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Abstract

This thesis investigates the development of ultrasonic Structural Health

Monitoring (SHM) systems, based on guided waves propagation, for

the localization of low-velocity impacts and the detection of damage

mechanisms in isotropic and anisotropic structures. For the identifi-

cation of the impact point, two main passive techniques were devel-

oped, an algorithm-based and an imaging-based method. The former

approach is based on the differences of the stress waves measured by

a network of piezoelectric transducers surface bonded on plate-like

structures. In particular, four piezoelectric sensors were used to mea-

sure the antisymmetrical A0 Lamb mode in isotropic materials, whilst

six acoustic emission sensors were employed to record the wave packets

in composite laminates. A joint time-frequency analysis based on the

magnitude of the Continuous Wavelet Transform was used to deter-

mine the time of arrivals of the wave packets. Then, a combination of

unconstrained optimization technique associated to a local Newton’s

iterative method was employed to solve a system of non linear equa-

tions, in order to assess the impact location coordinates and the wave

group speeds. The main advantages of the proposed algorithms are

that they do not require an a-priori estimation of the group velocity

and the mechanical properties of the isotropic and anisotropic struc-

tures. Moreover, these algorithms proved to be very robust since they

were able to converge from almost any guess point and required little

computational time. In addition, this research provided a compari-

son between the theoretical and experimental results, showing that

the impact source location and the wave velocity were predicted with

reasonable accuracy.



The passive imaging-based method was developed to detect in real-

time the impact source in reverberant complex composite structures

using only one passive sensor. This technique is based on the re-

ciprocal time reversal approach, applied to a number of waveforms

stored in a database containing the impulse responses of the struc-

ture. The proposed method allows achieving the optimal focalization

of the acoustic emission source (impact event) as it overcomes the lim-

itations of other ultrasonic impact localization techniques. Compared

to a simple time reversal process, the robustness of this approach is

experimentally demonstrated on a stiffened composite plate.

This thesis also extended active ultrasonic guided wave methods to

the specific case of dissipative structures showing non-classical nonlin-

ear behaviour. Indeed, an imaging method of the nonlinear signature

due to impact damage in a reverberant complex anisotropic medium

was developed. A novel technique called phase symmetry analysis,

together with frequency modulated excitation signals, was used to

characterize the third order nonlinearity of the structure by exploiting

its invariant properties with the phase angle of the input waveforms.

Then, a “virtual” reciprocal time reversal imaging process was em-

ployed to focus the elastic waves on the defect, by taking advantage

of multiple linear scattering. Finally, the main characteristics of this

technique were experimentally validated.
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Chapter 1

Introduction

1.1 Structural Health Monitoring Systems

The integrity of structural components is conventionally performed through a

wide variety of classical Non Destructive Evaluation (NDE) techniques. Some

of these, including eddy currents, shearography, thermography, liquid penetrant,

radiography and ultrasounds, require a detailed inspection of the system com-

ponents, and most of the time the assessment of the defect is not so quick and

easy to obtain. With the growing interest to use laminar composite materials

in aerospace structures, much attention is devoted to the development of rapid,

accurate and cost-effective built-in systems for the detection and evaluation of

structural defects. Unlike metallic media, which are homogeneous and dissipate

energy through yielding, carbon fibre reinforced plastic (CFRP) structures are

relatively brittle and exhibit weak interfacial strength between laminas. Dam-

ages can be often imparted by a wide range of sources including unanticipated

discrete events such as dropped tools, hail, runway debris during takeoff and

landing etc... These events, resulting in a large range of possible impact veloc-

ity, mass and impactor geometry, not only weaken the structure undergone to a

continuous service load, but also may generate different types of flaws before full

perforation (i.e. sub-surface delamination, matrix cracking, fibre debonding or

fracture, indentation and barely visible impact damage). Over time, these effects

can induce variations in the mechanical properties of the laminate (the primary

1



1. Introduction

Inspection time Current inspection time Estimated potential for smart
systems

Time saved

(% of total) (% of total)

Flight time 16 0.40 6.5
Scheduled 31 0.45 14
Unscheduled 16 0.10 1.5
Service instructions 37 0.6 22

Table 1.1: Estimated time saved on inspection operations by the use of SHM,
from Balageas et al. [2006]

effect of a delamination is to change the local value of the bending stiffness and of

the transverse-shear stiffness), leading to possible catastrophic failure conditions.

In addition, NDE techniques require the structure to be disassembled during the

inspections and this may cause disruptions and a considerable raise of the costs

of maintenance. Hence, these methods are inadequate for real-time monitoring

systems.

In the last decade, Structural Health Monitoring (SHM) systems based on guided

waves were developed to provide an early warning of the damage occurrence, re-

sulting into safer structures and operative costs saving (Chang [1999]). SHM

has a common basis with NDE, in fact several NDE methods can be converted

in SHM techniques by integrating sensors and actuators inside the monitored

structure. For instance, traditional ultrasonic testing can be converted in acous-

tic/ultrasonic SHM systems, by simply using embedded or surface mounted piezo-

electric patches. Essentially, a SHM sensing system is composed of a network of

sensors or probes that guarantee a continuous remote monitoring aimed to:

• provide a fast, cost-effective and in-situ diagnosis of the safety condition of

the structure through sensor and actuator data

• access the location and a quantification of the degree of damage

• investigate large areas, even in poorly accessible critical locations, without

the need to remove the structure from service

• minimize the human involvement, thus reducing maintenance downtime and

human errors.

2
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Furthermore, a reliable, quick and fully integrated SHM technique mounted

on in-service structures, ensure a considerable reduction either in the effective

cost of maintenance or in the time for which the aircraft is out of service. In fact,

as reported in Balageas et al. [2006], a recent study on inspection requirements

for a modern aircraft revealed that an estimated 40% or more could be saved on

inspection time through the introduction of SHM systems (Tab. 1.1).

1.2 Overview

This research was aimed at developing in-situ SHM systems for the localization

of low-velocity impacts and the assessment of structural damages in isotropic and

anisotropic materials. In particular, the methodologies presented in this thesis

will be used to answer the following questions:

1. Where is the impact location?

2. What are the effects of the impact on the structure?

In order to answer the first question, two different techniques were carried out

and validated to estimate the location of the impact source, i.e. an “algorithm-

based” method used for plate-like structures and an “imaging-based” method

employed for geometrically complex panels. The former approach consists in an

inverse problem that relies on the time of arrival (TOA) estimation and the group

velocity recognition of the ballistic waves (direct waves from the source to the

receiver) recorded by a network of passive acoustic emission transducers. In such

method, the waveforms are analysed with advanced signal processing techniques

(Continuous Wavelet Transform) and then an optimization algorithm is employed

to obtain the impact coordinates. The main outcome of the “algorithm-based”

technique was to overcome the limitations of other impact localization methods,

as it is able to satisfy the following requirements:

• it can be used for both isotropic and anisotropic structures as it does not

require a-priori knowledge of the mechanical properties, thickness, as well

as lay-up and anisotropic angular-group velocity pattern of the recorded

waveforms

3
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• it exhibits a suitable time-frequency analysis for the TOA identification

• it provides a flexible trade-off in terms of efficiency and accuracy as it is

able to identify the impact source in real-time requiring little computational

time

The “imaging-based” impact localization approach relies on the time reversal

(TR) and reciprocal time reversal methods, wherein a propagating waveform can

be focused back on the original source if the output received by a set of trans-

ducers is time-reversed and emitted back to the excitation point. Compared to

conventional imaging SHM systems, the most significant improvements of the

time reversal technique are:

• it does not require any iterative algorithms as well as a priori knowledge of

the mechanical properties and the anisotropic group speed and it is suitable

for locating the impact source in geometrically complex structures.

• it exploits the “benefits” of multimodal conversion and scattering effects to

obtain the optimal refocusing at the impact location using only one receiver

transducer

• it reduces signal processing requirements as it does not need to estimate

the TOA of the ballistic waves

Furthermore, in order to answer the second question, an imaging method

of the nonlinear signature in a complex anisotropic medium showing hysterical

behaviour was developed. This technique is focused on the nonlinear effects of

elastic wave propagation induced by impact damage (cracks and delamination),

and is based on a combination of nonlinear reciprocal time reversal and a novel

technique called phase symmetry analysis. Unlike other damage detection ap-

proaches, this nonlinear imaging method is used to characterize the third order

nonlinearity of the damaged structures by exploiting its invariant properties with

the phase angle of the frequency modulated (FM) excitation signals.

A summary of the original aspects of this thesis is shown in Fig. 1.1.
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Figure 1.1: Original contributions of this research to impact localization and
damage detection
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1.3 Outline of the Thesis

The outline of the thesis is the following: the first three chapters (from chapter

2 to 4) will provide a summary of the background, tools and theoretical aspects

adopted in this thesis. In chapter 2 a review of various SHM methodologies

present in literature for the damage detection and impact localization is pre-

sented. In particular, the current developments in assessing the severity of dam-

age mechanisms using linear and nonlinear ultrasonic techniques, as well as the

acoustic emission and impact localization algorithms for isotropic and anisotropic

structures, are addressed. Moreover, the main characteristics of imaging methods

for damage and impact source identification are discussed. Chapter 3 gives an

overview of guided wave solutions in isotropic and anisotropic multilayered struc-

tures. In particular, the Rayleigh-Lamb relations are mathematically formulated

for isotropic media, and then, in order to generalize the analysis of dispersion to

anisotropic materials, a semi-analytical spectral finite element model (SFEM) is

reported. Chapter 4 is dedicated to an overview of the theoretical basis of time re-

versal (TR) imaging method by introducing the first experimental set-ups known

as “Time Reversal Cavity” (TRC) and “Time Reversal Mirror” (TRM). Hence,

in order to understand the principle of refocusing elastic energy in geometrically

complex media, the main properties of TR wave physics along with the Green’s

function theories are presented.

Chapter 5, 6 and 7 will cover the main content of this study, by presenting the

original contribution to the SHM systems for impact localization and damage

detection. Chapter 5 investigates the development of two algorithms for the lo-

calization of impact source in anisotropic and isotropic media. The proposed

methodologies, depending on the nature of the medium, are based on the differ-

ences of the stress waves measured either by four or six piezoelectric transducers.

In both techniques, a joint time-frequency analysis based on the magnitude of

the Continuous Wavelet Transform was used to determine the TOA of the stress

waves. Then a combination of local Newton’s method and unconstrained op-

timization was employed to determine the coordinates of the impact location

and the values of the flexural group velocities reaching each sensor. Chapter

6 presents an imaging method able to detect the impact source in reverberant
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complex composite structures using only one passive sensor. This technique is

based on the reciprocal time reversal (inverse filtering) method applied to a num-

ber of waveforms stored in a database containing the impulse response of the

structure. The optimal focalization in spatial and time domain of the acoustic

emission source (impact point) was achieved through a “virtual” imaging proce-

dure using the “benefits“ of a diffuse wave field. Chapter 7 reports an imaging

method of the nonlinear signature due to cracks and delamination in a reverber-

ant complex anisotropic medium showing hysteretic behaviour. Phase symmetry

analysis, together with frequency modulated (FM) excitation signals, were used

to characterize the third order nonlinearity of the structure. Then, a “virtual” re-

ciprocal time reversal imaging process, using only one receiver sensor, was used to

”illuminate” the damaged area by taking advantage of multiple linear scattering.
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Chapter 2

Structural Health Monitoring

Techniques for Damage Detection

and Impact Identification

Due to their versatility and sensibility, Structural Health Monitoring systems can

be used for the real-time identification of the impact source and the assessment of

the structural damages (evolution of defect, residual life, etc). Indeed, an external

stimulus as an impact, a change in pressure or strain can induce acoustic emission

(AE) that can be recorded by a network of piezoelectric transducers. In this

manner, an early warning of the damage occurrence, resulting into safer structures

and costs savings, can be provided. These systems are particularly suitable for

probing components with different geometries, ensuring high reliability and a

global inspection of large structures. In particular, as NDE techniques, SHM

methods can be classified in:

• active SHM techniques

• passive SHM techniques

The first technique is used to detect and evaluate damages and can be distin-

guished in linear and nonlinear methods. Both approaches are based on gener-

ating perturbations in the structure by using actuators, and then, using sensors

to monitor the wave response. Usually, a piezoelectric transducer (or an array of

8



2. Damage detection and Impact Identification

(a) (b)

Figure 2.1: Active (a) and passive (b) SHM techniques

sensors) is employed as an emitter of elastic waves and a second sensor is used as

a detector. From the collected sensor data, it is possible to deduce the presence

of the defects within the material, by using a suitable time-frequency analysis

method. Passive SHM techniques do not make use of integrated actuators and

are mainly adopted to locate impacts or acoustic emission (AE) events. Indeed,

the signals emitted by internal or external sources can be measured by ultrasonic

transducers directly on the specimen surface or embedded into the structure (Bal-

ageas et al. [2006])(Fig. 2.1). Moreover, beside the above mentioned techniques, a

novel class of imaging methods for SHM applications was developed to provide an

image of the structural damages and the impact location in complex structures

through sparse sensor arrays measurements.

2.1 Linear Damage Identification Methods

Traditional acoustic/ultrasonic SHM damage detection techniques in atomic elas-

tic materials as viscoelastic media and monocrystalline solids (aluminium, steel,

Plexiglas) are based on Classical Linear Elasticity (CLE) theory (Auld [1973]).

Such methods are aimed either to study the acoustical vibrations of the struc-

ture and the changes of wave group speed and signal amplitude, or to measure

impedance contrasts from open interfaces such as voids and free surfaces (Chang

[1999]). Indeed, the presence of defects changes the acoustic parameters of phase

and amplitude of the modes propagating within the medium. Linear damage

9
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identification techniques can be distinguished in two different branches:

• Acoustics vibration-based methods

• Ultrasonic guided wave methods

Acoustic vibration-based techniques, also known as global approaches, are based

on the concept that changes of physical properties of the entire structure, intro-

duced by damages, alter its measured dynamic response such as resonant fre-

quencies, mode shapes and modal damping (Doebling et al. [1996]). However,

there are several disadvantages limiting the application of these methods. First,

the sensitivity of most vibration-based methods to damage detection is very low

(with frequency excitation generally less than 50 kHz). Then, external factors

such as boundary and loading conditions may impair the reliability of damage

detection.

Ultrasonic guided wave approaches can be regarded as local damage detection

methods and make use of high frequency excitation, typically within the range

of 50/100 kHz to 5 MHz. In this techniques the acoustic emissions, exited by

actuators, propagate within the structure and are collected by a network of surface

bonded or embedded sensors. Structural damages can be estimated through the

analysis of local wave response such as reflection, refraction and scattering. A

number of studies has investigated the use of guided waves (GW) to assess the

severity of the defects either in isotropic (Giurgiutiu [2002], Hurlebaus et al.

[2001], Quek et al. [2001]), and anisotropic materials (Cawley [1994], Diamanti

et al. [2002], Paget et al. [2002a]).

2.1.1 Acoustics Vibration-based Methods

Acoustic vibration-based methods are among the earliest damage detection meth-

ods used, principally because they are simple to implement on structures with

any size. These techniques identify damages by monitoring changes in the dy-

namic properties or the material response. Normally, they require an excitation

source (at low frequencies) such as hammers, vibro-dynamic devices or piezoelec-

tric transducers. The global methods can be classified on the types of measured
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data used, or the technique employed to identify the damage from the measured

data.

2.1.1.1 Frequency Changes Methods

These methods are based on the assumption that measured frequency shifts due to

the presence of defects allow identifying their location and evaluating their sever-

ity (Lee & Shin [2001]). The frequency methods can be divided in two classes of

problems, the forward and the inverse problem. The former consists of calculat-

ing the frequency shifts from a known type of damage. Typically, the damage is

modelled mathematically, and then, the measured frequencies are compared to

those predicted by the model to assess the damage. The latter technique consists

of finding damage parameters such as crack length and delamination from the

frequency shifts. Then, mathematical and numerical models are used for the as-

sessment of the severity of the damage. The limitations of the frequency changes

methods have been described by Doebling et al. (Doebling et al. [1998]) and are

due to:

• low sensitivity of frequency shift to damage that requires either very precise

measurements or large level of damage

• great effort required in the extraction of the modal parameters especially

when the structure is complex or at high frequencies

• lack of spatial information on the damage provided by frequency shifts

• insufficient number of frequencies with significant changes to determine the

location of the damage

2.1.1.2 Mode Shape Changes

In this method, the assessment of the defect is obtained comparing mode shape

and slopes of the modes of the structure damaged and undamaged. As such,

the information of the location of the flaw can be achieved without the use of a

finite element (FE) model. Different mode shape criteria are presents in literature.

Doebling et al. (Doebling et al. [1996]) used the Modal Assurance Criteria (MAC)
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to select the most affected mode shapes by structural damages. However, as seen

in Sec. 2.1.1.1, a critical issue of this methodology is the mode shape extraction

that becomes very difficult with the increase of frequency and the complexity

of the structure. Moreover, this technique can be used only when all types of

damages that may occur into the structure are known. Otherwise, the defects

not included might not be detected.

2.1.1.3 Compliance Matrix Methods

This class of damage identification methods uses the dynamically measured com-

pliance matrix (the inverse of the stiffness matrix) to estimate changes in the

static behaviour of the structure. Generally, these techniques compare the com-

pliance matrices of the damaged structure with that of the undamaged structure,

or the compliance matrix from a previously validated FE model (Gao & Spencer

[2002]). However, the modal properties extracted (typically the lowest-frequency

modes of the structure) influence the damage resolution of these methods, leading

to the identification of only those damages that affect the resonance properties

extracted.

2.1.1.4 Matrix Update Methods

These methods modify the structural model matrices such as mass, stiffness and

damping of a FE model of the undamaged structure, in order to reproduce as

closely as possible the measured static or dynamic response (Doebling et al.

[1996]). The location and severity of damage can be obtained comparing the

update structural matrices to the originals before permutation. These techniques

use a common set of equations and can be classified upon the different algorithms

of resolution:

• Objective function to be minimized : the objective function is a measure of

the differences between FE model and experimental modal properties. Usu-

ally Newton’s algorithm, applied to unconstrained optimization is required

to minimize the objective function

• Constraints placed on the problem: the constraints depend on the type of

12
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algorithm, but generally, they are used to preserve the characteristics of the

updated matrices, such as symmetry, sparsity and positivity

• Numerical schemes used to implement the minimisation process : principal

numerical schemes for constrained optimization are Lagrange multiplier and

Penalty method approach. In the last case, a sequence of sub-functions

represents the constraints that are added to the objective function to be

minimized

2.1.2 Guided Ultrasonic Wave Methods

Stress waves originated by cracks, fibre/matrix interfacial failure, fibre pullout,

matrix crazing, micro-cracking and disbonding, supply information on damage

and its location and propagate through the structure at great speed to detectors

located on the surface. However, more than one wave mode can propagate at

the same time, even when generated from the same source. As the velocity of

the modes is different, even transit time is different, and the total wave energy

spreads over time with the increase of the distance. Wave packets that propagate

as superposition of various modes are often called Guided Waves (GW). These

modes are governed by the same wave equations as bulk waves, however, in

contrast to the latter which are non-dispersive, GW have an infinite number

of modes associated with propagation. There are various types of GW available

in practise. When an elastic wave encounters a boundary between two media, its

energy is divided between the reflected and the refracted wave. These phenomena

change the amplitude and direction of a wave, introducing critical angles (David

& Cheeke [2002]). Depending on the nature of the material, if the medium is

a semi-infinite medium, the refracted waves are bound to the surface generating

Rayleigh (Rayleigh [1887]), Stonely (Stoneley [1924]), Scholte (Sholte [1942]), and

Love waves (Love [1926]) (Fig. 2.2).

Conversely, if the medium is a finite medium, the elastic waves are bound

within the structure, inducing Lamb waves. According to Viktorov (Viktorov

[1967]) theory, Lamb waves are guided stress waves that propagate within thin

solid plates with free boundaries conditions. Unlike bulk waves, depending on

the product of frequency times thickness, an infinite number of modes for both
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Figure 2.2: Surface waves, from David & Cheeke [2002]

symmetric and antisymmetric displacements are available. Symmetric modes

(Sn) are related to the extensional modes as displacements occur in the direction

of wave propagation, whilst antisymmetric modes (An) are known as flexural

modes as the displacements pattern is transverse to the plane of the plate (see

chapter 3). Fig. 2.3, shows the propagation of symmetrical and antisymmetrical

Lamb waves, which are the most widely used GW for SHM applications.

2.1.2.1 Lamb Waves Generation and Reception

Within the SHM paradigm, various advanced transducer technologies are cur-

rently available which can be adapted or embedded into the structure to sense

Lamb waves. Such sensors are often referred to as “smart”, i.e. they accommo-

date integrated capabilities as signal acquisition, processing, analysis and trans-

mission. Smart transducers include piezoelectric sensors (Crawley & Anderson

[1990], Giurgiutiu & Zagrai [2000]), interdigital transducers (Wilcox et al. [1997]),

sensitive nanocomposite sensors (Capezzuto et al. [2010]), fibre optic sensors (Udd

[1994]), carbon nanotube sensors (Kang et al. [2006]), comparative vacuum sen-

sors (Barton [2009]) and Micro-Electro-Mechanical Systems (MEMS) (Butrus

et al. [2000]). In particular, this thesis is focused on the use of piezoelectric

(PZT, lead zirconate titanate) crystals or ceramics, which are often chosen as

actuators/receivers because of their high force output at relatively low voltages
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(a)

(b)

Figure 2.3: Lowest order symmetric (a) and antisymmetric (b) Lamb modes in a
plate

and their good response at high/low frequencies. Each transducer is indepen-

dent of others and is connected through conductive cabling to a centralized data

processing and multiplexing unit. Indeed, PZT sensors or patches can be used

in numerous applications involving vibration suppression and sensing, sonar, air

ultrasonic transducers, etc... Depending on whether the testing scheme for dam-

age detection is pitch-catch or pulse-echo, one transducer as actuator and the

other as receiver, or just one sensor that acts as both transmitter and receiver

are required, respectively.

Piezoelectric crystals and certain ceramics belong to a larger class of ma-

terials called ferroelectrics, wherein the molecular structure is oriented in way

the medium exhibits a local charge of separation termed electric dipole (Culshaw

[1996]). The electric dipoles are oriented randomly within the material, but when

a very strong electric field is applied and the medium is cured above a certain

temperature (Curie temperature), the electric dipoles reorient themselves in the

direction relative to the electric field (poling process). When the structure is

cooled, if the dipoles maintain their orientation, the material will exhibit a piezo-

electric effect. This effect is responsible for the medium’s ability to transform the
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mechanical energy of the elastic wave into electrical energy, giving rise at two dif-

ferent phenomena, a direct piezoelectric effect and a converse piezoelectric effect.

The former effect consists in the generation of an electrical charge in proportion

of an external applied force, and allows PZT materials to function as receivers.

The latter phenomenon consists in the medium’s ability to convert an electrical

potential into a mechanical strain and allows PZT materials to work as actua-

tors. The mechanical/electrical behaviour of piezoelectric media can be described

through the thermo-piezoelectric constitutive equations as follows (Ikeda [1996]):

eij = sE,Tijlmσlm + dTijnEn + αEij4T

Dk = dTklmσlm + εσ,Tkn En + pσk4T
(2.1)

where sE,Tijlm are the elastic compliance coefficients, dTijn the piezoelectric strain

constant, αEij the coefficient of thermal expansion, εσ,Tkn the dielectric permittivity

and pσk the pyroelectric coefficient. In linear piezoelectricity, where temperature

variation is negligible, the equations of linear elasticity are coupled to the charge

equation of electrostatics by the means of the piezoelectric constants. In compact

matrix notation, we have:

e = sEσ + dE

D = dσ + εσd
(2.2)

with σ the stress vector, e the strain vector, D the electric displacement vector,

E the electric field vector, s, εd and d the elastic, dielectric and piezoelectric

constant matrix, respectively. Superscript E and σ indicate values at E and σ

constant, respectively.

Piezoelectric materials can be classified in two coupling modes, the -33 and

the -31 modes (Tzou [2003]). In the -31 mode the electric field is applied in the

3 direction and the material is strained in the direction perpendicular to the pol-

ing direction; in the -33 mode the electric field is applied in the 3 direction and

the material is strained in the poling direction (Roundy et al. [2003]) (Fig. 2.4).

These two modes of operation are particularly important when defining the elec-

tromechanical coupling coefficient d and g. The former is the transmission term,
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Figure 2.4: Illustration of -33 and -31 mode operation, from Roundy et al. [2003]

whilst the latter corresponds to the sensor term. Both coefficients are related

each other by the following formula (Tzou [2003]):

g31 =
d31

ε0K3

g33 =
d33

ε0K3

(2.3)

with ε0 and K3 the permittivity of free space and the dielectric constant, re-

spectively. The shape of the piezoelectric sensors is generally chosen based upon

the desired propagation or reception direction and the structural damages to in-

vestigate. PZT transducers are mainly disc-shaped, rectangular or square. Wilcox

(Wilcox [2004]) studied the use of circular and linear arrays using piezoceramic

disk for long-range guided waves applications in isotropic materials, providing an

indication of the scanning capabilities achievable with actuators arrays. Inter-

estingly, the ratio of the area of the plate inspected over the area of the circular

transducer array was about 3000:1.

The vast majority of studies focused upon structural damages are based on

active acoustic emission (AE) monitoring systems using PZT transducers sensors

attached to plate-like structures (Brown [2000], Giurgiutiu [2002]). A formal

definition of acoustic emission is often given as “the release of energy in the form of

transient elastic waves produced by a rapid redistribution of stress in a material”

(Achenbach [1984]). For ultrasonic Lamb modes generation (see chapter 3), the

actuator length for optimal signal is obtained by a sinusoidal relationship between
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the actuating wavelength λ and the actuator length L as follows (Viktorov [1967]):

L = λ

(
n+

1

2

)
=
cph
f

(
n+

1

2

)
n = 0, 1, 2, . . . (2.4)

where f is the central frequency and cph is the phase velocity of the gener-

ated wave. Diamanti et al. (Diamanti et al. [2007]) developed an array system

of piezoceramic sensors bonded on the surface of quasi-isotropic carbon fibre re-

inforced plastic (CFRP) laminates, for the detection of cracks and holes caused

from low-velocity impacts. El youbi et al. (El youbi et al. [2004]) performed a

pitch-catch ultrasonic system of multi-element piezoelectric transducers associ-

ated to a signal processing algorithm for analyzing three Lamb modes (A0, S0

and S1). His work was aimed to study the interaction between the modes and the

defects and to identify the most sensitive mode related to the damage. Giurgiutiu

(Giurgiutiu [2002]) previously investigated this selectivity of piezoelectric trans-

ducers. He developed a theoretical model based on the 2-D Fourier Transform

analysis of the Lamb displacement and strain wave solutions, harmonically exited

by surface mounted piezoelectric active wafer sensors (PWAS). This tuning ca-

pability of piezoelectric transducers was exploited by several authors (Diamanti

et al. [2002], Lin & Yuan [2001]) who employed the fundamental flexural Lamb

mode A0 for its low attenuation and high sensitivity to detect small damages in

beams and plates. Moulin et al. (Moulin et al. [1997]) and Mall and Hsu (Mall &

Hsu [2000]) studied the mechanical and electrical behaviour of smart embedded

piezoceramic transducers (known as adaptive structures) undergone to cycling

loading. Similarly to Mall’s work, Paget et al. (Paget et al. [2002b]) evaluated

the performance of such embedded sensors in carbon/epoxy composite materials.

The experimental results revealed that the response of the these smart sensors in

both static and fatigue loading conditions remained approximately unchanged.

An alternative to these conventional transducers was the use of polyvinyl-

dilene fluoride (PVDF) film sensors (Gaul & Hurlebaus [1999], Monkhouse et al.

[2000]). PVDF polymer is known to show a relatively strong piezoelectric effect

despite it is not as sensitive as PZT sensors. These smart materials bonded on the

surface of the structures own the characteristic of better interrogate large areas

with a low cost availability, high flexibility, low weight, easily handle and broad-
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Figure 2.5: Piezoelectric-film for AE applications, from Measurement Specialities
(http://www.meas-spec.com/)

band acoustic performance. However, this technology still suffers from having a

signal-to-noise ratio that is not high as those measured by PZT, and a low Curie

temperature that limit its integration as an embedded sensor (Fig. 2.5).

Recently, Active and Macro Fibre Composite (AFC and MFC, respectively)

patches were developed as a promising alternative to traditional brittle monolithic

piezoceramic transducers. Indeed, as ceramic materials are very dense and stiff,

their use is limited in flexible or lightweight structures. Conversely, the flexible

nature of polymer matrix allows fibre composite media to be more easily con-

formed to curved surfaces for aerospace and civil structural applications. Both

AFC and MFC patches consist in an active piezoceramic fibrous phase embed-

ded in a polymer. In particular, they are made from piezoceramic fibres or rods

produced through a patented moulding process (Gentilman et al. [2003]), that

are sandwiched between two sets of interdigitated electrodes (IDE). The IDE are

manufactured on thin polymer films and are oriented perpendicular to the fibres

or rods (Wilkie et al. [2000]). AFC actuator was developed at MIT’s Active

Materials and Structures Lab and is composed by unidirectional aligned piezoce-

ramic fibres surrounded by a polymer matrix with an electrode layer placed on

the top and bottom of the fibres (Bent et al. [1995]) (Fig. 2.6). MFC actuator was

developed at the NASA Langley Research Centre and consists of active piezoce-

ramic rods, IDE and an adhesive polymer matrix (Fig. 2.7). AFC patches are

formed from an injection moulding process, whilst MFC rods are machined from
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Figure 2.6: Cross section of AFC actuator, from Wilkie et al. [2000]

Figure 2.7: Schematic of MFC actuator, from Smart Materials Corp. (see
http://www.smart-material.com/)

piezoceramic wafers and a computer dicing saw, in way to significantly lower the

manufacturing costs (Lanza Di Scalea et al. [2007]) (Fig. 2.8).

Moreover, compared with piezoelectric bulk and wafer transducers, the res-

onance frequencies and transfer function of AFC and MFC transducers can be

easily changed with high sensitivity, by simply cutting the patches. However,

their behaviour under mechanical and thermo-mechanical loads is still largely

unknown (Brunner et al. [2009]).

Professor Fu-Kuo Chang, at Stanford University, conceived the Stanford Multi-

Actuator-Receiver Transduction (SMART) Layer. Such material is composed by

a network of distributed thin piezoelectric patches embedded into a thin dielec-

tric film, which can be surface mounted onto metallic structures or embedded

in composite structures before curing. The film is available in various configura-

tions, either as thin strips with the sensors in one row or as a flat 2-D layer of
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Figure 2.8: Schematic of the manufacturing process of AFC actuators, from
Wilkie et al. [2000]

typical dimensions up to 0.6 × 9 mm. In addition, the film can be manufactured

as a 3-D customized layer to fit specific structures (Lin & Chang [2002]). The

standard thicknesses are 60 µm and 125 µm for the film and 250 mm and 750 mm

for the piezoelectric patches. Even though SMART layer is mainly used for com-

posite structures, it can be also used for crack monitoring in metallic structures

(Lin et al. [2001], Ihn & Chang [2004]). A summary of the various piezoelectric

materials discussed above can be found in Tab. 2.1.

2.1.2.2 Time-frequency Analysis Methods

One of the main objectives of SHM is to extract certain physical parameters

from measured data in structures and then to use them to quantify the health

status. Due to the dispersive nature of the flexural modes or to the uncertainty

of the noise level of the signal measured, a suitable choice of the time-frequency

analysis is necessary. In recent years, some advanced techniques based on the

time-frequency analysis were applied to study waves in solids, such as Short-Time

Fourier Transform (STFT) (Hodges et al. [1985]) and Wigner-Ville Distribution

(WVD) (Latif et al. [1999]). However, because of the constant window structure

employed in STFT, this technique is not capable of providing sufficient resolution

over a wide spectral range. Furthermore, since WVD is defined as the Fourier

transform of the central covariance function of a given signal and has quadratic

structure, it inevitably generates interference terms that incur spurious informa-
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Piezoelectric Smart Material Advantages/Disadvantages

Monolithic PZT
Most common type of device
Not flexible
Susceptible to fatigue crack growth dur-
ing cycle loading

PVDF
High Flexibility
Resistance to fatigue crack
Low Curie temperature

AFC and MFC
High Flexibility
Low-capacitance devices
Energy harvesting capability

SMART Layer
High Flexibility
High electrical performances
Resistance to fatigue crack

Table 2.1: Summary of several piezoelectric materials investigated

tion in the signal measured. White (White [1969]) was one of first to look into

arrival time measurements in dispersive media. Ziola and Gorman (Ziola & Gor-

man [1991]) employed a cross-correlation technique for determining the time of

propagation, whilst Kosel et al. (Kosel et al. [2003]) used a combination of cross-

correlation function with an appropriate bandpass-filter. In both approaches, the

maximum of the cross-correlation coefficient of two signals indicates the delay

time between them:

Rxy(τ) = lim
T→∞

1

T

+T∫
−T

x(t)y(t+ τ)dt (2.5)

where y(t) is the output waveform from each transducer and x(t) an input pulse

consisting of a cosine wave modulated by a Gaussian pulse. However, these

methods present some limitations especially when the sensors are placed close to

the edges. In fact, multiple reflections from the boundaries generate ambiguous

peaks in cross-correlation coefficients, which may cause a wrong interpretation

of the signal content. Seydel and Chang (Seydel & Chang [2001]) proposed an

approach based on a double peak method wherein the arrival time was chosen by

selecting the minimum before the maximum for each signal (Fig. 2.9).

Nevertheless, the dependence of the wave velocity on frequency and the am-
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Figure 2.9: Illustration of the arrival time using double peak method, from (Seydel
& Chang [2001])

Figure 2.10: Time histories of the signal recorded (a), the contour-plot of the
scalogram of the CWT (b) and line profile of the scalogram illustrating the pro-
cedure to extract the TOA at f = 7000 Hz (c), from (Meo et al. [2005])

biguity of the noise level made this method inappropriate for the purpose of a

correct determination of the source. Therefore, the use of the Continuous Wavelet

Transform (CWT), that provides high resolution for a wide range of frequencies,

was found to guarantee more accuracy in the time-frequency analysis of acoustic

waves (Jeong & Jang [2000], Meo et al. [2005]) (Fig. 2.10). Gaul and Hurlebaus

(Gaul & Hurlebaus [1999]) applied the Gabor wavelet to an impact localization

algorithm for aluminium plates and Meo (Meo et al. [2005]) used the Morlet

wavelet to detect a source location of an acoustic emission on CFRP and sand-

wich composite panels.
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2.1.2.3 Guided Wave-Based Damage Detection Techniques

Due to their capability of carrying energy over long distances, GW ultrasonic sys-

tems are widely used in many SHM applications. The excitation of the structure

under interrogation occurs through actuators and then, receiver sensors are used

to monitor the acoustic emission response. Indeed, a typical GW sensing sys-

tem necessitates of a computing processor, signal conditioners, analog-to-digital

(A/D) converters and a waveform generator. GW damage detection systems can

be distinguished in the direct path and the energy-based approach. The former

method consists in evaluating the extent of the defect from the amplitude of the

scattered signals observed in the region covered by multiple actuator-receivers

paths, obtained from a new and a reference set of data. Indeed, since AE sig-

nals generated from initiation of the defect carry the information of the damage,

the location of the defect can be estimated by the differences between the un-

damaged (baseline) and the damaged structure or using statistically threshold

methods (Sohn et al. [2004]). Energy-based method makes use of arrival time

(TOA) measurements of reflected/refracted waves from the defect. TOA ne-

cessitate extensively signal-processing as wavelet transform decomposition, and

the damage detection can be accomplished through an elliptical function (Ihn &

Chang [2008b]), whose the actuator and the receiver are the foci (Fig. 2.11). Then,

the damage position can be obtained using specific optimization algorithms.

Unlike acoustics vibration based methods, local techniques posses the capa-

bility to customize the excitation in order to achieve high sensitivity to specific

defect types. Among the guided ultrasonic wave techniques, the energy-based

method is usually preferred to the direct path approach. Indeed, variations of the

environmental conditions and gradual ageing of the structural components may

significantly alter the baseline features, thus causing poor damage localization

(Kehlenback & Hanselka [2003]).

Moreover, another approach used for the assessment of structural damages is

the neural network (NN) method. Such technique is an intelligent data fusion

system that works on the idea of training intensively a computer network with

known inputs and outputs until the network converges. The reasons lie in the

strong interpolation capacity of NN, allowing the identification of damages in
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Figure 2.11: Elliptical locus of possible damage location, from (Ihn & Chang
[2008b])

terms of location, extension and type. Studer and Peters (Studer & Peters [2003])

applied this technique to identify the size, the location and the angle of a crack

in a plate using strain gradients values correlated to test crack parameters. The

NN showed to significantly improve the detection of the crack properties when

compared to the other approaches previously seen. However, neural network,

as any interpolation algorithm, is able to identify the damage with remarkable

accuracy only within a training range (Wang & Chen [2010]). Such training

requires a large data sets from both the undamaged and damaged structures,

which makes NN method rarely available for real aerospace or civil applications.

2.2 Nonlinear Damage Identification Methods

Nonlinear micro-damages may be missed by the linear methods if low frequencies

are used, or may appear as voids when using high frequencies (Ulrich et al. [2008]).

Consequently, nonlinear parameters can be much more sensitive to defects than

linear ones and novel nonlinear damage detection methods can be developed as a

potential tool for the analysis of the level of nonlinearity in damaged materials.

Generally, the mechanism for the generation of the nonlinear response in elastic

media is the “clapping” of two surfaces in intimate contact as micro-structural
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defects (e.g. cracks and delamination) or weakened bonds. The existence and

characteristics of nonlinear scattering can be evaluated through the observation

of higher harmonics or sidebands effects of the fundamental frequencies using

either a mono or bi harmonic wave excitation (Bas et al. [2006]).

2.2.1 Nonlinear Classical and Nonlinear Mesoscopic Elas-

ticity

The theoretical model of nonlinear interaction of an acoustic/ultrasonic wave with

the material defect relies on a first-order perturbation power series of the strain

associated to the general partial differential equation (PDE) describing elastic

wave motion [Eq. 3.8]. Microcraked or undamaged materials that have atomic

elasticity (aluminium, steel, Plexiglas) arising from atomic-level forces between

atoms and molecules show a Classical Nonlinear Elasticity (CNE) (Ostrovsky &

Johnson [2001]). These equations are valid for moderate amplitude displacements,

when the nonlinear terms are small compared with the linear ones. Assuming

longitudinal wave propagation along the x-direction, the wave equation in linear

elasticity can be expressed as a power series of the strain in ex = ∂u(x, t)/∂x as

follows (Guyer & Johnson [1999]):

ρ
∂2u(x, t)

∂t2
=
∂σ

∂x
= M0

{
∂

∂x
[1 +K(x, t)] ex

}
K(x, t) = βex + δe2

x

(2.6)

where M0 = (λ + 2µ) is the longitudinal elastic modulus, β and δ are higher

order nonlinear elastic coefficients, normally of the order of 1-10 in value. Eq.

(2.6) implies characteristics scaling relations. In particular, the amplitude of the

second harmonic scales as e2
x and the amplitude of the third harmonic scales as

e3
x. In case of dispersive guided Lamb modes, Deng (Deng [1999]) showed that

second-harmonic generation grows linearly with the propagation distance and

arises when the phase velocity of a primary Lamb mode equals that of the double

frequency Lamb wave. In other words, the second harmonic field can be seen as a

superposition of the fields of a series of double frequency Lamb modes (cumulative

effect). Moreover, the author demonstrated analytically and experimentally that
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Figure 2.12: Mesoscopic model, from (Johnson [1999])

the generated second harmonic field of a Lamb mode is symmetrical, regardless

of the Lamb waves are symmetrical or antisymmetrical (Deng [2003]). However,

the material response in the presence of micro-structural features as cracks in the

medium lattice or delamination may become highly nonlinear and exhibit quasi-

static and dynamics nonlinear effects as hysteresis and relaxation (slow dynamics)

in the stress-strain relationship. Hence, such non-classical behaviour of medium

cannot be described by simply nonlinear classical theory.

In the last decades, similar nonlinear non-classical characteristics were discov-

ered in granular Earth’s materials and other types of solids. Indeed, starting from

the 1950s, hysteresis and relaxation effects were also observed in volumetrically

damaged materials as rocks, sandstones, ceramics, granular media, and concrete,

even at low strain amplitudes (order 10−6 and lower) (Guyer & Johnson [1999]).

These nonlinear phenomena are principally due to the biphasic structure of such

media, known as Nonlinear Mesoscopic Elastic (NME), that exhibit a large non-

linear response generated by “hard” viscoelastic grains, embedded within a “soft”

inclusions at mesoscopic level (of the order of one to hundreds µm) termed bond

system (microcracks, grain contacts and dislocations) (Fig. 2.12).

Fig. 2.13 shows an example of quasi-static experiment carried out on a Berea

sandstone specimen (tailored as a bar) measured with the stress input signal il-

lustrated in the inset (Fig. 2.13b). From the above figure, it can be seen that the

stress gradually increases up to a maximum value reached at point B, and then de-

creases towards zero generating a hysteresis loop. Indeed, the strain only partially
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Figure 2.13: Quasi-static experiment for a Berea sandstone. Example of experi-
mental apparatus (a), loading cycle protocol (b) and stress-strain plot (c), from
(Ostrovsky & Johnson [2001])

reverses and holds memory of the maximum value of the loading stress, which is

the basis of hysteresis. Moreover, the loading protocol includes intermediate sets

wherein the stress locally decreases and then increases again up to the same point

(Fig. 2.13b). Such sets create small sub-hysteresis loop branches out of the main

big loop (Fig. 2.13c). However, the main hysteretic loop is maintained, as the

strain keeps memory of the previous maximum value achieved. This phenomenon

is a typical signature of material’s nonlinear behaviour known as discrete mem-

ory. Therefore, based on these considerations, a new theory was developed by

Guyer et al. (Guyer et al. [1994]) based on the Preisach-Mayergoyz (P-M) model,

which describes classical nonlinearity, hysteresis and discrete memory effects:

ρ
∂2u(x, t)

∂t2
=
∂σ

∂x
= M0

{
∂

∂x
[1 +K(x, t)] ex

}

K(x, t) =

βex + δe2
x︸ ︷︷ ︸

CNE

+α [4ex + exsign(ėx)]︸ ︷︷ ︸
NME


(2.7)

where 4ex is the local strain amplitude over a previous wave period, ėx =
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∂ex/∂x is the strain rate, sign(ėx) = 1 if ėx > 0, sign(ėx) = −1 if ėx < 0 and

α is a measure of the material hysteresis. However, a specific form of α is still

under investigation from the material physics. Eq. 2.7 can be used to identify the

nonlinear response of either local macro-damages (10−2− 10−1 m) in aluminium,

glass and composites or micro-defects (10−7 − 10−6 m) in rocks and concrete.

From a physical point of view, this means that the induction of distributions of

microcracks creates interfaces between portions of the specimen that are filled up

either by residual materials or impurities, acting as “binding” medium between

“grains”.

2.2.2 Nonlinear Elastic Wave Spectroscopy Techniques

Nonlinear elastic effects of damaged materials can be assessed with nonlinear

elastic wave spectroscopy (NEWS) techniques, which explicitly interrogate the

material nonlinear elastic behaviour and its effect on wave propagation caused by

the presence of defects (Johnson [1999], Van Den Abeele et al. [2001]). A number

of NEWS experiments were performed on a wide variety of materials subjected

to micro-damages in different environmental conditions.

2.2.2.1 Nonlinear Resonant Ultrasound Spectroscopy

Nonlinear resonant ultrasound spectroscopy (NRUS) technique is aimed to moni-

toring the dependence of the resonance frequency on the strain amplitude for one

or more vibration eigenmodes, while exciting the sample at relatively low ampli-

tudes. Typically, the measurements are carried out through a sweep frequency

response analysis over a frequency interval that contains the fundamental eigen-

mode. The frequency sweeps are repeated at successively increasing drive volt-

ages: for undamaged atomic elastic material no frequency shift is present, whilst

in NME media a frequency relative shift is clearly more visible. Fig. 2.14a shows

NRUS results for a resonant bar from an atomic elastic material (polyvinylchlo-

ride, PVC) in undamaged conditions (Ostrovsky & Johnson [2001]). Fig. 2.14b

illustrates an NRUS experiments for intact and damaged concrete samples. Al-

though the undamaged sample exhibits a small amount of peak shift (which

is in accordance with CNE theory), the damaged specimen reveals an evident
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(a) (b)

Figure 2.14: Resonance acceleration response of PVC for several drive amplitudes
(a), from (Ostrovsky & Johnson [2001]). Results from two concrete samples,
one intact measured in the undamaged state and the other damaged (b), from
(Johnson [2006])

downward shift of the resonance frequency with the increase of the excitation

amplitude, which is a typical feature of the classical nonlinear elastic behaviour.

From the test showed in Fig. 2.14b, the hysteretic nonlinear parameter α was

extracted by measuring the changes of frequency with the strain amplitude:

f0 − fi
f0

= α4ex (2.8)

where f0 is the natural frequency of intact material or the lowest resonance mode

measured, fi is the natural mode measured for each drive amplitude, 4ex is the

average strain amplitude and α is the nonlinear parameter, which ranges nearly

between 10 and 104.

2.2.2.2 Slow Dynamic Diagnostics

The phenomenon of slow dynamic (SDD) or relaxation is another characteristic

of nonlinear elastic materials such as rock and concrete and solids with localized

nonlinear sources (crack, delamination). A typical relaxation experiment is re-

alized with the same apparatus of a NRUS one and consists of monitoring the

resonance frequency before and after large excitation. In particular, the structure

is first driven at large strain amplitude (≈ 10−4 − 10−5) for several minutes to
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Figure 2.15: Modal resonance response in undamaged (a) and damaged sample.
In the latter specimen, the SDD recovery process is clearly visible, from (Johnson
[2006])

generate a softening of the medium (lowered average material modulus) (TenCate

et al. [2000]). Then, a logarithmic-in-time recovery of the structural resonance

peak is monitored at low strain amplitude (≈ 10−7) until it returns to the original

resonance frequency (Fig. 2.15).

The recovery time is a parameter typical of the material and a full recovery

ranges between tens of minutes to hours.

2.2.2.3 Nonlinear Elastic Wave Modulation

One of the simplest ways to assess nonlinear elastic effects in damaged materials is

called nonlinear elastic wave modulation (NEWM), which consists of a nonlinear

interaction between two harmonic plane waves having two single frequencies, f1

and f2, with f1 � f2 and two different amplitudes A1 and A2, with A1 � A2. The

material acts as a nonlinear mixer, so that when the harmonic waveforms interact

together in the same localized region, not only their superposition, but also sum

and difference frequencies (Van Den Abeele et al. [2000]) in addition to higher

harmonics (TenCate et al. [2000]) and subharmonics (Moussatov & Gusev [2003])

of the fundamental frequency f1 and f2, can be generated. These new frequency

components indicate that a crack or delamination is present within the material.

Such phenomena can be predicted by approximated solutions of the Elastody-

namics wave equation via perturbative methods, for either nonlinear classical
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(a) (b)

Figure 2.16: Spectra responses for CNE (a) and NME (b) materials. For both
figures, data are shown for undamaged (top) and damaged (bottom) specimens

[Eq. (2.6)] or non-classical [Eq. (2.7)] media. However, although both atomic

elastic and NME materials exhibit nonlinear wave mixing and higher harmonics

generation, only the latter manifest a stronger intensity and phenomenology.

Indeed, as it can be seen from Fig. 2.16, experimental and numerical evidence

showed that (Johnson [1999], Guyer & Johnson [1999], Van Den Abeele et al.

[2000]):

• the 3rd harmonic amplitude of a purely NME material is quadratic with

the fundamental amplitude, while a cubic dependence is predicted by CNE

theory

• in case of bi-tone (f1 and f2) nonlinear wave mixing experiments, NME

materials have second order sidebands at frequencies f2± = f2 ± 2f1 with

amplitude proportional to αA1A2

• for first order sidebands at frequencies f± = f2 ± f1 in CNE media, the

amplitudes are proportional to βA1A2

Meo and Zumpano (Meo & Zumpano [2005]), showed experimentally that a

damage introduced on a complex composite structure as a sandwich plate caused

a nonlinear non-classical behaviour (hysteresis and discrete memory). Thus, for

such materials third harmonic signature can be chosen to identify the damage, as
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it is the lowest harmonic with the larger energy content predicted by the nonlinear

material hysteretic models.

Another important tool within NEWS methods is the vibro-modulation tech-

nique, which is based on the interaction of two excitation signals, an ultrasonic

probing signal with fundamental frequency f0 and an amplitude-modulated low

frequency vibration (pumping signal) with central frequency f1 and low-frequency

modulation f2 (Zaitsev et al. [2002], Aymerich & Staszewski [2010], Zumpano

& Meo [2008]). When the material is undamaged, it behaves as a linear car-

rier for the frequency of the probe f0 and for the three frequency components

(f1 − f2, f1 and f2 + f1). When the structure is damaged, the modulation is

transferred from the pumping signal to the probe excitation and additional side-

bands (f0± = f0±nf2 , with n = 1, 2, 3, . . . ) can be observed around the probing

fundamental frequency f0. Hence, the presence and the level of modulation can

be used for the assessment of the defect.

2.3 Impact Localization Methods

The growing use of composite materials in aerospace structures has attracted

much interest to the development of real-time, accurate, and cost effective ul-

trasonic SHM systems for the localization of impact points due to their poor

impact resistance properties. Mathematically, the estimation of the impact or

the acoustic emission source present on the structure is an inverse problem based

on the wave propagation approach, i.e. the detection of the time at which the

stressed waves reach a number of sensors. Such technique can be employed for

both isotropic and anisotropic materials and is usually divided into two steps.

First, the time of arrival (TOA) of the stress waves is measured by a network of

transducers and the signals are evaluated using a suitable time-frequency anal-

ysis. Then, a resolution algorithm is used to convert this information into the

impact location. Nevertheless, when the test specimen is a finite medium (plate-

like), depending of the product frequency times thickness, extensional/symmetric

(Sn) or flexural/antisymmetric (An) Lamb modes can be generated (see chapter

3). These Lamb waves differ in their phase and group velocities as well as in the

strain and stress fields.
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Figure 2.17: Illustration of Tobias algorithm

2.3.1 Impact Source Localization Methods in Isotropic

Media

Usually, most of methods for impact location in isotropic and quasi-isotropic

materials use the triangulation technique (also known as Tobias algorithm (Tobias

[1976]), wherein the impact point is identified as the intersection of three circles,

whose centres are the sensors location (Fig. 2.17).

Real-time impact localization algorithms must exhibit the best tradeoffs in

terms of efficiency and accuracy and must require very little computational time

(CPU cost) for different use in a SHM system. Kundu and Das (Kundu et al.

[2009]) developed an optimization algorithm for the determination of impact point

on aluminium and stiffened structures, based on minimizing an error function that

used the difference of time of arrival of AE signals. The experiment were carried

out by using dropping balls in three different locations of the plate and recording

the acoustic emission signals to identify the coordinates of the source (Fig. 2.18).

DeMarchi et al. (Marchi et al. [2011]) proposed an analytical solution for the

impact source location using a hyperbolic positioning method based on the cross-

correlation of the signals acquired by different sensors. Gaul et al. (Gaul et al.

[2001]) applied a Gauss-Newton method to non-linear least square optimization

to analyse “synthetic” AE signals. Conversely, an alternative approach to model-

based methods for the identification of the impact location was the artificial

neural network (NN) approach (see Sec. 2.1.2.3). Despite this method is suitable
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Figure 2.18: Experimental set-up, from Kundu’s work (Kundu et al. [2009])

for complex structure, it cannot provide an optimum solution (Sung et al. [2000]).

2.3.2 Impact Source Localization Methods in Anisotropic

Media

Triangulation techniques are not suitable for anisotropic materials, as they are

strongly limited by the assumption that wave velocity is constant in all directions,

but this is not true in anisotropic and inhomogeneous materials. Indeed, the group

velocity (cg) is function of the signal frequency (f) that depends on the impact

speed of the object hitting the structure and the heading angle (θ). Paget et al.

(Paget et al. [2003]) and Kurokawa et al. (Kurokawa et al. [2005]) developed an

algorithm for impact location based on elliptical group velocity pattern defined

by the following equation (Fig. 2.19):

cg(f, θ) =
cg0 · cg90√

c2
g0sin

2(θ) + c2
g90cos

2(θ)
(2.9)

This method requires the knowledge of the group velocities at 0 (cg0) and 90

degrees (cg90) with respect to the planar reference frame, and it can be used for

quasi-isotropic and unidirectional composite plates. Meo et al. (Meo et al. [2005])

employed such technique to find the impact source in sandwich panels. Seydel

and Chang (Seydel & Chang [2001]) proposed a model-based method for the recon-
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Figure 2.19: Elliptical angular-group velocity pattern, from (Kurokawa et al.
[2005])

struction of the force history and the identification of the impact location, based

on the minimization of the difference between the actual and predicted response

from PZT. Although this method was applied to any kind of anisotropic mate-

rial, even with complex geometries, it required the knowledge of the mechanical

properties of the medium and a theoretical model for the simulation of dynamic-

acoustic behaviour of the structure. For geometrically complex anisotropic struc-

tures, Matt and Lanza di Scalea (Matt & di Scalea F. [2007]) developed a method

to locate low-velocity impact sources through the intersection of the wave paths

detected by two rosettes of rectangular MFC transducers. Then, Salamone et al

(Salamone et al. [2010]) extended such methodology to high-velocity impacts.

2.4 Imaging Methods

Literature provides a quantitative number of diagnostic imaging methods that

can continuously provide a detailed image of the status of the damage and the

location of the impact point. One type of algorithm is based upon a damage index

(Ihn & Chang [2008a]) (Fig. 2.20), which is a measure of how different the current

signal is from a baseline. This approach use the artificial intelligence (AI) method

to generate an image for visualizing scattering locations and estimating the size

of various type of damage. A second algorithm is the ellipse method (Michaels &

Michaels [2007]) wherein differenced signals from all transducer pairs are delayed
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Figure 2.20: Damage estimation by diagnostic imaging with damage index, from
(Ihn & Chang [2008a])

and summed for each spatial point in the image. For a single transducer pair,

this imaging algorithm maps a single echo to an ellipse with the foci of the

ellipse being the transmitter-receiver location. As additional pairs are added,

the ellipses intersect at defect location and thus reinforce. A third algorithm

(Croxford et al. [2007]), known as hyperbola method, is based on the proposition

that the received waveform at two sensing transducer, as actuated by the same

transmitting transducer, can be correlated according to the time difference in the

time of flight from a given region to each of the receiver sensor. The maximum

correlation corresponds to a serious of hyperbole that crosses the location of the

defect with the foci on the two receiver transducers. All these algorithms rely on

the fact that active ultrasonic signals are repeatable and the time origin of the

excitation, as well as the group speeds, are known.

Another imaging technique is the tomography (Leonard et al. [2002]), wherein

an image representing changes of physical quantities of the object under investi-

gation, can be obtained through data collected from acoustic waves (e.g. attenu-

ation or wave speed in transmission tomography or acoustic impedance mismatch

in reflection tomography). Usually each transducer is used as a both, actuator

and receiver, resulting N2 ray paths if the number of transducer is N . Generally,

there are two major classes of tomography imaging techniques:

• Transform Based Methods (TBM) that use the Fourier-slice theorem and
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(a) (b)

Figure 2.21: Geometry (a) and scanning system (b) for parallel-projection tomog-
raphy for the case of seven parallel projections at four orientations, from (Leonard
et al. [2002]).

the Fourier diffraction theorem for non diffracting and diffracting sources,

respectively (Hutchins et al. [1993]). These methods are fast but have the

restriction that the data must be acquired on evenly spaced sets of straight

rays known as projections (Fig. 2.21).

• Algebraic Reconstruction Technique (ART) that employs iterative proce-

dures to reconstruct an image (Malyarenko & Hinders [2000]).

Other related iterative techniques are SIRT (Simultaneous Iterative Recon-

struction Technique) and SART (Simultaneous Algebraic Reconstruction Tech-

nique) (Leonard et al. [2002]). These techniques are less efficient than TBM

but they have several advantages. They can be used with irregular sampling

geometries, incomplete data sets, and may incorporate curved ray paths. It is

noteworthy that all these techniques require a large number of sensors to scan the

entire area for image construction, which may limit their applications for in-situ

damage identification.

Over the past 30 years, “migration” technique was applied to SHM systems in

order to recover the location and shape of reflecting, refracting and diffracting

defects (Lin & Yuan [1999]). This method, deriving from geophysics, is based

on the idea that reconstruction of the image is made via numerical finite dif-
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ference calculations. The signals recovered by the receivers (positioned along a

line including the emitter) are time-reversed, back-propagated and “stacked” to

create image snapshots of the displacement field, in particular at the moment at

which all back-propagated waves precisely converge on the defect. An image of

the defect is thus obtained. Initially this technique was limited to only isotropic

materials. Then, the method was applied to anisotropic composite materials

(Wang & Yuan [2005]), wherein the group velocities were taken as a function of

the propagation direction. This method was capable of imaging several defects

present in a composite plate, and the quality of the defect image was improved

by the use of several excitations from distinct transducers.

2.4.1 Time Reversal Method

Time Reversal (TR) theoretical description for elastic wave propagation was first

introduced by the group of M. Fink at the Laboratoire Ondes and Acosutique

of the Universite de Paris VII Denis Diderot during 1990s. Due to the time

invariance and spatial reciprocity of linear wave equation in a lossless medium,

in a TR experiment, an input signal can be focused back on the original source if

the output received by a set of transducers is time reversed and re-emitted back

onto the excitation point (Fink [1992]). TR has been widely used for the imaging

of the impact source and linear and nonlinear scatterers in biomedical ultrasound

applications, seismology, underwater acoustics and SHM systems (Zumpano &

Meo [2007]).

2.4.1.1 Imaging Linear and Nonlinear Scatterers with Time Reversal

The earliest work on TR dedicated to localize and characterize scatterers in a mul-

tiple scattering medium was carried out by the group at the University of Paris

VII, who developed three different techniques, ITRM (Iterative TR Method)

(Prada et al. [1991]), DORT (Decomposition of the TR Operator) (Prada et al.

[1996]) and MUSIC (MUltiple SIgnal Classification scheme) methods (Gruber

et al. [2004]). Although ITRM can only illuminate only the strongest scatterer

presents on the medium, both DORT and MUSIC are based on the Singular

Value Decomposition (SVD) of the transfer matrix of the structure, which allows
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2. Damage detection and Impact Identification

Figure 2.22: Imaging of the crack on an elastic medium using a combination of
TR and NEWS technique, from Ulrich et al. [2007]

extracting for each frequency a set of N number (singular values) related to the

reflectivity of a specific scatterer present in the medium. Then, each singular

value is associated to a set of N signals, which are the Fourier transforms of

the waveforms used to focus on the singular scatterer (Barbieri & Meo [2010]).

However, such methods were used to localize only linear scatterers as boundary

reflections and mode conversion in complex structures. In addition, with these

methodologies, the number of transducers must be the equal or grater than the

number of targets to be illuminated, which limits their use in SHM applications.

Over the last ten years, much work on SHM techniques with NEWS and TR

has been conducted by Los Alamos National Laboratories, in collaboration with

a number of other institutions. A first method, called TREND (Time Reversal

Elastic Nonlinear Diagnostic), was applied to the analysis of complex superfi-

cial cracks in a bounded medium, by measuring with a scanner laser vibrometer

the harmonic/sidebands content of the retro-focusing waveforms after a TR op-

eration (Ulrich et al. [2006]). A second technique employs only the harmonic

filtered nonlinear components of narrow frequency band sources, in order to il-

luminate only nonlinear scatterers, such as micro-cracks (Goursolle et al. [2007],

Ulrich et al. [2007]) (Fig. 2.22). Beside these mentioned methods, novel signal

processing techniques were associated to TR in order to enhance the focusing of

nonlinearities. Scalerandi et al. (Scalerandi et al. [2008]) developed a nonlinear

imaging method based on a combination of TR and Scaling Subtraction Method
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2. Damage detection and Impact Identification

Figure 2.23: Sound localization within a skull, from Catheline et al. [2007]

(SSM). This last technique relies on the analysis of the differences of two received

waveforms, one with very low excitation amplitude (approximated to a linear

signal) and the other with larger excitation amplitude linearly scaled. The differ-

ence between two waveforms acquired is a signal sum of three contributions that

takes into account not only the higher harmonic effects, but also nonlinear at-

tenuation mechanisms and amplitude dependence on the wave speed. These last

two phenomena mostly affect the fundamental frequency. Furthermore, TR was

combined to Phase Inversion (PI) method to improve the extraction of nonlinear

response in the recorded waveforms compared to a simple Butterworth filter, and

the re-focusing at the nonlinear scatterer location (Ulrich et al. [2008]). PI, al-

ready used in landmines detection (Sutin et al. [2009]), eliminates the linear part

and odd nonlinear harmonics contribution, taking into account only the even

nonlinear harmonic part (second order nonlinearity). Indeed, the only operation

performed in PI is the sum of two excitation signals with same amplitude, but

phase-inverted (0 and 180 degrees).

2.4.1.2 Imaging of the Impact Source with Time Reversal

Some experimental works have employed TR to compensate the dispersive be-

haviour of guided Lamb waves (Park et al. [2009]). Indeed, depending on the

propagation frequency, dispersive guided Lamb modes have a number of wave

packets that travel at higher and lower speed towards the receivers. After a TR

process, the slower modes are re-emitted first, so that all the wave packets can

converge at the original source point at the same time, thus compensating the

dispersion. The idea of using the time reversal concept for impact detection was
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2. Damage detection and Impact Identification

originally developed by Ing et al. (Ing et al. [2005]) for the detection of a finger

knock on a glass plate. Then, this method was extended to the localization of

the reverberated sounds in a human skull in order to understand the spatial po-

sitioning of pulses emitted by a loudspeaker (Catheline et al. [2007]) (Fig. 2.23).

An imaging technique of the impact point with TR was also exploited for open

spaces (Parot [2008]) and wireless communication systems (Jin et al. [2008]).
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Chapter 3

Fundamentals of Guided Elastic

Waves in Solids

Due to their capability of carrying energy over long distances, ultrasonic GW

have found a considerable interest for the characterization of material properties

in both isotropic and anisotropic plates. Indeed, SHM systems based on guided

Lamb waves with integrated components (sensors and probes) are addressed to

provide a real-time warning of the structural health status, thus ensuring high

reliability and a global inspection of large structures. Guided Lamb waves are spe-

cific types of elastic waves confined by the boundaries of plate or pipe structures

and are analytically described through exact solutions known as Rayleigh-Lamb

relations. Such transcendental equations are based upon the superposition of

bulk waves and show how the wave numbers or the velocities of the waves vary

with the frequency. In this chapter the Rayleigh-Lamb relations for isotropic me-

dia are mathematically formulated (Sec. 3.2). Then, in order to generalize the

analysis of dispersion of guided Lamb waves to multilayered anisotropic plates, a

semi-analytical spectral finite element model (SFEM) is presented (Sec. 3.3).

3.1 The Wave Equation in Elastodynamics

In order to understand the guided Lamb wave solutions in a bounded isotropic

material, the wave propagation in an unbounded medium is first introduced.

43



3. Fundamentals of Guided Elastic Waves in Solids

Referring to Lagrangian coordinates xj, the equation of motion in Classical Linear

Elasticity (CLE) can be obtained by combining the force equilibrium [Eq. (3.1a)]

and the linear Hooks law [Eq. (3.1b)] in absence of body force fi (Achenbach

[1984]):

∂σij
∂xj

= ρ
∂2ui
∂t2

(3.1a)

σij = Cijklεkl (3.1b)

where σij is the Cauchy stress tensor, ui the displacement, εkl the strain, ρ the ma-

terial density and Cijkl the fourth-order elasticity tensor. The strain-displacement

relation using the compact notation is:

εkl =
1

2

(
∂ul
∂xk

+
∂uk
∂xl

)
(3.2)

A combination of Eqs. (3.1a), (3.1b) and (3.2) leads to the following linear system:

ρ
∂2ui
∂t2

=
1

2
Cijkl

∂

∂xj

(
∂ul
∂xk

+
∂uk
∂xl

)
(3.3)

Decoupling between longitudinal and transverse components Eq. (3.1b) for lin-

early elastic, homogeneous and isotropic materials, we have:

σij = λεkkδij + 2µεij = λ
∂uk
∂xk

δij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)
(3.4)

where λ = νE
(1+ν)(1−2ν)

is the bulk modulus, µ = E
2(1+ν)

is the shear modulus, E is

the Young’s modulus, ν is the Poisson’s coefficient and δ = 1 if i = j, δ = 0 if

i 6= j is the Kronecker delta. Eq. (3.4) can be expressed as six scalar equations
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3. Fundamentals of Guided Elastic Waves in Solids

in terms of the displacement field ui = {ux, uy, uz}T :

σxx = λ (εx + εy + εz) + 2µεx = λ

(
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

)
+ 2µ

∂ux
∂x

σyy = λ (εx + εy + εz) + 2µεy = λ

(
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

)
+ 2µ

∂uy
∂y

σzz = λ (εx + εy + εz) + 2µεz = λ

(
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

)
+ 2µ

∂uz
∂z

τxy = 2µεxy = µ

(
∂ux
∂y

+
∂uy
∂x

)
τyz = 2µεyz = µ

(
∂uy
∂z

+
∂uz
∂y

)
τzx = 2µεzx = µ

(
∂uz
∂x

+
∂ux
∂z

)
(3.5)

The linear elastodynamics wave equation is obtained differentiating Eq. (3.4) and

substituting into Eq. (3.1a):

ρ
∂2ui
∂t2

=
∂

∂xi

(
λ
∂uk
∂xk

)
+ µ

∂2ui
∂x2

k

+
∂

∂xi

(
µ
∂uk
∂xk

)
= (λ+ µ)

∂2uk
∂xi∂xk

+ µ
∂2ui
∂x2

k

(3.6)

and in terms of the three scalar equations:

ρ
∂2ux
∂t2

= (λ+ µ)
∂

∂x

(
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

)
+ µ

(
∂2ux
∂x2

+
∂2ux
∂y2

+
∂2ux
∂z2

)
ρ
∂2uy
∂t2

= (λ+ µ)
∂

∂y

(
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

)
+ µ

(
∂2uy
∂x2

+
∂2uy
∂y2

+
∂2uy
∂z2

)
ρ
∂2uz
∂t2

= (λ+ µ)
∂

∂z

(
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

)
+ µ

(
∂2uz
∂x2

+
∂2uz
∂y2

+
∂2uz
∂z2

) (3.7)

The invariant form of Eq. (3.6), known as Navier’s equation, becomes (Auld

[1973]):

ρ
∂2u(r, t)

∂t2
= (λ+ µ)∇ [∇ · u(r, t)] + µ∇2u(r, t) (3.8)
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3. Fundamentals of Guided Elastic Waves in Solids

where r = xî+yĵ+zn̂ and ∇2 =
(
∂2

∂x2 î+ ∂2

∂y2
ĵ + ∂2

∂z2
n̂
)

is the Laplacian operator.

Eq. (3.8) can be rewritten as:

ρ
∂2u(r, t)

∂t2
= ρc2

l∇ [∇ · u(r, t)] + ρc2
t

[
∇2u(r, t)−∇ · u(r, t)

]
(3.9)

or

ρ
∂2u(r, t)

∂t2
= ρc2

lM
lu(r, t) + ρc2

tM
tu(r, t) (3.10)

where M lu = ∇ (∇ · u), M tu = ∇2u − ∇ · u = −∇ × ∇ × u, c2
l = (λ + 2µ)/ρ

is the longitudinal wave velocity and c2
t = µ/ρ is the transverse wave speed. A

solution of Eq. (3.10) is1:

u(r, t) = M lul(r, t) +M tut(r, t) (3.11)

and substituting Eq. (3.11) into (3.10) we have:

ρM l

[
c2
l∇2ul(r, t)− ∂2ul(r, t)

∂t2

]
+ ρM t

[
c2
t∇2ut(r, t)− ∂2ut(r, t)

∂t2

]
= 0 (3.12)

Therefore, the Navier’s equation will be satisfied if:

c2
l∇2ul(r, t)− ∂2ul(r, t)

∂t2
= 0

c2
t∇2ut(r, t)− ∂2ut(r, t)

∂t2
= 0

(3.13)

which represent the longitudinal and transverse (shear) differential linear wave

equations, respectively.

1M l (M tu) = M t
(
M lu

)
= 0

M l
(
M lu

)
= M l

(
∇2u

)
M t (M tu) = M t

(
∇2u

)
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3. Fundamentals of Guided Elastic Waves in Solids

Figure 3.1: Lamb wave propagation within a thin isotropic plate plate. Propa-
gating wave packets are superpositions of extensional and flexural modes

3.2 Ultrasonic Guided Lamb Waves in Isotropic

Elastic Media

The guided Lamb wave problem can be solved by using the potential method

(Helmholtz decomposition) of an elastic body in absence of body forces applied to

Eq. (3.8). Indeed, the time harmonic displacement can be written as the sum of

the gradient of a scalar potential Φ and the curl of a vector potential Ψ (Viktorov

[1967]):

u = ∇Φ +∇×Ψ (3.14)

where ∇Φ = ∂Φ
∂x
î + ∂Φ

∂y
ĵ + ∂Φ

∂z
n̂ and ∇ × Ψ =

(
∂Ψz
∂y
− ∂Ψy

∂z

)
î +

(
∂Ψx
∂z
− ∂Ψz

∂x

)
ĵ +(

∂Ψy
∂x
− ∂Ψx

∂y

)
n̂. Assuming a time harmonic wave motion propagating in the pos-

itive x-direction of a bounded isotropic medium with thickness d (Fig. 3.1), we

have:

Φ = φei(kx−ωt) (3.15a)

Ψ = ψei(kx−ωt) (3.15b)

where i =
√
−1, k = ω/cph is the wave number, ω the angular frequency

and cph the phase velocity, either longitudinal or transverse. It must be observed

that displacement and velocity components are in the x and z-directions (sagittal

plane). According to Eq. (3.5) and (3.14) the components ux and uz of the

displacements along the x and z-direction, as well as the stress components σxx,
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σxz and σzz can be described in terms of Φ and Ψ:

ux =
∂Φ

∂x
− ∂Ψy

∂z
(3.16a)

uz =
∂Φ

∂z
+
∂Ψy

∂x
(3.16b)

σxx = λ

(
∂2Φ

∂x2
+
∂2Φ

∂z2

)
+ 2µ

(
∂2Φ

∂x2
− ∂2Ψy

∂x∂z

)
(3.16c)

σzz = λ

(
∂2Φ

∂x2
+
∂2Φ

∂z2

)
+ 2µ

(
∂2Φ

∂z2
+
∂2Ψy

∂x∂z

)
(3.16d)

σxz = µ

(
2
∂2Φ

∂x∂z
+
∂2Ψy

∂x2
− ∂2Ψy

∂z2

)
(3.16e)

Substituting Eq. (3.14) in (3.8), we obtain:

ρ

[
∂2Φ

∂t2
+
∂2 (∇×Ψ)

∂t2

]
= (λ+ µ)∇

(
∇2Φ

)
+ µ∇2 (∇Φ) + µ∇2 (∇×Ψ) (3.17)

and according to the Schwarz theorem, i.e. ∇× (∇Φ) = 0 and ∇ · (∇×Ψ) = 0,

Eq. (3.17) can be rewritten as:

∇
[
ρ
∂2Φ

∂t2
− (λ+ 2µ)∇2Φ

]
+∇×

[
ρ
∂2Ψ

∂t2
− µ∇2Ψ

]
= 0 (3.18)

Since the first term of Eq. (3.18) is purely a scalar and the latter purely a vector,

the two terms can be separately equal to zero:(
∇2 − 1

c2
l

∂2

∂t2

)
Φ = 0 (3.19a)(

∇2 − 1

c2
t

∂2

∂t2

)
Ψ = 0 (3.19b)

The motion does not depend on the y-coordinate and the potential vector can

expressed by simply its component along the y-axis (Ψy or simply Ψ). In addition,

using the Helmholtz identity (Barton [1989]) to reduce the complexity of the
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analysis and assuming:

φ = φ(z) (3.20a)

ψ = ψ(z) (3.20b)

we obtain a time-independent form of the original Eqs. (3.19a-3.19b):∂2Φ
∂x2 + ∂2Φ

∂z2
+ k2

l Φ = 0

∂2Ψ
∂x2 + ∂2Ψ

∂z2
+ k2

tΨ = 0
(3.21)

where k2
l = (ω/cl)

2 = [ω2ρ/ (λ+ 2µ)] and k2
t = (ω/ct)

2 = (ω2ρ/µ). Substituting

Eqs. (3.15a-3.15b) in (3.21) according with Eqs. (3.20a-3.20b), we have:
∂2φ(z)
∂z2
− (k2 − k2

l )φ(z) = 0

∂2ψ(z)
∂z2
− (k2 − k2

t )ψ(z) = 0
(3.22)

Solving the above system of differential equations for the unknown amplitude

functions φ(z) and ψ(z), the following solutions are obtained:

φ(z) = Ae

√
(k2−k2

l )z +Be
−
√

(k2−k2
l )z (3.23a)

ψ(z) = Ce

√
(k2−k2

t )z +De
−
√

(k2−k2
t )z (3.23b)

Assuming k2 > k2
t > k2

l , only the solution with positive exponent correspond to

motion increasing with the depth (Lamb waves). Hence, the expressions of Φ and

Ψ become2:

Φ = [A1 cosh(rz) + A2 sinh(rz)] ei(kx−ωt) (3.24a)

Ψ = [A3 cosh(sz) + A4 sinh(sz)] ei(kx−ωt) (3.24b)

where A1, A2, A3 and A4 are constant amplitudes unknown, r =
√

(k2 − k2
l )

2cos(iy) = e−y+ey

2 = cosh(y)
sin(iy) = e−y−ey

2i = isinh(y)
cos(iy)− isin(iy) = cosh(y) + sinh(y) = ey

49



3. Fundamentals of Guided Elastic Waves in Solids

and s =
√

(k2 − k2
t ). Substituting Eqs. (3.24a-3.24b) into (3.16a-3.16e) we get:

ux = [ikA1 cosh(rz) + ikA2 sinh(rz)− sA3 sinh(sz)− sA4 cosh(sz)] ei(kx−ωt)

(3.25a)

uz = [rA1 sinh(rz) + rA2 cosh(rz) + ikA3 cosh(sz) + ikA4 sinh(sz)] ei(kx−ωt)

(3.25b)

σxx =
{[

(λ+ 2µ)r2 − λk2
]
A1 cosh(rz) +

[
(λ+ 2µ)r2 − λk2

]
A2 sinh(rz)

−2µiksA3 sinh(sz)− 2µiksA4 cosh(sz)} ei(kx−ωt) (3.25c)

σzz =
{[

(λ+ 2µ)r2 − λk2
]
A1cosh(rz) +

[
(λ+ 2µ)r2 − λk2

]
A2 sinh(rz)

+2µiksA3 sinh(sz) + 2µiksA4 cosh(sz)} ei(kx−ωt) (3.25d)

σxz =
{

2µikrA1 sinh(rz) + 2µikrA2 cosh(rz)− µ
(
k2 + s2

)
A3 cosh(sz)

−µ
(
k2 + s2

)
A4 sinh(sz)

}
ei(kx−ωt) (3.25e)

Hence, in order to obtain the four unknown amplitudes, the traction-free bound-

ary conditions are applied on the front/back surface of the plate:

σxz = 0 → z=d/2 σxz = 0 → z=−d/2 (3.26a)

σzz = 0 → z=d/2 σzz = 0 → z=−d/2 (3.26b)
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The following system of linear and homogeneous equations is thus obtained:

(
k2 + s2

)
cosh

(
rd

2

)
A1 +

(
k2 + s2

)
sinh

(
rd

2

)
A2 + 2iks sinh

(
sd

2

)
A3

+ 2iks cosh

(
sd

2

)
A4 = 0

(
k2 + s2

)
cosh

(
rd

2

)
A1 −

(
k2 + s2

)
sinh

(
rd

2

)
A2 − 2iks sinh

(
sd

2

)
A3

− 2iks cosh

(
sd

2

)
A4 = 0

2ikr sinh

(
rd

2

)
A1 + 2ikr cosh

(
rd

2

)
A2 −

(
k2 + s2

)
cosh

(
sd

2

)
A3

−
(
k2 + s2

)
sinh

(
sd

2

)
A4 = 0

−2ikr sinh

(
rd

2

)
A1 + 2ikr cosh

(
rd

2

)
A2 −

(
k2 + s2

)
cosh

(
sd

2

)
A3

+
(
k2 + s2

)
sinh

(
sd

2

)
A4 = 0

(3.27)

that can be rewritten as:
C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C33 C34

C41 C42 C43 C44



A1

A2

A3

A4

 =


0

0

0

0

 (3.28)

where C11 − C44 are the elementary functions of stress fields within the system

(3.27). Hence, the characteristic equation can be obtained by solving:

det


C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C33 C34

C41 C42 C43 C44

 = 0 (3.29)

From the characteristic equation (3.29), the eigenvalues in the wave number k can

be evaluated and two new expressions of Φ and Ψ as function of the coefficients
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A1 and A2 can be obtained:

Φ = [A1 cosh(rz) + A2 sinh(rz)] ei(kx−ωt) (3.30a)

Ψ =

[
2ikr cosh

(
rd
2

)
(k2 + s2) cosh

(
sd
2

)A2 cosh(sz)

+
2ikr cosh

(
rd
2

)
(k2 + s2) cosh

(
sd
2

)A1 sinh(sz)

]
ei(kx−ωt) (3.30b)

Since the potentials in Eqs. (3.30a-3.30b) involve sines and cosines of the argu-

ment z that are odd and even functions, the solutions for the displacements can

be divided in two set of modes, known as symmetric (Sn) and antisymmetric (An).

This means that the wave motion in the x-direction will be symmetric with re-

spect to the mid-plane (z = 0) if ux contains cosines, and it will be antisymmetric

if ux contains sines. The reverse is true for the motion in the z-direction.

Hence, the displacements calculated substituting Eqs. (3.30a-3.30b) into

(3.25a-3.25b) are:

ux = usx + uax (3.31a)

uz = usz + uaz (3.31b)

where:

usx = Ask

[
cosh(rz)

sinh
(
rd
2

) − 2rs

(k2 + s2)

cosh(sz)

sinh
(
sd
2

)] ei(kx−ωt−π2 ) (3.32a)

uax = Aak

[
sinh(rz)

cosh
(
rd
2

) − 2rs

(k2 + s2)

sinh(sz)

cosh
(
sd
2

)] ei(kx−ωt−π2 ) (3.32b)

usz = −Asr

[
sinh(rz)

sinh
(
rd
2

) − 2k2

(k2 + s2)

sinh(sz)

sinh
(
sd
2

)] ei(kx−ωt) (3.32c)

uaz = −Aar

[
cosh(rz)

cosh
(
rd
2

) − 2k2

(k2 + s2)

cosh(sz)

cosh
(
sd
2

)] ei(kx−ωt) (3.32d)

with As and Aa new arbitrary amplitudes. The phase velocities or wave numbers

of Lamb waves can be expressed as function of the frequency-thickness product
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through the Rayleigh-Lamb frequency relations, known as the dispersion equa-

tions:

for symmetrical modes

tan
(
qd
2

)
tan

(
pd
2

) +
4k2qp

(q2 − k2)2 = 0 (3.33)

for antisymmetrical modes

tan
(
qd
2

)
tan

(
pd
2

) +
(q2 − k2)

2

4k2qp
= 0 (3.34)

where q =
√
k2
t − k2 and p =

√
k2
l − k2. Relations analogous to Eqs. (3.33)

and (3.34) can be found for the group velocity by assuming:

cg = cph + k
∂cph
∂k

(3.35)

where cph is the phase speed. Figures 3.2a and b illustrate the phase and group

velocity dispersion curves, respectively, for an aluminium plates with thickness of

3 mm. Among the infinite Lamb modes, the fundamental flexural mode A0 and

the fundamental symmetric mode S0, even if they can be generated for only low

values of the product frequency-thickness, they do not present cut-off frequencies.

3.3 Guided Waves in Flat Multilayer Anisotropic

Media

Theoretical studies on dispersion curves for guided waves have been carried out on

isotropic ad anisotropic plates for over one hundred years (Mindlin [1959], Achen-

bach [1984]). More recently, the transfer matrix (Nayfeh [1991]) technique was

used for modelling multilayered anisotropic media. Then, this method was ex-

tended to viscoelastic anisotropic laminates (global matrix method (Lowe [1995])).

Such methods are based on the superposition of bulk waves, and the displace-

ment field can be expressed as function of several parameters as the cross-section

position in the layers, density, wave velocities and wavenumber. By applying
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(a)

(b)

Figure 3.2: Phase velocity (a) and group velocity (b) dispersion curves for an
aluminium plate with thickness of 3 mm.

the appropriate boundary conditions and imposing the continuity of stress and

strain at each layer interface, the free-wave propagation in the laminate takes the

form of a nonlinear transcendental eigenvalue problem. Nevertheless, in these

techniques, the exact solution requires iterative root-searching algorithms that

might miss some wave types. Hence, in order to avoid solving transcendental

equations, 3-D approximated plate theories were employed for computing the

dispersion relations of GW in simple anisotropic plate-like structures (Whitney

& Pagano [1970], Reddy [1984], Wang & Yuan [2007]). However, the use of these

plate theories is not valid for describing the GW modes at frequencies at which

the wavelengths are comparable to the plate thickness (Jeong & Jang [2000]).

At low frequencies, the elastic wave propagation can be also revealed through

numerical simulations. Indeed, finite element (FE) method was used to describe

the displacements field across each element by using low-order polynomials (Cook

et al. [1989]). However, as the element size is of the order of the wavelength, at

higher frequencies and large meshes, conventional FE analysis becomes compu-
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tationally too expensive. Semi-analytical finite element, also known as spectral

finite element (SFEM) method, is a valid alternative to obtain dispersive curves

for propagating waves of arbitrary thickness, with an acceptable computational

cost (Hayashi et al. [2003], Shorter [2004]). In particular, this technique pro-

vides a description of the cross-sectional deformation of a laminate using a one-

dimensional FE discretization of the cross-sectional displacement field. The dis-

placements are approximated as harmonic exponential functions with the shape

independent of frequency. The characteristic equation (SFEM solution) for free

wave propagation is obtained in stable manner from a linear eigenvalue problem

in wavenumber k, and the propagating wave field can be predicted for any kind

of composite laminate or complex structures (Barbieri et al. [2009]).

3.3.1 Variational Fomulation of the Equations of Motions

The weak form of the differential equation of the elastodynamics is obtained from

the variation of the Hamilton’s principle as follows:

δ

t2∫
t1

(EK + EP ) dt = 0 (3.36)

where EK is the time-average kinetic energy and EP is the potential energy. If Ω

is the volume of the laminate (waveguide’s cross-sectional domain), then:

EK =
1

2

∫
Ω

u̇Tρu̇dΩ (3.37)

where u̇ = ∂u/∂t, u is the displacements field, ρ is the mass density and the

superscript T denotes the transpose operation. The potential energy or strain

energy is given by:

EP =
1

2

∫
Ω

εTCx−yεdΩ (3.38)

where ε is the strain tensor and Cx−y is the stiffness matrix in the laminate

reference plane x − y. By integrating by parts the kinetic term, the variational
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Figure 3.3: SFEM model of wave propagation. The inset represents the degrees
of freedom of a 1-D two-node element

form of the elastodynamics equation is:

t2∫
t1

∫
Ω

δ
(
εT
)

Cx−yεdΩ + δ
(
uT
)
ρüdΩ

 = 0 (3.39)

with ü = ∂2u/∂t2. Assuming an harmonic motion of plane waves that propagates

in the positive x-direction with angular frequency ω, wavenumber k and heading

angle φ, the cross-sectional displacement field u(ζ, t), with ζ = x, y, z, in a full

3-D problem is (Fig. 3.3):

u(ζ, t) =

ux(ζ, t)uy(ζ, t)

uz(ζ, t)

 =

Ux(z)

Uy(z)

Uz(z)

 ei(kx−ωt) (3.40)

where kx = [cos(φ)x+ sin(φ)y] and the cross-section lies in the plane y − z.

3.3.2 Spectral Finite Element Formulation

The volume Ω of the laminate is discretized in a system of finite elements with

domain Ω(e). Hence, Eq. (3.40) can be written in terms of the polynomial shape

functions N(z) and the complex amplitude of nodal displacement q(e) (Barbieri
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et al. [2009]):

u(e)(ζ, t) =



n∑
j=1

Nj(z)Uxn

n∑
j=1

Nj(z)Uyn

n∑
j=1

Nj(z)Uzn



(e)

ei(kx−ωt) = N(z)q(e)ei(kx−ωt) (3.41)

where n is the number of nodes in the FE mesh. Since the one-dimensional mesh

contains two nodes per element, a single element has six degrees of freedom. The

shape function matrix (size 3× 6) is:

N(z) =

Ni(z) 0 0

0 Ni(z) 0

0 0 Ni(z)

 (3.42)

where

Ni(z) =
(

1− z
L

z
L

)
It can be seen that the shape functions are linear in the element and fulfil the

property to be interpolant of the nodal data, i.e. Ni(z) = δij where δij is the

Kronecker delta. The nodal unknown displacements are:

q(e) =
(
Ux1 Uy1 Uz1 Ux2 Uy2 Uz2

)
(3.43)

The strain vector for the element (e) is:

ε(e)(ζ, t) =



εxx

εyy

εzz

εxy

εxz

εyz


= ∇u(e)(ζ, t) =



∂
∂x

0 0

0 ∂
∂y

0

0 0 ∂
∂z

∂
∂y

∂
∂x

0
∂
∂z

0 ∂
∂x

0 ∂
∂z

∂
∂y


u(e)(ζ, t) (3.44)
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and it can be represented as a function of the nodal displacements by substituting

Eq. (3.41) in (3.44):

ε(e)(ζ, t) = F(k, φ, z)q(e)ei(kx−ωt) (3.45)

where the strain-displacement matrix (size 6× 6) is given by:

F(k, φ, z) =



−jk cos(φ)Ni(z) 0 0

0 −jk sin(φ)Ni(z) 0

0 0 ∂Ni(z)
∂z

0 ∂Ni(z)
∂z

−jk sin(φ)Ni(z)
∂Ni(z)
∂z

0 −jk cos(φ)Ni(z)

−jk sin(φ)Ni(z) −jk cos(φ)Ni(z) 0


(3.46)

In order to extend this method to materials with arbitrary lay-up, a transforma-

tion between the laminate (O, x, y) reference frame and the lamina one (O, xL,

yL) is required. Hence, the stiffness matrix in the laminate reference Cx−y is:

Cx−y = R1CLR2 (3.47)

with

R1 =



m2 n2 0 0 0 2mn

n2 m2 0 0 0 −2mn

0 0 1 0 0 0

0 0 0 m −n 0

0 0 0 n m 0

−mn mn 0 0 0 m2 − n2


(3.48a)

R2 =



m2 n2 0 0 0 mn

n2 m2 0 0 0 −mn
0 0 1 0 0 0

0 0 0 m −n 0

0 0 0 n m 0

−2mn 2mn 0 0 0 m2 − n2


(3.48b)
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with m = cos(θ), n = sin(θ) and CL the stiffness matrix in the lamina reference

frame. Recalling Hookes law [Eq. (3.1b)], the most general relation between the

stress-strain matrices for linearly elastic problem can be written as:

σ(e)(ζ, t) = Cx−yε(e)(ζ, t) (3.49)

and substituting Eqs. (3.45) and (3.47) in (3.49), we obtain:

σ(e)(ζ, t) = F(k, φ, z)Cx−yq(e)ei(kx−ωt) (3.50)

The discrete form of the weak form of the Hamiltonian function is obtained

computing a sum of integrals over element domains Ω(e):

t2∫
t1


nel∑
e=1

∫
Ω(e)

δ
(
ε(e)T

)
σ(e)dΩ(e) +

∫
Ω(e)

δ
(
u(e)T

)
ρ(e)ü(e)dΩ(e)

 dt = 0 (3.51)

where nel represents the number of elements present in the 1-D FE mesh. Sub-

stituting Eqs. (3.41), (3.45) and (3.50) in (3.51), the first terms of the above

equations becomes (Chakraborty & Gopalakrishnan [2006]):∫
Ω(e)

δ
(
ε(e)T

)
σ(e)dΩ(e)

=

∫
Ω(e)

{
δ
[
FT (k, φ, z)q(e)T e−i(kx−ωt)

]
F(k, φ, z)Cx−yq(e)ei(kx−ωt)

}
dΩ(e)

= δq(e)T

∫
Ω(e)

[
FT (k, φ, z)Cx−yF(k, φ, z)

]
q(e)dΩ(e)

(3.52)
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with iT = −i. The second term of Eq. (3.51) is:∫
Ω(e)

δ
(
u(e)T

)
ρ(e)ü(e)dΩ(e)

= −
∫

Ω(e)

δ
(
NT (z)q(e)T e−i(kx−ωt)

)
ρ(e)N(z)ω2q(e)ei(kx−ωt)dΩ(e)

= −δq(e)Tω2

∫
Ω(e)

[
NT (z)ρ(e)N(z)

]
q(e)dΩ(e)

(3.53)

A combination of Eqs. (3.52) and (3.53) yields:

t2∫
t1

{
nel∑
e=1

δq(e)T
[
k(e)(k, φ)− ω2m(e)

]
q(e)

}
dt = 0 (3.54)

where:

k(e)(k, φ) =

∫
Ω(e)

[
FT (k, φ, z)Cx−yF(k, φ, z)

]
dΩ(e) (3.55)

is the element stiffness matrix,

m(e) =

∫
Ω(e)

[
NT (z)ρ(e)N(z)

]
dΩ(e) (3.56)

is the element mass matrix.

3.3.3 Wavenumber Evaluation

Applying the standard FE assembling procedure, the governing Eq. (3.54) be-

comes:
t2∫
t1

{
δUT

[
K(k, φ)− ω2M

]
U
}
dt = 0 (3.57)
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where U is the global unknown nodal displacement vector and

K(k, φ) =

nel∑
e=1

k(e)(k, φ)

M =

nel∑
e=1

m(e)

(3.58)

Since the strain stress matrix contains only linear terms in k, the stiffness matrix

can be rewritten as:

K(k, φ) = K0(φ) + K1(φ) + K2(φ)k2 (3.59)

Therefore, for every δUT , the elastodynamics-discretized equation of motion takes

the form: [
K0(φ) + K1(φ) + K2(φ)k2 − ω2M

]
N

U = 0 (3.60)

where the subscript N represents the number of total degrees of freedom of the

system. If ω and φ are fixed, the quadratic eigenvalue problem for k [Eq. (3.60)]

can be transformed into a linear eigenvalue problem by employing the transfor-

mation:

U2 = kU1 (3.61a)

U1 = kU0 (3.61b)

Inserting Eqs. (3.61a-3.61b) into (3.60), the following system of equations is

obtained: 0 I 0

0 0 I

0 C1 C2


U0

U1

U2

− k
I 0 0

0 I 0

0 0 I


U0

U1

U2

 = 0 (3.62)

where

C2 = K2 (3.63a)

C1 = K1 (3.63b)

C0 = K0 − ω2M (3.63c)
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System (3.62) can be converted to a standard form by eliminating U2, in order

to get: (
0 I

−C−1
2 C0 −C−1

2 C1

)(
U0

U1

)
− k

(
I 0

0 I

)(
U0

U1

)
= 0 (3.64)

If N is the dimension of the system (3.64), for each frequency ω, 2N eigenvalues

k along the cross-sectional wave shape of the laminate can be found, with asso-

ciated 2N propagating eigenvectors (N forward and N backward modes). The

pure real eigenvalues (Rek) represent propagating oscillating waves in the lon-

gitudinal x-direction, whereas complex conjugate eigenvalues (Rek ± Imk) and

purely imaginary numbers (±Imk) represent oscillating evanescent waves and

non-oscillating evanescent waves, respectively. Evanescent waves are waves that

exhibit an exponential decay, so they do not propagate to the far field, but simply

attenuates with the distance.

3.3.4 Group Velocity Determination

In undamped media, the stiffness matrix Cx−y is real. The group velocity cg in

conventional manner can be calculated through the differentiations of two close

frequencies and two adjacent wave numbers:

cg =
∂ω

∂k
∼=

(ωi+1 − ωi)
(ki+1 − ki)

(3.65)

Due to the complexity of dispersion curves, especially when one mode overlaps

another, Eq. (3.65) is not straightforward. Indeed, a small error in the wavenum-

ber causes large errors in the assessment of the group velocity. A new approach

proposed by Finnveden (Finnveden [2004]) allowed calculating the group velocity

at each frequency and wavenumber solution, without any contribution from clos-

est points. The procedure consisted of evaluating at first the derivative of Eq.
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Figure 3.4: Dispersion curves for a quasi-isotropic composite plate with 3mm of
thickness

(3.60) with respect to the wavenumber:

∂

∂k

[
K0(φ) + K1(φ) + K2(φ)k2 − ω2M

]
UR

=

{
∂ [K0(φ) + K1(φ) + K2(φ)k2]

∂k
− 2ω

∂ω

∂k

}
UR

+
[
K0(φ) + K1(φ) + K2(φ)k2 − ω2M

] ∂UR

∂k

(3.66)

where UR is the right-eigenvector. Multiplying Eq. (3.66) by the transpose of the

left-eigenvector, UT
L = U†, where the superscript † corresponds to the Hermitian

conjugation operation, by virtue of following equation:

U†
[
K0(φ) + K1(φ) + K2(φ)k2 − ω2M

]
= 0 (3.67)

we get:

U†
{
∂ [K0(φ) + K1(φ) + K2(φ)k2]

∂k
− 2ω

∂ω

∂k

}
UR = 0 (3.68)

Rearranging Eq. (3.68), since ∂ω/∂k is a scalar, the group velocity cg becomes:

cg =
∂ω

∂k
=

U† [K1(φ) + 2kK2(φ)] UR

2ωU†MUR

(3.69)

This equation indicates that the group velocity can be estimated for each wavenum-

ber and frequency at a time, without regard to any adjacent solutions (Fig. 3.4).
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Chapter 4

Theory of Time Reversal Imaging

Method

If the time invariance and spatial reciprocity of the wave equation are satisfied, a

time reversal (TR) imaging process can be used to focus ultrasonic waves through

homogeneous and inhomogeneous media. Indeed, a wave diverging from a punc-

tual source and received by a set of transducers enclosing the medium, can be

time reversed and re-emitted by the sensors elements. The generated wave will

converge back to its original source location as if time was running backwards.

This chapter is aimed to report the theoretical description of time reversal imag-

ing method, by first introducing the theoretical treatment of a pulsed elastic wave

generated by a point source propagating within an isotropic medium (Sec. 4.1).

Then, in order to obtain the optimal re-focusing at the source location, an ideal

experimental set-up known as “Time Reversal Cavity“ (TRC) is presented (Sec.

4.2). A TRC is composed by a closed surface covered with a 2D array of reversible

transducers surrounding the source and is presented through an extensive use of

the Green’s function theory for homogeneous and inhomogeneous media. The

basic and most relevant results of such treatment enables an understanding of

the physics of time reversal. However, a TRC is difficult to realize in practise and

the time reversal imaging is only achieved with a limited number of transducers

of finite amplitude that limits the focus quality, known as time-reversal mirror

(TRM) (Sec.4.3). Nevertheless, Sec. 4.4 illustrates that the reverberation of a
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diffuse wave field in a complex medium improves the spatial resolution of the

focusing.

4.1 The Wave Equation with Dirac Point-Like

Source

The Navier’s equation of motion (3.8) for an isotropic elastic medium with a

source distribution f(r, t) is (Achenbach [1984]):

ρ
∂2u(r, t)

∂t2
= (λ+ µ)∇ [∇ · u(r, t)] + µ∇2u(r, t) + f(r, t) (4.1)

which can be decoupled in the following system of equations:

c2
l∇2ul(r, t)− ∂2ul(r, t)

∂t2
= −f(r, t)

c2
t∇2ut(r, t)− ∂2ut(r, t)

∂t2
= −f(r, t)

(4.2)

Assuming the wave field ψ(r, t) as a generic component of the longitudinal or

shear displacement vector field (3.11), we can write:

c2∇2ψ(r, t)− ∂2ψ(r, t)

∂t2
= −f(r, t) (4.3)

Eq. (4.3) is an inhomogeneous, linear, partial differential equation (PDE) where

c is the velocity of propagation in the medium and f(r, t) is a known point-like

source in a homogeneous medium given by:

f(r, t) = e(t)δ(r) (4.4)

where δ(r) represents the Dirac delta function in the three-dimensional space and

e(t) is the signal emitted by the point-like source, which describes the temporal
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variations of the source excitation:

e(t) =


0 ∀t < 0

e(t) ∀t ∈ [0, Te]

0 ∀t > Te

(4.5)

where Te is the temporal duration of the excitation function e(t). Eq. (4.5) im-

plies that e(t) is a causal function and the temporal excitation only exists on a

finite time-interval. The time-derivative operator of Eq. (4.3) appears only at

the second order, hence if ψ(r, t) is a solution, then ψ(r,−t) is also a solution.

It should also be noticed that the presence of the Laplacian differential operator,

guarantees the invariance of Eq. (4.3) under the transformation r → −r, i.e it

guarantees a spatial reciprocity condition.

According to the Green’s theorem (Duffy [2001]), to solve Eq. (4.3) it is useful to

define a Green space-time function G that depends on the variables (r, t; r0, t0).

The Green’s function allows the calculation of the wave field ψ at a given posi-

tion and time (r, t) without explicitly solving the differential Eq. (4.3). From a

physical point of view, it corresponds to an impulsive diverging spherical wave

satisfying the following conditions (Barton [1989]):

• G(r, t; r0, t0) must be a solution to the following linear, inhomogeneous wave

equation:

c2∇2G(r, t; r0, t0)− ∂2G(r, t; r0, t0)

∂t2
= −δ(r− r0)δ(t− t0) (4.6)

where δ(r − r0) and δ(t − t0) are Dirac delta functions in space and time,

respectively. G(r, t; r0, t0) is the field produced in r at time t by an impulsive

force located in r0 and excited at time t0. For t < t0 causality requires that

G(r, t; r0, t0) ≡ 0.

• G(r, t; r0, t0) is a reciprocal function in the sense of the reciprocity theorem:

G(r, t; r0, t0) ≡ G(r0, t0; r,−t) ≡ G(r0, t; r, t0) (4.7)

• G(r, t; r0, t0) must satisfy the homogeneous boundary conditions on S (Dirichelet,
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Neumann or mixed):

G(r, t; r0, t0) = 0 r ∈ S (4.8a)

∂G(r, t; r0, t0)

∂n
= 0 r ∈ S (4.8b)

where S is a closed surface of a solid Ω and ∂G(r, t; r0, t0)/∂n is the Green’s

function normal derivative.

• G(r, t; r0, t0) must satisfy the Cauchy initial conditions:

G(r, t; r0, t0) = 0 t = t0 (4.9a)

∂G(r, t; r0, t0)

∂t
= 0 t = t0 (4.9b)

Hence, considering Eq. (4.6) and conditions (4.8a-4.9b), the solution of the wave

equation (4.3) can be expressed in terms of the Green’s function, boundary con-

ditions and initial condition as follows:

c2∇2
0ψ(r0, t0)− ∂2ψ(r0, t0)

∂t20
= −f(r0, t0) (4.10a)

c2∇2
0G(r, t; r0, t0)− ∂2G(r, t; r0, t0)

∂t20
= −δ(r− r0)δ(t− t0) (4.10b)

Multiplying Eq. (4.10a) by G(r, t; r0, t0) and Eq. (4.10b) by ψ(r0, t0), performing

the difference and then integrating over the volume Ω0 and over the time t0 from

0 to t′, with t′ � t in order to avoid the integration exactly at the peak of the
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delta function, we obtain:

t′∫
t0

dt0

∫∫∫
Ω

{
c2
[
∇2

0ψ(r0, t0)G(r, t; r0, t0)−∇2
0G(r, t; r0, t0)ψ(r0, t0)

+
∂2G(r, t; r0, t0)

∂t20
ψ(r0, t0)− ∂2ψ(r0, t0)

∂t20
G(r, t; r0, t0)

]}
dΩ0

=

t′∫
t0

dt0

∫∫∫
Ω

[δ(r− r0)δ(t− t0)ψ(r0, t0)− f(r0, t0)G(r, t; r0, t0)] dΩ0

= ψ(r, t)−
t′∫

t0

dt0

∫∫∫
Ω

f(r0, t0)G(r, t; r0, t0)dΩ0 (4.11)

The volume integral over the two terms in left side of Eq. (4.11) turns into a

surface integral employing Green’s second identity as follows:∫∫∫
Ω

[
∂G(r, t; r0, t0)

∂t0
ψ(r0, t0)− ∂ψ(r0, t0)

∂t0
G(r, t; r0, t0)

]
dΩ0

+

t′∫
t0

dt0

∫∫
S

c2
[
∇2

0ψ(r0, t0)G(r, t; r0, t0)−∇2
0G(r, t; r0, t0)ψ(r0, t0)

]
· ndS0

(4.12)

where n is the vector field normal to the closed surface S in each of its points,

directed outwards. Hence, Eq. (4.11) can be rewritten as:

ψ(r, t) = g(r, t) + h(r, t) + s(r, t) (4.13)
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with:

g(r, t) =

t′∫
t0

dt0

∫∫∫
Ω

f(r0, t0)G(r, t; r0, t0)dΩ0 (4.14a)

h(r, t) = c2

t′∫
t0

dt0

∫∫
S

[
∇2

0ψ(r0, t0)G(r, t; r0, t0)−∇2
0G(r, t; r0, t0)ψ(r0, t0)

]
· ndS0

(4.14b)

s(r, t) =

∫∫∫
Ω

[
∂G(r, t; r0, t0)

∂t0
ψ(r0, t0)− ∂ψ(r0, t0)

∂t0
G(r, t; r0, t0)

]
dΩ0 (4.14c)

Eq. (4.13) gives the complete solution of the inhomogeneous problem (4.3) in-

cluding the initial conditions. The above terms g(r, t) and h(r, t) represent the

effects of the source and the boundary conditions, respectively. The last term

s(r, t) is only related to the initial conditions (Barton [1989]).

Assuming a free unbounded space and supposing that we are able to measure at

any point of a closed surface S the wave field ψ(r, t) and its normal derivatives

(set to zero at infinity), the general solution of the wave equation (4.3) takes the

form:

ψ(r, t) =

t′∫
t0

dt0

∫∫∫
Ω

f(r0, t0)G(r, t; r0, t0)dΩ0

=

∫∫∫
Ω

G(r, r0; t)⊗ f(r0, t)dΩ0 (4.15)

where the symbol ⊗ represents a convolution over time and the Green’s func-

tion for an unbounded isotropic medium is given by Eq. (A.9). In the case of

anisotropic medium, G(r, r0; t) assumes forms more complicated than Eq. (A.9)

(Tverdokhlebov & Rose [1988]).

Substituting Eqs. (A.9) and (4.4) in Eq. (4.15), the solution of the wave equation
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with a Dirac distribution for an elastic, isotropic, homogeneous solid is:

ψ(r, t) =

∫∫∫
Ω

[
1

4π‖r− r0‖
δ

(
t− ‖r− r0‖

c

)
⊗ e(t)δ(r0)

]
dΩ0

= Gd(r, r0; t)⊗ e(t) =
1

4π‖r− r0‖
e

(
t− ‖r− r0‖

c

)
(4.16)

where Gd(r, r0; t) is the forward propagating field from the source located at

r = r0. However, the same theory here developed can be generalised to the case

of elastic, isotropic medium with inhomogeneities. In this case, the point-like

source f(r, t) is given by the following expression (Cassereau & Fink [1992]):

f(r, t) = e(t)δ(r) + L(r)[ψ(r, t)] (4.17)

where the term L(r) is the functional linear operator applied on the wave field

ψ(r, t). It describes the interactions between the inhomogeneities and the wave

field acting as secondary sources, i.e. the “scatterers”. Substituting the free-

space retarded Green’s function [Eq. (A.9), see appendix A] and Eq. (4.17)

in Eq. (4.15), the solution of the wave equation with a Delta function for an

inhomogeneous medium is:

ψ(r, t) =
1

4π‖r− r0‖
e

(
t− ‖r− r0‖

c

)
︸ ︷︷ ︸

primary source

+

∫∫∫
Ω

{L(r0)[ψ(r0, t)]⊗Gd(r, r0; t)} dΩ0︸ ︷︷ ︸
secondary source

(4.18)

The above equation shows that the wave function is the sum of two components,

a primary source, i.e. the impulse waveform emitted from the impact point, and

a secondary source generated by scattering.

4.2 Theory of Time Reversal Cavity

Time Reversal (TR) theoretical description for elastic wave propagation was first

introduced by the group of M. Fink at the Laboratoire Ondes and Acosutique of

the Universite de Paris VII Denis Diderot during 1990s. Based on the principle
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of time reversal invariance and spatial reciprocity of wave equation in a lossless

medium, in a time reversal experiment, the elastic waves diverging from a point-

like target can be focused back to the original source if the output measured

by a set of transducers is time reversed and re-emitted back onto the excitation

point (Fink [1992]). Although this is not possible in each point of a 3D volume

surrounding the source of an elastic impulse, Huygens’s principle suggests that

the reconstruction of the wave function in a generic volume at any time can

be obtained by the knowledge of its sources on a 2D surface. From this basic

principle of diffraction theory, it derives the Time Reversal Cavity (TRC) process

(Cassereau et al. [1990]). A TR acoustic experiment is usually split into forward

propagation step and backward propagation step. In the forward propagation step,

the wave field ψ(r, t) and its normal derivatives are measured at each point r of

the surface S of the cavity within a finite time interval [0, T ]. The output signal

of the ultrasonic receivers (ideally an infinite set) can be written as ψ(r, t)W (t),

where W (t) is a windowing function defined by:

W (t) =

1 0 ≤ 1 ≤ T

0 otherwise
(4.19)

and ψ(r, t) is the wave field defined either by Eq. (4.16) or (4.18) for a homoge-

neous or an inhomogeneous medium, respectively (Fig. 4.1).

In the backward propagation step, the TR experiment can be obtained by

time reversing the received signals during the first step, i.e. throughout the

transformation t ⇒ T − t. From a mathematical point of view, this means that

we are able to create secondary sources on the surface of the cavity, such that

the boundary conditions on S are the time-reversed components of the wave field

ψ(r, t) received during the forward propagation step (Fig. 4.1). These secondary

sources are:

s1(r0, t) = ψ(r0, T − t)W (T − t)

s2(r0, t) =
∂ψ(r0, T − t)

∂n
W (T − t)

(4.20)

According to Eq. (4.20), the initial source at r0 is now removed or remains passive,
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Figure 4.1: Illustration of forward and backward propagation steps in a TRC

whilst the inhomogeneities are unchanged. Hence, the time-reversed wave field

ψTR(r, t) will satisfy the following equation:

c2∇2ψTR(r, t)− ∂2ψTR(r, t)

∂t2
= −L(r)[ψTR(r, t)] (4.21)

Similarly to Eq. (4.13), the solution of the above equation can be written as:

a(r, t) =

∫∫∫
Ω

{Gd(r, r0; t)⊗ L(r0)[ψTR(r0, t)]} dΩ0 (4.22a)

b(r, t) = c2

∫∫
S

[Gd(r, r0; t)⊗ s2(r0, t)− s1(r0, t)⊗ n · ∇0Gd(r, r0; t)] dS0

(4.22b)

wherein the surface integral b(r, t) can be transformed into a volume integral

using the second Green’s identity (Duffy [2001]):

b(r, t) = c2

∫∫∫
Ω

[
Gd(r, r0; t)⊗∇2

0s2(r0, t)− s1(r0, t)⊗∇2
0Gd(r, r0; t)

]
dΩ0

(4.23)

The above equation cannot be used directly for finding a solution of Eq. (4.21),

as s1(r0, t), due to time windowing function W (t) defined in Eq. (4.19), has a
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singularity in t = T . Hence, from the distribution theory reported by (Cassereau

et al. [1990]) the time-reversed wave field ψTR(r, t) can be written as (Cassereau

& Fink [1992]):

ψTR(r, t) =
1

4π‖r− r0‖
e

(
T − t− ‖r− r0‖

c

)
W (T − t)

− 1

4π‖r− r0‖
e

(
T − t+

‖r− r0‖
c

)
W

(
T − t+

‖r− r0‖
c

)
+W (T − t)

∫∫∫
Ω

{Gc(r, r0; t)⊗ L(r0)[ψTR(r0, T − t)]} dΩ0

−
∫∫∫

Ω

{Gd(r, r0; t)⊗W (T − t)L(r0)[ψTR(r0, T − t)]} dΩ0

+

∫∫∫
Ω

{Gd(r, r0; t)⊗ L(r0)[ψTR(r0, t)]} dΩ0

+
1

c2

∫∫∫
Ω

1

4π‖r− r0‖

{
η(r0)δ

(
t− ‖r− r0‖

c

)
− ζ(r0)

∂δ

∂t

(
t− ‖r− r0‖

c

)}
dΩ0

(4.24)

where

η(r0) = ψ(r0, t)|t=T

ζ(r0) =
∂ψ(r0, t)

∂t
|t=T

(4.25)

4.2.1 Focusing in a Homogeneous Medium

If the linear operator L(r0) is zero (the medium is without inhomogeneities), the

time-reversed wave field ψTR(r0, t) given by Eq. (4.24) is reduced to:

ψTR(r, t) =
1

4π‖r− r0‖

[
e

(
T − t− ‖r− r0‖

c

)
− e

(
T − t+

‖r− r0‖
c

)]
(4.26)

Eq. (4.26) represents the back-propagation wave field which can be described

as a superposition of two waveforms: an impulse spherical wave converging to the

source position, placed at r = r0 (origin of the reference frame), and a spherical
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isotropic wave diverging from the impact point. Eq. (4.26) can be re-written in

a compact form as:

ψTR(r, t) = Gd(r, r0;T − t)⊗ e(t)−Gd(r, r0; t)⊗ e(T − t)

= K(r, t)⊗ e(T − t) (4.27)

where the kernel K(r, t) is:

K(r, t) =
1

4π‖r− r0‖
δ

(
t+
‖r− r0‖

c

)
− 1

4π‖r− r0‖
δ

(
t− ‖r− r0‖

c

)
(4.28)

Hence, comparing Eq. (4.27) and (4.16), two components can be clearly distin-

guished, an exact time-reversed version of the forward propagating wave field and

a diverging component from the position of the source. Eq. (4.27) in the Fourier

domain is:

ψ̂TR(r, ω) = K̂(r, ω)ê(ω)eiωT (4.29)

with:

K̂(r, ω) =
1

λi

sin(k‖r− r0‖)
k‖r− r0‖

=
1

λi

sin(2π‖r− r0‖/λ)

2π‖r− r0‖/λ
(4.30)

where k is the wavenumber defined by and k = ω/c = 2π/λ and λ is the wave-

length. Hence, according to classical diffraction theory (Auld [1973]), Eq. (4.30)

shows that the maximum resolution available through a time reversal focusing

process of the wave field in a closed cavity is ‖r− r0‖ = λ/2.

4.2.2 Focusing in a Inhomogeneous Medium

If the operator L(r) is not zero, inhomogeneities of the medium must be taken

into account. This term includes (Cassereau & Fink [1992]) spatial variations of

the compressibility [χ = χ(r)] and density [ρ = ρ(r)], located inside a region R

contained into the volume Ω. Hence, the operator L(r) can be defined as:

L(r) =
1

c2
γχ(r)

∂2

∂t2
+∇ · [γρ(r)∇] (4.31)
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where γχ(r) and γρ(r) are the relative variations of compressibility and density

with respect to the values corresponding to the homogeneous medium. Substi-

tuting Eq. (4.31) in Eq. (4.24), the time-reversed wave field ψTR(r, t) is:

ψTR(r, t) = [g(r,−t)− g(r, t)]⊗ e(T − t) (4.32)

where where g(r, t) corresponds to the new Green’s impulse solution that allows

the calculation of the wave field ψTR(r, t) in case of the general source distribution

f(r, t) given by (4.17). Similarly to Eq. (4.27), Eq. (4.32) represents the wave

function propagating during the second step, expressed as a superposition of a

converging spherical wave towards the impact source and a diverging isotropic

wave from the source itself. In particular, in the forward propagation step, due

to causality reasons, the waveforms from the impact point arrive at the TR cav-

ity only after scattering from the inhomogeneities of the medium. Hence, as

g(r,−t) is the the time reversed version of the Green’s function g(r, t), according

to Eq. (4.32), in the backward propagation step the effects of local heterogeneities

(spatial variations of the compressibility modulus and density) are observed first.

Moreover, the impulsive responses [g(r,−t)− g(r, t)] are completely separated in

time (except in the neighbourhood of the source r0) and the second term takes

place only after the first term vanish.

4.3 Theory of Time Reversal Mirror

As remarked in the previous Section, the basic principles of Time Reversal Cavity

are interesting since they allow an understanding of the time-reversed focusing

process. However, according to (Fink [1992]), TRC is a pure theoretical model

and the following considerations must be addressed:

• the results in TRC theory do not depend on the shape of the surface S to

obtain the imaging of an impact point source

• compensation of the focusing beam for inhomogeneous materials is self-

adaptive (there is a no a priori knowledge of scattering location)
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• the time-reversed field of the cavity has a spherical symmetry with a max-

imum resolution of λ/2

• TRC cannot be obtained in practise, since the ultrasonic receivers do not

measure simultaneously the wave field ψ(r, t) in each point and its normal

derivatives. In general, the electrical output contains a linear combination

of both quantities

• it is not experimentally possible to surround the 2D surface with ultrasonic

transducers. Indeed, only a limited solid angle can be covered in respect to

the whole cavity

• any transducer device shows a finite aperture, so that information loss about

the wave field is inevitable (spatial filtering)

Therefore, a TRC is replaced by a Time Reversal Mirror (TRM) of finite

bandwidth and aperture that limits the focusing quality (Wu et al. [1992]). From

a theoretical point of view, the TRM basic principle is very similar to TRC and

can be divided in the forward propagation step and backward propagation step.

In terms of signal processing, the acoustic emission (AE) propagation [Eq. (4.15)]

can be described as a linear system with different impulse responses (Papoulis

[1984]). Indeed, if e(t) = δ(t) represents an input source sending an ideal pulse,

the electrical output f(t) at the transducer location is:

f(t) = h(t)⊗ e(t) ≈ h(t) (4.33)

where h(t) = Gd(r, r0; t) is the impulsive response (Green’s function) describing

the propagation from the source to the receiver (included the transducer electro-

mechanical efficiency). Subsequently, the output signal [Eq. 4.33] is time reversed

and the new electrical input is:

fTR(t) = h(−t) (4.34)
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In the backward propagation step, the time-reversed signal [Eq. 4.34] is re-transmitted

through the medium and the time-reversed field at the source location becomes:

eTR(t) = h(−t)⊗ h(t) (4.35)

It must be noted that, due to spatial reciprocity condition, h(t) propagates also

from the receiver to the source. In the frequency domain, TRM can be seen as an

extension of optical Phase Conjugated Mirror (PCM), as the Fourier transform

of the time-reversed signal h(−t) is ĥ∗(ω). Hence, the TR version of an impulsive

waveform is mathematically equivalent to the phase conjugation of monochro-

matic waves (Jackson & Dowling [1991]).

From an experimental point of view, TRM consists of one or two-dimensional

array of piezoelectric transducers that can work as either pulse-echo or receiving-

transmitting modes and fulfils the following conditions:

• the spatial sampling of the TRM can introduce grating lobes, which can

be avoided by using an array pitch smaller than λmin/2, where λmin is the

smallest wavelength of the waveforms

• the temporal sampling of the signal acquired in the forward propagating

step must be of the order of Tmin/8, where Tmin is the minimum period of

the waveforms

The receiver sensors are connected to a receiving amplifier, A/D converter

and a personal computer for recording and time reversing the waveforms. The

back-scattered signals sent out by the actuators can be the wave fields emitted

either by the impact point or simply a scatterer (or more scatterers) illuminated

in the forward propagation step. The transmitter transducer can be driven by

waveform generator and instrumented with a D/A converter and amplifiers.

4.4 Time Reversal Elastic Wave Propagation in

Diffusive Wave Fields

A number of experiments were conducted since the 1990s to investigate the prop-

erties of TRM in homogenous and inhomogeneous media (Fink [1997]). In par-
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(a) (b)

Figure 4.2: Complex structure with diffused wave field conditions (a) and the
effects of mode conversion for the fundamental Lamb waves in complex structures
(b)

ticular, experiments in lossless acoustic waveguides (Roux et al. [1997]) showed

that TR approach behaves as a matched-filter, which maximises the ratio between

the amplitude of the output and the energy of the input (Dorme & Fink [1995]).

Indeed, it is straightforward from Eq. (4.35) that:

eTR(t) = h(−t)⊗ h(t) =

+∞∫
−∞

h(τ)h(t+ τ)dτ (4.36)

where the left term of Eq. (4.36) represents a TR operation and the right term

is the auto-correlation function of the Green’s function. The above equation is

maximum at the TR focusing time t = 0 and equal to
+∞∫
−∞

h2(t)dt, i.e. the energy

of the inpulsive function h(t).

The theory of elastic propagation in ultrasonic waveguides can be extended

to real aerospace structures, wherein the dispersive nature of guided Lamb waves

and the presence in geometrically complex media of multiple scattering, reflections

from the boundaries and mode conversion (known from seismology as coda) can

lead to waveforms recorded by the sensors dissimilar from the original elastic

source. That is, the wave field of complex structures (with stiffeners, rivets,

holes and voids), excited over a finite frequency band, becomes diffuse incoherent

(Fig. 4.2).
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Figure 4.3: Illustration of Kaleidoscopic effect

From a statistical point of view, fully diffuse wave fields are globally equipar-

titioned and are characterized by a superposition of modes having uncorrelated

amplitude, phase and direction of propagation (Weaver [1982], Evans & Cawley

[1999]). However, Lobkins and Weaver (Lobkis & Weaver [2001]) showed the im-

portance of the elastic diffuse wave field to retrieve the structural impulse response

(Green’s function) at two sensors locations. This concept was then widely used in

seismology (Campillo & Paul [2003]), ocean acoustics (Roux & Fink [2003]), open

media (Derode et al. [2003b]) and ultrasonic applications (Derode et al. [2003a]),

and only recently it was examined through a time reversal (TR) process (Wape-

naar et al. [2005]). Since TRM behaves as a matched-filter in lossless structures,

Derode et al. (Derode et al. [1995]) illustrated that the reverberations of a diffuse

wave field in a complex medium enhance the focusing resolution of the re-emitted

signal, and, in particular cases, allow overcoming the diffraction limit (De Rosny

& Fink [2002]). Such a combination of TR and diffusive wave fields is known

as Correlation of a Diffuse Field (CDF). From a physical point of view, this

phenomenon is due to the presence of scatterers within the medium that allows

the evanescent modes (waves that decay exponentially with the distance to the

source) to be converted in propagating modes (Carminati et al. [2000], Blomgren

et al. [2002]). These waves, carrying the information of the impact source to the

far field, where the TRM is located, can participate to the focusing process. The

result of such operation creates a “virtual” enlargement of the transducers an-
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gular aperture (kaleidoscopic effect) of the TRM and thus the number of sensors

can be drastically reduced (Fig. 4.3). The limit case was reported by Draeger and

Fink (Draeger & Fink [1997]) wherein the benefits of a reverberant closed cav-

ity, showing ergodic properties and negligible absorptions, were used to perform

TRM experiments with only one sensor surface bonded.
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Chapter 5

Impact Localization Algorithms

in Plate-Like Structures

This chapter investigates the development of two algorithm-based SHM systems

able to identify in real-time the acoustic emission source (impact point) in isotropic

and composite plate-like structures. The proposed techniques rely on the dif-

ferences of stress waves measured by a number of surface bonded piezoelectric

transducers. In both methodologies a joint time frequency analysis based on the

magnitude of the Continuous Wavelet Transform (CWT) was used to determine

the time of arrivals (TOA) of the wave packets. Then, a combination of a glob-

ally convergent strategy based on an unconstrained optimization (line search and

polynomial backtracking) associated to a local Newton’s iterative method was em-

ployed to solve a set of nonlinear equations in order to assess the impact location

coordinates and the flexural group speed. Therefore, these two algorithms over-

come the limitations of most impact detection systems, as they do not require

a-priori knowledge of the group velocity as well as the mechanical properties,

thickness and orientation of each ply in the composite laminate (see Sec. 2.3). In

addition, the CWT was chosen to guarantee high accuracy in the time-frequency

analysis of the acoustic waveforms as it is able to characterize near Lamb modes.

To validate the first algorithm for isotropic materials, two different experiments

with PVDF and acoustic emission sensors were carried out. The experimental

results revealed that the impact source coordinates and the wave velocity values,
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compared with those from the dispersion relation [Eq. (3.34)], were predicted

with reasonable accuracy.

For the validation of the second algorithm for the composite laminate, experi-

mental tests were conducted on two different structures, a quasi-isotropic carbon

fibre reinforced plastic (CFRP) and a sandwich panel. The results showed that

the impact source location and the group speed was achieved with satisfactory

accuracy, requiring little computational time (less than 1 s). In addition good

agreement between the group velocity calculated from the algorithm and the val-

ues obtained from the dispersion curves through a numerical SFEM analysis [Eq.

(3.69)] was found.

This chapter is organized as follow: in Sec. 5.1 and 5.2 the algorithms for the

impact source localization and the fundamental flexural Lamb wave speed deter-

mination in aluminium and composite structures are presented. Sec. 5.3 describes

the procedure for identifying the time of arrival using the Continuous Wavelet

Transform. In Sec. 5.4, the optimization algorithm for obtaining the coordinates

of the impact point is discussed. Sec. 5.5 reports the experimental set-up for the

specimens tested, whilst in Sec. 5.6 the impact source location results for two

aluminium plates, a CFRP and a sandwich panel are shown. Sec. 5.7 reports

the values of the flexural group speeds obtained through the comparison with the

optimization algorithms and the analytical approach using the Rayleigh-Lamb

frequency relations for isotropic media, and the SFEM method for anisotropic

materials. Then, a summary with the advantages and disadvantages of the algo-

rithms presented in this chapter is discussed.

5.1 Impact Localization Algorithm for Isotropic

Materials

The algorithm for the impact source location and wave velocity determination

is based on the differences of acoustic emission (AE) signals measured by four

piezoelectric transducers attached on the surface of an aluminium structure (Fig.

5.1). As the medium of interest is isotropic and homogeneous, the group velocity

can be considered independent of propagation direction. Assuming the origin of
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Figure 5.1: Architecture of impacts source location and wave velocity identifica-
tion system for isotropic structures

the Cartesian planar reference frame x−y was arranged at the left bottom corner

of the plate, the impact point I is at unknown coordinates (xI , yI) and the sensors

are located at distance li (i = 1, . . . , 4) from the source (Fig. 5.2). Furthermore,

the dimensions of the plate are L, length and W , width.

The resulting system of equation for the source location problem and wave

speed identification is given as follow:

‖li‖2 = (xi − xI)2 + (yi − yI)2 (5.1a)

ti =
‖li‖
cg

(5.1b)

where cg is the velocity of propagation of the stressed wave, ti is the time of

detection of the AE signals and (xi, yi) are the coordinates of the ith sensor.

Combining Eqs. (5.1a) and (5.1b) we obtain:

(xi − xI)2 + (yi − yI)2 − (ticg)
2 = 0 (5.2)

which is the equation of a circumference with radius r2 = (ticg)
2. Eq. (5.2) can
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Figure 5.2: Sensors arrangement for the source location in the isotropic plate

be expanded into the following set of equations, with unknowns ti, xI , yI and cg:

(x1 − xI)2 + (y1 − yI)2 − (t1cg)
2 = 0

(x2 − xI)2 + (y2 − yI)2 − (t2cg)
2 = 0

(x3 − xI)2 + (y3 − yI)2 − (t3cg)
2 = 0

(x4 − xI)2 + (y4 − yI)2 − (t4cg)
2 = 0

(5.3)

This is a system of four equations with seven unknowns. However, if t1 is the

travel time required to reach the sensor 1 (master sensor) and ∆t1j (j = 2, 3, 4)

are the time difference between the sensor 1 and the other sensors, we can write:

tj = t1 ±∆t1j (5.4)

and system (5.2) becomes:

(xi − xI)2 + (yi − yI)2 − [(t1 ±∆t1j) · cg]2 = 0 (5.5)

Location and wave velocity must be calculated by solving this set of non linear

equations with the unknown x = xI , yI , ti, cg. However, an appropriate time-

frequency analysis for the determination of the time differences ∆t1j as well as a

well-adapted resolution algorithm need to be chosen.
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Figure 5.3: Architecture of source location system in anisotropic materials

5.2 Impact Localization Algorithm for Anisotropic

Materials

In order to overcome the limitations of triangulation techniques as the group speed

is not constant but dependent of the excitation frequency (f) and the heading

angle (θ) in the x − y plane, the algorithm for isotropic materials reported in

Sec. 5.1 is extended to anisotropic structures. Such method is based on the

differences of the wave packets measured by six surface bonded AE piezoelectric

sensors and, unlike other SHM systems (see Sec. 2.3.2), it can be applied to

composite laminates with any lay-up, thickness and anisotropic angular-group

velocity pattern (Fig. 5.3).

In accordance with the previous algorithm, let us consider as origin of the

planar Cartesian reference frame the left bottom corner of the structure with

dimensions L×W . The impact source point I is at unknown coordinates (xI , yI)

in the plane of the plate, the transducers are located at distance li (i = 1, . . . , 6)

from the source, and dkm (k = 1, 3, 5) (m = 2, 4, 6) is the distance between each

pair of transducers k and m (Fig. 5.4).

Applying the same procedure employed in Sec. 5.1, the coordinates of the

acoustic emission source and the group speed can be evaluated by solving the
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Figure 5.4: Sensors arrangement for the source location in the composite plate

following system of equations:

(xi − xI)2 + (yi − yI)2 − [(t1 ±∆t1j) · cg,i]2 = 0 (5.6)

where cg,i is the velocity of propagation of the stress wave reaching the ith trans-

ducer and the index j = 2, . . . , 6. The above set of nonlinear equations is a

system of six equations for fourteen unknowns (ti, xI , yI and cg,i) and cannot be

solved. Thereby, in order to find a solution of system (5.6), additional informa-

tion is needed, i.e. an optimal sensors configuration. In the current approach, the

sensors were disposed in way that each pair of transducers was relatively close

together (see Fig. 5.4). In this manner, any pair will experience approximately

the same group speed. Therefore, based on the sensors configuration as depicted

in Fig. 5.5, if l1, l2 � d12, we have:

d12

l1
� sin

θ1 − θ2︸ ︷︷ ︸
∆θ

� 1 (5.7)

where d12 is the distance between sensors 1-2, l1 and l2 are the distances from

the impact source and θ1 and θ2 are the heading angles (propagation angles) of

the AE in the reference frame. Hence, if ∆θ = θ1 − θ2 is sufficiently small (close
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Figure 5.5: Optimal disposition with short distance of each pair of transducers

transducers) such that θ1 ≈ θ2, the following assumption becomes straightfor-

ward:

cg,1(θ) ≈ cg,2(θ)

cg,3(θ) ≈ cg,4(θ)

cg,5(θ) ≈ cg,6(θ)

(5.8)

Hence, according to condition (5.8), system (5.6) can now be rewritten as:

(xi − xI)2 + (yi − yI)2 − [(t1 ±∆t1j) · cg,k]2 = 0 k = 1, 3, 5 (5.9)

Source location and group velocity of the flexural Lamb mode can now be cal-

culated by solving the above set of six nonlinear equations with the six unknowns

x = xI , yI , ti, cg,1, cg,3, cg,5. Therefore, since no mechanical properties and simple

angular-group speed pattern are required, the proposed technique is able to ob-

tain the source location in anisotropic structures for arbitrary lay-up or thickness

of the plate.

5.3 The Continuous Wavelet Transform

The dispersive nature of the flexural Lamb mode and the uncertainty of the noise

level can drastically decrease the performance of a source localization system.

Hence, a good impact detection method necessitates of a suitable choice of the

time-frequency analysis for the time arrival identification (TOA). A wavelet trans-

formation method was chosen as it overcomes the drawback of harmonic analysis

of the STFT (see App. B). Indeed, it provides a good compromise between time
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and frequency resolution, and it is able to analyse low and high frequencies at

the same time, even respecting the uncertainty principle (Le & Argoul [2004] and

Newland [1997]).

A wavelet transform is an inner product of the signal u(t) and a family of wavelet.

Let ψ ∈ L1(R) ∩ L2(R) be the analysing wavelet called also the mother wavelet,

where R is the domain of real numbers and the space L2(R) is the set of all

square-integrable functions defined on R. The condition ψ ∈ L1(R) means that

the function ψ has a zero integral, i.e.:

+∞∫
−∞

ψ(t)dt = 0 (5.10)

The condition ψ ∈ L2(R) implies that most of the energy in the basis function

is confined to a finite duration. There are an infinite number of possible choices

for the mother wavelet. Some of them are especially suitable for detecting and

characterizing irregularities within the signal. For this purpose, we require ψ(t)

to be orthogonal to polynomials up to order N such that the wavelet admits n+1

zero moments:
+∞∫
−∞

tpψ(t)dt = 0 0 ≤ p ≤ N (5.11)

The number p controls the oscillations of ψ, in the sense that the larger p is, the

more ψ oscillates. Furthermore, the mother wavelet must satisfy the admissibility

condition defined as:
+∞∫
−∞

|ψ̂(ω)|2

|ω|
dω <∞ (5.12)

where ψ̂ is the Fourier transform of ψ. Eq. (5.12) is the necessary condition for

ensuring the existence of the inverse wavelet transform.

The Continuous Wavelet Transform (CWT) is a linear transformation that de-

composes an arbitrary signal u(t) through basis functions that are simply dilata-

tions and translations of a parent wavelet ψ(t), by the continuous convolution of
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the signal and the scaled or shifted wavelet (Mallat [1998]):

CWT (a, b) = 〈u(t)|ψa,b〉 =
1√
a

+∞∫
−∞

u(t)ψ∗
(
t− b
a

)
dt (5.13)

where ψ∗(t) denotes the complex conjugate of the mother wavelet ψ(t), a is the

dilatation or scale parameter defining the support width of the wavelet and b

the translation parameter localising the wavelet in the time domain. The factor

1/
√
a is used to ensure that all wavelets at all scales have the same area and

contain the same energy. The notation 〈u(t)|ψa,b〉 is used for inner product or

the projection of function u(t) onto the wavelet function ψ(t). Analogously to

the Fourier transform, the CWT is a linear integral transformation and according

with the Parseval’s theorem it conserves the energy (Yang et al. [2004]). If û(ω)

is the Fourier transform of the signal u(t) and aψ̂∗(aω)eiωb the Fourier transform

of the wavelet ψ∗(t− b/a), we obtain in the angular frequency domain:

CWT (a, b) =

√
a

2π

+∞∫
−∞

û(ω)ψ̂∗(aω)eiωbdω (5.14)

According to appendix B, assuming the duration ∆tψ and the bandwidth ∆ωψ

as a function of the scale parameter a, we obtain:

∆t = am∆tψ (5.15a)

∆ω =
∆ωψ
am

(5.15b)
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Figure 5.6: Tiling of Heisenberg box for CWT

where m ∈ Z and Z is the set of positive integers. ∆tψ and ∆ωψ can also be

expressed in terms of standard deviation of root mean square (RMS) as follows:

∆tψ =
1

|ψ(t)|2

√√√√√ +∞∫
−∞

(t− tψ)2|ψ(t)|2dt (5.16a)

∆ωψ =
1

|ψ̂(ω)|2

√√√√√ +∞∫
−∞

(ω − ωψ)2|ψ̂(ω)|2dω (5.16b)

where tψ =
+∞∫
−∞

t|ψ(t)|2dt/
+∞∫
−∞
|ψ(t)|2dt and ωψ =

+∞∫
−∞

ω|ψ̂(ω)|2dω/
+∞∫
−∞
|ψ̂(ω)|2dω

are the temporal centre and the central frequency of ψ(t) and ψ̂(ω), respectively.

Consequently, time resolution of the CWT increases as frequency decreases and

frequency resolution increases as time decreases. For these reasons, unlike the

Short Time Fourier Transform wherein resolution is constant, the CWT is called

multi-resolution analysis (Fig. 5.6).

The kernel function of the Continuous Wavelet Transform is:

ψa,b(t) =
1√
a
ψ

(
t− b
a

)
(5.17)

which is generated by shifting and scaling a mother wavelet ψ(t). Its Fourier
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transform is:

ψ̂a,b(ω) =

+∞∫
−∞

ψa,b(t)e
−iωtdt =

+∞∫
−∞

1√
a
ψ

(
t− b
a

)
e−iωtdt (5.18)

Assuming t− b/a = τ , Eq. (5.18) becomes:

ψ̂a,b(ω) =

+∞∫
−∞

1√
a
ψ(τ)e−iω(aτ+b)adτ =

√
ae−iωb

+∞∫
−∞

ψ(τ)e−iωaτ

=
√
aψ̂(aω)e−iωb (5.19)

5.3.1 The Morlet Wavelet

Several study present in literature deal with the use of the wavelet transform

applied to acoustic emission localization in isotropic and anisotropic structures

(Gaul & Hurlebaus [1999], Jeong & Jang [2000] and Meo et al. [2005]). In this

study, the complex Morlet wavelet was employed as, in contrast with real wavelets,

is able to separate amplitude and phase, enabling the measurement of instanta-

neous frequencies and their temporal evolution (Mallat [1998]). Furthermore, it

was experienced that Morlet wavelet enables the measurement of the localization

frequency for signals with faster and slower oscillations, providing a flexible win-

dow that narrows at high frequencies and widens when observing low-frequency

phenomena. The complex Morlet wavelet is expressed by the following equation

(Teolis [1998]):

ψ(t) =
1√
πFb

eiωcte
− t2

Fb =
1√
πFb

e
− t2

Fb [cos(ωct) + i sin(ωct)] (5.20)

and its Fourier transform is:

ψ̂(ω) = e−
Fb
4

(ω−ωc)2 (5.21)

A Morlet wavelet seems like an impulsive waveform with a central frequency

fc = ωc/2π when its shape control parameter Fb (wavelet bandwidth) can be

set to be a small value. Conversely, when Fb increases, the wavelet waveform
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Figure 5.7: The Morlet wavelet with different values of Fb (1.5 blue continuous
line, 0.1 red dashed line). In figures (a) and (b) are represented the real and
imaginary part of the Morlet wavelet, whilst figures (c) and (d) depict the modulus
and the phase angle

tends to be a harmonic waveform (Fig. 5.7). However, for practical purposes,

because of the fast decay of its envelope towards zero, Morlet wavelet is considered

admissible for ωc ≥ 5. In this research work ωc = 6 and Fb was chosen equal to

0.1. In addition, the Morlet wavelet’s real and imaginary parts as well as the

modulus and the phase angle of ψ(t) can be defined as follow:

Re[ψ(t)] =
1√
πFb

e
− t2

Fb cos(ωct) (5.22a)

Im[ψ(t)] = j
1√
πFb

e
− t2

Fb sin(ωct) (5.22b)

|ψ(t)| =
√

Re[ψ(t)]2 + Im[ψ(t)]2 (5.22c)

∠ψ(t) = arctan
Im[ψ(t)]

Re[ψ(t)]
(5.22d)

The complex Morlet function (5.20) can be considered as a modulated Gaus-

sian function centred at t = 0 and its Fourier transform (5.21) centred at ω = ωc.

The function ψa,b(t) [Eq. (5.17)] using the Morlet as a mother wavelet is then

centred at t = b and its Fourier transform ψ̂a,b(ω) [Eq. (5.19)] is centred around

ω = ωc/a. Therefore, Eq. (5.13) can be thought in terms of the time-frequency
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representation of the harmonic waveform u(t) around t = b and ω = ωc/a.

5.3.2 Time of Arrival Identification

The waveforms recorded are analysed in terms of group (energy) velocity-frequency

relationship. The group velocity is defined as the velocity of a modulated wave

that is constructed considering a time harmonic motion of two waves of unit am-

plitude with slightly different frequencies ω1 and ω2 propagating in the x-direction

of a thin plate, i.e. (Bernard et al. [2001]):

u(x, t) = e−i(k1x−ω1t) + e−i(k2x−ω2t) (5.23)

where k1 and k2 are the wave numbers. Introducing (k1+k2)/2 = k0, (k1−k2)/2 =

∆k, (ω1 + ω2)/2 = ω0 and (ω1 − ω2)/2 = ∆ω, Eq. (5.23) becomes:

u(x, t) = 2 cos[∆kx−∆ωt]e−i(k0x−ω0t) (5.24)

Eq. (5.24) is a modulated wave formed by a carrier e−i(k0x−ω0t) with frequency ω0

and the modulation cos[∆kx−∆ωt] with frequency ∆ω. The propagation velocity

of the carrier is the phase velocity cph = ω0/k0 and the propagation velocity of the

envelope is the group velocity cg = dω/dk in the limit of ∆k → 0. Substituting

Eq. (5.23) in (5.13) using Morlet wavelet (5.20), and assuming φ1 = ω1b − k1x

and φ2 = ω2b− k2x, we obtain:

CWT (x, a, b) =
√
a
[
ψ̂∗(aω1)eiφ1 + ψ̂∗(aω2)eiφ2

]
(5.25)

and its complex conjugate is:

CWT ∗(x, a, b) =
√
a
[
ψ̂(aω1)e−iφ1 + ψ̂(aω2)e−iφ2

]
(5.26)

The squared modulus of the CWT, also known as scalogram, indicates the energy

density of the signal at each scale at any time (Haase & Widjajakusuma [2003]

and Mallat [1998]). Hence, it is able to reveal the highest local energy content

of the waveform measured from each transducer. The squared modulus can be
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expressed as:

|CWT (x, a, b)|2 = CWT (x, a, b) · CWT ∗(x, a, b) (5.27)

Substituting Eqs. (5.25) and (5.26) into (5.27), we have:

|CWT (x, a, b)|2 = a
{

[ψ̂(aω1)]2 + [ψ̂(aω2)]2 + ψ̂∗(aω1)ψ̂(aω2)ei(φ1−φ2)

+ψ̂(aω1)ψ̂∗(aω2)e−i(φ1−φ2)
}

(5.28)

If ∆ω is sufficiently small such that ψ̂(aω1) ∼= ψ̂(aω2) ∼= ψ̂(aω0) , Eq. (5.28)

becomes:

|CWT (x, a, b)|2 ≈ 2a[ψ̂(aω0)]2 [1 + cos(φ1 − φ2)]

≈ 2a[ψ̂(aω0)]2 [1 + cos(∆ωb−∆kx)] (5.29)

Therefore, Eq. (5.29) shows that the squared modulus of the CWT using the

complex Morlet wavelet reaches its peak value at a = ωc/ω0 and b = ∆kx/∆ω =

x/cg. Hence, the maximum value of the Continuous Wavelet Transform squared

modulus coefficients (ridges), obtained at the angular frequency of interest ω0,

allows identifying the arrival time (b) of the group velocity cg (Fig. 5.8).

As depicted in Fig 5.8a, a red patch in the scalogram is representative of the

ridge, i.e. the local energy content of the waveform recorded. Fig. 5.8b shows

that the red patch in the contour plot of the scalogram associated to the ridge is

achieved at the instantaneous frequency f0 = 258.77 kHz. Hence, each frequency

of interest, chosen as the dominant frequency in the signal analysed by each sensor

at each instant in time, indicates the arrival time of group velocity cg and can be

related to the scale parameter by the following relationship:

f0 =
fc
aT

(5.30)

where f0 is the frequency of interest, fc is the central frequency of the wavelet

used and T is the sampling period. The projection on the time domain of the

ridge corresponds to the time of arrival (TOA) of the waves packets. Thus, the
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(a) (b)

Figure 5.8: Morlet wavelet scalogram (a) and associated contour plot (b) of the
recorded flexural wave

time differences ∆t1j with respect to the master sensor can be calculated and sub-

stituted in Eqs. (5.5) and (5.9) for isotropic and anisotropic media, respectively.

Thereby, the coordinates of the impact source location and group velocity can be

identified through the optimization algorithm discussed in the next Section.

5.4 Newton’s Method for Solving Systems of

Nonlinear Equations

The strategy adopted to solve the set of Eqs. (5.5) and (5.9) and to make the

algorithm robust and convergent from almost any guess point was to combine a

Newton’s method with unconstrained optimization.

Newton-Raphson or Newton’s method is a very efficient iterative algorithm for

finding the roots of non linear system of equations, since it locally converges from

around an initial guess point x0 sufficiently close to the root (Dennis & Schnabel

[1983]). Let assume Fi : Rn → Rn, where Rn denotes n-dimensional Euclidean

space, to be a twice Lipschitz continuously differentiable function. The set of non
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linear equations (5.5) and (5.9) can be expressed as:

F(x) = 0 (5.31)

where F is the vector of the functions Fi (i = 1, . . . , N with N = 4 or N = 6

depending on the algorithm used for isotropic or anisotropic media, respectively),

and x is the vector of the unknowns xj (j = 1, . . . , N) corresponding to the co-

ordinates of the impact location, the group velocities and the time of arrival at

the master sensor. Eq. (5.31) has a zero at x∗ such that F(x∗) = 0. Newton’s

method converges quadratically to x∗ (i.e. the order of convergence is approxi-

mately two) by computing the Jacobian linearisation of the function F around

a guess point x0, and then using this linearisation to move closer to the desired

zero. The Newton iterate xn+1 from a current point xn is given by:

xn+1 = xn + δxn = xn − [J(xn)]−1 · F(xn) (5.32)

where δx is the Newton step and J(x) is the Jacobian matrix, which contains

first derivatives of the objective function F(x) with respect to the unknowns of

the problem:

J(x) =
∂F(x)

∂x
=


∂F1(x)
∂x1

∂F1(x)
∂x2

· · · ∂F1(x)
∂xN

∂F2(x)
∂x1

∂F2(x)
∂x2

· · · ∂F2(x)
∂xN

...
...

. . .
...

∂FN (x)
∂x1

∂FN (x)
∂x2

· · · ∂FN (x)
∂xN

 (5.33)

In practical optimization problem, different criteria for terminating the iteration

are used. In particular, if J(x∗) is well conditioned, a good indicator of the size

of the error for Newtons method may be when the relative non linear residual

‖F(x)‖/‖F(x0)‖ is small. Hence, introducing the relative error tolerance τr and

absolute error tolerance τa, this condition can be expressed by:

‖F(x)‖ ≤ τr‖F(x0)‖+ τa (5.34)
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Advantages Disadvantages

Quadratically convergent from good
starting guesses if J(x∗) is not singular

Not globally convergent for many prob-
lems

Exact solution at each iteration for any
affine component functions of F(xn)

Requires the Jacobian matrix J(xn) at
each iteration and the Newton step δxn

must not be too large

Table 5.1: Advantages and disadvantages of local Newton’s method

Since the iterations are very sensitive to the initial iterate, if the starting point

is near a root x∗ or the computation and factorization of the Jacobian are in-

expensive, the value of the norm of Newton step ‖δxn‖ smaller than a desired

tolerance, can be used as an accurate estimate of the error en:

‖en‖ = ‖δxn‖+ o
(
‖en‖2

)
(5.35)

The following table (Tab. 5.1) summarizes the advantages and disadvantages of

Newton’s method. However, such technique can be modified and enhanced in

various ways for solving systems of nonlinear equations, but in particular condi-

tions, when the starting point is not near the root, it may not converge (Nocedal

& Wright [1999]). The reasons for this failure are that the direction of the cur-

rent iterate xn may differ to be a direction of descent for F, and, even if a search

direction is a direction of decrease of F, the length of the Newton step δx may

be too large. Hence, a globally convergent algorithm associated to a Newton’s

method can be designed to find the solution of a system of nonlinear equations

from almost any guess point x0. The approach adopted in this thesis was to

combine the Newton’s method applied to the systems (5.5) and (5.9) with the

unconstrained problem of minimizing the objective function F:

min
x∈Rn

F : Rn → Rn (5.36)

In unconstrained optimization, the most widely used function to be minimized

(also known as merit function) is a scalar-valued function of F, i.e. the squared
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norm of F:

h(x) =
1

2
‖F(x)‖2 =

1

2
F(x) · F(x) (5.37)

where the factor 1/2 is introduced for convenience. Obviously, any root of h fulfils

the identity h(x∗) = 0. Among the class of powerful algorithms for unconstrained

optimization, in this thesis we will focus on the line search methods because of

their simplicity, and because they do not depend on how the Jacobian is ob-

tained. Furthermore, if the initial Newton step is proved to be unsatisfactory,

the polynomial backtracking method will be considered.

5.4.1 Line Search Methods with Polynomial Backtracking

In line search method, the algorithm chooses a direction δxn and searches along

this direction from the current iterate to find out a new iterate xn+1 that guar-

antees a lower value of h(x). The iteration is expressed by the following formula

(Dennis & Schnabel [1983]):

xn+1 = xn + λnδxn 0 < λ ≤ 1 (5.38)

where λ is called step length. Whether the initial iterate x0 is close to the solution,

the common strategy is to use a full Newton step δxn by setting λ = 1. Otherwise,

a sufficiently small value of λ is tried by moving along the Newton direction until

xn+1 satisfies the following criterion (known as Armijo condition):

h(xn + λnδxn) ≤ h(xn) + αλn∇[h(xn)]T · δxn (5.39)

A good value of the parameter α is 10−4. The descent direction of the Newton

step from the current point xn to a new point xn+1 is verified by the fact that

the directional derivative of h at xn in the direction δxn is negative:

∇[h(xn)]T · δxn =
1

2
∇ [F(xn) · F(xn)] · δxn

= [F(xn) · J(xn)] ·
{
−[J(xn)]−1 · F(xn)

}
< 0 (5.40)
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In the second criterion (known as curvature condition) is required that the de-

crease of h from xn+1 in the descent direction must be larger than some fraction

β of the rate of decrease of f at xn:

∇[h(xn + λnδxn)]T · δxn ≥ β∇[h(xn)]T · δxn β ∈ (α, 1) (5.41)

Typical value of β is 0.9 when the search direction δxn is chosen by a Newton’s

method. Both conditions (5.39) and (5.41) are known collectively as the Wolfe

condition.

In practise, to avoid small steps, it would be more advantageous to perform a

polynomial backtracking method (Dennis & Schnabel [1983]) rather than using

the curvature condition (5.41). Such technique consists in finding the value of λ

that minimizes the model of the following polynomial function:

g(λn) = h(xn + λnδxn) (5.42)

Hence, given any descent direction δxn, Eq. (5.42) satisfies (5.39) and (5.40) such

that:

g′(λn) = ∇[h(xn)]T · δxn (5.43)

Initially, the model of g is given and assumed linear:

g(0) = h(xn)

g′(0) = ∇[h(xn)]T · δxn
(5.44)

Settings λ0 = 1, if the model satisfies the following condition:

g(1) > g(0) + αg′(0) (5.45)

the search is terminated. Otherwise, g(λ) is expressed through a quadratic ap-

proximation by interpolating the three information available, g(0), g(1) and g′(0):

gq(λ) ≈ [g(1)− g(0)− g′(0)]λ2 + g′(0)λ+ g(0) (5.46)
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The new value λ1 is defined as the minimum of gq(λ):

λ1 = − g′(0)λ2
0

2[g(1)− g(0)− g′(0)]
(5.47)

If λ1 is too small the quadratic model is poorly accurate and we set a limit value

of λ, λmin = 1. Conversely, a cubic model of g(λ) is more acceptable since it

provides more accuracy especially in situations where h has a negative curvature:

gc(λ) = aλ3 + bλ2 + g′(0)λ+ g(0) (5.48)

From Eq. (5.48), solving with respect to the coefficients a and b, we obtain a set

of two equations using the last two previous values of λ [g(λ0) and g(λ1)]:(
a

b

)
=

1

λ2
0λ

2
1(λ1 − λ0)

(
λ2

0 −λ2
1

−λ3
0 λ3

1

)(
g(λ1)− g(0)− g′(0)λ1

g(λ2)− g(0)− g′(0)λ2

)
(5.49)

By differentiating Eq. (5.48), the minimum point λ2 is given by:

λ2 = −
−b+

√
b2 − 3ag′(0)

3a
(5.50)

Therefore, if any λi is either too close and smaller than λi−1, λi must be limited

between the values λmax = 0.5λi−1 and λmin = 0.1λi . This procedure allows ob-

taining reasonable progress in each iteration, and the final λ will not be too small.

Thereby, the algorithm was optimized and using the code written in Matlab on a

standard PC, the computational time for each source location was less than 1 s.

5.5 Experimental Set-up

Two different experiments were carried out for the validation of the algorithm for

isotropic materials.

• In test 1a, an aluminium plate with dimensions 520 mm × 410 mm ×
0.97 mm was employed with four commercially available piezoelectric-film

(PVDF) sensors (thickness 110 µm, length 420 µm) adhesively surface

bonded (Fig. 5.9). The impacts were generated by dropping a 9 mm
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Figure 5.9: Experimental set-up and sensors arrangement in test 1a

Sensor1 Sensor2 Sensor3 Sensor4 Impact A1 Impact A2

x-coordinate (mm) 100 420 420 100 207 270
y-coordinate (mm) 300 300 100 100 150 220

Table 5.2: Sensors and impact coordinates in test 1a, impacts A1 and A2

diameter steel ball on the surface of the plate in two different positions.

Sensors location and impact source coordinates (referred as A1 and A2) are

reported in Tab 5.2.

• Test 2a consisted of an aluminium plate with dimensions 1487 mm × 999

mm × 0.98 mm instrumented with four 300 kHz Acoustic Emission sensors,

provided by courtesy of Airbus UK (Fig. 5.10). Each sensing unit is certified

to provide high SNR (nearly 45 dB) and it is composed by acoustic emission

sensors, preamplifiers, power supplies and pass-band filters, connected by

low-noise cables. The gain of the preamplifiers is 40 dB, whilst the input

impedance of the filters is 50 Ohm. The AE transducers were attached to

the surface of the plate using non-corrosive coupling gel. They were firstly

connected to pass-band filters with a frequency range between 200 and 400

kHz and then linked to pre-amplifiers. According to the g31 electromechan-

ical coupling mechanism of the acoustic emission sensors (see Sec. 2.1.2.1),
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(a) (b)

Figure 5.10: Experimental set-up and sensors arrangement in test 2a

Sensor1 Sensor2 Sensor3 Sensor4 Impact B1

x-coordinate (mm) 494 409 1156 1242 750
y-coordinate (mm) 332 723 778 167 500

Table 5.3: Sensors and impact coordinates in test 2a, impact B1

at the mentioned finite bandwidth, only the fundamental antisymmetric

Lamb wave A0 was measured (Tzou [2003]). Two different configurations

of the transducers location were studied, and the impacts were induced by

a hand-held modal hammer, manufactured by Meggit-Endevco. Tab. 5.3

and 5.4 show the sensors and impact coordinates (referred as B1 and B2)

in both configurations.

For the signal acquisition, a four channel oscilloscope (Tektronic TDS 3014)

with a sampling rate of 2 MHz was used, and it was triggered by one of the sensors

(master sensor). The time histories of the signals received by the sensors were

stored on a computer and processed using a Matlab software code implemented

by the author.

Sensor1 Sensor2 Sensor3 Sensor4 Impact B2

x-coordinate (mm) 494 409 741 1156 890
y-coordinate (mm) 332 723 780 778 398

Table 5.4: Sensors and impact coordinates in test 2a, impact B2
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(a) (b)

Figure 5.11: CFRP composite laminate (a) and sandwich plate (b)

Young
Mod.

Young
Mod.

Young
Mod.

Shear
Mod.

Shear
Mod.

Shear
Mod.

Poisson’s
ratio

Poisson’s
ratio

Poisson’s
ratio

E11(GPa) E22(GPa) E33(GPa) G12(GPa) G23(GPa) G31(GPa) ν12 ν13 ν23

130 9.5 9.8 4.7 3.2 4.7 0.34 0.66 0.52

Table 5.5: T300/914 mechanical properties

To validate the impact detection algorithm for anisotropic media, experi-

mental location tests were conducted on two different composite structures:

• In test1b a T300/914 carbon fibre reinforced plastic (CFRP) composite lam-

inate with dimensions 502 mm × 437 mm × 6.94 mm and lay-up sequence

of [0/15/30/45/60/75/90]3s was used (Fig. 5.11a). The ply properties are

reported in Tab. 5.5.

• In test2b a sandwich composite plate with dimensions of 380 mm long, 254

mm wide (Fig. 5.11b) was employed. The core used in the sandwich was

a 6.35 mm thick HRH-10-1/8-4.0 Aramid fibre/phenolic resin nomex. Fac-

ing skins (2mm thick) were made of four plies of AS4/8552 unidirectional

carbon/epoxy prepreg composite on both sides of the core with lay-up se-

quence of [90/45/45/90]. The ply and sandwich properties are reported in

Tab. 5.6 and 5.7, respectively.

The A0 Lamb waves were generated using a hand-held modal hammer, and the

waveforms were measured with the six acoustic emission sensors already employed

103



5. Impact Source Identification Algorithms

Young
Mod.

Young
Mod.

Young
Mod.

Shear
Mod.

Shear
Mod.

Shear
Mod.

Poisson’s
ratio

Poisson’s
ratio

Poisson’s
ratio

E11(GPa) E22(GPa) E33(GPa) G12(GPa) G23(GPa) G31(GPa) ν12 ν13 ν23

122 9.8 9.8 5.12 5.12 3.35 0.26 0.26 0.47

Table 5.6: AS4/8552 mechanical properties

Young Mod.
compacted
material

Transverse
Mod.

Shear Mod.
expansion

Shear Mod.
ribbon

Poisson’s ra-
tio

Densification
strain

(GPa) (GPa) (MPa) (MPa)

1 0.41 89 44 0.25 0.8

Table 5.7: Sandwich core mechanical properties

in the experiments with the aluminium specimens. The signals were acquired

using two four channels oscilloscopes (Picoscope 4224) with 16 bits of resolution

and a sampling rate of 25 MHz. Both systems were synchronized in way that

all the transducers were triggered by one of the sensors (master sensor). Sensors

location and impact source coordinates are reported in Tab. 5.8 for test 1b with

CFRP (referred as impacts C1 C2 and C3) and Tab. 5.9 and 5.10 for test 2b

with sandwich plate (referred as impacts S1 S2 and S3).

5.6 Impact Localization Results

According to Sec. 5.3.2, the signals were analysed in terms of group (energy)

velocity-frequency relationship. Numerical routines were developed to find the

A0 Lamb wave mode peaks in isotropic and anisotropic structures, in order to

extract the wave packets’ arrival times with largest energy contribution (ridges

Sens. Sens. Sens. Sens. Sens. Sens. Imp. Imp. Imp.
1 2 3 4 5 6 C1 C2 C3

x-coordinate (mm) 120 110 250 280 430 420 280 270 420
y-coordinate (mm) 100 120 390 390 250 230 170 240 70
dkm (mm) 22.3 30 22.3

Table 5.8: Sensors and impact coordinates in test 1b, impacts C1, C2 and C3
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Sensor1 Sensor2 Sensor3 Sensor4 Sensor5 Sensor6 Impact S1

x-coordinate (mm) 120 110 190 210 320 330 210
y-coordinate (mm) 50 70 210 190 140 120 90
dkm (mm) 22.3 28.3 22.3

Table 5.9: Sensors and impact coordinates in test 2b, impact S1

Sensor Sensor Sensor Sensor Sensor Sensor Impact Impact
1 2 3 4 5 6 S2 S3

x-coordinate (mm) 100 90 170 190 310 290 190 50
y-coordinate (mm) 50 70 220 210 140 120 140 225
dkm (mm) 22.3 22.3 28.3

Table 5.10: Sensors and impact coordinates in test 2b, impact S2 and S3

of the scalogram).

5.6.1 Source Location Results on Aluminium Plates

The maxima coefficients of the scalogram in both experiments were found at two

different frequencies, 3452 Hz for test 1a with the PVDF sensors (Fig. 5.12) and

273.4 kHz for test 2a with acoustic emission transducers (Fig. 5.13 and 5.14).

Therefore, arrival times of the flexural waves were identified at these instanta-

neous frequencies. Nevertheless, it was noticed that the frequencies of interest

3452 Hz for the impacts A1 and A2 and 273.4 kHz for impacts B1 and B2 were

not the same for all four sensors. This can be seen in sub-figure (c) of Fig. 5.12,

sub-Fig. (a) and (c) of Fig. 5.13 and sub-figure (c) of Fig. 5.14, wherein the time

representation of the wavelet coefficients does not seem to match the maximum of

contour plot of the relative scalogram. However, for those transducers for which

the scalogram maximum coefficients resulted different, the associated frequency

was approximately the same (a maximum difference of 10 Hz) with respect to the

values mentioned above. This means that the arrival time evaluation error due

to this frequency shift is negligible.

The results of the predicted impact source location for both configurations in test

1a and 2a are shown in Fig. 5.15.

Tab. 5.11 reports the results of source location in terms of location error ξ defined
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Impact A1 Impact A2 Impact B1 Impact B2

xalgor (mm) 209.8 267.2 752.23 891.69
xreal (mm) 207 270 750 890
yalgor (mm) 148.6 218.4 497.67 401.42
yreal (mm) 150 220 500 398
ξ (mm) 3.13 3.22 3.21 3.63

Table 5.11: Impact positions and errors for test 1a and 2a

by the following formula:

ξ =
√

(xreal − xalgor)2 + (yreal − yalgor)2 (5.51)

where (xreal, yreal) are the coordinates of the real impact position and (xalgor, yalgor)

the coordinates of the impact location using the algorithm reported in Sec. 5.1.

As it can be seen from Tab. 5.11, this algorithm generates results with rea-

sonable accuracy (maximum error in estimation of the coordinates of the impact

location was less than 4 mm) for both types of impacts considered. In addition,

from the test 2a it was observed that whether the distance of the transducer

from the impact source was bigger than 650 mm, the effects from the edges of

the plate and the reflected waves led to a wrong estimation of the stress waves

arrival time. Hence, an error of 27% on the impact source location was induced.

This information can be useful for the optimal location of sensors bonded in large

isotropic structures.

5.6.2 Source Location Results on CFRP Laminate

The maxima coefficients in test 1b with a quasi-isotropic CFRP plate were found

at the instantaneous frequency of 258.77 kHz. Fig. 5.16 illustrates the procedure

for extracting the TOA at the above frequency of interest for the sensor config-

uration reported in test 1b and impact C1. Fig. 5.17 shows the results of the

source location for impacts C1, C2 and C3 in test 1b. As in Fig. 5.15, the real

source location is represented by an open circle (o), whilst the calculated source

impact position is illustrated by a star symbol (*).

Tab. 5.12 depicts the evaluated impact positions and the error as expressed

by Eq. (5.51). As it can be seen from Tab. 5.12, this algorithm provides results
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(a) (b)

(c) (d)

Figure 5.12: Each sub-figure illustrates the time histories of the four signals
measured by the PVDF transducers, the contour-plot of the scalogram of the
CWT and line profile of the scalogram illustrating the procedure to extract the
TOA at f0 = 3452 Hz for test 1a and impact A1

Impact C1 Impact C2 Impact C3

xalgor (mm) 277.56 268.32 417.89
xreal (mm) 280 270 420
yalgor (mm) 172.43 242.12 67.35
yreal (mm) 170 240 70
ξ (mm) 3.44 2.7 3.38

Table 5.12: Impact positions and errors for test 1b
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(a) (b)

(c) (d)

Figure 5.13: Each sub-figure illustrates the time histories of the four signals
measured by the acoustic emission transducers, the contour-plot of the scalogram
of the CWT and line profile of the scalogram illustrating the procedure to extract
the TOA at f0 = 273.4 kHz for test 2a and impact B1
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(a) (b)

(c) (d)

Figure 5.14: Each sub-figure illustrates the time histories of the four signals
measured by the acoustic emission transducers, the contour-plot of the scalogram
of the CWT and line profile of the scalogram illustrating the procedure to extract
the TOA at f0 = 273.4 kHz for test 2a and impact B2
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(a) (b)

(c) (d)

Figure 5.15: Source location results of test 1a (a) - (b) and test 2a (c) - (d). The
calculated and true impact positions are shown as an open circle (o) and a star
(*), respectively. The sensor positions are represented by a plus sign (+)
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(a) (b)

(c) (d)

(e) (f)

Figure 5.16: Time histories of the six recorded waveform (upper side) and the
line profile of the scalogram (lower side) at the frequency f0 = 258.77 kHz for the
time of arrival identification in impact C1
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Figure 5.17: Source location results for impacts C1, C2 and C3

Impact S1 Impact S2 Impact S3

xalgor (mm) 211.71 188.23 51.67
xreal (mm) 210 190 50
yalgor (mm) 89.18 141.07 226.45
yreal (mm) 90 140 225
ξ (mm) 1.89 2.07 2.21

Table 5.13: Impact positions and errors for test 2b

with satisfactory accuracy (maximum error in estimation of the coordinates of

the impact location was approximately 3 mm) for all the impacts considered,

even outside the area defined by the sensors.

5.6.3 Source Location Results on Sandwich Panel

The scalogram maxima coefficients test 2b with the sandwich plate were found

at the instantaneous frequency of 348.27 kHz. Fig. 5.18 shows the procedure

for extracting the TOA at the above frequency of interest, for the configuration

reported in test 2b, impact S1. Fig. 5.19 depicts the results of the source location

for for impacts S1, S2 and S3 in test 2b. Tab. 5.13 reports the evaluated impact

positions and the associated errors.

As it can be seen from Tab. 5.13, this algorithm generates results with rea-

sonable accuracy (maximum error in estimation of the coordinates of the impact

location was approximately 2 mm) even in complex structures as sandwich pan-

els. In the experiments on both CFRP and sandwich plate, according to Eq.

(5.7), the maximum distance between any pair of sensors was assumed equal to
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(a) (b)

(c) (d)

(e) (f)

Figure 5.18: Time histories of the six recorded waveform (upper side) and the
line profile of the scalogram (lower side) at the frequency f0 = 348.27 kHz for the
time of arrival identification in impact S1
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(a) (b)

Figure 5.19: Source location results for impact S1, S2 (a) and S3 (b)

approximately one third of the distance of the closest transducer from the impact

location. It was observed during the test on the sandwich plate that due to the

severe attenuation in the resin core, the peak magnitude of the scalogram for each

pair of transducers occurred at slightly different frequencies (within a band ∆f0

of 10 Hz) with respect to the nominal value of 348.27 kHz. This means that the

TOA evaluation error due to this frequency shift was negligible.

5.7 Group Velocity Results

The values of the fundamental antisymmetrical Lamb mode A0 obtained from the

optimization algorithms were compared with those determined through an ana-

lytical approach using the Rayleigh-Lamb frequency relations (see Sec. 3.2) and a

semi-analytical finite element method (see Sec. 3.3) for isotropic and anisotropic

materials, respectively.

5.7.1 Group Velocity Evaluation on Aluminium Plates

Tab. 5.14 reports the values of the flexural group speed A0 in the aluminium

specimens for both test 1a and 2a determined in the optimization procedure, and

those obtained from the dispersion curve defined by Eq. (3.34), and illustrated

in Fig. 5.20.

From Tab. 5.14 it can be clearly seen that the maximum error in the estima-

tion of the wave velocity for both test 1a and 1b was about 3 m/s.
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Impact A1 Impact A2 Impact B1 Impact B2

A0 from algorithm (m/s) 439.4 442.6 1364.34 1353.05
A0 from dispersion curves (m/s) 441 441 1350 1350

Table 5.14: Flexural Lamb wave velocity results for test 1a and 2a

(a)

(b)

Figure 5.20: Dispersion curves of fundamental antisymmetrical Lamb mode for
both aluminium plates. From test 1a (a), @ 3452 Hz the correspondent group
velocity is at 441 m/s, whilst in test 2a (b), @ 273.4 kHz the correspondent group
velocity is at 1350 m/s
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Impact C1 Impact C2 Impact C3

Sensor 1-2 1618.32 1617.22 1621.46
A0 from algorithm (m/s) Sensor 3-4 1624.56 1622.12 1617.87

Sensor 5-6 1616.44 1619.78 1619.07

Table 5.15: Flexural Lamb wave velocity results for test 1b

(a) (b)

Figure 5.21: Dispersion curves for the A0 flexural Lamb mode at θ = 0 (a) and
angular-group velocity pattern at 258.77 kHz (b)

5.7.2 Group Velocity Evaluation on CFRP Laminate

Tab. 5.15 provides the values of the flexural group velocities calculated from the

algorithm in the CFRP laminate, whilst Fig. 5.21 illustrates the dispersion curves

for the Lamb wave A0 and the angular-dispersion pattern at the instantaneous

frequency of 258.77 kHz.

According to the quasi-isotropic nature of the CFRP composite plate, the

angular-group velocity pattern was nearly circular (Fig. 5.21b) and the A0 Lamb

mode calculated by the algorithm for any pair of transducers was approximately

the same (close to the value of 1620 m/s, i.e. the maximum value for A0 reported

in Fig. 5.21a).

5.7.3 Group Velocity Evaluation on Sandwich Panel

In relation to the previous Section, the group speeds values obtained from the op-

timization algorithm were compared with those determined by the SFEM method

116



5. Impact Source Identification Algorithms

Impact S1 Impact S2 Impact S3

Sensor 1-2 2810.08 2768.15 3117.45
A0 from algorithm (m/s) Sensor 3-4 3200.23 3078.86 2987.23

Sensor 5-6 2840.74 2942.43 3002.29

Table 5.16: Flexural Lamb wave velocity results for test 2b

for the sandwich plate. Tab. 5.16 reports the group velocities calculated from

the algorithm, whilst in Fig. 5.22 the dispersion curves for the Lamb wave A0

and the angular-dispersion pattern at the instantaneous frequency of 348.27 kHz

are displayed.

Although the calculated group velocity matched very well with those obtained

from the dispersion curves in the CFRP case (Tab. 5.15 and Fig. 5.21), for the

sandwich plate the predicted values from the algorithm were slightly different

from the reconstructed response provided by the dispersion relations (Tab. 5.16

and Fig. 5.22). Indeed, as it can be seen from Fig. 5.22a, the value of the flexural

group velocity at 348.27 kHz is approximately 2800 m/s. This is mainly due to

the high attenuations in the sandwich core that are not included in the SFEM

model. Therefore, this algorithm proved to be an efficient way to overcome the

drawbacks related to the uncertainty of the group estimation provided by the

dispersion curves, and the limits of a-priori prediction with an accurate model of

the structural response of complex structures.

5.8 Summary of the Impact Localization Algo-

rithms

This chapter has reported two in-situ SHM methods to locate the impact point

and to determine the velocity of guided Lamb waves in plate-like isotropic and

composite structures. The proposed methods are based on the differences of the

stress waves measured with high SNR by either four or six surface attached PZT

transducers. The peak magnitude of the scalogram of the CWT was employed to

identify the arrival time (TOA) of the flexural A0 Lamb mode. Then, the coordi-

nates of the impact location and the group speed were obtained by solving a set
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(a) (b)

Figure 5.22: Dispersion curves for the A0 flexural Lamb mode at θ = 0 (a) and
angular-group velocity pattern at 348.27 kHz (b)

of nonlinear equations through a combination of local Newton’s iterative method

associated to a global unconstrained optimization (line search and polynomial

backtracking technique). The experimental results conducted on two aluminium

structures, a quasi-isotropic CFRP laminate and a sandwich panel showed that

the identification of the impact source location was achieved with satisfactory

accuracy. In particular, maximum error in estimation of the impact location

was less than 4 mm for the isotropic structures, approximately 3 mm for the

quasi-isotropic CFRP panel and nearly 2 mm for the sandwich plate. Moreover,

good agreement between the flexural group velocities calculated by the algorithms

and the values obtained from the Rayleigh-Lamb relations and a semi-analytical

SFEM method was found. Hence, the algorithms described in this chapter are

able to satisfy the following requirements:

• they do not require a-priori knowledge of the mechanical properties, cross

section, as well as lay-up and anisotropic angular-group velocity pattern of

the AE in a composite structure

• they exhibit a suitable approach for the time of arrival identification using

the CWT

• they provide a flexible trade-off in terms of efficiency and accuracy as they

are able to identify the impact source in real-time requiring nearly 1 s
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However, a number of issues still need to be addressed:

• the dispersive nature of guided Lamb waves as well as the presence of mul-

tiple scattering and mode conversion (fully diffuse wave field) in complex

structures may alter the resulting signal, leading to a wrong estimation of

TOA

• only the information from the coherent part of the wave field arriving first to

the sensors (ballistic wave) is used, regardless of the contribution of multiple

scattering and reflection from the boundaries (know from seismology as

coda)
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Chapter 6

Imaging of the Impact Location

in Complex Anisotropic

Structures

This chapter presents an imaging method for the localization of the impact point

in complex anisotropic structures with diffuse field conditions, using only one

passive transducer. The proposed technique is based on the reciprocal time re-

versal approach (inverse filtering) applied to a number of waveforms stored into

a database containing the experimental Green’s function of the structure. The

present method allows achieving the optimal focalization of the impact source in

the time and spatial domain as it overcomes the drawbacks of other ultrasonic

techniques. This is mainly due to the dispersive nature of guided Lamb waves as

well as the presence of multiple scattering and mode conversion that can degrade

the quality of the focusing, causing poor localization. Conversely, according to

Sec. 4.4 the reverberation of a diffuse wave field in a complex medium improve

the spatial resolution of the focusing. Indeed, the presence of linear scatterers

(stiffeners, holes, voids, etc . . . ) within the medium allows the evanescent waves

to propagate in the far field, where the TRM is located. These modes, carry-

ing the information of the impact source, can participate to the focusing process

(kaleidoscopic effect, see Fig. 4.3). Compared to a classical time reversal (TR)

approach, the optimal re-focusing of the back propagated wave field at the impact
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point is accomplished through a “virtual” imaging process, which does not require

any iterative algorithms and a priori knowledge of the mechanical properties and

the anisotropic group speed. The robustness of the inverse filtering technique is

experimentally demonstrated on a dissipative stiffened composite panel and the

source position can be retrieved with a high level of accuracy in any position of

the structure.

The layout of the chapter is as follow: in Sec. 6.1, the imaging method for the

localization of the impact source is theoretically presented with a classical time

reversal process and the inverse filtering technique. Sec. 6.2 reports the experi-

mental set-up whilst Sec. 6.4 compares the robustness and focus quality of both

methods, showing the imaging results for two different impact points. Then, the

summary of the chapter is presented.

6.1 One-Channel Impact Localization Method

This imaging method, in its physical principle, is closer to a recent work pre-

sented by Sabra et al. (Sabra et al. [2008]) consisting in the estimation of the

local Green’s function of aeronautical structures with a Correlation of a Diffuse

Field (CDF) technique. However, in that work, all the information contained in

the reverberant acoustic wave field was recorded using two passive sensors and

the experimental impulse response was compared to theoretical predictions. Here,

the CDF method is combined with the advantages of a reciprocal time reversal

process. The proposed technique is aimed to overcome the limitations of most

impact detection methods and to obtain the optimal focusing of the source in

real-time, by using only one passive sensor placed on a generic point of the struc-

ture. The methodology was divided in two steps. In the first step, the impulsive

responses of the structure were acquired and stored into a computer. Then, ex-

ploiting the benefits of multimodal conversion and scattering effects, a “virtual”

reciprocal time reversal experiment was carried out. Hence, in order to obtain

the optimal re-focusing at the impact source, the transfer matrix of the structure

H(ω) is first introduced, and then both time reversal and inverse filtering imaging

techniques are analysed.
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Figure 6.1: Experimental set-up

6.1.1 The Structural Transfer Matrix H(ω)

In a first step, the surface structure (focusing plane) was entirely divided in

M = 50× 15 “excitation points” distributed along a grid at interval of 2 cm. At

each point, the acoustic emission was generated by impact loads (Fig. 6.1).

Due to linearity, according to Eq. (4.33), the acoustic field measured by the

receiver transducer from the mth excitation point is:

f(t) =
M∑
m=1

hm(t)⊗ em(t) =

+∞∫
−∞

M∑
m=1

hm(τ)⊗ em(t− τ)dτ (6.1)

where, as reported in Sec. 4.2.2, the symbol “⊗” represents a temporal convo-

lution and hm(t) (1 ≤ m ≤ M) is the linear propagator operator defining the

Green’s function measured by the sensor. This term includes all the propaga-

tion effects through the medium from the mth excitation point to the receiver

(including its acoustic-electric response). em(t) is the input signal sent by the

mth source on the focusing plane and f(t) is the output signal measured by the

transducer at each instant in time. In the frequency domain, Eq. (6.1) is:

f̂(ω) =
M∑
m=1

ĥm(ω)êm(ω) (6.2)

which can be written in matrix form as:

F (ω)︸ ︷︷ ︸
1×1

= Hm(ω)︸ ︷︷ ︸
1×M

Em(ω)︸ ︷︷ ︸
M×1

(6.3)
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Figure 6.2: Schematic outline of the reciprocity condition of the transfer matrix
Hm(ω)

where the matrix Hm(ω) is the transfer matrix of the system (Fourier transform of

the Green’s function) and represents the amplitude of the ith guided Lamb mode

associated to the ith eigenfrequency. For the spatial reciprocity condition, the

transpose of Hm (HT
m ) corresponds to the propagation between the transducer

and the excitation points (Fig. 6.2):

Em(ω) = HT
m(ω)F (ω) (6.4)

Hence, the M signals representing a library of impulse responses Hm(ω) of the

structure were recorded by the transducer and stored into the computer memory.

6.1.2 Time Reversal Focusing Approach

The second step consisted in recognition of the optimal refocusing procedure

at the source location. The basic idea was to time reverse not only the Green’s

function associated to the AE source, but also to neighbouring points (“excitation

points”). Thereby, a new impact was applied in one of the points (of unknown

location) of the focusing plane and its impulse response was measured by the

sensor. In accordance with Sec. 4.4, TR behaves as a spatio-temporal matched

filter that maximizes the ratio between the amplitude of the output signal (wave-

form acquired) and the square root of the input energy (impulse applied). Hence,

assuming that the impact source in the second step is located at m0, the input

123



6. Imaging of the Impact Location

waveform em0(t) from the mth excitation point can be mathematically approx-

imated to a temporal delta function δ(t) only when m = m0. In the frequency

domain, the emitted signal is Em0(ω) = {0, . . . , 0, 1, 0, . . . , 0}T . According to Eq.

(6.3), the wave field received by the transducer is:

Fm0(ω) = Hm0(ω)Em0(ω) (6.5)

and the time reversal operation of the Green’s function [hm0(−t)] in the time

domain is equivalent to taking its complex conjugate in the Fourier domain.

Hence, time reversing the spectrum of the transducer output, we have:

F ∗m0(ω) = H∗m0(ω)E∗m0(ω) = H∗m0(ω)Em0(ω) (6.6)

where the asterisk denotes complex conjugate and Em0(ω) is real. Combining

Eqs. (6.4) and (6.6), the back-propagated signal at the source is:

ETR(ω) = HT
m(ω)F ∗m0(ω) = HT

m(ω)H∗m0(ω)Em0(ω) (6.7)

and HT
m(ω)H∗m0(ω) is called the TR operator. Since Eq. (6.7) has a maximum

at the focus point, the information associated to the AE source location can be

extracted from a “virtual” TR experiment. Fig. 6.3 illustrates the procedure for

obtaining the imaging focusing with a TR analysis.

6.1.3 Reciprocal Time Reversal Focusing Approach

As reported in Sec. 4.1, the spherical symmetry of TR holds only in the case

of lossless media. Indeed, from the study of the elastodynamics wave equation

[Eq. (4.3)], the TR invariance is due to the presence of the even order (2nd order)

time partial derivative operator. This condition cannot be satisfied in dissipative

media, as the wave equation presents a time partial derivative operator of the

first order (Tanter et al. [1998]). Therefore, although spatial reciprocity and time

reversal invariance hold in diffuse wave fields or anisotropic media, such conditions

cannot not satisfied because of the following reasons:

• Limited transducer bandwidth (the effect is to broaden the TR focus)
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6. Imaging of the Impact Location

Figure 6.3: Architecture of the time reversal imaging process

Figure 6.4: Focusing conditions for TR and IF methods

• Shock waves formation (energy loss which makes the elastic waves no longer

reversible) (Cunningham et al. [2001])

• Absorptions and nonlinear attenuation with the wave amplitude

These aberrations generate phase and amplitude distortions of the propagating

wave front, and the behaviour of a TRM becomes very difficult to be predicted.

However, Tanter et al. (Tanter et al. [2000]) showed that the reciprocal time

reversal or Inverse Filtering (IF) approach allows recovering the optimal focusing,

even in dissipative media (Fig. 6.4).
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6. Imaging of the Impact Location

The IF approach is based on the inversion of the transfer matrix H(ω). Com-

pared to a classical time reversal experiment, the inverse filtering technique is

able to increase the contrast C, i.e. the ratio of the averaged energy of the refo-

cused signal at the time t=0 and the averaged energy of the recompressed signal

at all other times (Derode et al. [1999]):

C =
〈e2
X(t = 0)〉
〈e2
X(t 6= 0)〉

(6.8)

where eX(t) is the back-propagated field at the impact source (in the time do-

main) and the subscript X indicates either TR or IF operation. As the TR

experiments, a new impact was applied in m0 and its experimental Green’s func-

tion was recorded by the transducer. In the general case of M excitation points

and an array of N receivers (N > 1), Tanter et al. (Tanter et al. [2000]) showed

that the inversion of the transfer matrix H could be performed through a Singular

Value Decomposition (SVD) in order to avoid singularity problems (propagator

operator ill conditioned). In our case, the field distribution Fm0(ω) of a single re-

ceiver, when the acoustic emission propagation is generated by an impact Em0(ω),

is obtained multiplying both members of Eq. (6.4) for the complex conjugate of

Hm0(ω) as follows:

H∗m0(ω)Em0(ω) = H∗m0(ω)HT
m0(ω)Fm0(ω) = ‖H(ω)‖2Fm0(ω) (6.9)

Hence, we obtain:

Fm0(ω) = H̃(ω)Em0(ω) (6.10)

where H̃(ω) = H∗m0(ω)/‖H(ω)‖2 is the inversion of the propagation operator and

‖H(ω)‖2 is the squared norm of the vector HT
m0(ω) which represents the square of

the modal energy of the system. Thereby, the optimal focusing with the reciprocal

time reversal method is:

EIF (ω) = HT
m(ω)Fm0(ω) = HT

m(ω)H̃(ω)Em0(ω) (6.11)

and the operator HT
m(ω)H̃(ω) is referred to as the IF operator. As Eq. (6.7), also

Eq. (6.11) has a maximum at the focus point, i.e. when m = m0. Therefore, the
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Figure 6.5: Architecture of the inverse filtering imaging process

imaging focusing of the impact location can be obtained through a “virtual“ IF

experiment (Fig. 6.5).

6.2 Experimental Set-up

The experiments were carried out on a reverberant carbon-fibre composite plate

(100 cm × 30 cm × 3 mm) reinforced with six vertical stiffeners and connected

with rivets (7.9 mm of diameter) (Fig. 6.6). For the library of signal needed

to implement the technique, the impacts were applied to 750 excitation points

spaced 2 cm apart using a hand-held modal hammer. The experimental Green’s

function from each excitation point was acquired using an acoustic emission sensor

instrumented with an oscilloscope (Picoscope 4224) with a sampling rate of 25

MHz. The passive sensor employed was the same acoustic emission transducer

used for the experiments reported in Sec. 5.5, with a central frequency of 300 kHz.

The time histories of the signal received by the sensor were stored on a computer

and processed using a Matlab software code implemented by the authors. In

accordance with the AE sensors frequency bandwidth and Nyquist theorem, due

to the long reverberation present in the signal, a 100 ms duration time window

was chosen (Fig. 6.7).
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Figure 6.6: Top and bottom view of the stiffened carbon-fibre composite panel
used in the experiments

(a) (b)

Figure 6.7: Normalized time history (a) of one the focusing point and its frequency
content (b). In figure (a), a reverberant impulse response is clearly visible
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X-coordinate (cm) Y -coordinate (cm)

Sensor position (case I1) 60 16
Sensor position (case I2) 24 14
Impact I1 40 10
Impact I2 80 26

Table 6.1: Sensors and impact coordinated in case I1 and I2

Sensor locations and impact source coordinates are reported in Tab. 6.1 for

two different cases (referred as impacts I1 and I2).

6.3 Imaging Localization Results

Since the imaging method is based on a “virtual” focusing process, spatial res-

olution and localization precision (accuracy) are highly related. In particular,

accuracy is defined as the degree of closeness of the maximum value of the nor-

malized correlation coefficients obtained for the mth excitation point with re-

spect to the true impact point (located in m0). It can be expressed (in per-

centage) by the ratio between the localization error ξm given by the formula

ξm = (xm − xm0)2 + (ym − ym0)2 and the total length of the plate, where xm

and ym are the coordinated of the mth excitation point and xm0 and ym0 are

the coordinates of the true impact source. On the other hand, resolution is the

system’s ability to distinguish neighbouring points and it can be defined as the

-3 dB width of the normalized correlation coefficients patterns at the focus point

(Ing et al. [2005]). The imaging results are illustrated in Fig. 6.8 and 6.9 for the

two different cases I1 and I2, showing a comparison of focalization between the

IF method and TR analysis. According to Sec. 6.1, the refocusing wave fields

at the source location are represented by a normalized gray-scale 2D map and

the maxima of ETR(ω) and EIF (ω) [Eq. (6.7) and (6.11)] are deduced from the

values nearest to 1, with a computational time lower than 1 sec.

From the above figures, the TR experiments provided a maximum value of

the normalized correlation coefficient equal to 1, even in points close to the true

impact source (see the points at x = 38 cm and y = 10 cm for case I1 in Fig. 6.8b

and x = 80 cm and y = 28 cm for case I2 in Fig. 6.9b). Such ambiguities might be
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(a) (b)

Figure 6.8: 2D map of the maxima normalized correlation coefficients with the
IF approach (a) and the TR analysis (b) for the case I1

due to the effects of distortion (nonlinear attenuation) in the complex dissipative

structure. Conversely, in the IF technique an optimal focusing with a 0% error

on the estimation of the impact location was achieved. This can be explained as

follows. In the TR process [Eq. (6.7)] only the flexural Lamb modes with higher

energy are used for the refocusing process, whilst the modes with lower energy

are vanished (see Fig. 6.3). On the other hand, in the IF approach, contrast is

enhanced through the introduction of the modes weighted by the inverse of the

energy at each eigenfrequency [Eq. (6.11)]. Indeed, the modes with weak am-

plitude are re-emitted at higher energy, whilst the modes with bigger amplitude

are back propagated at lower energy (Fig. 6.5). Hence, the reciprocal TR tech-

nique can be assumed as a “whitening process”, wherein the number of modes

(and thus the quantity of information) employed for the back propagation at the

focal point can be increased. This effect is fundamental to understand the signif-

icant improvement of the contrast with the IF technique compared with the TR

method in reverberant dissipative media. Indeed, assuming the linear propagator

operator hm(t) for the mth excitation point as a non-stationary Gaussian signal

with zero mean and variance σ2(t), it can be defined for a dissipative medium
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(a) (b)

Figure 6.9: 2D map of the maxima normalized correlation coefficients with the
IF approach (a) and the TR analysis (b) for the case I2

with diffuse field conditions as (Quieffin [2004]):

hm(t) =
∞∑
i=0

αi sin(ωit)e
−t/τa (6.12)

where αi are the amplitudes of the ith Lamb mode contained in the wave field

associated to the ith eigenfrequency ωi, and τa represents the decay time of the

elastic field which depends on the scattering properties and the elastic attenuation

of the structure (Evans & Cawley [1999]). Under the hypothesis of diffusive wave

field, substituting expression (6.12) in the inverse Fourier transform of Eq. (6.7),

according to the analytical formulation obtained by Quieffin (Quieffin [2004]), the

contrast defined in Eq. (6.8) becomes:

C =
8π3/2Bn

a
(6.13)

where B is the frequency bandwidth of the acoustic emission transducers, n is

the modal density of the structure, a is the flatness factor, i.e. the ratio of mean

fourth power of a mode amplitude to the square of the mean square. The product

Bn represents the number of modes contained in the retro-focused signal, whilst

a for dissipative media varies between 2 and 3 (Lobkis & Weaver [2000]). Since

the effect of IF is to increase the number of modes for the back propagation at
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(a) (b)

Figure 6.10: Normalized correlation coefficients patterns along the X and Y -axis
with the maximum at the focus point with IF method (a) and TR approach (b)
for case I1

the focal point (a remains the same for TR and IF), according to Eq. (6.13), with

such method the contrast can be significantly enhanced (Bou Matar et al. [2009]).

Therefore, from the normalized correlation coefficients patterns along the X and

Y -axis in Fig. 6.10 and 6.11 two main conclusions were drawn:

• since the maximum error reported for TR and IF experiments was less than

3% and 0%, respectively, in accordance with the benefits of a diffuse wave

field, a high spatial resolution was obtained and the number of sensors used

did not need to be increased.

• the real effect of IF method was to improve the accuracy of the impact

location (compensation of the distortions effects in a dissipative medium in

combination with the benefits of a diffuse wave field) and to enhance the

contrast and thus the focusing efficiency (accuracy) up to 0% localization

error even using one passive transducer.

Hence, compared to other ultrasonic impact localization systems, this method

presents the great advantage that it does not require any iterative algorithms

as well as a priori knowledge of the TOA, mechanical properties, lay-up and

anisotropic angular-group velocity pattern of the medium. In addition, since
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(a) (b)

Figure 6.11: Normalized correlation coefficients patterns along the X and Y -axis
with the maximum at the focus point with IF method (a) and TR approach (b)
for case I2

only one passive transducer is needed for the imaging of the impact source, an

effective decrease of the number of sensors, resulting in significant costs and

weights savings, can be accomplished. Nevertheless, during the experiments it

was observed that a decrease of the number of observation points led to an increase

of the maximum error in retrieving the impact location, with lower values of

max ETR(ω) compared to the previous case (Fig. 6.12). In particular, assuming

200 observation points the location error was found nearly 10% for impact I1

(Fig. 6.12a) and approximately 12% for impact I2 (Fig. 6.12b).

6.4 Summary of the Imaging Localization Method

In this chapter, an in-situ imaging method able to detect in real-time the impact

source in dissipative complex composite structures with diffuse field conditions is

presented. This technique based on the reciprocal time reversal (inverse filtering)

approach, is directly applied to the experimental impulse responses of the struc-

ture recorded by only one passive sensor and stored into a database. The proposed

method allows achieving the optimal focalization of the acoustic emission source

as it is able to compensate the distortion effects in a dissipative medium. More-

over, exploiting the benefits of a diffuse wave field, a high refocusing quality, with
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(a) (b)

Figure 6.12: 2D map of the optimal refocusing for impact I1 (a) and I2 (b) with
200 observation points

only one sensor was accomplished. Compared to a simple time reversal process,

the robustness of this approach was experimentally demonstrated on a stiffened

composite plate and the results showed that the IF technique provides an optimal

focusing with a 0% error on the estimation of the impact location. Moreover, for

the imaging process, no iterative algorithms as well as a priori knowledge of the

mechanical properties, lay-up, thickness and the dispersive and anisotropic group

velocity pattern of the medium are required.
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Chapter 7

Imaging Non-Classical Elastic

Nonlinearities in Complex

Anisotropic Structures

Damages in complex composite materials such as matrix cracking, fibre debond-

ing, delamination, etc., increase their heterogeneity and the complexity of the

structure in terms of alteration between grainy regions and binding medium (see

Sec. 2.2.1). Hence, damaged composite laminates may give raise to non-classical

nonlinearity wave effects generated by material hysteretic behaviour, which is

enhanced with the increase of the damaged state. Indeed, such media display

nonlinear mesoscopic elasticity that appears to be much like that in rock or con-

crete (Johnson [2006] and Meo & Zumpano [2005]). Thus, for damaged complex

materials such as sandwich structures, third harmonic is the lowest harmonic with

the larger energy content predicted by Eq. (2.7), and can be chosen to assess the

damage. In the last few years, nonlinear elastic wave spectroscopy (NEWS) and

Phase Inversion (PI) methods have been combined with time reversal technique in

order to focus acoustic energy and illuminate secondary sources (damages) into a

medium (see Sec. 2.4.1.1). In particular, PI technique takes into account only the

even nonlinear harmonic part (second order nonlinearity), regardless of the linear

and odd nonlinear harmonic contribution. Hence, this approach does not work

satisfactorily to extract the third order nonlinear signature in damaged media
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that manifest non-classical nonlinear phenomena. However, PI can be considered

as a particular case of a general paradigm based on the invariant properties of

nonlinear systems, called phase symmetry analysis (PSA).

This chapter presents an imaging method aimed to locate the third order non-

linearity in damaged complex anisotropic structures with diffuse filed conditions,

using only two sensors in pitch-catch mode. The proposed technique is based

on a combination of reciprocal TR and phase symmetry analysis with frequency

modulation (FM) excitation, in order to obtain the optimal refocusing on the

nonlinear scatterer due to the presence of cracks and delamination. In particular,

PSA was employed to characterize the third order nonlinear response of a dam-

aged reverberant anisotropic medium with hysteretic behaviour, by exploiting its

invariant properties with the phase angle φ of the chirp excitation signals. In

other words, this method allows determining the phase angle of the input wave-

forms, in order to discern only the odd nonlinear harmonic part from the received

output. Then, a “virtual” Inverse Filtering (IF) or reciprocal TR approach was

used as it allows recovering the optimal focusing at the nonlinear source, even in

dissipative media (see Sec. 6.1.3). Indeed, nonlinear attenuation with the wave

amplitude breaks the time reversal symmetry, generating phase and amplitude

distortions of the propagating wave front. Nevertheless, IF technique was used

to “illuminate” the defect taking advantage of multiple linear scattering as mode

conversion and boundaries reflections. The robustness of this methodology was

experimentally demonstrated on a damaged sandwich panel, and the nonlinear

source, induced by low-velocity impact loading, was retrieved with a high level of

accuracy.

The layout of the chapter is as follows: in Sec. 7.1, the imaging technique is the-

oretically illustrated by introducing phase symmetry analysis and the nonlinear

inverse filtering process. Sec. 7.2 presents the experimental set-up whilst Sec.

7.3 shows the results of the nonlinear imaging method. Then, a summary of the

chapter is reported.
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Figure 7.1: Representation of the sandwich structure with diffuse field conditions

7.1 Nonlinear Imaging Method

Symmetry (or invariance) properties of physical phenomena have been widely

used for the analysis of nonlinear systems. For instance, the symmetries associ-

ated to the infinitesimals of Lie groups were employed to determine the motion

of particles propagating in a medium with non-classical nonlinearity (Dos Santos

et al. [2004]). In addition, the invariance properties of Korteweg-de Vries sta-

tionary solutions (solitary waves) were used as a signature of the dispersive and

nonlinear features of the structure (Daraio [2009]). Similarly to Sec. 6.1.3, the

nonlinear imaging process was divided into two steps. In the first step, the third

order nonlinear transfer matrices of the structure obtained after PSA process

were acquired and stored into the computer memory. Then, exploiting the ben-

efits of multimodal conversion and boundary reflections, a “virtual” re-focusing

procedure of the recorded signals on the nonlinear source was performed using IF

method.

7.1.1 Extraction of Third Order Nonlinear Impulse Re-

sponse

In the first step, an impact loading was applied to a sandwich composite structure

in order to barely indent the medium and to generate delamination localized at the

impact site, almost invisible from the top surface (BVID). Then, the damaged

zone surrounding the impact point focusing area was divided in M = 7 × 6

“excitation points” distributed along a grid at interval of 2 cm (Fig. 7.1). The

rest of the sample remains undamaged, so that the nonlinear signature is only

present in the region around the defect. In each of the m (1 ≤ m ≤M) excitation
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(a) (b)

Figure 7.2: Signal emitted from one of the M excitation points (a) and its spec-
trum (b)

points a longer duration frequency modulated (FM) signal with wide frequency

bandwidth was transmitted. The general chirp signal can be expressed in complex

notation as (Misaridis & Jensen [2005a]):

x(t) = c(t)eiφ = ei[2π(f0t+
µ
2
t2)+φ] − T

2
≤ t ≤ T

2
(7.1)

where f0 is the central frequency, T is the signal duration (uncompressed pulse

width), φ is the phase angle, µ = B/T is the FM slope and B is the total band-

width that is swept, i.e. the difference between the highest and lowest frequencies

within the uncompressed pulse. In our case B= 70-130 kHz and T=2 ms. Since

linear chirp signal has a quadratic phase modulation function, the instantaneous

frequency is linear and given by:

fi =
1

2π

d
[
2π
(
f0t+ µ

2
t2
)

+ φ
]

dt
= f0 + 2µt (7.2)

The expression above represents the spectral band of a FM signal in which the

energy is concentrated at the time t. If the the time-bandwidth product TB is

sufficiently large (TB > 15), the signal’s spectrum is assumed to be approxi-

mately a rectangular distribution (Fig. 7.2). Chirp signal was chosen in order

to improve the signal-to-noise ratio (SNR), the penetration depth and to keep

the sidelobes below the limiting level of the typical dynamical range of an ultra-
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sound image (Misaridis & Jensen [2005a]). Then, a mismatched filter (weighted

pulse compression) was performed as it allows converting the FM transmitted sig-

nal into a band-limited pulse of greater peak power. Indeed, according to App.

C, a weighted pulse compression consists of a correlation between the received

and the transmitted chirp signal multiplied by a window function (Blackman or

Dolph-Chebyshev). The mismatched filter is expressed by the following equation:

em(t) = eiφ
1

2π

+∞∫
−∞

ĉ(ω)ĥMF (ω)eiωtdω ∼= δ(t)eiφ (7.3)

wherein em(t) is the new input signal to be time reversed from each excitation

point, ĉ(ω) is the Fourier transform of the transmitted FM input function with

null phase angle, ĥMF (ω) = ŵ(ω)ĉ∗(ω), where ŵ(ω) is the Fourier transform of the

window function and the asterisk corresponds to a complex conjugate operation.

Assuming that the nonlinear behaviour of the medium is described through a

third order nonlinear system, the output f(t) received by the sensor placed far

from the focusing area can be expressed through a Volterra functional series as

follows (Bussang et al. [1974]) (Fig. 7.3):

f(t) =
3∑

n=1

fn(t) = f1(t) + f2(t) + f3(t)

=

+∞∫
−∞

M∑
m=1

h(1)
m (τ1)em(t− τ1)dτ1

+ β

+∞∫
−∞

dτ1

+∞∫
−∞

M∑
m=1

h(2)
m (τ1, τ2)em(t− τ1)em(t− τ2)dτ2

+ γ

+∞∫
−∞

dτ1

+∞∫
−∞

dτ2

+∞∫
−∞

M∑
m=1

h(3)
m (τ1, τ2, τ3)em(t− τ1)em(t− τ2)em(t− τ2)dτ3

(7.4)

where em(t) is the column vector of the input signal sent by the mth exci-

tation point, f1(t), f2(t), f3(t), are the system partial responses of the linear,

second, and third order, respectively, and β and γ are the second and third or-
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Figure 7.3: Schematic representation of a Volterra series model

der nonlinear coefficients. The nth order kernel of Eq. (7.4), h
(n)
m (τ1, . . . , τn) ,

is called the nonlinear impulse response of order n. This term includes all the

nonlinear propagation effects through the medium and the coda from the mth

excitation point to the receiver (Kazakov et al. [2002]). Its Fourier transform is

called the nonlinear transfer function of order n (the sum term is omitted for

clarity reasons):

ĥ(n)
m (ω1, . . . , ωn) =

+∞∫
−∞

· · ·
+∞∫
−∞

h(n)
m (τ1, . . . , τn)e−[i(ω1τ1+···+ωnτn)]dτ1 · · · dτn (7.5)

Since h
(n)
m (τ1, . . . , τn) is a symmetric function of the arguments (τ1, . . . , τn), it

follows that ĥ
(n)
m (ω1, . . . , ωn) is symmetric for (ω1, . . . , ωn). In addition, from Eq.

(7.5), it can be noted that the usual properties of spectral conjugation still hold:

ĥ(n)∗
m (ω1, . . . , ωn) = ĥ(n)

m (−ω1, . . . ,−ωn) (7.6)

However, as the nonlinear impulse response is a function of n variables, the non-

linear system can be simplified by replacing the kernel h
(n)
m (τ1, . . . , τn) with its

symmetric representation [Wiener model (Greblicki [1997])]:

h(n)
m (τ1, . . . , τn) =

∏
n

h′(n)
m (τ) (7.7)
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where h
′(n)
m (τ) is called the sub-kernel of order n. Substituting Eq. (7.7) into the

second and third order nonlinear impulse responses of Eq. (7.4), we have:

h(2)
m (τ1, τ2) = h′(2)

m (τ1)h′(2)
m (τ2)

h(3)
m (τ1, τ2, τ3) = h′(3)

m (τ1)h′(3)
m (τ2)h′(3)

m (τ3)
(7.8)

Hence, assuming that the defect is located at m0, solving the multiple integrals

of Eq. (7.4), the following terms are obtained:

Linear term:

f1(t) =

+∞∫
−∞

h(1)
m (τ1)em(t− τ1)dτ1 = eiφ

+∞∫
−∞

h(1)
m (τ1)δm0(t− τ1)dτ1 = h(1)

m (t)eiφ (7.9)

where h
(1)
m (τ1) corresponds to the linear impulse response (Green’s function) of

the structure and δm0 is a temporal and spatial delta function distribution that

is null everywhere, except for m = m0.

Second order term:

f2(t) = β

+∞∫
−∞

dτ1

+∞∫
−∞

h(2)
m (τ1, τ2)em(t− τ1)em(t− τ2)dτ2

= β

+∞∫
−∞

dτ1

+∞∫
−∞

h′(2)
m (τ1)h′(2)

m (τ2)em(t− τ1)em(t− τ2)dτ2

= βei2φ
+∞∫
−∞

h′(2)
m (τ1)δm0(t− τ1)dτ1

+∞∫
−∞

h′(2)
m (τ2)δm0(t− τ2)dτ2

= β
[
h′(2)
m (t)

]2
ei2φ = βh(2)

m (t)ei2φ

(7.10)

Third order term:

f3(t) = γ

+∞∫
−∞

dτ1

+∞∫
−∞

dτ2

+∞∫
−∞

h(3)
m (τ1, τ2, τ3)em(t− τ1)em(t− τ2)em(t− τ3)dτ3

=γ
[
h′(3)
m (t)

]3
ei3φ = γh(3)

m (t)ei3φ

(7.11)
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(a) (b)

Figure 7.4: Acquired signal from the mth excitation point (a) and its spectrum
containing higher harmonics (b). From this figure is clearly visible that third
order contribution is higher than second order

Hence, according to Eqs. (7.9-7.11), Eq. (7.4) becomes:

f(t) = h(1)
m (t)eiφ + βh(2)

m (t)ei2φ + γh(3)
m (t)ei3φ (7.12)

Fig. 7.4 illustrates the output recorded by the receiver from one of the mth exci-

tation points in the time domain and its spectrum containing higher harmonics.

The results showed that third order nonlinearity contribution is larger than sec-

ond order, highlighting the presence of hysteretic material behaviour. Similar

results were also experienced by Meo and Zumpano (Meo & Zumpano [2005]).

Therefore, phase symmetry analysis can be used to eliminate the linear part and

the even nonlinear harmonics contribution from the signal acquired by the trans-

ducers, by simply imposing the third order symmetry condition, 3iφ = ±2πki,

with k ∈ N, where N is the set of all natural numbers. Such invariant condition

is fulfilled for three different phase angles, φ = 0, φ = 2/3π and φ = −2/3π.

Indeed, PSA consists in sending three phase shifted FM waveforms into the dam-
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7. Imaging Non-Classical Elastic Nonlinearities

aged structure, in order to extract only the nonlinear third order signature:

f0(t) =︸︷︷︸
φ=0

h(1)
m (t) + βh(2)

m (t) + γh(3)
m (t) (7.13a)

f2/3π(t) =︸︷︷︸
φ=2/3π

Re
[
h(1)
m (t)ei2/3π + βh(2)

m (t)ei4/3π + γh(3)
m (t)ei2π

]
= −1

2
h(1)
m (t)− β

2
h(2)
m (t) + γh(3)

m (t) (7.13b)

f−2/3π(t) =︸︷︷︸
φ=−2/3π

Re
[
h(1)
m (t)e−i2/3π + βh(2)

m (t)e−i4/3π + γh(3)
m (t)e−i2π

]
= −1

2
h(1)
m (t)− β

2
h(2)
m (t) + γh(3)

m (t) (7.13c)

where Re[·] indicates that only the real part of the signal was considered for the

analysis. Hence, is straightforward that:

fPSA(t) =
f0(t) + f2/3π(t) + f−2/3π(t)

3
= γh(3)

m (t) (7.14)

where h
(3)
m (t) is the third order nonlinear impulse response, and in the angular

frequency domain Eq. (7.14) becomes:

f̂PSA(ω) = γĥ(3)
m (ω)ŷm0(ω) (7.15)

which can be written in matrix form as follows:

FPSA(ω) = γH(3)
m (ω)Ym0(ω) (7.16)

where an ideal focusing pattern vector Ym0(ω) of length M × 1 was introduced,

which corresponds to the signal originating from the defect located at m0. Its

components are Ym0 = 1 for m = m0 and Ym0 = 0 for m 6= m0 . Fig. 7.5

shows the extraction of the third order nonlinear signature by the sum of the

responses coming from the same signals sent with different phase angles mentioned

previously. For the spatial reciprocity condition, the transpose of the third order

nonlinear transfer function, H
(3)T
m (ω), corresponds to the propagation between
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(a) (b)

Figure 7.5: Signal filtered using PSA (a) and its frequencies spectrum (b). From
figure (b) it can be clearly seen that only the 3rd order contribution is left

Figure 7.6: Reciprocity condition of the transfer matrix H
(3)T
m (ω)

the receiver and the mth excitation point in the focusing area (Fig. 7.6):

Ym0(ω) = γH(3)T
m (ω)FPSA(ω) (7.17)

Therefore, the M signals, representing a library containing the third order

nonlinear impulse response of the medium from each excitation point to the re-

ceiver, were recorded and stored.
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7.1.2 Nonlinear Inverse Filtering Approach

Similarly to Sec. 6.1.3, the second step consists in focusing energy not only at the

location of the nonlinearity (m0), but also to neighbouring points (M excitation

points). Indeed, IF method consists of determining the optimal field distribution

on the receiver by simply inverting the third order nonlinear transfer matrix

H
(3)T
m (ω). Such process would give rise after propagation to the field distribution

YIF (ω) on the focusing plane. Hence, the nonlinear impulse responses stored

were digitized over one-bit and broadcast from their original source location to

the focusing area. To one-bit a signal, depending on the sign of the recorded

signals, the re-transmitted waveforms were set to ±1 (the dynamic range limits

of the source signal output) in order to increase the amplitude response with a

typical gain of approximately 4 dB (Derode et al. [1999]).

The optimal wave field distribution FIF (ω) is obtained by multiplying both the

left and right members of Eq. (7.17) for the complex conjugate of H
(3)T
m (ω) as

follows:

H(3)∗
m (ω)Ym0(ω) = H(3)∗

m (ω)γH(3)T
m (ω)FIF (ω) = γ‖H(3)

m (ω)‖FIF (ω) (7.18)

i.e.

FIF (ω) =
1

γ
H̃(3)
m (ω)Ym0(ω) (7.19)

where H̃
(3)
m (ω) = H

(3)∗
m (ω)/‖H(3)

m (ω)‖ is the inversion of the third order nonlinear

operator and ‖H(3)
m (ω)‖ is the squared norm of H

(3)
m (ω), which represents the

square of the third order nonlinear system’s modal energy. According to Sec. 6.4,

such inversion increases the number of modes employed for the back-propagation

at the focal point (nonlinear source). Indeed, the modes contained in the signal

are weighted by the inverse of the energy at each eigenfrequency. In other words,

contributions from modes with weak amplitudes are emitted at higher energies,

whilst contributions from modes with larger amplitudes are back propagated at

lower energies. Hence, with the IF approach, even those modes with weak energy,

which are poorly exploited in a simple TR experiment, can participate to the

focusing process. Therefore, all the waveforms previously acquired (and 1-bit

digitized) from the same excitation points processed with PSA, are broadcast
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Figure 7.7: Sandwich test sample used in the experiments

into the medium, and the back propagated signal at the damage location is:

YIF (ω) =
[
γH(3)T

m (ω)
]
IF
FIF (ω) =

[
H(3)T
m (ω)

]
IF

H̃(3)
m (ω)Ym0(ω) (7.20)

and the operator
[
H

(3)T
m (ω)

]
IF

H̃
(3)
m (ω) is referred to as the third order nonlin-

ear IF operator. The above equation results in a maximum at the focus point

(nonlinear scatterer location), i.e. when m = m0. Therefore, the focusing on

the nonlinear scattering source can be obtained through a nonlinear “virtual“ IF

experiment.

7.2 Experimental Set-up

The experiments were carried out on a reverberant sandwich plate (750 mm x

405 mm) with rivets (7.9 mm of diameter) (Fig. 7.7). The core used in the

sandwich plate was a 6.35 mm thick HRH-10-1/8-4.0 Aramid fibre/phenolic resin

nomex. Facing skins were made of four plies of AS4/8552 unidirectional car-

bon/epoxy prepreg composite on both sides of the core with lay-up sequence

of [90/45/45/90]. A dropped-weight impact test machine with a hemispherical

tip was used for hitting the test panel at 12 J . Such energy level was chosen

in order to inflict damage in the sandwich panel face sheet corresponding to a

BVID. A qualitative image of the defect was obtained through an Active Pulse
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Figure 7.8: Image of the impacted area obtained through an Active Pulse Ther-
mography

Thermography, wherein the surface of the sample was actively heated by an ex-

ternal source (a lamp) and the thermal degradation of the heated material was

recorded by a high speed Infrared (IR) camera (Pickering & Almond [2008]). As

subsurface temperature decay is governed by heat diffusion, retention of heat due

to delamination was detected by the camera as a “hot spot” (Fig. 7.8). Two

acoustic emission transducers (20mm diameter, 10 mm thickness) with a cen-

tral frequency of 150 kHz connected to a preamplifier were used to transmit the

waveforms from each of the M excitation points (M = 42), and to receive the

nonlinear elastic responses. In particular, one sensor was instrumented with an

oscilloscope (Picoscope 4224) with a sampling rate of 10 MHz. The other AE

transducer was linked to an arbitrary signal generator (TTi-TGA12104) to send

the chirp signals in the first step and then to send back into the structure the

inverted nonlinear responses. The frequency band B = 70− 130 kHz of the FM

waveforms was chosen to maximize the efficiency of the available transducers.

Moreover, in accordance with the Nyquist theorem, due to the long reverberation

present in the signal, a T = 2 ms duration time window was chosen. The time

histories of the received signals were stored on a computer and processed using a

Matlab software code.
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(a) (b)

Figure 7.9: 2-D map of the maxima normalized correlation coefficients with the
nonlinear imaging method for case 1 (a) and case 2 (b)

7.3 Nonlinear Imaging Results

In order to show the feasibility of this “virtual” imaging method, two different

cases were analysed with the receiver sensor placed in two different positions. In

case 1, the transducer was positioned at x1 = 60 cm and y1 = 17 cm, whilst,

in case 2, it was located close to the lateral boundary of the sandwich plate,

with coordinates x2 = 4 cm and y2 = 22 cm. According to Sec. 7.1.2, the

refocusing wave fields at the nonlinear signature location (placed at x = 38 cm

and y = 24 cm) are represented by a normalized 2D map of the correlation

coefficients represented by Eq. (7.20), and the maxima YIF (ω) in both cases

are deduced from the values nearest to 1 (Fig. 7.9). The results indicate that a

satisfactory image of the defect was obtained in both cases, with high accuracy.

Moreover, due to very simple signal processing, this method requires very little

computational time (lower than 1 sec). In accordance with Sec. 6.4, the reciprocal

TR technique in reverberant dissipative media is able to increase the contrast, by

simply increasing the number of modes participating to the focusing process. In

this manner, the effects of distortion (nonlinear attenuation) can be compensated

leading to unambiguous retro focusing.

Furthermore, from the results obtained in Fig. 7.9, the following considerations

were drawn. First, the focusing can be achieved even when the receiver transducer
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is close to the boundary of the reverberant sandwich plate (case 2). Such a result

demonstrates experimentally that linear scattering from boundary reflections and

modes conversion does not influence negatively the “illumination” of the damage,

but only carries the information of the nonlinear source to the far field, where

the sensor is located. Hence, the IF method in combination with the benefits

of a diffuse wave field was able to enhance the focusing efficiency (accuracy) up

to 0% localization error within the grid spacing of 2 cm, even using one receiver

transducer. In addition, as the nonlinear coefficient γ is not involved in the

imaging process [Eq. (7.20)], compared to other nonlinear TR techniques (Ulrich

et al. [2008]), such methodology does not require any normalization with the

amplitude of the fundamental frequency. Therefore, in principle, this imaging

technique can be applied also for those damages wherein the nonlinearity can be

described by Classical Nonlinear Theory. Moreover, for the nonlinear imaging

process, no iterative algorithms nor any a priori knowledge of the mechanical

properties of the medium are required.

7.4 Summary of the Nonlinear Imaging Method

In this chapter, an imaging technique of the nonlinear damage signature in a

dissipative complex anisotropic structure with hysteretic behaviour is reported.

The proposed method relies on a combination of phase symmetry analysis with

FM excitation and the nonlinear inverse filtering approach, and it was divided

into two steps. In the first step, a number of phase shifted waveforms containing

the nonlinear impulse responses of the medium were acquired and summed to

extract the third order nonlinearity present in the signals due to delaminations

and cracks. Then, a “virtual” nonlinear reciprocal time reversal imaging process

was employed as it allows achieving the optimal focusing at the nonlinear source

by a compensation of the distortion effects in a dissipative medium. Moreover,

exploiting the benefits of a diffuse wave field, a high quality localization, with

only one sensor and one transmitter, was accomplished. The efficiency of such

a technique was experimentally demonstrated on a dissipative sandwich panel,

and the nonlinear source was retrieved with a high level of accuracy with little

computational time (less than 1 sec).
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Chapter 8

Conclusions

The aim of this thesis was to develop ultrasonic guided wave SHM systems for

the localization of the acoustic emission source due to impact events and the as-

sessment of damages in aircraft components. For the identification of the impact

point, two main passive approaches were considered, an algorithm-based and an

imaging-based method.

The former approach is based on the differences of the stress waves measured by

a network of piezoelectric transducers surface bonded on plate-like structures. In

particular four PZT films and acoustic emission sensors were used to measure the

antisymmetrical A0 Lamb mode in isotropic materials, whilst six AE transducers

were employed to record the wave packets in composite laminates. The waveforms

acquired were processed by the analysis of the Continuous Wavelet Transform,

and the information contained in the ridge of the scalogram were used to reveal

the time of arrival of the stress waves. Then, the coordinates of the impact loca-

tion and the flexural group speed were obtained by solving a system of nonlinear

equations through a combination of local Newton’s method associated to line

search and polynomial backtracking techniques. One of the main advantages of

the proposed optimization algorithm is that it is able to converge from almost any

guess point. In addition, the computational time for each source location using

Matlab was less than 1 s, meaning that the impact coordinates could be obtained

in real time using a compiled code. To validate the algorithm-based methods, a

number of experiments were carried out using two aluminium structures, a quasi-

isotropic composite laminate and a sandwich panel. Good agreement between
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the theoretical and experimental results showed that impact point and the group

velocities could be predicted with high level of accuracy. Indeed, from the tests

conducted on the aluminium structures, the maximum error in estimation of the

impact location was less than 4 mm and about 3 m/s for the flexural group veloci-

ties. From the experimental results achieved on a quasi-isotropic CFRP laminate

and a sandwich panel, the maximum error in estimation of the impact location

was approximately 3 mm for the former structure and nearly 2 mm for the latter.

Moreover, similar results between the group speeds calculated by the algorithm

and the values obtained from the dispersion solutions through a SFEM method

were obtained. The imaging-based method was developed to detect in real-time

the impact source in dissipative composite structure with complex geometries

(stiffened panels with rivets and holes). This technique based on the reciprocal

time reversal (inverse filtering) approach, was directly applied to the experimen-

tal impulse responses (Green’s function) of the structure recorded by only one

passive sensor and stored into a database. The proposed method allowed achiev-

ing the optimal focalization of the AE source as it was able to compensate the

distortion effects in a aberrating medium and the dispersive behaviour of guided

Lamb waves. Moreover, exploiting the benefits of a diffuse wave field, a high

refocusing quality with only one PZT sensor was accomplished. Compared to a

simple time reversal process, the robustness of this approach was experimentally

demonstrated on a stiffened composite plate and the results showed that the IF

technique provides an optimal focusing with a 0% error on the estimation of the

impact location. Moreover, for the imaging process, no iterative algorithms were

needed.

The most important contribution of the algorithm-based and the imaging-based

approaches is that, in contrast to the current impact localization techniques, they

do not require a priori knowledge of the mechanical properties, thickness and

anisotropic angular-group velocity pattern for the composite laminate. Hence,

with a combination of both methodologies, complex computations and numerical

models, which are often uncertain and not fully validated with experimental mea-

surements, can be avoided. In this way, both techniques can be integrated into

an automated system, which can be used to obtain the impact source location

for any kind of composite structure, making the AE source localization problem

151



8. Conclusions

more cost effective. In addition, even if the impact localization methods are based

on measuring the flexural Lamb mode A0, such techniques can be applied to the

inspection of the extensional Lamb mode.

This thesis also extended active ultrasonic guided wave methods to the specific

case of dissipative structures showing hysteretic behaviour. Indeed, a nonlin-

ear imaging method, was developed to detect the nonlinear signature in dam-

aged complex anisotropic materials with diffuse field condition. The proposed

methodology is based on a combination of inverse filtering approach with phase

symmetry analysis and chirp excitation. Phase symmetry analysis was used to

characterize the third order nonlinearity of the structure by exploiting its invari-

ant properties with the phase angle of the input waveforms. Then, a “virtual”

reciprocal time reversal imaging process, using only one receiver sensor, was used

to focus the remitted waveforms on the defect taking advantage of multiple linear

scattering. The robustness of this technique was experimentally demonstrated

on sandwich panel undergone to barely visible impact damage, and the nonlin-

ear source was retrieved with a high level of accuracy. Its minimal processing

requirements make this method a valid alternative to the traditional nonlinear

elastic wave spectroscopy techniques for materials showing either classical or non-

classical nonlinear behaviour.

8.1 Future Works

The use of ultrasonic guided waves methods for the localization of the impact

source and the evaluation of damage mechanisms has shown considerable promise

in both isotropic and anisotropic structures. However, additional research is nec-

essary in order to make the transition from the laboratory to a full-scale, opera-

tional aircraft.

Specific to the work considered within this thesis, a more powerful language pro-

gramming should be used to further reduce the computational costs and to per-

form a simulation tool suitable for industry or embedded in wireless systems. In

addition, to give an insight of the Lamb wave propagation within complex struc-

tures, a detailed SFEM model that takes into account the material attenuation is
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needed. In this manner, a better estimation of the difference between the analyt-

ical and experimental group velocities can be provided. Moreover, the methods

presented here for the impact source localization must be validated on a wide

range of structures of practical engineering interest. The specimens tested during

this research represent only a small subset of those being used in the industry,

and additional effects (environmental conditions, aero-elastic and aero-acoustic

phenomena) are expected while implementing the techniques in real applications.

Time reversal has proven to be a very robust method of detecting AE sources

and nonlinear scatterers (cracks and delamination). Indeed, the nonlinear imag-

ing methods with time reversal was suitable for the damage detection in complex

composite structures. However, while a 2-D spatial/temporal back propagation to

find buried features has been successfully demonstrated, a 3-D focusing (through

the thickness) still need to be experimentally verified. Moreover, for a better

understanding of damage mechanisms, numerical quantitative simulations of the

material’s nonlinear features must be performed. Indeed, FE analysis would be

extremely helpful for the prediction of modulation and higher harmonic genera-

tion phenomena within the medium.

In conclusion, current study for impact source identification and damage detection

need to be extended to localize multiple impact points and nonlinear scatterers

within the material.

8.2 PhD Activities

During the PhD programme a number of scientific papers has been published

in international peer-reviewed journals and a number of oral sessions has been

presented at international conferences.
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2. Ciampa, F. and Meo, M. Nonlinear elastic imaging using reciprocal time

reversal and phase symmetry analysis. Journal of Acoustical Society of

America, 2012. Manuscript accepted for publication.

3. Ciampa, F., Meo, M. and Barbieri, E. Impact localization in anisotropic

structures of arbitrary cross-section. Structural Health Monitoring, 2012.

Manuscript accepted for publication.

4. Ciampa, F. and Meo, M. Acoustic emission localization in complex dis-

sipative anisotropic structures using a one-channel reciprocal time reversal
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2011.
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structures with diffuse field conditions using a time reversal approach. Pro-
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798416, 2011.

6. Ciampa, F. and Meo, M. Impact detection in anisotropic materials us-
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8. Ciampa, F. and Meo, M. Acoustic emission source localization and veloc-
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F. A smart multifunctional polymer nanocomposites layer for the estima-

tion of low-velocity impact damage in composite structures. Composite

Structures, 92(8), pp. 1913-1919, 2010.
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Book Sections:

1. Ciampa, F. and Meo, M., 2011. Acoustic emission localization in a com-
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ence and Technology. Zurich-Durnten: Trans Tech Publications, pp. 910-
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Conference Papers:
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and phase symmetry analysis. Ciampa, F., Meo, M. In:Proceedings of the
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ceedings of the 5th European Workshop on Structural Health Monitoring, 29

June - 02 July 2010, Sorrento, Naples, Italy.

5. A new smart multifunctional polymer nanocomposites layer for the detec-

tion of low velocity impact damage in composite structures. Capezzuto,

F., Ciampa, F., Carotenuto. G., Meo, M., Milella, E., Nicolais F. In:

Proceedings of the 17th International Conference on Composite Materials,

27-31 July 2009, Edinburgh, UK.
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Moreover, a number of technical meetings on Structural Health Monitoring

systems for impact localization and damage detection with Airbus personnel at

the University of Bath and in Bristol has been attended.
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Appendix A

Elastodynamic Green’s Function

in Isotropic Media

Let us consider the Green’s function for the three-dimensional wave equation

resulting from a point source in an unbounded domain. Its Fourier Transform is:

Ĝ(r, ω; r0, ω0) =

+∞∫
−∞

G(r, t; r0, t0)e−iωtdω (A.1)

whilst the inverse transform of the Green’s function in time is:

G(r, t; r0, t0) =
1

2π

+∞∫
−∞

Ĝ(r, ω; r0, ω0)eiωtdω (A.2)

For free-space with sound speed c, the Fourier transform of both sides of Eq.

(4.6) is (note that t = t0 = 0 for causality reasons) (Duffy [2001]):

c2

+∞∫
−∞

∇2G(r, r0; t)e−iωtdt−
+∞∫
−∞

∂2G(r, r0; t)

∂t2
e−iωtdt = −

+∞∫
−∞

δ(r− r0)δ(t)e−iωtdt

(A.3)
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The third term of Eq. (A.3) becomes:

+∞∫
−∞

δ(r− r0)δ(t)e−iωtdt = δ(r− r0) (A.4)

and Eq. (A.3) can be written as the inhomogeneous Helmholtz’s equation (Barton

[1989]): (
∇2 + k2

)
Ĝ(r, r0;ω) = −δ(r− r0) (A.5)

with k2 = ω2/c2. In free space without boundaries, G is a function of only

‖r− r0‖ that is the distance between the source r0 and the observation point r,

where ‖ · ‖ indicates the standard Euclidean vector norm. Thus, Eq. (A.5) in

spherical coordinates becomes:

1

‖r− r0‖
d2

d‖r− r0‖2

[
‖r− r0‖Ĝ(r, r0;ω)

]
+ k2Ĝ(r, r0;ω) = −δ(r− r0) (A.6)

Its solution is:

Ĝ(r, r0;ω) =

(
Aeik‖r−r0‖ +Be−ik‖r−r0‖

)
4π‖r− r0‖

(A.7)

and applying the inverse transform to the above equation, we have 4

G(r, r0; t) =
1

2π

+∞∫
−∞

(
Aeik‖r−r0‖ +Be−ik‖r−r0‖

)
4π‖r− r0‖

eiωtdω

= AGd(r, r0; t) +BGc(r, r0; t) (A.8)

where Gd(r, r0; t) corresponds to an impulsive diverging spherical wave:

Gd(r, r0; t) =
1

4π‖r− r0‖
δ

(
t− ‖r− r0‖

c

)
(A.9)

4δ(x) = lim
a→+∞

sin(ax)
πx = lim

a→+∞
1
2π

+a∫
−a

eixtdt
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and Gc(r, r0; t) define the impulse converging spherical wave:

Gc(r, r0; t) =
1

4π‖r− r0‖
δ

(
t+
‖r− r0‖

c

)
(A.10)

The second term of Eq. (A.8) is usually rejected (B ≡ 0 and A = 1) because it

predicts a response to an event occurring in the future t > 0. Hence, only the

first integral contributes, and the Green’s function Gd(r, r0; t) is sometimes called

the retarded Green’s function that takes into account the heterogeneities and the

boundaries of the medium (Duffy [2001]).
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Appendix B

The Short Time Fourier

Transform

The standard Fourier Transform (FT) states that any arbitrary periodic function

of time u(t) with period T can be written as the sum of a set of sinusoids:

û(ω) =

+∞∫
−∞

u(t)e−iωtdt (B.1)

Eq. (B.1) gives a representation of the frequency content of u(t) obtained aver-

aging over the whole length of the signal. Since FT uses sinusoidal basis function

that are localized in frequency but non in time, the identification of high fre-

quency bursts or the characteristics of non-stationary signals may be potentially

hindered.

An alternative method to obtain a time-localization is the Short Time Fourier

Transform (STFT) or Spectogram (Mallat [1998]). The key feature of the STFT

consists of shifting a window function g(t) to time τ and then computing the
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Figure B.1: The Short Time Fourier Transform

Fourier Transform of the product of the signal and the window:

ûwin(ω, τ) =

+∞∫
−∞

u(t)g(t− τ)e−iωtdt (B.2)

where u(t) is the signal to be analysed and g(t − τ)e−iωt a time shifted and

modulated version of the window function g(t). The superscript win indicates

the dependency of the transformed signal on the chosen window function g (Fig.

B.1).

Essentially, Eq. (B.2) is a time-frequency cross-correlation of the signals u(t)

and g(t), obtained by considering scalar products of u(t) and shifted copies of g(t)

of the form g(t−τ)e−iωt (with τ, ω ∈ R). The time-frequency localization provided

by the STFT is measured introducing two important parameters, the standard

deviation or root mean square (RMS) duration ∆t and the RMS bandwidth ∆f :

∆t =
1

|g(t)|2

√√√√√ +∞∫
−∞

(t− t∗)2|g(t)|2dt (B.3a)

∆f =
1

|ĝ(f)|2

√√√√√ +∞∫
−∞

(f − f∗)2|ĝ(f)|2df (B.3b)
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Figure B.2: Tiling of the Heisenberg box for STFT

where t∗ =
+∞∫
−∞

t|g(t)|2dt/
+∞∫
−∞
|g(t)|2dt and f∗ =

+∞∫
−∞

f |ĝ(f)|2df/
+∞∫
−∞
|ĝ(f)|2df are

the temporal centre and the central frequency of g(t) and ĝ(f), respectively,

with ĝ(f) the Fourier Transform of the window function. For any time-frequency

point (τ0, f0), if g(t) has centre t∗ and RMS duration ∆t, g(t− τ)e−iωt has centre

t′∗ = t∗+τ0 and RMS duration ∆t′ = ∆t. Hence, the time resolution is ∆t. In the

frequency domain, assuming that ĝ(f) has centre f∗ and RMS bandwidth ∆f , in a

analogous way to the time domain, the new centre is given by f ′∗ = f∗+f0 and the

RMS bandwidth is ∆f ′ = ∆f . Therefore, the frequency resolution is ∆f . Thus,

according to the uncertainty principle (also known as Heisenberg inequality) that

constrains the product of resolution in time and frequency (Teolis [1998]):

∆t∆f ≥ 1

4
(B.4)

the time-frequency localization provided by STFT is over the rectangle charac-

terized by an area of A = ∆t∆f . Thereby, STFT is not suitable for analysing

signals with both very high and very low frequencies (Fig. B.2).

Despite these limitations, the STFT is used in a wide variety of problems, es-

pecially those where only high frequency components are of interest and frequency

resolution is not critical.
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Appendix C

Matched and Mismatched filter

Responses of a Chirp Signal

The pulse compression or matched filter concept is a theoretical framework aimed

to process a received broadband signal in order to maximize the sigma-to-noise

ratio (SNR) in the presence of white Gaussian noise (Misaridis & Jensen [2005a]

and Misaridis & Jensen [2005b]). Indeed, a matched filter behaves as a linear

time-invariant system with the output r(t) given by:

r(t) = h(t)⊗ y(t) =

+∞∫
−∞

ĥ(f)ŷ(f)ei2πftdf (C.1)

where h(t) is the time impulse response and y(t) is the input signal. Let us

assume the output of the linear system as a sum of a deterministic signal and

noise as follows:

r(t) = rs(t) + rn(t) (C.2)

where rs(t) is a deterministic signal and rn(t) is the noise. The requirement on the

matched filter is that the output signal has to be as large as possible compared

to noise at the delay time t = td, i.e. we want to find an expression for h(t) that
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yields the highest SNR η at its output:

η =
|rs(td)|2

|rn(t)|2
(C.3)

where the numerator and denominator of Eq. (C.3) are the output power and the

noise power, respectively. The deterministic output of a pulse-compressed signal

at the delay time td is:

rs(td) =

+∞∫
−∞

ĥ(f)ŷ(f)ei2πftddf (C.4)

where ĥ(f) is the transfer function of the system and ŷ(f) is the Fourier transform

of the input signal. The output power is proportional to the square of the signal

amplitude, so that we have:

|rs(td)|2 =

∣∣∣∣∣∣
+∞∫
−∞

ĥ(f)ŷ(f)ei2πftddf

∣∣∣∣∣∣
2

(C.5)

The noise is assumed to be Gaussian with zero mean and has a flat power spec-

trum with all the frequencies represented by the same amount of power density

N0. Hence, the spectral density of the input noise is equal to:

ŷni(f) =
N0

2
[Watts/Hz] (C.6)

Therefore, the spectral density of the output noise is (Misaridis & Jensen [2005b]):

ŷno(f) =
N0

2
|ĥ(f)|2 (C.7)
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and the noise power is equal to:

|rn(t)|2 =
N0

2

+∞∫
−∞

|ĥ(f)|2df (C.8)

Combining Eqs. (C.5) and (C.8), Eq. (C.3) becomes:

η =

∣∣∣∣+∞∫
−∞

ĥ(f)ŷ(f)ei2πftddf

∣∣∣∣2
N0

2

+∞∫
−∞
|ĥ(f)|2df

(C.9)

Using the Schwartz inequality:

∣∣∣∣∣∣
+∞∫
−∞

ĥ(f)ŷ(f)ei2πftddf

∣∣∣∣∣∣
2

≤
+∞∫
−∞

|ĥ(f)|2df
+∞∫
−∞

|ŷ(f)|2df (C.10)

the equality is reached if ŷ∗(f) is proportional to ĥ(f), i.e.:

ĥ(f) = ke−i2πftd ŷ∗(f) (C.11)

where the asterisk denotes complex conjugate and k is an arbitrary constant

known as gain factor. Substituting Eq. (C.10) into (C.9), we get:

η ≤ 2

N0

+∞∫
−∞

|ŷ(f)|2df (C.12)

and the maximum of the above equation is equal to:

max η|t=td =
2

N0

+∞∫
−∞

|ŷ(f)|2df (C.13)
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Therefore, the maximum SNR, i.e. the maximum of the peak voltage to noise

power ratio, depends only on the transmitted energy and the noise power density.

In addition, based on Eq. (C.11) the matched filter has an impulse response equal

to the input signal reversed with time except for k and td:

h(t) = ky(td − t) (C.14)

As the output response of a pulse-compressed waveform can be written as the

convolution of the emitted signal with the impulse response, substituting Eq.

(C.11) into (C.1), the following equation is obtained:

r(t) = k

+∞∫
−∞

ŷ(f)ŷ∗(f)e−i2πf(t−td)df = k

+∞∫
−∞

|ŷ(f)|2e−i2πf(t−td)df = kRyy(t− td)

(C.15)

Hence, a pulse compression response is mathematically equivalent to the auto-

correlation Ryy of the transmitted signal, shifted by td.

If the input signal is a linear FM modulated signal given by the following equation

(Misaridis & Jensen [2005a]):

c(t) = ei[2π(f0t+
µ
2
t2)] − T

2
≤ t ≤ T

2
(C.16)

where f0 is the central frequency, T is the signal duration, µ = B/T is the FM

slope and B is the total bandwidth that is swept, according to Eq. (C.15), the

matched filter output becomes:

Rcc(t) =

+∞∫
−∞

c(t)c(t+ τ)dt = T
sin
[
πBT t

T

(
1− t

T

)]
πBT t

T

ei2πf0t (C.17)

Pulse compression removes any frequency modulation and the result is a band

limited impulse response at the carrier frequency f0 with a sinc shape. The

resolution τr of such process can be obtained by calculating the first zero of Eq.
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Figure C.1: Windowed (Blackman) chirp excitation

(C.17) through a binomial expansion and taking only the first order term:

τr =
T

2

(
1−

√
1− 4

BT

)
≈ T

2

[
1−

(
1− 2

BT

)]
≈ 1

B
(C.18)

Since imaging with a short (conventional) pulse of width T would lead to res-

olution of τr = 1/B, resolution for a short and for a FM modulated excitation

are roughly the same, when the signals use the same bandwidth. However, the

side effects of the matched filter mechanism with linear FM are the resulting sinc

sidelobes, which represents source of mutual interference that can obscure weaker

signals.

C.1 The Mismatched Filter

Reduction of the compressed pulse range sidelobes can be accomplished by shap-

ing the transmitted pulse envelope, i.e. by applying a window function (Hanning,

Blackman or Dolph-Chebyshev) on the matched filter [Eq. (C.17)] (Fig. C.1). In

this manner, the weighted matched filter is referred to mismatched filter and Eq.
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Figure C.2: Matched filter output (a) and mismatched filter output (b) with
sidelobes reduction

(C.17) becomes (Mitchell & Rihaczek [1968]):

Rw
cc(t) =

+∞∫
−∞

ĉ(f)ĥMF (f)ei2πf0tdf ∼= h(t)⊗Rcc(t) (C.19)

where ĉ(f) is the Fourier transform of the linear FM input function, ĥMF (f) =

ŵ(f)ĉ∗(f), ŵ(f) is the Fourier transform of the window function and Rcc(t) is

the autocorrelation function of the input signal c(t). As the linear FM signal has

uniform spectral density, we have:

Rcc(t) = c(t)⊗ c(−t) ∼= δ(t) (C.20)

and the output measured in the mismatched filter is proportional to the impulse

response h(t). Hence, compared to a simple pulse compression, the effect of a

mismatched filter is to reduce the sidelobes well below the level required for di-

agnostic imaging (Fig. C.2). However, as it can be seen from Fig. C.2, the

undesired effect of a mismatched filtering is to widen the axial main lobe of the
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output thus slightly decreasing the resolution (although the level is still accept-

able) and to reduce the SNR improvement of nearly 1dB (Misaridis & Jensen

[2005b]).
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