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Abstract 
 

Bordetella pertussis is the causative agent of whooping cough, which, despite the 

existence of an efficacious vaccine, continues to cause disease and death worldwide. 

The Bvg two-component system controls much of virulence and when Bvg is active 

virulence factors are expressed (Bvg+), and when it is not active they are not (Bvg-). 

 The Bvg regulon is large and much is still not understood about what it 

controls other than virulence. Spontaneous mutation of the Bvg system leads to the 

rise of Bvg- mutants, which out-compete other bacteria in culture, showing that the 

Bvg- phase B. pertussis has a growth advantage. The metabolism of Bvg+ B. pertussis 

is well characterised, but is not well understood in the Bvg- phase. 

Through phenotypic assays it is shown that B. pertussis in the Bvg- phase 

grows and divides quicker, despite Bvg+ growth consuming more glutamate per gram 

of biomass and also generating a greater PMF. RNAseq reveals a difference in the 

way that glutamate is used as a carbon source as well as different expression levels of 

enzymes involved in the TCA cycle and electron transport chain. TraDIS shows that 

genes involved in elongation of the cell wall were essential for growth in the Bvg- 

phase. 

These data point towards a model for growth whereby in the Bvg+ phase more 

glutamate is used in the TCA cycle for synthesis of branched-chain amino acids and 

reducing power, which is used in a electron transport chain to generate a greater PMF 

and more ATP. Cells in the Bvg- phase elongate faster to divide more often and there 

is a greater emphasis on synthesising aminosugars as peptidoglycan precursors, 

gluconeogenesis and maintaining pools of CoA. 

Potential for using data gained about the growth and metabolism of the Bvg- 

phase to improve vaccine cultures are discussed. 
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Chapter 1- Introduction 
 

1.1 The classical Bordetella species 
 

1.1.1 The classical Bordetellae 
Bordetella pertussis is the causative agent of whooping cough, or pertussis, a 

respiratory disease of humans. There are nine species of Bordetella identified, 

although the ones most closely associated with human disease are the so-called 

“classical” bordetellae; B. bronchiseptica, B. parapertussis and B. pertussis, which 

have been shown by genome sequencing to share a common ancestor [1]. 

 B. bronchiseptica infects a wide-range of mammalian hosts, typically in a 

chronic fashion, causing respiratory diseases including kennel cough in dogs. The 

bacteria can cause disease in humans, particularly in patients who are 

immunocompromised [2, 3]. B. parapertussis causes a pertussis-like disease in 

humans and may account for more cases of whooping cough than currently 

appreciated [4]. B. pertussis in considered a human-adapted lineage of B. 

bronchiseptica and circulates exclusively in humans. It was first isolated by Bordet 

and Gengou in 1906 from the sputum of a patient with pertussis [5], and work began 

to control the disease with the development of the first whole-cell vaccines in the first 

half of the 20th century. 

 

1.1.2 Whooping cough 
Pertussis disease, or whooping cough, is first thought to have occurred as an epidemic 

in the 16th century [6]. The disease was described as affecting children typically less 

than a year old, causing them to cough sometimes for 4-5 hours at a time. The cough 

was so severe that it prohibited flow of air through the airways causing a very 

characteristic sound to be made, called a “whoop”. This cough was so violent that 

bleeding and vomiting occurred and even death, through the lung pathology produced. 

 Despite available vaccines and good coverage B. pertussis continues to be 

endemic and to cause disease all over the world. Typically the disease affects young 

children, pre-immunisation, and lasts for 6-12 weeks. Initially symptoms are similar 

to mild viral infections, with mild cough, but within 1-2 weeks the frequency and 

intensity of cough increases. The disease is characterised by lack of fever, standing it 
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apart from other respiratory illnesses, while leukocytosis occurs. The “whoop” sound 

is caused by effort to breathe at the end of a coughing fit, and as described in the 16th 

century vomiting is common. Disease can lead to pneumonia, which can be due to a 

secondary infection, or seizures and encephalopathy, which are due to the severe 

coughing fits. Internal bleeding can also occur. This stage of severe disease can last 

for 2-8 weeks before the coughing fits gradually decrease in frequency [7]. Although 

disease affects both adults and infants, severe disease and death are more common in 

infants. Severe leukocytosis is linked to pulmonary hypertension, which is a common 

cause of death from pertussis [8, 9]. 

 

1.2 Pathogenesis of B. pertussis 
 

1.2.1 Adhesins 
The bacterial factors driving the virulence of B. pertussis are well characterised. The 

bacteria express adhesins, such as FHA, coded for by fhaB. A large protein, FHA is 

220kDa in its mature form [10]. Mature FHA binds epithelial cells via a Arg-Gly-Asp 

triplet in the middle of the protein [11], and stimulates an immune response, including 

antibodies [12-14]. B. pertussis expresses fimbriae, coded for by the genes fim2 and 

fim3, and fimX, the latter if expressed at all is expressed at low levels [15-17]. All 

three genes are subject to phase variation due to slip strand mispairing induced 

expansion and retraction within a poly-C tract in their promoters, so the genes can be 

expressed, or not, independently of each other [18]. A common element of all three 

fimbrial types is FimD, which forms the tip of each of the fimbriae [19]. The fimbriae 

of B. pertussis have been shown to have a role in colonisation, specifically binding to 

monocytes and sugars present in the epithelium [20-22], and they also stimulate a 

protective immune response [23]. 

 Pertactin (Prn) is an autotransporter 69kDa in size, which is thought to play a 

role in attachment, as the protein contains the same Arg-Gly-Asp triplet as FHA [24-

26]. Antibodies are raised against this protein and are expected to provide protection, 

by preventing attachment, and encouraging phagocytosis [23, 27, 28]. Other 

autotransporters include tracheal colonisation factor (TcfA), BrkA and Vag8, thought 

to play various roles including colonisation, adherence and serum resistance [29, 30]. 
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1.2.2 Toxins 
There are several toxins expressed by B. pertussis that contribute to disease. One of 

these is adenylate cyclase (CyaA), which has haemolytic activity [31]. The toxin 

binds and enters target cells, where is it stimulated by calmodulin leading to the 

overproduction of cAMP [32]. The result is the inhibition of immune responses 

including chemotaxis and phagocytosis [33, 34]. CyaA also stimulates an antibody 

response [35]. 

 Another toxin, dermonecrotic toxin, is an AB type toxin, with a receptor 

domain and an enzymatic domain. Once inside the cell the toxin stimulates activity of 

the Rho GTPase, causing remodelling of the cell and stimulation of DNA replication 

[36, 37]. The role of this toxin in pathogenesis of pertussis disease is not clear, since 

mutants unable to express the protein have no reduction in ability to cause lethal 

infection in a mouse model [38]. 

 Trachael cytotoxin (TCT) is a subunit of peptidoglycan, produced by all 

Gram-negative bacteria and transported by AmpG from the cell wall into the 

cytoplasm as part of the normal recycling of the peptidoglycan wall [39, 40]. B. 

pertussis AmpG has reduced activity and therefore releases TCT into the 

environment. The TCT is sufficient and required to cause the characteristic pathology 

to ciliated epithelial cells seen in pertussis disease, thought to be caused by nitric 

oxide radicals produced via IL-1α secretion stimulated by TCT [41-43]. 

 Pertussis toxin (PT) is the only toxin secreted exclusively by B. pertussis. It is 

an AB type toxin, made up of six peptide chains coded for by ptxA-E. ptxA codes for 

the enzymatic “A” domain, while the receptor “B” domain is made up of five peptide 

chains, the products of ptxB-E in the ratio 1:1:2:1 [44, 45]. The toxin is secreted from 

the bacteria via the Ptl apparatus, a type-IV secretion system (T4SS), made up of the 

products of nine genes within the same operon as the ptx genes [46, 47]. The B 

domain of the toxin binds receptors on host cells and gains entry to the cell, while the 

A domain has ADP-ribosylating activity, activating G-proteins in the eukaryotic cell 

membrane [48]. The result of this is the inhibition of adenylyl cyclase, activation of 

potassium channels and inactivation of calcium channels. The effects of PT include 

enhanced insulin secretion, sensitivity to histamine, and immune modulation [49, 50]. 

PT is the cause of leukocytosis seen in infections, which is a greater influx of 

leukocytes, including neutrophils and lymphocytes, into the blood [51-53]. PT has 

been thought of as the primary virulence factor of B. pertussis, although B. 
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parapertussis, which causes a pertussis-like disease (with the absence of 

leukocytosis), does not express PT [54, 55]. Therefore, although PT does contribute to 

the severity of disease during infections, it would be naïve to say it is the primary 

contributor, and does not directly cause the characteristic whooping cough. 

 

1.2.3 Other virulence factors 
B. pertussis possesses genes for a type-three secretion system (T3SS), which are 

thought to be fully transcribed, translated and yet don’t lead to cytotoxicity in 

mammalian cells as the T3SS in other Bordetella spp., leading to the conclusion that 

the system might not be expressed, but subject to post-translational control [56]. It 

was later shown that B. pertussis does express a T3SS system and secretes effectors 

that play a role in colonisation and immune evasion. Specifically, the T3SS enhances 

binding to macrophages and the respiratory tract, as well as supressing the innate 

immune responses to B. pertussis as well as the Th1, Th17 and antibody responses 

[57]. 

 B. pertussis produces lipopolysaccharide (LPS), shown to exhibit toxicity to 

host cells [58, 59]. The LPS of B. pertussis exhibits many differences to that of other 

Bordetella spp., one of which is the lack of an O-antigen, which plays a part in 

resistance to killing by complement. Thus B. pertussis is thought to induce serum 

resistance by expressing LPS as well as the autotransporter BrkA [60-62]. 

 

 

1.3 Vaccines for B. pertussis 
	

1.3.1 Whole-cell pertussis vaccines 
Work on making a vaccine against B. pertussis began soon after the bacterium was 

first isolated and characterised. These vaccines consisted of killed whole bacterial 

cells. A mouse model was developed to assess the protective effect of vaccine 

candidates [63] and a vaccine was introduced in the US during the 1940s, in 

combination with toxins from diphtheria and tetanus (DTP vaccine). Routine 

immunisation began in England and Wales in 1957 and the number of notifications 

for pertussis disease began to fall significantly [64]. 
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 The whole-cell pertussis vaccine was introduced across the developed world 

and uptake coincided with extreme drops in incidences of pertussis disease. However, 

there were still concerns. In the UK, reports that efficacy of early whole-cell pertussis 

vaccines could have been as low as 20% led to a change in the dose of the vaccine 

[65] and in Sweden an increase in incidence of pertussis disease in the 1970s led to 

questions about the efficacy of the vaccine and the cessation of vaccination in 1979 

[66]. Efficacy studies on the whole-cell pertussis vaccines are summarised in [65] 

where the question of what is actually meant by protection is raised. It is suggested 

that protection from disease in vaccinated individuals may be greater than protection 

from infection, perhaps providing an insight into the resurgence in pertussis disease 

since vaccinated individuals may still be able to be colonised. It was also suggested 

that discrepancies in efficacy estimates between studies might be due to differences 

between the antigenic composition of the vaccine and that of the circulating strains. 

Various studies put efficacy of the whole-cell vaccine at 64-96%. Efficacy was also 

positively correlated with the number of vaccine doses given [67-69]. 

 Despite the good efficacy of the vaccine, there were questions being asked 

about the safety profile. As far back as 1974 a causal relationship was established 

between receiving the vaccine and neurological complications in children within 24 

hours of receiving the vaccine [70]. The benefits of preventing the disease were 

largely considered to out way the risks associated with vaccination, however, the risks 

of adverse effects to vaccinated children were well founded [71, 72]. 

 By 1994 resurgence of pertussis disease had already been documented in well 

immunised populations in the US, probably due to waning of vaccine-induced 

immunity [73]. However, during the 1990s in England and Wales incidences of 

pertussis disease continued to fall, with 3-4 year cycles of peak disease [74]. Due to 

fears of resurgence an acellular pertussis booster vaccine was introduced for pre-

school children in England in 2001. An acellular vaccine was used due the risks of 

adverse reaction associated with the whole-cell vaccine [75]. 

 

1.3.2 Acellular pertussis vaccines 
Acellular pertussis vaccines consist of purified antigens from B. pertussis. It was 

demonstrated during the early 1990s that acellular vaccines had good efficacy, even 

1-component vaccines consisting of purified, inactivated PT. Generally, it was shown 
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that the more components added to the vaccine, with FHA in a 2-component, or with 

FHA, Prn, Fim2 and Fim3 in a 5-component vaccine, the better the efficacy [76]. 

Since 2004 the UK has used an acellular vaccine, replacing the whole-cell due to the 

good efficacy of the acellular and the concerns of adverse effects associated with the 

whole-cell. 

 PT has long been considered one of the most important antigens of B. 

pertussis, and is released into the supernatant during growth, along with FHA, making 

purification relatively easy [77]. An acellular vaccine was first described and defined 

in Japan, and has been given routinely in the country since 1981. Pertussis disease has 

since been controlled in Japan. The vaccine was made up of 2 components, containing 

purified PT and FHA [78]. Acellular pertussis vaccines vary in components used and 

amounts. A study of 13 difference acellular vaccines has revealed less reactivity to the 

vaccines compared to the whole-cell vaccines, including less swelling and pain [79, 

80]. 

 The efficacy of the Japanese 2-component acellular vaccine was calculated at 

around 78-92% [81]. Further studies in Sweden in the 1980s, vaccination to pertussis 

having ceased in that country at that time, calculated the efficacy of PT 1-component 

vaccine at 32-54% and the 2-component vaccine at 45-69% [23, 82]. In summary the 

acellular vaccine has been shown to have similar efficacy to that of the whole-cell 

vaccine, and the more components used the better the efficacy [83]. The majority of 

the developed world now uses acellular vaccines to protect against pertussis, while 

whole-cell vaccines are still routinely used in the developing world. An adolescent 

booster is now recommended in addition to infant immunisations [84, 85] while, a 

maternal vaccine strategy was implemented against pertussis in the UK in 2012 with 

the aim of protecting infants during the period before first immunisation [86]. 

 

1.3.3 Immunology and effectiveness of pertussis vaccines 
Antibodies are induced to all antigens included in the acellular vaccine, but it has 

been shown that titres decrease to a level beneath the limit of detection as early as 

fifteen months after the primary dose [87]. There has been an observed difference in 

the type of immunity provided between the acellular and whole-cell vaccines, with 

activation of T-cells playing an important part in immunity. Specifically, vaccination 

with whole-cell pertussis induces a Th1 response characterised by secretion of IFN-γ, 



	 16	

while vaccination with an acellular vaccine induced a more mixed Th1/Th2 response 

characterised by secretion of IFN-γ in addition to IL-5 [88]. It was noted that the 

immunity induced by the whole-cell vaccine was closer to that induced by natural 

infection, and that a Th1 response was essential to activate killing of intracellular 

bacteria. A role for a Th2 response was not ruled out, and it was suggested that 

antibodies induced by Th2 response could be useful in inducing killing through 

opsonisation. Furthermore, active PT and LPS has been shown to provoke a Th1 

response. Such antigens are present in the whole-cell vaccine but not the acellular 

(which contains inactive PT) but are known to cause adverse effects [89, 90]. 

 Studies have further compared long-term immune responses to immunisation 

by the acellular vaccine and natural infection with B. pertussis. After 5 years it was 

found that in both cases large IgG titres to pertussis antigens and specific T-cell 

responses were only found in a minority of subjects. Furthermore, while natural 

infection induces a Th1 response characterised by IFN-γ with no IL-5, the acellular 

vaccine induces more of a Th2 response characterised by IL-5 with little or no IFN-γ 

[91]. This provided evidence that the response to acellular vaccine was different to 

that provoked by the whole-cell vaccine, which was more similar to the response 

induced by natural infection. 

 The difference in the type of response provoked by each of the vaccines is 

borne out in practice and it has been shown that people who had only ever received 

the whole-cell vaccine were more protected from pertussis disease than people who 

had received doses of the acellular. People who had only ever received the acellular 

vaccine were at significantly more risk of disease, while this risk increase was 

increased slightly by a sixth does of the acelullar vaccine [92]. This again shows the 

decreased effectiveness of the acellular vaccine compared to the whole-cell in 

protecting from pertussis disease long term. 

 The problems with vaccines to pertussis in not providing long-lasting 

protection stems from waning of immune protection to natural infection. The whole-

cell vaccine, while providing good protection, does not protect for life, and the 

acellular vaccine containing fewer antigens stimulates a different type of immune 

response and protection wanes faster [93]. In a study conducted in the US it was 

estimated that efficacy in preventing pertussis decreased from 75% to 41% 1-2 years 

post-vaccination [94]. 
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 The problems with the acellular vaccine do not end with the waning of 

immunity. In one study infant baboons were subject to vaccination regimes with 

either the whole-cell or acellular vaccine [95]. While the acellular vaccine did protect 

against disease, it did not provide protection to infection and these vaccinated subjects 

were able to transmit the bacteria. Furthermore, the subjects vaccinated with the 

whole-cell vaccine, or who had previously suffered pertussis disease cleared 

reinfection more quickly than those vaccinated with the acellular vaccine. Differences 

were seen in the immune response in different cohorts. All subjects showed a robust 

antibody response, and while the subjects that were naturally infected showed a strong 

Th1 and Th17 memory response, only a weaker Th1 response was shown in subjects 

vaccinated with the whole-cell vaccine. Those vaccinated with the acellular vaccine 

showed a Th2 response, an even weaker Th1 response and no Th17 response. 

Furthermore, a mucosal immune response characterised by Il-17 seems important to 

induce robust immunological memory to B. pertussis. 

 Thus while the acellular vaccine is efficacious and provides as good protection 

as the whole-cell from pertussis disease in the short term, with less adverse reaction, 

immunity wanes quicker and the vaccine fails to protect against colonisation or 

transmission. This explains the ability of the acellular vaccine to control whooping 

cough but waning immunity and continued circulation of the bacterium leaves the 

population open to resurgence.  

 

1.4 Epidemiology of pertussis and resurgence 
 

1.4.1 Current epidemiology of B. pertussis 
Despite good vaccine coverage, B. pertussis continues to circulate and cause disease 

worldwide [96]. Part of the reason for this is the waning immunity provided by the 

acellular vaccine. It has been estimated that even in areas with good vaccine coverage, 

the proportion of susceptible children becoming in infected is 60% within 5 years of 

vaccination, and 100% within 15 year, demonstrating the lack of long-term protection 

provided [97]. 

 Epidemics of pertussis are cyclic, as they were before vaccination, although 

reduced in magnitude. However, it has been suggested that the rate of pertussis 
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disease in the US is still around 370-1500 per 100,000 and the rates of infection much 

higher, leading to between 800,000 and 3.3 million cases of disease per year [98]. 

 There has been a change in epidemiology, with a shift in disease burden to 

adolescents and adults. In the US in the epidemic years 2004 and 2005 adolescents 

represented 36% and 30% of total disease cases [99]. During epidemics high disease 

rate in areas with high vaccine coverage among fully vaccinate groups indicates 

problems with vaccine failure. Most countries, including those that vaccinate with the 

whole-cell vaccine only, are experiencing a rise in cases of disease [99]. 

 

1.4.2 Resurgence of pertussis 
While the resurgence of pertussis was noticed in North America by the early 1990s 

[73], it was not yet seen in Western Europe, however, by the early 2000s it was clear 

that pertussis rates were increasing. Indeed for the period 1998-2002 rates among 

adults doubled [100]. 

 It was suggested that the 2012 epidemic in the US was the largest for 50 years 

[101] though part of the reason suggested was increased awareness and better 

diagnosis. The advent of PCR-based diagnosis techniques in the 2000s made for 

better diagnoses and the uncovering of an apparently previously underreported 

disease. However, the switch from whole-cell to the acellular vaccine providing 

protection for a shorter period of time was cited as a contributor [101]. 

 That resurgence is seen worldwide, even in countries that vaccinate with the 

whole-cell vaccine, suggests that the problem lies not just simply with the acellular 

vaccine per se, but failure of either vaccine to provide long-lasting immunity or 

control transmission. Evolution of B. pertussis itself, thus escaping either vaccine, has 

been suggested as another cause [102]. The UK saw an outbreak in 2012 leading to 

over 9000 laboratory-confirmed cases and 14 infant deaths [103]. The switch to 

acellular vaccines, improvement in diagnostics and evolution of B. pertussis itself 

were seen as causes. 

 

1.4.3 Adaptation of B. pertussis to escape vaccine control 
It has been shown that B. pertussis is evolving in response to vaccination. A study 

from the Netherlands showed that there are variations in antigens between strains 

used to make vaccines and circulating strains [104]. This could simply be due to 



	 19	

natural antigenic drift, although particular notice was given to variation in vaccine 

antigens Prn and PT and the variation in question was observed in regions of proteins 

that interact with the immune system and that these regions would be expected to be 

conserved suggesting evolutionary pressure. Furthermore it was suggested that these 

new strains were not able to displace old strains in unvaccinated populations and that 

they were probably less fit suggesting that they had been selected for [104]. 

B. pertussis strains from all over the world share a great deal of similarity in 

genomic content, showing that the bacterium is largely monomorphic, although 

evolution continues, mostly though gene loss [105]. Gene content was speculated to 

be influenced by herd immunity provided by vaccination and in 2009 the first report 

of a strain of B. pertussis not expressing either Prn or PT was published [106]. The 

entire PT operon had been deleted, while the Prn gene had been disrupted by an 

insertion sequence (IS) element. Consequently the infant from whom the strain was 

isolated did not display leukocytosis, due to loss of PT, and the strain was found to be 

less pathogenic in a mouse model. Apart from these differences the strain was found 

to be genetically very similar to others currently circulating. It was suggested that the 

loss of PT in particular might pose problems for diagnosis since it is the presence of 

PT that discriminates from other Bordetella spp. Since this study isolates of B. 

pertussis not expressing Prn have been found all over the world including Finland 

[107], Japan [108], Australia [109] and the US [110]. The prevalence of Prn-deficient 

isolates was shown to be around 27% in Japan and 30% in Australia, while in strains 

collected after 2012 in the US 50% were Prn-deficient [108-110]. It has been shown 

that the odds of being colonised by a Prn-deficient strain of B. pertussis is 2 to 4-fold 

higher in vaccinated individuals demonstrating increased fitness of these isolates in 

these individuals, and there are thought to be no differences in clinical symptoms in 

disease caused by strains that express Prn and strains that don’t [111]. Therefore the 

bacterium is thought to be evolving in response to the vaccine, by losing the ability to 

express a component of the acellular vaccine. 

 Following the 2012 outbreak in the UK, a large number of strains were 

analysed and it was found that the epidemic was polyclonal and caused by a number 

of distinct, closely related strains [112]. Furthermore, it was shown that genes coding 

for antigens that are included in the acellular vaccine are evolving at a higher rate than 

genes coding for other surface proteins. It was noted that this was happening even 

prior to the introduction of vaccines, which is to be expected since strains would be 
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under selection from the immune system anyway, but that this selection has increased 

since vaccination began. This is evidence that the acellular vaccine is having a direct 

influence on the pathogen, possibly contributing to vaccine evasion. 

 

1.5 Metabolism of Bordetella pertussis 
 

1.5.1 Early studies on metabolism of B. pertussis- requirements of carbon, 
nitrogen and sulphur 
In the first detailed study of B. pertussis (then called Haemophilus pertussis) 

metabolism, washed suspensions were incubated with various carbon sources 

including carbohydrates, amino acids and fermentation products [113]. Catabolism 

was measured, indicated by either a rise in pH, oxygen consumption, carbon dioxide 

production or production of ammonium. Bacteria failed to oxidise carbohydrates at an 

appreciable rate and amino acids were the most rapidly oxidised. Specifically, serine, 

proline and aspartic acid were metabolised though results were variable. Of all the 

substrates tested glutamic acid was most rapidly utilised and it was concluded that this 

was probably the principle carbon source. This study was the first to define specific 

nutrient requirements of B. pertussis and until then, the bacteria were grown on a very 

general medium made up of casein hydrolysate, salts, starch, cysteine and nicotinic 

acid [114]. 

 Later, the absolute requirements for B. pertussis growth were defined [115]. 

Nicotinic acid was needed for growth, and while the omission of any other factor did 

not abolish growth, removing purines, biotin and haemin reduced growth. B. pertussis 

could grow in very simplified conditions, with glutamic acid, proline or aspartic acid 

as sole carbon and nitrogen source, with cysteine as a source of sulphur (though this 

was dispensable in the presence of other sulphur containing compounds). Glutamic 

acid was the principle carbon source in the presence of other amino acids, but it could 

be replaced by either alanine, proline, aspartic acid or lactate although with a 

reduction in growth. Thus B. pertussis has very simple growth requirements, no one 

amino acid is essential for growth and the bacteria are able to grow using only one of 

three amino acids, though principally glutamic acid, as the sole carbon and nitrogen 

source, with nicotinic acid as the only vitamin added. It was suggested then that any 
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difficulties in growing the bacteria were probably due to inhibitory effects of other 

compounds in the media [115]. 

 B. pertussis growth could be supported with cysteine, cystine or glutathione as 

the sole source of sulphur, though growth was significantly reduced with the latter 

[116]. This confirmed previous requirements and showed that growth of B. pertussis 

could be supported by only two amino acids (glutamic acid and cysteine) plus 

nicotinic acid. 

 

1.5.2 Basis for currently used media  
Stainer-Scholte medium is the basis for most media used today [117]. Good growth 

was obtained using a medium containing just Na-L-glutamate (10.7g/l), L-proline 

(0.24g/l), L-cystine (0.04g/), NaCl (2.5g/l), KH2PO4 (0.5g/l), KCl (0.2g/l), 

MgCl2
.6H2O (0.1g/l), CaCl2 (0.02g/l), FeSO4

.7H2O (0.01g/l), Tris buffer (6.075g/l), 

ascorbic acid (0.02g/l), niacin (0.004g/l) and glutathione (0.1g/l). Furthermore, the 

cells grown in this medium were antigenic, and protective in a mouse model, though 

antigenicity declined over several passages of the cells in this medium showing that 

over time the bacteria become laboratory adapted. Since glutamic acid can be used as 

sole carbon source it can be inferred that B. pertussis is able to make all of the 

building blocks of the cell from this molecule. Cysteine is present only in small 

amounts as a source of sulphur. 

 

1.5.3 Autoinhibitory free fatty acids 
Early difficulty in growing B. pertussis could not be explained by its nutritional 

requirements as the bacteria are not fastidious and growth can be obtained in SS, 

described above with minimal nutrient requirements. Therefore there must be other 

reasons why good growth is difficult to obtain, such as presence of inhibitory 

molecules, either in the medium or produced during growth. 

 It had been known for some time that the reason why blood (or starch) were 

necessary components of early media was to absorb some toxic material, likely fatty 

acids and likely produced during growth [118]. It was then shown that even very low 

concentrations of fatty acids could inhibit growth, the most inhibitory being palmitic 

acid which was inhibitory at a concentration of 0.01mM [119].  
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 It was shown that free palmitic, palmitoleic and stearic acids were found in the 

lipids extracted from cells of B. pertussis at cellular concentrations that were likely to 

be inhibitory [120]. These fatty acids were also found in the supernatant at 

significantly higher levels than uninoculated medium suggesting that they are released 

by cells during growth. It was speculated that these were the reason for several 

observations about the growth of B. pertussis including low growth yield and a 

marked deceleration in growth rate prior to stationary phase. Prior to this these 

observations couldn’t be explained by limitation of nutrients or any other inhibitory 

products [121]. 

 The benefits of adding heptakis ((2,6-O-dimethyl) β-cyclodextrin) to the 

medium were demonstrated [120]. This prolonged a higher growth rate, while not 

affecting the rate itself, and shortened lag phase, which was suggested to be due to 

contamination by free fatty acids. Also it was noted that at higher concentrations 

(more than 1g/l) heptakis might actually have adverse effects on growth, possibly by 

binding necessary nutrients, or because a small concentration of free fatty acids could 

be beneficial for growth. Since the production of autoinhibitory free fatty acids by 

bacteria is counter-intuitive, it was speculated that these fatty acids may have a role in 

pathogenesis, immune evasion or that they are a by-product of the production of other 

virulence factors [120]. 

 

1.5.4 Evidence for incomplete citric acid cycle 
B. pertussis was grown on a variety of fermentation products with ammonium as a 

nitrogen source, and it was shown that only 2-oxoglutarate (α-ketoglutarate) could 

support growth [122]. Glutamate could be generated from 2-oxoglutarate, but 

apparently not from other citric acid cycle (TCA) products. B. pertussis must be able 

to synthesise fatty acids from glutamate (since it can grow with glutamate as sole 

carbon source), so it must be able to generate acetyl-CoA from oxaloacetate via 

pyruvate. It was noted that since growth ceased in the absence of glutamate or 2-

oxoglutarate that B. pertussis could not form 2-oxoglutarate by condensing acetyl-

CoA with oxaloacetate to form citrate, isocitrate and 2-oxoglutarate (see figure 1). 

The TCA cycle was therefore declared to be incomplete, though it was noted that this 

was in conflict with previous findings where it was shown that B. pertussis could 
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oxidise alanine, serine, proline and aspartate, which would require a complete TCA 

cycle [113].  

 
Figure 1- The theorised incomplete TCA cycle. 2-oxoglutarate was the only 
fermentation product that could support growth as sole carbon source. Acetyl-CoA 
needs to be produced from pyruvate, to feed fatty acid biosynthesis pathways, but B. 
pertussis was thought not to be able to form 2-oxoglutarate from oxaloacetate, done 
via citrate and isocitrate in a complete cycle. 

 

Pyruvate, lactate, fumarate, succinate and 2-oxoglutarate were metabolised in the 

presence of glutamate (though pyruvate became inhibitory to growth at relatively low 

concentrations). It was noted that growth yields with 2-oxoglutarate, succinate or 

fumarate in combination with glutamate were lower than with glutamate plus lactate 

or glutamate only media. This lower biomass was accounted for by the finding that 

growth in the former three media led to the secretion of β-hydroxy-butyrate (β-HB) 

into the culture supernatant. This did not occur during growth in media containing 

glutamate plus lactate or glutamate only but did occur during growth in modified-SS 

(MSS) medium, which is SS medium supplemented with heptakis and casamino 

acids. β-HB appeared in the supernatant during late stages of growth and did not 

disappear, and its formation was used to explain lower biomass yields since β-HB is 
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not measured as part of the biomass and is a waste product. When substrates were 

present in concentrations lower than commonly used SS medium, β-HB was not 

detected. Thus, β-HB is a product of incomplete oxidation of substrates when they are 

present at higher concentrations. However, it wasn’t clear why it appeared in the 

supernatant later in growth and not at the beginning, when substrate concentrations 

were highest. Globules containing poly-hydroxy-butyrate (PHB) were present in cells, 

which disappeared later on during growth coinciding with the appearance of β-HB in 

the medium. PHB was seen in cells grown on the lactate plus glutamate medium but 

β-HB was not detected, suggesting an alternative metabolic pathway for PHB in this 

medium. It was proposed that during log-phase growth at high substrate 

concentrations, more acetyl-CoA is generated than can be used, and CoA needs to be 

regenerated; so two molecules of acetyl-CoA are condensed to form acetoacetyl-CoA 

and CoA. β-HB is formed from the acetoacetyl-CoA and the second CoA is released 

on polymerisation of the β-HB monomer. PHB can be metabolised as substrates are 

depleted, the total amount probably determining how much is converted to biomass 

and how much is secreted as β-HB. 

 Thus, on medium with lactate in addition to glutamate, a higher biomass was 

achieved because β-HB was not secreted as waste. In addition, if enough lactate was 

present, net consumption of ammonium occurred, avoiding ammonium accumulation 

and pH rise due to the nitrogen:carbon imbalance that exists when metabolising 

glutamate only. Adding lactate along with glutamate redresses this imbalance since 

some of the glutamate molecules containing nitrogen are replaced with lactate, 

containing no nitrogen atoms. 

 

1.5.5 Evidence of a complete TCA cycle 
There is no functional glycolysis pathway in B. pertussis (genes for glucokinase and 

phosphofructokinase, as well as a part of the phosophotransferase system are absent) 

so B. pertussis is unable to metabolise sugars. The gluconeogenesis pathway is fully 

functional as is the non-oxidative branch of the pentose phosphate pathway, allowing 

B. pertussis to synthesise sugars for peptidoglycan, lipopolysaccharide and other 

glycans. In addition, growth can be supported by glutamate, proline or 2-oxoglutarate 

as sole carbon sources, suggesting that all amino acid biosynthesis pathways are 

functional, though growth is improved in complex media. It is necessary then for the 
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TCA cycle to be functional between 2-oxoglutarate and oxaloacetate to allow for 

synthesis of the aspartate family of amino acids. Pathways must also exist from this 

part of the TCA cycle to pyruvate to feed into gluconeogenesis, and fatty acid 

biosynthesis. 

 Despite evidence that an incomplete TCA cycle exists [122], orthologues of 

all genes for a fully functional TCA cycle are present, including genes for a type II 

citrate synthase, aconitase and isocitrate dehydrogenase thought to not function [1]. 

 It was shown that not only are these genes expressed, but also that there are 

detectable enzyme activities, providing the first evidence for a fully functional TCA 

cycle in B. pertussis (see figure 2) [123]. It was also shown that an entirely 

functioning TCA cycle was in agreement with energy requirements for the growing 

bacteria. Curiously, the accumulation of PHB or free fatty acids reported previously 

[120, 122] were not seen, meaning that there was possibly some limitation in 

conditions under which these observations were reported which weren’t factors in this 

study. A higher glutamate concentration was used in the medium as well as a different 

strain of B. pertussis. 
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Figure 2- The complete TCA cycle of B. pertussis. Genes for citrate synthase (gltA), 
aconitase (acnAB) and isocitrate dehydrogenase (icd) were found, and enzyme 
activities detected. Thus B. pertussis can form 2-oxoglutarate from oxaloacetate and 
has a complete TCA cycle. 

 

The original proposal that B. pertussis has an incomplete TCA cycle came from the 

observation that the bacteria failed to metabolise citrate [122]. Since it is now clear 

that B. pertussis does have a fully functional TCA cycle (figure 2), the reason for lack 

of growth on citrate is not clear. It could be due to a reduced ability to import citrate, 

and while the import of radiolabelled citrate has been shown for B. pertussis [124], it 

remains to be shown whether or not enough can be imported to sustain growth. It is 

also important to mention that a different strain was used to propose an incomplete 

TCA cycle [122], though this strain has been shown through genomic hybridisation to 

include the three genes (citrate synthase, aconitase and isocitrate dehydrogenase) 

thought previously to be non-functional [105]. 
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1.5.6 Fed-batch cultures- a context for vaccine production 
The growth of B. pertussis has been studied in a fed-batch culture system, since this 

generally leads to higher cell densities, and more closely simulates culture conditions 

used in industry to produce vaccine antigens [125]. A low feed rate fed-batch was 

compared with a high feed rate fed-batch in which substrates should build up. It was 

shown that the final optical density in each case was 8.0 and 3.3 respectively 

(compared with 2.0 achieved in a batch culture), though the total amount of pertussis 

toxin (PT), a major component of the acellular vaccine, produced in the low feed rate 

culture was only 30% higher than in the high feed rate. This shows that PT, a major 

component of the acellular vaccine, production is not necessarily related to growth 

yield. The culture receiving the high feed rate had a lower biomass at the end of the 

feed phase, though no detectable waste products were found in the supernatant. Both 

cultures secreted free fatty acids in the supernatant (in agreement with [120]), though 

the maximum levels did not coincide with the end of the growth phase, suggesting 

they weren’t the reason why the cultures stopped growing. To confirm this, cultures 

were grown with heptakis, a heptamer of glucose known to bind free fatty acids. The 

amount of free fatty acids, expressed as a percentage of total fatty acids, in the 

supernatant was the same in culture with heptakis as without, the final optical density 

was also the same. Therefore the secretion of toxic free fatty acids into the medium 

was not the reason why cultures stopped growing. The reason why B. pertussis could 

not maintain a higher growth rate in a fed-batch culture could be due to the 

accumulation of Na+, due to the feed of Na glutamate. Furthermore, the production of 

PT stopped before growth did, suggesting a regulatory mechanism, which occurs 

more rapidly at higher growth rates. 

 In summary, the metabolism of B. pertussis is well defined. Media typically 

are glutamate-based with cysteine as a source of sulphur. Growth can be enhanced 

with addition of heptakis, which sequesters inhibitory fatty acids produced during 

growth, or mixtures of amino acids other than glutamate and some TCA cycle 

products can also be used. For purposes of vaccine culture, the production of antigens 

such as PT is not necessarily just linked to growth as there are regulatory mechanisms 

at play, which have a role in expression and secretion of virulence factors. 
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1.6 The Bvg Two-component System 
 

1.6.1 Modulation 
It was found that when sodium chloride was replaced by magnesium sulphate in 

Bordet-Gengou (BG) medium, colonies of B. pertussis appeared different from what 

had been observed previously [126]. A direct comparison between the two media 

revealed that colonies growing in the presence of magnesium sulphate appeared 

slightly larger and were not haemolytic compared to colonies grown on standard BG 

medium. These two states were named X mode (haemolytic, grown on standard 

medium) and C mode (non-haemolytic, grown on medium with magnesium sulphate). 

In addition, low temperature was found to switch cells to the C mode, and there was 

also described an I mode, which cells would inhabit within a narrow range of 

temperature and ion concentrations. 

 Crucially, it was found that the switch between X and C mode (and vice versa) 

occurred without mutation as it was reversible within 7-15 cell divisions. Thus the 

process of switching from X to C mode in the presence of magnesium sulphate or low 

temperature was termed modulation. In this C mode, cells did not agglutinate; have 

any surface antigen related to B. bronchiseptica or B. parapertussis. Furthermore, 

most antibodies obtained from recovered whooping cough sufferers were directed at 

the X mode suggesting that in the C mode B. pertussis was less virulent (or at least 

less antigenic). 

 

1.6.2 Global regulation of virulence 
The terms virulent and avirulent were used to describe the X and C modes 

respectively and it was shown that in addition to modulation, the avirulent phase 

could be attained by mutation. Some strains that were avirulent would remain 

avirulent even when grown on media that would normally induce the virulent phase 

[127]. 

 Through construction of Tn5 mutants it was shown that virulence factors 

could be lost individually without affecting others, but two mutants were found 

containing single disruptions that affected expression of many virulence factors, 

inducing the avirulent phenotype [128]. A model was proposed by which there existed 

a trans-acting gene product that positively regulated expression of virulence factors. 
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When the bacteria were in the avirulent phase either due to environmental conditions 

or mutation, the gene product would not be made and expression of virulence factors 

would not be induced. In addition to this a reversible genetic event was described by 

which the bacteria could switch between the virulent and avirulent phases, which was 

postulated to be a form of phase variation. Questions remained about why the bacteria 

would have such a system that would affect virulence so globally, but it was 

suggested that it could be an extreme level of antigenic variation during infection or 

that the avirulent phase could allow the bacteria to survive in some as yet 

undiscovered environmental reservoir. 

 Later it was shown that regulation of virulence in B. pertussis was more 

complicated. Mutations in a gene, termed vir, did indeed explain phase variation of 

the bacteria between virulent and avirulent phases, but at least two trans-acting genes 

involved in this process were described. The second gene was termed mod, which was 

shown to be distinct from vir and characterised from strains of B. pertussis that 

constitutively expressed virulence factors even under modulating conditions such as 

the presence of magnesium sulphate or low temperature. The mutations in these 

strains were deemed to be in the mod gene. The vir and mod genes were speculated to 

be distinct from one another but to act cooperatively to either activate a set of genes 

(vags- virulence-associated genes) and repress another (vrgs- virulence repressed) 

[129]. 

 

1.6.3 Bvg two-component system 
It was shown that if the vir locus from virulent strains was cloned and transferred into 

avirulent strains it caused them to express the virulent phenotype (smaller haemolytic 

colonies). Furthermore, if the cloned vir had come from an avirulent strain then an 

avirulent phenotype was maintained. This provided further evidence that vir was an 

activator of virulence and that avirulent mutants had a loss of function effect. The 

locus was sequenced and it was found that the difference between the virulent and 

avirulent spontaneous mutant strains was the presence of a seventh cytosine residue 

within a poly-C tract, causing a frame shift mutation. Importantly, it was noted that 

the sequence of the vir locus was significantly similar to a class of bacterial regulatory 

systems called two-component systems, one part being similar to the sensor 

component and the other being similar to the regulator. At this time little was known 
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about two-component systems but it was understood that the sensor part resided in the 

inner membrane and received a signal from the environment. The sensor then 

interacts with the regulator through phosphorylation, and the regulator then influences 

the expression of a set of genes. Thus the basis of both phenotypic modulation and 

antigenic variation had been discovered. The vir locus coded for a product that could 

act as a sensor to regulate the expression of genes on detecting a change in the 

environment- phenotypic modulation, but frameshift mutation in the poly-C tract 

could also lead to the same change in gene expression not dependent on 

environmental stimuli but a reversible mutational change- antigenic (phase) variation 

[130]. 

 The full sequence of the vir locus was reported, and henceforth referred to as 

bvg (Bordetella virulence gene). The genes in this locus were designated bvgA, bvgB 

and bvgC and the products of these genes were required for expression of virulence 

factors. A different set of genes was repressed by bvg, and this repression was lifted 

upon phenotypic modulation, the functions of which were not known. The poly-C 

tract responsible for antigenic variation was found to be within bvgC, and insertional 

mutations in any of the three genes resulted in the Bvg- (avirulent) phenotype. It was 

again noted that the amino acid sequence suggested similarity to a two-component 

system but curiously that there were three genes within this locus. BvgA and BvgC 

were proposed to form the two-component system based on amino acid sequence but 

it was noted that BvgB did not contain either a transmitter or receiver domain for 

phosphorylation. A model was proposed whereby BvgB and the N-terminal domain 

of BvgC were localised to the periplasm, and it was suggested that they either 

interacted with each other or some common factor. The transmembrane region of 

BvgC spanned the membrane and the C-terminal region along with BvgA would be in 

the cytoplasm. BvgA was proposed to act as a transcriptional activator. Therefore 

BvgC would activate BvgA by phosphorylation. It was not clear how temperature 

would affect this system but it was proposed that magnesium sulphate could act to 

prevent phosphorylation of BvgA possibly through interaction with BvgB or BvgC 

[131]. 

 The sequencing of the original bvgB and bvgC was found to have an error and 

these two genes were found to be one, coding for one sensor product. Thus the 

periplasmic sensor (formerly BvgB and BvgC) was renamed BvgS. It was also 

discovered in that study that the Bvg system was subject to positive autoregulation 
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(i.e. that it contributed to its own expression) [132]. The sequence TTTCCTA was 

found in the promoters for both bvgA and fhab (the virulence factor filamentous 

haemagglutinin), concluding that these sequences probably provided a binding site for 

a transcription factor and that this transcription factor was probably BvgA itself [133]. 

However, a global mechanism for Bvg-activation of virulence genes was still unclear 

since binding of BvgA to DNA upstream of ptx (coding for PT and known to be Bvg-

regulated was not shown, and the sequence reported was not found in the ptx 

promoter. 

 The mod mutation previously described [129], thought to be distinct from bvg 

was later shown to be within bvgS [134]. Mutants in bvg were isolated that 

corresponded to single-nucleotide substitutions within bvgS that led to constitutive 

expression of virulence genes and insensitivity to magnesium sulphate, providing 

direct evidence that BvgS was indeed a sensor. All of the mutations mapped to a 

particular region of the protein, which was predicted to be located between the 

transmembrane region and the cytoplasmic signalling domain. This region was 

designated the linker. BvgS is made up of a perisplasmic region, three cytoplasmic 

regions and the linker. It is an unusual sensor kinase in that it contains transmitter and 

receiver domains. The constitutive mutations lock the protein into its active 

conformation making it insensitive to signals such as magnesium sulphate. 

 

1.6.4 Mechanism of Bvg signal transduction 
Later work pointed towards a model for Bvg signalling [135]. It was shown that the 

transmitter domain of BvgS could undergo autophosphorylation at the His729 residue 

in vitro using the ϒ-phosphate of ATP. This phosphate is passed onto the Asp1023 

residue in the receiver domain before phosphorylating BvgA. BvgS is therefore an 

unusual form of sensor protein in that the transmitter and receiver domains are 

required for autophosphorylation to take place. The C-terminal region is also required. 

The model was later refined (shown in figure 3), confirming that BvgS does 

autophosphorylate at His729, transferring the phosphate group to the Asp1023 in the 

receiver domain. A third phosphorylation event, the phosphorylation of His1172 in the 

C-terminal domain, was shown to be necessary for phosphorylation of BvgA [136]. 
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Figure 3- The Bvg system– BvgS contains regions that span the periplasm and inner 
membrane. The initial phosphorylation takes place on a histidine residue on the 
transmitter domain, and subsequently phosphorylates an aspartate residue in the 
receiver domain and a histidine residue in the phosphotransfer domain. From here 
BvgS phosphorylates an aspartate residue in the receiver domain of BvgA, which also 
contains a DNA-binding domain. 

 

Both BvgS and BvgA were shown to have dimerisation properties. BvgS seemed to 

contain two regions with a propensity to homodimerise, the transmitter domain and 

the C-terminal domain, possibly explaining why the C-terminal domain was necessary 

for phosphorylating BvgA, unlike other sensor kinases. The complexity of the 

mechanism of signalling may reflect the ability to fine tune regulation of gene 

expression in vivo [137]. 
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1.6.5 Gene regulation 
It was still not yet clear whether all genes activated by Bvg were activated in the same 

way. Phosphorylated BvgA was shown to be sufficient to activate transcription from 

at least four Bvg-regulated promoters (bvg, fha, cya and ptx) [138]. This evidence 

moved away from the idea that accessory regulators might be needed in addition to 

BvgA in order to activate genes under regulation of Bvg. However, there did appear 

to be different levels of sensitivity of promoters to BvgA. Transcription was apparent 

from the bvg and fha promoters even with only unphosphorylated BvgA present, 

whereas transcription of ptx and cya was detectable only when phosphorylated BvgA 

was present [138].  

 It was shown how BvgA has different affinities for different promoters and 

that binding can be cooperative [139]. BvgA binds multiple times upstream of the ptx 

gene, starting at a higher affinity site further upstream, with more molecules binding 

progressively downstream. It was speculated that the numbers of binding sites and 

binding affinities would explain the difference between an “early” promoter such as 

fha and a “late” one such as ptx. The affinity of BvgA to a high-affinity site is 

increased on phosphorylation. BvgA dimerises and cooperative binding is induced 

with phosphorylated BvgA dimer binding every 21bp until RNA polymerase is 

recruited. Thus the early promoters are induced with a lower concentration of 

phosphorylated BvgA present, while late promoters have multiple BvgA binding sites 

and require cooperative binding and a greater concentration of BvgA in the cell to be 

turned on. This is an example of the complex nature of the Bvg system acting beyond 

a set of genes merely being on or off at one time or another. 

 

1.6.6 BvgR 
Another level of complexity in Bvg regulation was found. In addition to a number of 

genes (many of which code for virulence factors) that are maximally expressed when 

BvgAS is active there is a set of genes that are repressed in this phase [140]. A 

repressor protein, itself activated by BvgA, was expressed when BvgAS was active 

and bound vrgs in the coding sequences, blocking transcription. This protein is coded 

for by a gene lying adjacent to the bvgAS, which was named bvgR. A refined model 

was described in which BvgS autophosphorylates and in turn phosphorylates BvgA, 

BvgA acts as a transcription factor to activate transcription of a set of genes, many of 

which code for virulence factors but BvgA also upregulates transcription of bvgR, 
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coding for a protein which itself serves to repress a set of genes (vrgs), the functions 

of which are not known. Under modulating conditions BvgS does not 

autophosphorylate or phosphorylate BvgA, virulence factors are not transcribed, and 

neither is bvgR, meaning repression of vrgs is lifted. BvgR probably functions as a c-

di-GMP phosphodiesterase so levels of this secondary messenger probably mediate 

repression of vrgs. RisA, a response regulator phosphorylated by RisK, mediates a 

second level of regulation of expression of vrgs. RisA could act directly or indirectly 

with levels of c-di-GMP to regulate expression of this gene set [141]. 

 

1.6.7 Bvgi 
The potential for an intermediate Bvg phase (Bvgi) was explored [142]. The promoter 

of a gene, bipA, was described in which transcription was activated by cooperation of 

two phosphorylated BvgA dimers upstream of the RNA polymerase binding, and 

repressed by three more phosphorylated BvgA dimers within the coding sequence. In 

the Bvg- phase, BvgS is not active and the concentration of phosphorylated BvgA in 

the cell is too low to allow activation. Under Bvg+ conditions BvgS is active, the 

concentration of phosphorylated BvgA in the cell is maximal and the high and low 

affinity Bvg sites are occupied, resulting in activation and recruitment of RNA 

polymerase to the promoter site of bipA but also inhibiting transcription downstream 

of the recruitment site. When phosphorylated BvgA is at an intermediate level, in the 

Bvgi phase, only the high affinity sites upstream of the bipA promoter are occupied 

and transcription is initiated. Thus bipA was the first gene described to be maximally 

expressed in the Bvgi phase. The picture of the Bvg system functioning like an 

ON/OFF switch is an incomplete one; a clearer picture is one of a dimmer switch, 

allowing for more subtle changes in gene expression. bipA was expressed maximally 

at magnesium sulphate concentrations of between 20 and 35mM and undetectable 

when magnesium sulphate concentrations were above 40mM or below 15mM. It was 

hypothesised that BipA may be needed very early on in establishing infection, before 

adhesins (fha, an “early” Bvg promoter) and then toxins (ptx, a “late” Bvg promoter). 

BipA may be disadvantageous later in infection since its expression is repressed. The 

subtle gene expression changes allowed for by the Bvg system may reflect the 

temporal and spatial niches during infection (early colonisation vs. late infection; 
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colonisation in the lower temperature higher temperature nasal cavity vs. the trachea, 

or in other niches not known). 

 

1.6.8 The Bvg regulon- species variation 
The idea that the Bvg system fine-tunes expression to suit a niche, temporal or spatial 

was agreed with, and it was shown through expression studies that the Bvg+ phase 

was highly conserved between B. pertussis and B. bronchiseptica [143]. Gene 

expression profiles in the Bvg- phase, however, were quite different between the two 

species. In B. bronchiseptica the Bvg- phase appears to be important for transport of 

substrates, motility and chemotaxis, suggesting a nutrient scavenging role for this 

phase in the environment. The Bvg- phase of B. pertussis appeared to have a less 

varied role, reflecting host restriction of this species and limited ability to survive 

outside of the host. It was shown that a random loss of Bvg- phase genes had occurred 

in B. pertussis compared to B. bronchiseptica suggesting that on host restriction B. 

pertussis has less of a need for a scavenging Bvg- phase and that this phase may well 

be an evolutionary remnant in B. pertussis. The Bvgi phase was shown to be quite 

different between the two species. It was speculated therefore that this phase 

represents species-specific functions, suggested to be survival in a microaerophilic 

condition for B. bronchiseptica due to the expression of a number of genes coding for 

terminal respiratory oxidases in this phase. In contrast, a role for the Bvgi phase in B. 

pertussis was not clear and it was suggested that this too might be an evolutionary 

remnant in this species. 

 In addition to the classical virulence genes, eight autotransporter genes were 

classified as Bvg-activated as well as several encoding iron acquisition proteins and a 

potential novel toxin. Of the fimbrial genes, fim2 and fimA were activated in the Bvg+ 

phase in B. pertussis and B. bronchiseptica as well as fim3, fimX and fimN in B. 

bronchiseptica. As expected, genes for the production and secretion of pertussis toxin 

were strongly Bvg-activated in B. pertussis. Other Bvg-activated genes in this species 

included a porin (BP0267) and an iron-transporter (bfrE). 

 Only 13 genes were found to be Bvg-repressed across both species. This 

included the wlb genes for synthesis of the band A trisaccharide of LPS, suggesting 

preferential production of band A LPS in the Bvg- phase. In addition to this, in B. 

bronchiseptica Bvg-repressed genes included those encoding two autotransporters, 
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two iron-acquisition proteins, and the chemotaxis and flagellar machinery. In B. 

pertussis only, five genes in the putative capsule biosynthesis locus were found to be 

Bvg-repressed, suggesting a role in the Bvg- phase. Only a few genes were found to 

be regulated in a similar fashion to bipA, that is, maximally expressed in the Bvgi 

phase. The Bvg regulon was shown to be flexible within species with 20% of Bvg-

repressed genes from Tohama I (a lab strain of B. pertussis) shown to be also Bvg-

repressed in a recent clinical strain. In addition 60% of the Bvg-activated genes were 

also Bvg-activated in the clinical strain showing a greater conservation of these genes 

within B. pertussis species. The reason for intra-species variation was unclear but 

could be due to continual evolution of B. pertussis driving genes out of Bvg 

regulation by promoter mutation or variation in further transcription factors, 

themselves regulated by Bvg. 

 

1.6.9 Bvg- 
Still not much is known about the Bvg- phase of B. pertussis, either in terms of genes 

expressed maximally in this phase or what its role is during infection. B. pertussis is a 

human restricted pathogen, and since virulence factors, including mechanisms of 

immune evasion, are not expressed in the Bvg- phase it is unclear what the Bvg- 

phase of B. pertussis would be used for, or indeed if it is used, there is evidence that 

this phase may be an evolutionary remnant. 

 

1.7 Aims of this Study 
 
Despite the existence of a vaccine and the sharp decline in incidence during the 

second half of the 20th century, the resurgence of disease makes studying B. pertussis 

vital. Production of purified antigens for use in the acellular vaccine requires large 

cultures, which take a long time to reach and risk the build-up of mutant “non-

producers” that do not express the vaccines antigens [144]. Much is known about the 

metabolism of B. pertussis but little is understood about the phenotypic behaviour of 

the Bvg- phase beyond casual observation. This study aims to characterise the growth 

of BP536, a derivative of vaccine strain Tohama I, in the Bvg- phase, including 

analysis of key metabolites in order to observe how growth is effected by activity of 

the Bvg system. 
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 The advent of genomics has revolutionised the ability to study evolution and 

epidemiology of B. pertussis [145]  but there exists a bottleneck between discovery of 

new genes and assigning functions. This study aims to use state of the art genomics-

based approaches such as TraDIS and RNAseq to inform about physiological 

differences between Bvg+ and Bvg- phase B. pertussis that can then be validated 

using more traditional techniques. 

 The ultimate aim is to evaluate whether or not there is a rationale for using 

information about Bvg- phase growth to improve the growth of antigen-producing 

vaccine cultures, which would reach an acceptable yield of culture faster and avoid 

build-up of “non-producers”. 
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Chapter 2- Materials and Methods 
 

2.1 Strains and culture conditions 
 
B. pertussis was cultured on charcoal agar (Oxoid, Basingstoke, UK) for 72 hours at 

37°C. Liquid cultures were grown in Stainer-Scholte medium (Stainer, 1970) 

supplemented with 1g/l (2,6-di-O-methyl)-β-cyclodextrin (heptakis) (Sigma, 

Gillingham, UK) when stated. B. pertussis BP536 is a one-step streptomycin resistant 

derivative of Tohama I [1]. Magnesium sulphate added to the medium to a final 

concentration of 50mM was used to modulate to the Bvg- phase. 

 E. coli was cultured for 18 hours on LB (Lennox) agar or broth (Sigma, 

Gillingham, UK) at 37°C. Vectors were transformed into 5-α high efficiency 

competent E. coli (New England Biolabs), E. coli strain ST18 was used as 

conjugation donor strain [146]. 

 

Antibiotic Concentration used 

Kanamycin 50µg/ml 

Gentamycin 5µg/ml (E. coli), 30µg/ml (B. pertussis) 

Spectinomycin 100µg/ml 

Table 1- Antibiotics and concentrations used. 

 

2.2 Growth assay 
 
BP536 was resuspended in 30ml SS broth in a 200ml Erlenmeyer flask and incubated 

for 24 hours at 37°C with shaking. After this time the bacteria were pelleted by 

centrifugation at 4500xg, washed with PBS, pelleted and resuspended in PBS to an 

optical density at 600nm (OD600) of 0.5. 50µl of this resuspension was added to 200µl 

SS broth in wells of a clear, sterile, round-bottom 96-well plate (Corning) meaning 

that cultures in the plate were started at an OD600 of 0.1. Bvg+ conditions were 

without magnesium sulphate, while Bvg- conditions were with 50mM magnesium 

sulphate. All of the outside wells of the plate contained 200µl water to minimise the 

risk of evaporation of the cultures. The plate was incubated at 37°C in a plate reader 

(FluroStar Omega, BMG Labtech) with shaking reading absorbance at 600nm every 

15 minutes for up to 70 hours. 
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2.3 CFU viable counts 
 
10µl of three of the Bvg+ cultures and three of the Bvg- cultures was removed and 

diluted in 990µl of PBS. 10-fold serial dilutions were performed and 100µl of three of 

the dilutions (105, 106 and 107 fold dilutions) was spread onto charcoal agar. The 

plates were incubated at 37°C for 5 days after which the colonies on the plates 

containing countable numbers of colonies were counted and the CFU/ml of the 

cultures calculated. This procedure was performed at the start of the growth assay and 

repeated a further five times during the assay. The same six wells were assessed for 

viable cell count each time. 

 

2.4 Biomass measurements and glutamate consumption 
 
BP536 was resuspended from a plate in 100ml of SS broth in 250ml Erlenmeyer 

flasks and incubated at 37°C for around 40 hours. Bvg+ and Bvg- cultures were 

grown. At intervals 15ml of culture was removed from the flask and centrifuged at 

4000xg to pellet the cells. The supernatant was removed, filtered and stored at -80°C. 

The cell pellets were freeze-dried to obtain a dry pellet, which was weighed to 

determine dry cell weight. The supernatant samples were assayed for glutamate 

concentrations using the glutamate assay kit (fluorometric) (Abcam, Cambridge, UK; 

ab138883). Glutamate consumption in millimoles per gram during exponential phase 

was calculated by dividing the drop in glutamate concentration by the increase in 

biomass. 

 

2.5 Metabolite assays 
 
Five times during a growth assay four of the Bvg+ cultures and four of the Bvg- 

cultures were removed from the plate, replaced with 250µl water, and centrifuged at 

16000xg for 10 minutes. The supernatant was removed and frozen at -80°C. 

 The supernatants were assayed for concentrations of glutamate, ammonium, β-

HB and free fatty acids using kits provided by Abcam, Cambridge, UK (ab83360, 

ab83389, ab83390 and ab65341 respectively) using the protocols provided. 
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2.6 Primers and vectors 
 
Primer Sequence (BsaI site in bold) Product 

mreB_KRight_F AAAAGGTCTCTCGAGAttcgggggcgttgg mreB 

flanking 

right region 

mreB_KRight_R AAAAGGTCTCCATGTGcatgggagctcagctagatt

c 

mreB 

flanking 

right region 

mreB_KLeft_F AAAAGGTCTCAGGTCtgagcctgtctcgcg mreB 

flanking left 

region 

mreB_KLeft_R AAAAGGTCTCGAACTgggcggctcgtacagc mreB 

flanking left 

region 

GG_acat_Kan_F AAAAAAGGTCTCCACATgacgtcttgtgtctcaaaat

ctc 

Kanamycin 

cassette 

GG_Kan_ggtc_

R 

AAAAAAGGTCTCAGACCttagaaaaattcatccagc

atc 

Kanamycin 

cassette 

petA_LF AAAAGGTCTCTCGAGAgcagcacggtgacatcttcc petABC left 

flanking 

region 

petA_LR AAAAGGTCTCGATGTGcatcttcctatccttgttgatgt

gtcc 

petABC left 

flanking 

region 

petA_RF AAAAGGTCTCTACATAtgacgcccgcgtcg petA right 

flanking 

region 

petA_RR AAAAGGTCTCGAACTAagtacgacatctggcccca petA right 

flanking 

region 

petC_RF AAAAGGTCTCTACATAtaacccgcattgcccc petABC 

right 
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flanking 

region 

petC_RR AAAAGGTCTCGAACTAtgctctggcgggcct petABC 

right 

flanking 

region 

Grp_LF AAAAGGTCTCTCGAGActcgggcacgtcgc grp right 

flanking 

region 

Grp_LR AAAAGGTCTCGATGTGtagaggggggcgccg grp right 

flanking 

region 

Grp_RF AAAAGGTCTCTACATAcaaatagcgtcaggtgtagcgg grp left 

flanking 

region 

Grp_RR AAAAGGTCTCGAACTAgcagcacacctttcctgctgc grp left 

flanking 

region 

Table 2- Primers used in this study. These were primers used to amplify flanking 
regions of genes to make knockout mutants. BsaI sites in the primers are shown in 
bold. 

 

Vector Selection Source 

pCR8GW:GG Spectinomycin  Made in house 

pSS4940GW Gentomycin Made in house 

Table 3- Vectors used in this study. pCR8GW:GG, adapted from pCR8GW 
(Invitrogen, California, USA). Vector pSS4940 was a gift from Scott Stibitz and is 
nonreplicative in B. pertussis. It contains a gene for synthesis of the I-SceI restriction 
enzyme under the control of the ptx promoter and a gentamycin resistance gene. The 
GW cassette was ligated into the MCS using the Gateway vector conversion system 
(Invitrogen) and contains a chloramphenicol resistance gene and the ccdB gene, 
which targets gyrase and is lethal when expressed. 
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2.7 PCR 
 
PCR was performed as a 50µl reaction with the following components; 1x Q5 

reaction buffer, 0.2mM dNTPs, and 0.5µM forward and reverse primer. 0.5µl of the 

reaction was Q5 high-fidelity polymerase and 10µl was high-GC enhancer (both 

NEB, Hitchin, UK). Template DNA was made by touching a tip to cells grown on an 

agar plate and then dipping into 200µl DNAse-free water, before boiling at 100°C for 

10 minutes and centrifuging at 16000xg for 10 minutes. 100µl of the liquid was taken 

and stored at -20°C. 1µl of this template was used in a 50µl reaction. 

 

2.8 Golden gate reaction 
 
100ng of vector pCR8GW:GG was mixed with equimolar amounts of each purified 

fragment and the golden gate reaction was performed [147]. Briefly, the DNA was 

incubated for 25 cycles of 3 minutes at 37°C and 4 minutes at 16°C followed by one 

cycle of 5 minutes at 50°C and 5 minutes at 80°C, with 1mM ATP, 20 units of BsaI-

HF, 2000 units of T4 high concentration ligase and 1x cutsmart buffer (all NEB). 

 

2.9 Gateway reaction 
 
The pCR8 vectors following completion of the golden gate reaction were mixed with 

pSS4940GW in a Gateway LR Clonase II (Invitrogen Cat. No. 11791-020) reaction as 

per the recommended protocol and incubated at 25°C for 18 hours to generate 

pSS4940 vectors containing an insert. 

 

2.10 Conjugations and selections for recombination events 
 
pSS4940 vectors, containing inserts for making knockout mutants, were transformed 

into E. coli strain ST18 for conjugation into B. pertussis strain BP536 as described by 

Thoma [146]. BP536 and ST18 were grown on plates. One third to one half of the 

growth from a plate of BP536 was swabbed with a 2mm blob of donor ST18 strain 

containing pSS4940 onto charcoal agar containing 50mM MgSO4 and 10mM MgCl2. 

This plate was incubated at 37°C for 3-4 hours after which the cells were swabbed 
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onto selective charcoal agar containing 50mM MgSO4 and incubated at 37°C for 4-5 

days until single colonies appeared. 

Selection with gentamycin selects for integration of the plasmid onto the 

chromosome of BP536, since it is nonreplicative in B. pertussis. The MgSO4 gives 

growth in the Bvg- phase. In this condition the ptx promoter in front of the I-SceI gene 

is not activated. A single recombination event is therefore selected for during which 

the plasmid has integrated into the chromosome and the cell contains both the mutant 

and the wild-type allele. These are single crossovers. Colonies were typically 

passaged twice until enough cells were obtained to freeze at -80°C in 20% glycerol. 

 One frozen clone was chosen and grown on charcoal agar. Without MgSO4 the 

promoter in front of the I-SceI gene is activated, which is a lethal event. Thus, 

growing clones without MgSO4 selects for clones that don’t contain the integrated 

plasmid and have resolved. This is the second recombination event, during which 

either the wild-type allele is looped out, or reversion to the wild-type genotype takes 

place. 

 

2.11 Viability counts of the mreB mutant 
 
To test viability under Bvg- phase conditions the mreB and BP536 were grown on 

charcoal agar for 4 days and resuspended to an OD600 of 1.0. Serial dilutions were 

plated on charcoal agar in Bvg+ and Bvg- conditions. The numbers of colonies after 7 

days of growth were counted. 

 

2.12 Preliminary growth of the mreB mutant 
 
Two different clones of the mreB mutant were grown on plates alongside BP536. 

Cells were resuspended in 15ml SS broth with and without heptakis at 1g/l to an 

OD600 of 0.2 in 50ml sterile centrifuge tubes. Growth was measured periodically 

(twice a day) using a spectrometer to measure absorbance at 600nm. 

 

2.13 Measurement of MIC of ampicillin 
 
BP536 was plated on charcoal agar to give a lawn in Bvg+ and Bvg- conditions and 

an E-test strip for ampicillin was placed on the agar with sterile tweezers. The plates 
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were incubated at 37°C for 4 days and the point at which growth was inhibited was 

read off the strip. 

 

2.14 Transmission electron microscopy 
 
Strains were grown in SS broth in 50ml conical tubes until exponential phase was 

reached (1-2 days), after which cells were pelleted at 4500xg for 10 minutes and 

resuspended in PBS. Cells were washed in 0.1M sodium cacodylate buffer (pH7.3) 

and resuspended in the fixative solution (0.1M sodium cacodylate, 2.5% 

glutaraldehyde, 2% paraformaldehyde, 2.5mM calcium chloride) for 2 hours at room 

temperature and overnight at 4°C. 

 The next day the fixative was removed and cells were washed 3 times in 0.1M 

sodium cacodylate. Following the final wash, the wash solution was removed and 

replaced with 1% aqueous osmium tetroxide with 1% potassium ferrocyanide for 1 

hour at room temperature. The cells were then washed three times with distilled 

water, before being stained with 2% aqueous uranyl acetate for 1 hour in the dark. 

 The cells were dehydrated in increasing concentrations of acetone (30, 50, 70, 

90 and 95%, twice each) and finally in 100% dry acetone. Following this the cells 

were infiltrated with Spurrs epoxy resin, placed in moulds and polymerised in an oven 

at 70°C for 8 hours. Samples were then sectioned and imaged by TEM (Model JEOL 

JEM1200EXII, Tokyo, Japan) operating at 80kV. Sections were approximately 

100nm in thickness. Multiple images were taken and all cells across different images 

were measured to get a representative sample. 

Images of cells were measured using ImageJ. Lengths of cells were taken to 

be the largest distance from one side of the cell to the other; the width was taken to be 

perpendicular to this point. Volume of cells was also measured, with the volume taken 

to be similar to that of a cylinder, using the equation V=πr2h where V is volume, r is 

radius (half of the width), and h is height (length). 

 

2.15 Proton motive force (PMF) assay 
 
The BacLight bacterial membrane potential kit (Thermo) was used to provide a 

relative measure of membrane potential by flow cytometry. Flask cultures of BP536 

were grown in both Bvg+ and Bvg- phases, after 24h of growth cultures were diluted 
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in 1ml of filtered PBS to achieve of OD600 0.01. For each culture an untreated sample 

was used to locate cells, a treated sample was obtained by adding 10µl of 3mM 

carbocyanine dye 3,3’-diethyloxacarbocyanine iodide (DiOC2(3)), and a dissipated 

PMF control sample was obtained by adding 10µl of 500µM carbonyl cyanide 3-

chlorophenylhydrazone (CCCP) followed by 10µl of 3mM carbocyanine dye 

(DiOC2(3)). The samples were analysed by flow cytometry recording forward scatter, 

side scatter, and fluorescence using filters for PI and FITC. Ten thousand events were 

recorded for each measurement and the ratio of red/green fluorescence was measured. 

DiOC2(3) exhibits green fluorescence but shifts to the red end of the spectrum as the 

dye molecules self-associate at higher cytosolic concentrations caused by large 

membrane potentials. The dye is taken up into the cell in a manner that is dependent 

on the proton motive force. Thus the ratio of red/green fluorescence is proportional to 

the proton motive force (PMF). The sample dissipated with CCCP is measured as a 

control to show background fluorescence that is not due to PMF. 

 The BacLight membrane potential kit was also used to measure PMF of the 

petABC mutant vs. BP536 grown on charcoal agar in Bvg+ and Bvg- conditions. 

Strains were grown for 3 days at 37°C, passaged and grown again for 2 days at 37°C, 

after which cells were resuspended in filtered PBS and to an OD600 0.01 and assayed 

as described above. 

 

2.16 TraDIS 
 
BP536 was conjugated with ST18 containing plasmid ep1 as described above and 

selected on charcoal agar with 50mg/ml kanamycin and incubated for 5 days at 37oC. 

Nine independent conjugtions were performed and each plated on multiple 130mm 

diameter agar plates. This allows construction of a high-density mutant library. 

Colonies were recovered in PBS and genomic DNA was extracted to give pooled 

genomic DNA for Bvg+ and Bvg- phase conjugations. Conjugations were performed 

by Jerry King. 

 

2.17 Sequencing of transposon mutant libraries 
 
Following preparation of genomic DNA, DNA was 2µg fragmented by Covaris to an 

average size of ~300bp. Fragments had adapters ligated (IDT, Leuven, Belgium). 
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 PCR enrichment of transposon-containing fragments was performed with 

primers homologous to the ends of the transposon and an adapter-specific primer. 

PCR products were pooled and sequenced on a HiSeq2500. Sequencing and analysis 

to determine insertion indices, identify essential, ambiguous and fitness affected 

genes was done by the Sanger Institute. 

 

2.18 Cultures for RNA isolation 
 
BP536 was resuspended in 15ml of SS to an OD of 0.15. 0.6mM niacin was added to 

induce the Bvgi phase, and 50mM MgSO4 to induce the Bvg- phase. Four cultures 

each of Bvg+, Bvgi and Bvg- phase BP536 were incubated at 37°C until they reached 

an OD600 of between 0.5 and 1.0 (taken to be exponential phase). 

 

2.19 Isolation of RNA 
 
An amount of cells equivalent to 1ml of an OD600 4.0 was pelleted and resuspended in 

1.5ml Tri reagent. RNA extraction was then performed using Direct-Zol RNA 

Miniprep Kit (Zymol Research) according to instructions, enriching for small-RNAs, 

as described in the protocol, and with two elution steps of 35µl each. 

 

2.20 DNAse treatment 
 
DNAse treatment was performed using Turbo DNA-free kit (Ambion). The rigorous 

treatment was performed according to the protocol using 2µl of enzyme and 

incubating at 37°C for 1.5hrs, before another 1µl enzyme was added and the samples 

incubated for another 2hrs. RNA concentration was measured for each sample using a 

Qubit Fluorometer and the yields of RNA calculated. All yields were between 8.5 and 

14.5µg. RNA was frozen at -80°C until needed. 

 

2.21 Validation of RNA for RNAseq 
 
1µg of RNA was used in a first strand synthesis reaction using the Protoscript taq RT-

PCR Kit (NEB). Random primers were used to synthesise cDNA for each RNA 

sample as instructed. Quantitative-PCR (qPCR) was used to measure the relative 
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amounts of transcripts in each sample relative to standard housekeeping genes. 

Primers used are shown in table 4. 

 

Primer Sequence 

adk Forward GCTACCTGTTCGACGGTTTC 

adk Reverse TGAAGCGTACGTGGTAGCTG 

tyrB Forward TGTTCATCAGCTCGTCGTTC 

tyrB Reverse GCCAGTTCATTTTCCCAGAG 

ptxA Forward GACCACGACCACGGAGTATT 

ptxA Reverse CGCGATGCTTTCGTAGTACA 

fhaB Forward TCTCGCACAACAAGTTCCAG 

fhaB Reverse CCTTGCCATAGACTTCGAGC 

Table 4- Primers for qPCR 

 

Standard curves for each primer pair were generated using 10-fold dilutions of 

genomic DNA from BP536 prepped with the GenElute Bacterial Genomic DNA Kit 

(Sigma). Each reaction consisted of 400nm of each primer, 1x SYBR Green Universal 

Master Mix (Applied Biosystems) and water to a final volume of 20µl, to which 5µl 

of template was added (genomic DNA or cDNA). Reactions were performed on a 

StepOnePlus Real-Time PCR System (Applied Biosystems). Conditions were an 

initial 95°C for 10 mins followed by 40 cycles of 95°C for 15s and 60°C for 1 min. 

Melt curve analysis was done following this with an additional 95°C for 15s and 60°C 

for 1 min. 

 

2.22 RNAseq 
 
Sequencing of RNA, mapping and analysis of data including fold-change of each 

gene between Bvg+ and Bvg- phase was performed by Eurofins (Ebersberg, 

Germany). 

 

2.23 Analysis of the growth and glutamate consumption of the grp 

mutant 
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The grp mutant and BP536 were grown in a 96 well plate as described above. There 

were 15 cultures of BP536 and the mutant in both the Bvg+ and Bvg- phases. During 

the growth assay supernatant from three cultures for each condition was extracted 

periodically and stored as described above (see Metabolite assays). This was done a 

total of five times throughout the assay. Medium from the initial cell suspension used 

to inoculate medium inside the wells was harvested too, to measure the amount of 

glutamate in the medium before growth had commenced. 
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Chapter 3- Metabolism of Bordetella pertussis is dependent on Bvg 
phase 
 
The growth of B. pertussis has been well characterised, including finding that the 

bacteria have simple nutrient requirements [115-117]. Difficulty in growing B. 

pertussis has been attributed to the build up of inhibitory compounds during growth 

such as fatty acids [118, 120] and ammonium [122]. Most of the metabolic studies of 

B. pertussis have been done in, B. pertussis in the Bvg+ phase, since it is this phase in 

which the bacteria grow in vitro when grown at 37°C and modulatory compounds are 

not added. It is the Bvg+ phase that produces virulence factors so it is in this phase 

that growth of B. pertussis is studied in the context of vaccine production, and work 

has been done with the aim of improving yield of antigens such as ptx during growth 

[121, 125, 148, 149]. 

The metabolic capabilities of the Bvg- phase, however, are unstudied, though 

it is known that cells that have a spontaneous mutation in bvgS accumulate during 

growth of cultures due to greater fitness of these mutants [144]. This suggests that 

there is something different about the way that B. pertussis grows that is dependent on 

Bvg phase. It could be that in the Bvg- phase the cells are fitter because they do not 

have the burden of producing virulence factors. However, the Bvg regulon is large 

and there are a number of genes that are maximally expressed in the Bvg- phase 

[143], so it is possible that there is a different type of growth in this phase. The aim of 

this study was to investigate the difference in growth between Bvg+ and Bvg- phase 

B. pertussis, testing for differences in metabolite production, and to investigate why it 

is that Bvg- phase B. pertussis has a fitness advantage over cells in the Bvg+ phase in 

vaccine cultures. 

 

3.1 Results 
 

3.1.1 Growth curves of B. pertussis in Bvg+ and Bvg- phases 
Growth of BP536 in the Bvg+ and Bvg- phases is shown in figure 4. Data shown is 

the average of 27 cultures at the start of the assay, diminishing by 4 each time cultures 

were sacrificed for measurements of metabolites, leaving 11 cultures of each at the 

end of the assay. 
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Figure 4- Growth curve of BP536 grown in SS broth in the Bvg+ and Bvg- 
phases. BP536 was grown in a 96-well plate until stationary phase was reached. 
Features of growth displayed include a relatively long lag phase, a progressive 
decrease in growth rate throughout log phase and a poor final yield which is improved 
in the Bvg- phase. Error shown is standard deviation 
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Growth of B. pertussis is characterised by a long lag phase and short period of 

exponential growth. A low final yield is also a problem for vaccine cultures. 

 This growth assay is not representative of cultures grown for vaccine 

production, which are grown in batch culture in fermenters on a much greater scale. 

The medium used for vaccine production is typically modified-SS (MSS), which 

contains heptakis and casamino acids. The purpose of this experiment was to use a 

chemically defined medium to compare Bvg+ and Bvg- growth in the simplest way 

possible. Figure 4 shows a clear difference between Bvg+ and Bvg- phase growth, 

which will be discussed. 

 

3.1.2 CFU counts 
Optical density is only an indirect measurement of bacterial growth, correlating 

turbidity with cell division. To check that optical density was a valid way of 

measuring bacterial growth of B. pertussis CFU counts were carried out. 10µl of 

culture was removed from three Bvg+ and three Bvg- cultures at six time-points 

during growth, including at the beginning of the assay. 

 

 
Figure 5- Viable cell counts of BP536 in Bvg+ and Bvg- phase. Samples were 
taken at six time points during the growth curve and plated for viable cell counts. The 
data is an average of three biological replicates (three separate cultures from within 
the same 96-well plate), the same cultures were used to measure CFU at different time 
points. Error is standard error of the mean. 
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The time points at which CFUs were measured correspond to early, mid and late stage 

exponential phase growth, and early and late stationary phase. The growth as 

measured by CFU count corresponds well with OD, at least for the first half of 

growth. Figure 5 shows that growth reaches the maximum CFU count at between 

41.65 and 48 hours, and the maximum yield for Bvg- growth was 4.53x109 CFU/ml, 

2.00 times higher than Bvg+, which grew to a maximum density of 2.26x109 CFU/ml. 

This corresponds well with the maximum yield as measured by OD, which was 1.7 

times higher in the Bvg- phase. 

 Measurement of CFU counts revealed that during the later stages of growth 

there was a loss in cell viability. This occurred in both Bvg phases, and by 66.43 

hours the Bvg+ cultures displayed a lower viable CFU count per ml than at the start of 

growth, while the number of viable bacteria in the Bvg- cultures was more than four 

times lower than the maximum reached. This loss of viability is something that was 

not observed when measuring growth by OD, where there was a slight decrease in OD 

after the maximum yield is reached, but OD remains mostly stable. 
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Figure 6- CFU count per ml plotted against OD at time points. As the viable cell 
count increased the data was plotted against the optical density reading at that time 
point to discern the relationship between them. A line of best fit was drawn and a 
good positive correlation can be seen. Data shown for Bvg+ (top) and Bvg- (bottom). 

 

When CFU/ml is plotted against OD for those cultures at the first four time points a 

linear relationship is shown between the two (figure 6). A strong correlation is 

observed between CFU/ml and OD showing that regardless of using CFU/ml or OD 

to measure growth the same trend is observed. As OD doubles, CFU/ml doubles, 

showing that OD is indeed a good measure of growth of BP536 in SS broth. 
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 However, as noted above, this trend does not hold for stationary phase growth. 

Measuring growth by OD fails to observe the loss of viability of BP536 cells 

observed by measuring viable cells counts. 

 

3.1.3 Maximal yields and time taken to reach them 
For each of the 11 wells that still contained bacteria at the end of the assay the highest 

maximum OD600 that was measured was noted and an average was taken for Bvg+ 

and Bvg-. Towards the end of growth, OD readings start to be come variable, 

especially for the Bvg- phase cultures, as the plate reader is reaching the upper limit 

of detection. The maximum yields for the Bvg- phase readings should not be the 

highest points in these spikes, which could represent an artefact of measuring with the 

plate reader. Thus the maximum yield has been calculated by finding the highest OD 

reached and averaging this reading together with the four readings either side 

(representing an hour either side). This averaged value is taken as the maximum OD 

reached for that culture as it represents a “middle value” between spikes of readings. 

Values were obtained for each of the Bvg+ and Bvg- cultures and averaged (figure 7). 

 

 
Figure 7- Average maximal OD600 reached by eleven Bvg+ and Bvg- cultures. The 
maximum optical density reached is displayed for Bvg+ and Bvg- cultures (average of 
eleven biological replicates from within the same 96-well plate). A significantly 
higher maximum yield is shown for cultures in the Bvg- phase p=1.64x10-10. Error 
shown is standard error of the mean.  
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The average maximal OD reached by Bvg+ cultures was 1.69, while the average 

maximal OD achieved by Bvg- cultures was 2.87, 1.70 times higher. It is clear that 

cultures in the Bvg- phase reached a higher cell density than in the Bvg+. One 

question that arises is whether or not B. pertussis achieves its maximal yield at the 

same time in each Bvg phase i.e. the Bvg- phase reaches a higher maximal yield than 

the Bvg+, but does reach it more quickly? 

 To answer this question the time taken for each of the eleven cultures to reach 

their maximal yield was recorded and averaged for the Bvg+ and Bvg- cultures 

(figure 8). 

 

 
Figure 8- Time taken by eleven BP536 cultures to reach their maximal yield in 
Bvg+ and Bvg- phase. The time taken to reach maximum yield is expressed in hours 
and is displayed for an average of 11 biological replicates of Bvg+ and Bvg- cultures 
from within the same 96-well plate. There is no significant difference between the 
two averages (p=0.22). Error shown is standard error of the mean. 
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hours, while for the Bvg- cultures this was 58.5 hours, however this difference was 

not significant by T-test (p=0.22). Therefore there was no significant difference in the 

time taken for cultures to reach their maximal yield dependent on Bvg phase. This 

means that the maximum yield was reached at the same time regardless of Bvg phase. 
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reach their maximum yields at around the same time, this indicates that the higher 

yield of the Bvg- phase is not because these cultures grow for longer. Since both 

phases take the same amount of time to reach very different yields, it is clear that the 

Bvg- phase cultures must grow quicker in that same space of time to reach a higher 

yield than the Bvg+ cultures. 

 Incidentally, the Bvg+ B. pertussis finish growing at a lower cell density, and 

they reach their maximal growth in the same time as the Bvg- phase cultures. The 

reason why the Bvg+ cultures don’t reach the same cell density as the Bvg- phase 

ones is because they grow at a slower rate in the same time period. 

 

3.1.4 Lag time 
A long lag phase is a feature of growth of B. pertussis, though it is not clear why this 

is. It is difficult to say precisely when lag phase ends. All of the cultures undergo a 

brief, small decrease in OD early in growth, before recovering to the starting OD of 

0.1 and beginning to grow. The point at which lag time was designated to be over was 

set at an OD of 0.3, three times the starting OD, but just before exponential growth 

had begun. The time taken for each of the eleven cultures to reach this level in each 

Bvg phase was recorded (figure 9). 

 

 
Figure 9- Average length of lag time of Bvg+ and Bvg- cultures. Lag phase was 
taken as the time in hours of each culture (n=11 of Bvg+ and Bvg-) to reach an OD of 
0.3, error shown is standard error of the mean. The average lag phases of Bvg+ and 
Bvg- phase cultures are significantly different (p=3.07x10-5). 
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The average length of the lag phase of Bvg- cultures was 11.7 hours, while the length 

of the lag phase of Bvg+ cultures was 13.6 hours, 1.9 hours and 14% longer. This 

difference was shown to be significant by T-test.  

 This small but significant difference may not be enough to explain the 

observation that Bvg+ and Bvg- cultures took the same amount of time to reach 

different maximal yields, and another factor might also be involved. Bvg- cultures do 

indeed have a shorter lag phase but it is possible that this difference of two hours is 

not enough to explain the double maximal yield seen for Bvg- compared to Bvg+. 

Therefore it could be that growth rate could explain the difference in yield as well as 

the fact that Bvg- cultures enter exponential phase earlier. 

 However, the shorter lag phase in Bvg- phase may reveal something about 

growth in this phase. It is not known why B. pertussis has a long lag phase. It may be 

due to having to synthesise cellular building blocks in order to commit to growth, and 

it could be that the Bvg- phase is able to do this quicker. An alternative theory is that 

B. pertussis takes some time to adapt to the new medium, and indeed there is a 

decrease in OD during lag phase before a recovery. It may be that Bvg- phase, is 

either more more resistant to something in the medium that is initially inhibitory or 

that this phase is just to better able to adapt to start growing in its new environment. 

 

3.1.5 Growth rates and doubling times 
Specific growth rate was calculated for the eleven cultures of BP536 grown in the 

Bvg+ and Bvg- phases for the time period from 14-42 hours. This period represents 

the exponential phase of growth in that below 14 hours and above 42 hours growth 

rate rapidly diminishes. Specific growth rate was calculated using the following 

equation: 
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k= (logNt – logN0)/((log2)t) 

Where Nt= final OD in a given time period, N0= initial OD for a given time period, 

t= the number of hours in a given time period 

 

Which was derived thus: 

Nt= N0 x 2n (where n= number of generations in a given time period) 

Taking logs: 

logNt= logN0 + nlog2 

Rearranging: 

n= (logNt – logN0)/log2 

And: 

n= (logNt – logN0)/0.301 

Since k=n/t (specific growth rate is the number of generations per time): 

k= (logNt – logN0)/(0.301t) 

 

Since the specific growth rate is the number of generations per unit time, the amount 

of time per generation is calculated by inversing this: 

g= 1/k 

Where g= generation (doubling) time. 
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Figure 10- (a) Average specific growth rates and (b) doubling time of BP536 
cultures calculated for each four hour period of exponential phase growth. 
Specific growth rates and doubling times for 11 biological replicates for each Bvg+ 
and Bvg- cultures from within the same 96-well plate were calculated for each 4 hour 
intival during exponential phase. Data is an average of the 11 replicates; error shown 
is standard error of the mean. 
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Figure 10 (a) shows that the average specific growth rate of both Bvg+ and Bvg- 

BP536 between 14 and 18 hours is 0.24h-1. This corresponds to a doubling time of 4.4 

hours (figure 10 (b)). For both Bvg+ and Bvg- this is the maximal growth rate. The 

main difference between Bvg+ and Bvg- phase growth is how quickly this maximal 

growth rate decreases. For the next time period, 18-22 hours, the average specific 

growth rate for the Bvg+ cultures is 0.0714 h-1, while for the Bvg- cultures are at 

0.129 h-1, which is 1.8 times higher than for Bvg+ (p=1.30x10-10). The corresponding 

doubling times for Bvg+ and Bvg- for this time period are 14.3 h and 7.82 h 

respectively. The average doubling time of the Bvg- cultures is 1.8 times higher 

(p=2.08x10-7). The average specific growth rates decrease again during the next time 

period (22-26 hours) to 0.0681 h-1 and 0.0797 h-1 (p=2.53x10-5) for the Bvg+ and 

Bvg- cultures respectively. For the time period 26-30 hours the average specific 

growth rates for Bvg+ and Bvg- cultures is 0.0514 h-1 and 0.0563 h-1 (p=0.0561). The 

average doubling times during this period are 19.6h for the Bvg+ cultures and 18.0 for 

the Bvg- cultures (p=0.0428). For the remainder of exponential phase there is no 

significant difference between Bvg+ and Bvg- cultures with respect to specific growth 

rate or doubling time. 

 Therefore the main difference in regard to growth rate is that while maximal 

growth rate is similar between Bvg+ and Bvg- cultures, and this is not maintained for 

long in either phase, the growth rate decreases more rapidly in the Bvg+ phase than 

the Bvg- phase. 
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3.1.6 Dry cell weight 
	
The	dry	cell	weight	of	flask	cultures	was	measured	over	time	to	provide	

information	about	how	cell	mass	increased	during	growth	of	a	culture.	The	

results	are	depicted	in	figure	11.	

 

 
Figure 11– Dry cell weight per ml of culture measured over time for BP536 in 
the Bvg+ and Bvg- phases. The dry cell weight of 3 biological replicates of Bvg+ 
and Bvg- cultures grown in flasks was measured over time. Data shown is an average 
of the three replicates and error is standard error of the mean. Dry cell weight is 
measured in mg of dry cell weight per ml of culture. 

 

In both Bvg phases of growth the dry cell weight of cultures measured in mg per ml 

of culture increases over time and at every point sampled the Bvg- cultures have a 

greater mass per ml than the Bvg+ cultures. This is expected since it was shown 

above that growth in the Bvg- phase produces more dense cultures than the Bvg+ 

cultures, as measured by OD and CFU count. Therefore Bvg- cultures are of greater 

cell density to Bvg+ cultures and weigh more. However, an important question to ask 

is how much more do they weigh? It would be expected that a culture with double the 

number of cells would have double the mass if the cells in each culture were the same 

size. If cell density in OD is plotted against dry cell weight in mg/ml then a 

relationship between the two can be seen. 
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Figure 12– Dry cell weight of cultures plotted against OD for cultures of BP536 
in the Bvg+ (top) and Bvg- (bottom) phases. The data from dry cell weight 
measurements is plotted against the optical density measurements at equal time 
points. For both Bvg+ and Bvg- cultures a linear relationship can be drawn between 
the two such that as dry cell weight increases so does optical density in a proportional 
manner. Data shown is the average of three replicates and error is standard error of 
the mean. 
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same numbers of cells regardless of Bvg phase, shows that biomass, OD and CFU 

count of BP536 cultures increase in the same way throughout exponential phase. 

 

3.1.7 Glutamate consumption 
The concentration of glutamate was measured in the supernatant that was removed 

from samples taken to obtain dry cell pellets. This was done in order to measure the 

rate of glutamate consumption for growth of BP536. The amount of glutamate in 

millimoles consumed to make one gram of biomass during exponential phase growth 

is displayed in figure 13. 

 

 
Figure 13– Amount of glutamate consumed to form 1g of biomass during 
exponential phase growth of BP536 in the Bvg+ and Bvg- phase. Glutamate 
consumption between two time points during exponential phase was calculated for 3 
biological replicates of both Bvg+ and Bvg- cultures and expressed as the amount of 
glutamate in mmol consumed to produce 1 gram of biomass (mmol/g). Data shown is 
the average of three replicates; error is standard error of the mean. 

 
The data show that Bvg+ phase cultures are consuming 4.4 times more glutamate to 

produce one gram of biomass than Bvg- phase cultures. This suggests that, since more 

carbon is being consumed, the Bvg+ phase cultures are behaving metabolically 

different to the Bvg- cultures. The data imply that there is extra carbon consumed in 

the Bvg+ that is not accounted for in biomass and would be lost during growth, either 

in the supernatant or as waste such as carbon dioxide lost as gas. If more carbon 
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dioxide is produced in the Bvg+ phase this would be indicative of a more active TCA 

cycle since it is during this that carbon dioxide is formed. 

 

3.1.8 Measurements of key metabolites 
To look for metabolic differences in the growth of BP536 in the Bvg+ and Bvg- 

phases the concentrations of key metabolites in the supernatant during growth were 

measured. This included the primary carbon source glutamate and ammonium, fatty 

acids and beta-hydroxybutyrate (β-HB) that are known to accumulate during growth. 
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Figure 14- Concentrations of ammonium and glutamate (left axis) with CFU 
count per ml (right axis) during growth of BP536. Measurements of glutamate and 
ammonium concentration were taken throughout exponential and stationary phase 
growth of cultures grown in the Bvg+ (top) and Bvg- (bottom) phases. Data shows 
concentrations of these molecules in mM over time and is displayed together with 
CFU data of cultures to show how viable cultures were during these measurements. 

 

Figure 14 shows that as viable cell counts increase glutamate is consumed from the 

medium. The utilisation of glutamate coincides with the appearance of ammonium. 

These processes occur in both Bvg phases, though the final concentration of 

ammonium is higher in the Bvg+ phase (15.4mM) than in the Bvg- phase (7.96mM), 

despite the final concentration of glutamate in the supernatant being higher in the 
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Bvg+ phase (17.2mM) than in the Bvg- phase (11.5mM). This indicates that BP536 

may produce less ammonium per unit of glutamate consumed in the Bvg- phase. 

 CFU counts reach a peak at 41.65 hours in both Bvg+ and Bvg- phase, after 

which viability counts decrease. However, glutamate concentrations in the 

supernatant continue to decrease during this period of decrease in viability counts. 

This suggests that cells are still dividing, utilising glutamate, but the rate of cell death 

is greater than the dividing rate. Alternatively, cells could be non-dividing, but still 

consuming glutamate to maintain themselves, at the same time as cells dying. 

 Furthermore, glutamate remains in the medium at millimolar concentrations 

after 66.43 hours of growth, suggesting that cultures don’t cease growing because of 

lack of availability of carbon source. In fact, the observation that glutamate continues 

to be consumed past the peak of cell density suggests that growth yield is not limited 

by glutamate availability. 

 The build-up of ammonium could be the reason for loss of viability and indeed 

the decrease in cell viability does coincide with the accumulation of ammonium. The 

concentration of ammonium at peak growth is 8.05mM in the Bvg+ phase and 

12.09mM in the Bvg-, both more than double the concentration at the first 

measurement at 18.25 hours. Since this build-up of ammonium coincides with peak 

growth in both phases it is tempting to suggest that this is the reason why growth 

ceases. After this the concentration of ammonium in the Bvg+ phase cultures 

continues to increase, while the concentration in the Bvg- phase cultures decreases 

slightly. It may be that something else contributes to loss of viability of BP536 during 

growth. Build-up of free fatty acids is also known to be inhibitory to growth, but 

concentrations of these were always below the limit of detection using the 

commercially available kit. 

During growth PHB is known to accumulate intracellularly and is broken 

down and secreted as the monomer β-HB. This is primarily a mechanism of recycling 

acetyl-CoA for feeding into the TCA cycle, but β-HB is essentially a waste product. 

The concentrations of β-HB in the supernatant were measured during growth. 
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Figure 15- Concentrations of β-HB (right axis, lines) with CFU count per ml (left 
axis, bars) during growth of BP536 in the Bvg+ and Bvg- phase Concentrations of 
β-HB were measured at time points during exponential and stationary phase for both 
Bvg+ and Bvg- phase cultures and is expressed in mM. This data is displayed along 
with CFU counts for cultures during the same time periods expressed as CFU 
counts/ml to show how the concentration of β-HB changed during growth of cultures. 

 

Figure 15 shows that β-HB appears in the medium during growth, but begins to 

disappear later on. The maximum concentration of β-HB measured is 0.161mM for 

Bvg+ phase reached after 41.65 hours, and 0.565mM reached after 48 hours for the 

Bvg- phase. After this the concentrations decrease despite a decrease in viability 

counts, suggesting that β-HB may be metabolised. 

 

3.1.9 Build-up of ammonium and β-HB 
The build-up of ammonium was assessed between the time at which the first sample 

was taken and the time at which the growth was beginning to cease. The time at 

which this sample was taken was at 41.67 hours. The difference in ammonium 

concentration between these two times points was divided by the difference in OD600 

between these two time points. This gives a measure of ammonium build-up over 

time corrected for the increase in growth. This is displayed in figure 16. 
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Figure 16- Build-up of ammonium per OD unit produced during the growth of 
Bvg+ and Bvg- cultures between 18.25 and 41.67 hours. The difference between 
the concentrations of ammonium at 41.67 hours and those at 18.25 was calculated and 
divided by the increase in optical density during the same time period. Therefore data 
shown is representative of the build-up of ammonium per growth unit between these 
time periods expressed as mM of ammonium produced per OD unit. Data shown is an 
average of three replicates and error is standard error of the mean. 

 

Figure 16 shows that between these 18.25 and 41.67 hours there is no difference in 

the amount of ammonium that has accumulated during growth in the Bvg+ and Bvg- 

phases when corrected for growth differences. The build-up was calculated between 

these time points because this is the point at which growth is beginning to cease, and 

if ammonium is inhibiting growth it would be expected that inhibition would take 

effect at around this time point. The build-up of ammonium was also calculated 

between 18.25 and the end of the growth assay, at 66.5 hours. This data is presented 

in figure 17. 
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Figure 17- Build-up of ammonium per OD unit produced during the growth of 
Bvg+ and Bvg- cultures between 18.25 and 66.5 hours. Data was calculated in a 
similar fashion to that displayed in figure 16 except for a different period of time. 
Data shown is representative of the build-up of ammonium per growth unit between 
18.25 and 66.5 hours expressed as mM of ammonium produced per OD unit. Data 
shown is an average of three replicates and error is standard error of the mean. 

 

The build-up of ammonium per OD unit is significantly greater in the Bvg+ phase 

than in the Bvg- phase over the whole of the growth assay (p=0.041). This shows that 

later on, after growth has ceased (i.e. between 41.67 and 66.5 hours) the Bvg+ 

continues to produce ammonium, while the Bvg- phase does not. 

The build-up of β-HB was assessed between 18.25 and 48 hours, when the 

concentration of β-HB was at the maximum. 
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Figure 18- The concentration of β-HB in the supernatant corrected for OD of the 
cultures betwwen 18.25 and 48 hours of growth for Bvg+ and Bvg- cultures. The 
difference between the concentrations β-HB of at 48 hours (taken to be the time at 
which β-HB levels were maximal) and concentrations at 18.25 was calculated and 
divided by the increase in optical density during the same time period. Therefore data 
shown is representative of the build-up of β-HB per growth unit between these time 
periods expressed as mM of β-HB produced per OD unit. Data is the average of three 
replicates; error is standard error of the mean. 

 

Figure 18 shows that there is a significant difference in the concentration of β-HB 

secreted into the medium per OD unit between Bvg+ and Bvg- cultures (p=0.043). 

During this period of growth the Bvg- cultures produce almost three times as much β-

HB as Bvg+ cultures when higher growth yields are taken in to account. 

 

3.2 Discussion 
 

3.2.1 Measuring cell growth 
Optical density is a way of indirectly measuring growth of a culture by measuring the 

scatter of light caused by an increase in turbidity of the culture during growth. This 

increase is not necessarily specific to growth and is affected by other factors including 

the size of particles scattering the light, or colour changes. A more specific way to 

measure culture growth is by CFU count, which not only gives a measure of number 

of cells in the culture but also that they are viable. The advantage of measuring 

growth of a culture by OD is that it can be an automated process, particularly 
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advantageous if the growth of the culture is to be measured over period of days, as 

with Bordetella pertussis. 

Growing cultures in a 96-well plate allows for a higher-throughput, automated 

method of measuring growth of B. pertussis than would otherwise be possible 

manually. Many replicates can be measured simultaneously allowing for reproducible 

growth of organisms that can be variable in their growth, such as B. pertussis. This 

method also allowed for the ability to sacrifice up to four cultures at a time throughout 

growth to measure concentrations of metabolites. 

 It is not known whether B. pertussis has different cell sizes dependent on 

growth in Bvg+ or Bvg- phase, which may affect OD measurements. Therefore, 

whilst carrying out an automated growth measurement of OD it is necessary to 

measure growth another way, for example, taking samples for CFU measurements, 

which also gives information about the viability of cells in the cultures. Since OD is 

more of an accumulative measure of growth than CFU counts, it does not give 

information about cells that may be dead but intact. Similarly, measuring by CFU 

count gives information about the number of viable cells in the culture, but does not 

detect cells that may be alive but non-culturable. It is desirable then, when describing 

growth of an organism in detail, to provide both measurements, as one method may 

uncover something that would be missed by the other. 

 Growth of BP536 in the Bvg+ and Bvg- phases here was principally measured 

by OD as it is the most automated method, but CFU counts were used to validate 

indirect measurement by OD, i.e. does a doubling of OD correspond to a doubling of 

CFUs? A direct relationship was shown between CFU count and OD for BP536 in 

both Bvg phases, showing that measurement by OD is a valid way to measure growth 

of B. pertussis in a way that allows for comparison of the Bvg+ and Bvg- phases. 

 However, the two methods do reveal different aspects of the growth of B. 

pertussis. Measuring by OD shows an exponential increase to a maximum and bar a 

slight decrease in OD over stationary phase, maximal OD is maintained. Measuring 

by CFU count shows a different picture, maximum growth is reached in the same time 

period as shown with OD measurements, however maximum cell viability is not 

maintained, with CFU count rapidly decreasing in both Bvg phases following the 

maximum yield. 

 Two scenarios are possible. The first is that increasing numbers of cells in 

stationary phase are dead, but OD measurements fail to reflect that, while the true 
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number of viable cells is measured by CFU counts. The second is that cells in 

stationary phase are alive, but are non-cultureable or metabolically inactive, which is 

why they are not cuturable on agar plates. 

 

3.2.2 Growth yield of Bvg- phase B. pertussis 
Analysis of growth of B. pertussis by OD allows for automation of the process, 

meaning that growth can be sampled every fifteen minutes over a period of days. This 

also gives a high resolution to the growth curve, which means that growth can be 

broken down and analysed in detail. 

 One of the most striking difference between Bvg+ and Bvg- phase growth is 

that the Bvg- phase gives growth yields 1.7 times that of the Bvg+ phase. This shows 

that cell density is significantly higher than that of Bvg+ phase in the Bvg- phase, 

despite the Bvg- phase growing to the upper limit of detection by the plate reader used 

to measure OD. Maximal yield of a culture can be affected by many things, among 

them growth rate and the length of growth. Cultures could divide more often in a 

given time to reach a higher OD, or cultures could divide at the same rate but if one 

grows for longer it will reach a higher OD. The finding that BP536 reaches its 

maximal OD in the same time regardless of Bvg status shows that the Bvg- phase 

reaches a higher OD for a reason other than because these cultures grow for longer. It 

has been postulated that B. pertussis fails to reach higher yields because of the build-

up of autoinhibitory compounds such as ammonium and free fatty acids [120, 122]. If 

the Bvg- phase was more tolerant of these compounds it might be expected that the 

Bvg- phase would continue to grow past the point at which the Bvg+ phase stops 

growing, and that is not the case. Therefore something other than resistance to 

autoinhibitory compounds, or the Bvg- phase producing less of them, is responsible 

for the Bvg- phase reaching higher yields. 

 A feature of B. pertussis growth is a long lag phase (between 11 and 13 

hours). The reasons for this are unknown, though it would seem that this is not due to 

adaptation to medium since the lag phase is replicated on passage in fresh medium 

(the cultures used for the growth assay depicted in figure 4 had been grown in SS 

broth previously). It could be that there are elements in fresh medium that are 

inhibitory for growth, or that there are molecules that need to be synthesised to a 

threshold level before B. pertussis commits to growth, though both of these scenarios 
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would seem to be adaptation in some way. Alternatively, there could be components 

of the medium that need modifying before growth can occur. What is clear is that 

Bvg- phase growth displays a shorter lag phase than Bvg+, which may be indicative 

of the ability to synthesise necessary molecules faster, or being more resistant to 

inhibitory molecules in the medium. 

 Furthermore, while maximal growth rates are not maintained in either Bvg 

phase, higher growth rates are maintained for longer in the Bvg- phase. This would 

mean that early fast growth is crucial for and predictive of a high final yield. The 

reason for a higher growth rate in the Bvg- phase is unclear, although it is suggestive 

of a difference in regulating cell division. Typically growth rate is improved by 

growing cells in richer media, or by genetically manipulating organisms to improve 

flux through targeted pathways, but in this case the only difference is Bvg status. In 

other words Bvg is a switch that controls how quickly cells divide. 

 Different models have been suggested for what controls when a cell divides. 

One suggests that all cells grow a certain amount before dividing, while another 

proposes that all cells grow to a certain length [150, 151]. It is not clear what triggers 

B. pertussis cells to divide, a set cell size or a set amount of growth. If all B. pertussis 

cells grew to a predetermined length then cells in the Bvg- phase must grow quicker 

since they divide more often, unless cells in the Bvg- phase are smaller. Likewise, if 

B. pertussis cells grow by the same amount before dividing, then cells in the Bvg- 

phase must also grow quicker. The data obtained from biomass measurements and the 

relationship between them, OD and CFU show that a given volume of a given OD of 

cells contains similar numbers of cells and has a similar dry cell weight regardless of 

Bvg phase. This suggests that, since the same number of cells weighs the same in 

either Bvg phase that the size of the cells is also the same. This would indicate then 

that in the Bvg- phase cells would grow quicker to reach the same size or growth 

threshold as in the Bvg+ phase before dividing. 

 

3.2.3 Glutamate 
Glutamate is consumed during growth, and is consumed past the point of peak growth 

yield. This shows that in stationary phase cells are still metabolically active despite no 

net growth of the culture. The reason why there is no net growth at this stage is not 

clear, as there are still millimolar levels of glutamate left in the medium. This points 
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to inhibitory compounds preventing growth at this point, and the observation that 

Bvg+ and Bvg- phase cultures enter stationary phase suggests that if they do stop 

growing because of inhibitory compounds then these compounds affect cultures 

regardless of Bvg phase. 

 It is not known, however, that the concentration of glutamate during stationary 

phase is enough to support growth, especially at high cell densities. It may be that at 

such cell densities the amount of glutamate per cell is enough to give a level of 

glutamate transport across the membrane to support some metabolic activities but not 

cell division. This would explain why glutamate continues to be consumed during 

stationary phase despite no net increase in cell number. 

During growth B. pertussis consumes more glutamate per unit of growth in the 

Bvg+ phase than in the Bvg-. This means that more glutamate is being consumed to 

make the same amount of biomass, in the Bvg+ phase and gives rise to the question of 

where the extra carbon being consumed is going. 

The obvious answer is that more carbon is needed by the Bvg+ phase to 

produce the virulence factors expressed in this phase, including large adhesins such as 

FHA and fimbriae, however some (but not all) of these proteins would be included in 

biomass measurements and are accounted for when calculating glutamate 

consumption. DNA and RNA would also be accounted for in biomass, as would 

carbohydrates although one might expect more carbohydrates to be made in the Bvg- 

phase since it is in this phase that the capsule is expressed. 

Carbon dioxide is produced during metabolism and it stands to reason that if 

Bvg+ phase cultures are consuming more glutamate to produce less biomass then this 

extra carbon that wouldn’t be accounted for in biomass measurements is released as 

carbon dioxide gas. This would suggest a more active TCA cycle since it is this 

process that leads to the production of carbon dioxide. This would lead to an increase 

in the level of NADH for use in the electron transport chain compared to the Bvg- 

phase. 

 

3.2.4 Ammonium 
It has been suggested that since ammonium accumulation coincides with cessation of 

growth, that ammonium is inhibitory for growth [122]. It has also been shown that 

growth can be improved by replacing some of the glutamate in the medium with 
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lactate, with the result that less ammonium is produced [122]. However, it is not clear 

whether ammonium is actually toxic for growth of B. pertussis, or whether its 

appearance alongside the slowing of growth is coincidental. It has been shown for 

other bacteria that concentrations of ammonium in the region of 500mM is inhibitory 

for growth, but that this inhibition is not ammonium specific but rather a consequence 

of enhanced osmolarity or ionic strength of the medium [152]. The maximum 

concentration of ammonium produced during growth of B. pertussis is 15mM, a lot 

less than 500mM, though the level at which ammonium is inhibitory for growth of B. 

pertussis is not known. 

 B. pertussis produces more ammonium per unit of growth in the Bvg+ phase 

than in the Bvg- phase over 66 hours. Ammonium is a by-product of glutamate 

metabolism, specifically the conversion of glutamate to 2-oxoglutarate catalysed by 

glutamate dehydrogenase (gdhA). Since ammonium is produced from the pathway 

which feeds glutamate into the TCA cycle it means that ammonium is an unavoidable 

by-product of metabolising this carbon source. It stands to reason that if the Bvg+ 

phase is metabolising more glutamate per growth unit then it will also produce more 

ammonium. It would be logical then to assume that since the amount of ammonium 

per biomass is higher in the Bvg+ phase that this is a reason why growth yield is 

lower, although the absolute concentrations of ammonium are similar between the 

two at maximal growth and at the point of cessation of growth the build-up of 

ammonium in mM/OD unit is similar. It may be that 8-12mM of ammonium is 

inhibitory for the growth of B. pertussis, which would explain why both Bvg+ and 

Bvg- culture cease growing at the same times, despite millimolar concentrations of 

glutamate still in the medium. 

 The concentration of ammonium in the supernatant continues to increase 

through stationary phase in Bvg+ cultures, which is not the case for Bvg- cultures, in 

which the ammonium concentration decreases. This may reflect different nutrient 

requirements of the two Bvg phases later on in growth. Both phases continue to 

metabolise glutamate, which would mean ammonium would be produced. It could be 

that the Bvg- phase cultures then use ammonium produced as a nitrogen source. This 

could be to make a nitrogen-containing compound that isn’t made in the Bvg+ phase. 

An alternate scenario that leads to no net increase in ammonium concentration is one 

in which there is a build up of an alternative source of carbon to glutamate, one that 

doesn’t lead to an excess of nitrogen. This could be something produced during 



	 76	

growth that can then be used up as glutamate concentrations deplete. Bvg+ phase 

cultures may continue to use glutamate at an appreciable rate, leading to the continued 

accumulation of ammonium during stationary phase, while the Bvg- phase uses this 

alternative carbon source at a greater rate than the Bvg+ phase, leading to a decrease 

of ammonium concentration in stationary phase. This carbon source would likely not 

contain nitrogen and ammonium would be used as a source of nitrogen in this case. 

 

3.2.5 β-HB 
PHB is known to accumulate in globules during growth of B. pertussis in SS broth, 

which then disappear later on in growth, coinciding with the appearance of β-HB in 

the supernatant. This is thought to be a mechanism for regenerating CoA from an 

excess of acetyl-CoA. The first CoA would be released by condensing two acetyl-

CoA molecules to acetoacetyl-CoA, also forming β-HB, and the second CoA is 

released as β-HB is polymerised to PHB. PHB is also broken down during growth, 

contributing to biomass and also releasing β-HB into the supernatant [122]. 

 During growth of BP536 in both Bvg+ and Bvg- phases there was a build up 

of β-HB in the supernatant, suggesting that CoA is a limiting factor in both phases of 

growth, or that acetyl-CoA is in excess. In the Bvg- phase, however, the concentration 

of β-HB builds up to 3.5 times that of the concentration in the Bvg+ phase. This could 

be due to one of two scenarios. In the first, more CoA is required for growth, or 

acetyl-CoA is in greater excess in the Bvg- phase. The Bvg- phase would have more 

active PHB synthesis pathways, which leads to more β-HB accumulating in the 

supernatant, while the Bvg+ phase might be able to use acetyl-CoA differently. For 

example, a more active TCA cycle in the Bvg+ phase would use up more acetyl-CoA 

by turning it into citrate and feeding the TCA cycle pathways. This would fit with the 

model that the Bvg+ uses more glutamate to make less biomass than the Bvg- phase 

and that the excess carbon is being lost as carbon dioxide through a more active TCA 

cycle. 

 Another possibility is that PHB is not made any differently and is made at the 

same rate in both phases. It may be that it is the breakdown of PHB that is different, 

meaning that more β-HB appears in the Bvg- phase because more of its PHB is 

broken down. However, it has been shown that PHB does disappear later in growth, 

as β-HB appears in the supernatant. This does suggest that the amount of β-HB 
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appearing is proportional to the amount of PHB that was synthesised, which would 

indicate that if Bvg- phase growth leads to greater concentrations of β-HB then 

growth in this phase also produced more PHB. 

 β-HB concentrations in the supernatants of both Bvg+ and Bvg- phase growth 

decrease during stationary phase, suggesting that β-HB is being metabolised, possibly 

used as a carbon source. The decrease in the Bvg+ phase was a two-fold drop between 

48 hours and 66.43 hours, while in the Bvg- phase during the same time period the 

decrease was a three-fold drop. During this period there is no net increase in cell 

number, although glutamate consumption continues. Ammonium levels decrease 

during this period for Bvg- cultures, but continue to increase for Bvg+ cultures. This 

suggests that while cells in both cultures continue to be metabolically active, the Bvg- 

phase metabolises more β-HB than the Bvg+ phase, producing less ammonium since 

β-HB does not contain nitrogen. This indicates a difference in use of carbon source, it 

may be that the Bvg+ is not able to metabolise β-HB as well as the Bvg- phase. Why 

this would happen is not clear, since in both phases cultures do not increase in cell 

number at this stage of growth, although it may be that glutamate at that concentration 

is not enough to sustain growth and that metabolising β-HB is a way of keeping cells 

alive and metabolically active. 

 

3.2.6 A proposed model for growth differences between Bvg+ and Bvg- phase B. 

pertussis 

It is clear from growth data that there is something quite different about the way that 

B. pertussis grows that is dependent on Bvg phase. In the Bvg- phase maximal yield is 

1.7 times that of the Bvg+ phase, but both phases reach their maximal yields in the 

same time. Growth in both phases is characterised by slowing of growth rate 

throughout exponential phase, though during early exponential phase the growth rate 

of the Bvg- phase is significantly higher than the Bvg+ phase. Since the Bvg- phase 

has a shorter lag phase and has a higher growth rate it could be that these features are 

linked, with the Bvg- phase better able to synthesise molecules early on to commit to 

growth, while the Bvg+ phase takes longer to do this and has slower growth early on 

in exponential phase. Furthermore, it is probably the case that cells in the Bvg- phase 

either elongate quicker to reach the critical size, or amount of growth, necessary to 

trigger cell division or are smaller in size and have a lower threshold to trigger cell 
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division. Biomass data points to the former scenario. In any case it is apparent that 

early stages of growth marked by shorter lag and higher growth rate are critical for 

and predictive of a high maximal yield in the Bvg- phase. 

 The greater consumption of glutamate per g of biomass in the Bvg+ phase 

suggests that more carbon dioxide is produced during growth in this phase. This 

would explain why more glutamate has to be metabolised, because the TCA cycle is 

more active in this phase and more carbon is needed to drive it, since carbon is wasted 

as carbon dioxide. This scenario could also explain the increased production of β-HB 

in the Bvg- phase, since this is thought to happen if acetyl-CoA is in excess. Since β-

HB is produced in both phases, then acetyl-CoA must be in excess in both phases. 

CoA needs to be regenerated, and PHB is synthesised, and later β-HB. But if the TCA 

cycle was more active in the Bvg+ phase then more acetyl-CoA would be used to fuel 

the TCA cycle and there would be less available for PHB synthesis. 

 Bvg- phase growth is thus characterised by a shorter lag phase and faster 

growth early on, which means that since cells have faster doubling times then there 

must be something different about the way cells regulate the cell cycle in this phase. 

Cells in the Bvg- phase could be shorter and have lower size thresholds that must be 

reached before division occurs, or they could be the same size as Bvg+ cells but grow 

quicker to reach the thresholds that trigger division. Furthermore metabolite analysis 

reveals that the Bvg+ phase consumes more carbon source to produce less biomass, 

which is indicative of carbon being lost during metabolism, probably during the TCA 

cycle as carbon dioxide. If the TCA cycle is more active in the Bvg+ phase this 

explains the both why glutamate is consumed for less biomass and why less acetyl-

CoA is available for synthesis of PHB. The reasons why the TCA cycle would be 

more active in the Bvg+ phase are not clear but this scenario indicates synthesis of 

different molecules during growth that is dependent on Bvg phase. 
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Chapter 4- Different genes are essential for growth of Bordetella 
pertussis dependent on Bvg phase 
 

4.0.1 The advent of functional genomics 
The advent of genome sequencing has opened up numerous avenues for functional 

genomic studies, by which it is meant high-throughput, genomics-based techniques 

aimed at gaining insight into the biology of an organism. With the availability of 

Illumina sequencing providing a fast and cheap way to sequence bacterial genomes, 

the bottleneck to understanding more about the biology of an organism has become 

gene function studies, i.e. it is possible by genome sequencing to know all of the 

possible genes of an organism, but not which are expressed or when and what their 

function is. The answers to these questions still require in vitro or in vivo functional 

studies, traditionally performed by the construction of knockout mutants, 

characterising a phenotype, and complementing the mutant with the functional gene. 

These traditional phenotypic characterisations of mutants, while fundamental, are not 

high-throughput, and tend to be time consuming. 

 To provide a resource for gene function studies, a systematic set of knockout 

mutants has been made in the model organism E. coli K12. The study was not high-

throughput and was a large scale project, but nevertheless was able to provide 

information on gene essentiality of the organism, since 303 genes were unable to be 

disrupted, and designated candidate essential genes. The collection of mutants was 

named the Keio collection and has been made available for many gene function 

studies since, including the comparison of gene essentiality defined by computational 

prediction and experimental verification [153, 154]. 

 

4.0.2 TraDIS studies 
Since then, the development of high-throughput functional studies has provided a way 

to look at the essentiality of all of the genes in the genome of an organism in one 

experiment. A technique was developed, named TraDIS (TRAnsposon Directed 

Insertion Sequencing), which involved the generation of an estimated 1.1 million 

transposon mutants of Salmonella enterica Typhi and the mapping of 370 000 

individual insertion sites by sequencing [155]. The resolution of such a screen, 

involving an insertion roughly every 13 base pairs meant that every gene in the 

genome could be individually assayed simultaneously for essentiality, since insertions 
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in regions of the chromosome that are essential for growth are lethal and mutants for 

these genes will not be present in the mutant library. Such a screen can reveal much, 

including the essentiality of each gene, and due to the semi-quantitative nature of the 

screen, can provide information about whether loss of a gene is advantageous or 

disadvantageous. Furthermore, since information provided by the screen is specific to 

a particular growth condition, comparisons can be done to reveal information about 

essentiality of genes in specific growth condition versus a more general one. For 

example, in the study with S. typhi, gene essentiality was described for growth in the 

presence of bile, mimicking host conditions, providing information about genes that 

are essential for growth with and without bile [155]. Such genes are described as 

being conditionally essential, that is essential for growth under one condition but not 

another. This information is valuable in providing insight into the function of specific 

genes. 

 TraDIS has the major advantage of being high-throughput, and goes some way 

to bridging the gap between high-throughput genomic sequencing and lower-

throughput functional studies. A similar method, Tn-seq, has been described which 

uses a saturated transposon library to define the relative fitness difference between 

mutants in different conditions [156]. 

 Since the advent of these techniques, they have been used to predict genes 

involved in intrinsic resistance to aminoglycosides in Pseudomonas aeruginosa [157], 

T6SS effector proteins in Vibrio cholerae [158] and genes that impact sporulation in 

Clostridium difficile [159]. It must be noted that the results of a TraDIS screen are 

reflective of the conditions under which the experiment was carried out, and genes 

that are designated essential in one TraDIS experiment may not be essential under 

other conditions. That being said, TraDIS can be used to elucidate information about 

genes under conditions that mimic conditions during infection, thus helping to gain 

insight into genes that are responsible for survival during different stages of infection 

as well as changes in fitness that accompany mutations in certain genes. To this end 

TraDIS has been used to identify genes involved in intracellular survival of 

Burkholderia pseudomallei [160], genes involved in survival in a mouse model for 

Acinetobacter baumanii [161], and genes that were involved in infection of a mouse 

model for Salmonella enterica Typhimurium [162]. Thus TraDIS is a powerful tool 

for providing phenotypic data for genomes, including new candidate genes involved 

in antibiotic resistance, virulence, and growth and survival. 
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4.0.3 Overview of TraDIS methodology 
The Tn-seq method uses a Himar I Mariner transposon, with recognition sites for the 

type II restriction endonuclease MmeI incorporated. This enzyme makes a 2 base pair 

staggered cut 20 base pairs downstream from the recognition site. When DNA from a 

transposon mutant library is cut the fragments contain the transposon ends plus 16 

base pairs of flanking genomic DNA, which through DNA sequencing can be used to 

determine the location of the transposon. Furthermore the 2bp overhangs facilitate the 

ligation of an adapter. High-throughput sequencing is used to determine the flanking 

16bp flanking sequence, and thus the location in the genome in which the transposon 

insertion occurred. TraDIS is a very similar method, but any transposon can be used, 

and without the restriction site, giving the advantage to being active in a range of 

species. Generally the Tn5 transposon is used. The procedure contains more steps 

than Tn-seq, including a shearing step [163, 164]. 

 The number of sequence reads corresponding to a particular insertion is 

proportional to the frequency of that insertion mutant in the pool. Insertion index can 

be calculated by normalising the number of insertions for a given gene by the gene 

length (since the longer the gene the more insertions would be expected). If the 

distribution of the insertion indices is plotted a bimodal distribution is obtained where 

essential genes have an insertion index of 0. Likelihood ratios (LR) can be calculated 

based on the distribution and essential genes can be identified from these by setting 

cut-offs [155, 164]. Typically, a gene with a log2-LR of less than -2 (meaning that a 

gene is four times more likely to be essential than nonessential) is designated 

essential. 

With respect to comparing differences between two different libraries exposed 

to different conditions, there are three potential outcomes that could occur with 

respect to a particular gene following the selection event of the mutant library. The 

first is that the frequency with which a particular mutant appears in each library is the 

same, which would indicate that the gene is neutral with regards to fitness and that 

knocking out the gene does not have an effect on fitness. The second is that the 

frequency with which the mutant is obtained is decreased in one condition over the 

other, indicating that the gene is advantageous in this condition. The final possible 

outcome is that the mutant does not appear in the population of mutants in one of the 

conditions indicating that the gene is essential for growth under this condition but not 

the other and the gene is a conditionally essential gene. In practice a large range of 
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fitness changes are seen with regard to all genes in a TraDIS experiment, but high-

throughput sequencing is sensitive enough to detect changes in fitness that affect the 

growth rate by as little as 5% [163]. 

 

4.1 Results 

 

4.1.1 TraDIS reveals information about biology of B. pertussis 
TraDIS was performed for BP536 growth on charcoal agar under both Bvg+ and Bvg- 

phase conditions, recovering transposon mutants in both Bvg phases. Mutants from 

each phase were pooled and genomic DNA extracted and sequenced to find the 

location of the transposon. 

 300,581 and 316,281 unique insertion sites were identified in the Bvg+ and 

Bvg- phases respectively, corresponding to an average of one insertion every 13.6 and 

12.9 bp across the genome of B. pertussis. This provides a very high-resolution 

transposon library. Calculating the gene insertion index makes comparison between 

genes possible and is done by normalising the number of insertion sites in a gene for 

the gene length. When the gene insertion indices are plotted the distribution is 

bimodal, with essential genes at 0. Genes that had a log2-likelihood ratio (log2-LR) of 

less than -2 were taken to be essential, thus genes with a log2-LR greater than -2 were 

designated non-essential. 

 Performing TraDIS in two different conditions, Bvg+ and Bvg- conditions, 

provides information about genes that are essential for growth in both Bvg conditions 

and therefore genes that are only essential for growth in one Bvg phase, called 

conditionally essential. Ambiguous genes are described, which are genes that cannot 

with confidence be called essential or non-essential. Finally, fitness affected genes are 

described, which are genes that have a significantly greater fitness cost between Bvg 

phases (i.e. the frequency at which a mutant is seen is different between the two 

phases). 

396 genes have been designated essential for growth on charcoal agar at 37°C. 

A further 19 genes are also essential but only for Bvg+ phase growth, while a further 

79 gene are essential only for Bvg- phase growth. These genes are referred to as 

conditionally essential because they are essential for growth based on certain 

conditions, in this case activity of the Bvg two-component system. 
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Many of the essential genes are involved in major cellular processes. For 

example, of the eight genes making up the DNA polymerase III holoenzyme, all but 

two are essential. BP2022 is not essential, and dnaQ, coding for the epsilon chain, is 

essential only in the Bvg- phase. Genes for 19 aminoacyl-tRNA synthetases were also 

designated essential (a gene for asparaginyl-tRNA synthetase was unable to be 

identified). Genes involved in DNA maintenance or repair are also designated as 

essential and include gyrA and gyrB, ligA, and parC, though parE is only essential in 

the Bvg- phase. Genes in areas of interest, such as metabolism and peptidoglycan 

biosynthesis, which are pertinent to this study, are discussed. 

 

4.1.2 Bvg: Conditionally essential genes 
TraDIS was performed with selection in the Bvg+ and Bvg- phases. A total of 396 

genes are essential for growth of BP536 regardless of Bvg phase. A further 19 genes 

are essential for growth only in the Bvg+ phase and a further 79 genes are essential 

for growth only in the Bvg- phase. These genes are called conditionally essential 

because they are essential only in one condition or another. 

The 19 genes that are conditionally essential for growth in the Bvg+ phase 

include genes involved in cell division and DNA repair. ParA is a chromosome 

partitioning protein, while ruvA, ruvB and ruvC are involved in resolving Holliday 

junctions. Other genes essential only in the Bvg+ phase are the uridylyltransferase 

glnD, which is involved in sensing the nitrogen status of the cell, and ribH, which is 

involved in riboflavin metabolism. The sigma factor sigE is also essential only in the 

Bvg+ phase, as was the tex gene involved in regulation of toxins, previously shown to 

be essential [165].  The tex gene was so called because of its perceived function in 

toxin expression and was speculated to have a role in transcription. Of the 19 genes 

that are essential only in the Bvg+ phase, 9 were unable to be assigned a function 

based on amino acid homology to other proteins. Thus the existence of genes that are 

conditionally essential for growth dependent on Bvg phase reveals differences in 

physiology between the two Bvg phases. Conditionally essential genes are displayed 

in table 5. 
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Function Gene 

Nitrogen metabolism (sensing) glnD 

Cell division parA 

Riboflavin metabolism ribH 

DNA repair ruvA, ruvB, ruvC 

Transcription sigE, tex 

Translation infA, rnpA 

Unknown BP0183, BP0184, BP0953, BP1296, 

BP2197, BP3016, BP3148, BP3151, 

BP3819 

 

Function Gene 

Amino acid 

biosynthesis 

argC, aroA, aroC, panD, hisA, hisB, hisH, hisI 

Intermediary 

metabolism 

odhL 

LPS biosynthesis bplF 

Cell wall synthesis dadX, mrdA, mrdB, mreB, mreC, mreD 

Sugars metabolism pgm 

DNA replication dnaQ, parE, recG 

DNA repair ung, dksA 

Cell division ftsY, minE 
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Translation ksgA, rbfA, rplK, rpmB, rpmF, rpmH, rpsL, efp, rmsH (mraW 

BP3030), BP2689 

Lipoate 

metabolism 

lipA, lipB 

Energy metabolism nuoA, rubA, sdhA, sdhB, sdhC, sdhD, BP2359 

Transport ompA, secE, BP2338 

Carbohydrate 

metabolism 

rfbB, BP0693, BP1500, BP3403 

Transcription rpoZ, BP0991, BP1814 

Chemotaxis tsr 

Protein 

modification 

lgt, ptpA 

Unknown BP0035, BP0102, BP0163, BP0240, BP0247, BP0706, 

BP1127, BP1245, BP1413, BP1721, BP1837, BP1903, 

BP1907, BP2011, BP2489, BP2799, BP2956, BP3127, 

BP3128, BP3341, BP3345, BP3390, BP3488 

Table 5- Genes that are conditionally essential for growth on charcoal agar in the 
Bvg+ phase (top) and Bvg- phase (bottom). Function refers to a broad pathway that 
these genes are thought to be involved in. Genes in bold refer to genes also designated 
as ambiguous in the other phase meaning that these genes, while designated 
conditionally essential based on TraDIS data may actually be essential in both phases. 

 

Genes that are conditionally essential for growth are presented in table 5. One of the 

most striking things about the genes conditionally essential only in the Bvg- phase is 

that an entire operon, mreBCDAmrdAB, containing genes involved in cell shape and 

wall maintenance is essential only in this phase. It has been shown previously that 

some of these genes are essential for growth in E. coli, under normal conditions but 

that mutants can grow in certain conditions, for example during slower growth in 

minimal media [166]. 
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There are a number of metabolic genes that are essential for growth only in the 

Bvg- phase including argC, panD, aroA, aroC, and odhL. argC catalyses the third 

step in the synthesis of arginine from glutamate. It is not clear how this gene, 

performing one-step in a linear pathway can be differentially essential while other 

genes are not, although there may be redundancy amongst some of the steps, for 

example argJ and argA catalyse the same reaction. panD catalyses the conversion of 

L-aspartate to β-alanine, in the pathway of CoA biosynthesis. All other genes 

involved in other steps of this pathway are essential in both Bvg phases. aroA and 

aroC are involved in subsequent steps in the formation of chorismate, a precursor in 

the synthesis of phenylalanine, tryptophan and tyrosine. Most other genes involved in 

this pathway are non-essential in both Bvg phases, although aroQ is essential in both 

phases, and pheA, which catalyses the first step in synthesising phenylalanine from 

chorismate has significantly less insertions in the Bvg- phase. The reasons why 

different parts of a pathway are differentially essential are not clear, although it 

suggests that there are alternative ways of forming these precursors, or alternative 

ways of synthesising or obtaining these amino acids. 

Another metabolic gene, odhL forms a component of the 2-oxoglutarate 

dehydrogenase involved in the TCA cycle, specifically forming NADH from NAD+ 

during this reaction. This may point to more of a reliance on maintaining NADH 

levels in the Bvg- phase. 

Of the 19 genes that are essential only in the Bvg+ phase 6 are ambiguous in 

the Bvg- phase, and of the 79 that are essential only in the Bvg- phase 18 are 

ambiguous in the Bvg+ phase. This provides a caveat with the TraDIS method 

whereby a small number of genes with a very small number of insertions aren’t 

strictly identified as essential, but for which in laboratory settings it may be extremely 

difficult to isolate a mutant. Some of these genes that are essential in one phase and 

are ambiguous in the other (identified by bold typeface in table 5) could be essential 

in both phases and not differentially essential as suggested. That said there are still a 

number of genes that are truly differentially essential in both phases. 

 

4.1.3 Electron Transport Chain 
B. pertussis has a well-defined metabolism. It is not able to grow anaerobically and 

uses oxygen as sole terminal electron acceptor [167]. The electron transport chain 
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generates a proton motive force, which is used to generate ATP, and thus it would be 

expected that components of this process are essential for cell growth. The predicted 

electron transport chain is presented in figure 19. 

  

 
Figure 19– The predicted electron transport chain of B. pertussis. Movement of 
electrons is shown by curly arrows. Briefly, the NADH dehydrogenase transfers an 
electron from NADH to ubiquinone, causing its reduction to ubiquinol. Succinate 
dehydrogenase also reduces ubiquinone, but with an electron liberated during the 
oxidation of succinate to fumarate. Ubiquinol can be oxidised back to ubiquinone, 
transferring an electron to cytochrome c by the cytochrome bc1 complex. Cytochrome 
c is then oxidised by the cytochrome c oxidase, reducing oxygen to water as the 
terminal electron acceptor. Alternatively, the cytochrome bo complex or the 
cytochrome bd complex can both couple the oxidation of ubiquinol to the reduction of 
water directly [168]. 

 

The electron transport chain provides protons to the PMF for use by the ATP synthase 

in the synthesis of ATP. It is no surprise to find that seven genes that code for the 

ATP synthase are essential. What is perhaps surprising though is that atpC, coding for 

the epsilon chain of the enzyme complex, is not essential. 

Similarly, of the fourteen genes coding for NADH dehydrogenase, the first 

complex in the electron transport chain, thirteen are essential, with nuoA, coding for 

chain 7, being non-essential. These are the only parts of the electron transport chain 

that are essential. The four genes coding for succinate dehydrogenase, sdhABCD, the 

only enzyme to take part in both the electron transport chain and the TCA cycle, are 

essential only in the Bvg- phase. The genes coding for cytochrome c reductase, 
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petABC, are non-essential but mutants are more fitness affected in the Bvg- phase, 

defined as there being statistically less reads recovered from the Bvg- phase than 

Bvg+ for this gene. Furthermore genes coding for cytochrome c oxidase are non-

essential for growth, as are the genes coding for the cytochrome bd complex and the 

cytochrome bo complex. 

 

4.1.4 Glutamate metabolism 
Glutamate as sole carbon source can support growth [115] and is the basis for growth 

in liquid Stainer-Schotle broth [117]. Thus B. pertussis must be able to synthesis all 

cell components from glutamate, and it stands to reason that glutamate metabolism 

must be at the centre of B. pertussis metabolism.  

 

 
Figure 20– Metabolism of glutamate in B. pertussis. The various fates of glutamate 
in B. pertussis are shown including how pathways feed into the citric acid (TCA) 
cycle and amino sugars metabolism. Genes responsible for reactions are shown in 
italics. 

 
Glutamate metabolic pathways are shown in figure 20. There are four genes involved 

in glutamate metabolism that are essential for growth on charcoal agar, glnA, glmS, 

carA and carB. glnA metabolises L-glutamate to L-glutamine, while glmS metabolises 

glutamine to D-glucosamine-6-P which is a precursor of aminosugars. carA and carB 

metabolise L-glutamine to carbomoyl-phosphate and this is used to feed into 

pyrimidine and arginine synthesis pathways. It might have been expected that more 
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genes in this immediate pathway were essential, though the conditions of growth in 

which the TraDIS experiment was undertaken was not with glutamate as the sole 

carbon source as it was not possible to obtain single colonies on a defined agar 

medium. Charcoal agar is a complex medium and it is likely that in this condition B. 

pertussis metabolises a variety of sources of carbon. However, glutamate may still be 

a main source of carbon and it is still reasonable to suggest that glutamate metabolic 

pathways would have evolved to be at the centre of metabolism in B. pertussis, since 

the bacterium is able to make all components of the cell from glutamate, and other 

carbon sources alone support little or no growth. There may also be redundancy 

covering parts of this pathway, for example BP536 has two versions of gdhA, 

meaning that a mutation in one gene wouldn’t necessarily lead to a loss of viability. 

 

4.1.5 TCA cycle 
The TCA cycle is a central part of metabolism. From here intermediates are made that 

contribute to the synthesis of amino acids, aminosugars for making the cell wall and is 

a source of reducing power for feeding into the electron transport chain. It was 

assumed for many years that B. pertussis did not have a fully functional TCA cycle, 

but that was later disproved. Not only was it shown that all of the genes were present, 

but that the genes thought to be missing were expressed and produced functional 

enzymes [123]. 
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Figure 21– The essentiality of the TCA cycle of B. pertussis. Genes are labelled 
either E to denote that gene is essential, or NE to denote that gene is non-essential. E- 
denotes that genes sdhA-D are essential only in the Bvg- phase. 

  

The majority of genes coding for enzymes of the TCA cycle are essential in B. 

pertussis, including mdh, fumC, sucCD, odhAB, icd, gltA, aceEF. The genes coding 

for succinate dehydrogenase (sdhABCD) are essential only in the Bvg- phase. The few 

nonessential genes include the genes coding for aconitate hydratase (acnAB) and the 

glyoxylate bypass (aceA and glcB). 

The B. pertussis genome contains two genes annotated as aceE, BP0993 and 

BP1121, these genes both code for the same subunit of pyruvate dehydrogenase, and 

while the former is essential, while the latter is not. The protein sequences contain 

55% amino acid identity to one another, which may indicate that the essential gene, 

BP0993, has optimal activity and the bacteria cannot tolerate losing it, while the loss 

of BP1121 can be tolerated because it has suboptimal activity and the cells can 
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continue with only BP0993. The genome of B. pertussis contains three genes 

annotated maeB. Two, BP1064 and BP3456, are essential while one, BP1120, is non-

essential. It’s not clear why two out of three genes that apparently perform the same 

function are essential, although BP1120 shares only 64% identity at amino acid level 

with the other two genes, which share 97% identity with each other, so it could be 

functionally different. 

 

4.1.6 Peptidoglycan synthesis 
Peptidoglycan is a key component of the cell wall of bacteria, and gives cells shape 

and rigidity. It would be expected that enzymes involved in making peptidoglycan are 

essential for growth, since preventing synthesis of the cell wall, with use of some 

antibiotics for example, generally leads to cell death. 

 The majority of the genes of B. pertussis that are annotated as functioning as 

part of the peptidoglycan synthesis pathway are essential, including murABCDE, 

ddlB, murX, muG, BP2771 (a flipase), and ftsI. Of these genes only ftsI is a PBP, 

which catalyse essential crosslinking reactions during peptidoglycan synthesis and are 

the targets of the β-lactam class of antibiotics, although there are up to 9 PBPs coded 

for in the B. pertussis genome, which could provide redundancy. A further two genes 

are essential only in the Bvg- phase, mrdA and BP0102, both of which are PBPs 

(PBP2 and PBP6 respectively). Another PBP, BP3655 (PBP1A) is more fitness 

affected in the Bvg+ phase than in the Bvg-.  4 PBPs are nonessential in both Bvg 

phases; BP0905, BP2754, BP0326 and BP1051. 

Although bacteria code for many PBPs, they play slightly different roles 

within the cell. The differing degrees of essentiality of PBPs dependent on Bvg phase 

may reflect the different biological requirements that cells have in the different Bvg 

phases. PBP2 is key for peptidoglycan synthesis for elongation of the cell [169, 170] 

and it may be that this is a more important process for cells in the Bvg- phase than in 

the Bvg+ phase. Alternatively these data may suggest that the peptidoglycan 

synthesised in the two Bvg phases is chemically different and therefore tolerates the 

loss of specific PBPs differently. 
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4.1.7 Fitness affected 
Mutations of some non-essential genes will lead to a fitness cost. TraDIS is a 

quantitative tool, since it provides a measure of how many insertions were recovered 

for each gene and differences between two libraries selected in different conditions. 

Fitness affected genes are defined as genes that have a significantly different (p<0.05) 

number of insertions dependent on Bvg+ and Bvg- phase growth. This means that 

mutants are significantly less fit in one phase than another. Overall there are 50 genes 

more affected for fitness in the Bvg+ phase and 51 genes more affected for fitness in 

the Bvg- phase. These are depicted in table 6. 

 

Function Gene 

Redox homeostasis trxA, trxC, mrsB 

Protein folding ppiD 

Capsule biosynthesis tviD, BP1619, BP1620, kpsM, kpsT, kpsE, wza 

Folate metabolism folD 

Ion transport BP2806 

Cell division ftsB, BP3563, BP3822 

Amino acid biosynthesis soxB 

Nitrogen metabolism 

(sensing) 

glnD 

DNA replication dps, bpH1 

Transcription BP0667, tex, bvgA 

Translation BP1244 
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Unknown BP0062, BP0063, BP0063A, BP0065, BP0066, 

BP0076, BP0184, BP1296, BP1426, BP1569, 

BP1769, BP2197, BP2438, BP2519, BP2523, 

BP2846, pcp, BP3143, BP3145, BP3151, BP3277, 

BP3402, BP3467, BP3561, BP3562, BP3819 

 

Function Gene 

Amino acid 
biosynthesis 

pheA, metE 

Phytoene synthesis BP1219 

Folate metabolism BP3066 

Cell wall synthesis ampG, BP0102, mreB, mreC, mreD, mrdA, mrdB, 
dadX, BP3214, BP3268 

Sugars metabolism rfbC 

Nucleotide 
metabolism 

dut, pyrF 

DNA repair ung 

Cell division ftsE, BP3833 

Translation typA, ksgA 

Energy metabolism petA, petB, petC 

Ion transport corC 

Amino acid transport BP3428 

Transcription BP1814, BP2308, metR, BP2720, BP3865 

Unknown BP0205, BP0608, BP0690, BP0900, BP0952, BP1061, 
BP1127, BP1413, BP1582, BP1903, BP2330, BP2770, 
BP2956, BP3128, BP3347, BP3488, BP3752, BP3762, 
BP3867 

Table 6– Fitness affected genes in the Bvg+ (top) and Bvg- phase (bottom). Genes 
in bold are also essential in that phase. 

 
In the Bvg+ phase a mutant of bvgA, the response regulator of the Bvg system Is 

fitness effected in the Bvg+ phase. This means that this mutant of bvgA is less fit in 

the Bvg+ phase than in the Bvg-. In the Bvg- phase BvgS is not signalling to BvgA, 
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so it would be expected that a mutant of bvgA would behave like other strains in this 

condition. However, in the Bvg+ phase BvgS is active and phosphorylating BvgA, 

and the other mutants on the plate would be producing virulence factors, while a bvgA 

mutant would not be. The Bvg regulon is large and BvgA is required for the proper 

expression of many genes, so it is easy to see that a mutant of this transcription factor 

would be affected for fitness. Furthermore, transcription of the bvgA gene is repressed 

in the Bvg- phase so it might be expected that a bvgA mutant would be less fit in the 

Bvg+ phase than in the Bvg-, since it is in this phase that it is more highly expressed. 

There are mutants of genes involved in the synthesis of the capsule that are 

fitness affected in the Bvg+ phase, which is surprising as these genes are known to be 

maximally expressed in the Bvg- phase [171]. It has been shown previously that 

mutations in capsule synthesis genes, specifically kpsT and kpsM, affect expression of 

virulence genes, possibly through an indirect interaction with BvgS [172]. This 

observation, together with the one that mutants of bvgA are fitness affected in the 

Bvg+ phase, suggest that impairing expression of virulence genes in the Bvg+ phase 

affects fitness when in competition with other mutants. 

 Different genes involved in cell division are fitness affected, suggesting 

different ways of regulating cell division dependent on Bvg phase, while mutants of 

genes involved in metabolism are also fitness affected. soxB, involved in the 

conversion of sarcosine to glycine and mutants are fitness affected in the Bvg+ phase, 

while metE and pheA are involved in methionine and phenylalanine biosynthesis 

respectively and mutants are fitness affected in the Bvg- phase. The genes petABC, 

coding for the cytochrome bc1 complex, are fitness affected in the Bvg- phase, 

providing evidence for a difference in the way that the electron transport chain 

operates depending on Bvg phase, possibly the Bvg- phase catalyses oxidation of 

ubiquinol via this cytochrome complex over others. The observation of different 

metabolic genes with different degrees of essentiality with respect to Bvg phase is 

interesting and may reflect the different requirements that growth in each phase has. 

More metabolic genes are essential or fitness affected in the Bvg- phase, perhaps 

reflecting greater constrains of Bvg- phase growth or a more varied metabolism. 
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4.1.8 mreB is conditionally essential for growth on solid media 
Transposon-directed Insertion Sequencing (TraDIS) was used to identify genes 

essential for growth of B. pertussis in both the Bvg+ and the Bvg- phases under 

standard lab conditions on charcoal agar. The data showed that the mreB gene was 

essential for growth in the Bvg- phase but not in the Bvg+ phase. An mreB mutant 

was made and used to validate the result from the TraDIS that this mutant is 

conditionally viable depending on Bvg phase. An mreB mutant was constructed. 

Briefly, PCR was performed using the primers listed in Chapter 2 obtain the two 

fragments mreB right flanking region, mreB left flanking region. The pCR8mreB 

vector constructed by golden gate contained an insert with roughly 500bp of the 

sequence upstream and 500bp downstream of the mreB gene either side of a 

kanamycin cassette. A Gateway reaction was performed to recombine this insert into 

pss4940, and a conjugation and selection was performed as described above. 

Selection on kanamycin ensures that the second recombination event preferentially 

occurs to recombine the wild-type fragment onto the chromosome along with the 

kanamycin cassette. Clones were analysed by PCR for presence of the knockout 

construct and absence of the wild-type mreB gene. The viability of an mreB mutant 

under Bvg+ and Bvg- phases was tested. Data is shown in figures 22 and 23. 
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Figure 22- Viability of the mreB mutant in Bvg+ and Bvg- conditions. BP536 had 
a similar CFU count after 7 days regardless of Bvg phase. The mreB mutant had a 
similar viability to BP536 in the Bvg+ phase but no colonies were recovered when 
Bvg- phase was induced. Data is an average of three technical replicates; error shows 
the standard error of the mean. 
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Figure 23- Photos of (clockwise from top left) charcoal agar with BP536 Bvg+, 
BP536 Bvg-, mreB mutant Bvg-, mreB mutant Bvg+. Similar numbers of bacterial 
colonies grew in all cases except for the mreB mutant on plates supplemented with 
50mM magnesium sulphate, which showed no growth. 

 

There was no difference between the number of BP536 colonies recovered under 

Bvg+ and Bvg- conditions. Furthermore the number and size of colonies recovered 

for the mutant on charcoal agar in Bvg+ conditions was not different from the wild-

type demonstrating that mreB is not required for Bvg+ phase growth on charcoal agar. 

When the mutant was plated onto charcoal agar containing magnesium 

sulphate to induce the Bvg- phase no colonies were recovered demonstrating that the 
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mreB gene is essential for growth of BP536 on charcoal agar in the Bvg- phase and 

validating the observation made by the TraDIS data. 

This experiment was repeated with Bordet-Gengou agar containing 10% 

defibrinated horse blood and the same results were observed demonstrating that mreB 

is essential for growth of BP536 on these two agars in the Bvg- phase. 

 

4.1.9 Preliminary growth of the mreB mutant 
To investigate if mreB is essential for growth in liquid broth, the mutant and BP536 

were grown in SS broth but only weak growth was observed for the mutant. The 

observation was made that the mreB mutant was viable in SS broth, but growth was 

dependent on inclusion of heptakis in the medium (figure 24). 

 

 
Figure 24– Growth of BP536 and two different clones of the mreB mutant 
(mreB1 and mreB2) in SS broth with and without heptakis. Strains were grown in 
conical centrifuge tubes with samples for measurements of optical density were taken 
over time. Two different media were used, SS medium with and without heptakis. 
“Hep” denotes the cultures to which heptakis was included while the other cultures 
were grown in SS medium without heptakis. 

 
Addition of heptakis enhanced the growth of BP536, causing it to grow faster in early 

stages of growth, but where growth was obtained for the mreB mutant cultures there 

was no growth defect seen relative to BP536. 

 

0	

0.5	

1	

1.5	

2	

2.5	

0	 21	 27	 44	 51	 73	

O
D
60
0	

Time	(h)	

Growth	of	BP536	and	mreB	mutant	in	SS	with	and	
without	heptakis	

BP536	

BP536	Hep	

mreB1	

mreB1	Hep	

mreB2	

mreB2	Hep	



	 99	

4.1.10 mreB is not required for growth in SS broth 
A growth assay was performed in a 96-well plate in SS broth containing 1g/l heptakis 

and growth was observed. When an OD600 of 1.0 was reached 50µl was removed from 

each culture, half of the cultures had 50µl of fresh culture added and half had 50µl of 

fresh culture added which contained magnesium sulphate to modulate to Bvg- 

conditions. Growth of the cultures is displayed in figure 25. 

 

 
Figure 25– Growth of wild-type BP536 and mreB knockout mutant in SS broth 
containing heptakis. +: cultures grown under Bvg+ conditions –: cultures grown 
under Bvg- conditions. Growth shown is an average of ten cultures in the same 96-
well plate. Error bars show standard deviation. 

 

Growth of all of the cultures was very similar until modulation was induced, revealing 

that mreB is not required for growth in SS broth and loss of mreB does not give an 

observable growth defect, at least during early growth. 

 Following modulation, all of the cultures continued to grow but Bvg- cultures 

grew to a higher cell density. This happened for both BP536 and mreB mutant Bvg- 

cultures. 

 Therefore the mreB gene was not required for growth in SS broth with 

heptakis, although growth was poor when heptakis was absent from the medium. 

Growth of the mutant was unaffected by loss of the gene in either Bvg+ or Bvg- phase 

when compared to BP536. The observation from TraDIS that mreB is essential for 

growth in the Bvg- phase is true for the solid media tested but not liquid medium. 

This is similar to an observation reported previously where mutations of mre in 
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Salmonella typhimurium were lethal on solid media but not liquid [173]. The 

difference, however, in B. pertussis is that the mreB mutant is viable when grown on 

solid media in the Bvg+. In this condition growth is purely conditional depending on 

activity of the Bvg two-component system and not type of medium used or a 

compensatory mutation. To my knowledge this is the first instance in which growth of 

an mreB mutant is dependent on activity of a two-component system. 

 

4.1.11 mreB is required for growth of rod-shaped cells 
mreB was previously referred to as a rod-determining gene as loss of this gene 

resulted in loss of the rod shape and growth of spherical cells which would die. MreB 

is now thought of as a bacterial homologue of actin with varying roles in the cell 

including directing cell synthesis along the axes and providing some spatial 

partitioning to the cell [174]. 

 BP536 and the mreB mutant were grown on charcoal agar and imaged by 

TEM and a shape difference was observed (figure 26). 
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Figure 26– BP536 (top) and mreB mutant (bottom) imaged by TEM. All scale 
bars are 1µm. BP536 cells are rod-shaped, while the mreB mutant cells are spherical. 
There are more white spots observed in the cells of the mreB whilst mutant samples 
frequently showed more cell debris than BP536. 

 

BP536 cells were rod-shaped and small, while the mutant cells were larger and 

spherical. The mutant cells were less uniform in size, and had a less defined cell 

envelope. More of what may be lipids inside the cells were evident in the mutant as 

well as cell debris, which is indicative of unhealthy cells. Measurements of the length 

and width of cells is shown in figure 27. 
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Figure 27- Average widths and lengths of BP536 and mreB mutant imaged by 
TEM. Cells were chosen at random and measured using ImageJ. Error shown is 
standard error of the mean. n=56 (BP536), n=20 (mreB mutant) 

 

The average width of BP536 cells was 0.387µm, while the width of mreB mutant cells 

was 0.706µm, which was significantly different (p=4.212x10-12). The average length 

of BP536 cells was 0.694µm and the average length of mreB mutant cells was 

0.950µm, this was also significantly different (p=2.470x10-6).  

 The average volume of the cells was also measured, approximating the 

volume by measuring it as that of a cylinder (shown in figure 28). 
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Figure 28- Average volumes of BP536 and mreB mutant imaged by TEM. Data 
was calculated on the assumption that the cells are cylindrical using the formula 
v=πr2h where r is the radius (taken to be half the width of the cell) and h is the height 
(taken to be the length). Error shown is standard deviation of the mean. n=56 
(BP536), n=20 (mreB mutant) 

 

The average volume of BP536 cells was 0.0858µm3 while the average volume of the 

mreB mutant cells was 0.391µm3, which was significantly larger (p=0.00345). 

Therefore without MreB cells grow bigger in both dimensions (width and 

length), which means cells also have a larger volume than BP536 cells. This in in 

agreement with the literature for other bacterial species which says that cells without 

MreB grow in an unregulated fashion, meaning that size and shape are no longer 

uniform, an observation made here for B. pertussis. The difference is that in other 

bacteria growth was obtained only with a secondary mutation or using minimal 

media. An mreB mutant of B. pertussis is viable in standard conditions without a 

secondary mutant. The mutation only becomes lethal on modulation to the Bvg- 

phase. 

 

4.1.12 Bvg state of BP536 affects the MIC of ampicillin on charcoal agar 
The products of the operon mreBCDmrdAB are involved in maintenance of the 

peptidoglycan cell wall; indeed MrdA is a penicillin-binding protein 2, which is 

particularly important in synthesising the cell wall along the cell axes. The MIC for 

ampicillin, an inhibitor of PBPs, was investigated to see if Bvg- phase B. pertussis has 
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different sensitivities to the disruption of the process of cell wall synthesis. The MIC 

of B. pertussis in Bvg+ phase was around 2.5 times greater than in the Bvg- phase 

(0.125µg/ml and 0.047µg/ml respectively). 

 

4.1.13 Bordetella pertussis has different membrane potential dependent on Bvg 
phase- use of a petABC mutant 
The TraDIS data show differences in essentiality of different parts of the electron 

transport chain with respect to Bvg phase. For example, the genes encoding succinate 

dehydrogenase (sdhABCD) are essential in the Bvg- phase but not in the Bvg+. 

petABC, the operon coding for ubiquinol-cytochrome c reductase is nonessential in 

both Bvg phases but there were significantly less insertions found in the Bvg- phase 

than in the Bvg+. This operon is designated “fitness affected” because the mutation of 

these genes creates a greater fitness cost in one Bvg phase than another, in this case 

more affected in the Bvg- phase than the Bvg+.  

A mutant lacking the petABC operon was constructed in order to validate the 

TraDIS data. Briefly, PCR was used to obtain petABC right flanking region and 

petABC left flanking region using the primers listed in Chapter 2. The process was 

then similar to that used to generate the mreB mutant, but a kanamycin cassette was 

not used, meaning that when selecting for the second recombination event there was 

no control over whether clones would revert to the wild-type genotype or recombine 

to make knockout mutants. A number of clones were picked and analysed by PCR to 

determine which clones were knockout mutants. 
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Figure 29– Screenshot of an Artemis plot of insertion sites in and around the pet 
locus for Bvg+ (top graph) and Bvg- (bottom graph) BP536. A snapshot of the 
genome of Tohama I (from which BP536 is derived) is shown with red and green 
spikes representing transposon insertion points. The heights of the spikes are 
proportional to the number of unique insertions recovered at that point in the genome. 
From this it can be seen that there are fewer insertions recovered from mutants of the 
petABC locus grown in the Bvg- phase than in the Bvg+ phase. 

 
Figure 29 shows the differences between the number of insertions (and thus mutants) 

recovered for Bvg+ and Bvg- phase BP536. It can clearly be seen that there were 

fewer mutants recovered in the Bvg- phase meaning that mutants in this phase are 

significantly less fit than mutants in the Bvg+ phase, and the petABC genes all 

appeared in the list of genes statistically more fitness affected in the Bvg- phase. 

 

4.1.14 There is no growth defect of pet mutants compared to BP536 
A deletion of the operon petABC was made as well as a deletion of only the petA gene 

coding for the Fe-S protein of the ubiquinol-cytochrome c reductase. Both mutants 

grew well on charcoal agar in Bvg+ and Bvg- conditions, no differently to BP536. 

 Charcoal agar was the condition under which the TraDIS data was obtained, 

and no obvious growth defect was observed on charcoal agar in either the Bvg+ or 

Bvg- phases. The petABC mutants were assayed for growth in SS broth compared to 

BP536 in both the Bvg+ and Bvg- phases (shown in figure 30). 
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Figure 30- Growth assay of BP536 and petABC mutant strains in Bvg+ and Bvg- 
phases in Bvg+ and Bvg- phases. Each curve is the average of ten replicates. Error 
bars display standard deviation from the average. Growth was obtained in a 96-well 
plate and is measured by observing increase in optical density (OD) over time until 
stationary phase is clearly reached. There is no observable difference in growth 
between the two strains in either Bvg phase. 

 

There was no difference observed between the two strains grown in the Bvg- phase 

except for a slight delay in exit from lag phase for the petABC mutant in both phases. 

What is clear is that the pet mutants are viable in standard B. pertussis liquid broth 

and grow at least as well as BP536. The fitness costs suggested by the TraDIS data 

that come with loss of petABC genes are not apparent when grown on either charcoal 

agar or in SS broth. 

 

4.1.15 Proton motive force (PMF) across the membrane in B. pertussis is 

different depending on Bvg phase 

Data from the TraDIS experiment suggests that there may be a difference in the 

electron transport chain dependent on Bvg phase due to the differences in essentiality 

that are apparent. It is possible that different components of the electron transport 

chain are used differently in different Bvg phases, and transfer of electrons or 

pumping of protons could be different between each phase. The PMF of cultures of 
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BP536 grown in the Bvg+ and Bvg- phases was measured, on two different days, in 

duplicate both times. Data is presented in figure 31. 

 

 

 
Figure 31- Graphs showing the ratio of fluorescence (red/green) of Bvg+ and 
Bvg- cultures of BP536. The two graphs are representative of the two experiments 
done in the same way on different days. Samples treated with DiOC2(3) are shown as 
blue bars, while dissipated (DiOC2(3) + CCCP) samples for each culture are shown as 
red bars. The height of the bars is fluorescence ratio (red/green) in arbitrary units. 
Two biological replicates are shown for each Bvg+ and Bvg- condition for each 
separate experiment.  
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DiOC2(3) exhibits green fluorescence, but at higher concentrations in the cytosol of 

cells the molecules self-associate, and fluorescence shifts to the red end of the 

spectrum. During the assay the assay molecules of DiOC2(3) enter the cell in a 

manner dependent on the PMF. Thus, the ratio of red/green fluorescence is 

proportional to the PMF. Samples treated in the same way but with carbonyl cyandide 

3-chlorophenylhydrazone (CCCP) added are used as a control as CCCP dissipates the 

PMF, allowing elucidation of fluorescence shift that is dependent on PMF. 

Figure 31 shows that the Bvg+ samples have a larger PMF than the Bvg- 

samples. It is clear that while this result is consistent between both experiments 

performed on different days, the values for fluorescence ratio themselves are not. To 

account for day to day variation the ratio Bvg+:Bvg- PMF was calculated for each 

experiment. This was done by subtracting the values for the CCCP controls from 

those of the samples and dividing the Bvg+ fluorometric values by the Bvg- values. 

The four different samples (two Bvg+ and two Bvg-) on one day were from four 

independent cultures the values for the two Bvg+ samples were both divided by each 

of the Bvg- samples to give four values for fold-difference between Bvg+ and Bvg-. 

An average of the four values was calculated. This was done for each experiment 

performed on the two days (figure 32). 
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Figure 32- Average ratio of Bvg+ phase PMF to Bvg- phase PMF. The difference 
between the fluorescence of Bvg+ and Bvg- cultures was calculated for each 
experiment performed on two separate days. This was to look for consistency between 
experiments as experiment 1 and 2 were performed on different days. Error shown is 
standard deviation.  

 

For experiment 1 the Bvg+ samples had an average 1.32 times greater PMF than the 

Bvg- samples, for experiment 2 they were 1.41 times greater. The difference between 

these two experiments was not significant as shown by t test (p=0.052) when all of the 

values for ratio Bvg+:Bvg- across the two days are compared, showing that the fold-

difference between the PMF of Bvg+ and Bvg- samples is consistent between repeats 

of the experiment. 

Taken together these data show that there is a difference between the PMF 

measured across the membrane of BP536 dependent on Bvg phase and that the fold-

difference in PMF is between 1.32 and 1.41 times greater in the Bvg+ phase than the 

Bvg- phase. 

 

4.1.16 PMF across the membrane is different dependent on Bvg in a pet mutant 

but the PMF of the mutant is not significantly different from BP536 

The operon petABC codes for proteins that make up the ubiquinol-cytochrome c 

reductase complex of the respiratory electron transport chain. This complex couples 

transfer of electrons to a cytochrome c oxidase with movement of protons across the 

membrane, contributing to the PMF. It might be expected then that a petABC mutant 
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would generate a lower PMF than BP536. The PMFs of the petABC mutant and 

BP536 grown on charcoal agar in Bvg+ and Bvg- conditions were measured (figure 

33). Charcoal agar was used in this case to mimic the conditions under which the 

TraDIS experiment was performed. 

 

 
Figure 33- Average fluorescence ratio (red/green) of wild-type and petABC 
mutant grown on charcoal agar. Fluorescence ratio (red/green) is measured in 
arbitrary units, with the height of each bar being proportional to the PMF produced in 
cells measured. Averages from 3 biological replicates are shown and values were 
calculated by subtracting the dissipated (CCCP) values from the treated samples and 
calculating the mean of triplicate samples. Error bars are standard error of the mean. 

 

There was a significant difference in PMF between BP536 plate cultures grown in 

Bvg+ and Bvg- phases (12880.33 and 6505, p=0.015) and also for the mutant grown 

in Bvg+ and Bvg- phases (9289 and 4125.67, p=0.026). Also, there was a difference 

between PMF in the BP536 versus the mutant, though this wasn’t significant in the 

Bvg+ phase (12880.33 and 9289, p=0.083) or the Bvg- phase (6505 and 4125.67, 

p=0.141). 

 The higher PMF of Bvg+ phase BP536 compared to Bvg- phase observed in 

SS broth was replicated by growth on charcoal agar, and this difference was also 

observed for the mutant. As noted above, the petABC operon codes for a protein 

complex involved in generating the membrane potential and it is interesting to see that 

in both phases the petABC mutant generates less membrane potential than the wild-

type, though in neither of these phases is this difference significant by t-test. 
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 The original observation from the TraDIS was that mutations in the petABC 

genes affected fitness more in the Bvg- phase than the Bvg+. It is possible that the 

Bvg+:Bvg- ratio of PMF in BP536 is different to that of the mutant, i.e. the PMF of 

the mutant is more affected in one phase than the other. The Bvg+:Bvg- ratios for the 

PMF in BP536 and the petABC mutant were calculated and are shown in figure 34. 

 

 
Figure 34- Average fold-differences between the Bvg+ and Bvg- cultures of 
BP536 and petABC mutant. The fold-difference between fluorescence values 
obtained for cells grown in the Bvg+ and Bvg- phases are shown to discern if there is 
a similar difference between the PMF of cells grown in the Bvg+ and Bvg- phases 
between BP536 and the petABC mutant. Error shown is standard deviation. 

 

For BP536 and petABC mutant samples there were three biological replicates. The 

fluorometric ratio values of the CCCP controls were subtracted from the fluorometric 

ratios of samples. The fold-difference between Bvg+ and Bvg- samples were then 

calculated by dividing the fluorometric value for each Bvg+ sample by each of the 

three Bvg- samples, giving nine values for fold-difference. These nine values were 

averaged giving an average fold-difference of PMF between Bvg+ and Bvg- cultures. 

This was done for BP536 and the petABC mutant. 

The PMF of plate cultures of Bvg+ phase BP536 is on average 2.08 times 

higher than that of Bvg- phase BP536. This is more than the 1.32-1.41-fold difference 

of BP536 grown in SS broth. The PMF of the petABC mutant grown on charcoal agar 

in Bvg+ conditions is 2.31 times higher than when grown on charcoal agar under 
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Bvg- conditions. This was not significantly higher than the 2.08-fold difference seen 

for BP536 (p=0.379). 

 Taken together, these results suggest that BP536 has a 1.32-1.41-fold higher 

PMF when grown in the Bvg+ phase than in the Bvg- phase in SS broth. This larger 

PMF of the Bvg+ phase was also observed when the bacteria were grown on charcoal 

agar, but was measured as 2.08 time greater. The PMF of the petABC mutant was 

lower than the PMF of the wild-type strain in both the Bvg+ and Bvg- phases, but the 

difference was not significant in either condition. The PMF of the mutant was on 

average 2.31-fold higher in the Bvg+ condition, more than the 2.08-fold difference 

seen for the BP536. However, this difference was not significant either suggesting 

that the mutant produces a marginally decreased PMF with respect to wild-type, this 

is decreased by the same amount in both Bvg phases and the PMF is not more 

affected by loss of petABC in one Bvg phase over another. 

 

4.2 Discussion 
 

4.2.1 TraDIS 
TraDIS was carried out on both the Bvg+ and Bvg- phases of B. pertussis, with the 

aim of using gene essentiality predictions to discern novel physiological features of 

the two phases. Different growth phenotypes have been described (see Chapter 3) for 

Bvg+ and Bvg- phase BP536, which show that cells in different Bvg phases are 

metabolically different. Sequencing-based techniques such as TraDIS mean that data 

about the entire genome is gained, and specific genes or pathways can be attributed to 

phenotypic differences seen. Thus, the TraDIS data was used to provide a genetic 

basis to observations described in Chapter 3. 

TraDIS reveals genes that are essential for growth in a particular condition, 

which includes genes for essential metabolic processes, DNA replication, 

transcription, genes for ribosomal maturation and peptidoglycan synthesis. It would 

be interesting to perform TraDIS on cells grown in defined media, so that it is known 

exactly what the cells have to use for growth and therefore everything that they need 

to synthesise. In that case one might expect most genes involved in pathways for 

amino acid biosynthesis, for example, to be essential for growth. However, the 

experiment requires that cells be plated to allow colonies to grow, and the commonly 
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used agar media for growth of B. pertussis are complex media, containing peptone, 

starch and other complex macromolecules. In this case it is probable that cells can use 

substrates in the media to synthesise macromolecules, rather than synthesising all 

building blocks from a single carbon source as in the case of the defined SS medium. 

SS agar would be ideal for performing TraDIS, if not for the failure to isolate single 

colonies on this medium. However, TraDIS still reveals a lot about the biology of the 

organism. There are metabolic genes that are essential for growth on complex media, 

including genes coding for parts of the electron transport chain, the TCA cycle and 

gluconeogenesis. 

 Genes for which mutants are less fit in one Bvg phase than another are 

labelled fitness affected. If there are significantly less read counts for a gene in one 

phase than the other (p value<0.05) this gene is called fitness affected in that phase. 

This label adds an extra layer on top of genes simply being conditionally essential or 

not, since if a mutant of a gene is less fit in one phase over the other this also provides 

biological information about the Bvg phase in question. 

 TraDIS is a quantitative technique in which read count is used to determine 

the “essentiality” of a gene. Cut-offs must be set in order to label a gene as essential, 

or non-essential. Some genes will be on the edge of cut-offs and are designated 

ambiguous. Ambiguous means neither essential nor non-essential, but biologically 

genes have to be one or the other. This is a caveat of TraDIS. Genes that are essential 

in one phase might be ambiguous in the other meaning they may not be truly 

differentially essential but essential in both phases. Conversely this may not be the 

case and the gene may actually be differentially essential. This is one reason why 

specific genes of interest may need to be further validated by making the mutant and 

testing the growth phenotype. Clearly, however, for an experiment dealing with such 

a large number of genes, cut-offs need to be drawn somewhere and at least providing 

some idea of ambiguity gives an idea of the scale of essentiality from completely 

essential to strong fitness cost to non-essential. 

 

4.2.2 TraDIS reveals conditionally essential genes, dependent on Bvg phase 
The main objective of the experiment was to reveal gene that are essential for growth 

in both the Bvg+ and Bvg- phases of B. pertussis. There are 79 genes that are 

essential only in the Bvg- phase, a lot more than the 19 that are essential only in the 
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Bvg+ phase. This reveals something about the growth constraints with respect to Bvg 

phase. In particular that B. pertussis has different sensitivities to the loss of genes 

dependent on Bvg phase. 

There are a number of gene categories assigned to the conditionally essential 

genes, but particular attention has been paid to genes involved in metabolic processes 

or cell growth, including cell wall biosynthesis. Of the genes that are essential for 

growth only in the Bvg- phase there are more involved in pathways of cell wall 

synthesis and energy metabolism (i.e. the electron transport chain) than in the Bvg+. 

This reveals the different essentiality of these processes depending on Bvg phase. 

Since cells in the Bvg- phase divide more often than the Bvg+ cells it is probable that 

they have to grow more quickly to reach the point at which cell division is triggered. 

This would mean that mutants in genes involved in peptidoglycan synthesis, a crucial 

part of cell growth, would be less fit or non-viable. 

There are a number of genes that are involved in the electron transport chain 

that are differentially essential, including all four genes coding for the succinate 

dehydrogenase complex, which is essential only in the Bvg- phase. Furthermore, the 

petABC operon coding for the cytochrome c reductase complex, is more fitness 

affected in the Bvg- phase. This underlines the importance of a fully functional 

electron transport chain in the Bvg- phase. In the Bvg+ phase the only essential 

components are the NADH dehydrogenase and the ATP synthase, while all 

components are essential or fitness affected in the Bvg- phase except the terminal 

oxidases. 

4.2.3 mreB: validation of the TraDIS 
As discussed above, it is desirable to validate observations of particular interest made 

by TraDIS. To this end a mutant of mreB was made and was found to be conditionally 

essential for growth on charcoal agar dependent on Bvg. This validates the TraDIS 

result. To my knowledge this is the first example of a mutant of mreB being 

conditionally viable dependent on activity of a two-component system. 

MreB is a bacterial homologue of actin. It forms filaments of up to 3.4µm long 

with an average width of 75nm. These filaments range in size and are highly dynamic, 

moving around the cell seemingly rapidly assembling and disassembling [175]. MreB 

is involved in maintaining organisation inside the cell, and has been implicated in 

protein transport within the cell [176]. Also, it is linked to the cell wall synthesis 
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machinery, playing a role in the positioning of membrane proteins MreC, MreD and 

RodZ, the loss of any of which has been reported to lead to loss of shape in rod cells 

which become spheroid and die [166, 175]. Thus expression of the mreB gene is 

considered to be essential for growth. The reasons why cells with inadequate levels of 

MreB die have been discussed previously and it has been reported that E. coli cells 

lacking MreB were conditionally viable, that is they grew as small dividing spheres 

on minimal media but growth on complex media produced giant nondividing 

spheroids [166, 177]. The lethality of these mreB mutants could be partially overcome 

by the supply of an overactive form of (p)ppGpp synthase or by increased expression 

of FtsZ, the protein that forms the septal ring. Also, it was also noticed that in the 

mutants there was an extension and invasion of the cellular membrane, possibly 

arising from an excess membrane in the interior of mreB mutants, because the 

mutants synthesised phospholipids at the same rate as the wild-type, but failed to 

adjust for new surface requirements of maintaining growth of larger cells. There was 

an aberrant assembly of FtsZ and MinE on these internal membranes and thus an 

interference with the proper assembly of the septal ring for cell division. 

 Cell death due to loss of expression of mreB is caused by the membrane being 

synthesised at an unchanged rate in spheroid cells, faster than is required. This excess 

membrane forms vesicles in the cytoplasm, which compete for FtsZ, preventing it 

from initiating normal division. This is why overexpressing ftsZ can reverse the 

lethality of loss of MreB [177]. In addition to supplying extra FtsZ, it was found that 

mreB mutants were able to survive and propagate in conditions of slow mass increase, 

either at lower temperatures or on minimal media [166]. Unlike in these systems, B. 

pertussis mreB mutant was differentially essential based on the activity of a two-

component system, Bvg growing on the same complex medium. 

 The observation that the mreB mutant of B. pertussis has no growth defect in 

SS broth is surprising. SS broth, however, is a different medium to charcoal agar. It 

may be the nutrient differences between the media changed the requirements for 

mreB, although cells still grew as spheres so the gene is required to produce rod-

shaped cells. It may be that growth on solid media is what is important to observe a 

lethal effect of mreB mutation in B. pertussis. B. pertussis growth is slower than E. 

coli so it may be that growth in SS broth is slow enough to allow growth of cells in 

this condition regardless of Bvg activity, although growth in liquid media is not 
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expected to be slower than growth on solid media, which typically takes 3-4 days for 

visible single colonies to form.  

The observation that heptakis was required for growth of the mreB mutant in 

SS broth is interesting. Heptakis is known to improve the growth of B. pertussis by 

sequestering the free fatty acids produced during growth [120] This suggests that the 

mreB mutant is more sensitive to the effects of these free fatty acids than BP536, 

possibly because since there is a defect in the cell wall the mutant cells are more 

easily compromised by lipids. 

 TEM images show that mutants of mreB are larger in width, length, and 

volume. The shape of these cells is spherical. By contrast, BP536 cells are smaller and 

more uniformly rod-shaped. A spherical cell shape for mre mutants has been 

described before in other bacteria, and the basis for mreB originally being described 

as a rod-shape determining gene. mrdA, being involved in elongation of the cell wall, 

plays a key role in forming the elongated rod shape of the cell. Since mreB has been 

described as a dynamic scaffold that provides spatial regulation to cell synthesis 

machinery by holding in place, this gene too has a key role in regulating the cell 

shape. Cell size is normally tightly regulated and uniform, and is linked to the cell 

division, cells usually growing by a set amount before dividing [150, 151]. Thus mreB 

is required for proper regulation of cell size and shape, and without it cells grow in a 

non-uniform fashion, and are larger than BP536 cells. 

 mreB was one gene chosen out of an operon of five genes (mreBCmrdAB) the 

products of which are thought to work together to coordinate cell wall synthesis along 

the axis. mrdA codes for penicillin-binding protein 2, which has transpeptidase 

activity and is involved specifically in synthesising the cell wall along the axis of the 

cell [170, 178, 179]. Mutants of this gene also lose their rod shape revealing a role for 

this gene in regulating the shape of rod cells, specifically by synthesising 

peptidoglycan to elongate the cell [180]. Since mutants of this operon are nonviable in 

the Bvg- phase this could be said to be an essential process for the Bvg- phase. 

 Another way of disrupting normal cell wall synthesis is by inhibiting the 

process, for example by using β-lactam antibiotics to inhibit PBPs. When the MIC of 

B. pertussis to the β-lactam ampicillin was investigated it was found that although 

growth in both Bvg phases is sensitive to ampicillin, growth in the Bvg+ phase is less 

sensitive. This provides further evidence to the claim that the Bvg- phase is more 

sensitive to changes in normal, coordinated cell wall synthesis. It has been reported 
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previously that the Bvg locus may have an effect on rate of bacterial killing by β-

lactams and cell wall degradation [181] and it was suggested that this could be due to 

inhibition of autolysins making B. pertussis in the Bvg+ phase more phenotypically 

tolerant of antibiotics, though it was also noted that no difference was observed 

between the Bvg+ and Bvg- B. pertussis in MIC to β-lactams. It is not clear if this is 

due to different requirements for PBPs, or more of one PBP being present in cells of 

one phase over the other. Another explanation for this observation could be that 

growth rates differ between the two phases and generally faster growing bacteria are 

more susceptible to antimicrobials than slower growing, but it would be difficult to 

show that this is true on solid medium. 

 MreB is in a complex with genes involved in cell wall synthesis, such as 

mrdA, PBP2, which are involved in synthesising peptidoglycan in an elongated 

fashion. Since loss of mreB leads to the lack of ability to regulate cell shape and size, 

and since cell shape and size are linked to regulation of cell division, it is likely that 

mreB mutants are impaired in their ability to regulate cell division. The observation 

that mreB and the wider operon are essential for growth in the Bvg- phase fits with 

the picture from growth data indicating that faster growth along the cell axis is a 

fundamental part of growth in this phase and provides evidence that this is how cells 

in this phase grow faster and divide more often.   

 

4.2.4 Use of TraDIS to discern information about the electron transport chain of 

B. pertussis 

There were differences between the essentiality of different parts of the electron 

transport chain between the Bvg+ and Bvg- phase. Genes for the NADH-

dehydrogenase complex and the ATP synthase are essential in both phases, while 

genes for the cytochrome c oxidase are non-essential. The sdhA-D genes, which code 

for succinate dehydrogenase are essential in the Bvg- phase, and mutants of petABC, 

coding for the cytochrome c oxidoreductase are more fitness affected in the Bvg- 

phase. This means that overall the Bvg- phase is more sensitive to disruption of the 

electron transport chain. 

 To investigate this further, a deletion of the petABC operon was made. These 

genes code for complex III, which functions as part of the electron transport chain, 

oxidising ubiquinone, reducing cytochrome c1 and releasing protons that contribute to 
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the proton motive force. Contrary to the result from the TraDIS experiment, which 

suggested that mutants of this locus would be fitness affected depending on Bvg 

phase, there was no difference in growth between the mutant and BP536 in SS broth. 

It should be noted, however that the TraDIS was carried out with selection on 

charcoal agar and not broth, although it is difficult to measure growth on solid media. 

It is possible that other complexes that contribute to the proton motive force 

compensate for the loss of petABC when these mutants are grown in isolation and 

exhibit no growth defect, but when grown in competition with a strain that expresses a 

normal electron transport chain the mutant is outcompeted. 

Without petABC it could be expected that fewer protons would be pumped out 

of the cell and a smaller PMF would be generated. Firstly, however, the PMF of 

BP536 was investigated in the Bvg+ and Bvg- phases and it was found that the PMF 

of the Bvg+ phase was between 1.32 and 1.42 times higher than in the Bvg- phase. 

This is perhaps surprising since the Bvg+ phase grows slower and to a lower maximal 

yield. However, if in the Bvg+ phase cells are consuming more glutamate to fuel a 

more active TCA cycle and excess carbon is released as carbon dioxide then a result 

of this would be greater production of NADH for the electron chain and possibly 

higher activity of the electron transport chain as a whole, resulting in a higher PMF. 

This would explain why mutants of petABC have a higher fitness cost in the Bvg- 

phase, since mutating a complex that contributes to the PMF would have a greater 

impact in cells that generate a smaller PMF. 

The difference between the PMF of Bvg+ and Bvg- phase cells was more 

pronounced when the cells were cultured on plates, although the PMFs generally 

appeared to be lower. This may be a result of the microaerobic environment of agar 

plates resulting in lower activity of the electron transport chain due to a lesser 

availability of oxygen as a terminal electron acceptor than when cultures are grown in 

flasks. 

The PMF generated by the petABC mutant was lower than BP536 in both 

phases, which is to be expected since the complex contributes protons to the PMF. 

However, this difference was not significant by T test, which shows that while 

petABC does contribute to the PMF, this complex would not be considered 

fundamental for maintenance of the PMF. The comparison of the PMFs between 

BP536 and the petABC was carried out on cells that had been cultured on plates, 

which already causes a lower PMF to be generated than cells grown in flasks. It may 
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be that growing cells in flasks and comparing the PMFs of BP536 and the mutant 

would result in a more significant difference. It could also be that in the absence of 

the proton pumping cytochrome bc1 complex that cells simply respond by increasing 

the activity of the other proton pumps so while the PMF is decreased in the petABC 

mutant, cells are still viable and without a growth defect. 

The difference between the PMF of cells grown in the Bvg+ and Bvg- phases 

is also apparent for the petABC mutant. The fold-difference between the PMFs of the 

two Bvg phases for the mutant is similar to that for BP536, showing that the reason 

why the PMF is higher in the Bvg+ phase of B. pertussis is not due to activity of the 

cytochrome bc1 complex, and is probably because of general increased activity of the 

electron transport chain. 

The TraDIS data was used to inform about differences in the biology of B. 

pertussis grown in the Bvg+ and Bvg- phases, and led to the observation that the parts 

of the electron transport chain were differentially essential for growth. Furthermore, 

because of information gain by TraDIS data, the PMF of Bvg+ phase BP536 was 

shown to be significantly higher than the Bvg- phase. This is interesting, especially 

when seen in the light of data showing that in the Bvg+ phase BP536 consumes 

glutamate at a faster rate than in the Bvg- phase, and possibly has a more active TCA 

cycle. This would make sense given that a more active TCA cycle would provide 

more NADH, which would be used as a substrate to generate more of a PMF in the 

Bvg+. The reasons why Bvg+ phase B. pertussis would consume more glutamate to 

have a more active TCA cycle and have a more active electron transport chain to 

generate more of a PMF are not clear, especially given the observations that in this 

phase fewer cells are made and less biomass produced. However, one could assume 

that if a higher PMF is being produced, it is possible that more ATP is being 

synthesised in the Bvg+ phase, though what this would be used for is not clear. 
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Chapter 5- RNAseq reveals novel elements of the Bvg regulon 
 

5.0.1 RNAseq 
Gene microarrays are a tool used to investigate global gene expression without next-

generation sequencing. DNA oligos are ordered on an array with different genes 

occupying different spots on the array. cDNA is synthesised from RNA samples and 

fluorescently labelled. cDNA from two different samples can be differentially 

labelled, for example one can be green and the other red. The two samples are mixed 

and hybridised to the array. The fluorescence is then measured, the more red or green 

the fluorescence the more mRNA was expressed from one sample over the other. This 

requires knowledge of the sequences of the features monitored by the array. Another 

disadvantage is that non-specific cross-hybridisation and fluorescence occur even in 

the absence of target DNA can lead to a high background level of fluorescence [182]. 

Quantification is typically relative between two conditions rather than being 

absolutely quantitative. 

The advent of next generation sequencing has paved the way for more 

advanced methods of investigating transcriptomes. Typically, RNA is used to 

synthesise cDNA, which is then sequenced. Adapters are ligated onto the RNA 

molecules, and they are sequenced using short reads either from one or both ends of 

each molecule. This is RNAseq [183]. RNAseq required no prior knowledge about 

the genome of interest and following sequencing the reads can either be aligned to a 

reference or assembled, thus RNAseq is not limited by genomic sequence data being 

available already. RNAseq is more sensitive than hybridisation methods in that even 

very small amounts of expression can be detected. There are no issues with 

background or saturation seen with fluorescence, and RNAseq can be used to measure 

a large range of expression changes. Sequencing technologies can provide deep 

coverage of transcripts, meaning even rare transcripts can be detected, and the 

accuracy of sequencing can provide resolutions of 1bp, meaning that transcripts can 

be accurately mapped to existing genomes revealing exon or gene boundaries. 

RNAseq requires no prior knowledge of a genome seuqecne as reads can assembled 

de novo or mapped to a reference. RNAseq can be applied to organisms with complex 

transcriptomes, for example where splicing occurs, or to prokaryotes where poly-A 

tails are absent and splicing doesn’t occur. Thus RNAseq provides a higher-
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throughput, more accurately quantitative method of performing genome-wide 

expression studies, which can also reveal precisely where transcripts start and end, 

and which can be applied to any organism regardless of what prior genomic 

information is known. 

 

5.0.2 Microarray studies in B. pertussis 
Expression studies can reveal much about the biology of B. pertussis. Microarrays 

were used to show that genome rearrangements may contribute to gene expression 

profiles in strains that are otherwise identical at the genome level [184]. Another 

microarray study compared gene expression profiles of B. pertussis in normal growth 

conditions to conditions of iron starvation and identified a novel system important in 

the use of siderophores [185]. A transcriptomics approach, the term used for genome-

wide expression studies, was also taken to find that ptxP3 strains of B. pertussis 

expressed virulence genes other than pertussis toxin more highly than ptxP1 strains. 

This was also done by microarray [186]. Furthermore, microarray was used to show 

that RNA chaperones play a role in expression of virulence factors in B. pertussis 

[187]. 

 Microarray was used to define the Bvg regulon of B. bronchiseptica and B. 

pertussis [143]. Virulence factors comprised a major part of the genes maximally 

expressed in the Bvg+ phase, while a number of genes maximally expressed in the 

Bvg- phase encoded proteins involved in protein folding, ushering and transport. 

Further genes more highy expressed in the Bvg+ included autotransporters, genes for 

iron acquisition, as well as potential new virulence genes. Capsule biosynthesis genes 

were the most strongly Bvg-regulated that were more highly expressed in the Bvg- 

phase, while in B. bronchiseptica genes for chemotaxis and flagellar biosynthesis 

were also more highly expressed in the Bvg- phase. 

The Bvg- phases of B. pertussis and B. bronchiseptica displayed only weak 

similarity, as only 13 genes more highly expressed in this phase were common to both 

species. Genes involved in the TCA cycle were more highly expressed in the Bvg- 

phase in B. bronchiseptica, as were transporters for amino acids and C4-dicarboxylate 

transporters. It was speculated that this might lead to increased levels of TCA cycle 

intermediates as well as amino acids that could be metabolised to acetyl-CoA and 

used to feed into the TCA cycle. Expression of other genes suggested greater activity 
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of the urea cycle, which also feeds into the TCA cycle. All in all it was thought that in 

the Bvg+ phase there might be a difference in preference for carbon and nitrogen 

source, for example lactate, glutamine and ammonia over other amino acids. In this 

way physiological differences were inferred from identifying particular gene classes 

that were differentially expressed in different conditions.  In another example, genes 

encoding NADH dehydrogenase, lactate dehydrogenase and a cyctochrome c were 

upregulated in the Bvg+ phase; while genes for two cytochromes, two ferrodoxins 

and a cytochrome bc1 complex were upregulated in the Bvg- phase suggesting 

different preferences for the activity of the electron transport chain. 

Metabolism was not so obviously Bvg regulated in B. pertussis as in B. 

bronchiseptica. The only Bvg+ phase genes shared between the two species were the 

ammonia transporter and genes for haem biosynthesis. The B. pertussis homologues 

of transporter and cytochrome genes that were Bvg-regulated in B. bronchiseptica 

were not Bvg regulated in B. pertussis. 

 There were many differences in Bvg regulated genes between strains of B. 

pertussis and only 23 out of the 113 Tohama I Bvg- genes were regulated in another 

strain. vrg6, vrg18, vrg 24 and vrg73 were more highly expressed in the Bvg- phase 

only in Tohama I. 60% of the genes upregulated in the Bvg+ phase were similarly 

regulated between the two strains. This suggests a difference between the importance 

of the Bvg+ and Bvg- phase in B. pertussis since genes maximally expressed in the 

Bvg- phase are less conserved between strains than those more highly expressed in 

the Bvg+ phase. These genes with conserved regulation were mostly involved in 

virulence, protein folding and transport and most of the known virulence genes were 

similarly upregulated in the Bvg+ phase, again suggesting that conservation of 

regulating virulence is important for B. pertussis, but that expression of some of the 

Bvg- phase genes less so. 

 RNAseq can help refine microarray data, giving a more accurate and complete 

picture of the Bvg regulon. The advantages come from the precision mapping of 

transcripts to within 1bp that enables definition of where a transcript begins and end, 

and not having the high background associated with fluorescence. Another advantage 

is that RNAseq reveals a previously hidden level of regulation by small non-coding 

RNAs (sncRNAs), as these can be sequenced along with mRNAs. These have already 

been shown to be important in regulation of genes in B. pertussis [187, 188]. 
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5.1 Results 
 

5.1.1 Validation of the RNA used for RNAseq 
RNAseq was used to provide further evidence for some of the observations and 

proposed models discussed so far. The technique provides a quantitative measurement 

of expression differences for every gene in the genome between the Bvg+ and Bvg- 

phases in one experiment. Thus RNAseq can be used to back up data already 

discussed, for example if genes involved in metabolism, cell wall synthesis and 

genome replication are differentially regulated between Bvg phases of B. pertussis. 

RNA for RNAseq was validated by real-time quantitative PCR (q-PCR) to 

check for expected expression of two genes in the Bvg+ phase and lower expression 

in the Bvg- phase. cDNA was synthesised to RNA and qPCR was performed to 

measure relative expression levels of the fhaB and ptxA genes. Analysis was carried 

out using the 2-ΔΔCt method [189], adk and tyrB were used as two independent 

“housekeeping” standards. 

 

 
Figure 35– Expression levels of fhaB and ptxA relative to the expression of the 
adk. Date shown is expression of fhaB and ptxA relative to adk, a housekeeping gene 
believed to not change expression dependent on Bvg. The data depicted show a level 
of expression of the fhaB and ptxA genes in the Bvg+ phase, which is not seen in the 
Bvg- phase. Data is an average of 3 biological replicates for each Bvg condition. 
Error is standard deviation. 
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The RNA was validated by qPCR to check that cells from the cultures grown to purify 

the RNA had been in the correct Bvg phases, specifically that modulation by addition 

of 50mM MgSO4 did induce the Bvg- phase and that when grown in non-modulating 

conditions cells grew in the Bvg+ phase. Expression levels of fhaB and ptxA were 

measured because these are known Bvg- regulated genes [133, 190]. The gene for 

adenylate kinase (adk) was used as a standard by which the relative expression of the 

other two genes was measured because it is not known to be Bvg regulated. Figure 35 

shows that the cultures grown for isolation of the RNA highly expressed fhaB and 

ptxA in the Bvg+ but that expression was downregulatd in the Bvg- phase. 

 Another standard gene, tyrB was used, also not known to be Bvg regulated, to 

make sure the same pattern was observed (figure 36). 

 

 
Figure 36– Expression levels of fhaB and ptxA relative to the expression of tyrB. 
Similar to figure 35 expression of the fhaB and ptxA genes are shown relative to a 
housekeeping gene that is not expected to be under the control of Bvg, in this case 
tyrB. Data shown is an average of 3 biological replicates, error is standard deviation. 

 

The observation that the cultures expressed fhaB and ptxA at a much higher level in 

the Bvg+ phase than in the Bvg- phase relative to two different standard genes was 

vital in validating the Bvg conditions used to grow the cultures for RNAseq. 
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5.1.2 RNAseq- Most highly regulated genes in Bvg+ and Bvg- phases 
Genes with a more than 2-fold expression difference between the Bvg+ and Bvg- 

phases of B. pertussis were considered to be Bvg-regulated. There were 531 genes 

with more than a 2-fold expression difference and of those 248 were more highly 

expressed in the Bvg+ phase with 283 more highly expressed in the Bvg- phase. Of 

those 37 and 60 were pseudogenes or copies of the IS element transposase, leaving 

211 genes that were more than 2-fold more highly expressed in the Bvg+ phase and 

233 genes that were more than 2-fold more highly expressed in the Bvg- phase. The 

top thirty most highly Bvg-regulated genes in each Bvg phase are shown in table 7. 

 

Bvg+ 

Gene Product   Fold change 

BP2924 putative exported protein Unknown 183.73 

BP2925 conserved hypothetical protein Unknown 114.23 

prn pertactin precursor 

Virulence (surface 

adhesin) 97.40 

BP3792 

putative bacterial secretion 

system protein Virulence (T4SS) 78.95 

fimD fimbrial adhesin 

Virulence (surface 

adhesin) 76.94 

ptxD 

pertussis toxin subunit 4 

precursor Virulence (toxin) 71.90 

fhaB 

filamentous 

hemagglutinin/adhesin 

Virulence (surface 

adhesin) 70.80 

BP2936 

putative exported protein (1TM 

domain) Me t'ase Methyltransferase 70.38 

fimC 

outer membrane usher protein 

precursor 

Virulence (surface 

adhesin) 63.81 

brpL 

putative RNA polymerase sigma 

factor Transcription 59.13 

BP3791 putative membrane protein Virulence (T4SS) 57.77 

bscP hypothetical protein Unknown 57.60 

tcfA tracheal colonization factor Virulence (toxin) 55.67 
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precursor 

ptxB 

pertussis toxin subunit 2 

precursor Virulence (toxin) 54.45 

BP0398 ArnT 

Glycosyl transferase 

(cell envelope 

biogenesis) 50.77 

ptxE 

pertussis toxin subunit 5 

precursor Virulence (toxin) 46.94 

ptxA 

pertussis toxin subunit 1 

precursor Virulence (toxin) 44.16 

brkA serum resistance protein 

Autotransporter 

(complement 

resistance) 43.68 

BP0399 ArnT locus glycosyl transferase 

Glycosyl transferase 

(cell envelope 

biogenesis) 39.79 

BP2926 conserved hypothetical protein Unknown 37.63 

bscO putative type III secretion protein Virulence (T3SS) 34.79 

BP2927 

putative integral membrane 

protein Unknown 32.25 

ptxC 

pertussis toxin subunit 3 

precursor Virulence (toxin) 31.91 

bfrD 

probable TonB-dependent 

receptor for iron transport 

Iron (siderophore) 

transport 31.59 

fim2 

serotype 2 fimbrial subunit 

precursor 

Virulence (surface 

adhesin) 30.19 

sphB1 

autotransporter subtilisin-like 

protease 

Virulence (surface 

adhesin) 27.67 

bscE hypothetical protein Unknown 23.69 

bipA 

putative outer membrane ligand 

binding protein Unknown 22.19 

BP1251 putative toxin Virulence (putative 21.13 
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toxin) 

bscQ putative type III secretion protein Virulence (T3SS) 20.38 

Bvg- 

Gene Product   Fold change 

kpsM 

putative polysialic acid transport 

protein Capsule biosynthesis 119.12 

vipC 

capsular polysaccharide 

biosynthesis protein Capsule biosynthesis 98.71 

kpsT 

polysialic acid transport ATP-

binding protein Capsule biosynthesis 90.30 

wbpP 

capsular polysaccharide 

biosynthesis protein Capsule biosynthesis 81.22 

wza 

putative capsular polysaccharide 

export protein Capsule biosynthesis 73.42 

wbpO 

capsular polysaccharide 

biosynthesis protein Capsule biosynthesis 62.58 

wbpT 

capsular polysaccharide 

biosynthesis protein Capsule biosynthesis 59.90 

kpsE 

capsule polysaccharide export 

inner-membrane protein Capsule biosynthesis 59.49 

wcbA 

capsular polysaccharide export 

protein Capsule biosynthesis 54.98 

BP1620 putative glycosyl transferase 

Cell envelope 

biosynthesis 46.36 

BP2782 lipoprotein Unknown 45.67 

BP1619 

hypothetical protein 

(glycosyltransferase?) Unknown 40.22 

BP1738 conserved hypothetical protein Stress response? 30.09 

tviD 

putative N-terminal region of 

capsular polysaccharide 

biosynthesis protein (partial) Capsule biosynthesis 28.87 

BP1737 putative membrane protein Unknown 23.83 
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BP3517 putative membrane protein Unknown 19.64 

BP1617 

C-terminal region of a putative 

polysaccharide biosynthesis 

protein (partial) Capsule biosynthesis 18.42 

BP1736 putative exported protein 

Stress response? 

(osmotic stress) 17.17 

BP2780 

putative lactate/malate 

dehydrogenase Metabolism 11.51 

BP3518 Cardiolipin synthase Lipid biosynthesis 10.91 

BP2148 conserved hypothetical protein Unknown 10.28 

fim3 

serotype 3 fimbrial subunit 

precursor 

Virulence (surface 

adhesin) 10.10 

BP2569 putative lipoprotein Unknown 9.76 

BP0546 bacterioferritin 

Iron 

transport/homeostasis 7.43 

BP2020 hypothetical protein Unknown 6.99 

BP2803 

putative integral membrane 

protein (acyltransferase?) 

Cell envelope 

biosynthesis 6.91 

BP1111 hypothetical protein Unknown 6.86 

vir-18 vir-repressed protein Unknown 6.50 

cpn60 60 kDa chaperonin Protein folding 6.35 

vrg-6 Virulence protein Virulence? 5.84 

Table	7-	The	top	30	most	highly	Bvg-regulated	genes.	Genes	more	highly	
expressed	in	the	Bvg+	phase	are	in	the	top	half	of	the	table,	while	genes	more	
highly	expressed	in	the	Bvg-	phase	are	in	the	bottom	half.	Gene	names,	their	
annotated	descriptions	and	gene	categories	are	depicted	as	well	as	fold	change	of	
expression	relative	to	the	other	Bvg	phase. 

 

The Bvg+ genes with the greatest fold difference in expression between phases 

relative to the Bvg- phase included the classical virulence factors i.e. genes for the 

pertussis toxin and secretory system, fimbriae, FHA, the T3SS and the Ptl T4SS for 

secretion of PT. The RNAseq data also shows that both bvgS and bvgA are 

upregulated in the Bvg+ phase, as is the repressor bvgR, showing autoregulation of 

the Bvg system. The most highly regulated genes in the Bvg- phase were genes 
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involved in synthesis and export of the capsule. fim3 is highly expressed in the Bvg- 

phase. 

 These data back up what is already known about Bvg, that it is a regulator of 

virulence in B. pertussis. That genes involved in virulence and capsule biosynthesis 

were among the most highly regulated genes shows that the data had features that 

were expected, further validating the conditions used to grow the cultures. However, 

the data show that the Bvg regulon is more than just a regulator of virulence as many 

genes coding for proteins involved in stress response, cell envelope biogenesis and 

metabolism are under control of Bvg, highlighting the role of this system as a global 

regulator with many functions. 

 

5.1.3 A wider Bvg regulon 
There are a number of genes encoding chaperones in the Bvg regulon, at least 6 

maximally expressed in the Bvg+ phase, most unannotated, and 7 in the Bvg- phase 

includin clpB, dnaK, dnaJ, cpn60, cpn10 and the RNA chaperone hfq. 

Genes involved in iron uptake were Bvg-regulated. There were two 

siderophores upregulated in the Bvg+ phase; including BP1141 and bfrD. It has 

previously been established that during infection B. pertussis is iron starved so at least 

some iron acquisition genes were expected to be Bvg-regulated [191]. Conversely, In 

the Bvg- phase there were three genes for iron uptake upregulated; tonB, BP0546 and 

BP0134 suggesting different ways of scavenging iron are used dependent on Bvg 

phase. Expression of tonB was previously described as Bvg-independent, through use 

of a bvgAS knockout mutant [192]. 

 Transport was the category with the highest number of genes maximally 

expressed in the Bvg+ phase with at least 43 (19%) of genes upregulated in this phase 

having some role to play in transport. It was the second largest category for genes 

upregulated in the Bvg- phase with 35 (16%) falling into this category. The majority 

of transporters upregulated in the Bvg+ phase coded for probable amino acids 

transporters and included livFGH, livJ and livM, annotated as branched-chain amino 

acid transporters. There were four genes thought to be involved in the transport of 

carboxylates including smoM, and one operon of three genes involved in the transport 

of glutathione, BP2394-96, upregulated in the Bvg+ phase. There was at least one 

gene each involved in the transport of metals, sulphate (sbp), phosphate (pstB), D-
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alanine (dltB) and glutamine (glnQ) upregulated in the Bvg+ phase. The most striking 

differences were that there were five genes involved specifically in export in the Bvg- 

phase that were upregulated in contrast there was only one in the Bvg+ phase. There 

were also three genes believed to be involved in the transport of metals upregulated in 

the Bvg- phase, as well as two genes involved in the transport of ectoine, a molecule 

synthesised to combat osmotic stress. 

There were some Bvg-regulated genes that belonged to categories represented 

only in one Bvg phase. There were three genes coding for autotransporters, including 

brkA and vag8, upregulated in the Bvg+ phase, but none in the Bvg- phase. There was 

one gene more highly expressed in the Bvg+ phase that was involved in the cell 

division process, but four more highly expressed in the Bvg- phase, including minE. 

 Among the genes more highly expressed in the Bvg- phase are at least 11 

genes that are involved in the response to stress. These include ectoine synthesis gene 

ectA, rpoh, clpB, dnaJ and osmB. Two genes involved in flagellar synthesis, fliH and 

BP0877 are more highly expressed in this phase, although B. pertussis does not 

expressed functional flagella due to multiple gene disruption by insertion elements 

[1]. This appears to be a remnant from an ancestor of B. pertussis, and there are more 

pseudogenes that are Bvg-regulated that are more highly expressed in the Bvg- phase 

than the Bvg+, suggesting that there is continued reductive evolution in the Bvg- 

phase over the Bvg+ and that the Bvg- phase plays less of a role in the lifecycle of B. 

pertussis. 

Differentially expressed genes would be expected to inform about the 

environment under which they would be expressed. For example, genes in involved in 

the transport of branched-chain amino acids more highly expressed in the Bvg+ phase 

suggests that uptake of these amino acids is important in this phase. Therefore the 

RNAseq data point towards a Bvg+ phase in which genes coding for chaperones are 

more highly expressed suggesting proper folding of particular proteins is important, 

and genes coding for transport proteins suggesting that branched-chain amino acids, 

glutathione and glutamine are important for growth in this phase. On the other hand 

the genes more highly expressed in the Bvg- phase that are involved in cell division 

suggest that regulation of cell division may be different in this phase, while genes 

more highly expressed involved in the stress response suggest that this process is 

important for growth in the Bvg- phase. 
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The data fit with a model in which the Bvg+ is important in infection, and 

virulence genes are more highly expressed in this phase. Transport and iron 

scavenging genes upregulated in this phase would be expected to reflect the 

availability of nutrients during infection and the needs of the bacterium, for example 

siderophores to scavenge iron in a more iron-starved environment. On the other hand, 

the Bvg- phase might be expected to grow in a different environment, with a different 

availability of nutrients, hence why different genes for transporters are more highly 

expressed in this phase. Furthermore, it is interesting that stress responses and 

exporters would be more highly expressed in this phase and this suggests that the 

environment in which the Bvg- phase is growing is harsh, or conditions change 

frequently and the bacteria need to adapt. 

 

5.1.4 The TCA cycle 
One question that arose from the metabolic characterisation of growth of BP536 in the 

Bvg+ and Bvg- phases was whether the TCA cycle was more active in the Bvg+ 

phase. This came from observation that more glutamate is consumed in the Bvg+ 

phase to make less biomass, leading to the question of where the extra carbon being 

consumed is going. A hypothesis is that more carbon is lost as carbon dioxide in the 

Bvg+ phase during the TCA cycle. This would imply that there is more flux going 

through the TCA cycle in the Bvg+ phase than in the Bvg- phase, since this is where 

carbon dioxide is produced. 

 The RNAseq data provides information about whether genes that code for 

proteins involved in the TCA cycle are expressed more highly in either phase, which 

is useful in looking at the question of whether the TCA is more active in either phase. 

 



	 132	

 
Figure 37- The TCA cycle of B. pertussis with expression differences. Genes for 
each pathway are annotated in italics. The phase in which genes are more highly 
expressed is denoted as either + or – next to a figure to denote the fold-change. Where 
more than one gene is annotated as performing the same function the gene numbers 
are given along with the fold-change for each gene. 

 
The TCA cycle of B. pertussis with expression fold-changes is depicted in figure 37. 

The gene aceF, coding for a subunit of the pyruvate dehydrogenase, is the only gene 

that is greater than 2-fold more highly expressed in one phase over the other. An 

almost 3-fold expression change in aceF between the Bvg+ and Bvg- phases implies 

that there is more flux going though this pathway in the Bvg- phase. Indeed another 

subunit, aceE is also more highly expressed in this phase, albeit less than a 2-fold 

difference. An expression change of greater than 2-fold is defined as Bvg- regulated, 

but this is an arbitrary cut-off and it is possible that a change in expression of a gene 

of less than 2-fold could lead to more appreciable differences at enzyme level.  

Looking at the expression of the TCA cycle as a whole it is not clear that it is 

more or less active in one Bvg phase or the other, although there are some differences. 

The higher expression of gdhA (BP0368) in the Bvg+ phase suggests more substrate 
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entering the TCA cycle in this phase The higher expression of gltA in the Bvg+ phase 

is interesting. The step catalysed by this gene product has been previously described 

as the rate-limiting step of the TCA cycle for E. coli under certain conditions where 

the TCA cycle is usually highly expressed [193], meaning that it is probably not 

necessary for the TCA cycle to be more highly expressed as a whole for there to be 

more flux through some pathways in one phase than the other. 

There is a difference in the makeup of the cycle dependent on Bvg phase. 

Isocitrate can be used in two ways, to form 2-oxoglutarate in the two-step reaction 

catalysed by icd, or in the glyoxylate bypass, during which glyoxylate and succinate 

are formed, catalysed by aceA. The RNAseq data show that icd is more highly 

expressed in the Bvg+ phase, while aceA is more highly expressed in the Bvg- phase. 

This suggests that there is more flux through the part of the cycle from isocitrate to 

succinate, while there would be more flux through the glyoxylate bypass the Bvg- 

phase. This is interesting since the step catalysed by icd that produces carbon dioxide. 

The other step that produces carbon dioxide is the step catalysed by odhAB, which 

itself is not more highly expressed in one phase or the other, although it may be that 

more flux passes through this step due to the higher availability of 2-oxoglutarate 

from icd and gdhA, both more highly expressed in the Bvg+ phase. This would 

suggest more carbon dioxide is produced in the Bvg+ phase and could provide an 

explanation as to where extra carbon is going form the higher amount of glutamate 

being consumed per gram of biomass in the Bvg+ phase. As for why this would 

happen in the Bvg+ phase, the steps catalysed by these enzymes are also where NAD+ 

is reduced to NADH to provide reducing power in the electron transport chain. This 

might suggest that the Bvg+ phase uses more NADH in the electron transport chain 

than the Bvg- phase.  

 

5.1.5 Expression differences of other metabolic genes 
There are at least 23 genes more highly expressed in the Bvg+ phase that are involved 

in metabolism, and 46 more highly expressed in the Bvg- phase in which it is the 

largest category of genes with 21% of genes more than 2-fold more highly expressed 

in the Bvg- phase involved in metabolism. 
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There are genes involved in the metabolism of fatty acids that are Bvg-

regulated, with fabD and fabG more highly expressed in the Bvg+ phase and BP0625 

and BP0219 more highly expressed in the Bvg- phase.  

There are seven genes involved in amino acid biosynthesis that are Bvg-

regulated; four are more highly expressed in the Bvg+ phase (ilvC, ilvH, ilvI and 

his1), and three are more highly expressed in the Bvg- phase (soxD, amaB and ilvG). 

In addition there are eight genes for enzymes that feed molecules into the TCA cycle 

that are Bvg regulated. These include fahA, maiA (BP1955) and lactate 

dehydrogenase (lldD), which are more highly expressed in the Bvg+ phase, and 

components of pyruvate dehydrogenase (BP0628, pdhA, aceF), as well as maiA 

(BP0579) and pcaC, which are more highly expressed in the Bvg- phase. BP1955 and 

BP0579 are both annotated as maleate cis-trans isomerases and are both named maiA, 

though the former is more highly expressed in the Bvg+ phase and the latter in the 

Bvg- phase. 

Metabolic genes that are more highly expressed in the Bvg- phase code for a 

larger variety of functions. Eleven of these genes are involved in energy metabolism 

and include the Fe-S component of the cytochrome c reductase petA and components 

of the cytochrome bd complex cydA and cydB. On the other hand atpC and atpD, 

coding for components of the ATP synthase, are more highly expressed in the Bvg+ 

phase, as are the other components of this enzyme, although by less than 2-fold. There 

are also genes involved in amino sugars metabolism more highly expressed in the 

Bvg- phase, including glmS, which feeds glutamate into this pathway, as well as 

glmU, bplA, bplD and bplB. 

The data show a wide and varied Bvg regulon that is involved in regulating a 

wide range of metabolic processes in B. pertussis. The higher expression of ilv genes 

in the Bvg+ phase and of pyruvate dehydrogenase in the Bvg- phase shows that 

pyruvate may be being used more to synthesise branched-chain amino acids in the 

Bvg+ phase and more to make acetyl-CoA in the Bvg- phase. Furthermore, the higher 

expression of eno in the Bvg- phase suggests a higher flux through gluconeogenesis 

pathways from pyruvate in this phase. This would suggest that synthesis of branched-

chain amino acids is more important in the Bvg+ phase, while sugars would be 

synthesised from pyruvate more in the Bvg- phase. The difference in expression genes 

coding for enzymes of the electron transport chain is interesting, with NADH 

dehydrogenase being more expressed in the Bvg+ phase (possibly reflecting a greater 
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availability of NADH), and genes for the cytochrome bc1 complex and the 

cytochrome bd complex more highly expressed in the Bvg- phase. The observation 

that genes coding for the ATP synthase complex are more highly expressed in the 

Bvg+ phase is interesting since it was shown that there is a greater PMF produced in 

this phase (Chapter 4). This would suggest that a greater amount of ATP is produced 

in this phase. 

 

5.1.6 Grp 
BP3008, annotated as grp, was 2.42-fold more highly expressed in the Bvg+ phase 

than in the Bvg- phase. Grp has been shown previously to play a role in regulating 

glutamate uptake in E. coli, where a cloned fragment from Zymomonas mobilis was 

introduced to an E. coli strain defective for glutamate transport. The clone showed 

increased glutamate uptake, although the product repressed expression of the 

H+/glutamate transport system, GltP by interacting with the promoter of the gltP gene. 

This cloned gene was designated grp for Glutamate-uptake Regulatory Protein. 

Furthermore, a mutation in lrp in E. coli was complemented by expressing grp, 

leading to increase in expression of ilvH, a gene involved in biosynthesis of isoleucine 

and valine [194]. 

A grp knockout mutant was made to look at the effects on growth and 

glutamate consumption. Briefly, the primers listed in Chapter 2 were used in a PCR 

reaction to amplify regions either side of the grp gene. The process then proceeded in 

an identical fashion to that used to make the petABC mutant. The mutant was grown 

alongside BP536 in SS broth in Bvg+ and Bvg- phases in a 96-well plate growth 

assay. 
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Figure 38– Growth of BP536 and the grp mutant grown in SS broth in the Bvg+ 
and Bvg- phases. The growth of BP536 and the grp mutant is shown over time as an 
increase in optical density. Growth was observed in a 96-well plate and measured 
until stationary phase. Data depicted is the average of 15 biological replicates, error 
shown is standard deviation. 

 

There were fifteen cultures of BP536 and the grp mutant in both the Bvg+ and Bvg- 

phases. Three cultures from each condition were sacrificed during growth and 

supernatant harvested. Thus figure 38 shows the average growth of fifteen cultures at 

the beginning, the number of cultures diminishing as some are sacrificed to an 

average of three cultures at the end.  

 Figure 38 shows that the growth of the grp mutant has no growth defect in SS 

broth compared to BP536. Growth is similar between BP536 and the mutant.  

The decrease in concentration of glutamate in the supernatant was measured 

between the start of growth at 0 hours and the end of exponential phase, when growth 

of the culture ceased, which corresponds best to the samples taken at 39.67 hours. 

Data is displayed in figure 39. 

 

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

0	 2	 4	 6	 8	 10
	

12
	

14
	

16
	

17
.7
3	

19
.7
3	

21
.7
3	

23
.6
8	

25
.6
8	

27
.6
8	

29
.6
8	

31
.6
8	

33
.6
8	

35
.6
8	

37
.6
8	

39
.6
8	

41
.4
8	

43
.4
8	

45
.4
8	

47
.2
8	

49
.2
8	

51
.2
8	

53
.2
8	

55
.2
8	

57
.2
8	

59
.2
8	

61
.2
8	

O
D
60
0	

Time	(h)	

Growth	of	BP536	and	grp	mutant	in	Bvg+	and	Bvg-	phases	

BP536	
Bvg+	

BP536	
Bvg-	

Grp	Bvg+	

Grp	Bvg-	



	 137	

 
Figure 39– The average decrease in glutamate concentration in the supernatant 
between 0 and 37.67 hours. Glutamate concentration in the medium was measured at 
the beginning of the growth assay and again at 40h (taken to be the end of exponential 
phase). The net decrease in concentration of glutamate in mM was calculated and is 
depicated on the y axis. 

 

The amount by which the glutamate concentration decreased in the medium was 

different between BP536 and the grp mutant in the Bvg+ phases (p=0.017). The 

amount of glutamate consumed from the medium is decreased in the grp mutant 

compared to BP536 in the Bvg- phase, though this difference is not significant 

(p=0.053). 

 During growth of the grp knockout, glutamate is consumed faster than in 

BP536 in the Bvg+ phase, providing evidence that during growth in the Bvg+ phase, 

when expression of grp is upregulated, the product of this gene plays a role in 

regulating the uptake of glutamate from the medium. This regulation appears to be in 

a manner that is repressive, since when this repression is relieved as in the grp 

knockout, growth is characterised by a significant increase in uptake of glutamate 

from the medium. This is despite the observation that growth is not improved in the 

grp mutant. 
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5.2 Discussion 
 

5.2.1 The TCA cycle 
Different parts of the TCA cycle are more active in one Bvg phase than in the other. 

There is more of a tendency for the Bvg+ phase to form glyoxylate from glycolate, 

while the Bvg- phase forms more glyoxylate (and succinate) from isocitrate, catalysed 

by aceA, which is more highly expressed in this phase, which might be expected 

leading to a greater flux through the glyoxylate bypass. On the other hand in the Bvg+ 

phase it would seem that there is increased succinate formation from isocitrate via 2-

oxoglutarate and succinyl-CoA using the more highly expressed icd and sucCD 

genes. The icd gene, which does produce carbon dioxide is 1.3-fold more highly 

expressed in the Bvg+ phase, though it is not clear if this is enough to account for the 

greater consumption of glutamate per unit of biomass in the Bvg+ phase. Indeed the 

odhAB genes coding enzymes catalysing the conversion of 2-oxoglutarate to succinyl-

CoA, also producing carbon dioxide is equally expressed in the two phases, though it 

may be that there is more flux through this part of the cycle in the Bvg+ phase since 

the gene coding for the aceA of the glyoxylate pathway is more highly expressed in 

the Bvg- phase. 

Curiously genes that code for the enzymes in the pathways that involve the 

conversion of acetyl-CoA to CoA are more highly expressed in the Bvg+ phase (gltA 

and glcB with 1.44 and 1.33 fold-change in expression respectively). This implies a 

greater need for acetyl-CoA in the TCA cycle of B. pertussis in the Bvg+ phase. 

Higher expression of a gene in one phase over another doesn’t necessarily 

mean that it is directly regulated by Bvg as its expression could be controlled by 

another regulator, itself regulated by Bvg. One of the benefits of RNAseq is that it 

gives a picture of global expression meaning differences in expression between two 

conditions can be observed that are both direct and indirect results of growth in those 

conditions. 

 

5.2.2 A different use of glutamate 
There are several initial uses of glutamate. BP536 has two copies of gdhA, BP0368 

and BP1857, which convert glutamate to 2-oxoglutarate, a TCA cycle intermediate. 
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Alternatively glnA catalyses the converstion to glutamine and glmS feeds glutamine 

into the aminosugars metabolism pathways. 

 BP0368, one of the glutamate dehydrogenases is 1.54-fold more highly 

expressed in the Bvg+ phase, while glmS is 4.65-fold more highly expressed in the 

Bvg- phase suggesting glutamate is used differently between the two phases. The 

expression difference of BP0368 is modest, but is suggestive of greater flux of 

glutamate through the TCA cycle, while the expression difference of glmS is much 

larger strongly suggesting more of a use for glutamate in amino sugars metabolism. It 

is probably no coincidence then that eno, coding for enolase, one of the first steps in 

gluconeogenesis, is 2.3-fold more highly expressed in the Bvg- phase as a product of 

this pathway is D-fructose-6P, which also feeds into aminosugars metabolic 

pathways. Furthermore, glmU, also involved in metabolism of amino sugars, is 3.04-

fold more higly expressed in the Bvg- phase. 

 The RNAseq data suggest that there are different uses of glutamate depending 

on Bvg phase. gdhA is more highly expressed in the Bvg+  phase suggesting greater 

flux from glutamate through the TCA cycle, while glmS and glmU are more highly 

expressed in the Bvg- phase, suggesting greater flux from glutamate to amino sugars 

metabolism for peptidoglycan and other cell envelope component biogenesis. The 

observation that there are different uses for glutamate does not reflect the use of one 

pathway or the other, merely one being more active in one Bvg phase over the other. 

In a scenario in which the Bvg- phase is growing faster and dividing more often in 

might be expected that peptidoglycan would be made more quickly, hence the higher 

expression of genes synthesising precursors of peptidoglycan. Conversely the higher 

expression of gdhA (BP0368) in the Bvg+ could imply that there is greater flux 

through the TCA cycle due to more glutamate being channelled into this pathway. 

 

5.2.3 A different use of pyruvate 
The RNAseq data also shows an apparent difference in use of pyruvate. Pyruvate is 

generated from malate, a TCA cycle intermediate and then used as a precursor to 

many pathways including biosynthesis of amino acids and gluconeogenesis. Two 

genes coding for pyruvate dehydrogenase are more highly expressed in the Bvg- 

phase; aceE and aceF, which are 1.84 and 2.94-fold more expressed in this phase 

respectively. These genes catalyse the formation of acetyl-CoA from pyruvate. The 
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ilvBHI genes, however, are involved in the beginning of the biosynthetic pathways of 

valine, leucine and isoleucine from pyruvate and are 1.72, 2.12 and 2.63-fold more 

highly expressed in the Bvg+ phase respectively. This suggests that Bvg+ growth 

favours synthesis of amino acids from pyruvate, while Bvg- growth favours 

conversion to acetyl-CoA. 

 As suggested previously, the higher levels of β-HB seen in the Bvg- phase 

could be due a greater reliance on maintaining CoA levels, or a greater build-up of 

acetyl-CoA. This observation provides evidence for the latter scenario, particularly as 

the fabG and fabD genes are more highly expressed (2.3 and 3.15-fold) in the Bvg+ 

phase. These genes are involved in fatty acid synthesis and if this pathway were more 

active in the Bvg+ phase then it would require greater levels of CoA, a key part of the 

pathway. 

 Therefore it seems sensible to suggest that there is a greater build-up of acetyl-

CoA in the Bvg- phase, due to the higher levels of pyruvate dehydrogenase as well as 

parts of the TCA cycle using acetyl-CoA being more highly expressed in the Bvg+. 

This may be the reason for the greater build-up of β-HB in the Bvg- phase, since CoA 

will still need to be recycled, and it would be by the condensation of two acetyl-CoA 

molecules to acetoacetyl-CoA and then conversion to PHB, later broken down to β-

HB. However, phbB, the gene responsible for the production of PHB is 2.77-fold 

more highly expressed in the Bvg+ phase, and there are no genes responsible for 

conversion of acetyl-CoA to acetoacetyl-CoA that are clearly more highly expressed 

in the Bvg- phase. Again, it could be that more of a build-up of acetyl-CoA is enough 

for flux to increase through these pathways leading to a greater build-up of β-HB. 

There are two genes involved in the β-HB metabolic pathways, BP3706 and BP0217 

which code for a putative enoyl-CoA hydratase and a 3-hydroxybutyryl-CoA 

dehydrogenase respectively, that are more highly expressed in the Bvg- phase (4.67 

and 3.66-fold), but it is not clear precisely what role they play. 

 

5.2.4 Energy metabolism 
The RNAseq data reveals a difference in the make up of the electron transport chain 

depending on Bvg phase. The Bvg+ phase generates a greater PMF than the Bvg- 

phase (see Chapter 4), furthermore if the Bvg+ phase of B. pertussis has a more active 
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TCA cycle then it might be expected that more NADH would be available for 

oxidation by NADH dehydrogenase. 

 Indeed the RNAseq data shows that nine out of the fourteen genes coding for 

the NADH dehydrogenase complex are more than 1.3-fold more highly expressed in 

the Bvg+ phase, providing further evidence that more NADH is generated in the 

Bvg+ phase to provide reducing power to the electron transport chain. In addition five 

out of the eight genes coding for the ATPase are more than 1.5-fold more highly 

expressed in the Bvg+ phase, including two, which are more than 2-fold, more highly 

expressed. This may reflect a role for the larger PMF in the Bvg+ phase, and 

altogether suggests that the electron transport chain is more active in the Bvg+ phase 

to produce a greater PMF to feed a more highly expressed ATPase, which would be 

expected to produce more ATP. 

 On the other hand there are parts of the electron transport chain that are more 

highly expressed in the Bvg- phase. These include the petABC genes coding for the 

cytochrome bc1 oxidoreductase, which are 2.53, 1.88 and 1.94-fold more highly 

expressed in the Bvg- phase. Also two components of the cytochrome c oxidase, 

BP2171 and BP2172, are 1.82 and 1.86-fold more highly expressed in the Bvg- phase. 

It might be expected that these two components would be more highly expressed in 

the same phase since the former reduces cytochrome c and the latter oxidises it. Genes 

coding for the cytochrome bd complex are also more highly expressed in this phase 

(cydAB, 2.31 and 3.3-fold more highly expressed respectively). This cytochrome 

complex reduces oxygen and has been implicated in playing a role in oxygen limiting 

environments and in response to stress in other organisms [195, 196]. This may reflect 

the role of the Bvg- phase being environmental and coping with lower oxygen 

environments. The cytochrome bo complex, on the other hand, is encoded by four 

genes, cyoABCD, that are 1.35, 1.23, 1.05 and 1.41-fold more expressed in the Bvg+ 

phase respectively. This cytochrome complex has been implicated in playing a role in 

reducing oxygen in environments of oxygen abundance, perhaps reflecting the oxygen 

availability in the lungs in which B. pertussis is resident in the virulent Bvg+ phase 

[196]. 

Some of these fold-differences are only slight and it is not clear what 

phenotypic effect they have on the growth of B. pertussis. However, there is a clear 

difference in expression of genes coding for the electron transport chain dependent on 

Bvg phase, with the Bvg+ phase favouring use of the cytochrome bo complex, and the 
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Bvg- phase favouring the cytochrome bc1 and bd complex. Without corresponding 

data showing protein levels or functional tests it is not possible to say if these 

expression differences translate into a difference in activity, however it was shown 

that there in the Bvg+ phase a greater PMF is generated (Chapter 4) showing that 

there is a difference at a functional level. Differences in electron transport chain may 

reflect the environments that the Bvg phases have evolved to cope with, where there 

is a more concentrated oxygen supply in the lungs, and the possibility of oxygen 

restriction in the environment. B. pertussis, however is a human restricted pathogen 

with no environmental reservoir, so this difference may have evolved to suit a 

common ancestor of Bordetella spp. which would have had an environmental phase 

of life [1]. 

It is not clear what impact the differences in makeup of components of the electron 

transport would have on PMF generated. It is clear that a larger PMF is generated in 

the Bvg+ phase and this would be expected to be a consequence of differential 

expression of part of the electron transport chain. A contributor to this would be a 

more highly expressed NADH dehydrogenase, which would be able to oxidise more 

NADH produced in the TCA cycle. Two genes annotated as formate dehydrogenase 

(BP1513 and fdhC) are more than two-fold more highly expressed in the Bvg+ phase. 

fdhC is in an operon with fdhA and fdhB, which have 1.87 and 2.24-fold greater 

expression in B. pertussis respectively, however fdhB is a psuedogene in BP536, so it 

is not clear if a working formate dehydrogenase is expressed. Theoretically, the 

protein couples the oxidation of formate with the production of NADH and could 

reflect a greater amount of NADH produced by the Bvg+, showing even if not 

expressed, the greater tendency to form NADH in the Bvg phase even if this 

particular process does not take place in this strain or even this species. Furthermore 

the higher level of expression of the ATP synthase provides evidence that the higher 

PMF generated is to generate more ATP. This may reflect the greater need for ATP in 

the Bvg+ phase to work transport systems to secrete virulence factors such as 

adhesins and toxins outside of the cell. 

 

5.2.5 Grp- a regulator of glutamate uptake in B. pertussis 
The grp gene was chosen for further investigation because it is annotated as 

Glutamate-uptake Regulatory Protein and is 2.42-fold upregulated in the Bvg+ phase. 
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Grp regulates glutamate uptake in Z. mobilis [194]. This is an interesting observation 

since the major component of most media used to grow B. pertussis is glutamate. 

 The gene was shown to negatively effect the expression of GtlP, a H+-coupled 

transporter of glutamate. The genome of B. pertussis does not contain a recognised 

H+/glutamate transporter. Of the annotated glutamate transport systems in B. pertussis 

there are two copies of a gltJKL permease and one gene, gltS, coding for a 

Na+/glutamate symporter. None of these genes are identified as Bvg-regulated by 

RNAseq, although the gltJKL genes (BP0054-0056) are 1.33, 1.49 and 1.17-fold more 

upregulated respectively in the Bvg+ phase. Furthermore, ilvH, shown to be positively 

regulated by Grp in Z. mobilis [194], is 2.63-fold upregulated in the Bvg+ phase 

while the genes immediately upstream and downstream, ilvI and ilvC, are 2.12-fold 

and 3.07-fold more expressed in the Bvg+ phase respectively. 

 A grp mutant of B. pertussis displayed no growth defect in SS broth. The 

observations from glutamate uptake from the medium show that for BP536 in the 

Bvg- phase more glutamate is taken up between 0 and 39.67 hours of growth, which 

is expected as it is growing faster. In the mutant, however, there is no difference 

between the amount of glutamate taken up from the medium between growth in the 

Bvg+ and Bvg- phases, both of which take up significantly more glutamate from the 

medium than BP536 in the Bvg+ phase. This provides evidence for grp playing a role 

in regulating glutamate uptake, since the mutant lacking grp behaves in the Bvg+ 

phase like BP536 in the Bvg- phase where grp is present but expression is 

downregulated. 

 How grp regulates glutamate uptake in B. pertussis is not clear, although 

regulation would appear to be negative since the mutant takes up more glutamate 

from the medium than BP536. Grp probably acts as a transcription factor, since it was 

found to bind the promoter of gltP in E. coli [194], in which case it would be expected 

that effects on the expression of genes by grp would be seen in the RNAseq data, 

where grp is more highly expressed in one Bvg phase than in the other. B. pertussis 

does not express gltP, and of the recognised glutamate transport genes there do not 

appear to be any that are negatively regulated by expression of grp (i.e. more highly 

expressed in the Bvg- phase). Therefore it is clear that grp negatively effects 

glutamate uptake in B. pertussis, but it is not clear how. It remains to be seen whether 

there are other glutamate transport systems expressed by B. pertussis that are more 

highly expressed in the Bvg- phase. 
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The ilvHI operon is involved in biosynthesis of isoleucine, leucine and valine. 

It has been shown to be positively regulated by grp in E. coli [194], and is more 

highly expressed in the Bvg+ phase of BP536 during which grp is also more highly 

expressed. It is not clear whether expression of grp directly effects expression of the 

ilvHI operon or whether expression is due to other factors in B. pertussis, but 

regardless the picture is of Bvg+ phase growth repressing glutamate uptake and 

activating synthesis of branched-chain amino acids. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 



	 145	

Chapter 6- Conclusions 
 

6.1 Growth dynamics are dependent on Bvg phase 
 
The Bvg- phase has been recognised as having a growth advantage over the Bvg+ 

phase, for example spontaneous Bvg- mutants can outcompete Bvg+ bacteria in 

vaccine culture [144]. However, this report is the first to characterise the differences 

in growth between B. pertussis grown in the Bvg+ and Bvg- phase. From growing 

BP536 in the Bvg+ and Bvg- phases side-by-side in a 96-well plate it is clear that in 

the Bvg- phase bacteria reach a higher cell density than in the Bvg+ phase in SS 

broth. By looking at the growth dynamics and calculating growth rates and doubling 

times it is clear that this higher yield is reached by a combination of exiting lag phase 

sooner than in the Bvg+ phase and maintaining significantly higher growth rates 

during early exponential phase growth. Growth is slowed despite glutamate levels still 

being in the millimolar range. This is probably due to autoinhibitory molecules being 

produced during growth affecting growth of B. pertussis regardless of Bvg phase 

 Maintaining higher growth rates means that cells in the Bvg- phase are 

dividing more often. This means one of two things; either B. pertussis cells reach a 

uniform length or grow by a uniform amount regardless of Bvg phase which would 

mean Bvg- phase cells would have to grow (elongate) faster, or cells in the Bvg- 

phase are smaller and reach a smaller threshold of size of growth before dividing. 

CFU data show that there are the same amount of cells per ml of culture at a given 

OD in the Bvg+ phase as in the Bvg- phase, and biomass data suggest that 1ml of 

culture for a given OD has the same mass in the Bvg+ phase as in the Bvg- phase. 

This suggests that the former scenario is the likeliest since the same number of cells 

have the same mass regardless of Bvg phase, so they are likely to be of a similar size. 

 If this is the case then clearly cells in the Bvg- phase have to elongate quicker 

before dividing. Further evidence to this is the conditional essentiality of mreB. 

Disrupting the normal process of cell wall elongation by mutation is lethal in the Bvg- 

phase but not in the Bvg+, demonstrating that the process of cell elongation is critical 

for Bvg- phase growth. The reason why disruption of this process is not lethal for 

growth in the Bvg+ phase is not clear, but it may be that since cell division happens 

less frequently that PBPs other than mrdA are sufficient to synthesise enough 

peptidoglycan to maintain cell growth and division as spheres. 



	 146	

 Faster elongation of cells in the Bvg- phase would require faster synthesis of 

peptidoglycan. This is demonstrated by the higher level of expression of genes coding 

for enzymes involved in gluconeogenesis and aminosugars synthesis pathways, which 

lead to the synthesis of precursors of peptidoglycan. 

 

6.2 Metabolism is dependent on Bvg phase 
 
It is not just cell growth and division that are affected by Bvg phase, different 

metabolic processes are also more active in different Bvg phases. This is inferred by 

the findings that more β-HB is secreted into the medium in the Bvg- than in the Bvg+ 

phase and that more glutamate is consumed to make 1g of biomass in the Bvg+ phase 

than in the Bvg- phase. 

 Clearly if cells in the Bvg+ phase are consuming more glutamate to make 

biomass then extra carbon is being used in a way that is not accounted for in biomass 

and it was postulated that it could be released at carbon dioxide produced during 

metabolism, specifically by the TCA cycle. The RNAseq data is useful in providing 

information about metabolic reactions through which more flux may pass, although 

this assumes that transcriptomic data always corresponds to levels of protein and that 

this corresponds to flux through a reaction, which is a simplistic way of viewing 

metabolism. From RNAseq data it is not clear that the TCA cycle as a whole is more 

active in the Bvg+ phase, however there is evidence that pyruvate dehydrogenase is 

more active in the Bvg- phase since the components aceF and aceE are nearly 3 and 

2-fold more highly expressed respectively, suggesting that the reaction catalysed by 

this enzyme is more active in the Bvg- phase. Furthermore, from RNAseq data there 

might be expected to be a greater flux through the glyoxylate pathway in the Bvg- 

phase. Conversely, the higher level of expression of icd in the Bvg+ phase might be 

expected to lead to a greater flux through the part of the cycle from isocitrate to 2-

oxoglutarate and succinyl-CoA in this phase, which is the part of the cycle during 

which carbon dioxide is produced. In summary although there are differences in the 

activity of the TCA cycle at a transcript level dependent on Bvg, though it is not clear 

how this might lead to changes at the level of protein or enzyme activity. 

 Data from the TraDIS led to the investigation of a petABC mutant, which led 

to the observation that there is a greater PMF produced by the Bvg+ phase than the 

Bvg- phase. It is clear from the RNAseq data that when looking at the electron 
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transport chain as a whole, there are different components that are more highly 

expressed in different Bvg phases. This includes a difference in expression in the 

complexes for reducing oxygen as the last step in the chain whether the cytochrome 

bo, bd or c complexes. This probably reflects the environment in which Bvg would be 

active or not active, i.e. high abundance of oxygen in the lungs and potential low 

abundance in other environments. A majority of components of the NADH 

dehydrogenase are more than 1.3-fold more highly expressed in the Bvg+ phase. This 

could be because there is more NADH produced by more active components of the 

TCA cycle that are more highly expressed in this phase. Furthermore, the ATP 

synthase is more highly expressed in the Bvg+ phase, which would be the end result 

of a more active TCA cycle, producing more reducing power and a higher PMF. This 

would be expected to produce more ATP, although the reasons for this are unclear.  

 In summary there are major differences in the metabolism of B. pertussis 

depending on Bvg phase. This includes the Bvg- phase to using more glutamate to 

synthesise aminosugars, while the Bvg+ phase channels more glutamate into the TCA 

cycle. The Bvg+ phase would use more pyruvate in reactions to synthesise branched-

chain amino acids, while the Bvg- phase channels more into the gluconeogenesis 

pathway and to make acetyl-CoA, leading to higher levels of β-HB measured during 

growth assays Furthermore, differences in expression of genes coding for enzymes 

involved in the TCA cycle and electron transport chain suggest increased production 

of carbon dioxide, NADH and ATP in the Bvg+ phase. 

 It should be noted that the differences seen in the expression of genes 

dependent on activity of the Bvg system have not all been shown to be directly related 

to the activity of Bvg. There exists the possibility of a complexity of signalling that 

goes beyond Bvg, including transcriptional regulation by secondary regulators and it 

should be noted that there are many genes for putative transcriptional regulators that 

are upregulated depending on Bvg activity. Furthermore, all experiments were 

performed using 50mM MgSO4 to modulate cultures to the Bvg- phase, therefore it is 

not known whether changes in expression of genes seen are due to Bvg activity or 

another factor such as osmolarity of the medium. Modulation was used as it 

represents Bvg activity switching on and off in response to a ligand as would be 

expected to happen in the environment (though it is not known to what ligand Bvg 

responds in vivo). It would be interesting to look at growth characteristics and 

transcriptomics for a bvg mutant to see how similar those data would be to those seen 
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here with modulation. It should be noted however, that there are patterns of gene 

regulation by Bvg in the RNAseq data presented here that are expected, such as high 

expression of virulence factors in the Bvg+ phase and gene for the capsule in the Bvg- 

phase, which do validate the data. Furthermore, differences in expression of metabolic 

genes dependent on Bvg activity have been described previously for B. 

bronchiseptica [143] and while one should compare data from two different species 

with caution, B.pertussis did evolve recently from a bronchiseptica-like ancestor [1], 

allowing for a certain degree of validation between data sets where similarities are 

seen. In any case, the wide range of functions assigned to genes whose expression is 

regulated (directly or indirectly) by conditions under which activity of Bvg changes 

uncover the true regulatory potential of the Bvg two-component system which in part 

can begin to explain differences seen with regard to growth phenotype. 

 

6.3 Using the Bvg- phase as a vaccine platform 
 
One of the purposes of studying the metabolism of the Bvg- phase of B. pertussis is 

because potentially this phase has a role in vaccine production. Cultures in the Bvg- 

phase grow to 1.7-times the cell density of cultures in the Bvg+ phase, meaning that if 

they could be engineered to express virulence factors then this could improve the 

yield of vaccine antigens. 

 However, it may not just be a case of expressing these vaccine antigens in the 

Bvg- phase. The physiology of Bvg- phase growth is fundamentally different to Bvg+ 

phase growth, which may be slower and produce lower yields because its metabolism 

is refined because it needs to produce these virulence factors. In other words the 

makeup of the Bvg regulon probably reflects the environments in which the Bvg 

phase is active or not, and any metabolic pathways affected by changes to Bvg 

activity could be linked to the necessity, or not, of expressing virulence factors. The 

metabolism of the Bvg+ phase may have evolved to deal with synthesising and 

secreting virulence factors, which may mean that if B. pertussis were engineered to 

express these factors they may not do so as readily or in the same abundance as in the 

Bvg+ phase. Alternatively, expressing virulence factors in the Bvg+ phase may be a 

metabolic burden, leading to an overactive TCA cycle losing carbon as CO2. In this 

case it may be that the Bvg- phase would be a good model to express virulence 
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factors, providing they don’t have a knock-on effect on metabolic process, skewing 

them to become more like those of the Bvg+ phase. 

 On the other hand the Bvg+ phase could be engineered to have a metabolism 

more similar to the Bvg- phase. This could be done by taking key metabolic genes 

expressed more highly in the Bvg- phase out of Bvg control and expressing them 

constitutively, genes such as glmS, aceEF, petABC. However, it is possible that 

simply changing the expression of one gene may not be enough to radically change 

the growth phenotype of the Bvg+ phase, and it may be necessary to change the 

expression of a number of genes at once to drive flux through a particular pathway. 

 This study has provided the first characterisation of the growth phenotype and 

metabolism of the Bvg- phase of B. pertussis. Functional genomics-based approaches 

such as TraDIS and RNAseq have been used in combination with assaying mutants to 

produce a picture of how the metabolism is different between the Bvg phases and why 

there is a different growth phenotype in culture dependent on Bvg phase. This work 

may be instrumental in the future in providing a rationale for designing a strain of B. 

pertussis that would have a Bvg- growth phenotype but express virulence factors. 

Such a strain could be valuable to companies looking to improve antigen yields of 

culture for producing the acellular vaccine. 

 

 

 

 

 

 

 

 

 

 

 

 



	 150	

Bibliography 
 

1.	 Parkhill,	J.,	et	al.,	Comparative	analysis	of	the	genome	sequences	of	Bordetella	
pertussis,	Bordetella	parapertussis	and	Bordetella	bronchiseptica.	Nature	Genetics,	
2003.	35(1):	p.	32-40.	

2.	 Goodnow,	R.A.,	Biology	of	Bordetella	bronchiseptica.	Microbiol	Rev,	1980.	44(4):	p.	
722-38.	

3.	 Woolfrey,	B.F.	and	J.A.	Moody,	Human	infections	associated	with	Bordetella	
bronchiseptica.	Clin	Microbiol	Rev,	1991.	4(3):	p.	243-55.	

4.	 Eldering,	G.	and	P.	Kendrick,	Bacillus	parapertussis:	a	species	resembling	both	
Bacillus	pertussis	and	Bacillus	bronchiseptica	but	identical	with	neither.	J	Bacteriol,	
1938.	35(6):	p.	561-72.	

5.	 Wollstein,	M.,	The	Bordet	Gengou	bacillus	of	pertussis.	J	Exp	Med,	1909.	11(1):	p.	41-
54.	

6.	 Cone,	T.C.,	Whooping	cough	is	first	described	as	a	disease	sui	generis	by	Baillou	in	
1640.	Pediatrics,	1970.	46(4):	p.	522.	

7.	 Mattoo,	S.	and	J.D.	Cherry,	Molecular	pathogenesis,	epidemiology,	and	clinical	
manifestations	of	respiratory	infections	due	to	Bordetella	pertussis	and	other	
Bordetella	subspecies.	Clinical	Microbiology	Reviews,	2005.	18(2):	p.	326-82.	

8.	 Pierce,	C.,	N.	Klein,	and	M.	Peters,	Is	leukocytosis	a	predictor	of	mortality	in	severe	
pertussis	infection?	Intensive	Care	Med,	2000.	26(10):	p.	1512-4.	

9.	 Paddock,	C.D.,	et	al.,	Pathology	and	pathogenesis	of	fatal	Bordetella	pertussis	
infection	in	infants.	Clinical	Infectious	Diseases,	2008.	47(3):	p.	328-338.	

10.	 Relman,	D.A.,	et	al.,	Filamentous	hemagglutinin	of	Bordetella	pertussis:	nucleotide	
sequence	and	crucial	role	in	adherence.	Proc	Natl	Acad	Sci	U	S	A,	1989.	86(8):	p.	
2637-41.	

11.	 Ishibashi,	Y.,	D.A.	Relman,	and	A.	Nishikawa,	Invasion	of	human	respiratory	epithelial	
cells	by	Bordetella	pertussis:	possible	role	for	a	filamentous	hemagglutinin	Arg-Gly-
Asp	sequence	and	alpha5beta1	integrin.	Microb	Pathog,	2001.	30(5):	p.	279-88.	

12.	 Abramson,	T.,	H.	Kedem,	and	D.A.	Relman,	Proinflammatory	and	proapoptotic	
activities	associated	with	Bordetella	pertussis	filamentous	hemagglutinin.	Infect	
Immun,	2001.	69(4):	p.	2650-8.	

13.	 Ishibashi,	Y.	and	A.	Nishikawa,	Role	of	nuclear	factor-kappa	B	in	the	regulation	of	
intercellular	adhesion	molecule	1	after	infection	of	human	bronchial	epithelial	cells	
by	Bordetella	pertussis.	Microb	Pathog,	2003.	35(4):	p.	169-77.	

14.	 Mobberley-Schuman,	P.S.,	B.	Connelly,	and	A.A.	Weiss,	Phagocytosis	of	Bordetella	
pertussis	incubated	with	convalescent	serum.	J	Infect	Dis,	2003.	187(10):	p.	1646-53.	

15.	 Mooi,	F.R.,	et	al.,	Characterization	of	fimbrial	subunits	from	Bordetella	species.	
Microb	Pathog,	1987.	2(6):	p.	473-84.	

16.	 Livey,	I.,	C.J.	Duggleby,	and	A.	Robinson,	Cloning	and	nucleotide	sequence	analysis	of	
the	serotype	2	fimbrial	subunit	gene	of	Bordetella	pertussis.	Mol	Microbiol,	1987.	
1(2):	p.	203-9.	

17.	 Riboli,	B.,	et	al.,	Expression	of	Bordetella	pertussis	fimbrial	(fim)	genes	in	Bordetella	
bronchiseptica:	fimX	is	expressed	at	a	low	level	and	vir-regulated.	Microb	Pathog,	
1991.	10(5):	p.	393-403.	

18.	 Willems,	R.,	et	al.,	Fimbrial	phase	variation	in	Bordetella	pertussis:	a	novel	
mechanism	for	transcriptional	regulation.	EMBO	J,	1990.	9(9):	p.	2803-9.	

19.	 Geuijen,	C.A.W.,	et	al.,	Role	of	the	Bordetella	pertussis	minor	fimbrial	subunit,	FimD,	
in	colonization	of	the	mouse	respiratory	tract.	Infection	and	Immunity,	1997.	65(10):	
p.	4222-4228.	



	 151	

20.	 Hazenbos,	W.L.,	et	al.,	Binding	of	FimD	on	Bordetella	pertussis	to	very	late	antigen-5	
on	monocytes	activates	complement	receptor	type	3	via	protein	tyrosine	kinases.	J	
Immunol,	1995.	155(8):	p.	3972-8.	

21.	 Hazenbos,	W.L.,	et	al.,	Bordetella	pertussis	fimbriae	bind	to	human	monocytes	via	
the	minor	fimbrial	subunit	FimD.	J	Infect	Dis,	1995.	171(4):	p.	924-9.	

22.	 Geuijen,	C.A.,	R.J.	Willems,	and	F.R.	Mooi,	The	major	fimbrial	subunit	of	Bordetella	
pertussis	binds	to	sulfated	sugars.	Infect	Immun,	1996.	64(7):	p.	2657-65.	

23.	 Storsaeter,	J.,	et	al.,	Levels	of	anti-pertussis	antibodies	related	to	protection	after	
household	exposure	to	Bordetella	pertussis.	Vaccine,	1998.	16(20):	p.	1907-16.	

24.	 Charles,	I.G.,	et	al.,	Molecular	cloning	and	characterization	of	protective	outer	
membrane	protein	P.69	from	Bordetella	pertussis.	Proc	Natl	Acad	Sci	U	S	A,	1989.	
86(10):	p.	3554-8.	

25.	 Emsley,	P.,	et	al.,	Crystallographic	characterization	of	pertactin,	a	membrane-
associated	protein	from	Bordetella	pertussis.	J	Mol	Biol,	1994.	235(2):	p.	772-3.	

26.	 Everest,	P.,	et	al.,	Role	of	the	Bordetella	pertussis	P.69/pertactin	protein	and	the	
P.69/pertactin	RGD	motif	in	the	adherence	to	and	invasion	of	mammalian	cells.	
Microbiology,	1996.	142	(	Pt	11):	p.	3261-8.	

27.	 Cherry,	J.D.,	et	al.,	A	search	for	serologic	correlates	of	immunity	to	Bordetella	
pertussis	cough	illnesses.	Vaccine,	1998.	16(20):	p.	1901-6.	

28.	 Hellwig,	S.M.,	et	al.,	Crucial	role	of	antibodies	to	pertactin	in	Bordetella	pertussis	
immunity.	J	Infect	Dis,	2003.	188(5):	p.	738-42.	

29.	 Finn,	T.M.	and	L.A.	Stevens,	Tracheal	colonization	factor:	a	Bordetella	pertussis	
secreted	virulence	determinant.	Mol	Microbiol,	1995.	16(4):	p.	625-34.	

30.	 Fernandez,	R.C.	and	A.A.	Weiss,	Susceptibilities	of	Bordetella	pertussis	strains	to	
antimicrobial	peptides.	Antimicrob	Agents	Chemother,	1996.	40(4):	p.	1041-3.	

31.	 Bellalou,	J.,	et	al.,	Deletions	affecting	hemolytic	and	toxin	activities	of	Bordetella	
pertussis	adenylate	cyclase.	Infect	Immun,	1990.	58(10):	p.	3242-7.	

32.	 Wolff,	J.,	et	al.,	Calmodulin	activates	prokaryotic	adenylate	cyclase.	Proc	Natl	Acad	
Sci	U	S	A,	1980.	77(7):	p.	3841-4.	

33.	 Pearson,	R.D.,	et	al.,	Inhibition	of	monocyte	oxidative	responses	by	Bordetella	
pertussis	adenylate	cyclase	toxin.	J	Immunol,	1987.	139(8):	p.	2749-54.	

34.	 Weingart,	C.L.	and	A.A.	Weiss,	Bordetella	pertussis	virulence	factors	affect	
phagocytosis	by	human	neutrophils.	Infect	Immun,	2000.	68(3):	p.	1735-9.	

35.	 Cherry,	J.D.,	et	al.,	Determination	of	serum	antibody	to	Bordetella	pertussis	
adenylate	cyclase	toxin	in	vaccinated	and	unvaccinated	children	and	in	children	and	
adults	with	pertussis.	Clin	Infect	Dis,	2004.	38(4):	p.	502-7.	

36.	 Horiguchi,	Y.,	et	al.,	Bordetella	bronchiseptica	dermonecrotizing	toxin	stimulates	
assembly	of	actin	stress	fibers	and	focal	adhesions	by	modifying	the	small	GTP-
binding	protein	rho.	J	Cell	Sci,	1995.	108	(	Pt	10):	p.	3243-51.	

37.	 Lacerda,	H.M.,	et	al.,	Cytotoxic	necrotizing	factor	1	from	Escherichia	coli	and	
dermonecrotic	toxin	from	Bordetella	bronchiseptica	induce	p21(rho)-dependent	
tyrosine	phosphorylation	of	focal	adhesion	kinase	and	paxillin	in	Swiss	3T3	cells.	J	
Biol	Chem,	1997.	272(14):	p.	9587-96.	

38.	 Weiss,	A.A.	and	M.S.	Goodwin,	Lethal	infection	by	Bordetella	pertussis	mutants	in	
the	infant	mouse	model.	Infect	Immun,	1989.	57(12):	p.	3757-64.	

39.	 Cookson,	B.T.,	A.N.	Tyler,	and	W.E.	Goldman,	Primary	structure	of	the	peptidoglycan-
derived	tracheal	cytotoxin	of	Bordetella	pertussis.	Biochemistry,	1989.	28(4):	p.	
1744-9.	

40.	 Rosenthal,	R.S.,	et	al.,	Major	fragment	of	soluble	peptidoglycan	released	from	
growing	Bordetella	pertussis	is	tracheal	cytotoxin.	Infect	Immun,	1987.	55(9):	p.	
2117-20.	



	 152	

41.	 Goldman,	W.E.,	D.G.	Klapper,	and	J.B.	Baseman,	Detection,	isolation,	and	analysis	of	
a	released	Bordetella	pertussis	product	toxic	to	cultured	tracheal	cells.	Infect	Immun,	
1982.	36(2):	p.	782-94.	

42.	 Heiss,	L.N.,	et	al.,	Interleukin-1	is	linked	to	the	respiratory	epithelial	cytopathology	of	
pertussis.	Infect	Immun,	1993.	61(8):	p.	3123-8.	

43.	 Heiss,	L.N.,	et	al.,	Nitric	oxide	mediates	Bordetella	pertussis	tracheal	cytotoxin	
damage	to	the	respiratory	epithelium.	Infect	Agents	Dis,	1993.	2(4):	p.	173-7.	

44.	 Locht,	C.	and	J.M.	Keith,	Pertussis	toxin	gene:	nucleotide	sequence	and	genetic	
organization.	Science,	1986.	232(4755):	p.	1258-64.	

45.	 Tamura,	M.,	et	al.,	A	role	of	the	B-oligomer	moiety	of	islet-activating	protein,	
pertussis	toxin,	in	development	of	the	biological	effects	on	intact	cells.	J	Biol	Chem,	
1983.	258(11):	p.	6756-61.	

46.	 Farizo,	K.M.,	T.G.	Cafarella,	and	D.L.	Burns,	Evidence	for	a	ninth	gene,	ptlI,	in	the	
locus	encoding	the	pertussis	toxin	secretion	system	of	Bordetella	pertussis	and	
formation	of	a	PtlI-PtlF	complex.	J	Biol	Chem,	1996.	271(49):	p.	31643-9.	

47.	 Weiss,	A.A.,	F.D.	Johnson,	and	D.L.	Burns,	Molecular	characterization	of	an	operon	
required	for	pertussis	toxin	secretion.	Proc	Natl	Acad	Sci	U	S	A,	1993.	90(7):	p.	2970-
4.	

48.	 Katada,	T.,	M.	Tamura,	and	M.	Ui,	The	A	protomer	of	islet-activating	protein,	
pertussis	toxin,	as	an	active	peptide	catalyzing	ADP-ribosylation	of	a	membrane	
protein.	Arch	Biochem	Biophys,	1983.	224(1):	p.	290-8.	

49.	 Toyota,	T.,	et	al.,	Effects	of	islet-activating	protein	(IAP)	on	blood	glucose	and	plasma	
insulin	in	healthy	volunteers	(phase	1	studies).	Tohoku	J	Exp	Med,	1980.	130(2):	p.	
105-16.	

50.	 Parfentjev,	I.A.	and	M.A.	Goodline,	Histamine	shock	in	mice	sensitized	with	
Hemophilus	pertussis	vaccine.	J	Pharmacol	Exp	Ther,	1948.	92(4):	p.	411-3.	

51.	 Morse,	S.I.,	Lymphocytosis-promoting	factor	of	Bordetella	pertussis:	isolation,	
characterization,	and	biological	activity.	J	Infect	Dis,	1977.	136	Suppl:	p.	S234-8.	

52.	 Bernales,	R.,	J.	Eastman,	and	J.	Kaplan,	Quantitation	of	circulating	T	and	B	
lymphocytes	in	children	with	whooping	cough.	Pediatr	Res,	1976.	10(12):	p.	965-7.	

53.	 Morse,	S.I.	and	J.H.	Morse,	Isolation	and	properties	of	the	leukocytosis-	and	
lymphocytosis-promoting	factor	of	Bordetella	pertussis.	J	Exp	Med,	1976.	143(6):	p.	
1483-502.	

54.	 Heininger,	U.,	et	al.,	Clinical	characteristics	of	illness	caused	by	Bordetella	
parapertussis	compared	with	illness	caused	by	Bordetella	pertussis.	Pediatr	Infect	Dis	
J,	1994.	13(4):	p.	306-9.	

55.	 Wirsing	von	König,	C.H.	and	H.	Finger,	Role	of	pertussis	toxin	in	causing	symptoms	of	
Bordetella	parapertussis	infection.	Eur	J	Clin	Microbiol	Infect	Dis,	1994.	13(6):	p.	455-
8.	

56.	 Mattoo,	S.,	et	al.,	Regulation	of	type	III	secretion	in	Bordetella.	Mol	Microbiol,	2004.	
52(4):	p.	1201-14.	

57.	 Fennelly,	N.K.,	et	al.,	Bordetella	pertussis	expresses	a	functional	type	III	secretion	
system	that	subverts	protective	innate	and	adaptive	immune	responses.	Infection	
and	Immunity,	2008.	76(3):	p.	1257-1266.	

58.	 Ayme,	G.,	et	al.,	Biological	activities	of	fragments	derived	from	Bordetella	pertussis	
endotoxin:	isolation	of	a	nontoxic,	Shwartzman-negative	lipid	A	possessing	high	
adjuvant	properties.	Infect	Immun,	1980.	27(3):	p.	739-45.	

59.	 Watanabe,	M.,	et	al.,	Biological	properties	of	lipopolysaccharides	from	Bordetella	
species.	J	Gen	Microbiol,	1990.	136(3):	p.	489-93.	

60.	 Pishko,	E.J.,	et	al.,	Bordetella	pertussis	acquires	resistance	to	complement-mediated	
killing	in	vivo.	Infect	Immun,	2003.	71(9):	p.	4936-42.	



	 153	

61.	 Burns,	V.C.,	et	al.,	Role	of	Bordetella	O	antigen	in	respiratory	tract	infection.	Infect	
Immun,	2003.	71(1):	p.	86-94.	

62.	 Schaeffer,	L.M.,	et	al.,	Bordetella	pertussis	lipopolysaccharide	resists	the	bactericidal	
effects	of	pulmonary	surfactant	protein	A.	J	Immunol,	2004.	173(3):	p.	1959-65.	

63.	 Kendrick,	P.L.,	et	al.,	Mouse	Protection	Tests	in	the	Study	of	Pertussis	Vaccine:	A	
Comparative	Series	Using	the	Intracerebral	Route	for	Challenge.	Am	J	Public	Health	
Nations	Health,	1947.	37(7):	p.	803-10.	

64.	 Amirthalingam,	G.,	S.	Gupta,	and	H.	Campbell,	Pertussis	immunisation	and	control	in	
England	and	Wales,	1957	to	2012:	a	historical	review.	Eurosurveillance,	2013.	
18(38):	p.	19-27.	

65.	 Fine,	P.E.M.	and	J.A.	Clarkson,	Reflections	on	the	efficacy	of	pertussis	vaccines.	
Reviews	of	Infectious	Diseases,	1987.	9(5):	p.	866-883.	

66.	 Trollfors,	B.	and	E.	Rabo,	Whooping	cough	in	adults.	British	Medical	Journal,	1981.	
283(6293):	p.	696-697.	

67.	 Broome,	C.V.	and	D.W.	Fraser,	Pertussis	in	the	United	States,	1979:	a	look	at	vaccine	
efficacy.	J	Infect	Dis,	1981.	144(2):	p.	187-90.	

68.	 Onorato,	I.M.,	S.G.	Wassilak,	and	B.	Meade,	Efficacy	of	whole-cell	pertussis	vaccine	in	
preschool	children	in	the	United	States.	JAMA,	1992.	267(20):	p.	2745-9.	

69.	 Deen,	J.L.,	et	al.,	Household	contact	study	of	Bordetella	pertussis	infections.	Clin	
Infect	Dis,	1995.	21(5):	p.	1211-9.	

70.	 Kulenkampff,	M.,	J.S.	Schwartzman,	and	J.	Wilson,	Neurological	complications	of	
pertussis	inoculation.	Arch	Dis	Child,	1974.	49(1):	p.	46-9.	

71.	 Miller,	D.L.,	R.	Alderslade,	and	E.M.	Ross,	Whooping	cough	and	whooping	cough	
vaccine-	the	risks	and	benefits	debate.	Epidemiologic	Reviews,	1982.	4:	p.	1-24.	

72.	 Miller,	D.,	et	al.,	Pertussis	immunization	and	serious	acute	neurological	illnesses	in	
children.	British	Medical	Journal,	1993.	307(6913):	p.	1171-1176.	

73.	 Christie,	C.D.,	et	al.,	The	1993	epidemic	of	pertussis	in	Cincinnati.	Resurgence	of	
disease	in	a	highly	immunized	population	of	children.	N	Engl	J	Med,	1994.	331(1):	p.	
16-21.	

74.	 Van	Buynder,	P.G.,	et	al.,	Bordetella	pertussis	surveillance	in	England	and	Wales:	
1995-7.	Epidemiology	and	Infection,	1999.	123(3):	p.	403-411.	

75.	 Edmunds,	W.J.,	et	al.,	The	potential	cost-effectiveness	of	acellular	pertussis	booster	
vaccination	in	England	and	Wales.	Vaccine,	2002.	20(9-10):	p.	1316-1330.	

76.	 Hallander,	H.O.	and	L.	Gustafsson,	Efficacy	and	effectiveness	of	acellular	pertussis	
vaccines:	a	20-year	Swedish	experience.	Expert	Rev	Vaccines,	2009.	8(10):	p.	1303-7.	

77.	 Pittman,	M.,	The	concept	of	pertussis	as	a	toxin-mediated	disease.	Pediatric	
Infectious	Disease	Journal,	1984.	3(5):	p.	467-486.	

78.	 Sato,	Y.,	M.	Kimura,	and	H.	Fukumi,	Development	of	a	pertussis	component	vaccine	
in	Japan.	Lancet,	1984.	1(8369):	p.	122-126.	

79.	 Decker,	M.D.,	et	al.,	Comparison	of	13	acellular	pertussis	vaccines:	adverse	reactions.	
Pediatrics,	1995.	96(3	Pt	2):	p.	557-66.	

80.	 Pichichero,	M.E.,	et	al.,	A	safety	and	immunogenicity	comparison	of	12	acellular	
pertussis	vaccines	and	one	whole-cell	pertussis	vaccine	given	as	a	fourth	dose	in	15-	
to	20-month-old	children.	Pediatrics,	1997.	100(5):	p.	772-88.	

81.	 Noble,	G.R.,	et	al.,	Acellular	and	whole-cell	pertussis	vaccines	in	Japan-	report	of	a	
visit	by	United	States	scientists.	Jama-Journal	of	the	American	Medical	Association,	
1987.	257(10):	p.	1351-1356.	

82.	 Storsaeter,	J.,	et	al.,	Secondary	analyses	of	the	efficacy	of	two	acellular	pertussis	
vaccines	evaluated	in	a	Swedish	phase	III	trial.	Vaccine,	1990.	8(5):	p.	457-61.	

83.	 Olin,	P.,	et	al.,	Randomised	controlled	trial	of	two-component,	three-component,	and	
five-component	acellular	pertussis	vaccines	compared	with	whole-cell	pertussis	



	 154	

vaccine.	Ad	Hoc	Group	for	the	Study	of	Pertussis	Vaccines.	Lancet,	1997.	350(9091):	
p.	1569-77.	

84.	 Skoff,	T.H.,	et	al.,	Early	Impact	of	the	US	Tdap	vaccination	program	on	pertussis	
trends.	Arch	Pediatr	Adolesc	Med,	2012.	166(4):	p.	344-9.	

85.	 Quinn,	H.E.	and	P.B.	McIntyre,	The	impact	of	adolescent	pertussis	immunization,	
2004-2009:	lessons	from	Australia.	Bull	World	Health	Organ,	2011.	89(9):	p.	666-74.	

86.	 Amirthalingam,	G.,	Strategies	to	control	pertussis	in	infants.	Archives	of	Disease	in	
Childhood,	2013.	98(7):	p.	552-555.	

87.	 Giuliano,	M.,	et	al.,	Antibody	responses	and	persistence	in	the	two	years	after	
immunization	with	two	acellular	vaccines	and	one	whole-cell	vaccine	against	
pertussis.	Journal	of	Pediatrics,	1998.	132(6):	p.	983-988.	

88.	 Ryan,	M.,	et	al.,	Distinct	T-cell	subtypes	induced	with	whole	cell	and	acellular	
pertussis	vaccines	in	children.	Immunology,	1998.	93(1):	p.	1-10.	

89.	 Mahon,	B.P.,	et	al.,	Interleukin-12	is	produced	by	macrophages	in	response	to	live	or	
killed	Bordetella	pertussis	and	enhances	the	efficacy	of	an	acellular	pertussis	vaccine	
by	promoting	induction	of	Th1	cells.	Infect	Immun,	1996.	64(12):	p.	5295-301.	

90.	 Ryan,	M.S.,	et	al.,	The	role	of	the	S-1	and	B-oligomer	components	of	pertussis	toxin	in	
its	adjuvant	properties	for	Th1	and	Th2	cells.	Biochem	Soc	Trans,	1997.	25(1):	p.	
126S.	

91.	 Esposito,	S.,	et	al.,	Long-term	pertussis-specific	immunity	after	primary	vaccination	
with	a	combined	diphtheria,	tetanus,	tricomponent	acellular	pertussis,	and	hepatitis	
B	vaccine	in	comparison	with	that	after	natural	infection.	Infection	and	Immunity,	
2001.	69(7):	p.	4516-4520.	

92.	 Witt,	M.A.,	et	al.,	Reduced	Risk	of	Pertussis	Among	Persons	Ever	Vaccinated	With	
Whole	Cell	Pertussis	Vaccine	Compared	to	Recipients	of	Acellular	Pertussis	Vaccines	
in	a	Large	US	Cohort.	Clinical	Infectious	Diseases,	2013.	56(9):	p.	1248-1254.	

93.	 Ausiello,	C.M.	and	A.	Cassone,	Acellular	Pertussis	Vaccines	and	Pertussis	Resurgence:	
Revise	or	Replace?	Mbio,	2014.	5(3).	

94.	 Koepke,	R.,	et	al.,	Estimating	the	Effectiveness	of	Tetanus-Diphtheria-Acellular	
Pertussis	Vaccine	(Tdap)	for	Preventing	Pertussis:	Evidence	of	Rapidly	Waning	
Immunity	and	Difference	in	Effectiveness	by	Tdap	Brand.	Journal	of	Infectious	
Diseases,	2014.	210(6):	p.	942-953.	

95.	 Warfel,	J.M.,	L.I.	Zimmerman,	and	T.J.	Merkel,	Acellular	pertussis	vaccines	protect	
against	disease	but	fail	to	prevent	infection	and	transmission	in	a	nonhuman	primate	
model.	Proceedings	of	the	National	Academy	of	Sciences	of	the	United	States	of	
America,	2014.	111(2):	p.	787-792.	

96.	 von	Konig,	C.H.W.,	et	al.,	Pertussis	of	adults	and	infants.	Lancet	Infectious	Diseases,	
2002.	2(12):	p.	744-750.	

97.	 Crowcroft,	N.S.,	et	al.,	How	best	to	estimate	the	global	burden	of	pertussis?	Lancet	
Infectious	Diseases,	2003.	3(7):	p.	413-418.	

98.	 Cherry,	J.D.,	The	epidemiology	of	pertussis:	A	comparison	of	the	epidemiology	of	the	
disease	pertussis	with	the	epidemiology	of	Bordetella	pertussis	infection.	Pediatrics,	
2005.	115(5):	p.	1422-1427.	

99.	 Clark,	T.A.,	Changing	Pertussis	Epidemiology:	Everything	Old	is	New	Again.	Journal	of	
Infectious	Diseases,	2014.	209(7):	p.	978-981.	

100.	 Celentano,	L.P.,	et	al.,	Resurgence	of	pertussis	in	Europe.	Pediatric	Infectious	Disease	
Journal,	2005.	24(9):	p.	761-765.	

101.	 Cherry,	J.D.,	Epidemic	Pertussis	in	2012-The	Resurgence	of	a	Vaccine-Preventable	
Disease.	New	England	Journal	of	Medicine,	2012.	367(9):	p.	785-787.	

102.	 Rohani,	P.	and	J.M.	Drake,	The	decline	and	resurgence	of	pertussis	in	the	US.	
Epidemics,	2011.	3(3-4):	p.	183-188.	



	 155	

103.	 Sealey,	K.L.,	T.	Belcher,	and	A.	Preston,	Bordetella	pertussis	epidemiology	and	
evolution	in	the	light	of	pertussis	resurgence.	Infect	Genet	Evol,	2016.	40:	p.	136-43.	

104.	 Mooi,	F.R.,	I.H.M.	van	Loo,	and	A.J.	King,	Adaptation	of	Bordetella	pertussis	to	
vaccination:	A	cause	for	its	reemergence?	Emerging	Infectious	Diseases,	2001.	7(3):	
p.	526-528.	

105.	 King,	A.J.,	et	al.,	Changes	in	the	genomic	content	of	circulating	Bordetella	pertussis	
strains	isolated	from	the	Netherlands,	Sweden,	Japan	and	Australia:	adaptive	
evolution	or	drift?	Bmc	Genomics,	2010.	11.	

106.	 Bouchez,	V.,	et	al.,	First	report	and	detailed	characterization	of	B.	pertussis	isolates	
not	expressing	pertussis	toxin	or	pertactin.	Vaccine,	2009.	27(43):	p.	6034-6041.	

107.	 Barkoff,	A.-M.,	et	al.,	Appearance	of	Bordetella	pertussis	Strains	Not	Expressing	the	
Vaccine	Antigen	Pertactin	in	Finland.	Clinical	and	Vaccine	Immunology,	2012.	19(10):	
p.	1703-1704.	

108.	 Otsuka,	N.,	et	al.,	Prevalence	and	Genetic	Characterization	of	Pertactin-Deficient	
Bordetella	pertussis	in	Japan.	Plos	One,	2012.	7(2).	

109.	 Lam,	C.,	et	al.,	Rapid	Increase	in	Pertactin-deficient	Bordetella	pertussis	Isolates,	
Australia.	Emerging	Infectious	Diseases,	2014.	20(4):	p.	626-633.	

110.	 Pawloski,	L.C.,	et	al.,	Prevalence	and	Molecular	Characterization	of	Pertactin-
Deficient	Bordetella	pertussis	in	the	United	States.	Clinical	and	Vaccine	Immunology,	
2014.	21(2):	p.	119-125.	

111.	 Martin,	S.W.,	et	al.,	Pertactin-Negative	Bordetella	pertussis	Strains:	Evidence	for	a	
Possible	Selective	Advantage.	Clinical	infectious	diseases	:	an	official	publication	of	
the	Infectious	Diseases	Society	of	America,	2015.	60(2):	p.	223-7.	

112.	 Sealey,	K.L.,	et	al.,	Genomic	analysis	of	isolates	from	the	United	Kingdom	2012	
pertussis	outbreak	reveals	that	vaccine	antigen	genes	are	unusually	fast	evolving.	J	
Infect	Dis,	2015.	212(2):	p.	294-301.	

113.	 Jebb,	W.H.H.	and	A.H.	Tomlinson,	The	catabolic	activity	of	washed	suspensions	of	
Haemophilus	pertussis.	Journal	of	General	Microbiology,	1951.	5(5):	p.	951-965.	

114.	 Verwey,	W.F.,	et	al.,	A	simplified	liquid	culture	medium	for	the	growth	of	
Haemophilus	pertussis.	Journal	of	Bacteriology,	1949.	58(2):	p.	127-134.	

115.	 Jebb,	W.H.H.	and	A.H.	Tomlinson,	The	nutritional	requirements	of	Haemophilus	
pertussis.	Journal	of	General	Microbiology,	1955.	13(1):	p.	1-8.	

116.	 Jebb,	W.H.H.	and	A.H.	Tomlinson,	The	minimal	amino	acid	requirements	of	
Haemophilus	pertussis.	Journal	of	General	Microbiology,	1957.	17(1):	p.	59-63.	

117.	 Stainer,	D.W.	and	M.J.	Scholte,	Simple	chemically	defined	medium	for	production	of	
phase	1	Bordetella	pertussis.	Journal	of	General	Microbiology,	1970.	63(OCT):	p.	
211-20.	

118.	 Pollock,	M.R.,	The	growth	of	H-pertussis	on	media	without	blood.	British	Journal	of	
Experimental	Pathology,	1947.	28(4):	p.	295-307.	

119.	 Field,	L.H.	and	C.D.	Parker,	Effects	of	fatty	acids	on	growth	of	Bordetella	pertussis	in	
defined	medium.	Journal	of	Clinical	Microbiology,	1979.	9(6):	p.	651-653.	

120.	 Frohlich,	B.T.,	et	al.,	Formation	and	cell-medium	partitioning	of	autoinhibitory	free	
fatty	acids	and	cyclodextrin's	effect	in	the	cultivation	of	Bordetella	pertussis.	Journal	
of	Biotechnology,	1996.	45(2):	p.	137-148.	

121.	 Frohlich,	B.T.,	et	al.,	Improved	petussis	toxin	production	by	Bordetella	pertussis	
through	adjusting	the	growth	media	ionic	composition.	Journal	of	Biotechnology,	
1995.	39(3):	p.	205-219.	

122.	 Thalen,	M.,	et	al.,	Rational	medium	design	for	Bordetella	pertussis:	basic	
metabolism.	Journal	of	Biotechnology,	1999.	75(2-3):	p.	147-159.	



	 156	

123.	 Izac,	M.,	et	al.,	A	Functional	Tricarboxylic	Acid	Cycle	Operates	during	Growth	of	
Bordetella	pertussis	on	Amino	Acid	Mixtures	as	Sole	Carbon	Substrates.	Plos	One,	
2015.	10(12).	

124.	 Antoine,	R.,	et	al.,	Overrepresentation	of	a	gene	family	encoding	extracytoplasmic	
solute	receptors	in	Bordetella.	Journal	of	Bacteriology,	2003.	185(4):	p.	1470-1474.	

125.	 Thalen,	M.,	et	al.,	Fed-batch	cultivation	of	Bordetella	pertussis:	Metabolism	and	
Pertussis	Toxin	production.	Biologicals,	2006.	34(4):	p.	289-297.	

126.	 Lacey,	B.W.,	Antigenic	modulation	of	Bordetella	pertussis.	Jour	Hyg,	1960.	58((1)):	p.	
57-93.	

127.	 Weiss,	A.A.,	et	al.,	Tn5-induced	mutations	affecting	virulence	factors	of	Bordetella	
pertussis.	Infection	and	Immunity,	1983.	42(1):	p.	33-41.	

128.	 Weiss,	A.A.	and	S.	Falkow,	Genetic	analysis	of	phase	change	in	Bordetella	pertussis.	
Infection	and	Immunity,	1984.	43(1):	p.	263-269.	

129.	 Knapp,	S.	and	J.J.	Mekalanos,	2	trans-acting	regulatory	genes	(Vir	and	Mod)	control	
antigenic	modulation	in	Bordetella	pertussis.	Journal	of	Bacteriology,	1988.	170(11):	
p.	5059-5066.	

130.	 Stibitz,	S.,	et	al.,	Phase	variation	in	Bordetella	pertussis	by	frameshift	mutation	in	a	
gene	for	a	novel	2-component	system.	Nature,	1989.	338(6212):	p.	266-269.	

131.	 Arico,	B.,	et	al.,	Sequences	required	for	the	expression	of	Bordetella	pertussis	
virulence	factors	share	homology	with	prokaryotic	signal	transduction	proteins.	
Proceedings	of	the	National	Academy	of	Sciences	of	the	United	States	of	America,	
1989.	86(17):	p.	6671-6675.	

132.	 Scarlato,	V.,	et	al.,	Positive	transcriptional	feedback	at	the	Bvg	locus	controls	
expression	of	virulence	factors	in	Bordetella	pertussis.	Proceedings	of	the	National	
Academy	of	Sciences	of	the	United	States	of	America,	1990.	87(17):	p.	6753-6757.	

133.	 Roy,	C.R.	and	S.	Falkow,	Identification	of	Bordetella	pertussis	regulatory	sequences	
required	for	the	transcriptional	activation	of	the	fhaB	gene	and	autoregulation	of	the	
bvgAS	operon.	Journal	of	Bacteriology,	1991.	173(7):	p.	2385-2392.	

134.	 Miller,	J.F.,	et	al.,	Constitutive	sensory	transduction	mutations	in	the	Bordetella	
pertussis	bvgS	gene.	Journal	of	Bacteriology,	1992.	174(3):	p.	970-979.	

135.	 Uhl,	M.A.	and	J.F.	Miller,	Autophosphorylation	and	phosphotransfer	in	the	Bordetella	
pertussis	bvgAS	signal-transduction	cascade.	Proceedings	of	the	National	Academy	
of	Sciences	of	the	United	States	of	America,	1994.	91(3):	p.	1163-1167.	

136.	 Uhl,	M.A.	and	J.F.	Miller,	Integration	of	multiple	domains	in	a	two-component	sensor	
protein:	The	Bordetella	pertussis	BVgAS	phosphorelay.	Embo	Journal,	1996.	15(5):	p.	
1028-1036.	

137.	 Beier,	D.,	et	al.,	In	vivo	characterization	of	the	unorthodox	BvgS	2-component	sensor	
protein	of	Bordetella	pertussis.	Journal	of	Molecular	Biology,	1995.	248(3):	p.	596-
610.	

138.	 Steffen,	P.,	S.	Goyard,	and	A.	Ullmann,	Phosphorylated	BvgA	is	sufficient	for	
transcriptional	activation	of	virulence-regulated	genes	in	Bordetella	pertussis.	Embo	
Journal,	1996.	15(1):	p.	102-109.	

139.	 Boucher,	P.E.,	et	al.,	Genetic	and	biochemical	analyses	of	BvgA	interaction	with	the	
secondary	binding	region	of	the	fha	promoter	of	Bordetella	pertussis.	Journal	of	
Bacteriology,	2001.	183(2):	p.	536-544.	

140.	 Merkel,	T.J.	and	S.	Stibitz,	Identification	of	a	locus	required	for	the	regulation	of	Bvg-
repressed	genes	in	Bordetella	pertussis.	Journal	of	Bacteriology,	1995.	177(10):	p.	
2727-2736.	

141.	 Chen,	Q.,	et	al.,	Activation	of	Bvg-repressed	genes	in	Bordetella	pertussis	by	RisA	
requires	cross-talk	from	a	non	co-operonic	histidine	kinase	RisK.	J	Bacteriol,	2017.	



	 157	

142.	 Williams,	C.L.,	et	al.,	BvgA	functions	as	both	an	activator	and	a	repressor	to	control	
Bvg(i)	phase	expression	of	bipA	in	Bordetella	pertussis.	Molecular	Microbiology,	
2005.	56(1):	p.	175-188.	

143.	 Cummings,	C.A.,	et	al.,	Species-	and	strain-specific	control	of	a	complex,	flexible	
regulon	by	Bordetella	BvgAS.	Journal	of	Bacteriology,	2006.	188(5):	p.	1775-1785.	

144.	 Goffin,	P.,	et	al.,	A	versatile,	non	genetically	modified	organism	(GMO)-based	
strategy	for	controlling	low-producer	mutants	in	Bordetella	pertussis	cultures	using	
antigenic	modulation.	Biotechnology	Journal,	2015.	10(8):	p.	1269-1280.	

145.	 Belcher,	T.	and	A.	Preston,	Bordetella	pertussis	evolution	in	the	(functional)	genomics	
era.	Pathog	Dis,	2015.	73(8):	p.	ftv064.	

146.	 Thoma,	S.	and	M.	Schobert,	An	improved	Escherichia	coli	donor	strain	for	diparental	
mating.	Fems	Microbiology	Letters,	2009.	294(2):	p.	127-132.	

147.	 Engler,	C.,	R.	Kandzia,	and	S.	Marillonnet,	A	One	Pot,	One	Step,	Precision	Cloning	
Method	with	High	Throughput	Capability.	Plos	One,	2008.	3(11).	

148.	 Imaizumi,	A.,	et	al.,	Effect	of	heptakis	(2,6-O-dimethyl)	beta-cyclodextrin	on	the	
production	of	pertussis	toxin	by	Bordetella	pertussis.	Infection	and	Immunity,	1983.	
41(3):	p.	1138-1143.	

149.	 Andorn,	N.,	et	al.,	Large-scale	cultivation	of	Bordetella	pertussis	in	submerged	
culture	for	production	of	pertussis	toxin.	Applied	Microbiology	and	Biotechnology,	
1988.	28(4-5):	p.	356-360.	

150.	 Campos,	M.,	et	al.,	A	constant	size	extension	drives	bacterial	cell	size	homeostasis.	
Cell,	2014.	159(6):	p.	1433-46.	

151.	 Woldemeskel,	S.A.	and	E.D.	Goley,	Shapeshifting	to	Survive:	Shape	Determination	
and	Regulation	in	Caulobacter	crescentus.	Trends	Microbiol,	2017.	25(8):	p.	673-687.	

152.	 Muller,	T.,	et	al.,	Ammonium	toxicity	in	bacteria.	Current	Microbiology,	2006.	52(5):	
p.	400-406.	

153.	 Baba,	T.,	et	al.,	Construction	of	Escherichia	coli	K-12	in-frame,	single-gene	knockout	
mutants:	the	Keio	collection.	Molecular	Systems	Biology,	2006.	2.	

154.	 Joyce,	A.R.,	et	al.,	Experimental	and	computational	assessment	of	conditionally	
essential	genes	in	Escherichia	coli.	Journal	of	Bacteriology,	2006.	188(23):	p.	8259-
8271.	

155.	 Langridge,	G.C.,	et	al.,	Simultaneous	assay	of	every	Salmonella	Typhi	gene	using	one	
million	transposon	mutants.	Genome	Research,	2009.	19(12):	p.	2308-2316.	

156.	 van	Opijnen,	T.	and	A.	Camilli,	Genome-wide	fitness	and	genetic	interactions	
determined	by	Tn-seq,	a	high-throughput	massively	parallel	sequencing	method	for	
microorganisms.	Current	protocols	in	microbiology,	2010.	Chapter	1:	p.	Unit1E.3-
Unit1E.3.	

157.	 Gallagher,	L.A.,	J.	Shendure,	and	C.	Manoil,	Genome-Scale	Identification	of	
Resistance	Functions	in	Pseudomonas	aeruginosa	Using	Tn-seq.	Mbio,	2011.	2(1).	

158.	 Dong,	T.G.,	et	al.,	Identification	of	T6SS-dependent	effector	and	immunity	proteins	by	
Tn-seq	in	Vibrio	cholerae.	Proceedings	of	the	National	Academy	of	Sciences	of	the	
United	States	of	America,	2013.	110(7):	p.	2623-2628.	

159.	 Dembek,	M.,	et	al.,	High-Throughput	Analysis	of	Gene	Essentiality	and	Sporulation	in	
Clostridium	difficile.	Mbio,	2015.	6(2).	

160.	 Moule,	M.G.,	et	al.,	Characterization	of	New	Virulence	Factors	Involved	in	the	
Intracellular	Growth	and	Survival	of	Burkholderia	pseudomallei.	Infection	and	
Immunity,	2016.	84(3):	p.	701-710.	

161.	 Subashchandrabose,	S.,	et	al.,	Acinetobacter	baumannii	Genes	Required	for	Bacterial	
Survival	during	Bloodstream	Infection.	Msphere,	2016.	1(1).	



	 158	

162.	 Grant,	A.J.,	et	al.,	Genes	Required	for	the	Fitness	of	Salmonella	enterica	Serovar	
Typhimurium	during	Infection	of	Immunodeficient	gp91(-/-)	phox	Mice.	Infection	and	
Immunity,	2016.	84(4):	p.	989-997.	

163.	 van	Opijnen,	T.	and	A.	Camilli,	Transposon	insertion	sequencing:	a	new	tool	for	
systems-level	analysis	of	microorganisms.	Nature	Reviews	Microbiology,	2013.	11(7).	

164.	 Barquist,	L.,	et	al.,	The	TraDIS	toolkit:	sequencing	and	analysis	for	dense	transposon	
mutant	libraries.	Bioinformatics,	2016.	32(7):	p.	1109-1111.	

165.	 Fuchs,	T.M.,	et	al.,	A	new	gene	locus	of	Bordetella	pertussis	defines	a	novel	family	of	
prokaryotic	transcriptional	accessory	proteins.	Journal	of	Bacteriology,	1996.	
178(15):	p.	4445-4452.	

166.	 Bendezu,	F.O.	and	P.A.J.	de	Boer,	Conditional	lethality,	division	defects,	membrane	
involution,	and	endocytosis	in	mre	and	mrd	shape	mutants	of	Escherichia	coli.	
Journal	of	Bacteriology,	2008.	190(5):	p.	1792-1811.	

167.	 Bannan,	J.D.,	et	al.,	Cloning	and	characterization	of	btr,	a	Bordetella	pertussis	gene	
encoding	an	fnr-like	transcriptional	regulator.	Journal	of	Bacteriology,	1993.	175(22):	
p.	7228-7235.	

168.	 Beckett,	C.S.,	et	al.,	Four	genes	are	required	for	the	system	II	cytochrome	c	
biogenesis	pathway	in	Bordetella	pertussis,	a	unique	bacterial	model.	Mol	Microbiol,	
2000.	38(3):	p.	465-81.	

169.	 Denome,	S.A.,	et	al.,	Escherichia	coli	mutants	lacking	all	possible	combinations	of	
eight	penicillin	binding	proteins:	viability,	characteristics,	and	implications	for	
peptidoglycan	synthesis.	J	Bacteriol,	1999.	181(13):	p.	3981-93.	

170.	 Philippe,	N.,	et	al.,	Evolution	of	penicillin-binding	protein	2	concentration	and	cell	
shape	during	a	long-term	experiment	with	Escherichia	coli.	J	Bacteriol,	2009.	191(3):	
p.	909-21.	

171.	 Neo,	Y.L.,	et	al.,	Evidence	for	an	intact	polysaccharide	capsule	in	Bordetella	pertussis.	
Microbes	and	Infection,	2010.	12(3):	p.	238-245.	

172.	 Hoo,	R.,	et	al.,	Evidence	for	a	Role	of	the	Polysaccharide	Capsule	Transport	Proteins	
in	Pertussis	Pathogenesis.	Plos	One,	2014.	9(12).	

173.	 Costa,	C.S.	and	D.N.	Anton,	Conditional	lethality	of	cell	shape	mutations	of	
Salmonella	typhimurium:	rodA	and	mre	mutants	are	lethal	on	solid	but	not	in	liquid	
medium.	Current	Microbiology,	1999.	38(3):	p.	137-142.	

174.	 Errington,	J.,	Bacterial	morphogenesis	and	the	enigmatic	MreB	helix.	Nature	Reviews	
Microbiology,	2015.	13(4):	p.	241-248.	

175.	 Reimold,	C.,	et	al.,	Motion	of	variable-length	MreB	filaments	at	the	bacterial	cell	
membrane	influences	cell	morphology.	Molecular	Biology	of	the	Cell,	2013.	24(15):	
p.	2340-2349.	

176.	 Govindarajan,	S.	and	O.	Amster-Choder,	Where	are	things	inside	a	bacterial	cell?	
Curr	Opin	Microbiol,	2016.	33:	p.	83-90.	

177.	 Young,	K.D.,	Why	spherical	Escherichia	coli	dies:	The	inside	story.	Journal	of	
Bacteriology,	2008.	190(5):	p.	1497-1498.	

178.	 Goffin,	C.	and	J.M.	Ghuysen,	Multimodular	penicillin-binding	proteins:	an	enigmatic	
family	of	orthologs	and	paralogs.	Microbiol	Mol	Biol	Rev,	1998.	62(4):	p.	1079-93.	

179.	 Eraso,	J.M.	and	W.	Margolin,	Bacterial	Cell	Wall:	Thinking	Globally,	Actin	Locally.	
Current	Biology,	2011.	21(16):	p.	R628-R630.	

180.	 de	Pedro,	M.A.,	et	al.,	Constitutive	septal	murein	synthesis	in	Escherichia	coli	with	
impaired	activity	of	the	morphogenetic	proteins	RodA	and	penicillin-binding	protein	
2.	J	Bacteriol,	2001.	183(14):	p.	4115-26.	

181.	 Tuomanen,	E.,	J.	Schwartz,	and	S.	Sande,	The	vir	locus	affects	the	response	of	
Bordetella	pertussis	to	antibiotics:	phenotypic	tolerance	and	control	of	autolysis.	J	
Infect	Dis,	1990.	162(2):	p.	560-3.	



	 159	

182.	 Draghici,	S.,	et	al.,	Reliability	and	reproducibility	issues	in	DNA	microarray	
measurements.	Trends	Genet,	2006.	22(2):	p.	101-9.	

183.	 Wang,	Z.,	M.	Gerstein,	and	M.	Snyder,	RNA-Seq:	a	revolutionary	tool	for	
transcriptomics.	Nature	Reviews	Genetics,	2009.	10(1):	p.	57-63.	

184.	 Brinig,	M.M.,	et	al.,	Significant	gene	order	and	expression	differences	in	Bordetella	
pertussis	despite	limited	gene	content	variation.	Journal	of	Bacteriology,	2006.	
188(7):	p.	2375-2382.	

185.	 Brickman,	T.J.,	et	al.,	Transcriptional	Profiling	of	the	Iron	Starvation	Response	in	
Bordetella	pertussis	Provides	New	Insights	into	Siderophore	Utilization	and	Virulence	
Gene	Expression.	Journal	of	Bacteriology,	2011.	193(18):	p.	4798-4812.	

186.	 King,	A.J.,	et	al.,	Genome-Wide	Gene	Expression	Analysis	of	Bordetella	pertussis	
Isolates	Associated	with	a	Resurgence	in	Pertussis:	Elucidation	of	Factors	Involved	in	
the	Increased	Fitness	of	Epidemic	Strains.	Plos	One,	2013.	8(6).	

187.	 Bibova,	I.,	et	al.,	Transcriptional	profiling	of	Bordetella	pertussis	reveals	requirement	
of	RNA	chaperone	Hfq	for	Type	III	secretion	system	functionality.	Rna	Biology,	2015.	
12(2):	p.	175-185.	

188.	 Hot,	D.,	et	al.,	Detection	of	small	RNAs	in	Bordetella	pertussis	and	identification	of	a	
novel	repeated	genetic	element.	Bmc	Genomics,	2011.	12.	

189.	 Livak,	K.J.	and	T.D.	Schmittgen,	Analysis	of	relative	gene	expression	data	using	real-
time	quantitative	PCR	and	the	2(T)(-Delta	Delta	C)	method.	Methods,	2001.	25(4):	p.	
402-408.	

190.	 Gross,	R.	and	R.	Rappuoli,	Positive	regulation	of	pertussis	toxin	expression.	
Proceedings	of	the	National	Academy	of	Sciences	of	the	United	States	of	America,	
1988.	85(11):	p.	3913-3917.	

191.	 Brickman,	T.J.,	et	al.,	Differential	expression	of	Bordetella	pertussis	iron	transport	
system	genes	during	infection.	Mol	Microbiol,	2008.	70(1):	p.	3-14.	

192.	 Pradel,	E.,	et	al.,	Bordetella	pertussis	TonB,	a	Bvg-independent	virulence	
determinant.	Infect	Immun,	2000.	68(4):	p.	1919-27.	

193.	 Walsh,	K.	and	D.E.	Koshland,	Characterization	of	rate-controlling	steps	in	vivo	by	use	
of	an	adjustable	expression	vector.	Proc	Natl	Acad	Sci	U	S	A,	1985.	82(11):	p.	3577-
81.	

194.	 Peekhaus,	N.,	et	al.,	The	glutamate	uptake	regulatory	protein	(Grp)	of	Zymomonas	
mobilis	and	its	relation	to	the	global	regulator	Lrp	of	Escherichia	coli.	J	Bacteriol,	
1995.	177(17):	p.	5140-7.	

195.	 Borisov,	V.B.,	et	al.,	The	cytochrome	bd	respiratory	oxygen	reductases.	Biochim	
Biophys	Acta,	2011.	1807(11):	p.	1398-413.	

196.	 Belevich,	I.,	et	al.,	Oxygenated	complex	of	cytochrome	bd	from	Escherichia	coli:	
Stability	and	photolability.	Febs	Letters,	2005.	579(21):	p.	4567-4570.	

 

 


