where C independent of h . Then (4.36) follows from (4.37), (4.38) and Propo-

sition 4.2.6.

If for some sequence h → 0 we have |µ(k)
h | → 0 , then by applying Taylor

expansion to the right hand side of (4.39) we arrive at

‖v(k)
h ‖2 ≥ b2

1

[
4

3

∣∣∣µ(k)
h

∣∣∣ s3
0 +O

(
hµ

(k)
h +

(
µ

(k)
h

)2
)]

.
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Therefore,

|b1| ≤ C√
|µ(k)
h |
‖v(k)

h ‖,

for small enough h and some constant C independent of h , and (4.36) follows

from (4.37), (4.38).

The case µ
(k)
h = 0 is trivial. For s ∈ [0, s0] we have

v
(k)
h = a1s− hσa1.

Then

‖v(k)
h ‖2 ≥

s0∫

0

(a1s− hσa1)2ds ≥ Ca2
1,

and (4.36) follows.

Analogously for the eigenfunctions of Lh,0 we have

|v(k)
h,0(0)| ≤ Ch‖v(k)

h,0‖, k = 2, 3, . . . . (4.40)

Remark 4.2.7. Constants in (4.36), (4.40) are uniform in h , however may de-

pend on k .

The crucial estimates (4.36), (4.40) are valid not only for the eigenfunctions

of Lh and Lh,0 but also for their finite linear combinations. Indeed, let

v =
k∑
i=2

aiv
(i)
h . (4.41)

Then

v2(0) ≤ C

k∑
i=2

a2
i

(
v

(i)
h (0)

)2 ≤ Ch2

k∑
i=2

a2
i ‖v(i)

h ‖2 = Ch2‖v‖2,

and analogously for v =
∑k

i=2 aiv
(i)
h,0 . From the latter estimate it follows, that in

the case of positive σ inequalities (4.21) are valid for such linear combinations

of the eigenfunctions.

Proof of Proposition 4.2.6. Let us introduce two self-adjoint operators Lh , Lh,γ
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via their bilinear forms:

Ψh(v, w) :=

1∫

0

ehκv′w′ds−
1∫

0

1

4
ehκ(κ2 + hκ′′)vwds,

Ψh,γ(v, w) :=

1∫

0

ehκv′w′ds−
1∫

0

1

4
ehκ(κ2 + hκ′′)vwds+ γv(0)w(0),

with the domains
D(Ψh) = H1

0 ,

D(Ψh,γ) = H1
(0).

The corresponding eigenvalue problems for these operators are given by the equa-

tion

− d

ds

(
ehκ

d

ds

)
v − 1

4
ehκ(κ2 + hκ′′)v = ωhv, s ∈ (0, 1), (4.42)

accompanied by Dirichlet boundary conditions for Lh or the conditions

γv(0)− v′(0) = 0,

v(1) = 0,

for Lh,γ . Analogously to the case of the operators Lγ and L0 one can show that

for every fixed h

ω
(k)
h (γ) < ω

(k)
h < ω

(k+1)
h (γ), γ ∈ R, k = 1, 2, . . . ,

where ω
(k)
h and ω

(k)
h (γ) are the eigenvalues of Lh and Lh,γ arranged in non-

decreasing order. In particular, when γ = − 1
hσ

(then ω
(k)
h (γ) = µ

(k)
h ), we have

µ
(k)
h < ω

(k)
h < µ

(k+1)
h , k = 1, 2, . . . .

The operator Lh is a regular perturbation of L0 , hence ω
(k)
h → µ

(k)
0 . Therefore

for each k ≥ 2 the eigenvalue µ
(k)
h is bounded uniformly with respect to h .

Combining Lemmas 4.2.2 and 4.2.4 and Remark 4.2.1 we obtain the descrip-

tion of the asymptotic behaviour of the spectrum of Lh .

Theorem 4.2.8. Let σ ≤ 0 , then

lim
h→0

µ
(k)
h = µ

(k)
0 , k = 1, 2, . . . .

113



Let σ > 0 , then

µ
(1)
h = − 1

(hσ)2
+O (hm) , ∀m > 0,

lim
h→0

µ
(k+1)
h = µ

(k)
0 , k = 1, 2, . . . .

4.3 Approximation of the problem in Ωh by the

limiting problem on graph

Theorem 4.2.8 together with (4.10) imply the following

Theorem 4.3.1. Let µ
(k)
h be the k -th eigenvalue of the operator Lh such that

lim
h→0

µ
(k)
h 6= 0 , k = 1, 2, . . . if σ < 0 , k = 2, 3, . . . if σ > 0 . Then for λ

(k)
0 - k -th

eigenvalue of problem (3.16), (3.58), and λ
(k)
1 , given by (3.64) with λ0 = λ

(k)
0 ,

we have

|µ(k)
h − (λ

(k)
0 + hλ

(k)
1 )| ≤ Ch2, k = 1, 2, . . . if σ < 0,

|µ(k)
h − (λ

(k−1)
0 + hλ

(k−1)
1 )| ≤ Ch2, k = 2, 3, . . . if σ > 0.

Let v
(k)
0 be the eigenfunction corresponding to λ

(k)
0 , and w

(k)
0 be the solution of

(3.20) satisfying the conditions described in Section 3.4. Then

‖v(k)
h − (v

(k)
0 + hw

(k)
0 )‖L2(0,1) ≤ Ch2, k = 1, 2, . . . if σ < 0,

‖v(k)
h − (v

(k−1)
0 + hw

(k−1)
0 )‖L2(0,1) ≤ Ch2, k = 2, 3, . . . if σ > 0.

(4.43)

Proof. The first part of the statement of the theorem follows immediately from

Theorem 4.2.8 and the first inequality in (4.10) (notice that λ
(k)
0 = µ

(k)
0 ). The-

orem 4.2.8 implies also that for any λ
(k)
0 there exists constant d such that for

small enough h the d -neighbourhood of λ
(k)
0 +hλ

(k)
1 contains exactly one eigen-

value µ
(k)
h . Then the second part of the statement follows from (4.10) and a

simple observation that the function ṽ
(k)
h = v

(k)
0 +hw

(k)
0 differs from v̂

(k)
h only by

the term of order h2 .

Remark 4.3.2. The limiting operator Lh corresponds to the non-critical case.

The critical case is different from the non-critical one. The reason is that in the

critical case the limiting operator on the graph must include a spectral parameter

in the boundary condition. Indeed, for example if λ0 is negative, via (4.6) and

(3.70) we have

−hλ0σṽh(0) + ṽh
′(0) = −h22λ

3/2
0 σ2C1.
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The study of this problem goes beyond the scope of the present thesis.

Now we can prove that the limiting problem on the graph gives the correct

asymptotics of the problem in the thin domain Ω . Indeed, it is easy to see via

(4.43) that

‖(u0 + hu1)− (ϕ0 + hκϕ1)vh‖L2(Ωh) ≤ Ch5/2.

Then the assertion follows from Theorem 3.5.1 and Theorem 4.3.1 immediately:

Theorem 4.3.3. Let µ
(k)
h be as in Theorem 4.3.1 and v

(k)
h be the corresponding

normalised eigenfunction. Then there exists h0 > 0 and a constant C indepen-

dent of h such that for any 0 < h ≤ h0 there exist an eigenvalue λi,h of the

operator Ah such that

|λi,h − (h−2λ−2 + µ
(k)
h )| ≤ Ch3/2. (4.44)

Moreover, the function (ϕ0 + hκϕ1)v
(k)
h approximates eigenfunctions ui,h of the

operator Ah outside a small neighbourhood of the origin. Namely, let Θh be

a characteristic function of the set (0, 2h1/3)2 , then for any d > 0 and any

0 < h ≤ h0 there exist coefficients ci(h) such that

∥∥∥∥∥∥


uapprh −

∑

|λi,h−(h−2λ−2+µh)|≤d
ci(h)ui,h


 (1−Θh)

∥∥∥∥∥∥
L2(Ωh)

≤ Cd−1h2.

Remark 4.3.4. In the last two chapters we never essentially used the assumption

about the boundary conditions imposed on the slanted end γ1 of the domain

Ωh . All the arguments and results obtained are equally valid for the eigenvalue

problem

−∆uh = λhuh, x ∈ Ωh,

u = 0, x ∈ ∂Ωh,
(4.45)

except that in this setting the critical case is not possible. Let uNh be the eigen-

function of problem (3.2) and uDh be the eigenfunction of problem (4.45). Then

a symmetric extension of uNh into Ω̂h (see Introduction and Figure 0-4 in par-

ticular), and antisymmetric extension of uDh into Ω̂h are eigenfunctions of the

problem

−∆uh = λhuh, x ∈ Ω̂h,

u = 0, x ∈ ∂Ω̂h.
(4.46)
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Denote by vNh (s) and vDh (s) the eigenfunction of the limiting operators for prob-

lems (3.2) and (4.45) respectively. They satisfy the following boundary conditions

at the vertex:

vNh (0) + hσN
d

ds
vN(0) = 0,

vDh (0) + hσD
d

ds
vD(0) = 0.

(In particular σN = σ as is in (3.55), and σD is given by the same formula with
◦
s corresponding to the Dirichlet case.)

The limiting problem for (4.46) is posed on the graph consisting of two edges

adjacent in the single vertex. Let V (s) = (v1(s), v2(s))t be the vector of rep-

resentatives of an eigenfunction of the limiting problem along the edges of the

graph. Then either

V (s) = (vNh (s), vNh (s))t,

or

V (s) = (vDh (s),−vDh (s))t.

It is easy to see then that the following boundary conditions a the vertex must

be imposed:

V (0) + hTV ′(0) = 0,

where

T =
1

2

(
σN + σD

σN − σD
σN − σD

σN + σD

)
.

4.4 Explicit example for zero-curvature case

Let κ ≡ 0 . Then the eigenvalue problem for the operator Lh takes the form

− d2

ds2
v

(k)
h = µ

(k)
h v

(k)
h , s ∈ (0, 1),

v
(k)
h (0) + hσ

d

ds
v

(k)
h (0) = 0,

v
(k)
h (1) = 0.
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The eigenvalues µ
(k)
h (except the first eigenvalue in the case σ > 0 which we do

not consider here) converge to the eigenvalues of the problem

− d2

ds2
v

(k)
0 = µ

(k)
0 v

(k)
0 , s ∈ (0, 1),

v
(k)
0 (0) = v

(k)
0 (1) = 0,

as stated in Theorem 4.2.8. The solutions to the latter are elementary:

µ
(k)
0 = k2π2, k = 1, 2, . . . ,

v
(k)
0 = sin(kπs).

It is easy to see that the eigenfunctions of Lh are given by

v
(k)
h = sin

(√
µ

(k)
h (1− s)

)
,

where µ
(k)
h can be found from the boundary condition. Namely, the eigenvalues

µ
(k)
h are all the solutions of the equation

tan

(√
µ

(k)
h

)
= hσ

√
µ

(k)
h .

Asymptotically one has

µ
(k)
h = k2π2 + h 2 σ k2π2 +O(h2), k = 1, 2, . . . , σ < 0,

µ
(k+1)
h = k2π2 + h 2 σ k2π2 +O(h2), k = 1, 2, . . . , σ > 0.

These perfectly agree with the results of Chapter 3 that give

v0 = cv
(k)
h

λ0 = k2π2,

λ1 = 2σk2π2,

for some k = 1, 2, . . . , and some coefficient c .

From Theorem 4.2.8 it follows that for any k = 1, 2, . . . , there exist an

eigenvalue λh of the operator Ah in Ωh such that

λh = h−2π2 + k2π2 + h 2σ k2π2 +O(h3/2).
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Chapter 5

Localisation effects and the

bottom of the spectrum

In the above two chapters we studied the eigenvalues of problem (3.2) generated

by the first transversal eigenvalue π2 . Now we will address the behaviour of the

bottom of the spectrum of Ah . The first eigenvalues of Ah correspond to the

so-called bound states, i.e. eigenvalues of the operator Aα (see (3.24)) with the

corresponding eigenfunctions localised near the end of the semi-infinite strip and

exponentially decaying at infinity. The related eigenfunctions of Ah demonstrate

the same behaviour: they are confined to the slanted end of Ωh and decay at

the rate of order exp(−h−1l x1) , where l > 0 is some fixed number. Thus,

our purpose is to study the point spectrum of the operator Aα lying below its

essential spectrum [π2,∞) . In the first section we develop some methods for

estimation of the number of bound states. The second section is devoted to the

proof of the monotonicity of the first bound state as a function of the angle of

the slant.

5.1 Boundary localisation

Theorem 5.1.1. There exists at least one eigenvalue λ of the operator Aα

such that λ < π2 , the corresponding eigenfunction u(y) decays exponentially

at infinity ( u(y) ∼ exp(−l y1) as y1 → ∞ , where l is some positive number).

Then there exists h0 > 0 and a constant C independent of h such that for any

0 < h ≤ h0 there exist an eigenvalue λh of the operator Ah such that

|λh − h−2λ| ≤ Ce−lh
−1

.
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Moreover, a function

uapprh = χ(2x1/s0)u(h−1x)

approximates eigenfunctions of Ah in the following sense: for any d > 0 and

any 0 < h ≤ h0 there exist coefficients ci(h) such that

∥∥∥∥∥∥
uapprh −

∑

|λi,h−h−2λ|≤d
ci(h)ui,h

∥∥∥∥∥∥
L2(Ωh)

≤ Cd−1e−lh
−1

.

Proof. It is well known, see e.g. [69], that there exists at least one eigenvalue

of Aα below its essential spectrum and the corresponding eigenfunction decays

exponentially at infinity. The rest of the proof is analogous to the proof of

Theorem 3.5.1 although is much simpler. One only needs to notice that the

discrepancy −∆xu
appr
h − h−2λuapprh is of order e−lh

−1
.

In view of Theorem 5.1.1, it is important to describe somehow the discrete

spectrum of Aα . Our aim is to study the relation between the value of angle α

and the behaviour of the discrete spectrum of Aα . For this purpose we will use

methods from [62, Chapter IV]. Let

Ψ0 := {(y1, y2) | 0 < y1 < cot(α), 0 < y2 < tan(α) y1},
Ψ1 := {(y1, y2) | y1 > cot(α), y2 ∈ (0, 1)}.

(5.1)

Denote by T0 a self-adjoint operator for the negative Laplacian −∆ in Ψ0 with

Dirichlet boundary condition on y2 = 0 and Neumann boundary condition on

the rest of the boundary of Ψ0 . Analogously, we denote by T1 a self-adjoint

operator for −∆ in Ψ1 with Dirichlet boundary condition on y2 = 0, y2 = π

and Neumann boundary condition on the rest of the boundary of Ψ1 . Denote by
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D0 and D1 spaces of functions from H1(Ψ0) and H1(Ψ1) vanishing on y2 = 0

and y2 = 0, y2 = π respectively. It is well known that σ(T1) = [λ−2,∞) . The

following lemma provides a tool of estimating the number of eigenvalues of Aα

from above (cf. [62]).

Lemma 5.1.2. The number of eigenvalues of the operator Aα lying below its

essential spectrum can be estimated from above by the number of eigenvalues of

T0 lying below σess(Aα) .

Proof. Let γ1 ≤ γ2 ≤ . . . ≤ γk < π2 and ω1 ≤ ω2 ≤ . . . ≤ ωn < π2 be

all eigenvalues of Aα and T0 respectively and v1, . . . , vk , ψ1, . . . , ψn be the

corresponding orthonormalised eigenfunctions. Our aim is to prove that

k ≤ n. (5.2)

Assume the contrary, i.e. that k > n . Then there exists a linear combination of

eigenfunctions of Aα

v =
k∑
i=1

civi,

such that ∫

Ψ0

v ψj dx = 0, j = 1, . . . , n.

For each eigenfunction of Aα we have

‖∇vi‖2
L2(Πα) = γi‖vi‖2

L2(Πα) = γi.

Then we obtain the following inequality for v :

‖∇v‖2
L2(Πα) =

k∑
i=1

c2
i ‖∇vi‖2

L2(Πα) =

=
k∑
i=1

c2
i γi‖vi‖2

L2(Πα) ≤ γk‖v‖2
L2(Πα) < π2‖v‖2

L2(Πα).

(5.3)

The lower bound of the spectrum of T1 is π2 , so by the variational principle

‖∇v‖2
L2(Ψ1) ≥ π2‖v‖2

L2(Ψ1).
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Deducting the last inequality from (5.3) we obtain

‖∇v‖2
L2(Ψ0) < π2‖v‖2

L2(Ψ0).

Then, since v ∈ D0 , one should have

inf
D03ψ⊥ψj
j=1,...,n

‖∇ψ‖2
L2(Ψ0)

‖ψ‖2
L2(Ψ0)

≤
‖∇v‖2

L2(Ψ0)

‖v‖2
L2(Ψ0)

< π2,

which is impossible because there are only n eigenvalues of T0 less than π2 . We

arrive at a contradiction. Hence k ≤ n .

Theorem 5.1.3. If α = π/4 the operator Aα has exactly one eigenvalue lying

below its essential spectrum.

Proof. Let α be equal to π/4 , so that Ψ0 is an isosceles right-angled triangle.

Let ψ be a solution to the eigenvalue problem

−∆ψ = ωψ, y ∈ Ψ0,

ψ = 0, y2 = 0;

∂ψ

∂ν
= 0, y1 = 1 or y2 = y1.

(5.4)

We can extend ψ to the unit square (0, 1)2 symmetrically reflecting it with

respect to the line y1 = y2 , i.e. by the formula

for any (y1, y2) ∈ (0, 1)2\Π0, ψ(y1, y2) = ψ(y2, y1), (y2, y1) ∈ Ψ0.

Then, by the symmetry principal for the Laplacian, the extended function, which

we still denote by ψ , is a solution to the eigenvalue problem

−∆ψ = ωψ, y ∈ (0, 1)2,

ψ = 0, y1 = 0 or y2 = 0,

∂ψ

∂ν
= 0, y1 = 1 or y2 = 1.

(5.5)

So we can seek the solution to (5.4) amongst the eigenfunctions of the operator

given by (5.5). By separation of variables, all the eigenfunctions and correspond-
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ing eigenvalues of (5.5) are the following:

ψn,m = sin (π(2n− 1)y1/2) sin (π(2m− 1)y2/2) ,

ωn,m =
π2

4

(
(2n− 1)2 + (2m− 1)2

)
, n,m ∈ N.

It is easy to see that ω1 = ω1,1 = π2

2
and ψ1 = ψ1,1 are eigenvalue and

eigenfunction of (5.4). The next eigenvalue of the problem ω2 is greater that π2

(since ω2 ≥ ω1,2 = ω2,1 = 5
4
π2 ). Then the theorem follows from Theorem 5.1.1

and Lemma 5.1.2.

Now, when we have a method of estimating the number of eigenvalues Aα

from above, we would like to know how to estimate it from below. This can be

done in somewhat similar way. Let Ψ2 be a bounded domain contained between

the lines y2 = 0 , y2 = 1 , y2 = tan(α) y1 and some smooth simple curve Γ3

lying entirely in Πα such that its one end belongs to {y1 ≥ 0, y2 = 0} , another

belongs to {y1 ≥ cot(α), y2 = 1} and it has no other common points with ∂Πα ,

see Figure 5-2. Let T2 be an operator defined by −∆ in Ψ2 with Dirichlet

boundary conditions imposed on ∂Ψ2 ∩Γ2
α ∪Γ3 and Neumann conditions on the

rest of the boundary (i.e. on Γ1
α ). Denote by D2 the space of functions from

H1(Ψ2) vanishing on ∂Ψ2 ∩ Γ2
α ∪ Γ3 . Then the following assertion is true (cf.

[62]).

Lemma 5.1.4. The number of eigenvalues of the operator Aα lying below its

essential spectrum can be estimated from below by the number of eigenvalues of

T2 lying below σess(Aα) .

Proof. Denote all the eigenvalues lying below σess(Aα) and the corresponding

eigenfunctions of T2 by µi and ϕi, i = 1, . . . ,m, respectively, µ1 ≤ . . . ≤ µm <
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π2 . Let k be the number of eigenvalues of Aα as in Lemma 5.1.2. Assume to the

contrary that m > k . Then there exists a linear combination of eigenfunctions

of T2 ,

ϕ =
m∑
i=1

ciϕi,

orthogonal to all vi, i = 1, . . . , k . Notice that due to the boundary conditions

for ϕ we can extend in by zero to the rest of Πα , so that the extension ϕ ∈
H1

0 (Πα,Γ
2
α) , where H1

0 (Πα,Γ
2
α) denotes the space of functions from H1(Πα)

vanishing on Γ2
α , see (3.24). Then we have

inf
H1

0 (Πα,Γ2
α)3v⊥vj

j=1,...,k

‖∇v‖2
L2(Πα)

‖v‖2
L2(Πα0)

≤
‖∇ϕ‖2

L2(Πα)

‖ϕ‖2
L2(Πα)

≤ µm < π2,

which means existence of k + 1 eigenvalues of Aα below its essential spectrum.

We obtain a contradiction.

Remark 5.1.5. The argument of Lemmas 5.1.2 and 5.1.4 is known as Dirichlet-

Neumann bracketing.

Suppose now that Ψ2 is a sector given in the polar coordinates by

Ψ2 :=
{

(ρ, θ)|0 < ρ < (sin(α))−1, 0 < θ < α
}
,

see Figure 5-3. Let us consider an eigenvalue problem

−∆ϕ = µϕ, y ∈ Ψ2,

ϕ = 0, θ = 0 or ρ = (sin(α))−1 ,

∂ϕ

∂θ
= 0, θ = α.

(5.6)
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The Laplace operator in the polar coordinates is given by the formula

∆ =
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂θ2
.

We can separate the variables in the equation, let ϕ = u(ρ)v(θ) . Then we obtain

the following equations for v and u :

−v′′ = ν2v,

v(0) = 0, v′(α) = 0;

u′′ +
1

ρ
u′ +

(
µ− ν2

ρ2

)
u = 0,

u(0) = u
(
(sin(α))−1

)
= 0.

(5.7)

Obviously, the sequence of eigenfunctions and eigenvalues satisfying the first

equation is given by

vi = sin
( π

2α
(2i− 1)θ

)
, i = 1, 2, . . . ,

νi =
π

2α
(2i− 1).

Making the substitution r =
√
µρ , u(ρ) = ũ(r) in the second equation one

arrives at Bessel equation

ũ′′ +
1

r
ũ′ +

(
1− ν2

i

r2

)
ũ = 0.

The solution to this equation is given by Bessel function

Jνi(r) =
∞∑

k=0

(−1)k

k!Γ(νi + k + 1)

(r
2

)νi+2k

.

Denote by jνi,l, l, j = 1, 2, . . . zeros of Bessel function Jνi . In order to satisfy

boundary conditions in (5.7) we need to make a substitution r =
√
µi,lρ where

µi,l = sin2(α) j 2
νi,l
, i, l = 1, 2, . . . . (5.8)

Then the function

ui,l = Jνi(
√
µi,lρ)
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Solves problem (5.7) with µ = µi,l . Then the solution to eigenvalue problem (5.6)

is given by the sequence of eigenvalues (5.8) and corresponding eigenfunctions

ψi,l = sin
( π

2α
(2i− 1)θ

)
Jνi(
√
µi,lρ), i, l = 1, 2, . . . .

Thus we have proved the following

Theorem 5.1.6. The number of eigenvalues of Aα lying below its essential spec-

trum is greater than or equal to the number of those eigenvalues

µi,l = sin2(α) j 2
νi,l
, i, l = 1, 2, . . . .

of problem (5.6) which are less than π2 , where jνi,1 < jνi,2 < . . . are zeros of

Bessel function Jνi and

νi =
π

2α
(2i− 1).

Notice that for the first zero of Bessel function Jν the following inequality is

valid:

jν,1 >
√
ν(ν + 2),

see e.g. [81]. Hence we have

µi,1 > sin2(α)

(
(2i− 1)2

4α2
π2 +

2i− 1

α
π

)
.

The function sin(α)/α is a strictly decreasing function on the interval α ∈
(0, π/2) . Then it is easy to see by direct calculations that

µi,1 > π2, i ≥ 2.

On the other hand the asymptotic formula for zeros of Bessel function Jν for

large values of ν ,

jν,l = ν + o(ν), l ∈ N,

see e.g. [51, 65], ensures that for small enough α > 0 there are arbitrary many

eigenvalues of problem (5.6) lying below π2 . More precisely we have

µ1,l =
π2

4
+ o(1), l ∈ N,

as α→ 0 . Then the following assertion follows from Theorem 5.1.6.
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Theorem 5.1.7. For small enough α > 0 there are arbitrary many eigenvalues

of Aα lying below its essential spectrum.

5.2 Monotonicity of the first eigenvalue with re-

spect to the angle α

It is clear that the first eigenvalue of problem (3.24) is simple. It is interesting

question how it depends on the value of the angle α . Bearing in mind the results

of the previous section it is natural to conjecture that the first eigenvalue decays

as α gets smaller.

Theorem 5.2.1. Let λα be the first eigenvalue of Aα . Then λα is a strictly

increasing function of the argument α ∈ (0, π/2) .

Proof. First let us consider eigenvalue problem (3.24) in the sequence of domains

Παi , i = 1, . . . , n , corresponding to angles αi , where 0 < α1 < . . . < αn ≤ π/2 ,

αi = α1 + (i − 1)∆α , ∆α > 0 , i = 2, . . . , n , and n is such that αn+1 > π/2 .

Denote by λαi < π2 and ϕαi , first eigenvalues and respective eigenfunctions of

the corresponding problems. A position of a domain on the coordinate plane is

insignificant, therefore for the sake of simplified and more illustrative narration

we shift the domains Παi by cot(α1)− cot(αi) in positive direction of axis x so

as the top vertices of Πα1 and Παi to coincide (in the point C ), see Figure 5-4.

Points B and D on the Figure 5-4 are located such that triangles ∆ABC and

∆ADC are equal with sides AB = AD and BC = CD . We denote the domains

enclosed within ∆ABC and ∆ADC by Σ1 and Σ2 respectively.

The following equality is true:

‖∇ϕα2‖2
L2(Πα2 ) = λα2‖ϕα2‖2

L2(Πα2 ). (5.9)

By the variational properties of eigenvalues

λα1 = inf
f∈H1

0 (Πα1 ;Γ2
α1

)

‖∇f‖2
L2(Πα1 )

‖f‖2
L2(Πα1 )

, (5.10)

Let us extend the eigenfunction ϕα2 into Σ1 by symmetric reflection against

the line AC and by zero into ∆OAB . The extension, which we denote by ϕ̃α2 ,

belongs to H1
0 (Πα1 ; Γ2

α1
) due to the boundary conditions imposed on ϕα2 . Thus
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we have

λα1 ≤
‖∇ϕ̃α2‖2

L2(Πα1)

‖ϕ̃α2‖2
L2(Πα1)

. (5.11)

Notice that from the symmetry of ϕ̃α2 against the line AC follows that ‖∇ϕ̃α2‖L2(Σ1) =

‖∇ϕα2‖L2(Σ2) and ‖ϕ̃α2‖L2(Σ1) = ‖ϕα2‖L2(Σ2) . Then we can write (5.11) as

‖∇ϕα2‖2
L2(Πα2 ) + ‖∇ϕα2‖2

L2(Σ2) ≥ λα1

(
‖ϕα2‖2

L2(Πα2 ) + ‖ϕα2‖2
L2(Σ2)

)
. (5.12)

Deducting (5.9) from (5.12) we obtain

‖∇ϕα2‖2
L2(Σ2) ≥ (λα1 − λα2)‖ϕα2‖2

L2(Πα2 ) + λα1‖ϕα2‖2
L2(Σ2).

Now we deduct the latter from (5.9):

‖∇ϕα2‖2
L2(Πα3 ) = ‖∇ϕα2‖2

L2(Πα2) − ‖∇ϕα2‖2
L2(Σ2) <

< (2λα2 − λα1)‖ϕα2‖2
L2(Πα3 ) + 2(λα2 − λα1)‖ϕα2‖2

L2(Σ2).
(5.13)

Assume that λα1 ≥ λα2 and denote ∆λ = λα1 − λα2 ≥ 0 . Since ϕα2 ∈
H1

0 (Πα3 ; Γ2
α3

) we conclude from (5.13) that

λα3 = inf
f∈H1

0 (Πα3 ;Γ2
α3

)

‖∇f‖2
L2(Πα3 )

‖f‖2
L2(Πα3 )

≤
‖∇ϕα2‖2

L2(Πα3 )

‖ϕα2‖2
L2(Πα3 )

≤ λα2 −∆λ.

Then we obtain λα2 − λα3 ≥ ∆λ = λα1 − λα2 . Reasoning by induction we derive
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that

λαn ≤ λα1 − (n− 1)∆λ < π2. (5.14)

Now let us prove the monotonicity property of λα . We aim to show that

the first eigenvalue λα of (3.24) is strictly increasing function of the argument

α ∈ (0, π/2) . Reasoning by contradiction we assume that there exist α′ and

α′′ from (0, π/2) such that α′ < α′′ < π/2 and λα′ ≥ λα′′ . It is obvious that

in this case one can choose α ∈ [α′, α′′] such that for any δ > 0 there exists

0 < ∆α < δ satisfying λα ≥ λα+∆α Then by (5.14) we have

λγ < λα < π2, (5.15)

where the angle γ = α + n∆α for some n such that γ ≤ π/2, |γ − π/2| < ∆α .

So γ can be chosen arbitrary close to π/2 .

On the other hand the eigenvalue λγ must be close to the bottom of the

essential spectrum of problem (3.24) when the angle γ is close to π/2 . Indeed,

one can show this using Poincaré inequality. Let us introduce a new coordinates

obtained from (y1, y2) by rotation on the angle −(π/2− γ) :


 y′1

y′2


 =


 cos(π/2− γ)

sin(π/2− γ)

− sin(π/2− γ)

cos(π/2− γ)




 y1

y2


 ,

so that the part of the boundary Γ1
γ lies on the positive part of the axis y′2 . We

denote by Π′γ the domain Πγ in the new coordinates:

Π′γ =

{
(y′1, y

′
2)

∣∣∣∣y′1 > 0, y′1 tan
(π

2
− γ
)
< y′2 < y′1 tan

(π
2
− γ
)

+
1

sin(γ)

}
.

For a function ϕ ∈ H1
0 (0, 1/ sin(γ)) we have well known Poincaré inequality with

an explicit constant,

1/ sin(γ)∫

0

(ϕ(y′2))
2
dy′2 ≤ (π sin(γ))−2

1/ sin(γ)∫

0

(
d

dy′2
ϕ(y′2)

)2

dy′2.

Due to the properties of rotation the modulus of the gradient of function remains
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the same and the Jacobian equals 1 . So we derive for ϕ ∈ H1
0 (Πγ,Γ

2
γ)

∫

Πγ

ϕ2dxdy =

∫

Π′γ

ϕ2dy′1dy
′
2 ≤ (π sin(γ))−2

∫

Π′γ

(
d

dy′2
ϕ

)2

dy′1dy
′
2 ≤

≤ (π sin(γ))−2

∫

Π′γ

|∇′ϕ|2 dy′1dy′2 = (π sin(γ))−2

∫

Πγ

|∇ϕ|2 dxdy.

Thus, as γ tends to π/2 the first eigenvalue

λγ = inf
ϕ∈H1

0 (Πγ ,Γ2
γ)

‖∇ϕ‖2
L2(Πγ)

‖ϕ‖2
L2(Πγ)

≥ (π sin(γ))2

tends to π2 , which contradicts to (5.15). This proves the theorem.
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