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Summary

The object of study in this thesis are branching diffusions which arise as stochastic
models for evolving populations.
Our focus lies on studying branching diffusions in which particles or, more gen-
erally, mass gets killed upon exiting a ball. In particular, we investigate the way
in which populations can survive within a ball and how the mass evolves upon
its exit from an increasing sequence of balls.
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Chapter 1

Introduction

Branching processes are stochastic population models which rely on an explicit
description of the individuals’ lifetime and reproduction law. The underlying
assumption is that individuals live and reproduce independently of each other
and identically in distribution. Spatial branching processes generalise this basic
idea by allowing particles to move in space, according to some Markov process,
during their lifetime and keeping track of their spatial positions.
Spatial branching processes became increasingly popular not only through their
obvious connection to population biology but also because of their close relation
to non-linear differential equations. There is a vast literature on various aspects
of spatial branching processes and we refer the reader to the monographs by
Dawson [12], Le Gall [53], Etheridge [27] and Dynkin [21] for an introduction and
overview.

The aim of this thesis is to investigate branching diffusions in which indi-
viduals move according to a diffusion and get killed upon exiting a ball or, in
one-dimension, a fixed size interval. This first chapter gives an introduction to
branching diffusions with killing. We address some of the problems that will be
treated in this thesis, with pointers to the subsequent chapters. We also discuss
some related results which motivated our investigations.

1.1 Branching diffusions in balls

In this section, we introduce branching Brownian motion and super-Brownian
motion in a ball as a model of an evolving population. We also hint at the
relations to differential equations at the end of this section.

1.1.1 Branching Brownian motion in a ball

Branching Brownian motion (BBM) is the canonical example of a branching
diffusion. It is easily described as a model of an evolving population. In this
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1. Introduction

population, each individual or particle moves like a Brownian motion in Rd and
reproduces according to a continuous-time Galton-Watson process. The branch-
ing Brownian motion in a ball is a variation of this process in which particles
get killed upon exiting a fixed size ball. More precisely, we have the following
description of its evolution.

Definition 1.1 (Branching Brownian motion in a ball). Let B be an open ball in
Rd and x ∈ B. Let A be a N0-valued random variable with distribution {qk; k =
0, 1, ...} and finite mean m.

• We begin with one initial particle at position x.

• Each particle moves according to a Brownian motion in Rd, independently
of all other particles.

• When a particle exits the ball B, it gets killed instantaneously and removed
from the population.

• While moving inside B, each particle has an exponentially distributed life-
time with parameter β > 0.

• At the end of its lifetime, a particle dies and is replaced by a random number
of offspring particles which has the same distribution as A.

• Once born, offspring particles move off independently from their birth pos-
ition, repeating the stochastic behaviour of their parent.

Note the distinction in terminology: a particle gets killed upon exiting B and
a particle dies at the end of its exponential lifetime (at which it is then replaced
by a random number of offspring).
We let Nt be the set of and |Nt| be the number of particles which are alive at
time t. For any u ∈ Nt we denote by xu(t) its spatial position at time t. Denote
by Ma(B) the space of atomic measures on B with finitely many atoms each
carrying unit mass. Then the BBM in the ball B is the Ma(B)-valued process
X = (Xt, t ≥ 0) where

Xt =
∑
u∈Nt

δxu(t).

We denote the law of X initiated from one particle at x ∈ B by P B
x . Of course,

we can start the process from any finite configuration of particles in B such that
each of them initiates an independent BBM in a ball from its spatial position. If
X has such an initial configuration ν ∈Ma(B), we write P B

ν for its law (with the
simplification P B

x instead of P B
δx
).

In short, the BBM in a ball can be characterised by two main features: the
spatial motion of the particles and the branching activity. The latter is governed

10



1.1. Branching diffusions in balls

by a continuous-time Galton-Watson process with a branching mechanism F of
the form

F (s) = β
∞∑
k=0

(qks
k − s), s ∈ [0, 1]. (1.1.1)

For example, if q2 = 1 we are in the case of binary branching and F (s) = β(s2−s).
Of course, we can generalise the model above in several ways. For instance,
instead of Brownian motion in a ball we can allow the single particle motion to
be any diffusion in a domainD ⊂ Rd or, even more generally, a Markov process on
any Polish space, leading to branching diffusions and Markov branching processes
respectively; the branching rate β can depend on the spatial position of a particle
and the offspring number A can depend on the spatial position of the branch point
which gives a space-dependent branching mechanism of the form

F (s, y) = β(y)
∞∑
k=0

(qk(y)sk − s), s ∈ [0, 1], y ∈ D.

In some sense, through the BBM in the ball we have already met an example of a
space-dependent branching mechanism since only the particle within B reproduce.
To emphasize this we could write its branching mechanism as

F (s, y) = F (s)1(y∈B), s ∈ [0, 1] and y ∈ Rd,

where F (s) is as in (1.1.1). The indicator 1(y∈B) ensures that only particles within
B reproduce. However, as particles get killed immediately upon exiting B, this
more complicated formulation is not necessary and we simply drop the indicator.
If the spatial killing is removed in Definition 1.1 above, meaning that each particle
moves like a Brownian motion in Rd and reproduces according to the branching
mechanism F in (1.1.1), then we will call it a standard BBM. We denote its law
by Pν for an initial configuration ν ∈ Ma(Rd), the space of atomic measures in
Rd with finitely many unit mass atoms.

Two important properties of the BBM in a ball follow from the description
above, the Markov property and the branching property. The Markov property
holds since the lifetimes are exponentially distributed and each particle follows a
Brownian motion killed upon exiting B which is itself Markovian.

Definition 1.2 (The branching property). For two initial distributions ν1, ν2 ∈
Ma(B) and t ≥ 0, the law of Xt under P B

ν1+ν2
is equal to the law of the independent

sum X
(1)
t + X

(2)
t , where X(1)

t and X(2)
t are independent copies of Xt under P B

ν1

respectively P B
ν2
.

The branching property follows from our description since the evolution of
each particle is independent from all other particles and all particles have the

11



1. Introduction

same stochastic behaviour.

1.1.2 Super-Brownian motion in a ball

A super-Brownian motion is a measure-valued process which can be seen as the
short lifetime and high density limit of a BBM. Let us sketch the approximation
for the super-Brownian motion in a ball B ⊂ Rd. Denote byMF (B) the space of
finite measures on B and let ν ∈MF (B). In the n-th approximation step,

• we start with a Poisson(nν) number of initial particles, each of which has
mass 1/n;

• each particle moves according to a Brownian motion in Rd;

• a particles gets killed upon hitting the boundary ∂B and is removed from
the process;

• while a particle stays within B, it has an exponentially distributed lifetime
with rate β(n), typically β(n) = nβ for a β > 0;

• when a particle dies it is replaced by a random number of offspring according
to a distribution {q(n)k , k ≥ 0}.

We assume that β(n) and {q(n)k , k ≥ 0} are such that β(n) →∞, as n→∞, and,
for λ ≥ 0,

lim
n→∞

nF (n)
(

1− λ

n

)
= lim

n→∞
nβ(n)

(∑
k≥0

q
(n)
k

(
1− λ

n

)k − (1− λ

n

))
= ψ(λ),

where ψ is of the form

ψ(λ) = −aλ+ bλ2 +

∫ ∞
0

(e−λx − 1 + λx) Π(dx), (1.1.2)

for some constants a ∈ R, b ≥ 0 and a measure Π concentrated on (0,∞) satis-
fying

∫
(0,∞)

(x ∧ x2) Π(dx) <∞.
In the n-th approximation step, denote by ν(n) the random initial distribution at
time 0. Then ν(n) is of the form

ν(n) =
1

n

N
(n)
0∑
i=1

δxi ,

where xi, i = 1, .., N
(n)
0 , are the atoms of a Poisson random measure on B with

intensity measure nν. Let N (n)
t be the set of particles alive at time t, and for any
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1.1. Branching diffusions in balls

particle u ∈ N (n)
t we denote by x(n)u (t) its spatial position at time t. Then we set

Y
(n)
t =

1

n

∑
u∈N(n)

t

δ
x
(n)
u (t)

and define Y (n) = (Y
(n)
t , t ≥ 0) as the branching particle system in the n-th ap-

proximation. The sequence of random initial measures ν(n) converges weakly
to ν and it can then be shown that there exists an MF (B)-valued process
Y = (Yt, t ≥ 0) such that Y (n) → Y in law, in the sense of MF (B)-valued
càdlàg functions, as n→∞. Rigorous constructions of this fashion are given, for
instance, in Ethier and Kurtz [29], Fitzsimmons [32], Dawson [12] and Dynkin
[18, 19, 20, 21].
The limit process Y then inherits the Markov property and the branching prop-
erty from the BBMs in the approximation procedure.

Definition 1.3. We call the limitingMF (B)-valued process Y a super-Brownian
motion in a ball B with branching mechanism ψ and initial configuration ν and
denote its law by PB

ν .

Let a ∈ R, b ≥ 0 and let Π be a measure concentrated on (0,∞) satisfying∫
(0,∞)

(x ∧ x2) Π(dx) < ∞. Then for any triplet (a, b,Π), which determines the

branching mechanism ψ in (1.1.2), one can choose β(n) and {q(n)k , k ≥ 0} in
such a way that the super-Brownian motion obtained from the approximation
construction above has branching mechanism ψ.
As for the BBM in a ball, we can construct so-called superdiffusions and more
general measure-valued branching Markov processes by replacing the Brownian
motion in B with a diffusion in Rd or a Markov process respectively. Under certain
regularity assumption, we can further allow the parameters a, b and the measure
Π in (1.1.2) to depend on the state space or even on time, thus leading to space-
and time-dependent branching mechanisms. The existence and construction of
these generalisations are covered in the references given above.

It is often convenient to analytically characterise the distribution of a super-
Brownian motion in B through its Laplace functional. We denote by H = (Ht =
σ(Ys, s ≤ t), t ≥ 0) the filtration generated by Y and use the inner product
notation 〈f, ν〉 =

∫
B fdν for a function f on B and a measure ν ∈ MF (B). The

following proposition is a standard result in the theory of superdiffusions, see for
instance Chapter 4 in Dynkin [21].

Proposition 1.4 (Markov branching property). Let ν ∈ MF (B). For any pos-
itive, bounded, measurable function g on B and 0 ≤ s ≤ t,

EB
ν [e−〈g,Yt〉|Hs] = e−〈ug(·,t),Ys〉.

13



1. Introduction

The Laplace functional ug is the unique non-negative solution to

u(x, t) = EB
x [g(ξt), t < TB]− EB

x

∫ t∧TB

0

ψ(u(ξs, t− s)) ds, (1.1.3)

where ((ξt, t ≥ 0),PB) is a Brownian motion with killing upon exiting B and
TB = inf{t > 0 : ξt /∈ B} denotes its killing time.1

This characterisation is sometimes referred to as the Markov branching prop-
erty and, as the name suggests, it is a consequence of the Markov and the branch-
ing property of Y . The distribution of any branching diffusion can be character-
ised by an integral equation similar in fashion to (1.1.3).
The integral equation in (1.1.3) is equivalent to the parabolic partial differential
equation

1

2
∆u(x, t)− ψ(u(x, t)) =

∂

∂t
u(x, t) in B× (0,∞)

u(x, 0) = g(x), x ∈ B
u(x, t) = 0 x ∈ ∂B, t ≥ 0 (1.1.4)

in that solutions to the former also solve the latter equation and vice versa, cf.
[17, 18, 21] for similar results; we give an example of how to translate an integral
equation similar to (1.1.3) into a PDE in Section 3.4.
The relation between branching diffusions and differential equations, or the cor-
responding integral equations, was already noted for instance in Sevest’yanov
[63], Skorohod [67] and Ikeda, Nagasawa and Watanabe [41, 42]. In the context
of branching Brownian motion this connection is often credited to McKean [57].
He observed that the distribution of a one-dimensional standard BBM with bin-
ary branching mechanism can be characterised in terms of the semi-linear heat
equation

1

2

∂2

∂x2
u(x, t) + β(u(x, t)2 − u(x, t)) =

∂

∂t
u(x, t) in R× (0,∞)

u(x, 0) = f(x), x ∈ R

for a [0, 1]-valued, measurable function f on R, which is the celebrated Fisher-
Kolmogorov-Petrovskii-Piscunov equation arising in population genetics. We will
discover further relationships between branching diffusions and differential equa-
tions of this kind in the later chapters.

In the analytic study, it is sometimes more convenient to use Brownian mo-
tion with absorption upon exiting B as the underlying motion of Y , instead of

1The term TB in (1.1.3) is included for clarity but is somewhat superfluous since EB
x[g(ξt)] =

Ex[g(ξt), t < TB] by definition.

14



1.2. Survival of branching diffusions in balls

Brownian motion with killing upon exiting B. This brings the advantage of work-
ing with a conservative diffusion as the underlying motion. Conservativeness is
not necessary for the analytical construction of superprocesses, see for instance
[19, 21], but often assumed for convenience.
We can construct the super-Brownian motion with absorption upon exiting B
through the approximating particle picture described above. The only difference
is that, in this case, a particle gets absorbed upon exiting B and stops repro-
ducing while it remains part of the population (unlike the killing case in which
particles are removed from the population when they get killed). If we construct
the super-Brownian motion in this way, using absorption rather than killing, then
we can discard the ‘absorbed’ mass by restricting the resulting measures Yt, t ≥ 0,
to the interior of B. The restricted process then agrees with the super-Brownian
motion in a ball obtained from the approximation construction with killing as
described at the beginning of this section. If we work with Brownian motion
with absorption as the underlying motion then for the PDE (1.1.4) the boundary
condition simplifies to u(x, t) = g(x) on {B× {0}} ∪ {∂B× [0,∞)}.

1.2 Survival of branching diffusions in balls

A question that arises immediately is whether the BBM in a ball described in
Definition 1.1 can survive forever. Before we give an answer to this question we
recall some general results on survival and extinction probabilities for non-spatial
branching processes.

1.2.1 Survival and extinction of Galton-Watson and con-
tinuous state branching processes

Consider an evolving population described by a standard BBM (ignoring the
spatial killing in Definition 1.1). Then the process of the number of particles
(|Nt|, t ≥ 0) is a Galton-Watson process with branching mechanism F given by
(1.1.1). Survival of the standard BBM, that is the event {∀t ≥ 0 : Nt 6= ∅}, is
thus the same as survival of the underlying Galton-Watson process. It is well
known that the latter depends only on the mean offspring number m = E[A]
which we assumed to be finite. More precisely, the population becomes extinct
in finite time, that is Nt = ∅ for large t, P -a.s., if m ≤ 1 and the population
has a positive survival probability if m > 1. In the former case the offspring
distribution is called (sub)critical2 while it is referred to as supercritical in the
latter case.
The probability of extinction, say p∗, is given explicitly as p∗ = inf{s ∈ [0, 1] :

2m = 1 is the critical case.
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1. Introduction

F (s) = 0}. We refer to Athreya and Ney [2] for these results and more on
Galton-Watson processes.

In the setting of a standard super-Brownian motion (again ignoring spatial
killing), the total mass process (||Yt||, t ≥ 0) is a continuous-state branching
process (CSBP) with branching mechanism ψ. Grey [34] proved that ||Yt|| <∞
a.s. for all t ≥ 0, if and only if the non-explosion condition∫

0+

|ψ(s)|−1 ds =∞ (1.2.1)

holds. From now on, we assume that (1.2.1) holds and that ψ(∞) =∞.
The expected total mass at time t ≥ 0 when we start with unit mass at a point
x ∈ Rd is given by

Eδx(||Yt||) = e−ψ
′(0+)t.

Similar to the terminology employed for Galton-Watson processes, we call the
branching mechanism ψ (sub)critical if ψ′(0+) ≥ 0 and supercritical if ψ′(0+) <
0. This then refers to whether on average the process will decrease or increase.
The probability of extinguishing, namely the event {limt→∞ ||Yt|| = 0}, can be
expressed in terms of the largest root of ψ, that is λ∗ := inf{λ > 0 : ψ(λ) > 0}.
Then λ∗ is the survival rate of X in the sense that, for any ν ∈ MF (Rd), the
space of finite measures on Rd with compact support,

Pν( lim
t→∞
||Yt|| = 0) = e−λ

∗||ν||.

Note that convexity of ψ and the assumption ψ(∞) =∞ ensure that λ∗ is finite
and strictly positive in the supercritical case and equal to 0 in the (sub)critical
case.
We encounter a slight difference to Galton-Watson processes here in that the
event of extinction, that is {∃t ≥ 0 : ||Yt|| = 0}, can differ from the event of
becoming extinguished. In fact, Grey [34] showed that both events agree a.s if
and only if ∫ ∞

|ψ(s)|−1 ds <∞ (1.2.2)

holds. If this condition fails, then the probability of extinction is equal to 0.
For an overview of the classical results for CSBPs stated here we refer the reader
to [50], Chapter 10.

16



1.2. Survival of branching diffusions in balls

1.2.2 Survival of branching diffusions with spatial killing

The long-term behaviour of spatial branching processes becomes more interesting
when we introduce a spatial killing barrier. We consider the case of supercritical
branching mechanisms only since in the (sub)critical case the processes cannot
survive regardless of the motion.

Branching Brownian motion with absorption

In the model of branching Brownian motion with absorption, as studied by Kesten
[45], each particle moves like a Brownian motion in R+ with a drift −µ, µ ≥ 0,
and gets killed upon hitting the origin. Kesten discovered that this process has
a strictly positive survival probability if µ <

√
2(m− 1)β and dies out almost

surely if µ ≥
√

2(m− 1)β.
Berestycki, Berestycki and Schweinsberg [3] study the survival probability of the
BBM with absorption near criticality. They assume that each particle splits into
two at rate 1 and thus the critical drift is

√
2. Set L = π(

√
2− µ2)−1. Denote by

pµ(x) the probability of survival of the BBM with absorption when it has drift
−µ and is initiated from one particle at x. Theorem 3 in [3] states that there
exists a constant C > 0 such that, for x ∈ R,

pµ(x) ∼ CLe−µ(L−x) sin(πx/L) as µ ↑
√

2, (1.2.3)

where ∼ means that the ratio of left- and right-hand side tends to 1 in the limit.
The result in [3] is in fact more general than this in that it allows x to be a
function of µ provided that L− x→∞ as µ ↑

√
2.

Branching Brownian motion in a strip

Motivated by the results on BBM with absorption at the origin, we are inter-
ested in finding asymptotics for the survival probability of the related model of
branching Brownian motion in a strip. Here particles get killed when they exit
a fixed-size interval. This is simply the one-dimensional version of the BBM in a
ball described in Definition 1.1. For notational convenience, we write PK for its
law when the strip is of size K.
We assume again that particles have drift −µ, µ ≥ 0. As a first result, we state
in Proposition 2.1 in Chapter 2 that survival of the BBM in a strip is possible if
and only if µ <

√
2(m− 1)β and the size of the strip exceeds the critical width

K0 :=
π√

2(m− 1)β − µ2
. (1.2.4)

Subsequently, we study the probability of survival as the width of the interval
shrinks to the critical valueK0. Let us denote by pK(x) the probability of survival
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1. Introduction

of the BBM in the strip of size K initiated from one particle at x ∈ (0, K).
Theorem 2.4 in Chapter 2 says that, as K ↓ K0,

pK(x) ∼ CK sin(πx/K0)e
µx, (1.2.5)

uniformly for all x in the critical width strip where the constant CK tends to 0
as K ↓ K0. In fact, we are able to find an explicit expression for CK as

CK = (K −K0)
(K2

0µ
2 + π2)(K2

0µ
2 + 9π2)

12(m− 1)βπK3
0(eµK0 + 1)

, (1.2.6)

which is also given in Theorem 2.4. We should remark that it has not been
possible so far to find an explicit expression for the constant C in (1.2.3) of the
BBM with absorption at 0.

Spines and backbones

The proofs of the critical width in (1.2.4) and the asymptotics for pK in (1.2.5)
employ classical spine techniques which were developed in Chauvin and Rouault
[11] and put into use through path-wise arguments in Lyons et al. [56] and Lyons
[55]. Our arguments rely on a martingale change of measure on the probability
space of the BBM in a strip under which one line of descent, the so-called spine,
moves like a Brownian motion conditioned to stay in (0, K), see Figure 1-1. The
particles in the spine reproduce at an accelerated rate and according to a size-
biased offspring distribution, which ensures that at least one child is born at
any branch point. When the spine particle dies we choose one of its children to
repeat the spine particles stochastic behaviour and to continue the path of the
spine. Conditionally on the spine, all other children of the spine initiate a copy
of X under the original measure PK from the space-time position of their birth.
Clearly, the process constructed in this way survives almost surely since the spine
survives.
The critical width K0 in (1.2.4) and the asymptotics for pK in (1.2.5) can then
be derived from computations depending essentially on the spine only.

In order to find the expression for CK in (1.2.6), it is not enough to study
only the spine. In fact, we have to take into consideration every infinite line of
descent. For this reason, we decompose the BBM in a strip in such a way that
we can identify all lines of descent which are infinite. As an illustration, consider
a realisation of (X,PK) and colour in blue all particles with an infinite line of
descent and in red all remaining particles. On the event of survival, see Figure
1-2 (a), the blue particles form an infinite blue tree. More precisely, the blue tree
is made up of all infinite lines of descent and does not contain any finite ones.
The red particles form finite red trees which branch off the blue tree. On the
event of extinction we only see one finite red tree as shown in Figure 1-2 (b).

18



1.2. Survival of branching diffusions in balls

0 x K

Figure 1-1: Sketch of a realisation of X under a change of measure with a spine
(green).

The blue tree is a realisation of what we will call a blue branching diffusion,
that is, a certain branching diffusion in which each particle’s line of descent is
infinite. In view of the picture above, we sometimes refer to the blue branching
diffusion as the backbone of X. Note the following conceptual difference between
backbones and spines. The backbone contains all infinite lines of descent and, on
the event of survival, its particles make up an infinite subtree of (X,PK). The
previously discussed spine is only a single infinite line of descent of X under a
change of measure.
The blue branching diffusion, or backbone, is a branching diffusion with a space-
dependent branching mechanism in which the single particle motion is a diffusion
with a space-dependent drift term. The single particle motion and the branching
mechanism are such that the particles cannot reach the killing boundaries and,
when a particle dies, it is replaced by at least two offspring particles. Therefore
every line of descent of the backbone is infinite, just as in the colouring picture
explained above.
The backbone is our main tool of analysis in the proof of (1.2.6) as it captures
enough information about the evolution of (X,PK) on survival. The explicit
expression for CK can eventually be derived from computations of the expected
growth rate of the backbone.

While we highlighted above the conceptual difference between spines and
backbones they are, at the same time, intimately connected to one another: Con-
dition (X,PK) on the event of survival, which is equivalent to conditioning on
the presence of a backbone, and let us study the evolution of its backbone as we
make the interval smaller, that is we take K ↓ K0. We see that the branching
rate of the backbone slows down and it thins down to a single line of descent at
criticality. In the limit, the single particle motion ‘becomes’ a Brownian motion
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0 Kx

(a) On the event of survival
0 Kx

(b) On the event of extinc-
tion

Figure 1-2: Sketch of realisations of X with infinite lines of descent coloured in
blue (backbone) and finite lines of descent in red.

conditioned to stay in (0, K). Thus, conditional on survival, as we approach crit-
icality, the backbone of X thins down to become a spine. This observation is key
to Theorem 2.6 which presents a quasi-stationary limit result for the evolution of
the BBM in a strip conditioned on survival as the width approaches the critical
value K0.

Our techniques are robust enough to transfer these results into the setting of
the super-Brownian motion in a strip. Further generalisations to higher dimen-
sions and different underlying single particle motions are discussed in the final
section of Chapter 2.

1.3 Branching diffusions on the boundary of balls

While the previous section dealt with the particles or, more generally, the mass of
a branching diffusion which stayed in the interior of a ball we are now interested
in the configuration of particles or mass as it exits a ball. These configurations
are described by so-called exit measures.

1.3.1 Exit measures from balls

Ultimately, we will be interested in studying exit measures for super-Brownian
motion but, for simplicity, we begin with the discrete particle picture setting.
Consider the BBM in a ball B ⊂ Rd as in Definition 1.1. For each particle which
gets killed, we assign a unit mass to the point of the boundary ∂B at which it
got killed. The exit measure of X from B is the measure XB on ∂B consisting of
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1.3. Branching diffusions on the boundary of balls

these unit masses. Alternatively, we can assume that particles ‘freeze’, and stop
reproducing, when they exit the ball. Then XB is the measure supported on ∂B
consisting of Dirac masses at the positions of the ‘frozen’ particles.
Neveu [58] and Chauvin [10] introduced so-called stopping lines to formalise the
idea of ‘freezing’ particles upon exiting a domain. Depending on the terminology
used, a stopping line can refer to the set of particles which get ‘frozen’ or to
the set of times at which they ‘freeze’. Although the term stopping line is more
commonly employed with regard to BBM, we will use the term exit measure here
to emphasize that we consider a random measure indicating the spatial positions
of the ‘frozen’ particles, rather than the set of ‘frozen’ particles or their ‘freezing’
times.
One way to adopt the concept of exit measures to the setting of super-Brownian
motion is to define the exit measure from a ball through the approximating
particle picture discussed in Section 1.1.2: the exit measure from a ball B can
be defined for the discrete particle system in the n-th approximation, and then
one has to verify that as n → ∞, those discrete exit measures converge to a
limit YB, see Dynkin [20, 21]. Loosely speaking, the measure YB consists of the
accumulated mass which got ‘frozen’ upon exiting the ball B. Formally, the exit
measure YB is supported on ∂B and it is analytically characterised as follows.

Proposition 1.5 ([20]). Let ν ∈MF (B̄). For any positive, bounded, measurable
function f on ∂B,

Eν [e
−〈f,YB〉] = e−〈vf ,ν〉.

The Laplace functional vf is the unique non-negative solution to

vf (x) = Ex[f(ξTB)]− Ex
[ ∫ TB

0

ψ(vf (ξt)) dt
]
,

where ((ξt, t ≥ 0),Px) is an Rd-Brownian motion with ξ0 = x and TB := inf{t >
0 : ξt /∈ B} denotes its first exit time from B.

The above characterisation yields yet another connection of super-Brownian
motion with differential equations in that the Laplace functional vf is the solution
to the non-linear Dirichlet problem

1

2
∆v(x)− ψ(v(x)) = 0 in B, (1.3.1)

v = f on ∂B.

Let us go back to the discrete setting considered at the beginning of this
section. For our purposes, it is convenient to assume that individuals continue
to evolve after their ancestral line has exited the ball and we therefore consider
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a standard BBM X without spatial killing. For any realisation of X, we can
then construct a family of exit measures which keeps track of the configura-
tion of particles as they exit a sequence of increasing balls. To this end, let
Ds := {x ∈ Rd : ||x|| < s} be the open ball of radius s > 0 around the origin and
let XDs be the exit measure of X from Ds. Dynkin [20] shows that the sequence
of exit measures (XDs , s > 0) has the Markov branching property, cf. Proposition
1.4.
The analogous process in the super-Brownian motion setting is the sequence of
exit measures (YDs , s > 0) where YDs is the exit measure of Y from Ds, s > 0.
If we construct this sequence using the approximating particle picture, then we
would expect that the Markov branching property is preserved. Indeed, Dynkin
and Kuznetsov [23] prove that (YDs , s > 0) possesses the Markov branching prop-
erty, see Proposition 3.1 in Chapter 3 for details.

1.3.2 The total mass on the boundary of balls

In Chapter 3, we study the process Z = (Zs, s > 0) where

Zs := ||YDs ||, s > 0,

which keeps track of the total mass that is ‘frozen’ when it first hits the boundary
of the balls Ds, s > 0. The radii s of the sequence of balls is now the time-
parameter of Z. Clearly, if Zs = 0 for some s, then this implies that the standard
super-Brownian motion Y is contained in a ball of radius s and thus that the
range of Y is a bounded subset of Rd.

Sheu [64, 65] studies the asymptotic behaviour of Z and shows that the events
{Y has compact support} and {∃s > 0 : Zs = 0} agree a.s. In [64], it is found
that these events agree with the event {lims→∞ Zs = 0} if and only if the branch-
ing mechanism ψ of Y satisfies∫ ∞ 1√∫ θ

λ∗
ψ(λ) dλ

dθ <∞. (1.3.2)

Otherwise, the events {∃s > 0 : Zs = 0} and {Y has compact support} both
have probability 0.
Sheu’s approach studies the process Z by means of differential equations, exploit-
ing the connection pointed out in (1.3.1). In particular, the unusual condition
(1.3.2) arises as an analytic condition under which solutions to the non-linear
Dirichlet problem

1

2
∆v(x)− ψ(v(x)) = 0 in Ds, (1.3.3)

v = ∞ on ∂Ds,
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1.3. Branching diffusions on the boundary of balls

exist. The connection to the probability that ||YDs|| = 0 and equivalently Zs = 0
for some s, is made as follows. For f = θ constant, the solution to the non-linear
Dirichlet problem (1.3.1), with B replaced by Ds, is vθ(x) = − log Ex(e

−θ||YDs ||).
Equation (1.3.3) emerges from (1.3.1) by taking f ≡ θ → ∞. As θ → ∞, we
get limθ→∞ vθ(x) = − log Px(||YDs|| = 0) and we expect this to be a solution to
(1.3.3).

In Chapter 3, we seek for a probabilistic description of the process Z and
an interpretation of Sheu’s condition (1.3.2). To begin with, it is not difficult
to see that Z = (Zs, s > 0) is a time-inhomogeneous continuous-state branching
process, meaning that it is a [0,∞]-valued Markov branching process with càdlàg
paths and that its law is determined by a branching mechanism which changes
as time evolves (see Theorem 3.2 for details).
As part of Theorem 3.2, we characterise the branching mechanism of Z, say
Ψ(s, ·), where s indicates the time-dependence, through the differential equation

∂

∂s
Ψ(s, θ) +

1

2

∂

∂θ
Ψ2(s, θ) +

d− 1

s
Ψ(s, θ) = 2ψ(θ) s > 0, θ ∈ (0,∞)

Ψ(s, λ∗) = 0, s > 0.

We then study its behaviour as the radius of the balls tends to infinity. In
particular, in Theorem 3.4 in Chapter 3, we show that Ψ(s, θ) converges towards
the branching mechanism Ψ∞(θ) := lims→∞Ψ(s, θ) with

Ψ∞(θ) = 2 sgn(ψ(θ+))

√∫ θ

λ∗
ψ(λ) dλ, θ ≥ 0,

of a time-homogeneous continuous-state branching process as s → ∞. It is now
evident that the analytic condition (1.3.2) is Grey’s classical condition (1.2.2) for
the limiting branching mechanism Ψ∞(θ). That means that the compact support
condition for the super-Brownian motion Y is the extinction vs. extinguishing
condition for the limiting CSBP with branching mechanism Ψ∞(θ).
Let us briefly comment on the relation between conditions (1.2.2) and (1.3.2).
Sheu [65] observed the following implication. If ψ satisfies Sheu’s condition (1.3.2)
then it also satisfies Grey’s condition (1.2.2). He concludes that if the range
of Y is bounded then Y has to become extinct. However, the converse is not
necessarily true and (1.2.2) does not imply (1.3.2). This is saying that, Y can
have an unbounded range even though it becomes extinct in finite time. A
branching mechanism for which this behaviour can occur is ψ(λ) =

∫ 1

0
(e−λx−1+

λx) x−2| log x| dx, which is given as an example in [65].
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1.4 A guide to notation
Table 1.1 contains some of the notation which is frequently used throughout the
thesis. The guideline regarding our notation for the different processes and their
laws is as follows.
The law of a diffusion ξ is denoted by P, laws of branching particle diffusions X
are denoted by P and laws of superdiffusions Y by P.
Superscripts indicate the domain whose boundary is the killing barrier. If there
is no superscript then there is no killing.
In Chapter 2, we consider one-dimensional processes only and write PK , PK ,
etc. instead of P(0,K), P (0,K) and so on. We further need a second superscript
which refers to whether the underlying process is blue (B), red (R) , dressed
(D) or coloured (C). ‘Spine’ processes will be denoted by Q, Q respectively Q
with appropriate superscripts. See Chapter 2 and the references in Table 1.1 for
definitions of these processes. Note that the underlying Brownian motion of all
processes in Chapter 2 has a fixed drift −µ, µ ≥ 0. To keep notation simple, this
is not indicated by the probability measures.

References in Table 1.1 point to the page where the definition can be found.

Table 1.1: Table of notation

NOTATION USED THROUGHOUT

B open ball in Rd

(ξ,PB) Brownian motion killed upon exiting B
(X,P B) BBM with killing upon exiting B 10
(Y,PB) super-Brownian motion with killing upon exiting B 13
(Gt, t ≥ 0) natural filtration of diffusion ξ
(Ft, t ≥ 0) natural filtration of branching diffusion X
(Ht, t ≥ 0) natural filtration of superdiffusion Y
F branching mechanism of BBM 11
ψ branching mechanism of super-Brownian motion 12
TD first exit time of a diffusion ξ from a domain D ⊂ Rd

Ma(D) space of finite atomic measures with support in D ⊆ R
MF (D) space of finite, compactly supported measures on D ⊆

R

CHAPTER 2

(ξ,PK) Brownian motion with drift −µ and killing upon exit-
ing (0, K)

(ξ,PR,K) ‘red’ diffusion in (0, K) 49
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1.5. Publication details

(ξ,PB,K) ‘blue’ diffusion in (0, K) 52
L infinitesimal generator of (ξ,PK) 28
LR,K infinitesimal generator of (ξ,PR,K) 47
LB,K infinitesimal generator of (ξ,PB,K) 51
(ξ,QK) Brownian motion conditioned to stay in (0, K) 35
(X,PK) BBM with killing upon exiting (0, K)
(X,PR,K) red branching diffusion in (0, K) 47
(X,PB,K) blue branching diffusion in (0, K) 55
(X,PD,K) dressed blue branching diffusion in (0, K) 51
(X,PC,K) two-colour branching diffusion in (0, K) 56
FR,K branching mechanism of (X,PR,K) 47
FB,K branching mechanism of (X,PB,K) 51
(X,QK) BBM with a spine conditioned to stay in (0, K) 36
(X∗, Q∗) BBM with a spine conditioned to stay in (0, K0) 32
(Y,PK) super-Brownian motion with killing upon exiting

(0, K)
(Y,PR,K) ‘red’ superdiffusion in (0, K) 82
(Y,PD,K) ‘dressed’ superdiffusion in (0, K) 83
(Y,PC,K) ‘coloured’ superdiffusion in (0, K) 83
(Y ∗,P∗) superdiffusion with spine conditioned to stay in (0, K0) 84

CHAPTER 3

Ds ball of radius s in Rd

YDs , s > 0 exit measure of Y from Ds 90
HDs σ-algebra generated by (YDr , r ≤ s)
vf (x, s) Laplace functional of (YDs , s > 0) 90
(Z, P̄r) process of total mass of (YDs , s ≥ r) 91
Ψ(r, θ) time-dependent branching mechanism of Z 91
u(r, s, θ) Laplace functional of Z 91
(Z∞, P̄∞) limiting CSBP as r →∞ 92
Ψ∞(θ) branching mechanism of Z∞ 92
(R,PR) d-dimensional Bessel process

1.5 Publication details

This thesis consists of two self-contained chapters, excluding the introduction.
The chapters are based on the following papers which form the references [37]
and [40].
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CHAPTER 2
[37] Branching Brownian motion in a strip: Survival near criticality, with
Simon C. Harris and Andreas E. Kyprianou.
Preprint arXiv:1212.1444, submitted.

CHAPTER 3
[40] The total mass of super-Brownian motion upon exiting balls and Sheu’s
compact support condition, with Andreas E. Kyprianou.
Preprint arXiv:1308.1656, submitted.
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Chapter 2

Branching Brownian motion in a
strip: Survival near criticality

We consider a branching Brownian motion with linear drift in which particles are
killed on exiting the interval (0, K) and study the evolution of the process on the
event of survival as the width of the interval shrinks to the critical value at which
survival is no longer possible. We combine spine techniques and a backbone de-
composition to obtain exact asymptotics for the near-critical survival probability.
This allows us to deduce the existence of a quasi-stationary limit result for the
process conditioned on survival which reveals that the backbone thins down to a
spine as we approach criticality.
Our investigations are motivated by recent work on survival of near critical
branching Brownian motion with absorption at the origin by Aïdékon and Harris
in [1] as well as the work of Berestycki et al. in [4] and [3].

2.1 Introduction and main results

2.1.1 Introduction and main results

We consider a branching Brownian motion X in which each particle performs
a Brownian motion with drift −µ, for µ ≥ 0, and is killed on hitting 0 or K.
All living particles undergo branching at constant rate β to be replaced by a
random number of offspring particles, A, where A is an independent random
variable with distribution {qk; k = 0, 1, ...} and finite mean m > 1 and such that
E(A log+A) < ∞. Once born, offspring particles move off independently from
their birth position, repeating the stochastic behaviour of their parent. This is
simply the one-dimensional version of the branching Brownian motion in a ball
in Definition 1.1 with an additional drift, a supercritical branching mechanism
and the additional moment assumption E(A log+A) <∞.
In other words, the motion of a single particle is governed by the infinitesimal
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generator

L =
1

2

d2

dx2
− µ d

dx
, x ∈ (0, K), (2.1.1)

defined for all functions u ∈ C2(0, K), the space of twice continuously differen-
tiable functions on (0, K), with u(0+) = u(K−) = 0. We further recall from
Section 1.1.1 that the branching activity is characterised by the branching mech-
anism

F (s) = β(G(s)− s), s ∈ [0, 1], (2.1.2)

where G(s) =
∑∞

k=0 qks
k is the probability generating function of A.

We will henceforth use the notation introduced in Section 1.1.1. We remind the
reader that, throughout this section, the law PK

ν of X with initial configuration
ν ∈Ma(0, K) refers to a BBM in (0, K) with fixed drift −µ and we will refer toX
as a PK-branching diffusion. Similarly, (ξ,PKx ) will henceforth denote a Brownian
motion with drift −µ upon exiting the interval (0, K) starting from x ∈ (0, K).
We will sometimes neglect the dependence on the initial configuration and write
PK and PK without a subscript.
For x ∈ [0, K] we define the survival probability pK(x) = PK

x (ζ = ∞) where
ζ = inf{t > 0 : |Nt| = 0} is the time of extinction. As a first result, we identify
the critical width K0 below which survival is no longer possible.

Proposition 2.1. If µ <
√

2(m− 1)β and K > K0 where

K0 :=
π√

2(m− 1)β − µ2
,

then pK(x) > 0 for all x ∈ (0, K); otherwise pK(x) = 0 for all x ∈ [0, K].

Proposition 2.1 is essentially not new as, in the case of binary branching, it
is already implicit in Theorem 3 in Engländer and Kyprianou [25], see also [24],
Example 14. Nevertheless, we will give a short proof of Proposition 2.1 in Sec-
tion 2.3 as the techniques used therein will be important later. In particular, the
proof uses a spine argument, decomposing X into a Brownian motion conditioned
to stay in (0, K) dressed with independent copies of (X,PK) which ‘immigrate’
along its path.
Our aim is to study the evolution of the PK-branching diffusion on the event of
survival. We will therefore develop a decomposition which identifies the particles
with infinite genealogical lines of descent, that is, particles which produce a fam-
ily of descendants which survives forever. To illustrate this, for each realisation
of X, let us colour blue all particles with an infinite line of descent and colour
red all remaining particles. Thus, on the event of survival, the resulting picture
consists of a blue tree ‘dressed’ with red trees whereas, on the event of extinction,
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we see a red tree only. Recall Figure 1-2 in Chapter 1 for an illustration.
For the moment, let us consider the binary branching case only in which each
particle splits into two. Intuitively, the branching rates of the blue branching
diffusion, corresponding to the blue tree in the colouring picture, and the red
branching diffusion, corresponding to a red tree, can be derived as follows. Sup-
pose a particle dies and is replaced by two offspring at position y. For each of
the offspring, the probability that it has an infinite genealogical line of descent is
the survival probability pK(y), independent of the other offspring particle. Thus,
each offspring particle is blue with probability pK(y) and hence with probability
pK(y)2 both offspring particles are blue. Therefore, given the parent particle is
blue, it branches into two blue particles at rate β pK(y)2

pK(y)
= βpK(y).

Likewise, the probability that both offspring are red is (1 − pK(y))2 and hence,
given the parent particle is red, it branches into two red particles at rate β(1 −
pK(y)).
Further, with probability 2pK(y)(1 − pK(y)) one blue and one red particle are
born. Then, given a particle is blue, it branches into one blue and one red particle
at rate 2β(1− pK(y)). We call such a branching event an immigration.
Concerning the motion of the red and blue particles, we claim that red particles
move according to a diffusion with spatial drift coefficient −(µ +

p′K(y)

1−pK(y)
), while

blue particles have spatial drift coefficient −(µ− p′K(y)

pK(y)
), where p′K is the derivative

of pK . Each of these diffusions is the result of a h-transform of L using h = 1−pK
and h = pK respectively. In fact we will show that the laws of the red and blue
branching diffusions arise from martingale changes of measure which, on the
level of infinitesimal generators, correspond to the aforementioned h-transforms
(see Lemma 2.7 for the relation between martingale changes of measure and h-
transforms).
Continuing with the binary branching case, the following two results characterise
the red and the blue branching diffusion as well as the dressed blue branching dif-
fusion which corresponds to the blue tree dressed with red trees in the colouring
picture, see again Figure 1-2.

Proposition 2.2 (The red branching diffusion in the binary branching case). Let
K > K0. In the case of binary branching, the red branching diffusion on (0, K)
has single particle motion according to the infinitesimal generator

LR,K =
1

2

d2

dy2
−
(
µ+

p′K(y)

1− pK(y)

)
d

dy
on (0, K),

for u ∈ C2(0, K) with u(0+) = u(K−) = 0, and each particle branches into two
at space-dependent rate β(1− pK(y)), y ∈ (0, K).

Theorem 2.3 (The dressed blue branching diffusion in the binary branching
case). Let K > K0. In the case of binary branching, the dressed blue branching
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diffusion on (0, K) starting from an initial particle at x ∈ (0, K) evolves as
follows.

(i) From x, we run a blue branching diffusion XB, that is a branching diffusion
in which the single particle movement has infinitesimal generator

LB,K =
1

2

d2

dy2
−
(
µ− p′K(y)

pK(y)

)
d

dy
on (0, K),

defined for all u ∈ C2(0, K), and each particle branches into two at space-
dependent rate βpK(y), y ∈ (0, K).

(ii) Conditionally on XB, along the trajectory of each particle in XB, an im-
migrant occurs at space-dependent rate 2β(1 − pK(y)), y ∈ (0, K). Each
immigrant initiates a red branching diffusion from the space-time position
of its birth.

It follows from the colouring picture that conditioning X on the event of sur-
vival is the same as conditioning the initial particle of the coloured tree on being
blue. Likewise, conditioning the initial particle on being red corresponds to con-
ditioning X on becoming extinct. Indeed, we will show that the red branching
diffusion in Proposition 2.2 and the dressed blue branching diffusion in Theorem
2.3 arise naturally from changes of measure which condition (X,PK) on the event
of survival and the event of extinction respectively. In view of Theorem 2.3, we
will sometimes refer to the blue branching diffusion XB as the backbone and the
theorem itself together with Proposition 2.2 as the backbone decomposition.
The corresponding results in the case of a general branching mechanism F are
given as Proposition 2.13 and Theorem 2.14 in Section 2.4. In particular, we will
see that a general branching mechanism induces a second type of immigration at
the branching times of the backbone.
A significant convenience of these results is that the law of the PK-branching dif-
fusion conditioned on survival is the same as the law of the dressed blue branching
diffusion. Thus, instead of studying the quasi-stationary limit limK↓K0 P

K
x (·|ζ =

∞) it suffices to study the evolution of the dressed blue branching diffusion as
K ↓ K0.
In a first step to understand the evolution of the dressed blue branching diffu-
sion near criticality, we study the asymptotics of the survival probability pK as
K ↓ K0. For a first asymptotic result note that u = 1− pK solves the differential
equation Lu + F (u) = 0 on (0, K) with boundary condition u(0) = u(K) = 1
(cf. Proposition 2.12). Near criticality we may assume that pK(x) is very small
for a fixed x and neglecting all terms of order (pK(x))2 and higher we obtain the
linearisation LpK + (m− 1)βpK = 0. This suggests pK(x) ∼ CK sin(πx/K0)e

µx.
In fact, for a general branching mechanism F of the form in (2.1.2), we have the
following result.
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Theorem 2.4. Define

CK := (K −K0)
(K2

0µ
2 + π2)(K2

0µ
2 + 9π2)

12(m− 1)βπK3
0(eµK0 + 1)

.

Then, as K ↓ K0, we have CK ↓ 0 and

pK(x) ∼ CK sin(πx/K0)e
µx, (2.1.3)

uniformly for all x ∈ (0, K0). That is pK(x)/(CK sin(πx/K0)e
µx) converges to 1

uniformly for all x ∈ (0, K0), as K ↓ K0.

In Section 2.5.1 we will prove a first part of Theorem 2.4, that is equation
(2.1.3) without identifying CK , in the fashion of [1] using spine techniques. Note
that, in the sketch of the analytic argument above, we used that pK asymptotic-
ally solves the linearisation LpK+(m−1)βpK = 0. However, so does any multiple
of pK . Therefore, it is not possible to find the exact expression for CK by study-
ing this linearisation only. On the probabilistic side, the spine approach can be
seen as an approximation of a branching diffusion by a single line of descent, the
spine. It seems that the amount of information about the branching diffusion
which can be gained from a probabilistic spine decomposition is similar to that
gained when working with an analytic linearisation, in that both methods give
the asymptotic shape of pK in (2.1.3) but fail to identify the constant CK .
The decomposition in Theorem 2.3 suggests using the backbone XB as a more
accurate approximation of (X,PK) on survival. It turns out that the backbone
indeed captures enough information about the evolution of (X,PK) on survival
to derive the explicit expression for CK . A heuristic argument and an outline of
the proof using large deviation theory is given in Section 2.5.2, together with a
rigorous proof based on computations of the growth rate of the expected number
of particles in the backbone.
We remark that in the setting of branching Brownian motion with absorption at
the origin in [3, 1] it has not been possible so far to identify the analogue to our
constant CK explicitly.

With Theorem 2.3 and 2.4 in hand we look for a quasi-stationary limit result
for the law of the dressed blue branching diffusion, which agrees with the law of
(X,PK) conditioned on survival, as we approach criticality.
The heuristics we used earlier in the binary case suggest the following. If we pick
a particle which is currently located at position y then the probability that it has
an infinite line of descent is pK(y). Thus, given the particle positions xu(t) for all
particles u ∈ Nt, the number of particles in the backbone at time t is the number
of successes in a sequence of independent Bernoulli trials each with probability
of success pK(xu(t)) (We will make this argument rigorous in Corollary 2.17).
Now, as K ↓ K0, the probabilities pK(xu(t)) tend to 0 uniformly by Theorem 2.4
and thus the blue tree becomes increasingly thinner on (0, K0). It cannot vanish
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2. Branching Brownian motion in a strip: Survival near criticality

completely though since the genealogical line of the initial blue particle cannot
become extinct and thus one may believe that, over a fixed time interval [0, T ],
the blue tree thins down to a single genealogical line at criticality.
In the case of a binary branching mechanism as considered in Theorem 2.3, this
conjecture can readily by confirmed by looking at the branching rates. The
blue branching rate βpK drops down to 0 as K ↓ K0, at the same time the red
branching rate β(1− pK) increases to β and the rate of immigration 2β(1− pK)
rises to 2β at criticality.
Let us formalise this idea by defining what we expect to be the limiting branching
diffusion, now already for the case of a general branching mechanism, before
giving the quasi-stationary limit result below.

Definition 2.5. Let x ∈ (0, K0). Let X∗ = (X∗t , t ≥ 0) be a Ma(0, K0)-valued
process which is constructed as follows.
X∗ is initiated from a single particle at x performing a Brownian motion con-
ditioned to stay in (0, K0), that is, a strong Markov process with infinitesimal
generator

LK0,∗ =
1

2

d2

dy2
+

π/K0

tan(πy/K0)

d

dy
, on (0, K0), (2.1.4)

defined for all u ∈ C2(0, K0). Along its path we immigrate Ã independent copies
of (X,PK0) at rate mβ where Ã has the size-biased offspring distribution (q̃k, k =
0, 1, ...) with

q̃k = qk+1
k + 1

m
, k ≥ 0.

Denote the law of X∗ by Q∗x.

Theorem 2.6. Let x ∈ (0, K0). Then, for any fixed time T > 0, the law of
(Xt, 0 ≤ t ≤ T ) under the measure limK↓K0 P

K
x (·|ζ =∞) is equal to (X∗t , 0 ≤ t ≤

T ) under Q∗x, where the limit is understood in the weak sense.

Theorem 2.6 can be seen as an extension of the spine decomposition we men-
tioned in the discussion following Proposition 2.1 to the critical width K0. We
emphasize however that the result, as stated, only holds over finite time horizons
[0, T ].
In Section 2.7, we demonstrate the robustness of our approach by applying the
results for the PK-branching diffusion to study the evolution of a supercritical
super-Brownian motion with absorption at 0 and K near criticality. We outline a
backbone decomposition analogous to Theorem 2.3 in which we will see that the
backbone of the super-Brownian motion with absorption at 0 and K is the same
as the backbone of an associated PK-branching diffusion. This connection allows
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us to deduce asymptotic results for the survival rate of the super-Brownian mo-
tion with absorption on (0, K) directly from the results on the survival probability
of the associated PK-branching diffusion. Further, we can find a quasi-stationary
limit result for the super-Brownian motion equivalent to Theorem 2.6. This sec-
tion is intended to highlight the applicability of the backbone approach and we
will only sketch the proofs of the results therein.
The remainder of this chapter is organised as follows. In Section 2.2 we introduce
some useful spine techniques which are employed in the proof of Proposition 2.1
in Section 2.3. In Section 2.4 we establish the results corresponding to Propos-
ition 2.2 and Theorem 2.3 for the case of a general branching mechanism, see
Proposition 2.13 and Theorem 2.14. In doing so, we show that the red branching
diffusion and the dressed blue branching diffusion arise from martingale changes
of measure which condition (X,PK) on extinction respectively survival. We prove
the asymptotic results for the survival probability given in Theorem 2.4 in Sec-
tion 2.5. The proof of the quasi-stationary limit result in Theorem 2.6 follows
in Section 2.6. Section 2.7 sketches the analogous results for the super-Brownian
motion on (0, K).

2.1.2 Literature overview

Branching Brownian motion with an absorbing barrier at the origin was studied
by Kesten [45]. Our investigations are particularly motivated by recent results on
the asymptotics of the survival probability of branching Brownian motion with
absorption found in Berestycki et al. [3] as well as Aïdékon and Harris [1]. Some
of these result were already discussed in Section 1.2.2. A discussion of branching
Brownian motion in the critical width strip can be found in Berestycki et al. [4].
Spine techniques of the type used in the proof of Proposition 2.1 were developed
in Chauvin and Rouault [11], Lyons [55] and Lyons et al. [56] and are now a
standard approach in the theory of branching processes. See, for example, Harris
et al. [36] and Kyprianou [48] for related applications in the setting of branching
Brownian motion with absorption at 0 respectively absorption at a space-time
barrier.

A backbone decomposition as in Theorem 2.3 for supercritical superprocesses
is presented in Berestycki et al. [5]. It extends the earlier work of Evans and
O’Connell [31], Fleischmann and Swart [33] and Engländer and Pinsky [26] as
well as the corresponding decomposition for continuous-state branching processes
in Duquesne and Winkel [14].
The results for superprocesses are complemented by the decomposition in Eth-
eridge and Williams [28] which considers the (1 +β)-superprocess conditioned on
survival. This work is of particular interest in the current context since it also
presents the equivalent result for the approximating branching particle system.
However we should point out that in their case the immigrants are conditioned
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2. Branching Brownian motion in a strip: Survival near criticality

to become extinct up to a fixed time T whereas, in our setting, we condition on
extinction in the strip (0, K). Thus the underlying transformations in [28] are
time-dependent in contrast to the space-dependent h-transforms we see in our
setting.
We also point out that our derivation of the backbone decomposition differs from
the previously mentioned articles in that we show that the backbone arises from
combining changes of measure which condition (X,PK) on either the event of
survival or the event of extinction.

The equivalent result to Theorem 2.4 in the setting of branching Brownian
motion with absorption at the origin was shown in Berestycki et al. [3] and
Aïdékon and Harris [1]. However, it has not been possible so far to give such an
explicit expression for the constant analogous to CK .

A similarly fashioned result to Theorem 2.6 was obtained in the aforemen-
tioned work by Etheridge and Williams [28]. Their result extends the Evans
immortal particle representation for superprocesses in [30] which is the equival-
ent of the spine representation for branching processes. Again we point out that,
in contrast to our setting, extinction is a time-dependent phenomenon in [28].
Further, our martingale change of measure approach to the backbone decompos-
ition allows us to give a very simple proof of the quasi-stationary limit result.

2.2 Changes of measure and spine techniques
Let us begin this section by stating a general result on how martingale changes of
measure affect the drift of a Brownian motion. Recall that we denote by (ξ,PKx )
a Brownian motion with drift −µ initiated from x ∈ (0, K) which is killed upon
exiting (0, K) and set Gt = σ(ξs : s ≤ t).
We remind the reader of the following classical result, which is adapted from
Revuz and Yor [59], VIII Proposition 3.4 and the discussion preceding it, since
we will make use of it several times.

Lemma 2.7. Let x ∈ (0, K). Let h ∈ C2(0, K) and suppose that

h(ξt)

h(x)
exp

{
−
∫ t

0

Lh(ξs)

h(ξs)
ds
}
, t ≥ 0, (2.2.1)

is a PKx -martingale. Define P̂Kx to be the probability measure which has martingale
density (2.2.1) with respect to PKx on Gt.
Under P̂Kx , ξ has infinitesimal generator L+ h′(y)

h(y)
dy for all functions u ∈ C2(0, K)

with u(0+) = u(K−) = 0.

In this regard, a change of measure with a martingale of the form (2.2.1) is
equivalent to a h-transform of the infinitesimal generator L.
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2.2. Changes of measure and spine techniques

Recall that we characterised the Brownian motion conditioned to stay in
(0, K) via its infinitesimal generator LK,∗ given in (2.1.4) in Definition 2.5 (where
K0 can be replaced by a general K > 0). In view of Lemma 2.7, it is not difficult
to see that its law can be obtained from the law of (ξ,PK) by a martingale change
of measure. In fact, note that the process

ΥK(t) = sin(πξt/K)eµξt+(µ2/2+π2/2K2)t, t ≥ 0, (2.2.2)

is a PK-martingale. Define QK
x to be the probability measure which has martin-

gale density ΥK(t) with respect to PKx on Gt, that is

dQK
x

dPKx

∣∣∣
Gt

=
ΥK(t)

ΥK(0)
, t ≥ 0. (2.2.3)

Then, under QK
x , ξ is a Brownian motion conditioned to stay in (0, K). By

Lemma 2.7 with h(x) = sin(πx/K)eµx, its infinitesimal generator is indeed given
by LK,∗ as in (2.1.4).
This process was first introduced in Knight [46], Theorem 3.1 and referred to as
the taboo process. Let us note that (ξ,QK

x ) is positive recurrent and has invariant
density 2

K
sin2(πx/K), for x ∈ (0, K).

The proof of Proposition 2.1 in the subsequent section uses classical spine
techniques developed in Chauvin and Rouault [11], Lyons et al. [56] and Lyons
[55]. We will briefly recall the key steps in the spine construction here. For a
comprehensive account we refer the reader to Hardy and Harris [35]; see also
Harris et al. [36] and Kyprianou [48] for related applications in the setting of
branching Brownian motion with absorption at 0.
The spine is a distinguished line of descent which is constructed as follows. To
begin with, the spine contains the initial particle. When the initial particle dies
we pick uniformly at random one of its offspring to continue the path of the spine.
We proceed in this manner until the current spine particle gets killed or until it
dies without having any offspring.
The probability measure under which the spine is a line of descent chosen as
above, say P̃K , needs to be defined on a larger filtration which allows us to
distinguish it from all other lines of descent. We introduce the following filtrations
encoding different amounts of information about the PK-branching diffusion and
the spine.

• F = (Ft, t ≥ 0) is the natural filtration generated by the PK-branching
diffusion. Ft contains all information about the branching particles up to
time t but it does not know which particles make up the spine.

• F̃ = (F̃t, t ≥ 0) is the filtration generated by the PK-branching diffusion
and the spine. F̃t contains all information about the PK-branching diffusion
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2. Branching Brownian motion in a strip: Survival near criticality

up to time t and, in addition, it knows which particles are part of the spine
up to time t.

• GS = (GSt , t ≥ 0) is the natural filtration generated by the path of the spine.
GSt contains the spatial information about the spine up to time t but it does
not know which particles in the PK-branching diffusion make up the spine.

• G̃S = (G̃St , t ≥ 0) contains all information about the spine. Like GSt , it
contains the spatial information about the spine up to time t. In addition,
G̃St knows the death times and offspring numbers of the particles which
make up the spine up to time t. Apart from the birth times and family
sizes along the spine, G̃St does not contain any information about the other
particles in the PK-branching diffusion.

The probability measure P̃K described above is a measure on F̃ and it is an
extension of PK in that P̃K |F∞ = PK . Under P̃K , the path of the spine is a
Brownian motion with drift −µ and killing up on exiting (0, K).
The next step is to construct a measure under which the spine moves like a
Brownian motion conditioned to stay in (0, K). Recall that the martingale ΥK

in (2.2.2) is used to condition a Brownian motion to stay in (0, K). For each
u ∈ Nt, write

ΥK
u (t) = sin(πxu(t)/K)eµxu(t)+(µ2/2+π2/2K2)t, t ≥ 0.

Set λ(K) := (m−1)β−µ2/2−π2/2K2 and define the process ZK = (ZK(t), t ≥ 0)
as

ZK(t) =
∑
u∈Nt

e−(m−1)βtΥK
u (t) =

∑
u∈Nt

eµxu(t)−λ(K)t sin(πxu(t)/K), t ≥ 0.

Then ZK is a non-negative (PK
x ,F)-martingale. For x ∈ (0, K), we define a mar-

tingale change of measure on the probability space of the PK-branching diffusion
via

dQK
x

dPK
x

∣∣∣∣
Ft

=
ZK(t)

ZK(0)
, t ≥ 0. (2.2.4)

Changing measure with the martingale ZK in this way leads to the following
‘spine’-construction of the path of X under QK

x :

• the initial particle moves according to a QK
x -diffusion, that is a Brownian

motion conditioned to stay in (0, K);

• the initial particles dies at accelerated rate mβ;
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2.2. Changes of measure and spine techniques

• when it dies it is replaced by 1 + Ã children, where Ã has the size-biased
offspring distribution

q̃k =
1 + k

m
qk+1, k ≥ 0; (2.2.5)

• from its 1 + Ã children we choose one particle uniformly at random;

• the chosen particle repeats the stochastic behaviour of the initial particle,
i.e. from its birth position it moves like a QK-diffusion, branches at rate
mβ and has a size-biased offspring distribution;

• all other particles initiate a copy of (X,PK) from the space-time position
of their birth.

Again, the line of descent of the chosen particles in this construction is called the
spine.
Alternatively, instead of picking the spine particles sequentially from the current
spine particle’s children, the path of X under QK

x can be constructed from a
QK
x -diffusion along which copies of (X,PK) immigrate. More precisely,

• from the initial position x, we run a QK
x -diffusion, this is the spine;

• at times of a Poisson process with rate mβ we immigrate Ã independent
copies of (X,PK) which are rooted at the spatial position of the spine at
this time;

• the number of immigrants Ã has the size-biased offspring distribution given
in (2.2.5).

Note that QK
x is a probability measure on the filtration F . Therefore we do not

know which line of descent is the spine under QK
x .

As before, we can construct a probability measure Q̃K on the enhanced filtra-
tion F̃ as an extension of QK , in that Q̃K |F∞ = QK , such that the spine is a
distinguished line of descent. The path of the spine is a QK

x -diffusion under the
measure Q̃K

x .
Let us introduce some more notation. Denote by ξ̃ = (ξ̃t, t ≥ 0) the path of the
spine. When it does not lead to ambiguity, we will also use ξ̃t to refer to the
particle that makes up the spine at time t. In particular, we denote by {u < ξ̃t}
the set of ancestors of the current particle in the spine at time t. We let σu be
the death time of a spine particle u and Au is the random number of immigrant
children that are born at time σu. To keep notation simple we use QK , QK and
Q̃K to denote the probability measures as well as their corresponding expectation
operators.
We conclude this section by stating the so-called spine decomposition which will
turn out to be a useful tool in the analysis of the martingale ZK .
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Lemma 2.8 (Spine decomposition, cf. [35], Theorem 7.1). For any t ≥ 0, under
Q̃K
x ,

ZK(t) = eµξ̃t−λ(K)t sin(πξ̃t/K) +
∑
u<ξ̃t

e−λ(K)σu

Au∑
j=1

ZK
uj(t− σu), (2.2.6)

where, conditionally on G̃S∞, (ZK
uj, Q̃

K
x ) is an independent copy of the martingale

ZK under PK
ξσu

. In particular,

Q̃x(Z
K(t)|G̃S∞) = eµξ̃t−λ(K)t sin(πξ̃t/K) +

∑
u<ξ̃t

Aue
µξ̃σu−λ(K)σu sin(πξ̃σu/K).

(2.2.7)

2.3 Proof of Proposition 2.1 and relation to a dif-
ferential equation

2.3.1 Proof of Proposition 2.1

From the description of the evolution of X under the measure QK in the previous
section, it is clear that the process (X,QK) survives a.s. since the spine survives.
In light of the change of measure (2.2.4), survival of X under QK implies a
positive probability of survival of X under PK if the martingale ZK is uniformly
integrable. For this reason, we will now the study the large time behaviour of
ZK .
Since we assumed E(A log+A) <∞, the following proposition gives a necessary
and sufficient condition for the L1(PK

x )-convergence of ZK . Recall that λ(K) =
(m− 1)β − µ2/2− π2/2K2.

Proposition 2.9. Let 0 < x < K.
(i) If λ(K) > 0 then the martingale ZK is L1(PK

x )-convergent and in particular
uniformly integrable.
(ii) If λ(K) ≤ 0 then limt→∞ Z

K(t) = 0 PK
x -a.s.

The proof is similar in nature to the proof of Theorem 1 in [48] which presents
the L1-convergence result in the case of a branching Brownian motion with ab-
sorption at a space-time barrier, see also the proof of Theorem 1 therein, as well
as the proof in [55] and the proof of Theorem A in [56].

Proof of Proposition 2.9. The main argument relies on the following measure-
theoretic result (see Durrett [15], p. 242). Let ZK(∞) = limt→∞ Z

K(t) and
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Z̄K(∞) = lim supt→∞ Z
K(t). Then:

QK(Z̄K(∞) <∞) = 1 ⇔ PK(ZK(∞)) = ZK(0), (2.3.1)
QK(Z̄K(∞) =∞) = 1 ⇔ PK(ZK(∞) = 0) = 1. (2.3.2)

Note that ZK is a non-negative PK-martingale. Therefore, the limit ZK(∞)
exists a.s. under PK but it might not exist under QK . We proof part (i) and (ii)
separately.
(i) Suppose λ(K) > 0. To begin with, we study the effect of the A log+A-
condition. Recall that Ã has the size-biased offspring distribution (2.2.5) under
Q̃K . We readily compute

Q̃K(log+ Ã) =
∞∑
k=1

log+ k
1 + k

m
qk+1 =

PK(A log+(A− 1))

m

to see that Q̃K(log+ Ã) is finite if and only if PK(A log+A) is finite. Further, for
any c > 0, the sum

∑
k≥0 Q̃

K(log+ Ã > ck) is finite if and only if Q̃K(log+ Ã) is
finite. Thus, for any c > 0, we have∑

k≥0

Q̃K(log+ Ã > ck) <∞ ⇔ PK(A log+A) <∞.

Under Q̃K , the sequence of the number of immigrants, say {Ak, k ≥ 1}, is an
i.i.d. sequence of copies of Ã. Therefore, we can apply the Borel-Cantelli Lemma
to get

Q̃K(lim sup
k→∞

k−1 log+Ak > c) = 0 if and only if PK(A log+A) <∞

Since this holds for any c > 0 we conclude that

lim sup
k→∞

k−1 log+Ak = 0 Q̃K-a.s. if and only if PK(A log+A) <∞.

(2.3.3)

Thus the A log+A-condition ensures that, under Q̃K , the extrema of the sequence
(Ak, k ≥ 1) have sub-exponential behaviour.
Next, consider the spine decomposition in (2.2.7). Q̃K

x -a.s., the first term on the
right-hand side of (2.2.7) converges to zero as t→∞ since the term µξ̃t− λ(K)t
tends to −∞. The second term on the right-hand side of (2.2.7) is Q̃K

x -a.s. finite
if the sum ∑

k≥1

Ake
−λ(K)σk (2.3.4)
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is finite a.s. under Q̃K
x . Here (σk, k ≥ 1) denotes the sequence of immigration

times along the spine. Since immigration events along the spine occur at ratemβ,
the kth immigration time σk is the sum of k i.i.d exponential random variables
with parameter mβ. For any η ∈ (0, 1),

Q̃K
x (
∑
k≥1

Ake
−λ(K)σk =∞) ≤ Q̃K

x (Ake
−λ(K)σk > ηk for infinitely many k)

= Q̃K
x (k−1 logAk > log η + k−1λ(K)σk

for infinitely many k).

By the strong law of large numbers, k−1λ(K)σk converges to λ(K)/mβ, Q̃K
x -a.s.

Choosing η = exp{−λ(K)/mβ}, we see that

Q̃K
x (
∑
k≥1

Ake
−λ(K)σk =∞) ≤ Q̃K

x (lim sup
k→∞

k−1 logAk > 0).

By (2.3.3) the latter probability is zero. In conclusion, the sum in (2.3.4), and
hence the second term on the right-hand side of (2.2.7), is Q̃K

x -a.s. finite and we
obtain from (2.2.7) that

lim sup
t→∞

Q̃K
x (ZK(t)|G̃S∞) <∞.

By Fatou’s lemma, we then get

Q̃K
x (lim inf

t→∞
ZK(t)|G̃S∞) ≤ lim inf

t→∞
Q̃K
x (ZK(t)|G̃S∞) ≤ lim sup

t→∞
Q̃K
x (ZK(t)|G̃S∞) <∞

and deduce that lim inft→∞ Z
K(t) < ∞, Q̃K

x -a.s. Since ZK(t) is Ft-measurable
and Q̃K

x

∣∣
F∞

= QK
x , this gives

QK
x (lim inf

t→∞
ZK(t) <∞) = 1.

According to [38], (1/ZK(t), t ≥ 0) is a QK
x - supermartingale which has a QK

x -a.s.
limit. This ensures that lim inft→∞ Z

K(t) agrees with lim supt→∞ Z
K(t), QK-a.s.,

which leads us to conclude that

QK
x (Z̄K(∞) <∞) = 1.

By (2.3.1), we get PK
x (Z̄K(∞)) = ZK(0) which, when combined with Scheffé’s

Lemma ([69], Theorem 5.10), yields the L1(PK
x )-convergence.

(ii) To begin with, suppose that λ(K) < 0. We use the first term on the right-
hand side of (2.2.6) in Lemma 2.8 as a lower bound for ZK(t) under Q̃K

x . That
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is, under Q̃K
x ,

ZK(t) ≥ eµξ̃t−λ(K)t sin(πξ̃t/K), t ≥ 0.

Since the spine ξ̃ is a Brownian motion conditioned to stay in (0, K) under Q̃K
x

and since λ(K) is assumed to be strictly negative, the right-hand side above
tends to infinity Q̃K

x -a.s and thus, so does ZK(t). An application of (2.3.2) gives
ZK(∞) = 0, PK

x -a.s.
To complete the proof, we consider now the critical case λ(K) = 0. Note again
that the process (1/ZK(t), t ≥ 0) is a non-negative QK

x -supermartingale, see [38].
It thus converges QK

x -a.s. which implies in turn that limt→∞ Z
K(t) ∈ (0,∞]

under QK
x . Let σk, k ≥ 1, be the k-th birth time along the spine and let Ak be

the number of immigrant children of the spine born at this time, as defined in
part (i) of this proof. Then, using the decomposition of ZK under Q̃K

x in (2.2.6),
we have

ZK(σk) = eµξ̃σk sin(πξ̃σk/K) +
k∑
i=1

Ai∑
j=1

ZK
ij (σk − σi).

Similarly, we can decompose ZK at time σk−. The terms ZK(σk) and ZK(σk−)
only differ by the contribution of the immigrant children of the spine born at
time σk, that is, under Q̃K

x ,

ZK(σk)− ZK(σk−) =

Ak∑
j=1

eµξσk sin(πξσk/K). (2.3.5)

Here we used that ξ̃σk = ξ̃σk− and ZK
ij (σk − σi) = ZK

ij ((σk−) − σi), for i < k,
Q̃K
x -a.s. The latter holds since the probability that a birth in the subtree initiated

from the jth child of the spine born at time σi occurs at time σk is zero.
Recall that the Ak, k ≥ 1, are i.i.d random variables with a size-biased distribu-
tion under Q̃K

x and that ξ̃ is ergodic under Q̃K
x . Therefore, we get

lim sup
k→∞

Ake
µξσk sin(πξσk/K) > c > 0, Q̃K

x -a.s. for some constant c.

Thus the right-hand side of (2.3.5), and hence the size of the jumps of ZK , is
infinitely often larger than some strictly positive constant which implies that ZK

cannot converge to a finite limit under Q̃K
x . We conclude that QK

x (ZK(∞) =
∞) = Q̃K

x (ZK(∞) = ∞) = 1 and complete the proof with an application of
(2.3.2).

If the PK-branching diffusion becomes extinct, then the martingale ZK has
a zero limit since the sum over all particles in Nt will eventually be empty. We
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will now show that the converse is also true, that is, (X,PK) becomes extinct if
the martingale limit ZK(∞) is zero.

Proposition 2.10. For x ∈ (0, K), the events {ZK(∞) = 0} and {ζ <∞} agree
PK
x -a.s.

Proof. Clearly {ζ < ∞} ⊂ {ZK(∞) = 0} and it remains to show that {ζ =
∞} ∩ {ZK(∞) = 0} has zero probability. We consider the cases λ(K) ≤ 0 and
λ(K) > 0 separately.

Assume λ(K) ≤ 0. Proposition 2.9 gives ZK(∞) = 0, PK-a.s. As ZK(t)
is the sum of the non-negative terms e−λ(K)t sin(πxu(t)/K)eµxu(t), ZK vanishes
in the limit if and only if all its terms do. On extinction, this is certainly the
case. On the event of survival, these terms can only vanish if all particles move
arbitrarily close to the killing boundary as sin(πx/K)eµx ≈ 0 for x close to 0 and
K only. Let us show that this particle behaviour cannot occur.
We suppose for a contradiction that ZK(∞) = 0 on the event of survival. This
assumption demands that, for any ε > 0, all particles leave the interval (ε,K− ε)
eventually, and thus we may assume without loss of generality that the process
survives in the small strip (0, ε). We will now lead this argument to a contradiction
by showing that, for ε small enough, the P ε

x-branching diffusion, x ∈ (0, ε), will
become extinct a.s.
Denote by P

(−δ,ε+δ)
x the law under which X is our usual branching Brownian

motion but with killing upon exiting the interval (−δ, ε + δ), δ > 0. For any
δ > 0, we can embed the P ε-branching diffusion in a P (−δ,ε+δ)-branching diffusion
according to the following procedure. Let us write v ≤ u if v is an ancestor of
u (u is considered to be an ancestor of itself), in accordance with the classical
Ulam-Harris notation (see for instance [35], p.290). Under P (−δ,ε+δ)

x , we define

Nt|(0,ε) = {u ∈ Nt : ∀s ≤ t ∀v ∈ Ns s.t. v ≤ u we have xv(s) ∈ (0, ε)} ,

which is the set of particles u ∈ Nt whose ancestors (not forgetting u itself) have
not exited (0, ε) up to time t. Now we can define the restriction of X to (0, ε)

under P (−δ,ε+δ)
x by

Xt|(0,ε) =
∑

u∈Nt|(0,ε)

δxu(t), t ≥ 0.

Then we conclude immediately that, for an initial position in (0, ε), the restricted
process X|(0,ε) =

(
Xt|(0,ε) , t ≥ 0

)
under P (−δ,ε+δ)

x has the same law as (X,P ε
x).

Now we choose δ and ε small enough such that λ(ε + 2δ) := (m− 1)β − µ2/2−
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2.3. Proof of Proposition 2.1 and relation to a differential equation

π2/2(ε+ 2δ)2 < 0. Then, under P (−δ,ε+δ), the process

Z(−δ,ε+δ)(t)

:=
∑
u∈Nt

{
eµ(xu(t)+δ)−λ(ε+2δ)t sin(π(xu(t) + δ)/(ε+ 2δ))

}
, t ≥ 0,

is a martingale of the form in Proposition 2.9. Considering now the contribution
coming from the particles in the set Nt|(0,ε) only, we first note that our assumption
of survival of the P ε-branching diffusion ensures that this set is non-empty for
any time t. Further, for particles u ∈ Nt|(0,ε), the terms eµ(xu(t)+δ) sin(π(xu(t) +
δ)/(ε + 2δ)) are uniformly bounded from below by a constant c > 0 and hence,
under P (−δ,ε+δ)

x , we get

Z(−δ,ε+δ)(t) ≥ cNt|(0,ε)e−λ(ε+2δ)t.

Since we have chosen δ and ε such that λ(ε + 2δ) < 0, we now conclude that
Z(−δ,ε+δ)(∞) = ∞, P (−δ,ε+δ)

x -a.s. This is a contradiction since Z(−δ,ε+δ) is a non-
negative martingale and therefore has a finite limit a.s. Hence, for λ(K) ≤ 0, the
event {ζ =∞} ∩ {ZK(∞) = 0} has zero probability.

Consider the case λ(K) > 0. Suppose for a contradiction that {ζ = ∞} ∩
{ZK(∞) = 0} has positive probability. Let zK(x) = PK

x (ZK(∞) = 0), for
x ∈ (0, K). Define M∞ := 1{ZK(∞)=0} and set

Mt :=
∏
u∈Nt

zK(xu(t)) = EK
x (M∞|Ft). (2.3.6)

The equality above is a consequence of the Markov branching property and can
be seen as follows. By the branching property, {ZK(∞) = 0} = {ZK

u (∞) =
0 for all u ∈ Nt}, for any t ≥ 0, where given Ft, the ZK

u are independent copies
of ZK under PK

xu(t)
. Hence, we get

zK(x) = PK
x (ZK(∞) = 0) = PK

x

( ∏
u∈Nt

PK
xu(t)(Z

K
u (∞) = 0)

)
= PK

x

( ∏
u∈Nt

zK(xu(t))
)
.

In combination with the Markov property we obtain

PK
x

( ∏
u∈Nt+s

zK(xu(t+ s))
∣∣∣Ft) =

∏
u∈Nt

PK
xu(t)

( ∏
v∈Ns

zK(xv(s))
)

=
∏
u∈Nt

zK(xu(t)).

Thus the process (Mt, t ≥ 0) defined in (2.3.6) is a uniformly integrable PK
x -

martingale with limitM∞ = 1{ZK(∞)=0} and, in particular, the equality in (2.3.6)
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2. Branching Brownian motion in a strip: Survival near criticality

holds. On the event {ζ = ∞} ∩ {ZK(∞) = 0}, we clearly have M∞ = 1, PK
x -

a.s. This requires in turn that all particles xu(t), u ∈ Nt move towards 0 and
K as t → ∞, since we know from Proposition 2.9 (i) that zK(x) < 1 for x
within (0, K). The previous part of this proof already showed that this leads
to a contradiction. Thus, for λ(K) > 0, the martingale limit cannot be zero on
survival. This completes the proof.

Proof of Proposition 2.1. Note that λ(K) ≥ 0 if and only if µ <
√

2(m− 1)β and
K > K0. The result follows now immediately from Proposition 2.9 and 2.10.

2.3.2 Solutions to Lu+ F (u) = 0

As alluded to in the introductory Chapter 1, there are several connections between
branching diffusion and differential equations. Here we investigate the differential
equation

Lu+ F (u) = 0 on (0, K)

u(0) = u(K) = 1, (2.3.7)

and its relation to the branching Brownian motion in a strip. The following
proposition characterises the solutions to (2.3.7) as functions which generate PK-
product martingales.

Proposition 2.11. Let g : (0, K) → (0, 1) be a continuous function satisfying
g(0) = g(K) = 1. If ∏

u∈Nt

g(xu(t)), t ≥ 0, (2.3.8)

is a PK-martingale then g solves (2.3.7).

The connection between product martingales and solutions to differential
equations is not new, see for instance [57], [58], [11] or [9], and it is derived
from a classical Feynman-Kac argument. We present the proof for completeness.

Proof. Assume the product in (2.3.8) is a martingale. Let us denote by ξ =
(ξt, 0 ≤ t ≤ S) the path of the initial particle up to its branching time S, noting
that it is a Brownian motion with drift −µ and killing upon exiting (0, K) under
PK and PK . Denote by T(0,K) = inf{t > 0 : ξt /∈ (0, K)} its exit time from
(0, K). The first branching time S is exponentially distributed with rate β and
considering the event that it occurs after time t ∧ T(0,K) and its complement we
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2.3. Proof of Proposition 2.1 and relation to a differential equation

get, for t ≥ 0,

g(x) = EK
x

( ∏
u∈Nt

g(xu(t))
)

= EKx
(
g(ξt∧T(0,K)

) e−β(t∧T(0,K))
)

(2.3.9)

+EKx
(∫ t∧T(0,K)

0

EK
x

(
EK
ξs

( A∏
i=1

∏
u∈N i

t−s

g(xu(t− s))
))
βe−βs ds

)
,

where N i
t−s denotes the set of particles alive at time t which have descended

from the ith child, out of the A children born at time s, of the initial particle.
Since each of the children of the initial particle gives rise to an independent BBM
starting from their common birth position ξs at time s, we have for any s ≤ t

EK
x

(
EK
ξs

( A∏
i=1

∏
u∈N i

t−s

g(xu(t− s))
))

= EK
x

((
EK
ξs

( ∏
u∈N(t−s)

g(xu(t− s))
))A)

= EK
x

(
g(ξs)

A
)
, (2.3.10)

where, in the last step, we used that (2.3.8) is a martingale. Recall that G(s) =
E(sA) denoted the generating function ofA. Putting together (2.3.9) and (2.3.10),
this gives

g(x) = EKx
(
g(ξt∧T(0,K)

)e−β(t∧T(0,K))
)

+ EKx
(∫ t∧T(0,K)

0

G(g(ξs))βe
−βs ds

)
.

(2.3.11)

Since the martingale in (2.3.8) is uniformly integrable we can take t → ∞ and,
with g(ξT(0,K)

) = 1 PK-a.s., we get

g(x) = EKx
(
e−βT(0,K) +

∫ T(0,K)

0

G(g(ξs)) βe
−βs ds

)
. (2.3.12)

Then a Feynman-Kac theorem, see e.g. Dynkin [16] Theorem 13.20, tells us that
the right-hand side of (2.3.12) provides the unique solution to the equation

Lu− βu = −βG(g) on (0, K)

u(0) = 1 (2.3.13)
u(K) = 1.

By the identity (2.3.12) this implies that g itself is the unique solution to (2.3.13)
and hence also a solution to (2.3.7).
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2. Branching Brownian motion in a strip: Survival near criticality

We have already seen two examples of functions that generate product mar-
tingales of the form in (2.3.8).

Proposition 2.12. The function zK = PK
· (ZK(∞) = 0) and the extinction

probability 1− pK solve (2.3.7).

Proof. The function zK generates the product martingale in (2.3.6). We can
apply the same argument given there to show that

EK
x (1{ζ<∞}|Ft) =

∏
u∈Nt

(1− pK(xu(t))) , t ≥ 0

is a uniformly integrable product martingale and thus of the form (2.3.8). The
result follows by Proposition 2.11.

2.4 The backbone decomposition via martingale
changes of measure

In this section we decompose the BBM in (0, K) into the blue and red branching
diffusions corresponding to the blue and red trees described in our intuitive pic-
ture in Section 2.1.1. Recall that the blue tree consists of all genealogical lines of
descent that will never become extinct while the red trees contain all remaining
lines of descent. In Section 2.1.1, we only gave a characterisation of the red, blue
and dressed blue branching diffusion in the case of a binary branching mechan-
ism (Proposition 2.2 and Theorem 2.3). For a general branching mechanism, the
results will be presented in this section as Proposition 2.13 and Theorem 2.14.
Recall that in the colouring procedure in Section 2.1.1 the resulting coloured tree
is either a dressed blue tree or a red tree depending on whether we are on the
event of survival or the event of extinction. Let us refer to the process corres-
ponding to the coloured tree as the two-colour branching diffusion. The law PC,K

of the two-colour branching diffusion is defined by the law of X under PK and a
subsequent colouring of the particles. Let c(u) denote the colour of a particle u.
We say a particle u is blue if it has an infinite genealogical line of descent and we
write c(u) = b, otherwise we say it is red and write c(u) = r. Let us remark that
the natural filtration of (X,PC,K) is σ(Ft, c(u)u∈Nt) but this filtration will not
play a role in the forthcoming analysis. Given F∞, the colouring is deterministic.
Define c(Nt) = {(cu)u∈Nt : cu ∈ {b, r}} as the set of all possible colourings of Nt.
Trivially, for all t ≥ 0,

dPC,K
x

dPK
x

∣∣∣∣
F∞

=
∏
u∈Nt

(
1{c(u)=b} + 1{c(u)=r}

)
= 1
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2.4. The backbone decomposition via martingale changes of measure

and thus

dPC,K
x

dPK
x

∣∣∣∣
Ft

= EK
x

( ∏
u∈Nt

(
1{c(u)=b} + 1{c(u)=r}

)∣∣∣Ft)
=

∑
c∈c(Nt)

∏
u∈Nt

PK
x

(
c(u) = cu

∣∣∣Ft)
=

∑
c∈c(Nt)

∏
u∈Nt,cu=b

pK(xu(t))
∏

u∈Nt,cu=r

(
1− pK(xu(t))

)
= 1,

where the sum is taken over all possible colourings c = (cu)u∈Nt in c(Nt). In
particular, for A ∈ Ft, we get

PC,K
x (A; c(u) = cu ∀u ∈ Nt|Ft)

= 1A
∏

u∈Nt,cu=b

pK(xu(t))
∏

u∈Nt,cu=r

(
1− pK(xu(t))

)
.

We can now derive the change of measure for the red branching diffusion. It is
sufficient to consider one initial particle and we suppose that this particle is red.
Let A ∈ Ft and write c(∅) = r for the event that the initial particle is red. Then

PR,K
x (A) := PC,K

x (A|c(∅) = r) =
PC,K
x (A; c(u) = r ∀u ∈ Nt)

PC,K
x (c(∅) = r)

=
EK
x

(
1A
∏

u∈Nt

(
1− pK(xu(t))

) )
1− pK(x)

.

(2.4.1)

Clearly, conditioning the initial particle to be red is the same as conditioning the
process to become extinct and therefore the law of X under PR,K agrees with
the law of X conditioned on extinction. The following proposition characterises
X under PR,K and generalises Proposition 2.2 in Section 2.1.1.

Throughout this section we will denote branching rates by β and offspring
probabilities by q with super- and subscripts indicating whether they belong to
the red or blue branching diffusion or the immigration procedure.

Proposition 2.13 (The red branching diffusion). For ν ∈ Ma(0, K), define
PR,K
ν via (2.4.1). Then (X,PR,K

ν ) is a branching process with single particle
motion characterised by the infinitesimal generator

LR,K =
1

2

d2

dy2
−
(
µ+

p′K(y)

1− pK(y)

)
d

dy
on (0, K), (2.4.2)

for u ∈ C2(0, K) with u(0+) = u(K−) = 0, and the branching activity is governed
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2. Branching Brownian motion in a strip: Survival near criticality

by the space-dependent branching mechanism

FR,K(s, y) =
1

1− pK(y)
(F (s(1− pK(y)))− sF (1− pK(y))), (2.4.3)

for s ∈ [0, 1] and y ∈ (0, K). In particular, FR,K is of the form

FR,K(s, y) = βR(y)(
∑
k≥0

qRk (y)sk − s), (2.4.4)

where βR is a space-dependent branching rate and (qRk , k ≥ 0) a space-dependent
offspring distribution. For a fixed y ∈ (0, K), the branching rate is given as

βR(y) = β
∑
k≥0

qk(1− pK(y))k−1, (2.4.5)

and the offspring distribution is given as

qRk (y) = β(βR(y))−1qk(1− pK(y))k−1, k ≥ 0. (2.4.6)

Proof. The change of measure in (2.4.1) preserves the branching property in the
following sense. Let ν =

∑n
i=1 δxi be an initial configuration at time 0 in (0, K)

and A ∈ Ft. Then

PR,K
ν (A) = EK

ν

(
1A

∏
u∈Nt

(
1− pK(xu(t))

)∏n
i=1

(
1− pK(xi)

) )
=

n∏
i=1

EK
xi

(
1A

∏
u∈N i

t

(
1− pK(xu(t))

)
1− pK(xi)

)
=

(
⊗ni=1 P

R,K
xi

)
(A),

where N i
t is the set of descendants at time t of the ith initial particle. The

process (X,PR,K) is therefore completely characterised by its evolution up to the
first branching time S.
Let us denote by ξ = {ξt, 0 ≤ t ≤ S} the path of the initial particle up to time S,
noting that it is a Brownian motion with drift −µ and killing upon exiting (0, K)
under PK and PK . Let H be a positive bounded measurable functional of this
path. We begin with considering the case t < S. Using the change of measure
in (2.4.1) and the fact that S is exponentially distributed with parameter β, we
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2.4. The backbone decomposition via martingale changes of measure

have

ER,K
x (H(ξs, s ≤ t);S > t) = EK

x

(
H(ξs, s ≤ t)

1− pK(ξt)

1− pK(x)
;S > t

)
= e−βtEKx

(
H(ξs, s ≤ t)

1− pK(ξt)

1− pK(x)

)
= e−βtER,Kx

(
H(ξs, s ≤ t)e

−
∫ t
0

F (1−pK (ξs))

1−pK (ξs)
ds
)
,

(2.4.7)

where PR,Kx is defined by the change of measure

dPR,Kx

dPKx

∣∣∣∣
Gt

=
1− pK(ξt)

1− pK(x)
e
∫ t
0

F (1−pK (ξs))

1−pK (ξs)
ds
, t ≥ 0. (2.4.8)

It follows from Lemma 2.7 using h = 1− pK and the fact that L(1− pK) +F (1−
pK) = 0, see Proposition 2.12, that the motion under PR,K is governed by the
infinitesimal generator LR,K in (2.4.2). Note that LR,K depends on the branching
mechanism F through pK .
We can rewrite βR defined in (2.4.5) as

βR(y) = β
∑
k≥0

qk(1− pK(y))k−1

=
β
(∑

k≥0 qk(1− pK(y))k − (1− pK(y))
)

+ β(1− pK(y))

1− pK(y)

=
F (1− pK(y)) + β(1− pK(y))

1− pK(y)
, (2.4.9)

for y ∈ (0, K). Using this, (2.4.7) simplifies to

ER,K
x (H(ξs, s ≤ t);S > t) = ER,Kx

(
H(ξs, s ≤ t)e−

∫ t
0 β

R(ξs)ds
)
.

Thus, under PR,K , the motion of the initial particle is given by the change of
measure in (2.4.8) and it branches at space-dependent rate βR as given in (2.4.5).
It remains to identify the offspring distribution and we therefore study the process
at its first branching time S. Using (2.4.1) in the first step, and then (2.4.8)
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2. Branching Brownian motion in a strip: Survival near criticality

together with the definition of βR in (2.4.9) in the last, we get,

ER,K
x (H(ξs, s ≤ S);NS = k;S ∈ dt)

= EK
x

((1− pK(ξS)
)NS

1− pK(x)
H(ξs, s ≤ S);NS = k;S ∈ dt

)
= EKx

((1− pK(ξt)
)k

1− pK(x)
H(ξs, s ≤ t) qk βe

−βt
)

dt

= EKx
(1− pK(ξt)

1− pK(x)
e
∫ t
0

F (1−pK (ξs))

1−pK (ξs)
ds
H(ξs, s ≤ t)

qk βe
−βte

−
∫ t
0

F (1−pK (ξs))

1−pK (ξs)
ds (

1− pK(ξt)
)k−1)

dt

= ER,Kx

(
H(ξs, s ≤ t)βR(ξt)e

−
∫ t
0 β

R(ξs)ds
β

βR(ξt)
qk(1− pK(ξt))

k−1
)

dt.

We see that, in addition to the change in the motion and the branching rate, the
offspring distribution under PR,K becomes {qRk , k ≥ 0} as in (2.4.6).
We complete the proof by showing that the branching mechanism FR,K in (2.4.3)
is of the form in (2.4.4). We have

FR,K(s, y)

=
1

1− pK(y)
(F (s(1− pK(y)))− sF (1− pK(y)))

=
1

1− pK(y)
β
(∑
k≥0

qks
k(1− pK(y))k − s(1− pK(y))

−s
(∑
k≥0

qk(1− pK(y))k − (1− pK(y))
))

= β
(∑
k≥0

qks
k(1− pK(y))k−1 − s

∑
k≥0

qk(1− pK(y))k−1
)

= β
∑
k≥0

qk(1− pK(y))k−1
(∑
k≥0

sk
(1− pK(y))k−1qk∑
k≥0 qk(1− pK(y))k−1

− s
)

= βR(y)(
∑
k≥0

skqRk (y)− s)

where we used the expressions in (2.4.5) and (2.4.6) in the last step.

The natural next step is to condition the initial particle to be blue and study
the resulting law. Note that this will describe the evolution of a dressed blue
branching diffusion, corresponding to a blue tree dressed with red trees, and
from this process we will be able to recover the blue branching diffusion. We will
give the change of measure for the blue branching diffusion in Proposition 2.15
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following the next theorem.
Let us define the law of the dressed blue branching diffusion as follows, for any
A ∈ Ft,

PD,K
x (A) := PC,K

x (A|c(∅) = b)

=
PC,K
x (A; c(u) = b for at least one u ∈ Nt)

PC,K
x (c(∅) = b)

=
EK
x

(
1A

(
1−∏u∈Nt

(
1− pK(xu(t))

)) )
pK(x)

. (2.4.10)

Then (X,PD,K) is the same as (X,PK) conditioned on survival.

Theorem 2.14 (The dressed blue branching diffusion). Let K > K0 and x ∈
(0, K). The process (X,PD,K

x ) evolves as follows.

(i) From x, we run a branching diffusion XB with single particle movement
according to the infinitesimal generator

LB,K =
1

2

d2

dy2
−
(
µ− p′K(y)

pK(y)

)
d

dy
on (0, K), (2.4.11)

defined for all u ∈ C2(0, K), and space-dependent branching mechanism
FB,K of the form

FB,K(s, y) = βB(y)(
∑
k≥0

qBk (y)sk − s), s ∈ [0, 1], y ∈ (0, K),

where, for a fixed y ∈ (0, K), the branching rate βB(y) and the offspring
distribution (qBk (y), k ≥ 2) are given by

βB(y) = β
∑
k≥2

∑
n≥k

qn

(
n

k

)
pK(y)k−1(1− pK(y))n−k,

qBk (y) = β βB(y)−1
∑
n≥k

qn

(
n

k

)
pK(y)k−1(1− pK(y))n−k, k ≥ 2.

In particular, FB,K(s, y) can be written as

1

pK(y)
(F (spK(y) + (1− pK(y)))− (1− s)F (1− pK(y))) .

(ii) Conditionally on the branching diffusion XB in (i), we have the following.

• (Continuous immigration) Along the trajectories of each particle in
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2. Branching Brownian motion in a strip: Survival near criticality

XB, an immigration with n ≥ 1 immigrants occurs at rate

βI,1n (y) = βqn+1(n+ 1)(1− pK(y))n, y ∈ (0, K).

• (Branch point immigration) At a branch point of XB at y ∈ (0, K)
with some fixed k ≥ 2 offspring, the number of immigrants is distrib-
uted according to (qI,2n,k(y), n ≥ 0), in that we see an immigration of n
immigrants with probability

qI,2n,k(y) = (κk(y))−1qn+k

(
n+ k

k

)
pK(y)k−1(1− pK(y))n,

with normalising constant κk(y) = qBk (y)β−1βB(y).

Each immigrant initiates an independent copy of (X,PR,K) from the space-
time position of its birth.

Proof. We use the same notation as in the proof of Proposition 2.13 and in
addition let T(0,K) denote the first time the initial particle exits (0, K). Consider
the change of measure in (2.4.10) and note that, for any time t < S and A ∈ Ft,
it becomes

PD,K
x (A; t < S) = EK

x

(
1A
pK(ξt)

pK(x)
;S > t, T(0,K) > t

)
,

where the indicator T(0,K) > t appears since the product in the enumerator in
(2.4.10) is empty if the initial particle gets killed before it reproduces. Then

ED,K
x (H(ξs, s ≤ t);S > t) = EK

x

(
H(ξs, s ≤ t)

pK(ξt)

pK(x)
, T(0,K) > t;S > t

)
= e−βtEKx

(
H(ξs, s ≤ t)

pK(ξt)

pK(x)
, T(0,K) > t

)
= e−βtEB,Kx

(
H(ξs, s ≤ t) e

∫ t
0

F (1−pK (ξs))

pK (ξs)
ds
)
,

(2.4.12)

where PB,Kx is defined by the change of measure, for t ≥ 0,

dPB,Kx

dPKx

∣∣∣∣
Gt

=
pK(ξt)

pK(x)
exp

{
−
∫ t

0

F (1− pK(ξs))

pK(ξs)
ds

}
1{T(0,K)>t}.

(2.4.13)

By Lemma 2.7 using h = pK and LpK − F (1 − pK) = 0, see Proposition 2.12,
the motion of ξ under PB,Kx is governed by the infinitesimal generator LB,K as in
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2.4. The backbone decomposition via martingale changes of measure

(2.4.11). Note that LB,K depends on F through pK . Then, setting

βD(y) =
βpK(y)− F (1− pK(y))

pK(y)

= β
1−∑∞k=0(1− pK(y))kqk

pK(y)
, for y ∈ (0, K), (2.4.14)

we see that (2.4.12) simplifies to

ED,K
x (H(ξs, s ≤ t), S > t) = EB,Kx

(
H(ξs, s ≤ t)e−

∫ t
0 β

D(ξs) ds
)
.

We deduce from this that, under PD,K , the motion of the initial particle is given
by the change of measure in (2.4.13) and it branches at space-dependent rate βD
given in (2.4.14).
It remains to specify the offspring distribution. We begin with the expression in
(2.4.10) and then use (2.4.13) and the expression for βD in (2.4.14) to get

ED,K
x (H(ξs, s ≤ S);S ∈ dt;NS = k;T(0,K) > t)

= EK
x

(
H(ξs, s ≤ t)

1− (1− pK(ξt))
NS

pK(x)
;S ∈ dt;NS = k;T(0,K) > t

)
= EKx

(
H(ξs, s ≤ t)

1− (1− pK(ξt))
k

pK(x)
βe−βtqk dt;T(0,K) > t

)
= EKx

(
H(ξs, s ≤ t)

pK(ξt)

pK(x)
e
−

∫ t
0

F (1−pK (ξs))

pK (ξs)
ds

1{T(0,K)>t}

e
∫ t
0

F (1−pK (ξs))

pK (ξs)
ds
βe−βt

1− (1− pK(ξt))
k

pK(ξt)
qk dt

)
= EB,Kx

(
H(ξs, s ≤ t)βD(ξs)e

−
∫ t
0 β

D(ξs)ds
β

βD(ξt)

1− (1− pK(ξt))
k

pK(ξt)
qk dt

)
.

(2.4.15)

Again this reveals the evolution of the initial particle as described above and we
further see that the offspring distribution of the initial particle under PD,K is
given by {qDk , k ≥ 0} where

qDk (y) ∝ qk
1− (1− pK(y))k

pK(y)
, for y ∈ (0, K),

up to the normalising constant β(βD(y))−1. We note that qD0 (y) = 0 for all
y ∈ (0, K) which we expected to see since (X,PD,K) is equal in law to (X,PK)
conditioned on survival. However, we have so far neglected the fact that the initial
particle can give birth to particles of the same type, i.e. blue particles (referred
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2. Branching Brownian motion in a strip: Survival near criticality

to as branching), and red particles which evolve as under PR,K (referred to as
immigration). We will split up the rate βD and the offspring distribution qDk
into terms corresponding to branching respectively immigration. We start with
a little computation. With the help of the binomial theorem we get

β
∑
k≥1

∑
n≥k

qn

(
n

k

)
pK(y)k−1(1− pK(y))n−k

=
β

pK(y)

(∑
k≥0

∑
n≥k

qn

(
n

k

)
pK(y)k(1− pK(y))n−k −

∑
n≥0

qn(1− pK(y))n
)

=
β

pK(y)

(
1−

∞∑
k=0

(1− pK(y))kqk

)
.

This is the rate βD as given in (2.4.14). Thus we can decompose βD into

βD(y)

= β
∑
k≥2

∑
n≥k

qn

(
n

k

)
pK(y)k−1(1− pK(y))n−k + β

∑
n≥1

qnn(1− pK(y))n−1

=: βB(y) +
∑
n≥0

βI,1n (y). (2.4.16)

Then βI,1n is the rate at which the initial particle gives birth to one blue particle
and n (red) immigrants while βB is the rate at which the initial particle gives
birth to at least two particles of the blue type and a random number of (red)
immigrants. These rates agree with the rates βB and βI,1n as stated in (i) and (ii)
respectively. We can now rewrite the offspring distribution qDk . For each k ≥ 1,
it is again an application of the binomial theorem that gives

qDk (y) ∝ qk
1− (1− pK(y))k

pK(y)

= qk

k∑
i=0

(
k

i

)
pK(y)i−1(1− pK(y))k−i − qk pK(y)−1(1− pK(y))k

= qk

k∑
i=2

(
k

i

)
pK(y)i−1(1− pK(y))k−i (2.4.17)

+qk k(1− pK(y))k−1. (2.4.18)

Then the term in (2.4.17) gives, up to normalisation, the sum of the probabilities
that the initial particle branches into i blue particles and, at the same branching
time, k − i red particles immigrate. From this we can deduce the immigrant
distribution at branching points, (qI,2n,k(y), k ≥ 2), as given in (ii) as well as the
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2.4. The backbone decomposition via martingale changes of measure

offspring distribution (qBk (y), k ≥ 2) of the blue branching diffusion in (i). The
term in (2.4.18) is the probability that k − 1 immigrants occur, again up to a
normalising constant.
Using the decompositions of βD and (qDk , k ≥ 0) just derived, we can carry out a
computation similar to (2.4.15) where we now consider a time t > S (instead of
t < S). From this it can be deduced that the rates βB and βI,1n and the offspring
distributions (qBk (y), k ≥ 2) and (qI,2n,k(y), k ≥ 2) do indeed characterise the birth
rate and offspring distribution of blue particles and red immigrants respectively.
We refrain from given the explicit computation as it is straightforward but cum-
bersome.
Note that (X,PD,K) inherits the branching Markov property from (X,PK) by
(2.4.10) in a similar spirit to the case of (X,PR,K) (cf. the proof of Proposition
2.13). Thus the description of the initial particle also characterises the evolution
of all particles of the blue type and together with the characterisation of the
immigrating PR,K-branching diffusions in Proposition 2.13 we have completely
characterised the evolution of X under PD,K .

In light of Theorem 2.14, we call the blue branching diffusion XB in step (i)
the backbone. Let us give the change of measure under which X evolves like XB.
Using the classical Ulam-Harris notation (see for instance [35], p.290), we denote
by τv and σv the birth respectively death time of a particle v, by T v(0,K) its first
exit time from (0, K) and by Av the random number of its offspring. Denote by
T the set of all particles in a realisation of X. Let Tt be the set of all v ∈ T with
τv < t and v is in Tt− if, in addition, σv < t.

Proposition 2.15 (The backbone). For ν ∈ Ma(0, K) such that ν =
∑n

i=1 δxi
with xi ∈ (0, K), n ≥ 1, we define the measure PB,K

ν via the following change of
measure. For t ≥ 0,

dPB,K
ν

dPK
ν

∣∣∣∣
Ft

=
∏
v∈Tt

pK(xv(σv ∧ t))
pK(xv(τv))

1{t<T v
(0,K)

}

× exp

{∫ σv∧t

τv

F ′(1− pK(xv(s))) + β ds

}
×
∏
v∈Tt−

qBAv(xv(σv))

qAvβ(βB(xv(σv)))−1
.

The branching diffusion (X,PB,K
ν ) has single particle movement according to the

infinitesimal generator LB,K and branching mechanism FB,K as given in step (i)
of Theorem 2.14.
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2. Branching Brownian motion in a strip: Survival near criticality

Proof. We use (2.4.14) and (2.4.16) to get

−F (1− pK(y))

pK(y)
− βB(y) = βD(y)− β − βB(y)

=
∑
n≥0

βI,1n (y)− β

= β
∑
n≥1

qnn(1− pK(y))n−1 − β

= F ′(1− pK(y)).

The result then follows from rewriting the change of measure up to the first
branching time S as

dPB,K
x

dPK
x

∣∣∣∣
FS

=
pK(ξS)

pK(x)
exp

{
−
∫ S

0

F (1− pK(ξs))

pK(ξs)
ds

}
1{S<T(0,K)}

× 1

β
βB(ξS) exp

{
−
∫ S

0

βB(ξs)− β ds

}
× qBNS(ξS)

qNS
,

noting that the first line on the right-hand side accounts for the change of motion,
the first term in the second line for the change in the branching rate and the last
term in the second line for the change in the offspring distribution.

Corollary 2.16 (The backbone decomposition). Let K > K0 and ν ∈Ma(0, K)
such that ν =

∑n
i=1 δxi with xi ∈ (0, K), n ≥ 1. Then (X,PC,K

ν ) has the same
law as the process

n∑
i=1

(
YiX

D,i
t + (1− Yi)XR,i

t

)
, t ≥ 0.

where XR,i = (XR,i
t , t ≥ 0) are independent copies of (X,PR,K

xi
), XD,i = (XD,i

t , t ≥
0) are independent copies of (X,PD,K

xi
) and the Yi are independent Bernoulli ran-

dom variables with respective parameters pK(xi).

Intuitively speaking, we can describe the evolution under PC,K
ν and thus also

under PK
ν as follows. Independently for each initial particle xi, we flip a coin with

probability pK(xi) of ‘heads’. If it lands ‘heads’, we initiate a copy of (X,PD,K
xi

)
and otherwise we initiate a copy of (X,PR,K

xi
).

Corollary 2.17. Given the number of particles of (X,PK
ν ) and their positions,

say x1, ..., xn for some n ∈ N, at a fixed time t, then the number of particles of
XB
t is the number of successes in a sequence of n independent Bernoulli trials

each with success probability pK(x1), ..., pK(xn).
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2.4. The backbone decomposition via martingale changes of measure

Remark 2.18. With Theorem 2.14 it can be shown that, if the differential equa-
tion in (2.3.7) has a non-trivial, (0, 1)-valued solution, then it is unique. We
sketch the argument here.
Assume that gK(x) is a non-trivial, (0, 1)-valued solution to (2.3.7). By a Feynman-
Kac argument (cf. Champneys et al. [9], Theorem (1.36)), it follows that

MK(t) =
∏
u∈Nt

gK(xu(t)), t ≥ 0,

is a PK
x -product martingale. Since MK is uniformly integrable, its limit MK(∞)

exits PK
x -a.s. On the event of extinction, MK(∞) = 1. On the event of survival,

it follows from Theorem 2.14 that

MK(t) =
∏
u∈Nt

gK(xu(t)) ≤
∏
u∈NB

t

gK(xBu (t)), (2.4.19)

where NB
t is the set of particles in XB

t .
Clearly, |NB

t | → ∞ as t → ∞ since each particle in XB is replaced by at least
two offspring and there is no killing. Denote by ξB = (ξBt , t ≥ 0) the path of an
arbitrary line of descent of particles in XB. Then ξB performs an ergodic motion
in (0, K) according to the infinitesimal generator LB,K in (2.4.2). By ergodicity,
PK-a.s., we have lim inft→∞ ξ

B
t = 0 and lim supt→∞ ξ

B
t = K which implies

lim inf
t→∞

gK(ξBt ) = inf
y∈(0,K)

gK(y) < 1, (2.4.20)

since gK is non-trivial and (0, 1)-valued. At any time t ≥ 0, we can choose
|NB

t | lines of descent, each of them containing the path of one of the particles in
NB
t , and (2.4.20) holds true along these lines of descent. Loosely speaking, the

right-hand side of (2.4.19) then tends to an infinite product of terms with lim inf
strictly smaller than 1 and therefore it must converge to 0, that is,

lim inf
t→∞

MK(t) ≤ lim inf
t→∞

∏
u∈NB

t

gK(xBu (t)) = 0, PK-a.s.

This argument is not quite rigorous since we are taking the lim inf along an in-
finite number of lines of descent. A rigorous proof can be carried out as fol-
lows. Let ε > 0 and consider the event of survival in the interval (ε,K − ε), say
{ζ(ε,K−ε) = ∞}. On this event, the number of particles whose genealogical lines
have not exited (ε,K− ε) up to time t, namely |Nt|(ε,K−ε)|, tends to infinity under
PK, as t→∞. Note that g ≤ 1− δ within (ε,K − ε) for some δ > 0. Then, on
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2. Branching Brownian motion in a strip: Survival near criticality

the event {ζ(ε,K−ε) =∞}, we get, PK-a.s.,

lim inf
t→∞

MK(t) ≤ lim inf
t→∞

∏
u∈Nt|(ε,K−ε)

gK(xu(t))

≤ lim inf
t→∞

(1− δ)
∣∣Nt|(ε,K−ε)∣∣

= 0.

Thus the martingale limit MK(∞) is zero on the event of survival in (ε,K − ε),
for any ε > 0. Finally, we use the fact that, if ε > 0 is small enough such
that λ(ε) ≤ 0 then the process cannot survive in the interval (0, ε), to convince
ourselves that {ζ = ∞} =

⋃
ε>0{ζ(ε,K−ε) = ∞}, PK-a.s. We can then conclude

that MK(∞) = 0, on the event of survival.
Recalling that MK(∞) = 1 on the event of extinction, we get MK(∞) = 1{ζ<∞}.
Taking expectations gives

gK(x) = EK
x (MK(∞)) = PK

x (ζ <∞), x ∈ (0, K).

As this is true for any non-trivial, (0, 1)-valued solution to (2.3.7) we have estab-
lished uniqueness of these solutions.

By Proposition 2.12, the function zK(x) = PK
x (ZK(∞) = 0) solves (2.3.7).

With Proposition 2.9, this yields that (2.3.7) has a non-trivial solution if and
only if µ <

√
2(m− 1)β and K > K0.

Again by Proposition 2.12, 1 − pK(x) is also a solution to (2.3.7). Thus we
may conclude again that the events {ZK(∞) = 0} and {ζ < ∞} agree PK

x -a.s.,
cf. Proposition 2.10.

2.5 Proof of Theorem 2.4

We break up Theorem 2.4 into two parts which will be proved in the subsequent
sections.

Proposition 2.19. Uniformly for all x ∈ (0, K0),

pK(x) ∼ cK sin(πx/K0)e
µx, as K ↓ K0,

where cK is independent of x and cK ↓ 0 as K ↓ K0.

Proposition 2.20. The constant cK in Proposition 2.19 satisfies

cK ∼ (K −K0)
(K2

0µ
2 + π2)(K2

0µ
2 + 9π2)

12(m− 1)βπK3
0(eµK0 + 1)

as K ↓ K0. (2.5.1)
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Theorem 2.4 then follows by defining CK to be the expression on the right-
hand side in (2.5.1).
We will provide probabilistic proofs of the results above. B. Derrida remarked
that it is also possible to recover the asymptotics of pK and the explicit constant
CK in an analytic approach. This analytic approach is based on an asymptotic
expansion of the non-linear ODE Lu+F (u) = 0 with boundary conditions u(0) =
u(K) = 1, which we considered in Proposition 2.11. It seems however that it
would take some effort to make this argument rigorous and it does not appear to
be more efficient than the probabilistic proof we present here.

2.5.1 Proof of Proposition 2.19

The following proof of Proposition 2.19 is guided by the ideas in Aïdékon and
Harris [1]. We begin with a preliminary result which ensures that the survival
probability pK is right-continuous at K0.

Lemma 2.21. Let x ∈ (0, K0). Then limK↓K0 pK(x) = 0.

Proof. We fix x ∈ (0, K0) throughout the proof and consider pK(x) as a function
in K. If we write P for the law of the branching Brownian motion without spatial
killing, then we recover the law of the PK-branching diffusion by restricting the
process to those particles whose ancestral line has not exited the interval (0, K)
(see the proof of Proposition 2.10 for a formal construction). Under the measure
Px, we have

{survival of the branching diffusion within [0, K0]}
=

⋂
K>K0

{survival of the branching diffusion within (0, K)}

By monotonicity of measures, we thus have

lim
K↓K0

pK(x) = lim
K↓K0

Px(survival of the branching diffusion in (0, K))

= Px
( ⋂
K>K0

{survival of the branching diffusion in (0, K)}
)

= Px(survival of the branching diffusion in [0, K0])

= pK0(x, t),

where the last equality holds true as any particle that hits 0 orK will immediately
pass below 0 respectively above K.
By Proposition 2.1, pK0(x) = 0 and so we have limK↓K0 pK(x) = 0.

Recall that we denoted by T the set of all particles in a realisation of X and
v < u means that v is a strict ancestor of u. For y ∈ (0, K0), let L(0,y) be the set
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2. Branching Brownian motion in a strip: Survival near criticality

containing all particles which are the first ones in their genealogical line to exit
the strip (0, y), i.e.

L(0,y) = {u ∈ T : ∃s ∈ [τu, σu] s.t. xu(s) /∈ (0, y) (2.5.2)
and xv(r) ∈ (0, y) for all v < u, r ∈ [τv, σv]}.

The random set L(0,y) is a stopping line in the sense of Biggins and Kyprianou
[8] (see also Chauvin [10] which uses a slightly different definition though).
Let |L(0,y)| be the number of particles which are the first ones in their line of
descent to hit y (we do not count the ones exiting at 0), which can be written as

|L(0,y)| =
∑
u∈Ly

1{
xu(Tu(0,y))=y

}, (2.5.3)

recalling that we denoted by T u(0,y) the first exit time of a particle u from (0, y).
Likewise we can define the stopping line L(y,K0) as the set containing all particles
which are the first ones in their genealogical line to exit the strip (y,K0) and
|L(y,K0)| as the number of particles in L(y,K0) which have exited at y.
The quantity |L(0,y)| will turn out to be the essential ingredient in the proof of
Proposition 2.19. To begin with, let us show that EK0

x (|L(0,y)|) is finite. In fact,
we can compute this expectation explicitly.

Lemma 2.22. Let x, y ∈ (0, K0) with x ≤ y. We have

EK0
x (|L(0,y)|) =

sin(πx/K0)

sin(πy/K0)
eµ(x−y), (2.5.4)

where |L(0,y)| is defined in (2.5.3). For x, y ∈ (0, K0) with x ≥ y, (2.5.4) holds
true with |L(0,y)| replaced by |L(y,K0)|.

Proof. To begin with, we note that a stopping line is called dissecting if there
exists a PK-a.s. finite time such that each particle alive at this time has descended
from a particle in the stopping line, cf. [47]. Since we choose y ∈ (0, K0), the
width of the strip (0, y) is subcritical and hence, for any initial position x ∈ (0, y),
all particles will exit it eventually. This ensures that the stopping line L(0,y)

defined in (2.5.2) is a dissecting stopping line. Since L(0,y) is dissecting it follows
from Theorem 6 in [47] that we can apply the Many-to-one Lemma (see e.g. [35]
Theorem 8.5) for the stopping line L(0,y). Let T(0,y) again be the first time ξ exists
(0, y) and recall the definition of QK0

x via the martingale change of measure in
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(2.2.3). Then we get

EK0
x (|L(0,y)|)
= EK0

x

(
e(m−1)βT(0,y)1(ξT(0,y)=y)

)
= QK0

x

(
e(m−1)βT(0,y)

sin(πx/K0)e
µ(x−ξT(0,y) )

sin(πξT(0,y)/K0)e
(µ2/2+π2/2K2

0 )T(0,y)
1(ξT(0,y)=y)

)

=
sin(πx/K0)

sin(πy/K0)
eµ(x−y)QK0

x (ξT(0,y) = y),

where we have used that (m− 1)β − µ2/2− π2/2K2
0 = 0 (and QK0

x is used as an
expectation operator). Under QK0

x , ξ will never hit 0 since it is conditioned to
stay in (0, K0). However as ξ is positive recurrent it will eventually cross y and
therefore QK0

x (ξT(0,y) = y) = 1. This gives (2.5.4). The case x ≥ y follows in the
same way.

The following lemma is the essential part in the proof of Proposition 2.19.

Lemma 2.23. Let x, y ∈ (0, K0) with x ≤ y. Let |L(0,y)| be as defined in (2.5.3).
Then, we have

lim
K↓K0

pK(x)

pK(y)
= EK0

x (|L(0,y)|). (2.5.5)

For x, y ∈ (0, K0) with x ≥ y, (2.5.5) holds true with |L(0,y)| replaced by |L(y,K0)|.

Proof. Fix y ∈ (0, K0). We begin with the case 0 < x ≤ y.
We recall from Proposition 2.12 that (

∏
u∈Nt(1 − pK(xu(t))), t ≥ 0) is a PK

x -
martingale. Since L(0,y) is dissecting, as noted in the proof of Lemma 2.22,
it follows from [10] that we can stop the martingale at L(0,y) and obtain, for
x ∈ (0, y),

1− pK(x) = EK
x

 ∏
u∈L(0,y)

1− pK(xu(T
u
(0,y)))

 = EK
x ((1− pK(y))|L(0,y)|),

(2.5.6)

where we have used that the process started at zero becomes extinct immediately,
i.e. pK(0) = 0. Further |L(0,y)| has the same distribution under PK

x and PK0
x since

we consider particles stopped at level y below K0 and thus we can replace EK
x by

EK0
x on the right-hand side above. Now, using first (2.5.6) and then the geometric
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sum
∑n−1

j=0 a
j = 1−an

1−a , we get

pK(x)

pK(y)
= EK0

x

(
1− (1− pK(y))|L(0,y)|

1− (1− pK(y))

)
= EK0

x

|L(0,y)|−1∑
j=0

(1− pK(y))j

 .

(2.5.7)

The sum on the right-hand side is dominated by |L(0,y)| which does not depend
on K and has finite expectation, see Lemma 2.22. We can therefore apply the
Dominated convergence theorem to the right-hand side in (2.5.7) and we conclude
that

lim
K↓K0

EK0
x

|L(0,y)|−1∑
j=0

(1− pK(y))j


= EK0

x

|L(0,y)|−1∑
j=0

lim
K↓K0

(1− pK(y))j

 = EK0
x (|L(0,y)|), (2.5.8)

where the convergence holds point-wise in x ∈ (0, y). Combining (2.5.7) and
(2.5.8) we get (2.5.5) for x ∈ (0, y).
It remains to show that (2.5.5) also holds for x ∈ (y,K0). Instead of approaching
criticality by taking the limit in K we can now fix a K > K0 and consider
a (supercritical) strip (z,K) and let z ↑ z0 where z0 := K − K0. Denote by
p(z,K)(x + z) the probability of survival in the strip (z,K) when starting from
x+ z. We then have

lim
K↓K0

pK(x)

pK(y)
= lim

z↑z0

p(z,K)(x+ z)

p(z,K)(y + z)
.

Hence (2.5.5) is equivalent to showing that

lim
z↑z0

p(z,K)(x+ z)

p(z,K)(y + z)
= EK

x+z0
(|L(y+z0,K)|) = EK0

x (|L(y,K0)|).

Here |L(y+z0,K)| denotes the number of particles which are the first in their gene-
alogical line to exit the strip (y+ z0, K) at y+ z0. Noting that this has the same
law under P z,K

x+z and P
z0,K
x+z , we can then repeat the argument in the first part.

The next step is to show that the convergence in Lemma 2.23 holds uniformly
in x on (0, K0).
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Lemma 2.24. Let y ∈ (0, K0). Then we have

lim
K↓K0

pK(x)

pK(y)
=

sin(πx/K0)

sin(πy/K0)
eµ(x−y), (2.5.9)

uniformly for all x ∈ (0, K0).

Proof. With Lemma 2.23 and 2.22, it remains to show that, for fixed y ∈ (0, K0),
the convergence in equation (2.5.5) of Lemma 2.23 holds uniformly for all x ∈
(0, K0). Taking a look back at the proof of Lemma 2.23, we see that it suffices
to show that the convergence in (2.5.8) holds uniformly for all x ∈ (0, K0).
Let us fix a y ∈ (0, K0) and let x ∈ (0, y). We set

ϕ(x,K) = EK0
x

|L(0,y)|−1∑
j=0

(1− pK(y))j

 , for x ∈ [0, y],

(with the convention that the PK-branching diffusion becomes extinct immedi-
ately for the initial position x = 0 respectively stopped for x = y) and denote
by ϕ(x) = EK0

x (|L(0,y)|) its point-wise limit. Since 1 − pK(y) ≤ 1 − pK′(y), for
K ≥ K ′, we have ϕ(x,K) ≤ ϕ(x,K ′) and thus, for any x ∈ [0, y], the sequence
ϕ(x,K) is monotone increasing as K ↓ K0. Moreover the functions ϕ(x,K) and
ϕ(x) are continuous in x, for any K. In conclusion, we have an increasing se-
quence of continuous functions on a compact set with a continuous point-wise
limit and therefore the convergence in (2.5.8) also holds uniformly in x ∈ [0, y]
(see e.g. [62], Theorem 7.13). This implies now that, for fixed y ∈ (0, K0), (2.5.5)
and thus (2.5.9) holds uniformly in x ∈ (0, y).
As outlined in the proof of Lemma 2.23, we can adapt the argument to the case
x ∈ (y,K0) to complete the proof.

Proof of Proposition 2.19. Choose a y ∈ (0, K0). Then an application of Lemma
2.24 gives, as K ↓ K0,

pK(x) = pK(y)
pK(x)

pK(y)
∼ pK(y)

sin(πx/K0)

sin(πy/K0)
eµ(x−y) = cK sin(πx/K0)e

µx,

uniformly for all x ∈ (0, K0), where cK := pK(y)
sin(πy/K0)

e−µy. By Proposition 2.21,
cK ↓ 0 as K ↓ K0 which completes the proof.

2.5.2 Proof of Proposition 2.20

In this section we will present the proof of Proposition 2.20 which gives an explicit
asymptotic expression for the constant cK appearing in the asymptotics for the
survival probability in Proposition 2.19 and Theorem 2.4 .
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2. Branching Brownian motion in a strip: Survival near criticality

Heuristic argument

The starting point for the proof of Proposition 2.20 is the following idea: By
Corollary 2.16, at time t, given the spatial positions xu(t) of all particles u ∈ Nt,
the number of backbone particles is the number of successes in a sequence of
Bernoulli trials with success probabilities pK(xu(t)). As this holds at any time t,
we would expect that the proportion of backbone particles remains constant over
time. This suggests that the backbone grows at the same rate as the whole process
on survival. Further, the immigrating red trees are conditioned to become extinct
which suggests that they do not contribute to the survival of the process. Loosely
speaking, we do not expect to lose too much information about the evolution of
(X,PK) on survival if we simply study the growth of the backbone and ignore
the contribution of the immigrating red trees.
We break up the heuristic argument into four steps.

Step (i) (The growth rate of the backbone) In this step, we derive an expression
for the expected growth rate of the number of blue particles. The argument
is based on heuristics from large deviation theory for ergodic processes, see for
instance Chapter 5 in Stroock [68]. For a rigorous account of this step, the reader
is referred to the outline of the large deviation proof at the end of this section.
Consider a process ξB = (ξBt , t ≥ 0) performing the single particle motion of the
backbone, that is according to the infinitesimal generator LB,K which is given in
(2.4.11) in Theorem 2.14 as

LB,K =
1

2

d2

dy2
−
(
µ− p′K

pK

)
d

dy
on (0, K),

with domain C2(0, K). Let ΠB,K be the invariant density for LB,K , i.e. the
positive solution of L̃B,KΠB,K = 0 where L̃B,K is the formal adjoint of LB,K .
Then we find

ΠB,K(y) ∝ pK(y)2e−2µy, y ∈ (0, K).

For t ≥ 0 and a set A ⊂ [0, K], we define

Γ(t, A) =

∫ t

0

1{ξBs ∈A} ds

to be the occupation time up to time t of ξB in the set A. Then large deviation
theory suggests that the probability that the measure t−1Γ(t, ·) is ‘close’ to the
measure

∫ K
0

1{·}(y)f 2(y)ΠB,K(y) dy is roughly

exp

{
t

∫ K

0

{LB,Kf(y)} f(y)ΠB,K(y) dy

}
. (2.5.10)

64



2.5. Proof of Theorem 2.4

Recall that each particle in the backbone moves according to LB,K and that the
branching mechanism of the backbone is FB,K as defined in Theorem 2.14. For
y ∈ (0, K), set

FB,K ′(1, y) :=
d

ds
FB,K(s, y)|s=1 = (m− 1)β +

F (1− pK(y))

pK(y)
(2.5.11)

to denote the mean number of offspring at a branch point located at y. Then the
expected number of particles alive at time t, given the occupation density of the
backbone particles up to time t is like f 2ΠB,K , should be

exp

{
t

∫ K

0

FB,K ′(1, y) (f(y))2ΠB,K(y) dy

}
.

Together with (2.5.10), we thus guess that the expected number of particles at
time t with occupation density like f 2ΠB,K is very roughly

exp

{
t

∫ K

0

{[LB,K + FB,K ′(1, y)]f(y)} f(y)ΠB,K(y) dy

}
.

The expected growth rate of the backbone should then be obtained by maximising
the expression above, i.e.

sup
f

{∫ K

0

{[LB,K + FB,K ′(1, y)]f(y)} f(y)ΠB,K(y) dy
}
, (2.5.12)

with the normalisation
∫ K
0
f 2(y)ΠB,K(y)dy = 1. We assume henceforth that the

supremum in (2.5.12) is taken over all functions f which satisfy in addition the
boundary condition

lim
y↓0

f(y)f ′(y)ΠB,K(y) = lim
y↑K

f(y)f ′(y)ΠB,K(y) = 0. (2.5.13)

Then an integration by parts shows that∫ K

0

{LB,Kf(y)} f(y) ΠB,K(y) dy = −1

2

∫ K

0

(f ′(y))2 ΠB,K(y) dy.

(2.5.14)

Thus, with (2.5.14), the variational problem (2.5.12) can be written as

sup
f

{∫ K

0

{
− 1

2
(f ′(y))2 + FB,K ′(1, y)f(y)2

}
ΠB,K(y) dy

}
. (2.5.15)
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2. Branching Brownian motion in a strip: Survival near criticality

Now set h(y) = pK(y)e−µyf(y). Then h satisfies the normalisation
∫ K
0
h(y)2 dy =

1 and h(0) = 0 = h(K). A lengthy but elementary computation (substitute
h into (2.5.12) and use the definition of FB,K ′(1, y) in (2.5.11) together with
LpK = F (1−pK)) shows that, instead of (2.5.15), we can consider the equivalent
problem

sup
h

{∫ K

0

{−1

2
h′(y)2 +

(
(m− 1)β − µ2

2

)
h(y)2} dy

}
. (2.5.16)

Equivalence means that the optimal solutions f ∗ and h∗ of (2.5.15) and (2.5.16),
respectively, satisfy h∗(y) = pK(y)e−µyf ∗(y). If we take the supremum in (2.5.16)
over all functions h ∈ L2[0, K] with h(0) = 0 = h(K) and

∫ K
0
h(y)2 dy = 1 then

(2.5.16) is a classical Sturm-Liouville eigenvalue problem. For this case, it is well
known that the optimal solution is h∗(y) ∝ sin(πy/K), y ∈ (0, K). Moreover, we
then get

f ∗(y) =
h∗(y)

pK(y)
eµy ∝ sin(πy/K)

pK(y)
eµy, y ∈ (0, K), (2.5.17)

up to a normalising constant. Since (2.5.16) and (2.5.15) are equivalent, it follows
that ∫ K

0

{
− 1

2
(f ∗(y)′)2 + FB,K ′(1, y)f ∗(y)2

}
ΠB,K(y) dy

= sup
f

{∫ K

0

{
− 1

2
(f ′(y))2 + FB,K ′(1, y)f(y)2

}
ΠB,K(y) dy

}
,

(2.5.18)

where we take the supremum over all f of the form f(y) ∝ eµyh(y)(pK(y))−1 with
h ∈ L2(0, K), h(0) = h(K) = 0 and normalisation

∫ K
0
f 2(y)ΠB,K(y)dy = 1.

Further, it can be checked that f ∗ as in (2.5.17) solves the differential equation

[LB,K + FB,K ′(1, y)]f ∗(y) = λ(K)f ∗(y) in (0, K). (2.5.19)
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In conclusion, under the assumption that f ∗ satisfies (2.5.13), we get with (2.5.19),
(2.5.14) and then (2.5.18)

λ(K) =

∫ K

0

{[LB,K + FB,K ′(1, y)]f ∗(y)} f ∗(y)ΠB,K(y) dy

=

∫ K

0

{
− 1

2
(f ∗(y)′)2 + FB,K ′(1, y)f ∗(y)2

}
ΠB,K(y) dy

= sup
f

{∫ K

0

{
− 1

2
(f ′(y))2 + FB,K ′(1, y)f(y)2

}
ΠB,K(y) dy

}
,

(2.5.20)

where the supremum is taken as in (2.5.18). Heuristically, this indicates that
λ(K) is the expected growth rate of the backbone.

Step (ii) (Lower bound on λ(K)) Since f ∗ maximizes the expression in (2.5.20),
we get a lower bound on λ(K) by taking f = 1, noting that 1 is contained in the
supremum set. Thus ∫ K

0

FB,K ′(1, y) ΠB,K(y) dy ≤ λ(K).

Step (iii) (Upper bound on λ(K)) Let us define the ‘optimal’ occupation dens-
ity as

ΠB,K
∗ (y) := (f ∗(y))2ΠB,K(y) =

2

K
sin2(πy/K), y ∈ (0, K).

Omitting the non-positive term −1
2
(f ′(y))2 in (2.5.20) will give the upper bound

λ(K) ≤
∫ K

0

FB,K ′(1, y) ΠB,K
∗ (y) dy.

Step (iv) (Asymptotics) By Theorem 2.4, we have the asymptotics pK(y) ∼
cK sin(πy/K0)e

µy, as K ↓ K0, and we can easily deduce that

ΠB,K(y) ∼ ΠB,K0
∗ (y), as K ↓ K0.

We will make rigorous later that FB,K ′(1, y) ∼ (m − 1)βcK sin(πy/K0)e
µy as

K ↓ K0. Our conjecture is therefore that

λ(K) ∼ cK
2(m− 1)β

K0

∫ K0

0

sin3(πy/K0)e
µy dy, as K ↓ K0.

Since we can calculate the integral explicitly this gives an exact asymptotic for
the constant cK .
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2. Branching Brownian motion in a strip: Survival near criticality

Let us briefly comment on the heuristics above. All we need to do to deduce
(2.5.20) in step (i) rigorously is to show that (2.5.13) is satisfied for f ∗ as defined
in (2.5.17). The bounds in step (ii) and (iii) then follow immediately from (2.5.20)
and it remains to complete step (iv). In particular, it is thus not necessary to
show that λ(K) is the expected growth rate of the backbone. Showing (2.5.13)
for f ∗ is the essence of the proof of Lemma 2.29 in the following section.
However, it may seem rather unsatisfying to omit a rigorous proof of the fact
that λ(K) is indeed the expected growth rate of the backbone which was the
starting point of step (i). This follows from a straightforward computation, see
Proposition 2.26. Since the argument is rather simple we also show how the
lower bound in step (ii) is obtained from an expected growth rate computation,
see Lemma 2.27. The proof of the upper bound (iii) once again boils down
to showing that f ∗ satisfies (2.5.13) and thus (2.5.14) which is done in Lemma
2.28 and Lemma 2.29. Thus the approach presented in Section 2.5.2 gives a
self-contained proof of the explicit asymptotic form for the constant cK without
directly appealing to the variational problem considered in the heuristics.

Proof of Proposition 2.20

We briefly recall the key quantities needed in the following proofs. Recall from
equation (2.4.11) that the motion of the backbone particles is given by

LB,K =
1

2

d2

dy2
−
(
µ− p′K

pK

)
d

dy
on (0, K),

which has invariant density ΠB,K satisfiying

ΠB,K(y) =
pK(y)2e−2µy∫ K

0
pK(z)2e−2µzdz

, y ∈ (0, K).

We define the mean number of offspring at a branch point of the backbone by

FB,K ′(1, y) :=
d

ds
FB,K(s, y)|s=1 = (m− 1)β +

F (1− pK(y))

pK(y)
, y ∈ (0, K),

(cf. equation (2.5.11)). Throughout this section, let f ∗ be such that

f ∗(y) ∝ sin(πy/K)

pK(y)
eµy, y ∈ (0, K), (2.5.21)
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which we assume to be normalised such that
∫ K
0
f ∗(y)2ΠB,K(y)dy = 1. Finally

we set ΠB,K
∗ (y) := (f ∗(y))2ΠB,K(y), which using the normalisation of f ∗, gives

ΠB,K
∗ (y) =

2

K
sin2(πy/K), y ∈ (0, K).

Let us also restate equation (2.5.19) as it will be important in this section.

Lemma 2.25. With the definitions given above,

[LB,K + FB,K ′(1, y)]f ∗(y) = λ(K)f ∗(y) in (0, K).

Proof. The equation follows from a direct computation using that pK solves
(2.3.7).

Let us now come to the proof of Proposition 2.20. First, we want to confirm
the conjecture that the expected number of particles of (X,PB,K) grows at rate
λ(K), which motivated the heuristic step (i).

Proposition 2.26. For x ∈ (0, K), we have

lim
t→∞

1

t
logEB,K

x (|Nt|) = λ(K).

Proof. Let x ∈ (0, K) and t ≥ 0. We apply the Many-to-one Lemma (see e.g.
[36]), then the change of measure in (2.4.13) together with

FB,K ′(1, y)− F (1− pK(y))

pK(y)
= (m− 1)β,

and finally the change of measure in (2.2.3), to get

EB,K
x (|Nt|) = EB,Kx

(
e
∫ t
0 F

B,K ′(1,ξs) ds
)

= e(m−1)βtEx
(pK(ξt)

pK(x)
1{t<T(0,K)}

)
= eλ(K)tQK

x

( pK(ξt)

sin(πξt/K)
e−µξt

)sin(πx/K)

pK(x)
eµx.

Note that QK
x

(
pK(ξt)

sin(πξt/K)
e−µξt

)
is bounded from above by sin(πx/K)−1 which can

be seen by rewriting this term as an expectation of a drift-less Brownian motion
using a h-transform with h(x) = sin(πx/K). Then, as we take t → ∞, the
term QK

x

(
pK(ξt)

sin(πξt/K)
e−µξt

)
tends towards a positive constant since (ξ,QK

x ) is an
ergodic diffusion with invariant distribution 2

K
sin2(πx/K)dx. Thus, after taking

logarithms, dividing by t and taking t→∞, the result follows.
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2. Branching Brownian motion in a strip: Survival near criticality

We give a short proof of the inequality in step (ii) of the heuristic by using a
lower bound on the growth rate of the expected number of backbone particles.

Lemma 2.27. For K > K0, we have

λ(K) ≥
∫ K

0

FB,K ′(1, y)ΠB,K(y) dy.

Proof. Using the Many-to-one Lemma (cf. e.g. [35]), and Jensen’s inequality, we
get for x ∈ (0, K), t ≥ 0,

EB,K
x (|Nt|) = EB,Kx (e

∫ t
0 F

B,K ′(1,ξs) ds)

≥ eE
B,K
x (

∫ t
0 F

B,K ′(1,ξs) ds).

Under PB,Kx , ξ has invariant distribution ΠB,K(y)dy. Therefore we can apply an
ergodic theorem for diffusions (see e.g. Rogers & Williams [61], V.53 Theorem
(53.1) and Exercise (53.6)) which gives

lim
t→∞

1

t

(∫ t

0

FB,K ′(1, ξs) ds
)

=

∫ K

0

FB
K

′
(1, y)ΠB,K(y) dy, PB,Kx − a.s.

Since FB,K ′(1, y) is bounded for y ∈ (0, K) (cf. the argument following (2.5.28)
in the proof of Proposition 2.20), the bounded convergence theorem gives

lim
t→∞

EB,Kx

(1

t

∫ t

0

FB,K ′(1, ξs) ds
)

=

∫ K

0

FB
K

′
(1, y)ΠB,K(y) dy,

which, together with Proposition 2.26, gives the desired lower bound on λ(K).

In step (iii) of the heuristic we claimed that we can replace (LB,Kf ∗)f ∗ by the
non-positive term −(f ∗(y)′)2 to get an upper bound on λ(K). This is essentially
what we will do rigorously in the next lemma. Recall the definitions of LB,K ,
FB,K ′(1, ·), f ∗, ΠB,K and ΠB,K

∗ given at the beginning of this section.

Lemma 2.28. For K > K0, we have

λ(K) ≤
∫ K

0

FB,K ′(1, y) ΠB,K
∗ (y) dy.

Proof. In Lemma 2.25, we multiply both sides of the equation by f ∗ and integrate
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from 0 to K. With the normalisation
∫ K
0
f ∗(y)2ΠB,K(y) dy = 1, we get

λ(K) =

∫ K

0

{
[LB,K + FB,K ′(1, y)]f ∗(y)

}
f ∗(y)ΠB,K(y) dy

=

∫ K

0

{
1

2
(f ∗(y))′′ − (µ− pK(y)′

pK(y)
)(f ∗(y))′

}
f ∗(y)ΠB,K(y) dy

+

∫ K

0

FB,K ′(1, y)(f ∗(y))2ΠB,K(y) dy. (2.5.22)

Recalling that ΠB,K
∗ (y) = (f ∗(y))2ΠB,K(y), the result then follows if we can show

that the first integral on the right-hand side in (2.5.22) is non-positive.
We show in Lemma 2.29 below that f ∗ satisfies the boundary condition (2.5.13).
Further, we have (ΠB,K(y))′ = −2(µ − p′K(y)

pK(y)
)ΠB,K(y). An integration by parts

thus gives∫ K

0

{
1

2
(f ∗(y))′′ −

(
µ− p′K(y)

pK(y)

)
(f ∗(y))′

}
f ∗(y)ΠB,K(y) dy

= −1

2

∫ K

0

{
((f ∗(y))′)2 − 2

(
µ− p′K(y)

pK(y)

)
(f ∗(y))′f ∗(y)

}
ΠB,K(y) dy

−
∫ K

0

(
µ− p′K(y)

pK(y)

)
(f ∗(y))′f ∗(y)ΠB,K(y) dy

= −1

2

∫
((f ∗(y))′)2ΠB,K(y) dy,

which is less than or equal to zero and the proof is complete.

Lemma 2.29. The function f ∗ satisfies the following boundary condition:

lim
y↓0

(f ∗(y))′f ∗(y)ΠB,K(y) = lim
y↑K

(f ∗(y))′f ∗(y)ΠB,K(y) = 0. (2.5.23)

Proof. We begin by showing that f ∗ is uniformly bounded in (0, K). Recall from
(2.5.21) that

f ∗(y) ∝ sin(πy/K)

pK(y)
eµy, y ∈ (0, K).

Since f ∗ is continuous in (0, K) it is sufficient to show that lim supx↓0 f
∗(x) and

lim supx↑K f
∗(x) are bounded.

An application of L’Hôpital’s rule gives

lim
x↓0

sin(πx/K)eµx

π
2Kµ

(1− e−2µx) = 1. (2.5.24)
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2. Branching Brownian motion in a strip: Survival near criticality

To conclude that lim supx↓0 f
∗(x) < ∞, it therefore suffices to show that there

exists a constant c > 0 such that

c (1− e−2µx) ≤ pK(x), for all x sufficiently close to zero.

By Proposition 2.12, (
∏

u∈Nt(1 − pK(xu(t))), t ≥ 0) is a PK
x -martingale and it

follows then by a standard Feynman-Kac argument that 1− pK(x) satisfies

1− pK(x) = 1 + EKx
∫ T(0,K)

0

F (1− pK(ξs)) ds, x ∈ (0, K),

where T(0,K) is the first time ξ exists the interval (0, K). We can compute the
expectation above using the potential density of ξ, which is given for instance in
Theorem 8.7 in [50] (where we take q = 0 and use that W (x) = 1

µ
(1 − e−2µx) is

the scale function for a Brownian motion with drift −µ). Then we get

−pK(x) = EKx
∫ T(0,K)

0

F (1− pK(ξs)) ds

=
1

µ
(1− e−2µx)

∫ K

0

F (1− pK(y))
(1− e−2µ(K−y))

(1− e−2µK)
dy

− 1

µ

∫ K

0

F (1− pK(y))(1− e−2µ(x−y)) dy. (2.5.25)

Since F (s) < 0 for 0 < s < 1, the first integral in the last equality on the
right-hand side of (2.5.25) is strictly negative and bounded. Hence we can set

c := − 1

µ

∫ K

0

F (1− pK(y))
(1− e−2µ(K−y))

(1− e−2µK)
dy > 0.

The second integral on the right-hand side of (2.5.25) is non-negative, for x close
to 0, since the term 1− e−2µ(x−y) is non-positive for x ≤ y. Therefore, we get

pK(x) ≥ c(1− e−2µx) for all x sufficiently close to zero.

which, together with (2.5.24), gives the desired result.
To establish boundedness as x approachesK, we observe that pK(x) = p̄K(K−x),
where p̄K denotes the survival probability for a branching diffusion which evolves
as under PK

x but with positive drift µ. Similar to the previous argument we
can then show that there exists a constant c > 0 such that cp̄K(K − x) ≥
sin(πx/K)eµx, for x sufficiently close to K.
We can now show (2.5.23). Since f ∗ takes a finite value at 0 and K it suffices to
show that (f ∗(y))′ΠB,K(y) evaluated at 0 and K is zero. Differentiating f ∗ and
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recalling that ΠB,K(y) ∝ pK(y)2e−2µy gives

(f ∗(y))′ΠB,K(y)

∝ e−µy
(

(µ sin(πy/K) +
π

K
cos(πy/K))pK(y)− sin(πy/K)p′K(y)

)
.

Differentiating both sides of equation (2.5.25) with respect to x, it is easily seen
that p′K(x) is bounded for all x ∈ [0, K]. Therefore (f ∗(y))′ΠB,K(y) is equal to 0
at 0 and K which completes the proof.

We complete the proof of Proposition 2.20 by making step (iv) rigorous.

Proof of Proposition 2.20. By Lemma 2.27 and 2.28, we get the following bounds
on λ(K):∫ K

0

FB,K ′(1, y)ΠB,K(y) dy ≤ λ(K) ≤
∫ K

0

FB,K ′(1, y)ΠB,K
∗ (y) dy. (2.5.26)

By Proposition 2.19, we get, as K ↓ K0,

ΠB,K(y) =
pK(y)2e−2µy∫ K

0
pK(z)2e−2µzdz

∼ 2

K0

sin2(πy/K) = ΠB,K0
∗ (y),

(2.5.27)

where we have used that the asymptotics in Proposition 2.19 hold uniformly to
deal with the integral in the denominator. The uniformity in Proposition 2.19
also ensures that (2.5.27) holds uniformly for all y ∈ (0, K0). Further, we have

lim
s↑1

F (s)

s(s− 1)
= lim

s↑1

F ′(s)

2s− 1
= (m− 1)β,

where we applied L’Hôpital’s rule in the first equality above. We apply this for
s = 1 − pK(y) and K ↓ K0. Then, together with the definition of FB,K ′(1, y) in
(2.5.11) and the asymptotics in Proposition 2.19, we obtain, as K ↓ K0,

FB,K ′(1, y) = (m− 1)β +
F (1− pK(y))

pK(y)

∼ (m− 1)β − (m− 1)β(1− pK(y))

∼ (m− 1)βcK sin(πy/K0)e
µy. (2.5.28)

Moreover, we note that for y ∈ (0, K)∣∣∣F (1− pK(y))

pK(y)

∣∣∣ =
∣∣∣F (1)− F (1− pK(y))

1− (1− pK(y))

∣∣∣ ≤ max
s∈[0,1]

F ′(s).
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2. Branching Brownian motion in a strip: Survival near criticality

Convexity of F yields that the maximum above is attained at either 0 or 1 and
we know that F ′(0) and F ′(1) are both finite. Hence, by (2.5.28), |FB,K ′(1, y)|
is bounded in (0, K) and we can therefore appeal to bounded convergence as we
take the limit in (2.5.26). With (2.5.27) and (2.5.28) we get

λ(K) ∼ cK
2(m− 1)β

K0

∫ K0

0

sin3(πy/K0)e
µy dy, as K ↓ K0.

Evaluating the integral gives

λ(K) ∼ cK
12 (m− 1)β π3 (eµK0 + 1)

(K2
0µ

2 + π2)(K2
0µ

2 + 9π2)
, as K ↓ K0.

Finally, λ(K) ∼ π2(K −K0)K
−3
0 as K ↓ K0 which follows from the linearisation

λ(K) = (m− 1)β − µ2

2
− π2

2K2

= (m− 1)β − µ2

2
− π2

2K2
0︸ ︷︷ ︸

=0

+
π2

2K2
0

− π2

2K2

=
π2K2

2K2
0K

2
− π2

2K2

=
π2[(K −K0)

2 + 2(K −K0)K0 +K2
0 ]

2K2
0K

2
− π2

2K2

=
π2(K −K0)

2

2K2
0K

2
+
π2(K −K0)

K0K2

and noting that the second term in the last line is the leading order term as
K ↓ K0. This completes the proof.

Large deviations revisited

Previously in Proposition 2.26, we showed that λ(K) is the expected growth rate
of the backbone. As an alternative to the proof given there, one can make the
large deviation argument in step (i) of the heuristics rigorous. We will give a
brief outline of the large deviation argument here.
Denote by PB,K = (PB,Kt , t ≥ 0) the diffusion semi-group associated with the
infinitesimal generator LB,K . As an operator on C1[0, K], the space of bounded
continuous functions on [0, K] with bounded continuous derivatives, the semi-
group PB,K is symmetric with respect to the invariant measure ΠB,K(dy) =

74



2.5. Proof of Theorem 2.4

ΠB,K(y)dy. That is saying that, for f, g ∈ C1[0, K] and t ≥ 0, we have∫ K

0

f(y) PB,Kt [g](y) ΠB,K(dy) =

∫ K

0

g(y) PB,Kt [f ](y) ΠB,K(dy),

which results from an integration by parts. This puts us in the setting of sym-
metric operators as studied in Chapter 4 in Deuschel and Stroock [13], whose
arguments we will now follow. See also Section 6.2 in [13] as well as Chapter 5
and 7 in Stroock [68].
We can define the expected growth rate of the number of particles in the backbone
as

λK := lim
t→∞

1

t
log sup

x∈(0,K)

EB,K
x (Nt)

= lim
t→∞

1

t
log sup

x∈(0,K)

EB,Kx

(
exp

∫ t

0

FB,K ′(1, ξs) ds
)
. (2.5.29)

Here we used the Many-to-one Lemma, cf. [35]. Define QB,K = (QB,Kt , t ≥ 0) to
be the semi-group on C1[0, K] which is such that, for f ∈ C1[0, K] and x ∈ [0, K],

QB,Kt [f ](x) = EB,Kx

(
exp

{∫ t

0

FB,K ′(1, ξs) ds
}
f(ξt)

)
.

Let || · ||op(C1[0,K]) denote the operator norm on C1[0, K]. Then we can write the
growth rate λK in (2.5.29) as

λK = lim
t→∞

1

t
log ||QB,Kt ||op(C1[0,K]),

cf. equation (4.2.21) and (4.2.28) in [13]. Following the arguments in Theorem
4.2.58 in [13], we can extend QB,K to a strongly continuous semi-group Q̄B,K =
(Q̄B,Kt , t ≥ 0) on L2(ΠB,K). From [13], Lemma 4.2.50 and the proof of Lemma
5.3.2 it can then be deduced that

λK = lim
t→∞

1

t
log ||QB,Kt ||op(C1[0,K]) = lim

t→∞

1

t
log ||Q̄B,Kt ||op(L2(ΠB,K)),

where || · ||op(L2(ΠB,K)) is the operator norm on L2(ΠB,K). Consequently, Lemma
4.2.50 in [13] then yields that

λK = sup
f

{∫ K

0

FB,K ′(1, y)f(y)2 ΠB,K(dy)− E(f, f) :

||f ||L2(ΠB,K) = 1
}
, (2.5.30)
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2. Branching Brownian motion in a strip: Survival near criticality

where E(·, ·) denotes the Dirichlet form associated with P̄B,K . Here P̄B,K :=
(P̄B,Kt , t ≥ 0) is the unique extension of PB,K to a strongly continuous semi-
group on L2(ΠB,K).
By formula (6.2.11) in Theorem 6.2.9 in [13], the Dirichlet form is given by

E(f, f) =

{
1
2

∫ K
0

(f ′(y))2 ΠB,K(dy) if f, f ′ ∈ L2(ΠB,K),

∞ otherwise.

Thus, to find the supremum in (2.5.30), we only have to consider L2(ΠB,K)-
functions with derivative also in L2(ΠB,K) and we get

λK = sup
f

{∫ K

0

FB,K ′(1, y)f(y)2 − 1

2
(f ′(y))2 ΠB,K(dy)

}
, (2.5.31)

where the supremum is taken over all functions f with f, f ′ ∈ L2(ΠB,K) and
normalisation ||f ||L2(ΠB,K) = 1.
For this class of functions f , we set h(y) = pK(y)e−µyf(y). This implies that h ∈
L2[0, K] with h(0) = h(K) = 0 and normalisation ||h||L2[0,K] = 1. A computation
(the same computation that turns (2.5.15) into (2.5.16)) then shows that solving
the variational problem in (2.5.31) is equivalent to solving

sup
h

{∫ K

0

{−1

2
h′(y)2 +

(
(m− 1)β − µ2

2

)
h(y)2} dy

}
, (2.5.32)

where the supremum is taken over all h of the form h(y) = pK(y)e−µyf(y) and f
as above. This is the variational problem in (2.5.16) in step (i) of the heuristics.
We can thus proceed from here in the same way as we did in the heuristics.
First, if we allow any h ∈ L2[0, K] with h(0) = h(K) = 0 and ||h||L2[0,K] = 1
in the supremum, then (2.5.32) becomes a classical Sturm-Liouville problem (cf.
(2.5.16)). We can then solve (2.5.32) and with it (2.5.31) to find again the optimal
functions h∗ and f ∗ given in (2.5.17).
Under the assumptions that f ∗, (f ∗)′ ∈ L2(ΠB,K) and that f ∗ satisfies (2.5.13),
then, together with (2.5.14) and (2.5.19), this gives

λK = sup
f

{∫ K

0

FB,K ′(1, y)f ∗(y)2 − 1

2
((f ∗(y))′)2 ΠB,K(dy)

}
= λ(K).

The assumptions f ∗, (f ∗)′ ∈ L2(ΠB,K) and (2.5.13) hold indeed, see Lemma 2.29
and the computations within its proof. This completes the argument.
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The a.s. growth rate of the backbone

The starting point of our heuristics was the idea that the growth rate of the
number of backbone particles agrees with the overall growth rate of particles in
(X,PK). By Example 1 in [39], the a.s. growth rate of |Nt| under PK is λ(K).
We will now show the a.s. growth rate of |Nt| under PB,K is also λ(K). Thus
the backbone grows a.s. at the same rate as the whole process on survival.

Proposition 2.30. For x ∈ (0, K),

lim
t→∞

1

t
log |Nt| = λ(K), PB,K

x -a.s.

Proof. Let us begin with an upper bound on the growth rate. It follows from
Theorem 1 and Example 1 in [39] that, on survival, the a.s. growth rate of
the number of particles under PK is λ(K). By Corollary 2.17, given (Nt, P

K),
the number of particles in the backbone at time t is the number of success in a
sequence of Nt independent Bernoulli trials. Therefore the number of backbone
particles cannot grow faster than the overall number of particles. From this we
conclude that the growth rate of Nt under PB,K is bounded from above by λ(K).
For the lower bound, we begin with constructing a PB,K-martingale similar in
fashion to the PK-martingale ZK of Section 2.2. Since f ∗ satisfies the equation
in Lemma 2.25, it follows by an application of Itô’s formula that

f ∗(ξt) e
∫ t
0 F

B,K ′(1,ξs)ds−λ(K)t, t ≥ 0

is a PB,K-martingale. Following [35], we can then construct a PB,K-martingale
Mf∗ = (Mf∗(t), t ≥ 0) by setting

Mf∗(t) =
∑
u∈Nt

f ∗(xu(t))e
−λ(K)t, t ≥ 0.

The proof of L1(PB,K
x )-convergence ofMf∗ follows by a classical spine decomposi-

tion argument in the same fashion as the proof of Proposition 2.9 and is therefore
omitted. The L1(PB,K

x )-convergence implies that PB,K
x (Mf∗(∞) > 0) > 0. In

fact, we will now show that Mf∗(∞) > 0, PB,K
x -a.s.

To this end, set g(x) := PB,K
x (Mf∗(∞) = 0), for x ∈ (0, K). Then the product

πg(t) =
∏
u∈Nt

g(xu(t)), t ≥ 0,

is a PB,K
x -martingale with almost sure limit 1{Mf∗ (∞)=0}, which can be shown in

the same way as for the martingale M in the proof of Proposition 2.1. Since g is
[0, 1]-valued, the product πg(t) is stochastically bounded by g(ξt), for any t ≥ 0.
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2. Branching Brownian motion in a strip: Survival near criticality

Together with the martingale property of πg we get

g(ξs) = EB,K
ξs

(πg(t)) ≤ EB,Kξs
(g(ξt)), for all x ∈ (0, K)

which shows that the process (g(ξt), t ≥ 0) is a [0, 1]-valued PB,Kx -submartingale.
The submartingale (g(ξt), t ≥ 0) converges PB,Kx -a.s. to a limit, say g∞. Since
ξ is positive recurrent under PB,Kx , the process g(ξt) can only converge if it is
constant, that is g(x) = g∞ ∈ [0, 1] for all x ∈ (0, K). Hence, we can write πg as

πg(t) = g|Nt|∞ , t ≥ 0.

Assume now that g∞ ∈ [0, 1). Under PB,K
x , |Nt| tends to infinity as t→∞ since

each particle in (X,PB,K
x ) is replaced by at least two offspring when it dies and

there is no killing. With g∞ < 1, we thus get πg(t) → 0, PB,K
x -a.s. and, using

uniform integrability of πg, this gives

g(x) = EB,K
x (πg(∞)) = 0.

In conclusion, g ≡ g∞ is either identical to 0 or identical to 1. We already know
that the martingale limit Mf∗(∞) is strictly positive with positive probability
and consequently,

0 < PB,K
x (Mf∗(∞) > 0) = 1− g(x).

Hence, we conclude g(x) = 0, for all x ∈ (0, K) which is saying that Mf∗(∞) is
strictly positive, PB,K-a.s. This allows us to deduce that

lim inf
t→∞

logMf∗(t)/λ(K)t ≥ 0, PB,K
x -a.s. (2.5.33)

By Lemma 2.29, f ∗ is bounded from above by a constant c > 0 in (0, K). Thus,
under PB,K

x , for t ≥ 0, we get

Mf∗(t) ≤ c |Nt| e−λ(K)t.

Together with (2.5.33) we see that, PB,K
x -a.s.,

lim inf
t→∞

log |Nt|
λ(K)t

≥ lim inf
t→∞

logMf∗(t)− log c+ λ(K)t

λ(K)t
≥ 1,

which completes the proof.
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2.6. Proof of Theorem 2.6

2.6 Proof of Theorem 2.6

Proof of Theorem 2.6. Recall that (X,PD,K) was defined as the process (X,PK)
conditioned on the event of survival and characterised via the change of measure
in (2.4.10) and Theorem 2.14.
Fix a K ′ > K0 and further denote by Nt|(0,K) the set of particles whose ancestors
(including themselves) have not exited (0, K) up to time t. Then, for 0 ≤ K ≤ K ′,
and for x ∈ (0, K0) and A ∈ Ft, we can write

lim
K↓K0

PD,K
x (A) = lim

K↓K0

EK′

x

(
1A

1−∏u∈Nt|(0,K)
(1− pK(xu(t)))

pK(x)

)
,

since Nt|(0,K) has the same law under PK and PK′ . Suppose the particles in
Nt|(0,K) are ordered, for instance according to their spatial positions, and we
write u1, ..., uNt|(0,K)

. We can now expand the term within the expectation on the
right-hand side as

1−∏u∈Nt|(0,K)
(1− pK(xu(t)))

pK(x)

=

|Nt|(0,K)|∑
i=1

pK(xui(t))

pK(x)

∏
j<i

(1− p(xuj(t))). (2.6.1)

By Lemma 2.24, for each ui, we have

lim
K↓K0

pK(xui(t))

pK(x)
=

sin(πxui(t)/K0)

sin(πx/K0)
eµ(xui (t)−x)1{xui (t)∈(0,K0)}.

Further, | Nt|(0,K) | has finite expectation. Therefore, we can apply the Dominated
convergence theorem twice to get

lim
K↓K0

PD,K
x (A) = EK′

x

(
1A lim

K↓K0

|Nt|(0,K)|∑
i=1

pK(xui(t))

pK(x)

∏
j<i

(1− p(xuj(t)))
)

= EK0
x

(
1A

|Nt|(0,K0)
|∑

i=1

sin(πxui(t))/K0)e
µxui (t)

sin(πx/K0)eµx

)
= EK0

x

(
1A

ZK0(t)

ZK0(0)

)
,

where ZK0 is the martingale used in the change of measure in (2.2.4) in Section
2.2. The evolution under this change of measure is described in the paragraph
following (2.2.4) and agrees with that of (X∗, Q∗x) as defined in Definition 2.5.

79



2. Branching Brownian motion in a strip: Survival near criticality

2.7 Super-Brownian motion in a strip

This section is intended to show how the results for branching Brownian motion
in a strip can be transferred into the setting of super-Brownian motion in a strip,
thus highlighting the robustness of our method. The super-Brownian motion in
a strip is simply the one-dimensional version of the super-Brownian motion in a
ball in Definition 1.3.

Recall from (2.1.1) that the infinitesimal generator L of the single particle mo-
tion is defined for all functions u ∈ C2(0, K) with u(0+) = u(K−) = 0. Change
the domain to u ∈ C2(0, K) with u′′(0+) = u′′(K−) = 0, then L corresponds to
Brownian motion with absorption (instead of killing) at 0 and K. As pointed out
in Section 1.1.2, for technical reason, we prefer to consider the absorption case
from now on. The results for branching Brownian motion with killing at 0 and
K also hold in the absorption setting if we restrict the process with absorption to
particles within (0, K), in particular when defining Nt as the number of particles
alive at time t who have not been absorbed.
Suppose Y = (Yt, t ≥ 0) is the super-Brownian motion in (0, K), meaning that
the underlying single particle motion is a Brownian motion with drift −µ, µ ≥ 0
and with absorption upon exiting (0, K) and the branching mechanism ψ is of
the form

ψ(λ) = −aλ+ bλ2 +

∫ ∞
0

(e−λy − 1 + λy) Π(dy), λ ≥ 0,

where a = −ψ′(0+) ∈ (0,∞), b ≥ 0 and Π is a measure concentrated on (0,∞)
satisfying

∫
(0,∞)

(x ∧ x2) Π(dx) < ∞. Recall that for an initial configuration
η ∈MF (0, K) we denote the law of Y by PK

η .
Since we assume a = −ψ′(0+) > 0, the function ψ is the branching mechanism

of a supercritical continuous-state branching process (CSBP), say Ẑ, as explained
in Section 1.2.1. We assume henceforth that ψ satisfies the non-explosion condi-
tion

∫
0+
|ψ(s)|−1 ds = ∞, see (1.2.1), and further that ψ(∞) = ∞. As pointed

out in Section 1.2.1, it follows then that the probability of the event of becoming
extinguished, namely {limt→∞ Ẑt = 0}, given Ẑ0 = x is equal to e−λ∗x, where λ∗
is the largest root of the branching mechanism ψ. The root λ∗ is strictly positive
since ψ is supercritical and we assumed ψ(∞) =∞.
We further assume from now on that

∫ +∞
(ψ(s))−1 ds < ∞, and remind the

reader that this condition guarantees that the event of becoming extinguished
agrees with the event of extinction, that is {∃t > 0 : Ẑt = 0}, a.s., see (1.2.2)
in Section 1.2.1. This implies in turn that, for the super-Brownian motion Y ,
the event of becoming extinguished and the event of extinction agree PK-a.s.
We denote the event of extinction of Y by E = {∃t > 0 : Yt(0, K) = 0}, where
Yt(0, K) is the total mass within (0, K) at time t.
We define the survival rate wK of the PK-superdiffusion Y as the function satis-
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2.7. Super-Brownian motion in a strip

fying

− log PK
η (E) = 〈wK , η〉, for η ∈MF [0, K].

It can be shown, see e.g. [22], that wK is a solution to

Lu− ψ(u) = 0 with u(0) = u(K) = 0. (2.7.1)

Analogous to Proposition 2.1, and assuming henceforth in addition that the con-
dition

∫∞
1
x log xΠ(dx) < ∞ is satisfied, it is possible to give a necessary and

sufficient condition for a positive survival rate. This follows from a spine change
of measure argument in the spirit of Section 2.2 and 2.3, now using the PK

x -
martingale

Z̃K(t) =

∫ K

0

sin(πx/K)eµx−λ(K)tYt(dx), t ≥ 0, (2.7.2)

where here λ(K) = −ψ′(0+)−µ2/2−π2/2K2. One can then show, in the fashion
of Kyprianou et al. [51], that wK is positive if Z̃K is an L1(PK

x )-martingale and
the latter holds if and only if λ(K) > 0.
In Section 1.1.2 we constructed the super-Brownian motion in a ball through an
approximation by branching Brownian motions in a ball. Here we present yet
another connection between the PK-superdiffusion and a PK-branching diffusion
via the following relations. Set

F (s) =
1

λ∗
ψ(λ∗(1− s)), s ∈ (0, 1), (2.7.3)

w̄K(x) = λ∗pK(x), x ∈ (0, K), (2.7.4)

where pK is the survival probability of the PK-branching diffusion with branching
mechanism F of (2.7.3). Bertoin et al. [7] show that (2.7.3) is the branching
mechanism of a Galton-Watson process which they identify as the backbone of
the CSBP with branching mechanism ψ. Asymptotic results for the survival rate
wK of Y follow immediately from those for the survival probability pK if we can
show that w̄K as defined via (2.7.4) agrees with wK .

Theorem 2.31. (i) If µ <
√
−2ψ′(0+) and K > K0, where

K0 :=
π√

−2ψ′(0+)− µ2
,

then wK(x) > 0 for all x ∈ (0, K); otherwise wK(x) = 0 for all x ∈ [0, K].
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2. Branching Brownian motion in a strip: Survival near criticality

(ii) Uniformly for x ∈ (0, K0), as K ↓ K0,

wK(x) ∼ λ∗(K −K0)
(K2

0µ
2 + π2)(K2

0µ
2 + 9π2)

12ψ′(0+)πK3
0(eµK0 + 1)

sin(πx/K0)e
µx.

Proof of Theorem 2.31. The relation in (2.7.3) gives (m−1)β = −ψ′(0+). Hence,
theK0 and the λ(K) defined in this section are the same as the ones in Proposition
2.1 and 2.9.
Suppose µ <

√
−2ψ′(0+) and K > K0. By Proposition 2.12 and Remark 2.18,

pK is the unique non-trivial solution to Lu−F (1− u) = 0 on (0, K) with u(0) =
u(K) = 0. Using (2.7.3) it follows then that w̄K given by (2.7.4) solves (2.7.1).
We can further deduce from this transformation that (2.7.1) has a unique non-
trivial solution. On the other hand, we know that wK solves (2.7.1) and, by the
spine argument we mentioned after (2.7.2), we know that wK is positive within
(0, K). By uniqueness, we thus have w̄K = wK .
Suppose µ ≥

√
−2ψ′(0+) or K ≤ K0. Then pK is identically zero and (2.3.7)

does not have a non-trivial solution. By the transformation in (2.7.3), the same
holds true for (2.7.1) and since wK is always a solution to (2.7.1) it must be equal
to zero. Thus wK = w̄K holds true again.
The result is now a consequence of Proposition 2.1 and Theorem 2.4.

Let us now outline the backbone decomposition for the PK
η -superdiffusion.

We begin by studying (Y,PK) conditioned on becoming extinct.

Proposition 2.32. For η ∈MF [0, K] and t ≥ 0, we define

dPR,K
η

dPK
η

∣∣∣∣∣
Ht

=
e−〈wK ,Yt〉

e−〈wK ,η〉
, (2.7.5)

where (Ht, t ≥ 0) is the natural filtration generated by (Y,PK
η ). Then (Y,PR,K

η ) is
equal in law to (Y,PK

η (·|E)). Further (Y,PR,K
η ) has spatially dependent branching

mechanism

ψR,K(s, x) = ψ(s+ wK(x))− ψ(wK(x)), s ≥ 0 and x ∈ [0, K]

and the underlying motion is a Brownian motion with absorption upon exiting
(0, K).

The proof of Proposition 2.32 is just a straightforward adaptation of the proof
of Lemma 2 in [5] and thus omitted. We point out that the motion of the PR,K-
superdiffusion remains unchanged and it is therefore different from the motion of
the PR,K-branching diffusion in Proposition 2.13.
Let us introduce some notation before we proceed with the backbone decompos-
ition. Associated to the laws {PR,K

δx
, x ∈ [0, K]} is the family of the so-called
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2.7. Super-Brownian motion in a strip

excursion measures {NR,K
x , x ∈ [0, K]}, defined on the same measurable space,

which satisfy

NR,K
x (1− exp{−〈f, Yt〉}) = − log ER,K

δx
(exp{−〈f, Yt〉}),

for any positive, bounded, measurable f on [0, K] and t ≥ 0. These measures are
formally defined and studied in Dynkin and Kuznetsov [23]. Further, we define

ρn(dy, x) =
bwK(x)2δ0(dy)1{n=2} + wK(x)n y

n

n!
ewK(x)yΠ(dy)

qB,Kn (x)wK(x)βB,K(x)
,

for n ≥ 2, x ∈ (0, K).

Definition 2.33 (The dressed backbone). Let K > K0 and ν ∈ Ma(0, K). Let
XB = (XB

t , t ≥ 0) be a PB,K
ν - branching diffusion (which is the backbone of the

PK-branching diffusion with branching mechanism F given by (2.7.3)).
Dress the trajectories of XB in such a way that a particle at space-time position
(x, t) ∈ Rd× [0,∞) has an independentMF (0, K)-valued process grafted on with
rate

2b dt× dNR
x +

∫ ∞
0

y exp{−wK(x)y} Π(dy)× dPR,K
yδx

.

Moreover, when an individual in XB gives birth to n ≥ 2 offspring, then an
additional independent copy of (Y,PR,K) with initial mass y ≥ 0 is grafted on to
the space-time branch point (x, t) with probability ρn(dy, x).
For t ≥ 0, let Y D

t consists of the total dressed mass present at time t. We define
the process Y D := (Y D

t , t ≥ 0) and denote its law by PD,K
ν .

Theorem 2.34 (Backbone decomposition). Let K > K0 and η ∈ MF [0, K].
Suppose that ν is a Poisson random measure on (0, K) with intensity wK(x)η(dx).
Let Y R = (Y R

t , t ≥ 0) be an independent copy of (Y,PR,K
η ) and let (Y D,PD,K

ν ) be
the process constructed in Definition 2.33. Define the process Ỹ = (Ỹt, t ≥ 0) by

Ỹt = Y R
t + Y D

t , t ≥ 0,

and denote its law by PC,K
η . Then the process (Ỹ ,PC,K

η ) is Markovian and equal
in law to (Y,PK

η ).

The proof of Theorem 2.34 is a simple adaptation of the proofs of Theorem 1
and 2 in [5] and therefore omitted.
Conditioning (Y,PK

η ) on non-extinction is the same as conditioning the Poisson
random measure ν in Theorem 2.34 on having at least one atom from which a
copy of (Y D,PD,K) is then issued. In principle it should be possible to give a proof
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2. Branching Brownian motion in a strip: Survival near criticality

analogous to the ones presented in Section 2.4, using that (Y,PK
η ) conditioned

on non-extinction arises from a change of measure using the martingale

1− e−〈wK ,Yt〉, t ≥ 0, (2.7.6)

together with the martingale change of measure in (2.7.5) which conditions (Y,PK
η )

on extinction.
The analogy between the PK-branching diffusion and the PK-superdiffusion in-
dicates that there is a quasi-stationary limit result equivalent to Theorem 2.6.
We begin with constructing the limiting process. To this end, define the family
of excursion measures {NK0

x , x ∈ [0, K0]}, now associated with the laws (PK0
δx
, x ∈

[0, K0]), satisfying

NK0
x (1− exp 〈f, Yt〉) = − log EK0

δx
(e−〈f,Yt〉), t ≥ 0

for any positive, bounded, measurable function f on (0, K).

Definition 2.35. Let η ∈ MF [0, K]. Suppose ξ∗ = (ξ∗t , t ≥ 0) is a Brownian
motion conditioned to stay in (0, K0) with initial position x distributed according
to

sin(πx/K0)e
µx∫

(0,K0)
sin(πz/K0)eµz η(dz)

η(dx), x ∈ (0, K0).

Along the the space-time trajectory {(ξ∗s , s) : s ≥ 0}, we immigrate MF (0, K)-
valued processes at rate

2b ds× dNK0
ξ∗s

+

∫ ∞
0

yΠ(dy)× dPK0
yδξ∗s

.

Then, let Y ∗ = (Y ∗t , t ≥ 0) be such that Y ∗t consists of the total immigrated mass
present at time t together with the mass present at time t of an independent copy
of (Y,PK0

η ) issued at time zero. We denote the law of Y ∗ by P∗η

The evolution of Y ∗ under P∗ can thus be seen as a path-wise description of
Evans’ immortal particle picture in [30] for the critical width K0; for a similar
construction of Evans’ immortal particle picture see Kyprianou et al. [51].
Further, we note that (Y ∗,PK0

η ) has the same law as Y under the measure which
has martingale density Z̃K0(t), given in (2.7.2), with respect to PK0

η ; for similar
results see for instance Engländer and Kyprianou [25], Kyprianou et al. [51] and
Liu et al. [54].

Theorem 2.36. Let K > K0 and η ∈ MF [0, K0]. For a fixed time T > 0, the
law of (Yt, t ≤ T ) under the measure limK↓K0 PK

η (·| limt→∞ ||Yt|| > 0) is equal to
(Y ∗t , t ≤ T ) under P∗η.
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To prove Theorem 2.36 it suffices to show that the PK
η -martingale in (2.7.6)

converges to the martingale Z̃K0 in (2.7.2). This is a straightforward adaptation
of the proof of Theorem 2.6 and we only sketch the proof.

Sketch of the proof of Theorem 2.36. We obtain the law of (Y,PK
η ) conditioned

on non-extinction from a change of measure using the martingale

1− e−〈wK ,Yt〉, t ≥ 0,

as in (2.7.6). The uniform asymptotics for wK in Theorem 2.31 let us conclude
that

lim
K↓K0

1− e−〈wK ,Yt〉
1− e−〈wK ,η〉 = lim

K↓K0

〈wK , Yt〉
〈wK , η〉

=

∫ K0

0
sin(πx/K0)e

µx Yt(dx)∫ K0

0
sin(πx/K0)eµx µ(dx)〉

=
Z̃K0(t)

Z̃K0(0)
,

where Z̃K0 is the martingale in (2.7.2). As mentioned before, the law of Y under
a change of measure with Z̃K0 is equal to (Y ∗,PK0

η ).

2.8 Concluding remarks

In this chapter we have considered the one-dimensional setting of a branching
Brownian motion in a strip. Most of the results can easily be modified to hold in
higher dimensions for a branching Brownian motion in a ball in Rd, d ≥ 1, as in
Definition 1.1.
Let us set the drift −µ to zero for simplicity. To begin with, for the spine
construction in Section 2.2 we need the eigenfunction corresponding to the first
positive eigenvalue of the Dirichlet problem

Lu = −λu in Dr (2.8.1)
u = 0 on ∂Dr, (2.8.2)

where L is now 1
2
∆, the Laplacian in Rd, and Dr is a ball of radius r. The first

positive eigenvalue λ(r) is given as

λ(r) = r−2λ(1) = r−2j2d/2−1,

where jn denotes the first positive zero of the Bessel function Jn of order n.
Let u(r) be the corresponding eigenfunction which can be expressed in terms of
spherical Bessel functions. Then a h-transform with u(r) conditions the Brownian
motion to stay within Dr. The spine construction outlined in Section 2.2 and the
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2. Branching Brownian motion in a strip: Survival near criticality

proofs in Section 2.3 then carry through. As a result, we find that the probability
of survival in a ball of radius r is positive if and only if 2(m− 1)β − λ(1)/r2 > 0.
This result is a special case of the condition given in Sevast’yanov [63] which deals
with BBM with killing upon exiting more general domains in Rd. The critical
radius of the ball is therefore

r0 =

√
λ(1)

2(m− 1)β
. (2.8.3)

Indeed, this agrees with our result in one dimension where the critical value is
r0 = 1

2

√
π2

2(m−1)β = 1
2
K0 since λ(1) is equal to π2/4 here.

Consequently, it should be possible to adapt the proof for the asymptotics of
the survival probability. Denote by p(r)(x) the probability that the BBM in Dr

survives when the initial particle is located at x ∈ Dr. Then we expect to find
that p(r) satisfies

p(r)(x) ∼ C(r) u(r)(x) as r ↓ r0.

for some constant C(r), with C(r) ↓ 0, uniformly for all x ∈ Dr0 . Identifying the
constant CK in the one-dimensional setting relied on the backbone decomposi-
tion and having an explicit expression for the solution to the differential equation
(2.5.19) and the invariant measures ΠB,K and ΠB,K

∗ . While the backbone decom-
position does not cause any difficulties, see the comments below, it would be most
tedious to try to carry out the computations for C(r) in the higher dimensional
setting.

The results presented in this chapter are specific to the BBM in a strip but
spine techniques and the backbone decomposition apply in a more general set-
ting.

As pointed out above, for the spine construction in Section 2.2, all we need
to do is condition a single particle to stay within Dr. Unfortunately, it is not
known how to do this for general Markov processes. A class of Markov processes
for which this conditioning is possible is the class of one-dimensional spectrally
negative Lévy processes. Lambert [52] shows that a one-dimensional spectrally
negative Lévy process can be conditioned to stay in an interval using a certain
h-transform. The h-function used in [52] is the eigenfunction corresponding to
the first positive eigenvalue, say λ̃(r0), of the Dirichlet problem (2.8.1) where 1

2
∆

is replaced by the infinitesimal generator of the Lévy process. Consequently, it
can then be shown by following the proofs in Section 2.2 and 2.3 that the critical
radius r0 is such that 2(m− 1)β − λ̃(r0) = 0.

The idea underlying the backbone decomposition is that every realisation of
a BBM in a strip can be decomposed into a subtree containing all infinite lines of
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descent which is ‘dressed’ with finite subtrees containing all other lines of descent.
This is a result of the branching structure of the BBM in a strip and does not
depend on the single particle motion and does not require any particular form for
the branching mechanism. In Section 2.4, we derived the backbone decomposition
from a combination of changes of measures using the martingales( ∏

u∈Nt

pK(xu(t)), t ≥ 0
)

and
(

1−
∏
u∈Nt

pK(xu(t)), t ≥ 0
)
,

which condition the BBM in (0, K) on extinction and survival respectively. The
martingale property of these two processes is a simple consequence of the Markov
branching property of the BBM in a strip, cf. Proposition 2.12, and only requires
the underlying single particle motion to be Markovian. In principle, it should
therefore be possible to derive the backbone decomposition for general supercrit-
ical Markov branching processes in the same way as in Section 2.4.
Particular features of the underlying Brownian motion are only used when we
identify explicitly the single particle motion under PR,K and PB,K and the branch-
ing mechanism FR,K and FB,K . Essentially, to derive the single particle motions,
we need the processes(

(1− pK(ξt))e
∫ t
0

F (1−pK (ξs))

1−pK (ξs)
ds
, t ≥ 0

)
and

(
pK(ξt)e

−
∫ t
0

F (1−pK (ξs))

pK (ξs)
ds
, t ≥ 0

)
to be martingales which follows from an application of Itô’s formula and a
Feynman-Kac representation (for the latter recall the proof of Proposition 2.11).
Once this is known, the characterisation of the red and the (dressed) blue branch-
ing processes can be carried out in exactly the same way as in Section 2.4.

As we have not been able to transfer the martingale change of measure ap-
proach into the super-Brownian motion setting, we have to derive the backbone
decomposition by using the Laplace functional characterisation in Proposition
1.4 instead, cf. the proofs in [5]. In doing so, we rely on analytical tools such as
comparison principles from PDE theory. Therefore we cannot simply drop the
diffusion assumption even though we would expect that the backbone decompos-
ition exists for more general measure-valued Markov branching processes.
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Chapter 3

The total mass of super-Brownian
motion upon exiting balls and
Sheu’s compact support condition

We study the total mass of a d-dimensional super-Brownian motion as it first
exits an increasing sequence of balls. The process of the total mass is a time-
inhomogeneous continuous-state branching process, where the increasing radii of
the balls are taken as the time parameter. We are able to characterise its time-
dependent branching mechanism and show that it converges, as time goes to
infinity, towards the branching mechanism of the total mass of a one-dimensional
super-Brownian motion as it first crosses above an increasing sequence of levels.
Our results allow us to identify the compact support criterion given in Sheu
[64] as a classical Grey condition [34] for the aforementioned limiting branching
mechanism.

3.1 Introduction and main results

Suppose that Y = (Yt, t ≥ 0) is a super-Brownian motion in Rd, d ≥ 1, with
general branching mechanism ψ of the form

ψ(λ) = −aλ+ bλ2 +

∫
(0,∞)

(e−λx − 1 + λx)Π(dx), λ ≥ 0, (3.1.1)

where a = −ψ′(0+) ∈ (−∞,∞), b ≥ 0 and Π is a measure concentrated on (0,∞)
which satisfies

∫
(0,∞)

(x ∧ x2)Π(dx) < ∞. This is the super-Brownian motion of
Definition 1.3 when there is no killing. Assume in addition that ψ(∞) =∞.
Recall that we denote by Pν the law of Y with initial configuration according
to ν ∈ MF (Rd). We further remind the reader that we call Y (sub)critical if
ψ′(0+) ≥ 0 and supercritical if ψ′(0+) < 0 as explained in Section 1.2.1. In the
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3. The total mass of super-Brownian motion upon exiting balls

supercritical case, convexity of ψ and the condition ψ(∞) =∞ ensure that there
is a unique and finite λ∗ := inf{λ ≥ 0 : ψ(λ) > 0} > 0, while λ∗ = 0 in the
(sub)critical case. We already noted in Section 1.2.1 that in both cases

Pν( lim
t→∞
||Yt|| = 0) = e−λ

∗||ν||,

where ||ν|| denotes the total mass of the measure ν ∈MF (Rd).
The aim of this chapter is to study the total mass of the super-Brownian

motion Y upon its first exit from a sequence of increasing balls. To this end, we
make use of Dynkin’s theory of exit measures [20] introduced in Section 1.3.
Recall that the exit measure of Y from a ball B ⊂ Rd is the measure YB which is
supported on the boundary ∂B and, loosely speaking, consists of the accumulated
mass of Y which got ‘frozen’ upon its first exit from B. The measure YB can be
characterised analytically through its Laplace functional, see Proposition 1.5.
We further recall from Section 1.3 that we can describe the mass of Y as it first
exits a sequence of growing balls as a sequence of random measures on Rd, known
as Markov branching exit measures. Let us fix an initial radius r > 0 and let
Ds = {x ∈ Rd : ||x|| < s} be the open ball of radius s ≥ r around the origin.
Then we denote the aforementioned sequence of Markov branching exit measures
by (YDs , s ≥ r), where YDs is the exit measure of Y from Ds.
Formally, (YDs , s ≥ r) is characterised by the following Markov branching prop-
erty, see for instance Section 1.1 in Dynkin and Kuznetsov [23]. For z ≥ r, define
HDz := σ(YDz′ , r ≤ z′ ≤ z).

Proposition 3.1 ([23]). Let r > 0 and ν ∈MF (D̄r). For any positive, bounded,
continuous function f on ∂Ds,

Eν [e
−〈f,YDs 〉|HDz ] = e−〈vf (·,s),YDz 〉, 0 < r ≤ z ≤ s, (3.1.2)

where the Laplace functional vf is the unique non-negative solution to

vf (x, s) = Ex[f(ξTDs )]− Ex
[ ∫ TDs

0

ψ(vf (ξz, s)) dz
]
, (3.1.3)

and ((ξz, z ≥ 0),Px) is an Rd-Brownian motion with ξ0 = x and with TDs =
inf{z > 0 : ξz /∈ Ds} denoting its first exit time from Ds.

In (3.1.2), we used again the inner product notation 〈f, ν〉 =
∫
Rd f(x)ν(dx).

For s ≥ r, let Zs := ||YDs|| denote the total mass that is ‘frozen’ when it first
hits the boundary of the ball Ds. We can then define the total mass process
Z = (Zs, s ≥ r) which uses the radius s as its time-parameter and note that, by
radial symmetry, the law of Z depends on YDs through its total mass only. Let
us write P̄r, for the law of the process (Zs, s ≥ r) starting at time r > 0 with
unit initial mass. In case we start with non-unit initial mass a > 0 we shall use

90



3.1. Introduction and main results

the notation P̄a,r for its law.
It is not difficult to see that Z is a time-inhomogeneous continuous-state branch-
ing process and we can characterise it as follows.

Theorem 3.2. (i) Let r > 0. The process Z = (Zs, s ≥ r) is a time-inhomogeneous
continuous-state branching process. This is to say it is a [0,∞]-valued strong
Markov process with càdlàg paths satisfying the branching property

Ē(a+a′),r[e
−θZs ] = Ēa,r[e

−θZs ]Ēa′,r[e
−θZs ], (3.1.4)

for all a, a′ > 0, θ ≥ 0 and s ≥ r.
(ii) Let r > 0 and a > 0. Then, for s ≥ r, we have

Ēa,r[e
−θZs ] = e−u(r,s,θ)a, θ ≥ 0, (3.1.5)

where the Laplace functional u(r, s, θ) satisfies

u(r, s, θ) = θ −
∫ s

r

Ψ(z, u(z, s, θ)) dz, (3.1.6)

for a family of branching mechanisms (Ψ(r, ·), r > 0) of the form

Ψ(r, θ) = −qr + arθ + brθ
2 +

∫
(0,∞)

(e−θx − 1 + θx1(x<1))Λr(dx), (3.1.7)

for θ ≥ 0, and for each r > 0 we have qr ≥ 0, ar ∈ R, br ≥ 0 and Λr is a measure
concentrated on (0,∞) satisfying

∫
(0,∞)

(1 ∧ x2)Λr(dx) <∞.
(iii) The branching mechanism Ψ satisfies the PDE

∂

∂r
Ψ(r, θ) +

1

2

∂

∂θ
Ψ2(r, θ) +

d− 1

r
Ψ(r, θ) = 2ψ(θ) r > 0, θ ∈ (0,∞)

Ψ(r, λ∗) = 0, r > 0. (3.1.8)

We are not aware of a result in the literature which states that the definition of
the time-dependent CSBP in (i) implies the characterisation in (ii). It is therefore
outlined in the proof of Theorem 3.2 (ii) in Section 3.2.1 how this implication
can be derived as a generalisation of the equivalent result for standard CSBPs in
Silverstein [66].
As part of Theorem 3.2 (iii), we later prove that the root λ∗ of ψ is also the
root for each Ψ(r, ·), r > 0, cf. Lemma 3.7. This will be a key property for the
forthcoming analysis of the family of branching mechanism (Ψ(r, ·), r > 0).

Let us now describe how Ψ changes as r increases. We observe the following
change in the shape of the branching mechanism, see Figure 3-1.
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θ

Ψ(·, θ)

λ∗

Figure 3-1: Shape of the branching mechanism Ψ(r, ·) as r → ∞ in the super-
critical case

Proposition 3.3. (i) For (sub)critical ψ, we have, for 0 < r ≤ s,

Ψ(r, θ) ≤ Ψ(s, θ) for all θ ≥ 0.

(ii) For supercritical ψ, we have, for 0 < r ≤ s,

Ψ(r, θ) ≥ Ψ(s, θ) for all θ ≤ λ∗

Ψ(r, θ) ≤ Ψ(s, θ) for all θ ≥ λ∗.

This result suggests that there is a limiting branching mechanism Ψ∞(·) :=
limr→∞Ψ(r, ·). Intuitively speaking, in the case where the initial mass is suppor-
ted on a large ball, the local behaviour of the super-Brownian motion when exiting
increasingly larger balls should look like a one-dimensional super-Brownian upon
crossing levels. This idea is supported by the following result.

Theorem 3.4. For each θ ≥ 0, the limit limr↑∞Ψ(r, θ) = Ψ∞(θ) is finite and
the convergence holds uniformly in θ on any bounded, closed subset of [0,∞).
(i) For any θ ≥ 0, we have

Ψ∞(θ) = 2 sgn(ψ(θ+))

√∫ θ

λ∗
ψ(λ) dλ, (3.1.9)

92



3.1. Introduction and main results

with λ∗ = 0 in the (sub)critical case.
(ii) Denote by ((Z∞s , s ≥ 0), P̄∞) the standard CSBP associated with the limiting
branching mechanism Ψ∞, with unit initial mass at time 0.
Then, (Z∞s , s ≥ 0) is the total mass of the process of Markov branching exit
measures of a one-dimensional super-Brownian motion with unit initial mass at
time zero as it first exits the family of intervals ((−∞, s), s ≥ 0).
Further, for any s > 0, θ ≥ 0,

lim
r→∞

Ēr[e
−θZr+s ] = Ē∞[e−θZ

∞
s ]. (3.1.10)

Let us remark that, in the supercritical case, the limiting branching mechan-
ism Ψ∞ is critical and possesses an explosion coefficient, that is Ψ′∞(0+) = 0 and
Ψ∞(0) < 0. Thanks to the uniform continuity in θ, this implies that Ψ(t, 0) < 0
for all sufficiently large t.
The limiting process Z∞ in Theorem 3.4 has already been studied in Theorem
3.1 in Kyprianou et al. [51]. Note that therein the underlying Brownian motion
has a positive drift which is chosen such that the resulting branching mechanism
is non-explosive. The characterisation can easily be adapted to the drift-less case
as stated in Theorem 3.4 (ii). Kaj and Salminen [43, 44] studied the analogous
process in the setting of branching particle diffusions, that is the process of the
number of particles of a one-dimensional branching Brownian motion stopped
upon exiting the interval ((−∞, s), s ≥ 0), which was already introduced by
Neveu [58] for the case of a binary branching Brownian motion with drift. Kaj
and Salminen discover in the supercritical case [43] that the resulting offspring
distribution is degenerate, meaning that∑

i≥0

pi < 1, (3.1.11)

where pi is the probability of having i offspring, i ≥ 0. In particular, the probab-
ility of a birth event with an infinite number of offspring is strictly positive. In
this view, (3.1.11) is the analogue of Ψ∞(0) < 0.

In Sheu [64, 65], asymptotics of the process Z are studied in order to ob-
tain a compact support criterion for the super-Brownian motion Y . It is found
that the event of extinction of Z, i.e. {∃s > 0 : Zs = 0}, and the event
{Y has compact support} agree Pν-a.s., c.f. [65], Theorem 4.1.
The following result on the asymptotic behaviour of Z is given by Sheu [64].

Theorem (Sheu [64] Theorem 1.1, Theorem 1.2, Cor 1.1). Let ν ∈ MF (Rd).
The event {∃s > 0 : Zs = 0} agrees Pν-a.s. with the event {lims→∞ Zs = 0} if ψ
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satisfies ∫ ∞ 1√∫ λ
λ∗
ψ(θ) dθ

dλ <∞. (3.1.12)

Otherwise, {∃s > 0 : Zs = 0} has probability 0.

In short, the event of extinction of Z agrees with the event of extinguish-
ing of Z, that is {lims→∞ Zs = 0}, if and only if (3.1.12) holds, and it has
zero probability otherwise. We have stated the theorem slightly differently from
its original version in which, in the supercritical case, condition (3.1.12) reads∫∞
s

1√∫ λ
0 φ(θ) dθ

dλ < ∞, for φ(s) := ψ(s) − as. The equivalence of these two

conditions was already pointed out in [51].
The unusual condition (3.1.12) corresponds to Grey’s condition in [34] for ex-
tinction vs. extinguishing in the following sense. Recall from Section 1.2.1 that
Grey’s condition says that, for a standard CSBP with branching mechanism F ,
the event of extinction agrees with the event of becoming extinguished if and only
if
∫∞

F (θ)−1 dθ < ∞, and has probability zero otherwise. Then the following
interpretation of (3.1.12) is an immediate consequence of Theorem 3.4 (i).

Corollary 3.5. Sheu’s compact support condition (3.1.12) is Grey’s condition
for the limiting standard CSBP Z∞ with branching mechanism Ψ∞ in (3.1.9).

Sheu’s compact support condition (3.1.12) plays an important role when
studying the radial speed of the support of supercritical Super-Brownian motion.
In the one-dimensional case, assuming (3.1.12), Kyprianou et. al [51], Corollary
3.2, show that

lim
t→∞

Rt

t
=
√
−2ψ′(0+), Pν − a.s, ν ∈MF (R), (3.1.13)

where Rt := sup{r > 0 : Yt(r,∞) > 0} is the right-most point of the sup-
port of Yt. A key step in the proof is to study the total mass of the pro-
cess of branching exit measures of a one-dimensional super-Brownian motion
with drift c := −

√
−2ψ′(0+) upon exiting the increasing sequence of intervals

((−∞, s), s ≥ 0), which we denote here by Zc = (Zc
s , s ≥ 0). It is proved in The-

orem 3.1 in [51] that Zc is a subcritical standard CSBP. Now condition (3.1.12)
comes in. Corollary 3.5 interprets (3.1.12) as Grey’s condition for the standard
CSBP Z∞. The CSBPs Z∞ and Zc only differ in that the underlying Brownian
motion of the latter has drift c and it is not difficult to convince ourselves that the
drift term is irrelevant when studying the extinction vs. extinguishing problem,
see (29) in [51] for a rigorous argument. Therefore condition (3.1.12) is also equi-
valent to Grey’s condition for the subcritical CSBP Zc and hence ensures that Zc

becomes extinct Pν-a.s. Extinction of Zc now implies that the right-most point
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of the support of Y cannot travel at a speed faster than
√
−2ψ′(0+).

In order to make this last conclusion, extinguishing of Zc is clearly not sufficient
and it remains an open questions whether a strong law for (Rt, t ≥ 0) can exist
when (3.1.12) fails.
In the d-dimensional case, d ≥ 1, and with a quadratic branching mechanism
of the form ψ(λ) = −aλ + bλ2, for a, b ≥ 0, Kyprianou [49] shows that (3.1.13)
holds, where Rt is now replaced by R̃t := sup{r > 0 : Yt(Rd\Dr) > 0}, the radius
of the support of Yt. It can be checked that condition (3.1.12) is satisfied for this
choice of ψ. It is possible to adapt the higher-dimensional result in [49] to hold
for general branching mechanisms provided (3.1.12) holds.

The remainder of this chapter is organised as follows. In Section 3.2 we prove
Theorem 3.2 which is followed by the proof of Proposition 3.3 and Theorem 3.4
in Section 3.3.

3.2 Characterising the process Z - Proof of The-
orem 3.2

3.2.1 Proof of Theorem 3.2 (i) and (ii)

Proof of Theorem 3.2 (i). Take a look at equation (3.1.2) which characterises the
sequence of branching exit measures (YDs , s ≥ r). For any measure ν ∈MF (∂Dr)
with ||ν|| = a, we can write

P̄a,r[e
−θZs ] = Eν [e

−θ||YDs ||] = e−〈vθ(·,s),ν〉 = e−vθ(x,s)a,

for any x ∈ ∂Dr, by radial symmetry. The branching property of Z now follows
easily from the branching property of (YDs , s > r) in (3.1.2) since, for a, a′ > 0,
0 < r ≤ s,

Ē(a+a′),r[e
−θZs ] = Eν+ν′ [e

−θ||YDs ||]

= e−vθ(x,s)(a+a
′)

= Eν [e
−θ||YDs ||]Eν′ [e

−θ||YDs ||] = Ēa,r[e
−θZs ]Ēa′,r[e

−θZs ],

for measures ν, ν ′ ∈ MF (∂Dr) with ||ν|| = a, ||ν ′|| = a′. The Markov property
is also an immediate consequence of (3.1.2).

Proof of Theorem 3.2 (ii). First note that, by radial symmetry as seen in the
proof of Theorem 3.2 (i), (3.1.5) holds with u(r, s, θ) = vθ(x, s) for x ∈ ∂Dr

where r = ||x||. It remains to show that (3.1.6) and (3.1.7) are satisfied.
The analogue result to (3.1.6) and (3.1.7) for standard (time-homogeneous) CSBPs
is given in Theorem 4 in Silverstein [66] and it was already discussed at the end
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of Section 4 in [66] that it is possible to allow time-dependence of the CSBP in
Theorem 4, [66]. Let us briefly explain how the arguments in [66], Section 4, can
be adapted to our time-inhomogeneous case. For any 0 < r ≤ z ≤ s, θ ≥ 0,

Ēr[e
−θZs ] = Ēr[ĒZz ,z[e

−θZs ]] = Ēr[e
−u(z,s,θ)Zz ] = e−u(r,z,u(z,s,θ)),

which shows that the Laplace functional satisfies the composition property

u(r, s, θ) = u(r, z, u(z, s, θ)) for 0 < r ≤ z ≤ s, θ ≥ 0. (3.2.1)

The branching property of Z implies that, for any fixed 0 < r ≤ s, the law of
(Zs, P̄r) is an infinitely divisible distribution on [0,∞]. It follows then from the
Lévy-Khintchin formula that, for fixed r and s, u(r, s, θ) is a non-negative, com-
pletely concave function as considered in Section 4 in Silverstein [66]. The process
Z thus has the properties of a time-dependent version of the CSBP considered in
Definition 4 in Section 4 of [66]. We can then adapt the proof of Theorem 4 in
[66] to show that there exists a branching mechanism Ψ of the form (3.1.7) such
that

∂

∂r
u(r, s, θ)

∣∣
r=s

= Ψ(s, θ), for s > 0, θ ≥ 0.

With the composition property (3.2.1), we then get

∂

∂r
u(r, s, θ) = Ψ(r, u(r, s, θ)), for 0 < r ≤ s, θ ≥ 0.

Together with the initial condition u(r, r, θ) = θ, we obtain equation (3.1.6).

From (3.1.6), we get an alternative characterisation of the relation between
the Laplace functional u and the branching mechanism Ψ as

∂

∂s
u(r, s, θ) = −Ψ(s, θ)

∂

∂θ
u(r, s, θ) (3.2.2)

∂

∂r
u(r, s, θ) = Ψ(r, u(r, s, θ)) (3.2.3)

u(r, r, θ) = θ,

for any s > r > 0 and θ ≥ 0. To see where equation (3.2.2) comes from, compare
the derivatives of (3.1.6) in s and θ, that is

∂

∂s
u(r, s, θ) = −Ψ(s, θ)−

∫ s

r

∂

∂u
Ψ(z, u(z, s, θ))

∂

∂s
u(z, s, θ) dz

∂

∂θ
u(r, s, θ) = 1−

∫ s

r

∂

∂u
Ψ(z, u(z, s, θ))

∂

∂θ
u(z, s, θ) dz,
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where ∂Ψ(·, ·)/∂u denotes the derivative in the second component of Ψ. We
see that ∂

∂s
u(r, s, θ) and −Ψ(s, θ) ∂

∂θ
u(r, s, θ) are solutions to the same integral

equation. With an application of Gronwall’s inequality it can be shown that this
integral equation has a unique solution.

3.2.2 Proof of Theorem 3.2 (iii)

We have already seen in the previous section that, for any measure ν ∈MF (∂Dr)
with ||ν|| = a, we can write

Ēa,r[e
−θZs ] = Eν [e

−θ||YDs ||] = e−〈vθ(·,s),ν〉 = e−vθ(x,s)a,

for any x ∈ ∂Dr, by radial symmetry. In particular, we saw that u(r, s, θ) =
vθ(x, s) for any x ∈ ∂Dr. From the integral equation for vθ in (3.1.3), we thus get
a representation of u, alternative to the representation in (3.1.6), as the unique
non-negative solution to

u(r, s, θ) = θ − ER
r

[ ∫ τs

0

ψ(u(Rz, s, θ)) dz
]
, (3.2.4)

where (R,PR
r ) is a d-dimensional Bessel process and τs := inf{z > 0 : Rz > s} its

first passage time above level s.
Equation (3.2.4) tells us that the process Z can be viewed as the total mass
process of the Markov branching exit measures of a d-dimensional super-Bessel
process with branching mechanism ψ as it first exits the intervals (0, s), s ≥ r.
Equivalently to the characterisation of u(r, s, θ) as the unique non-negative solu-
tion to the integral equation (3.2.4), we can characterise it as the unique non-
negative solution to the differential equation

1

2

∂2

∂r2
u(r, s, θ) +

d− 1

2r

∂

∂r
u(r, s, θ) = ψ(u(r, s, θ)), 0 < r < s, θ ≥ 0,

u(r, r, θ) = θ. (3.2.5)

We postpone the proof of this equivalence to the final Section 3.4. In the fol-
lowing section, we will use the differential equation (3.2.5) to prove the PDE
characterisation of the branching mechanism Ψ in Theorem 3.2 (iii).
We prove Theorem 3.2 (iii) in two parts. In Lemma 3.6 we show that Ψ satisfies
the PDE in (3.1.8) before we prove that Ψ(r, λ∗) = 0, for all r > 0, in Lemma
3.7 below.

Lemma 3.6. The branching mechanism Ψ satisfies the PDE (3.1.8), i.e.

∂

∂r
Ψ(r, θ) +

1

2

∂

∂θ
Ψ2(r, θ) +

d− 1

r
Ψ(r, θ) = 2ψ(θ) r > 0, θ ∈ (0,∞).
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Proof of Lemma 3.6. Using (3.2.3), the left-hand side of (3.2.5) becomes

∂2

∂r2
u(r, s, θ) +

d− 1

r

∂

∂r
u(r, s, θ)

=
∂

∂r
Ψ(r, u(r, s, θ)) +

d− 1

r
Ψ(r, u(r, s, θ))

=
∂

∂y
Ψ(y, u(r, s, θ))|y=r

+
∂

∂u
Ψ(r, u(r, s, θ)) Ψ(r, u(r, s, θ)) +

d− 1

r
Ψ(r, u(r, s, θ))

=
∂

∂y
Ψ(y, u(r, s, θ))|y=r +

1

2

∂

∂u
Ψ2(r, u(r, s, θ)) +

d− 1

r
Ψ(r, u(r, s, θ)),

where ∂Ψ(·, ·)/∂u denotes the derivative with respect to the second argument.
Note that this equation holds for all s > r and θ ≥ 0. Since u(r, s, θ) → θ as
s ↓ r, we see that, for fixed r, the range of u(r, s, θ) is (0,∞) as we vary s ∈ (r,∞)
and θ ∈ [0,∞). Hence, we can replace u(r, s, θ) above by an arbitrary θ ∈ (0,∞)
and conclude that the PDE (3.1.8) holds true.

Recall that λ∗ = inf{λ ≥ 0 : ψ(λ) > 0} denotes the root of ψ and define
λ∗(r) := inf{λ ≥ 0 : Ψ(r, λ) > 0}, for r > 0.

Lemma 3.7. (i) In the (sub)critical case, for all r > 0, we have λ∗(r) = 0. In
particular, Ψ(r, θ) ≥ 0 for all θ ≥ 0.
(ii) In the supercritical case, for all r > 0, we have λ∗(r) = λ∗. In particular,
Ψ(r, θ) ≤ 0 for θ ≤ λ∗, while Ψ(r, θ) ≥ 0 for θ ≥ λ∗.

We prove part (i) and (ii) separately.

Proof of Lemma 3.7 (i). As we are in the (sub)critical case we have ψ(θ) ≥ 0 for
all θ ≥ 0. For r < z < s, (3.2.4) yields

u(r, s, θ) = θ − ER
r

∫ τs

0

ψ(u(Rv, s, θ)) dv

= θ − ER
r

∫ τz

0

ψ(u(Rv, s, θ)) dv − ER
z

∫ τs

0

ψ(u(Rv, s, θ)) dv

≤ θ − ER
z

∫ τs

0

ψ(u(Rv, s, θ)) dv

= u(z, s, θ). (3.2.6)

Hence, u(r, s, θ) is non-decreasing in r. With (3.2.3) we thus see that, for all
0 < r < s, θ ≥ 0,

Ψ(r, u(r, s, θ)) =
∂

∂r
u(r, s, θ) ≥ 0. (3.2.7)
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As we take s ↓ r, we get u(r, s, θ) → θ and hence Ψ(r, θ) ≥ 0 for all θ > 0,
r > 0. Continuity of Ψ ensures Ψ(r, 0) = 0 and, in particular, λ∗(r) = 0 for all
r > 0.

The key to the proof of part (ii) of Lemma 3.7 is the following lemma.

Lemma 3.8. Fix r > 0.
(i) For any λ > 0, the process

Mλ
s = e−λZs −

∫ s

r

Ψ(v, λ)Zve
−λZv1{Zv<∞}dv, s ≥ r, (3.2.8)

is a P̄r-martingale.
(ii) The process (e−λ

∗Zs , s ≥ r) is a P̄r-martingale.
Here we use the convention e−λZs1{Zs=∞} = 0, for any λ > 0.

Proof Lemma 3.8 (i). Taking expectations in (3.2.8) and interchanging expecta-
tion and integral gives

Ēr[M
λ
s ] = e−u(r,s,λ) −

∫ s

r

Ψ(v, λ)
∂

∂λ
u(r, v, λ) e−u(r,v,λ)dv.

Differentiating in s, together with (3.2.2), gives

∂

∂s
Ēr[M

λ
s ] =

(
− ∂

∂s
u(r, s, λ)−Ψ(s, λ)

∂

∂λ
u(r, s, λ)

)
e−u(r,s,λ) = 0.

Hence, Ēr[M
λ
s ] is constant for all s ≥ r and in particular, taking s = r, equal

to e−λ. Note that the same computation gives that Ea,v[Mλ
s ] = e−λa, for a > 0

and 0 < r ≤ v ≤ s. An application of the Markov property then shows that
(Mλ

s , s ≥ r) is a martingale for any λ > 0.

The proof of Lemma 3.8 (ii) relies on the following idea. Since (||Yt||, t ≥
0) is a CSBP with branching mechanism ψ it is well-known that the process
(e−λ

∗||Yt||, t ≥ 0) is a martingale with respect to the filtration (σ(||Yu||, u ≤ t), t ≥
0). Denoting by E(Y ) := {||Yu|| → 0 as u → ∞} the event of extinguishing of
Y , the martingale property follows on account of the fact that

Eν [[1E(Y )|σ(||Yu||, u ≤ t)] = e−λ
∗||Yt||, t ≥ 0,

by a simple application of the tower property. Now, fix r > 0, and consider the
filtration (σ(||YDv ||, r ≤ v ≤ s), s ≥ r) = (σ(Zv, r ≤ v ≤ s), s ≥ r) instead. If we
can show that, for ν ∈MF (∂Dr),

Eν [1E(Y )|σ(||YDv ||, r ≤ v ≤ s)] = e−λ
∗||YDs || = e−λ

∗Zs ,
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3. The total mass of super-Brownian motion upon exiting balls

holds, then we can deduce in the same way that the process (e−λ
∗||YDs ||, s ≥ r)

is a martingale with respect to the filtration (σ(||YDv ||, r ≤ v ≤ s), s ≥ r). The
proof is slightly cumbersome and therefore postponed to the end of this section.

The proof of Lemma 3.7 (ii) is now a simple consequence of Lemma 3.8.

Proof of Lemma 3.7 (ii). By Lemma 3.8, the process

e−λ
∗Zs −Mλ∗

s =

∫ s

r

Ψ(v, λ∗)Zve
−λ∗Zv1{Zv<∞} dv, s ≥ r, (3.2.9)

must be a P̄r-martingale. However this is only possible if the expectation of the
Lebesgue-integral above is constant in s which requires Ψ(s, λ∗) = 0 on {0 <
Zs < ∞} for all s ≥ r. Since the event {0 < Zs < ∞} has positive probability
under P̄r, we reason that Ψ(s, λ∗) = 0 for all s ≥ r. Choosing r > 0 arbitrarily
small yields Ψ(s, λ∗) = 0 for all s > 0. Convexity of Ψ(s, θ) immediately implies
that Ψ(s, θ) ≥ 0 for θ ≥ λ∗ and, further noting that Ψ(s, 0) ≤ 0, that Ψ(s, θ) ≤ 0
for θ ≤ λ∗.

Proof of Theorem 3.2 (iii). Combine Lemma 3.6 and 3.7.

Let us now come to the proof of Lemma 3.8 (ii). For r > 0, t ≥ 0, define the
space-time domain Dt

r as

Dt
r = {(x, u) : ||x|| < r, u < t} ⊂ Rd × [0,∞).

Let (YDtr , t ≥ 0, r > 0) be the system of Markov branching exit measures describ-
ing the mass of Y as it first exits the space-time domains Dt

r, see again Dynkin
[20] and the introductory Section 1.3.
For the proof of Lemma 3.8 (ii), we will need the following result which seems
rather obvious but nevertheless needs a careful proof.

Lemma 3.9. Let r > 0. For any ν ∈MF (Dr), we have Pν-a.s.,

lim
t→∞
||YDtr || = ||YDr || = Zr.

Proof. For r > 0, t ≥ 0, denote by ∂Dt
r the boundary of the set Dt

r, i.e.

∂Dt
r = ( {x : ||x|| = r} × [0, t) ) ∪ ( {x : ||x|| < r} × {t} )

=: ∂Dt−
r ∪ ∂Dt

r−.

By monotonicity, we have limt→∞
∣∣∣∣YDtr∣∣∂Dt−r ∣∣∣∣ =

∣∣∣∣YDr∣∣∣∣ = Zr, Pν-a.s. Next,
define the event that Y becomes extinguished within Dr, i.e.

E(Y,Dr) := {lim sup
t→∞

∣∣∣∣YDtr∣∣∂Dtr−∣∣∣∣ = 0}.
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On the complement of E(Y,Dr), we have

lim sup
t→∞

∣∣∣∣YDtr∣∣∂Dtr−∣∣∣∣ =∞, Pν − a.s.

This is to say that, on E(Y,Dr)
c, the total mass within the open ball Dr at time

t tends to infinity as t tends to infinity. This follows from Proposition 7 in [25]
which says that lim supt→∞ ||YDtr

∣∣
B×{t}|| ∈ {0,∞}, Pν-a.s. for any non-empty

open set B ⊂ Dr (noting that Proposition 7 in [25] indeed holds for the general
branching mechanism we are considering here). Hence, we have shown so far that

lim sup
t→∞

||YDtr || = Zr +∞1E(Y,Dr)c .

Thus it remains to prove that, on E(Y,Dr)
c, Zr is also infinite. Fix a K > 0.

Thanks to Proposition 7 of [25], on E(Y,Dr)
c, we can define an infinite sequence

of stopping times

T0 = inf{t > 0 :
∣∣∣∣YDtr∣∣∂Dtr−∣∣∣∣ ≥ K}

Ti+1 = inf{t > Ti + 1 :
∣∣∣∣YDtr∣∣∂Dtr−∣∣∣∣ ≥ K}, i = 0, 1, 2, ...

At times Ti, i ≥ 0, the total mass within the open ball Dr is greater than or equal
to K. Fix an M > 0 and define the event

Ai = {
∣∣∣∣Y

D
Ti
r

∣∣
[Ti−1,Ti)×∂Dr

∣∣∣∣ > M}, i = 1, 2, ...

which is the event that the mass that exits Dr during the time interval [Ti−1, Ti)
exceeds M . Note that there exists a strictly positive constant ε(M,K), such that

PY
D
Ti
r

(Ai+1) ≥ PKδ0(A1)

≥ PKδ0(
∣∣∣∣YD1

r

∣∣
[0,1)×∂Dr

∣∣∣∣ > M) > ε(M,K). (3.2.10)

Thus, we can partition time into infinitely many intervals [Ti, Ti+1), i ≥ 0,
of length at least 1. During each time interval the mass that exits Dr, and
thus contributes to Zr, exceeds M with positive probability. These probabilit-
ies are uniformly bounded from below by ε(M,K) > 0 in (3.2.10). Therefore
lim supt→∞ ||YDtr || = Zr =∞, Pν-a.s on the event E(Y,Dr)

c.
In conclusion we have lim supt→∞ ||YDtr || = Zr, Pν-a.s. Further, again using
monotonicity for limt→∞

∣∣∣∣YDtr∣∣∂Dt−r ∣∣∣∣ = Zr, we get

lim inf
t→∞

∣∣∣∣YDtr∣∣∣∣ = Zr + lim inf
t→∞

∣∣∣∣YDtr∣∣∂Dtr−∣∣∣∣.
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Noting that

Zr ≤ lim inf
t→∞

∣∣∣∣YDtr∣∣∣∣ ≤ lim sup
t→∞

∣∣∣∣YDtr∣∣∣∣ = Zr, Pν − a.s.

completes the proof.

Proof of Lemma 3.8 (ii). For s > 0, t ≥ 0, define HDts = σ(YDt′
s′
, s′ ≤ s, t′ ≤ t).

Fix r > 0. The characterising branching Markov property for exit measures, see
for instance Section 1.1 in [23], yields that, for ν ∈MF (Dr), s ≥ r and u ≥ t ≥ 0,
we have

Eν [e
−θ||Yu|||HDts ] = exp{−〈wθ(u− ·), YDts〉}. (3.2.11)

where wθ is the Laplace functional of the standard CSBP (||Yu||, u ≥ 0) with
branching mechanism ψ. Taking θ = λ∗, it is well known that wλ∗(t) = λ∗ for all
t ≥ 0. Therefore (3.2.11), with θ replaced by λ∗, turns into

Eν [e
−λ∗||Yu|||HDts ] = exp{−

∫
wλ∗(u− t′) dYDts(x, t

′)} = e−λ
∗||Y

Dts
||.

Taking u→∞, recalling that E(Y ) = {||Yu|| → 0 as u→∞} denoted the event
of extinguishing of Y , we conclude

Eν [1E(Y )|HDts ] = lim
u→∞

Eν [e
−λ∗||Yu|||HDts ] = e−λ

∗||Y
Dts
||. (3.2.12)

Now, we want to take the limit in t. By Lemma 3.9, we have ||YDts|| → Zs as
t → ∞ and thus the right-hand side of (3.2.12) tends to exp{−λ∗Zs}, Pν-a.s.
For the left-hand side, by the strong Markov property, we can replace HDts by
σ(YDts). Further, note that

Pν(E(Y )) = e−λ
∗||ν|| for any ν ∈MF (Ds),

with Pν(E(Y )) = 0 if ν has infinite mass. Thus, the event E(Y ) only depends
on the total mass of ν. Therefore we can replace σ(YDts) by σ(||YDts||) on the
left-hand side in (3.2.12). To sum up, we get

Eν [1E(Y )|HDts ] = Eν [1E(Y )|σ(YDts)] = Eν [1E(Y )|σ(||YDts||)].

By Lemma 3.9, we have limt→∞ ||YDts|| = Zs, with the possibility of the limit
being infinite. Hence,

lim
t→∞

Eν [1E(Y )|σ(||YDts||)] = Eν [1E(Y )|σ(Zs)].
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Putting the pieces together, taking t→∞ in (3.2.12) gives

Eν [1E(Y )|σ(Zs)] = lim
t→∞

Eν [1E(Y )|HDts ] = lim
t→∞

e−λ
∗||Y

Dts
|| = e−λ

∗Zs .

Finally take ν ∈ MF (∂Dr) and let r ≤ s′ ≤ s. Then conditioning on σ(Zs) and
using the tower property, gives

e−λ
∗Zs′ = Eν [1E(Y )|σ(Zs′)]

= Eν [E[1E(Y )|σ(Zs)]|σ(Zs′)] = Ēr[e
−λ∗Zs |σ(Zs′)],

from which we conclude that (e−λ
∗Zs , s ≥ r) is a P̄r-martingale.

3.3 The limiting branching mechanism - Proof of
Proposition 3.3 and Theorem 3.4

In this section we prove Proposition 3.3 and Theorem 3.4 which describe the
change in the branching mechanism and the limiting branching mechanism as
r →∞.

3.3.1 Changing shape - Proof of Proposition 3.3

Proof of Proposition 3.3. (i) Fix 0 < r ≤ r′, h > 0 and θ ≥ 0. The first step is
to show that u(r, r + h, θ) ≥ u(r′, r′ + h, θ). Said another way, we want to show
that

Ēr′ [e
−θZr′+h ] ≥ Ēr[e

−θZr+h ]. (3.3.1)

Under P̄r, Zr+h is the total mass of the exit measure of Y from Dr+h, when Y
is initiated from one unit of mass distributed on ∂Dr. By radial symmetry of Y ,
we may assume that the initial mass of Y is concentrated in a point xr ∈ ∂Dr,
i.e. Ēr[e

−θZr+h ] = Eδxr [e
−θ||YDr+h ||].

Now we shift the point xr to the point xr′ ∈ ∂Dr′ where ||xr′ − xr|| = r′ − r. We
also shift the ball Dr+h in the same direction and by the same distance r′− r and
denote its new centre by xr′−r, see Figure 3-2. By translation invariance of Y we
then have

Ēr[e
−θZr+h ] = Eδxr

[
e−θ||YDr+h ||

]
= Eδxr′

[
e
−θ||YD(xr′−r,r+h)

||
]
,

where D(xr′−r, r+ h) is the open ball centred at xr′−r with radius r+ h. We can
then write (3.3.1) as

Eδxr′

[
e
−θ||YDr′+h ||

]
≥ Eδxr′

[
e
−θ||YD(xr′−r,r+h)

||
]
. (3.3.2)
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h

r

r′

h

xrxr′
Dr

Dr+h

Dr′

Dr′+h

xr′−r

D(xr′−r,r+h)

Figure 3-2: Shifting the balls Dr and Dr+h by a distance r′ − r

Recall that equation (3.1.2) shows that the process of Markov branching exit
measure YDs indexed by the increasing sequence of balls (Ds, s ≥ r) has the
strong Markov property. By Dynkin [20], the strong Markov property holds more
generally for any increasing sequence of open Borel subsets of Rd. In particular,

Eδxr′

[
e
−θ||YDr′+h ||

∣∣∣HD(xr′−r,r+h)

]
= EYD(xr′−r,r+h)

[
e
−θ||YDr′+h ||

]
, (3.3.3)

where HD(xr′−r,r+h)
= σ(YD(xr′−r,s)

, s ≤ r + h). Hence, assuming that

EYD(xr′−r,r+h)

[
e
−θ||YDr′+h ||

]
≥ e

−θ||YD(xr′−r,r+h)
|| (3.3.4)

holds true, we get, together with (3.3.3), that

Eδxr′

[
e
−θ||YDr′+h ||

]
= Eδxr′

[
Eδxr′

[
e
−θ||YDr′+h ||

∣∣σ(YD(xr′−r,r+h)
)
]]

= Eδxr′

[
EYD(xr′−r,r+h)

[
e
−θ||YDr′+h ||

]]
≥ Eδxr′

[
e
−θ||YD(xr′−r,r+h)

||
]
,

which is the desired inequality (3.3.2). Thanks to the branching Markov property
for exit measures, for (3.3.4) to hold, it suffices to show that

Eδx

[
e
−θ||YDr′+h ||

]
≥ e−θ, for any x ∈ ∂D(xr′−r, r + h). (3.3.5)
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3.3. The limiting branching mechanism

For fixed x ∈ ∂D(xr′−r, r + h), set s = ||x|| and note that s ≤ r′ + h. By (3.2.7),
u(s, r′+h, θ) is increasing in s and bounded from above by u(r′+h, r′+h, θ) = θ.
Hence we obtain

Eδx [e
−θ||YDr′+h ||] = Ēs[e

−θZr′+h ] = e−u(s,r
′+h,θ) ≥ e−θ,

which is (3.3.5). This means we have proved (3.3.1) and thus u(r, r + h, θ) ≥
u(r′, r′ + h, θ). The latter yields that, for all θ ≥ 0,

∂

∂s
u(r, s, θ)|s=r = lim

h↓0

u(r, r + h, θ)− u(r, r, θ)

h

≥ lim
h↓0

u(r′, r′ + h, θ)− u(r′, r′, θ)

h
=

∂

∂s
u(r′, s, θ)|s=r′ .

(3.3.6)

Now we apply (3.2.2) to get

∂

∂s
u(r, s, θ)|s=r =

(
−Ψ(s, θ)

∂

∂θ
u(r, s, θ)

)
|s=r = −Ψ(r, θ) · 1, (3.3.7)

where we used that lims↓r
∂
∂θ
u(r, s, θ) = 1 which can be seen as follows. By

dominated convergence, we have

lim
s↓r

∂

∂θ
e−u(r,s,θ) = lim

s↓r

∂

∂θ
Ēr[e

−θZs1{Zs<∞}] = lim
s↓r

Ēr[−Zse−θZs1{Zs<∞}] = −e−θ.

On the other hand,

lim
s↓r

∂

∂θ
e−u(r,s,θ) = − lim

s↓r

∂

∂θ
u(r, s, θ) e−u(r,s,θ) = − lim

s↓r

∂

∂θ
u(r, s, θ) e−θ

and we may conclude that lims↓r
∂
∂θ
u(r, s, θ) = 1 as claimed.

Combining (3.3.6) with (3.3.7) gives Ψ(r, θ) ≤ Ψ(r′, θ) for θ ≥ 0 and r ≤ r′,
which completes the proof.

(ii) Define Ψ∗(r, θ) := Ψ(r, λ∗ + θ) for θ ≥ 0. The family of branching
mechanisms (Ψ∗(r, ·), r > 0) is obtained when we run the super-Brownian mo-
tion Y with branching mechanism ψ∗(θ) := ψ(θ + λ∗), θ ≥ 0, (instead of ψ)1.
Clearly, the branching mechanism ψ∗ is subcritical. It thus follows from part (i)
that the family of branching mechanisms (Ψ∗(r, ·), r > 0) has the property that
Ψ∗(r, θ) ≤ Ψ∗(r′, θ), for r ≤ r′ and all θ ≥ 0. Clearly this gives Ψ(r, θ) ≤ Ψ(r′, θ)
for r ≤ r′ and θ ≥ λ∗.
Let θ ≤ λ∗. First, note that u(r, s, λ∗) = − log Ēr[e

−λ∗Zs ] = λ∗, which is a con-

1ψ∗ is the branching mechanism of the super-Brownian motion Y with branching mechanism
ψ conditioned on becoming extinguished.
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3. The total mass of super-Brownian motion upon exiting balls

sequence of Lemma 3.8 (ii). Thus, u(r, s, θ) ≤ u(r, s, λ∗) = λ∗ for all θ ≤ λ∗,
0 < r ≤ s, and in particular ψ(u(r, s, θ)) ≤ 0. We therefore get

u(r, s, θ) = θ − ER
r

∫ τz

0

ψ(u(Rv, s, θ)) dv − ER
z

∫ τs

0

ψ(u(Rv, s, θ)) dv

≥ θ − ER
z

∫ τs

0

ψ(u(Rv, s, θ)) dv

= u(z, s, θ)

for any 0 < r ≤ z ≤ s, θ ≤ λ∗. We can then use ∂
∂r
u(r, s, θ) ≤ 0 in place of the

inequality (3.2.7) in the proof of part (i). Thus, following the same arguments as
in the proof of part (i) with all inequalities reversed, we see that Ψ(r, θ) ≥ Ψ(r′, θ)
for r ≤ r′ and all θ ≤ λ∗.

3.3.2 Limiting branching mechanism - Proof of Theorem
3.4

To begin with, we show the existence and finiteness of the limiting branching
mechanism Ψ∞ and derive a PDE characterisation.

Proposition 3.10. For each θ ≥ 0, the limit limr↑∞Ψ(r, θ) = Ψ∞(θ) is finite
and the convergence holds uniformly in θ on any bounded, closed subset of R+.
(i) In the (sub)critical case, Ψ∞ solves the equation

1

2

∂

∂θ
Ψ2
∞(θ) = 2ψ(θ), (3.3.8)

Ψ∞(0) = 0.

(ii) In the supercritical case, Ψ∞ solves (3.3.8) with the initial value at 0 replaced
by

Ψ∞(0) = −2

√∫ λ∗

0

|ψ(θ)| dθ

and with Ψ∞(λ∗) = 0.

Proof. From the monotonicity in Proposition 3.3, we conclude that the pointwise-
limit Ψ∞(θ) := limr↑∞Ψ(r, θ) exists. We will have to show that |Ψ∞(θ)| is finite
for each θ ≥ 0. Uniform convergence on any bounded, closed subset of R will
then follow by convexity, see for example Theorem 10.8 in [60]. We consider the
(sub)critical case and the supercritical case separately.

(i) Suppose we are in the (sub)critical case. We have Ψ(r, 0) = 0 for all r > 0
and hence Ψ∞(0) = 0. For θ > 0, recall the PDE (3.1.8), which can be written
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slightly differently as

∂

∂r
Ψ(r, θ) + Ψ(r, θ)

∂

∂θ
Ψ(r, θ) +

d− 1

r
Ψ(r, θ) = 2ψ(θ), r > 0, θ > 0.

(3.3.9)

By Proposition 3.3 (i), ∂
∂r

Ψ(r, θ) ≥ 0 and, by Lemma 3.7(i), Ψ(r, θ) ≥ 0. Thus,

Ψ(r, θ)
∂

∂θ
Ψ(r, θ) ≤ 2ψ(θ), for all r > 0 and θ ≥ 0. (3.3.10)

Fix a θ0 > 0. Suppose for contradiction that Ψ(r, θ0) ↑ ∞ as r → ∞. For any
K > 0, we can find an r0 large enough such that

Ψ(r0, θ0) > 2Kψ(θ0). (3.3.11)

By (3.3.10), this implies that ∂
∂θ

Ψ(r0, θ0) <
1
K
. As Ψ is convex in θ with Ψ(r0, 0) =

0, we get that

Ψ(r0, θ0) ≤
θ0
K
.

Now we can choose K large enough such that θ0/K < 2Kψ(θ0), which then con-
tradicts (3.3.11). Hence, limr→∞Ψ(r, θ) = Ψ∞(θ) <∞ for all θ ≥ 0.
Note that lim supr→∞

∂
∂θ

Ψ(r, θ) is also finite for each θ ≥ 0. Indeed, if we sup-
posed the contrary for some θ > 0, that is, lim supr→∞

∂
∂θ

Ψ(r, θ) = ∞, then
(3.3.10) would imply that lim infr→∞Ψ(r, θ) = 0, which contradicts Proposition
3.3 (i). By convexity, we can pick any θ > 0 to get lim supr→∞

∂
∂θ

Ψ(r, 0+) ≤
lim supr→∞

∂
∂θ

Ψ(r, θ) <∞.
Next, we want to take r → ∞ in (3.3.9) and we know that the limit of the left-
hand side exists since the right-hand side does not depend on r. We keep θ0 > 0
fixed and consider each term on the left-hand side of (3.3.9) separately.
We have just seen that limr→∞Ψ(r, θ0) < ∞ which implies that the third term
on the left-hand side of (3.3.9), namely d−1

r
Ψ(r, θ0), vanishes as r →∞.

Consider the term Ψ(r, θ0)
∂
∂θ

Ψ(r, θ0) next. Since Ψ(r, ·) is a sequence of continu-
ous, convex functions, the pointwise limit Ψ∞ is also continuous and convex in θ,
cf. Theorem 10.8 in Rockafellar [60]. The convexity ensures that the set of points
at which Ψ∞ is not differentiable is at most countable. If Ψ∞ is differentiable at
θ0, then by Theorem 25.7 in [60], it follows that limr→∞

∂
∂θ

Ψ(r, θ0) = ∂
∂θ

Ψ∞(θ0)
and hence

lim
r→∞

Ψ(r, θ0)
∂

∂θ
Ψ(r, θ0) = Ψ∞(θ0)

∂

∂θ
Ψ∞(θ0). (3.3.12)

So far we have seen that, for all θ ≥ 0 at which Ψ∞ is differentiable, the second
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and third term on the left-hand side of (3.3.9) converge to a finite limit as r →∞
which implies that the limit of the first term, that is limr→∞

∂
∂r

Ψ(r, θ), also exists
and is finite. With limr→∞Ψ(r, θ) < ∞ it thus follows that ∂

∂r
Ψ(r, θ) tends to 0

as r →∞, for all θ ≥ 0 at which Ψ∞ is differentiable.
In conclusion, for any θ at which Ψ∞ is differentiable, the first and third term on
the left-hand side of (3.3.9) vanish as r →∞ and with (3.3.12) we get

Ψ∞(θ)
∂

∂θ
Ψ∞(θ) = 2ψ(θ). (3.3.13)

For θ > 0, we have Ψ∞(θ) > 0 and we can write (3.3.13) as

∂

∂θ
Ψ∞(θ) = 2

ψ(θ)

Ψ∞(θ)
, (3.3.14)

which again holds for all θ > 0 at which Ψ∞ is differentiable. By convexity, Ψ∞
admits left and right derivatives for every θ > 0. Since the right-hand side of
(3.3.14) is continuous and (3.3.14) holds true for all but countably many θ > 0,
we conclude that the left and the right derivative of Ψ∞(θ) agree for every θ > 0.
Thus (3.3.14), and equivalently (3.3.8), holds in fact for every θ > 0. By convexity,
for any θ > 0, we get

∂

∂θ
Ψ∞(0+) ≤ ∂

∂θ
Ψ∞(θ) = 2

ψ(θ)

Ψ∞(θ)
<∞,

which shows that (3.3.8) holds true for θ = 0 with both sides being equal to 0.

(ii) We consider the supercritical case now. Again we first have to show that
Ψ∞(θ) is finite for each θ ≥ 0.
Let us begin with the case θ ∈ [λ∗,∞). We can consider the (sub)critical branch-
ing mechanisms Ψ∗(r, λ) := Ψ(r, λ + λ∗) for λ ≥ 0. Then part (i) applies to the
(sub)critical Ψ∗ and we conclude that, for any θ ≥ λ∗,

Ψ∞(θ) = lim
r→∞

Ψ(r, θ) = lim
r→∞

Ψ∗(r, θ − λ∗) = Ψ∗∞(θ − λ∗) <∞.

In particular, the equation (3.3.8) holds for all θ ≥ λ∗ and Ψ∞(λ∗) = Ψ∗∞(0) = 0.
Further, it follows from the monotonicity in Proposition 3.3 that ∂

∂θ
Ψ∗(r, 0+) ≤

∂
∂θ

Ψ∗∞(0+). The latter derivative was shown to be finite in the proof of part (i).
Thus, for any r > 0,

∂

∂θ
Ψ(r, θ)|θ=λ∗ =

∂

∂θ
Ψ∗(r, 0+) ≤ ∂

∂θ
Ψ∗∞(0+) <∞.

Hence, we have a uniform upper bound for the θ-derivative of Ψ(r, ·) at λ∗.
Recalling that Ψ(r, λ∗) = 0, convexity ensures that Ψ(r, ·) is uniformly bounded
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from below by the function ∂
∂θ

Ψ∗∞(0+)(·−λ∗) on the interval [0, λ∗]. This implies
already that limr→∞ |Ψ(r, θ)| <∞ for all θ ∈ [0, λ∗].
To show that the equation (3.3.8) holds for all θ ≤ λ∗ we can now simply repeat
the argument given in the proof of part (i). Finally, with Ψ∞(λ∗) = 0, we can
derive the initial condition for Ψ∞(0) by integrating (3.3.8) from 0 to λ∗.

Proof of Theorem 3.4. Proposition 3.10 guarantees the existence and finiteness
of Ψ∞. If we integrate (3.3.8) from λ∗ to θ, and note that Ψ∞(θ) and ψ(θ) are
negative if and only if θ ≤ λ∗, we obtain the expression in (3.1.9). It thus remains
to show (ii).

It follows from an obvious adaptation of the proof of Theorem 3.1 in Kypri-
anou et al. [51] that Z∞ is indeed the process of the total mass of the Markov
branching exit measures of a one-dimensional super-Brownian as it first exits the
family of intervals ((−∞, s), s ≥ 0) as claimed.
Concerning the convergence in (3.1.10), we have to show that, for s ≥ 0 and
θ ≥ 0, u∞(s, θ) := limr→∞ u(r, s+ r, θ) exists and solves

u∞(s, θ) = θ −
∫ s

0

Ψ∞(u∞(s− v, θ)) dv, (3.3.15)

which is the characterising equation for the Laplace functional of Z∞.
This is trivially satisfied for s = 0. Henceforth, let s > 0 and θ ≥ 0 be fixed.
Recall that u(r, s+ r, θ) solves equation (3.1.6), which can be written as

u(r, s+ r, θ) = θ −
∫ s

0

Ψ(v + r, u(v + r, s+ r, θ)) dv, r > 0. (3.3.16)

Note that the convergence of the convex functions Ψ(r, ·) to Ψ∞(·) in Theorem
3.4 holds uniformly in θ on each bounded closed subset of R+. Therefore, for
fixed ε > 0, we can choose r large enough such that |Ψ(s+ r, λ)−Ψ∞(λ)| < ε for
all λ ∈ {u(v + r, s+ r, θ), 0 ≤ v ≤ s}. Thus, for large r,∣∣∣u(r, s+ r, θ)−

(
θ −

∫ s

0

Ψ∞(u(v + r, s+ r, θ)) dv
)∣∣∣

=
∣∣∣ ∫ s

0

Ψ(v + r, u(v + r, s+ r, θ)) dv −
∫ s

0

Ψ∞(u(v + r, s+ r, θ)) dv
∣∣∣

≤ ε s. (3.3.17)

Now assume for contradiction that lim supr→∞ u(r, s + r, θ) = +∞. Since Ψ∞ is
convex and Ψ′∞(0+) ≥ 0 (with Ψ′∞(0+) = 0 in the supercritical case), the integ-
rand in the first line of (3.3.17) is bounded from below by Ψ∞(0). Therefore, the
expression in the first line of (3.3.17) tends to ∞ along a subsequence of r which
is an obvious contradiction.
Hence, u(r, s + r, θ) is bounded as a sequence in r. It therefore contains a con-
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3. The total mass of super-Brownian motion upon exiting balls

vergent subsequence, say u(rn, s+ rn, θ) where (rn, n ≥ 1) is a strictly monotone
sequence which tends to ∞.
Let us show that every subsequence converges to the same limit. Let (r′n, n ≥ 1)
be another strictly monotone sequence which tends to∞. To begin with we note
that supn∈N{u(v + rn, v + rn, θ)} <∞ by boundedness. Then we set

ū = sup
v∈(0,s)

sup
n∈N
{u(v + rn, v + rn, θ)} <∞

and define ū′ accordingly using the sequence (r′n, n ≥ 1) in place of (rn, n ≥ 1).
By (3.3.17), for any ε > 0, we can find an N ∈ N large enough such that for all
n ≥ N

|u(rn, s+ rn, θ)− u(r′n, s+ r′n, θ)| (3.3.18)

≤ 2εs+

∫ s

0

∣∣∣Ψ∞(u(v + rn, s+ rn, θ))−Ψ∞(u(v + r′n, s+ r′n, θ))
∣∣∣ dv

≤ 2εs+

∫ s

0

M |u(v + rn, s+ rn, θ)− u(v + r′n, s+ r′n, θ)| dv. (3.3.19)

where M := sup{Ψ′∞(w) : w ∈ (0,max{ū, ū′}} <∞. Set

Fn(s′) = M

∫ s′

0

|u(v + rn, s+ rn, θ)− u(v + r′n, s+ r′n, θ)| dv, for 0 ≤ s′ ≤ s,

and note that ∂Fn(s′)/∂s′ = M |u(s′ + rn, s + rn, θ) − u(s′ + r′n, s + r′n, θ)|. By
(3.3.18),

∂

∂s′
Fn(s′)− 2εM(s− s′)−M(Fn(s)− Fn(s′)) ≤ 0.

Multiplying by eMs′ , we derive ∂[
(
Fn(s)− Fn(s′) + 2ε(s− s′) + 2ε

M

)
eMs′ ]/∂s′ ≥ 0.

Therefore,(
Fn(s)− Fn(s′) + 2ε(s− s′) +

2ε

M

)
eMs′ ≤ 2ε

M
eMs, for any 0 ≤ s′ ≤ s.

Hence, Fn(s)−Fn(s′) ≤ 2ε
(

1
M

(eM(s−s′)−1)− (s−s′)
)
, for 0 ≤ s′ ≤ s. Since ε > 0

can be chosen arbitrarily small, we conclude from the definition of Fn(s′) that
u(r′n, s

′+r′n, θ) converges to the same limit as u(rn, s
′+rn, θ) as n→∞. We have

thus shown that, considered as a sequence in r, all subsequences of u(r, s + r, θ)
converge to the same limit. Therefore u∞(s, θ) = limr→∞ u(r, s+ r, θ) exists and,
with (3.3.17), it satisfies (3.3.15). By uniqueness of solutions to (3.3.15), u∞(s, θ)
agrees with the Laplace functional associated with Z∞ which in turn implies the
desired convergence.
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3.4 Derivation of the differential equation (3.2.5)
corresponding to the integral equation (3.2.4)

The reader familiar with the superprocess literature will readily believe that any
solution to the differential equation (3.2.5) also solves the integral equation (3.2.4)
and conversely that solutions to (3.2.4) also solve (3.2.5). Results of this fash-
ion can be found for instance in the work of Dynkin, see [17], Section 3 in [18]
or Section 5.2 in [21]. However, in these references only (sub)critical branching
mechanism are allowed and we are unaware of a rigorous proof in the literature for
the case of a supercritical branching mechanism. Although it seems possible to
adapt Dynkin’s arguments to the supercritical case, we will offer a self-contained
proof here instead.

Recall from (3.2.4) that the Laplace functional u of Z, defined in (3.1.5), is
the unique non-negative solution to the equation

u(r, s, θ) = θ − ER
r

∫ τs

0

ψ(u(Rl, s, θ)) dl, 0 < r ≤ s, θ ≥ 0, (3.4.1)

where (R,PR) is a d-dimensional Bessel process and τs := inf{l > 0 : Rl > s} its
first passage time above level s.
Fix 0 < r ≤ s and θ ≥ 0 from now on. Let us apply a Lamperti transform to
the d-Bessel process R in the integral on the right-hand side of (3.4.1). Define
ϕ(s) =

∫ r2s
0

R−2l dl, s ≥ 0, then

Bs = log(r−1Rr2ϕ−1(s)), s ≥ 0,

is a one-dimensional Brownian motion with drift d
2
− 1 starting from 0. Let us

denote the law of B = (Bs, s ≥ 0) by P̄d0. Thus we get

ER
r

∫ τs

0

ψ(u(Rl, s, θ)) dl = ER
r

∫ ϕ(r−2τs)

0

ψ(u(Rr2ϕ−1(l), s, θ))R
2
r2ϕ−1(l) dl

= Ēd0
∫ Tlog(s/r)

0

ψ(u(eBl+log r, s, θ))e2(Bl+log r) dl

= Ēdlog r
∫ Tlog s

0

ψ(u(eBl , s, θ))e2Bl dl,

where Tlog s is the first time B crosses level log s. Equation (3.4.1) becomes

u(r, s, θ) = θ − Ēdlog r
∫ Tlog s

0

ψ(u(eBl , s, θ))e2Bl dl. (3.4.2)
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We split the integral on the right hand side into its excursions away from the
maximum. This gives

Ēdlog r
∫ Tlog s

0

ψ(u(eBl , s, θ))e2Bl dl

= Ēdlog r
∑

log r≤u≤log s

∫ ζ(u)

0

ψ(u(eu−eu(l), s, θ))e2(u−eu(l)) dl,

where eu is an excursion away from the maximum with lifetime ζ(u) and the
sum is taken over all left end-points u of the excursion intervals in (Tlog r, Tlog s).
It follows from the Compensation formula for excursions (Bertoin [6], Cor. 11,
p.110) that

Ēdlog r
∑

log r≤u≤log s

∫ ζ(u)

0

ψ(u(eu−eu(l), s, θ))e2(u−eu(l)) dl

=

∫ log s

log r

η

(∫ ζ

0

ψ(u(eu−e(l), s, θ))e2(u−e(l)) dl

)
du,

where η denotes the excursion measure and e is a generic excursion with length
ζ. Then we apply Exercise 5, chapter VI, [6], to get∫ log s

log r

η

(∫ ζ

0

ψ(u(eu−e(s), s, θ))e2(u−e(l)) dl

)
du

=

∫ log s

log r

∫ ∞
0

ψ(u(eu−y, s, θ))e2(u−y) V̂ (dy) du,

where V̂ is the renewal function of the dual ladder height process (the dual process
is here simply Brownian motion with drift −(d

2
− 1)). We see from equation (4),
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p. 196 in [6] that V̂ (dy) = 2e−2(
d
2
−1)ydy and obtain∫ log s

log r

∫ ∞
0

ψ(u(eu−y, s, θ))e2(u−y) V̂ (dy) du

= 2

∫ log s

log r

e2u
∫ ∞
0

ψ(u(eu−y, s, θ)) e−dy dy du

z=eu−y
= −2

∫ log s

log r

e2u
∫ 0

eu
ψ(u(z, s, θ))zde−du z−1 dz du

v=eu
= −2

∫ s

r

v2
∫ 0

v

ψ(u(z, s, θ)) zd−1v−d dz v−1 dv

= 2

∫ s

r

v1−d
∫ v

0

ψ(u(z, s, θ)) zd−1 dz dv.

Thus the characterising integral equations (3.4.1) and (3.4.2) become

u(r, s, θ) = θ − 2

∫ s

r

v1−d
∫ v

0

ψ(u(z, s, θ)) zd−1 dz dv. (3.4.3)

Differentiation in r gives

∂

∂r
u(r, s, θ) = 2r1−d

∫ r

0

ψ(u(z, s, θ))zd−1 dz,

∂2

∂r2
u(r, s, θ) = 2(1− d)r−d

∫ r

0

ψ(u(z, s, θ))zd−1 dz + 2ψ(u(r, s, θ)).

Hence, we obtain the differential equation in (3.2.5), i.e. for θ ≥ 0,

1

2

∂2

∂r2
u(r, s, θ) +

d− 1

2r

∂

∂r
u(r, s, θ) = ψ(u(r, s, θ)) 0 < r ≤ s,

u(r, r, θ) = θ.
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