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Abstract 

This thesis sets out to evaluate six novel arrangements of internal combustion engine air path 

designed to improve the degree of exhaust energy recovery from a practical passenger car 

engine system. The study was conducted using 1D engine simulation based on two 

experimentally validated models of modern turbocharged spark ignition engines. 

Improvements of up to 5% in fuel efficiency are presented, along with reductions of up to 

30% in the torque rise time are presented. 

For at least 7 decades, efforts have been made to recover waste energy from the internal 

combustion engine. Heat engines, governed by the second law of thermodynamics, 

inevitably reject a significant proportion of the fuel energy as heat to the environment. 

Technologies, such as turbo-compounding, (organic) Rankine cycle and thermoelectric 

generators have been proven effective for waste energy recovery in high load applications. 

Inverted Brayton cycle is also under investigation currently due to the high exergy availability 

in exhaust stream and the potential to enhance the overall performance of vehicle engines.  

However, none of these technologies has been given extensive application in the field of 

automobiles, especially passenger cars, despite their effectiveness in reducing fuel 

consumption and CO2 emission. This thesis reviews current and previous studies to 

summarise the advantages and disadvantages of these technologies as well as the factors 

that constrain them from wide application. Transient performance, which is rarely 

considered in the literature, is considered here to allow a more realistic assessment of the 

technologies merits. 

Among these approaches, turbo-compounding has the advantage of compact volume, lower 

complexity and application cost, and is now employed to recover waste heat in heavy duty 

vehicles, such as mining equipment and road haulage. This thesis reviews the most recent 

research on turbo-compounding to identify the variables that make the greatest difference 

to the engine performance.  

The potential for the augmentation of the fuel economy and power output by a novel 

implementation of turbo-compounding in light duty vehicles has been demonstrated. The 

concept of a variable ratio supercharger drive has been studied as part of a novel boosting 

system to improve the low-speed torque output by up to 55% and overall fuel economy by 

3%. After a careful optimisation of the specifications of the variable ratio unit, it is combined 

with a turbo-compounding system to fully overcome the inherent drawbacks of turbo-
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compounding, namely the tendency to reduce the power output and engine efficiency at low 

speed. Finally, the concept of divided exhaust period has been introduced in a novel turbo-

compounded arrangement to regulate the exhaust flow for a better gas exchange process 

and improve fuel consumption by up to 5% while improving transient response times by 30%. 
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Chapter 1 - Introduction 
 

Turbo-compounding has been proven effective for waste energy recovery in heavy duty 

engines. However, this technology has not been given extensive application in the field of 

automobile, especially the passenger car, so far, because of the drawback of imposing high 

back pressure which obstructs gas exchange of premier cycle. Weakened power output at low 

engine speed is also one of the major issues preventing it from wide application. 

Accordingly, the concept of variable speed supercharger and divided exhaust period will be 

combined with turbo-compounding engine trying to solve the aforementioned problem. DEP, 

which is of the capability of allocating brake load between internal combustion engine and 

waste energy recovery devices, could enhance the competitive advantages that are already 

achieved by turbo-compounding while mitigating the inherent deficiencies in engine breathing 

simultaneously. At the same time, a variable-drive supercharging concept has the potential to 

enable a higher power output and better fuel efficiency at low engine speed and rapid transient 

response in transient. 

This chapter will firstly lay out the background for this project, and will then present the aims 

and principle objectives. A description of each chapter in this thesis will follow. 

1.1. Background 

Over the years, in order to meet the customer expectation in gasoline engine performance 

while limit the CO2 emission fuel consumption, a long term (year 2050) roadmap showing the 

transition from current gasoline & diesel fuels to a majority renewable energy portfolio has 

been made, as shown in figure 1.1. It suggests a drop in conventional fuel engines and an 

increasing use of electricity in battery electric and plug-in vehicles. However, since the hybrid 

and electric vehicles have not move into the mainstream until now, efforts are still being 

invested on improving the efficiency of conventional internal combustion engines [1]. In spite 

of a number of issues such as the rising of knock and backpressure, boosting systems are now 

the most dominant technology applied in modern cars to achieve a better power-to-weight 
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ratio and fuel efficiency. 

 

Figure 1.1. Passenger car low carbon technology road map [220]. 

Another most concerning issue is waste heat management. As shown in figure 1.2, more than 

a half of the fuel energy is lost through irreversibility (in the form of chemical combustion, 

heat transfer and cooling circulation) and exhaust gas for a typical medium sized car under 

the combined FTP75 City and Highway cycle [17] [202]. Therefore, in order to enhance the 

utilization of combustion energy and eventually improve the overall efficiency of the engine 

system, it is worth investigating exhaust energy recovery technologies.  

 

Figure 1.2. The schematic diagram of fuel energy distribution in a medium-sized passenger 

car. 

An extensive sensitivity analysis was carried out in a high energy engine technologies program 

conducted in 2010 using engine simulation tools to determine the approaches to achieve 10% 

improvement in internal combustion engine thermal efficiency [203]. Considering the balance 

between the risks of exceeding the strength limits of the components and maximising the 
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opportunity of fulfilling the target performance, six technical factors was chosen as the objects 

for the further development, as shown in Figure 1.3. The percentage numbers in figure 1.3 

represent the contributions from each factor that was expected to the thermal efficiency 

improvement. 10% improvement can be achieved when they work together. 

From figure 1.3, it is also indicated that the thermal energy recovery from the engine exhaust 

stack made the biggest contribution (40%) to the total engine thermal efficiency improvement 

followed by the improvement in turbine and compressor performance that were expected to 

enhance the thermal efficiency of the engine by 3% and 0.7% in respectively [204]. Even 

though it was an ambitious goal for the study in this chapter, especially when the engine 

operation deviated from the high load region, it gives the general impression of the high 

potential of exhaust energy recovery technologies in upgrading the overall engine efficiency. 

 

Figure 1.3. Technical objects for strategy optimization to achieve 10% improvement in fuel 

economy. 

In addition to the substantial energy that can be recovered from and the fuel efficiency that 

can be improved by, exhaust heat utilization in internal combustion engines can also lower 

the carbon emissions.  

In 2002, Volvo became the first one to design a prototype engine which recovers exhaust gas 

energy through compound turbines mechanical transmission. That is to say, the remaining 

pressure energy was converted into engine shaft power by turbine [12]. In this way, exhaust 

gas energy was recycled by 20% and fuel was saved by 5% at most. However, pumping loss 

increased with exhaust gas back pressure going up, and engine even did negative work under 

low-load operating conditions. Therefore, only when the engine was under high-load 
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conditions and the turbocharger was of high efficiency, did it save fuel. In addition, American 

Environmental Protection Agency (EPA) and the FEV did some research on engine exhaust gas 

dual-expander. The study results indicated that the dual-expander work of exhaust gas is not 

enough to overcome the additional friction loss under low speed and low load conditions. 

Only when the engine operated under high speed and high load conditions would the exhaust 

gas dual-expander work be surplus. B. The indirect method of exhaust gas energy recovery 

Doyle and Patel, both are engineers of American Mack Trucks, designed an equipment to 

recover exhaust heat energy by using Rankine cycle based on a truck engine with 288 

horsepower. After commissioning for 450km, it saved fuel by 12.5% [13]. With the exhaust 

gas energy recovered, Cummins Corporation improved thermal efficiency by 5.4% through 

using Rankine cycle on a truck engine [14]. By selecting the best working medium of thermal 

cycle and optimizing the thermal cycle parameters as well as compound energy system, Italian 

Pamar University improved the engine thermal efficiency by 12% compared to the engine 

without bottom cycle [15]. In 1971, American scholar Pefley [16] put forward a new method 

to recover exhaust gas heat energy on dual-fuel engine (methanol and gasoline). By using 

exhaust heat energy, the methanol was dissociated into H2 and CO; then, the two kinds of 

gases were mixed with gasoline and sent into cylinder. German BMW started to study exhaust 

gas energy recovery on passenger cars. They put forward Rankine two cycle system and 

applied it to 1.8 L, 4 cylinder engines used in 3 series cars of BMW. The test results showed 

that engine fuel efficiency, output power and torque increased by 15%, 10kW and 20N·m [3]. 

In one word, exhaust gas energy recovery on engine is being developed and has made some 

preliminary achievements. The earlier study suggests that recovering exhaust gas energy 

through heat transmission has more advantages. With the energy and environmental 

problems becoming serious day by day, the research on this aspect will be more systematic, 

comprehensive and thorough. The energy recovery efficiency will be improved and the cost 

of equipment will be reduced. The waste energy recovery technology is a great revolutionary 

on engine. 

In general, there are four dominating technologies for waste energy recovery [9]: 

 Adding a power turbine in series after the main turbine of the turbocharger to 
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generate mechanical power form the enthalpy change of the exhaust gas and feed it 

back to the output crankshaft via gear train (Mechanical Turbo-compounding) [4-6]. 

Specifically, a series of nozzles increases the velocity of the fluid stream in the stator 

stage. This creates a pressure drop and an increase in velocity. Then the fluid stream 

is directed to the rotor blades, which are also acting as nozzles. This further reduces 

the pressure, but the velocity also drops as a result of transfer of kinetic energy to 

rotor blades. Therefore, in the power turbine, not only the kinetic energy of the fluid, 

but also the energy in the fluid in the form of pressure is converted into mechanical 

energy of the rotor shaft. 

 Coupling of an electrical generator to the power turbine to directly convert the excess 

energy extracted from the exhaust into electricity (Electrical Turbo-compounding) [7]. 

 Implementation of a Rankine Cycle [8] system utilizing steam or organic fluid as 

working media where additional power is produced through an expander (Either a 

piston expander or a turbine expander) 

 Direct conversion of exhaust gas heat to electric power through thermoelectric 

phenomenon (Thermoelectric Generators) [9] 

As described above, the popular layout of the turbo-compounding engine at present can be 

roughly divided into two categories, namely mechanical turbo-compounding and electrical 

turbo-compounding. The difference between which lies in whether the power turbine output 

shaft is connected to the engine crank shaft mechanically (via gear sets, like that in a 

differential compound engine firstly proposed by F J Wallace [10]) or connected to a generator 

and then an energy storage device like a battery. While the mechanical turbo-compounding 

engine is considered as the standard technology that deserves further investigation to 

examine the potential for application and improvement, the electrical turbo-compounding 

has not been widely investigated to the same extent despite of its superiority in flexibility of 

layout according to some vehicle manufacturers.  

The main disadvantage of turbo-compounding technology lies in the fact that it increases the 

backpressure and thus the pumping losses of the engine, which results in reduction of brake 

engine power. Especially when considering light duty transport or when the engines running 
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under part load condition or at low engine speed, the mechanical power produced by the 

power turbine is even not enough to offset the increased pumping losses [11]. For this reason, 

it is now widely accepted that the turbo-compounding engine is only suitable for heavy-duty 

vehicles or the transports that are consistently operated under high-load condition. 

The most frequently utilized technology in exhaust heat recovery is the turbocharger which 

extracts the kinetic energy from the exhaust flow to drive the compressor. However, the 

benefit for turbocharged engine always comes along with the drawbacks in delayed transient 

response and over-boost risk at high engine speed. Specifically, a large turbocharger can 

provide high boosting at high engine speed, but suffers from poor efficiency and delayed 

transient response at lower engine speed due to the lack of exhaust gas flow to overcome the 

inertia of the system. On the contrary, a small turbocharger is more effective in air boosting 

and transient response at low engine speed due to the reduced inertia. However, as the 

engine speed rises, it would be necessary to bypass the turbine, typically through a waste 

gate, to prevent excessive turbocharger from over speed which may otherwise leads to over 

boost and thus sacrificed efficiency.  

Besides, the produced power from the main turbine of a turbocharger unit has to be totally 

consumed by the compressor, which means the capability as well as the efficiency of the 

turbine is limited by the power demand of the compressor and substantially the air demand 

of the engine. When the extracted energy from the exhaust is excess, a waste gate is needed 

to bypass the redundant exhaust energy, otherwise the inlet air to the engine will suffer from 

over boost which may cause damage to the combustion stability and also exceeding the limit 

of in-cylinder pressure. When equipped with the turbo compound arrangement, however, the 

power produced by the power turbine is feed back to the engine crank shaft mechanically or 

converted into electricity. In this way, the waste energy recovery is only limited by the 

inherent specification of the power turbine such as inertial and mechanical strength. 

The turbo-compounding engine is not a new idea at all. The original application of this concept 

can be traced back to the late 1940s and 50s on two notable aircraft engines, namely the 

Wright Cyclone and the Napier Nomad [12], however, its advantage in low fuel consumption 

for transport aircraft was soon overtaken by the rapid development of the gas turbine and the 
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turboprop engines. In 1970’s, a new concept of the differential compound engine (DCE) as an 

integrated engine transmission system was developed at Bath University by Frank. J. Wallace 

[10]. The tested experimental prototype achieved a significant advance in both torque and 

efficiency characteristics over the turbocharged engine of the same class. Nevertheless, DCE 

was built based on heavy duty diesel engine, and it benefited greatly from the application of 

an epicyclical gear train to reclaim power from the power turbine over a significant part of the 

load and speed range. 

In a gasoline engine, on the other hand, the inlet air flow is provided with a relatively fixed 

ratio to the fuel injection and fundamentally determined by the power demand.  Therefore, 

at lower engine speed the exhaust gas flow rate is not sufficient to drive the power turbine, 

which results in notable lag. Furthermore, the power turbine added in series to the main 

turbine will substantially increase the back pressure and then the pumping losses.  

1.2. Aim and objectives 

This project aims to develop a detailed system model to quantify the expected benefits by 

exploring method to relief the constraint on the application of this technology and to 

implement the optimised system onto an engine platform to evaluate its performance. 

The primary objectives of this project were as following: 

 Document the origin and historic development of turbo-compounding engine (see 

chapter 2). 

 Analyse the thermodynamics behind the concept of turbo-compounding engine (see 

chapter 2). 

 Study the state-of the-art in the field of turbo-compounding and engine simulation, 

and produce a literature review (see chapter 2). 

 Carry out simulation exercises of conventional turbo-compounding engines, and 

explore improving method based on the basic model (see chapter 6). 

 Analyse the simulating results to determine parameters, such as CVT ratio (see 

chapter 7, turbine size (see chapter 8) and valve timing (see chapter 9), in that those 

models are most sensitive to. 
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 Determine a solution to the inherent problems, such as high back pressure (see 

chapter 9), interfering with engine breathing (see chapter 9) and deteriorated low 

end output (see chapter 7), faced by turbo-compounding.  

 Highlight aspects of the thermodynamic model which need particular attention trying 

to produce test procedure and instrumentation standard documents for future testing 

(see chapter 5).  

 Produce technical papers on the key areas of this project. 

1.3. Scope of thesis 

Chapter 2 to Chapter 10 present the works according to each of the project objectives, 

respectively. The conclusions are summarised in Chapter 11. Here is an overview of the 

contents of these chapters: 

Chapter 2 will review knowledge on the current state-of-the-art waste energy recovery 

technologies, and then a comparison will be given regarding the advantages and 

disadvantages of aforementioned approaches.  

Chapter 3 will first review the history of the development of turbo-compounding technologies 

to trace back the early applications in automotive industry, followed by the introduction of 

the typical configurations of turbo-compounding. Finally, the sensitivity of turbo-

compounding performance to a variety of parameters would be summarised based on 

previous studies. 

Chapter 4 will describe a modelling and calibration theory foundation for the study that will 

take place over the following chapters. It mainly includes three sub-sections: engine model 

introduction and calibration for steady state and transient simulation and engine control 

theory and tuning. 

Chapter 5 will investigate the CVT Supercharger concept in simulation by comparing with a 

conventional two-stage super-turbo system. The results will be utilised as the theoretical basis 

to determine the feasibility of adopting CVT Supercharger with turbo-compounding in one 

engine. 
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Chapter 6 will verify the performance of variable supercharged engine system in improving 

low end output and enhancing fuel economy and transient speed by real test in engine level. 

The test results in this chapter will also be used for calibrating the combustion model of the 

turbo-compounding engine. 

Chapter 7 will optimise a de-coupled electric turbo-compounding system to achieve a better 

BSFC under full and partial load condition over a conventional turbocharged engine system as 

an extra knowledge. The results in this part is considered as evaluation of the baseline turbo-

compounding system. The turbo-compounding model will be adopted as a basic part for the 

comprehensive engine system in the following chapters. 

Chapter 8 will first present the simulation of combining CVT Supercharger and turbo-

compounding concepts under full load condition load to examine the potential to improve 

power output and fuel economy by comparing with a conventional turbocharged engine. And 

then, further investigation into the performance of CVT Supercharged turbo-compounding 

engine for low load and transient operation will follow. 

Chapter 9 will present a comparison between turbo-compounding (coupled with variable 

supercharger) and inverted Brayton cycle for the performance of improving fuel economy 

under and response speed. 

Chapter 10 will model the concept of divided exhaust period and combine it with CVT 

Supercharged turbo-compounding engine. A sweep and a global optimization of a variety of 

parameters will be carried out successively to investigate the influence on engine 

performance before the novel model with the optimal setups is evaluated for steady state and 

transient simulation. 
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Chapter 2  –Review of research on exhaust 

energy recovery technologies 

This chapter will first briefly review the current state of the art technologies for waste energy 

recovery, including Rankine cycle, Brayton cycle, thermoelectric and turbo-compounding. After 

the working principle of these technologies are introduced, a comparison will be demonstrated 

regarding the advantages and disadvantages of each. The factors that constrain these 

approaches from wide application will be analysed as well. Based on the review on previous 

research, it comes to the conclusion that turbo-compounding units have the advantage of 

compact volume, lower complexity and application cost when compare with other 

counterparts. They also show good efficiency in harvesting exhaust energy, despite of the 

drawbacks in highly interfering with the gas exchange in premier cycle. 

This chapter will also review the most recent research on turbo-compounding to specify the 

variables that make the greatest difference to the engine performance. The transient 

performance that was rarely involved in the previous work will also be included in this part. A 

conclusion can been drawn from this review that optimization is necessary for the 

configuration of the turbo-compounding engine to minimize the negative impact of the raised 

back pressure to the exhaust. Finally, the potential for the augmentation of the fuel economy 

and power output of the novel implementation of turbo-compounding engine in both heavy 

and light duty vehicles will also been demonstrated. 

2.1. Introduction  

In recent years, great effort has been spent to meet the higher customer expectation in 

gasoline engine performance and limit the CO2 emission and the fuel consumption [1]. The 

increasingly strict emission legislation also prompt the development of internal combustion 

engines (ICEs) towards the direction of better fuel economy and lower emission.  

Despite a number of issues, such as the reduced knock resistance and higher backpressure, 

turbo and supercharger system are now the most dominant technology helping modern cars 

to achieve a more efficient pumping cycle and a better power-to-weight ratio [1]. After years 
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of study and improvement, turbochargers and superchargers in passenger cars now generally 

have very high efficiency of up to about 75% [46]. On one hand, this is beneficial for the 

miniaturization of the boost system and effectively increasing the intake air pressure, on the 

other hand, only a small proportion of the exhaust energy is able to be reused due to the 

relatively smaller power requirement from the compressor. Further recovery of waste heat is 

restricted by the constraints of mechanical strength and heat resistance of ICEs. From this 

point of view, waste energy recovery (WER) arrangement, such as turbo-compounding and 

Rankine cycle and so on, have significant advantage over air boosting units in the capability of 

reclaiming exhaust energy as they are immune to the upper power demand limit of the 

compressor. Therefore, the approaches of utilizing novel thermodynamic cycles and waste 

energy recovery devices to increase the overall efficiency of ICEs is recently of growing 

interests, especially when considering the fact that the heat expelled through the exhaust 

makes up about 22-46% of the fuel energy in an internal combustion engine which accounts 

for the largest part of waste energy in ICEs [2]. 

 

Figure 2.1. A Sankey diagram showing the fuel energy balance [5]. 

A recent study in [3] estimated that in a typical 2 litre gasoline engine which is commonly used 

on passenger cars, 21% of the produced energy is wasted through the exhaust at the 

commonest load and speed condition. Under full load condition, this loss increases to 44% [5]. 

Hendricks TJ and Lustbader JA estimated that [4] depending on engine size and torque-speed, 

the waste thermal energy from small passenger cars ranges from 20 Kw to 400 kW. According 

to statistics, the number of passenger cars hit 28.5 million in United Kingdom in 2011, which 

means about 5 billion gallons of gasoline fuel energy lost through the exhaust pipes annually. 

Figure 2.1. A Sankey diagram showing the energy balance of an internal combustion engine 
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[6]. According to the conclusion in [7], it is difficult for an ICE to achieve an efficiency higher 

than 42%, as large amount of fuel energy is lost through the heat transfer of the cylinder wall 

and the exhaust gas and coolant without being converted into useful work. According to figure 

2.1, about 22-46% of the fuel energy in ICEs is expelled to the environment in the form of 

exhaust gas, which makes up the greatest part of the fuel energy. Therefore, it is worth 

investing efforts to harvest parts of this source of energy. 

Generally, the temperature of the exhaust gas from light duty passenger cars ranges from 500 

to 900 ◦C, and typically between 600 and 700 ◦C.  In a high duty vehicle, it is slightly lower 

ranging from 500 to 650 ◦C [5]. This temperature can be further increased due to the ongoing 

development of the boost and after treat devices [7]. Those high exhaust temperatures 

provide significant opportunities for exhaust heat recovery system to produce useful work for 

various applications.  

The benefit of converting exhaust heat into useful power lies in various aspects. First of all, it 

would bring measurable advantages for improving fuel economy. Secondly, it is capable of 

increase power output and the power density which are all beneficial for engine downsizing. 

Lastly, it may bring about further reducing in CO2 and other harmful exhaust emissions 

correspondingly. Vazaquez et al predicted in [8] that if only 6% of the heat contained in the 

exhaust gases were converted into to electric power, this would achieve a reduction of specific 

fuel consumption by 10% due to the additional power produced as well as the decrease in 

mechanical losses for overcoming the resistance of the alternator drive. Furthermore, in the 

experimental work conducted by Honda [9], the investigated thermal recovery system 

showed a maximum thermal cycle efficiency of 13%. At 100 km/h, this arrangement yields a 

cycle output of 2.5 kW (for the engine output of 19.2 kW), which increased the overall thermal 

efficiency of the engine from 28.9% to 32.7%. 

At present, there are four dominating technologies for exhaust heat recovery [10]: 

1. Adding a power turbine to the outlet port of the main turbo to extract kinetic energy 

from the exhaust gas and convert it into mechanical power and feed back to the output 

crankshaft via a gear train set (Mechanical Turbo-compounding) [11, 12, 13]. 

2. Coupling of an electrical generator to the power turbine to directly convert the excess 
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energy extracted from the exhaust into electricity (Electrical Turbo-compounding) [14]. 

3. Implementation of a Rankine Cycle [15] system that utilizes steam or organic fluid as 

working media to produce additional power through an expander (either a piston expander 

or a radial turbine). 

4. Direct conversion from exhaust gas heat to electric power through thermoelectric 

phenomenon (Thermoelectric Generators) [16]. 

5. Standard Brayton cycle where compressed air is pushed through a heat exchanger to 

raise the temperature before it expands in the power turbine and output mechanical work 

[17]. 

2.2. Waste energy recovery technologies – a brief 

overview 

2.2.1 Thermoelectric generation 

As mentioned in the introduction, currently major technologies for exhaust heat recovery 

include turbo-compounding and thermal harvest arrangement based on Rankine cycle and 

thermoelectric regeneration. The thermoelectric regeneration is able to directly convert the 

exhaust heat into electric power based on the thermoelectric phenomenon. This technique 

provides some advantages including avoiding the use of mechanically rotating components, 

thus produce no noise or vibration in procession of work. It employs completely solid 

materials with no moving fluid involved, which ensures its stability and high reliability. 

Because of these advantages as well as, the revival of interests into clean energy production 

within the recent years has brought thermoelectric generation technology into the attention 

of many scientists and engineers. 

Thermoelectric generation utilise the thermoelectric effects in the semiconductor material to 

convert thermal energy from different temperature gradients existing between hot and cold 

ends, as shown in figure 2.2. This phenomenon was firstly discovered by Thomas Johann 

Seebeck in 1821 and called the “Seebeck effect’’. One of the most commonly used 

thermoelectric material in waste energy recovery power generation is BiTe-based bulk. This is 

due to its availability in the market and high applicability in low and high exhaust gas 
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temperature range [20]. This material offers a simple and reliable way to convert thermal 

energy into electric current. The performance of a thermoelectric material can be expressed 

as ZT = 𝑆2𝑇/𝜌𝜅 where S is the thermos power; T is the absolute temperature; κis the total 

thermal conductivity; and ρis the electrical resistance [19]. 

 

Figure 2.2. Schematic of a typical thermoelectric device [18].  

Many researchers have studied the effects that thermoelectric waste energy recovery system 

have on modern vehicles. Mori et al [18] studied the potentials of thermoelectric technology 

in improving fuel economy of 2.0 litre gasoline engine powered vehicles. In the research 

conducted by Hussain et al [20] the effects of thermoelectric waste energy recovery for hybrid 

vehicles have been explored. From the results of Stobart and Milner’s  [21] studies on the 

possibility of utilising thermoelectric regeneration in passenger car, it was found out that 1.3 

kW power could be produced by the thermoelectric generation device, which provides the 

potential to replace the alternator of a small passenger vehicle. Stobart et al [22] has also 

reviewed the potentials that the thermoelectric devices have in fuel saving for vehicles. It was 

concluded that up to 4.7% of improvement in fuel economy efficiency could be achieved. From 

these articles, the understanding of TEG technology has been comprehensively discussed. The 

employed materials are all available in the market. As the authors stated, the TEG technology 

is a promising new technology to recover waste heat from internal combustion engines. 

Studies on thermoelectric devices are still ongoing nowadays. 

However, there are still some significant challenges preventing the development of the TE 
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technology. Basically, the hurdles come in two aspects Firstly, the conversion efficiency of the 

thermoelectric device is low with current technology. Secondly, the costs of the 

thermoelectric semiconductor materials which makes up the key component of the devices is 

relatively high [23-28, 194].  

2.2.2 Rankine cycle  

Basically, a Rankine cycle system consists of an evaporator, a pump, a condenser and a fluid 

expander.  If heat is recovered to another working fluid for example, into water or into an 

organic fluid through the evaporator, the resulting vapour can then be expanded through the 

fluid expander and produce useful work, as shown in figure 2.4. The efficiency of the exhaust 

heat secondary fluid power cycle depends on the combined effectiveness of heat recovery 

(utilisation) method and the expansion cycle. 

 

Figure 2.3. T-s diagram for heat recovery and utilisation options [6]. 

 

Figure 2.4. Schematic of setup used for RC HER [34]. 



33 
 

 

Figure 2.5. Schematic of Turbo-compounding [30]. 

According to figure 2.3, the working fluid is heated and vaporized by absorbing heat from the 

exhaust. The vaporized fluid is made to expand over an expander like turbine, piston expander 

and scroll expander to derive power. And then, the vapor condenses to liquid form in a 

condenser using air or an external fluid circuit as in power plants and then the process is 

repeated.  

As for the working fluid in a Rankine cycle, water is one of the most popular choices in many 

applications due to its thermal stability. Usually, it is applied in the conditions where the 

temperature of the heat source is very high as there is no need to worry about the thermal 

decomposition of the steam. However, in the application where the heat need to be capture 

from a low-grade source, when the output is smaller than 1 MW for example, the organic 

working fluid becomes more favoured as it has higher efficiency than that of the steam 

turbines due to its higher molecular weight and thus lower saturated boiling temperature. 

Therefore, the application of the organic working fluid attracts much more attention in 

automotive industries. The organic Ranking cycle usually utilises the isentropic organic fluids 

due to their lower heat of vaporization and they do not need to be superheated to achieve a 

better efficiencies as the steam does [36]. But, it should be noted that the best working fluid 

with the highest efficiency in one operating condition may not be ideally suitable for another. 

Even though, researchers have provided some general roles for the working fluid selection. 

For example, after studied several working fluids Gu et al [34] found that the cycle efficiency 

is very sensitive to the evaporating pressure but insensitive to the expander inlet temperature. 

Hung [37] concluded that the system with lower irreversibility would more likely to produce 
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a better power output. 

As above mentioned, the working fluid plays the most important role in determining the 

efficiency of the cycle. Therefore, the selection of working fluid should be given a careful 

consideration as it may affect various aspects of the entire system including the operating 

reliability, efficiency and the environmental impact. The type of the working fluid can be 

determined through a simplified Equation [38] as following: 

E =
𝐶𝑝

𝑇𝐻
−

(
𝑛𝑇𝑟𝐻

1
−𝑇𝑟𝐻)+1

𝑇𝐻
2 Δ𝐻𝐻                                                       2.1 

Where E (ds/dT) refers to the reverse of the slope of saturated vapour curve on T-s diagram, 

n is a constant which is suggested to be 0.375 or 0.38 in [39], 𝑇𝑟𝐻(=
𝑇𝐻

𝑇𝐶
) refers to the reduced 

evaporation temperature andΔ𝐻𝐻  is the enthalpy of vaporization. When E<0, a wet fluid 

should be employed. When E=0, an isentropic fluid should be chosen. When E>0, a dry fluid 

should be chosen. More detailed criteria and properties of working fluids selection for Rankine 

cycle can be find in [40] 

In recent years, Rankine cycle has increasingly attract interest of various automotive 

manufacturers. It is reported that Honda and BMW has respectively achieved an improvement 

in fuel economy up to 10% using this technology in their passenger cars [41-44]. Cummins, the 

commercial trucks company, stated that they decreased more than 10% of the fuel 

consumption with Rankine cycle [45]. Another one exciting research carried out by Miller et 

al [46] explored the potential of using the organic Rankine bottoming cycle integrated with 

thermoelectric generation. A comprehensive review of the research on thermal exhaust heat 

recovery with Rankine cycle can be found in [3] 

2.2.3 Brayton cycle 

In the standard Brayton cycle, as figure 2.6 shows, the air is compressed by a compressor 

driven by an expander before it enters the heat exchanger to absorb heat from the engine 

exhaust gas at a constant pressure.  

The outlet air form the heat exchanger with higher temperature and increased volumetric 

flow rate is then flow into the expander. The thermal energy is converted into mechanical 

energy as the expander running. In this arrangement the energy conversion efficiency 
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increases with the air pressure. On the other hand, the temperature will increase as the 

working pressure rises. The temperature difference between the exhaust gas and the 

compressed air is then decreased which leads to a lower energy recovery efficiency. The 

arrangement in figure 2.6 (left) introducing a regeneration process that will improve the 

energy conversion efficiency comparing with the standard Brayton cycle. The compressed air 

is directed to a regenerator to draw heat from the after expansion air. In this way, the 

otherwise wasted thermal energy in the expelled air is recovered. It is beneficial for improving 

the energy conversion efficiency at lower working pressure. However, due to the 

aforementioned reason, the preheated air extracts less energy form the exhaust gas and the 

energy recovery efficiency is reduced accordingly. Consequently, the overall energy 

conversion efficiency is roughly the same [17] [50]. 

 

Figure 2.6. Schematic of Brayton cycle engine [17]. 

It leads to the compromise between the pressure and temperature of the compressed air and 

the energy extraction from the exhaust gas. Therefore, the compression ratio and 

regenerating process should be carefully adjusted to achieve the optimum overall efficiency. 

A Brayton bottoming cycle is a real sense of heat recovery devices as it does not require for a 

high pressure exhaust gas from the primary cycle as the turbo-compounding does. Instead, it 

is the thermal energy remaining in the exhaust gas that is made use of. 

Figure 2.7 demonstrates another way to make use of exhaust thermal energy. This approach 

is named as inverted Brayton cycle as it is opposite to the standard Brayton cycle in the layout. 

After expanded in the power turbine, the exhaust gas is directed into a heat exchanger to 

release heat. The cooled exhaust gas is then pressurised by a compressor to the atmospheric 

level and expelled to the ambient. 
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Figure 2.7. Schematic of inverted Brayton cycle engine [51]. 

This cycle allows the exhaust to be expanded under atmospheric pressure which increases the 

potential of removing from the exhaust gas. From this point of view, this arrangement can be 

considered as an extension to the turbo-compounding arrangement. Besides, the high 

temperature heat exchanger that is needed in the pressurized Brayton cycle and Rankine cycle 

is avoided, as the exhaust gas immediately goes into the power turbine, which is beneficial for 

further reducing the size and weight. The inverted Brayton cycle was studied in [51] as an 

alternative to turbo-compounding. Besides, a combination of the Brayton and inverted 

Brayton cycle, which was known as the mirror gas turbine, was studied in [52] based on the 

Brayton cycle that was firstly proposed by Frost at el [53]. The analysis in [54] also came to the 

conclusion that the inverted Brayton cycle is able to offer a more significant improvement in 

terms of the net engine power output. 

2.2.4 Turbocharger 

By now, the most frequently utilized technology in exhaust heat recovery is the turbocharger 

which extracts the kinetic energy from the exhaust flow to drive the compressor. The main 

turbine utilises the waste energy to drive the compressor providing boost pressure for the 

engine cylinder. The end objective of reduced fuel consumption is enabled through the 

reduced level of friction, reduced heat transfer across the cylinder walls and reduced pumping 

losses present in a downsized engine.  

However, the benefit for a turbocharged engine always comes along with the drawbacks in 

transient response and over-boost with variable engine speed [54]. Specifically, a large 
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turbocharger can offer the power at high speed, but suffers from poor performance and 

transient response at lower engine speed due to the lack of exhaust gas flow to overcome the 

inertia of the system. On the contrary, a small turbocharger is able to improve the boost 

pressure and transient response due to the reduced inertia, however, as the engine speed 

rises, it would require turbine bypassing, typically a waste gate to prevent excessive 

turbocharger speed which may leads to over boost problem thus sacrificing efficiency.  

Besides, as the produced power from the main turbine of a turbocharger unit has to be totally 

consumed by the compressor, which means the capability as well as the efficiency of the 

turbine is limited by the power demand of the compressor and substantially the air demand 

of the engine. When the extracted energy from the exhaust is excess, a waste gate is needed 

to bypass the redundant exhaust gas, otherwise the inlet air to the engine will be over 

boosted.  

In spite of these challenges, the need to reduce carbon dioxide (CO2) emissions and fuel 

consumption is still the primary requirement for internal combustion (IC) engine 

development. Since the position of the IC engine as the engine type of choice for continued 

development seems to be unaffected by the advent of alternative propulsion systems (such 

as hybrids and fuel cells) and will probably remain so until at least well into the next decade 

[55], practically all new diesel engines feature boosting systems and 25% of all new gasoline 

engines in Europe also feature boosting systems today [56]. 

In general, the main needs of OEMs for both gasoline and diesel engines are the ability of the 

boosting system to provide high BMEP, EGR rates and efficiency throughout the whole 

operating range with reduced and/or variable back pressure. And also, rapid transient 

response, altitude performance, downsizing, down-speeding, hybrid powertrains and waste 

energy recovery are also desired [57]. In order to reach these targets, various technologies 

including the variable geometry turbine (VGT), twin-turbine, electric turbocharger and so on 

have been tried. The detailed introduction of these techniques can be found in [1]. 

With the turbo compound arrangement, however, the power produced by the power turbine 

is feed back to the engine crank shaft mechanically or converted into electricity, which is 

independent of the compressor working condition. Therefore, the waste energy recovery is 
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only limited to the inherent specification of the power turbine such as inertial and isentropic 

efficiency. 

2.2.5 Turbo-compounding technology 

By definition, the net power of an engine using a compound process is generated not only in 

the cylinder but also in a downstream expansion stage. In this sense, the exhaust gas turbine 

or another downstream turbine provides additional power to the crankshaft in a compound 

engine. The purpose of the process is to utilize the exhaust gas energy to a larger extent, 

resulting in better fuel economy. Calculations in [47] show that, at the design point of the 

engine, improvements in fuel economy exceeding 5% may be accomplished when the 

compressor and turbine efficiencies are excellent. Since this is true especially at high engine 

load, the most prominent examples of turbo-compounding engines are found in aircrafts and 

maritime ships which operate at constant high load for extended periods. 

Turbo compound engine is not a new idea at all. The original application of this concept can 

be traced back to the late 1940s and ’50s on two notable aircraft engines, namely the Wright 

Cyclone and the Napier Nomad [58, 59], however, its advantage in low fuel consumption for 

transport aircraft was soon overtaken by the rapid development of the gas turbine and the 

turboprop engines. In 1970’s, a new concept of the differential compound engine (DCE) as an 

integrated engine transmission system was developed at Bath University by Frank. J. Wallace. 

[60, 61]. The tested experimental prototype achieved a significant advance in both the torque 

and efficiency characteristics over the turbocharged engine. Nevertheless, the DCE was built 

based on heavy duty diesel, and it benefited greatly from the application of epicyclical gear 

train to reclaim power from the power turbine over a significant part of the load and speed 

range. While in gasoline engine, the inlet air flow is fundamentally determined by the power 

demand.  Therefore, at lower engine speed the exhaust gas flow rate is sufficient to drive the 

power turbine which results in notable lag. Furthermore, the power turbine added in series 

to the main turbine will substantially increase the back pressure and then the pumping losses.  

As above mentioned, the popular layout of the turbo compound engine at present can be 

Roughly divided into two categories, namely mechanical turbo-compounding and electrical 

turbo-compounding, The difference between which lies in whether the power turbine output 
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shaft is connected to the engine crank shaft mechanically (via gear sets, like that in a 

differential compound engine firstly proposed by F J Wallace [48]) or connected to a generator 

and then an energy storage device like battery. While the mechanical turbo-compounding 

engine is considered as the standard technology that deserves further investigation to 

examine the potential for application and improvement the electrical turbo-compounding has 

not been widely investigated to the same extent even though it is also a promising technique 

according to some vehicle manufacturers. The main disadvantage of turbo-compounding 

technology lies in the fact that it increases the backpressure of the engine and pumping losses 

that result to reduction of net engine power. Especially in a light load transport or under part 

load condition or during operating at low engine speed, the power produced by the power 

turbine is even not enough to offset the increased pumping losses [49]. For this reason, the 

original turbo-compounding engine is widely accepted only suitable for high-duty vehicles or 

the transport consistently operate at high load condition. All these issues in pumping work, 

turbo lag and exhaust energy distribution have forced an implementation of advanced 

boosting technologies such as variable speed supercharger and novel pipe routing for gas 

exchange of engine system such as divided exhaust period (DEP).  

2.3. Comparison of the performance of waste energy 

recovery technologies  

According to their working principle, the characteristics of all kinds of energy recovery 

technology are summarised as following. 

2.3.1 Rankine cycle 

The Ranking cycle is one of the most effective way to harvest waste heat in an internal 

combustion engine. For this approach, the feasible energy resources are not limited to 

exhaust gas, but also include cooling water and coolant for air boosting [42, 64].  

The major working medium for Rankine cycles are usually water steam or organic fluid. The 

latter is more popular for the industrial application at present and gradually becoming the 

emphasis of research because of the relatively higher efficiency and less requirement in heat 
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exchange area despite of the risk in safety and toxicity of the working fluid. However, even 

with the more compact organic Rankine cycle, it takes up higher volume and weight than other 

waste energy recovery approaches do. For example, Weerasinghe et al made a comparison 

between Rankine cycle and turbo-compounding for the application in a diesel engine and 

concluded that the added weight of a Rankine cycle hybrid system is around 100 kg, which is 

about 15% heavier than that the turbo-compounding arrangement. According to the study in 

[65], the mass of the vehicles could undertake up to 74%, while other parameters, such as 

friction, heat loss and turbomachinery efficiency, undertake the rest, of the variation in the 

vehicle’s fuel consumption. Therefore, the size and weight of Rankine cycles is regarded as the 

main issue hindering the application in passenger cars. It should be noted though, the gap in 

volume between Rankine cycle and turbo-compounding might be narrowed in gasoline engine 

implementation, since the turbomachinery in turbo-compounding could be significantly 

bigger for the need to reduce the back pressure imposed to the spark ignition engine. 

2.3.2 Turbo-compounding 

In an internal combustion engine, the remaining combustion pressure at the end of the power 

stroke will generate a pressure pulse when it is released from the exhaust valve. Turbo-

compounding is able to make use of this energy directly by direct it through a power turbine 

to generate shaft work or electricity. As aforementioned, turbo-compounding is one of the 

most simple and compact technologies for waste energy recovery. With a properly arranged 

turbo-compounding system, the total brake power could be increased with a notable benefits 

in fuel efficiency. And also, the transient response of the whole system could be improved as 

well [66]. 

However, because of the simple working principle, turbo-compounding can only recover the 

remaining fuel energy from exhaust gas. Besides, as turbo-compounding relies on the pressure 

pulse from the primary cycle to play a role, its capability as a heat recovery devices is greatly 

depending on the expansion ratio and thermal efficiency of the power turbine. Furthermore, 

in contrast to Ranking cycles and thermoelectric generators, turbo-compounding highly 

interacts with the exhaust flow and causes back-pressure to the engine breathing, which leads 

to the main drawbacks of turbo-compounding. The high back-pressure causes resistance to 
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the exhaust flow and thus increases the parasitic pumping work. At the same time, higher 

exhaust back pressure on the engine results in increased residual gases, delayed combustion, 

increased heat transfer in the cylinder, and disruption to the global engine thermodynamic 

balance. Therefore, it is the most important topic to reduce the back pressure in order to fit a 

turbo-compounding system to the small gasoline engine. In a heavy duty diesel engines, 

however, rising BMEP levels and reducing EGR rates could improve the function of turbo-

compounding [1]. 

Between the Rankine cycle system (figure 2.4) and turbo-compounding (figure 2.5), 

Weerasinghe et al [29] have made a numerical simulation to compare their effects in 

improving power output and fuel economy. The results showed that the Rankine cycle has 

relative advantages over turbo-compounding at various aspects: (1) at least 2% of more power 

can be developed; (2) 20% or more of fuel savings can be achieved by Rankine cycle compared 

to around 2.0% savings through turbo-compounding. However, there seems to be a question 

as to how a 2% difference in power generation can lead to an 18% increase in fuel economy. 

The author attributed this improvement to the heat storage ability of the secondary fluid 

employed in the exhaust heat harvest cycle. They stated that the “response” to temperature 

fluctuations in a turbo-compounding cycle is inferior to a heat recovery and expansion cycle. 

When the engine is heavily loaded, more energy will be found in the exhaust gas. The extra 

energy wasted is then recovered and stored in the secondary fluid reservoir. The secondary 

fluid (for example, steam in this case) reservoir does not only act as the working medium in 

the cycle but also act as an energy buffer. As a result, all the energy that is recovered is not 

consumed immediately, but is stored and expanded smoothly on demand. This feature enable 

the Rankine cycle to keep its overall efficiency at a maximum over a much wider operating 

range. On the other hand, in turbo-compounding cycle, the overall efficiency of the energy 

recovery process is limited by the top temperature and maximum flow rate through the power 

turbine. This is a significant difference that makes heat recovery and expansion cycles more 

favoured against turbo-compounding systems, and even against conventional electric hybrids.  

Except for the outstanding heat storage ability of the steam reservoir that is able to act as an 

energy buffer enhancing the overall efficiency of the system, another advantage provided by 
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Rankine cycle system was also highlighted to make Rankine cycle favoured against turbo-

compounding systems. If a turbocharger is installed upstream of a Rankine cycle device the 

low-speed response of the turbocharger will be improved, while the turbo-compounding 

system cannot do it.  

Generally, turbo-compounding is a heat recovery technique that has been successfully used 

in medium and large scale engines. Heat recovery to a secondary fluid and expansion is used 

in large scale engines, such as in power plants in the form of heat recovery steam generators 

(HRSG) [33] 

However, the turbo-compounding engine does have advantages over Rankine cycle. Typically, 

the added weight of a turbo-compounding system of a Scania production engine that uses an 

electric turbo compound device is in the order of 75 kg (Scania press release) whereas a 

comparable Rankine cycle secondary fluid power system would weigh around 105 kg. The 

weight of a mechanical turbo compound drive of a Caterpillar engine would also be in the 

same order [35]. Besides, as a general rule, dry technologies are preferred opposed to fluid 

power systems, even though the air conditioning circuits have served extremely well over the 

past twenty to thirty years as an integral part of the engine. Some believe that a secondary 

fluid power system would probably have the same degree of complexity as an air conditioning 

system. However, it is no doubt that it will increase the complexity of the whole system. 

Another challenge is employing a relatively high pressure steam reservoir to build up the 

circuit. The technology is available but not mature, especially the expanders that are expected 

to be small scale steam expanders. This area is relatively underdeveloped by now.  

The theoretical analysis of the effectiveness of these two waste energy recovery techniques 

can be found in [31, 32]. 

2.3.3 Thermoelectric 

Nowadays, the research on thermoelectric devices are still ongoing. One of the biggest 

obstacles to the successful application of this technology is the low efficiency of the device. 

Besides, heat management could also be a problem regarding the thermal dissipation of the 

battery. In summary, the current level of materials science is not sufficiently developed to 

provide a thermoelectric device that is practical and cost effective [67, 68]. 
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2.3.4 Heat insulation  

Thermal insulation for an internal combustion engines is effective in increasing the exhaust 

gas energy availability for the secondary thermal cycle such as turbo-compounding [69-74]. 

Therefore, it is usually considered as an adjunct to the waste energy recovery techniques. 

Nevertheless, heat insulation may cause a significant drop in volumetric efficiency (because 

of the higher pre-ignition temperature) and an increase in nitrogen oxide emissions, which 

blocks it from extensive utilization. Besides, the work on insulated engines nowadays has been 

largely ceased due to the problems with the mechanical integrity of the ceramic materials 

used in the combustion chamber. Synthetically considering the aforementioned unfavourable 

characteristics gas exchange and NOx emission, heat insulation technics will not be included 

in the discussion in this report. 

2.3.5 Brayton cycle 

Theoretically, Brayton cycle has the advantages over Rankine cycle in thermodynamic and 

aerodynamic effectiveness since the thermodynamic irreversibility in the boiler of a combined 

gas and steam turbine system are completely eliminated.  

 

Figure 2.8. Expansion Supersaturated steam into wet region [86]. 

In addition, the efficiency penalty relating to the steam expansion in the wet region (During 
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the operation of a steam turbine, steam tends to condense during expansion when across the 

saturation line. This changes the status from metastable equilibrium into thermodynamic 

equilibrium irreversibly, and therefore a loss in availability takes place, as shown in (figure 2.8) 

is also avoided. Furthermore, it is reliable to reduce the plant complexity and develop a more 

environmental friendly system by applying Brayton cycle. 

The comparison is summarised in table 2.1. 

Table 2-1. Comparison between waste energy recovery technologies. 

WER/WHR 

system 

Advantages  Disadvantages 

Rankine cycle 

(water)-WHR 

 Good effectiveness in fuel 

saving 

 No interaction with engine 

breathing 

 High complexity and cost 

 High volume and weight 

 Low expander efficiency for the 

steam turbine with common 

technology 

Organic 

Rankine cycle-

WHR 

 Excellent BSFC reduction 

 Immune engine breathing 

 Lower heat exchange area 

 

 High complexity and cost 

 High volume and weight 

 Working fluid toxicity risk 

 

Turbo-

compounding-

WER 

 Good BSFC reduction 

 Simple construction 

 Compact size and weight 

 Lower cost 

 

 Highly affected engine breathing. 

 Limited fuel benefit at low load 

operation 

 Relatively low turbine efficiency 

Thermo-

electricity-WHR 

 Compact in weight and size 

 No interaction with engine 

breathing 

 Low efficiency  

 High heat dissipation 

 High cost  

 Large exhaust surface area needed 

Heat insulation  No extra attachment to the 

original system 

 Limits in material technology 

 Degree the volumetric efficiency and 

combustion phase of original system 

Brayton cycle 

(and Brayton 

cycle and mirror 

gas turbine)-

WER 

 Good BSFC reduction 

 Lower interaction with engine 

breathing when comparing with 

turbo-compounding 

 Still interact with engine breathing 

 Very high complexity and cost 

 Sensitive to the effectiveness of 

compressor and cooler 

 

For a Brayton cycle system, a low pressure turbine needs to be mounted to the outlet end of 
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the conventional gas turbine to expel the exhaust to higher vacuum. Besides, since the success 

or otherwise of the Brayton cycle critically depends on the heat transfer coefficients between 

the gas under compression and the stator rows, multistage intercooled compression is also 

needed to minimize the heat rejection. Therefore, a satisfactory level of intercooling and an 

effective method of producing hollow blades and heat pipes (low pressure power turbine) is 

required in real application to make the arrangement competitive in terms of specific power, 

initial cost and running cost [75]. As can be seen, a complete system of Brayton cycle is bulky 

in both size and complexity. Recent development in forced draught cooling towers operating 

with wet and dry cooling in parallel [76] brings about a significant reduction in size (but not in 

cost). Silverstein [77] has suggested a neat arrangement of achieving multistage intercooled 

compression for the research in this area by using an array of heat pipes located at the exit of 

each rotor and stator stage to reject heat inside the compressor casing to the forced draught 

medium surrounding the compressor housing. Besides, the mirror gas turbine which is a 

combination of the Brayton and inverted Brayton cycle was also proposed based on the 

principle of Brayton cycle and is in optimization now [78][79].  

In practice, before these waste energy recovery technologies could be effectively utilised, a 

number of technique issues should be considered. Firstly, engine type is one of the most 

important factors.  Wojciechowski et al conducted the comparison of two engine types (diesel 

and gasoline) for light-duty vehicles and came to the conclusion that waste energy recovery 

system is more suitable for spark ignition engines because of the higher exhaust gas 

temperatures and lower exhaust gas flow rates [80]. However, it was also indicated by other 

studies that the thermal energy availability which is a function of mass flow rate and 

temperature are highly dynamic in gasoline engine. This will greatly affect the heat transfer 

efficiency and degrade the functionality of the WER system to from its optimum [81]. Another 

example, as aforementioned, is that turbo-compounding is believed more suitable for the 

implementation in a diesel engine because of the higher tolerance to high back pressure. 

Besides, the added weight of the WER systems should also be taken into consideration as it 

will significantly deteriorate the net gain in fuel economy without proper handling. According 

to a sensitivity analysis about the effectiveness of different parameters on vehicle’s fuel 
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consumption [65, 82], the mass of the vehicle overwhelms other parameters such as the 

aerodynamic drag and tyre rolling resistance. Therefore, turbo-compounding should be 

favoured because of the compactness in both size and weight when comparing with other 

WER technologies [83, 84]. Weerasinghe et al [85] compared a Rankine cycle system with 

turbo-compounding of a commercial Diesel engine of the similar size and weight and 

concluded that the added weight of a Rankine cycle hybrid system is around 100kg, which is 

16 kg heavier than a mechanical turbo-compounding attachment and 21 kg than the electric 

version, as shown in table 2.2 [85].. 

Table 2-2. Comparison in weight of typical turbo-compounding and Rankine cycle products  

Scania-electric turbo-

compounding 

Caterpillar turbo-compounding Heat recovery fluid power cycle 

Component  Weight (kg) Component  Weight (kg) Component  Weight (kg) 

Turbine 20.0 Turbine 20.0 Expander 6.0 

Compressor 20.0 Compressor 20.0 Pump 20.0 

Electric motor 30.0 Gear train 30.0 Working fluid 25.0 

Clutch 5.0 Clutch 10.0 Condenser 10.0 

    Heat Exchanger 30.0 

Auxiliaries 10.0 Auxiliaries 10.0 Auxiliaries 10.0 

Total 85.0 Total 90.0 Total 106.0 

2.4 History of the development of turbo-compounding  

Before the gas turbine became the dominant technology in boosting aircraft piston engines, 

turbo-compounding was one of the most popular application to assist aeronautic propulsion 

which tended to operate constantly at high load. The working condition was especially 

favourable at high altitude where the ambient air pressure was very low. The power turbines 

were then able to achieve higher expansion ratio and then produce useful mechanical work.  

As the field where turbo-compounding firstly found its application, a number of successful 

practices emerged during the early and middle 20th century. Two examples are briefly 

introduced as following. 

2.4.1 Curtiss-Wright compound aircraft engine 

One of the most powerful and fuel efficient gasoline piston engine for commercial aircraft was 
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the Curtiss-Wright compound aircraft engine (R-3350). Wright was also the first aircraft engine 

manufacturer to put a turbo-compounding engine into production. The first R-3350 was 

produced in the United States and started running in May of 1937. From then on, the later 

versions of this engine remained in production until the 1950s. During this period, thousands 

of Curtiss-Wright engines were built to provide power for both military and commercial 

aircrafts. The first major military application of it was found in the Boeing B-29 during World 

War II. Later on, subsequent versions became the power source of the C-119, C-121, A-1 

Skyraider, and a number of Navy and commercial aircrafts. Curtiss-Wright compound engine 

was of double-row radial type with 18 cylinders (Figure 3.1).  

 

Figure 2.9. Curtiss-Wright compound aircraft engine with 18 cylinders in double-row radial 

configuration [46]. 

The rated take off power was 2,420 kW at 2,900 min−1. In this design, the charger was 

powered from the crankshaft at a fixed ratio, which possibly avoided the disadvantages 

coming with the propeller load characteristic. Three exhaust gas turbines, arranged in angular 

spacing of 120◦ were also connected to the crankshaft at a fixed ratio, supplying power to the 

crankshaft. The turbo-compounding assisted arrangement could produce up to 3,700 take-off 

horsepower when using the highest grade fuels available [58]. The specifications of the engine 

is shown in table 2.3. 

Table 2-3. Details of the Curtiss-Wright compound aircraft engine (R-3350) 

Engine Type Twin-row 18-cylinder air-cooled radial 

Power 3,700 hp (2760 kW) at 2,900 RPM, 59.5 in. MP 

Weight 3,775 lb (1,712 kg) 

Cylinders bore 6.125 in (155 mm), stroke 6.312 in (160 mm) 

Displacement 3,347 in3 (54.86 litre) 
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2.4.2 Napier Nomad 

In addition to the application in gasoline engines, turbo-compounding was also used in aircraft 

diesel engines. A famous example was Nomad Napier which was a 12-cylinder two-stroke 

compound powertrain (figure 3.2). 

 

Figure 2.10. a, Napier diesel compound aircraft engine; b, diagram [46]. 

The Napier Nomad was a diesel aircraft engine designed and built in 1949 by a British 

company, D. Napier and Son, Ltd. The basic principle of this engine was to combine a piston 

engine with a power turbine recovering exhaust energy to produce mechanical work and 

improve the fuel economy. This engine was regarded as an exciting product which is likely to 

see a wide service in both military and civil applications as a result of its unique efficiency. In 

fact, its overall efficiency was higher than that of any other aero engine in its era. What was 

particularly remarkable was the fact that the engine was extremely competitive in parameters 

such as power/weight ratio, complexity, bulk, altitude performance, flexibility and control, 

and ease of installation in addition to the unrivalled economy. Furthermore, it could burn a 
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wide range of fuels (not only accepted aircraft fuels). It was the common opinion of its time 

that this engine brought the aero engine overall life and reliability to a new level. The Napier 

Nomad, from a technical standpoint, was one of the most interesting aero engines ever 

designed. 

The layout shown in Figure 3.2 was an improved version which was known as Nomad Ⅱ

(E.145). Actually, even before the initial design of Nomad Ⅰ (E.125) was brought into 

developing, the design work of Nomad Ⅱ  was carried out synchronously. In this newer 

version, an engine driving supercharger was added to the axial compressor as an extra stage 

to ensure the boosting pressure. The downstream centrifugal compressor and the intercooler 

were deleted, so that the complexity of the overall system was reduced. The power turbine 

driven by the exhaust gas then only provided additional power to the compressor, and fed 

any excess power to the main shaft using a hydraulic clutch. The deputy propeller which was 

previously driven by the power turbine was deleted as well. Besides, the entire part of the 

"afterburner" system together with its valves were cancelled. Consequently, the system was 

greatly simplified and turned out to be a compact combination of a mechanical supercharger 

and a turbo-compounding without any need for bypass. The system turned out to be a much 

smaller and considerably lighter arrangement in which a single engine driving a single 

propeller. The overall weight of the engine was about 1,000 lb (450 kg).  

In 1953, a further developed (and final) version known as the Nomad Nm.7 was launched. It 

was announced that it could produce 3,500 shp (2,600 kW). By 1954, the enthusiasm for the 

Nomad was waning, and the work on the engine was completely ended in April 1955, after an 

expenditure of £5.1 million. 

2.4.3 Mitsubishi 10 ZF 

During the late 1950s, turbo-compounding technology eventually became obsolete in aircraft 

applications. However, it shortly found applications in boat and high load vehicle engines in 

1950s and 1960s [88]. One of the examples during that era was the Mitsubishi 10 ZF which 

was a diesel engine first developed in 1968 for a military tank. 

Mitsubishi 10 ZF was a V-type 10-cylinder direct injection air-cooled two-cycle compression 

ignition engine equipped with a uniflow scavenging system. The cooling air system of this 
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engine was made up of two sets of cooling fans which were mounted horizontally in the upper 

space between the two cylinder banks. It was also equipped with four oil-coolers which was 

made of aluminium tubes. They were attached to both sides of the engine block with two sets 

on each side. One of them was also used for providing transmission oil for the vehicle. Two 

exhaust turbochargers were located in the front of the engine block. They were connected to 

the engine crankshaft through a gear set and a torque-limited clutch. This arrangement 

deleted the positive displacement blowers which were the common choice for boosting 

conventional high speed two-cycle engines at its time and led to a much more compact 

structure of the boosting system.  

 

Figure 2.11. Mitsubishi 10 ZF [139]. 

Figure 2.11 illustrates the configuration of this system. The specifications of this engine was 

given in table 2.4. A number of uniquely designed components had been applied to this 10 ZF 

engine, including the uniflow system, to achieve a high scavenging efficiency. Besides, it was 

also featuring in great compactness and remarkable improvement in specific output. It was 

claimed that this engine was capable to produce a maximum gross output of 870 PS (858 hp) 

from 21.5 litre (131 in3) of cylinder displacement at the engine speed of 2200 rpm. 
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Table 2-4. Specifications of Mitsubishi 10 ZF. 

Type Two-cycle air-cooled turbocharged diesel engine  

Cylinder number 10 

Cylinder arrangement 90° V form 

Bore 135 mm (5.32 in) 

Stroke 150 mm (5.91 in) 

Displacemen; volume 21 470 cm3 (131 in3) 

Gross output 870 PS (858 hp) at 2200 rev/min 

Mean effective pressure 8.29 kgf/cm2 (117.7 Ibf/in2) 

Piston speed 11.0 m/s (2165.30 ftimin) at 2200 rev/min 

Scavenging system Uniflow with exhaust valves 

Combustion system Direct injection 

Cooling fan Two axial fans 

Cooling power  I20 PS (118 hp) 

Starting motor 25 PS (24.7 hp) 24 volt 

Weight (dry) 2220 kg (4894 lb) 

Overall dimensions : 

Length 

Width, with cooling air duct 

without cooling air duct 

Height 

2220 kg (4894 lb) 

1950 mm (76.8 in) 

1800 mm (70.9 in) 

1490 mm (58.7 in) 

1095 mm (43.1 in) 

Actually, because the turbo-compounding features to improve the fuel economy at high 

engine load, the most noticeable examples of turbo-compounding engines were still mostly 

found in maritime ships and air crafts that commonly tend to operate at constant high load 

for an extended periods of time [46]. With the modern technic level, maritime powertrains 

equipped with turbo-compounding can achieve an overall efficiencies greater than 50% [46]. 

During the next decade, between 1950s and 1960s, the interest in turbo-compounding began 

to spread to ground transportation [88]. But, because of the characteristic that it tends to 

improve fuel efficiency under high engine load, the most remarkable application of turbo-

compounding engines were firstly found in train engines. 

2.4.4 Differential compound engine 

In the case of automotive engines, a traditional turbo-compounding usually adds a power 

turbine in series with the turbocharger turbine. The power turbine generates more work by 

harvesting the remaining energy from the exhaust gas downstream the original turbocharger 
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turbine. The power generated by the power turbine is then fed to the engine crankshaft in the 

form of mechanical work via a sophisticated transmission. It is different from a standard 

turbocharger as it does not have a compressor wheel to match with. Instead, the power 

turbine shaft is directly connected to the engine crankshaft via a gear set. 

 

Figure 2.12. DCE layout: final version BV bypass valve; BS boost sensor; C compressor; CC 

charge cooler; E semi-adiabatic engine; ECG epicyclical gear train; FP fuel pump; PT power 

turbine; TC torque converter; VN variable turbine nozzles; TSS output torque and speed 

sensor; NE engine speed; No/s output shaft speed; Npc planet carrier speed; MP 

micropressor; Input signals: 1 torque transducer; 2 speed transducer; 3 boost transducer; 

Output signals: 4 bypass valve control; 5 CVT control; 6 nozzle control [66]. 

Figure 2.12 shows the layout of the differential compound engine which was firstly developed 

by Frank Wallace in 1973. This was a typical design for mechanical turbo-compounding. The 

inlet air was pressurised by the supercharger before it entered the cylinders. The exhaust from 

the engine was directed into the power turbine which was actually a variable geometric 

turbine (VGT). Mechanical power was then produced by the turbine and fed to the drive shaft 

via a continuously variable transmission (CVT) coupled with a torque converter. At the same 

time, the power turbine was also connected to the planet carrier of an epicyclical gear to 

provide power for the compressor which was connected to the centre gear. On the other side 

of the epicyclical gear, the engine crankshaft drove the outer ring. This boost pressure and the 

output shaft speed were monitored by a number of sensors. The collected data was feed into 
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a microprocessor. Optimum signal was then generated to control the VGT nozzles position, 

the CVT gear ratio and the output shaft speed. 

According to the test results, the differential compound engine was able to achieve an overall 

thermal efficiency of about 36% under high load condition. A particularly good fuel economy 

was also realized with the extra turbine power feed to the engine crankshaft. However, under 

low load condition, this improvement in fuel consumption was seriously deteriorated due to 

the considerably lower efficiency of the Lysholm-type compressor. Besides, the excess air kept 

circulating in the bypass loop at low condition operation, which was simply a waste of the 

compressor power. Therefore, this design was given a four-star rating by the author 

comparing with the turbocharged engine who earned five stars in fuel economy. With respect 

to the torque output and transient performance, the deferential compound engine showed a 

particularly favourable character that none of the other engine types (turbocharged engine, 

gas turbine engine, two-stage Wankel engine and Stirling engine) was considered comparable. 

The detailed specification of the major components of this plant can be found in [48, 60, 61, 

91]. During the 1980s, the attempts of applying turbo-compounding technology in heavy duty 

vehicles began to interest the automobile engine manufacturers [88]. One of the first turbo-

compounding truck engines was developed by Cummins in 1981, which was known as the 

Cummins NH. It was typically a mechanical turbo-compounding equipped with a radial type 

power turbine. A fluid coupling was attached to the gear set connecting power turbine shaft 

and engine crankshaft to isolate the high speed gearing from the torsional vibrations from 

crankshaft. During the long distance (50000 miles) highway driving test in the United States, 

an average reduction of 4.7% in fuel consumption was achieved. Throughout the 1970s and 

1980s, turbo-compounding engines were investigated in a number of military research 

programs such as Cummins V903 [138] which was firstly introduced in 1983 [88, 96, 104]. 

In 1986, Caterpilar equipped turbo-compounding to a 16.4 l heavy-duty engine. In this system, 

an axial power turbine was located after the radial turbocharger turbine. Under full load 

condition, fuel consumption could be reduced by up to 6% as claimed due to the high 

efficiency (up to 85%), low inertia, and low duct losses (no additional turns) of the axial 

turbine. However, the massive production of this system was then delayed by the difficulties 
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in designing an efficient and reliable high-speed gear set to feed the recovered energy (in the 

form of mechanical work) to the powertrain [89]. 

In 1991, the first commercialized turbo-compounding system was developed by Scania for 

their 6-cylinder 11 litre diesel engine which was known as the DTC 1101. It was claimed that 

fuel economy could be improved by 1-3% in real world driving test with this system. But, it 

was argued lately that this improvement in fuel efficiency was only achievable at high loads 

operation [46]. 

In 2004, Bowman Power Group [90] developed a turbo generator system wherein a high speed 

permanent magnet electric alternator was coupled to the power turbine downstream of the 

original turbocharger turbine. This system was of the feature of keeping the operating points 

within the region of high efficiency on the turbine map across a wide working condition, and 

thereby to increase the overall fuel economy further. 

Other attempts for applying turbo-compounding include the 12 litre six-cylinder mechanical 

turbo-compounding engine from Scania and Cummins [89], the 21st century truck engine 

developed by Caterpillar in 1998 [138], the Ceramic IDI (2002) by Isuzu, D12-500TC (2002) 

from Volvo, and the Detroit diesel, which was known as the DD15, developed by Daimler in 

2008 [89]. 

However, apart from the introduced practice in heavy duty trucks by Scania in 1991, the 

subsequent implementations of the turbo-compounding by other manufacturers were 

sporadic. It is partly due to the common sense that rising BMEP levels and reducing EGR rates 

in heavy duty engines could increase the suitability of turbo-compounding. Besides, the 

mainstream of the development in internal combustion engines now is downsizing and thus 

increasing BMEP which would drive the need for smaller power turbines. It increases the back 

pressure to the engine stroke as well as the challenge of matching the high turbine speeds to 

the engine. 

However, the current study in [2] found that turbo-compounding could possibly recover 11.4% 

more exhaust energy on average and produce 3.7kW of extra power. If the system is 

mechanically coupled to the engine, it could increase the average engine power by up to 1.2% 

and improve the average BSFC by 1.9%, while in in an electrical turbo-compounding system, 
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a reduction of 8-9% in overall BSFC is possible for a turbocharger with relatively high efficiency. 

However, it has to face up to the issue that under low engine loading, there might be very 

little or even negative gain from the turbo-compounding system. Under partial load condition, 

the power turbine cannot work effectively due to the insufficient exhaust gas flow. Besides, it 

imposes higher back pressure to the exhaust and causes extra resistance to the engine 

breathing. In summary, as a typical energy saving system, the further implementation of 

turbo-compounding strongly depends on the future fuel costs and further development of the 

flow components, especially the turbine. 

The history of turbo-compounding was summarised in table 2.5. 

Table 2-5. History of turbo-compounding 

1948:  

Curtiss-Wright compound aircraft engine 

The first order for turbo compounding was issued by 

the US Navy to Wright Aircraft Engine Company. The 

first aircraft engine to be tested with a power-

recovery turbine was the Rolls-Royce Crecy. 

1950s: 

Napier diesel compound aircraft engine 

Innovations in the aerospace industry lead to turbo 

compounding being adopted in aircraft engines by 

Lockheed, Canadair, Martin and Fairchild plane 

makers. 

1968: 

Mitsubishi 10 ZF 

Mitsubishi 10 ZF emerged as an early attempt to apply 

turbo-compounding for non-aero purpose. 

1973: 

Differential compound engine 

Differential compound engine was the first 

mechanical turbo-compounding engine designed for 

automotive 

2004: 

Electric Turbo Compounding (ETC) systems 

Bowman Power Group begins designing Electric 

Turbo Compounding (ETC) systems for the heavy 

truck industry with USDOE Funding. 

2014: 

1.6 litre turbocharged V6 

Formula 1 (F1) adopts ETC technology as part of new 

electric turbocharged engines; a new formula that 

uses turbo-compounding. 

2.5 Exhaust energy availability  

It is the belief nowadays that a global thermal efficiency higher than 42% is really difficult to 

achieve for an internal combustion engine. Typically, the efficiency of a spark ignition engine 

is within the range between 15 to 32% [140] because a big part of fuel energy is simply lost 
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through the exhaust to the environment. Generally, in a four-stroke engine, about one third 

of the combustion energy was wasted along with the exhaust. From the study in [3] the 

exhaust energy is proportional with the exhaust temperature. For an exhaust temperature of 

600 °C, it may take up more than 30% of the combustion energy from the fuel, which is nearly 

the same as the amount of brake work in modern gasoline vehicles [3, 9, 65, 74, 83, 84, 92]. 

While in a two stroke engine, the proportion is about one fourth [93].  

Generally, the exhaust energy availability greatly depends on engine type. Specifically, the 

maximum exhaust gas temperature of the gasoline engine is higher than that of the diesel 

engines. Besides, other factors such as engine speed, torque output and the load condition 

also have influence on the magnitude of waste heat. The exhaust temperature of different 

vehicle types are illustrated in table 2.6. 

Table 2-6. Exhaust temperature of different vehicle types. 

Vehicle type Exhaust temperature 

Light duty passenger car exhaust temperature  500 to 900 °C (with most may fall in the range of 600-

700 °C) 

Heavy duty vehicles exhaust temperature 400 to 650 °C 

Naturally aspirated gasoline engine 450 to 800 °C 

Two stroke engine exhaust temperature 250 to 500 °C 

Typically, as the table shows, the exhaust temperature of two stroke engines is lower than 

that of the four stroke engines, even though it have high exhaust mass flow. It implies a 

significant potential for applying waste energy recovery system in four stroke engine. 

According to the second law analysis in [92] [94], the exhaust energy availability is high when 

the engine is operated close to its peak efficiency point, however, at the low load condition 

which covers the largest range of the driving cycle, the exhaust exergy is low. It has been 

identified in [140] that depending on the operating condition the exhaust energy in a SI engine 

varies significantly from 4.6 kW to 120 kW. When considering the efficiency of the waste 

energy recovery system, the most obtainable energy under ideal conditions roughly ranges 

from 1.7 to 45 kW. 

As a popular approach to recover exhaust energy, the ideal P-V cycle of a turbo-compounding 

engine is shown in figure 2.13.  
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Figure 2.13. The ideal cycle of turbo-compounding engine and the energy availability into 

the turbine [136]. 

When the piston reaches the BDC at the end of power stroke, the exhaust valve opens to allow 

the piston pushing burnt gas to the power turbine which further expands the high 

temperature gas to the ambient pressure. During this process the energy available in the 

exhaust gas, which is known as the blow down energy, is converted into mechanical work by 

the power turbine. The maximum energy availability is as the triangular area (in red) shows. 

It should be noted that the energy losses from the blow down pulse will be reduced if the 

exhaust manifold pressure increases. Consequently, the energy recovery in turbo-

compounding will increase. However, higher exhaust manifold pressure directly results in a 

negative pressure gradient between the intake and exhaust valves, which lead to the 

additional pumping working as shown in the grey rectangular area. Therefore, it is now the 

main topic to improve power output from turbo-compounding while limit the increasing in 

back pressure. Besides, the extended exhausting stroke may lead to extra losses of friction. 

So, it might also be an effective way to increase the net gain in fuel efficiency by shortening 

the stroke till intake valves open.  

2.6 Typical turbo-compounding configuration 

There are different ways of categorizing turbo-compounding engine. Generally, by considering 

whether the recovered energy is converted into mechanical or electric power, turbo-

compounding engines can be divided into mechanical turbo-compounding and electrical 
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turbo-compounding.  

In the last century, the mechanical turbo-compounding was considered as the standard 

technology worth further investigation, while the electrical turbo-compounding has not been 

widely investigated to the same extent despite of its superiority in flexibility of layout 

according to some vehicle manufacturer’s statement. However, with the development in 

turbo-generator technology nowadays, the electrical turbo-compounding has also been 

increasingly studied considering its advantages in flexible arrangement and control strategies.  

The differential compound engine, as introduced in the History section, is a typical example 

of mechanical turbo-compounding. The specifications of this system, including the integrated 

engine transmission, was introduced in [60] and [61]. 

a b  

Figure 2.14. Mechanical turbo-compounding, series configuration. a, [141] and parallel 

configuration b, [148], exhaust after-treatment before power turbine; (T: turbine, C: 

compressor, PT: power turbine, AT: exhaust after-treatment). 

In figure 2.14, two kind of mechanical turbo-compounding systems are illustrated. The layout 

in (a) is a conventional low pressure turbo-compounding in which a power turbine is attached 

after the turbocharger turbine. In this arrangement, the power turbine is exposed to the 

exhaust flow downstream the main turbine, and therefore operates with low pressure ratio. 

In figure (b), the power turbine is located in parallel with the main turbine. The inlet port of 

the power turbine is then directly linked to the exhaust manifold, which directs the exhaust 

gas with high temperature into power turbine. Because all of the exhaust energy extraction is 

occurring at exhaust manifold temperature (as opposed to the lower temperature that the 

power turbine in a serial turbo-compounding arrangement works at), the same amount of 

work can be extracted with lower overall expansion ratio (assuming same turbine efficiencies) 
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and hence lower backpressure. From this perspective, the parallel, also known as HP, 

configuration is better for turbo-compounding arrangement. Youssef Ismail et al have 

conducted a simulation work on the parallel turbo-compounding architecture and found that 

a power turbine that is well adapted to a series turbo-compounding is not necessarily suitable 

for a parallel one, since the turbines with higher pressure ratio and lower flow rates is able to 

provides better performance. By comparing with the series turbo-compounding they found 

that the parallel turbo-compounding has the advantage of producing lower harmful 

backpressure, however, the other shows a higher potential of energy recovery. This is mainly 

due to the reduction of the exhaust mass flow into the power turbine, which results in a lower 

energy availability and restricted turbine efficiency [120]. In his research, the power turbine 

is simulated by a converging nozzle. Only the diameter ratio of the nozzle is optimized, 

therefore, the mass flow rate splitting between the turbocharger turbine and the nozzle 

depends on the inlets geometry. Some other researchers, however, paid attention to the 

effectiveness that exhaust valve timing has on the turbo-compounding engine. By actively 

changing the exhaust valve timing, the exhaust flow is divided into blowdown and scavenging 

between two different exhaust manifolds. Consequently, the exhaust flow into the power 

turbine is able to be adjusted to minimize the losses caused by back pressure. These 

characteristics of this approach will be studied in the later section. For both system shown in 

figure 2.14, the power turbine is connected to the engine crankshaft mechanically, usually 

through an epicyclical gear set and/or a torque convertor. 

By directly coupling a generator to the power turbine wheel, a turbo-generator is created. It 

is the key component of the electrical turbo-compounding engine [95-103], as shown in figure 

2.15. In the electrical version, when the power produced by the turbine exceeds the power 

demand of the compressor, the surplus power will be converted into electricity by the 

generator and be stored in a battery or power bank. In other cases, when the power 

requirement of the compressor cannot be met, the electric motor will consume energy from 

the electricity storage to drive the compressor. The performance predictions indicated that 

the fuel economy can be improved by more than 2.5% over a wide range of working condition 

when compared with a mechanical turbo-compounding engine with the same displacement. 
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The most significant reduction in fuel consumption of 10.3% was achieved under full load 

condition.  

a b  

Figure 2.15. Electric turbo-compounding, LP configuration. A, [95, 105, 138], HP 

configuration. B, [105, 121, 122] (T: turbine, C: compressor, AT: exhaust after-treatment, 

El.G.: electric generator, El.M.:electric motor). 

The layout of electrical turbo-compounding engine is shown in figure 2.15. Many studies has 

be carried out to evaluate the performance of this arrangement in different kind of internal 

combustion engines. Thompson et al has evaluated the performance of turbo-generator in a 

biogas engine through both actual engine tests and computer simulation [96]. The schematic 

of his study is shown in figure (a), wherein a generator was coupled to the low pressure power 

shaft which is located after the turbocharger turbine. The power turbine speed can be 

adjusted in this design to achieve the optimum efficiency. It was claimed that the fuel 

consumption could be reduced by 7.2% when compared to its mechanically compounding 

counterpart. The overall efficiency was improved to 45.3%. On the other hand, in spite of the 

high potential of improving the thermal efficiency, electrical turbo-compounding engines are 

still facing the challenges of developing suitable generator that is highly compact and able to 

operate at low speed. The ability to effectively reject the heat accumulated in the package is 

also required. In another popular design schemes, the high pressure turbine is separated from 

the compressor, as shown in figure (b). In other words, the turbocharger is removed. The 

power turbine is directly connected to the exhaust manifold. In this layout, exhaust gas with 

higher temperature and energy availability is expanded over the power turbine, so that higher 

mechanical power can be generated. The rotational power is transmitted to a generator 

mounted directly to its shaft. Similarly, the compressor is driven by an electric motor. Algrain 

M et al has included the design and analysis of the high pressure electrical turbo-compounding 
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serving a diesel engine in [107, 109]. Besides, the compressor speed in an electrical turbo-

compounding engine is also fully adjustable, which allows a high flexibility of the engine power 

output independent of engine speed. Bo Hu et al has compared the performance of this design 

with a conventional turbocharged engine in a software environment. According to the results, 

under full load condition, the combination of a motor driven supercharger and an electrical 

turbo-compounding was able to increase the brake torque by 24% at low engine speed for a 

2.0 litre gasoline engine, while the most significant improvement in fuel consumption was 8% 

being achieved at top engine speed. 

2.7 The sensitivity of turbo-compounding engine to 

different variables 

As mentioned above, the performance of turbo-compounding is highly affected by the engine 

types with different characteristics in gas exchange process and combustion phase. For 

example, an engine with longer expansion stroke could suffer from significantly higher friction 

loss, but it would increase the theoretical blow-down exhaust energy availability. 

Furthermore, the efficiency of power turbine and compressor are also extremely important, 

since they directly determine the waste heat harvesting and PMEP. Besides, other parameters 

including the compression ratio, ignition timing and valve timing are also detrimental factors 

for the load sharing among the reciprocating engine, turbocharger turbine and power turbine.  

And also, the combustion phase and essentially the knock onset will be changed accordingly. 

In terms of diesel engine, increasing the back-pressure will not influent the conventional diesel 

combustion and emission [150]. But, it will influent the low temperature combustion with a 

high EGR rate. Therefore, turbo-compounding is regarded beneficial for both high and low 

temperature combustion in a CI engine [9, 151]. In this section, the sensitivities of these 

parameters to the turbo-compounding engine performance will be reviewed.  

2.7.1 Compressor pressure ratio 

Mitsunori Ishii has performed a study on the optimization of a high pressure turbo-

compounding diesel engine. It was stated that under full load condition a high compressor 
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pressure ratio is beneficial for improving the power output for both the engine and power 

turbine. Despite the increased power consumption by the compressor, the overall power 

output of the turbo-compounding engine is enhanced due to the increasing in air flow rate 

and exhaust energy. The results also indicated that increasing the compressor pressure ratio 

was able to shift the load allocation from power turbine to the engine, since a larger part of 

exhaust energy was consumed by turbocharger rather than the power turbine. It means that 

the rising in crankshaft output outweighs the sacrifice in power turbine output under full load 

condition. On the other hand, higher compressor pressure ratio unavoidably resulted in an 

excessive maximum pressure and temperature in the cylinders as well as the exhaust 

manifold. This means that the increases in the compressor pressure ratio should be confined 

from exceeding the upper limit of the mechanical strength and heat resistance of the engine. 

Under part load condition, it was concluded that there was an optimum value for the 

compressor pressure ratio, which is 1.5 for the specific diesel engine model in Ishii’s research. 

As the boosting ratio increasing, the increasing rate of the driven power consumed by the 

compressor is larger than the growth rate of the crankshaft output since the operating of the 

turbocharger compressor deviated from the high efficiency region with low air flow rate. It 

means that the power consumption of the compressor could be more conspicuous comparing 

with the improvement of engine power under low load condition. This can also explain the 

phenomenon that the increasing rate of crankshaft output decreased as the inlet air pressure 

increasing. What is also notable is that for different compression ratio, there was an optimum 

expansion ratio for the power turbine to maximize the overall output and an optimum 

combination of compression ratio and the compressor pressure ratio that realizes the best 

fuel economy. More details will be given in the later sections introducing the impacts that the 

compression ratio and the expansion ratio have on the engine performance [121, 122].  

2.7.2 Intake and exhaust valve timing 

Variable valve timing (VVT) is a frequently studied area. A number of research showed that 

the pumping losses and the exhaust pollutions of an internal combustion engine can be 

significantly reduced with a properly designed variable valve actuation (VVA) and optimized 

control strategy. At the same time, the volumetric efficiency of the VVT engine can be 
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maximized. In a turbo-compounding engine, the adjusting in valve timing could additionally 

sweep the distribution of brake power between reciprocating engine and power turbine. 

In an engine equipped with VVT, the intake and exhaust philosophies include: 

1. Late intake valve closing (LIVC). 2. Early intake valve closing (EIVC). 

 3. Late intake valve opening (LIVO). 

 

4. Early intake valve opening (EIVO). 

 5. Early exhaust valve opening (EEVO). 

 

6. Late exhaust valve opening (LEVO). 

 7. Early exhaust valve closing (EEVC). 

 

8. Late exhaust valve closing (LEVC). 

 
As early as 1970s, Tuttle has conducted a research to couple a LIVC system to a single-cylinder 

SI engine [123]. According to the experiment results, the indicated thermal efficiency of LIVC 

engine is lower under part load condition comparing with the conventional engine with fixed 

compression ratio. It was believed due to the lower effective compression ratio since a part 

of the intake air was pushed back to the intake manifold. And also, LIVC resulted in a longer 

combustion duration which also contributed to the deterioration in combustion phase in the 

author’s opinion. However, in terms of the brake thermal efficiency, the net specific fuel 

consumption was reduced by 6.5% because of the extreme reduction (about 40%) in pumping 

losses. Besides, the NOx emissions was reduced by 24% in the test.  

Under full load condition, it was found that the penalty of the volumetric efficiency caused by 

LIVC was highly diminished. It was because of the higher momentum of the intake air flow at 

this operation.  So that, fresh air was able to continuously fill up the cylinders even after the 

piston passes the bottom dead centre (BDC) [124]. 

Rabia and Kora [125] investigated the effects that the LIVC has on knock onset. It was found 

that in a LIVC engine, the risk of knock was increased at lower engine speed. According to their 

analysis, the reduced volumetric efficiency at lower engine speed leading to a lower air density 

and richer fuel-air mixture, which limited the flame speed, and thus increased the danger of 

knocking. 

Since the intake valve closing is one of the most sensitive parameter influencing the pumping 

features of the engine, to fully exploit its advantage of achieving high volumetric efficiency at 

high engine speed and avoid the weakness of causing penalty in intake air charging and high 

knocking risk (especially at low engine speed), researchers [126, 127, 128] have suggested that 

variable valve actuation (VVA) and variable compression ratio (VCR) should be taken 
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advantage of. 

From the analysis in [129], the exhaust timing should be carefully optimized as well.  An 

improper exhaust valve phase, either an early or late timing, may have an unfavourable 

influence to the gas exchange process of the engine.  Besides, considering the synthetic action, 

a shorter overlap between the exhaust and intake valve (LIVO and EEVC) also increases the 

pumping losses. On the contrary, a longer overlap (EIVO and LEVC) is beneficial for reducing 

the pumping losses, however, it causes penalty to the effective compression ratio and a loss 

in fresh charge. Except for acting as a dominating parameter for reducing the pumping losses, 

the exhaust valve timing also plays an essential role in promoting the internal EGR and 

alternatively balancing the power output between the engine and the power turbine. This is 

mainly due to its capability to change the effective expansion ratio of the engine and thus the 

exhaust energy availability to the power turbine [96, 103]. 

Specifically, in the case of EEVC with fixed lift duration, pumping losses is decreased from the 

perspective of exhaust stroke, which diminishes the expelling resistance. The indicated power 

generation from the engine decreases in this case due to the lower effective expansion ratio. 

Whereas higher energy is available from the exhaust flows into the power turbine and be 

converted into useful work. On the contrary, LEVC directly leads to a longer period of overlap. 

This results in back flowing of the burnt gases into the intake manifold during charging stroke 

and reduces the density of fresh air. For a conventional turbocharged engine or a naturally 

aspirate engine, LEVC is also able to reduce the pumping losses during the intake stroke as the 

charge pressure of the fresh air is higher than the exhaust gases [129], moreover, it is capable 

to diminish the compression of the burnt gas in cylinders at the end of the exhaust stroke. 

But, this is achieved at the cost of reducing fuel energy because the LEVC may lead to a sweep-

over effect which expel the fresh air-fuel mixture to the exhaust manifold without burning. 

Therefore, Thompson et al [103] suggested that exhaust valve closure should be carefully 

optimized to achieve the best trade-off between reducing pumping work and fuel losses. On 

the other hand, EEVO is an effective way to prevent the loss of fresh air. By applying turbo-

compounding, the deterioration of engine power (due to the reduction of effective expansion 

ratio, as introduced above) for this approach can be compensated by the power turbine at the 
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exhaust end. 

Other innovative approaches include combining turbo-compounding engine with divided 

exhaust period (DEP). From previous studies, this concept reduced the fuel consumption and 

introduced a compromise between the turbine energy recovery and the pumping work in the 

engine optimization. It was concluded that the turbo-compounding DEP engine could improve 

BSFC by 0.5% to 3% at low engine speeds with the same cylinder head geometry, turbine 

efficiency and boost pressure of the original turbocharged engine being applied. The result 

also showed that increasing the size of the exhaust valves could improve the BSFC by about 

0.5% at low engine speed. Besides, it also indicated that the changes in the diameters of the 

blowdown and scavenging ports had insignificant effects on BSFC. But the engine was more 

sensitive to the diameters of the exhaust valves at higher engine speeds. 

2.7.3 Ignition timing 

Many research has come to the conclusion that retarding the ignition timing is an effective 

way to reduce NOx emission for CI engines and prevent the occurring of knocking for SI 

engines [130]. However, for a conventional turbocharged engine, retarding ignition timing 

results in a reduction of power output of the engine because of the uncomplete combustion 

soon after the piston reaches TDC and thus lower maximum cylinder pressure. Besides, as 

mentioned above, increasing the boost pressure is helpful for improving the power output 

from engine crankshaft, but it also increases the risk of knocking onset. For the turbo-

compounding engine, however, the boost pressure can be increased to promote the engine 

power output without warrying about knocking, since the ignition can be delayed accordingly 

to avoid the shock in combustion and reduce NOx emissions. This setting lead to a higher 

energy availability in exhaust gas. And then the remaining energy in the burnt gas will be 

recovered by the power turbine. So that the power losses resulting from retarding ignition can 

be compensated. Consequently, it is safe to say that there is an optimum ignition timing, 

which is usually retarded from the original setting, for the turbo-compounding engine to 

balance the trade-off between the engine power and turbine power. Shudo and Toshinaga 

has evaluated the effect of a large retardation of spark-ignition timing on the exhaust-gas 

thermal energy at steady operating conditions [131]. The results showed that a combination 
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of spark retardation and higher charging pressure could greatly increase exhaust energy with 

minimum deteriorations in engine efficiency. It was also effective in reducing pumping losses 

and in-cylinder heat transfer to the combustion chamber wall at high engine loads. Based on 

their research, it was also proposed that by combining spark timing retardation and large 

throttle percentage, the exhaust pressure and temperature in spark-ignition engines at idling 

and vehicle deceleration conditions could be significantly increased because of the higher 

volumetric efficiency, which is helpful for improving the operation of turbo-compounding 

under extremely low load condition.  

Besides, early injection in diesel engine causes the burning gas working against the piston 

movement during the compression stroke while late injection did not make full use of the 

expansion ratio during the expansion stroke [2]. Therefore, it comes to the similar conclusion 

that there should be an optimum start time for combustion regarding the trade-off between 

the net engine power and the turbine power output. 

2.7.4 Compression ratio 

Gumbleton et al has conducted a study on the constraint of compression ratio setting 

regarding both the power output and emission [132]. The results proved that fuel economy 

of internal combustion engine could be improved by increasing compression ratio. However, 

the promotion in compression ratio resulted in higher cylinder pressure and pre-ignition 

temperature which require for higher octane to avoid knocking. It may leads to substantial 

energy losses for the petroleum industry to produce unleaded fuels with higher octane level. 

The overall effects turned out to be a non-significant fuel economy improvement could be 

achieved through promoting the fuel octane level to allow for the use of higher compression 

ratio. 

Smith [128] and Ayala et al [129] has investigated the effects of compression ratio on the SI 

engine specifically. The results showed that the thermal efficiency of a SI engine with constant 

displacement increased with a decreasing rate as the compression ratio increasing. It was also 

found that the engine was more susceptible to the change in compression ratio when it was 

operated under low and medium load condition independent of fuel differences. Besides, 

Ayala also indicated the effect of increasing compression ratio on extending the air-fuel ratio 
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for peak thermal efficiency. More details will be given in the following section about lambda.  

Fanhua Ma et al has studied the effect of compression ratio on the performance of an HCNG 

(hydrogen enriched compressed natural gas) engine [135]. The results showed that the 

combustion speed and the heat release rate were significantly boosted by increasing the 

compression ratio. The early flame development and the combustion period were shorten as 

well. Consequently, the thermal efficiency as well as the brake power output were improved. 

But the improvement was weaken as the compression ratio rose, which indicated that an 

optimum was existing for the studied engine type. 

In the works of Ishii [121, 122], study was conducted on the influence of compression ratio on 

the performance of a high pressure turbo-compounding light duty diesel engine. A conclusion 

was reached that an optimum combination was existing to minimise the brake specific fuel 

consumption (BSFC), even though the combination of a higher compressor pressure ratio and 

lower compression ratio was considered more favourable from the brake power perspective. 

It was suggested that the optimum engine compression ratio should be 19-20 with a turbine 

cross section ratio of 0.4 and a compressor pressure ratio of 2.2 for a single stage turbo-

compounding operated under full load condition. Besides, for different compression ratio, the 

optimum turbine expansion ratio was varying to maximize the engine power output and 

thermal efficiency. This part will also be covered in the Power Turbine section. The general 

idea was that a higher compression ratio was beneficial for increasing the engine power 

output while reduce the exhaust energy availability for power turbine, and vice versa. In terms 

of better fuel economy, it also suggested the necessity to explore the optimum trade-off 

between reciprocating engine power outputs and exhaust energy availability through 

adjusting compression ratio. 

2.7.5 Air-fuel ratio and EGR 

Aghaali and Angstrom [136] have summarized the effects of air-fuel ratio on turbo-

compounding engine performance based on their investigation on heavy duty internal 

combustion engines [87, 137]. It was found that pumping work and burn rate were two the 

most significant factor affecting the overall performance of turbo-compounding engine with 

a lean air-fuel equivalence ratio. A higher boost pressure was favourable for improving the 
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brake power in this case. For a richer air-fuel ratio, however, there was a need to reduce the 

boost pressure and thus the volumetric efficiency to avoid knock.  The overall specific fuel 

consumption of the turbo-compounding engine is not greatly sensitive to the air-fuel ratio. 

However, it was found that the optimum air fuel ratio of a turbo-compounding engine is 

slightly lower than that of the turbocharged engine [87]. In fact, the exhaust back-pressure 

was optimized before the effectiveness of air-fuel ratio on turbo-compounding engine being 

investigated in the research. This suggested that the key parameter influencing the turbo-

compounding engine believed to be back-pressure rather than the air-fuel ratio. Nevertheless, 

since it is impossible to vary air-fuel ratio in an engine without changing other parameters, a 

global optimization of all the relevant specifications are still in need. 

From the study of Vuk et al [87, 138] a lower air-fuel ratio that was closer to stoichiometric 

equivalence ratio was favourable for improving the efficiency of a turbo-compounding engine 

due to the desired higher exhaust gas temperature and pressure. But, from Aghaali’s study on 

a single stage turbo-compounding engine, the overall BSFC improvement was not significantly 

sensitive to the changing in lambda. Less than 1% fuel saving could be achieved from 

optimizing the equivalent ratio because of the trade-off among available waste heat and the 

lower specific heat ratio and higher heat transfer rate from the cylinder contents to the 

structure which are all detrimental to the overall efficiency. Besides, it should also be noted 

that the air-fuel ratio cannot be varied without affecting the optimum setting of other 

parameters. According to the conclusion in [121, 133] the optimum air-fuel ratio for highest 

thermal efficiency tends to increase when compression ratio is extended. The optimum 

percentage of turbine power in brake power will change accordingly. In the last, Aghaali also 

gave an ideal air-fuel ratio for the high pressure electric turbo-compounding diesel engine in 

his research to be 1.28. 

When compare with a turbocharged engine, a turbo-compounding engine has higher EGR 

driving capability due to the higher exhaust pressure. Kruiswyk and Hountalas, has studied the 

effect of EGR on a heavy duty turbo-compounding diesel engine [9, 141] and indicated the 

benefits of EGR in reducing the NOx emission and pumping losses in turbo-compounding 

engine. However, Kruiswyk also pointed out the adverse effects caused by EGR, including 
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reducing the available energy into the power turbine and reducing the oxygen concentration 

into the combustion chamber. The conclusion from Kruiswyk was that the elimination of EGR 

could lead to an improvement of specific fuel consumption by up to 1.5%, but this improving 

rate decreased dramatically under part load condition. 

2.7.6 Power turbine (expansion ratio, size and speed) 

As mentioned above, in a turbo-compounding engine, the optimum expansion ratio of the 

power turbine increased with the growth in compressor pressure ratio. However, Ishii’s 

research came to the conclusion that the optimum cross section ratio (the turbine inlet area 

divided by exhaust port area) remained approximately constant when he tried to optimize the 

performance of a high pressure diesel turbo-compounding engine [121]. Cross section ratio 

was one of the most important parameter determining the load allocation between power 

turbine and engine. Higher expansion ratio was usually correlated to a power turbine with a 

smaller cross section ratio. The turbine output would be increased accordingly in this 

situation. On the other hand, the reduction in cross section ratio could result in a sharp 

increasing in manifold pressure which might result in losses of crankshaft output. In other 

words, nonsignificant increasing in brake power output could be expected from increasing this 

parameter simply. It was stated by Ishii that the optimum cross section ratio for the power 

turbine for maximum brake power output were 0.1 and 0.4 for the partial and full load 

condition respectively no matter how much the boosting pressure was. It was also indicated 

that if the cross section was reduced further to about 0.1 under full load condition, power 

turbine would produce more power than the engine. The turbo-compounding engine system 

as a whole then became more dependent on the performance of the power turbine output. 

At this point, the overall thermal efficiency would be improved again. However, the 

temperature at the turbine inlet port would increase too much, which makes the operation 

much more difficult due to heat resistance and durability problems. Therefore, the mechanical 

strength of the turbomachinery must be taken into consideration when trying to improve the 

turbine output. 

Thompson et al has investigated the character of a low pressure turbo-generator engine based 

on a validated 1 dimensional model [96]. From their simulating results, the power output from 
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the turbo-generator fell as the power turbine size being increased. This was mainly due to the 

reduction in pressure ratio and the temperature difference across it. However, the expansion 

ratio across the turbocharger turbine increased at the same time which enable the 

compressor to increase the air boosting for the engine. It was claimed that the increased mass 

flow rate was sufficient to offset the degradation in energy recovering of the power turbine. 

Brake power output from the engine crankshaft increased due to the higher volumetric 

efficiency. But, the authors also mentioned that the increasing in crankshaft power was not 

linear with the increasing in power turbine size. When the power turbine became too big, the 

rising tendency in brake power would be reversed. Therefore, it was believed that an optimum 

power turbine size was existing to enables the whole system to achieve a maximum power 

output. Moreover, when the turbocharger turbine size was increased, less power could be 

delivered to the compressor, which resulted in a lower mass flow rate. In this case, the power 

turbine would generate less power as well due to the reduction in available energy from 

exhaust gas. However, the engine power and the total power might be maximised because of 

the favourable trade-off between back pressure and boosting.  

The efficiency of a conventional radial turbine reaches the peak with a velocity ratio around 

0.7 [142, 143]. Weilin Zhuge et al [144] concluded that the efficiency of the power turbine 

became very low at low expansion ratio and high speed operating conditions. When the 

engine was operated under low load condition, the power turbine speed should be decreased 

accordingly, so that most of the operating points of the power turbine could be moved into 

the highest efficiency region. It was also found from their research that the engine efficiency 

at high load operation could be improved by adjusting the nozzle opening, but no appreciate 

improving was achieved under low load condition because of the flow losses across the nozzle. 

The efficiency of the variable nozzle turbine (VNT) turned out to be lower than the efficiency 

of the fix geometry turbine (FGT). Since the conventional mechanical turbo-compounding 

engine has the drawback that the power turbine is operated at a speed proportional to the 

engine speed due to the fixed transmission ratio, the power turbine unavoidably suffers from 

the deterioration in efficiency under low load condition. For this problem, Kruiswyk gave the 

solution to replace the gear connection between power turbine and engine shaft with a CVT 
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for, the BSFC of the turbo-compounding engine could be improved by 1-3% and 0-1% under 

low and full load condition respectively. 

Furthermore, a research has been carried out by Rongchao Zhao et al to investigate the 

influence of the turbine geometry on the engine performance [144]. It was analysed that 

increasing the back blade angle or decreasing the blade height and blade mid-span radius was 

helpful to improve the power turbine expansion ratio. In addition, it would lead to a reduction 

in the expansion ratio of the turbocharger turbine, which caused lower intake air mass flow 

rate and higher exhaust temperature. The overall results turned out to be a larger proportion 

in load allocation for the power turbine.  

A novel arrangement that combining turbo-compounding with a CVT supercharged 2.0 litre 

gasoline engine were examined by comparing its performance data with a conventional 

turbocharged engine of the same displacement and compressor characteristics. The 

simulation results showed that the CVT supercharger helped to increase the brake torque by 

up to 24% at 1500 revs/min. In the exhaust end, the turbo-compounding increased the brake 

torque evenly by 7% from 3000 revs/min and above. The BSFC was reduced by up to 8% at 

top engine speed. But the improvement descends as the engine speed slowing down and 

become vanished at 2000 revs/min because of the weakened power turbine function and the 

parasitic load imposed by the CVT supercharger. At low load condition, the turbine speed 

should be reduced (as the mass flow rate is much smaller) to move the operating point 

towards the high efficiency region of the performance map. This improvement in the turbine 

efficiency will lead to a further improvement in fuel economy [120, 145, 146]. By varying the 

power turbine speed in a LP turbo-compounding engine with a turbo-generator, a more 

constant boost pressure can be maintained, and the response time can be improved. 

2.7.7 Power turbine type and location  

According to the study in [108], an axial LP turbine stage or a nozzled radial turbine with 

divided housing are the feasible turbine options for LP turbo-compounding. The radial 

turbines that commonly used in turbochargers typically have their peak efficiency at a U/C at 

about 0.7. If the turbine peak efficiency point could be shifted to the lower U/C range, an 

improvement in exhaust energy utilization and engine thermal efficiency would be realized. A 
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mixed flow turbine with forward blades was introduced in [154] and was claimed capable to 

move the operating point of the maximum efficiency to lower U/C. On the other hand, 

according to the studies in [13] and [108], radial turbines or mixed-flow nozzled turbines with 

divided wall can also be considered as a proper turbine option for HP turbo-compounding. 

It was found that the exhaust temperature after power turbine is below the light-off 

temperature for a light duty diesel engine under low load condition. Therefore, it seems that 

the power turbine should be bypassed or the exhaust after-treatment system should be 

placed upstream of the WER system [152]. In a diesel engine, placing DPF (diesel particulate 

filter) upstream of a WER system may also reduce the heat exchange fouling and alleviate 

some of the fuel penalty by recovering some of the energy released by exothermal reactions 

during catalyst regeneration events. Mamat et al concluded that placing the after-treatment 

system upstream of the power turbine provides the best compromise in terms of fuel 

consumption and engine performance [153]. About 1% BSFC improvement can be achieved 

with this placement at higher speed and loads, and less fuel penalty under low load condition. 

However, it is the general trend that adopting EGR and exhaust after-treatment to turbo-

compounding engines will reduce the BSFC improvement of turbo-compounding. 

2.8 Conclusion 

The currently dominating technologies for waste energy recovery were summarized in this 

chapter. The working principles of Rankine cycle, Brayton cycle, thermoelectric generation 

and turbo-compounding were introduced in the beginning. In the later sections, this literature 

review particularly focuses on the comparison between each of these technologies in 

consideration of the thermal efficiency, effectiveness in recovering exhaust energy, size, 

weights and cost. It is believed that Rankine cycle, especially the organic version is much more 

effective in reducing fuel consumption of the overall engine system. At the same time, it 

imposes very little interference to the engine breathing. Turbo-compounding, on the other 

hand, is superior to its counterparts for compact size and lighter weight and better transient 

response. The Brayton cycle is mostly considered as an intermediate choice, since the 

effectiveness of it to harvesting waste heat is between the former two. And also, it still affects 
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engine breathing to a lower extent when comparing with turbo-compounding. The main 

drawback of Brayton cycle, however, is the high complexity of the system. Thermoelectric 

generation and heat insulation are less discussed in this chapter because of the low efficiency 

and high cost and limits in material technology. 

The limits hindering the wide spread application of turbo-compounding include the added 

backpressure and thus high EGR rate, lower turbine efficiency under low load condition 

because of the dipping in exhaust energy and the sacrifice of engine efficiency due to the 

intervention of the bottoming cycle. Nevertheless, research has be carried out to explore the 

optimum setups for a variety of parameters that have important influence on the 

performance of the entire system, including boosting pressure, compression ratio, ignition 

timing, air-fuel ratio and so on.  Based on these studies, it comes to the conclusion that higher 

compressor pressure ratio is preferable for the improvement in power output and thermal 

efficiency of turbo-compounding engine under full load condition, and the upper limit 

depends on the mechanical strength and heat resistance of the engine. While at part load 

operation, the optimum compressor pressure becomes lower. The intake and exhaust valve 

timing, as a sensitive parameter influencing the pumping features, should be fully exploited 

in order to achieve high volumetric efficiency and avoid the penalty in air boosting and 

knocking risk. It was also identified that the employment of turbo-compounding enables the 

engine to be operated with retarded ignition timing that helps to reduce the knock occurring. 

While the penalty in combustion efficiency can be compensated by increasing the boost 

pressure from the compressor. There is a significant compromise between the compression 

ratio and the compressor pressure ratio to achieve the lowest BSFC. Besides, the optimum 

turbine expansion ratio will also be varying for different compression ratio. Similarly, the air-

fuel ratio of a turbo-compounding engine needs to be carefully adjusted to achieve the best 

compromise between pumping work and volumetric efficiency. When compare with a 

turbocharged engine, a turbo-compounding engine has higher EGR driving capability due to 

the higher exhaust pressure. It was stated that eliminating EGR could be conducive to enhance 

the energy availability to the power turbine and improve the fuel economy of a turbo-

compounding engine. The turbine efficiency plays a significant role in reducing fuel 



74 
 

consumption in a turbo-compounding engine. The main challenge faced by commercially 

available radial turbines is that their peak efficiency is achieved at a speed ratio (U/C) about 

0.7 where the energy in the exhaust pulse is starting to drop. Research aiming to shift the 

turbine peak efficiency to a lower U/C has been reviewed. Low pressure turbines that have 

higher efficiency when operating with lower expansion ratio and the mixed flow turbine with 

better swallowing capability are going to be included in the future research. 
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Chapter 3 – Modelling methodology 
 

This chapter will present a modelling and calibration method as a foundation for the study in 

the following chapters. It mainly includes three sub-sections, namely engine modelling 

introduction and calibration for steady state and transient simulation and engine control 

theory and tuning. 

3.1. Engine modelling 

3.1.1. Introduction 

Engine modelling is widely adopted in the engine design and development process. It can 

significantly enhance the efficiency of evaluating the conception of a specific technology and 

predict some engine parameters (such as the residual gas fraction and trapping ratio) that are 

difficult or impossible to measure in real test. Engine modelling approaches include black box 

model, mean value model, 1-D model, fast-running model and multi-dimensional model. 

These tools can be used for different objectives form a spectrum of computational time and 

prediction accuracy [148]. In this work, only the 1-D model will be introduced in detail. 

Different from a mean value model that uses only simplified look-up tables to characterise the 

air flow and distribution of fuel energy without predicting the breathing and combustion 

processes, a 1-D engine code (such as GT-Power) solves the Navier-Stokes equations, as shown 

below (3.1-3.4). The equations are based on the conservation of continuity, momentum, and 

energy in one dimension piping system of the engine. Multivariate tools, such as simplified 

models, maps and look-up tables, are utilised to simulate critical parts like valves, 

turbochargers, cylinders and the friction and combustion process. It is a universal practice to 

make assumptions and extrapolation to the existing test data of the components when 

conducting a 1-D simulating. Thereby, the 1-D engine model usually requires extensive 

validation against the experimental data in real test [150].   

                                              𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦:   
𝑑𝑚

𝑑𝑡
= ∑ �̇�𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠                                                     3.1 

                𝐸𝑛𝑒𝑟𝑔𝑦: 
𝑑(𝑚𝑒)

𝑑𝑡
= −𝑝

𝑑𝑉

𝑑𝑡
+ ∑ (�̇�𝐻) − ℎ𝐴𝑠(𝑇𝑓𝑙𝑢𝑖𝑑 − 𝑇𝑤𝑎𝑙𝑙)𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠                        3.2 
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                𝐸𝑛𝑡ℎ𝑎𝑙𝑝𝑦: 
𝑑(𝜌𝐻𝑉)

𝑑𝑡
= ∑ (�̇�𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 𝐻) + 𝑉

𝑑𝑝

𝑑𝑡
− ℎ𝐴𝑠(𝑇𝑓𝑙𝑢𝑖𝑑 − 𝑇𝑤𝑎𝑙𝑙)                    3.3 

                      𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚: 
𝑑�̇�

𝑑𝑡
=

𝑑𝑝𝐴+∑ (�̇�𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 𝑢)−4𝐶𝑓
𝜌𝑢|𝑢|

2

𝑑𝑥𝐴

𝐷
−𝐶𝑝(

1

2
𝜌𝑢|𝑢|)𝐴

𝑑𝑥
                             3.4 

Where: 

�̇� (g/s) Boundary mass flux into volume, �̇� = 𝜌𝐴𝑢 

M (g) Mass of the volume 

V (𝒎𝒎𝟑) Volume 

P (bar) pressure 

𝒑 (g/𝒎𝒎𝟑) density 

A (𝒎𝒎𝟐) Flow area (cross-sectional) 

𝑨𝒔(𝒎𝒎𝟐) Heat transfer surface area 

E (J/g) Total internal energy (internal energy plus kinetic energy) per unit mass 

H (J) Total enthalpy, 𝐻 = 𝑒 +
𝑝

𝜌
 

H (W/𝒎𝒎𝟐) Heat transfer coefficient 

𝑻𝒇𝒍𝒖𝒊𝒅 (K) Fluid temperature 

𝑻𝒘𝒂𝒍𝒍 (K) Wall temperature 

U (mm/s) Velocity at the boundary 

𝑪𝒇 Skin friction coefficient 

𝑪𝒑 Pressure loss coefficient 

D (mm) Equivalent diameter 

𝒅𝒙 (mm) Length of mass element in the flow direction 

𝒅𝒑 (bar) Pressure differential acting across 𝑑𝑥 

3.1.2. Combustion description and validation 

Determining a well calibrated combustion model is the most critical step in 1-D modelling. It 

is usually the foundation to build up a predictive engine model. Two-zone combustion model 

is the most frequently used approach to almost all the combustion models in GT-Power, in 

which, the burned and unburned air-fuel mixtures are assumed to be trapped in the burned 

and unburned zones separately. Similarly, the temperatures in these two zones are computed 

separately, whereas the pressure distribution in the whole combustion chamber is considered 

as homogeneous. The energy equations in the two-zone model are different (as shown 

below), and are solved separately for each time step. 

Unburned zone: 

                                
𝑑(𝑚𝑢𝑒𝑢)

𝑑𝑡
= −𝑝

𝑑𝑉𝑢

𝑑𝑡
− 𝑄𝑢 + (

𝑑𝑚𝑓

𝑑𝑡
ℎ𝑓 +

𝑑𝑚𝑎

𝑑𝑡
ℎ𝑎) +

𝑑𝑚𝑓,𝑖

𝑑𝑡
ℎ𝑓,𝑖                          3.5 
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Where: 

𝒎𝒖 (g) Unburned zone mass 

𝑽𝒖 (𝒎𝒎𝟑) Unburned zone volume 

𝒎𝒇 (g) Fuel mass 

𝑸𝒖 (J/s) Unburned zone heat transfer rate 

𝒎𝒂 (g) Air mass 

𝒉𝒇 (J) Enthalpy of fuel mass 

𝒎𝒇,𝒊 (g) Injected fuel mass 

𝒉𝒂 (J) Enthalpy of air mass 

P (bar) Cylinder pressure 

𝒉𝒇,𝒊 (J) Enthalpy of injected fuel mass 

 

Burned zone: 

                                             
𝑑(𝑚𝑏𝑒𝑏)

𝑑𝑡
= −𝑝

𝑑𝑉𝑏

𝑑𝑡
− 𝑄𝑏 − (

𝑑𝑚𝑓

𝑑𝑡
ℎ𝑓 +

𝑑𝑚𝑎

𝑑𝑡
ℎ𝑎)                                    3.6 

Where subscript ‘b’ denotes burned zone. 

In terms of predictive, the combustion model in GT-Power can be divided into three types 

namely the non-predictive, semi-predictive and predictive models, which are believed to be 

best suitable for different situations specifically.  

In a non-predictive combustion model, the burn rate is simply defined as a function of crank 

angle regardless of pressure or temperature or other conditions in the cylinder. This kind of 

model may be appropriate for the investigation of parameters that have little or no effect on 

the burn rate. For example, a non-predictive combustion model is usually prescribed in the 

spark-ignition engine simulation in the form of combustion profile or Wiebe model. In the 

following, the Wiebe model in a spark-ignition engine model is described, followed by the 

method of calibrating burn rate with measured cylinder pressure.  

For most situations, the approach to predict SI burn rate with Wiebe function is precise 

enough when measured cylinder pressure is not available. The Wiebe equations are given 

below: 

                              𝐵𝑀𝐶 = − ln(1 − 𝐵𝑀)    Burned midpoint constant                                     3.7 

                                   𝐵𝑆𝐶 = − ln(1 − 𝐵𝑆)    Burned start constant                                           3.8 

                                   𝐵𝐸𝐶 = − ln(1 − 𝐵𝐸)    Burned end constant                                           3.9 
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                         𝑊𝐶 = [
𝐷

𝐵𝐸𝐶
1

(𝐸+1)⁄
−𝐵𝑆𝐶

1
(𝐸+1)⁄

]
−(𝐸+1)

    Wiebe constant                                    3.10 

                         𝑆𝑂𝐶 = 𝐴𝐴 −
(𝐷)(𝐵𝑀𝐶)

1
(𝐸+1)⁄

𝐵𝐸𝐶
1

(𝐸+1)⁄
−𝐵𝑆𝐶

1
(𝐸+1)⁄

    Start of combustion                                3.11 

Where:  

AA (deg) Anchor angle 

D (s) Duration 

E  Wiebe exponent 

CE  Fraction of fuel burned 

BM Burned fuel percentage at anchor angle 

BS Burned fuel percentage at duration start 

BE Burned fuel percentage at duration end 

 

Burn rate calculation 

                                𝐶𝑜𝑚𝑏𝑢𝑠𝑡𝑖𝑜𝑛(𝜃) = (𝐶𝐸) [1 − 𝑒−(𝑊𝐶)(𝜃−𝑆𝑂𝐶)(𝐸+1)
]                                          3.12 

Where: 

𝜃 (deg) Instantaneous crank angle 

Calibrating burn rate from cylinder pressure trace is referred to ‘reverse run’ in this work, 

which uses the burn rate as an input to determine the cylinder pressure. The same equations 

described in the two-zone combustion methodology are utilised for both forward and reverse 

run calculations. In GT suite, two approaches are provided to calibrate the burn rate using 

measured cylinder pressure trace, namely the ‘stand-alone burn rate calculation’ and the 

‘three pressure analysis (TPA) burn rate calculation’.  

The stand-alone burn rate calculation methodology essentially determines the burn rate by 

using only the cylinder pressure data which is either from a single cycle or an averaged 

parameters from a few cycle. This approach is advantageous in saving computational time 

comparing with the TPA discussed below. And also it can be cost-effective. However, this 

approach requires the estimation of some parameters, such as residual gas fraction and 

trapping ratio. In this work, the combustion calibration will be mostly based on this 

methodology, since the given 1-D engine models in this project are all of high-fidelity. Besides, 

at the time of writing, only the cylinder pressure trace is available from real test. 
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Instead, a TPA burn rate calculation requires for three measured pressure traces, including 

intake, cylinder, and exhaust - hence the name three pressure analysis. This approach uses a 

relatively detailed engine model, including the valves and ports, compared to the stand-alone 

burn rate calculation methodology; thus, there is no need to estimate the trapping ratio and 

residual gas fraction. It should be note that in a standard TPA model, it is desirable to reduce 

the magnitude of the fluctuations caused by reflections within the ports during the valve-

closed period to make the predicted pressure behaviour within the port be closer to the 

measured behaviour [151]. It can be done by reducing the discretisation length, so that the 

unwanted noise in the pressure signal can be minimised.  

Due to the shift of measured combustion phasing and the need of converting the measured 

signal into an absolute pressure in experiment, errors may occur when imposing the raw 

measured pressure data on the model described above. To correct the pressure phasing, a 

shift is often used to offset against the crank angle difference between the measured and 

calculated cylinder peak pressure. In terms of the cylinder pressure correction, it is 

recommended to set the cylinder pressure at IBDC equal to the average intake pressure.  

It is often the case that the calculated cylinder pressure trace differs from the measured data 

when the measured and calculated cylinder pressure in the compression stroke is not 

overlaped, even though a standard calibration procedure is conducted. This might be due to 

the incorrect compression ratio in the given model, and the stack-up of the tolerances in each 

component (even if all of them are within specified tolerances). The cylinder heat transfer 

could also contribute to the inconsistency. 

A semi-predictive combustion model is essentially a model using some significant variables 

such as the engine speed, intake manifold pressure and residual gas fraction as the inputs of 

a set of non-predictive burn rate. This allows changes of the burn rate in different operating 

conditions, without intensive central processing unit (CPU) penalty when compared to the 

predictive models. For a spark-ignition engine, if only full-load simulation is considered, the 

three terms of the Wiebe function (50% burn duration, 10-90% duration and exponent) will 

be interpolated from the look-up tables based on the engine speed. However, if a wider range 

of engine operating points is conducted, a representative set of data and an artificial neural 
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network may be required to train the behaviour of the engine characteristics.  

Predictive combustion models will apprehensively take the cylinder’s geometry, spark 

locations and timing, air motion, and fuel properties into consideration and require for an 

extensive calibration for model. Nevertheless, once the model is well-calibrated, the effects 

of cylinder geometry and spark timing on the combustion behaviour can be analysed based 

on the measured data.  

Considering the engine hardware is available in this project, the burn rate could be calibrated 

the experimental data. And also, due to the fact that the control parameters only vary in a 

limited range, some non-predictive combustion models are utilised in this work to set up a 

semi-predictive combustion model.  

3.1.3. Turbocharger modelling 

Turbomachinery performance maps: 

It is the common practice for some advanced 1-D gas dynamic engine simulation code like GT-

Power to use zero-dimensional turbocharger performance maps in modelling. It is essentially 

a ‘speed line’ map composing of several sets of mass flow rate, pressure ratio, and 

thermodynamic efficiency, in which the data point with the lowest mass flow rate for each 

speed line of a compressor map is assumed to be on the surge line, while the peak efficiency 

data must be included at each turbine speed line so that the data can be fitted to a curve 

allowing the extrapolation of the test data (as detailed in the later section).  

 

Figure 3.1. Corrected compressor maps with ‘ideal’ straight bell-mounted inlet and vehicle 

inlet system [183]. 
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The compressor and turbine map data set must be corrected before using to account for the 

changes in temperature, pressure and compositions. A compressor map is usually corrected 

referring to the temperature and pressure of 298K and 1bar. The equations to correct the 

engine speed and mass flow rate are shown below: 

                                      𝑅𝑃𝑀𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =
𝑅𝑃𝑀𝑎𝑐𝑡𝑢𝑎𝑙

√
𝑇𝑖𝑛𝑙𝑒𝑡−𝑡𝑜𝑡𝑎𝑙

𝑇𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

⁄
                                              3.13 

                                �̇�𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = �̇�𝑎𝑐𝑡𝑢𝑎𝑙 ×
√

𝑇𝑖𝑛𝑙𝑒𝑡−𝑡𝑜𝑡𝑎𝑙

𝑇𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑃𝑖𝑛𝑙𝑒𝑡−𝑡𝑜𝑡𝑎𝑙

𝑃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

⁄                                         3.14 

Figure 3.1 shows a typical corrected compressor map with ‘ideal’ straight bell-mounted inlet 

and vehicle inlet system. This indicates that a shift of the compressor characteristic is highly 

possible when a dyno or vehicle inlet and charge air system is fitted, since it will affect the 

engine/turbocharger performance and the interactions between them. 

As for the turbine maps, because of the significant difference in reference conditions, they are 

usually ‘reduced’ to clear the effects of the inlet temperature and pressure on performance, 

so that any two turbine maps could be compared then without looking at the reference 

conditions. The formula to reduce the turbine maps can be seen in the following: 

                                                𝑅𝑃𝑀𝑟𝑒𝑑𝑢𝑐𝑒𝑑 =
𝑅𝑃𝑀𝑎𝑐𝑡𝑢𝑎𝑙

√𝑇𝑖𝑛𝑙𝑒𝑡−𝑡𝑜𝑡𝑎𝑙
                                                    3.15 

                                                  �̇�𝑟𝑒𝑑𝑢𝑐𝑒𝑑 =
�̇�𝑎𝑐𝑡𝑢𝑎𝑙√𝑇𝑖𝑛𝑙𝑒𝑡−𝑡𝑜𝑡𝑎𝑙

𝑃𝑖𝑛𝑙𝑒𝑡−𝑡𝑜𝑡𝑎𝑙
                                                 3.16 

It might be worth noting that the ratios of specific heats and gas constants should be 

considered as well if exhaust gas with different compositions are passing through the turbine 

at different inlet temperatures. For example, when a spark-ignition engine is operating at large 

scavenging (i.e. rich air/fuel ratio), or a low-pressure turbine is considered, corrections for the 

ratios of specific heats and gas constants should be conducted by using the following terms 

multiplied by the reduced speed and reduced mass flow rate, respectively.  

                                                                    √
𝛾𝑅𝑅𝑅

𝛾𝑎𝑅𝑎
                                                                          3.17 
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Where: 

𝛾𝑅 Reference ratio of specific heats 

𝛾𝑎 Actual ratio of specific heats at the inlet of the turbine 

            𝑅𝑅 (J/mol∙K) Reference gas constant 

            𝑅𝑎 (J/mol∙K) Actual gas constant at the inlet of the turbine 

Turbocharger shaft modelling: 

In turbocharger modelling, turbocharger shaft is the component representing the total 

rotational inertia of the turbine wheel, compressor wheel and shaft itself. Thereby, this 

attribute has a larger effect on the transient response than the steady-state performance. 

However, in order to run the steady-state simulation with the least computing time, GT-Power 

allows an artificial manipulation to the turbocharger inertia. The recommended routine is to 

set a high inertia multiplier (usually around 100) for the first few engine cycles, so that the 

turbocharger speed does not experience a dip while the velocity in the manifolds is 

developing. After that, the inertia multiplier could be made very low (usually around 0.01) to 

allow the rotational speed to reach the convergence as quickly as possible within 10 to 15 

engine cycles. And finally, the inertia multiplier should be returned to 1 for the rest of the 

simulation.  

Although the mechanical efficiency of the turbomachinery could be adjusted in turbo shaft, 

most turbocharger suppliers tend to lump the bearing friction in the turbine efficiency map 

without explicit statement sometimes [149]. Since the turbine efficiency is calculated by 

dividing the isentropic enthalpy drop across the turbine multiplied by mechanical efficiency 

(see equation below) with the actual total enthalpy rise of the compressor in a recommended 

gas stand test procedure, the bearing friction has been included into the turbine isentropic 

efficiency map already. Thereby, this method is considered valid with the turbine inlet 

temperature close to that of the gas stand test. When the inlet temperature is significantly 

lower (at part load operation, for example), however, the effects of temperature change on 

the friction should be account for. 

                                       𝜂𝑡 =
𝐶𝑃,𝑐𝑜𝑚𝑝×(𝑇0,𝑜𝑢𝑡−𝑇0,𝑖𝑛)𝑐𝑜𝑚𝑝

𝜂𝑚𝑒𝑐ℎ×(1+
1

𝐴
𝐹⁄

)×𝐶𝑃,𝑇𝑢𝑟𝑏×𝑇0,𝑖𝑛,𝑡𝑢𝑟𝑏×[1−(
1

𝑃𝑅𝑡
)

𝛾−1
𝛾

]

                               3.19 
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3.1.4. Supercharger modelling 

Supercharger modelling is similar to that of a turbocharger in GT-Power. The most significant 

difference lies in the way of computing the friction. As aforementioned, the shaft mechanical 

efficiency of the traditional turbocharger compressor is often lumped into the turbine 

efficiency map, while the supercharger compressor shaft mechanical efficiency should be 

explicitly modelled. It is usually done by imposing a power or torque template to extract the 

mechanical loss from the engine system or by estimating a mechanical efficiency (table). In 

the latest GT-Power version, a new compressor template is employed to include the total shaft 

power data in the compressor performance map to account for the mechanical losses in a 

supercharger system. This template is especially useful when an ‘overblown’ effect, wherein 

the inlet pressure is larger than the outlet, is investigated.  

3.2. Control modelling and calibration 

3.2.1. Control introduction 

To create a proper control logic for the engine system is of great importance to achieve the 

required performance. For a gasoline engine, the most important variables defining the 

engine operating points are engine speed and load. The engine speed can be directly 

measured by a speed sensor, while the engine load can be expressed by throttle angle and 

thus the air mass flow (unlike diesel engines whose loads are regulated by fuel quantity) into 

the cylinder, since a full homogeneous mixture of fuel and air is required before combustion. 

Even though some models would consider intake pressure and temperature too.  

In recent years, with the push for better fuel economy and higher emissions requirement and 

the development of the component technology, a number of actuators and engine control 

actions that can actively modulate the engine performance have emerged.  

3.2.2. Feedback control 

For automotive application, the most widely utilised control strategy is Proportional-Integral-

Derivative (PID) control, because of the good understanding by the powertrain calibrators.  

PID controllers are based around the process to minimise the error between a target value 

and a measured process variable by applying a correction to the system (see Figure 3.2). For 
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an automotive application, the derivative loop in a standard PID controller is usually not 

required for the following two reasons: 

 It is usually the case for the function of a derivative loop being replaced by a feed-

forward map control; 

 Tuning of the derivative term can be quite demanding and an improper calibration will 

amplify the noise in the feedback that may cause oscillatory behaviour. 

 

Figure 3.2. PID controller Simulink block 

For an engine a model containing two or more PI controllers, some schedules for the regulated 

parameters are needed to avoid two controllers fighting each other and causing unstable 

operation of the engine. Also, an optimal PI controller setup that is ideal for one engine 

operating point might be not the case for another, which may result in slow convergence and 

oscillatory behaviour. A popular approach to deal with this is to alter the controller gains 

according to specific engine speed and load, which is known as gains scheduling.  

Integral wind-up is also a problem in a PI controller, as shown in Figure 3.3. It is basically the 

scenario where the target is higher than the upper limit that can be achieved by the actuator. 

The integrator will then accumulate a significant error during wind-up and results in excess 

overshooting.  

In order to avoid integral wind-up, both the back-calculation and clamping approach are used 

in this work. Figure 3.4 shows the back-calculation in PID controller block. An internal tracking 

loop is enabled to discharge the integrator output. Even though better dynamics are shown 
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in this approach, worse results are possible because of the difficulty in determining. As 

another widely utilised anti-windup method, clamping tend to set the integral path of a PID 

controller to zero when an integrator overflow being detected to avoid wind-up (see Figure 

3.5). Compared to the back-calculation method, the clamping approach shows better stability.  

 

Figure 3.3. Integral wind-up for a PID control 

 

Figure 3.4. Back-calculation anti-windup method 
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Figure 3.5. Clamping anti-windup method 

3.2.3. Feed-forward loop 

For an engine study, it is usually the requirement for fast and robust response behaviour, and 

adding a feed-forward loop to the existing feedback controller is the common practice to 

achieve that. This approach is basically implementing an optimized estimation of the 

controller action, and mapping this value against engine setups with direct control action. By 

doing this, the response time and the need for large feedback gains could be significantly 

reduced and the system could be more stable. A PID control demonstration with a feed-

forward control is shown in Figure 3.6.  

 

Figure 3.6. PID control demonstration with feedforward control 

3.2.4. GT-Suite and Matlab/Simulink co-simulation 

For the sake of convenience, it is a common practice in engine modelling where engine and 

powertrain are modelled in GT-Suite, while the electronic controllers are modelled in 
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Matlab/Simulink. By coupling GT-Suite models with the control modules developed in 

Matlab/Simulink Environment, a complete engine model is ready for desired operation and 

optimization. GT-Power provides two methods for GT suite and Matlab/Simulink co-

simulation: 

 Running a GT-Suite model from the Matlab/Simulink interface 

 Compiling Matlab/Simulink models into .dll/.so files and importing them into a GT-

Suite model. 

For the co-simulation work in this thesis, the first option above was always utilised for 

convenience of setting up and tuning. 

 

Figure 3.7. GT-Suite embedded optimization strategy 

 

Figure 3.8. GT-Power engine model in Simulink interface 
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In GT-Suite, the embedded optimization tools requires the output variable to have a unique 

minimum or maximum, see Figure 3.7, in order to conduct a optimization to a non-linear 

engine system, while a genetic algorithm that can be realised in Matlab/Simulink can avoid 

the problems, and this is also the reason for employing co-simulation. Figure 3.8 illustrates 

the co-simulation between a GT-Suite engine model and a Simulink module.  

3.3 Transient modelling and validation 

3.3.1 Overview 

Running an engine model in a transient mode (e.g. changing engine speed or load over time) 

requires attention to several areas that can be neglected when running a model steady state. 

In fact, every model is different and requires attention to different areas. A transient model 

should be set up and calibrated before running within the operating range. 

3.3.2 Transient Running Modes 

There are two different ways of running an engine model in GT-POWER. 

 Imposing the engine speed and predicting the load (speed Mode).  

 Imposing the load and predicting the engine speed (load Mode).  

When performing a transient run where the engine speed is the dominant input of interest, it 

is recommended to perform the transient analysis in Speed Mode. A common scenario for this 

would be an acoustics test over speed transients. In speed mode, the engine speed can be 

imposed over time or period, using “ProfileTransient” or “ProfilePeriod” objects. When 

running in speed mode, the engine inertia in the Inertia folder could be ignored, since the 

indicated quantities (IMEP, etc.) will not be affected by the inertia. However, it is needed for 

the calculation of brake torque.  

When running the engine model in load mode, a load may be imposed using a torque imposing 

module, such as “Torque” or “PowerRot”, connected to the crank train. With the load imposed 

on the engine, a value has to be entered for “Engine Effective Rotating Inertia” in the Inertia 

folder. A typical scenario for running a transient model in load mode would be a drive cycle 

simulation with an attached vehicle model requesting the load from the engine. 

In this thesis, it is the speed mode that chosen for the transient evaluation of engine models. 
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3.3.3 Transient Model Inputs 

Depending on the operating condition, all inputs have to be adjusted using either some form 

of look-up or a predictive model to account for the change.  

Generally, for a gasoline engine attention should be paid to include the following: 

 Turbocharger (Wastegate or VGT Rack position) 

 Supercharger (clutching speed or CVT ratio) 

 Cam timing and lift for VVT engine 

 Air/Fuel ratio (especially SI engines) 

 EGR Valve Control 

 Coolant temperature (warm-up) 

With the automatic interpolation and extrapolation of the turbocharger maps provided by GT-

Suite, the turbocharger model is ready for transient runs. The quality of the extrapolation is 

especially important for transient runs with low engine speeds and loads that typically occur 

in drive cycle simulations.  

The controller templates provided in the GT-SUITE controls library (e.g. “PIDController”, 

“ControllerEGRValve” module, etc.) are targeting controllers. To achieve a realistic behaviour 

in transient operation, the rate limits (Minimum and Maximum Output Rate) have to be set 

manually according to the physical system response speed. For example, the rate at which 

waste gate is opened or closed should be known and is required as an input to the controller. 

3.3.4 Initialization 

The correct initialization of the transient model is a very important input in transient 

simulation. It is different from the initialization approach taken for steady-state models. For 

steady-state, a value close enough to the actual operating value is used, to ensure a rapid 

convergence. The exact value is not important in this context. However, for transient runs, it 

is vital that the starting point is correct, and all parts of the model have to be initialized with 

the steady-state values of the starting operating point. 

The recommended procedure for the initialization is to set up the first case of the model 

running the starting point as a steady-state operating point. Case 2 is then used for the actual 

transient run. To achieve the correct initialization, the flag Initialization State in Run Setup 
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should be set to “previous case”. Case 2 (the transient run) will then start with the result of 

case 1 (steady state starting point). Additionally, it is recommended to set the Wall 

Temperature Solver to steady for Case 1 (in order to speed up time for convergence) and 

transient for Case 2.  

Another option is to initialize the transient model using results from the steady-state model 

previously run. This can be done by enabling the “Use RLTs” in the Initialization folder of “Run 

Setup” to initialize “user_imposed Cases” (Flow). For this option, only 1 case is specified (the 

transient run), and the initialization is done with results from the specified .gdx file. 

For the work in this thesis, the first option was adopted. 

3.3.5 Thermal Behaviour 

Part of modelling transient engine operation is the wall-temperature change over time in 

pipes and flow splits as well as the cylinder. Since wall temperatures cannot be generally 

assumed to be constant with changing operating conditions, a wall temperature solver object 

should be specified in all pipes and flow splits. Also, since the wall temperatures of the 

cylinders will change with operating conditions, cylinder Wall temperature solver should be 

specified as Wall Temperature Object in Engine Cylinder. 

The wall temperature solver has two operating modes, steady and transient. The flag can be 

set in Run Setup in the Thermal folder.  

Charge Air Coolers that use imposed wall temperatures (directly, or via an effectiveness table) 

will change their wall temperature without delay, so they do not account for thermal inertias. 

In the absence of predictive models, a delay in the form of a First Order Filter should be used 

on the signal for the imposed wall temperature, to achieve a more realistic behaviours. 

3.3.6 Transient calibration 

The transients simulation studied in this thesis are load step type, which means that the 

engine speed is held constant while the load is increased rapidly.  

As shown in figure 3.9 and 3.10, a non-calibrated transient engine simulation model cannot 

accurately predict the transient behaviour of the engine. One important reason is the thermal 

inertia of the engine, especially the hottest area. The model must be calibrated to accurately 
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model the building-up of temperature in the exhaust system during the transient operation. 

Besides, the combustion and AFR change during the transient must be altered to imitate this 

change during the load step. Lastly, since the turbine and compressor are produced through 

extrapolation based on a few measured points, the operating points of the turbo machinery 

during the transient are often far from any measured point and the results are often 

extrapolated with varying degree of accuracy, which may have to be corrected with efficiency 

multiplier. From the compressor map shown in figure 3.11, the region below the lowest row 

of measured points is extrapolated. A large part of the operating period of transient simulation 

is located in this area. 

 

Figure 3.9. Non-calibrated transient simulation [186]. 

 

Figure 3.10. Non-calibrated transient simulation [186]. 
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Figure 3.11. Compressor map with simulation (white dots) and turbo-manufacturer map 

points (black dots) [186]. 

3.3.7.1 Combustion calibration for transient simulation 

The spark-Ignition Wiebe model imposes the combustion rate using a Wiebe functions with 

three inputs, namely the 50% burn point, the burn duration between the 10% and 90% burn 

points (see figure 3.12) and a Wiebe function exponent to shift the inputs in respect to each 

other. This model also needs measured data to imitate the combustion process. 

 

Figure 3.12. Wiebe function 

3.3.7.2 50% burn point calibration 

The calibration of the combustion process 50% burn point can be done by building up a map 
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of the 50% burned point (in the form of CAD after TDC) as a function of load and speed.  Then 

the map is inserted in the EngCylCombSIWiebe model for transient simulation. 

3.3.7.3 10-90% burn duration calibration 

Calibration of the 10-90% burn duration is done in the similar way. The 10-90 burn duration is 

collected as a function of load. Data is then combined to engine speed to create a 2-D lookup 

table. This table is then inserted in the combustion model. 

3.3.7.4 Air/Fuel calibration 

As for AFR calibration, firstly, measurement data is collected from the ATI units, while the 

cylinder pressures are gathered through Dewetron. And then, a time resolved graphs were 

created for AFR and IMEP. Maps were then created from extracted data from these AFR/IMEP 

graphs for every speed. The AFR map was then inserted in the injector object in the model. 

3.3.7.4 Turbocharger speed calibration 

The turbocharger speed is one of the most important parameters for transient simulations, 

since it governs the mass flow, intake pressure and temperature etc. The calibration of the 

turbocharger speed usually starts from steady state condition at full load operation. 

A PID controller is included to adjust the turbine efficiency multiplier allowing the 

turbocharger speed correlate to the target value for each engine speed and operating point. 

When the turbocharger speeds are calibrated for each load and engine speed, the value of 

the turbine efficiency multipliers is inserted in a 2-D lockup table as a function of turbo and 

engine speed. The output signal value i.e. turbine efficiency multiplier (TEM) is sent to the 

turbine object. When this is done the turbocharger speed at the start and finishing points will 

correspond to the measurements, but deviations is still seen in the region between. Since the 

efficiency map only has two values for each engine speed at this point, so GT-power 

interpolated in the turbocharger speed range between these two values. Therefore, new 

turbocharger speed rows are needed ideally to accurately predict the turbocharger speed. 

In practice, with the automatic interpolation and extrapolation of the turbocharger maps 

provided by GT-SUITE, the turbocharger model is ready for transient runs. However, the 

quality of the extrapolation is especially important for the accuracy of transient runs. Methods 
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to improve the fitting of the maps is introduced in [186].  

As mentioned above, another important input for the turbocharger is the inertia specified in 

the ShaftTurbo. This value should be known from the supplier. Any inertia multiplier should 

be removed for transient runs. 
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Chapter 4 – System Optimization of variable 

drive supercharged engine system 

The superchargers appearing on the market at present are mainly fix-ratio positive 

displacement types. Nevertheless, such charging systems have to face the challenges of fuel 

penalty because of the need for a bypass valve to recirculate the air mass flow under low load 

condition. Besides, a clutch is also necessary in this system to disconnect the compressor at 

high engine speed, which encumbers the transient response of the engine and may lead to 

Noise Vibration and Harshness (NVH) issues at transient operation. 

CVT Supercharger is basically a centrifugal supercharger with variable driven ratio. This system 

is composed of a continuously variable transmission (CVT) and a centrifugal compressor which 

is developed by Torotrak for flexible and quiet boosting. Thanks to the wide transmission ratio 

range of CVT, the compressor is able be operated independent of engine speed to precisely 

meet the engine load. The active bypass valve in conventional supercharger system is replaced 

by a one-direction passive bypass eliminating the air recirculation, which bring about better 

fuel economy under partial load condition. The supercharger clutch were removed to trade for 

faster transient response in the cost of acceptable degradation of low load fuel efficiency. This 

chapter will compare the performance of turbo-super and super-turbo configurations to 

determine the location of CVT Supercharger. Optimization of pulley ratio and CVT ratio change 

rate will be presented. Control strategy will be further developed by examining the tip-in 

operation from different starting torque. The performance of the whole system will be 

evaluated by examining the fuel consumption at full load, part load and real world driving 

cycles. 

4.1 Introduction 

In spite of the emerging developments of alternative technologies, such as electric cars, 

internal combustion engines (ICE) is remain its predominance as the power source for 

automotive application at present. Therefore, it is essential to keep improving the ICE 

performance in either power output and fuel efficiency. At present, downsizing and down-
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speeding are accepted as the most effective means to improve the fuel economy and CO2 

emission of passenger car SI (spark ignition) engine with extensive verifications in both 

experimental and real world environment [153][154], because of the capabilities of reducing 

pumping loss, improving heat transfer and bringing about lower friction of reciprocating 

piston ICE. Air charging systems, which are mainly superchargers and turbochargers, are now 

considered to be effective approaches to enhance the overall ICE performance at wide 

operation mode, instead of merely increasing the short-term peak power output. However, 

because of the inherent characteristics, challenges are faced by both of them. On the one 

hand, turbochargers are able to harvest exhaust energy which is almost free and make 

themselves self-sufficient. But, they struggle to provide enough low-end torque or satisfying 

transient response. On the other hand, although superchargers are able to provide sufficient 

boost at low engine speed with desired response speed because of their drive mechanism, 

they will unavoidably sacrifice the fuel efficiency to some extent in the form of parasitic loss. 

Therefore, the potential of gathering turbocharger and supercharger in one engine system to 

avoid the aforementioned problems has been investigated by a number of studies [1, 155, 

156]. Promotions were demonstrated in both transient performance and power output over 

a wide engine speed range. Nevertheless, conventional fix-ratio superchargers, which are 

usually positive displacement compressors, are inevitably accompanied with active bypass 

valves to regulate air boost by circulating intake air across the compressor. And also clutches 

are needed to connect and disconnect the compressor from the engine shaft for different 

operating demand. Then, engine systems equipped with fix-ratio superchargers have to face 

the deterioration of fuel efficiency caused by air circulation, especially under mid-high load 

condition. And also, the response speed to tip-in will be restricted by clutching time. Besides, 

the efforts and costs spent on control strategy calibration to fit in active bypass valves are 

non-ignorable. Lastly, attenuation of NVH (Noise, Vibration and Harshness) is also one of the 

main challenges faced by fix-ratio positive displacement superchargers. 

The CVT Supercharger system, however, allows a much more flexible control of the 

supercharger speed with the aid of a widely adjustable CVT. It, therefore, is capable of 

providing refined boosting to precisely and smoothly meet the engine demand. Furthermore, 
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elimination of supercharger clutch improves the transient response, and reduces the cost and 

difficulty in package. At the same time, NVH caused by the engage-and-disengage action of 

supercharger clutch is eliminated as well. Lastly, by replacing the active bypass valve with a 

passive valve which only allows air flow in one direction, the air circulation across the 

supercharger is closed. That helps to improve the fuel economy at middle and high load. 

4.2 Scope and objectives 

This chapter will firstly investigate two twin-charged engine configurations with different 

relative positions of supercharger and turbocharger to find the difference in performance. 

And then, the desirable configuration will be adopted for the optimization of pulley and 

epicyclic gear ratio trying to find the best trade-off between transient and part load fuel 

efficiency. After that, further regulation will be carried out for the CVT ratio change rate to 

avoid “dip” in brake torque which may affect the driving experience. The fuel economy of the 

refined model will be assessed by conducting a WLTP test in the final step. The overall 

performance, including full and partial load fuel consumption and response speed of the CVT 

Supercharger engine will be compared with a commercially available conventional 

supercharged counterpart which comprises a fixed ratio positive displacement (Roots) 

compressor, as shown in figure 4.1. Both engine systems are implemented in conjunction with 

a fix geometry turbocharger.  

 

Figure 4.1. Positive-displacement supercharger (roots type for example) 
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4.3 CVT Supercharger and engine system 

configurations 

CVT Supercharger system is essentially a variable drive ratio supercharger. As an alternative 

to conventional fix-ratio positive displacement supercharger, CVT Supercharger utilizes a 

centrifugal compressor driven by a CVT, which is developed by Torotrak, to couple with a fixed 

ratio step up pulley and epicyclic gear which have a speed ratio of 2.5:1 and 12.5:1 

respectively. The CVT ratio thereby can be swept from 0.28:1 to 2.81:1, which means for the 

engine speed of 1000 rpm, the compressor speed can be varied from 8750 rpm to 88125 rpm. 

The detailed architecture of CVT Supercharger is shown in figure 4.2. 

 

Figure 4.2. CVT Supercharger variable transmission ratio supercharger. 

As mentioned above, it is a centrifugal compressor that is utilized to boost the intake air. This 

type of compressor is generally more efficient, compact and lighter for automotive application 

when comparing to their positive displacement counterpart. However, because of its inherent 

air flow characteristics, the boost is much lower at low rotational speed. It maybe not ideal 

for passenger car engines which usually works under part load condition for most of its service 

life. However, in this practice, the pressurization could be effectively remedied by the step-up 

transmissions (namely pulley and epicyclic gear set) which provide sufficient tip speed for the 
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compressor in the cost of additional mechanical losses within acceptable level. This will be 

explained in detail in the later paragraphs. 

The baseline GT-Power engine model was supplied by Ford Aachen. It is a 1.0 litre 

turbocharged engine full-load model featuring a fixed-geometry turbocharger [157]. A fixed 

gear ratio of 7.03 was used for the supercharger, and an active by-pass valve was adopted to 

regulate the supercharger pressure ratio by recirculating the intake mass flow across the 

supercharger.  

(a) (b)  

(c)  

Figure 4.3. CVT Supercharger engine configurations. (a)Super-Turbo; (b) Turbo-Super 

Figure 4.3 shows the Super-Turbo (a) and Turbo-Super (b) configurations with CVT 

Supercharger being located upstream and downstream turbocharger compressor 

respectively. The 1.0 litre three cylinders baseline engine is also illustrated in figure 4.3. Both 

of the novel configurations featuring the same turbocharger and CVT Supercharger systems. 

Intercoolers are located between and after the two boosting stages. The bypass valve parallel 

to CVT Supercharger is of passive type which only allows forward air flow and will be shut by 

reversed pressure drop.  
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Figure 4.4. Torque output and specific fuel consumption of two configurations. 

Figure 4.4 illustrates the torque performance and fuel consumption of the two configurations. 

For the simplicity of comparison, the same torque targets are set for the two configurations, 

which are also the stretched real test targets for this project. From this figure, the BSFC of the 

two models tended to coincide above 2000 rpm when CVT Supercharger was bypassed and 

running at lowest speed ratio. At 2000 rpm and lower engine speed, when CVT Supercharger 

participated in boosting the intake air, the difference in fuel economy began to emerge. The 

Super-Turbo configuration showed a fuel saving of up to 3.2% comparing with Turbo-Super 

model at 1750 rpm. It dues to the less power expenditure on CVT Supercharger of the super-

Turbo layout, which can be explained by the following figures. 

 

Figure 4.5. CVT Supercharger efficiency and power consumption of both configurations. 

From figure 4.5, at 2000 and lower engine speed, the CVT Supercharger system in Super-turbo 

model had slightly higher efficiency and consumed much less engine shaft power. It is mainly 

because of the lower inlet air temperature to the CVT Supercharger compressor, as shown in 

figure 4.6. 
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Figure 4.6. Turbine power and inlet air temperature to CVT Supercharger and turbocharger 

compressors of both configurations. 

From figure 4.6, the air temperature at the inlet port of CVT Supercharger compressor was 

higher than 330 K in the Turbo-Super model. In the Super-Turbo model, it was close to the 

ambient temperature which is around 298 k. The lower inlet temperature enabled CVT 

Supercharger to provide about the same boosting level by consuming less driven power. On 

the other hand, the inlet air temperature for the turbocharger compressor was higher in the 

Super-Turbo model, which enhanced the potential of turbocharger to extract more exhaust 

energy. It could explain the turbine power difference between the two models. 

It should be note that the margin in fuel consumption would be narrowed with a more 

efficient intercooler located between the two boost stages. It also suggests that, based on the 

analysis above, a two-stage intercooler would be necessary for the Turbo-Super layout, but 

optional for the Super-Turbo. Besides, Super-Turbo configuration was proven to be easier for 

packaging and pipework routing in real test. Therefore, the Super-Turbo version was chosen 

for the following studies. 

 

Figure 4.7. Cylinder pressure from experiments and simulation. 

In order to ensure GT-power model to precisely predict the performance of the whole engine 
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system, a calibration was carried out to match the computed data from the simplified baseline 

engine model, in which the supercharger was de-activated, with the experimental testing. By 

comparing the cylinder pressure under full and partial load conditions, it indicated that the 

actual data and the calculation data matched fairly well in the qualitative tendencies, which 

confirmed the appropriateness of the combustion model. Figure 4.7 shows the full load 

cylinder pressure at 1400 rpm as an example. The results at other engine speeds showed the 

similar trend. The comparison of the simulated and tested in-cylinder pressure demonstrated 

a close match, as shown in figure 4.7. These results indicated that the model was of fairly 

acceptable level of precision to simulate the performance of the whole engine system based 

on the baseline model. 

4.4 Optimization  

4.4.1 Optimization for the pulley and epicyclic gear ratio. 

For the conventional supercharger system in which a friction clutch is equipped, the parasitic 

losses from supercharger could be eliminated by disengaging the compressor. For the CVT 

Supercharger system, however, if no clutch was equipped, mechanical losses can be 

minimised by employing lower pulley and epicyclic gear ratio. Even though the losses cannot 

be eliminated completely.  

To prove the prediction, a part load simulation has been carried out at the Brake Mean 

Effective Pressure (BMEP) of 2bar which output approximately 15Nm brake torque. In this 

simulation the epicyclic gear ratio was maintained at 12.67:1, while the pulley ratio was swept 

from 4:1 to 1:1.  

 

Figure 4.8. Low load (2bar BMEP) BSFC 
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Figure 4.8 shows the comparison of low load fuel consumption between CVT Supercharger 

and Eaton supercharger. The mechanical losses of the CVT Supercharger system was up to 

4.9% (since the trend was the same for other load, only the results at 2bar BMEP were 

discussed in here) at the engine speed of 1100 rpm. It was mainly due to the losses of CVT, 

pulley and epicyclical gear. At higher engine speed, the deficit became smaller because the 

friction within the engine block (FMEP) occupied a higher percentage in overall mechanical 

losses, which overwhelmed the influence of CVT Supercharger system. At 1100 rpm, low load 

fuel consumption could be reduced by approximately 3.5% by turning down the pulley ratio 

from 4:1 to 1:1. At higher engine speed, for the similar reason mentioned above, the fuel 

saving became less prominent. Therefore, it suggested that it was a potentially effective way 

to reduce the mechanical losses of CVT Supercharger system by reducing the idle drive ratios 

of the pulley and epicyclic gear when the engine was running below boost line.  

Unlike the positive displacement supercharger which is driven by fixed ratio, the CVT 

Supercharger system is able to meet the air boosting requirement with reduced pulley and 

epicyclic ratio relying on the CVT flexibility. However, a lower starting gear ratio would 

sacrifice the transient response since the maximum speed and acceleration of the 

supercharger will be reduced as well. The trade-off between the transient performance and 

the low load fuel economy will be investigated in the following paragraphs. 

 

Figure 4.9. DOE data point of the drive ratio 

A steady state simulation at 2 bar BMEP and a transient simulation have been carried out for 

a variety of pulley ratios and epicyclic gear ratios. As shown in figure 4.9, the sweeps for the 

two variables were from 1.5 to 3.5 and 6.5 to 13 respectively. A boundary limit for the DOE 
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(design of experiment) was set up for the compressor to provide sufficient boosting at full 

load steady state to fulfil the torque target. Therefore, the cases with the minimum pulley 

ratios and epicyclic ratios, as shown in the red polygon, were cleaned out. 

 

Figure 4.10. The trade-off between T90 and BSFC at 2bar BMEP (2000rpm). 

 

Figure 4.11. The trade-off between T90 and BSFC at 2bar BMEP (1500rpm). 

 

Figure 4.12. The trade-off between T90 and BSFC at 2bar BMEP (1100rpm). 

The trade-off between T90 (response time of the engine system to raise brake torque from 0 

to 90% of torque target) and BSFC at 2bar BMEP for different engine speeds (2000, 1500 and 

1100 rpm) are illustrated in figure 4.10 to 4.12. By varying the drive ratios, a fuel consumption 

variation of approximately 2% could be found at all engine speeds in the simulation. At 1500 

and 2000 rpm, the variation in T90 was smaller than 0.1 and 0.05 second respectively. At 1100 



105 
 

rpm, however, the response time varied in a much bigger scope sweeping from 0.5 second to 

1.9 seconds.  

 

Figure 4.13. Turbocharger responding time and pressure ratio. 

The larger variations of T90 at 1100 rpm were mainly due to the less contribution of 

turbocharger to air boosting. As figure 4.13 shows, turbocharger responded faster at higher 

engine speed providing higher boost pressure. It compensated the response delay to some 

extent and diminished the influence of CVT Supercharger drive ratio on T90 at the same time. 

Therefore, the trade-off between the low load fuel consumption and transient response 

existed mainly in the lowest engine speeds region particularly. 

 

Figure 4.14. Pareto front at 1100rpm. 

Figure 4.14 shows the Pareto front (the red curve) of the trade-offs between transient and 

fuel economy for the CVT Supercharger engine at 1100 rpm. The changes of epicyclic gear 

ratios were displayed in different colours. Operation points of each colour stand for the 

candidate pulley ratio, as shown in figure 4.9. The Pareto front was approximately a quadratic 

curve with decreasing slope stretching to larger fuel consumption. According to the fitting 

curve, the operating points in the green circle were regarded as the best compromising 

scenarios with respect to both T90 and low load BSFC. From the simulation results of the 
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chosen operation points, it generally cost 2% more fuel consumption at 2 bar BMEP to reduce 

T90 by 1 second on average. And also, it shows that the operations with higher epicyclic gear 

ratio, which took up most part of the Pareto front, were slightly more effective to convert fuel 

consumption into transient performance. In the end, it was decided to choose 12.57 and 2.4 

for the epicyclic gear ratio and pulley ratio respectively for further research.  

4.4.2 Optimization for Eaton clutch engagement time, CVT ratio and CVT ratio change rate  

Before the transient simulations could be carried out for either the fix-ratio supercharger 

systems or CVT Supercharger systems, the engaging time for the friction clutch in Eaton 

supercharegr, and similarly, the maximum CVT ratio and change rate have to be regulated to 

shorten the response time of each system as much as possible without deteriorating the 

harshness. It should be noted that the combustion model were assumed to be the same as in 

the steady state simulation. Although this may not be realistic on real engine, the relative 

differences for the candidate systems were expected to be at the same level. In transient 

simulations, the engine load was kept to be about 10 Nm for 2 seconds before tip-in. For 

evaluation, response time to reach 90% of torque target (T90) was used as the metrics of 

transient performance. The comparison was based on the assumption that CVT Supercharger 

systems was not equipped with a clutch to disconnect the compressor for any operation. The 

compressor would be driven with the minimum CVT ratio, which is 0.28, when boosting is not 

needed. In this way, the control and packaging complexities were reduced while the transient 

performance of the whole system was expected to be improved. It, however, was at the cost 

of compromised fuel consumption at low load, which will be introduced in the later section. 

In this study, the concept of “variator reaction torque” refers to the sum of input and output 

CVT torques. It was believed that, if a large spike appeared in the variator reaction torque 

curve (in terms of time), a dip would appear on the engine brake torque curve, which would 

eventually deteriorate the driveability. Therefore, the transient control strategy needs to be 

optimized to avoid violating that. 

Specifically, if the spike of variator reaction torque appeared during the CVT was accelerating 

or the engine brake torque underwent a dip near the starting point, the CVT change rate 

should be reduced at that point. However, if the reaction torque exceeded after CVT reached 
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top speed or the dip appeared near the point of brake torque target, then the final CVT ratio 

needs to be reduced. This could be better explained by figure 4.15 and 4.16. 

 

Figure 4.15. CVT ratio change rate at 1500 rpm. 

 

Figure 4.16. CVT ratio at 2000 rpm. 

From figure 4.15, a dive appeared at the point when the engine brake torque started to 

increase from 10 Nm at 1500 rpm. By decreasing the CVT ratio change rate (refers to  

|𝑓𝑖𝑛𝑎𝑙 𝐶𝑉𝑇 𝑟𝑎𝑡𝑖𝑜 − 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝐶𝑉𝑇 𝑟𝑎𝑡𝑖𝑜| 𝑡𝑖𝑚𝑒⁄ ) from 44.6 per second to 17.2 per second 

and finally 10.6 per second, the dip was lightened and eventually flattened. It also shows that 

the magnitude of brake torque has not been affected since the final CVT ratio and thus the 

boost pressure were kept the same. The engine response speed showed a slight difference for 

different CVT change rate. However, because the transient was mainly dominated by 

turbocharger response which was much slower than throttle response and CVT Supercharger 

acceleration, the delay in final engine transient behaviour was almost imperceptible. It was 

also worth mention that the CVT ratio change rate should be further restricted for the tip-in 

operation from higher starting engine torque. For example, a severe dip was seen in the brake 
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torque curve when it started to shoot up from 80 Nm (40% throttle) with CVT change ratio of 

10.6. It could be eliminated by decreasing the change rate below 3.75. This was because the 

faster throttle response could not be relied on to compensate the variator reaction torque in 

this case as it was already opened.  

In figure 4.16, the dip was found near the target brake torque at 2000 rpm. It was filled up by 

decreasing the final CVT ratio from 1.8 to 1.4. Engine response was not affected while the 

maximum torque output decreased by approximately 50 Nm because of the reduction in CVT 

Supercharger boosting. It was worth mention that higher CVT ratios were allowed at lower 

engine speed because the parasitic load to engine was lower then. 

 

Figure 4.17. Clutch rate at 1500 rpm. 

 

Figure 4.18. Bypass valve diameter at 1500 rpm. 

The similar phenomenon was found in the Eaton system. At 1500 rpm, for example, higher 

clutch rate (refers to the supercharger gear ratio, which is 7.03, divided by clutching time) led 

to a descent of engine brake torque at the starting point of tip-in, as shown in figure 4.17. For 

a higher starting engine load, especially when the throttle was widely opened, those dips were 

more likely to appear, as the turbocharger could not accelerate fast enough to offset the 
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consumed brake torque. According to the simulation results, the highest clutch rate allowed 

was 24.43. Besides, optimization was also needed for the switching of the active bypass valve 

which was mounted parallel to supercharger. As figure 4.18 shows, a smaller bypass valve 

diameter would reduce the air circulation during boosting, and improve the response speed. 

At the same time, it might lead to overshooting in brake torque which was unfavourable to 

driveability. Therefore, a compromised diameter, which was 6 mm at 1500 rpm for example, 

needed to be determined. 

Following the afore determined control strategy of the CVT Supercharger and Eaton system, 

the overall performance, including full load, part load and transient, of each engine system 

will be compared in the following section. 

4.5 Results 

4.5.1 Performance comparison between the CVT Supercharger and Eaton engine system 

In this section, the influences of CVT Supercharger on engine performance, including full load, 

partial load and transient, will be analysed by comparing to the baseline fix-ratio supercharged 

engine. The study will focus on the low engine speed region below 2000 rpm. Actually, at 2000 

rpm and above, turbocharger was able to provide sufficient boosting on its own for the engine 

to achieve the target BMEP. In order to minimise the mechanical losses, supercharger in Eaton 

system would be de-clutched, while the CVT Supercharger would be remain engaged but 

driven with the lowest CVT ratio. Consequently, the CVT Supercharger system might cause 

sacrifice to fuel economy at higher engine speed when comparing with Eaton counterpart, 

although the deficit was found minor (about 1%). Besides, as the engine is rarely running up 

to high speed in real driving, studies about the overall performance above 2000 rpm will not 

be included.  

It also worth mention that, the CVT Supercharger system is able to raise the brake torque up 

to 240 Nm which is beyond the capability of the Eaton system. For the convenience of 

comparing the fuel economy of both, the torque target was limited to be 200 Nm for both 

systems. 
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Figure 4.19. Full load BSFC from simulation and real test. 

Figure 4.19 illustrates the full load fuel consumption of each system. It can be found that CVT 

Supercharger brought about 3% better fuel economy to the engine system when comparing 

with the positive displacement counterpart. It suggested that CVT Supercharger was capable 

to reduce the fuel consumption by eliminating the mass flow recirculation around the 

compressor, despite of the potentially higher mechanical losses of the integrated CVT.   

The experimental results are also included in this graph showing a good correlation to the 

simulation data at 1250 rpm and upwards. The minor difference might come from the 

homogeneously over-predicted friction losses of the real engine. At the lowest engine speed, 

however, a greater divergence between test and simulation was found. It was speculated that 

it might be the combustion instability and turbo machinery inaccuracies at this challenging 

low flow conditions that cause the misfit. It suggests that the engine models may need further 

validation for better predictions of the real test at low speed. But, since the combustion model 

were assumed to be the same for both engine models, although this might not be realistic on 

real engine, it helped to keep the relative accuracy of the candidate systems at the same level, 

and made the simulation results comparable. 

In addition, it could be predicted from the full load performance that the CVT Supercharger 

might embody further superiority in reducing fuel consumption at mid-high load operation 

when the supercharger is less needed to assist boosting. Furthermore, under “just boosted” 

condition, the greatest BSFC advantage over the fixed-ratio supercharged counterpart could 

be achieved since the CVT Supercharger was adjusted to approach the lowest speed at this 

point to provide the precise boost pressure as required and impose the least parasitic load to 

the engine. On the contrary, to provide the same boost pressure with the conventional 
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supercharger under this condition, the bypass valve must be wide opened to allow more 

circulated air flow, and thus causes much more losses. This prediction was proved by the 

results in figure 4.20. It shows that CVT Supercharger improves the fuel economy by up to 

about 40% at 16 bar BMEP when comparing with the conventional fix-ratio supercharged 

engine. 

 

Figure 4.20. BSFC at 16 bar BMEP. 

For the low load simulation, the fuel consumption of CVT Supercharger system was computed 

at 2 bar BMEP. The GT-Power models have been re-calibrated in accordance with the 

experiment data to make the comparison between the CVT Supercharger and the positive 

displacement supercharged model valid. For this operation, the CVT Supercharger system, 

which remained engaged, consumed more fuel than a de-clutched positive displacement 

compressor. As shown in figure 4.8, for the operation under extremely low load, CVT 

Supercharger consumed approximately 4.5% more fuel than the Eaton system did. Besides, as 

mention above, higher pulley ratio would worsen the fuel economy in a considerable scope 

(by up to 2%). Experimental data was also included in that graph, showing a better correlation 

with the calculated results. This could be explained by the less demanding on air charging 

devices, which diminished the erratic effects coming from turbine and compressor maps. The 

results suggest that a clutch might be needed for the CVT Supercharger system to regain the 

BSFC benefits at extremely low load operation. However, although the fuel consumption of 

CVT Supercharger would be reduced to the same level as the Eaton counterpart by adding a 

clutch, it will make the system less compact. The control strategy would become more 

complicated as well. Moreover, transient performance will be encumbered by the clutching 
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time. For the fix-ratio supercharged engine, actually, the supercharger usually needs to be 

engaged prior to tip-in to pre-boost the inlet air for better response speed, which will 

inevitably increase the system complexity and attenuate the advantages in fuel economy. It 

also should be noted that since the CVT ratio was remained the minimum for low load 

operation, CVT Supercharger imposed approximately the same parasitic load to the engine for 

any specific engine speeds. For higher load (but still turbocharged only), since the power 

consumption by CVT Supercharger took a smaller percentage of engine output, the BSFC 

deficit of CVT Supercharger system would descend further. 

4.5.2 Driving cycle fuel consumption 

For ease of analysis and comparison, the WLTP has been discretised into a number of steady-

state ‘Minimap’ operating points. Each of these points represents a portion of the driving 

cycle, and holds a weighting equivalent to the proportion of the time that the engine is run at 

this speed, and load during the WLTP. In this section, the methodology of consolidated points 

was utilised to calculate the engine-level fuel consumption in WLTP driving cycle. Basically, 

this method reduced hundreds of operating points of the driving cycle into a dozen with least-

squares method, as shown in Figure 4.21.  

 

Figure 4.21. Minimap for WLTC driving cycle. 

It has proved that the calculated fuel economy with this method showed satisfying correlation 

with the results from full driving cycle test with the computational efficiency being 
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significantly improved at the same time [159]. 

Table 4-1. BSFC for WLTC driving cycle. 

Engine 

speed 

CVT 

Supercharger 

BSFC (g/kW-h) 

Eaton declutched 

BSFC (g/kW-h) 

BSFC 

deficits 

Eaton clutched 

(g/kW-h) 

BSFC 

deficits 

Weight 

(%) 

1087 302.432 294.87 2.520738 345.89 -12.56 1 

1193 462.918 440.43 4.937838 594.55 -22.13 4.8 

1766 309.25 302.65 2.146536 372.46 -16.97 3.2 

1787 498.268 474.37 4.872894 718.63 -30.66 8.2 

2238 275.173 272.08 1.128246 303.72 -9.40  

2246 425.033 407.44 4.196151 609.35 -30.24 27.5 

2261 275.896 271.43 1.625676 324.49 -14.97 5.3 

2292 300.766 294.29 2.167047 370.81 -18.89 12.4 

2677 432.261 414.51 4.162113 626.93 -31.05 6.1 

2697 313.018 305.81 2.318934 395.69 -20.89 3.2 

2749 277.882 274.40 1.257579 314.65 -11.68 2.2 

2752 283.637 279.09 1.609935 335.04 -15.34  

3136 415.29 398.36 4.13184 582.13 -28.66 0.6 

3189 291.274 286.11 1.782051 345.22 -15.62  

3244 310.694 303.62 2.29425 401.42 -22.60 3.7 

The simulation results for WLTP driving cycle BSFC are shown in Table 4.1. 12 operating points 

were chosen for the simulation, representing 78.2% of the full WLTC driving cycle operation. 

It should be noted that because of the high divergence in fuel consumption, the idle condition 

was not take into account in this study despite of high weighting. From the results, the fuel 

consumption of CVT Supercharger engine was higher than the declutched fix-ratio 

supercharge system by up to 4.94% for WLTP driving cycle. When comparing with clutched 

fix-ratio supercharger, however, the fuel economy could be improved by up to 30.7%. By 

assigning weights to each of the operating points, the overall fuel economy of CVT 

Supercharger engine for the major part of the whole driving cycle was 2.74% worse than the 

disengaged positive displacement counterpart and 19.6% better than the engaged 

conventional supercharged engine. 

4.5.3 Transient simulation 

In terms of the transient simulation, the candidate models were started idling for 2 seconds 
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at 10 Nm brake torque for stabilization before the load demands were input. The experimental 

results were not included, because the specific control strategy adopted for boosting splits 

and thus the waste gate and CVT operation had significant effects on the transient 

characteristic which might result in unexpected discrepancies between simulation and test 

results. Moreover, since the objective of this project is to investigate the feasibility of CVT 

Supercharger as a candidate of better solution for engine downsizing, the investigation into 

the specifications of refinement and optimisation is out of the scope of this thesis. It is worth 

mention that the operation of the drive components in both systems, including CVT, pulley, 

epicyclic gear and clutch, were optimized based on the studies introduced in control strategy 

section.   

 

Figure 4.22. Boosting response of the candidate systems at 2000 rpm. 

 

Figure 4.23. Boosting response of the candidate systems at 1500 rpm. 



115 
 

 

Figure 4.24. Boosting response of the candidate systems at 1100 rpm. 

Figure 4.22, 4.23 and 4.24 illustrate the transient response of the air boosting devices of CVT 

Supercharger and conventional supercharger systems. It could be found that the responding 

time of CVT Supercharger system was about 0.15 second shorter than the fix-ratio 

supercharger. The faster increasing air mass flow from CVT Supercharger also helps to 

accelerate the turbocharger. That could explain the better response of the turbocharger in 

the CVT Supercharger engine. Besides, the pressure ratio of CVT Supercharger experienced an 

overshoot during the acceleration of turbochargers. As the turbochargers running faster, CVT 

Supercharger compressor decelerated gradually and handover the air boosting to the 

turbocharger without damaging the transient output, until the target load was achieved. At 

lower engine speed, CVT Supercharger was kept working with full power for longer time to 

help turbocharger to speed up, while at high engine speed when it was easier for the 

turbocharger to accelerate, CVT Supercharger handed over the boosting work sooner. This 

control strategy was to make full use of turbocharger and thereby to reduce the power 

consumed by supercharger. Besides, it could be found from charts 20 to 22 that the final CVT 

Supercharger pressure ratio was lower at higher engine speed since turbochargers take over 

more pressurization work. And also, because CVT Supercharger was able to slow down the 

compressor independently, the final pressure ratio of it is lower than that of the fix-ratio 

supercharger, especially at lower engine speed. This indicated that better fuel economy could 

be achieved by CVT Supercharger engine system. 
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Figure 4.25. Transient performance at 1100 rpm. 

 

Figure 4.26. Transient performance at 1500 rpm. 

 

Figure 4.27. Transient performance at 2000 rpm. 

Figure 4.25 to 4.27 demonstrate the transient performance of the whole engine systems at 

1100, 1500 and 2000 rpm. From the results, the CVT Supercharger system enhanced the 

response speed of the baseline model by about 0.2 second at 1100 rpm. The results also show 

that the most significant improvement was found at higher engine speed. In the author’s 

opinion, it is due to the higher level of participation of the turbocharger. The turbocharger in 

CVT Supercharger engine responded faster than that in conventional engine because of the 
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promotional impact of CVT Supercharger as mentioned above, the transient performance of 

the whole system is improved more with the synthetic effects from the two stage boosting.  

4.6 Conclusion 

This chapter compared the performance of turbo-super and super-turbo configurations to 

determine the location of CVT Supercharger compressor. Optimization of pulley ratio and CVT 

ratio change rate was presented regarding the tip-in operation from different starting load. 

The steady state performance of the whole system was evaluated by examining the fuel 

consumption at full load, part load and driving cycles. Transient performance was investigated 

by comparing to the baseline engine model.  

1. Super-Turbo was proven to be a better configuration than the Turbo-Super counterpart 

for CVT Supercharger system in consideration of fuel economy, because the former 

imposed lower inlet temperature to the CVT Supercharger compressor. It also suggested 

that a two-stage intercooler was necessary for the Turbo-Super layout to achieve better 

thermal efficiency. Besides, the Super-Turbo configuration is proven to be easier for 

packaging and pipework routing in real test. Therefore, the Super-Turbo version is chosen 

in this study. 

2. There was a trade-off between the low load fuel consumption and transient response at 

the lowest engine speed. For example, the engine would consume 2% more fuel at 2 bar 

BMEP to reduce the T90 by 1 second on average. Therefore, optimization has been done 

to determine pulley and epicyclic gear ratio to compromise the transient performance 

against fuel economy. The epicyclic gear ratio and pulley ratio was eventually determined 

to be 12.57 and 2.4 respectively for further research. 

3. Because of the existence of variator reaction torque, the CVT ratio change rate and 

maximum CVT ratio of the CVT Supercharger system were restricted to avoid the dip in 

engine brake torque during tip-in operation. Similarly, the clutching speed and active 

bypass valve close rate of the conventional supercharger system were also limited to 

avoid the sharp decline and over-shooting in engine brake torque. Besides, a general trend 
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was found that the CVT change rate and clutching speed needed to be reduced further for 

higher starting load. 

4. From the simulation results of the full load fuel consumption of each system, it was found 

that CVT Supercharger brought about 3% better fuel economy to the whole system when 

compare with the positive displacement counterpart. Furthermore, CVT Supercharger 

embodied further superiority at mid-high load operation when supercharger was less 

needed for assisting air boosting. At 16 bar BMEP, for example, CVT Supercharger was 

able to provide about 40% better fuel economy than the conventional fix-ratio 

supercharger did. 

5. Under low load condition, when the CVT Supercharger is running with the lowest CVT 

ratio, approximately 4.5% more fuel is consumed than the Eaton system. Besides, it was 

consistent with the previous conclusion that higher pulley ratio will worsen the fuel 

economy in a considerable scope (by up to 2%). 

6. A mini map was produced to imitate the WLTP driving cycle. From the results, the fuel 

consumption of CVT Supercharger engine is higher than the declutched Eaton system by 

up to 4.94% at extremely low load operation. When comparing with clutched fix-ratio 

supercharger, however, the fuel economy could be improved by up to 30.7%. By including 

weights to each of the operating points, the overall BSFC deficits for the major parts of all 

the operating points could be worked out that the fuel economy of CVT Supercharger 

engine was 2.74% worse than the disengaged Eaton and 19.6% better than the engaged 

Eaton system. 

7. From the results of transient simulation, the CVT Supercharger system shorten the 

response time of the baseline twin charged model by about 0.2 second at 1100 rpm. It 

also demonstrates that the most significant improvement was seen at 2000 rpm because 

of the synthetic promotion from both CVT Supercharger and turbocharger. 
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Chapter 5 – System Verification of Variable 

Drive Supercharged engine System  

As an alternative solution to the fixed ratio positive displacement supercharger, the CVT 

Supercharger variable ratio centrifugal supercharger utilizes a continuously variable 

transmission (CVT) coupled to a centrifugal compressor for near silent boosting. With a wide 

ratio spread of 10:1 and rapid rate of ratio change the compressor speed can be set 

independently of the engine speed to provide an exact boost pressure for the required 

operating points, without the need to recirculate the air through a bypass valve. A clutch and 

an active bypass valve can also be eliminated, due to the CVT capability to down-speed, thus 

improving the NVH performance.  This chapter will present and discuss the experimental 

validation of CVT Supercharger technology on a GTDI Engine to achieve a better BSFC and 

transient response over the turbo only and the fixed-ratio positive displacement supercharger 

solution. The potential for the CVT Supercharger system to stretch the low-end torque and 

enable a down-speeding strategy is also discussed. 

5.1 Introduction 

In the simulation phase, as introduced in chapter 4, the CVT Supercharger variable ratio 

centrifugal supercharger was considered as an alternative to the fixed ratio positive 

displacement supercharger. This technology utilizes a continuously variable transmission 

(CVT) coupled to a more-efficient centrifugal compressor for near silent boosting. With a wide 

ratio spread of 10:1 and rapid rate of ratio change (within 360 ms) the compressor speed can 

be set independently of engine speed to provide the exact amount of mass flow for different 

engine operating points, without the need for wasteful recirculating of fresh charge. A clutch 

and an active bypass valve can also be eliminated, due to the CVT capability to down-speed 

which also mitigate the issues of cost, complexity and package and at the same time greatly 

improve the NVH situations [159]. From the simulation results, it comes to the conclusion that 

CVT Supercharger technology was effective in improving the low-end torque output and fuel 

economy (especially for middle high load operation). In terms of transient performance, it was 
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suggested that the CVT Supercharger system could provide faster response speed when 

compares with its fixed-ratio positive-displacement supercharger counterpart. It was 

especially true for the simulation at low engine speed. 

Since the computational simulation results may not accurately reflect the real test 

performance, a test rig has been built to investigate the benefits that the CVT Supercharger 

system could actually achieve.  

5.2 Scope and Objectives 

In this phase, the novel boosting systems is applied to a 1.0 L turbocharged engine [169] 

aiming to achieve an enhanced target torque and power curve (see Figure 5.1).  

 

Figure 5.1. Original standard and targeted engine performance. 

A larger Honeywell turbocharger is fitted to match the power at the high end, while the 

supercharger system is utilized to improve not only the transient performance but also the 

low-end torque, since a large torque difference exists between high and low engine speed 

which may cause a perceived turbocharger lag during vehicle launch even with adequate 

boost system response [174]. The objective in this chapter is to assess the performance of a 

centrifugal-type supercharger system which is driven by a Torotrak continuously variable 
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transmission. The results are compared against a fixed-ratio positive-displacement 

supercharger solution. 

5.3 Control Strategy Implementation 

The control strategy was also initially constructed in the simulation phase.  In order to easily 

access the engine sensor measurements for use in the two-stage boosting control strategy, an 

aftermarket OpenECU was used in combination with the OEM development engine ECU.   

 

Figure 5.2. Boost split control module. 

For the details of control sequence, as shown in Figure 5.2. The ECU will first receive the pedal 

position and engine speed signals from the driver to calculate the demand total boost 

pressure, and will then determine the boost split (feed-forward loop). Finally, a feedback 

control loop is required to correct the demand boost pressure to the target, under different 

boundary conditions (or, in other words, a different altitude) or component ageing. 

Since the open ECU adopted in this project can be compiled in a Simulink environment, a near-

to-complete control strategy was initially built in Simulink and transferred to the open ECU 

developer platform in the experimental phase.  

The proposed CVT Supercharger speed control module (see in Figure 5.3) is made of several 

sub-systems, including a feedforward steady-state look-up table and a feedback loop on 

intake manifold pressure.  
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Figure 5.3. CVT Supercharger speed control module. 

The feed-forward loop, which is basically a look-up table, is designed to help the controller to 

achieve the target boost split quickly and robustly. It might be noted that the control strategy 

currently adopted in this work is characterised of minimizing mechanical boosting in the 

interests of efficiency. It aims to achieve the highest possible utilization of the turbocharger, 

and the supercharger only assists when the turbocharger is unable to provide adequate flow 

at low engine speeds and during transient events.  

The feedback control includes an anti-windup function and a gain scheduling strategy. The 

functions include adjusting the CVT Supercharger speed so that the total boost pressure can 

be achieved if the feed-forward loop is not working precisely (due to component ageing or 

different boundary condition) and detecting a transient signal in order for the supercharger 

to ‘pre-boost’ the engine system.  

It might be worth noting that two look-up maps (i.e. upper and lower CVT Supercharger speed 

rate limiter) were used to optimize the transient trajectory shaping for the best CVT 

Supercharger performance, which was from the perspective of physical response behaviour, 

and also the driveability consideration. In according with the simulation results, it is found in 

test that the largest achievable CVT change rate might not be appropriate to implement during 

a transient event, due to the ‘dip’ phenomena (it is shown in section 5.4.2). Furthermore, 

whether the torque dip (if there is any) could be ‘felt’ by the driver is another question, which 
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also needs to take into consideration the damping effect of the whole powertrain system (and 

is thus beyond of the scope of this research).  

 

Figure 5.4. Wastegate control module. 

In order to accurately control the boost split in the two-stage system, the standard closed-

loop pneumatic mechanism was replaced by a ‘smart’ pneumatic wastegate mechanism with 

electronic control. Figure 5.4 shows the wastegate control module that was proposed for the 

CVT Supercharger project. It is, like the CVT Supercharger speed control discussed above, was 

comprised of two main sub-sections of controlling: feed-forward and feedback loop. There is 

also an anti-windup loop in the wastegate control module.  Note that the PI controller input 

for the wastegate control is the turbocharger pressure ratio difference between the target 

and the actual, and that for the CVT ratio control is the total boost pressure difference 

between the target and the actual. This is for the purpose of avoiding the conflict between 

the two interdependent PI controllers.  

5.4 Experimental Setup 

The test was carried out in an engine test cell at University of Bath (see Figure 5.5). The system 

set up and measurement details are shown in Figure 5.6. In the facility, the ECU calibration 

software ATI Vision is communicated with the host system CP Cadet via an ASAP3 link for the 

easiness of record and monitoring. ATI Vision is also communicated with the ECU via a CAD 

Calibration Protocol (CCP). 
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Figure 5.5. Test cell at University of Bath. 

 

Figure 5.6. System schematic and measurement locations. 

The experiments were conducted on a 1.0 L, three-cylinder, gasoline turbocharged direct 

injection (GTDI) engine with variable intake and exhaust-valve timing system [169]. The 

Torotrak CVT Supercharger system, which is comprised of a pulley step-up gear, a CVT 

mechanism and an epicyclic gear as shown in Figure 4.2, was directly connected to the engine 

crankshaft via a conventional micro-V belt, and in this proof of concept installation is achieved 

with a separate additional pulley. This is mounted alongside the standard fit FEAD pulley as 

shown in Figure 5.7. For a production integration the supercharger could be driven by an 



125 
 

upgraded FEAD belt, reducing the losses associated with an additional belt driven system.  

 

Figure 5.7. CVT Supercharger system installation. 

 

Figure 5.8. Check valve configuration. 

A check valve seen in Figure 5.8 was mounted around the CVT Supercharger compressor to 

act as a passive bypass valve in order to bypass the compressor when the CVT Supercharger 

compressor is not able to provide the required mass flow rate. It should be note that the rig 

for this work was built by the engineers of PVRC. 

In order to have wide operating range and precise control of the engine boundary conditions, 

the cooling circuit for the engine coolant and oil were replaced with an external water-to-
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coolant heat exchanger. In addition, an aftercooler was replaced by a water-to-air heat 

exchanger. Therefore the temperatures of the engine coolant, oil and engine intake air could 

be controlled by varying the water flow rate in each heat exchanger. In this test, before logging 

the test data, the engine coolant, oil and aftercooler temperature was kept around 90 degC, 

100 degC and 45 degC. 

5.4 Results and Discussions 

5.4.1 Steady-state engine performance 

The aim of this test was to understand how the CVT Supercharger may best influence engine 

performance and fuel economy and to build a robust control strategy using the steady-state 

experimental data. The work will focus on the low speed region which is considered most 

important a limiting in terms of maximum steady state BMEP and transient response. 

5.4.1.1 Full Load performance: 

The simulation and verification test activities have initially focussed on a modest increase of 

maximum steady state output torque, from circa 170Nm to 200Nm (see Figure 5.1).  

In light of the pursuit of higher BMEP’s to facilitate more aggressive downsizing and fuel 

economy benefits, an additional stretch torque target of 240Nm was specified, which reflects 

the output of the current 1.5 L 4 cylinder turbocharged engine. This steady state target for the 

1.0L turbocharged engine equates to more than 30bar BMEP. 

 

Figure 5.9.  Engine torque output comparison. 
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Figure 5.10. Engine BMEP comparison. 

As can be seen in Figure 5.9 and Figure 5.10, the test results for the CVT Supercharger system 

demonstrates that the stretch torque target is achieved across much of the engine operating 

range. This is realised within safe combustion limits with headroom to potentially increase 

output further still. 

The original target output at 1000rpm is not quite reached for steady state operation, with 

145Nm achieved vs a 160Nm target. Transient torque capability at this speed is ~200Nm 

before falling back to 145Nm after a few seconds. This appears to be caused by the onset of 

turbocharger surge, which is always being monitored, and may be remedied by adopting a 

TurboSuper arrangement rather than the SuperTurbo configuration pursued in practical 

testing. Optimising turbocharger trim may also help with this limitation. 

From approximately 4000rpm, there is a noticeable downturn in torque earlier than might be 

expected. This reduction corresponds with increasing post turbine back pressure, and is 

believed to be caused by the restriction of the original turbocharger exhaust downpipe and 

catalytic convertor, which are now being subjected to significantly higher exhaust flow rates. 

Reducing this restriction by a larger bore downpipe and converter is likely to realise more 

torque at higher speeds, and a reduced downturn characteristic. 

It should be noted that the superior transient response of the CVT Supercharger equipped 

engine particularly at lower engine speeds will result in significantly improved driveability over 
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the standard 1.5L turbocharged unit, something that the steady state torque graph cannot 

reflect. 

The level of engine brake torque achieved also alleviates the requirement of scavenging: a 

common approach to improve low-end torque of a direct inject turbocharged gasoline engine 

[176]. This will either aid minimising the engine-out emissions [175] or reduce catalyst 

exotherm when operating with stoichiometric exhaust [177]. 

5.4.1.2 Low load performance 

The fuel consumption of CVT Supercharger system was tested under a low load condition of 2 

bar BMEP. The GT-Power model has been re-calibrated in accordance with the experiment 

results to make the comparison between the CVT Supercharger and positive displacement 

supercharged models sensible. 

It should be note that sources of inaccuracy do exist in this condition downgrading the 

calibration. It includes the lack of combustion and friction parameters of the engine and the 

fluctuation of the turbine performance at extreme low speed and pressure ratio. 

The first target in this stage is to make the breathing of the engine model coincident with the 

test results. Specifically, the air pressure and temperature should be unified between 

simulation and experiment. There are a number of specifications, including intake valve 

timing, cylinder convection and friction factor and anchor angle, in GT-Power affecting the 

characteristics of the intake and exhaust gas. 

 

Figure 5.11. Tested and simulated turbine speed and pre-turbine temperature. 
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Figure 5.12. Tested and simulated inlet air mass flow rate and pressure. 

From figure 5.11 and 5.12, the simulated inlet air pressure and mass flow rate and the exhaust 

temperature show good matching to the experiment results after validation. The maximum 

difference is found in the intake manifold pressure, which is less than 4 %. 

The simulated and measured BSFC of the CVT Supercharger system shows good coherence as 

well with a maximum discrepancy less than 0.7%. Figure 5.13 also illustrates that the positive 

displacement supercharged engine is advantageous in fuel economy under low load. The 

specific fuel consumption declined by up to 4.9%, since the supercharger could be declutched 

to remove the mechanical losses. The influence of pulley ratio on the CVT Supercharger engine 

fuel consumption is also included in figure 5.13, which demonstrates that the fuel 

consumption increases prominently with higher pulley ratio setting, especially when the 

engine was operated at lower speed, or the pulley ratio was above 2.5. 

 

Figure 5.13. Tested and simulated brake specific fuel consumption. 

5.4.1.3 WLTP driving cycle: 

The compressor of the Eaton configuration usually needs to be disengaged at low load, 
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especially when a large drive ratio is installed. However, the CVT Supercharger system could 

trade some fuel efficiency at low load for better transient behaviour by constantly connecting 

the compressor to the engine crankshaft with its minimum ratio.  

As there was a passive bypass valve installed, only one-way flow is allowed. If the CVT ratio is 

sufficiently low, there would be some pressure drop across it that force the bypass path to 

open, which will then results in the supercharger PR to be around 1.  

According to the test data that sweeps the engine torque from very low to the largest within 

the NA line using the minimum CVT ratio, it can be seen that the supercharger PRs were all 

around 1 that indicates that at the minimum CVT ratio, the supercharger could not supply 

sufficient mass air flow without the assistance of the bypass valve. From the perspective of 

boosting, it also shows that the minimum CVT ratio could not generate a valid PR that boosts 

the intake air, consuming much power.  

It is known that if the PR and the speed of a compressor is about the same, the power 

consumed to drive the compressor should also be similar. Thus, it is safe to say that for 

different engine operating points at the same engine speed, the parasitic losses are around 

the same. As there was no mass air flow sensor mounted in the supercharger path, the power 

consumed will be calculated in the validated simulation model in this work.  

 

Figure 5.14. WLTP driving cycle with Minimap. 

The simulation showed that at 1000RPM, only approximately 60W was wasted to constantly 

connect the supercharger compressor to the crankshaft, the ratio of the consumed power to 

the engine power being around 2% at low engine load (below 30N*m). At higher engine speed, 

a similar situation was observed. Figure 4.21 shows the engine operating points for a D-

segment vehicle on a WLTP driving cycle with the calculated weighted Minimaps. The test 

results with these Minimap points can be seen in Figure 5.14, with the maximum BSFC deficit 
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around 5.5% and descending with higher engine torque. It should be noted that the BSFC 

deficit was calculated by the configuration of the CVT Supercharger with its minimum CVT 

ratio compared with the counterpart with the CVT Supercharger pulley off. The discrepancy 

of the simulation and test might be the underestimation of the pulley parasitic loss. 

In order to reduce these parasitic losses, a novel approach was proposed that just takes the 

bypass valve out of the system. This so called ‘wind milling’ effect will force the PR of the 

supercharger to be below 1 at low loads, resulting in the energy flow to be reversed, in order 

to offset some of the parasitic transmission losses. However, if the CVT Supercharger control 

calibration is considered, the use of a passive bypass valve will be beneficial. This is mainly due 

to the fact that, at low load within the throttled region, the configuration with a bypass can 

constantly keep the CVT ratio at its minimum, while for the system without a bypass valve, 

the CVT ratio might need to be tuned to supply the required mass air flow (the parasitic losses 

will also be increased along with the durability of the CVT) [178]. 

Also it should be noted that compared to the standard engine configuration with a smaller 

turbocharger, the CVT Supercharger system, featuring a larger one, is potentially able to 

reduce its part load BSFC by approximately 2% due to its reduced backpressure [174].   

Compared to the fixed-ratio positive displacement counterparts which often have to fit an 

active bypass (and a clutch) to reduce the parasitic losses at part load, the CVT Supercharger 

system only needs a passive bypass valve that can significantly reduce the control strategy 

calibration efforts and cost. 

5.4.2 Transient performance: 

Table 5-1. Control strategy calibration 

       VC operation  

 

VC acceleration  

      Long    Medium          Short 

Fast 1 2 3 

Medium 4 5 6 

Slow 7 8 9 

Turbo-only 

After determining the boost pressure split and populating the control map, some transient 
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tests were conducted, with and without the assistance of CVT Supercharger system. Figure 

5.15 to Figure 5.17 show the transient torque performance at 1100RPM, 1500RPM and 

2000RPM respectively, under four distinctive control calibrations. There are two parameters 

that are used to define the CVT Supercharger speed trajectory in a transient: CVT Supercharger 

speed change rate and CVT Supercharger operation period. They are termed as VC 

acceleration and CV operation respectively in table 5.1. It might be noted that unlike the CVT 

Supercharger speed change rate which could easily be defined as a rate limiter in the control 

strategy, the CVT Supercharger operation period has to be determined by the transient 

behaviour of the turbocharger (thus an empirical turbocharger plant has been modelled). By 

advancing or delaying the turbocharger transient model, different CVT Supercharger 

operation period could be defined. In order to illustrate how different control calibrations 

work, test 1, 4, 6 and turbo-only in Table 5.1 corresponding to ‘Fast VC with dip’, ‘Overlength 

VC operation with overshoot’, ‘Best time to torque’ and ‘Turbo only’ were shown in the 

following. 

 

Figure 5.15. Transient torque performance at 1100RPM 

 

Figure 5.16. Transient torque performance at 1500RPM 
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Figure 5.17. Transient torque performance at 2000RPM 

It can be seen that compared to the turbo-only case, the system fitted with the CVT 

Supercharger system not only has the capability to enhance the final engine torque, but also 

characteristics significantly improved time-to-torque performance, although different control 

calibrations will result in different torque trajectory. In order to understand the interactions 

between the two boosting systems and the engine itself, a more detailed illustrations at a 

fixed 2000RPM tip-in from 10% pedal position was shown in Figure 5.18. 

(a)  

(b)  



134 
 

(c)  

(d)  

(e)  

(f)  
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(g)  

(h)  

Figure 5.18. Transient trajectories at a fixed 2000RPM from 10% pedal position:(a) Engine 

torque; (b) Total boost pressure; (c) Mass air flow; (d) Turbocharger pressure ratio; (e) 

Turbo speed; (f) CVT Supercharger pressure ratio; (g) CVT Supercharger speed; (h) CVT 

Supercharger CVT ratio 

From Figure 5.18 (a) (b) (c) it can be seen that the CVT Supercharger system, compared to the 

turbo-only counterpart, can improve the time-to-target performance by approximately 70%, 

making it behave more like a naturally aspirated engine. Compared to the other calibrations, 

the case with the fastest CVT Supercharger CVT ratio change rate characteristics an engine 

torque dip during the first phase of the transient which might influence the vehicle’s 

driveability.  

If test 4 (marked Overlength VC operation with overboost) and test 6 (marked Best time to 

torque) have been compared (see from Figure 5.18 (a) (f)), it can be seen that they do broadly 

the same thing when the CVT Supercharger is ramping on but test 6 is ramping off earlier. The 

result is a faster time to torque behavior and no apparent overshoot for test 6. There must be 

a point in the ramp where the CVT Supercharger takes more than it gives back during the end 

of the transient, due to the fact that mass air flow is increasing as manifold pressure builds so 
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CVT Supercharger uses more power to maintain pressure. 

Figure 5.18 (d) (e) show the turbocharger compressor behavior during the transient. During 

the first phase of the tip-in, the turbocharger compressor pressure ratio of the ‘Fast VC with 

dip’ case was slightly below 1, due to the fact that the supercharger accelerates much faster 

than the turbocharger compressor (thus generating higher pressure ratio between the two 

boosting systems). This ‘dip’ pressure then helps the acceleration of the turbocharger 

compressor and makes its pressure ratio higher than the other two CVT Supercharger control 

calibrations and the turbo only setting. The supercharger’s capability to enhance the 

turbocharger’s power was also seen between the ‘Best time torque’ case and the ‘Overlength 

VC operation with overshoot’ case, where the turbocharger speed and pressure ratio was 

increased with the prolonged operation of the CVT Supercharger system during the end of tip-

in. 

The behavior of the CVT Supercharger system can be seen in Figure 5.18 (f) (g) (h). Compared 

to Figure 5.18 (d) (e), the boost split between the supercharger and the turbocharger during 

a transient can be illustrated: the supercharger pre-boost the engine at the start of a transient 

and then hands over the boost to the turbocharger while the turbocharger spools up.   

It should be noted that the objective of this project is to demonstrate the CVT Supercharger’s 

feasibility as an alternative solution to achieving a highly downsizing concept, thus the tuning 

of the control strategy which includes the refinement of the feedforward and feedback control 

is out of scope of this thesis The performance of the CVT Supercharger system could be further 

improved if a considerable effort of calibration was conducted.  

Compared with the fixed-ratio positive displacement solution, due to the capability to be 

constantly connected with the engine’s crankshaft, the CVT Supercharger system does not 

need a clutch resulting in significantly improved NVH performance during a transient. Also the 

necessity to disengage the supercharger for the fixed-ratio positive displacement 

configuration at higher engine speed (due to over-speeding) also affects the driveability 

consistency. Last but not least, the characteristics of the positive displacement compressor 

make it mandatory to include a noise attenuation device which is not necessary for the CVT 

Supercharger system. 
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It might worth noting that the optimized CVT Supercharger transient speed trajectory from 

different engine load should be set differently and the trend is that for a higher starting engine 

torque, a slower CVT Supercharger speed acceleration rate needs to be used, in order to avoid 

engine torque dip. This is mainly due to the fact that at low engine torque, after the tip-in, the 

engine torque that is used to accelerate the supercharger could be offset by the fast operation 

of the throttle opening, while for a higher engine load, especially above the naturally aspirated 

region, the torque extracted from the engine to accelerate the supercharger cannot be offset 

by the relatively slower operation of the turbocharger and an engine torque dip will be felt if 

a same supercharger acceleration rate is set. 

5.5 Discussions 

5.5.1 Driving cycle fuel efficiency improvement by further downsizing and down-speeding 

From the test data above, it can be seen that both the steady-state full load performance and 

the transient behaviour for the CVT Supercharger system have been improved significantly 

compared with the counterparts with only turbocharger. This indicates that the same volume 

engine with the CVT Supercharger system fitted can drag a larger vehicle, realising downsizing 

to enhance fuel efficiency. In the meantime, due to the faster transient behaviour, an 

optimized transmission gear ratio or shifting strategy could be implemented, achieving down-

speeding in order to improve fuel efficiency, shifting frequency and driveability [172, 179, 

180]. 

5.5.2 The potential benefit of Miller cycle for CVT Supercharger system 

The Miller cycle, usually achieved with an early or late intake valve closing, can achieve a 

longer expansion stroke than compression stroke, thus improving the engine’s 

thermodynamic efficiency [181, 182]. In addition, for a gasoline engine, at part load Miller 

cycle can improve the fuel economy due to the reduced pumping losses and for the high load 

operation, the lowered end-of-compression temperature and pressure for the Miller cycle are 

able to enhance its anti-knock performance. However, a higher pressure ratio boosting system 

is required to regain the lost volumetric efficiency and maintain the target performance. The 

CVT Supercharger system with its superior low-end torque and significantly improved 
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transient behaviour may introduce more flexibility for optimizing the whole engine system 

with a Miller cycle concept, thus further enhancing its fuel economy.   

5.6 Conclusions 

Mechanically supercharging a passenger car engine is considered to be an alternative or a 

complementary approach to enable heavy downsizing to be carried out. The CVT 

Supercharger system, with the capability to enhance low-end torque, improve the transient 

driveability and reduce the low-load parasitic losses, is deemed to be a potential solution to 

address the fuel efficiency and driveability issues facing passenger car engines. After 

investigating, in both simulation and experiment, the CVT Supercharger system on a 1.0L GTDI, 

the following conclusions are drawn: 

 

1: At steady-state, the CVT Supercharger system is able to significantly enhance an engine’s 

low-end performance without crucially affecting its low load fuel efficiency. Further 

downsizing or Miller Cycle enabled by the enhanced engine performance could be used to 

mitigate the fuel penalty that is caused by the parasitic losses. 

 

2: A ready-to-use control strategy at the engine’s level has been built and calibrated using the 

steady-state engine test data. The influence of different control calibrations on the engine 

performance has been found and will guide the later control calibration tuning at the vehicle’s 

level.  

 

3: In transient, with its wide ratio spread of 10:1 and rapid rate of ratio change, the CVT 

Supercharger system can achieve significantly better transient performance in terms of time-

to-torque compared with the turbo only configuration, and of NVH behavior in comparison to 

the fixed-ratio positive displacement counterpart with a clutch. Re-optimizing the 

transmission gear ratio or the shifting strategy, realizing further down-speeding, could further 

improve the engine’s fuel efficiency in a real driving cycle, while maintaining a good 

driveability. 
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4: The CVT Supercharger demonstrator vehicle is expected to either achieve the goal of 

improving the vehicle’s performance or enable an aggressive downsizing to achieve superior 

fuel economy. 
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Chapter 6 – Implementing full electric 

turbocharging (electric turbo-compounding) 

systems on highly boosted gasoline engines  

 From the perspective of engine energy flow, the copious amounts of wasted energy is 

habitually harvested by the turbine with low efficiency, subsequently the turbine power 

transmitted to the compressor is used solely to charge the engine. When this power for 

charging is excessive for the set engine operating condition, it either is consumed by throttling 

or is directly discharged through the wastegate, both as a pure enthalpy loss. To more 

efficiently harness the waste energy without deteriorating other engine performance 

parameters, a full electric turbocharging technology is provided by Aeristech Ltd. The system 

is composed of an electric turbo generator and an electric compressor connected only through 

electrical system. Without the constraint of a mechanical turboshaft, the compressor and the 

turbine can be operated at different speeds. The electrically driven compressor can be free 

floating when boost is not required and the motor can provide the boost promptly only when 

higher load is requested. Meanwhile, the electric turbine can be controlled by the generator 

to operate at any set speed, allowing maximum efficiency for energy harvesting. This chapter 

presents a simulation study of the capability of the decoupled eTurbocharging system to 

charge a highly boosted 2 litre gasoline engine. The simulation results have revealed that the 

two stage eTurbocharging system has the potential to reduce CO2 emission in the proximity 

of 1 percent in different drive cycles compared to conventional wastegate turbocharger and 

the benefit would be much higher for future real world driving cycle.  

6.1 Introduction 

The electrification of the boosting system has been seen as a crucial enabler technology to 

achieve optimal drivability and CO2 emission on highly boosted gasoline engines [183]. There 

are three main forms of boosting systems electrification: mechanical turbocharger assisted 

by a small ebooster, eTurbocharger with a shaft-mounted motor/generator and the 

mechanically decoupled eTurbocharger. 
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Out of the three options, the conventional turbocharger assisted by a small ebooster has 

been the most popular arrangement and has recently seen commercial application by Audi 

on Diesel engines with potential suppliers including all major turbocharger OEMs [184]. A 

study presented by FEV [185] has shown the benefit of such a system to both the emission 

control and performance enhancement with the aid of a 48V hybrid powertrain: increased 

EGR level enabled by eSupercharging can reduce the engine out NOx emission in the range 

of 50% during transient; adaptation of the size of base turbocharger has the potential to 

reduce fuel consumption up to 2% and downsizing and downspeeding of a eboosted engine 

can lead to the further reduction of 4-5%; furthermore, the expected low end torque 

improvement and transient response supported by an ebooster allows the mechanical 

turbocharger to charge the engine to higher power density. 

The transient response improvement through the use of ebooster was discussed in more 

depth in a study presented by University of Ljubljana [186]. eBooster was shown to be 

superior to the integrated starter generator (ISG) in heavy duty Diesel vehicle application in 

terms of ratio of engine dynamics improvement to electric energy consumption. 

Such comparison between ebooster and ISG was also confirmed by Continental [187], where 

a 2 litre TGDI engine was uprated from 220 to 250kW. While confirming the much improved 

transient performance through eboosting, it was stated that a 1.7kW electric energy invested 

on eboosting is equivalent to 20kW of ISG power input within a P2 mild hybrid architecture. 

On the topic of extreme downsizing, Mahle and Aeristech [183] have managed to charge a 

1.2litre engine to 33 bar BMEP, increasing the power rating of a demonstrator engine from 

120kW to 193kW. The potential of turbocharging was greatly enhanced thanks to the 

ebooster which took over the engine boosting at low end. 

An eTurbocharger with a shaft-mounted motor/generator has long been a novel 

turbocharging option. Back in 2000, Imperial College [188] has published theoretical study of 

a ‘hybrid turbocharger’ for both steady state and transient performance evaluation. Without 

considering emission due to the computational model limitation, the turbocharger can be 

resized and leading to a fuel economy improvement of 5-10%. Transient response was 

improved with various level depending on the power rating of the motor generator.  

The transient simulation methodology was seen much improved a few years later in a study 

by University of Ljubljana [189], where a 0D simulation code calibrated by experimental data 

was used. Transient response was observed relating to both the power rating and inertia of 

the motor generator used; a typical torque tip-in has seen a more than 50% improvement 

through the use of electrically assisted turbocharger. 
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A more recent study [190] on the shaft-mounted motor/generator turbocharger has further 

demonstrated the flexibility of such a system to be used either to assist engine boosting or 

to harness energy to support on-board use. Fuel consumption benefit of 4.6% improvement 

in NEDC was reached on a highly downsized engine. 

The mechanically decoupled eTurbocharger is gaining attention only in recent years. With 

the maturity of eboosting and turbo-compounding, such arrangements faces only the 

barriers of adequate control design and commercially viable cost-benefit ratio. A study by 

Clemson University [191] has presented a theoretical study of a boosting system comprised 

of an ebooster and an electric turbo-compounder. The study was supported by a 

comprehensive model built in AMESim, with dedicated physical model of the 

motor/generator and battery. An AFR based control strategy was proposed in the study and 

potential of positive energy balance from the boosting/turbo-compounding system and 

engine transient performance was demonstrated. Nonetheless, the controller oscillation has 

revealed the potential control difficulty of the system and the scope of the study did not 

include the practicality aspects such as engine full load condition, electrical system efficiency 

and motor/generator power rating. 

To summarise the existing studies, the ebooster technology is a compact and cost-effective 

solution to support the turbocharged engines to improve the low end torque, rated power 

and transient performance. Fuel economy is improved mainly through the ebooster aided 

gas exchange process optimisation, turbo upsizing and engine downsizing. The technology 

will undoubtedly see popularity with the advent of universal hybridisation. On the other 

hand, the shaft-mounted motor/generator eTurbocharger technology adds in the advantage 

of energy harvesting without increased control complexity. However, it does not solve the 

problem of lack of low end torque in downsized engines due to the compressor surge. Finally, 

due to the complete independence of eCompressor and eTurbine speed, the decoupled 

eTurbocharger combines the performance augmentation of eboosters and the energy 

harvesting capability of electric turbo-compounders. However, the potentials and problems 

of such a technology are yet to be fully studied.  

This study aims to find a viable solution of decoupled eTurbocharger for a highly boosted 

2litre gasoline engine through simulation. The engine equipped with the novel boosting 

system should deliver a full load curve superior to the baseline setup. The potential of fuel 

consumption will be derived and the control strategy designed for the boosting system will 

be validated through improved fuel economy. 
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6.2 Modelling and simulation 

6.2.1 Engine system 

The engine model was implemented in the 1D wave dynamics modelling environment in GT 

Power. The baseline model has been calibrated for both full/part load steady state conditions 

as well as the transient operation. The combustion model was a test data calibrated Wiebe 

function matrix and could potentially create predictive errors when extrapolating above the 

baseline limiting torque curve or simulating transient operations, therefore care should be 

taken to use the exact numbers from such non-predictive combustion models. 

The baseline engine was a 2.0litre production gasoline engine, charged by a conventional 

wastegated turbocharger, achieving a knee point torque of 340Nm at 1750rpm, max torque 

350Nm at 3000rpm and max power 175kW at 5500rpm. The baseline model favoured 

transient performance and therefore has employed a relatively small turbocharger, raising 

low end torque at the expense of increased pumping work. With a novel boosting system, 

the full load torque was slightly optimised by advancing the knee point down to 1250rpm. 

Such optimisation will be the result of extra boosting from the ebooster. 

Two eTurbocharger arrangements have been investigated as shown in figure 6.1 below. In 

the two stage boosting system the eTurbine can be placed either upstream or downstream 

of the mechanical turbine. eCompressor can also be placed upstream or downstream of the 

mechanical compressor, however simulation has shown that the performance of neither 

engine nor the boosting system was sensitive to the eCompressor location. 

 

Figure 6.1. Two stage arrangement (HP and LP mode). 

The simulation will aim to first achieve the full load torque target regardless of the 

eTurbocharger arrangements. Then the practical aspects such as the eTurbine power rating 
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will be discussed using the simulation results obtained. Following the full load simulation, 

part load simulation will cover the full area of the speed/torque map to evaluate the fuel 

economy and control strategy. Drive cycle fuel economy improvement will be calculated 

using minimap points with weighting for different drive cycles. Transient simulation at the 

end will further confirm the performance improvement. 

6.2.2 Turbomachinery 

The various compressors and turbines used in the simulations have been designed by 

Advanced Design Technology (ADT) Ltd specifically for the requirement of this study.  

 

Figure 6.2. Design of compressor wheel. 

 

Figure 6.3. Design of turbine wheel. 

The compressor design employed the inverse design method. The engine operating line at 

full load was first crudely generated using a scaled compressor map from the GT power 

library. Then the commercially developed mean-line design code TDpre was used to generate 

the meridional housing for the impeller wheel. Subsequently the design of impeller blade 3D 

shape was conducted in 3D inviscid design code TD1. ANSYS CFX was used to predict the 

performance map of pressure ratio and efficiency which iteratively supported the TD1 design 

practice until arriving at a satisfactory design when the full load operating line lay within a 

compressor map. Such method has the risk of predicting optimistic surge margin and stage 

efficiency and will be further evaluated experimentally in the following stage of the project. 

The design of turbine wheel was a different process compared with conventional application 

since the turbine speed is independent of the compressor speed. Again, a mean-line method 
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is firstly used to find the combination of tip width and tip radius that can fulfil the 

requirement of both the highest and lowest mass flow conditions. The 1D results from TDpre 

was then sent into TD1 for 3D blade and nozzle shape design, with ANSYS CFX providing CFD 

calculation to support the design iteration. Without the constraints of compressor inertia and 

the shared turbomachinery speed, both turbine and compressor design seemed slightly 

different from the usual shapes of turbochargers for a similarly sized engine. A pair of 

compressor and turbine is shown in figure 6.2 and 6.3 (comparison not to scale). 

6.3 Control strategy 

The gas exchange system control strategy implemented in this study has been focused on 

optimal fuel economy. Whenever multiple solutions existed for the same target torque, a 

DoE simulation was always conducted to find the lowest BSFC.  

For consideration of transient performance, the conventional mechanical turbocharger 

routinely ‘overboosts’ and throttles the engine at the same time in part load conditions, so 

that a torque transient request can be met with instant mass flow and a fast spinning 

turbocharger once the throttle opens up. An eboosted gasoline engine, on the contrary, can 

afford to charge the engine with the exact amount of boost pressure needed for the torque 

target, knowing that any transient request can be fulfilled by a responsive ebooster. Engine 

de-throttling through a boost control regime as such is a huge advantage for part load fuel 

economy. 

Following the control philosophy of engine de-throttling, when throttling is necessary for the 

low load condition, it was better to throttle the engine using the eTurbine than the throttle, 

in that part of the throttling loss can be converted to electric energy. Depending on the 

eTurbocharger power system efficiency, such benefit disappeared at high mass flow, due to 

the fact that the pumping loss exceeded the energy recuperation. 

The details of each controller can be explained as below. 

Throttle 

The throttle controller was a PID controller with feedforward and gain schedule targeting the 

BMEP at low to mid load. In the test environment the BMEP target can be substituted by a 

calibrated mass flow rate instead. 

eCompressor 

The eCompressor controller was a PID controller with feedforward targeting the BMEP. The 

controller was only activated at high load when extra boost was needed to achieve the torque 



 

 

 

146 

target or transient condition. 

eCompressor bypass valve 

The bypass valve opened by default and shuts completely when eCompressor was active. 

Turbocharger wastegate  

A large wastegate was necessary to bypass the mechanical turbocharger completely when 

boost was not needed at low to mid load. At mid to high load, the wastegate controller was 

a PID controller with feedforward targeting the BMEP. 

eTurbine 

 

Figure 6.4. Speed control of eTurbine. 

The eTurbine speed was controlled by changing the load on the motor/generator it was 

attached to. The target of the controller was to operate the turbine at its highest isentropic 

efficiency region. A polynomial model with pressure ratio as input was designed as shown in 

figure 6.4. A PID controller modulates the generator load to match eTurbine speed to the 

polynomial model output. A typical polynomial equation can be written as: 

                                             6.1  

eTurbine bypass valve 

eTurbine bypass valve was the most complicated one. In test environment the controller 

would require heavy calibration effort. The controller is described as follows: 

- At low load, map based binary control: fully shut to convert throttling loss to electric 

energy and fully open when not economical to do so at higher engine speed 

𝑆𝑝𝑒𝑒𝑑
𝑡𝑎𝑟𝑔𝑒𝑡

= −4964 × 𝑃𝑅−1.585 + 5288 
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- At low to mid load when throttle already fully opened, modulates engine back 

pressure through the involvement of eTurbine to target BMEP 

- At mid to high load, the controller bypassed the eTurbine when wastegate starts to 

modulate BMEP. 

-  When eCompressor was active, the controller engaged the eTurbine to generate 

just enough energy to supply the eCompressor.  

- Bypass valve controller also modulate the involvement of the eTurbine so that the 

power generated did not exceed the design limit of the motor generator (8kW in 

this study). 

6.4 Simulation results  

6.4.2 Two stage arrangement - eCompressor added 

Steady state simulation results divided the engine speed/torque map into three regions as 

shown in figure 6.5.  

 

Figure 6.5. Division of engine speed and torque for steady state simulation. 

For the two stage boosting engine system, the target BMEP at 1750 rpm and below was 

enhanced as shown in figure 6.6. As shown in figure 6.7, the mechanical turbocharger 

provided very little boost at low engine speed. At 1250 rpm, for example, the inlet air 

pressure was less than 1.28 bar for the baseline engine. By utilizing eCompressor, the inlet 

air was boosted up to 1.98 bar. As a result, the full load brake torque was increased from 225 

Nm to 340 Nm at 1250 rpm. When the engine was operated above 1750 rpm, eCompressor 

was shut down and bypassed, imposing no effects on the power output from the engine. 
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Figure 6.6. Performance target of two stage arrangement. 

 

Figure 6.7. Brake torque and boost pressure for baseline and eCompressor engine. 

 

Figure 6.8. Lugline in the compressor map of baseline and eCompressor engine. 

In figure 6.8, the operating points of the mechanical turbocharger compressor moved away 

from the surge line even though achieving higher torque at low end since the eCompressor 

shared part of the boost and helped to increase the inlet air mass flow. Such effect would 
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allow a larger compressor for the engine rated power, while avoiding low end surge. Above 

1750 rpm, the bypass valve was fully opened to disengage the eCompressor from the air 

path. The lugline in this part coincides with the baseline setup. 

 

Figure 6.9. Back pressure and mechanical turbo speed for HP and LP mode. 

 

Figure 6.10. Full load BSFC and engine boost pressure for HP and LP mode. 

 

Figure 6.11. Electric E-turbocharger power and pressure ratio for HP and LP mode. 

In order to decide the relative position of mechanical and electrical turbine, simulations were 
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carried out with the eTurbine being located upstream (HP mode) and downstream (LP mode) 

the mechanical turbine. From figure 6.9, mechanical turbine speed was lower in LP model, 

which indicated that the output from the mechanical turbocharger was reduced. Therefore, 

more power was consumed by eCompressor to make up for the deficit in mechanical 

boosting, as shown in figure 6.11. When the eTurbine was located downstream of the 

mechanical turbine, it generated more power than the HP mode because it shared more 

expansion ratio. Due to the smaller size of the eTurbine, it brought about higher back 

pressure in LP arrangement. Consequently, in order to achieve the full load target, higher 

boost pressure was required for the LP mode as well. It was the self-amplifying circle such as 

this that magnified the small advantage of HP mode into a large difference in performance. 

As shown in figure 6.10, the full load BSFC is lower (by up to 2.7% at 1500 rpm) when eTurbine 

was located upstream the mechanical turbine (HP mode) because of the lower back pressure 

and less power consumption by the eCompressor as aforementioned. However, when 

considering the exhaust temperature at the inlet port of eTurbine, the LP mode was more 

preferable to retain greater margin to the limit, which was beneficial to prolong the life cycle 

of the electric turbine. 

In addition, the eCompressor efficiency was nearly the same for both configuration, while 

the operating points of mechanical compressor in the LP model shifted away from the surge 

line to the higher efficiency region, as shown in figure 6.12 and 6.13. Based on synthesized 

considerations, it was decided to locate the eTurbine downstream the mechanical turbine 

(LP configuration) in this model for further studies. 

 

Figure 6.12. eCompressor efficiency for HP and LP mode. 
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Figure 6.13. Luglines in mechanical compressor map for HP and LP mode. 

6.4.3 e-Turbine performance for LP mode 

In order to locate the operation points in the region of highest thermal efficiency, the 

eTurbine speed was regulated. Specifically, a favourable line of reduced turbine speed was 

calculated for a set of pressure ratios according to the polynomial equation 6.1.  

In the control module, expansion ratio of the eTurbine was used to calculate the desired 

eTurbine speed. A PI controller then modulates the load to the eTurbine to achieve the target 

speed. 

In figure 6.14, power output from the eTurbine was multiplied by an overall conversion 

efficiency of 67% to indicate the power availability to the eCompressor. The results showed 

that there was a minor shortage at 1250 rpm. Such deficit would need to be provide by the 

battery which was a manageable power level. The power requirement of the eCompressor 

at other engine speeds can be satisfied without imposing parasitic load to the engine. 

 

Figure 6.14. eTurbine power vs eCompressor power. 

6.5 Simulation results  

The fundamental principle of the control strategy for partial load simulation is to explore as 

much potential of the eTurbine as possible for all the engine loads to reduce throttle losses 
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and the exhaust energy expelled through the wastegate as long as it was economical to do 

so. The simulation results were shown in figure 6.15 to figure 6.22 respectively for a variety 

of partial load conditions.  

 

Figure 6.15. Back pressure and throttle loss of baseline and E-TC engine at 20% load. 

 

Figure 6.16 Boost pressure and eTurbine power for baseline and E-TC engine at 20% load. 

 

Figure 6.17. Back pressure and throttle loss of baseline and E-TC engine at 40% load. 
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Figure 6.18. Boost pressure and eTurbine power for baseline and E-TC engine at 40% load. 

 

Figure 6.19. Back pressure and throttle loss of baseline and E-TC engine at 60% load. 

 

Figure 6.20. Boost pressure and eTurbine power for baseline and E-TC engine at 60% load. 
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Figure 6.21. Back pressure and throttle loss of baseline and E-TC engine at 80% load. 

 

Figure 6.22. Boost pressure and eTurbine power for baseline and E-TC engine at 80% load. 

6.5.1 Partial load simulation 

From the results, it was a general trend that the intervention of eTurbine increased the back 

pressure and the boost demand for the engine system. At the same time, since the engine 

breathinging could be regulated by adjusting the eTurbine bypass valve as an alternative, 

throttle angle was less closed. It was effectively to move the throttle loss to the eTurbine 

where the losses could be harvested. At 20% load, for example, back pressure increased by 

up to 1 bar at 5800 rpm, while the pressure drop across the throttle body was reduced from 

0.7 bar to 0.3 bar. And also, at lower engine speed when the exhaust mass flow decreased, 

electric turbine imposed less effects on air scavenge. The effect of de-throttle became less 

significant. The demand for boost pressure at 20% load was higher in the case of the 

eTurbocharged engine, which suggested the mechanical turbine was pushed harder by the 

additional turbine. The similar trend was seen in the results of 40% and 60% load. But, it is 
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worth noting that it was possible to eliminate throttle loss at 40% load and higher, and merely 

rely on electric turbine to regulate the air flow. At 80% load, the pressure drops across the 

throttle body were especially low for both baseline and eTurbocharged engine. The 

difference in boost demand between baseline and eTurbocharged engine models stayed 

around 0.2 bar, as the magnitudes of the increments in back pressure were about the same, 

which was around 1 bar. 

The control strategy for the eCompressor was relatively simple, since it was only needed in a 

small region at upper left corner on the engine map when the mechanical turbocharger could 

not provide enough boost. In the partial load points simulated, the electric compressor was 

completely bypassed. 

6.5.2 Engine Part load BSFC map 

Although the eTurbine was able to generate useful work from the otherwise wasted exhaust 

energy and reduce the throttle losses, it increased the back pressure and thus the boost 

demand for the same BMEP target. It was therefore not always advised to use the eTurbine 

harnessing mode. The BSFC map in figure 6.23 has shown an ‘eTurbo enclosure’ line where 

inside the dashed-line region eTurbine operation can achieve a positive balance. 

 

Figure 6.23. Delta BSFC for the whole system. 

Meanwhile, since the eCompressor is expected to support improvement in transient 

response and increased surge margin, the mechanical compressor was allowed to be a 20% 

larger device. The avoidance of over-boosting as in a conventional turbocharged engine was 

also showing fuel economy benefit as in the region outside of the ‘eTurbo enclosure’ line. 

In the part load simulations, the excessive eTurbine power was converted into electricity and 

then fed back into to the crankshaft with a conversion efficiency of 85%. Practice as such 

reduced the IMEP of the engine for the same torque generation, which moved the engine to 
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its less efficient region. In spite of this, it was found that the integration of eTurbocharging 

system brought about a promising improvement in fuel economy.  The BSFC was reduced by 

up to 3.6% in the middle of the engine speed/torque map. Nevertheless, under extremely 

low load conditions, a negative effect was seen because of the poor efficiency and little 

power output of eTurbine. At the highest engine speed and WOT operation, on the contrary, 

even though the eTurbine was more efficient in harvesting exhaust energy, it created too 

much back pressure to be remedied by the power provided by itself. Therefore, the fuel 

economy of the whole system deteriorated by about 0.3%. 

6.5.3 Driving cycle fuel consumption 

Minimap point simulations with weightings for different drive cycles were conducted using 

the points as in figure 6.23. The results in Table 6.1 demonstrated the improved fuel economy 

for the operation under a variety of driving cycles when comparing with the baseline 

turbocharged engine. However, the magnitudes in BSFC reduction were relatively lower than 

that of the full and partial load simulation. It was due to the fact that the operation points of 

driving cycles mainly resided in the region of extremely low load when the eTurbine could 

not work effectively to recover waste heat, as illustrated in figure 6.23. A few points having 

negative impact on fuel economy took up more than 50% of the weighting. As a result, the 

HiWay driving cycle, which had larger weighting in the mid-high load region, showed better 

potential of the novel technology, while fewer benefits were seen in NEDC. It was expected 

that the eTurbocharger will provide larger benefits in real world driving cycle with a much 

wider speed and load region covered. 

Table 6-1. Fuel saving in driving cycles. 

Driving cycles BSFC reduction 

NEDC -0.4% 

FTP -0.5% 

HiWay -0.8% 

WLTP -0.7% 

6.6 Conclusions  

This chapter compared the performance of a conventional turbocharged engine model with 

a two-stage boost engine model equipped with a decoupled electric turbocharger. A carefully 

designed control strategy was designed for the electric turbocharger for a variety of engine 
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speed/load conditions. The steady state performance of both systems was evaluated by 

examining the fuel consumption at full load, part load and minimap based driving cycles. The 

total boost pressure, back pressure of both the baseline and novel models were compared 

to seek out the origin of the difference in fuel economy. Power consumption of the 

eCompressor and power generation of the eTurbine was analysed to indicate the effects that 

they have on the performance of the overall system.  

1. As for the location of eTurbine, LP mode was selected for the lower eTurbine temperature 

for the thermal protection although HP mode would be a more economical solution. 

2. At full load condition, eCompressor was expected to provide extra boost at 1750 rpm and 

below to enhance the low end torque by up to 115 Nm. It was beneficial for improving the 

driveability of the engine system. Above 1750 rpm, when the mechanical turbocharger was 

able to provide sufficient boost on its own, eCompressor was totally bypassed. At the same 

time, electric turbine was harvesting exhaust energy independently. The power output from 

the eTurbine was sufficient to satisfy the power consumption of the eCompressor. 

3. At partial load condition, mass flow could be regulated by adjusting the eTurbine bypass 

valve as an alternative to throttle, so that throttle was less shut. It helped to reduce the 

throttle loss. At 40% load and higher, the pressure drop across the throttle body was nearly 

eliminated. Besides, eTurbine was able to harvest up to 8 kW power from the exhaust energy, 

which could be converted into useful mechanical work. However, similar with the case in full 

load condition, back pressure and requirement of boost was increased because of the 

employment of eTurbine. The tendency to knock due to higher back pressure should be 

further investigated in the experimental phase of the study. 

4. Across the part load map the BSFC was reduced by up to 3.6%. At the high engine load, 

fuel consumption will increase because of the high back pressure as a result of eTurbine 

trying to harness energy to support eCompressor. 

5. The minimap points of driving cycles were located mostly in the lower left region of engine 

load. A few load points with small or even negative impact on fuel economy took large 

weighting in the calculation. That made the improvement to the fuel economy less 

remarkable. From the results, the largest reduction in BSFC was seen in HiWay driving cycle, 

which is 0.8%. In NEDC, the number decreased to 0.4%. The upcoming RDE cycle will be 

investigated in future works and the eTurbo technology is expected to achieving larger fuel 

economy benefit due to the higher load/speed of the real world drive cycle. 
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Chapter 7 – Modelling the HP Turbo-

Compounding Concept 

For the LP turbo-compounding system with power turbine being located in series with the 

main turbine, power losses are incurred due to the higher back pressure which increases the 

pumping losses. This chapter evaluates the effectiveness that the turbo-compounding 

arrangement has on a 2.0 litre gasoline engine and seeks to draw a conclusion on whether 

the produced power is sufficient to offset the increased pumping work. Furthermore, since 

the baseline engine model in this part is not a heavy-duty diesel engine that is more 

appropriate to the turbo compounding mechanism for automotive application, but a 2 litre 

gasoline engine. This chapter also aims to explore a potential methodology for extending the 

operating range of the turbo compounding in light-duty petrol engine over its entire speed 

range under full load condition. Besides, this system will be further investigated considering 

the fuel consumption under part load condition as well as the transient performance. The CVT 

drive ratio and thus the pressure ratio of the compressor will be further optimized to achieve 

the best fuel economy and drivability. The system model in this chapter was also built in GT-

Power which is a 1 dimension (1-D) engine simulation code. Simulation results show that with 

the assistance of a variably driven supercharger, the output torque of the engine system is 

much larger (up to around 24%) at lower engine speeds. The fuel economy is also improved 

by up to about 8%. 

7.1 Introduction 

By now, the most frequently utilized technology in exhaust heat recovery is the turbocharger 

which extracts the kinetic energy from the exhaust flow to drive the compressor. However, 

the benefit for turbocharged engine always comes along with the drawbacks in transient 

response and over-boost risk at high engine speed Specifically, a large turbocharger can offer 

the power at high speed, but suffers from poor efficiency and delayed transient response at 

lower engine speed due to the lack of exhaust gas flow to overcome the inertia of the system. 

On the contrary, a small turbocharger is able to provide improved boost pressure and 

transient response at lower engine speed due to the reduced inertia. However, as the engine 

speed rising, it would need the bypassing valve, typically through a waste gate, to prevent 

the turbocharger from over speed which may otherwise leads to over boost. 
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Besides, the power produced by the main turbine of a turbocharger unit has to be totally 

consumed by the compressor, which means the capability as well as the efficiency of the 

turbine is limited by the power demand of the compressor and substantially the air demand 

of the engine. When the extracted energy from the exhaust is excess, a waste gate is needed 

to bypass the redundant exhaust gas, otherwise the inlet air to the engine will suffer from 

over boost which causes damage to the cylinders. If the engine is equipped with the turbo 

compound arrangement, however, the power produced by the power turbine will be feed 

back to the engine crank shaft mechanically or converted into electricity. In this way, the 

waste energy recovery is only limited by the inherent specification of the power turbine such 

as inertial and isentropic efficiency. 

The main disadvantage of turbo-compounding technology lies in the fact that it increases the 

backpressure of the engine and the pumping losses that results in reduction of the net engine 

power. Especially in a light duty transport or when the engine is running under part load 

condition or at low engine speed, the power produced by the power turbine is even not 

enough to offset the increased pumping losses [192, 193, 195]. For this reason, it is widely 

accepted that the turbo-compounding engine is only suitable for heavy-duty vehicles or the 

transports that are consistently operated under high-load condition. 

7.2 Methodology 

In order to diminish the aforementioned negative effects of the turbocharging and to catch 

up with the drivability of a comparable naturally aspirated unit, a number of solutions, such 

as the variable geometry turbocharger (VGT), twin and double turbine scrolls and multi-stage 

turbocharging[197] has been explored. Although the average efficiency and the transient 

response of these systems unit are improved to some extent, they still rely on the build-up 

of exhaust flow rate and thus the availability of the exhaust gas energy [198]. Consequently, 

none of them completely solves the problem of low speed transient response. In the last few 

years, a new design called continuously variable supercharger (CVT Supercharger) was 

presented [60]. It is a combination of a supercharger and a continuously variable 

transmission drive (CVT) which is able to effectively shorten the response time of the booster 

and minimize the parasitic losses at high engine speed, in other words, this arrangement 

enables the performance of the supercharger to be fully exploited over the entire engine 

speed range. 

As for the other aspect of the problem, the back pressure and the resulted pumping losses 

have to be minimized. The solution is to diminish the number of the turbine in series. 
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Therefore, the original turbo-machinery was no longer used in the charged scheme, which 

makes the inlet air boosting totally relies on the CVT Supercharger; and the power turbine 

becomes the only component to recover exhaust gas energy. The size of the power turbine 

was carefully designed based on optimization technique. 

It can be assumed that as the engine speed increases, the exhaust gas pressure will be 

increased rapidly leading to reduced, or even negative, pumping pressure. For this reason, 

the volumetric efficiency of the engine will decrease at high engine speed. The turbo-

compounding engine, as the turbine waste gate will be closed over the entire speed range, 

will suffer from larger back pressure and poorer volumetric efficiency at high engine speed. 

However, the power turbine is capable of recovering energy from the exhaust gas and 

feeding it back to the engine crankshaft. The recovered energy may be able to offset the 

pumping losses. 

The increased back pressure is also seen in the turbocharged engine causing the similar 

drawbacks. Besides, the energy recovery in turbocharged engine is in an indirect way. The 

reclaimed energy by turbocharger is consumed by the compressor which boosts the inlet 

fresh air for the engine to enhance its volumetric efficiency. Its thermodynamic calculation is 

presented in [46]. In order to prove the advance of turbo-compounding engine over its 

turbocharged competitor, the brake torque as well as the specific fuel consumption of these 

two waste energy recovery arrangements will be compared with each other in the following 

section. 

7.3 Modelling and simulation 

The original compressor from the baseline turbocharged engine was retained to make the 

results comparable. 

Table 7-1. Engine specifications 

Engine type 4 stroke 

Number of cylinders 4 

Capacity 1.99 litre 

Bore 86 mm 

Stroke 86.07 mm 

Compression ratio 9.5 

Maximum power 160 kW 

Maximum torque 472 Nm 

The baseline engine is a 2.0 litre four-cylinder inline turbocharged intercooled gasoline 

engine. Its specification is shown in Table 7.1. 
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As Figure 7.1 shows, the maximum produced torque of the turbocharged engine is 472 Nm 

at the engine speed of 2500 rpm; accordingly, the maximum brake mean effective pressure 

(BMEP) in the cylinder is 29.7 bar. The maximum power is 164 kW generated at 4000 

revs/min. 

 

Figure 7.1. Engine performance characteristics. 

 

Figure 7.2. The overall arrangement of the CVT Supercharger Turbo-compounding engine. 

The overall layout of the CVT Supercharged turbo-compounding engine is shown in Figure 

7.2. The fresh air from the filter is compressed by the supercharger which is driven by the 

crankshaft via a CVT before it enters the inlet manifold of the engine. At the other end, the 

exhaust from the manifold enters the power turbine directly. The energy is extracted by the 

power turbine and converted onto mechanical power and feed back to the output crankshaft 

through a set of gears. 

During the simulation process, the engine speed was changed in increments of 500 rpm in 

the range between 1000 and 6000 rpm. The air fuel ratio is considered as a constant of 14.5 

for simplicity. 

C
V
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Table 7.2 shows the specification of currently popular CVT types. As the table lists, the overall 

CVT ratio ranges of the full & half Toroidal CVT and the belt drive CVT are between 29.3 to 

175.8 and 28 to175 respectively. They are both qualified for the transmission between the 

compressor and the engine shaft. 

Table 7-2. CVT specification [163]. 

Parameters Milner CVT Full & half Toroid CVT Belt drive CVT 

Input speed limit (rpm) 10000 10000 6000 

Input drive ratio 3.5 3.5 2 

CVT ratio range 4.5 6 6 

Min CVT ratio 2 0.41 0.4 

Max CVT ratio 9 2.45 2.5 

Step-up ratio 5.6 20.5 35 

Min overall ratio 39.2 29.3 28 

Max overall ratio 176.4 175.8 175 

 

 

Figure 7-3. The effect of CVT efficiency on engine performance [74]. 

Since the current object of this project was to investigate the potential of the general concept 

rather than constrain to a specific type of CVT, therefore, the CVT efficiency in this phase was 

assumed to be 100% to simplify analysis. Furthermore, based on the investigation in [60], the 

CVT efficiency value has little influence on the overall performance of the entire system. The 

peak torque was only decreased by 2% when the CVT efficiency was reduced to 85%.  

 However, before moving to the partial load and transient simulation stage, further 

optimization was carried out for the CVT ratio and turbine speed to achieve the best power 

output under full load condition. The results of rated power output will be employed as the 

upper limit of the power criterion in the following transient performance simulation.  
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Under partial load condition, the compression ratio would also be verified depending on the 

CVT driving ratio in order to find the best combination for the benefit of reducing specific 

fuel consumption. And then, the influence of these parameters on the fuel economy of the 

entire system would be summarized.   

For the full load simulation, the engine speed was varied from 500 to 6000 rpm in the 

increments of 500 rpm, which was the same as the case setup in the first report. For the 

partial load operation, brake mean effective pressure (BMEP) was kept at 2 bar over the 

engine speed range from 500 to 3000 rpm. During evaluating the transient performance of 

the system, the duration that was taken by the engine BMEP to climb from 2 bar to 90% of 

the rated value was measured. Similar to the operation in the first report, the air fuel ratio 

was considered as a constant of 14.5 for all the engine speed and working condition for 

simplicity. Besides, as this investigation was to assess the potential of the concept, the 

original turbine and compressor machineries were retained for the convenience of 

comparison. 

7.4. Optimization on the CVT Ratio, Compression Ratio 

and Turbine Speed for Full Load Operation 

In an earlier paper investigating the performance of the continuously variable supercharger 

in a diesel engine [8], Adam Rose et al applied DoE (Design of Experiment) techniques to 

optimize the scaling factor of the supercharger and stated that the compressor size should 

be reduced to provide the required boost pressure at lower engine speed (and thus low mass 

flow rate) without exceeding the surge limits, while the turbocharger compressor should be 

increased in geometry size to satisfy the increased mass flow rate at high engine speed. 

However, it should be noted that it was a twin-charge system that was included in that 

model, which means the intake boosting would be “handed over” to the turbocharger at high 

engine speed by declutching the supercharger, therefore, the turbocharger did not need to 

accommodate for the pressure ratios that was normally required at low speed. On the other 

hand, the model in this chapter was expected to satisfy the boost requirement of the engine 

at all the operation regions because of the absence of the turbocharger devices. Therefore, 

the original compressor was kept in this model for the convenience of matching the intake 

air flow characteristics under different working condition.   

In this chapter, the optimization of the turbine speed was the key factor to consider to 
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achieve the maximal power output and the best fuel economy. However, optimum 

performance could not be realized by merely adjusting the turbine speed. The compression 

ratio, as one of the most important factors determining the allocation between engine power 

and turbine power should be taken into consideration as well. Besides, the CVT ratio that 

directly determined the boost pressure across the compressor should also be optimized 

accordingly for the highest overall efficiency of the entire system.  Therefore, a formal 

approach was needed to optimize the complex interdependence of each of the parameters 

over the whole engine speed range (500 RPM to 6000 RPM).  

The constraints imposed upon the simulation process in the first report were also retained, 

which included limiting the maximum cylinder pressure below 80 bar and the maximum 

compressor speed lower than 200000 revs/min. The ranges for the design of experiments 

factor were listed in table 7.3.   

Table 7.3. Design of experiment factors and ranges. 

 

Parameters  

 

Minimum 

Value  

 

Maximum 

Value  

 

Ranges  

Turbine Speed (RPM)  10000  600000  15  

CVT Ratio  20  100  8  

Compression Ratio  8  11  6  

 

The optimized value for each parameter were specified in table 7.4. 

Table 7-4. Parameter optimization. 

 

Factors Speed  

 

 

Turbine Speed (RPM)  

 

CVT Ratio  

 

Compression 

Ratio  

500  13451.2  16.7  9.5  

1000  60498.0  60.8  9.5  

1500  137184.0  90.2  9.5  

2000  182589.0  77.7  9.5  

2500  200770.0  74.3  9.5  

3000  200351.0  66.6  9.5  

3500  200379.0  57.1  9.5  

4000  200867.0  50.0  9.5  

4500  200434.0  44.4  9.5  

5000  200095.0  40.0  9.5  

5500  200153.0  36.3  9.5  

6000  185453.0  33  9.5  
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For a radial turbine with fixed geometry, the peak efficiency is typically found at the velocity 

ratio (U/C) of about 0.7, where U is the blade tip speed; and C is the isentropic velocity 

resulting from an ideal expansion of the gas at the same expansion ratio as in the turbine 

[199]. Therefore, the turbine speed was adjusted to shift the velocity ratio close to 0.7, so 

that the operating point would move towards the high efficiency region of the performance 

map.   

From Mitsunori Ishii’s study on a high pressure turbo-compounding diesel engine, it was 

concluded that a higher compressor pressure ratio was beneficial for improving the power 

output for both the engine and power turbine [198]. The increased power consumption by 

the compressor was well compensated, and the overall power output of the whole system 

was enhanced. Consequently, the optimization for the CVT driving ratio in this report was 

quite straightforward as it suggested. It was sensible to drive the compressor at a rotation 

speed as high as possible to provide the rated boost pressure at full load operation. However, 

considering the limits of mechanical strength, heat resistance as well as the surge line of the 

compressor, the CVT ratio was kept below a ceiling of 90.1. The compression ratio was also 

reduced to prevent the maximum cylinder pressure from rising too high.  

7.5 Results and discussions 

First of all, it should be note that the CVT efficiency was assumed to be 100% during the 

simulation to simplify the analysis. The basis for making this simplification lies in two aspects: 

firstly, the main object of this project at this stage was to investigate the potential of the 

general concept of combining a CVT supercharger with turbo-compounding rather than 

specifying the CVT component to a constraint type; secondly, According to the work in [60], 

a CVT efficiency of 85% results in 2% reduction in peak torque compared to the performance 

of an twin-charged engine with an ideal CVT drive. Figure 7.3 shows the influence of the CVT 

efficiency on the torque curve of the twin-charged system, indicating that the deterioration 

in CVT efficiency has very little impact on the overall performance of the entire engine 

system.  

7.4.1 Full load brake toque 

In order to indicate the advantage of the CVT supercharger over a conventional turbocharger, 

the compressor from the original turbocharged engine was retained. The effect of this 

arrangement can be detected from the engine brake torque curves in figure 7.4 in which the 

peak torque produced by the CVT supercharged engine and the turbocharged engine are 
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about the same. The reason of it is that the compressor reached its operating limit at this 

point, which means further increases in compressor speed and boost pressure were not 

allowed. Consequently, the CVT drive is of little effect to enhance the maximum brake 

torque.  

 

Figure 7.4. Engine brake torque. 

However, at the lower speed range before the submit point, a remarkable increase in the 

brake torque generation can be found. Especially at 1500 rpm, the CVT Supercharged engine 

produces 24% more torque. But when the engine speed fells to 1000 rpm, its performance 

superiority became less evident because the speed and thus the pressure ratio of the inlet 

air was extremely restricted by the surge line. From the peak point afterwards, the CVT 

Supercharger turbo-compounding engine is again of advantages. As the figure shows, the 

torque output was enhanced by around 7% above 3000 rpm. This is due to the intervention 

of the power turbine. Within this range, the power turbine was fully engaged to recover 

energy from the exhaust gas and feed back to the crankshaft with no need to open its 

wastegate to bypass exhaust flow to prevent the compressor from over speed as the 

turbocharger did. 

 

Figure 7.5. Average power recovery by the main turbine and power turbine. 

The energy recovered by the main turbine of the turbocharger and the power turbine is 

illustrated in figure 7.5. The wastegate of the main turbine of the turbocharger was partially 
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opened after the engine speed reaches 2000 rpm to keep its speed within the operating limit 

of the connected compressor; the power turbine in a turbo-compounding engine, on the 

other hand, was allowed to have its wastegate closed completely over the entire engine 

speed range. Consequently, the recovered energy by the power turbine is far exceeding that 

from the main turbine at high engine speed range.  

From figure 7.6, the turbine efficiency reached its peak at the engine speed of 2500 RPM and 

declined slightly at higher or lower engine speed. But overall, the turbine efficiency was kept 

above 70% when the crankshaft was running above 1000 RPM. At 500 RPM, the turbine 

efficiency saw a sharp decline due to the drastic decreasing in gas flow rate.  

 

Figure 7.6. Power turbine efficiency and power output under full load condition. 

 

Figure 7.7. Pressure ratio across the compressor vs. the power consumption by the 

compressor   

 

By comparing figure 7.6 and figure 7.7, it could also be indicated that the power output from 

the gas turbine was higher than the power consumption by the supercharger, which means 

extra useful work could be converted from waste heat and fed to the engine crankshaft. 

Especially when the engine was operated at high speed (above 2500 RPM), the power 
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consumption by the compressor became horizontal due to the speed limit that prevents the 

operated point from exceeding the surge line, while the power generation from the gas 

turbine kept growing, with a decreasing rate, though, resulting in greater power surpluses 

within this speed range. On the other hand, at 1500 RPM and lower engine speed, the margin 

descended significantly because of the reduction in mass flow rate. Thereby, even though 

more power was consumed by the supercharger, it was considered favourable to maintain 

the boost pressure at high level at this operation point as the engine would benefit from the 

enhanced scavenging efficiency and wasted heat recovery rate.  

 

Figure 7.8. Brake torque and brake specific fuel consumption of the whole system at full 

load operation. 

The brake torque and brake specific fuel consumption was illustrated in figure 7.8. The results 

suggest that the variation in turbine speed make little difference to the engine performance 

under full load condition comparing with the effects of changing the CVT driving ratio. 

Therefore, it could be speculated that the optimization of the turbine speed might be even 

less relevant at low load operation when the gas flow rate became gravely insufficient, 

because the power turbine contributed fewer to the overall power generation then.  

From the work in [60], it can be predicted that a positive displacement compressor will be 

much better at boosting the engine power at low speed. However, as is stated above, the 

object of this phase is to investigate the potential of the concept and evaluate its advantage 

over conventional turbocharged engine; the typical arrangement with positive displacement 

compressor was not discussed further. 

7.4.2 Full load brake specific fuel consumption 

As figure 7.9 illustrates, the CVT Supercharger turbo-compounding engine shows a significant 

reduction in fuel consumption when the engine speed reached 2500 rpm and above. The 

improvement in fuel economy grew continuously as the engine speed rising and reached the 
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maximum percentage of 8% at 6000 rpm. It is because the power turbine provided the engine 

with more recovered energy at high engine speed. Even though the pumping mean effective 

pressure (PMEP) is lower in turbo-compounding engine (there will be further description 

later) the overall effect is positive. However, when the engine speed is below 2500 rpm the 

CVT Supercharger turbo-compounding engine has very little advantage in fuel economy. This 

is due to the rapidly decreased power generation of the power turbine. As the engine 

decelerated, the exhaust mass flow rate decreased. The energy extraction from the waste 

became much lower.  

 

Figure 7.9. Brake specific fuel consumption. 

 

Figure 7.10. Volumetric efficiency of the engine. 

At the other end, the engine must provide power for the compressor to overcome the 

imposed parasitic load, which increased the fuel consumption further. The PMEP of the CVT 

Supercharger turbo-compounding engine was greater than the turbocharged engine within 

lower engine aped range (from 1000rpm to 2000 rpm), but it made little difference to the 

brake specific fuel consumption (BSFC). The small reduction in BSFC indicated at 1500 rpm is 
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basically due to the better volumetric efficiency of the engine as shown in figure 7.10. 

From figure 7.10, the volumetric efficiency of the turbo-compounding engine at high speed 

range is even slightly smaller than that of turbocharged engine (become identical at top 

engine speed). This is because the power turbine brought about slightly higher back pressure 

and increased the pumping losses. It also proofs that the lower specific fuel consumption was 

mainly achieved by the energy recovered by the power turbine. At lower engine speed, the 

CVT supercharger effectively increased the inlet air density which enhanced the volumetric 

efficiency significantly.  

7.4.3 Pumping mean effective pressure and turbine efficiency 

Another important influence that the turbine has on engine is the pumping means effective 

pressure (PMEP) which directly leads to the pumping losses and deterioration in fuel 

efficiency.  

 

Figure 7.11. Pumping mean effective pressure. 

From Figure 7.11, the PMEP for both engine systems are positive at 2500 rpm and below and 

decrease rapidly at higher engine speed. This is because the exhaust gas mass flow rate was 

smaller at low speed and the temperature was lower. Thus, the average pressure in the 

exhaust manifold was lower than the intake pressure. At high engine speed, however, the 

exhaust gas pressure increased dramatically, which created negative pumping pressure.  

The installation of power turbine considerably reduced the pumping pressure comparing 

with the original turbocharged engine. It is due to the wastegate position in the power 

turbine which was kept closed bringing about higher back pressure to the exhaust manifold, 

while in the main turbine the wastegate was partially opened at high speed to bypass some 

of the exhaust flow reducing the back pressure. Nevertheless, from the abovementioned 

results, the losses in pumping work are remediable by the power recovered from the exhaust.  
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When the engine speed was below 2250 rpm, however, the wastegate for both turbines were 

completely shut, but thanks to the more efficient work of the CVT supercharger, the pumping 

mean effective pressure in CVT Supercharger Turbo-compounding engine regained 

advantage over the turbocharged engine. 

 

Figure 7.12. Turbine efficiency. 

As for the power turbine, the GT-Power software allows it to be ‘scaled’ to have a different 

size, but with similar flow characteristics. Specifically, the code calculates the instantaneous 

expander ratio and speed of the power turbine and then looks up its mass flow rate according 

to the turbine map. Afterwards, the mass flow rate times the scalar before it is imposed. 

Similarly, it is also possible to use differently scaled compressor for further improvements. In 

this project, however, the compressors for the turbocharged engine and the CVT 

Supercharger turbo-compounding engine are of the same size. As figure 7.12 shows, the 

efficiency of the power turbine is a little below that of the main turbine above the engine 

speed of 3000 rpm. But the difference is acceptable. Besides, the overall efficiencies for both 

turbines are above 70%, therefore the slight drop makes little difference to the engine 

performance.  

7.4.4. Part load fuel consumption  

As figure 7.13 illustrates, the fuel consumption presented a very small change according to 

the variation in turbine speed. As mentioned above, it is the inherent characteristics of a 

centrifugal turbine to reach the peak efficiency at a velocity ratio (U/C) around 0.7. This could 

explain the rapid decline in turbine efficiency as the turbine speed rising. Although an 

uptrend (towards the higher turbine efficiency end) in fuel economy could be seen from the 

plot, the improvement was less than 0.1%, because very little useful work could be extracted 

from the power turbine (less than 0.008 kW) under this specific working condition.  



 

 

 

172 

 

Figure 7.13. Turbine efficiency and the corresponding engine fuel consumption under load 

condition (1500 RPM, 2bar) at different turbine speed. 

 

Figure 7.14. The brake specific fuel consumption of the engine vs. compressor speed at 

2000 RPM and 1500 RPM (2 bar) respectively. 

Figure 7.14 shows the influence that compressor speed has on system fuel economy under 

partial load condition. The curve started at the minimum required compressor speed for each 

engine speed, which means a lower compressor speed would not satisfy the BMEP 

requirement. From the plot, the fuel consumption saw a monotonically increasing with high 

compressor speed. At the lowest compressor speed, the compressor consumed the least 

amount of energy.  Meanwhile the least pumping work was expended for the intake stroke 

as the throttle valve was full opened. As the compressor speed rising, the energy spent on 

the supercharger to boost the intake air was simply wasted across the closing throttle body 

to meet the low load requirement.   

The simulation results suggested that the throttle losses could be eliminated by adjusting the 

CVT driving ratio at low load operation. But, it also means that the transmission ratio range 

needed to be significantly extended. Table 7.5 shows the CVT driving ratio demand under 
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partial load condition as well as the extended ratio ranges for engine speed from 500 RPM 

TO 3000 rpm.  

Table 7-5. Extended CVT driving ratio ranges. 

 

Engine Speed 

(RPM)  

 

CVT Driving Ratio at 

Full Load Operation  

 

CVT Driving Ratio at 

Partial Load Operation  

 

Ratio Ranges  

500  16.7  5.5  3.0  

1000  60.8  5.4  11.3  

1500  90.2  5.3  17.0  

2000  77.7  5.0  15.5  

2500  74.3  4.7  15.8  

3000  66.6  4.7  14.2  

Taking the full load CVT driving ratio at high engine speed (from 3500 RPM to 6000 RPM) into 

consideration, the overall CVT ratio was 19.2.  

It should also be noted that the power consumption by supercharger was negative at low 

load operation when the least compressor speed was applied. The following graph shows the 

minimum power consumption by supercharger at low load.  

 

Figure 7.15. The lowest compressor power consumption at 2 bar BMEP. 

From figure 7.15, a negative value was observed at medium and low engine speed as the 

intake air blew through the compressor. It means that this power, resulting from windmilling 

effect, could be transmitted back to the engine crankshaft depending on the working mode 

of the clutch. If a one way clutch was coupled between the CVT and the crankshaft, the power 

from the supercharger would simply lost in the form of mechanical and heat losses. 

Otherwise, the power could be reused to enhance overall efficiency of the engine system. It 

is demonstrated from the following diagram.  
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Figure 7.16. Comparison of the fuel consumption (at 2 bar BMEP) between CVT 

supercharged turbo-compounding engine and traditional turbocharged and series turbo-

compounding engines. 

 

Figure 7.17. Pumping mean effective pressure (at 2 bar BMEP) of CVT supercharged turbo-

compounding engine, turbocharged engine and series turbo-compounding engine. 

At partial load operation (2 bar BMEP), the exhaust mass flow was extremely low (smaller 

than 0.002 kg/s). Very little exhaust energy was available for the power turbine. The power 

turbine efficiency was lower than 20% and the power output was lower than 0.1 kW under 

this condition. However, a small improvement was still realised by the novel configuration. 

From figure 7.16, the specific fuel consumption (at 2 bar BMEP) of CVT supercharged turbo-

compounding engine was slightly lower than that of the traditional turbocharged engine by 

up to 0.9%. It should main attributed to the power output from the power turbine and the 

supercharger as analysed above. Moreover, the waste gates for both the turbocharger 

turbine and the power turbine were fully closed in this simulation. Without the parasitic load 

from the compressor, the power turbine was able to spin at higher speed, resulting in higher 
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pumping mean effective pressure for the engine system, which can be seen from figure 7.17, 

and thus less pumping losses at medium engine speed. It also contributed to the better fuel 

economy in CVT supercharged turbo-compounding engine.  

By comparing the PMEP (at 2 bar BMEP) of CVT supercharged turbo-compounding engine 

with the series turbo-compounding engine, it could be found that the pumping losses was 

significantly reduced in the former design. This could explain the difference in fuel 

consumption between them.  

7.4.5. Transient response 

The ability to respond rapidly to transient operation is an important aspect to evaluate the 

performance of an air handling system. In this section, an investigation was carried out to 

predict the response speed of CVT supercharged turbo-compounding engine to a tip-in 

manipulation by comparing the results with a turbocharged and a series turbo-compounding 

engine. A linearly interpolated lookup table was constructed for the boost demand and 

corresponding CVT ratio based on the simulation results from the full load steady state 

results. The changing rate of CVT ratio was controlled in a linear mode and limited by a limiter 

template. In [8], the upper limit for the rate of change was decided to be +/- 320 per second, 

which allowed the rated CVT ratio range 200:1 – 40:1 could be achieved in 0.5 second. For 

the CVT employed in this chapter, the transmission ratio was linearly varied from 10 to 100 

within 360ms [201]. This was a simple and crucial controlling module, but was deemed 

competent for the purpose of this study. However, a test platform is more preferable to carry 

out this investigation in the future.   

When the engine speeds was below 3000 RPM, the difference in transient brake torque 

response between the CVT supercharged turbo-compounding engine and turbocharged 

engine was distinct as shown in figure 7.18.  

 

Figure 7.18. Transient brake torque response at 2000 RPM. 
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It can be seen from figure 7.18, the CVT supercharged turbo-compounding engine was able 

to achieve the rated torque output within 0.7 seconds, which was 0.3 second faster than the 

turbocharged engine.  

 

Figure 7.19. Transient brake torque response at 1500 RPM. 

As the engine speed decreased, the gap between the models was significantly widened, as 

shown in figure 7.19. At 1500 RPM, the response time for the CVT supercharged engine 

model to reach the target torque output approximately remained the same, while the 

turbocharged engine model took much longer time (about 1.7 seconds) to build up the 

turbine speed and thus the required boost pressure. This could be better demonstrated by 

the following transient boost pressure plots.   

Figure 7.20 illustrates the boosting response at 2000 RPM. As it shows, the CVT driven 

supercharger takes shorter time to build up the required boosting pressure. While the 

response of the turbocharger was significantly delayed by the lower acceleration rate of the 

turbine. At lower engine speed, because of the decreasing in gas flow rate, fewer energy was 

available for the turbocharger turbine. Therefore, it became more difficult for the 

turbocharger to speed up and generate desired intake pressure for the engine.  

 

Figure 7.20. Transient boost pressure ratio response at 2000 RPM. 
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Figure 7.21. Transient turbine power response at 2000 and 1500 RPM. 

 

Figure 7.22. Transient supercharger power consumption response at 2000 and 1500 RPM. 

 

On the other hand, the CVT supercharger compressor was mechanically driven by the engine 

crankshaft, which allowed it to keep a relatively constant response rate independent of 

engine speeds. 

However, it is worth noting that a small diving was existing at the starting point (around 1 

second) of the brake torque curve for the CVT supercharged turbo-compounding engine, as 

shown in figure 7.21 and 7.22. It demonstrates the torque extracted from the engine 

crankshaft to overcome the inertial of the compressor as well as the CVT drive. From the 

following plots, the power output from the power turbine was slightly higher than the power 

consumption of the supercharger at 2000 RPM, but slightly lower at 1500 RPM. More 

importantly, power generation from gas turbine was much slower than the consumption rate 

of the supercharger, which means extra torque needed to be extracted from the crankshaft 

to drive the compressor. This, in turn, resulted in the diving in the brake torque output.   

The magnitude of this torque is proportional to the inertia and acceleration of the 
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supercharger system. The inertia of the CVT would depend on the particular CVT system 

applied. In this chapter the inertial of CVT and the belt pulley was determined to be 0.00078 

and 0.00029 kg∙m^2 respectively. It is suggested that an appropriate calibration for the 

transmission ratio control system would be needed to rectify this and improve the drivability. 

7.5 Conclusion 

The effect that a turbo-compounding has on a 2.0 litre gasoline engine and the benefit of 

coupling a CVT to the supercharger were examined by comparing its performance data with 

a conventional turbocharged engine of the same displacement and compressor 

characteristics. In this project, both the power recovery by the power turbine and the 

pumping losses resulted from the higher back pressure were considered. The CVT 

supercharger in combination with the turbo-compounding contributed to improve the 

engine performance at lower engine speed range. The simulation results proved the 

practicability of this concept. The CVT Supercharger helped to increase the brake torque by 

up to 24% at 1500 revs/min. In the other end, the turbo-compounding increased the brake 

torque evenly by 7% from 3000 revs/min and above. The BSFC was reduced by up to 8% at 

top engine speed. But the improvement descends as the engine speed slowing down and 

become vanished at 2000 revs/min because of the weakened power turbine function and the 

parasitic load imposed by the CVT supercharger. 

Under partial load condition, very little improvement was gained from adjusting the turbine 

speed due to the significant decrease in turbine power output. On the contrary, the CVT 

driving ratio for the compressor needed to be carefully optimized as it helped to reduce the 

power consumption by the supercharger, and more importantly, improve the fuel economy 

of the whole system. The improvement in specific fuel consumption of the CVT supercharged 

turbo-compounding engine, when comparing with traditional turbocharged engine model, 

was believed due to the windmilling effect of the compressor and the reduced pumping 

losses.  

For the transient performance evaluation, the CVT supercharged turbo-compounding engine 

was able to provide the rapidest response of boost pressure and torque output due to the 

mechanical connection between the supercharger and the engine crankshaft. A diving in 

brake torque was seen as the compressor starting to accelerate. These torque losses was 

proportional to the inertial of the supercharger and the transmission ratio. A proper 

calibration was needed to rectify this in order improve the drivability. 
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Chapter 8 –Comparison between inverted 

Brayton cycle and CVT Supercharger turbo-

compounding 

The application of turbo-compounding and Brayton cycle in small automotive power plants 

has been relatively less explored because of the inherent difficulties, such as the detrimental 

backpressure and higher complexity imposed by the additional devices. Therefore, research 

has been conducted, in which modifications were made to the traditional arrangement 

aiming to minimize the weaknesses. The turbocharger of the baseline series turbo-

compounding was eliminated from the system so that the power turbine became the only 

heat recovery device on the exhaust side of the engine, and operated at a higher expansion 

ratio. The compressor was separated from the turbine shaft and mechanically connected to 

the engine via a CVT. According to the results, the backpressure of the novel system is 

significantly reduced when comparing with the series turbo-compounding model. The power 

output at lower engine speed was also promoted. For the pressurized Brayton bottoming cycle, 

rather than transferring the thermal energy from the exhaust to the working fluid, the exhaust 

gas was directly utilized as the working medium and was simply cooled by ambient coolant 

before the compressor. This arrangement, which is known as the inverted Brayton cycle was 

simpler to implement. Besides, it allowed the exhaust gasses to be expanded below the 

ambient pressure. Thereby, the primary cycle was less compromised by the bottoming cycle. 

The potential of recovering energy from the exhaust was increased as well. This chapter 

analysed and optimized the parameters (including CVT ratio, turbine and compressor speed 

and the inlet pressure to the bottoming cycle) that are sensitive to the performance of the 

small vehicle engine equipped with inverted Brayton cycle and novel turbo-compounding 

system respectively. The performance evaluation was given in terms of brake power output 

and specific fuel consumption. Two working conditions, full and partial load (10 and 2 bar 

BMEP) were investigated. Evaluation of the transient performance was also carried out. 

Simulated results of these two designs were compared with each other as well as the 

performance from the corresponding baseline models. The system models in this chapter 

were built in GT-Power which is a one dimension (1-D) engine simulation code. All the waste 

energy recovery systems were combined with a 2.0 litre gasoline engine. 
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8.1 Introduction  

8.1.1 Exhaust energy recovery technologies 

As mentioned in chapter 2, there are a number of methods to capture the exhaust energy 

from the internal combustion engine and convert it into useful power. Currently, the 

dominating technologies include bottoming cycles, such as the Rankine cycle and the Brayton 

cycle, and turbo-compounding technologies. Amongst these technologies, Rankine cycle, 

especially the organic Rankine cycle, has the greatest potential to elevate the overall 

systematic efficiency without interfering with the engine working condition [20, 205, 206].  

Despite the relatively low potential for heat recovery of the turbo-compounding and the 

Brayton cycle comparing with the Rankine cycle, the appeal of these two approaches mainly 

consisted in the simplicity and compactness in construction and the capability of directly 

utilizing commercially available radial turbomachinery devices.  Besides, they are also 

different from Rankine cycle, which has to include a heat exchanger to transfer thermal 

energy from the exhaust gases to the working fluid before convert it into mechanical work, 

that the working medium for pressurized Brayton cycle is air, whilst the turbo-compounding 

or the inverted Brayton cycle even can directly use the exhaust gas as the working fluid which 

further simplifies the implement.  

8.1.2 The purpose of proposing the novel schemes 

Simulation results shows that the combination of supercharger and continuous variable 

transmission drive (CVT) could effectively shorten the response time of the booster and 

minimize the parasitic losses of the supercharger at high engine speed. In other words, the 

addition of CVT enables the operation of the supercharger to be fully optimized over the 

entire engine speed range. Because all of the exhaust energy extraction is occurring at 

exhaust manifold temperature (as opposed to the lower temperature that the power turbine 

in a serial turbo-compounding arrangement works at), the same amount of work can be 

extracted with lower overall expansion ratio (assuming same turbine efficiencies) and hence 

lower backpressure. In the novel arrangement, the original turbocharger was no longer used 

as the foundation for the charged scheme, which means the inlet air boosting totally relied 

on the CVT supercharger while the power turbine becoming a monofunctional component 

to recover exhaust gas energy. Modification was also made to the Brayton cycle. The waste 

energy recovery unit in the original system was inverted, which means, rather than absorbing 

the exhaust thermal energy with pressurised air, the exhaust gas would be firstly directed 
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into the power turbine to generate mechanical power before it was cooled and boosted back 

to atmospheric pressure. Detailed introduction about the schematic of these two novel 

designs will be given in the following section. This chapter aims to provide a back-to back 

comparison to between these two novel systems on the same baseline engine. 

8.2 Modelling Description 

The baseline engine is a 2.0 litre four-cylinder inline turbocharged intercooled gasoline 

engine which is the same to Chapter 7.  

(A)

 (B) 

Figure 8.1. Schematic diagram of (A) CVT supercharged high pressure turbo-compounding 

engine and (B) the inverted Brayton cycle engine. 

The layouts of the high pressure turbo-compounding engine equipped with the CVT driven 

supercharger and the inverted Brayton cycle engine system are shown in Figure 8.1. For the 
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top diagram, fresh air from the filter is boosted by the supercharger which is mechanically 

connected to the crankshaft via a CVT before it enters the inlet manifold of the engine. On 

the exhaust side, the burnt gas from the manifold directly enters the high pressure power 

turbine. Exhaust energy is extracted by the power turbine that converts it onto mechanical 

power which is in turn routed to the engine crankshaft via mechanical gear. As mentioned 

above, the compressor speed can be adjusted according to the engine load and speed to 

explore the optimal trade-off between satisfying the boosting requirement and imposing 

parasitic power consumption to the engine. 

The diagram on the bottom illustrates the schematic of the engine model equipped with the 

inverted Brayton cycle. Substantially, this cycle can be regarded as an extension to a series 

or low pressure turbo-compounding unit with an exhaust air cooler and a power turbine 

driven compressor to make up a Brayton cycle [51]. The addition of compressor in the 

bottoming cycle allows the expansion of the exhaust gases below atmospheric pressure, 

while the heat exchanger gives rise to the power margin between power turbine and 

compressor. 

 

Figure 8.2. Temperature and entropy diagram of a turbocharged engine with single stage 

of the inverted Brayton cycle compression. 

A T-S plot is also shown in figure 8.2 to clarify the stages within the cycles. A standard Otto 

cycle is made up of an isentropic compression process 𝟐→𝟑, a constant volume heat addition 

process 𝟑→𝟒, an isentropic expansion process 𝟒→𝟓 and a constant volume heat rejection 

process𝟓→𝟐. In a supercharged turbo-compounding engine, on the other hand, the high 

temperature exhaust gas at state 5 was expanded through the power turbine before it left 

state 6 and further released heat to state 1. With the addition of the inverted Brayton cycle, 

the exhaust at state 6 would be over-expanded by the next stage turbine to state 7 from 

where the subatmospheric gas was directed through an intercooler and a compressor in 
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series to be pressurised back to atmospheric pressure. The dashed line in this plot represents 

the idealized isentropic process where the irreversibility was not considered. 

Comparing with the turbo-compounding set-up, the inverted Brayton cycle is of the 

advantage of increasing the potential to draw energy from the exhaust gas and leaving the 

primary cycle less affected. However, in this arrangement, because a high entering pressure 

is preferable for the power turbine to generate higher kinetic power, the engine performance 

will also compromise due to the raised back pressure. Therefore, the exhaust pressure 

between the main and power turbine needs to be carefully optimised in this research. 

The major challenge with electric turbochargers is the difficulty to reject the heat developed 

within the constrained physical size of the motor/generator [83]. Besides, most electrical 

generators run at low speeds are relatively large and heavy, while the generators utilised in 

electrical turbo-compounding technology need to be very compact, high speed and high 

efficiency and can be added directly to the high-speed turbine shaft. The energy storage 

device can be a battery, a super-capacitor bank (specifically, the DC applications requiring 

many rapid charge/discharge cycles and short term compact energy storage and lower cell 

voltage are more favourable) or a combination of both [208]. 

Exhaust can be placed after the second turbine or between the turbocharger turbine and the 

power turbine in LP configuration. Placement of an after-treatment unit upstream of a WER 

system would reduce the heat exchanger fouling and alleviate some of the exhaust after-

treatment fuel penalty by recovering some of the energy released by exothermal reactions 

during catalyst regeneration events. If the exhaust after treatment is located upstream of the 

power turbine, then the power turbine expansion ratio will be applied to a lower outlet 

pressure and thus the expansion ratio will be slightly higher. This may help the turbine to 

work more efficiently. Mamatetal [46] concluded that locating the exhaust after-treatment 

upstream of the power turbine would provide the best compromise in terms of fuel 

consumption and engine performance. On the other hand, as reported by Kruiswyk [134], 

this placement may limit the options of hardware. In general, this placement is able to result 

in an incremental 1% BSFC improvement at higher speeds and loads, and less fuel penalty 

under very low load conditions.  

In terms of the compactness, the added weight of a turbo-compounding system of a Scania 

production engine that uses an electric turbo compound device is in the order of 80 kg (Scania 

press release) whereas a comparable Rankine cycle secondary fluid power system would 

weigh around 100 kg. The weight of a mechanical turbo compound drive of a Caterpillar 

engine would also be in the same order [29]. 
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Lastly, according to the investigation in [57], the turbo-compounding system has a significant 

price advantage over other alternate power cycles. The incremental difference between the 

turbo-compounding and Brayton cycle system is more than $4000 for the equal power level. 

8.3 Methodology 

In order to simplify the modelling process, the gear units between the power turbine and the 

crankshaft was replaced by a “load” and a “power rot” unit to remove mechanical power 

from the turbine and add it to the engine. The turbine speed could be varied by changing the 

imposed load. In the same way, the optimization to the power turbine speed was also carried 

out through varying the imposed load. The CVT efficiency was assumed to be 100% during 

the simulation to simplify the analysis. According to the work in [60], a CVT efficiency of 85% 

results in 2% reduction in peak torque compared to the performance of a twin-charged 

engine with an ideal CVT drive. Therefore, it was supposed that the assumed CVT efficiency 

would satisfy the precision requirement of the study in current stage 

This chapter aimed to analyse and optimise the parameters (including CVT ratio, turbine and 

compressor speed and the inlet pressure to the inverted Brayton cycle) that are sensitive to 

the performance of the small vehicle engine equipped with the inverted Brayton cycle and 

novel turbo-compounding system respectively. In order to evaluate the performance of the 

whole engine system, both the operation under full and partial load (at 10 and 2 bar BMEP) 

condition were investigated in terms of brake torque output and specific fuel consumption. 

Evaluation of the transient performance was also carried out. Simulating results of these two 

modified system were compared with each other and the computation results from the 

corresponding baseline turbocharged engine models.  

In the previous studies, Mitsunori Ishii et al [199], stated that higher compressor pressure 

ratio was beneficial for increasing the power output of both the power turbine and the 

reciprocating engine in a turbo-compounding engine system. It was indicated that the 

increased parasitic power consumption of the supercharger resulted from enhanced 

compressor pressure ratio could be well compensated by the improvement in engine power 

output. Therefore, as it suggested, when a high pressure turbo-compounding engine was 

operated under full load condition, the upper limit of the mechanical strength and heat 

resistance of the system became the only confine for the compressor pressure ratio. 

Moreover, because a radial compressor was employed in this research, the operation of the 

booster should be carefully controlled within the surge limits. On the other hand, it was also 
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indicated that an optimum value existed for the boost pressure, which it was 1.5 for the 

engine model in Ishii’s research, at partial load operation. This was because the power 

consumption of the compressor was more conspicuous than the benefit it bringing to the 

overall power output of the system. It means that a proper optimization of the boost 

pressure and essentially the driving speed of the compressor are necessary for the 

improvement of the overall efficiency of the whole system under low load condition. Besides, 

it was determined by the inherent characteristics that the highest centrifugal efficiency was 

realised at a blade-to-gas ratio of about 0.7 which means for different working condition, 

there was an optimum spinning speed and thus expansion ratio for the power turbine to 

maximize the overall thermal efficiency. Efforts should also be made to explore the trade-off 

between compression ratio and the compressor pressure ratio to realize the most optimal 

allocation between engine power and turbine power output for the highest overall efficiency, 

and more importantly, prevented the in-cylinder pressure from exceeding the upper limit. As 

aforementioned, the performance of CVT supercharged turbo-compounding engine was 

optimized by adjusting the compressor boosting and the expansion ratio of the power 

turbine. As a matter of experience, the best fuel economy was achieved with maximum 

power output if the overall thermal efficiency was defined by brake specific fuel 

consumption. Thereby, the system optimization at full throttle operation concentrated on 

improving the power output of the whole system. 

Based on the work in [51] and [207], it could be concluded that there are a variety of aspects 

that affects the improvement in the bottoming inverted Brayton cycle (IBC) performance. It 

includes the inlet temperature and pressure to the power turbine, the isentropic efficiency 

of the turbomachinery, the number of compression stages and the effectiveness of the heat 

exchanger. Theoretically, the IBC performance can be improved by increasing the 

compressor stage in the bottoming cycle. However, taking the system complexity and 

package into consideration, one stage compression could thus be regarded as the most 

sensible configuration for automotive application. In this research, the inlet pressure into the 

power turbine was adjusted by changing the turbine size. The utilized simulation code allow 

the turbine map to be scaled while maintain the similar mass flow characteristics. The 

compressor mass multiplier can be changed in the same way. The turbine speed can be 

adjusted by changing the load imposed on the turbine shaft in simulation, while in real test, 

it can be realised by changing the transmission ratio between turbine and engine shaft 

instead. Unlike the turbo-compounding devices that rely on a relatively high back pressure 

to operate effectively, the IBC system causes less deterioration to the engine performance. 
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However, there is a minimum requirement of the inlet temperature and turbomachinery 

efficiency for IBC to ensure positive work to be produced. In other words, the high 

performance of the turbomachinery and the heat exchanger is necessary for the bottoming 

cycle to deliver its full potential.  

8.4 Simulation and Results 

In order to ensure the capability of the GT model to precisely predict the performance of the 

whole engine system, a calibration was carried out to compare the data from the baseline 

turbocharged engine model with the experimental testing. By comparing the cylinder 

pressure under full and partial load conditions, it indicated that the actual data and the 

calculation data matched fairly well in the qualitative tendencies which confirm the 

appropriateness of the combustion model, etc. The comparison of the heat release rate and 

in cylinder pressure also demonstrated a close match, as shown in figure 8.3 and 8.4. These 

results indicated that the model was of fairly acceptable level of precision to simulate the 

performance of the whole engine system based on the baseline model. 

 

Figure 8.3. Comparison of simulated and measured P-V diagrams. 

.  

Figure 8.4. Comparison of simulated and measured heat release rates. 

Unlike the CVT supercharged system [167] that will “hand over” the intake boosting to the 
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turbocharger at high engine speed, so that the supercharger only needs to accommodate for 

the pressure ratios that was normally required at low speed, the novel engine model in this 

chapter expects the supercharger to satisfy the boost requirement of the engine at all 

operation points because of the absence of the turbocharger devices. Therefore, the original 

compressor from the baseline turbocharged engine model was kept for the convenience of 

matching the intake air flow characteristics. 

In this chapter, the compressors are of the same size and mass flow characteristics as that of 

the baseline turbocharged model. The power turbine in the turbo-compounding model is 

also the same as the turbocharger turbine in the original and the inverted Brayton cycle 

engine models. 

The simulation process was constrained by two performance limits. Firstly, the maximum 

cylinder pressure should not exceed 110 bar; secondly, the maximum compressor speed 

should be kept below 200000 rpm, and certainly, the operating point should not move 

beyond the surge line. The power turbine speed was varied up to 300000 rpm.  

Optimization was firstly carried out for the CVT ratio and turbine speed in the turbo-

compounding engine to achieve the best power output under full load condition followed by 

the tuning of the bottoming cycle in IBC. The results of rated power output would be 

employed as the upper limit of the power criterion in the following transient performance 

simulation. 

For the CVT supercharged turbo-compounding engine, similar to Chapter 8, the power 

turbine speed as well as the CVT ratio were determined by the DoE optimization according 

to different working condition.  

Under partial load condition, the CVT driving ratio would also be verified in order to find the 

best setups for the benefit of reducing specific fuel consumption. In this chapter, the BMEP 

has been set to 10 and 2 bar to represent the partial load operation.  

In the following section, the influence of these parameters, namely the compressor and 

power turbine speed, on the fuel economy of the CVT supercharged turbo-compounding 

engine would be summarised. 

For the full load simulation for all the models, the engine speed was varied from 500 to 6000 

rpm in the increments of 500 rpm. For the partial load operation, two setups of brake mean 

effective pressure (BMEP), 2 bar and 10 bar, were examined over the engine speed range of 

500-3000 rpm and 1000-6000 rpm respectively.  

During evaluating the transient performance of the system, the duration taken by the engine 

BMEP to climb from 2 bar to 90% of the rated value was measured. The air fuel ratio was 
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considered as a constant of 14.5 for all the engine speed and working condition for simplicity. 

This chapter also aims to assess the systematic benefit from adding an inverted Brayton cycle 

to a turbocharged Otto cycle. The turbine size in the bottoming cycle was scaled trying to 

optimize the inlet pressure to the power turbine. Design of experiments factors and ranges 

for the turbine size in the inverted Brayton cycle was given in table 8.1. 

Table 8-1. Design of experiments factors and ranges for the turbine size in the Brayton 

cycle. 

Parameters Minimum Value Maximum Value Ranges 

Turbine Size Multiplier 0.2 3 15 

 

In the following section, the influence of the inlet pressure on the inverted Brayton cycle will 

be introduced in detail. 

8.5 Results 

Firstly, it should be indicated that the shown values for engine power and torque in this 

section are all brake values.  

8.5.1 Optimization under full load condition 

Figure 8.5 shows the influence that supercharger speed has on power output and fuel 

economy of the whole system under full load condition at 3000 rpm. The curve starts at the 

compressor speed of about 100000 rpm and ends at the upper limit for the supercharger 

speed which is 200000 rpm.  

 

Figure 8.5. CVT supercharged turbo-compounding engine torque and BSFC vs 

supercharger speed at 3000 rpm. 

From the plot, the fuel consumption decreased monotonically as the compressor speed 
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increased, along with an almost linear increasing in brake torque. It should mainly thank to 

the improvement in turbine power and volumetric efficiency of the engine. 

 

Figure 8.6. CVT supercharged turbo-compounding turbine efficiency and power vs 

supercharger speed at 3000 rpm. 

 

Figure 8.7. CVT supercharged turbo-compounding volumetric efficiency and power vs 

supercharger speed at 3000 rpm. 

As shown in figure 8.6 and 8.7, the power turbine efficiency and volumetric efficiency kept 

rising as the supercharger running faster. Even though the power efficiency reached a plateau 

at 140000 rpm, the power output from the turbine increased continuously (up to 30 kW) due 

to the increasing flow of exhaust gas and thus the energy availability. Moreover, the 

improvement in volumetric efficiency played a very important role in reducing the fuel 

consumption of the engine. Generally, at full load operation, higher supercharger speed was 

beneficial for improving the power generation and fuel economy of the whole system. The 

examination was also conducted for other engine speed, and similar results were obtained. 

On the other hand, when the engine was operated under low load condition, results were 

just the opposite.  
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Figure 8.8. CVT supercharged turbo-compounding engine BSFC vs supercharger speed 

under Low load condition. 

Figure 8.8 illustrates the fuel consumption trend along with the change in supercharger speed 

when the engine ran at a low load of 2 bar BMEP. From the plot, both the specific fuel 

consumption at 1500 and 2000 rpm increased at higher supercharger speed. 

It could be explained that at the lowest compressor speed, the compressor consumed the 

least amount of energy. At the same time, less pumping work was expensed by the intake 

stroke as the throttle valve was more widely opened. As the compressor speed rising, the 

energy spent on the supercharger to boost the intake air was simply wasted across the 

closing throttle body which has to reduce the inlet air pressure to meet the load requirement. 

The simulating results also suggested that the throttle losses could be eliminated by adjusting 

the CVT driving ratio according to different working condition. But, it also means that the 

transmission ratio range needed to be significantly extended in that case.  

It should also be noted that the power consumption of the supercharger was negative at low 

load operation when the lowest compressor speed was applied, which means the 

compressor was working in a “windmilling” mode. The generated power, despite its 

magnitude was smaller than 0.3 kW, could be transmitted back to the engine crankshaft 

depending on the working mode of the clutch. If a one-way clutch was coupled between the 

CVT and the crankshaft, the power from the supercharger would simply lost as mechanical 

and heat losses. Otherwise, the power could be received by the engine to enhance the overall 

efficiency of the whole system. 

Figure 8.9 shows the turbo-compounding engine torque and fuel consumption at different 

turbine speed. The CVT ratio was kept constant to be 66.6 when the turbine speed was swept. 

As the curves illustrate, when then engine ran at 2000 or 3000 rpm, the brake torque 

increased significantly as the power turbine speed rising. The specific fuel consumption was 
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reduced accordingly. This is due to the increased turbine efficiency and reduced pumping 

work. At higher engine speed, however, the growth trend slowed down, while the plateau 

appears earlier. This is because of the inherent characteristics of a centrifugal turbine to 

reach the peak efficiency at a velocity ratio (U/C) around 0.7.When the mass flow rate 

decreased at high engine speed, the power output and the optimum speed of the power 

turbine decreased correspondingly. 

 

Figure 8.9. CVT supercharged turbo-compounding engine torque and BSFC vs turbine 

speed. 

 

Figure 8.10. CVT supercharged turbo-compounding engine BSFC and turbine efficiency vs 

turbine speed under low load condition. 

At low load operation when the mass flow was extremely small, the power turbine efficiency 

decreased rapidly as the running speed increasing, as shown in figure 8.10. However, the 

performance of the power turbine had very little influence on the overall engine system. It 

could be found in the graph that less than 0.1% extra specific fuel consumption was added 

by the deep diving in turbine efficiency. The reason was that the exhaust energy was very 
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low under low load condition, so that the power output from turbine was too small to affect 

the overall performance of the entire system. 

8.5.2 Optimization of the inlet pressure before the inverted Brayton cycle 

Figure 8.11 illustrates the effects that the inlet pressure to the IBC has on the brake torque 

and BSFC of the engine system under full load condition.  

 

Figure 8.11. IBC engine torque and BSFC vs inlet pressure to the bottoming cycle. 

Within the speed range between 2000 rpm and 5000 rpm, it was a common trend that the 

engine performance rapidly deteriorated with increased pressure before the bottoming 

cycle. In the author’s opinion, the reason was that both the engine performance and the 

exhaust gas mass flow rate were very sensitive to the back pressure at high load operation. 

Because of the increasing in pre-IBC pressure, more pumping load was imposed to the 

scavenging process, at the same time, the exhaust mass flow rate decreased significantly, 

which reduced the energy availability to the bottoming cycle. At 3000 rpm, for example, the 

torque output from the power turbine was maximised with the inlet pressure of 1.4 bar. 

However, the magnitude was about 1.5 Nm, which was much smaller than the engine brake 

torque. This could explain the flat trend below a certain inlet pressure when the scavenging 

of the stroke was very little affected by the back pressure. 

 

Figure 8.12. IBC power and PMEP vs inlet pressure to the bottoming cycle. 
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As shown in figure 8.12, PMEP plummeted down when the back pressure increased, which 

brought about a rapid decline in the bottoming cycle power output.  

Figure 8.13 shows the IBC power output and BSFC against the sweep of heat exchanger 

effectiveness from 0.3 to 0.9. From the results, the net power outputs from the IBC 

bottoming cycle reached the maximum at all engine speeds. But, they were not linear 

increase. Slight dips can be found with a particular heat exchanger effectiveness at each 

engine speed. These low points should be ascribed to the compromise between the power 

generation from the IBC turbine and the working load imposed to the compressor. 

Specifically, on the one hand, the bottoming power turbine is able to expand the exhaust gas 

to lower pressure and extract more energy from it with higher heat exchanger effectiveness. 

On the other hand, the compressor has to consume more power to pressurise the exhaust 

gas above atmospheric pressure. Therefore, it should also be noted that, although the overall 

thermal efficiency of the bottoming cycle, especially the compressor efficiency, is higher with 

more effective heat exchanger, it may not have direct effects on the power output. However, 

it is also illustrated in figure 8.13 that the fuel consumption of the whole engine system is 

continuously reduced by enhancing the heat exchanger effectiveness. It mainly benefited 

from the decreased back pressure imposed by the bottoming cycle. As mentioned above, the 

outlet pressure from the IBC turbine is lower with higher heat exchanger effectiveness. It 

allows the compressor to pressurize the exhaust gas to a lower pressure level, above 

atmospheric pressure though. 

 

Figure 8.13. IBC power and BSFC vs heat exchanger effectiveness. 

8.5.3. Part load performance 

Figure 8.14 illustrates the fuel consumption of IBC and CVT supercharged turbo-

compounding engine at partial load operation. From the results, the specific fuel 

consumption of these two arrangement were very close at 2 bar BMEP as the air flow through 

the engine was very low and almost immune to the changes in the layout of the exhaust 

system in this condition. Besides, due to the rarefied exhaust gas, these two waste energy 



 

 

 

194 

recovery technologies made very little contribution to improve the engine performance. 

When the engine load went up to 10 BMEP, however, the difference between them began 

to emerge. From the plots, at lower engine speed, the IBC engine had more advantages over 

the other in fuel economy, while the turbo-compounding engine offered better performance 

at high engine speed (above 2000 rpm). 

 

Figure 8.14. Comparison of the fuel consumption between IBC and CVT supercharged 

turbo-compounding engine under partial load condition. 

 

Figure 8.15. IBC and turbo-compounding power output and PMEP. 

This could be explained with the results shown in figure 8.15. When the engine was running 

at lower speed, the energy recovery systems provided very little power. The overall efficiency 

was more affected by the pumping losses. The IBC engine, consequently, was able to embody 

the superiority in fuel consumption with higher PMEP. When engine ran faster, the power 

output from the turbo-compounding system gradually offset the disadvantage in pumping 

losses and provides better fuel economy. 

8.5.4 Full load performance  

Figure 8.16 shows the performance of the novel arrangements and conventional 

turbocharged engine under full load condition. From the results, both the waste energy 

recovery technologies helped to improve the engine brake torque and fuel economy over the 

entire speed range when comparing with the baseline turbocharged engine. Specifically, the 
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IBC engine provided up to 100 Nm more torque and nearly 9% lower fuel consumption. While 

the CVT supercharged turbo-compounding engine, in addition to the enhanced engine 

performance at middle and high engine speed, offered impressively higher torque at 1500 

rpm thanks to the higher boost pressure from the CVT driven supercharger, and this was very 

useful for improving the driveability. 

Based on the similar logic, the difference in fuel consumption could be explained by the shift 

in bottoming cycle power output and PMEP. As shown in figure 8.17, the turbo-compounding 

engine showed better exhaust energy recovering ability at high engine speed while suffers 

from more pumping losses at low speed. Therefore, it offered better fuel economy at high 

engine speed but was inferior to the IBC engine at lower engine speed. It also suggested that 

the IBC engine was less susceptible to the working condition of the engine. And also, the 

engine performance was less compromised by the inverted Brayton cycle.  

 

Figure 8.16. Full load performance comparison between IBC and CVT supercharged turbo-

compounding engine. 

 

Figure 8.17. Power generation of the waste energy recovery devices and the PMEP of the 

whole system. 

8.5.5 Transient performance 

Figure 8.18, 8.19 and 8.20 demonstrate the transient response of each arrangement at 
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different engine speed. It was evident that the CVT supercharged turbo-compounding engine 

achieved the torque demand much more quickly comparing with the other two, while the 

IBC engine was the worst in terms of transient performance. At 2000 rpm, the turbo-

compounding engine equipped with CVT driven supercharger was able to achieve the target 

power output in less than 1 second which was about 4 and 3 seconds faster than the IBC and 

turbocharged engine respectively. This was due to the rapid acceleration of the CVT driven 

supercharger. The turbocharger, on the other hand, had to wait for the accumulation of the 

exhaust energy before it built up the spinning speed.  

 

Figure 8.18. Transient performance between IBC and CVT supercharged turbo-

compounding engine at 2000 rpm. 

 

Figure 8.19. Transient performance between IBC and CVT supercharged turbo-

compounding engine at 3000 rpm. 

 

Figure 8.20. Transient performance between IBC and CVT supercharged turbo-

compounding engine at 4000 rpm. 
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Besides, figure 8.18 also shows that the response speed of the Brayton cycle engine is also 

faster than the turbocharged engine at 2000 rpm. Because the Brayton cycle allows the 

exhaust gas to be expanded below atmospheric pressure, the bottom cycle imposed a lower 

pressure to the outlet port of the upstream turbine. According to the simulation results, the 

outlet pressure of the Brayton cycle engine main turbine was about 0.19 bar lower than the 

baseline engine turbine (1.22 bar vs 1.03 bar), which resulted in a bigger expansion ratio (2.21 

vs 1.63). Therefore, the efficiency of the turbocharger and thus the mass flow rate in the 

Brayton cycle engine were both higher. This in turn improved the transient performance of 

the novel model. When the engine speed increased, however, the operating point of the 

turbocharger in the baseline engine was closer to the high efficiency region, whereas the 

Brayton cycle engine suffered from higher back pressure and much bigger rotation inertia 

which encumbered the response speed, which can be seen in figure 8.19 and 8.20. At 3000 

and 4000 rpm, the performance deficit between these three models decreased gradually 

because of the increasing in exhaust mass flow rate. The response time of the IBC engine was 

reduced by about 1.5 and 2.5 seconds at 3000 and 4000 rpm respectively, and a similar 

improvement was seen from the turbocharged engine. The CVT supercharged engine, 

however, was almost unaffected by the change in engine speed. Furthermore, it could be 

seen from the graphs, the BMEP of the novel models was also greater than that of the 

baseline turbocharged engine in final magnitude. This was mainly due to power generation 

from the bottoming cycle and the lower back pressure. 

Brands et al [24] have also reported the good driveability of a mechanical turbocompound 

diesel engine in a real driving cycle, but stated that as the output of the engine was increased 

the turbocharger match was compromised and driveability suffered.  

8.6 Conclusion  

This chapter demonstrates the potential of the Inverted Brayton cycle and high pressure 

turbo-compounding for the augmentation of the power output and fuel economy of 

conventional turbocharged engine. A 2 litre turbocharged gasoline engine was employed as 

the foundation for the novel scheme in the simulation. The compressor and turbo machinery 

from the baseline model was inherited by the new arrangement as the charging system for 

the simplicity of matching with the air flow characteristics of the engine.  

8.6.1 Optimization 

Design of experiments techniques was used to optimise the compressor and power turbine 

speed of the turbo-compounding engine and also the size of the turbo-machinery in IBC 
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aiming to achieve the optimal performance of the whole system. It was found that both the 

brake torque and BSFC of the CVT supercharged turbo-compounding engine were 

continuously improved along with the acceleration of the supercharger under full load 

condition. Among the reasons, the promotion in volumetric efficiency and the turbine power 

output made the biggest contribution. At partial load, however, a lower supercharger speed 

was more preferable considering the power requirement by the compressor and the throttle 

losses. Besides, when the engine was operated at middle and low speed, the power output 

and fuelling efficiency increased significantly with higher turbine speed, while at high engine 

speed the growth rate was smaller and the plateau appeared sooner. When the throttle was 

partially closing, the influence of the power turbine speed on the overall engine performance 

was weakened. By adjusting the size of the power turbine in the inverted Brayton cycle, the 

inlet exhaust pressure to the bottoming cycle was scaled. Within the engine speed range 

from 2000 to 5000 rpm, it was found that the IBC engine performance deteriorated rapidly 

with higher inlet pressure. It was believed resulting from the plummet in PMEP and thus the 

deterioration of the scavenging process. 

8.6.2 Steady state performance 

When the engines were operated at lower load, the difference in fuel consumption between 

those two novel models was narrowed. The general trend was that the IBC engine offered 

better fuel economy at lower engine speed (below 2000 rpm, typically), while the CVT 

supercharged turbo-compounding engine took over the advantages at higher speed. It was 

the similar trend that applied to the performance under full load condition. This result should 

be attributed to the proportion between the effects of PMEP and power generation from the 

energy recovery system. Specifically, the IBC engine benefited from imposing less back 

pressure to the engine when it was running below 2000 rpm. At higher speed, the turbo-

compounding engine was able to regain the priority by compensating the pumping losses 

with recovered energy from the power turbine. It was also worth noting that the power 

generation and the fuel consumption from the novel system were both significantly better 

than the baseline turbocharged model. Furthermore, the low speed torque from the turbo-

compounding engine was enhanced impressively with the assistance of CVT. 

8.6.3 Transient performance 

During the evaluation of the transient performance, CVT supercharged turbo-compounding 

engine showed the fastest response speeds, while the IBC which was delayed by building up 

the turbine speed took the longest time to achieve the required BMEP. 
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Chapter 9 – Modelling the Divided Exhaust 

Period Concept for a Turbo-compounding 

Engine 

Turbo-compounding, as one of the most compact waste energy recovery technology with 

lower cost and complexity, has been proven to be effective in improving fuel economy. 

However, issues such as high back pressure and poor turbine efficiency at specific working 

condition are hindering the wider application. The Divided Exhaust Period (DEP) is a novel gas 

exchange concept, which has been proved to be capable of significantly reducing the back 

pressure of turbocharged engine and keeping the operating points of the turbine machinery 

in high efficiency area.  

This study was carried out on a 1-D baseline model of a highly boosted gasoline engine. In the 

novel model, a scaled power turbine was added in parallel to the main turbine of the 

turbocharger as a waste energy recovery device. The DEP concept features two exhaust valves 

that function independently. The blow-down valve evacuates the first portion of the exhaust 

gas to the main turbine as a traditional turbocharged exhaust valve does. The scavenge valve 

directs the latter portion into the power turbine which converts the remaining energy in the 

exhaust gas into useful power. By separately optimizing the two exhaust valve timing and lift 

parameters, it is expected that the novel system could achieve better breathing 

characteristics and thus better performance and fuel economy than the baseline model over 

a wide engine speed range. Furthermore, the parameters that are of the greatest interests to 

the fuel economy will be optimized simultaneously using genetic algorithm after the effects 

of exhaust valve timing, lifts and size having on the engine performance being summarized 

separately. This work was carried out by co-simulation of GT-power and Simulink. 

9.1 Introduction 

The base of DEP (Divided Exhaust Period) concept can be traced back to 1924. In a British 

patent [208] it was first mentioned as an approach to improve the thermal efficiency of an 

internal combustion engine. From then on, patent claims have been made by several 

companies, including Deutz AG [209], Fleming Thermodynamics Ltd. [210] and Saab 

Automobile AB [211]. The investigation was commonly carried out on a passenger car SI 
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engine with variable camshafts phasing for the exhaust valves. This is probably due to the 

inherent problems, such as throttle losses, larger portion of residuals, spark timing and 

compression ratio limitations, which make DEP implementation on SI engines more effective. 

In recent years, researchers start to pay attention to the application of DEP in turbocharged 

engine. Because the exhaust energy contains about 35% of the total fuel energy. 

Turbocharger is an efficient way to extract a part of this energy and eventually to improve 

the engine performance greatly. BorgWarner have explored the potential of utilising DEP to 

improve the flow characteristics of a turbocharged SI engine with both simulations and 

engine tests for with different EGR routing. [212, 213]. Results from that study showed an 

improvement in fuel efficiency of 1.5-5.5 % due to the improved pumping work. Furthermore, 

by reducing the backpressure via valve overlap, the residual gas fraction was reduced as well. 

It led to an advance of spark timing by up to 17° which in turn was able to improve the fuel 

efficiency further for 12.3%. Besides, the reduced residuals also made it possible to increase 

the compression ratio without violating the knock limits. As the authors claimed, the 

compression ratio could be increased by 2-3 for better fuel economy over the whole 

operating range. 

The results in [214] showed that the turbine mass flow and pressure ratio of the DEP system 

vary within the high efficiency range of the turbine map due to the less flow. On the contrary, 

the turbine mass flow and pressure ratio of the baseline turbocharged engine vary widely in 

the turbine map due to the highly pulsatile exhaust flow, which deteriorate the turbine 

efficiency. The author also suggested that if only the high pressure blow-down pulse is 

directed to the turbine, the flow will be less pulsatile, but the peak pressure of the exhaust 

flow will be maintained. With a proper valve timing strategy it is possible to control the 

exhaust mass flow and pressure to make the turbine operate within a high efficiency area for 

a wide operation, meanwhile provide the same amount of power. 

In [215], the BSFC behaviour of a highly downsized SI engine equipped with DEP was 

investigated for different scavenge valve profile. It was summarised that BSFC behaviour at 

higher engine speed was more sensitive to the change of the scavenge valve profile than that 

of low speed. Because the back pressure was significantly higher at high speed, DEP was more 

prone to reduce the working load on the pistons by decreasing the backpressure and 

eventually improve the fuel efficiency. On the other hand, the study in [216] showed the 

different results. It was stated that the mass flow in a DEP engine was more likely to suffer 

from choking at high engine speed since only one exhaust valve (either blow down or 

scavenging valve) was opened for different portion of exhaust gas, which led to additional 
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pumping loss. Besides, in a DEP engine system, it was the general trend that high lift is 

beneficial for decreasing residual gas fraction leading to an advance of spark timing which is 

beneficial for fuel saving. However, some fresh charge will flow out of the cylinder due to the 

blow through effect in this case, which would significantly increase BSFC. Severe choking is 

also a weakness for higher lift as the accompanying scavenge valve retards causes more time 

with only one valve involved. The similar trend was found for the sweep of scavenge valve 

duration. It suggests that the profile of the exhaust vales should be carefully optimised in 

order to achieve the desirable fuel economy. But, the main challenge is that the exhaust valve 

profile cannot be adjusted in isolation. It is strongly interrelated with other parameters such 

as intake valve timing, turbocharger sizing and combustion phasing. In [217], the authors 

provided an approach to test all parameters against each other with genetic algorithm, which 

is able to significantly reduce the simulating matrix and time. 

By reviewing the recent studies on DEP concept, it was mainly applied to turbocharged SI 

engine, either single stage or two stage. It was utilised to reduce the backpressure and thus 

the pumping loss by regulating the exhaust flow and reducing pulsation interference. In fact, 

turbo-compounding engine is more prone to suffering from high back pressure, especially 

when a power turbine was located in series with the turbocharger turbine to harvest waste 

heat energy. This chapter will explore the potential of DEP in reducing the back pressure of 

series turbo-compounding engine. The effects that exhaust valve profile and phasing have 

on the overall engine performance will be given. Genetic algorithm will be employed to 

explore the optimal fuel economy of the whole system. 

9.2 Methodology  

For the simulation work presented in this chapter a validated 1D model of a highly downsized 

two stage SI engine detailed in table 9.1 was used as a starting point. The engine had a BMEP 

designed to facilitate a 60% downsizing ratio when compared with an equivalent NA engine 

[218]. Noted here that the supercharger was connected to the crankshaft via a CVT, so that 

the supercharger speed could be adjusted independently. It was beneficial for improving the 

fuel efficiency at mid-high load operation as well as the response speed. In order to 

implement the DEP functionality to the engine system, the exhaust pipes were re-routed as 

shown in figure 9.1, in which the blow-down and scavenge valves were actuated by two 

unique cam profiles. The concept was that the exhaust gas from the blow down valves with 

higher pressure and temperature would be directed to the turbocharger turbine to provide 
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power for air boosting, while the other portion of exhaust from the scavenge valves would 

be expanded in the power turbine to convert the waste heat into mechanical power which 

was fed back to the crankshaft. The wastegate function of the conventional fixed geometry 

turbocharger was replaced by adjusting the timing of the scavenge valve to maintain or 

exceed the target BMEP. 

(a) (b)  

Figure 9.1. Engine model arrangement. (a) baseline; (b) DEP. 

Table 9-1. Engine specifications. 

Parameter Specification  

Engine type Inline 4 cylinder 

Capacity  1991 cc 

Bore 83 mm 

Stroke 92 mm 

Compression ratio 9.0:1 

Firing order 1-3-4-2 

Combustion system Gasoline GDI 

Valvetrain DOHC, cam phasers and cam profile switch on intake and exhaust camshafts 

Specific power 142@ 6500 kW/l @ rpm 

Specific Torque 255@ 3500 Nm/l @ rpm 

Maximum BMEP 35 @ 3500 (25 @ 1000 and 6500) Bar @ rpm 

Air charging system HP: Eaton R410; LP: Honeywell GT30 

 

It was expected that DEP could help to reduce the back pressure of turbo-compounding 

engine through a careful optimization of the exhaust flow to the main and power turbine. 

However, as mentioned in the review of the previous studies, it was concerned that the 

exhaust valves in DEP engine might suffer from choking. Besides, the volumetric efficiency 
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might be changed because some of the fresh charging might swept out of the cylinder 

without involving into combustion. Therefore, parameters, such as the exhaust valve timing, 

lift, duration, turbo size and intake valve timing would be investigated one by one to give a 

general trend of the effects to the engine performance before the genetic algorithm being 

utilised to explore the global optimal solution.  

9.2.1 Knock model 

In this study, the Douand and Eyzat knock model was employed to showcase the potential of 

the DEP system to improve the combustion phasing. The basic principle of this model is to 

compare the knocking behaviour of commercial fuel in a cooperative fuel research engine 

(CFR) with that of the primary reference fuel (PRF) for which the octane number (the mixtures 

of isooctane and n-heptane) is already known. In this method, the occurrence of knock of 

PRF was determined based on induction time correlations representing the autoignition 

delay as shown in formula 9.1. 

                              I(α) =
1

6(𝑟𝑝𝑚)
∫

1

5.72×106𝑀1(
𝑂𝑁

100
)3.402𝑝𝑛exp (
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𝑀2𝑇
)

𝑑𝛼
𝛼

−100
                                    9.1 

where I is the induction time integral, α is the crank angle, rpm is engine speed, ON is the 

fuel octane number, p is the instantaneous cylinder pressure (Pa), T is the instantaneous 

unburned gas temperature (K), n is the pressure coefficient, 𝑀1 is the knock induction time 

multiplier, and 𝑀2 is the activation energy multiplier. With the “Four-Octane-Number 

Method” developed by A. M. Douaud and P. Eyzat [219] for Predicting the Anti-Knock 

Behavior of Fuels and Engines, the coefficient 𝑀1, 𝑀2 and n can be worked out with four 

reference fuel conditions being provided. And then this empirical formula can be generalized 

for all engines and fuels to forecast the knock behaviour. 

The knock index (KI) is a phenomenologically based parameter developed by Gamma 

Technologies. It can be scaled to the loudness of knock using the KI multiplier. The KI is 

defined as a time-dependent value as follows [220]: 

KI = 10000Mu
𝑉𝑇𝐷𝐶

𝑉
exp (

−6000

𝑇
) (max(0, 1 − (1 − 𝜑)2))𝐼𝑎𝑣𝑔                     9.2 

In which KI is the knock index, M is the KI multiplier, u is the percentage of cylinder mass 

unburned, 𝑉𝑇𝐷𝐶  is the cylinder volume at TDC, V is the cylinder volume, T is the bulk 

unburned gas temperature (K), 𝜑 is the equivalence ratio of the unburned zone, and 𝐼𝑎𝑣𝑔 is 

the induction time integral, averaged over all end gas zones. 

A Wiebe combustion model was adopted in the engine model, in which a reference number 

CA50 was defined as the crank angle between TDC and 50% combustion point of the Wiebe 
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curve. The CA50 in this model was controlled by a PID controller to keep the KI under specific 

index. The intake exhaust valve timing was optimized with genetic algorithm for both the DEP 

concept model and the original R2S model for a sensible comparison. Details will be given in 

the Genetic Algorithm section. The exhaust valve diameter was increased to the same size as 

the intake valve to ease the exhaust flow choking when only one valve is involved for the DEP 

engine. 

9.2.2 Genetic algorithm 

Genetic algorithm (GA) is literally an adaptive heuristic search method based on the 

evolutionary concepts of natural selection and genetics. It represents an intelligent approach 

to solve optimization problems. The basic idea of GA is to mimic the processes of evolution 

in natural systems and follow the principles of "survival of the fittest" first proposed by 

Charles Darwin. It aims at the results that the fittest individuals dominate over the weaker 

ones through optimization, which is the similar case for the nature. Although the algorithm 

is randomised by definition, it actually iterates historical information to continually direct the 

search towards the region of better solution within the search space. When comparing with 

conventional artificial intelligence, GA shows more robust performance, which means it does 

not break easily even if the inputs change, or considerable noise is presenting.  

 

Figure 9.2. Working procedure of genetic algorithm. 

The operating structure of the genetic algorithm is shown in Figure 9.1. 

GA mimics the principle of the nature, which is survival of the fittest, to explore the best 

solution to a specific problem with consecutive generations of candidates. Each generation 

consists of a population of character strings. It is analogous to the chromosome in biological 
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DNA. The individuals can be regarded as a point in the search space and also a possible 

solution. After the individuals are initialised, the population go through a process of evolution 

for optimal. 

Similar the law of evolution, the theory of GA is based on several principles. Firstly, the 

individuals in a population compete for resources and mates. More successful ones in each 

generation will have higher opportunity to produce offspring than those poorly-performing 

ones. Genes from better individuals are more likely to propagate and combine throughout 

the population to produce offspring better than either parent. So that, the generation will 

move closer and closer to the best solution of the given problem.  

Searching Space 

A population of individuals is maintained within search space for a GA, each representing a 

possible solution to a given problem. A candidate solution contains several variables. A 

weight is worked out through a fitness function and assigned to each solution representing 

the abilities of an individual to “compete”. The GA maintains the population of solutions with 

associated fitness values. Good parents are selected to mate based on their fitness and 

produce offspring via a reproductive plan. As offspring are born, space must be made for the 

new arrivals to keep the population at a static size. Old individuals in the population die out 

and are replaced by the new ones. Consequently, when the evolution opportunities are fully 

utilised and a new generation is created. In this way, it is expected that generation of the 

better solutions will continually replace the previous one. Eventually, the optimal (or 

generally near optimal) solution will be found. 

Once the evolution reaches the plateau and is not producing offspring noticeably different 

from those in previous generations, the algorithm itself is considered to have converged to a 

set of solutions to the problem. The operation cycle will be ended then. 

Details of the operation structure 

After initialization, a population is randomly generated within the searching space. The 

evolution of GA will proceed with three operators, namely selection, crossover and mutation. 

Just as its name implies, selection determine the survival of the fittest solutions; crossover 

represents the mating between individuals; mutation introduces random modifications to 

the candidates. 

Specifically, depending on the fitness value calculated from a fitness function, the selection 

operator assigns higher priority to better solutions, which allows them to deliver their genes 

to the next generation.  

The crossover operator is regarded as the unique factor of GA distinguishing it from other 
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optimization techniques. It allows two selected individuals to exchange part of the variables. 

Two new offspring are created in this way containing part of the features from their “parents”. 

For example, through crossover operation, the candidate S1=000000 and S2=111111 

exchange part of their bit strings and create S1'=110000 and S2'=001111. The new individuals 

created from this mating goes into the next generation. Since it recombines part of the 

features of the good individuals, it is possible to give even better candidates. 

Mutation operator is of relatively low probability when comparing with the former two 

operators. It changes the characters of some of the new individuals randomly within the 

searching space to maintain the diversity of the population and avoid premature 

convergence. 

Therefore, using selection alone will fill the population with copies of the best individual from 

the previous generation. Using mutation alone, however, will induce a random sweep 

through the search space. Instead, using selection and crossover operators tends to converge 

the process rapidly to a good solution but may not be the optimal one. Using mutation and 

selection (without crossover), on the other hand, will create a parallel, noise-tolerant, hill-

climbing optimization process. 

Nowadays, genetic algorithm has been widely applied to real-world problems solving 

because of the powerful and robust optimisation ability. However, it should be noted that 

genetic algorithm is not merely a computing method which simply proceeds pre-designed 

work flow. Considerable effort is required to design a proper fitness function. If a proper 

fitness function is absent, the operation will either runs into inappropriate converge with a 

sub-optimum solution or even is struggle to converge at all. Since the primary target of the 

optimization process was to gain fuel saving subject to specific constraints, the fitness 

function was defined as formula 9.3. 

Fitness (x) = BSFC + P × |1 −
𝐵𝑀𝐸𝑃𝑥

𝐵𝑀𝐸𝑃𝑡𝑎𝑟𝑔𝑒𝑡
|                                      9.3 

where x refers to a candidate solution containing the variables of valve timing, lift and turbo 

size . P is introduced as a penalty factor. It determines the penalty for those individuals that 

do not satisfy the requirement in engine load. Apparently, a larger value of P imposes higher 

penalty factor on the fitness score and leads to a stricter confinement but worse selection 

efficiency. Considering the compactness of fitness definition, a static penalty is adopted in 

this study for the robust and rapid operation. After investigating the converging results for a 

considerable number of times, P was decided to be 1000 for the original model and 5000 for 

the DEP concept model. 
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9.3 Modelling and simulation 

From previous studies [142, 220], it was found that decreasing the intake valve diameters by 

10% while changing the blowdown-scavenge area ratio from 1 to 2.5 might bring about a fuel 

saving up to 1%. If the intake valve size was decreased further, however, the fuel 

consumption would be higher because of the increased intake losses. On the other hand, if 

the intake area was kept the same as that in baseline model, while the exhaust valve 

diameters were increased, there would be reduction in BSFC as well, since the DEP engine 

was more prone to choke when only exhaust valve was opened. But, from the results, only 

0.2% fuel saving could be achieved by increasing the exhaust area by 10%. Although 

increasing the size of the intake and exhaust valves might help to decrease the risk of choke 

at the exhaust port at high engine speed and load, such layout of the exhaust valves might 

not be feasible in OEM engines considering the dimensional limits between two exhaust 

valves and the cylinder block edges. Therefore, the investigation of the effects of different 

valve size on the engine performance would not be included in this study. The intake and 

exhaust area would be kept the same as that in original model.  

At low engine speed, the scavenging valve duration should be retrenched to allow more 

exhaust energy to be given to the turbocharger, so that the power output at low speed end 

can be improved. Besides, the overlap between the scavenging and intake valve could be 

increased to reduce the residual gas in the cylinders. 

As engine speed was increased, exhaust energy became superfluous for satisfying the air 

boosting requirement. The scavenging valve duration should be then increased accordingly 

to direct more exhaust mass flow to the power turbine to avoid choking at the turbocharger 

turbine. By regulating the exhaust mass flow to the turbocharger, the brake torque could be 

limited for further increasing with the back pressure being effectively reduced. It was of the 

similar function as the wastegate. But the exhaust energy was still utilised. The power turbine 

connected with the scavenging valves would convert it into useful mechanical work. 

9.4 Optimization procedure 

In this study, the optimization of the DEP engine would be carried out in two phases by order. 

In the first phase, an iterative procedure would be adopted in order to investigate the effects 

that the sweeping in valve timing, lift and turbine size have on the engine performance 

respectively. Since there were strong interaction effects between turbine size, valve timing 
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and valve lifts, it was impossible to clearly embody the impacts of each parameter if all of 

them were optimized against each other at a time. Instead, by letting the sweeping go 

through an iterative process, the test matrix could be significantly compacted while the 

effects of each parameter could be easily analysed. An example would be given here to 

explain the iterative optimization procedure. It was started with initialised turbocharger 

turbine size and power turbine size, the intake and exhaust valve timing was swept firstly 

together with the valve lift. The sweep in exhaust valve timing consists of the changes in both 

blow-down and scavenge valve. When an optimal match was found for the intake and 

exhaust valve timing and lift, it was directly utilised in the sweep of the intake valve timing at 

the next stage. With the optimal match found in this stage, the exhaust valve duration (which 

was determined by the “angle multiplier” in GT-Power) would be swept to search for the best 

settings within the limitations to the overlap between the blow-down exhaust valve closing 

and scavenge exhaust valve opening. Similarly, the turbocharger turbine and power turbine 

size would be optimised in the following stage. And finally, the same process was carried out 

for the intake valve lift. Theoretically, this process needed to continue until the same settings 

were achieved in the new iteration cycle, which unavoidably made it a time consuming 

process. However, since the primary demand for this phase is to investigate the effects of 

different parameters, it was the changing trends in engine performance that really matter, 

instead of the global optimal setting.  

In the next phase, however, genetic algorithm would be involved to explore the best engine 

performance considering the interactive effects of the parameters. A mathematics model of 

GA would be built in Simulink to simulate cooperatively with the GT-Power model to search 

for the global optimal setting for all the parameters. The optimization procedure for the first 

and second phase were only performed for two load point which represent the full load high 

speed operation and the low speed low load operation respectively. It should be note that, 

the original engine model was optimized correspondingly to realise a fair comparison 

between baseline and DEP engine. Obviously, there are many more parameters that might 

need optimization before being applied to the DEP concept, for example, the injection 

strategies, manifold geometry, but further optimization of the complete engine system was 

deemed to be outside the scope of this thesis. 

9.5 Results and analysis 

In this section, the results from two studied cases of the DEP model will be discussed 
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individually before moving to the comparison with the baseline two-stage boosted engine 

model. 

9.5.1 Full load simulation at high engine speed of 3000 rpm 

As mentioned in the optimization procedure section, the first sweep was carried out for the 

exhaust valve timing, in which the blow-down valve timing was varied from 210 to 300 degree, 

while the scavenge valve timing was varied from 310 to 400 degree. Both the blow-down and 

scavenge valve timing were referenced to the angle between the point of maximum lift and 

the top-dead-centre associate with firing.  

 

Figure 9.3. Sweep of blow-down valve timing vs fuel consumption and supercharger 

power. 

 

Figure 9.4. Sweep of blow-down valve timing vs pumping work and power turbine power. 

From Figure 9.3, it can be seen that the blow-down valve timing itself imposed significant 

impact on fuel consumption. Specifically, as shown in figure 9.4, when the blow-down valve 

timing was retarded from 210 to 240 degree, the pumping work was slightly reduced due to 

the increased overlap between the blow-down and scavenge valve opening. At the same time, 

the residual gas fraction was reduced significantly because of the better scavenging, which 
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led to an advanced ignition timing (it was referenced to the 50% burned crank angle) for the 

same knock index. When the blow-down valve timing was continually moved backward from 

250 to 270 degree, the fuel consumption increased rapidly duel to the sharp reduction in 

PMEP, because the availability of exhaust energy for the turbocharger was reduced. It was 

also reflected by the increasing power consumption of supercharger. At the same time, 

ignition had to be retarded because of the increased residual gas fraction. From 270 degree 

and on, the residual gas was decreased by the larger overlap between the exhaust and intake 

valve which led to a sweep effect of the burned gas in cylinders. However, since the PMEP 

continued to decrease, the fuel economy was still deteriorated. It should be noted that the 

mechanical power spent on driving supercharger was very little, which means turbocharger 

provided most of the boosting at a high engine speed of 3000 rpm.  

 

Figure 9.5. Sweep of scavenge valve timing vs BSFC and PMEP. 

 

Figure 9.6. Sweep of scavenge valve timing vs ignition timing and power turbine power. 

The scavenge valve timing, however, had much smaller effects on fuel economy of the engine 

system, since only a smaller portion of the exhaust gas was flow out via the scavenge valve, 

as shown in figure 9.5. Nevertheless, the sweep of it from 310 to 400 degree decreased PMEP 
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by about 0.3 bar, while increased the power turbine work by about 0.3 kW as shown in figure 

9.6. More significantly, as illustrated in figure 9.6, the retarding of scavenge valve timing and 

thus a larger overlap with the intake valve timing reduced the residual gas fraction greatly 

and led to a significantly advanced ignition timing, which was also beneficial for improving 

the fuel efficiency. It should be note that although the sweep in scavenging valve timing 

would change the overlap with the blow-down valve and switch the working status of 

supercharger, the correlated effects was very limited since turbocharger had done most work 

for air boosting, as mentioned before. 

 

 

Figure 9.7. Sweep of blow-down valve lift vs BSFC and PMEP. 

 

Figure 9.8. Sweep of scavenge valve lift vs BSFC and PMEP. 

In the next stage, simulation was carried out to sweep the exhaust valve lift. From the results, 

it showed very little effects on the engine performance, as shown in figure 9.7 and 9.8. The 

general trend was that the pumping work could be reduced with enlarged lift multiplier for 
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both blow-down and scavenge valve. From a previous study conducted by Bo [7], a high 

exhaust valve lift multiplier may lead to a loss of fresh charge because of the blow through 

effect which sweep fresh air out of cylinders before the occurrence of combustion. Besides, 

a higher lift might introduce a larger back flow from the exhaust manifold to the cylinder, 

which resulted in a reduction of volumetric efficiency. However, those phenomenon was not 

seen in this work, because the exhaust valve duration was not changed accordingly. The 

isolated changes in valve lifts did not affect engine breathing much. In brief, it was only the 

slight change in pumping work that affected the engine fuel economy in this sweep. The gas 

flow in and out of cylinders was not greatly affected. 

 

Figure 9.9. Sweep of intake valve timing vs BSFC and PMEP. 

 

Figure 9.10. Sweep of intake valve timing vs supercharger power. 

Figure 9.9 and 9.10 shows the simulation results by sweeping the intake valve timing. From 

the results, an optimal point existed around 480 degree for the intake valve timing, as shown 

in figure 9.9. An advanced valve timing resulted in a sweep out of exhaust gas from the 

overlap between exhaust and intake valve, which would reduce the energy availability for 



 

 

 

213 

the turbocharger and thus PMEP, while a retarded valve timing might lead to a deficit in fresh 

air charging which had to be compensated by supercharger, as shown in figure 9.10. They 

were both violence against the fuel economy. Besides, from figure 9.10, when the intake 

valve was advanced to 410 degree, the blow through effect would emerge. Some of the fresh 

charge would be carried out of cylinders without burning. Supercharger had to be engaged 

in this case to make up the loss, which would damage the fuel efficiency badly.   

 

Figure 9.11. Sweep of blow-down valve angle multiplier vs BSFC and PMEP. 

 

Figure 9.12. Sweep of blow-down valve angle multiplier vs supercharger power. 

The effects of blow-down valve duration on engine performance was shown in figure 9.11 

and 10.12. In GT-power, the exhaust duration can be varied through adjusting the scaling 

factor of angle multiplier. When the scaling factor was increased from 0.7 to 1.05, PMEP 

increased accordingly due to the reduced resistance to exhaust mass flow and thus lower 

back pressure. Besides, a smooth gas exchange process reduced the residual gas in the 

cylinder, which allowed an advanced ignition timing, as shown in figure 9.12. So that, the fuel 

consumption could be reduced by about 2% because of the synthetic effects. When the angle 

multiplier was increased further, PMEP would keep increasing. However, because a larger 

portion of exhaust flew back into the cylinder in this case, the ignition timing should be 
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retarded to avoid violating the knock limits, as shown in figure 9.12. Consequently, the fuel 

economy deteriorated, as shown in figure 9.11. Furthermore, with an extended exhaust valve 

duration multiplier above 1.05, the loss of fresh charge would become more serious because 

of the blow through effect. So that the supercharger had to be engaged to provide additional 

boosting to compensate loss of intake air, which also damage the fuel economy severely. At 

the same time, residual gas fraction would increase significantly. Therefore, the fuel 

consumption went back to a high level rapidly then, even though the pumping loss was lower.  

 

Figure 9.13. Sweep of scavenge valve angle multiplier vs BSFC and PMEP. 

For scavenge valve, as shown in figure 9.13, a smaller angle multiplier was preferable to allow 

more exhaust go through the turbocharger turbine and provide energy for air boosting. From 

the result, PMEP would decrease by 0.1 bar with longer duration for scavenge valve leading 

to increased fuel consumption by about 3.3%. However, the scavenge valve duration had 

little impact on the residual gas fraction and supercharger operation status, since only a small 

portion of exhaust was expelled through the scavenge valves. Therefore, the ignition timing 

was mainly determined by the boosting pressure and fresh charge temperature. The overall 

change of it was very little.   

 

Figure 9.14. Sweep of turbocharger turbine size vs BSFC and PMEP. 
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Figure 9.15. Sweep of power turbine size vs power turbine size and power turbine power. 

From figure 9.14, it can be seen that a larger turbocharger turbine would brought out lower 

back pressure and higher PMEP and eventually better fuel economy. However, when the 

mass multiplier for the main turbine was increased bigger than 0.9, the turbocharger turbine 

became less effective to capture the energy in exhaust pulse and unable to provide enough 

boosting for the engine. Therefore, an optimal point existed at around 0.9 for the main 

turbine mass multiplier. The power turbine, on the other hand, had very little effect on the 

engine performance, since it contributed very little to the power output and engine breathing, 

as shown in figure 9.15. 

9.5.2 Full load simulation at low engine speed of 1000 rpm 

In this section, the similar sweep procedure would be carried out for the simulation at low 

engine speed of 1000 rpm. 

Figure 9.16 and 9.17 show the effects of blow-down valve timing having on engine 

performance. 

 

Figure 9.16. Sweep of blow-down valve timing vs BSFC and FMEP at 1000 rpm. 
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Figure 9.17. Sweep of blow-down valve timing vs FMEP at 1000 rpm. 

From the plots, it can be seen that the blow-down valve timing had less influences on engine 

performance at 1000 rpm when compare to the results at higher engine speed of 3000 rpm. 

It was mainly due to the fact that the back pressure was much lower at low engine speed. It 

means that the DEP arrangement in this case was less effective to improve PMEP of the 

engine system. As shown in figure 9.16, a variation in blow-down valve timing led to a drop 

in PMEP by about 1.2 bar and an increasing in specific fuel consumption by about 3.9%. The 

change of FMEP, as shown in figure 9.17, also affected the overall fuel economy. But the 

effect was very limited, since only a slight variation was seen. 

 

Figure 9.18. Sweep of scavenge valve timing vs BSFC and PMEP at 1000 rpm. 

As for the scavenge valve timing, it imposed even less impact on the gas exchange and fuel 

efficiency of the engine, as shown in figure 9.18. However, when the scavenge valve timing 

was retarded to 370 degree and backwards, a large overlap between exhaust and intake valve 

timing arose. And then a great portion of fresh charge would be swept out of the cylinders 

without burning due to the blown through effect. So that, the supercharger had to be 

engaged to assist boosting to satisfy the load target, as shown in figure 9.18. At the same 

time, the increasing in FMEP also contributed to the fuel consumption. 
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Figure 9.19. Sweep of blow-down valve lift vs BSFC and PMEP at 1000 rpm. 

From figure 9.19, exhaust valve lift had very limited effects on engine performance, which 

coincided with the results at high engine speed. Figure 9.19 shows that the pumping work 

could be reduced by 4%, while the fuel economy could be improved by 0.7% by increasing 

the blow-down valve lift multiplier from 0.8 to 0.88. The impact of sweeping the scavenge 

valve lift was negligible, and did not be displayed in here.  

 

Figure 9.20. Sweep of intake valve timing vs BSFC and PMEP at 1000 rpm. 

The results shown in figure 9.20 suggests that an optimal setting for intake valve timing 

existed at the point around 450 degree. If the intake valve timing was retarded too much, 

PMEP would suffer from a notable decline. 

 

Figure 9.21. Sweep of intake valve timing vs supercharger power at 1000 rpm. 
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Meanwhile, supercharger would consume more power to cover the pumping work, as shown 

in figure 9.21. On the other hand, if the intake valve timing was advanced too much, fuel 

efficiency would also deteriorate due to the loss of fresh charge, which was the similar case 

with retarded scavenge valve timing. 

 

Figure 9.22. Sweep of blow-down valve duration vs supercharger power and PMEP at 

1000 rpm. 

From figure 9.22, PMEP could be effectively improved by increasing the blow down valve 

duration. However, the power consumption of supercharger was also increased. 

Consequently, the synthetic effect on overall fuel economy was negligible.  

 

Figure 9.23. Sweep of scavenge valve duration vs BSFC and supercharger power at 1000 

rpm. 

The scavenge valve, however, imposed notable impact on fuel efficiency of the whole system. 

As shown in figure 9.23, an extended duration led to a large overlap with the intake valve. 

Supercharger was then expected to work harder to compensate the fresh charge, which 

consequently increased the fuel consumption. 

From figure 9.24, it can be found that the effect of turbine size on fuel consumption was very 

limited. The back pressure could be reduced slightly, while the supercharger had to share 

more work to remedy the loss in turbocharger boosting, as shown in figure 9.25. Ignition 

timing could be advanced with larger turbine size, because of the better scavenge process. 

But the change turned out to be very limited. Efficiency of the power turbine was much lower 

at low engine speed (around 30%) because the mass flow rate was much lower. Therefore, 
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the sweep of power turbine size had very little effect on engine performance. 

 

Figure 9.24. Sweep of main turbine size vs BSFC and PMEP. 

 

Figure 9.25. Sweep of main turbine size vs supercharger power and ignition timing. 

9.5.3 Low load simulation at 3000 rpm 

Under low load condition, because the mass flow rate of engine system was reduced 

significantly, meanwhile the turbomachinery imposed less back pressure to the exhaust flow, 

it was assumed that DEP was less effective in improving the gas exchange process. Therefore, 

it was no longer necessary to investigate all the parameters, as what have been done in the 

full load operation, instead, only the blow-down and scavenge valve timing was optimised at 

this stage. Besides, it should be note that the power turbine was bypassed in the low load 

simulation aiming to reduce the back pressure further, since the power generation was very 

limited in this case. 

 

Figure 9.26. Low load sweep of blow down valve timing vs BSFC and PMEP at 3000 rpm. 
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From figure 9.26, it can be seen that the impact that blow-down valve timing had on fuel 

efficiency was relatively smaller than that in full load simulation. Only a variation of about 

1.7% was found in BSFC, which was mainly due to the reduction of pimping work when 

increased the overlap between the intake and exhaust valve timing, as shown in figure 9.26. 

The scavenge valve timing, however, had very little effect on the fuel economy because of 

the low mass flow rate. 

The scenario was similar at 1000 rpm, as shown in figure 9.27 and 9.28. It was the blow-down 

valve timing that had relatively more significant influence on BSFC due to the capability to 

shift the gas exchange characters. 

 

Figure 9.27. Low load sweep of blow down valve timing vs BSFC and PMEP at 1000 rpm. 

 

Figure 9.28. Low load sweep of scavenge valve timing vs BSFC and PMEP at 1000 rpm. 

9.5.4 Comparison of baseline and DEP engine performance under full load condition 

In this section, a comparison between the optimised DEP and original engine models will be 

carried out. As mentioned before, genetic algorithm was utilised to search for the global 

optimal setting for both the novel and baseline engines. Four operation points were 

investigated successively, which were the full load simulation at 3000, 2000, and 1000 rpm 

and the low load simulation of 4.99 BMEP at the engine speed of 3000 and 1000 rpm.  
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From the results shown in table 9.2 to table 9.4, DEP arrangement does have advantages in 

improving the fuel efficiency in a highly boosted gasoline engine. It was mainly due to the 

ability to regulate the mass flow in and out the cylinders. It was a general trend that the PMEP 

of the DEP model was reduced under full load condition because of the increased back 

pressure when only one exhaust valve was engaged. However, the loss in pumping work 

could be effectively compensated with a higher efficiency for air boosting. The turbocharger 

with optimized size would be more effective and share more work for fresh charging. The 

mechanical work spent on driving supercharger was saved. Besides, the larger overlap 

between the intake and exhaust valve timing and smooth exhaust flow from each cylinder 

without interruption helped to reduce the residual gas fraction in the cylinder, which is 

beneficial for advancing the ignition timing (almost the same at 1000 rpm though), providing 

further improvement to fuel economy. It should be not that the power turbine employed in 

the DEP system was extremely small (a mass multiplier of 1.5 was applied) to effectively 

capture the exhaust pulse energy. Since the mass flow rate through the power turbine was 

much lower, it was not necessarily cause apparent increasing in back pressure. The power 

generation from power turbine was nearly 2 kW and smaller at lower engine speed.  

Table 9-2. Full load performance of baseline and DEP engine at 3000 rpm. 

 Baseline engine  DEP engine Promotion 

BSFC (g/kW-h) 244.79 235.13 4.1% 

PMEP (bar) 0.656 0.486 -0.17  

Supercharger power (kW) 4.31 0 4.31  

Turbocharger efficiency (%) 65.48 67.40 3.1% 

Ignition timing (degree) 23.34 19.69 3.56  

Power turbine power (kW) -- 1.89 -- 

Table 9-3. Full load performance of baseline and DEP engine at 2000 rpm. 

 Baseline engine  DEP engine Promotion 

BSFC (g/Kw-h) 247.36 239.17 3.4% 

PMEP (bar) 0.744 0.659 -0.085  

Supercharger power (Kw) 3.00 1.51 1.49 

Turbocharger efficiency (%) 62.96 64.85 2.9% 

Ignition timing (degree) 22.86 20.24 2.62  

Power turbine power (kW) -- 0.942 -- 
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Table 9-4. Full load performance of baseline and DEP engine at 1000 rpm. 

 Baseline engine  DEP engine Promotion 

BSFC (g/Kw-h) 261.78 253.65 3.2% 

PMEP (bar) 1.065 1.000 -0.065 bar 

Supercharger power (Kw) 2.926 1.960 0.966  

Turbocharger efficiency (%) 60.25 61.97 2.9% 

Ignition timing (degree) 20.972 21.200 -0.228 

Power turbine power (kW) -- 0.317 -- 

9.5.5 Comparison of baseline and DEP engine performance under low load condition 

Under low load condition, however, exhaust mass flow rate was much lower and imposed 

much lower back pressure to the engine, so that the advance of DEP arrangement was 

weakened. From table 9.5 and 9.6, the improving in fuel consumption was less than 0.5%. 

The promotion mainly came from the increasing in turbocharger efficiency, since a smaller 

turbocharger turbine was utilised for the DEP engine, which was more suitable for the 

operation with lower mass flow. And also, by eliminating the interruption between exhaust 

flows from adjacent cylinders, the operating points were shifted to the region with higher 

efficiency.  

Table 9-5. Part load performance of baseline and DEP engine at 3000 rpm. 

 Baseline engine  DEP engine Promotion 

BSFC (g/kW-h) 293.63 292.87 0.43% 

PMEP (bar) -0.4321 -0.4387 -0.0066  

Turbocharger efficiency (%) 55.56 58.24 4.8% 

Table 9-6. Part load performance of baseline and DEP engine at 1000 rpm. 

 Baseline engine  DEP engine Promotion 

BSFC (g/kW-h) 318.07 317.807 0.063% 

PMEP (bar) -0.3677 -0.3557 0.012  

Turbocharger efficiency (%) 43.76 44.23 1.1% 

9.5.6 Comparison of the transient performance of baseline and DEP engine 

From figure 9.29, it can be seen that the response speed of DEP engine was about 0.5 second 

faster than that of the baseline engine. It was mainly due to the reduced turbo lag, since the 

turbocharger turbine utilised in DEP engine had smaller inertial. As shown in figure 9.30, the 

turbocharger in DEP system was able to provide the required boost pressure more rapidly 
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than the baseline turbocharger. The response time was shorten by 0.5, 0.8 and 1 second at 

3000, 2000 and 1000 rpm respectively. Besides, the results also suggested that the 

turbocharger in DEP system worked harder than in the baseline, so that the load on 

supercharger for air boosting was eased, which is also reflected by the fuel consumption 

under full load condition. It should be note that the power turbine in DEP system did not 

have any influence on transient performance, since it had be totally bypassed before the 

operation in this case. 

 

Figure 9.29. Transient performance of DEP and baseline engine. 

 

Figure 9.30. Transient performance of DEP and baseline turbocharger. 

9.6 Conclusion 

The simulation work demonstrated in this chapter shows the potential of DEP turbo-

compounding system in reducing the fuel consumption and improving the response speed of 
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a highly downsized gasoline engine. However, the gains in fuel economy was largely 

dependent on the refined optimization of intake and exhaust profile and turbine size, since 

the gas exchange process, combustion phasing and turbocharger performance were all 

proved to affect the fuel economy of the engine system. On the one hand, since the exhaust 

mass flow was divided into blow-down and scavenge directed into separate manifold, the 

interference between the exhaust flows from adjacent cylinders could be avoided. Besides, 

by adjusting the exhaust valve timing and duration, the mass flow through the turbocharger 

turbine could be regulated with reduced back pressure, and meanwhile the turbocharger 

working could be improved by concentrating the operating points in the region of the highest 

efficiency. On the other hand, because only one exhaust valve was involved at the beginning 

and end of the discharge stroke for the DEP arrangement, it was more prone to choke, 

especially for the operation at high engine speed. This could also partly explain the decline in 

PMEP at higher speed and when the overlap between the blow-down and scavenge valve 

decreased. Therefore, a proper optimization was needed for a variety of parameters. 

In fact, effects of the system specifications such as intake and exhaust valve profile and 

turbine size are strongly interrelated. It was considered as the main challenge for the 

optimization procedure. In this chapter, an iterative sweep simulation was carried out to 

investigate the general trend of each parameters affecting the engine performance before a 

co-simulation was conducted utilising the genetic algorithm to search for the global optimum 

value in fuel economy. 

From the simulation at under full load condition at 3000 rpm, it was found that the exhaust 

valve timing had the most significant influence on the engine performance. Specifically, the 

trade-off between turbine power and pumping work can be adjustable by shifting the valve 

timing and thus the overlap between exhaust and intake valves. The results showed an 

optimal setting of 240 degree for the blow-down valve timing and 340 degree for the 

scavenging. It should be note that the exhaust valve timing could determine the attribution 

of exhaust mass flow into the main and power turbine.  

Similarly, as for the intake valve timing, an optimal point existed at around 480 degree. An 

earlier intake stroke would be struggle to maintain the energy availability for the 

turbocharger, and thus PMEP. On the contrary, a retarded timing would cause a severe deficit 

in fresh air charging which had to be compensated by supercharger. 

For the blow-down valve duration, it was slightly extended based on the setting in the original 

model by a multiplier of about 1.05 to reduce resistance to exhaust mass flow and thus the 

back pressure. Besides, a smooth gas exchange process could reduce the residual gas fraction 
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in cylinders, which allowed an advanced ignition timing. However, a further extension in 

blow-down valve opening would deteriorate fuel economy because of the back flow of 

exhaust gas into cylinders. In terms of the scavenge valve, a shortened duration was 

preferable to allow more exhaust gas being directed to the turbocharger turbine. 

As expected, the sweep of turbine size was actually a matter of the trade-off between 

harvesting exhaust energy and imposing back pressure to the engine breathing. Specifically, 

a larger turbocharger turbine would brought about lower back pressure and thus better fuel 

economy. However, when the mass multiplier for the main turbine was bigger than 0.9, the 

turbocharger turbine became less effective to capture the energy in exhaust pulse and 

unable to provide enough boosting for the engine. The power turbine size, however, had 

little influence on the fuel efficiency of the whole system. 

At 1000 rpm, the trend was similar. But, the engine performance became less sensitive to 

the turbine size because of the reduced mass flow rate. Since the turbocharger was less 

effective at low engine speed, the back pressure level became the crucial factor affecting fuel 

economy. Therefore, it was beneficial to increase the overlap (without causing serious loss 

of fresh charge) between exhaust and intake valve at 1000 rpm.    

At part load operation (frequently used operating points over NEDC), the general trend was 

similar with diminished degree.  

From the results of a global optimization, DEP system could bring about a fuel saving of 4.1% 

to the engine system under full load operation, because of the promotion in gas exchanging 

and combustion phase. The improvement became less noticeable at lower engine speed and 

lower load. 

Lastly, since the DEP system utilised a smaller turbine than the baseline engine did, which 

was significantly beneficial for improving the boosting capability of turbocharger at low 

engine speed and thus the low-end brake torque. Besides, it also greatly improved the 

response speed of the whole system, especially at low engine speed when the promotion 

was more noticeable. 
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Chapter 10 - Conclusions 

This final chapter will summarise the conclusions, contributions and impacts of the work 

presented in this thesis, followed by some suggestions and recommendations for future study 

in this area. 

10.1 Summary, contributions and impacts 

In this thesis, the application and development of turbo-compounding as a waste energy 

recovery technology for downsized gasoline engine has been presented. With reference to 

the project aim and objectives laid out in Chapter 1, the results and achievement in this study 

is summarised specifically.  

The work in this thesis started from conventional turbocharged gasoline engine.  During the 

developing, six configurations were built step by step aiming to solve the inherent problem 

of the former version, as shown in table 10.1. The developing process of the engine system 

in this work is illustrated in figure 10.1. 

Table 10-1. Studied configurations. 

Phases Configurations Issues  Solutions 

Step 1 Turbocharged engine Turbo lag and limited 

capability in waste 

energy recovery. 

Introducing CVT supercharger to the charging 

system to eliminate the response delay caused 

by turbo lag.   

Step 2 CVT Supercharger 

engine 

Capability in waste 

energy recovery is still 

limited 

Introducing turbo-compounding to promote the 

potential of waste energy recovery and the 

flexibility in turbomachinery control strategy. 

Step 3 Two-stage TC (turbo-

compounding) 

engine 

High back pressure 

results in limited gain 

in fuel efficiency 

Delete the original turbocharger to reduce the 

back pressure and system complexity. 

Step 4 CVT Supercharger 

single-stage TC 

engine 

A comprehensive 

evaluation is needed. 

Comparing with the novel inverted Brayton cycle 

engine 

Step 5 Inverted Brayton 

cycle engine 

Comparing with turbo-compounding technology. 

Step 6 DEP CVT 

Supercharger single 

stage TC engine 

A methodology to further reduce the back pressure 
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Figure 10.1. Developing process of engine system. 

 

 Review the dominating technologies to recover exhaust energy of internal 

combustion engine. 

ETurbine power: sufficient to 

drive the supercharger plus 

1.5% better fuel economy. 

Low end torque: 55% better. 

 

Response speed: 10% better 

than conventional Super-turbo 

engine. 

BSFC: 3% better at least. 

Deleting mechanical TC Optimising CVT ratio 

Response speed: 60% faster 

than TC engine. 

Low end torque: 40% better. 

BSFC: 8% lower at top speed 

with high load operation. 

 

Response speed: 40% slower 

than TC engine. 

Rated torque: 20% better. 

BSFC: 10% lower at top speed 

with high load operation. 

 

Response speed: 30% faster 

than CVT SC engine. 

Turbocharger efficiency: 3% 

better. 

BSFC: 4.1% lower at 3000 rpm 

with high load operation. 

 

Turbocharged (TC) engine  

CVT Supercharge (SC) engine  
Two –stage Turbo-

compounding engine  

CVT SC single-stage turbo-

compounding engine  

Inverted Brayton cycle engine  

DEP CVT SC turbo-

compounding engine  

Adding DEP 

and turbo-

compounding 

VS 

Adding CVT supercharger Adding turbo-compounding  

Adding IBC 

 

Turbo-compounding 

Response speed: 75% faster than IBC 

engine. 

Low end torque: 20% better. 

BSFC: 2% lower at low-middle speed. 

IBC 

Rated torque: 15% better than turbo-

compounding. 

BSFC: 2% lower at top speed. 
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Except for turbocharger that has been popularised, there are four major approaches to 

harvest waste heat of internal combustion engine, namely thermoelectric, Rankine cycle, 

Brayton cycle and turbo-compounding. Among them, Rankine cycle is considered to be 

infeasible for the application in small vehicle engine because of the bulky volume and weight, 

despite of the high thermal efficiency to converting waste heat into useful work. On the 

opposite, thermoelectric is much more compact in size, but inefficient in converting thermal 

energy into electric power because of the inherent properties of existing material. Therefore, 

turbo-compounding is regarded as one of the most possible way to save exhaust energy for 

passenger car engine because of the good thermal efficiency, smaller size, lower weight and 

simple structure (when comparing with Brayton cycle which requires for multi-stage 

compressor). However, turbo-compounding has the drawback of imposing higher back 

pressure to the engine which badly interferes with the gas exchange of the premier cycle. It 

is the main topic of this work to figure out a solution to this issue.   

 

 Review the history and typical configuration of turbo-compounding and the 

sensitivity to different parameters 

 

Turbo-compounding was initially utilised in aircraft engine and entered automotive industry 

during 80s in last century. It can be generally classified into mechanical and electrical 

versions. For both versions, it can be of HP of LP configuration depending on the relative 

location of the turbocharger turbine and power turbine. It was proven that a variety of 

parameters, including boosting pressure, compression ratio, ignition timing, air-fuel ratio and 

so on, have important influence on the performance of turbo-compounding engine system 

by either leading to a trade-off between combustion power and the magnitude in exhaust 

energy recovery or affecting the operating condition and efficiency of power turbine. It was 

also believed that turbo-compounding enables the engine to be operated with retarded 

ignition timing that helps to reduce the risk of knock without suffering from deterioration in 

power output. Generally, it can be concluded that a global optimization is needed to 

determine the best setup for the specification of a specific turbo-compounding engine.   

 

 Develop the simulation techniques; build and calibration of a 1-D engine model for 

steady state and transient simulation; determine engine control construction.  
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Chapter 4 presents a modelling and calibration theory as a foundation for the study in the 

following chapters. It includes three sub-sections, namely engine model introduction and 

calibration for steady state simulation; engine control theory and tuning; and engine 

modelling and calibration for transient simulation.  

 

 Modelling the variable drive supercharged engine system  

 

In this chapter, a CVT Supercharger variable drive supercharged engine model was built. The 

performance of turbo-super and super-turbo configurations of this system was compared to 

determine the location of CVT Supercharger compressor followed by the optimization of 

pulley ratio and CVT ratio change rate regarding the tip-in operation from different starting 

load. The steady state performance of the whole system was evaluated by examining the fuel 

consumption at full load, part load and driving cycles. Transient performance was 

investigated by comparing to the baseline engine model.  

It was found that Super-Turbo was proven to be a better configuration than the Turbo-Super 

counterpart for CVT Supercharger system in consideration of fuel economy. A trade-off exists 

between the low load fuel consumption and transient response at the lowest engine speed. 

Similarly, the clutching speed and active bypass valve close rate of the conventional 

supercharger system were also limited to avoid the sharp decline and over-shooting in engine 

brake torque. Besides, a general trend was found that the CVT change rate and clutching 

speed needed to be reduced further for higher starting load. 

CVT Supercharger brought about 3% better fuel economy to the whole system when 

comparing with the positive displacement counterpart. Furthermore, CVT Supercharger 

embodied further superiority at mid-high load operation when supercharger was less needed 

for assisting air boosting. At 16 bar BMEP, for example, CVT Supercharger was able to provide 

about 40% better fuel economy than the conventional fix-ratio supercharger did. However, 

under low load condition, approximately CVT Supercharger engine consumed 4.5% more fuel 

than the Eaton system did. 

A mini map was produced to imitate the WLTP driving cycle. From the results, the fuel 

consumption of CVT Supercharger engine is higher than the declutched Eaton system by up 

to 4.94% at extremely low load operation. When comparing with clutched fix-ratio 

supercharger, however, the fuel economy could be improved by up to 30.7%. By including 

weights to each of the operating points, the overall BSFC deficits for the major parts of all the 

operating points could be worked out that the fuel economy of CVT Supercharger engine was 
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2.74% worse than the disengaged Eaton and 19.6% better than the engaged Eaton system. 

From the transient simulation, CVT Supercharger system shorten the response time of the 

baseline twin charged model by about 0.2 second at 1100 rpm. It also demonstrates that the 

most significant improvement was seen at 2000 rpm because of the synthetic promotion 

from both CVT Supercharger and turbocharger. 

 

 Verification of the Variable Drive Supercharged engine System  

A rig test was carried out for the CVT Supercharger system to prove its capability of enhancing 

low-end torque, improving the transient driveability and reducing the low-load parasitic 

losses. It came to the conclusions that CVT Supercharger system was able to significantly 

enhance an engine’s low-end performance without crucially affecting its low load fuel 

efficiency at steady-state test. It enabled the potential of applying further downsizing or 

Miller Cycle to mitigate the fuel penalty that is caused by the parasitic losses. A ready-to-use 

control strategy at the engine’s level had been built and calibrated using the steady-state 

engine test data. The influence of different control calibrations on the engine performance 

had been found and would guide the later control calibration tuning at the vehicle’s level. In 

transient test, CVT Supercharger system achieved significantly better transient performance 

in terms of time-to-torque compared with the turbo only configuration with better NVH 

behavior in comparison to the fixed-ratio positive displacement counterpart with a clutch. 

Re-optimizing the transmission gear ratio or the shifting strategy, realizing further down-

speeding, could further improve the engine’s fuel efficiency in a real driving cycle, while 

maintaining a good driveability.  

 

 Implementing full electric turbocharging systems on highly boosted gasoline engines  

 

The performance of a conventional turbocharged engine model was compared with a two-

stage boost engine model equipped with a decoupled electric turbocharger, in which a 

carefully designed control strategy was designed for the electric turbocharger for a variety of 

engine speed/load conditions. LP mode was selected for the lower eTurbine temperature for 

thermal protection, although HP mode would be a more economical solution. At full load 

condition, eCompressor was expected to provide extra boost at 1750 rpm and below to 

enhance the low end torque by up to 115 Nm. Above 1750 rpm, when the mechanical 

turbocharger was able to provide sufficient boost on its own, eCompressor was totally 

bypassed. At the same time, electric turbine was harvesting exhaust energy independently. 



 

 

 

231 

The power output from the eTurbine was sufficient to satisfy the power consumption of the 

eCompressor. At partial load condition, mass flow could be regulated by adjusting the 

eTurbine bypass valve as an alternative to throttle, so that throttle was less shut. It helped 

to reduce the throttle loss. At 40% load and higher, the pressure drop across the throttle 

body was nearly eliminated. Besides, eTurbine was able to harvest up to 8 kW power from 

the exhaust energy, which could be converted into useful mechanical work. However, similar 

with the case in full load condition, back pressure and requirement of boost was increased 

because of the employment of eTurbine. The tendency to knock due to higher back pressure 

should be further investigated in the experimental phase of the study. Across the part load 

map the BSFC was reduced by up to 3.6%. At the high engine load, fuel consumption will 

increase because of the high back pressure as a result of eTurbine trying to harness energy 

to support eCompressor. The improvement to the fuel economy in driving cycle simulation 

was less remarkable. The largest reduction in BSFC was seen in HiWay driving cycle, which is 

0.8%. In NEDC, the number decreased to 0.4%. The upcoming RDE cycle will be investigated 

in future works and the eTurbo technology is expected to achieving larger fuel economy 

benefit due to the higher load/speed of the real world drive cycle. 

 

 Modelling the Turbo-Compounding Concept  

 

The effect that a turbo-compounding has on a 2.0 litre gasoline engine model and the benefit 

of coupling a CVT to the supercharger were examined by comparing its performance data 

with a conventional turbocharged engine model of the same displacement and compressor 

characteristics. In this part, both the power recovery by the power turbine and the pumping 

losses resulted from the higher back pressure were considered. Design of experiments and 

optimization techniques were used to find the optimal settings for the turbine speed under 

full load condition. The CVT supercharger in combination with the turbo-compounding 

contributed to improve the engine performance at lower engine speed range. The simulation 

results proved the practicability of this concept. The CVT Supercharger helped to increase the 

brake torque by up to 24% at 1500 revs/min. At higher engine speed, turbo-compounding 

was able to increase the brake torque evenly by 7% from 3000 revs/min and above. The BSFC 

was reduced by up to 8% at top engine speed. But the improvement descends as the engine 

speed slowing down and become vanished at 2000 revs/min because of the weakened power 

turbine function and the parasitic load imposed by the CVT supercharger. 
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The performance of a CVT supercharged turbo-compounding engine was further examined 

for the partial load and transient operation. Under partial load condition, very little 

improvement was gained from adjusting the turbine speed due to the significant decrease in 

turbine power output. The improvement in specific fuel consumption of the CVT 

supercharged turbo-compounding engine was believed due to the windmilling effect of the 

compressor and the reduced pumping losses.  

For the transient performance evaluation, the CVT supercharged turbo-compounding engine 

was able to provide the rapidest response of boost pressure and torque output (60% faster 

than turbocharged engine) due to the mechanical connection between the supercharger and 

the engine crankshaft. A diving in brake torque was seen as the compressor starting to 

accelerate. These torque losses was proportional to the inertial of the supercharger and the 

transmission ratio. A proper calibration was needed to rectify this in order improve the 

drivability.  

 Compare the performance of CVT Supercharged turbo-compounding with Inverted 

Brayton cycle 

The potential of Inverted Brayton cycle and high pressure turbo-compounding for the 

augmentation of the power output and fuel economy of conventional turbocharged engine 

was demonstrated. Design of experiments techniques was used to optimise the compressor 

and power turbine speed of the turbo-compounding engine and also the size of the turbo-

machinery in IBC aiming to achieve the optimal performance of the whole system. It was 

found that both the brake torque and BSFC of the CVT supercharged turbo-compounding 

engine were continuously improved along with the acceleration of the supercharger under 

full load condition. At partial load, a lower supercharger speed was more preferable. Besides, 

when the engine was operated at middle and low speed, the power output and fuelling 

efficiency increased significantly with higher turbine speed, while at high engine speed the 

growth rate was smaller and the plateau appeared sooner. When the throttle was partially 

closing, the influence of the power turbine speed on the overall engine performance was 

weakened. By adjusting the size of the power turbine in the inverted Brayton cycle, the inlet 

exhaust pressure to the bottoming cycle was scaled. Within the engine speed range from 

2000 to 5000 rpm, it was found that the IBC engine performance deteriorated rapidly with 

higher inlet pressure. It was believed resulting from the plummet in PMEP and thus the 

deterioration of the scavenging process. 

When the engines were operated at lower load, the difference in fuel consumption between 

those two novel models was narrowed. The general trend was that the IBC engine offered 
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better fuel economy by 1% at lower engine speed (below 2000 rpm, typically), while the CVT 

supercharged turbo-compounding engine took over the advantages at higher speed (1% 

better). It was the similar trend that applied to the performance under full load condition. It 

was also worth noting that the power generation and the fuel consumption from the novel 

system were both significantly better than the baseline turbocharged model. Furthermore, 

the low speed torque from the turbo-compounding engine was enhanced impressively with 

the assistance of CVT. 

In terms of the evaluation of the transient performance, CVT supercharged turbo-

compounding engine showed the fastest response speed, while the IBC which was delayed 

by building up the turbine speed took the longest time to achieve the required BMEP, which 

makes it 75% slower. 

 

 Model Divided Exhaust Period concept for a turbo-compounding gasoline engine 

 

The simulation work demonstrated in this chapter shows the potential of DEP turbo-

compounding system in reducing the fuel consumption and improving the response speed of 

a highly downsized gasoline engine. However, the gains in fuel economy was largely 

dependent on the refined optimization of intake and exhaust profile and turbine size, since 

the gas exchange process, combustion phasing and turbocharger performance were all 

proved to affect the fuel economy of the engine system. On the one hand, since the exhaust 

mass flow was divided into blow-down and scavenge directed into separate manifold, the 

interference between the exhaust flows from adjacent cylinders could be avoided. Besides, 

by adjusting the exhaust valve timing and duration, the mass flow through the turbocharger 

turbine could be regulated with reduced back pressure, and meanwhile the turbocharger 

working could be improved by concentrating the operating points in the region of the highest 

efficiency. On the other hand, because only one exhaust valve was involved at the beginning 

and end of the discharge stroke for the DEP arrangement, it was more prone to choke, 

especially for the operation at high engine speed. This could also partly explain the decline in 

PMEP at higher speed and when the overlap between the blow-down and scavenge valve 

decreased. Therefore, a proper optimization was needed for a variety of parameters. 

In this chapter, an iterative sweep simulation was carried out to investigate the general trend 

of each parameters affecting the engine performance before a co-simulation was conducted 

utilising the genetic algorithm to search for the global optimum value in fuel economy. 
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From the simulation at under full load condition at 3000 rpm, it was found that the exhaust 

valve timing had the most significant influence on the engine performance. Specifically, the 

trade-off between turbine power and pumping work can be adjustable by shifting the valve 

timing and thus the overlap between exhaust and intake valves. The results showed an 

optimal setting of 240 degree for the blow-down valve timing and 340 degree for the 

scavenging. It should be note that the exhaust valve timing could determine the attribution 

of exhaust mass flow into the main and power turbine.  

Similarly, as for the intake valve timing, an optimal point existed at around 480 degree. An 

earlier intake stroke would be struggle to maintain the energy availability for the 

turbocharger, and thus PMEP. On the contrary, a retarded timing would cause a severe deficit 

in fresh air charging which had to be compensated by supercharger. 

For the blow-down valve duration, it was slightly extended based on the setting in the original 

model by a multiplier of about 1.05 to reduce resistance to exhaust mass flow and thus the 

back pressure. Besides, a smooth gas exchange process could reduce the residual gas fraction 

in cylinders, which allowed an advanced ignition timing. However, a further extension in 

blow-down valve opening would deteriorate fuel economy because of the back flow of 

exhaust gas into cylinders. In terms of the scavenge valve, a shortened duration was 

preferable to allow more exhaust gas being directed to the turbocharger turbine. 

As expected, the sweep of turbine size was actually a matter of the trade-off between 

harvesting exhaust energy and imposing back pressure to the engine breathing. Specifically, 

a larger turbocharger turbine would brought about lower back pressure and thus better fuel 

economy. However, when the mass multiplier for the main turbine was bigger than 0.9, the 

turbocharger turbine became less effective to capture the energy in exhaust pulse and 

unable to provide enough boosting for the engine. The power turbine size, however, had 

little influence on the fuel efficiency of the whole system. 

At 1000 rpm, the trend was similar. But, the engine performance became less sensitive to 

the turbine size because of the reduced mass flow rate. Since the turbocharger was less 

effective at low engine speed, the back pressure level became the crucial factor affecting fuel 

economy. Therefore, it was beneficial to increase the overlap (without causing serious loss 

of fresh charge) between exhaust and intake valve at 1000 rpm.    

At part load operation (frequently used operating points over NEDC), the general trend was 

similar with diminished degree.  

From the results of a global optimization, DEP system could bring about a fuel saving of 4.1% 

to the engine system under full load operation, because of the promotion in gas exchanging 
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and combustion phase. The improvement became less noticeable at lower engine speed and 

lower load. 

Lastly, since the DEP system utilised a smaller turbine than the baseline engine did, which 

was significantly beneficial for improving the boosting capability of turbocharger at low 

engine speed and thus the low-end brake torque (by 10% at 2000 rpm). Besides, it also greatly 

improved the response speed of the whole system by 30%, especially at low engine speed 

when the promotion was more noticeable. 

10.2 Outlook  

The work presented in this thesis can be considered an analytical foundation for the future 

research in this area.  

1. The verification of CVT Supercharger benefits for gasoline engine has provided a novel 

option for engine downsizing with air boosting. It is also expected that a similar gains in 

fuel economy and response speed can be achieved on a downsized diesel engine.  

2. The works on electric turbocharger and turbo-compounding has proven the feasibility of 

applying turbo-compounding in downsized gasoline engine as a waste energy recovery 

technology. The concept of combining CVT Supercharger with HP turbo-compounding 

effectively solves the inherent problem of turbo machinery. 

3. The analysis on the trade-off between the part-load BSFC and the transient response and 

recommendation for selecting the drive ratio for a compound charging system could be 

of reference value for other supercharging projects. 

4. The introduction and optimization of DEP turbo-compounding concept can be applied to 

other complex compound charging systems or WER system 

10.3 Further work 

1. The DEP and the turbo-compounding concept may need further validation with engine 

level experimental test. Similarly, the knock model, which is used to determine ignition timing 

and control the combustion phasing in those simulations, needs to be validated against the 

test data in a later research. 

2. Although the experiment data of the variable-drive supercharging concept and the 

baseline turbocharged engine are obtained for three pressure analysis, further test is needed 

to optimize the whole engine system.  
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3. The control strategy, especially for transient operation, is only briefly described in this 

work. Rig test is needed to give an optimal performance. 

4. Besides, because the superior low-end torque and significantly improved transient 

behaviour with CVT Supercharger, it is worth exploring the potential of integrating Miller 

cycle in CVT Supercharger engine to improve the part load fuel economy. 

5. Although the system will become more complicated, including the turbo-compounding 

and IBC in a common arrangement may be worth trying with the expectation of fulfilling the 

advantages of each unit over the entire engine speed range. 
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