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Abstract 
Surveys for entomopathogenic bacteria and their associated nematode hosts 

were conducted locally (University of Bath campus) and across southern 

England.  Sampling involved trialing a novel Android app. (Epicollect) to 

manage sample collection data.  Galleria larvae were used to bait UK soil 

samples. Insects which became infected were placed on White traps to collect 

any emerging nematodes, from which bacteria were isolated.  Bacteria were 

also isolated from the haemolymph of any infected larvae. Bacterial isolates 

were classified on the basis of 16s rDNA and recA gene sequences. Serratia 

proteamaculans-like strains dominated the samples, and Multilocus sequence 

analysis (MLSA) was developed for the characterization of these Serratia 

isolates. We determined the sequences of (350-450-bp) fragments from five 

housekeeping genes of 84 isolates of Serratia proteamaculans. MLSA was 

shown to be effective for distinguishing closely related strains found in the 

insects’ haemolymph and from different nematodes.  goeBURST was used to 

visualize the relationships between the STs, and the data showed a high level 

of discrimination, resolving 69 STs from the 84 isolates.  In addition, the data 

derived from this study were represented in a phylogenetic network using the 

Splits Tree-network methods, to show the rate of recombination within and 

between the genes.  

From a total of 256 infected Galleria 23.04% were nematode positive.  The 

nematodes were identified based on 18S rDNA 19 isolates were close 

relatives of the species Pristionchus entomophaga and Diplogasteriodes 

magnus (Diplogastridae). A further 16 isolates were more closely related to 

Steinernema glaseri (Steinernematidae). All three nematode types were 

isolated from diverse habitats and soil types, but were isolated more 

frequently in cold seasonal conditions.  The bacterial sequence data suggest 

that the nematode- associated strains of bacteria belong to specific clades, 

distinct from the free living infective strains, which hints at ecological diversity 

within the S. proteamaculans population.  
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Two of the Serratia proteamaculans-like strains had been chromosomally 

labeled with GFP to confirm the specifics of their association with the 

nematode hosts.  The associated S. proteamaculans-like isolates isolated 

from Bath and Chepstow soils were examined further for their pathogenicity to 

Galleria mellonella and Manduca sexta larvae.  Serratia Bath isolates, isolated 

from Pristionchus were more virulent toward both insect hosts than the 

Serratia from the Chepstow isolates associated with Steinernema nematodes. 

This suggests that host specificity may play important role in the virulence of 

the strain. 
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Interactions between eukaryotes and prokaryotes are widespread in nature 

and range from mutualistic to pathogenic. Entomopathogenic bacteria and 

their nematode vectors provide an excellent model system to study these 

interactions. Nematodes and bacteria cover the most biologically and 

phylogenetically diverse domains of organisms, and many soil dwelling 

nematodes with a bacterium have entered into mutualistic associations [1].  

New entomopathogenic nematodes and their bacterial endo-symbionts are 

still likely to be waiting to be discovered [1].   

Recently, insect pathogenic bacteria have attracted the attention of many 

researchers because of their importance for pest control and in transmission 

of disease. The application of the entomopathogenic bacteria (EPB) and the 

associated bacteria with their entomopathogenic nematodes (EPNs) as bio-

control agents is used worldwide. Moreover, recent studies have focused on 

surveys for both EPB and EPN in order to increase the understanding of their 

roles in nature, and how they interact in the ecology of the environment. 

However, little is known regarding the diversity and distribution of EPNs in UK 

soils, or the extent to which co-adaptation has occurred between 

entomopathogenic bacteria and nematode vectors.  

In my thesis I focused on the following aims:  

1. Characterization of common entomopathogenic bacteria both 

associated with, and non- associated with nematodes in UK soil from 

different locations and habitats. 

2. Discovery and characterization of novel associations between 

Pristionchus sp and Sterinernema sp nematodes with S. 

proteamaculans-like strains in UK soil.  Understanding the virulence 

properties of S. proteamaculans towards insects.   

 

3. Using phylogenetic analysis to understand the degree of ecological 

(host) specialization in the S. proteamaculans population. 
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1.1.   Entomopathogenic Bacteria (EPB) 

Entomopathogenic bacteria (EPB) invade and cause disease in insects.  

Gram-negative and Gram-positive bacteria are present in the insect gut as 

microflora; some of them are beneficial to the insect host and others are 

pathogenic. Entomopathogenic bacteria have an application in insect pest 

control.  

 There are two types of EPB:  

A. Free living EPB and the well-known examples include the spore-

forming Gram-positive EPB Bacillus thuringensis (Bt) and Bacillus 

sphaericus and Gram-negative entomopathogens include Yersinia 

entomophila, Pseudomonas entomophila, Serratia entomophila and 

Serratia proteamaculans. 

B. The symbiotic EPB including Gram-negative genera Photorhabdus and 

Xenorhabdus are well-characterized entomopathogenic bacteria which 

have evolved a symbiotic relationship with nematode hosts. Those 

bacteria produce a wide range of virulence factors including proteases, 

chitinases and toxins [2].    

 

1.1.1.  Bacterial-Nematodes symbiosis 

Xenorhabdus and Photorhabdus spp. are rod-shaped gamma-proteobacteria 

associated symbiotically with Steinernematidae and Heterorhabditid soil 

nematodes [3].  The nematode-bacterial associations are typically very 

specific and participate in a complex life cycle in which they parasitize and kill 

insect hosts in the soil. The bacterial partners produce a range of toxins and 

employ various mechanisms to evade the immune system and kill the insect 

host. This life cycle requires the nematode associated bacteria to exhibit both 

symbiotic and pathogenic traits. In both the Steinernematidae and 

Heterorhabditid nematodes, the partner bacteria are carried monoxenically in 

the gut of non-feeding forms of the nematodes termed infective juveniles (IJ). 
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The IJs seek out an insect host in the soil and enter the insect’s open blood 

system (the hemocoel) either via natural openings (mouth, anus or spiracles) 

or by burrowing in through the cuticle [4].  Once the  nematodes have invaded 

the hemolymph they un-sheath and regurgitate around 100 bacterial cells (in 

the case of Photorhabdus) [5]. As the bacteria grow in the insect host they 

produce toxins to kill the larvae, and potent antimicrobials to ward off potential 

competitors and saprophytes. Bioconversion of the insect tissue into more 

bacteria provides a food source for the growing and replicated nematodes [6].  

Additionally, both of these EPBs produce antimicrobial compounds such as 

bacteriocins that shelter the insect cadaver from the growth of other bacteria, 

fungi or yeasts [7].  Nevertheless, certain resistant bacteria can often still be 

found growing in the infected host insects such as Acinetobacter [8].  

Although they are unrelated, the life cycles of the Steinernematidae and 

Heterorhabditid worms appear very similar; however, detailed examination of 

the two model systems does reveal some differences [9].  Although the 

symbiotic association is essential for the reproduction and the growth of both 

Photorhabdus and Xenorhabdus in the environment, they can also be cultured 

independently as free-living forms in laboratory conditions [10] & [11].  

 

Photorhabdus- Heterorhabditis system: 

Photorhabdus is a member of the Enterobacteriacae and so is closely related 

to the Yersinia and Escherichia, although they have the distinction of living in 

an obligate mutualistic association with the soil dwelling nematodes belonging 

to the family Heterorhabditis.  The dual symbiotic-pathogenic life cycle of this 

bacterium provides a very tractable model system for studying the interactions 

between bacteria and eukaryotic hosts [12]. Photorhabdus bacteria colonize 

the intestines of Heterorhabditis spp IJs. In the IJ, the mouth and the anus are 

closed and the pharynx and gut are collapsed [12].  The interaction between 

the bacteria and the nematode appears to occur between the specific 

receptors on the intestinal epithelium of the nematodes and the cell surface 

molecules of the associated bacteria, creating species-specific colonization.  
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The IJs enter the insect host via the natural openings or directly through soft 

areas of cuticle using a tooth-like appendage [13]. An unknown “food signal” 

then induces the IJ to “recover” and regurgitate the Photorhabdus. The 

bacteria are able to overwhelm the insect’s innate immune system and 

replicate by using both proteinaceous and small-molecule toxins. In addition 

to insecticidal toxins they also employ more specific toxins such as type 3 

secreted proteins that allow them to resist phagocytosis by the insect 

hemocytes [14]. 

 

Examples of well characterized protein toxins include the Toxin Complexes, or 

TC’s, such as Tcc, Tcb, Tca and Tcd. All show toxicity to Manduca. sexta 

when injected, although the last two also show oral toxicity to the same insect 

model. Other toxins include the Makes Caterpillars Floppy (Mcf1 and 2) toxins 

[15] [6]& [16], the PVC system (Photorhabdus virulence cassettes) and an 

RTX-like metalloprotease (PrtA)  [17] & [6].  PrtA is a protein that carries the 

characteristic RTX repeated motifs typical of type I secreted proteins. This 

protease shows similarities to proteases from other Gram-negative pathogens 

such as Erwinia chrysanthemi, Pseudomonas aeruginosa and Serratia 

marcescens [18]. Several other hydrolytic enzymes such as proteases and 

chitinases secreted from the bacteria are believed to be used to break down 

the insect tissues to provide suitable nutrients for both bacteria and nematode 

growth and reproduction inside the insect cadaver.  Moreover, the symbiotic 

bacteria produce antibiotics that inhibit the growth of any competing 

microorganisms [2].  Photorhabdus spp are also able to resist death by 

humoural aspects of innate immunity such as the Phenol-Oxidase cascade 

and antimicrobial peptides by extracellular polysaccharide associated factors 

[19].  Ciche et al [16] found that as part of the symbiotic association, 

Photorhabdus not only provides food for the worm, but is also able to invade 

the nematode cells and mesoderm by binding to distal INT9 gut cells. It was 

shown that each mature IJ carries approximately 100 cfu of bacterial cells in 

their guts [20]&[5]. 
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Upon the initial invasion of the insect blood, the single IJ recovers to become 

a self-fertile adult hermaphrodite. The hermaphrodite can lay eggs that hatch 

into either males, females or more hermaphrodites.  The nematodes have four 

larval stages (L1-L4) before adulthood, and the IJ’s represent an alternative 

developmental stage of L2, similar to the environmentally resistant Dauer 

juveniles of C. elegans. When the insect resources run low, the bacteria 

invade the nematode and manipulate development to force all the nematodes 

to the IJ developmental stage. Finally, the IJs leave the cadaver and search 

for a new insect to infect [16].  Typically, a single IJ can result in the 

emergence of > 1000,000 IJs from a single infected insect host within 2-3 

weeks. This highly efficient process makes these symbiotic EPN associations 

important and useful biocontrol agents against crop pest insects [21]. 

 

Three distinct species comprise the genus of Photorhabdus : P. luminescens, 

P. temperate and P. asymbiotica [22].  The first two are restricted to insect 

hosts while the P. asymbiotica has also been associated with human 

infections in the USA and Australia [23]. Genomic comparisons of P. 

luminescens strain TTO1 indicates that P. asymbiotica has a smaller genome 

than TTO1, lacking the diversity of toxin genes seen in the TT01. In addition, 

the human pathogenic strains have also acquired plasmids similar to the 

pMT1 plasmid found in Yersinia pestis, the causative agent of the bubonic 

plague [14] & [24].  Furthermore, the genomic studies of P. luminescens and 

P. asymbiotica revealed the importance of secondary metabolite synthesis in 

this genus, used to facilitate their infection to the host [24].  In P. luminescens 

>6% of the genome TTO1 encodes genes expected to be responsible for the 

production of small bioactive compounds such as stilbene (ST) and 

corbapenem antibiotics and an anthraquinone pigment (AQ) [12]. 

Furthermore, some of these novel bioactive compounds were identified in P. 

asymbiotica using a technique called Rapid Virulence Annotation. This 

allowed the identification of two genetic loci responsible for the production of 

cytotoxic cyclic peptides [25].  
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Xenorhabdus-Steinernema system: 

A second well-characterized EPN partnership is the Xenorhabdus-

Steinernema complex. Xenorhabdus, like Photorhabdus sp, are 

Enterobacteriacae that have also evolved a nematode-mutualistic / insect-

pathogenic lifestyle. While the bacterial genera are closely related and the life 

cycle they employ is convergent with that of the Photorhabdus, the 

Xenorhabdus sp form mutualistic associations with entomopathogenic 

Steinernem, which are genetically unrelated to the Heterorhabditid nematodes 

[26].  For example, Xenorhabdus nematophila is mutualistically associated 

with the nematode S. carpocapsae [27].  Again, these EPNs have great utility 

as biological pest control agents.   

 

One central difference can be seen in the colonization of the different bacteria 

genera in these different nematodes. Xenorhabdus spp. are carried in a 

specialized region of the Steinernema intestine, termed the receptacle [28].    

Furthermore, the transmission of P. luminescens to H. bacteriophora infective 

juvenile progeny also appears to be significantly different than the 

transmission of the Xenorhabdus to S. carpocapsae. Photorhabdus 

transmission requires bacterial colonization and invasion of parental rectal 

gland cells followed by the induction of egg-hatch within the mother 

(endotokia matricida). Conversely, no endotokia matricida is needed for IJ 

colonization by Xenorhabdus in S. carpocapsae  [16]. 

 

Also, work published by Akhurst compared the virulence of Xenorhabdus and 

Photorhabdus on different insect hosts [29]. He found that some species of 

Xenorhabdus are non-pathogenic towards certain hosts. For example X. 

japonica was unable to successfully infect Spodoptera larvae while others 

could. It is possible that X. japonica may not have certain virulence factors 

present in other Xenorhabdus species. It is likely that different strains of 

Photorhabdus and Xenorhabdus all encode and deploy slightly different 

virulence factors in different hosts. Indeed, this is suggested by genome 

sequence comparisons.  
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Interestingly, strains of both genera produce phenotypic phase-variant cells, 

which arise during the prolonged culture in the laboratory [2]. Phase I is 

characterized by phenotypic characteristics such as the ability to produce 

antibiotics, exoenzymes, and are motile with peritrichous flagella able to 

swarm on agar [2]. Phase II cells produce few exoenzymes, have reduced 

crystalline inclusion proteins and pigments and are unable to support 

symbiosis with the host nematode. [30]. 

 

Conversely, both phases are equally virulent to insects as seen from Galleria 

mellonella studies [2].  However in X .nematophilus, phase II were non 

virulent when tested with M. sexta, and do not make the outer membrane 

protein OpnB in the stationary phase.  Moreover, a mutation does not appear 

to be involved in the phase II formation as described by Forst et al [2].  Known 

virulence factors of Xenorhabdus include TC and other toxins in addition to 

secreted lipases and lecithinases [31].  X. nematophila also produces 

haemolysins, and immune suppressants that are likely to be involved in the 

infection process. Brillard et al found haemolytic activities in most 

Xenorhabdus species, including X. nematophila culture supernatants, which 

could break down both mammalian erythrocytes and insect haemocytes [32].   

 

It has been found that entomopathogenic bacteria have a signal transduction 

system, induced to express certain genes as a result of infection; some 

regulatory systems such as Quorum sensing systems have been identified in 

Xenorhabdus and.Photorhabdus [33]. 

 

 

1.1.2.  Entomopathogenic Serratia 

Free living entomopathogenic Serratia spp. 

Serratia are Gram-negative, oxidative negative, catalase positive, 

heterotrophic, facultative anaerobic bacteria belonging to the family 

Enterobacteriaceae [34].  Serratia occupies many habitats such as water, soil, 

plants, and animals and occasionally causes human disease within health 
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care settings. Insect-associated Serratia spp. have been found widely 

distributed and with a variety of insects [11].  For example, Serratia 

marcescens is a pathogen frequently found infecting insects such as the Boll 

weevil [34]. Little is known regarding host-interaction or virulence factors in 

such strains. One of the central AMP molecules used by insects against 

Gram-negative bacterial invaders is Cecropin. It was shown that certain 

strains of insect pathogenic Serratia marcescens are resistant to this AMP by 

virtue of a secreted protease that degrades the Cecropin [35]. This protease 

virulence factor is essential for full pathogenicity.   

 

The nematode worm C.elegans was used as a model system to identify 

virulence factors in S. marcescens Db11. It was discovered that these 

bacteria produce proteases, lipases and chitinases as virulence factors during 

infection [36]. In addition, the lipopolysaccharide (LPS) component of S. 

marcescens bacterial cells was found to stimulate immune defense reactions 

in certain insects [37], which was a surprise as work on Drosophila suggests 

that purified LPS cannot be recognised by insect innate immunity. Bedick et al 

[37] show that injections of purified Serratia marcescens LPS into larvae of 

the tenebrionid beetle reduced stimulated hemocyte microaggregation 

reactions in the insects.  

 

Another recognized insect pathogenic Serratia is S. entomophila. This is used 

as a microbial control agent in New Zealand against grass grubs. The bacteria 

are prepared and delivered as granular formulations allowing them to survive 

in a stable form in the soil for up to five months over a wide range of soil 

moisture conditions [38]. Serratia entomophila and Serratia proteamaculans 

both cause amber disease in the New Zealand grass grub Costelytra 

zealandica. When injected into the hemocoel, approximately 104 cells are 

sufficient to kill 50% of the treated insects [39] & [40]. 
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The main virulence determinants for this disease are encoded on a 153,404-

bp plasmid, called pADAP (amber disease-associated plasmid) [41]. This 

plasmid encodes the sep A B C toxin and the “anti-feeding–prophage” (afp) 

operons which are homologues of the Photorhabdus Toxin Complex and PVC 

insect toxins respectively. Interestingly, homologues of the TC toxin genes 

have also been found encoded in the genomes of many other bacteria cited 

by Jackson et al [40], such as Yersinia pestis C092, Pseudomonas syringae 

pv. tomato DC3000, P. syringae pv. syringae B728a (gi:28876514), 

Pseudomonas fluorescens PfO-1 (gi:48732052) and Chromobacterium 

violaceum ATCC 12472. Many of which likely interact with insects in the soil 

[42] & [43]. 

 

Kaska group [44] stated that several secreted enzymes have been shown to 

play important roles in the virulence of Serratia including proteinases, 

chitinases and lecithinases cited by Grimont  [44, 45].   It should be noted that 

the genus Serratia contain several species that have also been isolated from 

human clinical specimens including; Serratia ficaria, Serratia fonticola, 

Serratia odorifera, Serratia plymuthica, Serratia rubidaea and Serratia 
entomopa [46]. This suggests many diverse virulence factor genes may be 

present and available for horizontal gene transfer in these related bacterial 

species.  

 

Nematode associated Serratia spp, 

Recently, a novel Serratia spp was found to be associated with nematodes. 

To date four Serratia species have been shown to be associated with 

nematodes [47], [48], [49] & [50]. It was found that all of the three species 

have a close evolutionary relationship based on molecular studies [51]. 

The first identified Serratia sp found in symbiotic association with nematodes 

was Serratia nematophila sp.  S .nematodiphila sp. Nov. was found in the 

intestine of EPNs belonging to the family (Rhabditida:Rhabditidae) called 

Heterorhabditidoides chongmingensis [49].  The strain was isolated by two 
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methods, the first was from crushing the surface sterilized isolated 

nematodes, followed by identifying the isolated colonies in the nutrient 

bromothymol blue agar (NBTA) plates.  And the second was from streaking 

the nematode-infected insects’ haemolymph on the (NBTA) plates. 

Physiological characteristics and phenotypic characterization of this novel 

Serratia, such as the inability to use oxalate as a source of carbon and 

arginine dihydrolase activity, confirmed the discovery of this new sp of 

Serratia [49].  

 

The second associated Serratia was Serratia sp. SCBI detected in South 

African soil samples with Caenorhabditis species KT0001 as well as other 

Caenorhabditis nematodes [52] & [29].  This newly discovered Serratia SCBI 

was recovered from the soil baited with G.  mellonella. It was suggested that 

the Serratia are able to enter the insects along with the nematodes and 

overcome the immune response.   This study by Abebe et al [52] suggested 

that the nematodes formed an IJ like stage containing the Serratia sp. SCBI 

and that the females also underwent endotokia matricida like Heterorhabditid 

nematodes. Despite this, they found that this association lacked specificity for 

several Caenorhabditis species they tested [52]. Based on 16S rDNA, 

Serratia sp SCBI was identified as closely related to S. marcescens Db11[52].   

Another study confirmed that these two strains are 99% identical (32). The 

third Serratia sp was found in the cuticle of Oscheius carolinensis (Nematoda: 

Rhabditidae), able to penetrate, colonize and kill five different insect species 

in the laboratory.  The pathogenicity of Serratia isolated from the nematodes 

was compared to that of surface sterilized nematodes. It was found that the 

surface sterilization reduced the nematode’s ability to colonize in the insects 

[48]. 

 

It is clear that the Serratia marcescens associated with the Caenorhabditis 

species KT0001 provides the nematodes with entomopathogenic potential 

[48]. Comparative studies on Serratia sp SCBI and Serratia marcescens Db11 

showed that while both strains have similar virulence properties and 
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temperature dependent responses, they do differ in the swarming activity. 

Serratia sp. SCBI has been found to swarm on media with different agar 

concentrations, whereas S. marcescens Db11 does not [51].   

 

The fourth nematode associated Serratia was found in 2013 and was 

identified as a S. marcescens strain which was associated with a Rhabditis 

sp. nematode[50].  The pathogenicity of this new bacterial isolate was tested 

in G. mellonella. This strain was shown to produce virulence factors able to 

suppress the insect immunity. In addition it produces several proteases, such 

as a serralysin-like metolloprotease protein lethal to the host.   This protein is 

significantly different from the genes found in S. proteamaculans 568, and it 

has been suggested that this protein could be used as a biological control 

[50]. 

 

1.1.3.  Other examples of Entomopathogenic bacteria 

Moraxella osloensis is a Gram-negative bacterium, associated with slug-

parasitic nematodes phasmarhabditis (Rhabditida: Rhabditidae). These EPN 

complexes have been developed as a biological pest control for slugs. The 

nematode acts as a vector to transport the bacterium into the body cavity of 

the slug, which is then killed within 4-16 days post infection[53].   It was found 

that Moraxella produces a highly toxic LPS endotoxin, which has a molecular 

weight of 5300 KD and is heat resistant. When injected into the slug it alone 

can cause the death of the slug [54] . 

 

A selective capture of transcribed sequences (SCOTS) technique was used in 

order to identify relevant gene expression by M. osloensis in the slug. A 

protein-disulfide isomerase and a protein kinase were characterized as 

important virulence factors of M. osloensis. In addition, the sclB, vspC, 

and spp, genes were also identified which encode structural proteins of the 

outer membrane. It has been suggested these proteins are important in 

immune evasion [55]. 
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Perhaps the most famous and certainly the best-studied examples of 

entomopathogenic bacteria are members of the genus Bacillus such as B. 
thuringiensis and B. sphericus. Many of these bacteria produce crystal and 

binary toxins, such as the economically important δ- endotoxins. These toxins 

can be divided into two families: the crystal proteins (Cry) and cytolytic (cyt) 

toxins, both produced during sporulation. They can have potent effects on the 

insect midgut [5, 56, 57].  Cry and Cyt proteins are related toxins and 

commonly carried on plasmids [58].  In addition, some molecular studies have 

indicated that many Cry proteins implicated in toxicity are often highly 

conserved over evolution [59].  The activity spectrum of different examples of 

these toxins often differs widely.  

 

For example many of the Cyt toxins are toxic to Diptera only while the Cry 

toxins can be active against many different insect orders including 

Lepidoptera, Diptera, Hymenoptera and Coleoptera [60].  Toxin production is 

not restricted to sporulation as exemplified by the B. thuringiensis vegetative 

insecticidal proteins (Vips), which are produced during the vegetative growth 

of the bacteria. Three types of Vip have been identified; Vip1 and 2 are highly 

active against western corn rootworm beetle (Diabrotica virgifera) [61],  whilst 

Vip3 has been shown to be highly active against several Lepidopteran pests 

[62].   Insecticidal toxins produced by B. sphaericus include the BinA, BinB 

and Mtx toxins, which have been shown to have potent activity against 

mosquito larvae [57].   While many of the toxins discussed so far are encoded 

on mobile plasmid replicons, there are examples of proteins encoded on the 

chromosomes of these Bacillus species that also play a role in virulence 

against insect hosts; for example, phospholipase C, proteases and 

hemolysins in the closely related Bacillus thuringiensis and Bacillus cereus. 

These are regulated by the common PlcR/PapR quorum sensing system and 

have been shown to be important virulence determinants [63]. 

 

Pseudomonas entomophila is a soil bacterium that kills insects of different 

orders including the important model insect Drosophila melanogaster. P. 
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entomophila is known to produce a number of virulence factors including: 

insecticidal toxins, proteases, hemolysins and hydrogen cyanide. In addition, 

several potential adhesins  encoded with type I or II secretion system genes 

and unique secondary metabolite synthesis genes are important in infection 

and killing insects [64]. 

 

P. entomophila also secretes a metalloprotease called AprA that acts as a 

virulence factor, which is controlled by the GacS/GacA system.  AprA 

suppresses the activity of antimicrobial peptides produced in the gut as part of 

the innate immune response of the insect.  P. entomophila can also kill 

diverse insect orders including the Lepidopteran silkworm Bombyx mori and 

the disease vector mosquito Anopheles gambiae. As such, this 

entomopathogenic bacteria has great potential for development as a 

biological pest control agent in both agriculture and vector control[64]. 

 

1.2. Diversity and adaptation of Entomopathogenic 
nematodes 

Soil provides a rich source of many insect pathogens, such as viruses, 

bacteria, fungi and nematodes.  Judicious application of these natural 

enemies of insects has been deployed to help in the fight against insect crop 

pests [65].  

 

Some studies suggest that there may be over 10 million different nematode 

species occurring in diverse environments on earth [66].   Nematodes can be 

found in all habitats rich in organic carbon sources.  In the soil, nematodes 

adapted to many different food sources may be found. Some are purely 

saprophytic or feed on bacteria and fungi in the soil, whilst others may be 

specialised plant or animal parasites and predators. Many may be able to 

utilise diverse sources of nutrition. In the work presented here, the 

entomopathogenic parasites and predators of insects are of primary interest. 

Previous work has shown that nematodes may associate with insect 
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pathogenic bacteria either in obligate mutualistic relationships or potentially 

more short term and less stringent associations [66]. 

 

This spectrum of bacterial-nematode associations presents ideal model 

systems for studying host-bacterial interactions, both symbiotic and 

pathogenic, and also for understanding the principles of co-evolution. Interest 

in studying the Entomopathogenic nematodes (EPNs) has increased because 

of their importance as biological control agents for pests, in addition to basic 

research in ecology, evolution and symbiosis [67] & [68].  As discussed 

above, there are two important well studied EPN families. The first family is 

the Steinernematidae nematodes that associate with Xenorhabdus bacteria 

and the second family is Heterorhabditidae which associate with 

Photorhabdus sp. bacteria [69].  These EPN complexes are highly virulent to 

insects, killing their hosts rapidly, and can be cultured easily in the laboratory 

using model insects and the “White-trap” technique [68].  The free-living 

nematodes can carry symbiotic bacterial cells in their intestine at the infective 

juvenile (IJ) stage. When the infective juvenile enters the hemocoel of an 

insect host they release the bacteria [70]. In Steinernema species the 

nematodes also produce enzymes to suppress their immune response, 

although it is not known if Heterorhabditis nematodes also do this [15] & [30].  

The nematodes reproduce in the dead insect for 1-3 generations, then release 

a new generation of IJs that contain the bacterial cells and are released from 

the insect body to hunt for a new insect [15].  It was found that unknown “food 

signals” influence the recovery of the EPNs, and that nematodes could often 

use non-cognate bacteria as food; but without their specific symbiont the 

virulence was reduced [71] & [72]. This indicates very specific but as yet 

undefined determinants of mutualistic specificity. 

 

Natural entomopathogenic nematode (EPN) populations have previously been 

surveyed in different areas of the world, around Europe [73], Southern France 

[74],  Portugal [75], Jordan [76] and Iran [77].   In some cases there was 

evidence of more specific prey-host-associations although in others it seemed 
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more opportunistic predation was common. In addition, the population 

structure of EPNs may vary with habitat. For example; Steinernema sp are 

found to be very common in Oak woodland soil samples in Southeastern 

Arizona [78] and California [1], although  Steinernema sp and Heterorhabditis 

sp with their associated bacteria Xenorhabdus sp and Photorhabdus sp 

appear to be specialized to ecological niches other than woodland [79]. H. 

bacteriophora is abundant in southern Europe where it is known to harbor 

Photorhabdus spp [80]. There is some evidence that different strains of H. 

bacteriophora are also adapted to different habitats based on biotic and 

abiotic factors such as insect host, soil and salinity [79].  Climatic conditions 

and soil type may influence the distribution of bacteria and the associated 

host [81].  The activity of nematodes is also dependent on environmental 

conditions. Steinernematidae and Heterorhabditidae are adapted to a wide 

range of habitats, but their distribution is known to vary throughout the British 

soils according to soil type, and they are less commonly isolated in the 

summer [81].  

 

The infectivity of Heterorhabditis sp and Steinernema glaseri on Lucilia 

cuprina larvae was lower in soils of high clay content than in loamy sandy 

soils, particularly when the moisture content was low. In sandy soils, however, 

both nematode species readily infected larvae over a wide range of moisture 

content [82].  Consistent with this, a study in Ireland noted that 

Heterorhabditis sp and Steinernema sp were more frequently recovered from 

sandy and wet soils than from clays and clay loams [83], and this study 

confirmed that these species were less likely to be recovered in the summer 

months. In contrast, the movement of the nematode Phasmarhabditis 

hermaphrodita, which is commonly used as a slug biocontrol agent, is higher 

in clay loam soil than in sandy loam soil [84].  

 

Moreover, it has been found that habitat may play an important role in 

distributing the nematodes in the soil; some strains of Heterorhabditis have 

been isolated from calcareous soil such as H. indica and H. marelatus.  Other 
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species are isolated from coastal regions in turf and weedy habitats such as 

H. megidis and also H. bacteriophora both found in acidic soil [15].  On the 

other hand, Steinernematids are frequently isolated from woodlands [85].    

Within the Steinernematids, S. feltiae and S. carpocapsae were globally 

distributed, found in different habitats such as, forests, gardens, national 

parks and pastures [85].  Whereas other species found in grasslands and 

woodlands such as S. feltiae [86], and S. kraussei were found in coniferous 

forests (USA and Canada) and woodland [87]. 

 

Previous reports have found that United Kingdom soils commonly contain 

predominantly Xenorhabdus-Steinernema EPN complexes. Furthermore, a 

previous four loci MLST analysis demonstrated that only moderate variation 

occurs between the strains isolated from different UK soil samples [88].  

Unfortunately, most previous surveys do not contain sufficiently large 

sampling regimes meaning there is insufficient data to understand population 

structure with any certainty. Increasing the sampling size and improving 

nematode (and bacteria) identification accuracy would improve this. In 

addition, the predominance of any potential host insect species is also not 

normally known for any given sampling site, meaning it is hard to interpret the 

reasons behind the special heterogeneity of EPNs [85]  . 

 

Identification and characterization surveys of EPN have recently increased.  

Moreover, some studies have revealed the successful relationship of specific 

bacterial strains with the EPB, such as Xenorhabdus sp with Steinernema 

feltiae and S. affine and Photorhabdus sp associated with Heterorhabdus 

bacteriophora [79].  EPN can provide effective biological control of some soil 

insect pests [89].  Some surveys focused on the adaptation of certain EPN 

with their environment and their associated bacterial strain such as the 

surveys in Southern France [79] and Spain [90]; other surveys were 

conducted in Middle Eastern countries in Jordan [89], Egypt and Oman[79].   

In Britain, Hominick and Briscoe [81] studied the occurrence of EBNs in the 

British soil; they concluded that the frequency of the nematodes differed in 

different parts of Britain, suggesting that the occurrence of these nematodes 
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is affected by soil type [81]. To date, Steinernema feltiae and Heterorhabditis 

bacteriophora are the most abundant species isolated in continental Portugal.  

Out of 791 soil samples collected in continental Portugal, 53 were positive to 

Steinernema and Heterorhabditis [75]. 

 

Most surveys have used the “White trap” method described in 1975 [91] in 

order to isolate EPNs from the soil. This is an assumption free method used to 

isolate EPNs that typically uses Galleria mellonella larvae to “bait” soil 

samples. As such it is able to identify any novel entomopathogenic 

nematodes (or indeed any other pathogens) based purely on their infective 

ability [92] [81]. It should be noted that other methods have also been used in 

order to avoid sampling problems associated with for example host specificity, 

such as passive soil extraction methods. These methods are more 

appropriate for the study of population structure although identification 

becomes an issue [85]. 

 

In contrast to the EPNs, the model nematode Caenorhabditis elegans is very 

well characterized at a genetic and developmental level, although little is 

known about its natural life history [93]. EPNs are globally distributed and 

some studies show they may be key to regulating soil food chains [93]. A few 

species are now being developed as model systems in genetic and molecular 

studies. These include the full genome sequencing of a Heterorhabditid 

nematode [94] and also the Diplogastrid nematode Pristionchus pacificus [95].  

A study on the genetic structure of natural populations of C. elegans revealed 

a low level of outcrossing and little geographical diversity in C. elegans due to 

frequent migration of these nematodes in the soil [96]. 

 

Caenorhabditis elegans and C. briggsae are closely related to each other; 

both are soil-dwelling, self-fertilizing hermaphrodites, with facultative males. 

Evidence is emerging that at least C. briggsae can act as an EPN if provided 

with an appropriate Serratia bacterial partner. It cannot be discounted that C. 
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elegans itself also intermittently engages in entomopathogenic activity by 

virtue of unstable associations with insect pathogenic bacteria. C. elegans has 

been studied in exceptional detail, and RNAi genetic knock-down studies 

have not been able to account for the biological role of around 1/3 of its 

genes. It is possible that much of this genetic material is relevant to cryptic 

bacterial interactions and life cycles involving parasitism in insects [97].   

 

The nematode Pristionchus pacificus has been used as a model to study 

evolutionary and developmental biology, ecology and population biology. P. 

pacificus is a nematode with six chromosomes able to reproduce as 

hermaphrodites, similar to C. elegans; their life cycle is 4 days at 20°C [98].  

The worm can also produce males under stress conditions. The essential 

differences between Pristionchus and C.elegans are in the feeding apparatus 

(valve-pump and grinder) and also in the ecological niches they occupy. 

Pristionchus sp have an embryonic molt, and the non-feeding stage in this 

genus is J1, which will molt to J2 before they hatch from the egg. In addition, 

P. pacificus has a highly developed vulva with an evolutionary modified 

structure, unlike C.elegans [95]. P. pacificus is distributed widely with a well-

studied example being strain PS312 isolated from Pasadena (California) (see 

http://wormbase.org/db/gene/strain) [99]. Most nematodes belonging to the 

order Rhabditid are soil-dwelling bacterial feeders.  P. pacificus is a 

cosmopolitan nematode with a specific necromenic association with scarab 

beetles and the Colorado potato beetle (Leptinotarsa decemlineata) [100] . 

This relatively specific association with these host beetle species and their 

habitats has facilitated the study of the nematode adaptation to their 

environment. Around 1200 Pristionchus were isolated from 15000 surveyed 

beetles in North America and Europe, which were shown to fall into 18 diverse 

species, with a specific biogeographic component [101]. While the 

caenorhabditids also show necromenic associations they are not specific, 

prompting the study of their population structure.  

A study published in 1993 suggested that the specific entomopathogens 

Heterorhabdutus and Steinernema had evolved from a more general 
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necromenic nematodes species associated with an entomopathogenic 

bacteria [102].  Blaxter’s nematode phylogram [103], suggests that the 

Heterorhabditids belongs in the same genetic clade as Caenorhabditis and 

Pristionchus, sharing many features in lifecycle and growth. Conversely, the 

Steinernema are placed in a more distant neighboring clade [104]. 

 

Nematodes cultured in the laboratory are often able to associate with bacteria 

other than a natural symbiont [10]. This means care must be taken in 

assigning any new mutualistic associations. The recent studies showing that 

certain nematodes can utilise pathogenic bacteria to kill insects, such as the 

associations of Oscheius sp, and Caenorhabditis with Serratia as a partner to 

invade and kill insects, are of particular interest [52]. These studies suggest 

that the Serratia may be changing the behaviour of the nematode host [105]. 

Typically C. elegans will avoid Serratia sp as many strains of these bacteria 

are pathogenic to the nematode. Despite this, it was shown that the 

Caenorhabditis briggsae KT0001 nematodes were specifically attracted to 

their associated Serratia sp. This suggests a level of co-evolution, and 

potentially specific adaptation of the nematode for the partner bacteria [52].  

 

Behaviour of nematodes 

In the case of the EPN nematodes, most of the research has focused upon 

the phoretic behaviour of the IJs because these are the only free-living stage 

that can be visualised outside of the complex internal environment of the 

insect cadaver. There is interest in the choices that the IJs make regarding 

host preference and ability to seek out prey, primarily as these are central to 

their role as biological pest control agents [106].  Some Steinernema sp and 

Heterorhabditis sp have been compared to understand their behaviour in the 

field such as their vertical distribution in the soil. S. carpocapsae can typically 

be isolated from the upper 1-2cm of the soil, whereas H. bacteriophora is 

distributed in the upper 8cm of the soil [107].  Others have found that H. 

bacteriophora could be isolated from much deeper in the soil, up to 35 cm 
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[106]. In addition, there is also variation in the emergence behaviour of the IJs 

of different EPN strains. For example male S. glaseri IJs were the first to arise 

from the hosts, and more reactive volatile cues from other host than the 

female [108].   However, this is not true for other Steinernema sp such as S. 

feltiae [109].  The condition of the insect cadaver also appears to play a role in 

influencing nematode behaviour, as it was shown that the infectivity of H. 

bacteriophora isolated in the laboratory from white traps could be up to ten 

times stronger than that of naturally isolated IJs [110].  Finally, the EPNs 

behaviour is also influenced by other abiotic factors such as temperature, 

humidity and soil type, which influences the nematode’s hunting ability, 

movement and infectivity [111]. 

  

1.3. Evolutionary and phylogenetic inference 
 
Phylogenetics is the study of evolutionary descent and relatedness [112]. 

Previously this was carried out using phenotypic markers, but most 

phylogenies are now based on the DNA sequences. These molecular data 

can be represented either as a phylogenetic tree [112] or else as a network if 

there are conflicting signals in the data [113]. Phylogenetics has played a key 

role in studying the biodiversity, geographic distribution, host range, ecology, 

behavior and coevolution of Entomopathogenic bacteria and nematodes 

[114]. 

 

16S ribosomal DNA sequence is the most commonly used phylogenetic 

marker, as it is universally present in bacteria and a high level of conservation 

makes it possible to design PCR primers that work on a wide range of taxa 

[115].  However, it is often not possible to distinguish closely related species 

or different strains belonging to a single species using this approach.  DNA 

hybridization techniques can also be used for the analyses of genetic 

relationships of closely related strains; however these can incur relatively 

large errors. An alternative technique was Multilocus Enzyme Electrophoresis 

(MLEE), which has been used as a standard method in eukaryotic population 
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genetics for some time [116].   This method has also been used to study the 

genetic diversity and structure in bacterial populations of a variety of species. 

MLEE allows the detection of variation within species by assaying the 

electrophoretic mobility of proteins on starch gels [117].  

 

1.3.1.  Multilocus sequence analysis (MLSA) 

The same concept was adopted for the current methods of Multilocus 

sequence typing (MLST) and Mulilocus sequence analysis (MLSA)  

[118]&[119], except that in this case variation is determined by direct gene 

sequencing of several “housekeeping” genes. MLST represented an 

improvement on MLEE as it detects all mutations arising within an internal 

fragment of a gene and not just those altering the electrophoretic mobility of 

the final protein product. Dauga et al [120] demonstrated that the phylogenetic 

trees based on shared genes other than 16S DNA are more useful for 

distinguishing between closely related strains. Moreover, the analysis of 

multiple genes distributed along a chromosome as opposed to just one locus 

is important because it reveals evidence of horizontal gene transfer, which 

can occur frequently within bacterial populations [120]. 

 

MLST is now used widely for the molecular typing of different bacteria strains 

and species, such as Neisseria meningitidis [121],[122] &[9]. The allelic profile 

(combination of alleles at each locus) defines the sequence type (ST), which 

is equivalent to the Electrophoretic Type (ET) defined by MLEE data. The 

relatedness between two strains is then indicated by how many identical 

alleles they share [123]&[124].  Frequent recombination makes the 

interpretation of dendrograms problematic, as the different genes will not 

define the same patterns of relatedness between strains [125]& [126]. 

However, this method allows for calculating the rate of recombination in the 

population [127]. Whereas a point mutation results in a single base change, a 

recombination event may result in multiple nucleotide changes. This means it 
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is possible through a close examination of the sequences to determine the 

relative impact of these two processes on genome divergence [128].  

 

MLST schemes have now been developed for a range of bacterial pathogens 

and databases are freely available (e.g. www.mlst.net & www.pubmlst.org). 

There are many examples of how MLST data has been used to infer recent 

patterns of evolution. For example, MLST has been used to demonstrate a 

European origin of the spirochaete Borrelia burgdorferi, which causes Lyme 

disease [129].  Another example is the characterization of the endosymbiont 

eubacterial genus Wolbachia pipientis [81, 129].   This bacterium has an 

important role in biological control, and is widely found within the arthropods. 

The MLST data reveal a high level of recombination and horizontal 

transmission between different host species [129].  

MLST have been used widely in epidemiological research, population biology, 

pathogenicity studies, and in understanding the evolution of bacteria.  This is 

a rapid technique and, as sequencing costs fall, has been adopted by many 

laboratories facilitated by a worldwide web-based database application. 

 

1.3.2. eBURST 

Frequent horizontal gene transfer in many bacterial lineages can make 

interpretation of MLST data problematic. In the absence of strong selection, a 

regular accumulation of variation by mutation across time means that genetic 

distance tends to equate to the time of divergence between alleles.   As stated 

above each unique allele sequence, compared to the other alleles in the 

database, is assigned an ST-number that clearly identifies a specific lineage 

[123].  Patterns of evolutionary descent among closely related STs can then 

be inferred using the eBURST algorithm [125]. This algorithm builds an un-

rooted tree based on the differences in the allelic profile; this procedure sub-

divides the data into closely related clonal complexes (CCs) and predicts a 

founding genotype of each clone.  
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The program then derives the most likely evolutionary descent of all STs in 

the group from the founder.  If the STs differ at only one locus from the 

founder genotype they are designated as single locus variants (SLVs) [123]. 

Further mutations of those SLVs can result in variation in more than one 

housekeeping gene in the allelic profile frame and are then classed as double 

locus variants (DLVs) and triple (TLVs) etc. [130] & [131].  This method 

provides predictions about the founding genotypes as well as giving a clearer 

picture of the evolutionary descent than a standard dendrogram assigned by 

MLST.  

 

An alternative implementation of BURST rules has been developed, called 
goeBURST (global optimal eBURST), which is part of the Phyloviz platform 

[132].   This version differs from eBURST in that it provides the ability to 

connect all STs, and is based on an improved algorithm for determining the 

links.  

An example of the acyclic graphs produced by goeBURST is shown in Figure 

1.1 [130].  

 



25 
 

 

Figure 1.1. Burkholderia pseudomallei showing the Clonal Complex 48. The population 
snapshot represents the largest clonal complex for Burkholderia pseudomallei, with ST48 as 
the determined founder. (Adopted from Francisco et al [123]) 

 

 

 

The phylogenetic signal in molecular data is often conflicting, such that the 

variation within one gene might cluster strains that appear more distantly 

related on the basis of a second gene. The SplitsTree program is designed to 

illustrate the extent of such conflicts in the data [133].   The program relies on 

a method called “split decomposition”, and can be used to gauge the 

frequency of recombination events (driven by horizontal gene transfer) in the 

evolution of a clade [113] — as this is a common way by which conflicting 

phylogenetic signals can arise (Figure 1.2) [134]. 
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Figure 1.2.  Example of a network tree generated using the SplitsTree program. Adopted 
from Shennan and Collard [135]. 
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2.1.  General  Materials  
 
 
2.1.1.  Bacterial strains and culture methods  
E. coli strains were used in triparental mating as donor cells, as well as 

controls in infection experiments (Table 2.1).  

 
Table 2.1. Escherichia coli strains and associated plasmids used in this study 
 
E. coli 
strain 

Uses Notes / genotype  Selection Source 

OP50 Strain for feeding C. 
elegans and Serratia 

Uracil-requiring E. coli 
mutant; grows thinly on 
nematode growth agar, 

therefore nematodes can 
be visualised 

- Waterfield 
laboratory 

WM3064 
pURR25 

 

Donor cells contains aRP4 mob for 
 conjugation, pir gene for 
replication R6K ori-based 

replicons 
pURR25 is the plasmid 
Containing miniTn7KGFP 

transposon  

- Waterfield 
laboratory 

WM3064 
pUX-
BF13 

Donor cells contains aRP4 mob for 
 conjugation, pir gene for 
replication R6K ori-based 

replicons 
pUX-BF13 is the plasmid 
Containing miniTn7KGFP 

transposase 

 Waterfield 
laboratory 

pHC60 Strain for feeding C. 
elegans and Serratia 

Tetracycline resistance 
marker and expressing 

green fluorescent protein 

 Waterfield 
laboratory 

     

 Photorhabdus luminescens TT01  

 Pseudomonas fluorescens  

 Bacillus cereus  
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Bacterial culture media  

Bacteria were grown on Luria Bertani (LB) agar plates at 28 °C overnight, 

unless otherwise stated. Stocks were stored long-term in 35% glycerol at -80 

°C. Culture media used in this study are listed in Table 2.2.  

 
 
 
 
Table 2.2. Bacterial culture media 
 

Media Use Composition 

Luria Bertani 
(LB) broth Bacterial growth 

10 g tryptone peptone, 5 g yeast extract, 5 g 
sodium chloride (pre-formulated, Sigma). 1 L 
dH2O. Autoclave at 121 °C. 

LB agar Bacterial growth and 
isolation 

10 g tryptone peptone, 5 g yeast extract, 5 g 
sodium chloride (pre-formulated, Sigma). 15 g 
Bacto agar (Difco), 1 L dH2O. Autoclave at 121 °C 

 
 
 
 
2.1.2.  Nematode maintenance 

Caenorhabditis elegans and the collected worms were maintained on 

Nematode Growth Medium (NGM) agar at room temperature, using E. coli 

OP50 as a feeding strain (200μl spread per plate) and transferred weekly to 

fresh plates.  

 
Nematode Growth Medium (NGM) agar, contains:   
3g NaCl, 2.5g Bactopeptone, 17g Bactoagar, dH2O to 1L. Autoclave at 121 

°C for 15 min, when ~50 °C, add 1ml cholesterol, 27.6ml KH2PO4, 1ml 

MgSO4, 1ml CaCl2. For feeding: 200μl E. coli OP50 onto dry plates, 

incubated at 37°C overnight. For nGOT assays, add 25 ug/ml 

chloramphenicol.  Used for maintenance and feeding (with E. coli OP50 

bacteria). 
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2.1.3.  Invertebrate species and maintenance 
For bacterial infection threetypes of invertebrates were used as model hosts  
 
Table 2.3. Invertebrate species used in this study 
 

Species  Notes Source 

Manduca sexta Order: Lepidoptera 

Tobacco Hawkmoth. Insect 
larva used at fifth-instar 
stage for injection assays. 
Used at neonate stage for 
feeding assays 

In-house 
colony, 

University of 
Bath 

Galleria mellonella Order: Lepidoptera 

Greater Waxworm. Insect 
larva used at fifth-instar 
stage for injection assays 
and for soil baiting 

Livefoods UK 

Caenorhabditis 
elegans Order: Rhabditida 

Nematode worm. Bristol N2 
strain. Used for nematode 
feeding assays.  

Cultured in-
house, 

University of 
Bath 

 
 
 
Insect maintenance 

A Manduca sexta colony was maintained in controlled conditions (25 °C, 80% 

humidity) and on an artificial diet as detailed in Table 2.4.  Galleria mellonella 

larvae were purchased in batches from Livefoods Ltd and stored at 4 °C with 

no requirement for feeding.  

Table 2.4. Details of Manduca sexta diet 
 

Media Uses Composition 

Manduca diet M. sexta maintenance and 
feeding, infection assays 

Premix: 2700g wheatgerm, 1260g casein, 
1080g sucrose, 540g dried active yeast, 360g 
Wesson’s salt, 36g choline chloride (Sigma), 
72g cholesterol, 36g methyl paraben, 54g 
sorbic acid. Stored 4 °C. 
Per cake: 336g premix,  1770ml dH20, 22.5g 
agar, 4ml corn oil, 4ml linseed oil, 8ml 4% 
formaldehyde, 0.2g chlorotetracycline, 0.2g 
Vandersant vitamins, 8g ascorbic acid [136] 

Antibiotic-free 
Manduca diet M. sexta feeding assays  Recipe as for complete diet (above) minus 

formaldehyde and chlorotetracycline. 
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2.1.4.  Solutions used 
 
Table 2.5. Solutions used for the nematodes 
 

Reagent Preparation Source 

Phosphate buffered 
saline (PBS) 

Pre-formulated tablets dissolved 1 per 100ml as per 
supplier guidelines. Autoclaved at 121 °C Sigma 

Freezing solution 15 mM NaCl, 15 mM KH2PO4 (pH 6), 24%glycerol 110ml 
dH2O autoclave, .4% Bacto agar 0.4 mM MgSO4. Sigma 

Egg buffer 118mM NaCl,48mM KCL, 2mM CaCL2, 2mM MgCl2, 
25mM pH7.3. Sigma 

Lyse buffer 5ml fresh chlorox, 1.25ml 10N NaOH ans 18.75 ml sterile 
water Sigma 

 
 
 
 
 
 
Table 2.6.   Antibiotics used  
 

Reagent Preparation Source 

100 mg/ml. Kanamycin 
sulphate 

 
1g of powder was dissolved in 10ml of double-distilled 
water. 
 

Sigma 

 
100 mg/ml. 

Tetracycline 

1g of powder was dissolved in 10ml of double-distilled 
water. 
 

Sigma 

 
All the solutions were sterilized by filtration through a 0.2 µm membrane.   
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2.2.  Methodology: 

 
2.2.1.   Sampling overview 

Three separate studies were carried out involving the sampling of 

entemophathogenic nematodes and bacteria from the wild. In each case, 

approximately 50 g of soil was placed in a plastic cup, and this soil was 

“baited” with three Galleria larvae. The first was a preliminary study conducted 

in October 2007 where soil samples were taken from different habitats on the 

golf course near the University of Bath. In May-June 2008, sampling was 

carried out along two 15M transects on the University of Bath campus, over a 

five week period. The third study (February and May in 2009) was carried out 

on a nationwide scale and was based on two transect lines, one running east-

west for 230 Km (Road distance) along the south coast of England (from 

Lewes to Sidmouth; E-W transect), the other running 140Km south-north 

(from Bath to Ludlow; S-N transect).   

 
 

i. Preliminary small-scale study  

Soil samples were collected in October 2007 on or near the Bath Golf course 

as shown in Figure 2.1.  Habitat types and longitudinal-latitudinal coordinates 

of these samples are given in Table 2.7.
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Table 2.7. Description of soil sample sites near or on the campus of the University of Bath 

and their coordinates, determined using the GPS device Garmin 205. 

Site number Location description site coordinates 
1 Bunker N 51°23’2.52 

W 002°19’13.38 
2 Woodland N  51°22.55.2’ 

W 002°19.869’ 
3 Bunker N 51°22.955’ 

W 002°19.614’ 
4 beside the tree N 51°22.970’ 

W oo2°19.614’ 
6 Bunker N 51°22.977’ 

W 002°19.568’ 
7 compost border N 51°22.959’ 

W 002°19.572’ 
8 Woodland N 51°22.961’ 

W 002°19.538’ 
9 the rough N 51°22.971’ 

W 002°19.510 
10 edge of the bunker N 51°23.007’ 

W 002°19.370’ 
11 middle of the bunker N 51°23.007’ 

W 002°19.365’ 
12 Woodland N 51°23.038 

W 002°19.224 
13 Woodland N 51°23.052 

W 002°19.213 
14 Woodland N 51°23.042’ 

W 002°19.223’ 
 

 

 
       Figure 2.1.  The location of the soil sampling sites near the Bath Golf course, 
      using Google earth. 
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ii  Localized survey on University of Bath campus 

The second preliminary survey was carried out in May-June 2008 along two 

15M transect lines on the campus of the University of Bath (location A and B 

in Figure 2.2). Location A was near the medical centre and Location B near 

Bath Cats and Dogs Home. As this study aimed only to examine spatial 

effects, in contrast to the preliminary study described above, all soil samples 

were collected from the same habitat (grassland). Samples were taken along 

each transect, which was marked with bamboo poles, either 0.5 M apart or 2 

M apart over a period of five weeks. For each transect line, further soil 

samples were also collected from a site about 15 M away from the main site.  

 

Figure 2.2. The sites of Location A and B near the University of Bath campus; location A was 
near the medical centre and Location B near Bath Cats and Dogs Home. Google map 
UK/University of Bath 
 

The thirteen sample sites at each transect are illustrated in Figure 2.3. Seven 

sample sites at one end of the transect were 0.5 M apart, and a further 6 

sample sites were 2 M apart. Samples were taken from all these sites for both 

transects, plus a separate site 15 M away, once a week for 5 weeks. At a 

single sample site (#9 in Figure 2.3) 3 samples were taken at each time point 

from different depths (0.0, 5.0, 10.0 cm). A total of 150 soil samples were 

taken.  
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Figure 2.3.  Diagram represents the transect line for the two locations A and B, showing the 
distances between sites numbered from 1 to 13 and different depths in site 9, with control 10 
M apart from the line; the distance between location A and B was 1.5 Km. 
 

iii)  Large-scale survey in Southern England and Wales 

Soil samples were collected from different habitat types along two large-scale 

transect-lines, one running east-west along the south coast from Lewes to 

Sidmouth (Transect A) and the other running south-north from Bath to Ludlow 

(Transect B); both samples were taken in February 2009 and May 2009. The 

locations of these transect lines are shown in Figure 2.4. The south coast 

samples (E-W) were taken from grasslands, sandy soils, woodland (the New 

Forest), and an island population (the Isle of Wight). The north-south transect 

(S-N) included mainly sheltered forested and field areas. 

  
This survey was used to field test an experimental ecological surveillance 

application called Epicollect  [137], designed for Android mobile devices. The 

system utilizes the functionality of smart phones, including the camera, SQLite 

database, and GPS. This allows real time monitoring of field surveys from a 

remote location. Soil types of each location were identified using the data 

available at http//www.landis.org.uk/soilscapes. Moreover, soil pH, moisture, 

and temperature were measured at each site. 

Habitat descriptions as well as the longitudinal-latitudinal coordinates of the 

soil sample sites are given in the Appendix, table 1.  
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Figure 2.4.  Google map of GPS of sampling sites using Epicollect application.  Samples 

were collected in February 2009 (A) and May 2009 (B) from the two transects, 
http://www.spatialepidemiology.net/xenorhabdus. (Accessed on May 2009) 

 
2.2.2.  Soil “baiting” using G.  mellonella model insects  and 

 isolation of nematodes 

The soil samples were taken from a depth of 5 cm from the surface.  Fifty 

grams of each were baited with three last instar wax moth larvae G. 

mellonella (Lepidoptera: Pyralidae) (table 2.3 page:30) placed on the surface 

of the soil in plastic containers.  Containers were covered with a lid, and kept 

at room temperature (20 + 3°C).  After 5-7 days, all insects were recovered; 

dead larvae were placed on “White traps”  [91], in order to isolate any 

entomopathogenic nematode (EPN) complexes from the infected insects. 

Briefly, infected G.mellonella larvae are placed on PBS-wetted strips (Oxoid) 

of filter paper in a Petri dish (table 2.5 page:31) . The filter paper leads down 

to a reservoir of the PBS, which serves to catch any EPN-nematodes leaving 

the insect corpse. Any emerging nematodes from the “White traps” were used 

to infect fresh G. mellonella larvae to confirm that they were the cause of 

death of the insect.  The traps were observed over several weeks.  Emerging 

nematodes were visualized using a Nikon Eclipse TE2000-S inverted 

A 

B 
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microscope.  After one week, 2 ml of sterile water was added to each soil 

sample. 

 
2.2.3.   Sources of isolated bacteria  

Bacteria were isolated from two sources: from crushed nematodes, and 

directly from the haemolymph of infected insects. Approximately one third of 

the nematodes extracted using white traps were crushed to extract bacteria, 

the others were washed in 1X PBS three times and stored at -80C (one 

third), or added to a confluent plate of Serratia sp on nematode growth media 

(NGM) (one third) (section 2.1.2 page 29). 

 

2.2.3.i  Isolation of bacteria from EPN by crushing nematodes  

The nematodes were washed three times in sterile PBS and surface sterilized 

using 1% commercial bleach for one hour (this was optimized using 

preliminary experiments; data not shown) [2]. In order to check the efficiency 

of the surface sterilization, the nematodes were washed with PBS three times 

and placed on LB media (Luria-Bertain Ager) (table 2.2 page 29) and the 

extent of bacterial growth noted (see Chapter 4 for details). Following surface 

sterilization, nematodes were washed three times in PBS and crushed on 

glass slides under sterile conditions. The nematode extract was streaked onto 

fresh LB agar and incubated overnight. Pure colonies were placed into a liquid 

medium and grown overnight (table 2.2 page:29). Bacterial stocks were 

maintained in 35% glycerol (final concentration) while a 1 ml aliquot of 

isolated uncrushed nematodes were maintained in 1 ml of freezing solution 

and stored at -80C (table 2.5 page:31).  Nematodes were tested for surface 

sterility; the nematodes were collected in a conical tube and washed three 

times with sterile 1X PBS, and the washed pellets were collected in a sterile 

1.5ml Eppendorf  tube; one percent of 20 µL bleach was added to the final 

washing and the nematodes were examined after 2,5,10 minutes and one 

hour.  The nematodes were examined microscopically for survival after bleach 

treatment and washing. In addition, surface sterilized nematodes were also 
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added to LB media and incubated for 24h to check no external bacteria 

remained. 

2.2.3.ii  Isolation of bacteria from insect haemolymph 

Infected Galleria were surface sterilized with 70% ethanol (Sigma).  100 μl 

sterile PBS was then injected into the larvae, and the diluted haemolymph 

was extracted from the larvae using a syringe (Norm-ject, Tuberkulin and 

0.3x13mm of needle BD microlance-3), and transferred to a 1.5 ml microfuge 

tube.  The haemolymph samples were then streaked out onto LB agar plates 

using the four-way streak method and incubated for 24h at room temperature. 

Single colonies were isolated and inoculated into sterile LB broth and 

incubated at room temperature (25°C) for 24h. Bacterial stocks were kept in 

35% glycerol (final concentration) and stored at -80°C. This procedure was 

carried out both for insect cadavers from which nematodes had been isolated 

and insect cadavers from which no nematodes had been isolated (section 

2.2.4).  

In order to examine the normal flora of the model insect larvae Galleria, the 

haemolymph of 10 Galleria were streaked out onto LB plates after bleeding 

the insects by cutting one of their legs with sterile scissors.  The plates were 

incubated at room temperature for 24 hours.  

 

2.2.4.  Maintenance of nematode isolates 

Nematode isolates were maintained using three different methods.  Firstly, 

nematodes were seeded onto NGM agar plates streaked with the 

corresponding bacteria that was found associated with them. They were 

incubated at 20°C to allow for ingestion and replication. Nematodes were 

transferred onto fresh bacterial lawns every three weeks. The nematodes 

were monitored for any potential contamination on occasion by using the 

surface sterilization, crushing and plating technique. Secondly, nematode 

isolates were maintained by the passage through infection cycles in Galleria 

larvae, using “White traps” to re-isolate the nematodes each time [138]. 
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In some cases nematodes could not be maintained on the bacteria with which 

they were originally associated. Therefore, we also derived a third method in 

which nematodes were maintained on NGM agar plates seeded with a 

laboratory strain of E. coli (table 2.1 page:28). The strain selected was a 

tetracycline resistant gfp expressing strain prepared previously in our lab and 

therefore the NGM agar plates contained tetracycline. Furthermore, 

nematodes maintained on this E. coli strain were also used in subsequent 

experiments (see below). 

 

2.2.5.  Extraction of bacterial DNA  

DNA was extracted from bacteria isolated from the two sources described in 

2.2.4 using the DNeasy tissue kit (Qiagen, Germany) following the 

manufacturer’s protocol. Briefly, this involved proteinase K treatment, column 

binding and some buffer washing steps.  The genomic DNA was eluted from 

the column using 20µl of TE and stored at -20°C. These samples were used 

for PCR (described below). 

 

 

2.2.6.  Identification of bacterial isolates   

The bacterial isolates recovered from the crushed nematodes and insect 

haemolymph were initially identified by PCR amplification and sequencing of 

the 16s rDNA gene. This was carried out using the universal 16s rDNA 

primers.  The sequences of these primers are as follows: 

Univ_16_F (5’-TGG CTC AGA ACG AAC GCT GGC GGC-3’) and Univ_16_R 

(5’-CCC ACT GCT GCC TCC CGT AGG AGT-3’).  

For the large-scale survey, we also amplified the recA gene from the bacterial 

species that were isolated. This made use of the following primers recA-F (5’-

GAG AAA CAG TTC GGC AAA GG-3’) and recA-R (5’ GTG TTG GCG TTT 

TTC AGG TT 3’). 
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2.2.7.  Multilocus sequence Analysis 

We developed a multilocus sequence analesis (MLSA) scheme as a 

genotyping tool for Serratia. The internal fragment of ten ubiquitous genes 

(recA, gmK, gyrB, glyA ,glmu, adk, AspA.pgi, rpoB and dnaJ) were chosen 

(table 2.8) on the basis that they were physically unlinked in the genome, 

were presumed to be under stabilizing selection and were likely to be present 

in all isolates. Primers were used according to the published primers used for 

sequencing and amplifying Gram. negative bacteria in   

http://www.mlst.net/databases/default.asp.  

 
Table 2.8.  Primer sequences used in MLST analysis 

  The cross box represents the failed gene fragment amplification. 

 

 

 

Number Gene                Nucleotide sequences Amplicon size (bp) 

1 recA-F 

recA-R 

5’-GAGAAACAGTTCGGCAAAGG-3’ 

5’- GTGTTGGCGTTTTTCAGGTT-3’ 

400 

2 gmK-F 

gmK-R 

5’-CTGTACGACACGCAGGTTTC-3’ 

5’-TGCTGATTAAAGCGTCATGC-3’ 

500 

3 gyrB-F 

gyrB-R 

5’-ATGCTGTCTTCGCAGGAAGT-3’ 

5’-TCGTTCAGCAGTTTCACCAG-3’ 

500 

4 glyA-F 

glyA-R 

 5’-TGCAATGGAAGCAAGAAGTTG-3’ 

       5’-GCCATGTCAACGAACAGGTA- 3’ 

360 

5 glmu-F 

glmu-R 

       5’AAGGCGTGAATAACCGTCTG-3’ 

       5’- TTGGCGCCACATAGTTACA-3’ 

370 

6 adK-F 

adK-R 

5’- GGCGCTGGTAAAGGTACTCA-3’ 

5’- TGCCGTCGATTTTACGGTAT-3’ 

440 

7 AspA-F 

AspA-R 

5’- GGTTTACGCTTCCAACCAAA-3’ 

5’-TTGCCAATCACCTTGAAACA-3’ 

400 

8 dnaJ-F 

dnaJ-R 

5’- TGCCTTTAACGCCCTGTTGG-3’ 

5’- TGACTTTCCTCACGCAACTG-3’ 

514 

9 Pgi-F 

Pgi-R 

5’-GCTGGCCAAAATGAAACAGT-3’ 

5’-TTTTCTCTGCCGGAGTTTGT-3’ 

500 

10 rpoB-F 

rpoB-R 

5’-CCATGGAACGGCTACAACTT-3’ 

5’-TGCTCAGCTTTTCAGCTTCA-3’ 

500 
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PCR reactions were prepared as shown in Table 2.9 to a final volume of 25 ml.  

            
 
               Table 2.9.  PCR reaction 

Component Volume 
2X Red PCR master mix 12.5µl 

Primer-F 100pml 0.25µl 

Primer-R 100pml 0.25µl 

H2O 11.0µl 

Template DNA 1µl 

 
 
 
 
 
The amplifications were performed using a Peltier thermal cycler (PTC) 

following the program described in table 2.10 and visualized on an agarose 

gel using standard methods. Under these conditions 5 out of 10 genes were 

reliably amplified. Amplicons were purified using Montage PCR filters 

according to the manufacturer’s instructions and sequenced commercially by 

Qiagen.  

The SeqMan program of the DNAstar Lasergene software was used for 

sequence editing. BLASTN comparison of the amplified genes sequences 

obtained against the NCBI nr-database was used to confirm the genus 

Serratia (insect pathogenic isolates) identification.   
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Table 2.10. PCR cycle details 

Steps Temperature ( C°) Time (mins) 

Initial denaturation  

95 

2:00 

Denaturation 95 00:45 

Annealing 55 00:45 

Extension 72 1:00 

Final extension  72 10:00 

Hold 4 Forever 

 
2.2.8.  Agarose gel electrophoresis 

PCR amplification fragments and genomic DNA (gDNA) were examined by 

agarose gel electrophoresis in 1% TAE agarose gels (Tris-acetate-EDTA 

buffer). Ethidium bromide (Biorad) was added to a final concentration of 

0.5µg/ml for DNA staining. A drop of 6 X loading dye was added to a 10µl 

sample of each PCR reaction which were then loaded onto the agarose gel. 

10µl of diluted 1Kb DNA standard ladder (Qiagen) was used, and the gel was 

run at 100 V.  The gels were run with a 1X TAE buffer for 30 minutes.  The 

bands were visualized using a UV illuminator and the molecular size of 

observed band(s) for each sample was estimated by comparing its position on 

the gel with the DNA ladder.  

 

2.2.9.  PCR product sequencing and analyses 

The PCR products were purified using Montage PCR centrifugal filter devices 

(Millipore) in order to remove salt, primers and unincorporated dNTPs.  100µl 

PCR reaction was mixed with a 300 µl TE buffer, applied on the DNA capture 

columns and centrifuged at 1000x for 15 minutes.  The DNA fragments were 

eluted with a 20µl TE buffer and stored at 20°C. DNA sequencing was 

performed by the Qiagen sequencing service 

(http://www.qiagen.com/default.asp). DNA sequences were analyzed using 

the SeqMan program of the DNAstar Lasergene software BLASTn 

35 
cycles 
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(http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PAGE=Nucleotides&PROGRAM=

blastn). Comparison of the amplified genes sequences to sequences present 

in the NCBI nr-database was made to determine the genus with the highest 

similarity to the insect pathogenic isolates.  

 
2.2.10.  Phylogenetic Analysis  

The sequences were aligned using ClustalW as implemented in MEGA 4.0.2 

[139].  Phylogenetic trees based on 16S rDNA, recA, individual genes and the 

concatenated sequence were constructed using the neighbour-Joining 

method implemented in MEGA 4.0.2 [140]. Support for the trees was 

estimated by computing 1000 bootstrap trees. 

goeBURST was used to cluster the STs as implemented in PHYLOVIZ 

(Phylogenetic inference and data visualization for sequence based typing 

methods) http://goeburst.phyloviz.net/ [125], first by loading allelic profile data 

and the accessory data file then running the data analysis algorithms. 

The split decomposition technique was used to evaluate possible 

recombination for the sequences generated from the five genes, and the 

concatenated genes using SplitsTree4 (version (4.13.1) [113]. 
 

 

 

2.2.11. Investigating the virulence of the bacterial strains 
toward the model insect larvae; Galleria. mellonella and 
Manduca. sexta 
 

i.  Direct injection into the haemolymph. 

The nematode associated Serratia strains isolated from Bath (B1) and 

Chepstow (C1) soils and an E. coli OP50 negative control were grown in LB 

broth with aeration overnight at 27°C (Serratia) and 37°C (E. coli).  

Optical density (using a spectronic Unicam) was used to provide an estimate 

of cell number assuming an OD600 of 1.0 represented 1x109 cells/ml. Cells 

were washed and diluted in sterile LB broth to give a range of cell 



44 
 

concentrations for injection (table 2.11).  In addition to the E. coli negative 

control, cohorts injected with 10 µl of LB broth and un-injected Galleria were 

set up.  G. mellonella were injected with 10µl / dilution (in the lamina flow 

cabinet) using a sterile syringe with a 0.3x13mm gauge needle.  Each 

treatment was repeated twice.   

 

Stock solutions of the three bacterial strains were prepared by dilution in 

sterile LB broth.  The dilutions prepared were: 1:102, 1:103, 1:104 and 1:105. 

Cohorts of ten G. mellonella larvae and three M. sexta larvae (table 2.2 

page:30) were injected per dilution for each isolate. The larvae were placed 

on ice prior to injection to immobilize them and were surface sterilized with 

70% ethanol. They were then incubated at 23°C and monitored daily for 

mortality.  Galleria larvae were left unfed after injection, but M. sexta larvae 

were provided with an artificial diet.   The median LD50 (lethal dose) and 

LD50 of the pathogenic bacteria Serratia was estimated in order to compare 

the virulence for each strain. 
 
                   
 Table 2.11. Estimated bacterial cell numbers (B1, C1 and E.coli) in the dilutions 
used for insect injection experiments. 
 

Dilution factor number of cells 
per 10µl 
injected 

1:101 695000 
1:102 69500 
1:103 6950 
1:104 695 
1:105 69.5 
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                                 Figure 2.5.. Example of a G. mellonella larvae injection.  
 
 
ii.     Oral administration to M. sexta by feeding. 

M. sexta larvae were exposed to infection by Serratia via the oral route by 

inoculation of the artificial diet, as described below. 

Serratia and E. coli DH5α strains (table 2.1 page:28) were grown at 28°C for 

16 h with aeration in 50ml of LB broth.  Twenty ml cultures of each bacterial 

strain were grown overnight. The cell densities were measured using OD600 

nm and bacterial stock solutions at equal cell densities were prepared 

(approximately 0.4 OD600 per ml). Cells were washed in 20ml of sterile PBS 

three times, harvesting using centrifugation at 4000 rpm 4°C for 10 min before 

final resuspension in 1ml of sterile PBS. 

 

1 cm3 disks of antibiotic free artificial diet (table 2.4 page:30) were prepared 

under aseptic conditions. Fifty µl of each bacterial culture sample was applied 

to each of these food disks and excess moisture driven off by leaving the diet 

disks exposed to air for 5 min in the laminar flow cabinet.   Each treated food 

sample was placed in a plastic container, and a single 5th instar M. sexta 

larvae was added and allowed to feed for 4 h.  The small quantity of food 

ensured complete consumption of the whole bacterial dose for each larvae. 

After this time, the larvae were surface sterilized with 70% ethanol and 

transferred to fresh containers with fresh sterile food. They were returned to 

28°C and monitored daily for mortality and morbidity. 

 

 



46 
 

 

2.2.12.   Antibiotic susceptibilities  

The natural levels of susceptibility of Serratia proteamaculans-like isolates to 

two different antibiotics were tested. Stock solutions of kanamycin and 

tetracycline (both 100 mg/ml) were prepared (table 2.6 page: 31) LB agar 

plates containing 100 µg/ml, 50 µg/ml, 10 µg/ml, 5µg/ml and 1 µg/ml of each 

antibiotic were prepared. The Serratia isolates were then streaked onto these 

plates and placed overnight at 28̊C. In addition, the B1 and C1 strains were 

grown by serially streaking surviving colonies on a series of agar plates with 

increasing levels of antibiotics. Growth rates and virulence of these resistant 

strains were then tested to ensure they were not significantly different from 

the wild-type parent strain. Pathogenicity was confirmed by surface 

application onto Galleria larvae.  

 

2.2.13.   Labelling of Serratia isolates with gfp by triparental 
mating using mini-Tn7KSGFP 

Chromosomes of the Bath Serratia proteamaculans-like isolate (B1) and 

Chepstow Serratia proteamaculans-like isolate (C1) were labelled using a 

triparental mating system  [141]. 

Bacterial strains and plasmids 

Two E. coli strains were used as donors in conjugations (table 2.1 page: 28): 

1.  The plasmid belonging to E.coli WM3064 pURR25 that contains 

the miniTn7KSGFP transposon.   

2.  The helper plasmid belonging to E.coli WM3064 pUX-BF13 that 

encodes the Tn7 transposase [142].  

 

Two Serratia proteamaculans –like strains B1 and C1 were used as 

recipients.  
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Culturing and conjugation 

We inoculated 3ml of overnight cultures of the Serratia B1 and C1recipient 

strains into 5ml of LB broth and incubated this at 28°C for 16 h.  In addition, 

we inoculated 3ml of overnight cultures of the two donor cell strains into 5ml 

of LB containing 300µg/ml of diaminopimelic acid (DAP) and 100µg/ml of 

ampicillin (AP) and the mixture was incubated at 37°C and aerated for 16 h.  

WM3064 donor cells contain the RP4 mob for conjugation and pir gene for 

replicating R6K ori-based replicons; the DAP auxotroph is unable to cross-link 

the peptidoglycan cell wall unless DAP is added to the media. This provides 

good negative selection for later removal of the donor E. coli strains. 

 

To perform the conjugation, 100µl of the Serratia recipient starter culture was 

transferred to 10ml of LB.  In addition, 100µl of each donor strain was added 

to 10ml of LB with 50µl DAP and 10µl of AP.  After approximately 3 h of 

growth, the cultures reached an OD600 of 0.6 nm. The recipient cells were 

then washed twice with 1.5ml LB, and the donor cells were washed with LB 

and DAP. Cells were harvested using centrifugation for 30s at 10,000 rpm.  

The recipient cells were resuspended in 0.5ml of LB and the donor cells were 

resuspended in 0.5ml of LB containing DAP.  Then, 0.5ml from each of the 

donor and recipient cells were mixed and centrifuged for 30s at 10,000Xg. 

The supernatant was decanted and the remaining cells resuspended in 50µl 

of the washing solution. This cell mixture was then added to a dry LB DAP 

plate and incubated at 28°C overnight to allow mating to occur.  The cells 

were then harvested from the plates by washing in 1.5ml of LB and 

centrifugated for 30s at 10.000Xg.  The supernatant was decanted and the 

cells resuspended with 1.5 ml of LB, and the washing repeated once more.  

Finally, transconjugants containing min-Tn7KSGFP inserted into the 

chromosome were selected by plating onto LB agar containing no DAP. The 

cells were plated on LB containing 30µg/ml of the two antibiotics: Kanamycin 

and tetracycline.  Expression of the gfp marker gene was confirmed after 24 h 

using a stereoflorescent microscope under illumination at 395nm.  
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2.2.14.  Nematodes identification 

Three of the nematodes isolated from the “White traps” were sent to Dr 

Patricia Stock (University of Arizona, Tucson), for further analysis. These 

three types were exemplified by nematodes isolated from Bath, Brighton and 

Chepstow soils. A molecular characterization of 39 isolates collected from 

different regions in the UK was also performed by the following steps. PCR 

amplification of the 18s rDNA gene was used to determine the genera of the 

nematode isolates. Genomic DNA was prepared from the frozen nematode 

samples, and used as a template for 18s rDNA PCR amplification. These 

amplicons were then sequenced. 

 

i.   DNA extraction  
The method used for processing frozen samples for PCR amplification was 

the one described in the “DNeasy blood &tissue handbook” for purification of 

total DNA from animal tissues with a small modification; the nematodes were 

placed on autoclaved microtubes with sterile glass beads of 0.5mm, one in 

each tube, for disruption of the animal in order to homogenise the nematodes.  

The process of homogenization was done in the tissuelyser LT (Qiagen) for 2 

secs at 30 oscillations. 

The homogenized tissues were pipetted to a sterile microtube and digested 

using 20µl Proteinase K (0.8 μg/μl final concentration) and 180 µl  buffer ATL; 

the mixture was mixed and centrifuged at 3000 rpm for 5 min, then all of the 

tubes were incubated at 56°C overnight for complete lyses. 410 µl of 

premixed buffer AL-ethanol was added per sample; after shaking, the mixture 

was centrifuged for 10 min at 6000 rpm and the lower part of the microtube 

was replaced with a clean one and 500 µl buffer AW1 was added per sample. 

The samples were centrifuged for 5 min at 6000 rpm and the lower part of the 

microtube was discarded. Then 500 µl buffer AW2 was added per sample and 

centrifuged for 15 min at 6000 rpm, with the samples eluted in a new 

microtube by adding 200 µl buffer AE per sample. Finally, the samples were 

incubated at room temperature for 1 min and then centrifuged for 2 min at 

6000 rpm.  Agarose gel electrophoresis was applied as mentioned in section 

2.2.8. 
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ii. Polymerase chain reaction (PCR) amplification and sequencing. 

Nematode 18S rDNA was amplified using the primers: 

 SSu18A (5’-AAA GATTAAGCCATGCAT G-3’) forward, SSu26R (5’-

CATTCTTGGCAAATGCTTTCG-3’) reverse [143].  PCR products were 

purified and sequenced by Qiagen (Germany).  The PCR technique was 

carried out on the 25µl reaction containing 5X Go Taq buffer, 1.25mM of 

MgCl2, 0.25mM dNTPs, 1mM of each primer and 1µl of Go Taq polymerase 

containing 500 units (Promega) per reaction. The amplifications were 

performed using a Peltier thermal cycle (PTC).  The mixture was then 

subjected to the following PCR conditions: 5 min at 95°C, 38 cycle including 1 

min at 95°C, 1 min at 56°C, 1 min 30s at 72°C followed by 5 min at 72°C, 

cooling at 4° C ( modified PCR condition  [143]). 
 

iii. Sequence analysis and phylogenetic relationships. 

Sequences of 18S rDNA of 39 EPN were aligned using BioEdit software 

(DNAstar lasergene software, Madison, WI, USA).  The sequences were 

compared with GenBank database sequences using Blastn searches using 

the similarity match within the sequences; then the alignments were used in 

the phylogenetic study using Mega4 software.  The nematode trees were 

compared to the individual trees of the associated Serratia that were isolated 

from the crushed nematodes and with the concatenated tree, and the 

relatedness of each was studied.  
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2.2.15. Testing the stability of nematode-bacteria associations 

An attempt was made to cure the Bath and Chepstow nematode isolates of 

their associated bacterial species by feeding them on a strain of tetracycline 

resistant Gfp labelled E. coli (table 2.1 page: 28). Mixtures of different 

nematode life stages were serially transferred between agar plates containing 

the E. coli food source for multiple passages (each passage took 7 days) in 

an attempt to “replace” any associated bacteria with E. coli.  These 

experiments tested the direct ability of the E. coli to “outcompete” the naturally 

associated bacteria. In both isolates, the resident bacteria were strains of 

Serratia which were also resistant to the level of tetracycline used for 

selection of the E. coli.  NGM plates containing 5 µg/ml tetracycline were 

streaked with the gfp E.coli strain in a Z shape as shown in Figure 2.6.  The 

bacteria were grown at 37°C overnight before the addition of washed and 

surface sterilized nematodes.   This seeding was repeated for thirty five 

passages on the gfp E. coli carrying a plasmid pHC60 (table 2.1 page: 28).  

Between each passage, a sample of the nematodes were surface sterilized, 

crushed and plated onto LB agar and onto NGM containing tetracycline plates 

to assess their bacterial contents. Colony morphology and the presence of the 

Gfp marker were used to determine the relative amounts of E. coli and original 

associated strains after overnight incubation at 28°C. 

 
 
Figure 2.6.  The Z-streaking method for maintaining nematodes on cholesterol NGM-Agar 

plates 

Pipetted EPN 

Pipetted EPN 

Bacterial food source  



51 
 

 
2.2.16.  Assessing the colonization of nematodes by their 
associated  bacteria  

Laser scanning confocal microscopy (LSM 510META) was used to study the 

colonization of the partner nematodes. Samples of the worms were washed 

three times with PBS and transferred onto NGM plates seeded with the 

labelled bacteria. They were passaged 15 times before microscopic 

visualization. Briefly, the worms were surface sterilized and washed (as 

described previously).  1% sodium azide was added to the nematode 

preparation to kill the worms before visualization. This was necessary as the 

worms rapidly moved away from the blue light used for the Gfp excitation 396 

nm on the microscope.  In addition, C. elegans (section 2.1.2 page 29) were 

also raised on these labelled Serratia strains and the fate of the bacteria was 

examined.   Finally, nematodes were examined that had been serially 

passaged on the gfp E. coli strain in an attempt to cure them of their original 

bacteria.  

 
2.2.17. Assessing insect pathogenicity of bacteria, nematodes 
and bacteria-nematode complexes 

The relative contributions of the nematode and any associated bacteria to 

virulence in the insect model were investigated. To do this a soil trap 

technique was used.  Other methods were tested, including using whetted 

filter paper or sand as alternative substrates [27] although autoclaved soil 

gave the most rapid infection times. 

Soil was collected from around the University campus and baked in an oven 

at 200°C overnight for sterilization. When cool, 4ml of autoclaved water was 

added to the soil and placed in a sterile square petri dish. Ten Galleria were 

surface sterilized by immersion in 70% of alcohol for one minute [27], dried 

and placed on the sterile soil. Surface sterilized test nematodes or free 

bacteria were then added to the soil as shown in Table 2.12. To avoid 
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external contamination, these assays were performed in a biological safety 

cabinet. 

The following material was added to 50g autoclaved soil + 4ml autoclaved 

water + 10 Galleria in each case. Ten replicates were set up per treatment. 
 
 
Table 2.12.  Soil trap method. 
Treatment 1 1ml of an overnight culture (OD600nm was taken) of the associated Serratia 

strain diluted 1/100 in sterile PBS. 
Treatment 2 1ml of washed nematodes reared on their associated Serratia strain 

(adjusted to approximately 4000 worms) in PBS 
Treatment 3 

control 

 

1ml of Caenorhabditis elegans reared on E.coli OP50 (adjusted to 

approximately 4000 worms) in PBS.  

Treatment 4 1ml of washed nematodes (adjusted to approximately 4000 worms) that had 

previously been fed on gfp E. coli (see section 5.2.5) in PBS  
Treatment 5 

Control 

1ml of 1X PBS buffer. 

 

* The nematode isolates used in this method were isolated from: 

1.  Bath, obtained from survey 1  

2. Chepstow, obtained from survey 3  

3. Brighton, obtained from survey 3  
 

2.2.18.   Examination of nematodes eggs for the presence of 
Serratia bacterial cells 

The persistence of Serratia cells in the nematode worms was further 

investigated by the examination of the surface sterilized eggs in order to 

determine if bacteria could be maternally inherited and “vertically transmitted” 

between generations. Bath soil isolate nematodes were reared on NGM 

plates seeded with the nematode Gfp-labelled associated Serratia. Worms 

were harvested off the plate by washing with 1X PBS and transferred to a 50 

ml sterile tube. They were washed a further three times in 30ml sterile PBS 

and harvested using low speed centrifugation at 1200 rpm for 3 minutes to 

pellet the worms, and remove the remaining external bacteria.  The worm 
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pellet was resuspended in 15 ml of sterile PBS. The worms were then lysed 

by re-suspension in 6ml of lysis buffer (table 2.5 page: 31) for 10 minutes. 

During this time the lysis of the worms was monitored using a dissecting 

microscope. The lysis reaction was stopped by washing and re-suspension in 

egg buffer (table 2.5 page: 31). Eggs were washed three times by vortexing in 

egg buffer and harvested by centrifugation. After the last centrifugation, the 

wash buffer was removed carefully and the eggs were separated from the 

debris by adding 30% sucrose solution and an equal volume of egg buffer; the 

mixture was vortexed and again centrifuged at 1200 rpm for 5 minutes. In this 

solution, the eggs float to the top of the solution and may be harvested by 

pipetting. The eggs were transferred to a fresh 15 ml conical tube and again 

washed three times with the egg buffer to remove any remaining sucrose.  

The sterility of the eggs was tested by placing them on LB agar overnight at 

room temperature in the dark. The eggs were examined microscopically after 

hatching, and the media was examined for any bacterial growth associated 

with the emerging worms (htt://www.wormbook.org).  In addition, sterile eggs 

were crushed into sterile LB broth plated out onto LB agar. DNA was prepared 

from any resulting bacterial colonies, and the recA PCR amplicon was 

sequenced in order to confirm if the bacteria were Serratia or otherwise. 

Sterile eggs prepared using these methods were also used to produce larvae 

for subsequent attraction assays discussed below.  
 

2.2.19.  Attraction assay 

A method was devised to test if nematodes had a preference for the bacteria 

with which they were associated (the method was adapted from Zheng et al 

[66] and Rae et al  [143]). We used this method to test if the Bath Pristionchus 

nematode would show positive phoresis toward its associated Serratia strain 

when presented with a choice of bacterial strains upon which to feed. Briefly 

25µl of overnight bacterial suspension of the Serratia strain was placed onto 

an NGM agar plate 0.5 cm away from the edge of the petri dish.  25 µl of E. 

coli OP50 overnight culture was placed on the opposing side of the same 

plate.  Either sterile eggs (see above) or approximately 50-60 nematode 
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individuals of different stages were placed at an equal distance between the 

two bacterial lawns being tested.  Nematodes had previously been reared on 

NGM agar plates seeded with E.coli OP50 for several plate passages.  The 

plates were sealed with parafilm and incubated at 20°C overnight [95]. The 

location of the nematodes was observed using a dissecting microscope and 

the number of individual worms at each bacterial lawn was counted and 

recorded.  Three replica plates were used per assay, and the procedure was 

repeated three times for each tested bacterial strain.  The combinations of the 

bacterial strains (section 2.1.1 page: 28) tested are shown below:  

 

1. E.coli versus Serratia (B1) 

2. Photorhabdus luminescens TT01 versus Serratia (B1) 

3. Pseudomonas fluorescens versus Serratia (B1) 

4.  Bacillus cereus versus Serratia (B1) 
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Chapter 3 

 

 

 

Characterization of common 
entomopathogenic bacteria 

associated and non- associated 
with nematodes in UK soil from 
different locations and habitat 
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3.1.  Introduction 

Entomopathogenic bacteria (Epb) are bacteria that can cause disease in 

insects and thus have potential for use as biological insect pest control 

agents. Serratia spp are entomopathogenic bacteria that belong to the family 

Enterobacteriaceae.  This is a genus of Gram-negative bacteria, some 

members of which have clinical relevance [46]. Serratia occupies many 

habitats such as water, plants, animals and hospitalized human patients. 

Furthermore, many Serratia form symbiotic relations with a variety of insects; 

for example, the opportunistic pathogen Serratia marcescens was isolated 

from the haemolymph of the Boll weevil [34]. Molecular techniques have 

played a key role in studying the phylogeny, biodiversity, geographic 

distribution, host range, ecology, behavior and co-evolution of 

Entomopathogenic bacteria and nematodes [114].  
 

To my knowledge, the work presented here represents the first biogeography 

study of entomopathogenic Serratia and their associated nematodes in UK 

soils.  A study in 2006 [6] identified Xenorhabdus strains from EPN isolated 

from UK soil samples.  These authors characterized the isolates by partial 

sequencing of 16S rRNA genes and four housekeeping genes. They claimed 

that Xenorhabdus are the most common entomopathogenic bacteria found in 

the UK soils.  In addition, EPN and their symbiotic bacteria were identified via 

molecular tools in Southern France in 2008 [79]. These studies provided 

evidence concerning phylogenetic relatedness and geographic distribution of 

different strains belonging to the same species.   

 

Entomopathogenic nematodes (EPN) persist in soil and are effective as 

biological control agents of soil insects [68].     They can be isolated by the 

“White trap” method, as described by Bedding and Akhurst [91]. In this 

method, Galleria mellonella are used to “bait” soil for EPNs [92].   

 

Several surveys have studied the diversity and the distribution of EPN, and 

these have revealed evidence concerning habitat preferences [78, 144]. For 
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example, high nematode recovery from oak woodlands compared with all 

other isolated habitats in southern Arizona [94]. 

 

Multilocus sequence typing (MLST) is a widely used system for long-term 

epidemiology and micro-evolutionary studies [145, 146] . MLST is based on 5-

10 housekeeping genes, and each unique allelic profile is assigned a 

sequence type (ST), thus defining a strain. eBURST is a clustering algorithm 

designed to reconstruct the likely evolutionary pathways between very closely 

related STs [125].  This approach has also been implemented as goeBURST, 

which is based on an improved algorithm compared to eBURST [125].  

 

In this study I compared localized species distribution of entomopathogenic 

bacteria in soil samples, taken over a five week period from sites on or near 

the University of Bath campus. I also examined large-scale species 

distribution of entomopathogenic bacteria in soil samples taken across 

England and Wales. 

 

In addition, I studied the molecular phylogeny of 84 entomopathogenic S. 

proteamaculans-like bacteria isolated from different sites by baiting with G. 

mellonella. In order to provide increased resolution of the identifying species, 

which was based on a single gene (recA), an MLST scheme was developed 

based on five housekeeping genes. goeBURST was used to visualize the 

relationships between the STs, and SplitsTree4 was used to determine the 

recombination within the housekeeping genes and between them. The results 

provided evidence of geographic and seasonal variation in the abundance of 

nematodes, and are consistent with the emergence of a cluster of Serratia 

proteamaculans that has co-evolved with EPNs. 
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3.2.  Results 
 
3.2.1. Surveying the community of insect pathogenic bacteria in UK 

soils. 

Two surveys were carried out to identify the dominant insect pathogenic 

bacteria in UK soils. In each survey, soil baiting was used to isolate bacteria, 

as described in section 2.2.3 and 2.2.4 (page: 37 &38). Isolated colonies were 

then identified by amplifying and sequencing the 16s rRNA gene (section 

2.2.6 page: 39). A third large-scale survey was carried out specifically on the 

molecular characterisation of isolates belonging to the Serratia genus. 

i. Survey 1 

14 soil samples from or near Bath golf course were baited with 3 insects each, 

making a total of 42 Galleria larvae. 30 insects died between 2-10 days 

(Appendix 1, table 2). 24 of the 30 insect cadavers yielded nematodes using 

white traps (section 2.2.2 page:36).  The breakdown by habitat is given in 

Table 2.7.  A total of 54 DNA extractions were carried out; 30 from 

haemolymph, and 24 from crushed nematodes.  Successful amplification by 

PCR using the universal 16s rDNA primers were carried out in 29 of the 54 

DNA samples, and 12 of the resulting amplicons were sequenced (section 

2.2.10, page: 42).  BLASTn was used to identify the closest hits of these 

sequences in Genbank (Appendix 1, figure 1). The isolates were identified as 

Serratia (n=9), Xenorabhdus (n=1), and Pseudomonas (n=2).  This 

preliminary survey thus indicated that Serratia is a particularly abundant insect 

pathogenic bacterial taxon in UK soils. However, due to its limited scope, this 

survey did not provide meaningful data on spatial distribution or habitat 

preferences. 

In order to make sure that the taxa recovered from the infected larvae were 

not originally present in the haemolymph of Galleria, we recovered bacteria 

from blood taken from ten healthy Galleria larvae, and sequenced 16S rDNA 

from these colonies. 3 of these colonies were identified as Enterobacter and 

the rest did not show significant BLAST hits to named taxa. No Serratia, 
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Xenorhabdus or Pseudomonas isolates were detected, and thus we conclude 

that the isolates recovered from infected larvae were associated with the 

infection process and were not already present in the healthy gut. 
 

ii. Survey 2 

This survey was primarily designed in order to examine to what extent 

bacterial communities are structured over very localized scales, and to what 

extent the isolates recovered from a given site are stable over the course of a 

few weeks. Soil samples were taken from two 15M transect lines on the 

campus of the University of Bath (location A and B in Figure 2.2). A total of 

150 soil samples were collected from 28 sites over five weeks. As for survey 

1, three insects were added to each soil sample, giving a total of 450 insects. 

Of these, 141 (31.3%) died within 2-10 days. Nematodes were not isolated 

from insect cadavers in this survey, but pure culture was grown directly from 

the haemolymph of 92 of the 141 insect cadavers.  In 72/92 cases the 16s 

rRNA was successfully amplified and sequenced, thus enabling identification 

of the bacteria. 

Seventy of the 72 isolates clustered into six taxa: Serratia / Rhanella (n = 12), 

Acinetobacter (n = 7), Pseudomonas (n = 11), Enterococcus (n=13), Bacillus 

(n = 7), Xenorhabdus (n = 20). The remaining isolates were identified as 

Sphingobacterium (n = 1) and Aeromonas (n = 1).  This survey thus provided 

more data concerning the relative abundance of taxa.  Whilst Serratia was 

found to be one of the major taxa present, the indication from survey 1 that 

this group dominates in the soil was not confirmed, and in this case 

Xenorhabdus was the most commonly recovered genus.  Due to the small 

number of bacterial colonies characterized, the relative abundance of taxa is 

difficult to determine accurately and may even vary substantially between 

sites in close proximity, or from different time points. To illustrate this 

variation, it was noted that the relative abundance of the 6 different taxa 

mentioned above varied between the two transect lines, which are only ~400 

M apart. Serratia sp and Enterococcus were relatively more abundant in 

location A than in location B, whereas Xenorhabdus, Bacillus and 
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Pseudomonas were relatively more abundant in location B than A (figure 3.1). 

However, these differences fell just outside of statistical significance (P = 

0.07). 

 

 

 

 

 

 

 

 

Figure 3.1.  The relative abundance of the bacterial taxa is not significantly different between 

the two locations (Chi-Sq = 9.89, DF = 5, P-Value = 0.07).   

 

Table 3.1 breaks down the abundance (number of isolates) of each taxon 

over each of the five weeks of the survey.  The numbers are too small to draw 

conclusions regarding temporal variation in the relative frequency of each 

taxon when each week is considered individually. However, the five weeks 

over which the sampling was carried out varied with regards to the weather. 

Whereas weeks 1 and 5 were characterised by heavy rainfall, weeks 2, 3, and 

4 were very dry. To quantify this retrospectively, I obtained weather records 

for Filton airfield near Bristol    

(http://www.martynhicks.co.uk/weather/data.php). The recorded rainfall for 

each of the sampling days (weeks 1 to 5) were as follows: 6mm, 0mm, 0mm, 

0mm, 14mm. Pooling the data into wet weeks (1+5) and dry weeks (2+3+4) 

revealed significant differences in the relative frequencies of the different taxa. 

Enterococcus sp and Acinetobacter were relatively more likely to infect 

insects in rainy weeks, whereas the endospore forming bacteria Bacillus sp 

was more likely to infect insects in the dry weeks (figure 3.2). 

Location A Location B Serrati
Acinetobacter 
Pseudomonas
Enterococcus
Bacillus
Xenorhabdus
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Table 3.1.  Summarized data of species identified in the two locations in the five weeks. 

 Site A Site B                   

Total 

Weeks 1 2 3 4 5 1 2 3 4 5  

G1 Serratia sp +Rehnella 

sp+Yerisinia sp 

4 4 1 0 2 1 0 0 0 0 12 

G2 Acinetobacter sp 3 0 0 0 0 3 0 0 0 1 7 

G3 Pseudomonas sp 3 1 0 0 1 2 3 1 0 0 11 

G4 Enterococcus sp 4 1 2 0 3 0 0 0 1 2 13 

G5 Bacillus sp 0 1 0 1 0 0 0 3 2 0 7 

G6 Xenorhabdus sp 2 2 1 3 0 6 1 1 2 2 20 

Total 16 9 4 4 6 12 4 4 5 5 70 

 

 

Figure 3.2.  The distribution of isolated bacteria genera in wet (1+5) and dry weeks (2, 3+4). 

These differences are significant (Chi-Sq=18.6, DF=8, P value=0.016) 

 

 

 



62 
 

 

 

 
Figure 3.3 .  Diagram of the putative genus isolates that are amplified with 16S rDNA primers 

isolated from Bath campus location A and B. The triangle represents the bacterial isolates 

found in the different sites along the two transects, the triangle on the side was the identified 

bacteria found in the soil samples collected as control.  

                                             

Figure 3.3 shows identity (genus) at each position and time point for each of 

the 70 isolates. Spatial structuring on this scale would be evident if the same 

group(s) of bacteria are more likely to be recovered from neighbouring points 

along a given transect. There is little evidence for this from the data. Spatial 

stability would be evident if isolates from the same site but from different 

weeks were more likely to belong to the same genera than samples taken 

from different sites on different weeks. Again there is little evidence for this. 
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Although there is little evidence for either temporal or spatial structure, the 

following observations can be made regarding the data. Serratia sp, 

Xenorhabdus sp, Acinetobacter sp, Enterococcus sp, Rehnella sp and 

Pseudomonas sp were all recovered from soil samples from both transect 

lines during week 1, which showed the highest abundance and overall 

diversity. As noted above, Bacillus was only noted in the “dry” weeks 2,3 and 

4. Serratia was abundant in location A in the first and the second week, was 

not recorded in weeks 3-4 but one sample was recovered in week 5. 

Xenorhabdus sp was the most commonly recorded taxon over time points and 

in all locations. This genus was found four times in the same location B10 in 

different weeks and two times in location A9 at different depths, indicating 

possible (but non-significant) clustering.    Similarly, Enterococcus sp was 

recorded in week1A sites 5, 6, 8 and 9, and Bacillus sp were clustered in W3B 

sites 2,4, and 6.  

 

 

iii. Survey 3: A  UK-wide survey focusing on Serratia 

The following conclusions were drawn from the two surveys described above. 

First, the methodology of soil baiting with Galleria, isolation from haemolymph 

or nematodes, and colony identification by 16s rRNA sequencing was shown 

to be an efficient and powerful methodological pipeline. Second, the results 

confirm the major insect pathogenic taxa present in UK soils, and that Serratia 

is likely to form a significant component of this community. Third, the 

observation that location A and B (in survey 2) showed significant differences 

provides evidence for spatial structuring on the level of ~400M. However, 

there is little evidence for spatial structuring on the scale on individual 

transects (~15M). Fourth, there is little evidence of stability within a site over 

different time points. Moreover, the data suggest that the community 

recovered from a single site might be largely a consequence of the prevailing 

weather conditions, with Bacillus being relatively abundant in dry conditions. 
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The failure to find evidence for spatial structuring within a very localized 

transect may have been a consequence of an insufficient sample size or the 

small spatial scale considered. In addition to this, the methodology used for 

characterising the isolates (16sr RNA) does not offer a very high level of 

resolution. The likelihood of finding evidence for spatial structuring would 

increase if: i) larger geographical scales were considered, and ii) more 

discriminatory markers were deployed. The use of more discriminatory 

markers means that it is logistically much easier to focus on single taxa, as 

primers for more variable protein coding genes will not work universally on all 

taxa.  

In addition to questions relating to biogeography, an additional interesting 

question concerns associations with nematodes and whether the isolates for a 

given taxon that are recovered from nematodes are phylogenetically distinct 

from those isolated from haemolymph. If so, this would imply adaptation to the 

nematode and would raise the possibility of hitherto uncharacterized 

nematode / bacteria associations.  

The strategy for the main survey was therefore to focus on characterizing the 

population of Serratia, both in terms of its biogeography and possible 

association with nematodes. The survey encompassed most of the breadth of 

southern England and the border country, and was carried out over two 

seasons.  160 soil samples were taken from 19 sites in the (E-W) transect A 

and (S-N) transect B described in section 2.2.1.iii, page: 35.  Three Galleria 

were used in each soil sample and nematodes were recovered using white 

traps. Bacteria were isolated from crushed nematodes in all those cases 

where nematodes were isolates, and from infected haemolymph in all cases. 

The ecological surveillance tool Epicollect was used to record GPS and field 

data. 

                                                    

Table (1) (Appendix 1) shows the data of each sampling location submitted 

via Epicollect to the central database.  It shows each sample location by GPS 

coordinate, soil pH, temperature, soil moisture and soil type which were 
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recorded using the smart phone. All data were synchronized using the 

Epicollect phone with the central database[137].  

  

In the February 2009 survey, 114 infected insects were obtained from 160 soil 

samples. In the May survey 2009, 100 infected insects were obtained from 

160 soil samples. A summary of the prevalence of infection and nematode 

recovery is given for each of the two transects in each survey in Table 3.2.  

 

Table 3.2. Summary of the number of infected insects that produced and did not produce 

nematodes. 

 

 

Whereas the proportion of Galleria which became infected showed little 

variation, nematodes were significantly more commonly isolated in the 

February survey (pooled data 27/114; 23.7%) than in the May survey (pooled 

data 8/100; 8%) (chi sq. = 9.57 Df = 1, p = 0.00196). We carried out the same 

comparison on the basis of location, by pooling the data for the February and 

May samples. In transect A 32/131(24.4%) of infected insects produced 

nematodes, whilst the equivalent figures for location B were 3/37(8.1%).  A chi 

sq test showed that this difference was also highly significant (chi sq = 

16.080, Df = 1, p = 0.000060).   Thus nematodes were more likely to be 

recovered in February than in May, and from transect A than from transect B.            

 

 

 2/09 A 2/09 B Total 5/09 A 5/09 B Total 

Infected 

Galleria 

77/300 

(32%) 

37/180 

(20%) 

114/480  

(23.8%) 

54/240 

(22.5%) 

46/180 

(25%) 

100/480 

(20.8%) 

Galleria 

producing 

nematodes 

24/77 

(31%) 

3/37 

(8.1%) 

27/114 

(23.7%) 

8/54 

(14.8%) 

0 8/100 

(8%) 
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PCR was carried out on the extracted DNA samples (section 2.2.5, page:39) 

using primers based on the recA gene sequence (section 2.2.9, page 42).  

We decided to focus on Serratia sp due to the high frequency with which this 

group was observed in the earlier surveys described above. recA was chosen 

as it is a widely used phylogenetic marker and provides greater resolution 

than 16s rRNA. The proportions of all colonies identified as Serratia were as 

follows: Feb (transect A): 61/100(66%); Feb (transect B): 12/50 (24%); May 

(transect A) 7/40 (17.5%); May (transect B) 10/50 (20%). A chi squared test 

revealed that a significantly higher proportion of bacterial colonies isolated 

from February was identified as S. proteamaculans-like sp (considering both 

transects; 49%) compared with the samples taken in May (18.9%) (Chi-Sq = 

21.281, DF = 1, P-Value < 0.0005). Similarly, the total proportion of colonies 

isolated from transect A over both time points (48.6%) was significantly higher 

than the equivalent figure for transect B (22%) Chi-Sq = 17.573, DF = 1, P-

Value < 0.0005.  

 

In sum then, Serratia is predominant amongst the samples taken from 

February (compared to May) and transect A compared to B. To reiterate, 

nematodes were also more likely to be recovered in February than in May, 

and from transect A than from transect B. Thus, samples in which a greater 

number of nematodes were recovered (February/ Transect A) also showed a 

higher proportion of Serratia. Although these data in themselves do not 

provide evidence for a causal relationship, these observations are consistent 

with an association between Serratia and nematodes. 

 

Pooling both transects A and B, and for both time-points, we recovered a total 

of 240 bacterial isolates. 201 of these isolates were recovered from insect 

haemolymph. Of these 201 isolates, 51 (25.3%) were identified as S. 

proteamaculans-like sp on the basis of amplification and sequencing of the 

recA gene. This is broadly consistent with the prevalence of Serratia observed 

in survey 2. The remaining 39 bacterial colonies were recovered from crushed 

nematodes, and 100% (35/35) of these colonies were positively identified as 
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Serratia on the basis of the recA gene. Thus, whereas 100% of colonies 

isolated from crushed nematodes were S. proteamaculans-like sp, only 

around a quarter of isolates from haemolymph were identified as S. 

proteamaculans-like sp (P<0.0005). This again hints at an association 

between Serratia and the nematodes.  

 

A total of 90 S. proteamaculans-like sp isolates were identified through PCR 

and sequencing of the recA gene in the large-scale study; only 88 show a 

good sequence. In order to carry out a complete phylogenetic analysis 

(section 2.2.10, page 43), these sequences were supplemented with a further 

42 Serratia isolates from the previous two surveys for which the recA gene 

was also successfully amplified and sequenced. 15 of these isolates derived 

from Bath golf course (survey 1) and 27 from the University of Bath campus 

(survey 2).  The phylogenetic tree for all 130 isolates is given in Figure 3.4. 
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Figure 3.4.  Neighbour-joining tree for 130 isolates related to S. Proteamaculans-like sp 

based on recA gene sequences. The associated Serratia were labelled as     , S. 

Proteamaculans isolated from insect haemolymph which produced nematodes were labelled 

as    .  Whereas S. Proteamaculans isolated from insects’ haemolymph were labelled as    

Bootstrap values are shown in red and the radiation tree view is shown in Appendix 1 (Figure 

6.2).  ‘,’’ and ‘’’above the site name represent the number of infected galleria baited in the 

same soil sample. 
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The 130 Serratia strains isolated from this biogeographical survey are 

resolved into two major lineages (1 and 2) supported by a bootstrap value of 

69% (Appendix 1, figure 2). Lineage 1 is subdivided into clusters 1a and 1b, 

whereas lineage 2 is subdivided into clusters 2a, 2b, 2c, 2d.  Clusters 1a, and 

2d are predominantly represented by isolates recovered from nematodes 

(85% and 76% respectively). In contrast, the percentage of isolates recovered 

directly from other nematodes in all the other clusters was much lower (overall 

average: 35.2%). This suggests that clusters 1a and 2d are specifically 

adapted to being vectored by nematodes.   

Sequence diversity (π) for the whole sample and sub-samples representing 

the different sources of the isolates were calculated. This parameter (π) is a 

standard measure of sequence diversity and corresponds to the average 

pairwise sequence diversity (SNPs per site).   Considering all 130 Serratia 

isolates, π = 0.05. For the 37 Serratia associated with nematode isolates π  = 

0.07, for the 61 haemolymph isolates π  = 0.04, and for the 32 Serratia 

isolated from insect haemolymph π  = 0.06. There are therefore no clear 

differences between the levels of sequence diversity of isolates from different 

sources.  

We also considered geographical sub-divisions in the data. When the 52 

isolates from Bath were considered, π = 0.04, when the 70 Serratia isolates 

from the north transects were considered π  = 0.04, and when the 61 Serratia 

from the south were considered π = 0.07. There was therefore no obvious 

difference in sequence diversity according to geographical source. 

 

Next, the phylogenetic tree was examined for evidence of geographic 

structuring. Whilst there is some evidence for this on a very fine scale (e.g. 

cluster 1b were all isolated from Bath, and 2d are predominantly from the 

south), in general the phylogenetic analysis does not reveal extensive 

geographical clustering. One interpretation of this is that there is free 
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migration of these bacteria or their nematode hosts between sites over 

evolutionary time. Alternatively, it may mean that the use of recA still does not 

provide sufficient discriminatory power to detect spatial clustering. Although 

this gene is more variable than 16s rRNA, it is still only a single gene. A 

common solution to this problem is to combine the data from multiple gene 

loci.  Such an approach was developed for epidemiological purposes, where it 

is known as Multilocus Sequence Typing (MLST). For more environmental 

applications, where the target population is often not a well-defined species, 

the term Multilocus Sequence Analysis (MLSA) is used. 

 

3.2.2.  Development and use of an MLSA scheme for Serratia 
proteamaculans 

We identified five suitable housekeeping genes based on comparisons with 

schemes for other species, and through initial studies comparing numerous 

candidate genes and primer sets (section 2.2.7, page 40).  PCR and 

sequencing of these 5 MLSA genes (adk, recA, glmU, glyA and dnaJ) was 

carried out on 84 isolates previously identified as Serratia proteamaculans-like 

strains using the recA gene. These isolates came from all three surveys 

described above (Appendix 2, table 1) for a full list of strain sources, and were 

selected to be representative both geographically and in terms of the time of 

year at which they were sampled. The locations of the five genes on the 

genome are illustrated in Figure 3.5. 

 

 

 Figure 3.5.  Serratia proteamaculans 568 chromosome (5448853 bp circular DNA) 
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The sequence diversity (π) for recA, adk, glyA, glmU and dnaJ genes 

respectively is, π = (0.08, 0.03, 0.03, 0.04 and 0.06). Although recA is the 

most diverse gene, these diversity levels are sufficiently similar such that no 

one gene will dominate the signal in the concatenated tree. The overall level 

of sequence diversity for the concatenated data is π = 0.05. 

The concatenated sequences of the five genes were used to construct a 

neighbour-joining tree (Figure 3.6). This tree reveals two tight clusters of 

isolates that were i) recovered from the South Coast (eg. Angmering, Arundel, 

Bridport, Chichester, Brighton, New Forest, Sidmouth), and ii) recovered from 

nematodes. These clusters are labelled as clade 1 and clade 5 in Figure 3.6. 

Clade 2 and 4 are predominantly from haemolymph, whilst clade 3 is a 

mixture of isolates from nematodes and haemolymph. Isolates from Bath, 

Bristol, Chepstow and Hereford tend to be diverse and are scattered 

throughout the tree. However, there is little evidence for geographical 

structuring on a finer scale, that is, within the south coast isolates. As noted 

earlier, the south coast isolates were more commonly recovered from 

nematodes than directly recovered from haemolymph (green dot). In sum, 

these data support the impression from recA sequences and indicate that 

isolates from the south coast resolve into distinct clusters, and that these 

clusters tend to be nematode associated. Isolates from other regions are 

more phylogenetically scattered and are more typically recovered directly from 

haemolymph. 
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Clade 1 
Serratia 
associated 
with 
nematodes 
with one 
exception 

 Chichester 1 N(26) 
 Chichester 9 N(27)
 Bridport 7' N(6)
 Bridport 1'' N(3)
 Chepstow 7' N(10)
 Weymouth 4' N(25)
 Weymouth 10 N(23)

 Newforest 3 N(20) 
 Chepstow 8N(7)

 Chepstow 7 ''N( 11)
 Sidmouth 10'''N(38)
 Sidmouth 10' N(36)
 Bridport 2 H*(44)
 Newforest 2 N(22)
 Bridport 2' N(15)

 Brighton 1 H*(57)
 Chichester 1 H(39)

 Bath 61 H(233)
 Brighton 1'' H(59)

 Hereford 3 H(129)
 Agmering 9 H*( 67)

 Newforest 10 H*(68)
 Bath 14 H(147)

 Weymouth 3 H*(54)
 Chepstow 10 H*(50)
 Chepstow 2 H(97)
 Bath 2 H(134)
 Bath 11 H(143)
 Bath 12 H(144)

 Bath 24 H(174)
 Bath 159 H(211)

 Bath 161H(217)
 Bath 59 H(225)

 Bath 29 H(228)
 Chepstow 8 H(52)

 Bath 104(242)
 Bath 47 H(246)
 Bath 55 H(226)

 Bath 153 H(201)
 Bath 38 H(237)

 Bath 23 H(173)
 Newforest 10 N(21)
 Chepstow 7 H*(47)

 Sidmouth 10 N(35)
 Weymouth 2 H*(53)

 Bridport 2'' H*(46)
 Brighton 1 N(1)
 Arundal 6 N(29)
 Arundal 6' N(31)
 Bridport 10 H(80)
 Chichester 9 H*(41)
 Chichester 1 ' H*(40)
 Bridport 2 N(13)
 Bridport 2' N(14)
 Arundal 5 N(28)
 Arundal 5' N(30)
 Agmering 8 N(33)

 Bath 36 H (224)
 Bridport 2 ' H*(45)

 Bristol 4H (125)
 Brighton 1' H*(60)

 Brighton 1'' H(*61)
 Bath 148 H (202)
 Arundal 5' H(64)

 Bath 153H(216)
 Bath 157 H(212)
 Bath 93H(240)

 Arundal 5 H*(63)
 Arundal 8 H*(65)

 Ditchling 1 H(117)
 Bridport 4 H(119)

 Ludlow 4 H(105)
 Bristol 1 H*(127)
 Sidmouth 9 N(16)
 Brighton 1'''N(4)
 Brighton7 N(5 )
 Sidmouth 10' N(17)
 Sidmouth 10'' N(19)
 Arundal 8 N(32)
 Arundal8'N(34)

0.01

Clade 3 
Mixed 
Serratia 
isolates 
associated 
and non- 
associated 
with 
nematodes 

Clade 2 

Serratia 
isolated 
from insect 
haemolym
ph 

Clade 4 

Diverse 
Serratia 
haemolym
ph isolates 

 

Origin          Isolated from                    adk  dnaJ  glmu  RecA  glyA     ST 
South UK   Crushed nematodes          1      6         4       2         10        19 
South UK   Crushed nematodes          1      6         4       2         10        19 
South UK   Crushed nematodes          1      6         4       5         10         6 
South UK   Crushed nematodes          1      6         2       2         10         3 
North UK   Crushed nematodes          4      6         7       5         10         9 
South UK   Crushed nematodes           1       6        12      2        10      18    
South UK   Crushed nematodes           1      6        4       10        10      17 
South UK   Crushed nematodes           5      6        10      2         12      14 
North UK   Crushed nematodes           1      6         5       6          3        7 
North UK   Crushed nematodes           1      6         8       2          14     10  
South UK   Crushed nematodes           8      6         11    15         12     25 
South UK   Crushed nematodes          6      6         14    2           12      24 
South UK   Haemolymph                     6       6        11     2           12     27 
South UK   Crushed nematodes           1      12       4       9          10     16  
South UK   Crushed nematodes           1      17       9       8          10     12 
 
South UK   Haemolymph                     6        6       11     20         12    35 
 South UK   Haemolymph                    9       14      15    16          25    26 
North UK   Haemolymph                    1        6         42    31         5      66 
South UK   Haemolymph                    14      29       11    21        12     36 
North UK   Haemolymph                   23      16        30     1        22      51 
South UK   Haemolymph                   15      6         24      25      7        42 
South UK   Haemolymph                   18      6         25      26       8       43 
North UK   Haemolymph                   24      3        31      30       7        53 
 South UK   Haemolymph                  11     30        17      18       7       34 
North UK   Haemolymph                   11       3        17      18       7       31 
North UK   Haemolymph                   19       3        26       18      7       45 
North UK   Haemolymph                   24       3        26       30      7       52 
North UK   Haemolymph                   24        3        26      30      7       52 
North UK   Haemolymph                   24        3        26      30      7       52 
North UK   Haemolymph                   1         18      32       18      5       55 
North UK   Haemolymph                  26       28       34        33     5       58 
North UK   Haemolymph                  29       7        37        31      5       61 
North UK   Haemolymph                  31       23       39       37      17     63 
North UK   Haemolymph                  1          4         41      38      17     65 
 
 
 
North UK   Haemolymph                12        21        18      19      27     32 
North UK   Haemolymph                 1          1           32     31     5        69 
North UK   Haemolymph                 1          1           32     31     5        69 
North UK   Haemolymph                 1          31         32     31     5        56 
North UK   Haemolymph                 1           1          43     31     5        67 
North UK   Haemolymph                 1           1          31     31     19      54 
South UK   Crushed nematodes        6       8           11     1       10         15 
North UK   Haemolymph                  6       8          11     1       12          30 
 South UK   Crushed nematodes        7     14         13    14      12          23 
South UK   Haemolymph                 13      9          19     1       18          33 
South UK   Haemolymph                 1       22         4       1       12         29 
South UK   Crushed nematodes        1       11          1     1        6           2        
South UK   Crushed nematodes         1      1            1     12      6           21 
South UK   Crushed nematodes         1      1             1     12     6           21 
South UK   Haemolymph                   1      1            1       1      6          11 
South UK   Haemolymph                   1      1            1       1      6          11                  
South UK   Haemolymph                   1       1           1       1      6          11 
South UK   Crushed nematodes         1       1            1       1      6         11 
South UK   Crushed nematodes         1       1            1       1      6         11 
South UK   Crushed nematodes         1       1            1       11     6        20 
South UK   Crushed nematodes         1       1            1       1       6       11 
South UK   Crushed nematodes          1      1            1      13      6       22 
North UK   Haemolymph                  30      19          38     36     23     62 
South UK   Haemolymph                  10      26          16     17     28     28 
North UK   Haemolymph                  22      25          29     28     11     49 
South UK   Haemolymph                  14      13          20     22     9       37 
South UK   Haemolymph                  15      13          20     22     9       38 
North UK   Haemolymph                  25      15          33     32     24     57 
South UK   Haemolymph                  2        2            22      24     21     40 
North UK   Haemolymph                  28     20           36      35     5       60 
North UK   Haemolymph                  27     27           35      34     16     59 
North UK   Haemolymph                  32      4             44     29      5      68 
South UK   Haemolymph                  16      6            21      23     26     63 
South UK   Haemolymph                  17      2            23      3       20     41 
South UK   Haemolymph                  2        2             3        1       4      47 
South UK   Haemolymph                  21     10            28     1        2      48 
North UK   Haemolymph                  20       2           27      27     29     46 
North UK   Haemolymph                  21       10         28     29      2       50 
 
South UK   Crushed nematodes         2         2            3      3      2       13 
South UK   Crushed nematodes         2        2            3       3      4         4 
South UK   Crushed nematodes         2        2            3      3       4         5 
South UK   Crushed nematodes         2        2            3       3      4         4 
South UK   Crushed nematodes         2        2            3      3       4         4 
South UK   Crushed nematodes         2        2            3      3       4         4  
South UK   Crushed nematodes          2       2         3      3          4        4           

Clade5/ 
Associated 
Serratia 
isolates 
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Figure 3.6.  Concatenated tree of the 5 housekeeping genes of 84 Serratia samples; ST and 
MLST allelic profiles of five housekeeping genes are shown for each isolate.  The 
bootstrapped tree is shown in Appendix 2, figure 1. ‘,’’ and ‘’’above the site name represent 
the number of infected galleria baited in the same soil sample. 
 

 

 

3.2.3. Clustering of allelic profiles using goe-BURST 

In addition to constructing trees based on concatenated gene sequences, an 

additional means of visualizing MLSA data is clustering based on allelic 

profiles. A widely used method for this is BURST, which identifies likely 

founders of clusters (clonal complexes) and links near neighbours in a 

parsimonious fashion. goeBURST is a recent implementation of the BURST 

algorithm. It differs from the eBURST implementation primarily by employing a 

globally optimised (go) approach which corrects for the rare occasions when 

eBURST infers links inconsistent with BURST rules. Further, it allows the 

connection of all STs regardless of their divergence, although STs sharing 

only 1 or 2 alleles may be linked in many different ways, thus such links have 

low statistical robustness. Sixty-eight different STs were identified from the 84 

isolates and goeBURST (PHYLOViZ) was used to determine the relatedness 

between the isolates based on the allelic profiles rather than the sequences 

(figure 3.7).  
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The size of the circle is related to the numbers of isolates within each ST. 

Only ST 11 was found in both haemolymph and nematode isolates, although 

most STs were only found once.  goeBURST works by dividing the MLSA 

dataset into clusters of related isolates (clonal complexes), and then 

identifying the most likely “founder” of each complex on the basis that it 

defines the highest number of single locus variants (SLV; STs that only differ 

at one of the seven loci).  Five “founder” STs were identified in the data; STs 

27, 11, 4, 19 and 63, and these define clonal complexes CC27 (B), CC11(A), 

CC4(D), CC19 (C) and CC63 (E). CCs 11, 4, 19 (A, D and C respectively) 

tend to be associated with nematodes, and these correspond to the 

phylogenetic clusters discussed above. In contrast, CC63 (E) consists entirely 

of isolates recovered from haemolymph, and CC 27 (B) contains only 1 isolate 

(ST) from nematodes. This analysis therefore supports the preference 

inference from the phylogenetic tree that the different clusters defined by 

MLSA in the Serratia proteamaculans population differ in the degree to which 

they are associated (and hence probably adapted to) nematodes. 

 

3.2.4. Phylogenetic consistency and Recombination 

In addition to constructing phylogenetic trees based on the concatenated 

sequences of all five genes, it is also possible to reconstruct trees based on 

each gene in turn. A comparison of these trees then makes it possible to 

gauge the possible role of recombination in the evolution of these strains. 

Homologous recombination is a common phenomenon in bacteria, resulting in 

the replacement of one allele with another from a related strain or species. If 

this process is very common then individual gene trees will not reflect strain 

phylogeny, but will simply reflect the phylogeny of the individual gene.  In this 

case, gene trees will show differences in topology. It is also possible that 

topological inconsistencies may reflect a paucity of informative sites in the 

data, thus making the tree reconstructions statistically unreliable. In this case, 

the bootstrap scores on the trees are likely to be low. It is, of course, also 

possible that a combination of both these confounding effects may be 

operating to make the trees inconsistent. 
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The individual gene trees are shown in Figures 3.8 - 3.12. In general the 

bootstrap scores tend to be very low (Appendix 2, figures 2-6), and numerous 

topological inconsistencies are evident. For example, the strains 240 and 212 

are closely related on the basis of gene recA, but distantly related on the 

basis of gene glmU. These topological inconsistencies are thus consistent 

with, but not proof of, frequent recombination. In order to examine this 

possibility further, the data were analysed using Splits Tree (version 4.13.1). 

First we tested the data for each gene separately. The Splits figures showed 

little evidence of recombination for all of the genes (Appendix 2, figure 7) and 

this was confirmed using the phi test, which gave a non-significant result 

(p)>0.05) for each of the five genes (adk p= 0.495, dnaJ p=0.238, glyA p= 

0.376,  glmU p=0.785 and recA p=0.891). However, extensive evidence for 

recombination was noted when the concatenated data for all five genes were 

analyzed (P<0.001). This pattern suggests that intergenic recombination 

(between genes) has been quite common, but intragenic recombination 

(within genes) has been rare. A simple interpretation of this is that the size of 

the recombination events is considerably larger than the sequenced MLST 

alleles.    
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Figure 3.8  . A.Neighbour-joining tree based on recA gene sequence of 84 strains belonging 

to S. proteamaculans-like strains. ‘,’’ and ‘’’above the site name represent the number of 

infected galleria baited in the same soil sample. 
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Figure 3.9  . Neighbour-joining tree based on glmU gene sequence of 84 strains belonging to 

S.  Proteamaculans-like strains.  ‘,’’ and ‘’’above the site name represent the number of 

infected galleria baited in the same soil sample. 
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Figure 3.10. Neighbour-joining tree based on adK gene sequence of 84 strains belonging to 

S. proteamaculans-like strains.  ‘,’’ and ‘’’above the site name represent the number of 

infected galleria baited in the same soil sample. 
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Figure 3.11.  Neighbour-joining tree based on dnaJ gene sequence of 84 strains belonging to 

S. proteamaculans-like strain.  ‘,’’ and ‘’’above the site name represent the number of infected 

galleria baited in the same soil sample. 
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Figure 3.12.  Neighbour-joining tree based on glyA gene sequence of 84 strains belonging to 

S. proteamaculans-like strain. ‘,’’ and ‘’’above the site name represent the number of infected 

galleria baited in the same soil sample. 
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3.3.  Discussion: 

This study aimed to survey insect pathogenic bacteria isolated from both 

insect haemolymph and crushed nematodes from different sites across the 

UK soil by molecular genotyping techniques. Three separate studies were 

carried out: 

 
Preliminary small-scale study  

Conducted in Bath Golf Course where soil samples were taken from three 

different habitats. This provided proof that the methodology was appropriate, 

and the insect baiting method enriches for insect pathogenic bacteria  [91]. 

The results indicated that EPB are abundant in the soil and indicated the 

presence of EPN associated with some strains of Serratia. 16s rRNA 

sequencing of the isolates recovered from the infected Galleria revealed that 

they all belonged to Enterobacteriaceae, namely, S. proteamaculans, 

Xenorhabdus sp. and Pseudomonas sp.  

 

Localized survey on University of Bath campus in two locations.  
We recovered a total of 173 isolates from 141 dead insects, sampled from two 

locations on the University of Bath campus (A and B). Seventy-two of these 

isolates were identified on the basis of 16s rDNA sequence, and these fell into 

six main taxa, which were present in both locations, as well as more minor 

taxa which were present in either one or the other. The differences between 

the two locations in terms of the frequency of different taxa were not 

significant. The data reveal significant differences over different time points, 

which appear to coincide with weather patterns. Specifically, Bacillus sp are 

relatively more abundant in dry conditions.  

 

Group 1 contains Serratia, Rahnella, Yerisinia and Enterobacter.  Serratia 

and Yerisinia sp commonly occurred free living in soil; some Serratia sp are 

pathogenic and can be isolated from patients, while Rahnella is commonly 

found in plant rhizospheres. Many strains have been isolated from roots [147] 

in the soil and water samples [148]. They can be isolated also from the 

intestinal tracts of snails and slugs. Group 2 contains isolates related to 
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Acinetobacter; most frequently saprophytic, this organism occurs in soil and 

contributes to mineralization. They are an important source of infection in 

human skin and in the human respiratory tract (debilitated patients in 

hospital). Group 3 are Pseudomonas sp, a free-living bacterium usually 

found in soil and water. However, it occurs frequently on the surfaces of 

plants and rarely on the surfaces of animals. Pseudomonads entomophile 

were isolated from many natural niches and some species were known as an 

emerging opportunistic pathogen of clinical application. Several different 

epidemiological studies show that antibiotic resistance is rising in clinical 

isolates  [149]. Pseudomonas aeruginosa has a predilection for growth in 

moist environments, which is probably a reflection of its natural existence in 

soil and water (http://textbookofbacteriology.net/pseudomonas.html). 
 Group 4 Enterococcus sp, two species are commonly found in the 

intestines of humans as commensal organisms: E. faecalis and E. faecium.  

Group 5 are Bacillus sp, they are endospore forming bacteria and, due to 

the resistance of their endospores to environmental stress, most aerobic 

spore formers are ubiquitous and can be isolated from a wide variety of 

sources (Textbook of bacteriology). Finally, group 6 are the Xenorhabdus 
sp belonging to the family Enterobacteriaceae, and they are a symbiotic 

pathogen of insects and vectored by the entomopathogenic nematode. 

Groups 4 and 5 are most diverged as these are Gram-positive bacteria, whilst 

the others are Gram-negative gamma -proteobacteria.   

 

There were differences in the frequency with which the various genera were 

observed in the two locations, although these differences were not significant. 

The Gram-positive bacteria Enterococcus sp and the Gram-negative bacteria 

Serratia sp were more commonly isolated from location A than location B.  In 

contrast, Bacillus sp, which is Gram-positive spore forming bacteria, and 

Xenorhabdus are more common in location B than location A (Figure 3.1). 

Habitat type may play an important role in mixing different types of bacteria.   

Volume of the sample, a mixture of abiotic factors (moisture, soil pH and 

nutrient content) and biotic factors (nematodes, other bacteria) might 

influence microbial composition, and may contribute to the distribution and the 

characterization of these bacteria. 
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We investigated the repeatability of the results over time, sampling from the 

same locations every week for five weeks. This revealed some temporal 

variation. For example, Bacillus sp was commonly recovered in location B in 

weeks 2, 3 and 4, but was not recovered in week 1 and 5 in this location. This 

may have been related to rainfall and soil moisture as weeks 2, 3 and 4 were 

dry and week 1 and 5 were wet. Further, we found that the total number of 

infected G.mellonella increases on rainy days, which may reflect the 

increased growth of the enteropathogenic bacteria in wet conditions.  This 

finding is supported by the previous investigation done by Iovieno P& Bååth E 

[150], who studied the effects of drying on bacterial growth rates in soil and on 

the respiration rates of those bacteria; they reported that the rate of bacterial 

growth was lower in the dry soil than in the moist soils and the respiration 

rates increased within 1 h to a level>10 times higher than that in the moist 

soil. This paper focuses on free-living bacteria but for the bacteria that are 

vectored by nematodes it is possible that the effect will be different.    Our 

results suggested that Enterococcus sp and Serratia sp are dependent on wet 

conditions for their growth and survival. Serratia sp have the ability to infect 

insects because some of them are vectored by nematodes, whereas the 

endospore forming bacteria Bacillus sp were found in dry conditions as the 

spore resists the dry conditions.  Other factors such as soil quality, climate 

and the vegetation type in the soil may influence the bacteria community 

structure, and these can be investigated in the larger-scale survey. 

 
 Large-scale survey in Southern England and Wales 
160 soil samples were collected from ninety sites across two transect-lines:  

A. E-W & B. S-N (figure 2.4).  These two lines represent a range of different 

habitat types, soil types and environmental conditions.  In this field work we 

used for the first time a new mobile-phone based sample-recording protocol 

system called Epicollect (figure 3.13).  
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Figure 3.13. Screenshot of soil survey using the Epicollect system, (Adopted from Aanensen 

et al. (2009) [137] 
 

 

This system employs software written for the Android operating system,  

which supports the analysis of epidemiological data [137]. As described in the 

methods section, soil temperature, pH, moisture and images of each sample 

area were taken and recorded on the mobile phone, which also recorded the 

GPS location of the site. This information was instantly transmitted by the 

handset to the central web database allowing the project coordinator to 

monitor the sample collection. This study represented the first successful trial 

of the Epicollect system; currently there are 700 registered projects using this 

application.  

In the large-scale survey we recovered a total of 201 isolates from dead 

insects. Thirty-five of the bacterial isolates were recovered directly from 

crushed EPN that were isolated from infected insects using “White-traps”. 

Unlike the small-scale soil collection survey from the University of Bath, we 

observed only one Xenorhabdus isolate. It is possible that this difference 

reflects seasonal variation as the Bath study was carried out in summer, 

whilst the one survey of the large scale study (February) was carried out 

during very cold weather.  The most predominant bacterial species isolated in 

the large-scale survey was a S. proteamaculans-like species. Sequencing of 

the recA gene revealed that this species accounted for 51/90 (25.3%) of the 

strains isolated directly from the insect haemolymph, and 35/35 (100%) of the 
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strains isolated from the crushed nematodes. Interestingly, a far higher 

proportion of Serratia isolates was observed from the samples collected in 

February (49%) than in May (18.9%).This difference might be explained by a 

close association between S. proteamaculans-like strains and the nematodes.  

Griffin et al., in 1991 carried out a survey of Steinernema nematodes from 

fields, grassland and woodland in the Republic of Ireland. They noted a higher 

prevalence of nematodes in January and February than in May and June; It is 

possible that this difference is due to temperature and/or soil moisture [19].  

 

Similarly, a higher proportion of Serratia isolates were observed from samples 

taken along the south transect (Brighton, Arundel, Angmering, Chichester, 

Newforest, Weymouth, Bridport and Sidmouth) than on the north transect. 

This is likely to be explained by soil type: the south samples were taken from 

grasslands, sandy soils and woodland whilst the south-north transect included 

mainly sheltered field areas. Again, it is possible that the high proportion of 

Serratia from the south transect may be due to increased nematode activity 

rather than differences in the bacterial communities per se. In support of this, 

it has been suggested that changes in the soil moisture do not always lead to 

a change in the bacteria community [151].  A possible confounding factor is 

that the soil samples were taken from different depths, as the community 

diversity has been shown to be maximal at approximately 5 cm below the 

surface (http://www.ehow.com/list_7665226_bacteria-soil-different-

depths.html). 

 

However, it is unclear how this can explain why Serratia isolates are more 

common in February, and more common in the south transect.  A previous 

survey detected that Heterorhabditis became inactive in low soil 

temperatures. 12°C is the lower limit for this type of nematode development 

[82].  By contrast, Hominick and Briscoe [81] recovered species from 

steinernematids that occur in different habitats and soil types and that also 

adapted to cooler temperatures and demonstrated that these nematodes are 

distributed unevenly in Britain soil [81]. 
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We did not note any differences in the distribution of bacterial taxa associated 

with differences in pH, although this is thought to be an important factor 

impacting on the distribution of the soil bacteria [152].   In the present case it 

might be similar or different results of what they found because they studied 

the free living soil bacteria whereas we aimed to study the insect pathogenic 

bacteria.     

 

An evolutionary tree based on recA sequences was constructed by the 

neighbour-joining method; this gene has been widely used as a phylogenetic 

marker [153].  We built a Phylogenetic tree of 130 Serratia isolates collected 

from all Serratia isolates in the four surveys based on recA; the sequence 

data for recA was generated from 42 Serratia isolates isolated from crushed 

nematodes and 90 isolates recovered from the haemolymph of infected 

larvae.  There was little evidence that isolates recovered from the same 

geographical area are more likely to be related, and it is striking that the 

members of a single nematode associated cluster were isolated from different 

geographical locations. This suggests that rates of migration have been 

sufficient to erode any biogeographical structure, at least at the resolution 

afforded by a single gene.  

 
Entomopathogenic Nematodes  

Gouge and Snyder [10] determined that several free-living bacteria could be 

associated with a range of nematode hosts, through casual colonization of the 

cuticle rather than intimate symbiosis [10]. These bacteria (e.g. Vibrio, 

Pseudomonas, Serratia) can be found on many different types of nematodes. 

However, such relationships may be distinct from well described obligate 

nematode/ bacteria symbioses such as Steinernematidae and 

Heterorhabditidae with Xenorhabdus spp and Photorhabdus spp.  Both of 

these EPN nematodes inoculate insect haemolymph with their bacteria which 

will multiply and produce toxins and antimicrobial compounds to suppress the 

growth of competing pathogens [10], indicating a long-term co-evolutionary 

relationship. The nature of the relationship between S. proteamaculans and 
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the nematode hosts will be more closely characterized in the following 

chapters.   

 

Adams et al [36] demonstrated that EPNs are nearly ubiquitous, but that 

heterorhabditids are mainly isolated from sandy coastal soils, and that other 

taxa are more common in calcareous soils.  Adams and his group also found 

that other types of EPN are broadly distributed in turf and weedy habitats and 

tropical forests.  The results presented here agree with previous surveys 

which found that some EPNs tend to be most common in woodlands, 

grassland and some in forest habitats [78] & [144].   They recovered 

entomopathogenic nematodes from different habitats in California; it has been 

found that Steinernema sp are most commonly recovered from acid soil that 

contain high organic matter— some species were also recovered from sandy 

loamy soil [78]. However, another study recovered EPNs mostly from clay 

loams and they demonstrated that they are most effective in the porous soils 

with low organic-matter content [154]. A further study recovered aggregation 

of Steinernema sp in grassland soil [155].   

 

Finally, the genotypic characterization of Serratia strains isolated from 

crushed nematodes suggests that there may be distinct genotypes, which are 

more likely to be associated with nematodes as shown in clusters 1a and 2d 

(figure 3.4).  This figure illustrates the diversity of S. proteamaculans-like 

isolates. The two clusters 1a and 2d are predominantly associated with 

nematodes (85% and 76% respectively) and form distinct phylogenetic 

clusters. Sequence diversity (π) for the whole sample (130) was measured 

and we concluded that there is not a huge difference in the (π) value from the 

haemolymph and nematode isolates; not only did we not find differences in 

the level in sequence diversity regarding the sources but also there were no 

differences in the sequence diversity based on the geographical source. 

 

There was little evidence of clustering based on geographic source, but it was 

thought that this may reflect the limited genetic resolution in the data. To 

address this, a more powerful Multilocus Sequence Analysis scheme was 

developed. This scheme utilizes five unlinked housekeeping genes; adK. 
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recA, glmu, glyA and dnaJ, and the data showed a high level of 

discrimination, resolving 69 STs from the 84 isolates.  

This work shows that: i) the MLST primers work reliably for Serratia 

proteamaculans isolated from the insect’s haemolymph and from the crushed 

nematodes; (ii) there is considerable allelic diversity in the five housekeeping 

genes and among Serratia isolates, with recombination occurring between the 

MLSA genes. (iii) MLSA has sufficient resolution to distinguish closely related 

strains.  

 

The concatenated sequences of the five genes clustered the 84 isolates into 5 

lineages.  These lineages vary in the degree to which they were recovered 

from crushed nematodes or insect haemolymph, and this impression is borne 

out by the goeBURST analysis [156]. This analysis defined five clonal 

complexes, whereas isolates corresponding to CCs 19, 11, 4 tended to be 

more typically associated with nematode isolates corresponding to CCs 27 

and 63, which were almost exclusively recovered from haemolymph (figure 

3.7).   A lack of geographical structure was also evident from these data, thus 

this study lends further support to the conclusion on the use of recA that host 

associated ecology is more important than geography in driving and 

maintaining sequence divergence within this bacterial population. 
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In summary, the simplest interpretation of these observations is that sub-

clusters of S. proteamculans adapted to nematodes have emerged, and these 

are more common on the South coast (E-W) than in other regions covered by 

these surveys. The broad biogeographical patterns observed are therefore 

more likely to reflect adaptation than migration. One possibility is that these 

clusters are adapted to nematodes, which themselves are adapted to the 

habitat and conditions prevalent in the south. 

 

The rate of recombination was calculated using the phi test, as implemented 

in SplitsTree4. This revealed extensive recombination in the concatenated 

dataset, but limited recombination when each gene was considered 

separately. The simplest interpretation of this is that recombination affects 

regions that are considerably longer than the sequenced alleles. This can 

explain why intergenic recombination (that is, between genes) is much more 

common than intragenic recombination (within genes).  
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4.1. Introduction  

 

4.1.1.  Pathogenicity of Serratia  

Serratia species are ubiquitous in nature, found in water, soil, animals 

(including man) and on the surfaces of plants [115].  Bucher et al [116] stated 

that the genus Serratia belongs to the Enterobacteriaceae, and some of them 

are considered important insect pathogens including S. marcescens, S 

liquefaciens and S. proteamaculans, cited by Grimont in 2006 [115] as 

causing lethal septicemia through invasion of the insect haemolymph.  It has 

been shown that different insect hosts are highly susceptible to infection by 

these pathogens. For example in G. mellonella, only 40 cells of S. 

marcescens, S. proteamaculans and S. liquefaciens are lethal to the larvae by 

injection into the haemolymph [117]. A similarly low dose of only 10-50 cells 

will kill the grasshopper Melanoplus sanguinipes [118].   

It is important to understand the reasons why different entomopathogenic 

bacteria cause different degrees of virulence to the host in an evolutionary 

biology study.  The common bioassay used to evaluate the pathogenicity and 

virulence of a pathogen is determining the dose needed to kill 50% of an 

experimental cohort [157]. 

Bacterial pathologists usually use dose-response bioassays to evaluate the 

dose LD50 or concentration LC50 needed to kill 50% of the population. 

Moreover, the time taken to cause the death of 50% of the population also 

can be measured, giving what is known as an LT50. This method was devised 

by Trevan [158] & [159] 
 

Serratia entomophila and Serratia proteamaculans are the causal agents of 

Amber disease in the New Zealand grass grub Costelytra zealandica; this 

insect feeds on the young roots of grassland causing severe losses in the 

grass yield [160].   The disease was first prominent in 1981, and the mature 

insects’ larvae stop feeding as a result of the infection. The signs of infection 

include clearance of the larval mid gut, causing it to turn pale yellow, followed 
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by death [161]  Other related Coleoptera do not show any susceptibility to S. 

entomophila, suggesting that  S. entomophila is highly host specific [38]. 

 

The first step in the infection is the attachment of the bacteria to the host gut 

cells, facilitated by the interaction of specific proteins which have ability to 

adhere with the specific receptors of the host.  Many species belonging to 

Enterobacteriaceae have Fimbriae or pili which are protein appendages 

located on the cell surface. These proteins are often found to be associated 

with the host’s specificity, pathogenicity and virulence.  Other non-fimbrial 

adhesins have also been reported [162] & [163].  Pili and fimbriae are also 

often important to allow bacteria to survive and persist in different abiotic 

environments. 

 

Another important determination of the pathogenicity is bacteria toxins.  Kaska 

et al [44] (as cited by Grimont [45]) stated that several secreted enzymes 

have been shown to play important roles in the virulence of Serratia, including 

proteinases invading insects’ haemocytes, and chitinases injecting toxins into 

larvae hemolymph and lecithinases.  It was found that Phospholipases, 

proteases and chitinases depress the insect immune system and are involved 

in the virulence of bacteria.  Toxin proteins have been identified as the major 

cause of the symptoms of amber disease.  A 115-kb plasmid pADAP was 

identified in S. entomophila which is important to this infection [7].  This 

plasmid encodes the sepA, sepB, and sepC and anti-feeding–prophage (afp) 

operons which are homologues of the Photorhabdus Toxin Complex and PVC 

insect toxins respectively.  It was found that sepA, sepB, and sepC together 

are essential virulence genes on pADAP.  

 

Many P. luminescens strains have been shown to produce Toxin-Complex 

proteins with strong insecticidal activity against insects from different orders 

including the Coleoptera, Dictyoptera, Hymenoptera, and Lepidoptera. The 

Toxin Complex proteins of P. luminescens are homologous to S. entomophila 



94 
 

sepA, sepB and sepC and were first identified as the tca, tcb, tcc, and tcd 

complexes.  These toxin proteins are now known to be widespread in many 

species of pathogen and have been shown to be active against a range of 

hosts, including humans in the case of the Yersinia pestis TCs [164]. 

 
4.1.2.  Evolution of the nematodes  

Nematodes are multicellular organisms, and many are parasitic on humans, 

animals or crop plants.  Moreover, those parasites of insect pests are 

important because of their use as biological control agents [68]. 

 

The figure below demonstrates the evolution of the nematodes, starting from 

the free living and ending in two ways depending on their uses of pathogenic 

bacteria, which will make the nematodes more or less harmful to their host 

[165].   

Some nematodes use symbiotic bacteria to facilitate their pathogenicity such 

as entomopathogenic nematodes. 

 

 
 
Figure 4.1.  The evolution of the nematodes associated with insects. adopted from Dillmon et 

al [165] 
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Two abundant types of entomopathogenic nematodes are the Steinernema 

and Heterorhabditis nematodes, which are highly infective to insects. These 

nematodes are symbiotic with Xenorhabdus and Photorhabdus respectively, 

which are potent Gram-negative entomopathogens (insect pathogens) [68]. 

The symbiotic relationships between the nematode hosts and specific 

bacterial strains are normally very strict. However, there have been several 

reports in which bacteria from the genus Serratia have been found to be 

associated with either Steinernema spp or Heterorhabditis spp [2].  Many 

species of Serratia are considered to be opportunistic or facultative pathogens 

to insects including S. marcesens, S. entomohila and S. proteamaculans.  

 

Other nematodes such as Oscheius chongmingensis and Caenorhabditis 

briggsae have been identified as insect pathogenic and both are seen to be 

associated with poorly defined insect pathogenic Serratia sp. In both cases, 

after the infection is finished, the dauer juveniles emerging from the insect 

cadaver were found to be associated with their vectored pathogen, suggesting 

a classic EPN-like relationship had become established [165].   

The term “entomopathogenic nematode” was developed to distinguish 

between parasitic nematodes.  Entomopathogenic nematodes have specific 

characteristics. The association between the nematodes and the pathogenic 

bacteria should facilitate the pathogenicity and the death of the infected 

insect. This should be clearly distinguished from other types of association, in 

which the bacteria are more readily lost from the nematode after an 

infection[165].  

 

Pristionchus sp and Caenorhabditis elegans, are two nematodes species that 

are widely studied as model organisms because they are easily cultured in the 

laboratory, feeding on Escherichia coli OP50 [95] & [143] and because they 

have other desirable characteristics, such as the ease of performing genetic 

crosses and their highly specified developmental processes.  While in the wild 

they are found as free-living soil-dwelling nematodes[166], little is known 

about their natural history. 
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The life cycle of Pristionchus sp is quite short; they can complete their growth 

within 4 days at 20°C, starting from egg to hermaphrodite (J1 to J4), which 

means no sex partner is developed. However, males can spontaneously 

occur and are named residual males [95].  

 

 

In this chapter: 

 

1. I examined the virulence of the novel nematode-associated Serratia 

proteamaculans-like strains isolated from Bath (B1) and Chepstow (C1) soils, 

toward Galleria. mellonella and Manduca. sexta.  And antibiotic 

susceptibilities of these strains to allow the construction of gfp-tagged 

derivatives for use in subsequent work.  

 

 

2.  I described the discovery of a novel association partnership between two 

different species of nematodes, Pristionchus sp. and Steinernema sp, and the 

normally free-living Serratia proteamaculans-like sp found in UK soils. While 

this partnership was seen in soil samples from many sites in the UK, the focus 

was placed on a nematode-bacterial pair isolated from soil in Bath, Chepstow 

and Brighton as a model system. 
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4.2.  Results 

 

4.2.1. Phenotypes test for two strains of nematodes 
associated S. proreamaculans-like isolates 

 

Virulence bioassay of B1 and C1 toward the model insect larvae; 
Galleria. mellonella and Manduca. sexta  

i.   Galleria Injection experiments. 

To quantify the essential virulence of each bacteria isolate we performed a 

bioassay assessing the LD (lethal dose) and LT50 (lethal time), an estimate of 

the dose and time required to kill 50% of the hosts. This is considered a 

standard measure of virulence for Serratia spp. 

100 Galleria larvae were injected for each dilution of Serratia and this was 

repeated twice (figure 4.2) as described in section 2.2.11, page: 43. The 

average number of dead insects per replicate is shown in Table 4.1 and 

graphically represented in Figure 4.3 and 4.4.  

 

Figure 4.2. A. Infected insects injected by nematodes associated with S. proteamaculans B1.  
B. Infected insects injected by nematodes associated with S. proteamaculans C1.The image 
represents the injection of Serratia isolates dilution 3 after 72 h. 

 

A B 
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Table 4.1.  Average number of dead insects injected by Serratia sp after 24 and 72 h. The 
number in brackets refers to the dilution factor and correlates with Figures 4.3 and 4.4. 

Number of cells 
Injected (dilution) 

Average number of dead Galleria 
injected by B1 strain 
  
 24 h                          72 h 

Average number of dead Galleria 
injected by C1 strain 
  
24 h                              72 h 

695000 (1) 95                              100 22.5                               97.5 

69500 (2) 67.5                           100 12.5                                 75 

6950 (3) 0                                100 0                                     0 

695 (4) 0                                100 0                                     0 

 69 (5) 0                                100 0                                     0 

 
 
For Galleria injected with 69500 of S. proteamaculans B1 cells, 67.5% of the 

insects died after 24 h. However, when only 6950 cells were injected none 

died at 24 h, but 100% were killed by 72h. We note 100% mortality by 72 h 

even for the lowest dose of only 69 cells (table 4.1). This was not true of the 

Chepstow isolate (C1) as at 6950 cells or less we observed no killing of the 

larvae at either 24 or 72 h. Even at the highest dose of 695000 cells, C1 only 

killed 22.5% of the larvae at 24h compared to 95% by the B1 strain. None of 

the E. coli or LB injected negative control insects died.  The lethal dose of 

Bath isolates and Chepstow isolates was measured to estimate the number of 

bacterial cells required to kill 50% of the hosts; for B1 the LD50= 6.6, and for 

C1 the LD 50= 7.64 24h after the injection  (Appendix 3, figure 1).  

This indicated that B1 was more virulent than C1.  A high LD50 is considered 

as less virulent. Whereas, when injecting the insects with B1 the insects die 

far more rapidly after 24h, LT50= 12.27, while for C1 LT50= -3.5 (Appendix 3, 

figure 2).  The results are not significant because we took the reading after 

two time points only. 
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Figure 4.3.  The average number of dead insects from two replicates of 100 Galleria each 
after 24 hours post injection with Serratia proteamaculans B1 and C1 strains.   
                
 
 
 
 

 

 

Figure 4.4.  The average number of dead insects from two replicates of 100 Galleria each 
after 72 hours post injection with Serratia proteamaculans B1 and C1 strains.   
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  M. sexta injection experiments. 

A preliminary experiment was performed in which three 5th instar M. sexta 

larvae were injected for each dilution of Serratia (table 4.1) and this was 

repeated twice. For M. sexta all of the insects were killed within 24h for both 

the B1 and C1 isolates compared with the control insects (figure 4.5). 

 

Figure 4.5.  Pathogenicity of Serratia proteamaculans-like strain (B1) on M. sexta, (A). 
injected insects with  69 c.f.u lowest concentration of cells, (B). control insects injected with 
LB broth. 

 

ii.  M. sexta feeding experiments. 

Six 5th instar M. sexta larvae were fed on either the Serratia B1 strain or E. 

coli overnight culture for 4 h before they were transferred onto fresh food. The 

insects were weighed before feeding and after 4 days.  No mortality or 

morbidity was observed in the treated insects, implying that the Serratia B1 

strain was not able to infect orally. In addition, there was no obvious reduction 

in weight gain (figure 4.6).  Both isolates are not orally toxic to M.sexta. 
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Figure 4.6.   The average weights (g) of M. sexta before and after 4 days post oral exposure 
to Serratia proteamaculans (B1) and E. coli OP50. A total of 12 insects were fed each 
bacterial strain. Error bars represent the standard error. The numbers above the bars show 
the mean weight in grams of the cohorts.  
 

 

 

4.2.2.  Antibiotic resistance B1 and C1 

The susceptibility of two of our nematode associated Serratia 

proteamaculans-like strain isolates was tested by streaking them out onto 

agar plates containing different concentrations of two antibiotics, kanamycin 

and tetracycline (table 4.3) (section 2.2.12, page:46).  

Table 4.3.   Serratia proteamaculans-like strain antimicrobial sensitivity on LB agar plates. “+” 
indicates a normal level of growth,“-“ indicates no growth 

A. Concentration of kanamycin or tetracycline  
Serratia  1µg/ml 5µg/ml 10µg/ml 50µg/ml 100µg/ml 
Bath strain 
(B1) 

+ + - - - 

Chepstow 
strain (C1) 

+ + - - - 

 

These observations indicate that the two Serratia isolates are relatively 

sensitive to both antibiotics. Typically, they were unable to grow at 10 µg/ml or 

above. B1 and C1 parental strains were used for chromosomal gfp-labelling 

(see below). 
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4.2.3.  Determination of the location of associated bacteria 
within the nematode  
 

 

Identification of nematode associated bacterial genera using recA gene 
sequence 
 
Nematode associated bacteria were identified as S. proteamaculans-like 

species based on recA gene sequence as discussed before. 

From the Bath samples, 80% of the dead insects produced nematodes in the 

White traps. From the (E-W) samples, 24.4% of infected insects produced 

nematodes, whilst the equivalent figure for (S-N) was 8.1% ( A chi sq test 

showed that this difference was significant (chi sq = 16.080, df = 1, p = 

0.000060).    

We selected three independent nematode isolates and characterized them in 

greater detail. These nematodes were isolated from infected insects from soils 

taken from Bath, Brighton and Chepstow. These worms were sent to Dr 

Patricia Stock at the University of Arizona who typed them using light and 

electron microscopy and also molecular diagnostics, using the sequence of 

the 18S rRNA gene as a “Barcode sequence”. The Bath and Brighton isolates 

were identified as Pristionchus sp, whereas the Chepstow nematodes were 

identified as Steinernema sp (chapter 5). We were not sent the sequence of 

the samples, hence why we had to sequence the samples again as 

mentioned in chapter5 . 

 

We assign the strain names B1, C1 and B2 to the Serratia isolated from the 

nematodes from Bath, Chepstow, and Brighton respectively.  Conversely, we 

named the associated nematodes as NB1, NC1 and NB2 respectively. 

 
With the aim of testing if bacteria were associated with the surface of the 

nematode isolates or whether they were being carried internally (in the gut 

lumen or in the tissues) we tested a range of surface sterilization regimes on 
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strains NB1 and NC1 (section 2.2.3.i, page: 37). We examined how long the 

worms could survive exposure to 1% bleach [2] & [167] (table 4.4). 

Note, nematodes sterilized in this way were also used for the phoresis-

attraction assays (section 4.2.9). In these experiments, after exposure to the 

bleach, nematodes were also crushed into sterile media and plated onto LB 

agar to assess the survival of any associated bacteria.  
 
      Table 4.4:  Effect of exposure to 1% bleach upon nematode survival. 

Exposure 

time to 1% 

bleach 

Nematode 

condition 

Bacterial growth from 

active nematodes 

Bacterial growth from 

crushed nematodes 

2 minutes Nematodes 

are active 

Bacterial growth on 

the agar plates 

Bacteria growing  

5 minutes No survival  Bacterial growth on 

the agar plates 

Bacteria growing  

10 minutes No survival No bacterial growth Bacteria growing  

1 hour No survival No bacterial growth Bacteria growing  

 

The nematode strains are killed by this 1% within 10 minutes, but we 

observed bacteria growing on the media after crushing the dead nematodes. 
 

4.2.4.  Comparing the virulence of the Serratia bacteria alone 
with that of the nematode isolates that had been fed on their 
cognate Serratia strains 

 
Crushing experiments showed that 37 of the 59 nematodes collected from the 

previous surveys contained Serratia proteamaculans like bacterial strains. We 

therefore decided to investigate the role of these associated bacteria in the 

virulence of the nematodes upon Galleria infection in sand/soil – trap 

experiments (section 2.2.17, page 51). Two model nematodes and their 

bacteria were used in these experiments (NB1-B1 and NC1-C1).  We tested 

the insect infectivity of nematodes that had been fed upon their cognate 

bacteria, the bacteria alone and also nematodes that had been passaged on 

laboratory E. coli. (section 2.2.15, page: 50).  Combinations of C. elegans 

nematodes and E. coli were used as negative controls.  
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The impact of using autoclaved soil in place of the sand substrate in these 

infection experiments was subsequently tested as the composition of the 

substrate has been shown to affect nematode activity in other parasitic 

nematode isolates  [84].  

 

 

In these experiments, washed worms (40 nematodes in 10µl) were added to 

the substrate or to 1ml of diluted overnight culture of bacteria. We used 100 

Galleria per test chamber and performed three replicates per treatment. The 

number of dead insects was counted after three days; averages from these 

experiments are graphed in Figure 4.7. 

 
Figure 4.7.  The pathogenicity of nematode and bacterial isolates in soil-trap baiting 
experiments. The graphs show the mean percentages of dead Galleria after three days of 
exposure to the treatments. These are the means of 3 replicates of 100 larvae per replicate 
(n=300). Error bars represent one standard error. 
 

When the 3 replicates are combined we can see that the NC1 nematodes that 

had been raised on their cognate Serratia strain killed more larvae than when 

the Serratia bacteria were added to the soil alone. The bacterial numbers 

added cannot be directly compared between these two treatments as the 

number of Serratia cells per nematode was not known. Nevertheless, 

significantly more bacteria would have been added in the case of the bacterial 

culture treatment. Conversely, in the case of the NB1 isolates we saw that 

their associated bacteria were able to kill more Galleria when added to the soil 

alone than when the Serratia fed Pristionchus isolates were added. The 
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isolated Serratia B1 were seen to infect more insects than when associated 

with the cognate nematode host. As expected, the PBS control and the 

C.elegans (reared on E.coli OP50) showed little or no insect mortality over 10 

days. 

 

In the case of cured NB1 and NC1 nematodes the results show that virulence 

towards the test insects was less than for the complexes of NB1 and NC1; 

this was not surprising because in this experiment the cured nematodes had 

been treated by passaging E.coli 35 times in an attempt to eliminate the 

original associated bacteria. The results in section (4.2.5) below indicate that 

passaging the Gfp-labelled E.coli was ineffective in getting rid of Serratia—

their number was reduced but they were not eliminated. 

 
 

We confirmed that the nematodes and bacteria were both present during the 

lethal infection by placing infected larvae on white traps and collecting 

emerging nematodes. We confirmed these nematodes were still associated 

with the Serratia by surface sterilization and crushing. We did not determine 

the exact contribution of the nematode and bacteria to the killing process, as 

we were not able to cure the nematodes of their associated bacteria. However 

the bacteria were shown to be highly pathogenic independently of the 

nematode. This would require further work. 
 

In initial experiments autoclaved sand was used as a substrate, into which 

Galleria larvae were added as “bait”. Either nematodes or bacteria were 

added and insect mortality was measured. The results showed the average 

number of insects that became infected when exposed directly to the B1 

strain culture was slightly higher than when the test insects were exposed to 

NB1 nematodes that had been fed on the B1 strain. This was consistent with 

the observations from the soil-trap experiments. The results also suggest that 

the infectivity of the NC1 nematode isolate was higher than that of the NB1 

isolate.  The difference between the two methods was the time it took for the 

infection to occur, being slightly longer in the sand trap than in the soil trap.  
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4.2.5. Testing the stability of the association between the Bath 
nematode (NB1) isolate and the Serratia strain (B1) 

 
The stability of the association between B1 bacteria with the NB1 nematodes 

isolate was assessed by prolonged feeding of NB1 on E. coli with the aim of 

“displacing” the Serratia (section 2.2.15, page 50).   The results were 

observed and recorded in Table 4.5. 
 

 
Table 4.5 : Determination of the presence or absence of Serratia B1 in E. coli passaged NB1  

Type of colony in the 10 plates after 

 10 passage 

Both Serratia and E.coli  

Colonies were observed 

Type of  colony in the 10 plates after 

 20 passage 

The majority of colonies were 

E. coli ,few Serratia 

Type of colony in the 10 plates after 

 30 passage 

Both Serratia and E. coli  

Colonies were observed  

 

Despite extensive passage on an E. coli food source we were not able to 

eliminate the Serratia B1 strain from the NB1 nematode population. Figure 4.8 

shows examples of plates from crushing experiments of passage 15 exhibiting 

both Gfp labelled E. coli and the orange pigmented B1 Serratia colonies. It 

should be noted that the experimental procedure used did not assess whether 

all nematodes retained Serratia cells or just a proportion of them in the 

population.  

Nevertheless, the persistence of the Serratia in the nematodes confirms that 

the virulence of E. coli passaged nematodes could not be reliably assessed 

as the presence of the associated B1 Serratia could not be ruled out.   

Furthermore, given the number of passages used, these results suggest that 

there is a very tight association between the B1 Serratia bacteria and the NB1 

nematode host. 
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    Figure 4.8. An example showing the presence of both E. coli and Serratia colonies on     
    NGM plates from crushed NB1 after E. coli passage 15.  
 

 
4.2.6.  Microscopic examination of the colonization of NB1 
nematodes by Serratia strain B1 
 

The mini-Tn7 transposon system is a suitable tool for site-specific labelling of 

Gram negative pathogens such as Acinetobacter baumannii, Pseudomonas 

aeruginosa and Photorhabdus luminescens [168].  We successfully used the 

pURR25(mini-Tn7KSGFP) and pUX-BF13(Tn7 transposase) plasmids in a 

triparental mating strategy to deliver the mini-Tn7 transposon, which 

expresses the fluorescent Gfp protein from the E. coli lac derived promoter. In 

other Proteobacterial genomes the Tn7KSGFP usually inserts into an att site 

located downstream of the highly conserved glmS genes. This is assumed to 

be a neutral site that should not affect the rest of the genome. Further work 

would be required in future, to determine the exact integration site of the 

transposon in our strains 

The triparental mating system described above was used to label the B1 and 

C1 nematode associated Serratia strains with a gfp marker gene; both were 

successfully labelled using this method (section 2.2.13, page:46).  The gfp 

gene (Tn7KSGFP) was inserted into the chromosome of these strains to 

Gfp E. coli 

Serratia sp. 
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ensure stability during in vivo insect and nematode infections. Figure 4.9 

illustrates the green fluorescence of the labelled strain B1 as observed under 

the inverted fluorescence microscope.  

 

Figure 4.9  An example image of Gfp expression from the labelled Bath Serratia 
proteamaculans-like strain B1  

 
In order to determine the physical location of the Serratia B1 cells inside the 

NB1 nematodes we labelled strain B1 with a Gfp reporter gene. Gfp labelled 

E. coli was used as a “non-symbiont” control strain and also C. elegans as an 

alternative nematode “host”. The nematodes were passaged (15 times) on 

NGM plates seeded with these bacterial strains, washed, immobilised using 

1% sodium azide and analysed using laser scanning confocal microscopy to 

visualize the location of the bacteria in the worm. We assessed four 

combinations of feeding types as summarized in Table 4.6. 
 

 
Table 4.6.  Nematode host and bacterial strain combinations. 

Food C. elegans Bath Pristionchus nematodes 

NB1 

E. coli Gfp Figure 4.11 Figure 4.13 

Serratia Gfp Figure 4.10 Figure 4.12 

 

The control of gfp E. coli fed C. elegans confirmed as expected that the few 

intact bacterial cells seen were restricted to the gut of the worm, with the 

majority presumably having been crushed by the worm’s “grinder” and 

subsequently digested (figure 4.11). More intact E. coli cells were typically 

seen in the gut of the Pristionchus nematodes, possibly because this genus 

lacks a “grinder” (figure 4.13). Interestingly, the Serratia Gfp cells could be 

Gfp B1 
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seen throughout the mesoderm tissues of the C. elegans, and were not 

restricted to the gut (figure 4.10). This suggests that this strain of bacteria has 

the ability to cross the gut and invade the tissues. It should be noted that no 

obvious deleterious effects were seen on C. elegans fed on Serratia B1, 

suggesting this tissue invasion is not associated with any pathogenic effects. 

Finally, when Serratia Gfp bacteria were fed to the NB1 nematode it was seen 

that the bacteria invaded the tissue surrounding the pharynx almost 

immediately after ingestion (figure 4.12). It is important to note that the 

confocal microscopic examination verified that the bacteria were indeed within 

the nematode tissues using Z-stack 3D reconstruction (Appendix 4, CD1) 
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Figure 4.10. Example images of two individual C. elegans nematodes which had been fed on 
Gfp labelled Serratia. A and B represent illumination under the Gfp excitation wavelength of 
396 nm, C and D show an overlay with bright field illumination and E in both shows the bright 
field illumination 
 

 

 

A B 

C D 

E E 
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Figure 4.11.  An example image of a C. elegans nematode which had been fed on Gfp 
labelled E. coli. A represents illumination under the Gfp excitation wavelength of 396 nm, B 
shows the bright field illumination, while C shows an overlay with bright field illumination 
 

 
 
Figure 4.12:  An example image of a NB1 Pristionchus nematode which had been fed on Gfp 

labelled Serratia. A represents illumination under the Gfp excitation wavelength of 396 nm, B 

shows the brightfield illumination and C shows an overlay of the two.  Red arrows denote the 

location of the bacteria invading the tissues inside the mouth. 

A B 

C 
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Figure 4.13. An example image of a NB1 Pristionchus nematode which had been fed on Gfp 
labelled E. coli. The image shows an overlay illumination under the Gfp excitation wavelength 
of 396 nm and bright field.  
 
 
 
 

4.2.7. Can the Serratia B1 bacteria be found in the eggs of the 
NB1 nematode? 

 
In preliminary experiments, eggs from the NB1 nematode were isolated from 

worms that had been grown on NGM plates seeded with the associated 

Serratia strain (section 2.2.18, page: 52).  Worms and eggs were washed 

from the plates with PBS and then treated with bleach to kill any free bacteria 

or surface associated bacteria and also to release eggs from adults. Eggs 

were then washed several times and resuspended in egg buffer (figure 4.14). 

The eggs were then crushed (without counting how many there were) in 

sterile media before plating out onto NGM agar plates and incubating at room 

temperature in the dark. As a control, we also added washed and surface 

sterilized eggs directly onto the plates to control for any external bacteria that 

had not been killed.   After 4 days of incubation colonies were observed.  Six 
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colonies were found on plates; these colonies were picked and their recA 

genes were amplified using PCR (Figure 4.15). These amplicons were 

sequenced to identify the bacterial species. BLASTN analysis of the recA 

amplicon sequences identified colony 3 as Serratia proteamaculans, 4 and 6 

as Serratia liquefaciens (ATCC 27592) and Serratia marcescens (WW4) 

respectively and band 1 as Enterococcus (Appendix 5). No colonies grew on 

the non-crushed egg control plates confirming that surface sterilization was 

complete.   
 

 
Figure 4.14. Isolation of the NB1 eggs, (red arrow) taken using a Nikon SMZ1500 inverted 

microscope. 

 

 
Figure 4.15. Gel electrophoresis of the PCR amplicons of the recA gene from the six colonies 
isolated from surface sterilized and crushed eggs. S. Proteamaculans-like species was used 
as positive control. 
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4.2.8. Nematode bacterial phoresis assays  
In order to determine if the NB1 nematodes showed a preference for feeding 

on their associated Serratia B1 strain we performed phoresis “choice” assays 

(section 2.2.19, page: 53).  

 Briefly, different bacterial strains were seeded onto two sides of an NGM 

plate, and 50-60 individual NB1 nematodes at different stages were added in 

the centre of the plate equidistant from the bacterial lawns. In addition, in 

separate experiments sterile eggs were added to the centre of the plates in 

place of worms.  

 

The preliminary experiments using complete NGM agar were inconclusive as 

nematodes became distributed randomly across the plate, possibly because 

the plate represented a “homogenous” food source. Therefore, the 

experiments were repeated using NGM plates without the addition of peptone. 

In addition, the nematodes were starved for one week before their addition to 

the plate. These low nutrient plates were also used for the sterile egg-

hatching experiments. These experimental conditions led to clear directional 

phoretic movement of the nematodes and allowed the numbers of nematodes 

choosing the different bacterial lawns to be microscopically counted.  The 

results from the hatching eggs experiments are presented in Table 4.7. 

 

 We do not present the results of phoresis experiments using adult and 

juvenile worms as the worms appeared to release their associated Serratia 

when grown on the plates, confounding interpretation. The population of 

nematodes used in these studies were a mixture of ages so we cannot 

comment on which specific stage was releasing bacteria. 
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Table 4.7: Hatching nematode bacterial phoresis results. The numbers of hatched worms 
counted within the given bacterial lawn are shown. 
 
Observation 

after 

E.coli versus 

Serratia 
Photorhabdus 

luminescens TT01 

versus Serratia 

Pseudomonas 

fluorescens 

versus Serratia 

Bacillus 

cereus versus 

Serratia 

24 hrs 4 toward Serratia  
2 toward E. coli 

5 toward Serratia 
2 toward Photorhabdus 

4 toward Serratia 

0 toward 

Pseudomonas  

5 toward 

Serratia 0 

toward 

Bacillus 

48hrs 32 toward 

Serratia 
20 toward E.coli 

30 toward Serratia 
2 toward photorhabdus 

20 toward 

Serratia 

4 toward 

Pseudomonas 

25 toward 

Serratia 

A few dead 

worms in 

Bacillus lawn 

 

These experiments illustrate that up to 48 hours the NB1 nematode preferred 

lawns of Serratia B1 bacteria over those of Photorhabdus, Bacillus or 

Pseudomonus. Interestingly, there was no obvious bias in nematode phoresis 

when presented with a choice between Serratia and E. coil lawns.  

After three days, nematodes were distributed across the plates, even in 

pathogenic bacterial lawns, where some worms were seen to be dead. 

 

This finding might not confirm that the worms prefer Serratia, they may 

randomly move and only those that got to Serratia survived.  
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4.4.  Discussion 

 

Pathogenicity of Serratia to insect hosts 
 

The Serratia strains that have been investigated in this project were all 

isolated from the insect soil baiting experiments discussed in the previous 

chapter. In some cases, the bacterial strains were associated with nematodes 

and in others they appeared to be “free living”. In this chapter the 

pathogenicity of two of the nematode associated strains, B1 and C1, was 

compared when they were injected into insects without their nematode 

partners. We found that both strains were pathogenic for Galleria and 

Manduca, but that the B1 strain was significantly more virulent than the C1 

strain.  

 

These findings are consistent with previous work by Abebe [52].  In their 

study, they isolated a strain designated Serratia sp. SCBI that was found 

associated with Caenorhabditis briggsae KT0001 isolated by insect baiting 

studies using South African soil. This strain was also highly pathogenic when 

injected into Galleria larvae, even in the absence of its nematode host [52].  

Furthermore, other studies have confirmed that some Serratia sp such as S. 

proteamaculans and S. marcescens are lethal to insects by injection, with only 

up to 50 cells able to kill the grasshopper Melanoplus sanguinipes  as well as 

G. mellonella [169]. 

 

Interestingly, even though both of our strains were able to infect Galleria when 

added directly to autoclaved soil, we note that they were not able to infect 

Manduca larvae orally, even when fed in high doses. This suggests that these 

strains are able to invade the insect haemolymph either directly through 

openings such as the spiracles or by vector transmission by the nematode 

host. It is interesting to note that the highly virulent obligate nematode 

symbionts Photorhabdus and Xenorhabdus are also unable to infect Manduca 

via the oral route. It is possible that exposure to the very high pH of the insect 

gut is acting as a barrier to the establishment of infection. It is not clear why 

the B1 and C1 strains show a difference in virulence; however, as they belong 
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to different phylogenetic groups (chapter 4) we may speculate that their 

genomes encode different virulence factors. It is interesting to note that the 

bacterial-nematode complex of Steinernema/Serratia NC1-C1 is highly 

virulent to Galleria compared with the Pristionchus/Serratia NB1-B1 complex 

(figure 4.8), suggesting the nematode species are determining the actual 

virulence level.  We note that the lethal dose (LD50) of Bath isolates was less 

than LD50 of Chepstow isolates, indicating that the B1 isolate is more virulent 

than the C1 when injected alone. 

 
 
Antibiotic resistance of nematode associated Serratia 
 

It has been found that many soil bacteria (up to 40%) are resistant to artificial 

antibiotics, often mediated by plasmid encoded determinants[170].  Serratia 

marcescens has been known to be the cause of many hospital epidemics. It 

causes several diseases as a secondary infection.  It has been found that S. 

marcescens has the ability to develop resistance to many β-lactam antibiotics 

by virtue of chromosomally encoded, inducible Ampc β-lactamases or by the 

acquisition of plasmid-encoded extended-spectrum β-lactamases (ESBLs) 

[171]. 

Antibiotic resistance is an increasing clinical problem. The origin of these 

resistance genes is poorly understood. Previously it has been suggested that 

horizontal gene transfer responsible for the spread of such genes is more 

likely to occur during the association of bacteria with invertebrates in the 

environment.  It was therefore decided that the antibiotic resistance profiles of 

our Serratia proteamaculans-like isolates should be examined to determine if 

there was any correlation between nematode association and resistance. 

However, the two genetically distinct strains that were examined in this study 

showed no strong natural resistance to the two antibiotics tested.  

 
Insect pathogenic nematode distribution 
Two different families of insect pathogenic nematodes belonging to the 

Pristionchus and Steinernema genera were recovered from our UK soil 

sampling as confirmed in chapter 5.  Previously, Adams et al [15] concluded 
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that EPNs are nearly ubiquitous, and that heterorhabditids are mainly isolated 

from sandy coastal soils with some taxa being more common in calcareous 

soils; whereas, other types of EPN are distributed in turf, weedy habitats and 

tropical forests. Consistent with this, the present study showed that 80%, 

24.4% and 8.1% of infected insects from soils from Bath, Southern England 

(E-W) and Southern Wales (N-S) respectively successfully produced 

nematodes.    

 

Initial molecular diagnostics with 18S rDNA barcoding were performed by 

Patricia Stock (University of Arizona) on three of our model nematode isolates 

(NB1, NB2 and NC1). This suggested that the nematodes we isolated from 

Bath and Brighton soils belong to the genus Pristionchus, a known insect-

associated nematode previously found in UK soils. On the other hand, the 

nematode isolated from the Chepstow soil sample was seen to be a close 

relative of the genus Steinernema, and which therefore belongs to the family 

Rhabditidae. In the next chapter, I describe in more detail the molecular 

characterisation of these different nematodes.  

 
 
 

Nematode associated bacterial strains 

In all cases when the different Pristionchus nematode isolates were crushed it 

was found that they were associated with strains of bacteria belonging to the 

genus Serratia. Sequence analysis of the recA amplicon of these strains 

indicated that they were all close relatives of Serratia proteamaculans sp. 

Recently, strains of Serratia marscens have also been found associated with 

the nematode Caenorhabditis briggsae isolated from South African soil [52]. 

While no reports exist that specifically link Pristionchus with a bacterial 

symbiont, it has previously been shown to interact successfully with different 

species of pathogenic bacteria which can accumulate within the nematode gut 

and on the nematode cuticle [143].   Furthermore, Pristionchus is commonly 

used as a model organism in the laboratory to study development as they can 

be easily cultured by feeding on Escherichia coli OP50 in a manner similar to 

C. elegans [98].  We believe it is significant that we were able to isolate 
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Pristionchus-Serratia complexes from soil widely distributed across our 

sampling transects. We are unaware of any previous studies that have 

uncovered such a ubiquitous distribution of these highly insect pathogenic 

nematode complexes in the UK.  This suggests that either (i) these nematode 

complexes are recently evolved or (ii) they have been simply discarded in 

previous sampling studies. Interestingly, despite being designated a member 

of the Steinernematidae, the NC1 isolate was shown also to contain a Serratia 

proteamaculans sp. strain, rather than the obligate symbiont Xenorhabdus 

normally associated with these entomopathogens. It is possible that these 

nematodes were associated with both types of bacteria but that the Serratia 

was able to out-compete the Xenorhabdus in the time scales used in these 

experiments. We cannot comment on the long term ecological stability of such 

an association. Alternatively, this situation may represent a genuine case of 

replacement of the normal Xenorhabdus symbiont by a more successful 

Serratia strain. Repeated sampling of these soils to determine the natural 

frequency of such associations would be required to address this issue.  

 

Benefit of the Serratia to the Nematode worm? 

Soil contains millions of bacterial cells of different species and often a very 

large diversity of nematodes. Consequently, a large range of interactions and 

outcomes can occur. For example, some bacterial species may serve as food 

for certain nematodes while others may be pathogenic or toxic to certain 

nematodes, including C. elegans and Pristionchus. It has been found that C. 

elegans can detect the presence of certain bacterial pathogens, or at least the 

negative impact of pathogenic activity, such that they may enter a lawn of 

pathogenic bacteria but will later exit and remain near the edge of the lawn, 

displaying avoidance behaviour [105]. Examples include the avoidance of 

Serratia marcescens, which has been traced to the detection of a natural 

product, Serrawettin W2, produced by the bacteria [105]. 

These observations suggest that the NB1 nematodes are not necessarily 

being attracted to the Serratia B1 bacterial lawn; rather they seem to be 

avoiding the bacterial lawns of the three potential pathogenic strains. Indeed, 

this is consistent with previous reports by Rae [143] that show that 
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Pristionchus nematodes do not seem to prefer a particular food source, but 

will avoid certain Bacillus strains. 

 

It is interesting to note that the novel model Pristionchus isolates investigated 

here could readily feed and reproduce on these nematode associated Serratia 

strains. This is despite the very high level of virulence exhibited by these 

bacteria to insect hosts. When the nematodes were presented with a choice 

between lawns of their cognate Serratia strains and E. coli, Photorhabdus 

luminescens, Bacillus cereus or Pseudomonas fluorescens the worms 

avoided the potential pathogens but were happy to feed on the E. coli or 

Serratia. This suggests they were not attracted to the Serratia per se, but did 

avoid the other pathogens.  

 

The biological and ecological interaction between Entomopathogenic 

nematodes and symbiotic bacteria has only been studied in any detail in the 

well characterised Heterorhabditidae and Steinernematidae EPN complexes. 

This is in part because of the obligate relationship of the symbiotic 

partnerships between these hosts and their bacteria. It has proved difficult to 

clarify non-obligate symbiotic relationships between nematodes and bacteria 

because their often bactivorous diet means their guts usually contain different 

bacteria, confounding the identification of any more stable ecological 

associations.  The discovery of any other such symbiotic entomopathogenic 

complexes would be important ecologically and possibly economically and 

would clearly warrant further research. The unexpected findings of this project 

suggest the existence of a novel stable ecological association between 

Pristionchus nematodes and specific strains of Serratia proteamaculans, a 

bacterium which had previously only been described as a free living insect 

pathogen [172]. Pristionchus nematodes have previously been associated 

with a “necromonic” life-cycle only [143].  That is, they persist on the surface 

of insects such as scarab beetles for dispersal, and ingest the insect tissue 

upon its death. They have not previously been observed to exhibit direct 

invasive insect pathogenicity as we demonstrate here. We propose that the 

acquisition of a symbiotic relationship with the potent insect pathogenic 
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Serratia proteamaculans strains has facilitated the ability of these Pristionchus 

strains to actively kill insect hosts. In support of this the soil trap assays 

described above revealed an increase in virulence when either of the NB1 

and NC1 nematodes were fed upon the Serratia rather than E. coli.  It should 

be noted that both NC1 and NB1 were able to infect Galleria larvae more 

rapidly when placed in autoclaved soil as opposed to the traditional sand-trap 

assays used for Heterorhabditis EPN studies. This preference for different 

substrates has been noted before in studies of other entomopathogenic 

nematodes. It was not possible to assess the insect pathogenicity of the NB1 

and NC1 isolates in a total absence of their associated Serratia strains 

however, as our attempts to completely cure them failed. Despite extensive 

repeated passaging of these nematodes on E. coli OP50 on NGM agar, we 

always observed low levels of Serratia present (in at least some members of 

the nematode population) when we subsequently crushed the worms. This 

indicates that Serratia sp bacteria must possess a very effective persistence 

mechanism. Further attempts to cure the nematodes would require the testing 

of a large panel of antimicrobial agents and/ or conditions not possible in the 

time frame of these studies.  

 

How and where does the Serratia persist in Pristionchus? 

One essential difference in the physiology of members of the Caenorhabditis 

and Pristionchus genera is that the Caenorhabditis nematodes possess a 

grinder in the terminal bulb of the pharynx, which is used for physically lysing 

the food bacteria [143]; this grinder is absent in Pristionchus worms. This 

suggests that more live bacteria are likely to reach the gut of a Pristionchus 

worm, affording more potential for bacterial persistence and survival. Indeed, 

this was seen in our confocal microscopy studies that followed the fate of 

ingested Gfp labelled E. coli in these two worms. Few intact Gfp labelled 

bacteria could be seen post-grinder in C. elegans while in the Pristionchus the 

bacterial cells could be seen right along the gut length (Figure 4.12& 4.14). 

More striking was the ability of the Gfp labelled Serratia strains to invade the 

tissues surrounding the gut in both C. elegans and the Pristionchus. In the 

case of the C. elegans the bacteria could be seen throughout the mesoderm 

of the nematode, while in the Pristionchus the bacteria seemed to immediately 
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invade the tissues surrounding the pharynx. It was not clear if this tissue 

invasion represented intracellular invasion in these experiments and further 

studies would be required to assess this. Nevertheless, this mechanism does 

provide an explanation for the observed Serratia persistence in the 

nematodes despite repeated passage on an E. coli food source. Our 

preliminary egg-crushing experiments also suggested that the Serratia could 

be vertically “inherited” by transmission in the eggs. Unfortunately, the 

numbers observed were low and we were not able to repeat these 

experiments as an incubator failure killed our stock of nematodes. Re-

isolation of the Pristionchus-Serratia complex from soil taken from the same 

GPS co-ordinates would be required to confirm this. 

 

 

 

In summary, we have shown certain strains of Serratia proteamaculans are 

tightly associated with Pristionchus and Steinernema nematodes. The 

visualization of non-pathogenic tissue invasion of the nematode by Gfp 

labelled bacteria illustrates this clearly in Pristionchus nematodes. 

Interestingly, the bacteria were also capable of infecting Galleria larvae as 

free living cells not associated with the nematode. The benefit to the bacteria 

may therefore be through a provision of a more environmentally stable niche 

(inside the worm). The benefit to the nematode is likely to be that the bacterial 

association allows the nematode to switch from a necromonic life style to an 

actively predatory one. Overall, the bacterial / nematode association is not an 

obligate one as exemplified by the better studied EPNs, although there are 

clear signs of genetic co-adaptation. The “food choice” experiments revealed 

that while the nematodes were able to grow and reproduce on the Serratia, 

they were not preferentially attracted to them given a choice of E. coli. The 

suggestion that the bacteria may be able to be vertically inherited in the egg is 

particularly intriguing although requires further study. 

 

 



123 
 

 

 

 

Chapter 5 
 
 
 

The relationship between 
nematodes isolates and the 

molecular phylogeny of their 
associated Serratia strains 
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5.1.  Introduction 
 

Entomopathogenic nematodes (EPN) are commonly dispersed throughout the 

world and some of them have a wide range of insect hosts [79]. Identification 

and characterization surveys of EPN have recently increased.  Moreover,   

some studies have revealed the successful relationship of specific bacterial 

strains with the EPB, such as Xenorhabdus sp with Steinernema feltiae and 

S. affine and Photorhabdus sp associated with Heterorhabdus bacteriophora 

[79].  EPN can provide effective biological control of some soil insect pests 

[89].     In Britain, Hominick and Briscoe [81] studied the occurrence of 

Rhabditida (Steinernematidae and Heterorhabditidae) in the British soil; they 

concluded that the frequency of the nematodes differed in different parts in 

Britain, suggesting that the occurrence of these nematodes is affected by soil 

type [81]. 

The genus Steinernema glaseri are normally associated with bacteria of the 

genera Xenorhabdus [5]. Nematodes of this genus are found in almost all 

terrestrial habitats with vegetation [79].  The first effort to use sequencing data 

for Steinernema phylogenetic analysis was based on examining the partial 

18S gene of rDNA [173].   

Other common insect associated nematodes are Pristionchus entomophagus 

and Pristionchus pacificus; the first is a free living nematodes belonging to 

Diplogastridae; and is highly diverse in dispersal and has been isolated from 

different regions [174] & [95].  Meanwhile, P. pacificus  is  a parasite of the 

oriental beetle Examala orientalis  [172].  The genome size of P. pacificus is 

substantially larger than that of C. elegans, approximately169 Mb in size.  

Pristionchus is believed to have diverged from the common C. elegans 

ancestor millions of years ago [172]. 

In 2011 Sommer and Rödelsperger [174] suggested that the horizontal gene 

transfer of a “cellulase” gene from insect host to nematode in P. pacificus may 

have been responsible for a parasitic life style being adopted. 
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Recently, a newly discovered EPN called Heterorhabditidoides 

chongmingensis was found in Shanghai, associated symbiotically with 

Serratia nematodiphila sp.  These nematodes are closely related to 

Heterorhabditis, another common and highly studied EPN belonging to the 

Rhabditidae family (based on 18S rDNA phylogeny [175]. 

  

In the present study, I provide results of the molecular characterization of an 

EPN that I found associated with Serratia proteamaculans-like strains, 

conducted in UK soil surveys based on 18S rDNA phylogenetic analysis; the 

resulting fragments of 39 samples were sequenced directly and identified. 

This chapter aimed to: 

 

1. determine a molecular phylogeny of 39 insect pathogenic nematode 

isolates. 

2. correlate the nematode phylogeny to the phylogeny of associated 

Serratia proteamaculans like-bacterial strains identified previously with 

five housekeeping genes. 

3. determine if there is any correlation between the nematode genotype 

and different habitats and soil type from which it was isolated.  

The soil type includes factors such as temperature, moisture content and pH 

(Appendix 1, table 1). 
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5.2.  Results 
 

5.2.1.i.  Nematode genomic DNA (gDNA) and PCR amplifications  
Nematodes gDNA was prepared (section 2.2.14, page: 48), from 39 frozen 

nematode samples that were collected by “White traps” from the infected 

insect cadavers of our baiting experiments.  All 39 nematodes were shown to 

be associated with Serratia proteamaculans-like bacterial strains. 

 

 

                            A. 

 

 

                            B. 

 
           Figure 5.1. A. Representative example of genomic DNA analysis using gel         
           electrophoresis prepared from -80 ‘C frozen.  B.  PCR amplifying bands using specific     
          SSu18A & SSu26R primer pairs to amplify approximately 1000pb of the 18S rDNA  
          gene using 1 Kb DNA ladder. 
 

 

 

 

1 Kb DNA 
ladder 

1 Kb DNA 
ladder 
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5.2.1.ii.  PCR amplification and BLASTN comparisons 
An approximate 1 kb fragment of the 18S rDNA was PCR sequenced and 

used as a molecular marker to identify the genus of the thirty nine nematode 

isolates (figure 5.1).  BLASTN alignment was used to determine the genus of 

the isolates. Thirteen isolates were most similar to Pristionchus entomophaga 

(98-100% identity) and six to Diplogasteroides magnus (99-100% identity), 

both of which are Diplogastridae. Sixteen isolates most closely matched 

Steinernema glaseri (Rhabditida: Steinernematidae) (98-100% identity) and 

four samples were discarded from the study because of bad sequence reads.  

Examples of BLASTN comparisons for those three groups are shown in 

Figures 5.2-5.4. NB1, NB2 and NC1 described in the previous chapter were 

identified in this chapter to confirm the result sent by the University of Arizona, 

and the results confirmed that NB1 and NB2 belonged to Pristionchus 

entomophaga, and NC1 belonged to Steinernema glaseri. 

  

Score Expect Identities Gaps 

1584 bits(824) 0.0 837/841(99%) 3/841(0%) 

Query  1    AATAATTGACTTGACGATATATTCCTTAAATGGATAACTGTGGTAATTCTAGAGCTAATA  60 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  74   AATAATTGACTTGACGATATATTCCTTAAATGGATAACTGTGGTAATTCTAGAGCTAATA  133 

Query  61   CATGAATTTAAGCAGAGTGTCTTTG---GCGCTCTGTTCATTTATTAGACCAAAACCAAG  117 

            ||||||||||||||||||||||| |   |||||||||||||||||||||||||||||||| 

Sbjct  134  CATGAATTTAAGCAGAGTGTCTTGGTTCGCGCTCTGTTCATTTATTAGACCAAAACCAAG  193 

Query  118  CGGCCTCGGTCGTTTATTTCGGTGACTCGTAGTAATTTCGTTGATCACATGATCTTGTAT  177 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  194  CGGCCTCGGTCGTTTATTTCGGTGACTCGTAGTAATTTCGTTGATCACATGATCTTGTAT  253 

Query  178  CGGTGACACGTCTATCAAGTTTCTGCCCTATCAACTTTTGATGGTTCTTTATTGGAGAAC  237 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  254  CGGTGACACGTCTATCAAGTTTCTGCCCTATCAACTTTTGATGGTTCTTTATTGGAGAAC  313 

Query  238  CATGGTTATAACGGGTAACGGAGAATTAGGGTTCGACTCCGGAGAGGGAGCCTGAGAAAC  297 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
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Sbjct  314  CATGGTTATAACGGGTAACGGAGAATTAGGGTTCGACTCCGGAGAGGGAGCCTGAGAAAC  373 

Query  298  GGCTACCACATCCAAGGAAGGCAGCAGGCGCGAAAATTACCCACTCTCAGTGCGAGGAGG  357 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  374  GGCTACCACATCCAAGGAAGGCAGCAGGCGCGAAAATTACCCACTCTCAGTGCGAGGAGG  433 

Query  358  TAGTGACGAAAAATAACAAGGCTGATCGCTTTGCGAGCAGCTATTGGAATGGGTACAATT  417 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  434  TAGTGACGAAAAATAACAAGGCTGATCGCTTTGCGAGCAGCTATTGGAATGGGTACAATT  493 

Query  418  TAAACCCTTTAACGAGGACCTATGAGAGGGCAAGTCTGGTGCCAGCAGCCGCGGTAATTC  477 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  494  TAAACCCTTTAACGAGGACCTATGAGAGGGCAAGTCTGGTGCCAGCAGCCGCGGTAATTC  553 

Query  478  CAGCTCTCAAAATGTACTTAACCATTGTTGCGGTTAAAAAGCTCGTAGTTGGATCTCTGC  537 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  554  CAGCTCTCAAAATGTACTTAACCATTGTTGCGGTTAAAAAGCTCGTAGTTGGATCTCTGC  613 

Query  538  AACGCGAAGTGGTTCGTTCATTGAACGATTACTTCTTCGCGTTGCTCTCTTTTGTCGGTT  597 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  614  AACGCGAAGTGGTTCGTTCATTGAACGATTACTTCTTCGCGTTGCTCTCTTTTGTCGGTT  673 

Query  598  TTTGGCAGTGTTCCTCACGGAGTGCTGTCGTGACTGACGAGTTTACTTTGAATTAATTAG  657 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  674  TTTGGCAGTGTTCCTCACGGAGTGCTGTCGTGACTGACGAGTTTACTTTGAATTAATTAG  733 

Query  658  AGTGCTTAAAACAGGCGTTTCGCTTGAATAGTCTAGCATGGAATAATGGAATAGGACTTC  717 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  734  AGTGCTTAAAACAGGCGTTTCGCTTGAATAGTCTAGCATGGAATAATGGAATAGGACTTC  793 

Query  718  GGTTCGATTTTATTGGTTTTATGGATCGAAGTAATGATTAGTAGGAATAAACGGGGGCAT  777 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  794  GGTTCGATTTTATTGGTTTTATGGATCGAAGTAATGATTAGTAGGAATAAACGGGGGCAT  853 

Query  778  TCGTATTGTTACGTTAGAGGTGAAATTCTGGGACCGTAGCAAGACGATCGACTGCGAAAG  837 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

 

Figure 5.2. Example of the blast results of Steinernema glaseri, isolate SteiGla 18S small 
subunit ribosomal RNA gene, partial sequence.  Sequence ID: gb|AY284682.1| 
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Score 
Expect Identities Gaps Strand Frame 

1539 bits(833) 0.0() 838/840(99%) 2/840(0%) Plus/Plus  
Features: 
Query  1    AATTTACACGAGTTTGATGTCCTAAACGGATATCTGCGATAATTTTGGAGCTAATACGTG  60 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  62   AATTTACACGAGTTTGATGTCCTAAACGGATATCTGCGATAATTTTGGAGCTAATACGTG  121 
 
Query  61   CACCAAATCTCGATCCTCTGGATCCGAGAGCACTTGTTAGACCAAGACCATTCCGGGCAA  120 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  122  CACCAAATCTCGATCCTCTGGATCCGAGAGCACTTGTTAGACCAAGACCATTCCGGGCAA  181 
 
Query  121  CCGGGTTTTGGTGACTCTGAATAATTTCGCTGATCGCACGGTCTCGTACCGGCGACGTAT  180 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  182  CCGGGTTTTGGTGACTCTGAATAATTTCGCTGATCGCACGGTCTCGTACCGGCGACGTAT  241 
 
Query  181  CGTTCAAGTATCTGCTTTATCAACTTTCGATGGAAGTCTATATGGCTACCATGGTTATGA  240 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  242  CGTTCAAGTATCTGCTTTATCAACTTTCGATGGAAGTCTATATGGCTACCATGGTTATGA  301 
 
Query  241  CGGATAACGGAGAATAAGGGTTCGACTCCGGAGAGGGAGCCTGAGAAACGGCTACCACAT  300 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  302  CGGATAACGGAGAATAAGGGTTCGACTCCGGAGAGGGAGCCTGAGAAACGGCTACCACAT  361 
 
Query  301  CCAAGGAAGGCAGCAGGCGCGTAAATTACCCACTCTCAATTCGAGGAGGTAGTAACTATC  360 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  362  CCAAGGAAGGCAGCAGGCGCGTAAATTACCCACTCTCAATTCGAGGAGGTAGTAACTATC  421 
 
Query  361  AATAACGAGACAGATCTCTTTGAGGCCTGTTATCGGAATGGGTACAATTTAAACCCTTTA  420 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  422  AATAACGAGACAGATCTCTTTGAGGCCTGTTATCGGAATGGGTACAATTTAAACCCTTTA  481 
 
Query  421  ACGAGGATCTATGAGAGGGCAAGTCTGGTGCCAGCAGCCGCGGTAATTCCAGCTCTCAAA  480 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  482  ACGAGGATCTATGAGAGGGCAAGTCTGGTGCCAGCAGCCGCGGTAATTCCAGCTCTCAAA  541 
 
Query  481  GTGTATATCGTCATTGCTGCGGTTAAAAAGCTCGTAGTTGGATCTGAGTCTTTGGACGCG  540 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  542  GTGTATATCGTCATTGCTGCGGTTAAAAAGCTCGTAGTTGGATCTGAGTCTTTGGACGCG  601 
 
Query  541  GTGCTCCTTTGGAGTAACTGTGCTCCTTGACTGATTAGTCGGTTTTCCTTGGTTTGCCTT  600 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  602  GTGCTCCTTTGGAGTAACTGTGCTCCTTGACTGATTAGTCGGTTTTCCTTGGTTTGCCTT  661 
 
Query  601  AACCGGTAGGCCTTGGTGGCTGGCATGTTTACCTTGAATAAATCAAAGTGCTCAAGACAG  660 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  662  AACCGGTAGGCCTTGGTGGCTGGCATGTTTACCTTGAATAAATCAAAGTGCTCAAGACAG  721 
 
Query  661  GCTTTAAGCTTGAATGTTCGTGCATGGAATAATAGAAAAGGACTTCGGTTCGTTCTATTG  720 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  722  GCTTTAAGCTTGAATGTTCGTGCATGGAATAATAGAAAAGGACTTCGGTTCGTTCTATTG  781 
 
Query  721  GTCTTAGGACCGAAGTAATGGTTAAGAGGGACCGACGGGGGCATCCGTATCGCTGCGTGA  780 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  782  GTCTTAGGACCGAAGTAATGGTTAAGAGGGACCGACGGGGGCATCCGTATCGCTGCGTGA  841 
 
Query  781  GAGGTGAAATTCTTGGACCGCAGCGGGACGTCCTATTGCGAAAGC-TTTGCCAAAGAATG  839 
            ||||||||||||||||||||||||||||||||||||||||||||| |||||||| ||||| 
Sbjct  842  GAGGTGAAATTCTTGGACCGCAGCGGGACGTCCTATTGCGAAAGCATTTGCCAA-GAATG  900 
 
 
 

Figure 5.3.  Example of the blast results of Diplogasteroides magnus strain RS1983 18S 
ribosomal RNA gene, partial sequence.  Sequence ID: gb|JQ005869.1|  
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Score Expect Identities Gaps Strand Frame 
1123 bits(608) 0.0() 608/608(100%) 0/608(0%) Plus/Plus  
Features: 
Query  1    AATGGTAGTGCGCACTTATTAGTTTAAGGCCGATTGGGGCAACCCTCTTGGTGACTCTGA  60 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  137  AATGGTAGTGCGCACTTATTAGTTTAAGGCCGATTGGGGCAACCCTCTTGGTGACTCTGA  196 
 
Query  61   ATAATTTTGCGGATCGCATGGTCTTGTACCGGCGACGTACTGGTCGAGCGGGTGCCCTAT  120 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  197  ATAATTTTGCGGATCGCATGGTCTTGTACCGGCGACGTACTGGTCGAGCGGGTGCCCTAT  256 
 
Query  121  CAACTATTGATGGAAGTCTATGTGTCTTCCATGGTTGTAACGGGTAACGGAGAATAAGGG  180 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  257  CAACTATTGATGGAAGTCTATGTGTCTTCCATGGTTGTAACGGGTAACGGAGAATAAGGG  316 
 
Query  181  TTCGACTCCGGAGAGCTAGCCTTAGAAACGGCTATCACATCCAAGGAAGGCAGCAGGCGC  240 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  317  TTCGACTCCGGAGAGCTAGCCTTAGAAACGGCTATCACATCCAAGGAAGGCAGCAGGCGC  376 
 
Query  241  GTAAATTACCCACTCTCAATTCGAGGAGGTAGTGACTATCAATAACGAGACAGATCTCTT  300 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  377  GTAAATTACCCACTCTCAATTCGAGGAGGTAGTGACTATCAATAACGAGACAGATCTCTT  436 
 
Query  301  TGAGGTCTGTCATTGAAATGAGCACAACTTAAAGACTTTAACGAAGTCTATGGGAGGGCA  360 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  437  TGAGGTCTGTCATTGAAATGAGCACAACTTAAAGACTTTAACGAAGTCTATGGGAGGGCA  496 
 
Query  361  AGTCTGGTGCCAGCAGCCGCGGTAATTCCAGCTCCCAACGTGTATATCGTCATTGCTGCG  420 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  497  AGTCTGGTGCCAGCAGCCGCGGTAATTCCAGCTCCCAACGTGTATATCGTCATTGCTGCG  556 
 
Query  421  GTTAAAAAGCTCGTAGTTGGATCTAAGTTCATGACTGTAGTTCTCCATGTGAGATACTGC  480 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  557  GTTAAAAAGCTCGTAGTTGGATCTAAGTTCATGACTGTAGTTCTCCATGTGAGATACTGC  616 
 
Query  481  TAGTCTGGACTGTTTCGCCGGTTTTCCGTAGCTTCGGCTGCGGTGACTGGTGTTGTAACT  540 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  617  TAGTCTGGACTGTTTCGCCGGTTTTCCGTAGCTTCGGCTGCGGTGACTGGTGTTGTAACT  676 
 
Query  541  TTGATTAAATCAATGTGATTAAAACAGGCGTTTGCTTGAATGCTTTATCATGGAATAATA  600 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  677  TTGATTAAATCAATGTGATTAAAACAGGCGTTTGCTTGAATGCTTTATCATGGAATAATA  736 
 
Query  601  GAATATGA  608 
            |||||||| 
Sbjct  737  GAATATGA  744 
 

Figure 5.4.  Example of the blast results of Pristionchus entomophagus isolate 1349 18S 
small subunit ribosomal RNA gene, partial sequence.  Sequence ID: gb|FJ040441.1|  
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5.2.2.    Phylogenetic analysis and geographical dependence 
The 18s rDNA sequences were compared to one another using Mega 4 to 

construct a molecular phylogeny.  Figure 5.5 illustrates how the phylogeny of 

these nematodes can be sub-divided into three distinct clades. Clade 1 is 

represented by the thirteen Pristionchus entomophagus–like isolates which 

were mainly isolated from soils taken from the south (E-W) UK sampling 

transect. Clade 2 is represented by the six Diplogasteriodes magnus-like 

isolates which were mainly isolated from soils taken from the (S-N) UK 

sampling transect. The sixteen Steinernema glaseri-like isolates were found 

mainly from the south (E-W) transect soil samples. We note that members of 

clades 1 and 3 were isolated from samples collected from either May or 

February, while the clade 2 nematodes (Diplogasteriodes magnus like) were 

only seen in samples collected in February. 

 



132 
 

 

Figure 5.5.  Phylogenetic relationship of the three types of associated nematodes 
Pristionchus entomophagus, Diplogasteriodes magnus and Steinernema glaseri based on 
18S rDNA. Bootstrap values are shown as anodes, the coloured circles indicate the isolated 
region either from the South (E-W)       or North (S-N)         UK transect line. The bar 
represents 2% sequence divergence. 
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5.2.3.    A correlation between the phylogenetic trees of the 
nematodes and their associated Serratia strains  

We selected twenty three isolates of nematodes belonging to the 3 clades 

described above and did a direct comparison of the phylogenetic relationship 

between the nematodes and the bacterial strains they are carrying. This 

should provide evidence of any co-speciation of the bacteria with their 

associated hosts. We did this using the 5 MLSA gene sequences (recA, dnaj, 

glmu, adk and glyA) independently and also as a concatenated sequence. A 

comparison of the trees can be seen in Figures 5.6-5.11. 
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Figure 5.6. Comparative phylogenetic trees. (A).The phylogeny of the host nematodes based 

on 18S rRNA.  (B).The phylogeny of the S. proteamaculans strains based on recA gene.   

The coloured dots next to the bacterial strains indicate the clade to which their host nematode 

belongs. Blue is clade 1, green is clade 2 and orange is clade 3. The bar represents 1% 

sequence divergence in A and B trees. The neighbour-joining phylogenetic tree indicates the 

number of occurrences (%) of the branching order in 100 bootstrapped trees.  
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Figure 5.7.  Comparative phylogenetic trees. (A).The phylogeny of the host nematodes 

based on 18S rRNA.  (B). The phylogeny of the S.proteamaculans-like strains based on dnaj 

gene.   The coloured dots next to the bacterial strains indicate the clade to which their host 

nematode belongs. Blue is clade 1, green is clade 2 and orange is clade 3. The bar 

represents 1% sequence divergence in A and B trees. The neighbour-joining phylogenetic 

tree indicates the number of occurrences (%) of the branching order in 100 bootstrapped 

trees. 
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Figure 5.8.  Comparative phylogenetic trees. (A).The phylogeny of the host nematodes 

based on 18S rRNA.  (B).The phylogeny of the S.proteamaculans-like strains based on glmU 

gene.   The coloured dots next to the bacterial strains indicate the clade to which their host 

nematode belongs. Blue is clade 1, green is clade 2 and orange is clade 3. The bar 

represents 1% sequence divergence in A and B trees.   The neighbour-joining phylogenetic 

tree indicates the number of occurrences (%) of the branching order in 100 bootstrapped 

trees. 
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Figure 5.9. Comparative phylogenetic trees. (A).The phylogeny of the host nematodes based 

on 18S rRNA.  (B).The phylogeny of the S. proteamaculans-like strains based on adk gene.   

The coloured dots next to the bacterial strains indicate the clade to which their host nematode 

belongs. Blue is clade 1, green is clade 2 and orange is clade 3. The bar represents 1% 

sequence divergence in A and B trees. The neighbour-joining phylogenetic tree indicates the 

number of occurrences (%) of the branching order in 100 bootstrapped trees. 
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Figure 5.10.  Comparative phylogenetic trees. (A).The phylogeny of the host nematodes 

based on 18S rRNA.  (B). The phylogeny of the S. proteamaculans-like strains based on glyA 

gene.   The coloured dots next to the bacterial strains indicate the clade to which their host 

nematode belongs. Blue is clade 1, green is clade 2 and orange is clade 3. The bar 

represents 1% sequence divergence in A and B trees. The neighbour-joining phylogenetic 

tree indicates the number of occurrences (%) of the branching order in 100 bootstrapped 

trees. 
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Figure 5.11.  Comparative phylogenetic trees. (A). The phylogeny of the host nematodes 

based on 18S rRNA.  (B). The phylogeny of the Serratia proteamaculans strains based on the 

five genes.   The coloured dots next to the bacterial strains indicate the clade to which their 

host nematode belongs. Blue is clade 1, green is clade 2 and orange is clade 3. The bar 

represents 1% sequence divergence in A and B trees. The neighbour-joining phylogenetic 

tree indicates the number of occurrences (%) of the branching order in 100 bootstrapped 

trees. 
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Three of the genes, recA, dnaJ and glmU, were seen to reflect a phylogeny 

that correlated with that of the nematodes from which they were isolated. That 

is bacteria clustering in any one clade were isolated from the same nematode 

type. The same correlation was seen when we produced a bacterial 

phylogeny based upon the full MLSA five gene concatenations. Conversely, 

two of the genes, adk and glyA, did not show such a clear correlation (figures 

5.9 & 5.10).  We propose that the phylogeny from the concatenated 

sequences reflects the most likely relationship between the bacteria and their 

corresponding nematodes. 

For example, two strains of Serratia isolated from Chepstow Diplogasteriodes 

magnus nematodes were grouped in B3 using the glyA phylogenies; whereas, 

we find them in B1 in the other four trees. 

Serratia strains isolated from nematodes in clades N1 and N2 (both belonging 

to the Diplogastridae family) can be seen to belong to the same bacterial 

clade B1. Conversely, Serratia strains isolated from nematodes grouped into 

clade N3 can be seen to form a distinct bacterial clade B3. There are 

exceptions to this correlation, for example in the concatenated MLSA bacterial 

phylogeny two isolates that cluster with bacteria from Steinernema nematodes 

can be seen even though they were isolated from Pristionchus -like 

nematodes themselves.   

 

 

 

 

 

 

 

 



141 
 

5.2.4.  Correlating nematode species with habitat 

The south (E-W) transect line yielded soil samples that contained the highest 

numbers of entomopathogenic nematodes. Within this transect, the woodland 

samples were the most productive followed by the grassland samples.  Figure 

5.12 shows the types of each nematode recovered from different transects at 

different time points. 

 

                   A. 

 

              B. 

Figure 5.12.  Percentage of nematodes recovered A.  From two transect lines(E-W) and (N-

S).   B.  In two different time point conditions (February) and (May) n=214 infected Galleria.  
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There was a significant association between sampling date and frequency of 

recovery of nematodes from infected insects in the baiting experiments, with 

more nematodes overall being recovered from the February sampling.  As 

shown in chapter 4, nematodes were recovered from 23.7% of insects in soil 

collected in February compared to only 8% for May. This difference was 

shown to be significant using Chi-squared analysis (Chi.seq= 9.58, DF=1, 

PV=0.002).  In addition, a significant association was seen between 

nematode type and the site of sampling. Whereas 24.4% of insects produced 

nematodes from the soil from southern England, only 8.1% produced 

nematodes from the northern soil. Again this was statistically significant using 

Chi-squared analysis (Chi.seq= 16.1, DF=1, PV=0.000).  

Generally, the Diplogasteriod family nematodes, which include the 

Diplogasteriodes sp and Pristionchus sp were the most ubiquitous nematodes 

recovered, followed by Steinernema.  

An attempt was made to correlate the soil sample type with the type of 

nematode species recovered in our two transects (Appendix 6). For example, 

ten Pristionchus sp isolates were recovered from samples taken along the 

south transect including Brighton, Angmering, New Forest, Chichester and 

Bridport, and three isolates from Bristol, Bath and Chepstow. As can be seen 

from appendix 3, the habitats where the nematodes were recovered are 

diverse, ranging from woodland to grassland. Pristionchus sp were recovered 

mainly from slightly acid loamy and clayed soil. Diplogasteriodes sp were 

recovered from Chepstow and Weymouth soils taken from grassland habitats. 

These isolates were found in slightly acid and base rich soil. 

In the case of Steinernema sp, we recovered thirteen isolates from Sidmouth, 

New Forest, Weymouth, Bridport, Angmering and Arundel and three from 

Chepstow and Bath soils. Habitats varied from grassland, woodland and 

sandy regions.  The soil types were mainly slightly acidic sandy, loamy and 

clay soils.  Interestingly, two nematode isolates, one Pristionchus and one 

Steinernema, were collected from shallow lime-rich soils over chalk or 

limestone from Bath. 
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5.4.  Discussion 

A phylogenetic analysis of nematodes using small-subunit ribosomal RNA has 

been undertaken, in an attempt to understand nematode evolution [70] & 

[142].  

Determination of nematode 18S rDNA sequence allowed us to identify 

entomopathogenic nematodes captured from UK soil using soil baiting and 

“White trap” techniques. The phylogenetic tree constructed using this 18S 

rDNA data shows that 19 isolates are close relatives of the species 

Pristionchus entomophaga and Diplogasteriodes magnus, which belong to the 

same taxonomic group (Diplogastridae). A further 16 isolates are more closely 

related to Steinernema glaseri (Steinernematidae). 

 

 

 

 

 

 

 

 

  Figure 5.14.  Phylogenetic relationship of some of the nematodes published in 2011 [143]. 
  Our identified species were shown by red arrows. 
 

 

Figure 5.14 illustrates the phylogenetic grouping which distinguishes the five 

major nematode clades in the classification system of Sommer, R.J. and A. 

Streit [143].  In clade V, free-living Pristionchus nematodes are characterized 

as OM, or omnivores, and can be seen to belong to the family Diplogastrida. 

In Clade IV, entomopathogenic nematodes Steinernema sp are present, 

which normally live in symbiotic association with Xenorhabdus spp. bacteria.  

In the present study, specific strains of Serratia were found to be associated 
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with nematode groups. It can be confirmed that these bacteria were not 

derived from the Galleria bait themselves as “sterile control killed” larvae were 

at no time found to contain Serratia cells. Nevertheless, the correlation of 

specific Serratia genotypes with specific nematode types does support an 

evolved relationship between specific strains of bacteria and nematode host. 

In addition, the ability of the Serratia to support efficient nematode growth and 

reproduction and the microscopic tissue invasion observations shown in 

chapter 5 further argue for a specific association. Interestingly, there seemed 

to be little genetic population structure in the Serratia that appeared to infect 

insects as a free living form, independent of subsequent nematode recovery 

or association (chapter 4).  

To my knowledge, this is the first report of an apparently evolved association 

between Serratia and Diplogastridae nematodes such as Pristionchus. It is 

also of note that the Serratia associated with the different nematode species 

show specific phylogenic relationships. That is, it is possible to divide them 

into three clades based on the species of nematode from which they were 

recovered. Clade B3 and B2 were mainly recovered from Steinernema sp; 

clade B1 includes bacteria isolated from either Pristionchus sp or 

Diplogasteriodes sp.  These results appeared in the three genes (recA, dnaJ 

and glmU); whereas, the isolates in the two genes (adk and glyA) did not 

match with them (figures 5.9 & 5.10).  Therefore, the concatenated tree is 

regarded here as the phylogeny that is most likely to be correct. 

The discovery of an association between certain Serratia strains and 

members of the Diplogastridae nematode group is novel although perhaps not 

too surprising. Conversely, the repeated isolation of Steinernema nematodes 

associated with Serratia rather than a more usual Xenorhabdus strain is 

harder to explain.  It should be noted that most of these isolates were 

recovered in soil collected in the month of February. 

Recently, other types of nematodes have been found to use pathogenic 

bacteria to parasitize insects, such as Oscheius sp and Caenorhabditis 

briggsae.  These nematodes have been found to be associated with Serratia 

sp [57]. 
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A novel association was found symbiotically with EPN Heterorhabditidoides 

chongmingensis (Rhabditida: Rhabditidae) and Serratia from the investigation 

of Zhang et al [141]; this also agrees with the results of the present 

investigation which need further analysis to test if the Pristionchus found in 

different regions in the UK are newly associated with nematodes or not. 

A recent report by Abebe et al [33] revealed that some Caenorhabditis 

species such as C. briggsae can be transformed into active insect parasites 

by association with a specific strain of Serratia marcescens (Serratia sp. 

SCBI). In this form, the nematode-bacterial complex adopts an 

entomopathogenic life cycle typical of the better characterized Steinernema 

and Heterorhabditis EPNs. This is consistent with observations presented 

here for the Diplogastridae group nematodes (Pristionchus and 

Diplogasteriodes types) and the Serratia proteamaculans strains isolated in 

this study. Indeed, Caenorhabditis species fall in the same taxonomic clade V 

as our Diplogastridae isolates, suggesting such associations with Serratia 

species may be a relatively ancient, if not obligatory association. 

It should be noted that soil from the woodland habitats yielded the greatest 

diversity of associated Pristionchus sp; this finding is in agreement with 

studies from other surveys  [1] & [94] which found that EPN had the greatest 

diversity in woodlands and forest habitats; whereas grassland yielded the 

greatest diversity of Steinernema.  A previous study recovered Steinrnema 

spp distributed in aggregation form in grassland soil [105]. 

In this study a greater number of Diplogasteriods nematodes was identified 

than nematodes belonging to the Sterinernema. It may be speculated that this 

result is related to the distribution of preferred insect host types and also soil 

type. For example, the Heterorhabditis EPNs are known to prefer sandy soil 

types rather than organic-rich woodland soils, and as a result are more readily 

identified in coastal soils. The comparison between the efficiency of insect 

infection in sterilized soil compared to sand confirms a preference in the case 

of the NB1 isolate. 
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In summary, specific strains of Serratia proteamaculans have been identified 

that show a preference for association with different species of nematode in 

UK soils. These S. proteamaculans strains are associated with three species 

of nematodes, Pristionchus entomophaga, Diplogasteriodes magnus, and 

Steinernema glaseri isolated from UK soil, the habitats where the nematodes 

were recovered are diverse, ranging from woodland to grassland. Unlike the 

better studied EPN complexes, these bacteria are also capable of free-living 

survival in the soil and infection of insect hosts, confirming this is not an 

obligate symbiotic association. Nevertheless, the observation that specific 

genetic sub-populations are repeatedly associated with certain species of 

nematode does suggest host adaptation and that these associations are 

common in nature [11] & [144]. The Serratia associated with the different 

nematode species show specific phylogenic relationships, dividing them into 

three clades based on the species of nematode from which they were 

recovered. The long term stability of any such association in the environment 

remains to be determined, although laboratory tests do suggest mechanisms 

for long term persistence.  
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 Chapter 6 

General discussion and future 
perspectives 

 

This thesis describes the development of a novel MLST scheme [121], to type 

80 entomopathogenic Serratia proteamaculans isolates recovered from soil 

samples from several locations in the UK.  goeBURST [130] supported by the 

PHYLOViZ program has also been used to cluster related STs, whilst 

SplitsTree4 was used to check for evidence of recombination.  Although there 

was little evidence of geographical structuring within the S. proteamaculans 

population, the MLSA data resolved distinct clusters, some of which appeared 

to be associated with three types of nematodes on the basis of the 18s rDNA 

gene (Pristionchus entomophagus, Diplogasteriodes magnus and 

Steinernema glaseri). The work also confirms that climatic factors, such as 

temperature and rainfall, have a large impact on the recovery rates of both 

bacteria and nematodes from a given site. For example, a far higher 

proportion of the entomopathogenic bacteria recovered from the soil traps 

corresponded to Serratia when the samples were collected in February (49%) 

than in May (18.9%) 

Whilst there was limited evidence for recombination in S. proteamaculans, 

when data for single gene loci was considered, there was evidence for 

extensive recombination when the concatenated data for all 5 genes was 

subjected to phylogenetic analysis. This suggests that intra-genic (within 

gene) recombination is rare, whilst inter-genic (between gene) recombination 

is common. The most likely explanation is that recombination events affect 

regions considerably larger than the genes in question, hence recombination 

breakpoints tend to fall between the sequenced genes rather than within 

them.  
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The present study also confirms the previous study of Stock et al [78] in that 

grassland and woodland habitats yielded the greatest diversity of EPN. Torr et 

al [176] showed adaptation to different habitats in two Steinernema species. 

In the present work S. glaseri was isolated from a wide range of habitats, 

even at very low temperatures (7-10oC), which contrasts with the work of 

Kung [111] suggesting that these nematodes were more frequently recovered 

at higher temperatures [111]. Emelianoff et al [79] argued that the adaptation 

of nematodes to different environments is also dependent on associated 

bacteria, thus it would be interesting to further study to what extent the 

different strain S. proteamaculans affects nematode distribution. Pristionchus 

pacificus is known to avoid Serratia marcescens, and Rae et al noted 23 

different bacterial strains associated with Pristionchus (gut and cuticle) 

recovered from beetles [143].  The current work not only demonstrates that 

Serratia proteamaculans-like strains are associated with Pristionchus, but that 

particular bacterial variants may be associated with different types of 

nematode.  Other examples of highly specific associations between bacteria 

and nematodes have recently been reported, such as that between 

Caenorhabditis briggsae and Serratia sp SCBI [47]. 

In this study we did not confirm 100% that this association between S. 

proteamaculans-like strains and the two types of nematodes Pristionchus 

entomophagus, and Steinernema glaseri are real EPN complexes; this will 

require further study to confirm that this association increased the insects’ 

pathogenicity, as described by Dillma et al [165], to have full characteristics of 

the EPN complexes. 

Thus, the overall suggestion from the current work is that extensive variation 

exists within single named species of entomopathogenic bacteria, and that 

this variation is more readily explained by ecological adaptation to different 

nematode hosts and environmental conditions, than by geographical variation. 
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The main conclusions of this thesis are therefore as follows: 
  

 

1. Serratia proteamaculans-like bacteria are a major insect pathogenic 

bacteria widely distributed in UK soil. 

2.  MLSA data suggest a lack of geographical structure, but that 

certain clades are adapted to specific nematode hosts.  

3. Some Serratia proteamaculans strains (e.g. those isolated from 

Bath and Chepstow) are highly insect pathogenic by injection; both 

of the isolates can directly infect Galleria when free living in the soil. 

4. Serratia proteamaculans is associated with three types of 

nematodes Pristionchus entomophagus, Diplogasteriodes magnus 

and Steinernema glaseri), particularly in cold temperatures. 

5. Certain lineages of these Serratia proteamaculans-like bacteria are 

found associated with the nematodes from a range of sites. 

6. Gfp labelled Serratia strains invade the tissues surrounding the gut 

in both C. elegans and the Pristionchus.  In the Pristionchus the Gfp 

bacteria seemed to immediately invade the tissues surrounding the 

pharynx. 
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Future perspectives: 

1. Different insect hosts and other invertebrates could be examined to 

elucidate the extent and specificity of the host range of the EPN 

complex (e.g. beetles, Drosophila, woodlice and spiders). 

 

2. The possibility that Serratia produces antimicrobial compounds could 

be examined.  These bacteria may also act as an environmental 

reservoir of antibiotic resistance genes. 

 

3. The mechanisms of pathogenicity and virulence towards insects 

employed by the Serratia proteamaculans-like bacteria are unknown. 

Studying the migration of gfp Serratia within the host insect, and when 

in contact with insect cells in vitro would be rewarding in this context. 

Recent work has shown that other bacterial insect pathogens interact 

both directly and indirectly with Drosophila hemocytes [60]. 

 

4. The effect of environmental variables on communities of 

entomopathogenic nematodes and their associated bacteria in soils is 

very poorly understood. In this context, it would be very interesting to 

study insect pathogenic bacteria and nematodes isolated from 

geographic regions with extremely high soil temperature (Kuwait would 

be a good example), and to compare this with the UK data. Does high 

temperature lead to closer or looser associations between nematodes 

and bacteria? Is the diversity of nematodes and/or bacteria greater or 

less than in lower temperature soils? Is pathogenicity towards insect 

hosts greater or lesser (etc). It would be logical to extend this to look at 

other environmental variables, such as soil water content, salinity, soil 

type (etc). 

 

5. Are Serratia. proteamaculans-like bacteria found elsewhere in the 

world, and are they associated with nematodes (and if so, which 

ones)? 
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6.  It would be particularly interesting to determine whether the Serratia. 

proteamaculans-like bacteria are able to form long 

term functional relationships with laboratory model nematode species 

such as C. elegans, which would allow an experimental genetic 

investigation of the proposed mutualism, in relation to the genetics of 

both the nematode host and the associated bacteria. 

 

7. Further study is required to confirm that the association between S. 

proteamaculans-like strains and the two types of nematodes 

Pristionchus entomophagus, and Steinernema glaseri are EPN 

complexes, in order to achieve the definition of EPN complexes as 

described by Dillman et al [165]. 
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Chapter 7 

Appendixes 

Appendix 1. 

 

Table 1. Large-scale survey in (E-W) Southern England and (S-N) Wales data 
including: Soil samples sites, Date, soil PH, soil temperature, soil moisture, Habitat 
descriptions, long-lat coordinates for each soil sample sites. 

Numb
er 

Code  Site name Sampling 
Date 

PH Temp Moisture Habitation Co-ordinate 

epi-collect google 

1 Bri 1 Ditchling 1 16/02/2009 
09/May/2009 

6 8°C 
18°C 

5 Woodland - 

2 Bri 2 Ditchling 2 16/02/2009 
09/May/2009 

6 8°C 
18°C 

6 Grass land - 

3 Bri 3 Brighton 
beach 

17/02/2009 
09/May/2009 

6.3 10°C 
18°C 

5 No vegetation - 

4 Bri 4 Brighton 
park 

17/02/2009 
09/May/2009 

7 10°C 
18°C 

2 Beside tree Lat :50.8317393.644984 
Log: -0.132822999041748047 
Alt: 207.0 

5 Bri 5 Brighton 
park 

17/02/2009 
09/May/2009 

7 10°C 
18°C 

4 tree root Lat :50.8317393.644984 
Log: -0.132822999041748047 
Alt: 207.0 

6 Bri 6 Brighton 
(beside 
tree) 

17/02/2009 
09/May/2009 

7 10°C 
18°C 

2 grass land 
 

Lat: 50.85746169090271 
Log: -0.10410189628601074 
Alt: 88.0 

7 Bri 7 Lewes 
(beside 
lake) 

17/02/2009 
09/May/2009 

7 7°C 
18°C 

3 Woodland Lat: 50.87523937225342 
Lon 0.015063285827636719 
Alt: 51:0 

8 Bri 8 Lewes 
(beside 
lake) 

17/02/2009 
09/May/2009 

6.3 7°C 
18°C 

3 Woodland 
beside tree 

Lat: 50.877331495285034 
Lon: 0.006802082061767578 
Alt: 64.0 

9 Bri 9 Lewes 17/02/2009 
09/May/2009 

6 9°C 
18°C 

3 beside lake Lat: 50.877315402030945 
Lon: 0.006775259971618652 
Alt: 52.0 

10 Bri 10 Lewes 17/02/2009 
09/May/2009 

7 10°C 
18°C 

4 Wood, beside 
tree root 

Lat: 50.87724030017853 
Log: 0.007188320159912209 
Alt: 65.0 

11 Ang 1 Angmering  17/02/2009 
10/May/2009 

7 8°c 
18°C 

5 Beside tree Lat: 50.83918511867523 
Lon: -0.3071558475494385 
Alt: 50.0 

12 Ang 2 Angmering  17/02/2009 
10/May/2009 

6 9°C 
17°C 

7 Farm soil far 
from Ang1 
36meter 

Lat: 50.831342339515686 
Lon: -0.47624766682662964 
Alt: 63.0 
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13 Ang 3 Angmering  17/02/2009 
10/May/2009 

7 9°C 
17°C 

4 Woodland  Lat:50.83125650882721 
Lon: -0.4746477813720703 
Alt: 57.0 

14 Ang 4 Angmering  17/02/2009 
10/May/2009 

6 9°C 
17°C 

3 Woodland Lat: 50.83124041557312 
Lon: -0.4775887727737427 
Alt: 59.0 

15 Ang 5 Angmering  17/02/2009 
10/May/2009 

7 10°c 
17°C 

6 Grass land Lat: 50.83103120326996 
Lon: -0.4778248071670532 
Alt: 60.0 

16 Ang 6 Angmering  17/02/2009 
10/May/2009 
 

7 8°C 
17°C 

5 Woodland Lat: 50.82757115364075 
Lon: -0.4869818687438965 
Alt: 54.0 

17 Ang 7 Angmering  17/02/2009 
10/May/2009 

7 9°C 
17°C 

2 Tree root Lat: 50.82773208618164 
Lon: -0.48696577548980713 
Alt: 51.0 

18 Ang 8 Angmering  17/02/2009 
10/May/2009 

7 9°C 
17°C 

3  Lat: 50.82128405570984 
Lon: -0.48508286476135154 
Alt: 58.0 

19 Ang 9 Angmering  17/02/2009 
10/May/2009 

7 9°C 
17°C 

3 Play ground 
School grass 
land 

Lat: 50.8210426568985 
Lon: -0.48524496172759 
Alt: 52.0 

20 Ang 10 Angmering  17/02/2009 
10/May/2009 

6 9°C 
17°C 

3 Play ground 
School grass 
land 

Lat: 50.82044184207916 
Lon: -0.4851311445236206 
Alt: 55.0 

21 Aru 1 Arundel 17/02/20091
0/May/2009 

7 9°C 
17°C 

3 Woodland Lat: 50.82044184207916 
Lon: -0.48515260219573975 
Alt: 56.0 

22 Aru 2 Arundel 17/02/2009 
10/May/2009 

7 9°C 
17°C 

5.5 Grass land Lat: 50.85395336151123 
Lon: -0.5506521463394165 
Lon: 45.0 

23 Aru 3 Arundel 17/02/2009 
10/May/2009 

7 9°C 
17°C 

7 grass land 
100 meter from 
Aru2 

Lat: 50.85377097129822 
Lon: -0.5495363473892212 
Alt: 47.0 

24 Aru 4 Arundel 17/02/2009 
10/May/2009 

7 9°C 
17°C 

7.5 Grass land 100 
meter from Aru3 

lat: 50.85379779338837 
Lon: -0.5488765239715576 
Alt: 44.0 

25 Aru 5 Arundel 17/02/2009 
10/May/2009 

7 8°C 
17°C 

7 Grass land Lat: 50.85344910621643 
Lon: -0.5498743057250977 
Alt: 46.0 

26 Aru 6 Arundel 17/02/2009 
10/May/2009 

7 10°c 
17°C 

6 Woodland Lat: 50.85348665714264 
Lon: -0.5498367547988892 
Alt: 51.0 

27 Aru 7 Arundel 18/02/2009 
10/May/2009 

7 10°c 
18°C 

7 Grass land Lat: 50.856823325157166 
Lon: -0.5784344673156738 
Alt: 83.0 
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28 Aru 8 Arundel 18/02/2009 
10/May/2009 

7 10°c 
17°C 

8 Woodland Lat: 50.85619032382965 
Lon: -.05783754587173462 
Alt: 84.0 

29 Aru 9 Arundel 18/02/2009 
10/May/2009 

7 8°C 
17°C 

7 Forest soil Lat: 50.8561635017395 
Lon: -0.5783593654632568 
Alt: 80.0 

30 Aru 10 Arundel 18/02/2009 
10/May/2009 

7 8°C 
17°C 

6.5  Lat: 50.85446298122406 
Lon: -0.5658817291259766 
Alt: 80.0 

31 Chi 1 6 mile to 
Chichester 
(Arundel 
road) 

18/ 02/2009 
11/May/2009 
 

7 10°C 
17°C 

3 Grass land Lat:  50. 3555348110198975 
Lon: -0.6501996517181396 
Alt: 73.0 

32 Chi 2 Chichest
er 

18/ 02/2009 
 
11/May/2009 
 

7 10°C 
17°C 

4 No vegetation Lat: 50.853551030159 
Lon: -0.6810826063156128 
Alt: 75.0 

33 Chi 3 Chichest
er 

18/ 02/2009 
 
11/May/2009 
 

6.8 8°C 
17°C 

4 grass land 
 

Lat: 50.83846628665924 
Lon: -0.7747131586074829 
Alt: 40.0 

34 Chi 4 Chichest
er 

18/ 02/2009 
 
11/May/2009 
 

6.9 10°C 
17°C 

3 Wood, beside 
tree root 

Lat: 50.83895444869995 
Lon: -0.7747131586074829 
Alt: 63.0 

35 Chi 5 Chichest
er 

18/ 02/2009 
 
11/May/2009 
 

7 10°C 
17°C 

5 grass land Lat: 50.839099287986755 
Lon: -0.7745307683944702 
Alt: 60.0 

36 Chi 6 Chichest
er 

18/ 02/2009 
 
11/May/2009 
 

7 9°C 
17°C 

2 Woodland Lat: 50.83826243877411 
Lon: -0.774809718132019 
Alt: 73.0 

37 Chi 7 Chichest
er 
(Bosham) 

18/ 02/2009 
 
11/May/2009 
 

7 10°C 
17°C 

3 Grass land Lat: 50.83942115306854 
Lon: -0.8519446849822998 
Alt: 54.0 

38 Chi 8 Chichest
er 
(Bosham) 

18/ 02/2009 
 
11/May/2009 
 

6 10°C 
17°C 

4 no vegetation Lat: 50.83924949169159 
Lon: -0.85193932056427 
Alt: 50.0 

39 Chi 9 Chichest
er 

18/ 02/2009 
 
11/May/2009 
 

7 10°C 
17°C 3 Woodland Lat: 50.83699107170105 

Lon: -0.851815938949585 
Alt: 52.0 

40 Chi 10 Chichest
er 

18/ 02/2009 
 
11/May/2009 
 

7 10°C 
17°C 3 Grass land Lat: 50.82044184207916 

Lon: -0.48515260219573975 
Alt: 56.0 
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41 Isle1 Isle of 
wight 
Haven 
street 
forest 

18/ 02/2009 
 
11/May/2009 
 

7 10°C 
17°C 

6 woodland 
( forest) 

Lat: 50.761985778808594 
Lon: -1.1694002151489258 
Alt: -148.0 

42 Isle2 Isle of 
wight  
Garlic farm 

18/ 02/2009 
 
11/May/2009 
 

7 10°C 
17°C 

6 Farm soil  Lat: 50.67959368228912 
Lon: -1.2151157855987549 
Alt: 117.0 

43 Isle3 Isle of 
wight  
Garlic farm 

18/ 02/2009 
 
11/May/2009 
 

7 10°C 
17°C 

6 Grass land Lat: 50.679582953453064 
Lon: -1.2148261070251465 
Alt: 88.0 

44 Isle4 Isle of 
wight 
Ventnor 

18/ 02/2009 
 
11/May/2009 
 

7 10°C 
17°C 

4 Beside tree Lat: 50.6796258687973 
Lon: -1.214761734008789 
Alt: 88.0 

45 Isle5 Isle of 
wight 
Ventnor 

18/ 02/2009 
11/May/2009 
 
 

7 10°C 
17°C 

3 No vegetation Lat: 50.59310317039999 
Lan: -1.2019729614257813 
Alt: 54.0 

46 Isle6 Isle of 
wight 
New port 

18/ 02/2009 
 
11/May/2009 
 

7 10.1°C 
17°C 

3 No vegetation Lat: 50.61896502971649 
Lon: -1.22064561653137207 
Alt: 160.0 

47 Isle7 Isle of 
wight 
New port 

18/ 02/2009 
 
11/May/2009 
 

7 8°C 
17°C 

3 grass land Lat: 50.6985408006770325 
Lon: -1.2898153066635132 
Alt:69.0 

48 Isle8 Isle of 
wight 
New port 

18/ 02/2009 
 
11/May/2009 
 

7 8°C 
17°C 

3 beside tree Lat: 50.69871246814728 
Lon: -1.2899225950241089 
Alt: 66.0 

49 Isle9 Isle of 
wight 
Yarmouth 

18/ 02/2009 
 
11/May/2009 
 

7 10°C 
17°C 

2 grass land Lat: 50.69890558719635 
Lon: -1.2899547815322876 
Alt: 89.0 

50 Isle10 Isle of 
wight 
Yarmouth 

18/ 02/2009 
 
11/May/2009 
 

6 8°C 
17°C 

3 grass land Lat: 50.70415198802948 
Lon: -1.4995747804641724 
Alt: 40.0 

51 New 1 Minstead 19/02/2009 
12/May/2009 
 

7 9°C 
18°C 

6 Forest soil Lat: 50.70418417453766 
Lon: -1.499934196472168 
Alt: 55.0 

52 New 2 Minstead 19/02/2009 
 
12/May/2009 
 

6.6 9°C 4 Forest soil/ 50 
meter from 
before 

Lat: 50.87170958518982 
Lon: -1.5713292360305786 
Alt:99.0 
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53 New 3 Minstead 19/02/2009 
12/May/2009 
 

6.6 10°C 
18°C 

3 Forest soil/ 50 
meter from 
before 

Lat:50.8714896440506 
Lon: -1.571270227432251 
Alt: 72.0 

54 New 4 Minstead 19/02/2009 
12/May/2009 
 

6.9 9°C 
18°C 

4 Forest soil/ 50 
meter from 
before 

Lat:50.87125360965729 
Lon:-1.5716028213500977 
Alt: 78.0 

55 New 5 Minstead 19/02/2009 
12/May/2009 
 

7 9°C 
18°C 

3 Forest soil/ 50 
meter from 
before 

Lat: 50.8711302280426 
Lon:-1.5712165832519531 
Alt:81.0 

56 New 6 Minstead 19/02/2009 
12/May/2009 
 

7 10°C 
18°C 

1 Farm soil  Lat: 50.87125897407532 
Lon:-1.5712380409240723 
Alt:86.0 

57 New 7 Beaulieu 19/02/2009 
12/May/2009 
 

6.9 10°C 
18°C 

3 Forest soil Lat: 50.85521399974823 
Lon:-1.5039092302322388 
Alt:91.0 

58 New 8 Beaulieu 19/02/2009 
12/May/2009 
 

7 10°C 
18°C 

8 Forest soil Lat: 50.81950306892395 
Lon:-1.4553934335708618 
Alt:45.0 

59 New 9 Beaulieu 19/02/2009 
12/May/2009 
 

7 10°C 
18°C 

3 Forest soil Lat:50.82443833351135 
Lon:-1.45677774534225464 
Alt:56.0 

60 New 
10 

Beaulieu 19/02/2009 
12/May/2009 
 

7 10°C 
18°C 

5 Forest soil  

61 Wey1 Bounemou
th 

19/02/2009 
12/May/2009 
 

6.8 10°C 
18°C 

1 Sandy Lat: 50.72188138961792 
Lon:-1.8195998668670654 
Alt:78.0 

62 Wey2 Bounemou
th 

19/02/2009 
12/May/2009 
 

7 10°C 
18°C 

2 Sandy/playing 
ground 

Lat: 50.72189748287201 
Lon:-1.8196159601211548 
Alt:75.0 

63 Wey3 Bounemou
th 

19/02/2009 
12/May/2009 
 

6.9 9°C 
18°C 

1 Sandy Lat: 50.7216078042984 
Lon:-1.8195945024490359 
Alt:81.0 

64 Wey4 Weymouth 20/02/2009 
12/May/2009 
 

7 9°C 
18°C 

7 Sandy/beach Lat:50.6472247838974 
Lon:-2.4058502912521362 
Alt:132.0 

65 Wey5 Weymouth 20/02/2009 
12/May/2009 
 

5.8 9°C 
18°C 

5 Garden soil Lat:50.60881555080414 
Lon:-2.450900673866272 
Alt:53.0 

66 Wey6 Weymouth 20/02/2009 
12/May/2009 
 

6.1 8°C 
18°C 

8 Grass land Lat:50.608364939689636 
Lon:-2.451125979423523 
Alt:54.0 
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67 Wey7 Weymouth 20/02/2009 
12/May/2009 
 

7 8°C 
18°C 

8 Vegetation area  Lat:50.62586367130279 
Lon:-2.5111430883407593 
Alt:86.0 

68 Wey8 Weymouth 20/02/2009 
12/May/2009 
 

7 12°C 
18°C 

6 Grass land Lat:50.63451647758484 
Lon:-2.527579665184021 
Alt:97.0 

69 Wey9 Weymouth 20/02/2009 
12/May/2009 
 

7 10°C 
18°C 

1 Farm soil  Lat:50.63469350337982 
Lon:-2.5274670124053955 
Alt:104.0 

70 Wey10 Weymouth 20/02/2009 
12/May/2009 
 

7 11°C 
18°C 

6 grass land Lat:50.65370500087738 
Lon:-2.540416717529297 
Alt:93.0 
 

71 Sid1 Sidmouth 21/02/2009 
13/May/2009 

7 9°C 
18°C 

3 Woodland Lat:50.690537095069885 
Lon:-3.2137423753738463 
Alt:218.0 
 

72 Sid2 Sidmouth 21/02/2009 
13/May/2009 

7 9°C 
18°C 

3 Grass land Lat:50.68511366844177 
Lon:-3.234320282936096 
Alt:68.0 

73 Sid3 Sidmouth 21/02/2009 
13/May/2009 

7 10°C 
18°C 

6 grass land Lat:50.67898750305176 
Lon:-3.240070939064026 
Alt:64.0 

74 Sid4 Sidmouth 21/02/2009 
13/May/2009 

7 10°C 
18°C 

5 Beside tree Lat:50.681787729263306 
Lon:-3.243289589881897 
Alt:64.0 

75 Sid5 Sidmouth 21/02/2009 
13/May/2009 

7 8.5°C 
18°C 

5 Garden 
soil/100m from 
sid4 

Lat:50.68618655204773 
Lon:-3.2450973987579346 
Alt:92.0 

76 Sid6 Sidmouth 21/02/2009 
13/May/2009 

7 7.5°C 
18°C 

2 Beside tree Lat:50.68524777889552 
Lon:-3.2454997301101685 
Alt:107.0 

77 Sid7 Sidmouth 21/02/2009 
13/May/2009 

7 8°C 
18°C 

6.8 Woodland same 
garden 

Lat:50.68523705005646 
Lon:-3.245440721511841 
Alt:121.0 

78 Sid8 Sidmouth 21/02/2009 
13/May/2009 

7 7°C 
18°C 

4 Beside tree Lat:50.685049295425415 
Lon:-3.245649933815024 
Alt:97.0 

79 Sid9 Sidmouth 21/02/2009 
13/May/2009 

7 - - Grass land Lat:50.6854523582458496 
Lon:-3.2448506355285645 
Alt:80.0 

80 Sid10 Sidmouth 21/02/2009 
13/May/2009 

7 - - Grass land Lat:50.68460404872894 
Lon:-3.24471652507782 
Alt:99.0 
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81 Brid 1 Bridport 20/02/2009 
13/May/2009 

7 11°C 
17̊ C 

5 Woodland Lat:50.70981681346893 
Lon:-2.745707631111145 
Alt:76.0 

82 Brid 2 Bridport 20/02/2009 
13/May/2009 

7 11°C 
17̊ C 

3 Grass land Lat:50.70980608463287 
Lon:-2.745680809020996 
Alt:69.0 

83 Brid 3 Bridport 20/02/2009 
13/May/2009 

7 11°C 
17̊ C 

5 Beside tree Lat:50.726988315582275 
Lon:-2.758721709251404 
Alt:57.0 

84 Brid 4 Bridport 20/02/2009 
13/May/2009 

7 11°C 
17̊ C 

2 River side Lat:50.73514223098755 
Lon:-2.747011184692383 
Alt:61.0 

85 Brid 5 Bridport 20/02/2009 
13/May/2009 

7 11°C 
16̊ C 

5 River side/50m 
from Brid4 

Lat:50.73479354381561 
Lon:-2.747231125831604 
Alt:61.0 

86 Brid 6 Bridport 20/02/2009 
13/May/2009 

7 9°C 
17̊ C 

4 Woodland Lat:50.74778079986572 
Lon:-2.7439212799072266 
Alt:97 

87 Brid 7 Bridport 20/02/2009 
13/May/2009 

7 9°C 
17̊ C 

6 Grass land Lat:50.748188495635986 
Lon:-2.746227979660034 
Alt:92.0 

88 Brid 8 Bridport 20/02/2009 
13/May/2009 

7 9.5°C 
17̊ C 

6 Grass land Lat:507478666305542 
Lon:-2.744109034538269 
Alt:104.0 

89 Brid 9 Bridport 20/02/2009 
13/May/2009 

7 9°C 
17̊ C 

4 Woodland Lat:50.74456751346588 
Lon:-2.752874493598938 
Alt:62.0 

90 Brid 10 Bridport 20/02/2009 
13/May/2009 

7 8°C 
17̊ C 

4 Woodland Lat:50.744588971138 
Lon:-2.7528423070907593 
Alt:67.0 

91 Wey11 Weymouth 20/02/2009 
14/May/2009 

7 10°C 
19° C 

5 Vegetative area Lat:50.66893994808197 
Lon:-2.5636768341084453 
Alt:120.0 

92 Lyme1 Lyme 
Regis 

21/02/2009 
14/May/2009 

7 6°C 
19°C 

3 Garden soil Lat:50.71730554103851 
Lon:-3.0025452375411987 
Alt:206.0 

93 Lyme2 Lyme 
Regis 

21/02/2009 
14/May/2009 

7 8° C 
19°C 

3 Beside tree Lat:50.71730554103851 
Lon:-3.0025452375411989 
Alt:209.0 
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94 Lyme3 Lyme 
Regis 

21/02/2009 
14/May/2009 

7 8°C 
19°C 

4.5 Farm soil  Lat:50.71730554103851 
Lon:-3.0025452375411987 
Alt:206.0 

95 Lyme4 Lyme 
Regis 

21/02/2009 
14/May/2009 

7 9°C 
17̊C 

6 Woodland Lat:50.71730554103851 
Lon:-3.0025452375411987 
Alt:200.0 

96 Lyme5 Lyme 
Regis 

21/02/2009 
14/May/2009 

7 8°C 
17° C 

4 Grass land Lat:50.72379648685455 
Lon:-2.9416483640670776 
Alt:114.0 

97 Lyme6 Lyme 
Regis 

21/02/2009 
14/May/2009 

7 9°C 
19° C 

4.5 Grass land Lat:50.7344262466430664 
Lon:-2.9554563760757446 
Alt:126.0 

98 Lyme7 Lyme 
Regis 

21/02/2009 7 8°C 
15°C 

3 Vegetation area  Lat:50.73640823364258 
Lon:-2.959147095680237 
Alt:115.0 

99 Lyme8 Lyme 
Regis 

21/02/2009 
14/May/2009 

7 8°C 
17° C 
 

4 Old farm 
vegetable 

Lat:50.75165390968323 
Lon:-2.9688191413879395 
Alt:221.0 

100 Lyme9 Lyme 
Regis 

14/May/2009 
14/May/2009 

7 8°C 
17° C 

3 Forest soil Lat:50.744755268096924 
Lon:-2.967429757118225 
Alt:137.0 

101 Lyme1
0 

Lyme 
Regis 

21/02/2009 
14/May/2009 

7 8°C 
17° C 

2 Forest soil Lat:50.74735164642334 
Lon:-2.973845601081848 
Alt:191.0 

102 Chep1 Chepstow 23/02/2009 
16/May/2009 
 

7 11°C 
19° C 

8 Grass land Lat:51.39174699783325 
Lon:-2.352624535560608 
Alt:65.0 

103 Chep2 Chepstow 23/02/2009 
16/May/2009 
 

7 11°C 
19° C 

4 Woodland Lat: 51.64244771003723 
Lon:-2.661287784576416 
Alt:88.0 

104 Chep3 Chepstow 23/02/2009 
16/May/2009 
 

7 11°C 
19° C 

4 Grass land Lat:51.63969576358795 
Lon:-2.655220627784729 
Alt:74.0 

105 Chep4 Chepstow 23/02/2009 
16/May/2009 
 

7 10°C 
19° C 

7 No vegetation Lat:51.64792478084564 
Lon:-2.65174984931958 
Alt:80.0 

106 Chep5 Chepstow 23/02/2009 
16/May/2009 
 

7 9°C 
17° C 

7 Grass land Lat:51.65230751037598 
Lon:-2.654496431350708 
Alt:97.0 

107 Chep6 Chepstow 23/02/2009 
16/May/2009 
 

7 10°C 
17° C 

6 Grass beside 
river 

Lat:51.66124999523163 
Lon:-2.6364558935165405 
Alt:78.0 

108 Chep7 Chepstow 23/02/2009 
16/May/2009 
 

7 10°C 
17° C 

5.5 Grass land Lat:51.66836857795715 
Lon:-2.6292461156845093 
Alt:69.0 
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109 Chep8 Chepstow 23/02/2009 
16/May/2009 
 

7 7°C 
17° C 

3 Farm soil  Lat:51.684826612472534 
Lon:-2.607659697532654 
Alt:81.0 

110 Chep9 Chepstow 23/02/2009 
16/May/2009 
 

7 7°C 
17° C 

2 Woodland Lat:51.695287227630615 
Lon:-2.61774480342865 
Alt:141.0 

111 Chep1
0 

Chepstow 23/02/2009 
16/May/2009 
 

7 8°C 
17° C 

2 Farm soil  Lat:51.69119417667389 
Lon:-2.6332801580429077 
Alt:231.0 

112 Mon1 Monmouth
1 

23/02/2009 
16/May/2009 
 

7 9°C 
17° C 

3 Farm soil  Lat:51.71185255050659 
Lon:-2.6317083835601807 
Alt:239.0 

113 Mon2 Monmouth
2 

23/02/2009 
16/May/2009 
 

7 11°C 
17° C 

5 Forest soil Lat:51.73239827156067 
Lon:-2.640618681907654 
Alt:278.0 

114 Mon3 Monmouth
3 

23/02/2009 
16/May/2009 
 
 

7 10°C 
17° C 

5 Forest soil Lat:51.74553573131561 
Lon:-2.651025652885437 
Alt:133.0 

115 Mon4 Monmouth
4 

23/02/2009 
16/May/2009 
 

7 10°C 
17° C 

5 Forest soil Lat:51.75115764141083 
Lon:-2.662886381149292 
Alt:90.0 

116 Mon5 Monmouth
5 

23/02/2009 
16/May/2009 
 

7 10°C 
17° C 

5 Soil beside river Lat:51.760719818115234 
Lon:-2.677820944214 
Alt:64.0 

117 Lud1 Ludlow 1 24/02/2009 
17/May/2009 
 

7 12°C 
15 ̊C 

4 Vegetation area  Lat:53.08151721954346 
Lon:-5.52662193775177 
Alt:9714.0 

118 Lud2 Ludlow 2 24/02/2009 
17/May/2009 
 

7 10°C 
15 ̊C 

2 Tree root Lat:52.36801743507385 
Lon:-2.722683548927307 
Alt:150.0 

119 Lud3 Ludlow 3 24/02/2009 
17/May/2009 
 

7 11°C 
15 ̊C 

4 Grass land Lat:52.367475628852844 
Lon:-2.724539637565613 
Alt:146.0 

120 Lud4 Ludlow 4 24/02/2009 
17/May/2009 
 

7 11°C 
15 ̊C 

3 Grass land Lat:52.36581802368164 
Lon:-2.7251780033111572 
Alt:124.0 

121 Lud5 Ludlow 5 24/02/2009 
17/May/2009 
 

7 10°C 
15 ̊C 

3.5 Tree beside lake Lat:52.365732192983164 
Lon:-2,7252691984176636 
Alt:131.0 
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Numb
er 

Code  Site name Sampling 
Date 

PH Temp Moisture Habitation Co-ordinate 

epi-collect google 

122 Lud6 Ludlow 6 24/02/2009 
17/May/2009 
 

7 11°C 
15 ̊C 

3.1 Tree beside lake Lat:52.36532986164093 
Lon:-2.7251029014587402 
Alt:128.0 

123 Lud7 Ludlow 7 24/02/2009 
17/May/2009 
 

7 11°C 
15 ̊C 

4 Big tree Lat:52.38530840396881 
Lon:-2.724984884262085 
Alt:143.0 

124 Lud8 Ludlow 8 24/02/2009 
17/May/2009 
 

7 12°C 
15 ̊C 

4 Grass land Lat:52.366483211517334 
Lon:-2.7242928743362427 
Alt:164.0 

125 Leo1 Leomister1 24/02/2009 
17/May/2009 
 

7 14°C 3 Field Vegetable Lat:52.36660659313202 
Lon:-2.7232199907302858 
Alt:171.0 

126 Leo2 Leomister2 24/02/2009 
17/May/2009 
 

7 10°C 
15 ̊C 

4 Grass land Lat:52.23905682563782 
Lon:-2.7472901344299316 
Alt:113.0 

127 Leo3 Leomister3 24/02/2009 
17/May/2009 
 

7 10°C 
15 ̊C 

6 Farm soil  Lat:52.23977029323578 
Lon:-2.75095939623047 
Alt:122.0 

128 Leo4 Leomister4 24/02/2009 
17/May/2009 
 

7 10°C 
15 ̊C 

5 Woodland Lat:52.2442764043808 
Lon:-2.763882279396057 
Alt:135.0 

129 Leo5 Leomister5 24/02/2009 
17/May/2009 
 

7 10°C 
15 ̊C 

4 Woodland Lat:52.24731266498566 
Lon:-2.7706199884414673 
Alt:119.0 

130 Here1 Hereford1 24/02/2009 
17/May/2009 
 

7 10°C 
15 ̊C 

5 Field Grass Lat:52.24772036075592 
Lon:-2.772529721260071 
Alt: 124.0 

131 Here2 Hereford2 24/02/2009 
17/May/2009 
 

7 9°C 
15 ̊C 

5 Grass land Lat:52.03047752380371 
Lon:-2.7138590812683105 
Alt: 151.0 
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Numb
er 

Code  Site name Sampling 
Date 

PH Temp Moisture Habitation Co-ordinate 

epi-collect google 

132 Here3
A 

Hereford3 24/02/2009 
17/May/2009 
 

6.1 10°C 
15 ̊C 

6 Garden soil Lat:52.02930808067322 
Lon:-2.7171796560287476 
Alt:137.0 

133 Here3
B 

Hereford3 24/02/2009 
17/May/2009 
 

7 10°C 
15 ̊C 

4 Garden soil 
two meter from 
the previous 

Lat:52.02930808067322 
Lon:-2.7171796560287476 
Alt:137.0 

134 Here4 Hereford4 24/02/2009 
17/May/2009 
 

7 10°C 
15 ̊C 

5.5 Soil beside field Lat:52.012120485305786 
Lon:-2.7351075410842896 
Alt:130.0 

135 Ross1 Ross-on-
wye 1 

24/02/2009 
17/May/2009 
 

7 10°C 
15 ̊C 

5 Hotel Garden Lat:52.00700283050537 
Lon:-2.7333050966262817 
Alt:156.0 

136 Ross2 Ross-on-
wye 2 

24/02/2009 
17/May/2009 
 

7 11°C 
15 ̊C 

5.5 Hotel Garden/ 
30 meter from 
the previous site 

Lat:51.91306114196777 
Lon:-2.5788742303848267 
Alt:106.0 

137 Ross3 Ross-on-
wye 3 

24/02/2009 
17/May/2009 
 

7 10°C 
15 ̊C 

5 Garden soil Lat:51.91340982913971 
Lon:-2.5784611701965 
Alt:76.0 

138 Ross4 Ross-on-
wye4 

24/02/2009 
17/May/2009 
 

7 10°C 
15 ̊C 

3 Grass beside 
water stream 

Lat:51.913297176361084 
Lon:-2.5778603553771973 
Alt:86.0 

139 Ross5 Ross-on-
wye 5 

24/02/2009 
17/May/2009 
 

7 10°C 
15 ̊C 

7 Grass beside 
water stream 

Lat:51.9131737947464 
Lon:-2.577667236328125 
Alt:111.0 

140 Bath1 Shaw bath 
road 

23/02/2009 
18/May/2009 
 

7 10°C 
16 ̊C 

5 Grass land Lat:51.389413475990295 
Lon:-2.1609270572662354 
Alt:80.0 

141 Bath2 Shaw bath 
road 

23/02/2009 
18/May/2009 
 

7 10°C 
16 ̊C 

7 Grass land Lat:51.3909637928009 
Lon:-2.1768593788146973 
Alt:103.0 

142 Bath3 Shaw bath 
road 

23/02/2009 
18/May/2009 
 

7 10°C 
16 ̊C 

7 Grass land Lat:51.39098525047302 
Lon:-2.1771007776260376 
Alt:113.0 

143 Bath4 Bath 1 25/02/2009 
18/May/2009 
 

6 8°C 
16 ̊C 

8 Grass land Lat:51.91247642040253 
Lon:-2.5776833295822144 
Alt:95.0 
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Date 

PH Temp Moisture Habitation Co-ordinate 

epi-collect google 

144 Bath5 Bath 2 25/02/2009 
18/May/2009 
 

7 9°C 
16 ̊C 

6 Beside tree Lat:51.91247642040253 
Lon:-2.5776833295822144 
Alt:95.0 

145 Bath6 Bath 3 25/02/2009 
18/May/2009 
 

7 9°C 
16 ̊C 

5 Grass land 
beside football 

Lat:51.36326193809509 
Lon:-2.384456992149353 
Alt:201.0 

146 Bath7 Bath 4 25/02/2009 
18/May/2009 
 

7 9°C 
16 ̊C 

7 Beside farm Lat:51.35318219661713 
Lon:-2.3810720443725586 
Alt:223.0 

147 Bath8 Bath 5 25/02/2009 
18/May/2009 
 

7 9°C 
16 ̊C 

6 Park Lat:51.35688900947571 
Lon:-2.383480668067932 
Alt:202.0 

148 Bath9 Bath 6 25/02/2009 
18/May/2009 
 

7 9°C 
16 ̊C 

6 Prior park Lat:51.36503219604492 
Lon:-2.3603546619415283 
Alt:198.0 

149 Bath10 Bath 7 25/02/2009 
18/May/2009 
 

6 9°C 
16 ̊C 

6 Soil beside Avon 
river 

Lat:51.373910307884216 
Lon:-2.3511385917663574 
Alt:72.0 

150 Bath11 Bath 8 25/02/2009 
18/May/2009 
 

6 9°C 
16 ̊C 

5 Garden soil Lat:51.38162970542908 
Lon:-2.355837821960449 
Alt:75.0 

151 Bris1 Bristol 1 26/02/2009 
18/May/2009 
 

7 9°C 
16 ̊C 

5.1 Farm soil  Lat:51.35783851146698 
Lon:-2.3748278617858887 
Alt:217.0 

152 Bris2 Bristol 2 26/02/2009 
18/May/2009 
 

7 9°C 
16 ̊C 

5 Grass/golf field Lat:51.441110372543335 
Lon:-2.4116116762161255 
Alt:297.0 

153 Bris3 Bristol 3 26/02/2009 
18/May/2009 
 

7 8°C 
15°C 

5 Beside tree Lat:51.44755303859711 
Lon:-2.4161821603775024 
Alt:107.0 

154 Bris4 Bristol 4 26/02/2009 
18/May/2009 
 

7 8°C 
16 ̊C 

5 Bunker soil Lat:51.44720435142517 
Lon:-2,4164557456970215 
Alt:139.0 

155 Bris5 Bristol 5 26/02/2009 
18/May/2009 
 

7 8°C 
16 ̊C 

5.5 Beside tree Lat.51.52466654777527 
Lon:-2.5994092226028442 
Alt:111.0 
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Table 2. Number of dead insects and insects producing nematodes in different soil habitats.    

Habitat Number of soil sample 
(number of Galleria*) 

Number of dead 
insects  

Number of dead 
insects producing 
nematodes 

Bunker 6(18) 12 8 
Grass 2(6) 6 6 
Wood 6(18) 12 10 
Total 14(42) 30 24 
Total%  (30/42) 71.42% (24/42) 57.14% 

*Three Galleria per soil sample 

 

 

 

 

Query:   8       GAGAGCTTGCTCTCTGGGTGACGAGCGGCGGACGGGTGAGTAATGTCTGGGAAACTGCCT 67 
                 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Subject: 59      GAGAGCTTGCTCTCTGGGTGACGAGCGGCGGACGGGTGAGTAATGTCTGGGAAACTGCCT 118      
 
 

Query:   68      GAWKGGAGGGGGATAACTACTGGAAACGGTAGCTAATACCGCATAACGTCTTCGGACCAA 127      
                 ||  |||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Subject: 119     GAT-GGAGGGGGATAACTACTGGAAACGGTAGCTAATACCGCATAACGTCTTCGGACCAA 177      
 
 

Query:   128     AGTGGGGGACCTTCGGGCCTCACGCCATCAGATGTGCCCAGATGGGATTAGCTAGTAGGT 187      
                 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Subject: 178     AGTGGGGGACCTTCGGGCCTCACGCCATCAGATGTGCCCAGATGGGATTAGCTAGTAGGT 237      
 
 

Query:   188     GGGGTAATGGCTCACCTAGGCGACGATCCCTAGCTGGTCTGAGAGGATGACCAGCCACAC 247      
                 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Subject: 238     GGGGTAATGGCTCACCTAGGCGACGATCCCTAGCTGGTCTGAGAGGATGACCAGCCACAC 297      
 
 

Query:   248     TGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATG 307      
                 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Subject: 298     TGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATG 357      
 
 

Query:   308     GGCGCAAGCCTGATGCAGCCATGCCGCGTGTGTGAAGAAGGCCTTCGGGTTGTAAAGCAC 367      
                 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Subject: 358     GGCGCAAGCCTGATGCAGCCATGCCGCGTGTGTGAAGAAGGCCTTCGGGTTGTAAAGCAC 417      
 
 

Query:   368     TTTCAGCGAGGAGGAAGGGTTCAGTGTTAATAGCACTGTGCATTGACGTTACTCGCAGAA 427      
                 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Subject: 418     TTTCAGCGAGGAGGAAGGGTTCAGTGTTAATAGCACTGTGCATTGACGTTACTCGCAGAA 477      
 
 

Query:   428     GAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGGRRGGKKGCAAGCGTTAAT 487      
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                 ||||||||||||||||||||||||||||||||||||||||||  ||  |||||||||||| 
Subject: 478     GAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGG-AGGGTGCAAGCGTTAAT 536      

 
 

Query:   488     CGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCG 547      
                 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Subject: 537     CGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCG 596      
 
 

Query:   548     CGCTTAACGTGGGAACTGCATTTGAAACTGGCAAGCTAGAGTC-TGTAGAGGGG 600      
                 ||||||||||||||||||||||||||||||||||||||||||| |||||||||| 

Subject: 597     CGCTTAACGTGGGAACTGCATTTGAAACTGGCAAGCTAGAGTCTTGTAGAGGGG 

 

Score  =     1121, Identity = (587/594) 98.8% Expect = 0 

Figure 1. Serratia proteamaculans. 16S rRNA gene (strain DSM 4543).  Example of the blast 
results % identity.   ACCESSION   AJ233434 
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Figure 2.   Neighbour-joining phylogenetic tree obtained from recA gene sequences 
belonging to S. proteamaculans.  Numbers within the dendrogram indicate the occurrence 
(%) of the branching order in 100 bootstrapped tree 

 cluster 2a

 20802 fada-5 D11 215 RecA-rev.ab1

 18946 195 RecA-rev.ab1

 20802 fada-5 D12 216 RecA-rev.ab1

 20802 fada-5 D02 202 RecA-rev.ab1

 20802 fada-5 D08 209 RecA-rev.ab1

 20802 fada-5 E02 218 RecA-rev.ab1

 18946 197 RecA-rev.ab1

 cluster 2c

 18946 fada-1 D03 59 RecA-rev.ab1

 18525 fada-1 G05 39 RecA-R.ab1

 18525 fada-1 C05 35 RecA-R.ab1

 18946 fada-1 C04 66 RecA-rev.ab1

 18946 fada-1 A04 64 RecA-rev.ab1

 cluster 2d

 18946 fada-2 A01 101 RecA-rev.ab1

 20802 fada-5 H10 114 RecA-rev.ab1

 cluster 1b

 cluster 1a

100
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6
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0.01
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Appendix 2: 

Table 1. Samples used for MLST. 

  Strain # ST Location Cultural 
characteristics 

Isolation Dates of 
isolation 

0 1 Bath yellow colonies  Crushed nematodes Feb-09 
1 2 Brighton1 yellow colonies    Crushed nematodes Feb-09 
3 3 Brighton 1” Yellow colonies  Crushed nematodes Feb-09 
4 4 Brighton 1”' Cream colonies  Crushed nematodes Feb-09 
5 5 Brighton 7 creamy colonies  Crushed nematodes Feb-09 
6 6 Brighton 7' Yellow colonies  Crushed nematodes Feb-09 
7 7 Chepstow8 Yellow colonies Crushed nematodes Feb-09 
9 8 Chepstow10 Yellow colonies Crushed nematodes Feb-09 
10 9 Chepstow7’ Yellow colonies Crushed nematodes Feb-09 
11 10 Chepstow7” Cream colonies Crushed nematodes Feb-09 
13 11 Bridport2 yellow colonies  Crushed nematodes Feb-09 
14 11 Bridport2’ cream colonies  Crushed nematodes Feb-09 
15 12 Bridport2’' yellow colonies  Crushed nematodes Feb-09 
16 13 Sidmouth9 cream colonies  Crushed nematodes Feb-09 
17 4 Sidmouth10’ yellow colonies Crushed nematodes Feb-09 
19 4 Sidmouth10’’ yellow colonies  Crushed nematodes Feb-09 
20 14 Newforest3 cream colonies Crushed nematodes Feb-09 
21 15 Newforest10 Cream colonies Crushed nematodes Feb-09 
22 16 Newforest2 Cream colonies Crushed nematodes Feb-09 
23 17 Weymouth10 cream colonies Crushed nematodes Feb-09 
25 18 Weymouth4’ Cream colonies Crushed nematodes Feb-09 
26 19 Chichester1 Cream colonies Crushed nematodes Feb-09 
27 19 Chichester9 Cream colonies Crushed nematodes Feb-09 
28 20 Arundal5 Yellow colonies  Crushed nematodes Feb-09 
29 21 Arundel6 Cream colonies  Crushed nematodes Feb-09 
30 11 Arundal5’ yellow colonies  Crushed nematodes Feb-09 
31 21 Arundel6’ cream colonies Crushed nematodes Feb-09 
32 4 Arundel8 Cream colonies  Crushed nematodes Feb-09 
33 22 Agmering8 

 
yellow colonies  Crushed nematodes Feb-09 

34 4 Agmering8' 
 

cream colonies  Crushed nematodes Feb-09 

35 23 Sidmouth10 Yellow colonies  Haemolymph of Galleria that 
showed nematodes 

Feb-09 

36 24 Sidmouth10’ Cream colonies  Haemolymph of Galleria that 
showed nematodes 

Feb-09 

38 25 Sidmouth10”’ Cream colonies  Haemolymph of Galleria that 
showed nematodes 

Feb-09 

39 26 Chichester1 Cream colonies  Haemolymph of Galleria that 
showed nematodes 

Feb-09 

40 11 Chichester1’ yellow colonies  Haemolymph of Galleria that Feb-09 
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showed nematodes 
41 11 Chichester9 Cream colonies  Haemolymph of Galleria that 

showed nematodes 
Feb-09 

44 27 Bridport2 yellow colonies  Haemolymph of Galleria that 
showed nematodes 

Feb-09 

45 28 Bridport2’ Cream colonies Haemolymph of Galleria that 
showed nematodes 

Feb-09 

46 29 Bridport2’' yellow colonies  Haemolymph of Galleria that 
showed nematodes 

Feb-09 

47 30 Chepstow7 cream colonies  Haemolymph of Galleria that 
showed nematodes 

Feb-09 

50 31 Chepstow10’ yellow colonies  Haemolymph of Galleria that 
showed nematodes 

Feb-09 

52 32 Chepstow8’ yellow colonies  Haemolymph of Galleria that 
showed nematodes 

Feb-09 

53 33 Weymouth2 cream colonies Haemolymph of Galleria that 
showed nematodes 

Feb-09 

54 34 Weymouth3 cream colonies Haemolymph of Galleria that 
showed nematodes 

Feb-09 

57 35 Brighton 1  yellow colonies Haemolymph of Galleria that 
showed nematodes 

Feb-09 

59 36 Brighton 1’  yellow colonies Haemolymph of Galleria that 
showed nematodes 

Feb-09 

60 37 Brighton 1’  creamy colonies Haemolymph of Galleria that 
showed nematodes 

Feb-09 

61 38 Brighton 1”   yellow colonies Haemolymph of Galleria that 
showed nematodes 

Feb-09 

63 39 Arundal5 yellow colonies Haemolymph of Galleria that 
showed nematodes 

Feb-09 

64 40 Arundal5’  cream colonies Haemolymph of Galleria that 
showed nematodes 

Feb-09 

65 41 Arundel8  yellow colonies Haemolymph of Galleria that 
showed nematodes 

Feb-09 

67 42 Agmering9 cream colonies Haemolymph of Galleria that 
showed nematodes 

Feb-09 

68 43 Newforest10  yellow colonies Haemolymph of Galleria that 
showed nematodes 

Feb-09 

80 11 Bridport10 cream colonies Haemolymph of Galleria that  
not showed nematodes 

Feb-09 

97 44 Chepstow 2 cream colonies Haemolymph of Galleria that  
not showed nematodes 

Feb-09 

105 45 Ludlow4 cream colonies Haemolymph of Galleria that  
not showed nematodes 

Feb-09 

117 46 Ditchling1 cream colonies Haemolymph of Galleria that  
not showed nematodes 

Feb-09 

119 47 Bridport4 cream colonies Haemolymph of Galleria that  
not showed nematodes 

Feb-09 

125 48 Bristol4 cream colonies Haemolymph of Galleria that  
not showed nematodes 

Feb-09 

127 49 Bristol1 cream colonies Haemolymph of Galleria that  
not showed nematodes 

Feb-09 
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129 50 Hereford3 cream colonies Haemolymph of Galleria that  
not showed nematodes 

Feb-09 

134 51 Bath2 cream colonies Haemolymph of Galleria that  
not showed nematodes 

2008 

143 51 Bath11 cream colonies Haemolymph of Galleria that  
not showed nematodes 

2008 

144 51 Bath12 cream colonies Haemolymph of Galleria that  
not showed nematodes 

2008 

147 52 Bath14’ cream colonies Haemolymph of Galleria that  
not showed nematodes 

2008 

173 53 Bath23 cream colonies Haemolymph of Galleria that  
not showed nematodes 

2008 

174 54 Bath25 cream colonies Haemolymph of Galleria that  
not showed nematodes 

2008 

201 55 Bath135 cream colonies Haemolymph of Galleria that  
not showed nematodes 

2008 

202 56 Bath148 cream colonies Haemolymph of Galleria that  
not showed nematodes 

2008 

211 57 Bath159  cream colonies Haemolymph of Galleria that  
not showed nematodes 

2008 

212 58 Bath157 cream colonies Haemolymph of Galleria that  
not showed nematodes 

2008 

216 59 Bath153 cream colonies Haemolymph of Galleria that  
not showed nematodes 

2008 

217 60 Bath151 cream colonies Haemolymph of Galleria that  
not showed nematodes 

2008 

224 61 Bath58 cream colonies Haemolymph of Galleria that  
not showed nematodes 

2008 

225 62 Bath59 cream colonies Haemolymph of Galleria that  
not showed nematodes 

2008 

226 63 Bath55 cream colonies Haemolymph of Galleria that  
not showed nematodes 

2008 

228 64 Bath49 cream colonies Haemolymph of Galleria that  
not showed nematodes 

2008 

233 65 Bath61 cream colonies Haemolymph of Galleria that  
not showed nematodes 

2008 

237 66 Bath38 cream colonies Haemolymph of Galleria that  
not showed nematodes 

2008 

240 67 Bath93 cream colonies Haemolymph of Galleria that  
not showed nematodes 

2008 

242 68 Bath104 cream colonies Haemolymph of Galleria that  
not showed nematodes 

2008 

246 68 Bath47 cream colonies Haemolymph of Galleria that  
not showed nematodes 

2008 
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Figure 1. Neighbour-joining phylogenetic tree of 84 S. Proteamaculans obtained from the 
concatenated genes.  Numbers within the dendrogram indicate the occurrence (%) of the 
branching order in 1000 bootstrapped trees. 

 

 

 

 

 

 

 

 

 

 Clade 4

 20802 fada-3 G05 174 adk-rev.ab1

 20802 fada-3 G11 211 adk-rev.ab1

 20802 fada-3 G07 202 adk-rev.ab1

 20802 fada-3 E08 64 adk-rev.ab1

 20802 fada-3 H02 216 adk-rev.ab1

 20802 fada-3 H06 224 adk-rev.ab1

 20802 fada-3 E04 59 adk-rev.ab1

 20802 fada-3 H12 233 adk-rev.ab1

 20802 fada-3 D03 39 adk-rev.ab1
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 20802 fada-5 B02 240 adk-rev.ab1

 20802 fada-3 E07 63 adk-rev.ab1
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Figure 2.  Neighbour-joining phylogenetic tree based on recA gene sequence of 84 strains 
indicate the numbers occurrence (%) of the branching order in 1000 bootstrapped trees. 

 

 

 

 

 

 

Figure 3. Neighbour-joining phylogenetic tree based on glmU gene sequence of 84 strains 
indicate the numbers occurrence (%) of the branching order in 1000 bootstrapped trees.  
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Figure 4.  Neighbour-joining phylogenetic tree tree based on adK gene sequence of 84 
strains indicate the numbers occurrence (%) of the branching order in 1000 bootstrapped 
trees. 

 

 

 

 

Figure5. Neighbour-joining phylogenetic tree based on dnaJ gene sequence of 84 strains 
indicate the numbers occurrence (%) of the branching order in 1000bootstrapped trees.  

 Clade 1a 

 20802 fada-1 G07 202 glmu-rev.ab1

 20802 fada-1 E07 63 glmu-rev.ab1

 20802 fada-1 H03 217 glmu-rev.ab1

 20802 fada-1 G11 211 glmu-rev.ab1

 Clade 2a

 Clade 2b

 20802 fada-1 H10 228 glmu-rev.ab1
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 Clade 1c

 20802 fada-4 G07 202 dnaJ-rev.ab1

 20802 fada-4 G11 211 dnaJ-rev.ab1

 Clade 1d

 20802 fada-5 B10 242 dnaJ-rev.ab1

 20802 fada-4 C09 33 dnaJ-rev.ab1

 20802 fada-4 B01 13 dnaJ-rev.ab1

 20802 fada-4 H11 237 dnaJ-rev.ab1

 Clade 1b

 20802 fada-4 E02 54 dnaJ-rev.ab1

 Clade 1e

 20802 fada-5 B11 246 dnaJ-rev.ab1

 20802 fada-4 D05 41 dnaJ-rev.ab1

 20802 fada-4 D04 40 dnaJ-rev.ab1

 20802 fada-4 G04 173 dnaJ-rev.ab1

 20802 fada-4 H10 228 dnaJ-rev.ab1

 20802 fada-4 H07 225 dnaJ-rev.ab1

 Clade 1a

 Clade 2b
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Figure 6. Neighbour-joining phylogenetic tree based on glyA gene sequence of 84 strains 
indicate the numbers occurrence (%) of the branching order in 1000 bootstrapped trees 
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A. 

 

B. 

Figure 7.  Unrooted phylogenetic networks of 84 S. proteamaculans isolates constructed 
from: A. the five housekeeping genes used in MLST.  B. The concatenated sequences of the 
five genes.  Using the SpitsTree 4 software. 
 
 

Concatenated genes 
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Appendix 3 

 

 

 

 

Figure 1.   The logarithmic graph estimating the LD50 of A. Bath isolates B1 and B. Chepstow 
isolates  C1 virulence test after 24h of injection. 
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Figure 2.   The linear graph estimating the LT50 of A. Bath isolates B1 and B. Chepstow 
isolates C1 virulence test  in 24h and 72h post injection. 
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Appendix 4: 

CD 1.  Confocal microscopic images verified that the bacteria were indeed 
within the nematode tissues using Z-stack 3D reconstruction. 
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Appendix 5. 

BLASTN analysis of the recA amplicon sequences of the eggs colonies were 
identified as Serratia spp. 
 
 
 
 

Score Expect Identities Gaps Strand Frame 
865 bits(468) 0.0() 477/481(99%) 2/481(0%) Plus/Plus  
Features: 
recA protein 
Query  2       GCGTCTGGGTG-AGACCGTTCTATGGACGTAGAAACGATCTCTACCGGCTCACTGTCACT  60 
               ||||||||||| |||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  937153  GCGTCTGGGTGAAGACCGTTCTATGGACGTAGAAACGATCTCTACCGGCTCACTGTCACT  937212 
 
Query  61      GGACATCGCATTGGGTGCGGGCGGCCTGCCAATGGGTCGTATCGTTGAAATTTATGGCCC  120 
               |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  937213  GGACATCGCATTGGGTGCGGGCGGCCTGCCAATGGGTCGTATCGTTGAAATTTATGGCCC  937272 
 
Query  121     GGAGTCTTCCGGTAAAACTACCCTGACGCTGCAGGTTATCGCTGCGGGCACAGCGCGAAG  180 
               ||||||||||||||||||||||||||||||||||||||||||||| |||||||||||||| 
Sbjct  937273  GGAGTCTTCCGGTAAAACTACCCTGACGCTGCAGGTTATCGCTGC-GGCACAGCGCGAAG  937331 
 
Query  181     GTAAAACCTGTGCGTTTATCGATGCCGAGCATGCGCTGGATCCGATTTATGCGAAAAAGC  240 
               |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  937332  GTAAAACCTGTGCGTTTATCGATGCCGAGCATGCGCTGGATCCGATTTATGCGAAAAAGC  937391 
 
Query  241     TGGGTGTTGATATCGACAACCTGCTGTGTTCGCAGCCGGACACCGGTGAGCAAGCGCTGG  300 
               |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  937392  TGGGTGTTGATATCGACAACCTGCTGTGTTCGCAGCCGGACACCGGTGAGCAAGCGCTGG  937451 
 
Query  301     AAATCTGTGATGCCTTGACCCGCTCTGGCGCGGTTGACGTGATCATCGTTGACTCCGTAG  360 
               |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  937452  AAATCTGTGATGCCTTGACCCGCTCTGGCGCGGTTGACGTGATCATCGTTGACTCCGTAG  937511 
 
Query  361     CGGCGCTGACGCCAAAAGCGGAAATCGAAGGTGAAATTGGTGACTCACACATGGGCCTGG  420 
               |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  937512  CGGCGCTGACGCCAAAAGCGGAAATCGAAGGTGAAATTGGTGACTCACACATGGGCCTGG  937571 
 
Query  421     CGGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCAAGTAACCTGAAAAACGCCAACA  480 
               |||||||||||||||||||||||||||||||||||||  ||||||||||||||||||||| 
Sbjct  937572  CGGCGCGTATGATGAGCCAGGCGATGCGTAAGCTGGCCGGTAACCTGAAAAACGCCAACA  937631 
 
Query  481     C  481 
               | 
Sbjct  937632  C  937632 
 
Serratia proteamaculans 568, complete genome 
Sequence ID: gb|CP000826.1|Length: 5448853Number of Matches: 1 
Related Information 
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Score Expect Identities Gaps Strand Frame 

608 bits(329) 1e-170() 423/469(90%) 3/469(0%) Plus/Plus  

Features:  

Query  14      AGACACGATC-ATGGACGT-GCAACGATCTCCACCGGCTCGCTGTCACTTGATCTCGCAC  71 
               |||| || || |||||||| | ||||||||| ||||||||||||||||||||| |||||| 
Sbjct  773772  AGAC-CGTTCTATGGACGTAGAAACGATCTCTACCGGCTCGCTGTCACTTGATATCGCAC  773830 
 
Query  72      TGGGCGCAGGCGGCTTGCCAATGGGCCGTATCGTCGAGATTTATGGCCCGGAATCCTCCG  131 
               |||| ||||||||| ||||||||||||||||||| || |||||||| |||||||| |||| 
Sbjct  773831  TGGGTGCAGGCGGCCTGCCAATGGGCCGTATCGTTGAAATTTATGGTCCGGAATCTTCCG  773890 
 
Query  132     GTAAAACCACCCTGACTCTGCAAGTTATTGCCGCTGCGCAGCGCGAAGGTAAAACCTGTG  191 
               |||||||||||||||| ||||| ||||| || || ||||||||||||||||||||||||| 
Sbjct  773891  GTAAAACCACCCTGACGCTGCAGGTTATCGCTGCGGCGCAGCGCGAAGGTAAAACCTGTG  773950 
 
Query  192     CGTTTATCGATGCCGAACATGCGCTGGATCCTATCTACGCCAAGAAACTGGGCGTGGATA  251 
               | |||||||||||||| || ||||||||||| || || || ||||| |||||||| |||| 
Sbjct  773951  CCTTTATCGATGCCGAGCACGCGCTGGATCCGATTTATGCGAAGAAGCTGGGCGTTGATA  774010 
 
Query  252     TCGATAACCTGCTGTGTTCTCAGCCGGATACCGGTGAGCAGGCGCTGGAAATCTGTGATG  311 
               |||| ||||||||||||||||||||||| |||||||| |||||| ||||||||||||||| 
Sbjct  774011  TCGACAACCTGCTGTGTTCTCAGCCGGACACCGGTGAACAGGCGTTGGAAATCTGTGATG  774070 
 
Query  312     CGCTGACCCGTTCCGGCGCGGTTGACGTCATCATCGTCGACTCCGTAGCGGCGCTGACGC  371 
               |  | ||||||||||||||||||||||| |||||||| |||||||| |||||  |||||| 
Sbjct  774071  CCTTAACCCGTTCCGGCGCGGTTGACGTGATCATCGTTGACTCCGTGGCGGCCTTGACGC  774130 
 
Query  372     CGAAGGCGGAAATCGAAGGCGAAATCGGTGACTCACATATGGGGCTGGCGGCACGTATGA  431 
               |||| |||||||||||||| ||||||||||||||||| ||||| |||||||||||||||| 
Sbjct  774131  CGAAAGCGGAAATCGAAGGTGAAATCGGTGACTCACACATGGGTCTGGCGGCACGTATGA  774190 
 
Query  432     TGAGCCAGGCCATGCGTAAATTGGCCGGTAACCTGAAAAACGCCAACAC  480 
               |||||||||| ||||||||  |||||||||||||||||||||||||||| 
Sbjct  774191  TGAGCCAGGCGATGCGTAAGCTGGCCGGTAACCTGAAAAACGCCAACAC  774239 
 
 
 
 
 

Serratia liquefaciens ATCC 27592, complete genome  

Sequence ID: gb|CP006252.1|Length: 5238612Number of Matches: 1 
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Score Expect Identities Gaps Strand Frame 

568 bits(307) 2e-158() 417/471(89%) 3/471(0%) Plus/Plus  

Features:  

DNA strand exchange and recombination protein with protea... 

Query  12      GGTG-AGA-CGCATCATGGACGTAGTAACGATCTCCACCGAGCTCGATGTCACTTGATCT  69 
               |||| ||| |||  ||||||||| | |||||||||||||| ||||  ||||||| ||| | 
Sbjct  925781  GGTGAAGACCGCTCCATGGACGTGGAAACGATCTCCACCG-GCTCACTGTCACTCGATAT  925839 
 
Query  70      CGCACTGGGCGCAGGCGGCTTGCCAATGGGCCGTATCGTCGAGATTTATGGCCCGGAATC  129 
               ||| |||||||| |||||| |||| |||||||| ||||| || || || ||||||||||| 
Sbjct  925840  CGCCCTGGGCGCCGGCGGCCTGCCGATGGGCCGCATCGTAGAAATCTACGGCCCGGAATC  925899 
 
Query  130     CTCCGGTAAAACCACCCTGACTCTGCAAGTTATTGCCGCTGCGCAGCGCGAAGGTAAAAC  189 
                ||||||||||||||  |||| ||||| || || |||||||||||||||||||| ||||| 
Sbjct  925900  GTCCGGTAAAACCACTTTGACGCTGCAGGTGATCGCCGCTGCGCAGCGCGAAGGCAAAAC  925959 
 
Query  190     CTGTGCGTTTATCGATGCCGAACATGCGCTGGATCCTATCTACGCCAAGAAACTGGGCGT  249 
               ||||||||| ||||| |||||||| ||||||||||||||||| || || || |||||||| 
Sbjct  925960  CTGTGCGTTCATCGACGCCGAACACGCGCTGGATCCTATCTATGCGAAAAAGCTGGGCGT  926019 
 
Query  250     GGATATCGATAACCTGCTGTGTTCTCAGCCGGATACCGGTGAGCAGGCGCTGGAAATCTG  309 
                |||||||| ||||||||||| || |||||||||||||| |||||||||||||||||||| 
Sbjct  926020  CGATATCGACAACCTGCTGTGCTCCCAGCCGGATACCGGCGAGCAGGCGCTGGAAATCTG  926079 
 
Query  310     TGATGCGCTGACCCGTTCCGGCGCGGTTGACGTCATCATCGTCGACTCCGTAGCGGCGCT  369 
               ||||||||||||||| |||||||||||||| |||||||||||||||||||| |||||||| 
Sbjct  926080  TGATGCGCTGACCCGCTCCGGCGCGGTTGATGTCATCATCGTCGACTCCGTGGCGGCGCT  926139 
 
Query  370     GACGCCGAAGGCGGAAATCGAAGGCGAAATCGGTGACTCACATATGGGGCTGGCGGCACG  429 
               |||||||||||||||||||||||| |||||||| || || || ||||| |||||||| || 
Sbjct  926140  GACGCCGAAGGCGGAAATCGAAGGTGAAATCGGCGATTCGCACATGGGCCTGGCGGCGCG  926199 
 
Query  430     TATGATGAGCCAGGCCATGCGTAAATTGGCCGGTAACCTGAAAAACGCCAA  480 
                |||||||||||||| ||||||||| ||||||| ||||||||||||||||| 
Sbjct  926200  CATGATGAGCCAGGCGATGCGTAAACTGGCCGGCAACCTGAAAAACGCCAA  926250 
 

 

Serratia marcescens WW4, complete genome  

Sequence ID: gb|CP003959.1|Length: 5241455Number of Matches: 1 
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Appendix 6. 

Table 1.  Types of soil, nematodes, habitats, soil pH and temperature in sites sampled in the two transects E-W and S-N. 

 

Associated 

nematodes 

 

Region Habitat Time of 

isolation 

Soil type Soil PH Soil 

Temperature 

Associated 

bacteria  

Pristionchus 

entomophagus20 

Brighton1 Woodland February Slowly permeable 

seasonally wet slightly 

acid but base-rich loamy 

and clayey soils 

6 8°C Serratia 

proteamaculans 

Pristionchus 

entomophagus28 

Chepatow7 Grassland February Freely draining slightly 

acid but base-rich soils 

7 10°C Serratia 

proteamaculans 

Pristionchus Iheritieri 
46 

Brighton7 Woodland February Shallow lime-rich soils 

over chalk or limestone 

7 7°C Serratia 
proteamaculans 

Pristionchus 
entomophagus42  

Agmering8 Woodland February Freely draining slightly 

acid loamy soils 

7 9°C Serratia 
proteamaculans 

Pristionchus 
entomophagus23 

Newforest2 Forest soil February Slowly permeable 

seasonally wet slightly 

acid but base-rich loamy 

and clayey soils 

6 9°C Serratia 
proteamaculans 

Pristionchus 
entomophagus27  

Chichester1 Grassland February Loamy soils with naturally 

high groundwater 

7 10°C Serratia 
proteamaculans 

Pristionchus 
entomophagus18 

Brighton7 Woodland February Shallow lime-rich soils 

over chalk or limestone 

7 7°C Serratia 
proteamaculans 

Pristionchus 
entomophagus36 

Bath SB Golf coarse  October Shallow lime-rich soils 

over chalk or limestone 

7 14°C Serratia 
proteamaculans 

Pristionchus 
entomophagus26 

Newforest3 Forest soil February Slowly permeable  

 

seasonally wet slightly 

6 10°C Serratia 
proteamaculans 
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acid but base-rich loamy 

and clayey soils 

Pristionchus 
uniformis64 

Bridport4 Riverside May Loamy and clayey 

floodplain soils with 

naturally high groundwater 

7 17°C Serratia 
proteamaculans 

Pristionchus 
entomophagus56 

Newforest1 Forest soil February Slowly permeable 

seasonally wet slightly 

acid but base-rich loamy 

and clayey soils 

7 9°C Serratia 
proteamaculans 

Pristionchus 
entomophagus60 

Bridport4’ River side May Loamy and clayey 

floodplain soils with 

naturally high groundwater 

7 17°C Serratia 
proteamaculans 

Pristionchus 
entomophagus31 

Bristol4 Golf coarse May Lime-rich loamy and 

clayey soils with impeded 

drainage 

7 16°C Serratia 
proteamaculans 

Diplogasteroides 
magnus 

Weymouth10 grass land February Freely draining slightly 

acid but base-rich soils 

7 10°C Serratia 
proteamaculans 

Diplogasteroides 
magnus 

Chepstow7 Grass land February Freely draining slightly 
acid but base-rich soils 

7 10°C Serratia 
proteamaculans 

Diplogasteroides 
magnus 

Chepstow7’ Grass land February Freely draining slightly 
acid but base-rich soils 

7 10°C Serratia 
proteamaculans 

Diplogasteroides 
magnus 

Chepstow7’’ Grass land February Freely draining slightly 
acid but base-rich soils 

7 10°C Serratia 
proteamaculans 

Diplogasteroides 
magnus 

Chepstow8 Farm soil February Freely draining slightly 
acid but base-rich soils 

7 7°C Serratia 
proteamaculans 

Diplogasteroides 
magnus 

Weymouth4 Sandy/ 

beach 

February Freely draining slightly 

acid but base-rich soils 

7 11̊C Serratia 
proteamaculans 
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Steinernema glaseri  Sidmouth 10’’ Grassland February - 7 - Serratia proteamaculans 

Steinernema glaseri  Sidmouth 7 Woodland February - 7 - Serratia proteamaculans 

Steinernema glaseri  Sidmouth 10’ Grassland February - 7 - Serratia proteamaculans 

Steinernema glaseri  Newforest 10 

Beaulieu 

Forest soil February Slowly permeable seasonally 

wet slightly acid but base-rich 

loamy and clayey soils 

7 10C Serratia proteamaculans 

Steinernema glaseri  Weymouth 2 

Bounemouth 

Sandy soil February  7 10C Serratia proteamaculans 

Steinernema glaseri  Bridport 2 Grassland February Loamy and clayey floodplain 

soils with naturally high 

groundwater 

7 11C Serratia proteamaculans 

Steinernema glaseri  Bridport 2’ Grassland February Loamy and clayey floodplain 

soils with naturally high 

groundwater 

7 11C Serratia proteamaculans 

Steinernema glaseri  Bridport 2’’ Gassland February Loamy and clayey floodplain 

soils with naturally high 

groundwater 

7 11C Serratia proteamaculans 

Steinernema glaseri  Agmering 8 Grassland February Freely draining slightly acid 

loams soils 

7 10C Serratia proteamaculans 

Steinernema glaseri  Arundel 5 Grassland February Naturally wet, loamy and clay 

soil, slightly acidic soil. 

7 8̊C Serratia proteamaculans 

Steinernema glaseri  Arundel 5’ Grassland February Naturally wet, loamy and clay 
soil, slightly acidic soil. 

7 8̊C Serratia proteamaculans 

Steinernema glaseri  Arundel 5’’ Grassland February Naturally wet, loamy and clay 
soil, slightly acidic soil. 

7 8̊C Serratia proteamaculans 

Steinernema glaseri  Chepstow8’ Farm soil February Freely draining slightly acid but 
base-rich soils 

7 10̊C Serratia proteamaculans 
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Steinernema glaseri  Chepstow 7’’ Grassland February Freely draining slightly acid but 
base-rich soils 

7 10̊C Serratia proteamaculans 

Steinernema glaseri  Bath 8 Grassland May Shallow lime-rich soils over 

chalk or limestone 

7 9̊C Serratia proteamaculans 

Steinernema glaseri Newforest 2 

Minstead 

Forest soil  February Slowly permeable seasonally 

wet slightly acid but base-rich 

loamy and clayey soils 

6.6 9̊C Serratia proteamaculans 


